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Epigraph Text

The Road goes ever on and on,

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

–J.R.R. Tolkien, The Lord of the Rings
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ABSTRACT

Because of its human and economic cost, there is a need to reduce the disability resulting

from a stroke. Though emergency reperfusion treatment can reduce disability, complications

resulting from it, such as intracerebral hemorrhage, can be lethal. Many patients su↵ering

from ischemic stroke develop varying degrees of pial-collateral arterial supply (PAS), which

can a↵ect patient response to reperfusion therapy and the risk of developing intracerebral

hemorrhage. Observation of good PAS predicts a more favorable outcome (reduced disabil-

ity) when performing reperfusion treatment.

Current methods for assessing pial collaterals use either (a) physically-installed pial win-

dows, or (b) manual scoring of the extent of PAS on X-ray digital subtraction angiography

(DSA) image series. Though pial windows provide microscopic visualization of pial col-

laterals, during a stroke, this method is clinically infeasible. Manual scoring o↵ of X-ray

DSA series is far more preferable because of X-ray DSA’s availability during intervention, its

resolution and scan time, and because manual scoring techniques can be reproducible and

quantitative. However, these techniques’ ultimate performances are coarse and dependent on

viewer experience. Therefore, the objective of this dissertation is to investigate and develop

a computational method to quantitatively assess PAS—imaged using X-ray DSA—in the

setting of acute ischemic stroke. It is hypothesized that computerized and quantitative an-

giographic image analysis of pial arterial supply can be used to identify patients’ suitability

for reperfusion treatment.

Digitally-subtracted angiograms were retrospectively collected under an institutional re-

view board-approved, protocol compliant with the Health Insurance Portability and Ac-

countability Act of 1996 (HIPAA). Occlusion sites included the M1 segment of the Middle

Cerebral Artery for 15 patients, the proximal M2 segment for 1 patient, and the Internal

Carotid Artery for 8 patients. Eleven of the patients were imaged at 6 Frames/second, while

the remainder were imaged under an X-ray dose-sparing protocol.

The research in this dissertation covers 3 major topics. First, a Fuzzy C-Means (FCM)
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based approach for automatically segmenting PAS-a↵ected vessels from capillary blush and

background in X-ray DSA series during acute ischemic stroke was developed. With an

area under the ROC curve of up to 0.89 across multiple frame-rates for the task of seg-

menting vessels from non-vessels, this method was shown to have robust performance and

could identify vessels almost as well as an expert observer. Next, a quantitative method

for extracting 10 features from kinetic contrast curves in X-ray DSA series and validat-

ing these features was developed. These features’ abilities to distinguish between patients

with favorable PAS from those with poorer PAS was evaluated. For the task of identifying

patients with particularly poor PAS, many of these features had areas under the Receiver

Operating Characteristic (ROC) curves of approximately 0.99, indicating a substantial capa-

bility for contra-indicating reperfusion treatment. Finally, a Fuzzy C-Means based approach

for automatically segmenting arteries from non-arteries was developed and evaluated. Ki-

netic features were subsequently extracted from curves generated from segmented arteries

and segmented parenchymal blush due to capillaries, and their performances in the task of

distinguishing between patients with favorable PAS from those with poorer PAS was eval-

uated. The results suggested that FCM could segment arteries from non-arteries. Features

extracted from pixel segmented arterial and capillary curves were comparable to features

extracted without any segmentation; however, a mild improvement in performance for 2 fea-

tures suggest that extracting features from arterial or capillary filling could provide real-time

quantitative markers for a patient’s condition during intervention.

The results support the hypothesis that during acute ischemic stroke, computerized and

quantitative angiographic analysis of PAS can identify patients’ suitability for reperfusion

treatment. Therefore, this method can potentially serve as a fast “second-check” to an

interventionalist’s treatment decisions, leading to better outcomes and reduced disability.

Limitations that must be overcome prior to clinical adoption include the small size of the

database (24 cases total), the vascular overlap caused by projecting a 3D spatial volume to a

2D spatial image, and the uncontrolled environment of clinical exams. These limitations can
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be addressed by including more cases, adapting the methods discussed in this dissertation

to 4D (3D plus time) DSA series of acute ischemic stroke, and complementing the clinical

studies presented in this thesis with simulation and preclinical canine studies, respectively.

This dissertation serves as the first step in achieving a fully computerized and quantita-

tive means for personalizing patient management in intervention for acute ischemic stroke.

Moreover, the techniques presented in this thesis may find application in quantifying imaging

of other neurovascular disease.
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CHAPTER 1

INTRODUCTION

Given its human and economic cost there is a need to reduce the disability that results

from a stroke. Emergency reperfusion treatment can restore perfusion to the a↵ected area

and possibly reduce disability. However, complications resulting from emergency reperfu-

sion treatment can be lethal. Therefore, there is an urgent and unmet clinical necessity to

e�ciently identify patients most likely to benefit from reperfusion treatment.

Many patients with ischemic stroke (i.e., stroke caused by a blockage) develop varying

degrees of collateral arterial supply that can supply a↵ected brain tissue. Pial collaterals

have the potential to serve as a temporary blood supply (i.e., to reconstitute occluded ar-

teries), allowing perfusion downstream of the blockage in the first hours after a stroke; this

reconstitution can significantly benefit patients. Observation of good pial collateral arterial

supply (PAS) using X-ray digital subtraction angiography (DSA) predicts more favorable

outcome (reduced disability) when performing emergency reperfusion treatment.

Current methods assessing collaterals use either (a) physically-installed pial windows or

(b) manual scoring pial collateral extent from X-ray DSA images. Although pial windows

can provide microscopic visualization of pial collaterals, they are too invasive and, during a

stroke, clinically infeasible. Scoring in the clinic is done manually using angiographic images

and can be reproducible, but the ultimate performance is coarse and dependent on viewer

experience.

A computerized and quantitative assessment of pial collateral supply during interven-

tional imaging can allow for a more objective understanding of a patient’s suitability for

reperfusion treatment. Furthermore, such an assessment can be used to dynamically moni-

tor the change in the brain tissue at risk, which may a↵ect treatment decisions.

Therefore, the objective of this thesis is to investigate and develop a computational

method to quantitatively assess pial collaterals—imaged using X-ray DSA—in the setting of

acute ischemic stroke. It is hypothesized that computerized and quantitative angiographic
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analysis of PAS can be used to identify patients’ suitability for reperfusion treatment. Specif-

ically, it is hypothesized that (1) with limited operator input, an e�cient computerized seg-

mentation technique for identifying large vessels from parenchymal blush due to capillaries

is comparable to manual identification by a radiologist; (2) kinetic features extracted from

the ischemic region in X-ray DSA can quantitate PAS; and (3) kinetic features extracted

from specific vessel classes better quantitate PAS than features extracted from all vascular

filling in the ischemic region.

1.1 Clinical Management of Acute Ischemic Stroke

1.1.1 Overview of Ischemic Stroke

Figure 1.1: Common sites for treatable ischemic stroke include the internal carotid and
middle cerebral arteries. Image courtesy of Christian Elliot [17].

In the USA, an estimated 700,000 people per year experience ischemic stroke. Ischemic

stroke—which accounts for 87% of all strokes—occurs when the normal flow of blood in a

major cerebral artery (Figures 1.2 and 1.1) is occluded (i.e., blocked) by blood clots, fat or

cholesterol masses, or tissue fragments. The occluding object is referred to as an embolus
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[31]. Common occlusions sites are the internal carotid and the middle cerebral arteries

(Figure 1.1). When oxygen is significantly reduced, neurons, glial cells, and vessel epithelial

cells begin to die, with the resulting dead tissue volume referred to as an infarct volume [16].

Cell death is often unavoidable a few hours hours after occlusion, but a significant portion

of brain tissue is salvageable if treatment is administered with the first 3 hours [16, 21].

3/24/2017 Hemodynamic correlation
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CBF is low after the vascular insult unless reperfusion occurs either spontaneously or following intra-arterial

thrombolysis.

Early reperfusion in the reversible stage of neuronal injury will salvage the brain tissue and stroke will not occur. Early

MRI changes may revert to almost normal.

Late reperfusion will not prevent stoke from occurring. On the contrary, it may lead to hemorrhagic conversion because

of the damage that the vascular endothelium has already suffered.

Hemodynamic zonal infarct characterization

(Infarction core)

CBF and CBV are both low due to failure of the autoregulation and the end result is DEAD tissue.

MTT will be variable depending on how low CBV and CBF go below the critical level.

(Penumbra)

Low CBF: secondary to compromised main branch blood supply.

Normal CBV or High: secondary to collateral blood flow from neighboring territories and active

autoregulation that causes vasodilatation. This maintains the O2 delivery in the range that keeps the

Figure 1.2: Distribution of underperfused and infarct (dead) tissue during an acute ischemic
stroke. The infarct volume is closest to the occluded, or blocked, vessel, while underperfused
but still-viable tissue surrounds the infarct in a penumbra [43].

1.1.2 Clinical Procedure and Treatment Options

After a patient su↵ering from stroke is brought to the emergency room and given an initial

assessment, a non-contrast CT scan is performed to rule out intracranial hemorrhaging [47].

If no hemorrhaging is present, a CT angiography (CTA) scan is performed to locate the

occlusion and map out the a↵ected and surrounding arterial territories. If the embolus is a
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blood clot and the time from onset is less than 4.5 hours, tissue plasmogen activase (tPA)

may be given to dissolve it [21, 19].
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I. Hemodynamic correlation

At the time of the initial vascular insult, perfusion pressure is reduced. This is followed by arteriolar dilatation and

hypothetical capillary recruitment to route as much blood as possible to ischemic tissue, resulting in an increased capillary

blood pool. (physiologic autoregulation)

Parameters of cerebral hemodynamics:

1. Cerebral Blood Flow (CBF): Represents instantaneous capillary flow in tissue.

2. Cerebral Blood Volume (CBV): Describes the blood volume of the cerebral capillaries and venules per cerebral

tissue volume.

3. Mean Transit Time (MTT): Measures the length of time a certain volume of blood spends in the cerebral capillary

circulation.

MTT = CBV/CBF

4. Time To Peak (TTP): A parameter inversely related to CBF in which reduction of blood flow results in an increase

in the time needed for the contrast to reach its peak in the perfused volume of brain tissue.

Following vascular insult, the first abnormality is hemodynamic derangement, which precedes and leads to the

metabolic and histopathologic abnormalities.

Figure 1.3: Progression of cell death in acute ischemic stroke for an MCA occlusion. As time
passes, a greater portion the underperfused but still-viable tissue in the penumbra infarcts
(i.e., dies o↵) until there is no salvageable tissue left [43].

If suitable and the time from onset is less than 8 hours [25, 19], the patient will then be

moved to an interventional radiology suite for embolectomy [47]. Using planar X-ray digital

subtraction angiography (DSA), catheters are guided from punctures to the femoral artery

or a leg vein to the internal carotid artery. The neurointerventional radiologist will assess

the flow of contrast in the timed angiographic image series and, if the patient can tolerate

it, proceed with the reperfusion treatment.

Emergency reperfusion treatment using either clot-dissolving drugs (such as tPA) or

embolectomy, (i.e, removal of the embolus) via an intra-vessel catheter restores perfusion

and can reduce long-term disability in some patients [9], but must be administered within

4



4.5 hours . However, over 98% of stroke su↵erers arrive outside the optimal treatment time

window. Furthermore, these treatments can often have devastating side e↵ects (intra-cerebral

bleeding, reperfusion injury, complications and their associated disability), which reduce

their risk/benefit profile [11, 9]. This underscores the urgent and unmet clinical necessity

for e�cient identification of patients most likely to benefit from reperfusion treatment.

1.1.3 Role of Pial Collaterals

Many patients with ischemic stroke develop varying degrees of arterial blood supply through

collateral routes, such as pial arteries [48]. We refer to the filling of blood from these

arteries as Pial Arterial Supply (PAS). During Middle Cerebral Artery Occlusion (MCAO),

PAS serves as a temporary backroad supply, providing oxygen and nutrients to ischemic

tissue [11, 9]. This reconstitution can significantly benefit patients. In a clinical studies and

animal experiments, it was shown that observation of good pial collateralization using planar

X-ray DSA predicts more favorable outcome in terms of reduced disability when treating a

stroke and a reduced infarct volume [11, 9, 12]. Furthermore, the extent of collateralization

plays an important role (independent of other factors including age, time to treatment,

and recanalization) in determining the e�cacy of reperfusion treatment and reducing the

likelihood of inter-cerebral hemorrhage [11, 9, 5, 26, 29, 28, 2].

1.1.4 Available Clinical Imaging Modalities

Clinical imaging paradigms for assessing the presence of pial collaterals have been developed

to improve outcome in ischemic stroke using CT Angiography (CTA), MR Angiography

(MRA), or planar X-ray Digital Subtraction Angiography (DSA). CTA and MRA are used

for initial assessment for collateral presence. Planar x-ray DSA is used during embolectomy

to verify the existence and location of the embolus prior to removal. However, there is a

trade-o↵ between the value of identifying tissue at risk by MRI or CT and the time needed

to acquire this information: setting for and performing the imaging exam will only increase
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Figure 1.4: (a) Schematic representation of pial arterial supply (PAS) and the Christoforidis
grading scale used to assess the degree of PAS [11]. (b-d) Pial arterial reconstitution of MCA
territory at various stages as seen in X-ray DSA.
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the between stroke onset and potential treatment. By contrast, planar X-ray DSA has

superior resolution, an interventional setup for prompt treatment, and scan time to both

CT Angiography and MR Angiography. Even though no parenchymal tissue is displayed

on X-ray DSA images, measuring the extent of pial collateral reconstitution of an occluded

territory may assess the ischemic penumbra. This makes planar X-ray DSA a useful choice

if contrast-enhanced CT is unavailable or additional time must be saved. In a position

statement, the American Heart Association stressed that additional imaging studies should

not unduly delay treatment in appropriate patients [9]. Therefore, to assess the degree of

PAS during stroke in an interventional setting, X-ray DSA would be the clear choice.

1.1.5 Current Clinical Assessment Methods and Their Limitations

Currently, methods for assessing pial collaterals include (a) a manual invasive experimental

technique, (b) a technique for measuring cerebrovascular reactivity (CVR) on MRI, and (c)

a subjective visual technique using x-ray DSA.

Manual invasive measurement of pial collateral size and number density is an approach

that utilizes a Plexiglas window to replace a section of the calvarium enabling measurements

of pial collateral number density and size. This pial window allows for the direct microscopic

visualization of vessels on the brains surface [27, 24, 13], and thus, a direct evaluation of the

potential magnitude of PAS. However, pial windows are only appropriate in animal studies.

Pial collaterals may also be assessed via measurements of the cerebrovascular reactivity

(CVR). It has been shown that the measurement of CVR on blood oxygen level-dependent

MRI (BOLD-MRI) can be correlated with the presence of pial collaterals as observed on

x-ray DSA [23]. However, the time needed to prepare and perform BOLD-MRI (> 10

minutes) would increase the time interval between symptom onset and potential treatment

by a non-trivial amount.

Visually, radiologists may assess reconstitution of the occluded MCA by pial collaterals

on X-ray DSA images. Currently, such assessments of the e↵ect of pial collaterals use scoring
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systems. In [11, 9, 12], reproducible manual scoring was based on the level of angiographically

visible retrograde reconstitution of occluded MCA segments. This scoring system can be used

to verify if the interventionist is to proceed with treatment. Transit time at a↵ected areas

in Christoforidis et al, 2011 was assessed against the early venous phase [12]. Using the

AMIRA software demonstrated a more quantitative determination of transit time from the

contralateral, unoccluded MCA to the reconstituted M3/M4 junction of the occluded MCA.

These scoring systems have been shown to reliably predict the outcome of treatment and

were able to show that better pial collateral formation is associated with likelihood and

severity of inter-cerebral hemorrhage following treatment. However, these scoring systems

require a certain level of experience by the radiologist, whose assessment of pial collaterals

is relatively coarse and subjective.

A second e↵ect to consider is dispersion [36, 37]. As a contrast agent bolus moves through

the vascular tree, it disperses through the individual branches. It has been suggested in

Mouannes-Srour et al 2012 [37] that the scale (i.e., width) of a contrast-time curve measured

on MRI may predict infarct volume. Dispersion of contrast agent concentration curves leads

to underestimation of blood flow. This can cause tissue no longer in danger of infarct to

be misdiagnosed, leading to mistreatment. In thrombolysis, this means an increased risk of

hemorrhage.

1.1.6 Significance of Computerized and Automated Assessment

In addition to their particular limitations, the current methods of assessing pial collaterals

are not objective. A quantitative and computerized assessment of PAS has the potential

to reduce errors associated with inter-reader variability, leading to a more standardized and

objective understanding of a patients condition.

Computerized and quantitative methods for assessing ischemic stroke on MRI have been

developed [41]. Potreck et al. have proposed an automated scoring system based on Tmax

measurements from Dynamic Susceptibility Contrast Magnetic Resonance Imaging (DSC-
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MRI) [41]. They present their methods as a complement to conventional penumbra imaging.

McKinley et al. have developed a fully automated system that uses random forest classifiers

and multimodal MRI to measure the penumbra volume and predict the final infarct volume

[34]. They acknowledged, however, that collateral flow led a residual overestimation of the

final infarct volume size. In addition, between the conclusion of an MRI exam and reperfusion

treatment in the interventional suite, PAS may decrease because of failing pial collaterals; in

that situation, an automatic assessment using MR images would present a patient as more

suitable for reperfusion treatment than they actually are in the interventional suite, and,

hence endanger the patients life.

A computational quantitative assessment of pial collaterals available to clinicians during

interventional imaging is expected to allow for dynamic assessment of brain tissue at risk with

the potential to detect subtle changes in the degree of PAS during the procedure; this may

a↵ect decision making during endovascular rescue. Using such an algorithm clinicians could

potentially personalize treatments towards each patient, help manage risk, and more quickly

deliver these treatments. As a result, this assessment can lead to a more e�cient means to

render e↵ective treatment decisions, and an improved outcome for long-term recovery.

1.2 Objectives and Hypotheses

The goal of this research is to investigate and develop a computational method to quanti-

tatively assess pial collaterals—imaged using X-ray DSA—in the setting of acute ischemic

stroke. Therefore, for occlusion sits at Middle Cerebral Artery (MCA) or Internal Carotid

Artery (ICA), we hypothesize that, during ischemic stroke, computerized and quantitative

angiographic analysis of these collaterals can identify patients’ suitability for reperfusion

treatment.
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1.3 Thesis Outline

The thesis is organized as follows. The first part, Chapter 2, is an overview of the clinical DSA

database. The next three chapters deal with the development, validation, and analysis of the

assessment method. Chapter 3 describes a Fuzzy C-Means-based approach that uses kinetic

contrast curves to segment major vessels from parenchymal (capillary) uptake of contrast.

Chapter 4 presents methods for extracting 10 features from kinetic contrast curves and

validating those features’ ability to discriminate between patients with favorable PAS from

those with poorer PAS. Chapter 5 looks to merge the findings and development in Chapters

3 and 4 discusses Fuzzy C-Means-based segmentation of arteries from non-arteries, and the

performance of features extracted from these arterial and capillary curves to automatically

separate patients with favorable PAS from those with poorer PAS. The thesis closes with a

summary of its contributions and discussion of limitations and future directions in Chapter

6.
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CHAPTER 2

CLINICAL DATABASE AND ANGIOGRAPHIC

ACQUISITION

6 Fr/s Mixed Frame-rate

Number of Cases 11 13
Number of Cases with Repeat Acquisitions 6 1

General Anesthesia 11 10
Iohexol Injection technique hand

tPA Treatment 3 7
Mechanical thrombolectomy 7 8

Occlusion Type
MCA 8 8
ICA 3 5

Time from Onset (hours) 2-8
Number of Females 12

Table 2.1: Summary of Clinical Angiographic Database

Digitally subtracted angiograms were collected retrospectively under an institutional re-

view board-approved, HIPAA-compliant protocol. Angiograms were acquired using Philips

Alura Xper interventional suites from 24 patients undergoing treatment for stroke at the

University of Chicago Medical Center. Occlusion sites included the M1 segment of the Mid-

dle Cerebral Artery for 15 patients, the proximal M2 segment for 1 patient, and the Internal

Carotid Artery terminus for 8 patients. There were a total of 12 females and 12 males with

and age range ylow to yhigh.[Dr. Christoforidis must provide the patient and procedure de-

tails because I do not have patient reports for Cases 21-39]. General anesthesia was given

to 21 patients to reduce motion during imaging; the remaining 3 were determined to have

minimal motion.

All angiograms were acquired at 75.0-103.6 kVp and exposures of 11-49 mAs. Image

matrix size was 1024 ⇥ 1024 pixels with pixel resolution ranging from 0.1526 mm ⇥ 0.1526

mm to 0.215 mm⇥ 0.215 mm. Iohexol was injected by hand to provide contrast in the vessels.

Angiograms from 11 cases were acquired at 6 Frames/second; the remainder were acquired
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under an X-ray dose-sparing protocol that would start imaging at 3 Frames/second, switching

to imaging at 1 Frames/second 4–4.33 seconds into the acquisition, and then switching to

imaging at 2 Frames/second 12–12.33 seconds into the acquisition.

In Table 2.2, cases were organized by into datasets according to frame-rate, and whether

or not they had repeated acquisitions. Of the 24 cases, 7 had at least two repeated an-

giograms.
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Datasets

Case A A3 AM B Ar Br Pial

Number (6 Fr/s) (3 Fr/s) (Mixed (Mixed (6 Fr/s (Mixed Grade

Frame- Frame- repeated Frame- Truth

Rate) Rate) acquisitions) Rate pc

repeated

acquisi-

tions)

1 X X X 1
2 X X X 5
3 X X X X 3
4 X X X X 1
5 X X X 2
6 X X X X 4
7 X X X X 2
8 X X X 2
9 X X X 3
10 X X X X 3
11 X X X X 2
12 X 2
13 X 2
14 X 2
15 X 2
16 X 3
17 X 2
18 X 3
19 X 1
20 X X 2
21 X 2
22 X 3
23 X 4
24 X 4

Number 11 11 11 13 6 1 -
of Cases -

Table 2.2: Organization of Case Angiograms. Note that cases may be organized by frame-
rate and whether or not they have repeated DSA acquisitions. Note that additional datasets
were generated by downsampling Dataset A to 3 Fr/s (i.e. Dataset A3) and according to
the mixed frame-rate protocol (i.e., Dataset AM ).
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CHAPTER 3

FUZZY C-MEANS SEGMENTATION OF VESSELS IN

ANGIOGRAPHIC IMAGES OF STROKE

3.1 Background

The central hypothesis of this thesis is that computerized and accurate quantification of

the extent of pial arterial supply (PAS) to the ischemic region can alter the assessment of

a stroke patient’s candidacy for reperfusion treatment. Because of the role reconstituted

MCA branches (i.e., MCA branches a↵ected by PAS) play in patient assessment, the ability

to segment major vessels in angiographic images of stroke will be critical to developing a

computerized assessment method of PAS. In current interventional settings, major vessel

branches are identified visually on X-ray DSA series by interventional radiologists. However,

this involves acquiring image series than run into the late venous phase and identifying

multiple major vessel branches across almost all image frames, which is very time-consuming.

Therefore, manual delineation of vessel boundaries in an interventional setting is highly

impractical.

Methods have been developed to segment vessel in DSA images. Sang et. al. proposed

two methods (one for developed for computational speed and the other for accuracy) that

involve adaptive thresholding based on a priori knowledge of the vessels’ diameters [45].

In Franchi et. al, a shape recognition algorithm that utilizes anisotropic Gaussian filters,

angular mapping, and thresholding schemes is proposed that had fewer false positives when

compared to the more accurate method described in Sang et. al [18]. However, these

methods require involved user input, making them unsuitable in an interventional setting.

Furthermore, they focus on segmenting vessels within a given frame in a DSA series and

assume a background with little contrast. During acute ischemic stroke, MCA branches

a↵ected by PAS may fill over the course of many frames and the presence of contrast blush

due to capillaries violates the assumption of a background with little contrast. Therefore, a
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technique that is robust over multiple frames in a DSA series and properly handles capillary

filling will be able to better segment vessels in the ischemic territory.

Fuzzy C-Means (FCM) clustering is an unsupervised pattern-recognition method that has

been shown to reliably segment breast lesions in dynamic contrast-enhanced (DCE) MRI.

In Chen et. al, 2006,[7], the post-contrast DCE-MRI images are divided by the pre-contrast

image to remove unenhanced tissue prior to application of the FCM algorithm [7]. This

processing of DCE-MRI series can be treated as an analog to X-ray DSA. Therefore, in this

study, the FCM clustering is adapted to segmenting reconstituted MCA vessels in X-ray

DSA series. The performance is evaluated by comparing vessel pixel classification against

radiologists’ manual designations on retrospectively-acquired DSA series.

3.2 Methods

3.2.1 Review of Fuzzy C-Means Clustering

Fuzzy C-Means (FCM) clustering is an unsupervised learning method for pattern recognition.

Its goal is to find the fuzzy partition of data set X comprising N data vectors (X = {xi, i =

1, 2, ..., N |xi 2 Rm}) into Nc clusters, or classes. The data vector xi is an m-dimensional

feature vector. The class means are represented by a Nc ⇥m matrix, V . Each column of V

corresponds to the mean feature vector of a class. The partition, or set of class membership

scores, for X is given by the Nc ⇥ N matrix U . Each element of matrix U , uki, represents

the membership score of the ith data point to the kth class and always falls in the range [0,

1]. The FCM implementation presented here follows the implementation detailed in Chen et

al, 2006 for solving for U and V [7], except that this implementation is done on with a GTX

Titan graphical processing unit (nVidia Corporation, USA) on a cluster node with 256 GB

of memory.
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3.2.2 Vessel Segmentation via FCM clustering

An angiogram may be represented as D(x, y, t), where x and y are spatial pixel coordinates

and t is time. For each pixel i, the contrast over time is shown via a time density curve Di(t),

where t is time. These curves are input directly into the FCM algorithm via the contrast

contrast values at each time index.

Figure 3.1: Flow-chart for the proposed FCM vessel segmentation algorithm with ROC
analysis conducted in the task of distinguishing between pixels that are vessels and pixels
that are not vessels.

Using the pixel curves as inputs (i.e., xi = Di, where Di is the vector notation of curve

data inDi(t)), FCM clustering then is used to separate pixels into 2 or 3 classes (Nc 2 {2 3}).

When Nc = 2, the two classes are (1) background and parenchymal blush due to capillaries

and (2) large blood vessels, or major vessels; when Nc = 3, the 3 classes are (1) background,

(2) parenchymal blush due to capillaries, and (3) major vessels. The steps of the segmenting

algorithm are outlined in Figure 3.1. The output of FCM are matrices U = [U1 U2 U3 ]T

of size 3 ⇥ N and V = [ V1 V2 V3 ]T of size 3 ⇥ M . Each row of U is the transpose of the
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Major	Vessels

Capillary	Blush

Background

Figure 3.2: Mean curves in V for input curves from ROI r = 3 in Fig 3.5a. The curves are
identified with their respective classes (text with arrows) using the peak heights.

column vector representation of a class’s membership map. Similarly, each row vector of V

represents the mean density curve of one of the 3 classes (Fig 3.2), with the cluster ordering

in V matching that in U . The rows of U and V are then sorted according to peak heights

of the mean density curves in V .

If Nc = 3, the mean curve with the highest peak is identified as belonging to the major

vessel class; the mean curve with the median peak is identified as belonging to the capillary

blush class; and the curve with the lowest peak is identified as belonging to the background

class. Similarly, if Nc = 2, the mean curve with the higher peak is identified as belonging to

the major vessel class and the mean curve with the lower peak is identified as belonging to

the capillary blush class. The ordering for the curve-peak-sorted rows in U , and hence the

class membership maps, is the same as for the mean peak–height-sorted contrast curves in

V . Sample sorted mean density curves of the major vessel, capillary blush, and background
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Definitely
a	vessel

Considered	
definitely	
not	a	vessel

Figure 3.3: Class membership map for major vessels in Fig. 3.5a.

classes are shown in Figure 3.2 and a corresponding vessel membership map is shown in

Figure 3.3.

As a contrast bolus travels through the vasculature tree, it undergoes dispersion and

delayed arrival, which broadens a pixel’s density curve and lowers its height (Figure 3.4). We

will exploit this property to identify pial collateral arteries. However, in the occluded MCA

territory, this delay-and-dispersion e↵ect causes a pixel density curve in capillary blush-only

region (anterograde filling) to appear similar to a pixel density curve in a major MCA branch

(retrograde filling) that is further downstream (i.e., within later-filling segments of the MCA

territory) in the direction of flow. To reduce the resulting misidentification of anterograde

capillary blush as retrograde filling of an arterial branch, circular regions of interest (ROIs)

are specified in the direction of flow. For MCA occlusions (Figure 3.5a), 5 circular regions

of interest (ROIs) with indices r = 1–5 were specified in the direction of retrograde filling.

Four ROIs contained the MCA branches, while one ROI was chosen in the anterior cerebral

artery (ACA) branches (normal, anterograde filling) for reference. This process was repeated
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Figure 3.4: E↵ect of delay and dispersion (courtesy of Mouannes-Srour [36]). Given a
reference contrast curve (black), delay-and-dispersion will cause a successive lowering of the
peak height and broadening of contrast curves (colored curves) as the contrast bolus travels
through the vasculature.

for Internal Carotid Artery (ICA) occlusions; however, because the occlusion-side ACA is

a↵ected by an ICA occlusion, an additional circular ROI was chosen in the normal-side

ACA territory (Figure 3.5b) to act as the reference for normal perfusion. Circular shapes

were chosen for these ROIs because they would not intrude into the edge of the calvaria as

easily as conventional rectangular shapes. These ROIs were automatically placed at regular

angular intervals in each image in the angiogram with the ability for adjustment by the

operator. FCM clustering was then conducted on a) each individual circular ROI to reduce

the influence of dispersion (input data protocol Rs, see Figure 3.6 and Table 3.1), and b)

inputting all ROIs of a given case together (input data protocol RA, see Figure 3.7 and

Table 3.1). The latter was done to better understand the e↵ect of delay-and-dispersion on

segmentation performance.
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Figure 3.5: Circle placement in angiographic images. (a) For MCA occlusions, 5 circles are
placed in the ipsilateral ACA (r = 1) and reconstituted MCA branches (r = 2–5). (b) For
ICA occlusions, 6 circles are placed on the normal-side ACA (r = 1), occlusion-side ACA
(r = 1.5), and reconstituted MCA branches (r = 2–5).

Vessel
Membership
Score

Considered
Definitely
a	vessel

Considered	
definitely	
not	a	vessel

FCM

FCM
FCM

FCM

FCM

Figure 3.6: Implementing FCM using Rs (each ROI as a separate input to FCM; see Table
3.1)
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Figure 3.7: Implementing FCM using RA (All ROIs as input to FCM; see Table 3.1)

3.2.3 Evaluation

The FCM algorithm was evaluated via direct comparison with manually-determined ground

truth (major vessels versus capillary blush/background). In this study, pixels in the ROIs for

cases in Dataset A and B (see Table 2.2) were labelled by a board-certified neuroradiologist

(G.A.C.) as belonging to one of the following categories: (1) major vessels or (2) capillaries

or background.

For each category, 25–40 pixels were labelled in each ROI (i.e., ROI-specific truth), al-

though this number may be lower if the prevalence for a category in a particular ROI is small.

Using this truth, the task of separating major vessels from capillary blush was assessed using

Receiver Operating Characteristic (ROC) analysis. ROC curves are generated by using the

pixels’ major vessel membership scores as the decision variable. The truth is used within

each ROI, across all ROIs in an angiogram to generate case-specific ROC curves, across all

cases of a given frame-rate is grouped to generate frame-rate-based curves, and finally across

all cases to yield an ROC curve for the entire dataset. Because class membership values

always fall in the range [0 1], this pooling scheme allows performance to be summarized for

each ROI, each case, each frame-rate subset, and/or the entire dataset. ROC curves for

the figures presented here were fitted using the proper binormal ROC model [40] software

package and the non-parametric Wilcoxon area under the ROC curve AUC was used as the
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Input
Data

Protocol FCM Inputs Evaluation Databases

Rs Single 1) All pixels across all cases
ROI 2) All pixels across cases of a specific frame-rate

RA Angiogram 1) All pixels across all cases
(All 5-6 ROIs) 2) All pixels across cases of a specific frame-rate

Table 3.1: Organization of input data for FCM segmentation of major vessels from parenchy-
mal blush due to capillaries

performance metric for this task.

The two sided 95% confidence interval for reported AUC values were empirically esti-

mated using bootstrapping (1000 iterations). Performance was compared for di↵erent choices

for the number of clusters in FCM (Nc), di↵erent input data protocols to FCM (Table 3.1),

and for di↵erent frame-rates (Databases A, A3, and AM , see Table 2.2) were determined

by evaluating the di↵erences in AUC (�AUC). Any di↵erence in AUC values was as-

sessed through bootstrapping (3000 iterations) and two-sided 95% confidence intervals were

calculated for superiority testing. One-sided 90% confidence intervals were calculated for

non-inferiority assessment when superiority testing was inconclusive. Non-inferiority was

reached if the lower limit of the confidence interval was larger than -0.02 [20].

3.3 Results

The FCM segmentation technique was implemented in Matlab (Mathworks, Inc.) and was

run on an nVidia GTX Titan graphical processing unit. When the input data spanned 1

ROI per administration of FCM, segmentation for all ROIs in a case takes approximately 15

seconds; when the input data spans all ROIs in a case, the segmentation takes approximately

30 seconds.
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(a) (b)

Figure 3.8: Fitted binormal ROC curves for the performance in separating vessels from
parenchymal blush and background for number of categories Nc = 3 and Nc = 2. The ROC
curves span Dataset A+B (see Table 2.2) in (a) and Datasets A and B (datasets for 6 Fr/s
and Mixed frame-rate acquisitions, respectively) in (b). The truth for Dataset A+B includes
all pixels across all cases; the truth ROCs from Datasets A and B include all pixels across
all cases acquired at 6 Fr/s and the Mixed Frame-rate protocol, respectively. The input
protocol to FCM was Rs.

N
c

AUC 95% Confidence Interval of �AUC p-Value
(↵ = 0.025)

3
2

0.86 [0.87; 0.89]
0.82 [0.81; 0.83]

�
[0.03; 0.05] < 0.001

Table 3.2: Database ROC statistics for di↵erent numbers of input classes Nc and input
protocol Rs (Fig. 3.8a), with 95% confidence intervals in brackets (using Dataset A+B, 24
cases). Because the 95% confidence interval is above zero, there is a statistically significant
improvement in separating major vessels from parenchymal blush and background when
Nc = 3. The significance level ↵ is adjusted using a Holm correction.
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Frame-Rate N
c

AUC 95% Confidence p-Value
Interval of �AUC (↵ = 0.025)

6
(Dataset A)

3
2

0.89 [0.88; 0.89]
0.84 [0.83, 0.85]

�
[0.03; 0.06] < 0.001

Mixed
(Dataset B)

3
2

0.85 [0.84; 0.86]
0.81 [0.80; 0.82]

�
[0.02; 0.05] < 0.001

Table 3.3: Frame-rate ROC statistics for di↵erent numbers of input classes Nc and input
protocol Rs (Fig. 3.8b), with 95% confidence intervals in parentheses. The superior perfor-
mance is consistent across both frame-rates for Nc = 3. The significance level ↵ is adjusted
using a Holm correction.

3.3.1 E↵ect of Number of FCM Categories Nc

In this section, the input data protocol for each administration of FCM was Rs, i.e., each

input was restricted to 1 ROI (Table 3.1). Segmentation of major vessels from parenchymal

blush and background using FCM with Nc = 3 has favorable performance over using FCM

with Nc = 2 (Figure 3.8a and Table 3.2). In particular, the bootstrapped 95% confidence

intervals for�AUC are above zero, indicating a clear separation between Nc = 3 and Nc = 2.

This improved performance for Nc = 3 holds between acquired frame-rates as well (Figure

3.8b and Table 3.3). In Figure 3.9, it can be seen that, except for 2 cases, the mean ROI

AUC for Nc = 3 are consistently higher than for Nc = 2.

3.3.2 Comparing Input Data Protocols

In this section, the number of clusters was Nc = 3. The input data protocol Rs leads to

improved performance across the database compared with using the input data protocol

RA (Table 3.1) for FCM (Figure 3.10a and Table 3.4). The bootstrapped 95% confidence

interval of �AUC is above zero (Table 3.4), indicating superior performance when FCM

is administered on each ROI separately. This e↵ect also holds when assessing performance

separately for the DSA series acquired at the di↵erent frame-rates (Table 3.5). In Figure

3.11, using Rs for FCM yields mean ROI AUCs that are higher for 75% of cases than the case
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Figure 3.9: Mean ROI AUC for each case (Dataset A+B; see Table 2.2). For 22 of the
24 cases, Nc = 3 yielded better performance than Nc = 2 in the task of identifying major
vessels from parenchymal blush and background.

AUCs obtained when using RA into FCM. For the remaining 25% of cases, the di↵erences

between the case AUCs and the mean ROI AUCs are  0.07.

Input Data AUC 95% Confidence p-Value
Protocol Interval of �AUC (↵ = 0.05)

Rs (Individual ROIs)
Ra (All ROIs in Case)

0.86 [0.86; 0.87]
0.80 [0.79; 0.81]

�
[0.05; 0.07] < 0.001

Table 3.4: Database ROC statistics for di↵erent input protocols and Nc = 3 (Fig. 3.10a),
with 95% confidence intervals in brackets (Database A+B, see Table 2.2). Because the 95%
confidence interval is above zero, there is a statistically significant improvement in separating
major vessels from parenchymal blush and background when using Rs into FCM.

3.3.3 E↵ect of Frame-Rate

When using Nc = 3 using data protocol Rs for FCM, the 6 Fr/s (Database A) and 3 Fr/s

(Database A3) subsets yielded nearly identical ROC curves and AUC = .89 for all frame-

25



(a) (b)

Figure 3.10: Fitted binormal ROC curves for the performance in separating vessels from
parenchymal blush and background for using Nc = 3 and di↵erent input data protocols (see
Table 3.1). The ROC curves span Dataset A+B (see Table 2.2) in (a) and Datasets A and
B (datasets for 6 Fr/s and Mixed frame-rate acquisitions, respectively) in (b). The truth
for Dataset A+B includes all pixels across all cases; the truth ROCs from Datasets A and
B include all pixels across all cases acquired at 6 Fr/s and the Mixed Frame-rate protocol,
respectively.

Frame- Input Data AUC 95% P-Val
Rate Protocol Confidence (↵ = 0.025)

Interval of
�AUC

6
(Dataset A)

Rs: Individual ROIs
Ra: All ROIs in Case

0.89 [0.88; 0.89]
0.80 [0.78; 0.81]

�
[0.07; 0.11] < 0.001

Mixed
(Dataset B)

Rs: Individual ROIs
Ra: All ROIs in Case

0.85 [0.84; 0.86]
0.81 [0.79; 0.82]

�
[0.02; 0.06] < 0.001

Table 3.5: ROC statistics for Nc = 3 and di↵erent input protocols separating cases imaged
at di↵erent frame-rates (Fig. 3.8b). The superior performance is consistent across both
frame-rates when using Rs into FCM. The significance level ↵ is adjusted using a Holm
correction.
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Figure 3.11: Within-case performance in the task of identifying major vessels from parenchy-
mal blush and background for each choice of input range to FCM, with 95% confidence
intervals in parentheses (Dataset A+B; see Table 2.2). The curve for using Rs into FCM
(cyan) represents the Mean ROI AUC and curve for using RA into FCM (red) represents
the case-wide AUC.
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rates examined in this study (Figure 3.12 and Table 3.6), indicating that this method is

insensitive to frame-rates that may be used in the clinic (Table 2.2). Similarly, the 95%

confidence interval for AUC for the angiograms taken under the mixed frame-rate protocol

is only slightly wider than the uniform frame-rate angiograms. This robustness is further

reflected in the bootstrapped pairwise di↵erence between the subgroup’s AUC shown in

Table 3.7. The di↵erence in performance for the di↵erent frame-rates failed to reach sta-

tistical significance (Table 3.7, two-sided 95% confidence interval for �AUC). Moreover,

non-superiority testing (Table 3.7, one-sided 90% confidence interval for �AUC) demon-

strated that the performances for di↵erent frame-rates could be considered equivalent. The

P-values were all compared to a Holm-corrected significance level of ↵ = .025.

Figure 3.12: Fitted binormal ROC curves for each frame-rate dataset (Nc = 3 and input
protocol Rs). The curves for 6 Fr/s and 3 Fr/s are so close that they overlap in the figure.
Area under the curve AUC is reported in the legend with the 95% confidence intervals in
parentheses.
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Frame-rate Dataset N AUC
Dataset A 11 0.89 [0.88; 0.89]
Dataset A3 11 0.89 [0.88; 0.89]
Dataset AM 11 0.89 [0.88; 0.90]

Table 3.6: AUC’s with 95% confidence intervals in brackets for Datasets A, A3,AM (see
Figure 3.12 and Table 2.2). FCM was conducted using Nc = 3 classes and input protocol
Rs.

Frame-rate �AUC Two-sided 95% One-sided 90%
Dataset Confidence Confidence

Comparison Interval Interval
A vs A3 �4.0⇥ 10�4 [-0.012; 0.012] (0.53) [-0.008; 1]
A vs AM �5.0⇥ 10�3 [-0.017; 0.007] (0.79) [-0.013; 1]

Table 3.7: Pairwise bootstrapped di↵erence in AUC between frame-rates with confidence in-
tervals (brackets) and P-values (parentheses). FCM was conducted using Nc = 3 classes and
input protocol Rs. The significance level is adjusted to ↵ = 0.025 using a Holm correction.

3.4 Discussion

By clustering input data into 3 classes and inputting each ROI separately into FCM, FCM

clustering has substantial performance in segmenting major vessels from capillary blush and

background. There are two major reasons for this level of performance. The first and most

direct reason is that because of vascular dispersion, there is a higher concentration of contrast

in the vessels about the peak time, leading to higher and wider contrast curves. A second and

very important reason is that bone and cranial parenchyma are automatically subtracted out

in the cases’ angiographic images. This removes the corresponding constant o↵sets in each

pixel’s contrast curve, allowing only curve values representative of contrast concentration to

be input to FCM.

The improved performance for Nc = 3 demonstrates that capillary filling, though reduced

relative to the major vessels, is considerable enough to separate it from the noisy background.

For the 2 cases in Figure 3.11 in which Nc = 2 had improved performance over Nc = 3, there

were ROIs with either relatively little capillary blush or few background pixel; for these ROIs,

Nc = 2 would be a more appropriate choice. Cluster analysis using silhouetting criteria may
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be a useful means for determining the best choice of Nc for a given ROI.

Using input protocol Rs (i.e., individual ROIs) for FCM produces favorable overall per-

formance for the database and within datasets separated by frame-rates; however, in Figure

3.11, using protocol Ra produced better performance for 6 cases. One case was an ICA

occlusion in which contrast was visible only in the 2 ACA ROIs (r = 1 and r = 1.5 in Figure

3.5). In these ROIs, the degree of delay-and-dispersion is reduced relative to occluded MCA

branches. As a result, the input data schemes are roughly comparable.

Closer examination of the remaining 5 cases revealed that mild motion artifacts (i.e.,

more visible bone and parenchyma) are present as contrast moves through the ischemic

region. The artifacts are present across the a↵ected ROIs and obscure the e↵ect of delay-

and-dispersion on the capillaries, making administration of FCM on separate ROIs less

useful than administering FCM on all ROIs per case. Indeed, absent such artifacts, the

consequences of delay-and-dispersion can be clearly seen (Fig. 3.13). Therefore, reducing

motion would allow for better segmentation of major vessels from capillary blush and from

background.

An important finding in these results is that a high frame-rate is not necessary to sat-

isfactorily segment major vessels. This indicates that the di↵erence between major vessels

and parenchymal filling due to capillaries is captured in low frequency components in the

pixel contrast curves.

3.4.1 Limitations

The database consisted of DSA series from only 24 cases. Therefore, results in this chapter

need to be confirmed with a larger database. Because FCM’s success depends on the absence

of bone and parenchymal tissue in the pixel curve data, severe motion artifacts will result

in poor segmentation. To reduce motion during imaging, general anesthesia was given to

21 patients. Temporarily restraining patients during imaging or the development of robust

motion-correction techniques may also help reduce motion artifacts. In each ROI, ground
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(a) Major Vessel Class (b) Capillary Class

Figure 3.13: Mean curves for each ROI (input separately to FCM) for the case in Fig 3.5a.
Note the e↵ect of delay-and-dispersion in the direction of flow for both major vessels and
capillaries (parenchymal blush).

truth was specified using only 25-40 pixels per class. Outlining major vessels in each ROI

would allow for more complete representation of the ground truth. Using this approach,

interoperator variability can be measured and an overlap ratio or Dice coe�cient may be

used as the performance metric.

3.5 Conclusion

In conclusion, an FCM-based method for automatically segmenting collateralized MCA ves-

sels in acute ischemic stroke using digitally-subtracted X-ray angiograms was developed.

This method shows promise in identifying vessel pixels and has robust performance at all

clinical angiographic frame-rates examined in this study.

31



CHAPTER 4

KINETIC FEATURES AND THEIR RELATIONSHIP WITH

PIAL COLLATERAL PRESENCE

4.1 Background

There are numerous techniques for assessing collateral formation and reconstitution of the

ischemic territory [35]. Christoforidis et al have developed a 5-point grading scale which rates

PAS based on the extent of retrograde filling of the Middle Cerebral Artery territory on X-

ray angiographic images [11]. Other scales developed by Qureshi et al and Bang et al assess

the occlusion site, rapidity, and the extent of PAS [42, 4, 35]. However, such techniques

frequently su↵er from operator bias and are not quantitative [35]. A computerized and

quantitative assessment of PAS during X-ray angiographic imaging would be more objective

and has the potential to be more reliable than a human operator, which can better inform

treatment decisions.

As early as 1985, Heintzen et. al. explored extracting kinetic features, or parameters,

to quantify angiographic images [22]. More recently, in canine experiments, the arterial

arrival time from normal to occluded vasculature, the relative cerebral blood volume, relative

transit time, and relative cerebral blood flow as measured on X-ray DSA were suggestive

of infarct volume as measure on MRI [12, 8, 10]. Furthermore, Strother et. al. has shown

that presentation of peak-contrast parameters from X-ray DSA images improved clinicians’

treatment planning and evaluation of various disease states, including stroke [46].

Because of the known beneficial e↵ect that collateral supply has on the penumbra and

infarct volumes, in this chapter we developed and evaluated a quantitative approach for

assessing collateral supply based on the filling of iodinated contrast in X-ray Digital Sub-

traction Angiography (DSA). Since the degree of collateral filling a↵ects the size of the

ischemic penumbra and the endovascular treatment decisions, we hypothesize that our new

method allows for monitoring of intra-interventional changes in collateral supply. Another
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aim of this study was to investigate the performance of kinetic features—extracted from

the ischemic region in X-ray DSA—in characterizing PAS, and hence their performance to

determining patients’ candidacy for treatment.

4.2 Methods

4.2.1 Reference Standard: Grading of Pial Supply

The grading system developed in Christoforidis et al., 2005 to classify the degree of PAS to

the occluded Middle Cerebral Artery (MCA) branches was used as the gold standard truth

[11]. With this grading, the 14 patients with grades pc = 1–2 were considered to have good

PAS (Table 4.1), thus making excellent candidates for reperfusion treatment, while the 10

patients with pial grades pc = 3–5 were considered to have poor PAS and thus less suitable

for reperfusion treatment. Because some patients with pc = 3 were potentially treatable, this

pial grade represents a borderline state between patients with pc = 1–2 (considered to reflect

patently good PAS and for which treatment is recommended) and patients with pc = 4–5

(considered to reflect patently poor PAS and for which treatment should be avoided).

PAS Grade Number
p
c

of Cases
1 3
2 11
3 6
4 3
5 1

Table 4.1: Distribution of PAS Grade pc within the clinical database

4.2.2 Semi-automated Delineation of Kinetic Regions of Interest

For DSA angiograms with M1 or proximal M2 occlusions (Figure 4.1a), 5 circular regions of

interest (ROIs) with indices r = 1–5 were specified in the direction of retrograde flow. Four

ROIs contained the occluded MCA branches while one ROI was chosen in the (normally
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Figure 4.1: ROIs were placed and identified by indices r =1–5 as shown for MCA occlusions
(a) and ICA occlusions (b). Because the second ROI in (b) represents a borderline status
between normal and ischemic filling, it was given an index of r = 1.5. A mean contrast curve
Dr(t) extracted from each ROI was fitted with a smoothing spline (c) to produce the curve
Dr,SS(t).
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perfused) distal anterior cerebral artery (ACA) branches for reference. This process was

repeated for Internal Carotid Artery (ICA) occlusions; however, because the distal ACA

branches on the occluded side experience reduced flow, an additional circular ROI was chosen

in the contralateral distal ACA territory (Figure 4.1b) to act as the reference for normal

perfusion. Circular shapes were chosen for these ROIs because they did not intrude into the

edge of the calvaria as easily as rectangular shapes. These ROIs were automatically placed

at regular angular intervals in each image in the angiogram with the ability for adjustment

by the operator.

In this study, an angiogram was represented as a 3D array (2D projection plus time) of

contrast curves, D(x, y, t), where x and y correspond to spatial pixel coordinates and t is

time in seconds. For each ROI within each angiographic case, a mean contrast-time curve

D(t) was calculated by averaging all the pixel values within an ROI at each image frame

(i.e., time):

Dr(t) =

P
x,y in ROID(x, y, t)

N
, (4.1)

where N is the number of pixels in within an ROI. Thus, over the database of 24 cases

(16 cases with 5 ROIs, 8 cases with 6 ROIs), 128 contrast-time curves were calculated. To

reduce the influence of residual noise and small-scale oscillatory motion due to breathing

and pulsation, each D(t) was fitted with a cubic smoothing spline (smoothing parameter

p=0.98981) [44, 15].The smoothing spline (SS) was sampled at a rate of 1/6 Hz, so that all

smoothed curves Dr,SS(t) had the same sampling rate of 6 Fr/s (i.e., 6 Frames/second).

4.2.3 Computer-Extracted Kinetic Features

A set of computer-calculated kinetic features (Table 4.2) was extracted from each smoothed

contrast curve, Dr,SS(t), to assess the degree of PAS. The features extracted were either

purely timing-based or had a combination of both timing and density-based components

(the latter category will be referred to as density-based features). Features based on timing
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alone were the arterial arrival time AAT , time to peak TTP , and estimated mean transit

time eMTT . Density-based features include the area under the contrast curve AD, contrast

curve peak PK, area under the uptake phase of the contrast curve AD,Uptke, uptake rate

UR, contrast value at uptake Dr,SS(tUR), slope to peak S, and ABF . These features are

described as follows:

Feature Description Has Density
Component?

AD Total area for Dr,SS(t) Yes
PK Peak height of Dr,SS(t) Yes

AD,Uptke Area for arterial phase of Dr,SS(t) Yes
AAT Time of contrast arrival from ICA No
TTP Time-to-peak No
eMTT Estimated mean transit time No
UR Uptake Rate=Maximum Slope of Dr,SS(t) Yes

Dr,SS(tUR) Density at time of UR Yes
S Mean slope of arterial phase of Dr,SS(t) Yes

ABF Ratio of AD,Uptke to eMTT Yes

Table 4.2: Descriptions of the extracted kinetic features.

Area under the Contrast Curve AD

The total volume of contrast in an ROI, a surrogate for blood supply, was inferred by

calculating the area under the smoothed curve Dr,SS(t):

AD ⇡ tend
2mend

mendX

m=0

Dr,SS(l�t), (4.2)

where �t = 1/6 Hz is the sampling interval, m = 01, 2, 3, ...,mend is the frame index for

time t = m�t, and tend is the time for the last frame in the angiogram (see Figure 4.2).
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tPK

AD,Uptke

Reference	Artery	Curve		
ROI	Curve

AD

r=1 r=2
r=3

r=5

r=4

Figure 4.2: Volumetric Features AD (red outline) and AD,Uptke.

Contrast Curve Peak PK

The contrast peak PK was calculated as the maximum value of Dr,SS(t), and the corre-

sponding time of PK is given by tPK (Figure 4.3). For ROI index r > 1, if PKr
PK1

< 0.08,

then PKr was considered to represent noise rather than peak contrast.

S

PK

tPK

Reference	Artery	Curve		
ROI	Curve

r=1 r=2
r=3

r=5

r=4

Figure 4.3: Pressure Features S and PK

Area under the Uptake Phase of the Contrast Curve AD,Uptke

Since it may better reflect the total volume of contrast and local transit time in an ROI, the

area under Dr,SS(t) from the start of acquisition to tPK , denoted here as AD,Uptke (shown
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in green in 4.2), is

AD,Uptke ⇡
tPK

2lPK

lPKX

l=0

Dr,SS(l�t). (4.3)

Arterial Arrival Time AAT

The contrast arrival time, tCA, for a given ROI is defined as the time interval between the

start of the angiogram and the moment that contrast arrives in that ROI. This quantity is

extracted using the technique described in Carroll et al. [6]. It must be noted, however, that

contrast was not always injected into the bloodstream at the same time during the scan. To

eliminate this complication, Arterial Arrival Time (AAT ) is defined as the temporal distance

between the specific ROI and the Internal Carotid Artery (ICA) (Figure 4.4):

AAT = tCA � tCA,ICA. (4.4)

AAT

TTP tPK

Reference	Artery	Curve		
ROI	Curve

!"##
2

r=1 r=2
r=3

r=5

r=4

Figure 4.4: Timing Features AAT, TTP, and eMTT .

Time to Peak TTP

An ROI’s time to peak TTP was defined as the temporal di↵erence between its peak time

tPK and the contrast arrival time of the ICA tCA,ICA(Figure 4.4).
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Estimate Mean Transit Time eMTT

The estimated mean transit time (eMTT ) in an ROI is determined as follows:

eMTT = 2⇥ LHWHM, (4.5)

where LHWHM is the left half-width-at-half-maximum of Dr,SS(t).

Uptake Rate UR

The uptake rate UR (another surrogate for transit time) is defined as the maximum value

of the first derivative of Dr,SS(t) between tCA and tPK (Figure 4.5):

UR = max(D
0
SS(t)) tCA  t  tPK , (4.6)

where D
0
SS(t) denotes the first derivative of Dr,SS(t). The time at which D

0
SS(t) = UR is

tUR.

UR

tPK

Reference	Artery	Curve		
ROI	Curve

!"SS (tPK)

r=1 r=2
r=3

r=5

r=4

Figure 4.5: Features UR and Dr,SS(tUR).
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Contrast Value at Uptake Dr,SS(tUR)

The contrast value measured at tUR was also extracted to understand the relationship be-

tween pial grade and a contrast curves inflection point during uptake.

Slope to Peak S

The slope-to-peak S was defined as the mean slope of Dr,SS(t) between tCA and tPK , or

S =
Dr,SS(tPK)�Dr,SS(tCA)

tCA � tPK
. (4.7)

This feature can be considered as an alternative to UR for inferring transit time.

ABF

Because AD,Uptke represents the volume of contrast filling in the ROI, we infer the perfusion

through an ROI as the ratio

ABF =
AD,Uptke

eMTT
. (4.8)

4.2.4 Gold Standard “Truth” for the Kinetic Features

In order to assess the accuracy of the computer-extracted kinetic features (Section D), all fea-

tures except for AD measured in the Dataset A+B (see Table 2.2) were estimated manually,

serving as the “gold standard truth”. This was done for all cases in Dataset A+B.

Since tPK was used to calculate AD,Uptke, a manual measurement of tPK (denoted as

tPK,Man) was made and verified by a board-certified radiologist (GAC). The resulting values

of AD,Uptke using tPK,Man were then compared with those calculated with tPK .

To assess the accuracy of PK, the automatically determined value of PK was compared

against a manually chosen value that was verified by a board-certified radiologist. The

corresponding time of this manually-determined PK was tPK,Man.
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Manual measurements of arrival time tCA,Man on plots of D(t) were designated as truth

to compare against the corresponding automated measurement tCA. Measured values of

tCA,Man and tCA,ICA were verified by a board-certified radiologist who was blinded to the

computerized calculation of tCA and tCA,ICA. The resulting AATMan was then treated as

truth to be compared against the automatically calculated value in each ROI. Similarly, man-

ual measurements of tCA,ICA and tPK were used to calculate the TTPMan to be compared

against the automatically calculated TTP in each ROI.

Because UR was calculated between tCA and tPK , accuracy was measured by finding the

maximum of D
0
SS(t) between tCA,Man and tPK,Man. The time of this maximum was de-

noted tUR,Man. Dr,SS(tUR,Man) was treated as the truth against which the automatically-

calculated Dr,SS(tUR) was compared.

The truth for S, eMTT,AD,Uptke, and ABF were determined using the same equations

as their automatically-calculated counterparts (Eqs. 4.3, 4.5 4.7, and 4.8, respectively) but

tCA,Man and tPK,Man were used in the respective places for tCA and tPK .

4.2.5 E↵ect of Frame-Rate on Feature Values

To understand the performance of the kinetic features at frame-rate acquisitions typically

used in the clinic, each angiogram acquired at 6 Fr/s (Dataset A, see Table 2.2) was subsam-

pled to generate synthetic angiograms with temporal sampling according the dose-sparing

mixed frame-rate protocol described (Dataset AM , see Table 2.2). For each ROI in each

case, the value of each feature was compared between the Datasets A and AM . Comparisons

were visualized using Bland-Altman analysis. The grand mean of values across all ROIs

from Datasets A and AM was calculated and compared against the range of feature values

from the 6 Fr/s angiograms. In addition, the Bland-Altman bias, or mean di↵erence, in

feature values between the two frame-rates and the standard deviation � of this di↵erence

were calculated. The Bland-Altman mean bias and |simgma were compared against the

grand mean and range. To assess the degree of consistency between feature values extracted
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from Datasets A and AM , the intraclass correlation (ICC) for each feature was calculated

using a consistency definition and 2-way ANOVA [33].

4.2.6 Between-Injection Reproducibility of Kinetic Features

In the patient database, there were 7 cases that had repeated angiographic series (Datasets

Ar and Br, see Table 2.2). These repeated series were taken within 16 min of each other,

allowing for intra-patient comparison of each extracted feature. Angiograms for 6 of the 7

cases were acquired at 6 Fr/s and the remaining case was acquired using the mixed frame-rate

protocol. To understand the e↵ect of temporal sampling on feature reproducibility, 2 separate

datasets are analyzed (Table 4.3). The first, Dataset Ar consists of 6 Fr/s angiograms. The

second, Dataset AM,r + Br, includes the angiograms from the cases acquired at the mixed

frame-rate protocol (Dataset Br) and synthetic angiograms downsampled from the 6 Fr/s

angiograms in Dataset A to the mixed frame-rate protocol (Dataset AM,r). For each feature

in the rth ROI, the measure feature value F was normalized by the extracted value of F in

the first ROI (i.e, r = 1) of the series. In each dataset, the normalized value of F at the rth

ROI was then compared between each injection in a case and the comparisons for all ROIs

in the 7 cases are visualized using Bland-Altman analysis. The Bland-Altman bias, or mean

di↵erence, in feature values between the two frame-rates and the standard deviation � of this

di↵erence were calculated. To assess the degree of consistency between repeat injections, the

intraclass correlation (ICC) for each feature was calculated using a consistency definition

and 2-way ANOVA [33].

4.2.7 ROI Indices for each Kinetic Feature

The values for each kinetic feature F changes across the 5 (or 6) ROIs (Figure 4.1.) It is

hypothesized that the magnitude of this response can be used to identify a patient’s pial

arterial supply. To account for di↵erences in image quality caused by di↵erences in image

acquisition (such as di↵erences in tube voltage, tube current, contrast injection volume, im-
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Angiograms N Dataset Ar Dataset AM,r +Br

Angiograms acquired at 6 Fr/s 6 X
(Dataset Ar)

Angiograms downsampled from 6 Fr/s 6 X
to mixed frame-rate protocol

(Dataset AM,r)
Angiograms acquired according 1 X
to the mixed frame-rate protocol

(Dataset Br)

Table 4.3: Datasets in which between-injection reproducibility is assessed (Also found in
Table 2.2). Note that angiograms from cases with mixed frame-rates (Datasets AM,r and
Br) are placed into one dataset.

age magnification, or proprietary vendor post-processing) the value for F (r) was normalized

by the extracted value of F at r = 1 (i.e., the first ROI). Because vascular flow has been

shown to follow an exponential response function in space and time (Ostergaard et. al,

1996 ) [38, 39], the normalized feature values FNorm(r) was fitted according to the following

equation:

FNorm(r) = e�(r�1) (4.9)

where r is the ROI index defined according to Figure 4.1, � is the parameter of exponential

response for the particular feature F , and FNorm is the normalized feature value. The

fitting was done using the Levenberg-Marquardt algorithm. To harmonize the dataset, the 6

Fr/s angiograms were down-sampled to create synthetic angiograms with temporal sampling

according to the mixed frame-rate acquisition protocol (see Section 2). The goodness-of-fit

R2 and the root-mean-square error (RMSE) were calculated for each case.

4.2.8 Classification-Performance Evaluation

For this section, 3 datasets are used (Table 4.4). The first, the Dataset A (see Table 2.2),

is composed only of angiograms acquired at 6 Fr/s. Dataset Ad consists of angiograms

downsampled from Dataset A to the mixed frame-rate protocol. Finally, Dataset AM+B

(see Table 2.2) consists of the angiograms in Dataset AM and the angiograms from cases
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Cases Dataset Dataset Dataset
A AM AM+B

Cases imaged at 6 Fr/s (N = 11) X
Cases with angiograms downsampled X X
to mixed frame-rate protocol (N = 11)

Cases imaged according X
to the mixed frame-rate protocol (N = 13)

Table 4.4: Data subsets for box plots in Figures 4.14 and 4.15.

imaged under the mixed frame-rate protocol (Dataset B). For each dataset, the potential

usefulness of each kinetic feature was determined by its ability to separate patients into two

di↵erent PAS subpopulations (Table 4.5). Task I was the separation of PAS grade pc = 1–2

(considered favorable PAS) vs pc = 3–5 (considered poorer PAS); Task II was the separation

of PAS grade pc = 1–3 (for which treatment was feasible) vs pc = 4–5 (for which treatment

was to be avoided). Box plots are generated for the distribution of each feature F with

populations with pc = 1–2, pc = 3, and pc = 4–5. For each feature F derived from and

task performed on Dataset AM+B, a Receiver Operating Characteristic (ROC) curve was

generated by sweeping a threshold �TH across the subpopulations’ distributions of � and

then measuring the True Positive and False Positive Fractions at each choice of �TH . The

Wilcoxon area under the ROC curve AUC [3, 40] was used as the metric performance in

distinguishing between the two PAS subpopulations.

Task PAS sub- PAS sub-
population 1 population 2

I pc = 1–2 pc = 3–5
II pc = 1–3 pc = 4–5

Table 4.5: Two separation task for PAS-subpopulations. The di↵erence between tasks hinged
on whether patients with a borderline PAS score (pc = 3) were considered suitable for
reperfusion treatment.
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4.3 Results

4.3.1 Gold Standard “Truth” for the Kinetic Features

Figures 4.6 and 4.7 displays the Bland-Altman plots and correlations plots, respectively for

the accuracy of the kinetic features measured in Dataset A+B. In Figures 4.6a, b, g, and h,

the mean bias and standard deviation were very small compared to the Bland-Altman mean

and range. For these features, there was high agreement between the truth and computer-

calculated features except at lower values (Figure 4.7a, b, g, and h). For eMTT , the dis-

crepancies occurred between 10–23 sec and can exceed 100% of the truth values. One cause

of discrepancy for these four features was low contrast volume in certain ROIs. In this situa-

tion, the signal of opacification in Dr,SS(t) was averaged out by the numerous pixels with no

contrast flowing through them. A total of 6 ROIs coming from 3 cases were a↵ected in this

manner. Another cause was motion artifact arising near the end of the angiogram for one

case; 2 ROIs were a↵ected. Therefore, these results suggested that when su�cient signal was

present (i.e., signal with normalized PK > 0.08), and motion was minimized, measurement

of these features was highly robust. However, in the absence of these conditions, the accuracy

could degrade, particularly for eMTT . For the purposes of measuring feature response and

classifying patients (next 2 sections), a workaround for cases with ROIs that had normalized

PK < 0.08 would be to omit the associated eMTT from exponential fitting. For motion

artifacts, correction prior to feature extraction would be necessary.

In Figures 4.6c and 4.7c, discrepancies �AAT in AAT lay in bands that were multiples

of 1/6 sec, reflecting the synthetic sampling of the smoothing spline fit to D(t). The worst

discrepancies (|�AAT | > 9 sec) were caused by the 6 ROIs with heavily-averaged opacifi-

cation, reflecting the fact that the contrast curve was too weak to distinguish from image

noise. These 6 ROIs skewed the mean bias and standard deviation to normalized values of

� 0.67sec in Figure 4.6b. The shift in frame-rates at 4 or 4.33 sec was another major source

of error, with the associated |�AAT | ranging from 0.50–1.17 sec. One ROI su↵ering from
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Figure 4.6: Bland-Altman plots for feature accuracy (Dataset A+B). The standard deviation
� is indicated by the dashed line in each kinetic feature’s plot.

46



 
a 
 

 
b 

 
c 

 
d 

 
e 
 

 
f 

 
g 

 
h 

 
i 

 
 

Figure 4.7: Correlation plots for feature accuracy (Dataset A+B). The Bland-Altman stan-
dard deviation � for each frame-rate is indicated by the dashed lines in each kinetic feature’s
plot. Note that for all but the timing features and AD,Uptke, the � are too small to make
out against the plotted points and the unity line.
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substantial motion artifact prior to contrast arrival had �AAT = 1.33 sec, highlighting the

e↵ect motion had on timing measurements. Algorithm limitations and skull lightening prior

to contrast arrival frequently caused 0.17  |�AAT |  0.6 sec, reflecting the best accuracy

available when sampling at uniform frame-rates of 3 or 6 Fr/s and when motion is reduced.

In Fig 4.6d, discrepancies of �TTP � 2.67 sec were caused either by low opacification or

motion artifact. Other errors were caused by tCA,ICA discrepancy of up to 0.33 sec. For the

majority of ROIs in the database however, there was no di↵erence between the manually-

and the automatically-determined TTP .

In Figs 4.6f, g, and i, there was high agreement (Mean Bias of < 1, � < 1) between

the automatically-determined values of and the truth values for UR,Dr,SS(tUR), and S.

Discrepancies in UR and Dr,SS(tUR) were caused by weak opacification, uneven frame-rate,

or motion artifact. Those discrepancies were � 8% and � 20% of the root of the variance of

the distribution of URMan and D(tUR,Man), respectively. Furthermore, these discrepancies

occur only for values URMan < 8.05 and D(tUR,Man) < 3.07. Discrepancies in S had the

same causes as those for both AAT and PK because of the use of both tCA and tPK in

the calculation of S. These results indicate that in the presence of uneven Frame-rate and

su�cient signal, UR,Dr,SS(tUR), and S were accurate.

4.3.2 E↵ect of Frame-Rate on Feature Values

In Table 4.6, the Bland-Altman bias between Datasets A and AM for each feature is small

and except for Dr,SS(tUR), the Bland-Altman standard deviation � relative to the respective

grand mean was < 20%. The Bland-Altman standard deviation � for AD,Uptke, the timing

features, Dr,SS(tUR), and S are greater than 6% of those features’ respective grand means.

In particular, Dr,SS(tUR) su↵ered the worst from downsampling, with � = 39% of its grand

mean and having > 5% error between the frame-rates in 59% of all ROIs. AD, PK, and

ABF , by contrast, had �  3% of their grand means and their values from � 90% of all

ROIs agreed to within 5% error.
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Figure 4.8: Correlation and Bland-Altman plots for e↵ect of downsampling (i.e., comparing
Datasets A and AM ; see Table 2.2)
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Feature Number Range Grand Bland- Bland- Fraction
of ROIs (6 Fr/s) Mean Altman Altman of ROIs

(11 cases) Bias � within
(5%)

AD 58 [-39.87,2893.96] 926.20 -8.38 18.24 0.93
PK 58 [-6.74, 236.12] 88.83 0.14 1.13 0.98

AD, Uptke 58 [-39.87, 1018.73] 286.47 3.02 25.18 0.55
AAT 55 [0.50, 25.00] 2.94 -0.09 0.43 0.55
TTP 55 [3.17, 26.33] 7.66 0.03 0.74 0.82
eMTT 55 [1.67, 26.33] 7.57 0.21 1.46 0.55
UR 58 [2.07, 99.26] 36.74 -2.03 2.18 0.48

Dr,SS(tUR) 58 [-1.19, 124.28] 30.95 -0.13 12.00 0.41
S 58 [0.00, 51.77] 18.66 -0.50 1.89 0.66

ABF 58 [-1.51, 115.17] 43.3 -0.12 0.97 0.90

Table 4.6: Bland Altman Statistics for the e↵ect of temporal subsampling on extracted
features (i.e., comparison is made using Datasets A and AM ; see Table 2.2).

4.3.3 Between-Injection Reproducibility of Kinetic Features

For Dataset Ar (Figure 4.9 and Table 4.7), the normalized values for all features except

AAT had little mean bias (< 0.15). The cause of the large bias in normalized AAT arises

from 4 ROIs with heavily averaged opacification. The averaging also skewed the Bland-

Altman standard deviation � for AAT . Normalized AD, PK, AD,Uptke, UR, S, and ABF

had reduced standard deviations (�  0.26). By contrast, the AAT ,TTP ,eMTT , and

Dr,SS(tUR) had considerably greater standard deviation (� 2 [0.33, 3.92]). These greater �

are influenced by outliers. Interestingly, ABF , which is derived from the less reliable eMTT ,

is very reproducible. This may be because e↵ects from di↵erence in imaging acquisition

cancel out in Eq. 4.8. Furthermore, AAT and Dr,SS(tUR), which have the highest �, also

had the lowest ICC of all features. The Bland-Altman bias and � for Dataset AM,r + Br

(Figure 4.10 and Table 4.8) closely mirror those for Dataset Ar, except that the ICC for

AAT ,TTP , and Dr,SS(tUR) are noticeably lower (|�ICC � 0.06).
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Feature Bland-Altman Bland-Altman Intraclass Correlation
(6 cases, Mean Bias Standard deviation � (ICC)
31 ROIs)

AD �0.02 0.11 0.95
PK �0.05 0.10 0.97

AD,Uptke 0.01 0.23 0.87
AAT �1.45 3.92 0.84
TTP �0.05 0.33 0.92
eMTT �0.02 0.39 0.87
UR �0.11 0.26 0.91

Dr,SS(tUR) �0.14 0.42 0.65
S �0.08 0.16 0.94

ABF �0.05 0.15 0.96

Table 4.7: Reproducibility statistics for features extracted from Dataset Ar (6 Fr/s an-
giograms, 6 cases, 31 ROIs total). The mean bias and standard deviation � are drawn from
Bland-Altman Analysis, while the intraclass correlation coe�cient ICC is calculated using
2-way ANOVA.

Feature Bland-Altman Bland-Altman Intraclass Correlation
(7 cases, Mean Bias Standard deviation � (ICC)
36 ROIs)

AC -0.01 0.11 0.95
PK -0.05 0.09 0.97

AC,Uptke 0.04 0.20 0.90
AAT -0.87 2.73 0.87
TTP -0.02 0.34 0.89
eMTT 0.08 0.39 0.84
UR -0.06 0.20 0.95

Dr,SS(tUR) 0.01 0.38 0.70
S -0.08 0.13 0.96

ABF -0.06 0.12 0.95

Table 4.8: Reproducibility statistics for features extracted from Dataset AM + B (7 cases,
31 ROIs total; see Table 4.4). The mean bias and standard deviation � are drawn from
Bland-Altman Analysis while the intraclass correlation coe�cient ICC is calculated using
2-way ANOVA.
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Figure 4.9: Reproducibility of kinetic features between subsequent angiograms for Dataset
Ar (see Tables 2.2 and 4.3). In the correlation plots, rIC = ICC.
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Figure 4.10: Reproducibility of kinetic features between subsequent angiograms for Dataset
AM , r +Br (see Table 4.3). In the correlation plots, rIC = ICC.
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Figure 4.11: Kinetic Feature behavior as a function of ROI index r (see Eq. 4.9) for Dataset
A (see Tables 2.2 and 4.4). The plots of normalized AD, AD,Uptke, AAT, PK, and TTP are
in 1st column and the associated fits are in the 2nd column. Similarly, plots of normalized
UR,Dr,SS(tUR), eMTT, ABF , and S are in the 3rd column and the associated fits are in
the 4th column.
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Figure 4.12: Kinetic Feature behavior as a function of ROI index r (see Eq. 4.9) for Dataset
AM (see Tables 2.2 and 4.4). The plots of normalized AD, AD,Uptke, AAT, PK, and TTP
are in 1st column and the associated fits are in the 2nd column. Similarly, plots of normalized
UR,Dr,SS(tUR), eMTT, ABF , and S are in the 3rd column and the associated fits are in
the 4th column.
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 Figure 4.13: Kinetic feature behavior as a function of ROI index r for Dataset AM + B
(Tables 2.2 and 4.4). Plots of normalized AD, AD,Uptke, AAT, PK, and TTP are in 1st
column and the associated fits are in the 2nd column. Similarly, plots of normalized
UR,Dr,SS(tUR), eMTT, ABF , and S are in the 3rd column and the associated fits are
in the 4th column.
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4.3.4 ROI Indices for each Kinetic Feature

Figure 4.11 show plots the kinetic features from cases in the Dataset A against the ROI

number (first and third column) along with the associated exponential fits (second and

fourth column).Figures 4.12 and 4.13 are similar, except that they show plots and fits for

angiograms from Datasets AM and AM + B, respectively. As can be seen from these 3

figures and from Figure 4.14, for all features, there is very little di↵erence in the fits and �

distributions between Datasets A and AM . Therefore, performance for Tasks I and II would

not change appreciably between Datasets A and AM . Therefore, the following results and

analysis will focus on Dataset AM + B. The corresponding mean and standard deviation

R2 and RMSE of the fits in Figure 4.13 taken over all cases was shown in Table 4.9.

Feature R2 RMSE AUC for Task I AUC for Task II
(p

c

= 1–2 vs ) (p
c

= 1–3 vs)
(p

c

= 3–5) (p
c

= 4–5)
AD 0.74± 0.34 0.09± 0.05 0.81± 0.10 1.00± 0.00⇤
PK 0.86± 0.15 0.08± 0.04 0.84± 0.09 0.99± 0.02

AD,Uptke 0.63± 0.45 0.15± 0.09 0.84± 0.08 0.94± 0.06
AAT 0.57± 0.36 0.51± 1.04 0.7± 0.12 1.00± 0.00⇤
TTP 0.36± 0.40 0.31± 0.29 0.59± 0.13 1.00± 0.00⇤
eMTT 0.12± 0.40 0.44± 0.28 0.66± 0.13 1.00± 0.00⇤
UR 0.87± 0.19 0.08± 0.04 0.77± 0.11 0.98± 0.03

Dr,SS(tUR) 0.58± 0.42 0.20± 0.16 0.81± 0.09 0.9± 0.06
S 0.83± 0.15 0.10± 0.05 0.82± 0.10 1.00± 0.00⇤

ABF 0.84± 0.17 0.09± 0.05 0.81± 0.10 0.98± 0.03

Table 4.9: Feature exponential fit statistics (Dataset AM+B; see Figure 4.13 and Table 4.4)
and Area AUC under the ROC curve for two classification tasks. *Results of AUC = 1 are
likely due to small patient sample size

Density-based features such as AD, PK, S, UR and ABF had the best fits (mean R2 >

0.70, �R2 < 0.40; mean RMSE  0.10, �RMSE  0.05) and their respective � clearly

separated patients with pc = 1–2 from patients with pc = 4–5 (see Figures 4.15b,e,f,i, and j).

Patients with pc = 3 were not as cleanly separated from those with good or patently poor

pc, however. Other density-based features such as Dr,SS(tUR) and AD,Uptke had poorer fits

(mean R2 < 0.70, �R2 > 0.40; mean RMSE > 0.10, �RMSE > 0.10) and worse separation
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Figure 4.14: Box plots for features extracted from angiograms in Dataset A(1st and 3rd
columns; see Table 2.2) and for Dataset AM (2nd and 4th columns).
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Figure 4.15: Box plots of exponential decay
parameters for each feature in Dataset AM +
B.

between the pc = 1–2 and pc = 4–5 groups

(see Figures 4.15a and 4.15g). In Figure

4.13a and 4.13c, there was higher noise for

these 2 features than for the other density-

based features. The worse fits for the latter

two density-based features can be attributed

to “noisy” variations in their normalized val-

ues.

Timing Features such as TTP and

eMTT had poorer fits than Dr,SS(tUR) and

do not appear to follow an exponential fit.

The timing features from cases with pc =

4–5 reach horizontal asymptotes at r � 2,

which suggests that these features (particu-

larly eMTT ) follow more logistic patterns.

The fit to AAT does fare better than TTP

or eMTT , but was still worse than most

of the density-based features. Of the time-

based features, eMTT provides the best sep-

aration between the pc groups, and, like

the density-based features, clearly separates

pc = 1–2 from pc = 4–5.

4.3.5 Classification-Performance

Evaluation

Table 4.9 gives the Wilcoxon estimates for

the area under the ROC curves AUC for the
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task of distinguishing between patients with pc = 1–2 from those with pc = 3–5 (Task I). All

density-based features had AUC > 0.80 except for UR; UR fares worse because of extensive

overlap in �UR values between with pc = 1–2 and pc = 3–5 (see Figure 4.15e). However,

the timing-based features–AAT , TTP , and eMTT–had AUC that were little better than

guessing. It was found that the density features with the best AUC were amongst the

features with the best exponential fits (on average). For the task of distinguishing between

pc = 1–3 and pc = 4–5 (Task I), all features except for AAT and TTP had AUC > 0.90,

with AD, PK, eMTT, S and UR having the best performance.

4.4 Discussion

4.4.1 Feature Accuracy Relative to the Gold Standard “Truth”

To quickly and objectively assess pial arterial supply (PAS), an automatic means of extract-

ing angiographic contrast-time curves from the ischemic region was developed. Within ROIs

placed in angiograms, ten features were extracted from each smoothed contrast-time curve

to characterize and classify the degree of retrograde filling. In each case, we find either an

approximate exponential decay of certain features (UR,PK,AD) or an approximate expo-

nential growth of other kinetic features (AAT ). This corroborates prior modeling of vascular

dispersion as an exponential fallo↵ along the vascular tree [38, 39]. Therefore, our results

suggested that when normalization to the first ROI was performed, the response of each

feature through the ischemic region was governed primarily by anatomic and physiologic

e↵ects.

The results suggest that when su�cient signal was present (i.e., signal with normalized

PK > 0.08), and motion is minimized, measurements of PK,AD, AD,Uptke and ABF were

highly accurate and reproducible (Figures 4.6, 4.7, 4.9, and 4.10).

When su�cient signal was not present (i.e., signal with normalized PK < 0.08), or

motion was substantial, however, the accuracy could degrade, particularly for eMTT . For
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the purposes of measuring feature response and classifying patients (next 2 sections), a

workaround for cases with ROIs that had normalized PK < 0.08 would be to omit the

associated eMTT from exponential fitting. For motion artifacts, correction prior to feature

extraction would be necessary. Because motion artifacts can diminish the accuracy of the

calculated feature values, it is important to reduce patient motion during the acquisition.

Anesthesia may be appropriate for some patients, and for other cases physical immobilization

during imaging would be necessary [Dr. Christoforidis can best weigh in.].

One method for improving AAT accuracy is to image at a uniform frame rate. Because

measurement of tCA,Man was done using D(t), the human observer had a high uncertainty

in finding the the true tCA because of the coarse 1 Fr/s sampling rate. For this reason, it is

recommended that angiography for automatic AAT measurement be conducted at a uniform

3 or 6 Fr/s.

4.4.2 Kinetic Feature Reproducibility between Injections

The results suggest that, between injections, features that are surrogates for CBV (AD and

PK) Perfusion (ABF ) are the most reproducible of the features examined in this study,

while density-based features that are surrogates for CBF (S, and UR) and AD,Uptke, TTP ,

are somewhat less reproducible. Motion and noise between repeated series can lower this

reproducibility. Therefore, to better apply CBF surrogates to dynamic patient monitoring,

it is important to reduce patient motion during the acquisition. AAT , Dr,SS(tUR), and

eMTT were amongst the least reproducible features. TTP and eMMT are sensitive to

changes in the time at which Dr,SS(t) peaks and in the value of PK; this is especially

important when there are distinguishable peaks for arterial and venous filling. AAT can be

sensitive to injection volume and rate. Furthermore, all timing features have poor intra-series

agreement in ROIs with low contrast concentration (i.e., ROIs with normalized PK < 0.08),

making them less reliable for assessing patients with poor PAS.
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4.4.3 Classification-Performance Evaluation

The similarity in fits seen in Figures 4.12 and 4.11 and the corresponding similarity in �

seen in Figure 4.14 for all pc indicate that despite the di↵erence in feature values between 6

Fr/s angiograms and corresponding downsampled mixed frame-rate angiograms, Levenberg-

Marquardt fitting is robust. Therefore, performance for Tasks A and B would not change

appreciably between the two di↵erent frame-rates for the cases in the Dataset A. As is shown

in Figure 4.15 and reflected in Table 4.9, there was categorically greater exponential growth

or decay (i.e., greater �) of AD, AD,Uptke, PK, eMTT, S, and ABF for patently poor PAS

(pc = 4–5) versus PAS (pc = 1–3). These results indicated that, for each of those features,

there was a definite range of a where the risks of reperfusion treatment rise considerably.

This range also reflected the relatively smaller penumbra volumes in the ischemic region,

indicating reduced benefits to reperfusion treatment. Therefore, these features may be used

to screen out cases best suited to alternative treatments or no treatment.

4.4.4 Limitations

Because motion, noise, and low contrast concentration between repeated series reduce the

reproducibility of density-based features that are surrogates for CBF , it is important to

reduce patient motion during the acquisition. When done under anesthesia, patient motion is

reduced. The development of robust motion-correction techniques may also help improve the

reporducitbility of CBF surrogates. Standardizing injection rates and ensuring that there

is enough contrast to visualize the entire extent of PAS could help improve reproducibility

as well.

Although AD, PK, AAT , S, and ABF could readily distinguish patients with good PAS

from those with poor PAS, this study was performed with only 24 patients, 4 of whom had

poor PAS; The results are thus skewed toward patients with pc  3. This is because patients

with poor PAS tend to have lower ASPECTS scores and are not sent to interventional

angiography.
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The reduced abilities to distinguish borderline cases (pc = 3) from poor PAS (pc = 4–5)

or from good PAS (pc = 1–2) were problematic. Projection imaging can often lead to overlap

of external vascular structure with the a↵ected MCA branches, but this can be overcome

with strategic ROI placement. However, even with prudent ROI placement, it was very

di�cult to place additional ROIs beyond the distal M2 segment of the MCA without en-

countering overlap with the unoccluded ACA or Posterior Cerebral Artery branches and the

transverse sinus vein. These overlapping vessels could contribute to misleading values in the

kinetic features, leading to poorer separation. The use of 4D (3D in space plus time) X-ray

DSA would remove this overlap problem and allow 3D ROIs to be placed medial to the M2

segments, potentially leading to better separation between the three pc subpopulations. An-

other approach would be to use Fuzzy C-means segmentation in a manner similar to Chapter

3 to identify vessels from the unoccluded ACA and Posterior Cerebral Artery territories.

4.5 Conclusion

We have devised a computerized feature-based method to measure the degree of pial arterial

supply in acute ischemic stroke and compared its performance against a clinical pial grading

system. It was found that exponential response parameters � of kinetic features extracted

from the ischemic region could distinguish patients that had patently poor PAS from those

that had patently good or borderline PAS. One limitation of this method is the di�culty in

distinguishing between patients best-suited for reperfusion treatment from those with bor-

derline suitability. Therefore, this method could potentially serve as an e↵ective and e�cient

clinical technique for contraindicating reperfusion treatment, thereby sparing patients who

are worst suited to it.
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CHAPTER 5

KINETIC FEATURE PERFORMANCE FROM

FCM-SEGMENTED VESSELS

5.1 Background

In Chapter 4, it was demonstrated that kinetic features extracted from pixel curves averaged

over ROIs immediately preceding and within the ischemic territory can estimate PAS and

allow for detection of drastic changes in the patient’s suitability to for treatment. However,

in the clinic, interventionists frequently use the observed extent of retrograde filling of the

arteries [11] or the observed extent of parenchymal blush due capillaries in X-ray DSA image

series [1]. The existence of contrast opacification in parenchyma is important because it

is a direct indicator of the viability of neural tissue. The extent of contrast opacification

of arteries can provide this information as well because contrast filling in the parenchyma

is dependent on nearby arterial branches to supply it. A way to quantitate the extent of

arterial or capillary opacification due to contrast would be to extract kinetic features from

arteries or parenchyma in each ROI. To accomplish this, it is necessary to segment the

arteries or parenchymal blush due to capillaries from all other vessel types. Therefore, in

this chapter, first, a Fuzzy C-Means (FCM) based approach to segmenting arteries from

non-arteries in X-ray DSA was developed. Kinetic features were then extracted from curves

generated using the segmented arteries, and their performance in the task of characterizing

PAS was evaluated. Since it has been shown in Chapter 3 that FCM can robustly separate

major vessels from capillary blush, kinetic features were extracted from segmented blush

and their performance in the task of characterizing PAS was evaluated. The performances

of features extracted from curves generated using these FCM-segmented vessel classes were

compared to features extracted from curves generated using all the pixels in each ROI. It is

hypothesized that kinetic features extract from curves derived from FCM-segmented arteries

and curves derived from FCM-segmented parenchymal blush in circular ROIs (see Section
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4.2.2) will better quantitate PAS than features extracted from curves derived from all pixels

in the circular ROIs.

5.2 Methods

Though the contrast curves for major arteries and veins are distinguishable from those for

parenchymal blush due to capillaries (see Chapter 3), there are di↵erences in contrast curves

between arteries and veins as well. Delay-and-dispersion is the underlying mechanism behind

this di↵erence. Since contrast curves and therefore kinetic features can be extracted from

individual pixels in X-ray DSA series, it is expected that pixels located in veins will have

higher values for timing features (AAT , eMTT ) lower UR, lower AD, Uptke, lower ABF ,

and (because veins are larger than arteries), lower AD. Therefore, if kinetic features are

calculated at every pixel, feature maps (Figure 5.1) can be generated for each of them.

These maps can be used along with the pixel curve data as inputs into FCM-clustering for

the task of di↵erentiating arteries from non-arteries.

5.2.1 Maps of Pixel-Wise Kinetic Features

For pixel coordinates (x, y) the pixel contrast curve Dx,y(t) was extracted. To reduce the

influence of noise, each Dx,y(t) was fitted with a smoothing spline (smoothing parameter

p = 0.98981). The smoothing spline (SS) was sampled at a rate of 1/6 Hz, so that all

smoothed curves Dx,y,SS(t) had the same “sampling rate” of 6 Fr/s. From Dx,y,SS(t),

the features pAAT , pUR, peMTT , pAD, pAD, Uptke, and pABF are extracted and maps

of these features (Figure 5.1) are generated. These features are defined in the analogous

manner to AAT , UR, eMTT , AD, AD, Uptke, and ABF , respectively, except that Dr,SS(t)

is replaced by Dx,y,SS(t).
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a) pAAT

d) pAD

b) pUR c) peMTT

e) pAD,Uptke f) pABF

Figure 5.1: Pixel-wise feature maps to be investigated as inputs to FCM segmentation of
arteries from non-arteries. Feature descriptions can be found in Section 4.2.3.

5.2.2 Segmentation of Vessel and Capillary Curve Data

A binary mask is geneated to filter out non-vessel pixels in the angiogram and the corre-

sponding feature maps (see Figure 5.2). For a pixel to be included to be in this vessel mask

(i.e., to equal 1), its highest class membership score in FCM 1 must come from the vessel

class (see Figures 5.3 and 3.3). The filtered angiogram will be referred to as the “vessel

angiogram” DV (x, y, t). In a similar manner, the binary mask for parenchymal blush is gen-

erated as well and the resulting “capillary blush angiogram” is denoted DB(x, y, t), except

that the highest membership score in FCM 1 can come from either the “blush” class or

the “background class” (the lack of parenchymal filling is jsut as telling as the presence of

parenchymal presence). DV (x, y, t) will be used as the input to FCM segmentation of arte-

rial vessel (see Figure 5.3 and the Section 5.2.3), and both DV (x, y, t) and DB(x, y, t) will

be used to extract ROI-derived kinetic features in a manner similar to Chapter 4 (Section

4.2.3).
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a) Major Vessels b) Capillaries c) Arteries

Figure 5.2: Binary Masks derived from FCM membership maps

5.2.3 Arterial Segmentation via FCM Clustering

FCM is used to segment arteries from arteries non-arteries in a manner very similar to

segmenting major vessels from parenchymal blush due to capillaries under input protocol Rs

(see Chapter 3), with the exception that kinetic features from Dx,y,SS(t) are used along with

curve data points as inputs in each ROI (Figure 5.3) and that the binary mask for major

vessels is used to filter the angiogram and the kinetic feature maps prior to implementation

of FCM clustering.

Because it is not currently known what set of features into FCM will best segment arteries

from non-arteries, the sets of features outlined in Table 5.1 will be investigated. pAD, pPK,

pAD, Uptke, and pABF are included because of the relatively high performance of their

Dr,SS(t)-derived analogs in separating patients into separate pc subpopulations (Chapter

4). pAAT , pUR,and peMTT are chosen because they may be able to account for the e↵ect

dispersion between arteries and veins.

Feature- Curve pAAT pUR peMTT pAD pPK pAD,Uptke pABF
Set Index Data Points

0 X
1 X X X X
2 X X X X X
3 X X X X X X X X

Table 5.1: Sets of kinetic features input to FCM for the task of distinguishing arterial pixels
from non-arterial pixels.
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Figure 5.3: Flow-chart for the proposed cascaded FCM artery segmentation algorithm.

5.2.4 Evaluate the Performance of FCM Segmentation of Arteries from

Non-Arteries

In this study, pixels in the kinetic ROIs were verified by a board-certified neuroradiologist

(G.A.C.) as belonging to one of the following categories: (1) arteries with no overlapping

veins, (2) veins with no overlapping arteries, (3) overlap between Arteries and veins, and (4)

parenchymal blush due to residual capillaries in DV (x, y, t). These labeled pixels serve as

clinical truth in evaluating the proposed FCM artery segmentation method.

For each category, 25-50 pixels were labelled in each ROI, although this number may

be lower if the prevalence for a category in a particular ROI is small. Because arteries

frequently overlap with veins in DV (x, y, t) the truth categories 1 and 2 were combined

“arteries” truth category. To evaluate FCM’s performance in separating arteries from non-

arteries, categories 3 and 4 were combined into a “non-arteries” truth category. Using the

truth for arteries and non-arteries, the task of separating arteries from non-arteries was

assessed using ROC analysis. The truth is used within each ROI, across all cases of a given

frame-rate is grouped to generate frame-rate-based curves (i.e., one ROC curve each for
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Datasets A and B; see Table 2.2), and finally across all cases to yield an ROC curve for the

entire dataset (i.e., Dataset A+B). Because category membership values always fall in the

range [0 1], this pooling scheme allows performance to be summarized for each ROI, each

frame-rate subset, and/or the entire dataset.

ROC curves were fitted using the proper binormal ROC model [40] software package

and the non-parametric Wilcoxon area under the ROC curve (AUC) was chosen as the

performance metric for this task.

The two sided 95% confidence interval of each AUC is estimated using bootstrapping.

In this method, the arterial category membership values for the arterial and non-arterial

categories were stored in a single dataset. 1000 bootstrap samples were selected from the

arterial and non-arterial categories and AUC was calculated for each sample. The two sided

95% confidence interval was then calculated from these 1000 AUC’s.

Using Dataset A+B (Table 2.2), performance comparisons for e↵ect of di↵erent choices

of the number of categories Nc,Art and di↵erent Feature Set inputs to FCM were determined

by evaluating the di↵erences in AUC (�AUC). Using Datasets A, A3, and AM , (Table

2.2), performance comparisons for di↵erent frame-rates were determined by evaluating the

di↵erences in AUC (�AUC) as well. The di↵erences in AUC for these 3 kinds of comparisons

was assessed using bootstrapping (3000 iterations) and two-sided 95% confidence intervals

of �AUC for superiority testing. If superiority testing was inconclusive, one-sided 90%

confidence intervals of �AUC were calculated for non-inferiority testing. Non-inferiority

was reached if the lower limit of the confidence interval was larger than -0.02 [20].

5.2.5 Extract Selected Kinetic Features from Segmented Classes

Within each case in Dataset A+B (see Table 2.2), a binary mask is geneated to filter out non-

arterial pixels in the angiogram and the corresponding feature maps (see Figure 5.2). For a

pixel to be included to be in this arterial mask (i.e., to equal 1), its highest class membership

score in FCM 2 (see Figures 5.3) must come from the artery class. The resulting mask
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was used to filter out non-arterial pixels in D(x, y, t), resulting the “arterial angiogram”

DA(x, y, t). We refer to the capillary and arterial angiograms DB(x, y, t) and DA(x, y, t)

as filtered angiograms. If we denote a vascular category (e.g., arteries, capillaries) with ⌧ ,

then D⌧ (x, y, t) serves as a general notation for the filtered angiograms. The ROIs that were

delineated in Chapters 3 and 4 are used for each D⌧ (x, y, t) as well. In each ROI, a mean

curve D⌧ (t) was calculated by averaging all unfiltered pixel values within an ROI at each

image frame (i.e., time):

D⌧,r(t) =

P
x,y in ROID(x, y, t)

N
, (5.1)

where N is the number of pixels in within an ROI. Thus, over the database of 24 cases,

128 contrast-time curves were calculated. To reduce the influence of residual noise and

small-scale oscillatory motion due to breathing and pulsation, each D⌧,r(t) was fitted with a

smoothing spline (smoothing parameter p=0.98981).The smoothing spline (SS) was sampled

at a rate of 1/6 Hz, so that all smoothed curves D⌧,r,SS(t) had the same “sampling rate of

6 Fr/s.

For each category ⌧ (i.e., capillary blush, arteries) set of computer-extracted kinetic fea-

tures was extracted from each D⌧,r,SS(t) to assess the degree of PAS. Because they exhibited

superior stability after temporal downsampling, reproducibility, and performance in sepa-

rating patients into pc subpopulations in Chapter 4, the features extracted were AD, PK,

AD, Uptke, and ABF . Their definitions are the same here as in Chapter 4, except that

Dr,SS(t) is replaced by D⌧,r,SS(t).

5.2.6 Exponential Response of Kinetic Features

For each category ⌧ , the values of each kinetic feature F⌧ change across the 5-6 ROIs. As

in Chapter 4, it is hypothesized that the magnitude of this response can be used to classify

a patient’s suitability for reperfusion treatment. Therefore, for every ⌧ , we apply the fitting
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procedure described in Section 4.2.7 of Chapter 4 to the features F⌧ . In a manner similar

to Eq. 4.9, the normalized feature values F⌧,Norm(r) were fitted according to the following

equation:

F⌧,Norm(r) = e�(r�1) (5.2)

where r is the ROI index defined according to Figure 4.1, � is the parameter of exponential

response for the particular feature F , and F⌧,Norm is the normalized feature value. The fit-

ting was done using the Levenberg-Marquardt algorithm [30, 32]. To harmonize the dataset,

the 6 Fr/s angiograms were down-sampled to create synthetic angiograms with temporal

sampling according to the mixed frame-rate acquisition protocol (see Section 2). The value

of � between the 6 Fr/s angiograms and the downsampled mixed frame-rate angiograms were

then compared to determine if lowering the acquisition frame-rate a↵ected performance. The

goodness-of-fit R2 and the root-mean-square error (RMSE) were calculated for each case.

5.2.7 Classification-Performance Evaluation

In Dataset A+B (see Table 2.2), the potential usefulness of each kinetic feature was de-

termined by its ability to separate patients into two di↵erent PAS subpopulations (Table

4.5).Task I was the separation of PAS grade pc = 1–2 (considered favorable PAS) vs pc = 3–5

(considered poorer PAS); Task II was the separation of PAS grade pc = 1–3 (for which treat-

ment was feasible) vs pc = 4–5 (for which treatment was to be avoided). The first, the

Dataset A (see Table 2.2), is composed only of angiograms acquired at 6 Fr/s. Dataset

Ad consists of angiograms downsampled from Dataset A to the mixed frame-rate protocol.

Finally, Dataset B (see Table 2.2) consists of the angiograms in the downsampled subset and

the angiograms from cases imaged under the mixed frame-rate protocol. For each dataset,

the potential usefulness of each kinetic feature was determined by its ability to separate

patients into two di↵erent PAS subpopulations (Table 4.5). Task I was the separation of

PAS grades pc = 1–2 (considered favorable PAS) vs pc = 3–5 (considered poorer PAS); Task
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II was the separation of PAS grades pc = 1–3 (for which treatment was feasible) vs pc = 4–5

(for which treatment was to be avoided). Box plots are generated for the distribution of

each feature F⌧ with subpopulations with pc = 1–2, pc = 3, and pc = 4–5. For each feature

F and each vascular category ⌧ , box plots are generated for the distribution of each feature

F⌧ within the pc subpopulations. For each F⌧ derived from and each task performed on

Database B, an ROC curve was generated by sweeping a threshold �TH across the subpopu-

lations’ distributions of � and then measuring the True Positive and False Positive Fractions

at each choice of �TH . The Wilcoxon area under the ROC curve AUC [3, 40] was used as

the performance metric in distinguishing between the two PAS subpopulations.

Task PAS sub- PAS sub-
population 1 population 2

I pc = 1–2 pc = 3–5
II pc = 1–3 pc = 4–5

Table 5.2: Two separation task for PAS-subpopulations. The di↵erence between tasks hinged
on whether patients with a borderline PAS score (pc = 3) were considered suitable for
reperfusion treatment.

5.3 Results

5.3.1 Evaluation of FCM Segmentation of Arteries

E↵ect of Input Feature-Set

In this subsection the number of clusters was Nc,Art = 3. In Figure 5.4a and Table 5.3, using

Feature Set 1 as the input data to FCM gave the highest AUC in the task of separating

arteries from non-arteries across Dataset A+B. The bootstrapped 95% confidence interval

of the di↵erence �AUC between Feature Set 1 and Feature Set 0 (i.e., curve data points

alone) is above zero, indicating superior performance across Dataset A+B. The superior

performance of Feature Set 1 over all other feature-sets investigated in this chapter holds

within Datasets A and B as well (i.e., within frame-rates; see Table 2.2, Figure 5.4b, and
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Table 5.4). In Figure 5.5, it can be seen that in Database A+B, except for 3 cases, the mean

ROI AUC for Feature Set 1 are consistently high than for the other Feature Sets.

(a) (b)

Figure 5.4: Fitted binormal ROC curves for the performance in separating arterial pixels from
non-arterial pixels for each input feature-set (see Table 5.1) for (a) Dataset A+B (Table 2.2)
and (b) Datasets A and B (i.e., the di↵erent Frame-rates). The truth for the entire database
includes all pixels across all cases; the truth for ROCs from Datasets A and B include all
pixels across all cases acquired at 6Fr/s and the Mixed Frame-rate protocol, respectively.
The inputs protocol to FCM was Rs.

E↵ect of Number of FCM Classes Nc,Art

In this subsection, Feature Set 1 (curve data points, pUR, pAAT , peMTT ) was used as

the input data to FCM. In Figure 5.6a and Table 5.5, segmentation of arteries from non-

arteries in Dataset A+B using Nc,Art = 3 gives slightly better performance over FCM using

Nc,Art = 2 or Nc,Art = 4. However, the bootstrapped 95% confidence intervals for �AUC

indicate that only the di↵erence in performance between Nc,Art = 3 and Nc,Art = 4 is

statistically significant. For Dataset A (Figure 5.6b and Table 5.6), the�AUC forNc,Art = 3

is significantly better than for Nc,Art = 2 or Nc,Art = 4, but as in Table 5.5, the improvement

is minimal. For Dataset B, there are no statistically significant di↵erences in performance
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Input Feature AUC 95% Confidence p-Value
-Set Indices Interval of (↵ = 0.017)

�AUC

0 0.77 [0.76; 0.78] — —
1 0.82 [0.81; 0.82] [-0.036; -0.059] < 0.0001*
2 0.76 [0.75; 0.77] [-0.020; 0.004] 0.88
3 0.76 [0.75; 0.77] [-0.020; 0.0-4] 0.90

Table 5.3: Database ROC statistics for Fig. 3.8a, with 95% confidence intervals in brackets
(using Database A+B, 24 cases; See Table 2.2). The significance level is adjusted ↵ = 0.017
using a Holm correction. Feature Set 1 is the only set that shows statistically significant
improvement over Feature Set 0.

Frame-Rate Input Feature- AUC 95% Confidence p-Value
Set Indices Interval of (↵ = 0.0083)

�AUC

0 0.76 [0.75; 0.78] — —
6 1 0.83 [0.82; 0.84] [0.047; 0.080] < 0.0001⇤

(Dataset A) 2 0.75 [0.74; 0.76] [�0.004; 0.031] 0.93
3 0.75 [0.73; 0.76] [�0.037; 0.011] 0.98

0 0.77 [0.76; 0.78] — —
Mixed 1 0.82 [0.81; 0.83] [0.032; 0.063] < 0.0001⇤

(Dataset B) 2 0.77 [0.76; 0.78] [�0.019; 0.015] 0.60
3 0.77 [0.76; 0.78] [�0.017; 0.016] 0.48

Table 5.4: Frame-rate ROC statistics for Fig. 3.8b. The superior performance is consistent
across both frame-rates for Nc = 3. The significance level is adjusted ↵ = 0.008 using a
Holm correction. The asterisk (*) indicates statistical significance. Feature Set 1 is the only
set that shows statistically significant improvement over Feature Set 0.
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Figure 5.5: Mean ROI AUC for each case (Datset A+B; see Table 2.2). For 21 of the 24
cases, Set 1 has the best performance in the task of identifying arteries from non-arteries.

between the 3 choices of Nc,Art. The similarity in the 3 choices of Nc,Art are further reflected

by the mean ROI AUC in each case in Dataset A+B (Figure 5.7).

E↵ect of Frame-Rate

As shown in Figure 5.8, when using Feature Set 1 (Table 5.1) and Nc,Art = 3, there is a

small (< 0.03) but visually discernible di↵erence in AUC between Datasets A and AM . This

di↵erence is statistically significant (see Table 5.7), indicating that imaging at mixed frame-

rate protocol gives a better performance over a uniform 6 Fr/s acquisition. However, the

ROC curves, AUC, and 95% confidence intervals Datasets A and A3 are almost equivalent

and the bootstrapped comparison between these two frame-rates passes the non-inferiority

test, indicating that FCM segmentation of arteries from non-arteries for 6 Fr/s acquisitions

is as good as FCM segmentation of arteries from non-arteries for 3 Fr/s acquisitions.
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(a) (b)

Figure 5.6: Fitted binormal ROC curves for the performance in separating arteries from
non-arteries for number of classes Nc,Art = 2–4. The ROC curves span (a) Dataset A+B
(Table 2.2) and (b) Datasets A and B (i.e., the di↵erent Frame-rates). The truth for Dataset
A+B includes all pixels across all cases; the truth ROCs from Datasets A and B include all
pixels across all cases acquired at 6 Fr/s and the Mixed Frame-rate protocol, respectively.
The inputs protocol to FCM was Rs.

 

Number of 
Categories 

Nc,Art 

AUCWil 95% Confidence Interval for  ΔAUC (p-Value) 

2 0.81  
[0.80; 0.81] 

 

 
 [0.006; 0.358] 

(0.004)* 

 
 
 

[-0.019; 0.013] 
(0.66) 3 0.82  

[0.81; 0.82] 

 
 
 

[0.003; 0.033] 
(0.014)* 

4 0.80  
[0.79; 0.81] 

Table 5.5: Database ROC statistics for Figure 5.6a with 95% confidence intervals in brackets.
The significance level was adjusted to ↵ = 0.017 using a Holm correction. The asterisk (*)
indicates statistical significance.
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Frame-
Rate 

Number of 
Categories 

Nc,Art 
AUCWil 95% Confidence Interval for  ΔAUC (p-Value) 

6 
(Dataset A) 

2 0.81  
[0.80; 0.82] 

 

 
 [0.004; 0.035] 

(0.008)* 

 
 
 

[-0.020; 0.013] 
(0.64) 3 0.83 

[0.82; 0.84]  
 

 

 
[0.002; 0.033] 

(0.012)* 4 0.81  
[0.80; 0.82] 

       

Mixed 
(Dataset B) 

2 0.82 
[0.81; 0.83] 

 

 
 

[-0.013; 0.016] 
(0.44) 

 
 
 

[-7.87× 10-4; 0.030] 
(0.032) 3 0.82 

[0.81; 0.83] 

 
 

 

[-2.4 × 10-4; 0.031] 
(0.026) 

4 
0.80 

[0.79; 0.81] 
 

Table 5.6: Frame-rate ROC statistics for Figure 5.6b with 95% confidence intervals in brack-
ets. The significance level was adjusted to ↵ = 0.008 using a Holm correction.The asterisk
(*) indicates statistical significance.

Frame-rate �AUC Two-sided 95% One-sided 90%
Comparison Confidence Confidence

Interval Interval
Dataset A �0.002 [�0.017; 0.0124] (0.024) [�0.012; 1.000] (0.012)⇤

vs Dataset A3

Dataset AM 0.026 [0.012; 0.041] (< 0.001)⇤ [0.017; 1.000] (< 0.001)⇤
vs Dataset A
Dataset AM 0.024 [0.011; 0.004] (< 0.001)⇤ [�0.003; 1.000] (< 0.001)⇤
vs Dataset A3

Table 5.7: Pairwise bootstrapped di↵erence in AUC between frame-rates with confidence
intervals (brackets) and significance values (parentheses). The significance level was adjusted
to ↵ = 0.017 using a Holm correction. The asterisk (*) indicates statistical significance.
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Figure 5.7: Mean ROI AUC for each case (Datset A+B; see Table 2.2). For only 11 of the
24 cases, Nc,Art = 3 has better performance than Nc,Art = 2 or Nc,Art = 4 in the task of
identifying arteries from non-arteries.

5.3.2 Patient Classification Using Kinetic Features

Exponential Response of Kinetic Features

In Figure 5.9, AD separates pc = 4–5 from pc = 1–3 within Dataset A+B with the least over-

lap for all pixels, arterial pixels, and capillary pixels. However, for each feature (particularly

PK and AD,Uptke), a clear pattern as a function of pc can be seen for each subpopulation’s

median value. Though there is overlap between pc = 1–2 and pc = 3 for all features ex-

tracted from FCM-segmented arteries, FCM-segmented parenchymal blush, and all pixels in

the ROIs in Dataset A+B, the � values are confined to lower values for features extracted

from the capillary pixels.

78



Figure 5.8: Fitted binormal ROC curves for each frame-rate subset (Nc,Art = 3 and input
protocol Rs). Area under the curve AUC is reported in the legend with the 95% confidence
intervals in parentheses.

Feature R2 RMSE AUC for Task I: AUC for Task II:
p
c

= 1–2 vs p
c

= 3–5 p
c

= 1–3 vs p
c

= 4–5
AD 0.74± 0.34 0.09± 0.05 0.81± 0.10 1.00± 0.00⇤
PK 0.86± 0.15 0.08± 0.04 0.84± 0.09 0.99± 0.02

AD,Uptke 0.63± 0.44 0.15± 0.09 0.84± 0.08 0.94± 0.06
ABF 0.84± 0.17 0.09± 0.05 0.80± 0.10 0.98± 0.03

Table 5.8: Fit and Evaluation statistics for kinetic features extracted from mean curves
averaged across all pixels each in ROI in Dataset A+B (see Table 2.2). *Results of AUC =
1 are likely due to small patient sample size
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Figure 5.9: Box plot comparisons of extracted kinetic features from Dataset A+B for clas-
sifying patients according to pial grade pc. A trend of steadily increasing median feature
values for � is especially observable for FCM-segmented parenchymal blush.

Feature R2 RMSE AUC for Task I: AUC for Task II:
p
c

= 1–2 vs p
c

= 3–5 p
c

= 1–3 vs p
c

= 4–5
AD 0.57± 0.37 0.1± 0.04 0.75± 0.11 0.96± 0.04
PK 0.62± 0.33 0.1± 0.04 0.77± 0.11 0.96± 0.04

AD,Uptke 0.6± 0.37 0.16± 0.1 0.87± 0.07 0.96± 0.04
ABF 0.61± 0.32 0.11± 0.05 0.77± 0.11 0.95± 0.04

Table 5.9: Fit and Evaluation statistics for kinetic features extracted from averaged across
FCM-segmented arterial curves each in ROI in Dataset A+B (see Table 2.2).
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Feature R2 RMSE AUC for Task I: AUC for Task II:
p
c

= 1–2 vs p
c

= 3–5 p
c

= 1–3 vs p
c

= 4–5
AD 0.78± 0.36 0.09± 0.05 0.81± 0.11 0.98± 0.03
PK 0.88± 0.18 0.08± 0.04 0.85± 0.08 0.98± 0.03

AD,Uptke 0.57± 0.44 0.15± 0.09 0.74± 0.12 0.96± 0.04
ABF 0.89± 0.22 0.07± 0.04 0.85± 0.08 0.94± 0.05

Table 5.10: Fit and Evaluation statistics for kinetic features extracted from averaged across
FCM-segmented capillary curves each in ROI in Dataset A+B (see Table 2.2).

Figure 5.10: R2 goodness of fit measure for each feature’s exponential fit. Kinetic features
are extracted within the listed vascular categories listed in the legend and come from Dataset
A+B (see Table 2.2).
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Figure 5.11: RMSE for each the normalized kinetic features and their respective exponential
fits. Kinetic features are extracted within the listed vascular categories listed in the legend
and come from Dataset A+B (see Table 2.2).

Classification-Performance Evaluation

For Task I (Figure 5.12 and Tables 5.8, 5.9, and 5.10), AD, PK, and ABF extracted from

FCM-segmented arterial curves tended to have lower AUC than the features extracted from

all pixel curves in each ROI. By contrast, AD, PK, and ABF extracted from FCM-segmented

capillary curves tended to have higher AUC for Task I than AD, PK, and ABF extracted

from all pixels curves in each ROI. In fact, PK and ABF extracted from FCM-segmented

capillary curves had the highest AUCs for Task I. It is worth noting that for Task I, AD

extracted from FCM-segmented artery curves had the smallest AUC (AUC = 0.73± 0.11).

In Task II and for every vascular category, all features had AUC > 0.90; in particular,

AD, PK, and ABF had AUC > 0.95. Interestingly, for FCM-segmented arterial curves

AD,Uptke had the best performance.

In both tasks and for each feature, the error bars for the vascular category’s AUC all

overlap.
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Figure 5.12: Wilcoxon AUC values for Tasks I and II using the extracted kinetic features.
Kinetic features are extracted within the listed vascular categories listed in the legend and
come from Dataset A+B (see Table 2.2). PK and ABF have preferable performance.

5.4 Discussion

5.4.1 FCM Segmentation of Arterial Pixels from Non-arterial Pixels

For pixels in major vessels, if curve data is used to segment arterial pixels from non-arterial

pixels, the performance is drastically reduced when compared to the task of segmenting

vessels from non-vessels (AUC=0.77 vs AUC=0.86; see Chapter 3). Because MCA branches

a↵ected by PAS have relative to normally-supplied arterial branches, reduced contrast filling,

and they frequently overlap with veins on 2D angiograms, the contrast curves for arteries and

veins are more similar to one another than they are to non-vessel pixels. It is for this reason

that pAD, pPK, and pAD,Uptke do not significantly improve performance for segmenting

arteries from non-arteries.

However, in a given ROI, arteries always arrive before veins and are less dispersed than

them. They, therefore, have shorter pAAT , shorter peMTT , and larger pUR. Therefore,

using these 3 features and the pixel curve data improves arterial segmentation over using
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pixel curve data alone. However, if pAD, pPK, pAD,Uptke, and pABF are used alongside

pAAT , peMTT , pUR, and pixel curve data, arterial segmentation does not improve com-

pared with using pixel curve data alone. This means that even when “helpful” features (i.e.,

pAAT , peMTT , and pUR) are present in the input data to FCM Clustering , “non-helpful”

features can still throttle any potential improvements in arterial segmentation. This implies

that replicating pAAT , peMTT , and pUR for each pixel in the input data could improve per-

formance. Another important implication from these comparisons is that dispersion between

arteries and veins does not significantly a↵ect pAD, pPK, pAD,Uptke, or pABF . Therefore,

a direction for future research would be to verify these two implications.

For angiograms acquired at the mixed frame-rate protocol, the three choices for the

number of input categories Nc,Art (Nc,Art = 2–4) do not lead to significant di↵erences in

AUC for the task of segmenting arteries from non-arteries. For angiograms acquired at 6

Fr/s (i.e., Dataset A), the bootstrapped 95% confidence interval for �AUC (see Table 5.6)

was statistically significant, but �AUC = 0.02 is considered too small to be of concern.

Because arteries frequently overlap with veins in 2D X-ray angiograms, much of the pixel

truth is overlap truth. As a result, arterial membership scores from this truth category likely

dominate the calculation of the ROC curves and their Wilcoxon AUCs. Future work can

address the contribution of overlap to ROC evaluation in the task of segmenting arteries

from non-arteries by investigating di↵erent definitions arterial truth (i.e., designate a truth

pixel as “arterial” if it is an artery and there is no venous overlap).

It is interesting to note from Figure 5.8 and Table 5.7 that for the angiograms downsam-

pled to the mixed frame-rate protocol, a statistically significant improvement in performance

is observed. This raises the possibility that steadily decreasing the sampling rate with time

may actually help in identifying veins. Since this comparison is being made using Set 1, for

future investigations there are two parts to investigating such a possibility. The first part

would be to use Feature Set 0 (see Table 5.1) as the input to FCM segmentation of arteries

for non-arteries and compare the performance between Datasets A and AM in a manner
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analogous to Subsection 5.3.1:E↵ect of Frame-Rate. Because downsampling may influence

the pixel kinetic features, the second part would be to examine the di↵erences in pAAT ,

peMTT , and pUR between Dataset A and Dataset AM for the truth pixels. Such an inves-

tigation would explain the e↵ect downsampling to the mixed frame-rate protocol would have

on pAAT , peMTT , and pUR and what frame-rate is most conducive to segmenting arteries

from non-arteries.

5.4.2 Patient Classification Using Kinetic Features

Of the 3 vascular categories (FCM-segmented arteries, FCM-segmented parenchymal blush,

and all pixels in each ROI), using all pixels in each ROI tended to have the most robust

performance for Tasks I and II and fit the exponential model best (Figures 5.10 and 5.11).

It is worth noting, however, that for Task I, ABF had the highest AUC amongst features

extracted from the FCM-segmented parenchymal blush while AD,Uptke extracted from the

FCM-segmented arteries tended to have the best performance for the vascular category.

Since AD,Uptke and ABF are surrogates for transit time and in arteries and perfusion in

parenchyma, respectively, our results suggest that FCM segmentation for these 2 vascular

categories, followed feature extraction, and classification using those features can quantita-

tively track patient physiology during intervention. The performance for Task II is compa-

rable across features and vascular categories, which agrees with findings in Chapter 4. This

indicates that patients with poor PAS are easy to identify.

However, for both Tasks I and II, across the 4 features, and across the 3 vascular cate-

gories, the error-bars overlap (see Figure 5.12), belying the small sample size (N=24) of our

database. To verify these findings, a larger database is needed.
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5.5 Conclusion

We have developed a cascaded FCM-based approach to segmenting arteries from non-arteries

and parenchymal blush due to capillaries from major vessels. Kinetic features are extracted

from FCM-segmented arterial curves and FCM-segmented capillary curves, and used to clas-

sify patients’ suitability for reperfusion treatment. The results suggest that pixel-extracted

AAT , eMTT , and UR are useful for characterizing the delay-and-dispersion e↵ect while

AD,PK, and AD,Uptke, and ABF are more suited towards patient classification. It is

also suggested that the kinetic-feature extracted from FCM-segmented arterial curves and

FCM-segmented blush curves can quantitatively track patient physiology. These results are

comaprable to features extracted without any segmentation. However, the results in this

chapter need to be verified with a larger database.

86



CHAPTER 6

DISCUSSION AND CONCLUSION

In this chapter, a discussion of the main contributions of this thesis and the conclusion are

summarized. Limitations to this work are discussed and future work to overcome limitations

and improve this field are suggested.

We have investigated a computational method to quantitatively estimate the arterial

supply due to pial collaterals, or the pial arterial supply (PAS)—imaged using X-ray DSA—

in the setting of acute ischemic stroke. Using an angiographic database, this method has

been able to reliably contra-indicate reperfusion treatment for patients least to suited to it

and, to a more limited degree, identify patients who have a borderline suitability for reper-

fusion treatment. Segmentation of major vessel branches is an important step to accurately

quantifying the extent of PAS and automatically assessing patient candidacy for reperfusion

treatment. Kinetic features extracted from one or more of these vessel classes can potentially

allow for dynamic monitoring of intra-interventional changes in PAS which in turn can aid

the interventionist in changing treatment decisions.

The main contributions of this thesis are as follows:

(1) An FCM-based method for automatically segmenting pial-supplied major vessels from

parenchymal blush using X-ray DSA image series was developed. This method showed

promising performance in identifying pixel vessels and shown to have robust performance at

multiple clinical angiographic frame-rates.

(2) A quantitative, feature-based approach to assessing PAS based on the filling of iod-

inated contrast in X-ray DSA was developed and evaluated. It was found that the degree

of exponential response for the investigated features could serve as an e↵ective clinical tech-

nique for contra-indicating reperfusion treatment, thereby sparing patients who are poor

candidates for it.

(3) A Fuzzy C-Means based-approach to automatically segment arteries from non-arteries

was developed and evaluated. Kinetic features were subsequently extracted from curves
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generated from segmented arteries and capillary blush, and their performance in the task of

characterizing PAS was evaluated. The results suggested that kinetic curves and features

extracted from pixel in X-ray angiograms could segment arteries from non-arteries while

features extracted from pixel segmented arterial and capillary curves could provide a real-

time quantitative marker for the patient’s condition during intervention.

These results support the hypothesis that during acute ischemic stroke, computerized and

quantitative angiographic analysis of pial arterial supply can identify patients’ suitability for

reperfusion treatment. Because timing and dynamic monitoring of the patient is crucial

to e↵ective treatment of stroke, this method can potentially serve as a fast “second-check”

to an interventional radiologist’s treatment decisions. Therefore, better treatments will be

administered more quickly, which will salvage more neural tissue and potentially reduce long-

term disability. However, for this approach to be ready for clinical use, important limitations

must be overcome.

Throughout our study, our database consisted of 24 cases, 13 of which were imaged at a

non-uniform frame-rate. Therefore, the investigations in this research must be followed up

with a larger database. This database can be generated by gathering data either prospec-

tively or retrospectively. Because stroke patients with visible PAS are uncommon at the

University of Chicago Medical Center, acquiring angiographic data through cross-institution

collaborations may be fruitful. It must be ensured that angiographic data is acquired, where

clinically permissible, at a uniform 6 Fr/s, as this may lead to improved feature accuracy.

Furthermore, an important inclusion criterion to the database should be the absence of

motion artifacts.

For kinetic features used to classify a patient’s suitability for reperfusion treatment, there

is di�culty in distinguishing between patients best suited for reperfusion treatment from

those who had borderline suitability. This is because 2D spatial projection images lead to

overlap with unoccluded, normally perfused branches from other arterial territories and the

transverse sinus vein, which makes additional ROI placement infeasible. The use of 4D DSA
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(3D plus time) as proposed be Davis et al, 2014 [14] would remove this overlap. Therefore,

an interesting direction to take in future research would be an adaptation of the method

discussed in this dissertation to 4D DSA series of acute ischemic stroke.

Since clinical exams are not controlled environments, their ability to verify physiological

inferences is limited. Controlled simulation studies can and preclinical canine studies can

address such a task. Under these studies, PAS can be directly compared to the infarct

volume. Since AD, AD,Uptke, PK, and ABF are relatively straightforward to implement

and show promising performance in Chapter 5, they may be compared to their intended

surrogates on MRI to track stroke progression.

6.0.1 Conclusion

This research serves as the first step in achieving a fully computerized and quantitative

means for personalizing patient management during interventional imaging for acute ischemic

stroke. More specifically, this thesis represents a bridge between existing manual, quanti-

tative methods in X-ray DSA imaging of stroke and a fully computerized, unsupervised,

quantitative, and objective approach that is clinically reliable and e�cient. The techniques

presented in this thesis may find application in quantifying imaging of other neurovascular

disease as well.
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