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[57] ABSTRACT 

A method and system for providing nuclear fuel rods with a 
configuration of isotopic gas tags. The method includes 
selecting a true location of a first gas tag node, selecting 
initial locations for the remaining n-1 nodes using target gas 
tag compositions, generating a set of random gene pools 
with L nodes, applying a Hopfi.eld network for computing on 
energy, or cost, for each of the L gene pools and using 
selected constraints to establish minimum energy states to 
identify optimal gas tag nodes with each energy compared to 
a convergence threshold and then upon identifying the gas 
tag node continuing this procedure until establishing the 
next gas tag node until all remaining n nodes have been 
established. 

5 Claims, 4 Drawing Sheets 
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METHOD FOR NONLINEAR 
OPTIMIZATION FOR GAS TAGGING AND 

OTHER SYSTEMS 

This invention was made with U.S. Government support 
under Contract No. W-31-109-ENG-38 awarded by the 
Department of Energy, and the U.S. Government has certain 
rights in this invention. 

The present invention is directed generally to a nuclear 
reactor tag gas system. More particularly, the invention is 
directed to a method and system for nonlinear optimization 

2 
It is another object of the invention to provide a novel 

method and system for nonlinear optimization for gas tag­
ging of nuclear fuel rods. 

It is an additional object of the invention to provide a 
5 novel method and system for allocating gas tags to nuclear 

fuel rods to minimize expense associated with use of the 
gases for gas tagging. 

It is still another object of the invention to provide a 
novel method and system employing a genetic algorithm of 

10 a neural net system for gas tagging and analysis of fuel rod 
failures using an expert system. of selection of gas tags for nuclear fuel rods. The method 

involves a nonlinear optimization using genetic algorithms 
based on neural networks to solve isotopic gas tagging 
problems. Further, the invention is concerned with a method 
and system for installing gas tags in nuclear reactor fuel rods 15 

and determining defective fuel rods by sensing a distinct gas 
released therefrom. 

It is yet a further object of the invention to provide an 
improved method and system for automatically adjusting 
gas tag formulations during physical blending of gases. 

It is also another object of the invention to provide a 
novel method and system for determining positions and 
compositions of gas tag nodes for nuclear reactor fuel rod 
assemblies by neural network analysis proceeding from 
node to node while maintaining required constraints under 

Gas tagging of nuclear fuel rods was developed to assist 
in identifying one of a large number of fuel rods which has 
developed defects during operation, causing release of the 
fuel rod tag gas into the reactor coolant system. In breeder 
reactors it has been possible to collect and utilize tag gases 
in a straightforward manner since the release of such tag 
gases is into a cover gas volume overlying a pool of liquid 
sodium which acts to cool the fuel rods. This cover gas can 
be sampled easily by passage directly to a coupled mass 
spectrometer for tag gas analysis and identification of the 
defective fuel rod. Further example details of operation of a 
breeder reactor and use of gas tags in such a reactor can be 
found in U.S. Pat. No. 4,495,143 at columns 6--8, and in 
general to a co-pending application of Ser. No. 08/541,866 
also owned by the assignee of the present case, both of 
which are incoiporated by reference herein. However. in 
light water reactors one cannot employ a cover gas, and. 
therefore, identification of the defective fuel rod typically 
involves reactor shutdown. removal of all the fuel rods to a 
remote location and leak testing of each fuel rod assembly. 
The downtime expense associated with such a methodology 
is on the order of $1 million a day. Further, in light water 
reactors the tag gases and other noncondensable gases must 
be eluted from water in which the gases are dissolved, and 
then purified and concentrated for mass spectrometric analy­
sis. Such procedures add further manpower requirements 
and can be hazardous due to potential chemical explosions 
from hydrogen/oxygen byproducts by radiolytic decompo­
sition of water, as well as the radioactivity contamination 
dangers. The frequency of occurrence of such events arising 
from defective fuel rods in light water reactors thus indicates 
substantial cumulative losses and problems occur each year, 
and improved methods are needed to identify defective fuel 
rods in light water reactors. 

20 dynamic conditions for previously calculated nodes regard­
ing position and compositions. 

The method and system of the invention concerns non­
linear optimization of gas tag preparation and node place­
ment using a genetic algorithm based neural network The 

25 technique can be used. for example, in light water and 
integral fast reactors. A combination of neural networks and 
genetic algorithm techniques enables solving a nonlinear 
optimization problem. This methodology will provide 
improved analytic optimization with enhanced computa-

30 tional efficiency to minimize the possibility of ambiguous 
leaking fuel rod identification and with reduced overall gas 
tag costs. A two-dimensional neural network technique can 
be used to determine positions and compositions of gas tag 
nodes, while enforcing a sixfold analytic constraint associ-

35 ated with the problem. The neural network analysis proceeds 
from one node to the next while maintaining these con­
straints under dynamic conditions for the previously deter­
mined nodes with respect to position and composition. The 
genetic algorithm is used to continually update the dynamic 

40 equations of the neural networks retaining desirable results, 
while discarding unwanted results. 

These and other objects, features and advantages of the 
invention will be apparent from the following description of 
the preferred embodiments taken in conjunction with its 

45 accompanying drawings described below wherein like ele­
ments have like numerals throughout the several views. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a functional block diagram of a system of gas tag 
50 

utiliz.ation in a nuclear reactor; 
Furthermore, prior gas tag design systems for computing 

isotopic compositions for gas tag nodes have not permitted 
formulating a large number of gas tags for many fuel rods 
due to the increasing possibility of creating ambiguous gas 
tag leaker identifications (such as a plurality of leaks com- 55 
bining to indicate the origin is another fuel rod which has not 
leaked). Further, the prior art systems require too many 
enriched isotope additions and cannot accommodate the 
increased uncertainties and inaccuracies caused by unavoid­
able random shifts of the gas tag nodes during the physical 60 

blending process. In particular, during physical gas 
blending, unavoidable gas tag node shifts can occur from 
inaccurate pressure and flow parameters and the presence of 
isotopic impurities. 

FIG. 2 is a functional block flow diagram of a genetic 
algorithm based neural network for nonlinear optimiz.ation; 

FIG. 3 illustrates polygons adjacent to an i-th point of a 
frame of three-dimensional space; 

FIG. 4 illustrates a Hopfield network model for matching 
between two frames; 

FIG. 5 illustrates graphically a Delta learning model for 
extracting motion parameters; and 

FIG. 6 illustrates a range image of a real, rigid object. 

DEfAilED DESCRIPTION OF PREFERRED 
EMBODIMENfS 

It is therefore an object of this invention to provide an 65 
improved method and system for establishing gas tags in 
nuclear reactors. 

A system for establishing gas tag nodes in nuclear reactor 
fuel rods and detection of tag gases from failed rods is 
shown generally in FIG. 1. In order to unambiguously 
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identify a particular fuel rod 12 which has undergone failure, 
an isotopic gas tag lli is typically disposed in a plenum 
region 14 of the fuel rod 12. Tiris gas tag 1(i consists of a 
mixture of isotopic noble gases which have been mixed to 
provide a unique identifying signature such that, upon 5 
failure of the fuel rod 12, the escaping gas tag 16 can be 
analyzed and related to the one particular fuel rod 12. The 
methodology of preparing gas tags for the large number of 
the fuel rods 12 can be carded out by a variety of conven­
tional methodologies. such as are described in U.S. Pat. Nos. 10 
4,495,143 and 5333.157, which are incorporated by refer­
ence herein. As further shown in FIG. 1, the escaping gas tag 
lli can be sampled and removed for analysis, such as by a 
mass spectrometer 18, to identify the composition of the tag 
gas lli. By comparison with the known tag gas compositions 15 
of the array of the fuel rods 12, the particular failed fuel rod 
U can be ascertained. 

The sampling, isolation and analysis of the gas tag 1(i can 
be performed in the manner described in application Ser. No. 
08/541,866 at page 4. paragraph 2 et seq., and pages 5 and 20 

6. herein specifically incorporated by reference. In the 
manner shown in FIG. 2 (see the Example herein), a genetic 
algorithm based neural network is used to carry out nonlin­
ear optimization analysis to select gas tag nodes. Tiris 
methodology constructs a neural network structure and a 25 
shaped energy surface whose minima correspond to optimal 
solutions of the selected tagging problem. Tiris approach 
also provides closed form solutions to constrained gas 
tagging problems, such as an optimal distribution of tag 
nodes characterized by points on surfaces of hyperspheres in 30 

multidimensional space. When optimal locations of distrib­
uted points are achieved, a set of problem constraints, such 
as minimum distances between points. must be satisfied. In 
the system shown in FIG. 1, a gas tagging method is used in 
a nuclear reactor to identify the failed fuel rods 12. The 35 

noble gas tag nodes are distributed on surfaces, such as two 
concentric spheres as described in the Example. The theo­
retically optimal locations of the gas tag nodes are calculated 
in such a way that the possibility of ambiguous leak iden­
tification during multirod failure events is minimized, while 40 

isotopic enrichment requirements of the noble gases for the 
gas tags is reduced. The calculated positions of the gas tag 
nodes typically must be modified during the physical gas 
blending process to accommodate uncertainties and inaccu­
racies caused by unavoidable random shifts of the gas tag 45 
nodes. 

4 
used to solve the problem of nonrigidity in local deformation 
estimates. These constraints are specified to ensure a stable 
and globally consistent estimation of the local deformations. 
The neural networks then find the optimal deformation 
matrices which satisfy the constraints for all the points on 
the surface of a nonrigid object. 

In the preferred embodiment, establishing gas tag nodes 
involves defining six problem constraints: 

(1) Uniqueness constraint 1. There is one, and only one, 
optimal location for each gas tag node to be blended; 

(2) Uniqueness constraint 2. The total number of optimal 
locations for gas tag nodes to be blended is equal to the 
number of these gas tag nodes; 

(3) Cost effective constraint. The gas tag nodes should be 
distributed in the most compact configuration to reduce the 
cost of noble gases used to create the tags; 

( 4) Analytical constraint 1. The closest distance between 
any node and the tie-line connecting any other two gas tag 
nodes in the system should be greater than a minimum 
separation distance standard; 

(5) Analytical constraint 2. No four nodes in the system 
can lie in the same plane; and 

(6) Analytical constraint 3. No three nodes in the system 
lie on a straight line. 

After the problem constraints have been explicitly 
defined, the next step is to select a suitable computational 
model which reflects these constraints and eventually leads 
to an optimal problem solution that satisfies the constraints. 
In the preferred embodiment, a conventional two­
dimensional Hopfield type neural network model is used. A 
Hopfield network comprises a single layer of neurons, with 
symmetric weights between each pair of neurons. Based on 
the well known, conventional Llapunov theory, the Hopfield 
model always converges to stable states in which outputs of 
the neurons remain unchanged. After a mapping between the 
problem domain and the final stages of the neural networks 
is found, an energy function is constructed to embed the 
constraints defined. Minimization of this energy function 
results in stable optimal solutions of the problem. The 
algorithmic fundamentals follow a known, conventional 
formalism which we describe below. The explanation 
includes a discussion of the matching two different frames, 
extraction of motion parameters, extension to a multiframe 
approach and examples of application of the formalism are 
provided for both synthetic and real images. 

Matching between two frames includes matching con­
straints and a neural network based computational tech­
nique. Let p1 and p' 1 be vectors in three-dimensional space 

To overcome uncertainties of gas tag mixing and 
formulation, a genetic algorithm based neural network is 
used to construct gas tag nodes. An iterative approach is 
used to converge to a solution which avoids constructing 
undesirable gas tag nodes. The actual gas tag nodes created 
are measured by mass spectrmetric sampling, and thus the 
discrepancies from identity are determined. The subsequent 
created gas tag nodes are therefore adjusted to avoid poten­
tial ambiguities, if such adjustments were not made by the 
method which minimizes the distance between all nodes and 
their nearest neighbors. 

50 and represent a unique point in frame 1 and frame 2, 
respectively. The goal here is to find reliable descriptors 
relevant to a three-dimensional point and define the con­
straints of the mapping from p1 and p' 1• For pointwise 
matching, the following two measures are used to represent 

The subject methodology solves three-dimensional rigid 
motion problems using neural network techniques by speci­
fying matching constraints between two static images in 
order to ensure establishing stable and coherent point cor­
respondence. In the preferred embodiment a two­
dimensional Hopfield neural network is configured to 
enforce these constraints. Minimization of the Hopfield 
network energy function leads to the optimal matching 
solution. A set of neural networks which are similar in 
structure and dynamics. but different in physical size, are 

55 the attributes of each point: (1) the Euclidian distance 
between the point and the centroid of the object, and (2) the 
angles of polygons adjacent to the point (see FIG. 3). The 
former is explicitly defined as a global feature, and the latter 
a local feature. Since the adopted global feature is not scale 

60 invariant, a normalization process is needed. All the 
extracted features should be under the following rigidity 
constraint: 
IIPcC1ll=IIPcC2II, where C1 and C2 are the controids of the 
object in frame 1 and frame 2, respectively; angle(poly}')) 

65 =angle(poly}I)), v'i, j=l,23, ... , m. where mis the total 
number of polygons which are adjacent to the i-th point as 
shown in FIG. 3, and poly/1 and poly/)• are the j-th polygon 
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adjacent to the i-th point in frame 1 and frame 2. respec­
tively. Under the assumption of one-to-one matching. the 
problem constraint amounts to the uniqueness of matching. 
i.e .• each point in one frame eventually matches only one 
point in the other frame, or no more than two points in one 5 
frame should match the same point in the other frame. 

After the matching constraints have been explicitly 
defined. the next step is to select a suitable computational 
model that reflects these two matching constraints and 
eventually leads to optimal matching solutions between two 

10 
frames. A two-dimensional array of neurons is used here 
where the output of each neuron represents a support for a 
match between two points p;{ l~i~N 1 } and p'k'{ l~k~N2 } 

in different time frames, where N 1 is the total number of 
points in frame 1, and N2 need not be identical. 

In the two-dimensional array neural network. each col- 15 

umn corresponds to a feature of the data in frame 1, while 
each row corresponds to a feature of the data in frame 2. If 
there are N 1 data points in frame 1 and N 2 data points in 
frame 2. the neural network is an N2xN 1 two-dimensional 
array as shown in FIG. 4. The final output of the neuron at 20 

position (i,k) in the network reflects the support for the 
hypothesis of mapping the k-th neuron in frame 1 to the i-th 
neuron in frame 2. Matching between two frames can be 
formulated as minimizing an energy, or cost, function. In 
other words, minimization of this energy (cost) function 25 
results in stable pairings that are optimal with respect to the 
constraints defined in the previous section. The energy is 
expressed as follows: 

6 
0 otherwise, and 

I a=-{ D/2)N ,.. 

In the continuous model of Hopfield neural networks, the 
relationship of input-output voltages for a neuron at position 
(i.k) is given as V ik=g(µ;k) where g is a sigmoid function. 
The differential equation describing the dynamics of a 
neuron is du;,/dt="L_1,1T;i<jiV1,u;,/r+l;k• where r is a constant, 
V;k=g(u;k)=[l+exp (-2u;,/u0 )]-

1
, and u0 is a constant. Sub­

stituting T;,vt into the equation, the following equation is 
obtained: 

Jr,1,1 
--r.- =-AI: VM-BI:V,.-CI:I:M,,.,,V.il 

a, I j '" j I .., 

(2) 

By updating the value of uik using the fourth order 
Runge-Kutta method and adopting the freezing criterion and 
time-out test as the termination strategies, the optimal match 
between the two frames can then be achieved. 

Concerning extraction of motion parameters based on 
point correspondence, given a rigid object represented by N 
feature points, the correspondences among the points in two 
different time instants, i.e., p;f-➔p',, {l~i~n} (where n is 
the number of matching pairs and n~N) can be established 
after the matching process. A precise mathematical model of 
the three-dimensional rigid motion is: p'; +Rot p;+Tran, 
where Rot denotes a three-dimensional rotation matrix and 
Tran denotes a three-dimensional translation vector. This 

C D -2 I:I: I: I: M,,.,NaV.1·1+...,... I:I:NaVa 
i kpi I#< "" ~ i k 

(l) 30 transformation can be decomposed into a rotation followed 
by a translation, i.e., p",=Rot P; and p',=p";+Tran. The 
translation vector is simply the displacement between the 
object centroids in two time frames. The rotation matrix Rot 
used here is in a very general form. Given any arbitrary 

where A, B. C, D are constants. M;kji is the compatibility 
measurement, N;k is the magnitude of the point-to-point 
constraint. and Vu, is the output of the neuron at position 
(i,k). which is equal to "l" if the mapping is established 
between the i-th point in frame 2 and the k-th point in frame 

35 rotational axis k with any rotational angle 0, the rotation 
matrix can be defined as follows: 

1, or equal to "O" otherwise. 40 

The first term in Equation (1) is zero if and only if each 
row with index i contains not more than one "1." Similarly. 
the second term ensures that there is not more than one "l" 
in each column with index k of the network. These two tenns 
together represent the problem constraint described in the 45 

previous section. The third term is a compatibility con­
straint. This is also a measure of the equality of the rigidity 
constraint among active hypotheses. Mikj1 can be defined as 
a summation of threshold functions: 

f,(p,',pk) = {l if !IP/- C2'1 = IIPk - C)II < e,, otherwise= -1 

f1Pi,p1) = {l if max,, jjangle(po!ygl') - angle(poJ.il)!j < e2 • 

l~n:am 
-1 otherwise 

50 

55 

and c 1 and c2 are thresholds. The fourth term in Equation 1 
ensures that the cost of mapping a point p'; in frame 2 to a 60 
point Pk in frame 1 is minimal. 

[ 

"• o. a. l 
Rot= [n,o,a] = Dy 0, a, = 

"' o, a, 

(3) 

[ 

k,?-ver.e + cos0 k.fc.,vers0 + k.5in8 U-.vers8 + k:,sin.8 l 
k.fc.,ver.,8 + k.sin8 k.,2ver.,8 + cos0 k,k.vers8 - k,sin0 

k,hvers8 - k,sin8 k,k.ver.e + k.,sin8 k,.2ve....a + cos0 

where vers0=1-cos0. ~l:kx, Is,, k,,]T, and k is an normalized 
vector. k and 8 can be obtained as: cos0=½(n.,.+o.,.+a,-1), 

k, = sgn(o,-a,,) \J (n,- cos0Y(l - cos0) , 

k, = sgn(ny- o,) '4 (a, - cos0Y(l - cosll) 

{ 

+ifxii:;0 
where sgn(x) = 

-otbrwise. 

Extracting motion parameters between two frames is. in 
fact, a process of deriving the translation vector Tran and the 
rotation matrix Rot based on point correspondences obtained 
at the matching stage. The translation vector Tran can be 

Comparing the energy function in Equation 1 with the 
standard two-dimensional Hopfield network energy function 
B=-½I.i"Lkl:_;.,):,,.k T ikJI V ,k V1, l:,"LJ;k V ,k• the connection 
matrix is found to be T ikjp-AovBoklCMikjl• where 

li_={l if i=j 

65 easily obtained by calculating the displacement of the object 
geometrical centroid positions in two frames. The remaining 
problem then is how to drive the rotation matrix Rot based 
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on the available information. In general, this problem can be 
expressed as: Minimize :Ei=tl1P'1-Rot•p1II-

Regarding a neural network based approach, to avoid the 
complexity of the quaternion-based scheme, a computa­
tional model based on neural networks is proposed. A 5 

three-layered learning neural network is constructed (shown 
in FIG. S) based on the concept of least mean squared error 
performance learning rule. The details of the network are 
described hereinafter. 

From Equation (3). we can obtain Rot•p;=[n,o,a]•[pwp1y• 10 
P;x)T=[R..,•p1.Ry·P1.R:'Pzl7, where Rx=[~o..,.a.J, R,,=[ny,oy• 
a,,], Rz=[n:,o:,1\1, and Rot=[R..,,R.,.Rz] . In the proposed 
three-layered neural network, the inputs to the first ( or inpup 
layer are the components of the point vector p;=(pwPiy•Pi:1 . 
A 3><3 weight matrix is consttucted between layer 1 and 
layer2asW=[Wi-W2,W3]7,whereW1=[Wu,W12,W13], W2= 15 

[w21,w22,w23], W3=[w31.w32,w33], and wi/ represents the 
sense and strength of the connection between neuron j of 
layer 1 and neuron i of layer 2. Let y,=[y wY 2 ,y 1,,)7 be the 
actual outputs of layer 2, y;=[W1•p1,W2•p1,W3·p1)T. The 
weight vector matrix V between layer 2 and layer 3 is 20 
defined as V=[V1,V2,V3]r, where V1=[Vu,V12,v13], V2= 
[v21.v22,v23], V 3=[v31,v32,v33], and Vi/ denotes the sense 
and strength of the connection between neuron j of layer 2 
and neuron i of layer 3. Let the weight matrix V be a 
negative unit matrix, i.e .• 25 

v, .. -{ -lifi=j 
' q - 0 oilierw1Se. 

8 
R~=W., Ry=W2, R,,=W3, and W=[W., W2, W3f=[R..., R,,, RJT= 

Rot. 

Regarding a multiframe approach, when the quality of 
data acquisition is poor, noise is inevitable; and the mea­
surement primitives estimated from the data are not suffi­
ciently accurate and reliable for motion parameter determi­
nation. One obvious way to compensate for the inaccuracy 
of data is to use multiple frames. 

Assume that objects are moving with a constant velocity 
translational motion. Using the same techniques described 
hereinbefore, the Hopfield neural network matching model 
can be applied to every two successive frames in a multi­
frame sequence to establish correspondences. Assume n1, 

n2, ... , nN-t are numbers of matching pairs between frame 
1 and frame 2, frame 2 and frame 3, ... , frame (N-1) and 
frame N, respectively. If the sequence consists of N frames, 
the total number of matching pairs available is n=n1+n2+ .. 
. nN-t· Given the characterization of the performance learn­
ing law, the implementation of the multiframe approach 
proposed here is rather easy. If, in the two-frame approach, 
Equation (4) is applied, and the weight vector adjusted using 
successive replacement in each training epoch consisting of 
n1 training patterns from frame 1 and frame 2, then the 
multiframe approach can be simply conducted by increasing 
the training patterns in each training epoch from n 1 to n. The 
structure of the designed neural network remains the same. 

Let d,=[ ~d;y,d1zJ7 be the ideal outputs of layer 2 which are 
the components of the point vector p'';, i.e., d.==p";=(p";x, 
p\y,P",,,17. By feeding d; to layer 3 as additional inputs, the 
error e, and the output of layer 3 can be obtained: e;=[ E;x, 
E;yE1zlT=d1+[V1•1/•V2•Y1• V3•y;]T=dry;=[p';..,-W1•P1,P'iy­
W2•P1,P';x-W3•p;] . By applying the least mean squared 
algorithm and taking e.2 itself as an estimate of e2, the 
estimated gradients can be obtained: 

30 The algorithm can be summarized as follows: (1) Establish 
point correspondences using the Hopfield matching network 
for every two successive frames. (2) Combine all matched 
pairs obtained from each two-frame matching and feed them 
as inputs into the proposed learning neural network. (3) 

'\J ,."'«,//iJW,~'1£~• "1,y~.}fiJW,=-'1£,,P,, 
'I/ ,.=i}E,,_ 2fiJW ~ '1£,.p, 

35 Compute motion parameters through the process of updating 
the weight vectors of the proposed learning neural network. 

The following test results are based on the experiments 
conducted on four sets of synthetic objects 1-4, and a real 

The updating rule for the weight matrix Wean be described 
as follows: 

40 
range image shown in FIG. 6. The parameters used in 
Equation (1) areA=l, B=l, C=-1, D--1, N1k=4 andc1=c2= 
0.3, c3=c4={).4, e1=ez=0.01 for Mi.lJ,• The Hopfield network 
is able to converge to the optimal solution under ten itera­
tions for all data sets tested. In Equation (4), the learning rate 

(4) 

where µ is the learning rate, and t represents the number of 
iterations. The relationship between the weight vector W and 
the unknown rotation matrix Rot can be characterized as: 

45 
µ is set at 0.001. The proposed learning neural network also 
converges very fast to the optimal solutions. For all the test 
data available, the iteration number is always under 200, and 
the computational time takes only a few seconds on a 
conventional Sun-3 workstation. The results based on the 
two-frame approach conducted on both synthetic and real 
objects are summarized in the following table: 

Object 

Object 1 

Object 2 

Object 3 

Ideal results 

k = [O, 0, 1:f 
8 = 90° 
k = [0.3652, 09129, --0.1826:f 
8 = 135° 
Tran= [1, 3, -2:f 
k = [0.5773, 0.5773, 0.5773)T 
9 = 90" 
k = [0,5773, 0.5773, 0.5773:f 
9 = 90" 
Tran = (8, 0, 0:f 
k = [0.2673, 0.5345, 0.8018:f 
9=45° 
Tran= [2, 0, l)T 
k = [0.8729, --0.4364, 0.2182:f 

Test results 

k = [0.066695, 0.032826, 0.997233:f 
9 = 90.174210° 
k = [0.364519, 0.911300, --0.191462:f 
9 = 135.105652° 
Tran = [ 1, 3, -2)T 
k = [0.583216, 0.578122, 0.570644:f 
8 = 90.644882° 
k = [0.583216, 0.578122, 0.570644:f 
0 = 90.644882° 
Tran = [8, o, o:f 
k = [0.297266, 0.533019, 0.792165:f 
9 = 45.418789° 
Tran= [2, 0, 1:f 
k = [0,870368, --0.445195, 0.210382:f 
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Object Ideal results 

0 = 120" 
Tran= [-1, 0, -3f 

-continued 

Thst results 

8 = 120.184723° 
Tran= [-1, 0, -3:J" 

10 

FIG. 4 k = [0.5182, 0.7826, --0.3450f 
8= 118° 

k = [--0.522871, 0.781697, --0.339936f 
8 = 118.276428° 

Tran= [O, 0, Of Tom = [--0.000001, --0.000000, O.OOOOOl]T 

10 
A sequence of five frames was created for synthetic object 

4. Each successive frame was obtained from the previous 
one based on a rotational axis k=[l, 1, l]T and a rotational 
angle 0=10°. 1\vo tests were conducted for comparison; the 
first used the two-frame approach, and the second the 

15 
multiframe approach. A comparison of these two experi­
mental results with the ideal one confirmed that the result 
from the multiframe method is obviously more accurate than 
that from the two-frame method. 

The new pools are applied to the input of the Hopfield 
network as described previously. This is continued until the 
convergence criterion is met, adding another optimally 
placed tag node to the system. Then the algorithm continues 
using the remaining nodes until all tag nodes are found. 

While preferred embodiments of the invention have been 
shown and descnbed, it will be clear to those skilled in the 
art that various changes and modifications can be made 
without departing from the invention in its broader aspects 
as set forth in the claims provided hereinafter. 

What is claimed is: 

Since the continuous model of the constructed neural 
networks is used, it is always crucial to determine how to 20 

update the dynamic equations of these neural networks. This 
can be accomplished by applying the well known Runge­
Kutta method, but this method is problematic, especially 
when the shape of problem space is unknown and the 
solution surface contains many local minima. 

1. A method of generating a configuration design of gas 
tag nodes for nuclear fuel rods, the nodes being character­
istic of a unique set of tag gas compositions, comprising the 

25 steps of: 

In the preferred embodiment, the method applies genetic 
algorithms to update the dynamics of neural networks. 
Genetic algorithms allow random walks on the unknown 
solution surface in a parallel and computationally efficient 
manner and therefore provide a powerful search strategy to 30 
identify the global minimum which corresponds to the 
optimal problem solution. The genetic algorithm maintains 
a set of trial solutions, also called chromosomes, and forces 
them to evolve toward an acceptable solution. First, a 
representation for feasible solutions must be developed. 

35 Once an initial random population is obtained, the algorithm 
then uses "survival of the fittest" as well as old knowledge 
in the gene pool to improve each generation's ability to solve 
the problem. This improvement is achieved through a four­
step process of evaluation, reproduction, breeding and muta­
tion. 

EXAMPLE 

40 

(a) selecting a true location of a first node characteristic of 
an isotopic gas tag; 

(b) selecting initial locations for (n-1) remaining nodes 
based on a table of target gas tag compositions; 

( c) generating L random gene pools representing L sets of 
nodes, p1 if"; 

( d) applying a Hopfield network for computing an energy 
for each of said L gene pools and repeating said 
computing step to minimize said energy using selected 
constraints to determine optimal gas tag nodes; 

(e) each value of said energy being compared to a 
convergence threshold and upon achieving a minimum 
energy a next gas tag node is established; and 

(f)repeating said steps (d) and (e) using the remaining n-2 
nodes until establishing the next gas tag node and 
thereafter continuing until all of the n nodes have been 
established, thereby establishing the configuration 
design of gas tag nodes. 

2. The method as defined in claim 1 further including the 
step of creating a new set of gene pools if no values of said 
energy satisfy the convergence condition. 

A genetic algorithm based neural network for nonlinear 
optimization is shown in the flow diagram of FIG. 2. This 
particular flow diagram shows how the algorithm can apply 45 
to the well-known, conventional concentric sphere gas tag 
node locating problem. The algorithm uses a genetic algo­
rithm for searching the solution space and a Hopfield neural 
network for defining a cost ( or energy) function that incor­
porates all of the constraints and goals of the problem. 

3. The method as defined as claim 2 further including the 
step of saving best values of said gene pools upon creating 

50 said new set of gene pools. 
The first step of the algorithm is to initialize the system. 

First, node number 1 is chosen and kept fixed, and then the 
remaining N-1 nodes are given an initial position on either 
the inner or outer sphere. Next a set of L randomly generated 
gene pools are created, each representing a realization of the 
locations of the N-1 remaining nodes. Each gene pool is 
applied to the input neurons of the Hopfield neural network. 
Next the energy function is evaluated using these inputs. The 
goal is to minimize the energy function by selecting the 
optimal tag nodes based on the constraints. Each one of the 
values for the energy function is compared to a convergence 
threshold, and if any one of them satisfy the condition, the 
algorithm has found the next location for a node. Then the 
procedure repeats using the remaining N-2 nodes and then 
N-3 and so on, until all nodes are fixed. If none of the energy 
values satisfy the convergence condition, the algorithm uses 
genetic algorithm rules to create a new set of gene pools 
(saving the best gene pools from the previous generation). 

4. The method as defined in claim 3 wherein said new set 
of gene pools are applied to the input of the Hopfield 
network. 

5. The method as defined in claim 1 wherein said selected 
55 constraints include (a) there is only one optimal location for 

each said tag gas node to be blended, (b) a total number of 
optimal locations for said gas tag nodes to be blended is 
equal to the number of said gas tag nodes, (c) said gas tag 
nodes are to be distributed in the most compact configura-

60 tion for reducing cost of noble gas used to create said gas 
tags, (d) the closest distance between any said gas tag node 
and the line connecting any other two gas tag nodes should 
be greater than a minimum separation distance, ( e) no four 
gas tag nodes lie in any one plane and (f) no three gas tag 

65 nodes lie on a straight line. 

* * * * * 
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