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The Road goes ever on and on,
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.
And whither then? I cannot say.

—J.R.R. Tolkien, The Lord of the Rings
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ABSTRACT

Because of its human and economic cost, there is a need to reduce the disability resulting
from a stroke. Though emergency reperfusion treatment can reduce disability, complications
resulting from it, such as intracerebral hemorrhage, can be lethal. Many patients suffering
from ischemic stroke develop varying degrees of pial-collateral arterial supply (PAS), which
can affect patient response to reperfusion therapy and the risk of developing intracerebral
hemorrhage. Observation of good PAS predicts a more favorable outcome (reduced disabil-
ity) when performing reperfusion treatment.

Current methods for assessing pial collaterals use either (a) physically-installed pial win-
dows, or (b) manual scoring of the extent of PAS on X-ray digital subtraction angiography
(DSA) image series. Though pial windows provide microscopic visualization of pial col-
laterals, during a stroke, this method is clinically infeasible. Manual scoring off of X-ray
DSA series is far more preferable because of X-ray DSA’s availability during intervention, its
resolution and scan time, and because manual scoring techniques can be reproducible and
quantitative. However, these techniques’ ultimate performances are coarse and dependent on
viewer experience. Therefore, the objective of this dissertation is to investigate and develop
a computational method to quantitatively assess PAS—imaged using X-ray DSA—in the
setting of acute ischemic stroke. It is hypothesized that computerized and quantitative an-
giographic image analysis of pial arterial supply can be used to identify patients’ suitability
for reperfusion treatment.

Digitally-subtracted angiograms were retrospectively collected under an institutional re-
view board-approved, protocol compliant with the Health Insurance Portability and Ac-
countability Act of 1996 (HIPAA). Occlusion sites included the M1 segment of the Middle
Cerebral Artery for 15 patients, the proximal M2 segment for 1 patient, and the Internal
Carotid Artery for 8 patients. Eleven of the patients were imaged at 6 Frames/second, while
the remainder were imaged under an X-ray dose-sparing protocol.

The research in this dissertation covers 3 major topics. First, a Fuzzy C-Means (FCM)
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based approach for automatically segmenting PAS-affected vessels from capillary blush and
background in X-ray DSA series during acute ischemic stroke was developed. With an
area under the ROC curve of up to 0.89 across multiple frame-rates for the task of seg-
menting vessels from non-vessels, this method was shown to have robust performance and
could identify vessels almost as well as an expert observer. Next, a quantitative method
for extracting 10 features from kinetic contrast curves in X-ray DSA series and validat-
ing these features was developed. These features’ abilities to distinguish between patients
with favorable PAS from those with poorer PAS was evaluated. For the task of identifying
patients with particularly poor PAS, many of these features had areas under the Receiver
Operating Characteristic (ROC) curves of approximately 0.99, indicating a substantial capa-
bility for contra-indicating reperfusion treatment. Finally, a Fuzzy C-Means based approach
for automatically segmenting arteries from non-arteries was developed and evaluated. Ki-
netic features were subsequently extracted from curves generated from segmented arteries
and segmented parenchymal blush due to capillaries, and their performances in the task of
distinguishing between patients with favorable PAS from those with poorer PAS was eval-
uated. The results suggested that FCM could segment arteries from non-arteries. Features
extracted from pixel segmented arterial and capillary curves were comparable to features
extracted without any segmentation; however, a mild improvement in performance for 2 fea-
tures suggest that extracting features from arterial or capillary filling could provide real-time
quantitative markers for a patient’s condition during intervention.

The results support the hypothesis that during acute ischemic stroke, computerized and
quantitative angiographic analysis of PAS can identify patients’ suitability for reperfusion
treatment. Therefore, this method can potentially serve as a fast “second-check” to an
interventionalist’s treatment decisions, leading to better outcomes and reduced disability.
Limitations that must be overcome prior to clinical adoption include the small size of the
database (24 cases total), the vascular overlap caused by projecting a 3D spatial volume to a

2D spatial image, and the uncontrolled environment of clinical exams. These limitations can
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be addressed by including more cases, adapting the methods discussed in this dissertation
to 4D (3D plus time) DSA series of acute ischemic stroke, and complementing the clinical
studies presented in this thesis with simulation and preclinical canine studies, respectively.

This dissertation serves as the first step in achieving a fully computerized and quantita-
tive means for personalizing patient management in intervention for acute ischemic stroke.
Moreover, the techniques presented in this thesis may find application in quantifying imaging

of other neurovascular disease.

xXviil



CHAPTER 1
INTRODUCTION

Given its human and economic cost there is a need to reduce the disability that results
from a stroke. Emergency reperfusion treatment can restore perfusion to the affected area
and possibly reduce disability. However, complications resulting from emergency reperfu-
sion treatment can be lethal. Therefore, there is an urgent and unmet clinical necessity to
efficiently identify patients most likely to benefit from reperfusion treatment.

Many patients with ischemic stroke (i.e., stroke caused by a blockage) develop varying
degrees of collateral arterial supply that can supply affected brain tissue. Pial collaterals
have the potential to serve as a temporary blood supply (i.e., to reconstitute occluded ar-
teries), allowing perfusion downstream of the blockage in the first hours after a stroke; this
reconstitution can significantly benefit patients. Observation of good pial collateral arterial
supply (PAS) using X-ray digital subtraction angiography (DSA) predicts more favorable
outcome (reduced disability) when performing emergency reperfusion treatment.

Current methods assessing collaterals use either (a) physically-installed pial windows or
(b) manual scoring pial collateral extent from X-ray DSA images. Although pial windows
can provide microscopic visualization of pial collaterals, they are too invasive and, during a
stroke, clinically infeasible. Scoring in the clinic is done manually using angiographic images
and can be reproducible, but the ultimate performance is coarse and dependent on viewer
experience.

A computerized and quantitative assessment of pial collateral supply during interven-
tional imaging can allow for a more objective understanding of a patient’s suitability for
reperfusion treatment. Furthermore, such an assessment can be used to dynamically moni-
tor the change in the brain tissue at risk, which may affect treatment decisions.

Therefore, the objective of this thesis is to investigate and develop a computational
method to quantitatively assess pial collaterals—imaged using X-ray DSA—in the setting of

acute ischemic stroke. It is hypothesized that computerized and quantitative angiographic
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analysis of PAS can be used to identify patients’ suitability for reperfusion treatment. Specif-
ically, it is hypothesized that (1) with limited operator input, an efficient computerized seg-
mentation technique for identifying large vessels from parenchymal blush due to capillaries
is comparable to manual identification by a radiologist; (2) kinetic features extracted from
the ischemic region in X-ray DSA can quantitate PAS; and (3) kinetic features extracted
from specific vessel classes better quantitate PAS than features extracted from all vascular

filling in the ischemic region.

1.1 Clinical Management of Acute Ischemic Stroke

1.1.1  Qwerview of Ischemic Stroke

Ischemic Stroke

Occurs when oxygen-rich blood flow to the brain
Is restricted by a blood clot or other blockage

the internal
carotid artery

Figure 1.1: Common sites for treatable ischemic stroke include the internal carotid and
middle cerebral arteries. Image courtesy of Christian Elliot [17].

In the USA, an estimated 700,000 people per year experience ischemic stroke. Ischemic
stroke—which accounts for 87% of all strokes—occurs when the normal flow of blood in a
major cerebral artery (Figures 1.2 and 1.1) is occluded (i.e., blocked) by blood clots, fat or

cholesterol masses, or tissue fragments. The occluding object is referred to as an embolus
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[31]. Common occlusions sites are the internal carotid and the middle cerebral arteries
(Figure 1.1). When oxygen is significantly reduced, neurons, glial cells, and vessel epithelial
cells begin to die, with the resulting dead tissue volume referred to as an infarct volume [16].
Cell death is often unavoidable a few hours hours after occlusion, but a significant portion

of brain tissue is salvageable if treatment is administered with the first 3 hours [16, 21].

Occluded blood
vessel

(Penumbra)

(Normal perfused
(lnfarction core) viable brain tissue)

Figure 1.2: Distribution of underperfused and infarct (dead) tissue during an acute ischemic
stroke. The infarct volume is closest to the occluded, or blocked, vessel, while underperfused
but still-viable tissue surrounds the infarct in a penumbra [43].

1.1.2  Clinical Procedure and Treatment Options

After a patient suffering from stroke is brought to the emergency room and given an initial
assessment, a non-contrast CT scan is performed to rule out intracranial hemorrhaging [47].
If no hemorrhaging is present, a CT angiography (CTA) scan is performed to locate the
occlusion and map out the affected and surrounding arterial territories. If the embolus is a
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blood clot and the time from onset is less than 4.5 hours, tissue plasmogen activase (tPA)

may be given to dissolve it [21, 19].

i Tissue at risk (infarct Penumbra) ‘ ’ (Infarction core) |

Progression of |
MCA infarct.

Figure 1.3: Progression of cell death in acute ischemic stroke for an MCA occlusion. As time
passes, a greater portion the underperfused but still-viable tissue in the penumbra infarcts
(i.e., dies off) until there is no salvageable tissue left [43].

If suitable and the time from onset is less than 8 hours [25, 19], the patient will then be
moved to an interventional radiology suite for embolectomy [47]. Using planar X-ray digital
subtraction angiography (DSA), catheters are guided from punctures to the femoral artery
or a leg vein to the internal carotid artery. The neurointerventional radiologist will assess
the flow of contrast in the timed angiographic image series and, if the patient can tolerate
it, proceed with the reperfusion treatment.

Emergency reperfusion treatment using either clot-dissolving drugs (such as tPA) or
embolectomy, (i.e, removal of the embolus) via an intra-vessel catheter restores perfusion

and can reduce long-term disability in some patients [9], but must be administered within
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4.5 hours . However, over 98% of stroke sufferers arrive outside the optimal treatment time
window. Furthermore, these treatments can often have devastating side effects (intra-cerebral
bleeding, reperfusion injury, complications and their associated disability), which reduce
their risk/benefit profile [11, 9]. This underscores the urgent and unmet clinical necessity

for efficient identification of patients most likely to benefit from reperfusion treatment.

1.1.3 Role of Pial Collaterals

Many patients with ischemic stroke develop varying degrees of arterial blood supply through
collateral routes, such as pial arteries [48]. We refer to the filling of blood from these
arteries as Pial Arterial Supply (PAS). During Middle Cerebral Artery Occlusion (MCAO),
PAS serves as a temporary backroad supply, providing oxygen and nutrients to ischemic
tissue [11, 9]. This reconstitution can significantly benefit patients. In a clinical studies and
animal experiments, it was shown that observation of good pial collateralization using planar
X-ray DSA predicts more favorable outcome in terms of reduced disability when treating a
stroke and a reduced infarct volume [11, 9, 12]. Furthermore, the extent of collateralization
plays an important role (independent of other factors including age, time to treatment,
and recanalization) in determining the efficacy of reperfusion treatment and reducing the

likelihood of inter-cerebral hemorrhage [11, 9, 5, 26, 29, 28, 2].

1.1.4 Awailable Clinical Imaging Modalities

Clinical imaging paradigms for assessing the presence of pial collaterals have been developed
to improve outcome in ischemic stroke using CT Angiography (CTA), MR Angiography
(MRA), or planar X-ray Digital Subtraction Angiography (DSA). CTA and MRA are used
for initial assessment for collateral presence. Planar x-ray DSA is used during embolectomy
to verify the existence and location of the embolus prior to removal. However, there is a
trade-off between the value of identifying tissue at risk by MRI or CT and the time needed

to acquire this information: setting for and performing the imaging exam will only increase
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Figure 1.4: (a) Schematic representation of pial arterial supply (PAS) and the Christoforidis
grading scale used to assess the degree of PAS [11]. (b-d) Pial arterial reconstitution of MCA
territory at various stages as seen in X-ray DSA.



the between stroke onset and potential treatment. By contrast, planar X-ray DSA has
superior resolution, an interventional setup for prompt treatment, and scan time to both
CT Angiography and MR Angiography. Even though no parenchymal tissue is displayed
on X-ray DSA images, measuring the extent of pial collateral reconstitution of an occluded
territory may assess the ischemic penumbra. This makes planar X-ray DSA a useful choice
if contrast-enhanced CT is unavailable or additional time must be saved. In a position
statement, the American Heart Association stressed that additional imaging studies should
not unduly delay treatment in appropriate patients [9]. Therefore, to assess the degree of

PAS during stroke in an interventional setting, X-ray DSA would be the clear choice.

1.1.5 Current Clinical Assessment Methods and Their Limitations

Currently, methods for assessing pial collaterals include (a) a manual invasive experimental
technique, (b) a technique for measuring cerebrovascular reactivity (CVR) on MRI, and (c)
a subjective visual technique using x-ray DSA.

Manual invasive measurement of pial collateral size and number density is an approach
that utilizes a Plexiglas window to replace a section of the calvarium enabling measurements
of pial collateral number density and size. This pial window allows for the direct microscopic
visualization of vessels on the brains surface [27, 24, 13], and thus, a direct evaluation of the
potential magnitude of PAS. However, pial windows are only appropriate in animal studies.

Pial collaterals may also be assessed via measurements of the cerebrovascular reactivity
(CVR). It has been shown that the measurement of CVR on blood oxygen level-dependent
MRI (BOLD-MRI) can be correlated with the presence of pial collaterals as observed on
x-ray DSA [23]. However, the time needed to prepare and perform BOLD-MRI (> 10
minutes) would increase the time interval between symptom onset and potential treatment
by a non-trivial amount.

Visually, radiologists may assess reconstitution of the occluded MCA by pial collaterals

on X-ray DSA images. Currently, such assessments of the effect of pial collaterals use scoring
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systems. In [11,9, 12], reproducible manual scoring was based on the level of angiographically
visible retrograde reconstitution of occluded MCA segments. This scoring system can be used
to verify if the interventionist is to proceed with treatment. Transit time at affected areas
in Christoforidis et al, 2011 was assessed against the early venous phase [12]. Using the
AMIRA software demonstrated a more quantitative determination of transit time from the
contralateral, unoccluded MCA to the reconstituted M3/M4 junction of the occluded MCA.
These scoring systems have been shown to reliably predict the outcome of treatment and
were able to show that better pial collateral formation is associated with likelihood and
severity of inter-cerebral hemorrhage following treatment. However, these scoring systems
require a certain level of experience by the radiologist, whose assessment of pial collaterals
is relatively coarse and subjective.

A second effect to consider is dispersion [36, 37]. As a contrast agent bolus moves through
the vascular tree, it disperses through the individual branches. It has been suggested in
Mouannes-Srour et al 2012 [37] that the scale (i.e., width) of a contrast-time curve measured
on MRI may predict infarct volume. Dispersion of contrast agent concentration curves leads
to underestimation of blood flow. This can cause tissue no longer in danger of infarct to
be misdiagnosed, leading to mistreatment. In thrombolysis, this means an increased risk of

hemorrhage.

1.1.6  Significance of Computerized and Automated Assessment

In addition to their particular limitations, the current methods of assessing pial collaterals
are not objective. A quantitative and computerized assessment of PAS has the potential
to reduce errors associated with inter-reader variability, leading to a more standardized and
objective understanding of a patients condition.

Computerized and quantitative methods for assessing ischemic stroke on MRI have been
developed [41]. Potreck et al. have proposed an automated scoring system based on Tiqz

measurements from Dynamic Susceptibility Contrast Magnetic Resonance Imaging (DSC-
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MRI) [41]. They present their methods as a complement to conventional penumbra imaging.
McKinley et al. have developed a fully automated system that uses random forest classifiers
and multimodal MRI to measure the penumbra volume and predict the final infarct volume
[34]. They acknowledged, however, that collateral flow led a residual overestimation of the
final infarct volume size. In addition, between the conclusion of an MRI exam and reperfusion
treatment in the interventional suite, PAS may decrease because of failing pial collaterals; in
that situation, an automatic assessment using MR images would present a patient as more
suitable for reperfusion treatment than they actually are in the interventional suite, and,
hence endanger the patients life.

A computational quantitative assessment of pial collaterals available to clinicians during
interventional imaging is expected to allow for dynamic assessment of brain tissue at risk with
the potential to detect subtle changes in the degree of PAS during the procedure; this may
affect decision making during endovascular rescue. Using such an algorithm clinicians could
potentially personalize treatments towards each patient, help manage risk, and more quickly
deliver these treatments. As a result, this assessment can lead to a more efficient means to

render effective treatment decisions, and an improved outcome for long-term recovery.

1.2 Objectives and Hypotheses

The goal of this research is to investigate and develop a computational method to quanti-
tatively assess pial collaterals—imaged using X-ray DSA—in the setting of acute ischemic
stroke. Therefore, for occlusion sits at Middle Cerebral Artery (MCA) or Internal Carotid
Artery (ICA), we hypothesize that, during ischemic stroke, computerized and quantitative
angiographic analysis of these collaterals can identify patients’ suitability for reperfusion

treatment.



1.3 Thesis Outline

The thesis is organized as follows. The first part, Chapter 2, is an overview of the clinical DSA
database. The next three chapters deal with the development, validation, and analysis of the
assessment method. Chapter 3 describes a Fuzzy C-Means-based approach that uses kinetic
contrast curves to segment major vessels from parenchymal (capillary) uptake of contrast.
Chapter 4 presents methods for extracting 10 features from kinetic contrast curves and
validating those features’ ability to discriminate between patients with favorable PAS from
those with poorer PAS. Chapter 5 looks to merge the findings and development in Chapters
3 and 4 discusses Fuzzy C-Means-based segmentation of arteries from non-arteries, and the
performance of features extracted from these arterial and capillary curves to automatically
separate patients with favorable PAS from those with poorer PAS. The thesis closes with a
summary of its contributions and discussion of limitations and future directions in Chapter

6.
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CHAPTER 2
CLINICAL DATABASE AND ANGIOGRAPHIC

ACQUISITION
| | 6 Fr/s | Mixed Frame-rate

Number of Cases 11 13
Number of Cases with Repeat Acquisitions 6 1
General Anesthesia 11 10

Iohexol Injection technique hand
tPA Treatment 3 7
Mechanical thrombolectomy 7 8
MCA 8 8
Occlusion Type ICA 3 5

Time from Onset (hours) 2-8

Number of Females 12

Table 2.1: Summary of Clinical Angiographic Database

Digitally subtracted angiograms were collected retrospectively under an institutional re-
view board-approved, HIPAA-compliant protocol. Angiograms were acquired using Philips
Alura Xper interventional suites from 24 patients undergoing treatment for stroke at the
University of Chicago Medical Center. Occlusion sites included the M1 segment of the Mid-
dle Cerebral Artery for 15 patients, the proximal M2 segment for 1 patient, and the Internal
Carotid Artery terminus for 8 patients. There were a total of 12 females and 12 males with
and age Tange Yo, t0 Ypigh-[Dr. Christoforidis must provide the patient and procedure de-
tails because I do not have patient reports for Cases 21-39]. General anesthesia was given
to 21 patients to reduce motion during imaging; the remaining 3 were determined to have
minimal motion.

All angiograms were acquired at 75.0-103.6 kVp and exposures of 11-49 mAs. Image
matrix size was 1024 x 1024 pixels with pixel resolution ranging from 0.1526 mm x 0.1526
mm to 0.215 mm x 0.215 mm. Iohexol was injected by hand to provide contrast in the vessels.
Angiograms from 11 cases were acquired at 6 Frames/second; the remainder were acquired

11





under an X-ray dose-sparing protocol that would start imaging at 3 Frames/second, switching
to imaging at 1 Frames/second 4-4.33 seconds into the acquisition, and then switching to
imaging at 2 Frames/second 12-12.33 seconds into the acquisition.

In Table 2.2, cases were organized by into datasets according to frame-rate, and whether
or not they had repeated acquisitions. Of the 24 cases, 7 had at least two repeated an-

giograms.
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Datasets
Case A As Apng B A, B, Pial
Number | (6 Fr/s) | (3 Fr/s) | (Mixed | (Mixed (6 Fr/s (Mixed | Grade
Frame- | Frame- repeated Frame- | Truth
Rate) Rate) acquisitions) Rate Pe
repeated
acquisi-
tions)

1 v v v 1

2 v v v 5

3 v v v v 3

4 v v v v 1

5 v v v 2

6 v v v v 4

7 v v v v 2

8 v v v 2

9 v v v 3
10 v v v v 3
11 v v v v 2
12 v 2
13 v 2
14 v 2
15 v 2
16 v 3
17 v 2
18 v 3
19 v 1
20 v v 2
21 v 2
22 v 3
23 v 4
24 v 4
Number 11 11 11 13 6 1 -
of Cases -

Table 2.2: Organization of Case Angiograms. Note that cases may be organized by frame-
rate and whether or not they have repeated DSA acquisitions. Note that additional datasets
were generated by downsampling Dataset A to 3 Fr/s (i.e. Dataset Ag) and according to
the mixed frame-rate protocol (i.e., Dataset Apy).
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CHAPTER 3
FUZZY C-MEANS SEGMENTATION OF VESSELS IN
ANGIOGRAPHIC IMAGES OF STROKE

3.1 Background

The central hypothesis of this thesis is that computerized and accurate quantification of
the extent of pial arterial supply (PAS) to the ischemic region can alter the assessment of
a stroke patient’s candidacy for reperfusion treatment. Because of the role reconstituted
MCA branches (i.e., MCA branches affected by PAS) play in patient assessment, the ability
to segment major vessels in angiographic images of stroke will be critical to developing a
computerized assessment method of PAS. In current interventional settings, major vessel
branches are identified visually on X-ray DSA series by interventional radiologists. However,
this involves acquiring image series than run into the late venous phase and identifying
multiple major vessel branches across almost all image frames, which is very time-consuming.
Therefore, manual delineation of vessel boundaries in an interventional setting is highly
impractical.

Methods have been developed to segment vessel in DSA images. Sang et. al. proposed
two methods (one for developed for computational speed and the other for accuracy) that
involve adaptive thresholding based on a priori knowledge of the vessels’ diameters [45].
In Franchi et. al, a shape recognition algorithm that utilizes anisotropic Gaussian filters,
angular mapping, and thresholding schemes is proposed that had fewer false positives when
compared to the more accurate method described in Sang et. al [18]. However, these
methods require involved user input, making them unsuitable in an interventional setting.
Furthermore, they focus on segmenting vessels within a given frame in a DSA series and
assume a background with little contrast. During acute ischemic stroke, MCA branches
affected by PAS may fill over the course of many frames and the presence of contrast blush

due to capillaries violates the assumption of a background with little contrast. Therefore, a
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technique that is robust over multiple frames in a DSA series and properly handles capillary
filling will be able to better segment vessels in the ischemic territory.

Fuzzy C-Means (FCM) clustering is an unsupervised pattern-recognition method that has
been shown to reliably segment breast lesions in dynamic contrast-enhanced (DCE) MRI.
In Chen et. al, 2006,]7], the post-contrast DCE-MRI images are divided by the pre-contrast
image to remove unenhanced tissue prior to application of the FCM algorithm [7]. This
processing of DCE-MRI series can be treated as an analog to X-ray DSA. Therefore, in this
study, the FCM clustering is adapted to segmenting reconstituted MCA vessels in X-ray
DSA series. The performance is evaluated by comparing vessel pixel classification against

radiologists’ manual designations on retrospectively-acquired DSA series.

3.2 Methods

3.2.1 Review of Fuzzy C-Means Clustering

Fuzzy C-Means (FCM) clustering is an unsupervised learning method for pattern recognition.
Its goal is to find the fuzzy partition of data set X comprising N data vectors (X = {x;,i =
1,2,...,N|x; € R™}) into N clusters, or classes. The data vector x; is an m-dimensional
feature vector. The class means are represented by a N, X m matrix, V. Each column of V'
corresponds to the mean feature vector of a class. The partition, or set of class membership
scores, for X is given by the N, x N matrix U. Each element of matrix U, uy;, represents
the membership score of the ith data point to the Kt class and always falls in the range [0,
1]. The FCM implementation presented here follows the implementation detailed in Chen et
al, 2006 for solving for U and V' [7], except that this implementation is done on with a GTX
Titan graphical processing unit (nVidia Corporation, USA) on a cluster node with 256 GB

of memory.
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3.2.2  Vessel Segmentation via FCM clustering

An angiogram may be represented as D(z,y,t), where x and y are spatial pixel coordinates
and ¢ is time. For each pixel 7, the contrast over time is shown via a time density curve D;(t),
where ¢ is time. These curves are input directly into the FCM algorithm via the contrast

contrast values at each time index.

| Place ROIs |

v

Extract contrast curves from all pixels in ROI

/ \

| FCM Clustering (Rs) | | FCM Clustering (Ra)
\ 4 \ 4
| Identify Categories | | Identify Categories |
4 Evaluation Sets A 4 ,
D Y | —_——— Evaluation Sets
etermine Vesse ) Determine Vessel ,
. T ROI-Specfic -
Membership Values within [-—>f o~ ArF:aIysis Membership Values across |- ) F?S?ASp?cflp
each ROI of a case all ROIs in a case nalysis
\ 4 \ 4
Group Vessel Membershi Group Vessel Membership
valueg across All ROls an’z} -------- ,| Dataset ROC values across All ROls and}------ > Da;e;\s:lt SF:sOC
Cases in all Datasets Analysis Cases in all Datasets Y

Figure 3.1: Flow-chart for the proposed FCM vessel segmentation algorithm with ROC
analysis conducted in the task of distinguishing between pixels that are vessels and pixels
that are not vessels.

Using the pixel curves as inputs (i.e., x; = D;, where D; is the vector notation of curve
data in D;(t)), FCM clustering then is used to separate pixels into 2 or 3 classes (N, € {2 3}).
When N, = 2, the two classes are (1) background and parenchymal blush due to capillaries
and (2) large blood vessels, or major vessels; when N. = 3, the 3 classes are (1) background,
(2) parenchymal blush due to capillaries, and (3) major vessels. The steps of the segmenting
algorithm are outlined in Figure 3.1. The output of FCM are matrices U = [U; Us Ug]T

of size 3x N and V = [V Vo V3]T of size 3 x M. Each row of U is the transpose of the
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Figure 3.2: Mean curves in V' for input curves from ROI r = 3 in Fig 3.5a. The curves are
identified with their respective classes (text with arrows) using the peak heights.

column vector representation of a class’s membership map. Similarly, each row vector of V'
represents the mean density curve of one of the 3 classes (Fig 3.2), with the cluster ordering
in V' matching that in U. The rows of U and V are then sorted according to peak heights
of the mean density curves in V.

If N. = 3, the mean curve with the highest peak is identified as belonging to the major
vessel class; the mean curve with the median peak is identified as belonging to the capillary
blush class; and the curve with the lowest peak is identified as belonging to the background
class. Similarly, if N. = 2, the mean curve with the higher peak is identified as belonging to
the major vessel class and the mean curve with the lower peak is identified as belonging to
the capillary blush class. The ordering for the curve-peak-sorted rows in U, and hence the
class membership maps, is the same as for the mean peak—height-sorted contrast curves in
V. Sample sorted mean density curves of the major vessel, capillary blush, and background
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Figure 3.3: Class membership map for major vessels in Fig. 3.5a.

classes are shown in Figure 3.2 and a corresponding vessel membership map is shown in
Figure 3.3.

As a contrast bolus travels through the vasculature tree, it undergoes dispersion and
delayed arrival, which broadens a pixel’s density curve and lowers its height (Figure 3.4). We
will exploit this property to identify pial collateral arteries. However, in the occluded MCA
territory, this delay-and-dispersion effect causes a pixel density curve in capillary blush-only
region (anterograde filling) to appear similar to a pixel density curve in a major MCA branch
(retrograde filling) that is further downstream (i.e., within later-filling segments of the MCA
territory) in the direction of flow. To reduce the resulting misidentification of anterograde
capillary blush as retrograde filling of an arterial branch, circular regions of interest (ROISs)
are specified in the direction of flow. For MCA occlusions (Figure 3.5a), 5 circular regions
of interest (ROIs) with indices r = 1-5 were specified in the direction of retrograde filling.
Four ROIs contained the MCA branches, while one ROI was chosen in the anterior cerebral

artery (ACA) branches (normal, anterograde filling) for reference. This process was repeated
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Figure 3.4: Effect of delay and dispersion (courtesy of Mouannes-Srour [36]). Given a
reference contrast curve (black), delay-and-dispersion will cause a successive lowering of the

peak height and broadening of contrast curves (colored curves) as the contrast bolus travels
through the vasculature.

for Internal Carotid Artery (ICA) occlusions; however, because the occlusion-side ACA is
affected by an ICA occlusion, an additional circular ROI was chosen in the normal-side
ACA territory (Figure 3.5b) to act as the reference for normal perfusion. Circular shapes
were chosen for these ROIs because they would not intrude into the edge of the calvaria as
easily as conventional rectangular shapes. These ROIs were automatically placed at regular
angular intervals in each image in the angiogram with the ability for adjustment by the
operator. FCM clustering was then conducted on a) each individual circular ROI to reduce
the influence of dispersion (input data protocol Rg, see Figure 3.6 and Table 3.1), and b)
inputting all ROIs of a given case together (input data protocol Ry, see Figure 3.7 and

Table 3.1). The latter was done to better understand the effect of delay-and-dispersion on

segmentation performance.
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Figure 3.5: Circle placement in angiographic images. (a) For MCA occlusions, 5 circles are
placed in the ipsilateral ACA (r = 1) and reconstituted MCA branches (r = 2-5). (b) For
ICA occlusions, 6 circles are placed on the normal-side ACA (r = 1), occlusion-side ACA
(r = 1.5), and reconstituted MCA branches (r = 2-5).

1 «—— Considered
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0.9 avessel

Vessel
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0.4 Score

0 «———— Considered
definitely
not a vessel

Figure 3.6: Implementing FCM using Ry (each ROI as a separate input to FCM; see Table
3.1)
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Figure 3.7: Implementing FCM using R 4 (All ROIs as input to FCM; see Table 3.1)

3.2.83  FEwaluation

The FCM algorithm was evaluated via direct comparison with manually-determined ground
truth (major vessels versus capillary blush /background). In this study, pixels in the ROIs for
cases in Dataset A and B (see Table 2.2) were labelled by a board-certified neuroradiologist
(G.A.C.) as belonging to one of the following categories: (1) major vessels or (2) capillaries
or background.

For each category, 25-40 pixels were labelled in each ROI (i.e., ROI-specific truth), al-
though this number may be lower if the prevalence for a category in a particular ROI is small.
Using this truth, the task of separating major vessels from capillary blush was assessed using
Receiver Operating Characteristic (ROC) analysis. ROC curves are generated by using the
pixels” major vessel membership scores as the decision variable. The truth is used within
each ROI, across all ROIs in an angiogram to generate case-specific ROC curves, across all
cases of a given frame-rate is grouped to generate frame-rate-based curves, and finally across
all cases to yield an ROC curve for the entire dataset. Because class membership values
always fall in the range [0 1], this pooling scheme allows performance to be summarized for
each ROI, each case, each frame-rate subset, and/or the entire dataset. ROC curves for
the figures presented here were fitted using the proper binormal ROC model [40] software
package and the non-parametric Wilcoxon area under the ROC curve AUC was used as the
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Input
Data
Protocol | FCM Inputs Evaluation Databases
Ry Single 1) All pixels across all cases
ROI 2) All pixels across cases of a specific frame-rate
Ry Angiogram 1) All pixels across all cases
(All 5-6 ROIs) | 2) All pixels across cases of a specific frame-rate

Table 3.1: Organization of input data for FCM segmentation of major vessels from parenchy-
mal blush due to capillaries

performance metric for this task.

The two sided 95% confidence interval for reported AUC' values were empirically esti-
mated using bootstrapping (1000 iterations). Performance was compared for different choices
for the number of clusters in FCM (), different input data protocols to FCM (Table 3.1),
and for different frame-rates (Databases A, Az, and Ay, see Table 2.2) were determined
by evaluating the differences in AUC (AAUC). Any difference in AUC' values was as-
sessed through bootstrapping (3000 iterations) and two-sided 95% confidence intervals were
calculated for superiority testing. One-sided 90% confidence intervals were calculated for
non-inferiority assessment when superiority testing was inconclusive. Non-inferiority was

reached if the lower limit of the confidence interval was larger than -0.02 [20].

3.3 Results

The FCM segmentation technique was implemented in Matlab (Mathworks, Inc.) and was
run on an nVidia GTX Titan graphical processing unit. When the input data spanned 1
ROI per administration of FCM, segmentation for all ROIs in a case takes approximately 15
seconds; when the input data spans all ROIs in a case, the segmentation takes approximately

30 seconds.
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Figure 3.8: Fitted binormal ROC curves for the performance in separating vessels from
parenchymal blush and background for number of categories N. = 3 and N, = 2. The ROC
curves span Dataset A+B (see Table 2.2) in (a) and Datasets A and B (datasets for 6 Fr/s
and Mixed frame-rate acquisitions, respectively) in (b). The truth for Dataset A4B includes
all pixels across all cases; the truth ROCs from Datasets A and B include all pixels across
all cases acquired at 6 Fr/s and the Mixed Frame-rate protocol, respectively. The input
protocol to FCM was Rj.

N¢ AUC 95% Confidence Interval of AAUC  p-Value
(o = 0.025)

3 0.86 [0.87; 0.89) }

2 0.82[0.81; 0.83] [0.03;0.05] < 0.001

Table 3.2: Database ROC statistics for different numbers of input classes N, and input
protocol Ry (Fig. 3.8a), with 95% confidence intervals in brackets (using Dataset A+B, 24
cases). Because the 95% confidence interval is above zero, there is a statistically significant
improvement in separating major vessels from parenchymal blush and background when
N¢ = 3. The significance level « is adjusted using a Holm correction.
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Frame-Rate N AUC 95% Confidence p-Value
Interval of AAUC (a = 0.025)

6 3 0.89 [0.88; 0.89] .
Mixed 3 0.85 [0.84; 0.86] .
(Datasct B) 2 0.81 [0.50: 0.82] } 0.02; 0.05] < 0.001

Table 3.3: Frame-rate ROC statistics for different numbers of input classes N, and input
protocol R (Fig. 3.8b), with 95% confidence intervals in parentheses. The superior perfor-
mance is consistent across both frame-rates for N, = 3. The significance level « is adjusted
using a Holm correction.

3.3.1 Effect of Number of FCM Categories N,

In this section, the input data protocol for each administration of FCM was Ry, i.e., each
input was restricted to 1 ROI (Table 3.1). Segmentation of major vessels from parenchymal
blush and background using FCM with N. = 3 has favorable performance over using FCM
with N = 2 (Figure 3.8a and Table 3.2). In particular, the bootstrapped 95% confidence
intervals for AAUC' are above zero, indicating a clear separation between N, = 3 and N, = 2.
This improved performance for N. = 3 holds between acquired frame-rates as well (Figure
3.8b and Table 3.3). In Figure 3.9, it can be seen that, except for 2 cases, the mean ROI

AUC for N, = 3 are consistently higher than for N. = 2.

3.3.2  Comparing Input Data Protocols

In this section, the number of clusters was N, = 3. The input data protocol Ry leads to
improved performance across the database compared with using the input data protocol
Ry (Table 3.1) for FCM (Figure 3.10a and Table 3.4). The bootstrapped 95% confidence
interval of AAUC is above zero (Table 3.4), indicating superior performance when FCM
is administered on each ROI separately. This effect also holds when assessing performance
separately for the DSA series acquired at the different frame-rates (Table 3.5). In Figure
3.11, using Rg for FCM yields mean ROI AUCs that are higher for 75% of cases than the case
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Figure 3.9: Mean ROI AUC for each case (Dataset A+B; see Table 2.2). For 22 of the
24 cases, N, = 3 yielded better performance than N, = 2 in the task of identifying major
vessels from parenchymal blush and background.

AUCs obtained when using R4 into FCM. For the remaining 25% of cases, the differences
between the case AUCs and the mean ROI AUCs are < 0.07.

Input Data AUC 95% Confidence p-Value
Protocol Interval of AAUC (a = 0.05)

Rs (Individual ROIs)  0.86 [0.86; 0.87]
R, (All ROIs in Case)  0.80 [0.79; 0.81]

[0.05: 0.07] < 0.001

Table 3.4: Database ROC statistics for different input protocols and N. = 3 (Fig. 3.10a),
with 95% confidence intervals in brackets (Database A+B, see Table 2.2). Because the 95%
confidence interval is above zero, there is a statistically significant improvement in separating
major vessels from parenchymal blush and background when using Rg into FCM.

3.3.83 Effect of Frame-Rate

When using N, = 3 using data protocol Rs for FCM, the 6 Fr/s (Database A) and 3 Fr/s
(Database Asg) subsets yielded nearly identical ROC curves and AUC = .89 for all frame-
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Figure 3.10: Fitted binormal ROC curves for the performance in separating vessels from
parenchymal blush and background for using N. = 3 and different input data protocols (see
Table 3.1). The ROC curves span Dataset A+B (see Table 2.2) in (a) and Datasets A and
B (datasets for 6 Fr/s and Mixed frame-rate acquisitions, respectively) in (b). The truth
for Dataset A+B includes all pixels across all cases; the truth ROCs from Datasets A and
B include all pixels across all cases acquired at 6 Fr/s and the Mixed Frame-rate protocol,
respectively.

Frame- Input Data AUC 95% P-Val
Rate Protocol Confidence (a = 0.025)
Interval of
AAUC

6 Rs: Individual ROTs  0.89 [0.88; 0.89) ,
(Dataset A)  Ry: All ROTs in Case  0.80 [0.78: 0.81] [ (00701 <0001
Mixed Rs: Individual ROIs 0.85 [0.84; 0.86]

(Dataset B)  Rg: All ROIs in Case  0.81 [0.79; 0.82] } [0.02; 0.06] < 0.001

Table 3.5: ROC statistics for N. = 3 and different input protocols separating cases imaged
at different frame-rates (Fig. 3.8b). The superior performance is consistent across both
frame-rates when using Rg into FCM. The significance level « is adjusted using a Holm
correction.
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Figure 3.11: Within-case performance in the task of identifying major vessels from parenchy-
mal blush and background for each choice of input range to FCM, with 95% confidence
intervals in parentheses (Dataset A+B; see Table 2.2). The curve for using Rs into FCM
(cyan) represents the Mean ROl AUC and curve for using R4 into FCM (red) represents
the case-wide AUC.

27



rates examined in this study (Figure 3.12 and Table 3.6), indicating that this method is
insensitive to frame-rates that may be used in the clinic (Table 2.2). Similarly, the 95%
confidence interval for AUC for the angiograms taken under the mixed frame-rate protocol
is only slightly wider than the uniform frame-rate angiograms. This robustness is further
reflected in the bootstrapped pairwise difference between the subgroup’s AUC' shown in
Table 3.7. The difference in performance for the different frame-rates failed to reach sta-
tistical significance (Table 3.7, two-sided 95% confidence interval for AAUC'). Moreover,
non-superiority testing (Table 3.7, one-sided 90% confidence interval for AAUC) demon-
strated that the performances for different frame-rates could be considered equivalent. The
P-values were all compared to a Holm-corrected significance level of o = .025.

ROCs by Frame-Rate:
Resolvable Vessels vs Blush

0.9

0.8

Sensitivity
o
w

0.4
0.3!
0.2} —— Dataset A (N_,_.=11, N, _=5931)
o1 —— Dataset A, (N_,_=11, N, _=5931) | |
Dataset AM (NCase=11, NPixe[=5931)
0 n L n n
0 0.2 0.4 0.6 0.8 1

1-Specificity

Figure 3.12: Fitted binormal ROC curves for each frame-rate dataset (N, = 3 and input
protocol Rg). The curves for 6 Fr/s and 3 Fr/s are so close that they overlap in the figure.
Area under the curve AUC is reported in the legend with the 95% confidence intervals in
parentheses.
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Frame-rate Dataset N AUC

Dataset A 11 0.89 [0.88;0.89]
Dataset As 11 0.89 [0.88;0.89]
Dataset Apy 11 0.89 [0.88;0.90]

Table 3.6: AUC’s with 95% confidence intervals in brackets for Datasets A, Az, Ap; (see
Figure 3.12 and Table 2.2). FCM was conducted using N, = 3 classes and input protocol
Rg.

Frame-rate AAUC Two-sided 95%  One-sided 90%

Dataset Confidence Confidence
Comparison Interval Interval

A vs As —4.0x 107% [-0.012; 0.012] (0.53) [-0.008; 1]

A vs Ay —5.0 x 1073 [-0.017; 0.007] (0.79) [-0.013; 1]

Table 3.7: Pairwise bootstrapped difference in AUC between frame-rates with confidence in-
tervals (brackets) and P-values (parentheses). FCM was conducted using N, = 3 classes and
input protocol Rg. The significance level is adjusted to a = 0.025 using a Holm correction.

3.4 Discussion

By clustering input data into 3 classes and inputting each ROI separately into FCM, FCM
clustering has substantial performance in segmenting major vessels from capillary blush and
background. There are two major reasons for this level of performance. The first and most
direct reason is that because of vascular dispersion, there is a higher concentration of contrast
in the vessels about the peak time, leading to higher and wider contrast curves. A second and
very important reason is that bone and cranial parenchyma are automatically subtracted out
in the cases’ angiographic images. This removes the corresponding constant offsets in each
pixel’s contrast curve, allowing only curve values representative of contrast concentration to
be input to FCM.

The improved performance for N. = 3 demonstrates that capillary filling, though reduced
relative to the major vessels, is considerable enough to separate it from the noisy background.
For the 2 cases in Figure 3.11 in which N, = 2 had improved performance over N. = 3, there
were ROIs with either relatively little capillary blush or few background pixel; for these ROIs,

N, = 2 would be a more appropriate choice. Cluster analysis using silhouetting criteria may
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be a useful means for determining the best choice of N, for a given ROI.

Using input protocol Ry (i.e., individual ROIs) for FCM produces favorable overall per-
formance for the database and within datasets separated by frame-rates; however, in Figure
3.11, using protocol R, produced better performance for 6 cases. One case was an ICA
occlusion in which contrast was visible only in the 2 ACA ROIs (r = 1 and r = 1.5 in Figure
3.5). In these ROIs, the degree of delay-and-dispersion is reduced relative to occluded MCA
branches. As a result, the input data schemes are roughly comparable.

Closer examination of the remaining 5 cases revealed that mild motion artifacts (i.e.,
more visible bone and parenchyma) are present as contrast moves through the ischemic
region. The artifacts are present across the affected ROIs and obscure the effect of delay-
and-dispersion on the capillaries, making administration of FCM on separate ROIs less
useful than administering FCM on all ROIs per case. Indeed, absent such artifacts, the
consequences of delay-and-dispersion can be clearly seen (Fig. 3.13). Therefore, reducing
motion would allow for better segmentation of major vessels from capillary blush and from
background.

An important finding in these results is that a high frame-rate is not necessary to sat-
isfactorily segment major vessels. This indicates that the difference between major vessels
and parenchymal filling due to capillaries is captured in low frequency components in the

pixel contrast curves.

3.4.1 Limitations

The database consisted of DSA series from only 24 cases. Therefore, results in this chapter
need to be confirmed with a larger database. Because FCM’s success depends on the absence
of bone and parenchymal tissue in the pixel curve data, severe motion artifacts will result
in poor segmentation. To reduce motion during imaging, general anesthesia was given to
21 patients. Temporarily restraining patients during imaging or the development of robust

motion-correction techniques may also help reduce motion artifacts. In each ROI, ground
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Figure 3.13: Mean curves for each ROI (input separately to FCM) for the case in Fig 3.5a.
Note the effect of delay-and-dispersion in the direction of flow for both major vessels and

capillaries (parenchymal blush).

truth was specified using only 25-40 pixels per class. Outlining major vessels in each ROI
would allow for more complete representation of the ground truth. Using this approach,
interoperator variability can be measured and an overlap ratio or Dice coefficient may be

used as the performance metric.

3.5 Conclusion

In conclusion, an FCM-based method for automatically segmenting collateralized MCA ves-
sels in acute ischemic stroke using digitally-subtracted X-ray angiograms was developed.
This method shows promise in identifying vessel pixels and has robust performance at all

clinical angiographic frame-rates examined in this study.
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CHAPTER 4
KINETIC FEATURES AND THEIR RELATIONSHIP WITH
PIAL COLLATERAL PRESENCE

4.1 Background

There are numerous techniques for assessing collateral formation and reconstitution of the
ischemic territory [35]. Christoforidis et al have developed a 5-point grading scale which rates
PAS based on the extent of retrograde filling of the Middle Cerebral Artery territory on X-
ray angiographic images [11]. Other scales developed by Qureshi et al and Bang et al assess
the occlusion site, rapidity, and the extent of PAS [42, 4, 35]. However, such techniques
frequently suffer from operator bias and are not quantitative [35]. A computerized and
quantitative assessment of PAS during X-ray angiographic imaging would be more objective
and has the potential to be more reliable than a human operator, which can better inform
treatment decisions.

As early as 1985, Heintzen et. al. explored extracting kinetic features, or parameters,
to quantify angiographic images [22]. More recently, in canine experiments, the arterial
arrival time from normal to occluded vasculature, the relative cerebral blood volume, relative
transit time, and relative cerebral blood flow as measured on X-ray DSA were suggestive
of infarct volume as measure on MRI [12, 8, 10]. Furthermore, Strother et. al. has shown
that presentation of peak-contrast parameters from X-ray DSA images improved clinicians’
treatment planning and evaluation of various disease states, including stroke [46].

Because of the known beneficial effect that collateral supply has on the penumbra and
infarct volumes, in this chapter we developed and evaluated a quantitative approach for
assessing collateral supply based on the filling of iodinated contrast in X-ray Digital Sub-
traction Angiography (DSA). Since the degree of collateral filling affects the size of the
ischemic penumbra and the endovascular treatment decisions, we hypothesize that our new

method allows for monitoring of intra-interventional changes in collateral supply. Another
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aim of this study was to investigate the performance of kinetic features—extracted from
the ischemic region in X-ray DSA—in characterizing PAS, and hence their performance to

determining patients’ candidacy for treatment.

4.2 Methods

4.2.1 Reference Standard: Grading of Pial Supply

The grading system developed in Christoforidis et al., 2005 to classify the degree of PAS to
the occluded Middle Cerebral Artery (MCA) branches was used as the gold standard truth
[11]. With this grading, the 14 patients with grades p. = 1-2 were considered to have good
PAS (Table 4.1), thus making excellent candidates for reperfusion treatment, while the 10
patients with pial grades p. = 3—5 were considered to have poor PAS and thus less suitable
for reperfusion treatment. Because some patients with p. = 3 were potentially treatable, this
pial grade represents a borderline state between patients with p. = 1-2 (considered to reflect
patently good PAS and for which treatment is recommended) and patients with p. = 4-5

(considered to reflect patently poor PAS and for which treatment should be avoided).

PAS Grade | Number
Pc of Cases
1 3
2 11
3 6
4 3
5 1

Table 4.1: Distribution of PAS Grade p. within the clinical database

4.2.2  Semi-automated Delineation of Kinetic Regions of Interest

For DSA angiograms with M1 or proximal M2 occlusions (Figure 4.1a), 5 circular regions of
interest (ROIs) with indices r = 1-5 were specified in the direction of retrograde flow. Four

ROIs contained the occluded MCA branches while one ROI was chosen in the (normally
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Figure 4.1: ROIs were placed and identified by indices » =1-5 as shown for MCA occlusions
(a) and ICA occlusions (b). Because the second ROI in (b) represents a borderline status
between normal and ischemic filling, it was given an index of » = 1.5. A mean contrast curve
Dy (t) extracted from each ROI was fitted with a smoothing spline (c) to produce the curve

D, 55(t).
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perfused) distal anterior cerebral artery (ACA) branches for reference. This process was
repeated for Internal Carotid Artery (ICA) occlusions; however, because the distal ACA
branches on the occluded side experience reduced flow, an additional circular ROI was chosen
in the contralateral distal ACA territory (Figure 4.1b) to act as the reference for normal
perfusion. Circular shapes were chosen for these ROIs because they did not intrude into the
edge of the calvaria as easily as rectangular shapes. These ROIs were automatically placed
at regular angular intervals in each image in the angiogram with the ability for adjustment
by the operator.

In this study, an angiogram was represented as a 3D array (2D projection plus time) of
contrast curves, D(z,y,t), where x and y correspond to spatial pixel coordinates and ¢ is
time in seconds. For each ROI within each angiographic case, a mean contrast-time curve
D(t) was calculated by averaging all the pixel values within an ROI at each image frame
(i.e., time):

— > 2y in ROID(2,Y, 1)
D?”(t) - N )

(4.1)

where N is the number of pixels in within an ROI. Thus, over the database of 24 cases
(16 cases with 5 ROIs, 8 cases with 6 ROIs), 128 contrast-time curves were calculated. To
reduce the influence of residual noise and small-scale oscillatory motion due to breathing
and pulsation, each D(t) was fitted with a cubic smoothing spline (smoothing parameter

p=0.98981) [44, 15].The smoothing spline (SS) was sampled at a rate of 1/6 Hz, so that all

smoothed curves D, g5(t) had the same sampling rate of 6 Fr/s (i.e., 6 Frames/second).

4.2.83  Computer-Extracted Kinetic Features

A set of computer-calculated kinetic features (Table 4.2) was extracted from each smoothed
contrast curve, 57“7 ss(t), to assess the degree of PAS. The features extracted were either
purely timing-based or had a combination of both timing and density-based components

(the latter category will be referred to as density-based features). Features based on timing
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alone were the arterial arrival time AAT, time to peak TT P, and estimated mean transit
time e MTT'. Density-based features include the area under the contrast curve Ap, contrast
curve peak PK, area under the uptake phase of the contrast curve Ap e, uptake rate
UR, contrast value at uptake D, g5(tyR), slope to peak S, and ABF. These features are

described as follows:

Feature Description Has Density
Component?
Ap Total area for ﬁr, sg(t) Yes
PK Peak height of D, gg(t) Yes
AD Uptke Area for arterial phase of Er’ ss(t) Yes
AAT Time of contrast arrival from ICA No
TTP Time-to-peak No
eMTT Estimated mean transit time No
UR Uptake Rate=Maximum Slope of ET, sg(t) Yes
Engg(tUR) Density at time of UR Yes
S Mean slope of arterial phase of D,. gg(t) Yes
ABF Ratio of Ap ypge to eMTT Yes

Table 4.2: Descriptions of the extracted kinetic features.

Area under the Contrast Curve Ap

The total volume of contrast in an ROI, a surrogate for blood supply, was inferred by

calculating the area under the smoothed curve ET, sg(t):

Mend

Ap ~ tend_ Z D, 55(IAD), (4.2)

27nend

where At = 1/6 Hz is the sampling interval, m = 01,2, 3, ...,m,,y is the frame index for

time ¢t = mAt, and t,,4 is the time for the last frame in the angiogram (see Figure 4.2).
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Figure 4.2: Volumetric Features Ap (red outline) and Ap rpike-

Contrast Curve Peak PK

The contrast peak PK was calculated as the maximum value of En gs5(t), and the corre-

sponding time of PK is given by tpg (Figure 4.3). For ROI index r > 1, if ]fiﬁ“ < 0.08,

then PK, was considered to represent noise rather than peak contrast.
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Figure 4.3: Pressure Features S and PK

Area under the Uptake Phase of the Contrast Curve Ap pptre

Since it may better reflect the total volume of contrast and local transit time in an ROI, the

area under Er’ 55(t) from the start of acquisition to ¢ pg, denoted here as Ap 7ppke (shown
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in green in 4.2), is
lpk

lpK -
AD,Uptke ~ 2px E DT,SSaAt)- (4-3>
=0

Arterial Arrival Time AAT

The contrast arrival time, ¢4, for a given ROI is defined as the time interval between the
start of the angiogram and the moment that contrast arrives in that ROI. This quantity is
extracted using the technique described in Carroll et al. [6]. It must be noted, however, that
contrast was not always injected into the bloodstream at the same time during the scan. To
eliminate this complication, Arterial Arrival Time (AAT) is defined as the temporal distance

between the specific ROI and the Internal Carotid Artery (ICA) (Figure 4.4):

AAT =tog —tea oA (4.4)
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Figure 4.4: Timing Features AAT,TTP, and eMTT.

Time to Peak TT' P

An ROI’s time to peak TT P was defined as the temporal difference between its peak time

tpx and the contrast arrival time of the ICA tcy roa(Figure 4.4).
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Estimate Mean Transit Time eMT'T

The estimated mean transit time (eM7TT) in an ROI is determined as follows:
eMTT =2 x LHW HM, (4.5)

where LHW HM is the left half-width-at-half-maximum of D, gg(t).

Uptake Rate UR

The uptake rate UR (another surrogate for transit time) is defined as the maximum value

of the first derivative of D, gg(t) between toy and tpg (Figure 4.5):
UR = max(Dgg(t)) toa <t <tpy, (4.6)

where E/SS(t) denotes the first derivative of D, gg(t). The time at which E’SS(t) =UR is

tUR-
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Figure 4.5: Features UR and Er,SS(tUR)-
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Contrast Value at Uptake Ervsg(tUR)

The contrast value measured at t;7p was also extracted to understand the relationship be-

tween pial grade and a contrast curves inflection point during uptake.

Slope to Peak S

The slope-to-peak S was defined as the mean slope of En ss(t) between t 4 and tpg, or

D, ss(tpk) — Dyss(tca)
lca — Pk

S:

(4.7)
This feature can be considered as an alternative to UR for inferring transit time.

ABF

Because Ap r7pke represents the volume of contrast filling in the ROI, we infer the perfusion

through an ROI as the ratio
_ Ap uptke

ABF = ) 4.
eMTT (4.8)

4.2.4  Gold Standard “Truth” for the Kinetic Features

In order to assess the accuracy of the computer-extracted kinetic features (Section D), all fea-
tures except for Ap measured in the Dataset A+B (see Table 2.2) were estimated manually,
serving as the “gold standard truth”. This was done for all cases in Dataset A+B.

Since tp was used to calculate Ap r7pere, @ manual measurement of tpg (denoted as
tPK, Man) Was made and verified by a board-certified radiologist (GAC). The resulting values
of Ap Uptke USING tpK Man Were then compared with those calculated with p .

To assess the accuracy of PK, the automatically determined value of PK was compared
against a manually chosen value that was verified by a board-certified radiologist. The

corresponding time of this manually-determined PK was tpg pran-
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Manual measurements of arrival time ¢4 p7qpn On plots of D(t) were designated as truth
to compare against the corresponding automated measurement ¢~ ,. Measured values of
tc A, Man a0d to 4 1o A Were verified by a board-certified radiologist who was blinded to the
computerized calculation of {4 and {4 ro4- The resulting AAT) ), was then treated as
truth to be compared against the automatically calculated value in each ROI. Similarly, man-
ual measurements of {4 jc4 and tp were used to calculate the TT Pyyqy, to be compared
against the automatically calculated TT P in each ROI.

Because U R was calculated between ¢4 and ¢ pg, accuracy was measured by finding the
maximum of E’S s(t) between to A pran and tpg pran- The time of this maximum was de-
noted LR Man- Er’ 55(tU R, Man) Was treated as the truth against which the automatically-
calculated Er’ 55(typ) was compared.

The truth for S,eMTT, Ap yptke, and ABF were determined using the same equations
as their automatically-calculated counterparts (Eqs. 4.3, 4.5 4.7, and 4.8, respectively) but

tc A, Man a0d tpg Aan Were used in the respective places for o4 and tpg.

4.2.5 FEffect of Frame-Rate on Feature Values

To understand the performance of the kinetic features at frame-rate acquisitions typically
used in the clinic, each angiogram acquired at 6 Fr/s (Dataset A, see Table 2.2) was subsam-
pled to generate synthetic angiograms with temporal sampling according the dose-sparing
mixed frame-rate protocol described (Dataset Ajy, see Table 2.2). For each ROI in each
case, the value of each feature was compared between the Datasets A and A,;. Comparisons
were visualized using Bland-Altman analysis. The grand mean of values across all ROIs
from Datasets A and A,y was calculated and compared against the range of feature values
from the 6 Fr/s angiograms. In addition, the Bland-Altman bias, or mean difference, in
feature values between the two frame-rates and the standard deviation o of this difference
were calculated. The Bland-Altman mean bias and |simgma were compared against the

grand mean and range. To assess the degree of consistency between feature values extracted

41



from Datasets A and Ajy, the intraclass correlation (ICC') for each feature was calculated

using a consistency definition and 2-way ANOVA [33].

4.2.6  Between-Injection Reproducibility of Kinetic Features

In the patient database, there were 7 cases that had repeated angiographic series (Datasets
A, and By, see Table 2.2). These repeated series were taken within 16 min of each other,
allowing for intra-patient comparison of each extracted feature. Angiograms for 6 of the 7
cases were acquired at 6 Fr/s and the remaining case was acquired using the mixed frame-rate
protocol. To understand the effect of temporal sampling on feature reproducibility, 2 separate
datasets are analyzed (Table 4.3). The first, Dataset A, consists of 6 Fr/s angiograms. The
second, Dataset Aps, + By, includes the angiograms from the cases acquired at the mixed
frame-rate protocol (Dataset B,) and synthetic angiograms downsampled from the 6 Fr/s
angiograms in Dataset A to the mixed frame-rate protocol (Dataset Ay ,.). For each feature
in the rth ROI, the measure feature value F' was normalized by the extracted value of F in
the first ROI (i.e, 7 = 1) of the series. In each dataset, the normalized value of F' at the "
ROI was then compared between each injection in a case and the comparisons for all ROIs
in the 7 cases are visualized using Bland-Altman analysis. The Bland-Altman bias, or mean
difference, in feature values between the two frame-rates and the standard deviation o of this
difference were calculated. To assess the degree of consistency between repeat injections, the

intraclass correlation (/CC) for each feature was calculated using a consistency definition

and 2-way ANOVA [33].

4.2.7 ROI Indices for each Kinetic Feature

The values for each kinetic feature F' changes across the 5 (or 6) ROIs (Figure 4.1.) It is
hypothesized that the magnitude of this response can be used to identify a patient’s pial
arterial supply. To account for differences in image quality caused by differences in image

acquisition (such as differences in tube voltage, tube current, contrast injection volume, im-
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] Angiograms ‘ N ‘ Dataset A, Dataset Ay, + By

Angiograms acquired at 6 Fr/s 6 v
(Dataset A;)
Angiograms downsampled from 6 Fr/s | 6 v

to mixed frame-rate protocol
(Dataset Aps,.)
Angiograms acquired according 1 v
to the mixed frame-rate protocol
(Dataset B;)

Table 4.3: Datasets in which between-injection reproducibility is assessed (Also found in
Table 2.2). Note that angiograms from cases with mixed frame-rates (Datasets Ay, and
By) are placed into one dataset.

age magnification, or proprietary vendor post-processing) the value for F'(r) was normalized
by the extracted value of F' at r = 1 (i.e., the first ROI). Because vascular flow has been
shown to follow an exponential response function in space and time (Ostergaard et. al,
1996) 38, 39], the normalized feature values F o (1) was fitted according to the following
equation:

Fnorm(r) = eﬁ(ril) (4.9)

where 7 is the ROI index defined according to Figure 4.1, 3 is the parameter of exponential
response for the particular feature F', and Fy ., is the normalized feature value. The
fitting was done using the Levenberg-Marquardt algorithm. To harmonize the dataset, the 6
Fr/s angiograms were down-sampled to create synthetic angiograms with temporal sampling
according to the mixed frame-rate acquisition protocol (see Section 2). The goodness-of-fit

R? and the root-mean-square error (RMSE) were calculated for each case.

4.2.8 Classification-Performance FEvaluation

For this section, 3 datasets are used (Table 4.4). The first, the Dataset A (see Table 2.2),
is composed only of angiograms acquired at 6 Fr/s. Dataset A, consists of angiograms
downsampled from Dataset A to the mixed frame-rate protocol. Finally, Dataset A;;+B

see Table 2.2) consists of the angiograms in Dataset Aj; and the angiograms from cases
M
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Cases Dataset Dataset Dataset
A Ay Ay+B
Cases imaged at 6 Fr/s (N = 11) v
Cases with angiograms downsampled v v
to mixed frame-rate protocol (N = 11)
Cases imaged according v
to the mixed frame-rate protocol (N = 13)

Table 4.4: Data subsets for box plots in Figures 4.14 and 4.15.

imaged under the mixed frame-rate protocol (Dataset B). For each dataset, the potential
usefulness of each kinetic feature was determined by its ability to separate patients into two
different PAS subpopulations (Table 4.5). Task I was the separation of PAS grade p. = 1-2
(considered favorable PAS) vs p. = 3-5 (considered poorer PAS); Task II was the separation
of PAS grade p. = 1-3 (for which treatment was feasible) vs p. = 4-5 (for which treatment
was to be avoided). Box plots are generated for the distribution of each feature F' with
populations with p. = 1-2, p. = 3, and p. = 4-5. For each feature F' derived from and
task performed on Dataset Ap;+B, a Receiver Operating Characteristic (ROC) curve was
generated by sweeping a threshold Srp across the subpopulations’ distributions of g and
then measuring the True Positive and False Positive Fractions at each choice of Spp. The
Wilcoxon area under the ROC curve AUC' [3, 40] was used as the metric performance in

distinguishing between the two PAS subpopulations.

Task PAS sub- PAS sub-
population 1 | population 2
I Pe = 1-2 De =35
II pe = 1-3 pe = 4-5

Table 4.5: Two separation task for PAS-subpopulations. The difference between tasks hinged
on whether patients with a borderline PAS score (p. = 3) were considered suitable for
reperfusion treatment.
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4.3 Results

4.3.1 Gold Standard “Truth” for the Kinetic Features

Figures 4.6 and 4.7 displays the Bland-Altman plots and correlations plots, respectively for
the accuracy of the kinetic features measured in Dataset A+B. In Figures 4.6a, b, g, and h,
the mean bias and standard deviation were very small compared to the Bland-Altman mean
and range. For these features, there was high agreement between the truth and computer-
calculated features except at lower values (Figure 4.7a, b, g, and h). For eMTT, the dis-
crepancies occurred between 10-23 sec and can exceed 100% of the truth values. One cause
of discrepancy for these four features was low contrast volume in certain ROIs. In this situa-
tion, the signal of opacification in ET, g5(t) was averaged out by the numerous pixels with no
contrast flowing through them. A total of 6 ROIs coming from 3 cases were affected in this
manner. Another cause was motion artifact arising near the end of the angiogram for one
case; 2 ROIs were affected. Therefore, these results suggested that when sufficient signal was
present (i.e., signal with normalized PK > 0.08), and motion was minimized, measurement
of these features was highly robust. However, in the absence of these conditions, the accuracy
could degrade, particularly for e MTT. For the purposes of measuring feature response and
classifying patients (next 2 sections), a workaround for cases with ROIs that had normalized
PK < 0.08 would be to omit the associated eMTT from exponential fitting. For motion
artifacts, correction prior to feature extraction would be necessary.

In Figures 4.6¢ and 4.7c, discrepancies AAAT in AAT lay in bands that were multiples
of 1/6 sec, reflecting the synthetic sampling of the smoothing spline fit to D(t). The worst
discrepancies (|JAAAT| > 9 sec) were caused by the 6 ROIs with heavily-averaged opacifi-
cation, reflecting the fact that the contrast curve was too weak to distinguish from image
noise. These 6 ROIs skewed the mean bias and standard deviation to normalized values of
> 0.67sec in Figure 4.6b. The shift in frame-rates at 4 or 4.33 sec was another major source

of error, with the associated |AAAT| ranging from 0.50-1.17 sec. One ROI suffering from
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Figure 4.6: Bland-Altman plots for feature accuracy (Dataset A+B). The standard deviation

o is indicated by the dashed line in each kinetic feature’s plot.

46



® 6 Fr/s, Bias=-0.6, 0=2.07, N=58
Mixed Frame-rate, Bias=0.21, 0=1.13, N=70!

© 6 Fr/s, Bias=-2.14, 0=7.3, N=58
Mixed Frame-rate, Bias=5.18, 0=22.36, N=70

® 6 Fr/s, Bias=1.21, 0=4.3, N=58
Mixed Frame-rate, Bias=0.4, 0=2.18, N=70

250
"2 200
‘2 150
100

PK (Algorithm
o
<)

o

0 100 200
PK (Manual)

a

1000
800
600
400
200

0

Apypke (Algorithm)

0 500 1000
ADUptke (Manual)

b

W
o

N
o

—_
o

AAT (Algorithm, sec)

o

o

10 20 30
AAT (Manual, sec)

c

® 6 Fr/s, Bias=0.77, 0=3.16, N=58
Mixed Frame-rate, Bias=0.37, 0=1.82, N=70

©® 6 Fr/s, Bias=1.12, 0=4.46, N=58
Mixed Frame-rate, Bias=0.86, c=3.07, N=70

® 6 Fr/s, Bias=-0.29, 0=0.85, N=58
Mixed Frame-rate, Bias=-0.06, 0=0.5, N=70

40 oy
D R4
17} S
- .

g 30

.

= oo o
) R4 Z
=t R
E 20

%
~— 10 // /’
. 3
Y
4

&~ 0%

0 20 40

TTP (Manual, sec)
d

30 .
—~ //
= ) ° . /
i o S
b= J
= ;
520 L .
o0 .o
= g
&~ 10+ .-
E ;
N o

0
0 10 20 30
eMTT (Manual)

e

150

—
o
o

6]
o

UR (Algorithm, sec

o

o

50 100
UR (Manual, sec)

f

150

® 6 Fr/s, Bias=-0.57, 0=1.96, N=58
Mixed Frame-rate, Bias=0.13, 0=0.71, N=70

® 6 Fr/s, Bias=-0.2, 0=0.79, N=58
Mixed Frame-rate, Bias=-0.13, 0=1.18, N=70

® 6 Fr/s, Bias=0.02, 0=0.42, N=58
Mixed Frame-rate, Bias=-0.06, 0=0.67, N=70

—
(o))
o

100

(o))
o

0

DSS(tUR) (Algorithm, seq

0 50

100
Dgs(tyr) (Manual, sec)

g

150

—
o
o

ABF (Algorithm)
5%
<)

o

0 50 100
ABF (Manual)

h

B ]
o o

S (Algorithm, sec)
N
o

o

0 20 40 60
S (Manual, sec)

I
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substantial motion artifact prior to contrast arrival had AAAT = 1.33 sec, highlighting the
effect motion had on timing measurements. Algorithm limitations and skull lightening prior
to contrast arrival frequently caused 0.17 < |[AAAT| < 0.6 sec, reflecting the best accuracy
available when sampling at uniform frame-rates of 3 or 6 Fr/s and when motion is reduced.

In Fig 4.6d, discrepancies of ATT P > 2.67 sec were caused either by low opacification or
motion artifact. Other errors were caused by ¢c 4 o4 discrepancy of up to 0.33 sec. For the
majority of ROIs in the database however, there was no difference between the manually-
and the automatically-determined 77T P.

In Figs 4.6f, g, and i, there was high agreement (Mean Bias of < 1,0 < 1) between
the automatically-determined values of and the truth values for UR, D, g5(tyg), and S.
Discrepancies in UR and Eﬁ ss(tyr) were caused by weak opacification, uneven frame-rate,
or motion artifact. Those discrepancies were > 8% and > 20% of the root of the variance of
the distribution of URj;,,, and D(t;; R,Man), respectively. Furthermore, these discrepancies
occur only for values URj 4, < 8.05 and E(tUR,Man) < 3.07. Discrepancies in S had the
same causes as those for both AAT and PK because of the use of both tc4 and tpg in
the calculation of S. These results indicate that in the presence of uneven Frame-rate and

sufficient signal, URJET,SS(tUR)J and S were accurate.

4.3.2  Effect of Frame-Rate on Feature Values

In Table 4.6, the Bland-Altman bias between Datasets A and Aj; for each feature is small
and except for 5T’ ss(trr), the Bland-Altman standard deviation o relative to the respective
grand mean was < 20%. The Bland-Altman standard deviation o for Ap {7pske, the timing
features, ET’ ss(tyr), and S are greater than 6% of those features’ respective grand means.
In particular, D, gs(tyrg) suffered the worst from downsampling, with o = 39% of its grand
mean and having > 5% error between the frame-rates in 59% of all ROIs. Ap, PK, and
ABF, by contrast, had ¢ < 3% of their grand means and their values from > 90% of all

ROIs agreed to within 5% error.

48



100 3000
[}
Q»2OOO
<t
1000
-100 ‘
-150 0 0
0 1000 2000 3000 o 100 200 0 100 200
Mean Ap Mean PK PK;
a k /
200
100 T
= s,
; - EN
10
100 . ~
500 1000 U
0 500 1000 e 2 1 0 10 20
Mean Ap gpike AD Uptke,1 Mean AAT AATy
c d m n
107 - 30 .%%Q,'rﬁ%é’? ’
e 0 &~ 20
&~ Lo O emcmmmcmemeeee &~
B R S~ e o—— =
* O
I . 10
-5 0 ’:: -10 0 /,
o 10 20 30 0 20 0 10 20 30 0 20
Mean TT P TP Mean eMTT eMTT
e f o p
10 100
. ~ =
I P — oS % =
SR A e — ‘ 2
< T .. e = %0 5
-10 <.
0
20, 50 100 0 50 100 0 50 100 o 100
Mean UR UR, Mean Dgs(trr) DSS(tUR)
g h q r
6
4
G 2
So
-2
10 V% ¢ 'Z
15 04" 0
0 20 40 60 0 50 0 50 100 0 50 100
Mean S S Mean ABF ABF,
1 J S t

Figure 4.8: Correlation and Bland-Altman plots for
Datasets A and Ajy; see Table 2.2)

49

effect of downsampling (i.e., comparing



Feature Number Range Grand | Bland- | Bland- | Fraction

of ROIs (6 Fr/s) Mean | Altman | Altman | of ROIs

(11 cases) Bias o within
(5%)
Ap 58 [-39.87,2893.96] | 926.20 -8.38 18.24 0.93
PK 58 [-6.74, 236.12] 88.83 0.14 1.13 0.98
Ap,Uptke 58 [-39.87, 1018.73] | 286.47 3.02 25.18 0.55
AAT 55 [0.50, 25.00] 2.94 -0.09 0.43 0.55
TTP 55 [3.17, 26.33] 7.66 0.03 0.74 0.82
eMTT 55 [1.67, 26.33] 7.57 0.21 1.46 0.55
UR 58 2.07, 99.26] 36.74 -2.03 2.18 0.48
br,SS(tUR) 58 [-1.19, 124.28] 30.95 -0.13 12.00 0.41
S 58 [0.00, 51.77] 18.66 -0.50 1.89 0.66
ABF 58 [-1.51, 115.17] 43.3 -0.12 0.97 0.90

Table 4.6: Bland Altman Statistics for the effect of temporal subsampling on extracted
features (i.e., comparison is made using Datasets A and A); see Table 2.2).

4.3.3  Between-Injection Reproducibility of Kinetic Features

For Dataset A, (Figure 4.9 and Table 4.7), the normalized values for all features except
AAT had little mean bias (< 0.15). The cause of the large bias in normalized AAT arises
from 4 ROIs with heavily averaged opacification. The averaging also skewed the Bland-
Altman standard deviation o for AAT. Normalized Ap, PK, Ap yptke; UR, S, and ABF
had reduced standard deviations (¢ < 0.26). By contrast, the AAT TTP,eMTT, and
D, ss(tyr) had considerably greater standard deviation (o € [0.33,3.92]). These greater o
are influenced by outliers. Interestingly, ABF', which is derived from the less reliable e MT'T,
is very reproducible. This may be because effects from difference in imaging acquisition
cancel out in Eq. 4.8. Furthermore, AAT and D, gg(t7g), which have the highest o, also
had the lowest ICC of all features. The Bland-Altman bias and o for Dataset Aps,. + By
(Figure 4.10 and Table 4.8) closely mirror those for Dataset A, except that the ICC for

AATTTP, and D, gs(tyg) are noticeably lower (JAICC > 0.06).
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Feature Bland-Altman Bland-Altman Intraclass Correlation
(6 cases, Mean Bias Standard deviation o (1co)
31 ROIs)
Ap —0.02 0.11 0.95
PK —0.05 0.10 0.97
AD,Uptke 0.01 0.23 0.87
AAT —1.45 3.92 0.84
TTP —0.05 0.33 0.92
eMTT —0.02 0.39 0.87
UR —0.11 0.26 0.91
D, ss(tur) —0.14 0.42 0.65
S —0.08 0.16 0.94
ABF —0.05 0.15 0.96

Table 4.7: Reproducibility statistics for features extracted from Dataset A, (6 Fr/s an-
giograms, 6 cases, 31 ROIs total). The mean bias and standard deviation ¢ are drawn from

Bland-Altman Analysis, while the intraclass correlation coefficient IC'C' is calculated using
2-way ANOVA.

Feature Bland-Altman Bland-Altman Intraclass Correlation
(7 cases, Mean Bias Standard deviation o (I1CC)
36 ROIs)
Ac -0.01 0.11 0.95
PK -0.05 0.09 0.97
Ac.Uptke 0.04 0.20 0.90
AAT -0.87 2.73 0.87
TTP -0.02 0.34 0.89
eMTT 0.08 0.39 0.84
UR -0.06 0.20 0.95
ET,SS(tUR) 0.01 0.38 0.70
S -0.08 0.13 0.96
ABF -0.06 0.12 0.95

Table 4.8: Reproducibility statistics for features extracted from Dataset Ay + B (7 cases,
31 ROIs total; see Table 4.4). The mean bias and standard deviation o are drawn from
Bland-Altman Analysis while the intraclass correlation coefficient IC'C' is calculated using

2-way ANOVA.
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Figure 4.10: Reproducibility of kinetic features between subsequent angiograms for Dataset
App, 7+ By (see Table 4.3). In the correlation plots, ryo = ICC.
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Figure 4.11: Kinetic Feature behavior as a function of ROI index r (see Eq. 4.9) for Dataset
A (see Tables 2.2 and 4.4). The plots of normalized Ap, Ap yrpke; AAT, PK, and TTP are
in 1st column and the associated fits are in the 2nd column. Similarly, plots of normalized
U R,En ss(typ),eMTT, ABF, and S are in the 3rd column and the associated fits are in
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Figure 4.12: Kinetic Feature behavior as a function of ROI index r (see Eq. 4.9) for Dataset
Apy (see Tables 2.2 and 4.4). The plots of normalized Ap, Ap ypke; AAT, PK, and TTP
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Figure 4.13: Kinetic feature behavior as a function of ROI index r for Dataset A;; + B
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4.3.4  ROI Indices for each Kinetic Feature

Figure 4.11 show plots the kinetic features from cases in the Dataset A against the ROI
number (first and third column) along with the associated exponential fits (second and
fourth column).Figures 4.12 and 4.13 are similar, except that they show plots and fits for
angiograms from Datasets Ap; and Aps + B, respectively. As can be seen from these 3
figures and from Figure 4.14, for all features, there is very little difference in the fits and 3
distributions between Datasets A and Ajs. Therefore, performance for Tasks I and IT would
not change appreciably between Datasets A and Aj;. Therefore, the following results and
analysis will focus on Dataset Ap; + B. The corresponding mean and standard deviation

R? and RMSE of the fits in Figure 4.13 taken over all cases was shown in Table 4.9.

Feature R2 RMSE AUC for Task I | AUC for Task II
(pc=1-2vs) (pc = 1-3 vs)
(Pc = 3-5) (Pc =4°5)
Ap 0.74 +£0.34 | 0.09 £ 0.05 0.81 £0.10 1.00 % 0.00%
PK 0.86 £0.15 | 0.08 £0.04 0.84 +£0.09 0.99 £+ 0.02
AD,Uptk‘e 0.63+0.45 | 0.15£0.09 0.84 +£0.08 0.94 £+ 0.06
AAT 0.57£0.36 | 0.51 £1.04 0.7+ 0.12 1.00 £ 0.00%
TTP 0.36 =0.40 | 0.31 £=0.29 0.59 £0.13 1.00 % 0.00%
eMTT 0.124+0.40 | 0.44 £0.28 0.66 £0.13 1.00 % 0.00%
UR 0.87£0.19 | 0.08 £0.04 0.77 £0.11 0.98 +£0.03
D, ss(tyr) | 0.58 £0.42 | 0.20 +0.16 0.81 +0.09 0.94+0.06

S 0.83£0.15 | 0.10 £ 0.05 0.82 £0.10 1.00 + 0.00%
ABF 0.84 +0.17 | 0.09 £ 0.05 0.81 £0.10 0.98 +0.03

Table 4.9: Feature exponential fit statistics (Dataset Ap;+B; see Figure 4.13 and Table 4.4)
and Area AUC under the ROC curve for two classification tasks. *Results of AUC =1 are

likely due to small patient sample size

Density-based features such as Ap, PK,S,UR and ABF had the best fits (mean R? >
0.70,0p9 < 0.40; mean RMSE < 0.10,0ppsg < 0.05) and their respective 3 clearly
separated patients with p. = 1-2 from patients with p. = 4-5 (see Figures 4.15b,e,f)i, and j).
Patients with p. = 3 were not as cleanly separated from those with good or patently poor
pe, however. Other density-based features such as E?", ss(tyr) and Ap rpike had poorer fits

(mean R2? < 0.70,0p9 > 0.40; mean RMSE > 0.10,0p755 > 0.10) and worse separation
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between the p. = 1-2 and p. = 4-5 groups
(see Figures 4.15a and 4.15g). In Figure
4.13a and 4.13c, there was higher noise for
these 2 features than for the other density-
based features. The worse fits for the latter
two density-based features can be attributed
to “noisy” variations in their normalized val-
ues.

Timing Features such as TTP and
eMTT had poorer fits than D,. g (tyg) and
do not appear to follow an exponential fit.
The timing features from cases with p, =
4-5 reach horizontal asymptotes at » > 2,
which suggests that these features (particu-
larly eMTT) follow more logistic patterns.
The fit to AAT does fare better than TT P
or eMTT, but was still worse than most
of the density-based features. Of the time-
based features, e MTT provides the best sep-
aration between the p. groups, and, like
the density-based features, clearly separates

pe = 1-2 from p. = 4-5.

4.3.5 Classification-Performance

FEvaluation

Table 4.9 gives the Wilcoxon estimates for

the area under the ROC curves AUC for the



task of distinguishing between patients with p. = 1-2 from those with p. = 3-5 (Task I). All
density-based features had AUC > 0.80 except for UR; UR fares worse because of extensive
overlap in Oyp values between with p. = 1-2 and p. = 3-5 (see Figure 4.15¢). However,
the timing-based features—AAT, TTP, and eMTT-had AUC that were little better than
guessing. It was found that the density features with the best AUC were amongst the
features with the best exponential fits (on average). For the task of distinguishing between
pe = 1-3 and p. = 4-5 (Task I), all features except for AAT and TTP had AUC > 0.90,
with Ap, PK,eMTT,S and UR having the best performance.

4.4 Discussion

4.4.1 Feature Accuracy Relative to the Gold Standard “Truth”

To quickly and objectively assess pial arterial supply (PAS), an automatic means of extract-
ing angiographic contrast-time curves from the ischemic region was developed. Within ROIs
placed in angiograms, ten features were extracted from each smoothed contrast-time curve
to characterize and classify the degree of retrograde filling. In each case, we find either an
approximate exponential decay of certain features (UR, PK, Ap) or an approximate expo-
nential growth of other kinetic features (AAT'). This corroborates prior modeling of vascular
dispersion as an exponential falloff along the vascular tree [38, 39]. Therefore, our results
suggested that when normalization to the first ROI was performed, the response of each
feature through the ischemic region was governed primarily by anatomic and physiologic
effects.

The results suggest that when sufficient signal was present (i.e., signal with normalized
PK > 0.08), and motion is minimized, measurements of PK, Ap, Ap yrpike and ABF were
highly accurate and reproducible (Figures 4.6, 4.7, 4.9, and 4.10).

When sufficient signal was not present (i.e., signal with normalized PK < 0.08), or

motion was substantial, however, the accuracy could degrade, particularly for e MTT. For
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the purposes of measuring feature response and classifying patients (next 2 sections), a
workaround for cases with ROIs that had normalized PK < 0.08 would be to omit the
associated eMT'T from exponential fitting. For motion artifacts, correction prior to feature
extraction would be necessary. Because motion artifacts can diminish the accuracy of the
calculated feature values, it is important to reduce patient motion during the acquisition.
Anesthesia may be appropriate for some patients, and for other cases physical immobilization
during imaging would be necessary [Dr. Christoforidis can best weigh in.].

One method for improving AAT accuracy is to image at a uniform frame rate. Because
measurement of {4 pran Was done using D(t), the human observer had a high uncertainty
in finding the the true ¢4 because of the coarse 1 Fr/s sampling rate. For this reason, it is
recommended that angiography for automatic AAT measurement be conducted at a uniform

3 or 6 Fr/s.

4.4.2  Kinetic Feature Reproducibility between Injections

The results suggest that, between injections, features that are surrogates for CBV (Ap and
PK) Perfusion (ABF') are the most reproducible of the features examined in this study,
while density-based features that are surrogates for CBF (S, and UR) and Ap yrpige, TTP,
are somewhat less reproducible. Motion and noise between repeated series can lower this
reproducibility. Therefore, to better apply C' BF' surrogates to dynamic patient monitoring,
it is important to reduce patient motion during the acquisition. AAT, ET, ss(typ), and
eMTT were amongst the least reproducible features. TTP and eM MT are sensitive to
changes in the time at which ﬁn gg(t) peaks and in the value of PK; this is especially
important when there are distinguishable peaks for arterial and venous filling. AAT can be
sensitive to injection volume and rate. Furthermore, all timing features have poor intra-series
agreement in ROIs with low contrast concentration (i.e., ROIs with normalized PK < 0.08),

making them less reliable for assessing patients with poor PAS.
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4.4.3  Classification-Performance Evaluation

The similarity in fits seen in Figures 4.12 and 4.11 and the corresponding similarity in
seen in Figure 4.14 for all p. indicate that despite the difference in feature values between 6
Fr/s angiograms and corresponding downsampled mixed frame-rate angiograms, Levenberg-
Marquardt fitting is robust. Therefore, performance for Tasks A and B would not change
appreciably between the two different frame-rates for the cases in the Dataset A. As is shown
in Figure 4.15 and reflected in Table 4.9, there was categorically greater exponential growth
or decay (i.e., greater 8) of Ap, Ap yptke, PK,eMTT, S, and ABF for patently poor PAS
(pe = 4-5) versus PAS (p. = 1-3). These results indicated that, for each of those features,
there was a definite range of a where the risks of reperfusion treatment rise considerably.
This range also reflected the relatively smaller penumbra volumes in the ischemic region,
indicating reduced benefits to reperfusion treatment. Therefore, these features may be used

to screen out cases best suited to alternative treatments or no treatment.

4.4.4  Limitations

Because motion, noise, and low contrast concentration between repeated series reduce the
reproducibility of density-based features that are surrogates for C'BF, it is important to
reduce patient motion during the acquisition. When done under anesthesia, patient motion is
reduced. The development of robust motion-correction techniques may also help improve the
reporducitbility of C'BF' surrogates. Standardizing injection rates and ensuring that there
is enough contrast to visualize the entire extent of PAS could help improve reproducibility
as well.

Although Ap, PK, AAT, S, and ABF could readily distinguish patients with good PAS
from those with poor PAS, this study was performed with only 24 patients, 4 of whom had
poor PAS; The results are thus skewed toward patients with p. < 3. This is because patients
with poor PAS tend to have lower ASPECTS scores and are not sent to interventional

angiography.
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The reduced abilities to distinguish borderline cases (p. = 3) from poor PAS (p. = 4-5)
or from good PAS (p. = 1-2) were problematic. Projection imaging can often lead to overlap
of external vascular structure with the affected MCA branches, but this can be overcome
with strategic ROI placement. However, even with prudent ROI placement, it was very
difficult to place additional ROIs beyond the distal M2 segment of the MCA without en-
countering overlap with the unoccluded ACA or Posterior Cerebral Artery branches and the
transverse sinus vein. These overlapping vessels could contribute to misleading values in the
kinetic features, leading to poorer separation. The use of 4D (3D in space plus time) X-ray
DSA would remove this overlap problem and allow 3D ROIs to be placed medial to the M2
segments, potentially leading to better separation between the three p. subpopulations. An-
other approach would be to use Fuzzy C-means segmentation in a manner similar to Chapter

3 to identify vessels from the unoccluded ACA and Posterior Cerebral Artery territories.

4.5 Conclusion

We have devised a computerized feature-based method to measure the degree of pial arterial
supply in acute ischemic stroke and compared its performance against a clinical pial grading
system. It was found that exponential response parameters 3 of kinetic features extracted
from the ischemic region could distinguish patients that had patently poor PAS from those
that had patently good or borderline PAS. One limitation of this method is the difficulty in
distinguishing between patients best-suited for reperfusion treatment from those with bor-
derline suitability. Therefore, this method could potentially serve as an effective and efficient
clinical technique for contraindicating reperfusion treatment, thereby sparing patients who

are worst suited to it.
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CHAPTER 5
KINETIC FEATURE PERFORMANCE FROM
FCM-SEGMENTED VESSELS

5.1 Background

In Chapter 4, it was demonstrated that kinetic features extracted from pixel curves averaged
over ROIs immediately preceding and within the ischemic territory can estimate PAS and
allow for detection of drastic changes in the patient’s suitability to for treatment. However,
in the clinic, interventionists frequently use the observed extent of retrograde filling of the
arteries [11] or the observed extent of parenchymal blush due capillaries in X-ray DSA image
series [1]. The existence of contrast opacification in parenchyma is important because it
is a direct indicator of the viability of neural tissue. The extent of contrast opacification
of arteries can provide this information as well because contrast filling in the parenchyma
is dependent on nearby arterial branches to supply it. A way to quantitate the extent of
arterial or capillary opacification due to contrast would be to extract kinetic features from
arteries or parenchyma in each ROI. To accomplish this, it is necessary to segment the
arteries or parenchymal blush due to capillaries from all other vessel types. Therefore, in
this chapter, first, a Fuzzy C-Means (FCM) based approach to segmenting arteries from
non-arteries in X-ray DSA was developed. Kinetic features were then extracted from curves
generated using the segmented arteries, and their performance in the task of characterizing
PAS was evaluated. Since it has been shown in Chapter 3 that FCM can robustly separate
major vessels from capillary blush, kinetic features were extracted from segmented blush
and their performance in the task of characterizing PAS was evaluated. The performances
of features extracted from curves generated using these FCM-segmented vessel classes were
compared to features extracted from curves generated using all the pixels in each ROL. It is
hypothesized that kinetic features extract from curves derived from FCM-segmented arteries

and curves derived from FCM-segmented parenchymal blush in circular ROIs (see Section
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4.2.2) will better quantitate PAS than features extracted from curves derived from all pixels

in the circular ROIs.

5.2 Methods

Though the contrast curves for major arteries and veins are distinguishable from those for
parenchymal blush due to capillaries (see Chapter 3), there are differences in contrast curves
between arteries and veins as well. Delay-and-dispersion is the underlying mechanism behind
this difference. Since contrast curves and therefore kinetic features can be extracted from
individual pixels in X-ray DSA series, it is expected that pixels located in veins will have
higher values for timing features (AAT, eMTT) lower UR, lower Ap, Uptke, lower ABF,
and (because veins are larger than arteries), lower Ap. Therefore, if kinetic features are
calculated at every pixel, feature maps (Figure 5.1) can be generated for each of them.
These maps can be used along with the pixel curve data as inputs into FCM-clustering for

the task of differentiating arteries from non-arteries.

5.2.1 Maps of Pizel-Wise Kinetic Features

For pixel coordinates (x,y) the pixel contrast curve Dy y(t) was extracted. To reduce the
influence of noise, each Dy y(t) was fitted with a smoothing spline (smoothing parameter
p = 0.98981). The smoothing spline (SS) was sampled at a rate of 1/6 Hz, so that all
smoothed curves D, , g5(t) had the same “sampling rate” of 6 Fr/s. From D, , gq(t),
the features pAAT, pUR, peMTT, pAp, pAp,Uptke, and pABF' are extracted and maps
of these features (Figure 5.1) are generated. These features are defined in the analogous
manner to AAT, UR, eMTT, Ap, Ap, Uptke, and ABF, respectively, except that 574,55(15)

is replaced by Dy, 55(t).
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Figure 5.1: Pixel-wise feature maps to be investigated as inputs to FCM segmentation of
arteries from non-arteries. Feature descriptions can be found in Section 4.2.3.

5.2.2  Segmentation of Vessel and Capillary Curve Data

A binary mask is geneated to filter out non-vessel pixels in the angiogram and the corre-
sponding feature maps (see Figure 5.2). For a pixel to be included to be in this vessel mask
(i.e., to equal 1), its highest class membership score in FCM 1 must come from the vessel
class (see Figures 5.3 and 3.3). The filtered angiogram will be referred to as the “vessel
angiogram” Dy (z,y,t). In a similar manner, the binary mask for parenchymal blush is gen-
erated as well and the resulting “capillary blush angiogram” is denoted Dpg(x,y,t), except
that the highest membership score in FCM 1 can come from either the “blush” class or
the “background class” (the lack of parenchymal filling is jsut as telling as the presence of
parenchymal presence). Dy (x,y,t) will be used as the input to FCM segmentation of arte-
rial vessel (see Figure 5.3 and the Section 5.2.3), and both Dy (x,y,t) and Dg(z,y,t) will
be used to extract ROI-derived kinetic features in a manner similar to Chapter 4 (Section

42.3).
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a) Major Vessels

b) Capillaries

c) Arteries

Figure 5.2: Binary Masks derived from FCM membership maps

5.2.8 Arterial Segmentation via FCM Clustering

FCM is used to segment arteries from arteries non-arteries in a manner very similar to
segmenting major vessels from parenchymal blush due to capillaries under input protocol Rg
(see Chapter 3), with the exception that kinetic features from D, , g5(t) are used along with
curve data points as inputs in each ROI (Figure 5.3) and that the binary mask for major
vessels is used to filter the angiogram and the kinetic feature maps prior to implementation
of FCM clustering.

Because it is not currently known what set of features into FCM will best segment arteries
from non-arteries, the sets of features outlined in Table 5.1 will be investigated. pAp, pPK,
pAp,Uptke, and pABF are included because of the relatively high performance of their
ﬁn gg(t)-derived analogs in separating patients into separate p. subpopulations (Chapter

4). pAAT, pU R,and pe MTT are chosen because they may be able to account for the effect

dispersion between arteries and veins.

Feature- Curve pAAT pUR peMTT pAp pPK pApuptke PABF
Set Index | Data Points

0 v

1 v v v v

2 v v v v v

3 v v v v v v v v

Table 5.1: Sets of kinetic features input to FCM for the task of distinguishing arterial pixels
from non-arterial pixels.
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Figure 5.3: Flow-chart for the proposed cascaded FCM artery segmentation algorithm.

5.2.4  Fvaluate the Performance of FCM Segmentation of Arteries from

Non-Arteries

In this study, pixels in the kinetic ROIs were verified by a board-certified neuroradiologist
(G.A.C.) as belonging to one of the following categories: (1) arteries with no overlapping
veins, (2) veins with no overlapping arteries, (3) overlap between Arteries and veins, and (4)
parenchymal blush due to residual capillaries in Dy (z,y,t). These labeled pixels serve as
clinical truth in evaluating the proposed FCM artery segmentation method.

For each category, 25-50 pixels were labelled in each ROI, although this number may
be lower if the prevalence for a category in a particular ROI is small. Because arteries
frequently overlap with veins in Dy (x,y,t) the truth categories 1 and 2 were combined
“arteries” truth category. To evaluate FCM’s performance in separating arteries from non-
arteries, categories 3 and 4 were combined into a “non-arteries” truth category. Using the
truth for arteries and non-arteries, the task of separating arteries from non-arteries was
assessed using ROC analysis. The truth is used within each ROI, across all cases of a given

frame-rate is grouped to generate frame-rate-based curves (i.e., one ROC curve each for
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Datasets A and B; see Table 2.2), and finally across all cases to yield an ROC curve for the
entire dataset (i.e., Dataset A+B). Because category membership values always fall in the
range [0 1], this pooling scheme allows performance to be summarized for each ROI, each
frame-rate subset, and/or the entire dataset.

ROC curves were fitted using the proper binormal ROC model [40] software package
and the non-parametric Wilcoxon area under the ROC curve (AUC) was chosen as the
performance metric for this task.

The two sided 95% confidence interval of each AUC' is estimated using bootstrapping.
In this method, the arterial category membership values for the arterial and non-arterial
categories were stored in a single dataset. 1000 bootstrap samples were selected from the
arterial and non-arterial categories and AUC was calculated for each sample. The two sided
95% confidence interval was then calculated from these 1000 AUC's.

Using Dataset A+B (Table 2.2), performance comparisons for effect of different choices
of the number of categories N, 4,4 and different Feature Set inputs to FCM were determined
by evaluating the differences in AUC (AAUC). Using Datasets A, Az, and Ay, (Table
2.2), performance comparisons for different frame-rates were determined by evaluating the
differences in AUC' (AAUC) as well. The differences in AUC for these 3 kinds of comparisons
was assessed using bootstrapping (3000 iterations) and two-sided 95% confidence intervals
of AAUC for superiority testing. If superiority testing was inconclusive, one-sided 90%
confidence intervals of AAUC were calculated for non-inferiority testing. Non-inferiority

was reached if the lower limit of the confidence interval was larger than -0.02 [20].

5.2.5  Extract Selected Kinetic Features from Segmented Classes

Within each case in Dataset A+B (see Table 2.2), a binary mask is geneated to filter out non-
arterial pixels in the angiogram and the corresponding feature maps (see Figure 5.2). For a
pixel to be included to be in this arterial mask (i.e., to equal 1), its highest class membership

score in FCM 2 (see Figures 5.3) must come from the artery class. The resulting mask
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was used to filter out non-arterial pixels in D(x,y,t), resulting the “arterial angiogram”
Dy(x,y,t). We refer to the capillary and arterial angiograms Dpg(x,y,t) and D g(z,y,1)
as filtered angiograms. If we denote a vascular category (e.g., arteries, capillaries) with 7,
then Dr(x,y,t) serves as a general notation for the filtered angiograms. The ROIs that were
delineated in Chapters 3 and 4 are used for each D (x,y,t) as well. In each ROI, a mean
curve D (t) was calculated by averaging all unfiltered pixel values within an ROI at each

image frame (i.e., time):

_ ~ D(x,y,t
DT7T(t) _ 21‘79 m R]OVI ( y )7 (51)

where NN is the number of pixels in within an ROI. Thus, over the database of 24 cases,
128 contrast-time curves were calculated. To reduce the influence of residual noise and
small-scale oscillatory motion due to breathing and pulsation, each Ema(t) was fitted with a
smoothing spline (smoothing parameter p=0.98981).The smoothing spline (SS) was sampled
at a rate of 1/6 Hz, so that all smoothed curves D, gg(t) had the same “sampling rate of
6 Fr/s.

For each category 7 (i.e., capillary blush, arteries) set of computer-extracted kinetic fea-
tures was extracted from each ET’T, 55(t) to assess the degree of PAS. Because they exhibited
superior stability after temporal downsampling, reproducibility, and performance in sepa-
rating patients into p. subpopulations in Chapter 4, the features extracted were Ap, PK,
Ap,Uptke, and ABF. Their definitions are the same here as in Chapter 4, except that

D, gg(t) is replaced by D . g5(t).

5.2.6  FExponential Response of Kinetic Features

For each category 7, the values of each kinetic feature F; change across the 5-6 ROIs. As
in Chapter 4, it is hypothesized that the magnitude of this response can be used to classify

a patient’s suitability for reperfusion treatment. Therefore, for every 7, we apply the fitting
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procedure described in Section 4.2.7 of Chapter 4 to the features Fr. In a manner similar
to Eq. 4.9, the normalized feature values F y oy, (1) were fitted according to the following
equation:

FT,NOT”ITL(T) = 1) (5.2)

where r is the ROI index defined according to Figure 4.1, 3 is the parameter of exponential
response for the particular feature I, and F Ny, is the normalized feature value. The fit-
ting was done using the Levenberg-Marquardt algorithm [30, 32]. To harmonize the dataset,
the 6 Fr/s angiograms were down-sampled to create synthetic angiograms with temporal
sampling according to the mixed frame-rate acquisition protocol (see Section 2). The value
of B between the 6 Fr/s angiograms and the downsampled mixed frame-rate angiograms were
then compared to determine if lowering the acquisition frame-rate affected performance. The

goodness-of-fit R% and the root-mean-square error (RMSE) were calculated for each case.

5.2.7 Classification-Performance Evaluation

In Dataset A+B (see Table 2.2), the potential usefulness of each kinetic feature was de-
termined by its ability to separate patients into two different PAS subpopulations (Table
4.5).Task I was the separation of PAS grade p. = 1-2 (considered favorable PAS) vs p. = 3-5
(considered poorer PAS); Task II was the separation of PAS grade p. = 1-3 (for which treat-
ment was feasible) vs p. = 4-5 (for which treatment was to be avoided). The first, the
Dataset A (see Table 2.2), is composed only of angiograms acquired at 6 Fr/s. Dataset
A, consists of angiograms downsampled from Dataset A to the mixed frame-rate protocol.
Finally, Dataset B (see Table 2.2) consists of the angiograms in the downsampled subset and
the angiograms from cases imaged under the mixed frame-rate protocol. For each dataset,
the potential usefulness of each kinetic feature was determined by its ability to separate
patients into two different PAS subpopulations (Table 4.5). Task I was the separation of
PAS grades p. = 1-2 (considered favorable PAS) vs p. = 3-5 (considered poorer PAS); Task
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IT was the separation of PAS grades p. = 1-3 (for which treatment was feasible) vs p. = 4-5
(for which treatment was to be avoided). Box plots are generated for the distribution of
each feature Fr with subpopulations with p. = 1-2, p. = 3, and p. = 4-5. For each feature
F' and each vascular category 7, box plots are generated for the distribution of each feature
F- within the p. subpopulations. For each F; derived from and each task performed on
Database B, an ROC curve was generated by sweeping a threshold S g across the subpopu-
lations’ distributions of 5 and then measuring the True Positive and False Positive Fractions
at each choice of Spg. The Wilcoxon area under the ROC curve AUC' [3, 40] was used as

the performance metric in distinguishing between the two PAS subpopulations.

Task PAS sub- PAS sub-
population 1 | population 2
I Pe = 1-2 Pe = 3-H
II pe = 1-3 Pe = 4-5

Table 5.2: Two separation task for PAS-subpopulations. The difference between tasks hinged
on whether patients with a borderline PAS score (p. = 3) were considered suitable for
reperfusion treatment.

5.3 Results

5.3.1 FEwvaluation of FCM Segmentation of Arteries

Effect of Input Feature-Set

In this subsection the number of clusters was N, 4,4 = 3. In Figure 5.4a and Table 5.3, using
Feature Set 1 as the input data to FCM gave the highest AUC' in the task of separating
arteries from non-arteries across Dataset A+B. The bootstrapped 95% confidence interval
of the difference AAUC between Feature Set 1 and Feature Set 0 (i.e., curve data points
alone) is above zero, indicating superior performance across Dataset A+B. The superior
performance of Feature Set 1 over all other feature-sets investigated in this chapter holds

within Datasets A and B as well (i.e., within frame-rates; see Table 2.2, Figure 5.4b, and
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Table 5.4). In Figure 5.5, it can be seen that in Database A+B, except for 3 cases, the mean

ROI AUC for Feature Set 1 are consistently high than for the other Feature Sets.
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Figure 5.4: Fitted binormal ROC curves for the performance in separating arterial pixels from
non-arterial pixels for each input feature-set (see Table 5.1) for (a) Dataset A+B (Table 2.2)
and (b) Datasets A and B (i.e., the different Frame-rates). The truth for the entire database
includes all pixels across all cases; the truth for ROCs from Datasets A and B include all
pixels across all cases acquired at 6Fr/s and the Mixed Frame-rate protocol, respectively.
The inputs protocol to FCM was R.

Effect of Number of FCM Classes N, 4+

In this subsection, Feature Set 1 (curve data points, pUR, pAAT, peMTT) was used as
the input data to FCM. In Figure 5.6a and Table 5.5, segmentation of arteries from non-
arteries in Dataset A+B using N, 4,+ = 3 gives slightly better performance over FCM using
Ne art = 2 or Ng gp¢ = 4. However, the bootstrapped 95% confidence intervals for AAUC
indicate that only the difference in performance between N 4,4+ = 3 and N g4 = 4 is
statistically significant. For Dataset A (Figure 5.6b and Table 5.6), the AAUC for N, 4,4 = 3
is significantly better than for N. 4.4 = 2 or N 4,4 = 4, but as in Table 5.5, the improvement

is minimal. For Dataset B, there are no statistically significant differences in performance
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Input Feature AUC 95% Confidence  p-Value
-Set Indices Interval of (v =0.017)
AAUC
0 0.77 [0.76; 0.78] — —
1 0.82 [0.81; 0.82] [-0.036; -0.059] < 0.0001*
2 0.76 [0.75; 0.77] [-0.020; 0.004] 0.88
3 0.76 [0.75; 0.77] [-0.020; 0.0-4] 0.90

Table 5.3: Database ROC statistics for Fig. 3.8a, with 95% confidence intervals in brackets
(using Database A+B, 24 cases; See Table 2.2). The significance level is adjusted o = 0.017
using a Holm correction. Feature Set 1 is the only set that shows statistically significant

improvement over Feature Set 0.

Frame-Rate Input Feature- AUC 95% Confidence p-Value
Set Indices Interval of (v = 0.0083)
AAUC

0 0.76 [0.75;0.78] — —

6 1 0.83 [0.82;0.84] [0.047; 0.080] < 0.0001x
(Dataset A) 2 0.75 [0.74;0.76] [—0.004; 0.031] 0.93
3 0.75 [0.73;0.76] [—0.037;0.011] 0.98
0 0.77 [0.76; 0.78] — —

Mixed 1 0.82 [0.81;0.83] [0.032; 0.063] < 0.0001x
(Dataset B) 2 0.77 [0.76; 0.78] [—0.019;0.015] 0.60
3 0.77 [0.76; 0.78] [—0.017;0.016] 0.48

Table 5.4: Frame-rate ROC statistics for Fig. 3.8b. The superior performance is consistent
across both frame-rates for N. = 3. The significance level is adjusted a = 0.008 using a
Holm correction. The asterisk (*) indicates statistical significance. Feature Set 1 is the only
set that shows statistically significant improvement over Feature Set 0.
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Figure 5.5: Mean ROI AUC for each case (Datset A+B; see Table 2.2). For 21 of the 24
cases, Set 1 has the best performance in the task of identifying arteries from non-arteries.

between the 3 choices of N, 4,4. The similarity in the 3 choices of N, 4,4 are further reflected

by the mean ROI AUC' in each case in Dataset A+B (Figure 5.7).

Effect of Frame-Rate

As shown in Figure 5.8, when using Feature Set 1 (Table 5.1) and N, 4,4 = 3, there is a
small (< 0.03) but visually discernible difference in AUC' between Datasets A and Aj;. This
difference is statistically significant (see Table 5.7), indicating that imaging at mixed frame-
rate protocol gives a better performance over a uniform 6 Fr/s acquisition. However, the
ROC curves, AUC, and 95% confidence intervals Datasets A and Ag are almost equivalent
and the bootstrapped comparison between these two frame-rates passes the non-inferiority
test, indicating that FCM segmentation of arteries from non-arteries for 6 Fr/s acquisitions

is as good as FCM segmentation of arteries from non-arteries for 3 Fr/s acquisitions.
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Figure 5.6: Fitted binormal ROC curves for the performance in separating arteries from

non-arteries for number of classes N 4,4 = 2-4. The ROC curves span (a) Dataset A+B

(Table 2.2) and (b) Datasets A and B (i.e., the different Frame-rates). The truth for Dataset
A+B includes all pixels across all cases; the truth ROCs from Datasets A and B include all
pixels across all cases acquired at 6 Fr/s and the Mixed Frame-rate protocol, respectively.

The inputs protocol to FCM was R.

Number of
Categories AUCyy 95% Confidence Interval for 4AUC (p-Value)
Nc,Art
‘ ‘
5 0.81
[0.80; 0.81] — [0.006; 0.358]
(0.004)*
0.82 —_— [-0.019; 0.013]
3 [081;082 ) - (0.66)
S— [0.003; 0.033]
4 0.80 (0.014)*
[0.79; 0.81]
— —

Table 5.5: Database ROC statistics for Figure 5.6a with 95% confidence intervals in brackets.
The significance level was adjusted to o = 0.017 using a Holm correction. The asterisk (*)

indicates statistical significance.
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Number of
Frame-

Rate Categories AUCy; 95% Confidence Interval for 4AUC (p-Value)
Nc,Art
— —
5 0.81
[0.80; 0.82] [0.004; 0.035]
S (0.008)*
6 3 0.83 [-0.020; 0.013]
(Dataset A) [0.82;0.84] == - (0.64)
[0.002; 0.033]
4 0.81 S— (0.012)*
[0.80; 0.82]
— —
— —
) 0.82
[0.81; 0.83] [-0.013; 0.016]
S— (0.44)
Mixed 0.82 — [-7.87x 10™*; 0.030]
(Dataset B) 3 [0.81;0.83]  mmmmy - (0.032)
2.4 x10%0.031]
— [ ;
0.80 (0.026)
4 [0.79; 0.81]
— —

Table 5.6: Frame-rate ROC statistics for Figure 5.6b with 95% confidence intervals in brack-
ets. The significance level was adjusted to o = 0.008 using a Holm correction.The asterisk
(*) indicates statistical significance.

Frame-rate AAUC Two-sided 95% One-sided 90%
Comparison Confidence Confidence
Interval Interval

Dataset A —0.002 [—0.017;0.0124] (0.024) [—0.012;1.000] (0.012)=

vs Dataset As

Dataset Ay 0.026  [0.012;0.041] (< 0.001)%  [0.017;1.000] (< 0.001)x

vs Dataset A

Dataset Ay 0.024  [0.011;0.004] (< 0.001)* [—0.003;1.000] (< 0.001)x

vs Dataset As

Table 5.7: Pairwise bootstrapped difference in AUC' between frame-rates with confidence
intervals (brackets) and significance values (parentheses). The significance level was adjusted
to o = 0.017 using a Holm correction. The asterisk (*) indicates statistical significance.
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Figure 5.7: Mean ROI AUC for each case (Datset A+B; see Table 2.2). For only 11 of the
24 cases, N g4 = 3 has better performance than N 4,4 = 2 or N, 4,4 = 4 in the task of
identifying arteries from non-arteries.

5.3.2  Patient Classification Using Kinetic Features

Exponential Response of Kinetic Features

In Figure 5.9, Ap separates p. = 4-5 from p. = 1-3 within Dataset A+B with the least over-
lap for all pixels, arterial pixels, and capillary pixels. However, for each feature (particularly
PK and Ap rrptke), a clear pattern as a function of pe can be seen for each subpopulation’s
median value. Though there is overlap between p. = 1-2 and p. = 3 for all features ex-
tracted from FCM-segmented arteries, FCM-segmented parenchymal blush, and all pixels in
the ROIs in Dataset A+B, the 5 values are confined to lower values for features extracted

from the capillary pixels.
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Figure 5.8: Fitted binormal ROC curves for each frame-rate subset (N, 4,4 = 3 and input

protocol Rg). Area under the curve AUC' is reported in the legend with the 95% confidence

intervals in parentheses.

Feature R2 RMSE AUC for Task I: AUC for Task II:
Pc=12vspec=35| pc=1-3 vs pc =45
Ap 0.74 +0.34 | 0.09 £ 0.05 0.81+£0.10 1.00 £ 0.00x
PK 0.86 + 0.15 | 0.08 £ 0.04 0.84 + 0.09 0.99 + 0.02
Ap Uptke | 0-63£0.44 ] 0.15 £ 0.09 0.84 + 0.08 0.94 + 0.06
ABF [0.84+0.17 | 0.09 £0.05 0.80 £0.10 0.98 + 0.03

Table 5.8: Fit and Evaluation statistics for kinetic features extracted from mean curves
averaged across all pixels each in ROI in Dataset A+B (see Table 2.2). *Results of AUC =

1 are likely due to small patient sample size
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Figure 5.9: Box plot comparisons of extracted kinetic features from Dataset A+B for clas-
sifying patients according to pial grade p.. A trend of steadily increasing median feature
values for (3 is especially observable for FCM-segmented parenchymal blush.

Feature R?2 RMSE AUC for Task I: AUC for Task II:
Pc=12vspc=395|pc=13vspc=45
Ap 0.57+0.37 | 0.1 +0.04 0.75+0.11 0.96 4+ 0.04
PK 0.62+0.33 | 0.1 +£0.04 0.77 £ 0.11 0.96 + 0.04
Ap Uptke | 0.6£0.37 | 0.16 0.1 0.87 + 0.07 0.96 + 0.04
ABF 0.61 +£0.32 | 0.11 +=0.05 0.77 £ 0.11 0.95 4+ 0.04

Table 5.9: Fit and Evaluation statistics for kinetic features extracted from averaged across

FCM-segmented arterial curves each in ROI in Dataset A+B (see Table 2.2).
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Feature R?2 RMSE AUC for Task I: AUC for Task II:
Pc=12vspc=395|pc=13vspc=45
Ap 0.78 £0.36 | 0.09 £+ 0.05 0.81 +0.11 0.98 +£0.03
PK 0.88 +£0.18 | 0.08 +0.04 0.85 £ 0.08 0.98 +0.03
Ap uptke | 057+ 0.44 | 0.15 £ 0.09 0.74 +£0.12 0.96 + 0.04
ABF 0.89 £0.22 | 0.07 & 0.04 0.85 + 0.08 0.94 £+ 0.05

Table 5.10: Fit and Evaluation statistics for kinetic features extracted from averaged across
FCM-segmented capillary curves each in ROI in Dataset A+B (see Table 2.2).
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Figure 5.10: R? goodness of fit measure for each feature’s exponential fit. Kinetic features

are extracted within the listed vascular categories listed in the legend and come from Dataset
A+B (see Table 2.2).
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Figure 5.11: RM SFE for each the normalized kinetic features and their respective exponential
fits. Kinetic features are extracted within the listed vascular categories listed in the legend
and come from Dataset A+B (see Table 2.2).

Classification-Performance Evaluation

For Task I (Figure 5.12 and Tables 5.8, 5.9, and 5.10), Ap, PK, and ABF extracted from
FCM-segmented arterial curves tended to have lower AUC' than the features extracted from
all pixel curves in each ROI. By contrast, Ap, PK, and ABF extracted from FCM-segmented
capillary curves tended to have higher AUC for Task I than Ap, PK, and ABF extracted
from all pixels curves in each ROI. In fact, PK and ABF extracted from FCM-segmented
capillary curves had the highest AUC's for Task I. It is worth noting that for Task I, Ap
extracted from FCM-segmented artery curves had the smallest AUC' (AUC = 0.73 £ 0.11).

In Task IT and for every vascular category, all features had AUC' > 0.90; in particular,
Ap, PK, and ABF had AUC > 0.95. Interestingly, for FCM-segmented arterial curves
Ap Uptke had the best performance.

In both tasks and for each feature, the error bars for the vascular category’s AUC' all

overlap.
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Figure 5.12: Wilcoxon AUC values for Tasks I and II using the extracted kinetic features.
Kinetic features are extracted within the listed vascular categories listed in the legend and
come from Dataset A+B (see Table 2.2). PK and ABF have preferable performance.

5.4 Discussion

5.4.1 FCM Segmentation of Arterial Pizels from Non-arterial Pizels

For pixels in major vessels, if curve data is used to segment arterial pixels from non-arterial
pixels, the performance is drastically reduced when compared to the task of segmenting
vessels from non-vessels (AUC=0.77 vs AUC=0.86; see Chapter 3). Because MCA branches
affected by PAS have relative to normally-supplied arterial branches, reduced contrast filling,
and they frequently overlap with veins on 2D angiograms, the contrast curves for arteries and
veins are more similar to one another than they are to non-vessel pixels. It is for this reason
that pAp, pPK, and pAp ypike do not significantly improve performance for segmenting
arteries from non-arteries.

However, in a given ROI, arteries always arrive before veins and are less dispersed than
them. They, therefore, have shorter pAAT, shorter pe MTT, and larger pUR. Therefore,

using these 3 features and the pixel curve data improves arterial segmentation over using
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pixel curve data alone. However, if pAp, pPK, pAp yptke, and pABF' are used alongside
pAAT, peMTT, pUR, and pixel curve data, arterial segmentation does not improve com-
pared with using pixel curve data alone. This means that even when “helpful” features (i.e.,
pAAT, peMTT, and pUR) are present in the input data to FCM Clustering , “non-helpful”
features can still throttle any potential improvements in arterial segmentation. This implies
that replicating pAAT, peMTT, and pU R for each pixel in the input data could improve per-
formance. Another important implication from these comparisons is that dispersion between
arteries and veins does not significantly affect pAp, pPK, pAp yptke, or pABF'. Therefore,
a direction for future research would be to verify these two implications.

For angiograms acquired at the mixed frame-rate protocol, the three choices for the
number of input categories N gq¢ (N, 4r¢ = 2-4) do not lead to significant differences in
AUC for the task of segmenting arteries from non-arteries. For angiograms acquired at 6
Fr/s (i.e., Dataset A), the bootstrapped 95% confidence interval for AAUC' (see Table 5.6)
was statistically significant, but AAUC = 0.02 is considered too small to be of concern.
Because arteries frequently overlap with veins in 2D X-ray angiograms, much of the pixel
truth is overlap truth. As a result, arterial membership scores from this truth category likely
dominate the calculation of the ROC curves and their Wilcoxon AUCs. Future work can
address the contribution of overlap to ROC evaluation in the task of segmenting arteries
from non-arteries by investigating different definitions arterial truth (i.e., designate a truth
pixel as “arterial” if it is an artery and there is no venous overlap).

It is interesting to note from Figure 5.8 and Table 5.7 that for the angiograms downsam-
pled to the mixed frame-rate protocol, a statistically significant improvement in performance
is observed. This raises the possibility that steadily decreasing the sampling rate with time
may actually help in identifying veins. Since this comparison is being made using Set 1, for
future investigations there are two parts to investigating such a possibility. The first part
would be to use Feature Set 0 (see Table 5.1) as the input to FCM segmentation of arteries

for non-arteries and compare the performance between Datasets A and Aj; in a manner
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analogous to Subsection 5.3.1:Effect of Frame-Rate. Because downsampling may influence
the pixel kinetic features, the second part would be to examine the differences in pAAT,
peMTT, and pUR between Dataset A and Dataset A, for the truth pixels. Such an inves-
tigation would explain the effect downsampling to the mixed frame-rate protocol would have
on pAAT, peMTT, and pUR and what frame-rate is most conducive to segmenting arteries

from non-arteries.

5.4.2  Patient Classification Using Kinetic Features

Of the 3 vascular categories (FCM-segmented arteries, FCM-segmented parenchymal blush,
and all pixels in each ROI), using all pixels in each ROI tended to have the most robust
performance for Tasks I and II and fit the exponential model best (Figures 5.10 and 5.11).
It is worth noting, however, that for Task I, ABF had the highest AUC amongst features
extracted from the FCM-segmented parenchymal blush while Ap rrpe extracted from the
FCM-segmented arteries tended to have the best performance for the vascular category.
Since Ap yptke and ABF' are surrogates for transit time and in arteries and perfusion in
parenchyma, respectively, our results suggest that FCM segmentation for these 2 vascular
categories, followed feature extraction, and classification using those features can quantita-
tively track patient physiology during intervention. The performance for Task II is compa-
rable across features and vascular categories, which agrees with findings in Chapter 4. This
indicates that patients with poor PAS are easy to identify.

However, for both Tasks I and II, across the 4 features, and across the 3 vascular cate-
gories, the error-bars overlap (see Figure 5.12), belying the small sample size (N=24) of our

database. To verify these findings, a larger database is needed.
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5.5 Conclusion

We have developed a cascaded FCM-based approach to segmenting arteries from non-arteries
and parenchymal blush due to capillaries from major vessels. Kinetic features are extracted
from FCM-segmented arterial curves and FCM-segmented capillary curves, and used to clas-
sify patients’ suitability for reperfusion treatment. The results suggest that pixel-extracted
AAT, eMTT, and UR are useful for characterizing the delay-and-dispersion effect while
Ap,PK, and Ap ppige; and ABF are more suited towards patient classification. It is
also suggested that the kinetic-feature extracted from FCM-segmented arterial curves and
FCM-segmented blush curves can quantitatively track patient physiology. These results are
comaprable to features extracted without any segmentation. However, the results in this

chapter need to be verified with a larger database.
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CHAPTER 6
DISCUSSION AND CONCLUSION

In this chapter, a discussion of the main contributions of this thesis and the conclusion are
summarized. Limitations to this work are discussed and future work to overcome limitations
and improve this field are suggested.

We have investigated a computational method to quantitatively estimate the arterial
supply due to pial collaterals, or the pial arterial supply (PAS)—imaged using X-ray DSA—
in the setting of acute ischemic stroke. Using an angiographic database, this method has
been able to reliably contra-indicate reperfusion treatment for patients least to suited to it
and, to a more limited degree, identify patients who have a borderline suitability for reper-
fusion treatment. Segmentation of major vessel branches is an important step to accurately
quantifying the extent of PAS and automatically assessing patient candidacy for reperfusion
treatment. Kinetic features extracted from one or more of these vessel classes can potentially
allow for dynamic monitoring of intra-interventional changes in PAS which in turn can aid
the interventionist in changing treatment decisions.

The main contributions of this thesis are as follows:

(1) An FCM-based method for automatically segmenting pial-supplied major vessels from
parenchymal blush using X-ray DSA image series was developed. This method showed
promising performance in identifying pixel vessels and shown to have robust performance at
multiple clinical angiographic frame-rates.

(2) A quantitative, feature-based approach to assessing PAS based on the filling of iod-
inated contrast in X-ray DSA was developed and evaluated. It was found that the degree
of exponential response for the investigated features could serve as an effective clinical tech-
nique for contra-indicating reperfusion treatment, thereby sparing patients who are poor
candidates for it.

(3) A Fuzzy C-Means based-approach to automatically segment arteries from non-arteries

was developed and evaluated. Kinetic features were subsequently extracted from curves
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generated from segmented arteries and capillary blush, and their performance in the task of
characterizing PAS was evaluated. The results suggested that kinetic curves and features
extracted from pixel in X-ray angiograms could segment arteries from non-arteries while
features extracted from pixel segmented arterial and capillary curves could provide a real-
time quantitative marker for the patient’s condition during intervention.

These results support the hypothesis that during acute ischemic stroke, computerized and
quantitative angiographic analysis of pial arterial supply can identify patients’ suitability for
reperfusion treatment. Because timing and dynamic monitoring of the patient is crucial
to effective treatment of stroke, this method can potentially serve as a fast “second-check”
to an interventional radiologist’s treatment decisions. Therefore, better treatments will be
administered more quickly, which will salvage more neural tissue and potentially reduce long-
term disability. However, for this approach to be ready for clinical use, important limitations
must be overcome.

Throughout our study, our database consisted of 24 cases, 13 of which were imaged at a
non-uniform frame-rate. Therefore, the investigations in this research must be followed up
with a larger database. This database can be generated by gathering data either prospec-
tively or retrospectively. Because stroke patients with visible PAS are uncommon at the
University of Chicago Medical Center, acquiring angiographic data through cross-institution
collaborations may be fruitful. It must be ensured that angiographic data is acquired, where
clinically permissible, at a uniform 6 Fr/s, as this may lead to improved feature accuracy.
Furthermore, an important inclusion criterion to the database should be the absence of
motion artifacts.

For kinetic features used to classify a patient’s suitability for reperfusion treatment, there
is difficulty in distinguishing between patients best suited for reperfusion treatment from
those who had borderline suitability. This is because 2D spatial projection images lead to
overlap with unoccluded, normally perfused branches from other arterial territories and the

transverse sinus vein, which makes additional ROI placement infeasible. The use of 4D DSA
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(3D plus time) as proposed be Davis et al, 2014 [14] would remove this overlap. Therefore,
an interesting direction to take in future research would be an adaptation of the method
discussed in this dissertation to 4D DSA series of acute ischemic stroke.

Since clinical exams are not controlled environments, their ability to verify physiological
inferences is limited. Controlled simulation studies can and preclinical canine studies can
address such a task. Under these studies, PAS can be directly compared to the infarct
volume. Since Ap, Ap ppike; PK, and ABF' are relatively straightforward to implement
and show promising performance in Chapter 5, they may be compared to their intended

surrogates on MRI to track stroke progression.

6.0.1 Conclusion

This research serves as the first step in achieving a fully computerized and quantitative
means for personalizing patient management during interventional imaging for acute ischemic
stroke. More specifically, this thesis represents a bridge between existing manual, quanti-
tative methods in X-ray DSA imaging of stroke and a fully computerized, unsupervised,
quantitative, and objective approach that is clinically reliable and efficient. The techniques
presented in this thesis may find application in quantifying imaging of other neurovascular

disease as well.
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