

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2011/0262477 A1 Cheng et al.

Oct. 27, 2011 (43) Pub. Date:

(54) COMPOSITIONS AND METHODS RELATED TO BACTERIAL EAP, EMP, AND/OR ADSA **PROTEINS**

(75) Inventors: Alice Cheng, Chicago, IL (US);

Vilasack Thammavongsa, Chicago, IL (US); Justin Kern, Mountain View, CA (US); Dominique M. Missiakas, Chicago, IL (US); Olaf

Schneewind, Chicago, IL (US)

UNIVERSITY OF CHICAGO, (73) Assignee:

Chicago, IL (US)

Appl. No.: 13/122,793 (21)

PCT Filed: Oct. 6, 2009

(86) PCT No.: PCT/US09/59648

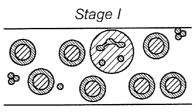
§ 371 (c)(1),

(2), (4) Date: Jun. 29, 2011

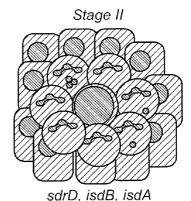
Related U.S. Application Data

(60)Provisional application No. 61/103,190, filed on Oct. 6, 2008, provisional application No. 61/103,196, filed on Oct. 6, 2008, provisional application No. 61/170, 779, filed on Apr. 20, 2009.

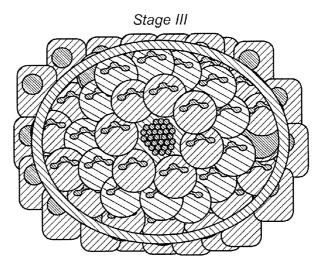
Publication Classification

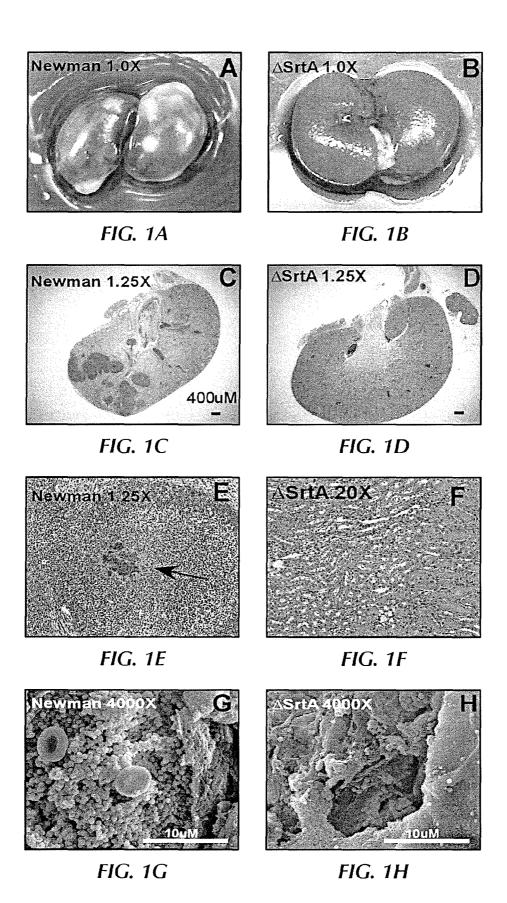

(51) Int. Cl. A61K 39/085

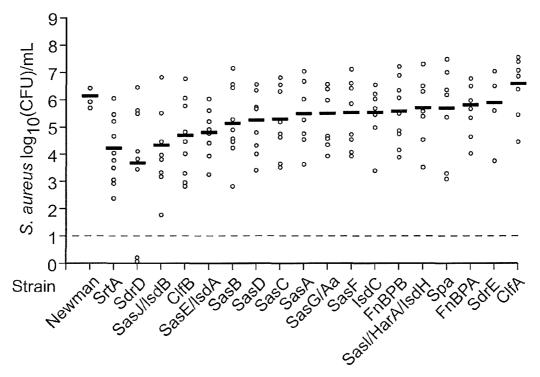
(2006.01)A61P 31/04 (2006.01)A61P 37/04 (2006.01)C07K 19/00 (2006.01)

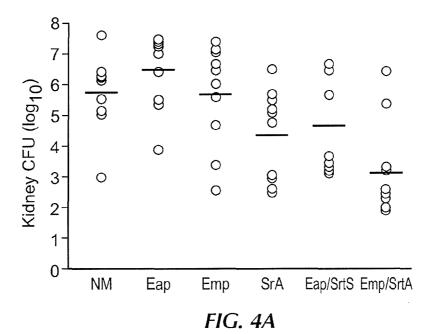

(52) **U.S. Cl.** **424/190.1**; 424/243.1; 424/197.11; 530/405; 424/200.1

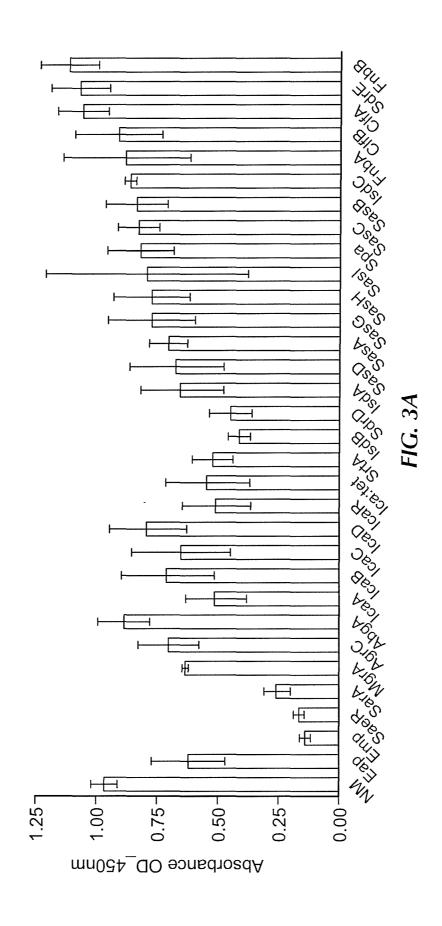
(57)**ABSTRACT**

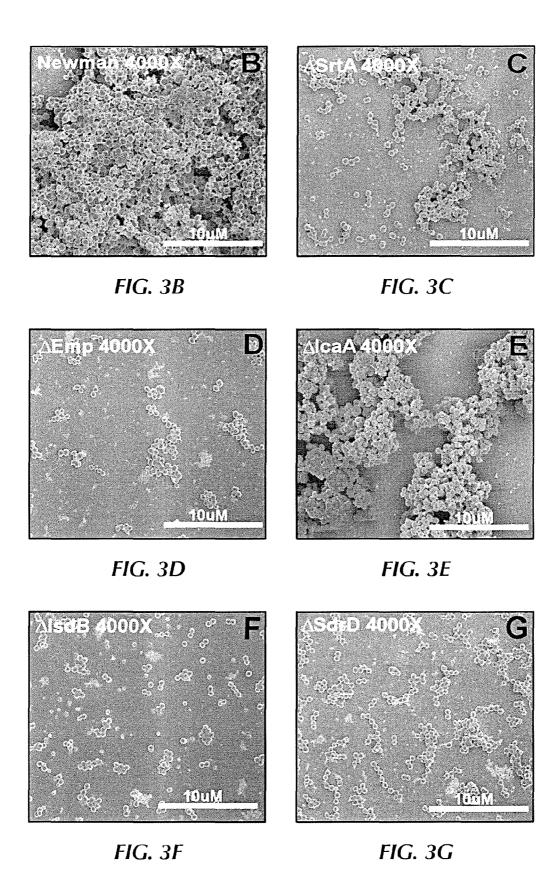

The present invention concerns methods and compositions for treating or preventing a bacterial infection, particularly infection by a Staphylococcus bacterium. The invention provides methods and compositions for stimulating an immune response against the bacteria. In certain embodiments, the methods and compositions involve an Eap, Emp and/or AdsA amino acid sequence, or an agent that binds and inhibits the same.

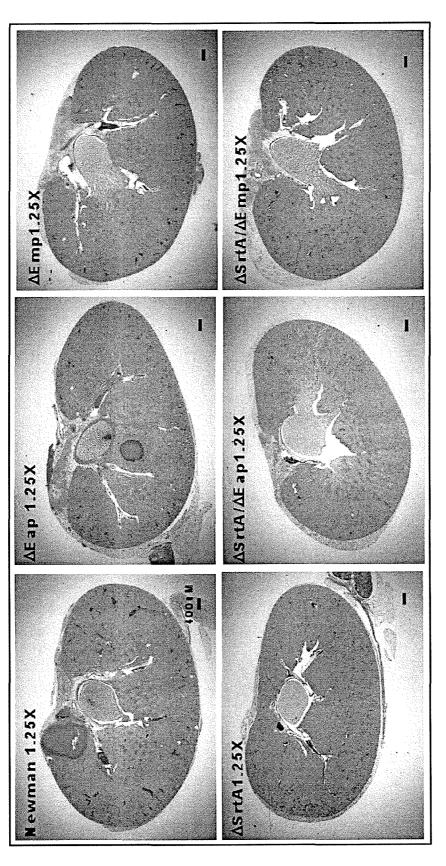

clfA, clfB

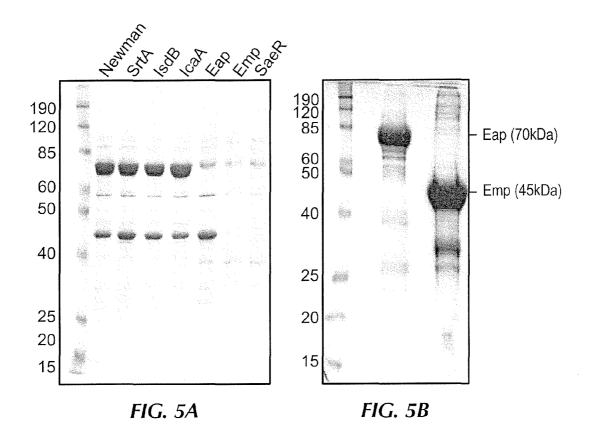


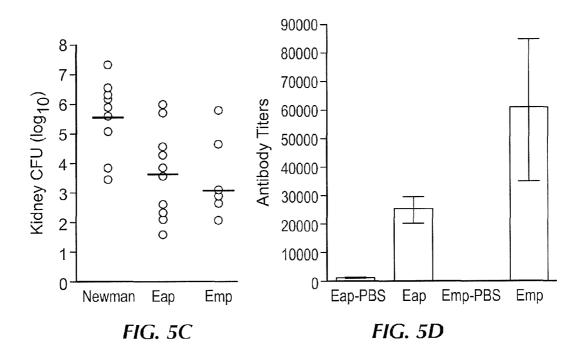


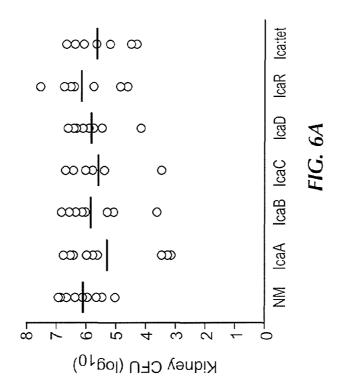

spa, emp

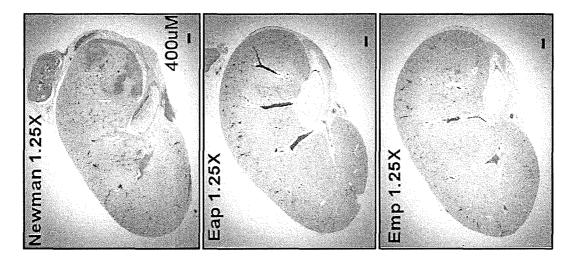


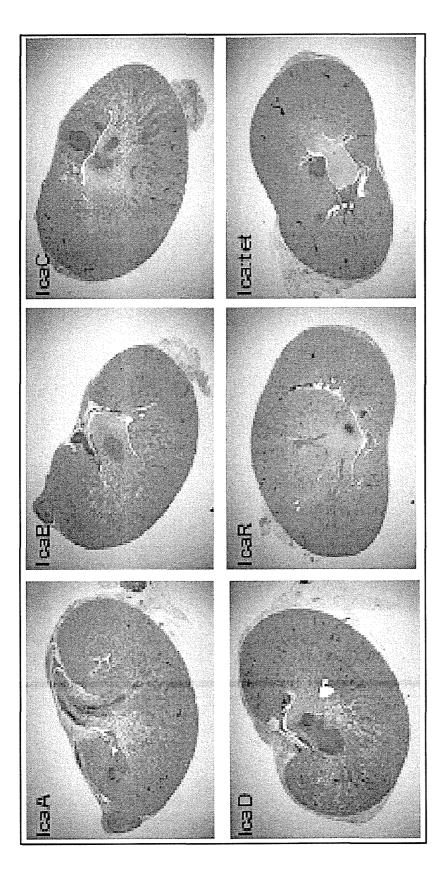

FIG. 2

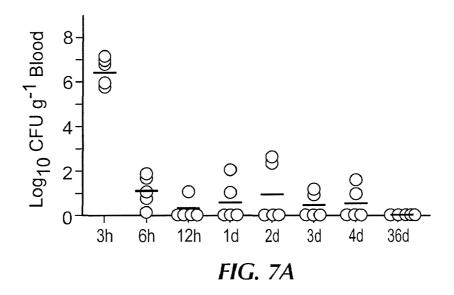


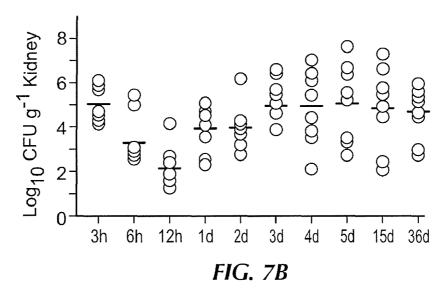


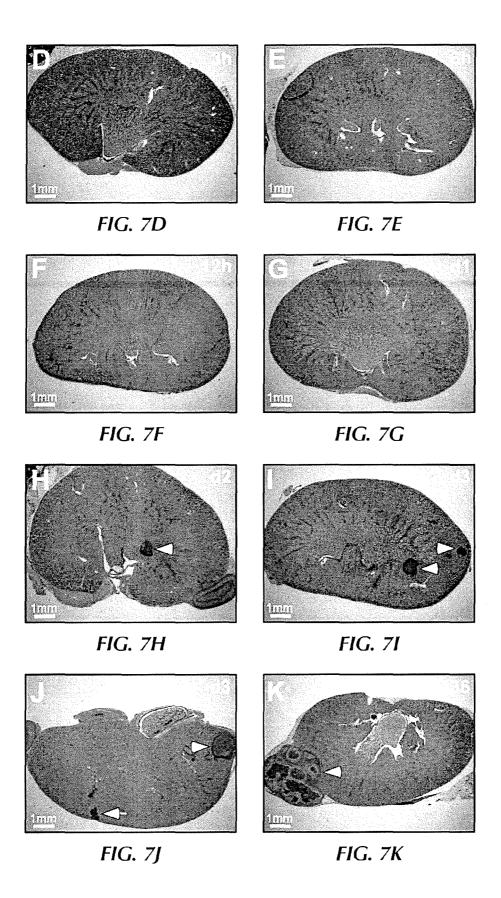


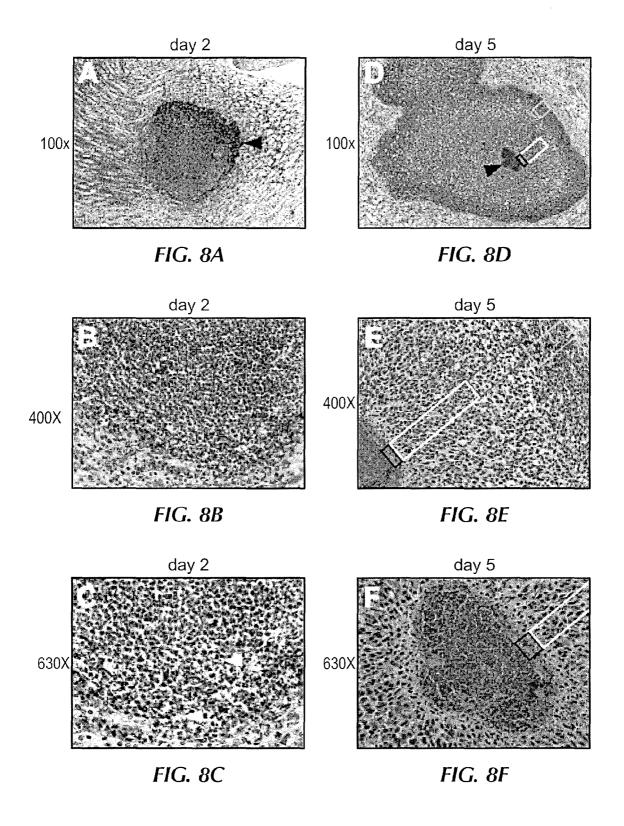


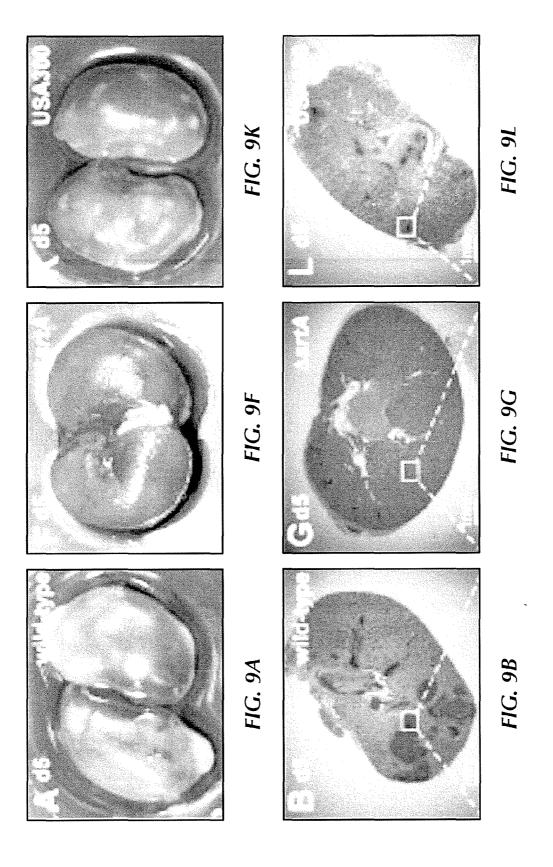


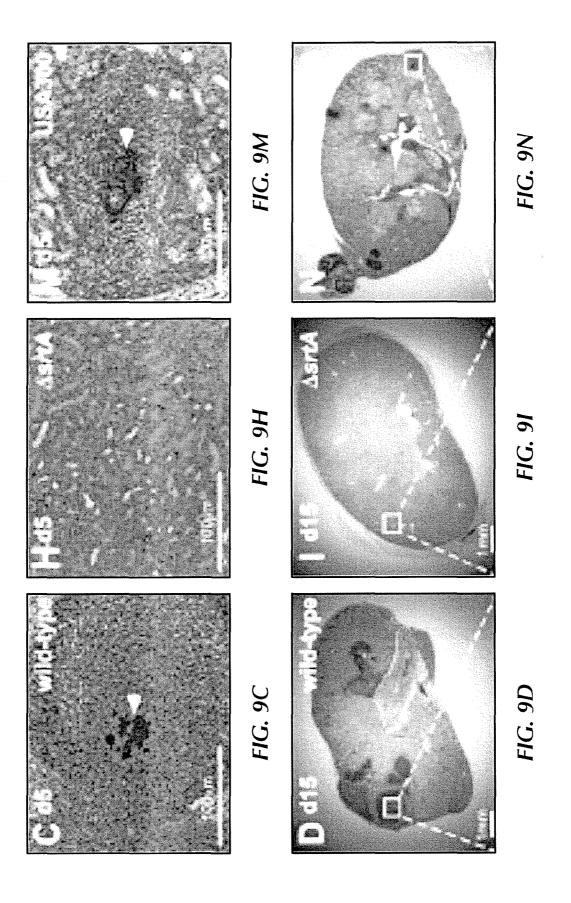


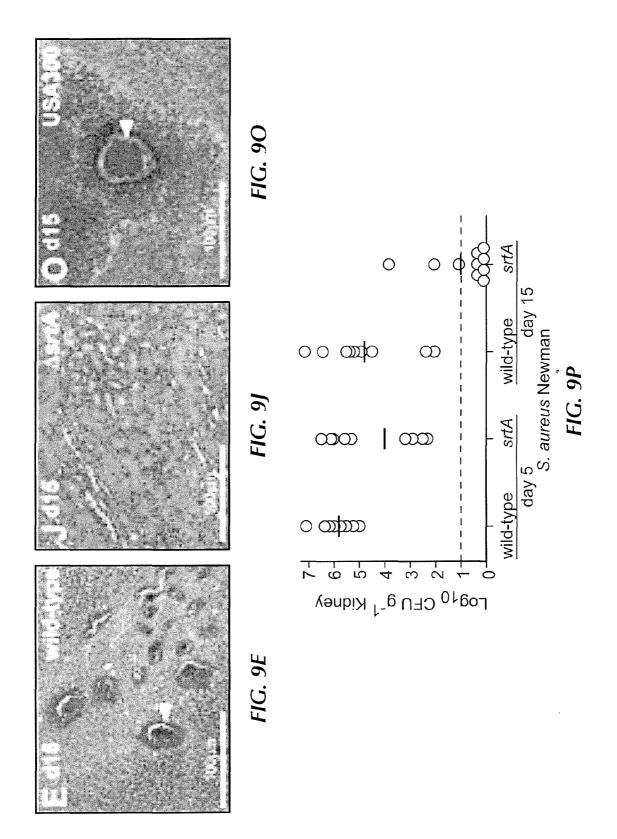







Abscess Diameter


μ m	SEM
524	65
611	50
823	61
934	42
667	90
511	129
	524 611 823 934 667 511


FIG. 7C

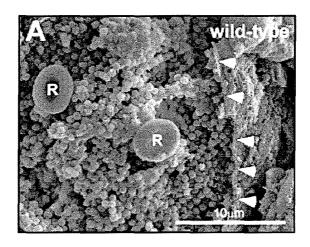


FIG. 10A

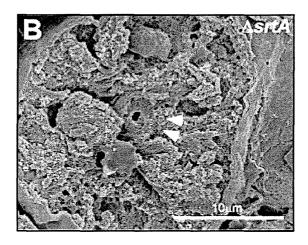


FIG. 10B

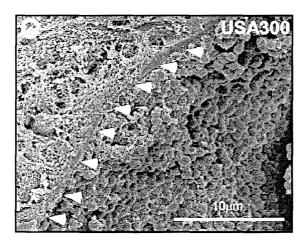
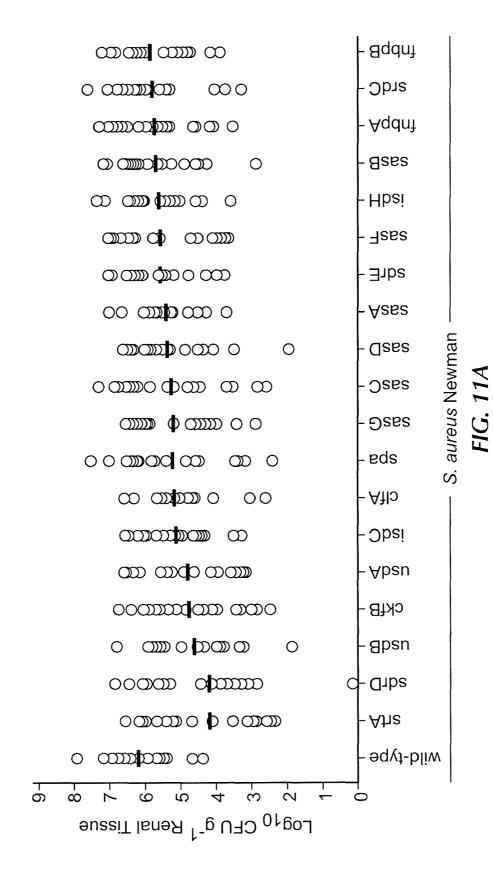



FIG. 10C

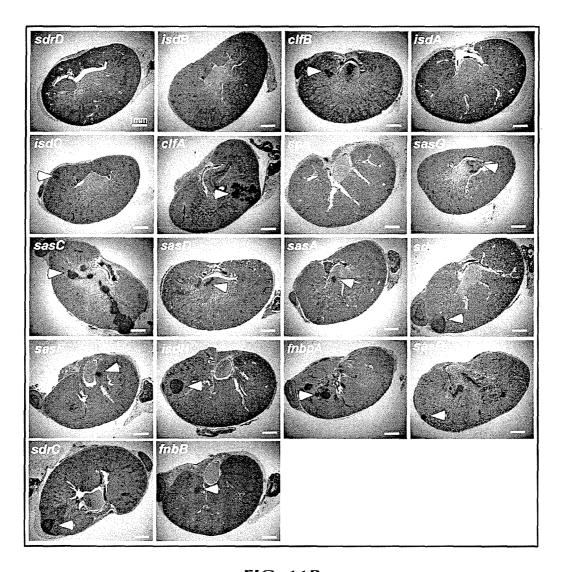
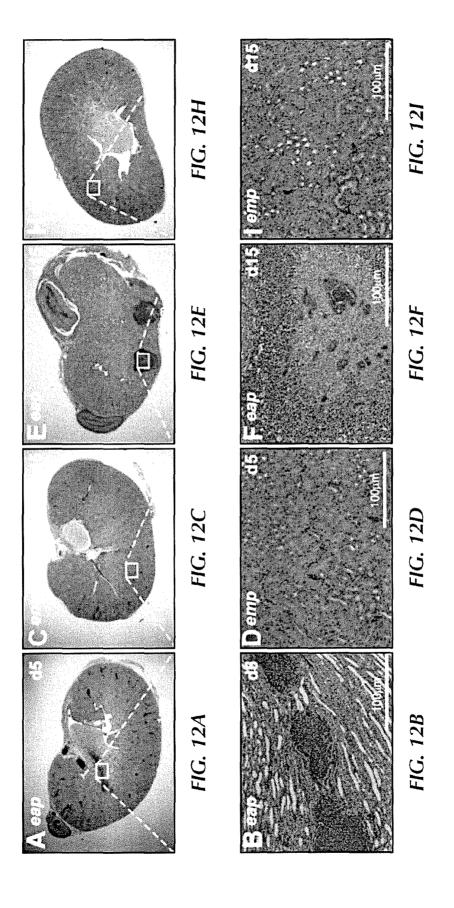



FIG. 11B

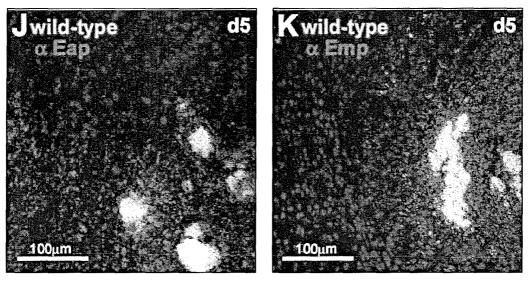


FIG. 12J

FIG. 12K

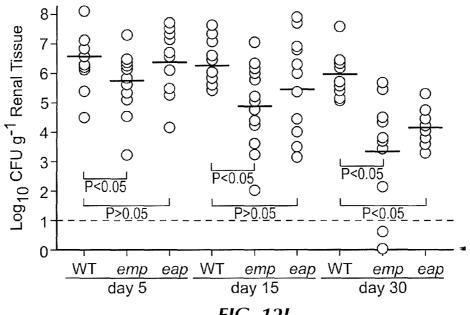
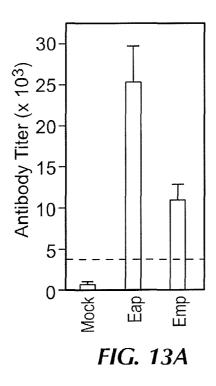



FIG. 12L

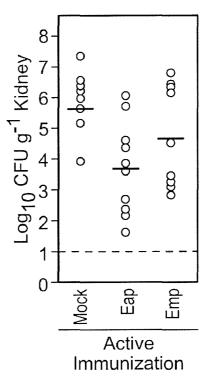
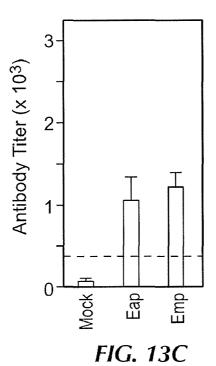



FIG. 13B

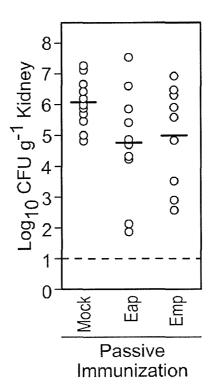
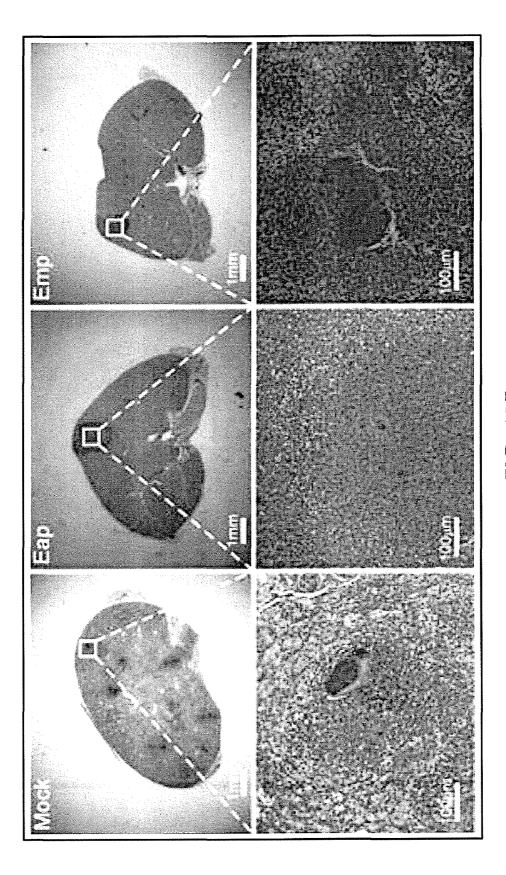
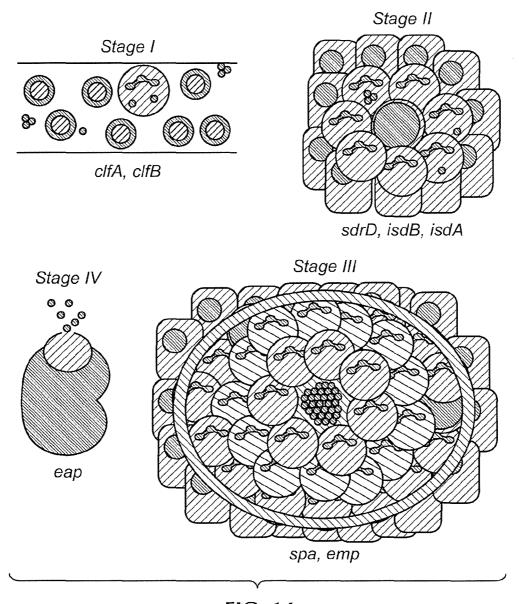
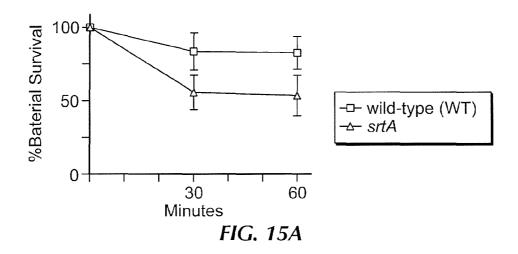
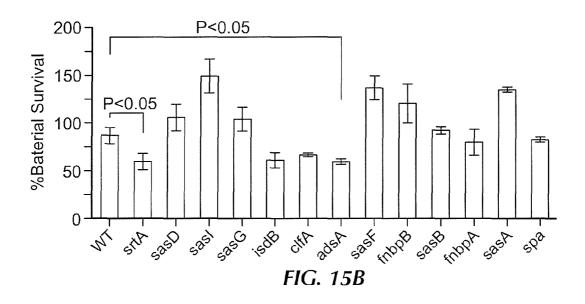
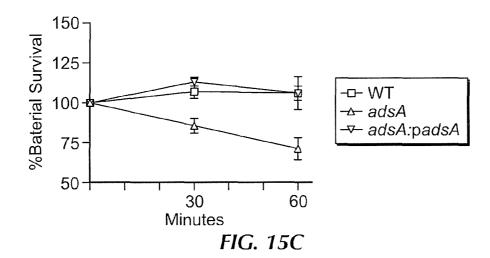
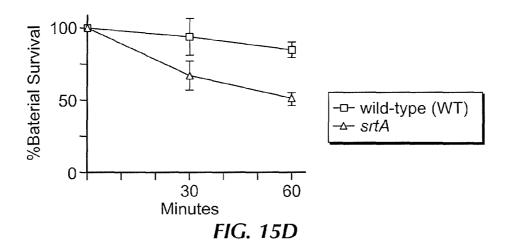
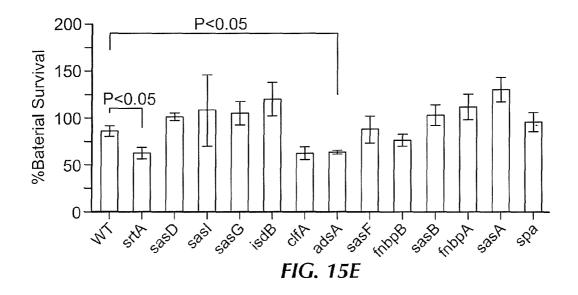
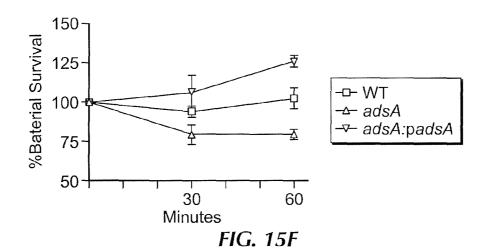
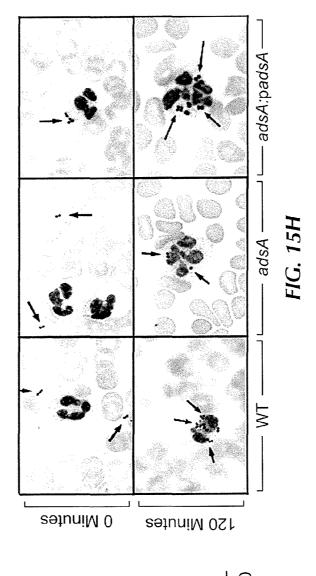



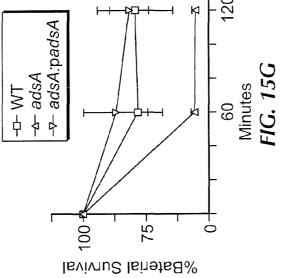
FIG. 13D

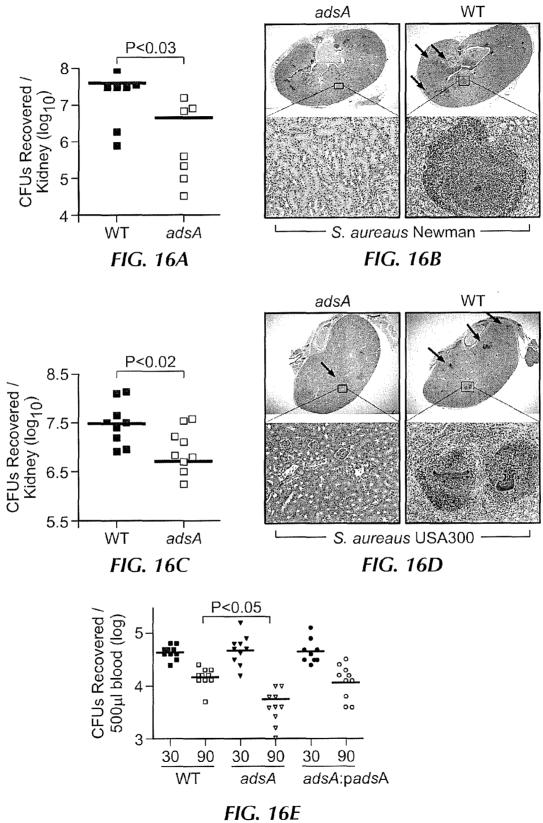







FIG. 14









buffer Mr. isdBadsAipadsA

FIG. 17A

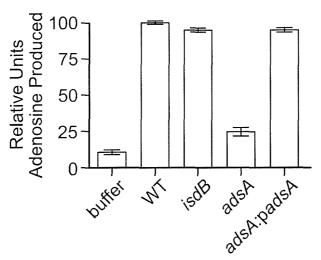
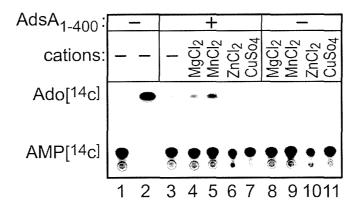
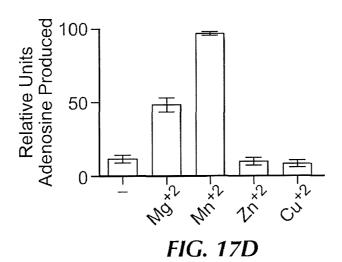
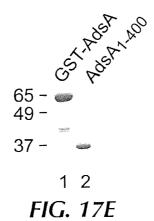
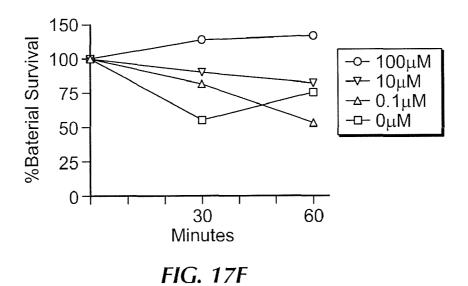
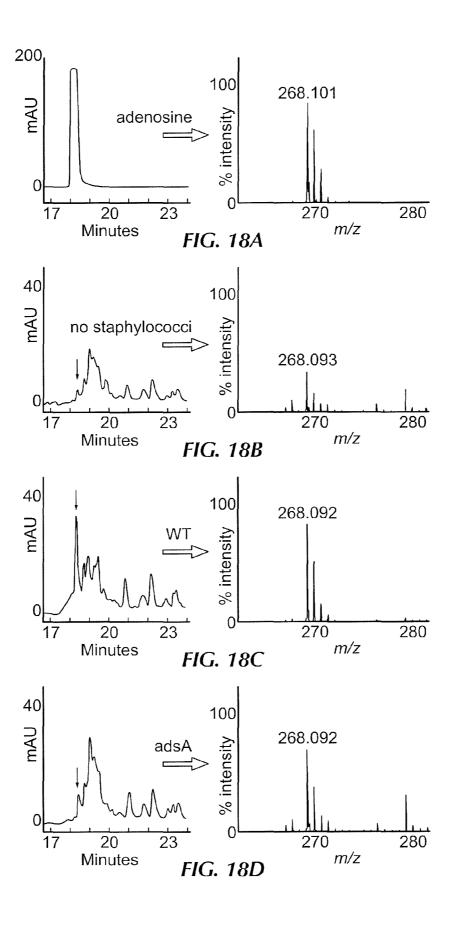
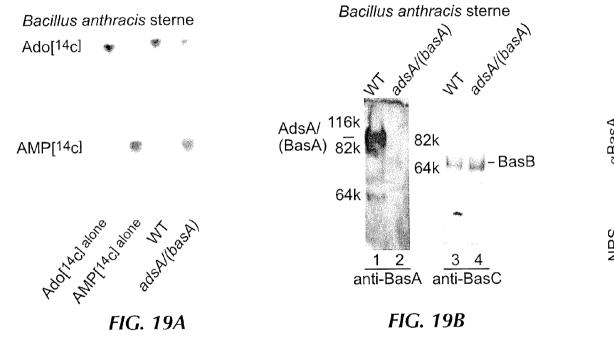
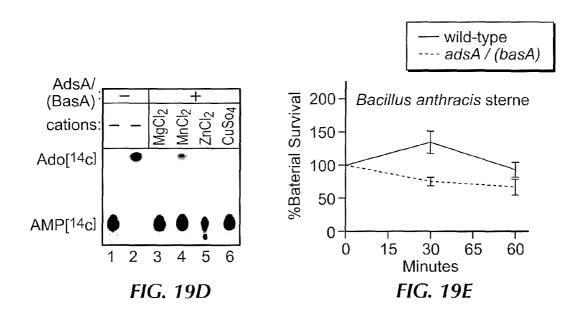
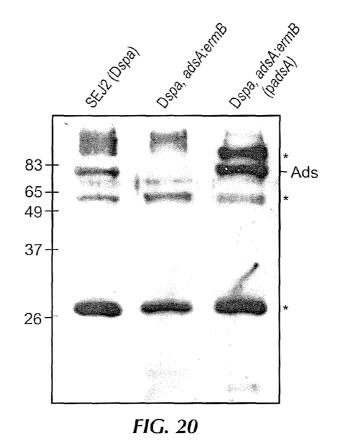


FIG. 17B


FIG. 17C





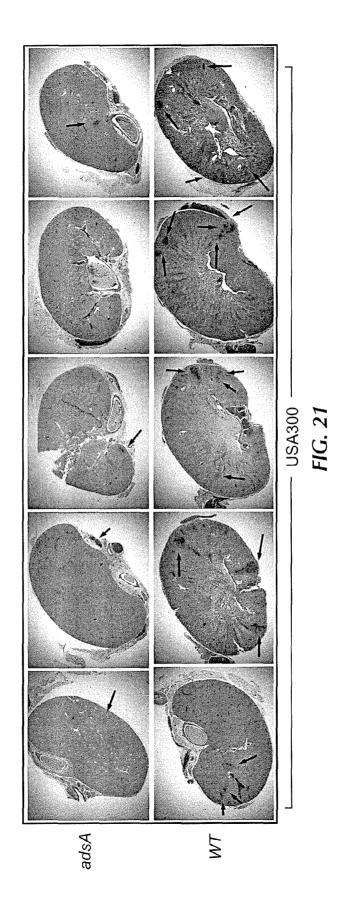

WY adsA/(basA)

FIG. 19C

Bacillus anthracis sterne

COMPOSITIONS AND METHODS RELATED TO BACTERIAL EAP, EMP, AND/OR ADSA PROTEINS

[0001] This application claims benefit of priority to U.S. Provisional Application Ser. No. 61/103,196, filed Oct. 6, 2008, U.S. Provisional Application Ser. No. 61/103,190, filed Oct. 6, 2008, and U.S. Provisional Application Ser. No. 61/170,779, filed Apr. 20, 2009, the entire contents of which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] I. Field of the Invention

[0003] The present invention relates generally to the fields of immunology, microbiology, and pathology. More particularly, it concerns methods and compositions involving bacterial proteins, which can be used to invoke an immune response against the bacteria or provide passive immunotherapy. The proteins include Eap, Emp, bacterial adenosine synthase A (AdsA), and/or peptides or proteins comprising Eap, Emp, and/or AdsA amino acid sequences and antibodies that bind the same.

[0004] II. Background

[0005] The number of both community acquired and hospital acquired infections have increased over recent years. Hospital acquired (nosocomial) infections are a major cause of morbidity and mortality. In the United States, hospital acquired infections affect more than 2 million patients annually. The most frequent infections are urinary tract infections (33% of the infections), followed by pneumonia (15.5%), surgical site infections (14.8%) and primary bloodstream infections (13%) (Emorl and Gaynes, 1993).

[0006] Staphylococcus aureus, Coagulase-negative Staphylococci (mostly Staphylococcus epidermidis), enterococcus spp., Escherichia coli and Pseudomonas aeruginosa are the major nosocomial pathogens. Although those pathogens cause approximately the same number of infections, the severity of the disorders they can produce combined with the frequency of antibiotic resistant isolates balance this ranking towards S. aureus and S. epidermidis as being the most significant nosocomial pathogens.

[0007] Staphylococcus epidermidis is a normal skin commensal which is also an important opportunistic pathogen responsible for infections of impaired medical devices and infections at sites of surgery. Medical devices infected by S. epidermidis include cardiac pacemakers, cerebrospinal fluid shunts, continuous ambulatory peritoneal dialysis catheters, orthopedic devices and prosthetic heart valves.

[0008] Staphylococcus aureus is the most common cause of nosocomial infections with significant morbidity and mortality. It can cause osteomyelitis, endocarditis, septic arthritis, pneumonia, abscesses and toxic shock syndrome. S. aureus can survive on dry surfaces, increasing the chance of transmission. Any S. aureus infection can cause the staphylococcal scalded skin syndrome, a cutaneous reaction to exotoxin absorbed into the bloodstream. It can also cause a type of septicemia called pyaemia that can be life-threatening. Problematically, methicillin-resistant Staphylococcus aureus (MRSA) has become a major cause of hospital-acquired infections.

[0009] S. aureus and S. epidermidis infections are typically treated with antibiotics, with penicillin being the drug of choice, whereas vancomycin is used for methicillin resistant

isolates. The percentage of staphylococcal strains exhibiting wide-spectrum resistance to antibiotics has become increasingly prevalent, posing a threat for effective antimicrobial therapy. In addition, the recent emergence of vancomycin resistant *S. aureus* strain has aroused fears that MRSA strains are emerging and spreading for which no effective therapy is available.

[0010] The first generation of vaccines targeted against *S. aureus* or against the exoproteins it produces have met with limited success (Lee, 1996). There remains a need to develop effective vaccines against staphylococcus infections. Additional compositions for treating staphylococcal infections are also needed.

SUMMARY OF THE INVENTION

[0011] Staphylococcus aureus is the single most frequent cause of bacteremia and soft tissue infection in hospitalized or healthy individuals, and dramatic increases in mortality are attributed to the spread of methicillin-resistant S. aureus (MRSA) strains that are often not susceptible to antibiotic therapy (Klevens et al., 2007; Klevens et al., 2006). Abscesses with characteristic fibrin deposits and massive immune cell infiltrates represent the pathological substrate of staphylococcal infection (Lowy, 1998). Scanning electron microscopy was used to observe biofilm-like structures at the center of staphylococcal abscesses. Genetic analyses revealed that in vitro biofilm formation was correlated with the ability of staphylococci to form abscesses, and the inventors identified envelope proteins that are essential for both processes. When purified and used for immunization of mice, Emp and Eap conferrs protective immunity to staphylococcal infection. Passive immunization using antibodies that bind Eap or antibodies that bind Emp also demonstrates therapeutic effects. [0012] This application describes in one embodiment the

use of Emp and/or Eap, or antibodies that bind all or part of Emp or Eap, in methods and compositions for the treatment of bacterial and/or staphylococcal infection. This application also provides an immunogenic composition comprising an Emp and/or Eap antigen or immunogenic fragment thereof. Furthermore, the present invention provides methods and compositions that can be used to treat (e.g., limiting staphylococcal abscess formation and/or persistence in a subject) or prevent bacterial infection. In some cases, methods for stimulating an immune response involve administering to the subject an effective amount of a composition including or encoding all or part of the Emp and/or Eap polypeptide or antigen, and in certain aspects other bacterial proteins. Other bacterial proteins include, but are not limited to (i) a secreted virulence factor, and/or a cell surface protein or peptide, or (ii) a recombinant nucleic acid molecule encoding a secreted virulence factor, and/or a cell surface protein or peptide, and/or (iii) polysaccharides and the like.

[0013] In other aspects the subject can be administered an Emp and/or Eap modulator, such as an antibody (e.g., a polyclonal, monoclonal, or single chain antibody or fragment thereof) that binds Emp and/or Eap. An Emp and/or Eap modulator can bind Emp and/or Eap directly. The Emp and/or Eap modulator can be an antibody or cell that binds Emp and/or Eap. An antibody can be an antibody fragment, a humanized antibody, a human antibody, and/or a monoclonal antibody or the like. In certain aspects, the Emp and/or Eap modulator is elicited by providing an Emp and/or Eap peptide that results in the production of an antibody that binds Emp and/or Eap in the subject or a source subject (e.g., donor). The

Emp and/or Eap modulator is typically formulated in a pharmaceutically acceptable composition. The Emp and/or Eap modulator composition can further comprise at least one staphylococcal antigen or immunogenic fragment thereof, or antibody that binds such (e.g., EsxA, EsxB, EsaB, EsaC, SdrC, SdrD, Hla, SdrE, IsdA, IsdB, SpA, ClfA, ClfB, IsdC, SasB, SasH (AdsA, Ebh, Coa, vWa, or SasF). Additional staphylococcal antigens that can be used in combination with a Emp and/or Eap modulator include, but are not limited to 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648, 240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF(WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein. The staphylococcal antigen or antibody can be administered concurrently with the Emp and/or Eap modulator. The staphylococcal antigen or antibody and the Emp and/or Eap modulator can be administered in the same composition.

[0014] Certain embodiments are directed to a therapeutic composition comprising an isolated antibody, or fragment thereof, that binds an Emp and/or Eap antigen, or a fragment thereof, in a pharmaceutically acceptable composition wherein the composition is capable of attenuating a staphylococcus bacterial infection in a subject. The antibody can be a human or humanized antibody. In certain aspects the antibody is a polyclonal antibody, or monoclonal antibody, or single chain antibody, or fragment thereof. An antibody composition can further comprise at least one additional isolated antibody that binds an antigen selected from one or more of a group consisting of an isolated ClfA, ClfB, EsaB, EsaC, EsxA, EsxB, Hla, IsdA, IsdB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, SdrC, SdrD, SdrE, and SpA antigen, or a fragment thereof. Additional antibodies to a staphylococcal antigen that can be used in combination with a Emp and/or Eap modulator include, but are not limited to antibodies against 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288, 214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein.

[0015] The Emp and/or Eap modulator can also be a recombinant nucleic acid molecule encoding an Emp and/or Eap

peptide. A recombinant nucleic acid molecule can encode the Emp and/or Eap peptide and at least one staphylococcal antigen or immunogenic fragment. A nucleic acid can encode or a polypeptide can comprise a number of antigens including 2, 3, 4, 5, 6, 7, 8, 9, 10 or more of one or more of all or part of Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, IsdC, ClfA, ClfB, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, SpA or variants thereof. Nucleic acids can encode additional staphylococcal antigens including, but not limited to 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibringen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840, 846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/ MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein.

[0016] In certain embodiments the methods and compositions use or include or encode all or part of the Emp and/or Eap polypeptide, peptide, or antigen, as well as antibodies that bind the same. In other aspects Emp and/or Eap may be used in combination with other staphylococcal or bacterial factors such as all or part of EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, SpA, or immunogenic fragment thereof or combinations thereof. Additional staphylococcal antigens that can be used in combination with a Emp and/or Eap modulator include, but are not limited to 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein. In certain embodiments, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more of EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, IsdC, ClfA, ClfB, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, or SpA can be specifically excluded or included from a method, a composition, or a formulation of the invention. Additional staphylococcal antigens that can be explicitly excluded include, but are not limited to 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U56008341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein.

[0017] Embodiments of the invention include compositions that contain or do not contain a bacterium. A composition may or may not include an attenuated or viable or intact staphylococcal or other bacterium. In certain aspects, the composition comprises a bacterium that is not a Staphylococcal bacterium or does not contain Staphylococci bacteria. In certain embodiments a bacterial composition comprises an isolated or recombinantly expressed Emp and/or Eap polypeptide or a nucleotide encoding the same. In still further aspects, the isolated Emp and/or Eap polypeptide is multimerized, e.g., dimerized. In certain aspects of the invention, a composition comprises multimers of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more isolated cell surface proteins or segments thereof. In a further aspect the other polypeptides or peptides can be expressed or included in a bacterial composition including, but not limited to EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, or SpA or immunogenic fragments thereof. Additional staphylococcal polypeptides that can be expressed or included in a bacterial composition include, but are not limited to 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein. Alternatively, the composition may be or include a recombinantly engineered Staphylococcus bacterium that has been altered in a way that comprises specifically altering the bacterium with respect to a secreted virulence factor or cell surface protein. For example, the bacteria may be recombinantly modified to express more of the virulence factor or cell surface protein than it would express if unmodified.

[0018] The term "Emp polypeptide" or "Eap polypeptide" refers to polypeptides that include isolated wild-type Emp or Eap proteins from *staphylococcus* bacteria, as well as variants and segments or fragments that stimulate an immune response against *staphylococcus* bacteria Emp or Eap proteins. Similarly, the term EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, or SpA protein refers to a protein that includes isolated wild-type EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), or SpA polypep-

tides from staphylococcus bacteria, as well as variants, segments, or fragments that stimulate an immune response against staphylococcus bacteria EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, or SpA proteins. Additionally, the terms 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibringen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein refers to a protein that includes isolated wild type 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U56008341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/ MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein from staphylococcus bacteria, as well as variants, segments, or fragments that stimulate an immune response against staphylococcal 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288, 214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein. An immune response refers to a humoral response, a cellular response, or both a humoral and cellular response in an organism. An immune response can be measured by assays that include, but are not limited to, assays measuring the presence or amount of antibodies that specifically recognize a protein or cell surface protein, assays measuring T-cell activation or proliferation, and/or assays that measure modulation in terms of activity or expression of one or more cytokines

[0019] Embodiments of the present invention include methods for eliciting an immune response against a staphylococcus bacterium or staphylococci in a subject comprising providing to the subject an effective amount of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more antigens or segments/fragments thereof. Staphylococcal antigens include, but are not limited to an Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, or SpA, or a segment, fragment, or immunogenic fragment thereof. Additional Staphylococcal antigens include, but are not limited to 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/ 0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/ Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein.

[0020] In certain embodiments Emp and/or Eap polypeptides or immunogenic fragments thereof can be provided in combination with one or more antigens or immunogenic fragments of one or more of EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, or SpA. Additional antigens or immunogenic fragments of 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/ 0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/ Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein can also be used.

[0021] Embodiments of the invention include compositions that may include a polypeptide, peptide, or protein that has or has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity or similarity to Emp, Eap EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U56008341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, lami-

nin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/ MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein over 5, 10, 15, 20, 50, 100, 200, or more consecutive amino acids including all values and ranges there between. In a further embodiment of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an Emp polypeptide (SEQ ID NO:2, 50-53) and/or Eap polypeptide (SEQ ID NO:4) or Emp nucleic acid (SEQ ID NO:1) and/or Eap nucleic acid (SEQ ID NO:3). In certain aspects the Emp polypeptide or Eap polypeptide will have an amino acid sequence of (SEQ ID NO:2) or (SEQ ID NO:4), respectively. Similarity or identity, with identity being preferred, is known in the art and a number of different programs can be used to identify whether a protein (or nucleic acid) has sequence identity or similarity to a known sequence. Sequence identity and/or similarity is determined using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith & Waterman (1981), by the sequence identity alignment algorithm of Needleman & Wunsch (1970), by the search for similarity method of Pearson & Lipman (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al. (1984), preferably using the default settings, or by inspection. Preferably, percent identity is calculated by using alignment tools known to and readily ascertainable to those of skill in the art.

[0022] The term "AdsA polypeptide" refers to polypeptides that include isolated wild-type bacterial AdsA proteins, e.g., staphylococcus (S. aureus SEQ ID NO:36) or bacillus (B. anthracis SEQ ID NO:41) bacteria, as well as variants and segments or fragments of AdsA proteins. In certain aspects, the AdsA polypeptide stimulates an immune response against bacterial AdsA proteins.

[0023] In still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an EsxA protein. In certain aspects the EsxA protein will have the amino acid sequence of SEQ ID NO:6.

[0024] In still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an EsxB protein. In certain aspects the EsxB protein will have the amino acid sequence of SEQ ID NO:8.

[0025] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an SdrD protein. In certain aspects the SdrD protein will have the amino acid sequence of SEQ ID NO:10.

[0026] In further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or

99% identical or similar to an SdrE protein. In certain aspects the SdrE protein will have the amino acid sequence of SEQ ID NO:12.

[0027] In still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an IsdA protein. In certain aspects the IsdA protein will have the amino acid sequence of SEQ ID NO:14.

[0028] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an IsdB protein. In certain aspects the IsdB protein will have the amino acid sequence of SEQ ID NO:16.

[0029] Embodiments of the invention include compositions that include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to a SpA protein. In certain aspects the SpA protein will have the amino acid sequence of SEQ ID NO:18.

[0030] In a further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to a ClfB protein. In certain aspects the ClfB protein will have the amino acid sequence of SEQ ID NO:20.

[0031] In still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an IsdC protein. In certain aspects the IsdC protein will have the amino acid sequence of SEQ ID NO:22.

[0032] In yet further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to a SasF protein. In certain aspects the SasF protein will have the amino acid sequence of SEQ ID NO:24.

[0033] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an SdrC protein. In certain aspects the SdrC protein will have the amino acid sequence of SEQ ID NO:26.

[0034] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an ClfA protein. In certain aspects the ClfA protein will have the amino acid sequence of SEQ ID NO: 28.

[0035] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an EsaB protein. In certain aspects the EsaB protein will have the amino acid sequence of SEQ ID NO: 30.

[0036] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an EsaC protein. In certain aspects the EsaC protein will have the amino acid sequence of SEQ ID NO: 32.

[0037] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an SasB protein. In certain aspects the SasB protein will have the amino acid sequence of SEQ ID NO: 34.

[0038] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an SasH (AdsA) protein. In certain aspects the SasH (AdsA) protein will have the amino acid sequence of SEQ ID NO: 36 or SEQ ID NO:41.

[0039] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an Hla protein. In certain aspects the Hla protein will have the amino acid sequence of SEQ ID NO: 37. In certain aspects, a variant Hla includes amino acid substitutions or D24C, H35C, H35K, H35L, R66c, E70C, or K110C, or any combination thereof (amino acids referred to using single letter code).

[0040] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an Ebh protein. In certain aspects the Ebh protein will have the amino acid sequence of SEQ ID NO:38.

[0041] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an Coa protein. In certain aspects the Coa protein will have the amino acid sequence of SEQ ID NO:39.

[0042] In yet still further embodiments of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an vWa protein. In certain aspects the vWa protein will have the amino acid sequence of SEQ ID NO: 40.

[0043] In certain aspects, a polypeptide or segment/fragment can have a sequence that is at least 85%, at least 90%, at least 95%, at least 98% or at least 99% or more identical to the amino acid sequence of the reference polypeptide. The term "similarity" refers to a polypeptide that has a sequence that has a certain percentage of amino acids that are either identical with the reference polypeptide or constitute conservative substitutions with the reference polypeptides.

[0044] The polypeptides or segments or fragments described herein may include the following, or at least, or at most 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 300, 350, 400, 450, 500, 550 or more contiguous amino acids, or any range derivable therein, of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, or SEQ ID NO:41.

[0045] In further embodiments a composition comprises a recombinant nucleic acid molecule encoding 1, 2, 3, 4, or more of Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), SpA, Ebh, Coa, vWa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U56008341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/ MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein.

[0046] Still further embodiments include methods for stimulating in a subject a protective or therapeutic immune response against a staphylococcus bacterium comprising administering to the subject an effective amount of a composition including (i) an Emp and/or Eap polypeptide or peptide thereof; or, (ii) a nucleic acid molecule encoding an Emp and/or Eap polypeptide or peptide thereof, or (iii) administering an Emp and/or Eap polypeptide with any combination or permutation of bacterial proteins or polysaccharides described herein.

[0047] Yet still further embodiments include vaccines comprising a pharmaceutically acceptable composition having an isolated Emp and/or Eap polypeptides, or segment or fragment thereof, or any other combination or permutation of protein(s) or peptide(s) or polysaccharide(s) described, wherein the composition is capable of stimulating an immune response against a *staphylococcus* bacterium. The vaccine may comprise an isolated Emp and/or Eap polypeptide, and/or any other combination or permutation of protein(s) or peptide(s) or polysaccharide(s) described. In certain aspects of the invention the isolated Emp and/or Eap polypeptide, or any other combination or permutation of protein(s) or peptide (s) or polysaccharide(s) described are multimerized, e.g., dimerized.

[0048] In a further aspect, the vaccine composition is contaminated by less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.25, 0.05% (or any range derivable therein) of other Staphylococcal proteins. A composition may further comprise an isolated non-Emp and/or non-Eap polypeptide. Typically the vaccine comprises an adjuvant. In certain aspects a protein or peptide of the invention is linked (covalently or non-co-

valently coupled) to the adjuvant, preferably the adjuvant is chemically conjugated to the protein.

[0049] In still yet further embodiments, a vaccine composition is a pharmaceutically acceptable composition having a recombinant nucleic acid encoding all or part of an Emp and/or Eap polypeptide, and/or any other combination or permutation of protein(s) or peptide(s) described, wherein the composition is capable of stimulating an immune response against a staphylococcus bacteria. The vaccine composition may comprise a recombinant nucleic acid encoding all or part of an Emp and/or Eap polypeptide, and/or any other combination or permutation of protein(s) or peptide(s) described. In certain embodiments the recombinant nucleic acid contains a heterologous promoter. Preferably the recombinant nucleic acid is a vector. More preferably the vector is a plasmid or a viral vector.

[0050] Still further embodiments include methods for stimulating in a subject a protective or therapeutic immune response against a staphylococcus bacterium comprising administering to the subject an effective amount of a composition of an Emp and/or Eap polypeptide or segment/fragment thereof comprising one or more of (i) a EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), SpA, Ebh, Coa, vWa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288, 214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein polypeptide or segment or fragment thereof; or, (ii) a nucleic acid molecule encoding the same. Methods of the invention also include Emp and/or Eap compositions that contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more of EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), SpA, Ebh, Coa, vWa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/ 0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/ Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein in various combinations. In certain aspects a vaccine formulation includes an IsdA polypeptide or segment or fragment thereof.

[0051] In still a further aspect the invention includes a staphylococcal bacterium lacking an Emp and/or Eap polypeptide and/or EsaB polypeptide. Such a bacterium will be limited or attenuated with respect to prolonged or persistent abscess formation and/or biofilm formation. This characteristic can be used to provide bacterial strains for the production of attenuated bacteria for use in the preparation of vaccines or treatments for staphylococcal infections or related diseases. In yet a further aspect, Emp and/or Eap can be overexpressed in an attenuated bacterium to further enhance or supplement an immune response or vaccine formulation.

[0052] Any embodiment discussed with respect to one aspect of the invention applies to other aspects of the invention as well. In particular, any embodiment discussed in the context of an Emp and/or Eap peptide or nucleic acid may be implemented with respect to EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), SpA, Ebh, Coa, vWa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/ 0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/ Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding proteins or nucleic acids or antibodies that bind the same, and vice versa.

[0053] The inventors have examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homolog was identified in the anthrax pathogen and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Taken together, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. Certain embodiments of the invention are based on the discovery that the synthesis of the signaling molecule adenosine is immunosuppressive and modulation of its synthesis activity can be exploited for therapeutic purposes.

[0054] This application describes in one embodiment the use of AdsA, or antibodies that bind all or part of AdsA, or inhibitors of AdsA activity in methods and compositions for the treatment of bacterial and/or staphylococcal infection. This application also provides an immunogenic composition comprising an AdsA antigen or immunogenic fragment thereof. Furthermore, the present invention provides methods and compositions that can be used to treat (e.g., modulating phagocytic uptake of bacteria) or prevent bacterial infection. In some cases, methods for stimulating an immune response involve administering to the subject an effective amount of a

composition including or encoding all or part of a bacterial AdsA polypeptide or antigen, and in certain aspects other bacterial proteins and bacterial polysaccharides. Other bacterial proteins include, but are not limited to (i) a secreted virulence factor, and/or a cell surface protein or peptide, or (ii) a recombinant nucleic acid molecule encoding a secreted virulence factor, and/or a cell surface protein or peptide.

[0055] In other aspects the subject can be administered an AdsA modulator, such as an antibody (e.g., a polyclonal, monoclonal, or single chain antibody or fragment thereof) that binds Ads A or a small molecule that inhibits Ads A activity or stability. An AdsA modulator may bind AdsA directly. The AdsA modulator can be an antibody or cell that binds AdsA. An antibody can be an antibody fragment, a humanized antibody, a human antibody, and/or a monoclonal antibody or the like. In certain aspects, the AdsA modulator is elicited by providing an AdsA peptide or a bacteria expressing the same that results in the production of an antibody that binds AdsA in the subject. The AdsA modulator is typically formulated in a pharmaceutically acceptable composition. The AdsA modulator composition can further comprise at least one staphylococcal antigen or immunogenic fragment thereof, or antibody that bind such (e.g., Eap, Emp, EsaB, EsaC, EsxA, EsxB, SasB, SdrC, SdrD, SdrE, Hla, IsdA, IsdB, Spa, ClfA, ClfB, IsdC, Coa, Ebh, vWa or SasF). The staphylococcal antigen or antibody can be administered concurrently with the AdsA modulator. An antigen and/or antibody and/or antibiotic, and an AdsA modulator can be administered in the same composition.

[0056] Certain embodiments are directed to a therapeutic composition comprising an isolated antibody, or fragment thereof, that binds an AdsA protein or antigen, or a fragment thereof, in a pharmaceutically acceptable composition wherein the composition is capable of attenuating a *staphylococcus* bacterial infection in a subject, e.g., modulating phagocytic uptake of bacteria. The modulator can be a small molecule, such as an adenosine analog. The antibody can be a human or humanized antibody. In certain aspects the antibody is a polyclonal antibody, or monoclonal antibody, or single chain antibody, or fragment thereof.

[0057] An antibody composition can further comprise at least one additional isolated antibody that binds a antigen selected from a group consisting of an isolated ClfA, ClfB, Eap, Emp, EsaB, EsaC, EsxA, EsxB, Hla, IsdA, IsdB, IsdC, SasB, SasF, SdrC, SdrD, Coa, Ebh, vWa, SdrE, and SpA antigen, or a fragment thereof.

[0058] The AdsA modulator can also be a recombinant nucleic acid molecule encoding an AdsA peptide. A recombinant nucleic acid molecule can encode the AdsA peptide and/or at least one staphylococcal antigen or immunogenic fragment. A nucleic acid can encode or a polypeptide can comprise a number of antigens including 2, 3, 4, 5, 6, 7, 8, 9, 10 or more of one or more of all or part of AdsA (SasH), Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Coa, Ebh, vWa, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, or SpA.

[0059] The AdsA modulator can also be a recombinant nucleic acid molecule encoding an AdsA peptide. A recombinant nucleic acid molecule can encode the AdsA peptide and/or at least one staphylococcal antigen or immunogenic fragment. A nucleic acid can encode or a polypeptide can comprise a number of antigens including 2, 3, 4, 5, 6, 7, 8, 9, 10 or more of one or more of all or part of AdsA (SasH), Eap,

Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Coa, Ebh, vWa, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, or SpA.

[0060] Embodiments of the invention include compositions that contain or do not contain a bacterium. A composition may or may not include an attenuated or viable or intact staphylococcal or other bacterium. In certain aspects, the composition comprises a bacterium that is not a Staphylococci bacterium or does not contain Staphylococci bacteria. In certain embodiments a bacterial composition comprises an isolated or recombinantly expressed AdsA polypeptide or a nucleic acid encoding the same. In still further aspects, the isolated AdsA polypeptide is multimerized, e.g., dimerized. In certain aspects of the invention, a composition comprises multimers of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more isolated cell surface proteins or segments thereof. In a further aspect the other polypeptides or peptides can be expressed or included in a bacterial composition including, but not limited to AdsA, Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, Coa, Ebh, vWa, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, or SpA or immunogenic fragments thereof. Alternatively, the composition may be or include a recombinantly engineered Staphylococcus bacterium that has been altered in a way that comprises specifically altering the bacterium with respect to a secreted virulence factor or cell surface protein. For example, the bacteria may be recombinantly modified to express more of the virulence factor or cell surface protein than it would express if unmodified.

[0061] Similarly, the term Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, Coa, Ebh, vWa, SasF, or SpA protein refers to a protein that includes the respective isolated wild-type polypeptides from staphylococcus bacteria, as well as variants, segments, or fragments that stimulate an immune response against the same. An immune response refers to a humoral response, a cellular response, or both a humoral and cellular response in an organism. An immune response can be measured by assays that include, but are not limited to, assays measuring the presence or amount of antibodies that specifically recognize a protein or cell surface protein, assays measuring T-cell activation or proliferation, and/or assays that measure modulation in terms of activity or expression of one or more cytokines Bacterial AdsA polypeptides include, but are not limited to all or part of the amino acid sequences of the following bacteria (accession number): Staphlyococcus aureus (ref|YP_001573948, ref|YP_184935, ref|YP_039500, ref|NP_373261, ref|NP_370547, ref|YP_042156, ref|NP_ 644838, reflYP_415541, dbjlBAA82250); Staphlyococcus hemolyticus (reflYP_254367); Streptococcus sanguinis (reflYP_001035187); Streptococcus gordonii (reflYP_ 001450531); Enterococcus faecalis (ref|NP_813870); Streptococcus suis (dbj|BAB83980, ref|YP_001200571, ref|YP_001198366); Streptococcus mutans (ref|NP_ 721592); Streptococcus thermophilus (ref|YP_141373, ref|YP_139455); Alkaliphilus metalliredigens (ref|YP_ 001321391); Clostridium botulinum (reflYP_001887045, ref|YP_001921966); Paenibacillus (ref|ZP 02846642); Alkaliphilus oremlandii (reflYP_001512463); Bacillus clausii (ref|YP_174466); Bacillus halodurans (ref|NP_ 240892); Clostridium difficile (ref|ZP_03126518, ref|ZP_ 02748384, ref|YP_001089051, ref|ZP_02726436, ref|ZP_ 01801990); Clostridium cellulolyticum (ref\ZP_01574143); and Anaerotruncus colihominis (ref|ZP_02441436), each of which is incorporated herein by reference. In certain aspects and AdsA polypeptide can have at least or more than 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 99%, identity, including all values and ranges there between, to SEQ ID NO:36 or SEQ ID NO:41.

[0062] In a further embodiment of the invention a composition may include a polypeptide, peptide, or protein that is or is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or similar to an AdsA polypeptide (SEQ ID NO:36) or AdsA nucleic acid (SEQ ID NO:35), in certain aspects the AdsA polypeptide will have an amino acid sequence of (SEQ ID NO:36). Similarity or identity, with identity being preferred, is known in the art and a number of different programs can be used to identify whether a protein (or nucleic acid) has sequence identity or similarity to a known sequence. Sequence identity and/or similarity is determined using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith & Waterman (1981), by the sequence identity alignment algorithm of Needleman & Wunsch (1970), by the search for similarity method of Pearson & Lipman (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al. (1984), preferably using the default settings, or by inspection. Preferably, percent identity is calculated by using alignment tools known to and readily ascertainable to those of skill in the art.

[0063] The compositions may be formulated in a pharmaceutically acceptable composition. In certain aspects of the invention the staphylococcus bacterium is an *S. aureus* or *S. epidermidis* bacterium. In another aspect, the bacteria is a bacillus or *B. anthracis*.

[0064] The activity of the compounds as inhibitors of AdsA can be assessed using methods known to those of skill in the art, as well as methods described herein. Screening assays may include controls for purposes of calibration and confirmation of proper manipulation of the components of the assay. Blank wells that contain all of the reactants but no member of the chemical library are usually included. As another example, a known inhibitor (or activator) of AdsA, can be incubated with one sample of the assay, and the resulting decrease (or increase) in the enzyme activity used as a comparator or control. It will be appreciated that modulators can also be combined with the enzyme activators or inhibitors to find modulators which inhibit the enzyme activation or repression that is otherwise caused by the presence of the known the enzyme modulator. The term "high throughput screening" or "HTS" as used herein refers to the testing of many thousands of molecules (or test compounds) for their effects on the function of a protein. In the case of group transfer reaction enzymes many molecules may be tested for effects on their catalytic activity. HTS methods are known in the art and they are generally performed in multiwell plates with automated liquid handling and detection equipment; however, it is envisioned that the methods of the invention may be practiced on a microarray or in a microfluidic system. The term "library" or "drug library" as used herein refers to a plurality of chemical molecules (test compounds) having potential as a modulator of AdsA, a plurality of nucleic acids, a plurality of peptides, or a plurality of proteins, and a combination thereof. Wherein the screening is performed by a high-throughput screening technique, wherein the technique utilizes a multiwell plate or a microfluidic system.

[0065] One example of an assay/kit for assessing AdsA activity includes, but is not limited to a Diazyme Enzyme reaction kit: This kit is a 5'-Nucleotidase (5'-NT) assay kit is typically used for the determination of 5'-NT activity in human serum samples. The 5'-NT assay is based on the enzymatic hydrolysis of 5'-monophosphate (5'-IMP) to form inosine which is converted to hypoxanthine by purine nucleoside phosphorylase (PNP). Hypoxanthine is then converted to uric acid and hydrogen peroxide (H_2O_2) by xanthine oxidase (XOD). H_2O_2 is further reacted with N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (EHSPT) and 4-aminoantipyrine (4-AA) in the presence of peroxidase (POD) to generate quinone dye which is monitored kinetically. This method is fast, but is not as sensitive as the radioactivity assays.

[0066] Inhibitors and inhibitor candidates include, but are not limited to derivatives or analogs of: α ,β-methylene adenosine 5'-diphosphate (AOPCP), an inhibitor of 5'-ecto nucleotidase (human homologue of bacterial AdsA), this inhibitor does not inhibit secreted 5'-nucleotidases from trophozoites of Trichomonas gallinae (Borges et al., 2007); nucleoticidin and melanocidins A and B, these compounds exhibited potent inhibitory activity against 5'-nucleotidases from rat liver membrane and snake venom (Uchino et al., 1986); polyphenolic compounds, these compounds poss-sess anti-tumor activity and inhibit 5'-nucleotidases from a variety of sources and have been isolated from the seeds of Areca catechu (betel nuts) as well as grapes (Iwamoto et al., 1988; Uchino et al., 1988; Toukairin et al., 1991).

[0067] In still further embodiments, a composition comprises a recombinant nucleic acid molecule encoding an AdsA polypeptide or segments/fragments thereof. Typically a recombinant nucleic acid molecule encoding an AdsA polypeptide contains a heterologous promoter.

[0068] In certain aspects, a recombinant nucleic acid molecule of the invention is a vector, in still other aspects the vector is a plasmid. In certain embodiments the vector is a viral vector. Aspects of the invention include compositions that further comprise a nucleic acid encoding an additional 1, 2, 3, 4, 5, 6, 7, 8, or more polypeptide or peptide.

[0069] In certain aspects a composition includes a recom-

binant, non-staphylococcus bacterium containing or expressing one or more polypeptide described herein in, e.g., an AdsA polypeptide. In particular aspects the recombinant nonstaphylococcus bacteria is Salmonella or another gram-positive bacteria. A composition is typically administered to mammals, such as human subjects, but administration to other animals capable of eliciting an immune response is contemplated. In further aspects the staphylococcus bacterium containing or expressing the AdsA polypeptide is a Staphylococcus aureus. In further embodiments the immune response is a protective and/or therapeutic immune response. [0070] Still further embodiments include methods for stimulating in a subject a protective or therapeutic immune response against a staphylococcus bacterium comprising administering to the subject an effective amount of a composition including (i) an AdsA polypeptide or peptide thereof; or, (ii) a nucleic acid molecule encoding an AdsA polypeptide or peptide thereof, or (iii) administering an AdsA polypeptide with any combination or permutation of bacterial proteins or polysaccharides described herein.

[0071] Yet still further embodiments include vaccines comprising a pharmaceutically acceptable composition having an isolated AdsA polypeptide, a segment or fragment thereof, or

any other combination or permutation of protein(s) or peptide (s) described, wherein the composition is capable of stimulating an immune response against a *staphylococcus* bacterium. The vaccine may comprise an isolated AdsA polypeptide and/or any other combination or permutation of protein(s), peptide(s) or polysaccharides described. In certain aspects of the invention the isolated AdsA polypeptide, or any other combination or permutation of protein(s) or peptide(s) described are multimerized, e.g., dimerized.

[0072] In a further aspect, the vaccine composition is contaminated by less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.25, 0.05% (or any range derivable therein) of other Staphylococcal proteins. A composition may further comprise an isolated non-AdsA polypeptide. Typically the vaccine comprises an adjuvant. In certain aspects a protein or peptide of the invention is linked (covalently or non-covalently coupled) to the adjuvant, preferably the adjuvant is chemically conjugated to the protein.

[0073] In still yet further embodiments, a vaccine composition is a pharmaceutically acceptable composition having a recombinant nucleic acid encoding all or part of an AdsA polypeptide, and/or any other combination or permutation of protein(s) or peptide(s) described herein, wherein the composition is capable of stimulating an immune response against a staphylococcus or bacillus bacteria. The vaccine composition may comprise a recombinant nucleic acid encoding all or part of an AdsA polypeptide, and/or any other combination or permutation of protein(s) or peptide(s) described. In certain embodiments the recombinant nucleic acid contains a heterologous promoter. Preferably the recombinant nucleic acid is a vector. More preferably the vector is a plasmid or a viral vector.

[0074] In further embodiments, a vaccine composition is a pharmaceutically acceptable composition comprising an isolated antibody, or fragment thereof, that binds an AdsA protein or antigen, or a fragment thereof, wherein the composition is capable of attenuating a staphylococcus bacterial infection in a subject, e.g., modulating phagocytic uptake of bacteria. The antibody can be a human or humanized antibody. In certain aspects the antibody is a polyclonal antibody, or monoclonal antibody, or single chain antibody, or fragment thereof.

[0075] The vaccine composition can further comprise at least one additional isolated antibody that binds a antigen selected from a group consisting of an isolated ClfA, ClfB, EsaB, EsaC, EsxA, EsxB, Hla, IsdA, IsdB, IsdC, Emp, Eap, SasB, SasF, SdrC, SdrD, Coa, Ebh, vWa, SdrE, and SpA antigen, or a fragment thereof.

[0076] Still further embodiments include methods for stimulating in a subject a protective or therapeutic immune response against a *staphylococcus* bacterium comprising administering to the subject an effective amount of a composition of an AdsA polypeptide or segment/fragment thereof comprising one or more of (i) a Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, IsdC, Spa, ClfA, ClfB, Coa, Ebh, vWa, IsdC, SasB, SasF, or SpA polypeptide or segment or fragment thereof; or, (ii) a nucleic acid molecule encoding the same. Methods of the invention also include AdsA compositions that contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more of Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, Coa, Ebh, vWa, SdrE, Hla or a variant thereof, IsdA, IsdB, IsdC, SpA, ClfA, ClfB, IsdC, SasB, SasF,

or Spa in various combinations. In certain aspects a vaccine formulation includes an IsdA polypeptide or segment or fragment thereof.

[0077] In still a further aspect the invention includes a staphylococcal bacterium lacking an AdsA polypeptide. Such a bacterium will be limited or attenuated with respect to its ability to evade phagocyte uptake and/or recognition. This characteristic can be used to provide bacterial strain for the production of attenuated bacteria for use in the preparation of vaccines or treatments for staphylococcal infections or related diseases. In yet a further aspect, AdsA can be overexpressed in an attenuated bacterium to further enhance or supplement an immune response or vaccine formulation.

[0078] Any embodiment discussed with respect to one aspect of the invention applies to other aspects of the invention as well. In particular, any embodiment discussed in the context of an AdsA peptide or nucleic acid may be implemented with respect to other secreted virulence factors, and/or cell surface proteins, such as Eap, Emp, EsaB, EsaC, Coa, Ebh, vWa, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, or SpA proteins or nucleic acids or antibodies that bind the same, and vice versa.

[0079] The term "providing" or "administering" is used according to its ordinary meaning to indicate "to supply or furnish for use." In some embodiments, the protein is provided directly by administering the protein, while in other embodiments, the protein is effectively provided or administered by administering a nucleic acid that encodes the protein. In certain aspects the invention contemplates compositions comprising various combinations of antibodies, nucleic acid, antigens, peptides, epitopes, and/or polysaccharides and the like.

[0080] The subject typically will have (e.g., diagnosed with a persistent staphylococcal infection), will be suspected of having, or will be at risk of developing a staphylococcal infection. Compositions of the present invention include immunogenic compositions wherein the antigen(s) or epitope (s) are contained in an amount effective to achieve the intended purpose (e.g., treating or preventing infection). More specifically, an effective amount means an amount of active ingredients necessary to stimulate or elicit an immune response, or provide resistance to, amelioration of, or mitigation of infection. In more specific aspects, an effective amount prevents, alleviates, or ameliorates symptoms of disease or infection, or prolongs the survival of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any preparation used in the methods of the invention, an effective amount or dose can be estimated initially from in vitro, cell culture, and/or animal model assays. For example, a dose can be formulated in animal models to achieve a desired immune response or circulating antibody concentration or titer. Such information can be used to more accurately determine useful doses in

[0081] As used herein, the term "modulate" or "modulation" encompasses the meanings of the words "enhance," or "inhibit." "Modulation" of activity may be either an increase or a decrease in activity. As used herein, the term "modulator" refers to compounds that effect the function of a moiety, including up-regulation, induction, stimulation, potentiation, inhibition, down-regulation, or suppression of a protein, nucleic acid, gene, organism or the like.

[0082] The term "isolated" can refer to a nucleic acid or polypeptide or peptide that is substantially free of cellular material, bacterial material, viral material, or culture medium (when produced by recombinant DNA techniques or isolated from naturally occurring organism(s)) of their source of origin, or chemical precursors or other chemicals (when chemically synthesized). Moreover, an isolated compound refers to one that can be administered to a subject as an isolated compound; in other words, the compound may not simply be considered "isolated" if it is adhered to a column or embedded in an agarose gel. Moreover, an "isolated nucleic acid fragment" or "isolated peptide" is a nucleic acid or protein fragment that does not naturally occur and/or function as a fragment and/or is not typically in the functional state.

[0083] Moieties of the invention, such as antibodies, polypeptides, peptides, antigens or immunogens, may be conjugated or linked covalently or noncovalently to other moieties such as adjuvants, proteins, peptides, supports, fluorescence moieties, or labels. The term "conjugate" or "immunoconjugate" is broadly used to define the operative association of one moiety with another agent and is not intended to refer solely to any type of operative association, and is particularly not limited to chemical "conjugation." Recombinant fusion proteins are particularly contemplated. Compositions of the invention may further comprise an adjuvant or a pharmaceutically acceptable excipient. An adjuvant may be covalently or non-covalently coupled to a polypeptide or peptide of the invention. In certain aspects, the adjuvant is chemically conjugated to a protein, polypeptide, or peptide. In still a further aspect the adjuvant is part of a recombinant protein and is comprised in a fusion protein comprising one or more antigens of interest.

[0084] The compositions may be formulated in a pharmaceutically acceptable composition. In certain aspects of the invention the staphylococcus bacterium is an *S. aureus* bacterium.

[0085] In further aspects of the invention a composition may be administered more than one time to the subject, and may be administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more times. The administration of the compositions include, but is not limited to nasal, pleural, oral, parenteral, subcutaneous, intramuscular, intravenous administration, or various combinations thereof, including inhalation or aspiration.

[0086] In still further embodiments, a composition comprises a recombinant nucleic acid molecule encoding an Emp, Eap and/or AdsA polypeptide or segments/fragments thereof. Typically a recombinant nucleic acid molecule encoding an Emp, Eap and/or AdsA polypeptide contains a heterologous promoter.

[0087] In certain aspects, a recombinant nucleic acid molecule of the invention is a vector, in still other aspects the vector is a plasmid. In certain embodiments the vector is a viral vector. Aspects of the invention include compositions that further comprise a nucleic acid encoding an additional 1, 2, 3, 4, 5, 6, 7, 8, or more polypeptides or peptides.

[0088] In certain aspects a composition includes a recombinant, non-staphylococcus bacterium containing or expressing one or more polypeptides described herein in, e.g., an Emp Eap and/or AdsA polypeptide. In particular aspects the recombinant non-staphylococcus bacteria is *Salmonella* or another gram-positive bacteria. A composition is typically administered to mammals, such as human subjects, but administration to other animals capable of eliciting an immune response is contemplated. In further aspects the sta-

phylococcus bacterium containing or expressing the Emp, Eap and/or AdsA polypeptide is a *Staphylococcus aureus*. In further embodiments the immune response is a protective immune response.

[0089] Compositions of the invention are typically administered to human subjects, but administration to other animals that are capable of eliciting an immune response to a staphylococcus bacterium is contemplated, particularly mice, dogs, cats, cattle, horses, goats, sheep and other domestic animals, i.e., mammals, including transgenic animals (e.g., animal manipulated to express human antibodies).

[0090] In still further aspects, the methods and compositions of the invention can be used to prevent, ameliorate, reduce, or treat infection of tissues or glands, e.g., mammary glands, particularly mastitis and other infections. Other methods include, but are not limited to prophylatically reducing bacterial burden in a subject not exhibiting signs of infection, particularly those subjects suspected of or at risk of being colonized by a target bacteria, e.g., patients that are or will be at risk or susceptible to infection during a hospital stay, treatment, and/or recovery.

[0091] Any list provided herein may specifically exclude or include any 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more members of the list

[0092] The embodiments in the Example section are understood to be embodiments of the invention that are applicable to all aspects of the invention.

[0093] The use of the term "or" in the claims is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and "and/or." It is also contemplated that anything listed using the term "or" may also be specifically excluded. [0094] Throughout this application, the term "about" is

used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.

[0095] Following long-standing patent law, the words "a" and "an," when used in conjunction with the word "comprising" in the claims or specification, denotes one or more, unless specifically noted.

[0096] Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

DESCRIPTION OF THE DRAWINGS

[0097] So that the matter in which the above-recited features, advantages and objects of the invention as well as others which will become clear are attained and can be understood in detail, more particular descriptions and certain embodiments of the invention briefly summarized above are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate certain embodiments of the invention and therefore are not to be considered limiting in their scope.

[0098] FIGS. 1A-1H Examination of abscess formation in staphylococcus aureus. (FIG. 1A) Photograph of Newman infected kidneys. (FIG. 1B) Photograph of srtA mutant

infected kidneys. (FIG. 1C) H&E histological section of Newman infected kidney. (FIG. 1D) Histological section of Δ SrtA infected kidney. (FIG. 1E) Closeup of Newman infected kidney. (FIG. 1F) Closeup of Δ SrtA infected kidney. (FIG. 1G) Scanning Electron Microscopy of Newman abscess. (FIG. 1H) SEM of Δ SrtA infected kidney.

[0099] FIG. 2 Murine renal abscess screen. Recovered colony forming units (CFU) from kidneys infected with respective mutant strains.

[0100] FIGS. 3A-3G Biofilm screen. (FIG. 3A) 96 well plate assay for in vitro biofilm growth. (FIG. 3B) SEM Newman in vitro biofilm (FIG. 3C) ΔsrtA biofilm. (FIG. 3D) ΔEmp biofilm. (FIG. 3E) ΔIcaA biofilm. (FIG. 3F) ΔIsdB biofilm. (FIG. 3G) ΔSdrD biofilm.

[0101] FIGS. 4A-4B Emp virulence. (FIG. 4A) Recovered CFUs for Newman, ΔΕαρ, ΔΕπρ, ΔSrtA, ΔΕαρ/ΔSrtA, ΔΕπρ/ΔSrtA. (FIG. 4B) Histopathology for respective strains.

[0102] FIGS. 5A-5E Eap, Emp vaccination. (FIG. 5A) SDS extraction of Newman, ΔSrtA, ΔIsdB, ΔIcaA, ΔEap, ΔEmp, ΔSaeR. (FIG. 5B) Protein purification of Eap (70 kDa) and Emp (45 kDa). (FIG. 5C) Recovered CFUs from mice vaccinated with PBS, Eap, or Emp and challenged with Newman. (FIG. 5D) ELISA IgG titers from vaccinated mice. (FIG. 5E) Histopathology from vaccinated mice.

[0103] FIGS. 6A-6B Ica virulence. (FIG. 6A) Recovered CFUs from mice infected with Newman, DIcaA, DIcaB, DIcaC, DIcaD, DIcaR, DIca:tet (entire operon deletion). (FIG. 6B) Histopathology from infected mice.

[0104] FIGS. 7A-7K Staphylococcal abscess formation following intravenous infection of mice. (A) BALB/c mice were infected with $1\times10_7$ colony forming units (CFU) of S. aureus Newman by retro-orbital injection. Cohorts of five mice were examined by cardiac puncture at timed intervals for bacterial load in blood; sample aliquots were plated on agar medium and CFU per ml of blood were enumerated. The means of these observations is indicated by a black bar. (B) Dissemination of S. aureus Newman into peripheral organ tissues and replication of the pathogen was measured at timed intervals in the kidneys of mice (cohorts of ten animals), which were homogenized and plated on agar medium for CFU. (C) Diameter of abscess lesions were measured in thin-sectioned hematoxylin-eosin stained tissues of infected kidneys at timed intervals. (D-K) Images of infected kidneys at timed intervals analyzed in thin-sectioned hematoxylineosin stained tissues. Arrowheads point to abscess lesions.

[0105] FIGS. 8A-8F Histopathology of staphylococcal abscess communities. BALB/c mice were infected with S. aureus Newman via retro-orbital injection. Thin-sectioned, hematoxylineosin stained tissues of infected kidneys on day 2 (ABC) and day 5 following infection (DEF) were analyzed by light microscopy and images captured. On day 2, a massive infiltrate (blue arrow in A) of polymorphonuclear granulocytes (PMNs) with occasional intracellular staphylococci (yellow arrows in C) are characteristic of early infectious lesions. By day 5, staphylococcal abscess communities developed as a central nidus (D, black arrow). Staphylococci were enclosed by an amorphous, eosinophilic pseudocapsule (boxed in black) and surrounded by a zone of dead PMNs (boxed in white), a zone of apparently healthy PMNs (boxed in red) and a rim of necrotic PMNs (boxed in green), separated through an eosinophilic layer from healthy kidney tis[0106] FIGS. 9A-9P Sortase A is required for abscess formation and staphylococcal persistence in host tissues. Kidneys of BALB/c mice (cohorts of ten animals) infected with *S. aureus* Newman, its isogenic sortase A mutant (ΔsrtA) or methicillin-resistant *S. aureus* USA300 were removed during necropsy of animals 5 (d5) and 15 days (d15) following inoculation. Kidneys were inspected for surface abscesses (A, F, K) or fixed in formalin, embedded, thin sectioned and stained with hematoxylin-eosin. Histopathology images were acquired with light microscopy at 10×(B, G, L, D, I, N) and 100×fold magnification (C, H, M, E, J, O). (P) Staphylococcal replication and persistence in kidney tissue was measured 5 and 15 days following infection. Kidneys were removed from infected mice during necropsy, tissue was homogenized and plated on agar medium for colony formation and enumeration

[0107] FIGS. 10A-10C Staphylococcal communities at the center of abscess lesions. Kidney tissue from mice infected with S. aureus Newman (wild-type), its isogenic sortase A mutant (ΔsrtA), or MRSA strain USA300 was sectioned, fixed, dehydrated and sputter coated with 80% platinum/20% palladium for scanning electron microscopy. (A) The wildtype pathogen is organized as a tightly associated lawn, the staphylococcal abscess community (SAC), at the abscess center that is contained within an amorphous pseudocapsule (white arrow heads), separating SACs from the cuff of leukocytes. Red blood cells were located among staphylococci (R). (B) The sortase mutant (ΔsrtA, arrows) did not form SACs and isolated staphylococci were found in healthy kidney tissue. (C) Similar to S. aureus Newman, MRSA strain USA300 also formed SACs contained within a pseudocapsule (white arrow heads).

[0108] FIGS. 11A-11B Formation of staphylococcal abscess communities requires specific surface proteins. (A) *S. aureus* Newman variants with *bursa aurealis* insertions in surface protein genes were examined five days following infection of BALB/c mice (cohorts of 20 animals) for bacterial load in homogenized kidney tissues. (B) Hematoxylineosin stained thin sections of infected kidneys were examined by light microscopy and 10× fold magnification for abscess lesions (white arrows).

[0109] FIGS. 12A-12L Emp and Eap in staphylococcal abscess lesions. Kidneys of BALB/c mice infected with S. aureus Newman variants carrying bursa aurealis insertions in emp or eap were removed 5 (d5) and 15 days (d15) following inoculation. Kidneys were stained with hematoxylin-eosin and histopathology images acquired with light microscopy at 10×(A, C, E, H) and 100× fold magnification (B, D, F, I). Expression of Eap (J) and Emp (K) in abscess lesions of wild-type S. aureus Newman were detected with rabbit anti-Emp or anti-Eap and secondary Alexafluor-647 labeled antibodies (red) in renal tissue stained with Hoechst-dye (blue) to detect nuclei of polymorphonuclear leukocytes, and with BODIPY-vancomycin (green) to reveal staphylococcal abscess communities. (L) Staphylococcal replication and persistence in kidney tissue was measured 5, 15 and 30 days following intravenous inoculation. Kidneys were removed from infected mice (cohorts of 10 animals), tissue was homogenized and plated on agar medium for colony formation and enumeration.

[0110] FIGS. 13A-13E Active and passive immunization with Eap generates protection from staphylococcal challenge. (A) BALB/c mice were immunized with purified Eap or Emp or mock treated with adjuvant alone and serum IgG

titers analyzed by ELISA. (B) Three weeks following immunization, animals were challenged via intravenous inoculation of staphylococci. Five days following infection, kidneys were removed during necropsy and renal tissue analyzed for staphylococcal load or histopathology. (C) Rabbit antibodies directed against Eap or Emp were purified by affinity chromatography and passively transferred by intraperitoneal injection into mice. Twenty-four hours later, serum IgG titers of passively immunized animals were analyzed by ELISA. (D) Animals passively immunized with purified antibodies against Eap or Emp as well as mock immunized animals subsequently challenged with *S. aureus* Newman and bacterial load enumerated on day 4. (E) Abscess formation in kidneys was detected in thin-sectioned, hematoxylin-eosin stained tissues.

[0111] FIG. 14 A working model for staphylococcal abscess formation and persistence in host tissues. Stage I—following intravenous inoculation, S. aureus survives in the blood stream and disseminates via the vasculature to peripheral organ tissues. Stage II—in renal tissues, staphylococci attract a massive infiltrate of polymorphonuclear leukocytes and other immune cells. Stage III—abscesses mature with a central accumulation of the pathogen (staphylococcal abscess communities—SAC), enclosed by an eosinophilic pseudocapsule. The SAC is surrounded by a zone of dead PMNs, apparently healthy PMNs and finally an outer zone of dead PMNs with a rim of eosinophilic material. Stage 4—abscesses mature and rupture on the organ surface, thereby releasing staphylococci into circulation and initiating new rounds of abscess development. Genes for bacterial envelope components that are required for specific stages of staphylococcal abscess development are printed in red underneath the corresponding stage during which these genes function.

[0112] FIGS. 15A-15H AdsA is a cell wall associated protein essential for survival in blood. Comparison of the survival of wild-type S. aureus Newman (WT) and isogenic srtA variants in blood from BALB/c mice (FIG. 15A) or Sprague-Dawley rats (FIG. 15D). Data are the means and standard error of the means from three independent analyses (±SEM). To assess the relative contribution of sortase A-anchored cell wall surface proteins for staphylococci survival in blood, isogenic mutants with transposon insertions in the indicated genes were incubated in blood from mice (FIG. 15B) or rats (FIG. 15E) for 60 minutes. Expression of padsA rescues staphylococcal survival of an adsA mutant in blood from mice (FIG. 15C), rats (FIG. 15F), or human volunteers (FIG. 15G). Visualization of WT, adsA, and adsA (padsA) staphylococci with phagocytic cells in Giemsa-stained human blood samples (FIG. 15H). Arrows indicate both extracellular and neutrophil associated S. aureus. Data are representative of two independent analyses with two different donors.

[0113] FIGS. 16A-16E AdsA is a virulence factor that enables staphylococcal replication and abscess formation in vivo. Staphylococcal burden in kidneys after infection of cohorts of 10 BALB/c mice with *S. aureus* Newman wild-type and adsA mutant (FIG. 16A) or USA300 wild-type and adsA mutant (FIG. 16C) (P<0.03 for infections for both Newman and USA300, unpaired t-test). Microscopic images of hematoxylin-eosin stained kidney tissue at ×10 (top panels) and ×100 magnification (lower panels) obtained following necropsy of mice infected with *S. aureus* Newman wild-type and adsA mutant (FIG. 16B) or *S. aureus* USA300 wild-type and adsA mutant (FIG. 16D). Black arrows denote a central concentration of staphylococci and PMN infiltrates. Data are

representative samples of cohorts of 5 animals per bacterial strain and 2 independent analyses. (FIG. **16**E) Bacterial load was measured as CFUs per 500 µl blood obtained from BALB/c mice infected by retroorbital injection with either wild-type (WT), adsA or adsA:padsA *S. aureus* Newman for 30 or 90 minutes. Data are representative of two independent analyses using cohorts of 10 animals for each time point. Unpaired t-test was used for statistical analysis.

[0114] FIGS. 17A-17F AdsA exhibits 5'-nucleotidase activity and hydrolyzes AMP. Lysostaphin cell wall extracts from the indicated bacterial strains were incubated with radiolabeled [14C]AMP and generation of [14C]Ado (adenosine) was measured by thin layer chromatography (TLC). (FIG. 17A) Radioactive signals for [14C]AMP and [14C]Ado following TLC were captured by PhosphorImager. (FIG. 17B) Radioactive [14C]Ado signals from (a) were quantified, calibrated for adenosine synthase activity in S. aureus Newman (100%) and displayed as percent amount. Data are the means of three independent analyses, error bars represent SEM. (P<0.05 for WT vs. adsA). (FIG. 17C) Radiolabeled [14C]AMP was incubated in the presence or absence of purified $AdsA_{1-400}$ (2 μM) in the presence or absence of 5 mM of various metal ions. Radioactive signals for [14C]AMP and [14C]Ado following TLC were captured by PhosphorImager. (FIG. 17D) Radioactive [14C]Ado signals from (c) were quantified, calibrated for adenosine synthase activity in the presence of manganese chloride (Mn2+)(100%) and displayed as percent amount. Displayed data are the mean of 2 independent analyses and error bars represent SEM. (P<0.05 for Zn^{+2} vs Mn^{+2} and Cu^{+2} vs Mn^{+2}). (FIG. 17E) GST-AdsA was purified from recombinant Escherichia coli, cleaved with thrombin to generate $AdsA_{1-400}$ and purified proteins were analyzed by Coomassie-stained SDS-PAGE. (FIG. 17F) Survival of adsA staphylococci in rat blood in the presence or absence of variable concentrations of adenosine.

[0115] FIGS. 18A-18D Staphylococcal AdsA synthesizes adenosine in blood. (FIG. 18A) Reversed-phase high performance liquid chromatography (RP-HPLC) to quantify adenosine (left panel, 100 μ M adenosine) and identify its monoisotopic ions by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS, right panel). Mouse blood was incubated without (FIG. 18B) or with *S. aureus* Newman wild-type (WT) (FIG. 18C) or its isogenic adsA variants (FIG. 18D) for one hour. Plasma was deproteinized, filtered and subjected to RP-HPLC to quantify adenosine (left panels) and identify its monoisotopic ions by MALDI-MS (right panels). Calculated abundance of adenosine in blood extrapolated from the purified adenosine control was 1.1 μ M (18B, no staphylococci), 13.2 μ M (18C, WT *S. aureus* Newman) and 2.1 μ M (18D, adsA mutant staphylococci).

[0116] FIGS. 19A-19E 5'-Nucleotidase activity enhances *B. anthracis* survival. (FIG. 19A) Mutanolysin extracts from *B. anthracis* strain Sterne (WT, wild-type) or adsA (basA) mutant bacilli were incubated with radiolabed [¹⁴C]AMP and generation of adenosine was measured by TLC. (FIG. 19B) Proteins from mutanolysin extracts were analyzed with antisera raised against BasA (aBasA) or BasC (aBasC), a control protein not involved in adenosine production. (FIG. 19C) Fluorescence microsocopy images of wild-type (WT) *B. anthracis* Sterne and its isogenic adsA mutant stained with antiserum against BasA (top panel) or non-reactive serum (NRS) and Cy3-labeled secondary antibodies (red) as well as Hoechst staining of nucleic acids (blue). (FIG. 19D) Radiolabeled [¹⁴C]AMP was incubated with purified BasA (2 μM)

in the presence of 5 mM of variable metal cations and generation of [14C]Ado (adenosine) was measured by thin layer chromatography (TLC) and PhosphorImager. Data are representative of 3 independent analyses. (FIG. **19**E) Survival of wild-type and adsA/basA mutant *B. anthracis* strain Sterne in rat blood over time (minutes) measured as colony forming units on agar plates. Data are the average of two independent analyses and error bars represent the SEM.

[0117] FIG. 20 Visualization of adsA disruption and padsA complementation. To allow visualization of AdsA, we used a Protein A deficient (Aspa) S. aureus strain SEJ2, as Protein A specifically binds to Fc domains of antibodies and interferes with immunoblotting analyses. Cell wall extracts from wild type Aspa SEJ2 (lane 1), Δ spa, adsA:ermB (lane 2) or Δ spa, adsA:ermB cells transformed with padsA were separated by SDS-PAGE and immunoblotting analyses conducted with anti-sera raised against GST-AdsA₁₋₄₀₀. * denotes non-specific reactive species

[0118] FIG. 21 Histological examination of kidneys isolated from mice infected with USA300. Microscopic images of hematoxylin-eosin stained kidney tissue at x10 obtained following necropsy of mice infected for 4 days with *S. aureus* USA300 wild-type (bottom panels) and adsA mutants (top panels). Black arrows denote a central concentration of staphylococci and PMN infiltrates. Data are representative samples of cohorts of 5 animals per bacterial strain and 2 independent analyses.

DETAILED DESCRIPTION OF THE INVENTION

[0119] Biofilms are microbial communities embedded in a secreted extracellular matrix (Hall-Stoodley et al., 2004; Kolter and Greenberg, 2006). Many bacterial species are capable of switching from planktonic growth to the formation of biofilms and thereby display increased antibiotic resistance (Drenkard and Ausubel, 2002), evasion from host immune defenses (Singh et al., 2002), and are more adept at establishing chronic infections in humans (Brady et al., 2008). Biofilms of staphylococcal species have been associated with a number of diseases including endocarditis (Xiong et al., 2005), osteomyelitis (Brady et al., 2006), and various implant-mediated infections including urinary catheters, prosthetic heart valves, and artificial joints (Cassat et al., 2007). This applies in particular to Staphylococcus epidermidis, an opportunistic pathogen that avidly forms biofilms in vitro and in vivo (Mack et al., 1996). While there is clear association between the ability to form biofilms and virulence in S. epidermidis, such correlation has not yet been demonstrated for S. aureus (Cassat et al., 2007).

[0120] S. aureus is a commensal of human skin and nares and the leading cause of bloodstream and skin/soft tissue infections (Klevens et al., 2007). The pathogenesis of staphylococcal infections is initiated as bacteria invade skin or blood stream via trauma, surgical wounds, or medical devices (Lowy, 1998). Some staphylococci are cleared from the blood stream by phagocytic killing, however staphylococci that escape immune defenses seed infections in organ tissues and induce a proinflammatory response mediated by the release of cytokines and chemokines from macrophages, neutrophils, and other phagocytes (Lowy, 1998). The resulting invasion of immune cells to the site of infection is accompanied by central liquefaction necrosis and formation of peripheral fibrin walls in an effort to prevent microbial spread and allow for removal of necrotic tissue debris (Lowy, 1998). Such lesions can be observed by microscopy as hypercellular areas containing necrotic tissue, leukocytes, and a central nidus of bacteria. Organ abscesses occur within two days of infection (unpublished data) and represent a hallmark of staphylococcal disease.

I. Staphylococcal Antigens

[0121] The Staphylococcus aureus Ess pathway can be viewed as a secretion module equipped with specialized transport components (Ess), accessory factors (Esa), and cognate secretion substrates (Esx). EssA, EssB and EssC are required for EsxA and EsxB secretion. Because EssA, EssB and EssC are predicted to be transmembrane proteins, it is contemplated that these proteins form a secretion apparatus. Some of the proteins in the ess gene cluster may actively transport secreted substrates (acting as motor) while others may regulate transport (regulator). Regulation may be achieved, but need not be limited to, transcriptional or posttranslational mechanisms for secreted polypeptides, sorting of specific substrates to defined locations (e.g., extracellular medium or host cells), or timing of secretion events during infection. At this point, it is unclear whether all secreted Esx proteins function as toxins or contribute indirectly to pathogenesis.

[0122] Staphylococci rely on surface protein mediated-adhesion to host cells or invasion of tissues as a strategy for escape from immune defenses. Furthermore, S. aureus utilize surface proteins to sequester iron from the host during infection. The majority of surface proteins involved in staphylococcal pathogenesis carry C-terminal sorting signals, i.e., they are covalently linked to the cell wall envelope by sortase. Further, staphylococcal strains lacking the genes required for surface protein anchoring, i.e., sortase A and B, display a dramatic defect in the virulence in several different mouse models of disease. Thus, surface protein antigens represent a validated vaccine target as the corresponding genes are essential for the development of staphylococcal disease and can be exploited in various embodiments of the invention. The sortase enzyme superfamily are Gram-positive transpeptidases responsible for anchoring surface protein virulence factors to the peptidoglycan cell wall layer. Two sortase isoforms have been identified in Staphylococcus aureus, SrtA and SrtB. These enzymes have been shown to recognize a LPXTG motif in substrate proteins. The SrtB isoform appears to be important in heme iron acquisition and iron homeostasis, whereas the SrtA isoform plays a critical role in the pathogenesis of Gram-positive bacteria by modulating the ability of the bacterium to adhere to host tissue via the covalent anchoring of adhesions and other proteins to the cell wall peptidoglycan.

[0123] Embodiments of the invention include, but are not limited to compositions and methods related to Emp and/or Eap. In certain embodiment Emp and/or Eap can be used in combination with other staphylococcal proteins such as EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, and/or SpA proteins. Emp (SEQ ID NO:2) or Eap (SEQ ID NO:4) are staphylococcal polypeptides. Sequence of other Emp and/or Eap polypeptides can be found in the protein databases and include, but are not limited to accession numbers YP_185731, NP_371337, NP_645584, CAB75985, YP_416239, YP_040269, and NM0758 for Emp and YP_500650, CAB94853, YP_186825, CAB51807, NP_646697, YP_041404, NM1872 for Eap, each of which is incorporated herein by

reference as of the priority date of this application. Additional Staphyloccal antigens include 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein.

[0124] In mammals, adenosine assumes an essential role in regulating innate and acquired immune responses (Thiel et al., 2003). Strong or excessive host inflammatory responses, for example in response to bacterial infection, exacerbate the tissue damage inflicted by invading pathogens (Thiel et al., 2003). Successful immune clearance of microbes therefore involves the balancing of pro- and anti-inflammatory mediators. Cytokines IL-4, IL-10, IL-13 and TGF-β restrict excessive inflammation, however only adenosine is able to completely suppress immune responses (Nemeth et al., 2006). The immunoregulatory attributes of adenosine are mediated via four transmembrane adenosine receptors: A_1 , A_{2A} , A_{2B} , and A₃ (Hasko and Pacher, 2008). T lymphocytes express the high affinity A_{2A} receptor as well as the low affinity A_{2B} receptor (Thiel et al., 2003). Depending on their activation state, macrophages and neutrophils express all four adenosine receptors, whereas B cells harbor only A24 (Thiel et al., 2003). Engagement of A_{2A} inhibits IL-12 production, increases IL-10 in monocytes (Khoa et al., 2001) and dendritic cells (Panther et al., 2001), and decreases cytotoxic attributes and chemokine production in neutrophils (McColl et al., 2006; Cronstein et al., 1986). Generation of adenosine at sites of inflammation, hypoxia, organ injury, and traumatic shock is mediated by two sequential enzymes. Ecto-ATP diphosphohydrolase (CD39) converts circulating adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to 5'-adenosine monophosphate (AMP) (Eltzshig et al., 2003). CD73, expressed on the surface of endothelial cells (Deussen et al., 1993) and subsets of T cells (Thompson et al., 1989; Thompson et al., 1987; Yang et al., 2005), then converts 5'-AMP to adenosine (Zimmermann, 1992).

[0125] Although extracellular adenosine is essential for the suppression of inflammation, build-up of excess adenosine is also detrimental. This is exemplified in patients with a deficiency in adenosine deaminase (ADA), an enzyme that converts adenosine into inosine (Giblett, et al., 1972). ADA deficiency causes the severe compromised immunodeficiency syndrome (SCID) with impaired cellular immunity and severely decreased production of immunoglobulins (Buckley et al., 1997). As the regulation of extracellular adenosine is critical in maintaining immune homeostasis, perturbation of adenosine levels is likely to impact host immune responses during infection. The inventors describe herein that bacteria, e.g., S. aureus and Bacillus anthracis, use adenosine synthesis to escape host immune responses and provide methods and composition for utilizing this information for the treatment and/or prevention of bacterial infection, e.g., bacteremia.

[0126] Certain embodiments of the invention are directed to inducing an immune response, providing an antibody to, or inhibiting AdsA. AdsA (SEQ ID NO:55) is a staphylococcal polypeptide. Sequence of other AdsA polypeptides can be found in the protein databases and include, but are not limited: Staphlyococcus aureus (ref|YP_001573948, ref|YP_ 184935, reflYP_039500, reflNP_373261, reflNP_370547, ref|YP_042156, reflYP_415541, reflNP_644838, dbj|BAA82250); Staphlyococcus hemolyticus (ref|YP_ 254367); Streptococcus sanguinis (ref|YP_001035187); Streptococcus gordonii (ref|YP_001450531); Enterococcus (reflNP_813870); Streptococcus (dbj|BAB83980, ref|YP_001200571, ref|YP_001198366); Streptococcus mutans (reflNP_721592); Streptococcus thermophilus (reflYP_141373, reflYP_139455); Alkaliphilus metalliredigens (ref|YP_001321391); Clostridium botulinum (reflYP_001887045, reflYP_001921966); Paenibacillus (reflZP_02846642); Alkaliphilus oremlandii (reflYP_ 001512463); Bacillus clausii (ref|YP_174466); Bacillus halodurans (ref|NP_240892); Clostridium difficile (ref|ZP_ 03126518, reflZP_02748384, reflYP_001089051, reflZP 02726436, ref|ZP_01801990); Clostridium cellulolyticum (ref|ZP 01574143); Anaerotruncus colihominis (ref|ZP 02441436), each of which is incorporated herein by reference as of the priority date of this application. In certain aspects, AdsA polypeptide can have at least or more than 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 99%, identity, including all values and ranges there between, to SEQ ID NO:36 or SEQ

[0127] Certain aspects of the invention include methods and compositions concerning proteinaceous compositions including polypeptides, peptides, antibodies that bind such polypeptides and peptides, or nucleic acids encoding Emp and/or Eap and other staphylococcal antigens such as EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibringen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or combinations thereof. These proteins may be modified by deletion, insertion, and/or substitution.

[0128] Certain aspects of the invention include methods and compositions concerning proteinaceous compositions including polypeptides, peptides, and/or antibodies that bind such polypeptides and peptides, or nucleic acids encoding AdsA and other staphylococcal antigens such as Eap, Emp, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SasH (AdsA), Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding pro-

tein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or combinations thereof. These proteins may be modified by deletion, insertion, and/or substitution.

[0129] These polypeptides include the amino acid sequence of proteins from bacteria in the Staphylococcus genus. The sequence may be from a particular *staphylococcus* species, such as *Staphylococcus aureus*, and may be from a particular strain, such as Newman.

[0130] The sortase substrate polypeptides include, but are not limited to the amino acid sequence of SdrC, SdrD, SdrE, IsdA, IsdB, SpA, ClfA, ClfB, IsdC or SasF proteins from bacteria in the Staphylococcus genus. The sortase substrate polypeptide sequence may be from a particular staphylococcus species, such as Staphylococcus aureus, and may be from a particular strain, such as Newman. In certain embodiments, the SdrD sequence is from strain N315 and can be accessed using GenBank Accession Number NP_373773.1 (gi|15926240), which is incorporated by reference. In other embodiments, the SdrE sequence is from strain N315 and can be accessed using GenBank Accession Number NP_373774.1 (gi|15926241), which is incorporated by reference. In other embodiments, the IsdA sequence is SAV1130 from strain Mu50 (which is the same amino acid sequence for Newman) and can be accessed using Genbank Accession Number NP_371654.1 (gi|15924120), which is incorporated by reference. In other embodiments, the IsdB sequence is SAV 1129 from strain Mu50 (which is the same amino acid sequence for Newman) and can be accessed using Genbank Accession Number NP_371653.1 (gi|15924119), which is incorporated by reference. In further embodiments, other polypeptides transported by the Ess pathway or processed by sortase may be used, the sequences of which may be identified by one of skill in the art using databases and internet accessible resources.

[0131] Examples of various proteins that can be used in the context of the present invention can be identified by analysis of database submissions of bacterial genomes, including but not limited to accession numbers NC_002951 (GI:57650036 and GenBank CP000046), NC_002758 (GI:57634611 and GenBank BA000017), NC_002745 (GI:29165615 and GenBank BA000018), NC_003923 (GI:21281729 and GenBank BA000033), NC_002952 (GI:49482253 and GenBank BX571856), NC_002953 (GI:49484912 and GenBank BX571857), NC_007793 (GI:87125858 and GenBank CP000255), NC_007795 (GI:87201381 and GenBank CP000253) each of which are incorporated by reference.

[0132] As used herein, a "protein" or "polypeptide" refers to a molecule comprising at least ten amino acid residues. In some embodiments, a wild-type version of a protein or polypeptide are employed, however, in many embodiments of the invention, a modified protein or polypeptide is employed to generate an immune response. The terms described above

may be used interchangeably. A "modified protein" or "modified polypeptide" refers to a protein or polypeptide whose chemical structure, particularly its amino acid sequence, is altered with respect to the wild-type protein or polypeptide. In some embodiments, a modified protein or polypeptide has at least one modified activity or function (recognizing that proteins or polypeptides may have multiple activities or functions). It is specifically contemplated that a modified protein or polypeptide may be altered with respect to one activity or function yet retain a wild-type activity or function in other respects, such as immunogenicity.

[0133] In certain embodiments the size of a protein or polypeptide (wild-type or modified) may comprise, but is not limited to, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1100, 1200, 1300, 1400, 1500, 1750, 2000, 2250, 2500 amino molecules or greater, and any range derivable therein, or derivative of a corresponding amino sequence described or referenced herein. It is contemplated that polypeptides may be mutated by truncation, rendering them shorter than their corresponding wild-type form, but also they might be altered by fusing or conjugating a heterologous protein sequence with a particular function (e.g., for targeting or localization, for enhanced immunogenicity, for purification purposes, etc.).

[0134] As used herein, an "amino molecule" refers to any amino acid, amino acid derivative, or amino acid mimic known in the art. In certain embodiments, the residues of the proteinaceous molecule are sequential, without any non-amino molecule interrupting the sequence of amino molecule residues. In other embodiments, the sequence may comprise one or more non-amino molecule moieties. In particular embodiments, the sequence of residues of the proteinaceous molecule may be interrupted by one or more non-amino molecule moieties.

[0135] Accordingly, the term "proteinaceous composition" encompasses amino molecule sequences comprising at least one of the 20 common amino acids in naturally synthesized proteins, or at least one modified or unusual amino acid.

[0136] Proteinaceous compositions may be made by any technique known to those of skill in the art, including (i) the expression of proteins, polypeptides, or peptides through standard molecular biological techniques, (ii) the isolation of proteinaceous compounds from natural sources, or (iii) the chemical synthesis of proteinaceous materials. The nucleotide as well as the protein, polypeptide, and peptide sequences for various genes have been previously disclosed, and may be found in the recognized computerized databases. One such database is the National Center for Biotechnology Information's Genbank and GenPept databases (on the World Wide Web at ncbi.nlm.nih.gov/). The coding regions for these genes may be amplified and/or expressed using the techniques disclosed herein or as would be known to those of ordinary skill in the art.

[0137] Amino acid sequence variants of Emp or Eap or AdsA and other polypeptides of the invention, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof,

IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288, 214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein can be substitutional, insertional, or deletion variants. A modification in a polypeptide of the invention may affect 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500 or more non-contiguous or contiguous amino acids of the polypeptide, as compared to wild-type.

[0138] An antigen of the invention can comprise a segment or fragment of an antigen (AdsA, Emp, Eap, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa,

SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288, 214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein) described herein comprising amino acid 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, $110,\,111,\,112,\,113,\,114,\,115,\,116,\,117,\,118,\,119,\,120,\,121,$ 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, or more (including all values and ranges there between) to amino acid 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, $184,\,185,\,186,\,187,\,188,\,189,\,190,\,191,\,192,\,193,\,194,\,195,$ 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, or more (including all values and ranges there between) of the antigen, including all segments and fragments there between. Certain aspects of the invention are directed to an antibody that binds one or more of the above described fragments or segments.

[0139] Deletion variants typically lack one or more residues of the native or wild-type protein. Individual residues can be deleted or a number of contiguous amino acids can be deleted. A stop codon may be introduced (by substitution or insertion) into an encoding nucleic acid sequence to generate a truncated protein. Insertional mutants typically involve the addition of material at a non-terminal point in the polypeptide. This may include the insertion of one or more residues. Terminal additions, called fusion proteins, may also be generated

[0140] Substitutional variants typically contain the exchange of one amino acid for another at one or more sites within the protein, and may be designed to modulate one or more properties of the polypeptide, with or without the loss of other functions or properties. Substitutions may be conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well known in the art and include, for example, the changes of: alanine to

serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine. Alternatively, substitutions may be non-conservative such that a function or activity of the polypeptide is affected. Non-conservative changes typically involve substituting a residue with one that is chemically dissimilar, such as a polar or charged amino acid for a nonpolar or uncharged amino acid, and vice versa.

TABLE 2-continued

Codon Table			
Amino Acids	ino Acids Codons		
Glutamic acid	GluE	GAA GAG	
Phenylalanine	Phe F	טטכ טטט	
Glycine	GlyG	GGA GGC GGG GGU	
Histidine	HisH	CAC CAU	
Isoleucine	IleI	AUA AUC AUU	

TABLE 1

Exemplary surface proteins of S. aureus strains.								
SAV#	SA#	Surface	MW2	Mu50	N315	Newman	MRSA252*	MSSA476*
SAV0111	SA0107	SpA	492	450	450		516	492
SAV2503	SA2291	FnBPA	1015	1038	1038		_	1015
SAV2502	SA2290	FnBPB	943	961	961		965	957
SAV0811	SA0742	ClfA	946	935	989	933	1029	928
SAV2630	SA2423	ClfB	907	877	877	913	873	905
Np	np	Can	1183	_	_		1183	1183
SAV0561	SA0519	SdrC	955	953	953	947	906	957
SAV0562	SA0520	SdrD	1347	1385	1385	1315	_	1365
SAV0563	SA0521	SdrE	1141	1141	1141	1166	1137	1141
Np	np	Pls	_	_	_		_	_
SAV2654	SA2447	SasA	2275	2271	2271		1351	2275
SAV2160	SA1964	SasB	686	2481	2481		2222	685
	SA1577	SasC	2186	213	2186		2189	2186
SAV0134	SA0129	SasD	241	241	241		221	241
SAV1130	SA0977	SasE/IsdA	350	350	350		354	350
SAV2646	SA2439	SasF	635	635	635		627	635
SAV2496		SasG	1371	525	927		_	1371
SAV0023	SA0022	SasH	772	_	772		786	786
SAV1731	SA1552	SasI	895	891	891		534	895
SAV1129	SA0976	SasJ/IsdB	645	645	645		652	645
	SA2381	SasK	198	211	211		_	197
	Np	SasL	_	232	_		_	_
SAV1131	SA0978	IsdC	227	227	227		227	227

[0141] Proteins of the invention may be recombinant, or synthesized in vitro. Alternatively, a non-recombinant or recombinant protein may be isolated from bacteria. It is also contemplated that a bacteria containing such a variant may be implemented in compositions and methods of the invention. Consequently, a protein need not be isolated.

[0142] The term "functionally equivalent codon" is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also refers to codons that encode biologically equivalent amino acids (see Table 2, below).

TABLE 2

Codon Table				
Amino Acids		Codons		
Alanine	AlaA	GCA GCC GCG GCU		
Cysteine	CAa C	UGC UGU		
Aspartic acid	Asp D	GAC GAU		

TABLE 2-continued

	Codon Table				
Amino Acids		Codons			
Lysine	Lys K	AAA AAG			
Leucine	Leu L	UUA UUG CUA CUC CUG CUU			
Methionine	Met M	AUG			
Asparagine	AsnN	AAC AAU			
Proline	Pro P	CCA CCC CCG CCU			
Glutamine	GlnQ	CAA CAG			
Arginine	ArgR	AGA AGG CGA CGC CGG CGU			
Serine	SerS	AGC AGU UCA UCC UCG UCU			
Threonine	Thr T	ACA ACC ACG ACU			

TABLE 2-continued

Codon Table			
Amino Acids Codons			
Valine	Val V	GUA GUC GUG GUU	
Tryptophan	TrpW	UGG	
Tyrosine	Tyr Y	UAC UAU	

[0143] It also will be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids, or 5' or 3' sequences, respectively, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region.

[0144] The following is a discussion based upon changing of the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid substitutions can be made in a protein sequence, and in its underlying DNA coding sequence, and nevertheless produce a protein with like properties. It is thus contemplated by the inventors that various changes may be made in the DNA sequences of genes without appreciable loss of their biological utility or activity, e.g., immunogenicity.

[0145] In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

[0146] It also is understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still produce a biologically equivalent and immunologically equivalent protein.

[0147] As outlined above, amino acid substitutions generally are based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take into consideration the various foregoing characteristics are well known and include: arginine and

lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

[0148] It is contemplated that in compositions of the invention, there is between about 0.001 mg and about 10 mg of total polypeptide, peptide, and/or protein per ml. Thus, the concentration of protein in a composition can be about, at least about or at most about 0.001, 0.010, 0.050, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 ng or mg/ml or more (or any range derivable therein). Of this, about, at least about, or at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% may be Emp, Eap, and/or AdsA and may be used in combination with other polypeptide sequences described herein.

[0149] The present invention also discloses combinations of staphylococcal antigens which when combined, lead to the production of an immunogenic composition that is effective at treating or preventing staphylococcal infection. Staphylococcal infections progress through several different stages. For example, the staphylococcal life cycle involves commensal colonization, initiation of infection by accessing adjoining tissues or the bloodstream, anaerobic multiplication in the blood, interplay between S. aureus virulence determinants and the host defense mechanisms and induction of complications including endocarditis, metastatic abscess formation and sepsis syndrome. Different molecules on the surface of the bacterium will be involved in different steps of the infection cycle. Combinations of certain antigens can elicit an immune response which protects against multiple stages of staphylococcal infection. The effectiveness of the immune response can be measured either in animal model assays and/or using an opsonophagocytic assay.

[0150] A. Polypeptides and Polypeptide Production

[0151] The present invention describes polypeptides, peptides, and proteins and immunogenic fragments thereof for use in various embodiments of the present invention. For example, specific polypeptides are assayed for or used to elicit an immune response. In specific embodiments, all or part of the proteins of the invention can also be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young, (1984); Tam et al., (1983); Merrifield, (1986); and Barany and Merrifield (1979), each incorporated herein by reference. Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence which encodes a peptide of the invention is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression.

[0152] One embodiment of the invention includes the use of gene transfer to cells, including microorganisms, for the production and/or presentation of proteins. The gene for the protein of interest may be transferred into appropriate host cells followed by culture of cells under the appropriate conditions. A nucleic acid encoding virtually any polypeptide may be employed. The generation of recombinant expression vectors, and the elements included therein, are discussed

herein. Alternatively, the protein to be produced may be an endogenous protein normally synthesized by the cell used for protein production.

[0153] Another embodiment of the present invention uses autologous B lymphocyte cell lines, which are transfected with a viral vector that expresses an immunogen product, and more specifically, a protein having immunogenic activity. Other examples of mammalian host cell lines include, but are not limited to Vero and HeLa cells, other B- and T-cell lines, such as CEM, 721.221, H9, Jurkat, Raji, as well as cell lines of Chinese hamster ovary, W138, BHK, COS-7, 293, HepG2, 3T3, RIN and MDCK cells. In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or that modifies and processes the gene product in the manner desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.

[0154] A number of selection systems may be used including, but not limited to HSV thymidine kinase, hypoxanthine-guanine phosphoribosyltransferase, and adenine phosphoribosyltransferase genes, in tk-, hgprt- or aprt-cells, respectively. Also, anti-metabolite resistance can be used as the basis of selection: for dhfr, which confers resistance to trimethoprim and methotrexate; gpt, which confers resistance to mycophenolic acid; neo, which confers resistance to the aminoglycoside G418; and hygro, which confers resistance to hygromycin.

[0155] Animal cells can be propagated in vitro in two modes: as non-anchorage-dependent cells growing in suspension throughout the bulk of the culture or as anchorage-dependent cells requiring attachment to a solid substrate for their propagation (i.e., a monolayer type of cell growth).

[0156] Non-anchorage dependent or suspension cultures from continuous established cell lines are the most widely used means of large scale production of cells and cell products. However, suspension cultured cells have limitations, such as tumorigenic potential and lower protein production than adherent cells.

[0157] Where a protein is specifically mentioned herein, it is preferably a reference to a native or recombinant protein or optionally a protein in which any signal sequence has been removed. The protein may be isolated directly from the staphylococcal strain or produced by recombinant DNA techniques. Immunogenic fragments of the protein may be incorporated into the immunogenic composition of the invention. These are fragments comprising at least 10 amino acids, 20 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, or 100 amino acids, including all values and ranges there between, taken contiguously from the amino acid sequence of the protein. In addition, such immunogenic fragments are immunologically reactive with antibodies generated against the Staphylococcal proteins or with antibodies generated by infection of a mammalian host with Staphylococci.

[0158] Immunogenic fragments also includes fragments that when administered at an effective dose, (either alone or as a hapten bound to a carrier), elicit a protective immune response against Staphylococcal infection, in certain aspects it is protective against *S. aureus* and/or *S. epidermidis* infection. Such an immunogenic fragment may include, for

example, the protein lacking an N-terminal leader sequence, and/or a transmembrane domain and/or a C-terminal anchor domain. In a preferred aspect the immunogenic fragment according to the invention comprises substantially all of the extracellular domain of a protein which has at least 85% identity, at least 90% identity, at least 95% identity, or at least 97-99% identity, including all values and ranges there between, to that a sequence selected over the length of the fragment sequence.

[0159] Also included in immunogenic compositions of the invention are fusion proteins composed of Staphylococcal proteins, or immunogenic fragments of staphylococcal proteins. Such fusion proteins may be made recombinantly and may comprise one portion of at least 2, 3, 4, 5 or 6 staphylococcal proteins. Alternatively, a fusion protein may comprise multiple portions of at least 1, 2, 3, 4 or 5 staphylococcal proteins. These may combine different Staphylococcal proteins and/or multiples of the same protein or protein fragment, or immunogenic fragments thereof in the same protein. Alternatively, the invention also includes individual fusion proteins of Staphylococcal proteins or immunogenic fragments thereof, as a fusion protein with heterologous sequences such as a provider of T-cell epitopes or purification tags, for example: (3-galactosidase, glutathione-S-transferase, green fluorescent proteins (GFP), epitope tags such as FLAG, myc tag, poly histidine, or viral surface proteins such as influenza virus haemagglutinin, or bacterial proteins such as tetanus toxoid, diphtheria toxoid, and CRM197.

II. Therapeutic Methods

[0160] Active immunization with vaccines and passive immunization with immunoglobulins are promising alternatives to classical small molecule (e.g., antibiotic) therapy. A few bacterial diseases that once caused widespread illness, disability and death can now be prevented through the use of vaccines. The vaccines are based on weakened (attenuated) or dead bacteria, components of the bacterial surface or inactivated toxins. The immune response raised by a vaccine is mainly directed to immunogenic structures; a limited number of proteins or sugar structures on the bacteria that are actively processed by the immune system.

[0161] A method of the present invention includes treatment for a disease or condition caused by or related to a bacterial pathogen, e.g., staphylococcus or bacillus. An immunogenic polypeptide, and/or antibody that binds the same, can be given to induce or provide a therapeutic response in a person infected with a bacteria or suspected of having been exposed to a bacteria. Methods may be employed with respect to individuals who have tested positive for exposure to staphylococcus or *bacillus* or who are deemed to be at risk for infection based on possible exposure.

[0162] The invention encompasses methods of treatment of staphylococcal infection, particularly hospital acquired nosocomial infections. In particular, the invention encompasses methods of treatment for bacterial infection, particularly bacteremia. The therapeutic compositions and vaccines of the invention are particularly advantageous in cases of elective surgery. Such patients will know the date of surgery in advance and could be inoculated or treated in advance. The immunogenic compositions and vaccines of the invention are also advantageous in inoculating health care workers, first responders, and the like.

[0163] In some embodiments, the treatment is administered in the presence of adjuvants or carriers or other staphylococ-

cal antigens. Furthermore, in some examples, treatment comprises administration of other agents commonly used against bacterial infection, such as one or more antibiotics.

[0164] A. Vaccines

[0165] The present invention includes methods for preventing or ameliorating staphylococcal infections, particularly hospital acquired nosocomial infections. As such, the invention contemplates vaccines for use in both active and passive immunization embodiments. Immunogenic compositions, proposed to be suitable for use as a vaccine, may be prepared from immunogenic Emp, Eap and/or AdsA polypeptide(s), such as the full-length Emp, Eap and/or AdsA antigen or immunogenic fragments thereof. In other embodiments Emp, Eap and/or AdsA can be used in combination with other secreted virulence proteins, surface proteins or immunogenic fragments thereof, including EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or other staphylococcal antigen, peptide, or protein known to one of skill in the art. Preferably the antigenic material is extensively dialyzed to remove undesired small molecular weight molecules and/or lyophilized for more ready formulation into a desired vehicle.

[0166] Other viable and important options for a protein/ peptide-based vaccine involve introducing nucleic acids encoding the antigen(s) as DNA vaccines. In this regard, recent reports described construction of recombinant vaccinia viruses expressing 10 contiguous minimal CTL epitopes (Thomson, 1996) or a combination of B cell, cytotoxic T-lymphocyte (CTL), and T-helper (Th) epitopes from several microbes (An, 1997), and successful use of such constructs to immunize mice for priming protective immune responses. Thus, there is ample evidence in the literature for successful utilization of peptides, peptide-pulsed antigen presenting cells (APCs), and peptide-encoding constructs for efficient in vivo priming of protective immune responses. The use of nucleic acid sequences as vaccines is exemplified in U.S. Pat. Nos. 5,958,895 and 5,620,896, each of which is incorporated herein by reference in its entirety.

[0167] The preparation of vaccines that contain polypeptide or peptide sequence(s) as active ingredients is generally well understood in the art, as exemplified by U.S. Pat. Nos. 4,608,251; 4,601,903; 4,599,231; 4,599,230; 4,596,792; and 4,578,770, all of which are incorporated herein by reference. Typically, such vaccines are prepared as injectables either as liquid solutions or suspensions: solid forms suitable for solution in or suspension in liquid prior to injection may also be prepared. The preparation may also be emulsified. The active immunogenic ingredient is often mixed with excipients that

are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the vaccine may contain amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants that enhance the effectiveness of the vaccines. In specific embodiments, vaccines are formulated with a combination of substances, as described in U.S. Pat. Nos. 6,793,923 and 6,733,754, which are incorporated herein by reference.

[0168] Vaccines may be conventionally administered by inhalation or parenterally by injection, e.g., subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polyalkalene glycols or triglycerides: such suppositories may be formed from mixtures containing the active ingredient in the range of about 0.5% to about 10%, preferably about 1% to about 2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain about 10% to about 95% of active ingredient, preferably about 25% to about 70%.

[0169] The polypeptide, peptides and peptide-encoding DNA constructs may be formulated into a vaccine as neutral or salt forms. Pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the peptide) and those that are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.

[0170] Typically, vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic. The quantity to be administered depends on the subject to be treated, including the capacity of the individual's immune system to synthesize antibodies and the degree of protection desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner. However, suitable dosage ranges are of the order of several hundred micrograms active ingredient per vaccination. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by subsequent inoculations or other administrations.

[0171] The manner of application may vary widely. Any of the conventional methods for administration of a vaccine are applicable. These are believed to include oral application on a solid physiologically acceptable base or in a physiologically acceptable dispersion, parenterally, by injection and the like. The dosage of the vaccine will depend on the route of administration and will vary according to the size and health of the subject.

[0172] In many instances, it will be desirable to have multiple administrations of the vaccine, usually at most, at least, or not exceeding six vaccinations, more usually four vacci-

nations, and typically one or more, usually at least about three vaccinations. The vaccinations will normally be at 1, 2, 3, 4, 5, 6, to 5, 6, 7, 8, 9, 10, 11, to 12 week intervals, including all values and ranges there between, more usually from three to five week intervals. Typically, periodic boosters at intervals of 1-5 years, usually three years, will be desirable to maintain protective levels of the antibodies. The course of the immunization may be followed by assays for antibodies against the antigens, as described supra, U.S. Pat. Nos. 3,791,932; 4,174, 384 and 3,949,064, are illustrative of these types of assays.

[0173] The use of peptides for vaccination typically requires conjugation of the peptide to an immunogenic carrier protein, such as hepatitis B surface antigen, keyhole limpet hemocyanin, or bovine serum albumin, or an adjuvant. Methods for performing this conjugation are well known in the art. [0174] 1. Carriers

[0175] A given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide to a carrier. Carriers include, but are not limited to keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin, or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-male-imidobencoyl-N-hydroxysuccinimide ester, carbodiimyde, and bis-biazotized benzidine.

[0176] 2. Adjuvants

[0177] The immunogenicity of polypeptide or peptide compositions can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Suitable adjuvants include all acceptable immunostimulatory compounds, such as cytokines, toxins, or synthetic compositions.

[0178] A number of adjuvants can be used to enhance an antibody response against an Emp, Eap and/or AdsA peptide or any other antigen described herein. In other embodiments Emp, Eap and/or AdsA can be used in combination with EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, and/or SpA peptide or protein. Adjuvants can (1) trap the antigen in the body to cause a slow release; (2) attract cells involved in the immune response to the site of administration; (3) induce proliferation or activation of immune system cells; or (4) improve the spread of the antigen throughout the subject's body.

[0179] Adjuvants include, but are not limited to, oil-in-water emulsions, water-in-oil emulsions, mineral salts, polynucleotides, and natural substances. Specific adjuvants that may be used include IL-1, IL-2, IL-4, IL-7, IL-12, γ-interferon, GMCSP, BCG, aluminum salts, such as aluminum hydroxide or other aluminum compound, MDP compounds, such as thur-MDP and nor-MDP, CGP (MTP-PE), lipid A, and monophosphoryl lipid A (MPL). RIBI, which contains three components extracted from bacteria, MPL, trehalose dimycolate (TDM), and cell wall skeleton (CWS) in a 2% squalene/Tween 80 emulsion may also be used. MHC antigens may even be used. Others adjuvants or methods are exemplified in U.S. Pat. Nos. 6,814,971, 5,084,269, 6,656, 462, each of which is incorporated herein by reference.

[0180] Various methods of achieving adjuvant affect for the vaccine includes use of agents such as aluminum hydroxide or phosphate (alum), commonly used as about 0.05 to about 0.1% solution in phosphate buffered saline, admixture with

synthetic polymers of sugars (Carbopol®) used as an about 0.25% solution, aggregation of the protein in the vaccine by heat treatment with temperatures ranging between about 70° to about 101° C. for a 30-second to 2-minute period, respectively. Aggregation by reactivating with pepsin-treated (Fab) antibodies to albumin; mixture with bacterial cells (e.g., *C. parvum*), endotoxins or lipopolysaccharide components of Gram-negative bacteria; emulsion in physiologically acceptable oil vehicles (e.g., mannide mono-oleate (Aracel A)); or emulsion with a 20% solution of a perfluorocarbon (Fluosol-DA®) used as a block substitute may also be employed to produce an adjuvant effect.

[0181] A typical adjuvant is complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed *Mycobacterium tuberculosis*), incomplete Freund's adjuvants, and aluminum hydroxide.

[0182] In some aspects, it is preferred that the adjuvant be selected to be a preferential inducer of either a Th1 or a Th2-type of response. High levels of Th1-type cytokines tend to favor the induction of cell mediated immune responses to a given antigen, while high levels of Th2-type cytokines tend to favor the induction of humoral immune responses to the antigen.

[0183] The distinction between Th1 and Th2-type immune response is not absolute. In reality an individual will support an immune response which is described as being predominantly Th1 or predominantly Th2. However, it is often convenient to consider the families of cytokines in terms of that described in murine CD4+T cell clones by Mosmann and Coffman (Mosmann, and Coffman, 1989). Traditionally, Th1-type responses are associated with the production of the INF-γ and IL-2 cytokines by T-lymphocytes. Other cytokines often directly associated with the induction of Th1-type immune responses are not produced by T-cells, such as IL-12. [0184] In contrast, Th2-type responses are associated with the secretion of IL-4, IL-5, IL-6, IL-10.

[0185] In addition to adjuvants, it may be desirable to co-administer biologic response modifiers (BRM) to enhance immune responses. BRMs have been shown to upregulate T cell immunity or downregulate suppresser cell activity. Such BRMs include, but are not limited to, Cimetidine (CIM; 1200 mg/d) (Smith/Kline, PA); or low-dose Cyclophosphamide (CYP; 300 mg/m²) (Johnson/Mead, N.J.) and cytokines such as γ-interferon, IL-2, or IL-12 or genes encoding proteins involved in immune helper functions, such as B-7.

[0186] B. Antibodies And Passive Immunization

[0187] Direct administration of therapeutic immunoglobulins, also referred to as passive immunization, does not require an immune response from the patient and, therefore, gives immediate protection. In addition, passive immunization can be directed to bacterial structures that are not immunogenic and that are less specific to the organism. Passive immunization against pathogenic organisms has been based on immunoglobulins derived from sera of human or non-human donors.

[0188] One aspect of the invention is a method of preparing an immunoglobulin for use in prevention or treatment of staphylococcal infection comprising the steps of immunizing a recipient with the vaccine of the invention and isolating immunoglobulin or antibodies from the recipient. An immunoglobulin prepared by this method is a further aspect of the invention. A pharmaceutical composition comprising the immunoglobulin of the invention and a pharmaceutically acceptable carrier is a further aspect of the invention which

could be used in the manufacture of a medicament for the treatment or prevention of staphylococcal disease. A method for treatment or prevention of staphylococcal infection comprising a step of administering to a patient an effective amount of the pharmaceutical preparation of the invention is a further aspect of the invention.

[0189] Inocula for polyclonal antibody production are typically prepared by dispersing the antigenic composition in a physiologically tolerable diluent such as saline or other adjuvants suitable for human use to form an aqueous composition. An immunostimulatory amount of inoculum is administered to a mammal and the inoculated mammal is then maintained for a time sufficient for the antigenic composition to induce protective antibodies. The antibodies can be isolated to the extent desired by well known techniques such as affinity chromatography (Harlow and Lane, 1988).

[0190] Antibodies can include antiserum preparations from a variety of commonly used animals, e.g., goats, primates, donkeys, swine, horses, guinea pigs, rats, or man. The animals are bled and serum recovered.

[0191] An immunoglobulin produced in accordance with the present invention can include whole antibodies, antibody fragments or subfragments. Antibodies can be whole immunoglobulins, chimeric antibodies or hybrid antibodies with dual specificity to two or more antigens of the invention. They may also be fragments, e.g., F(ab')2, Fab', Fab, Fv and the like including hybrid fragments. An immunoglobulin also includes natural, synthetic or genetically engineered proteins that act like an antibody by binding to specific antigens to form a complex. The term "immunoglobulin," as used herein, includes all immunoglobulin classes and subclasses known in the art including IgA, IgD, IgE, IgG, and IgM, and their subclasses (isotypes), e.g., IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4. Preferably, the immunoglobulins of the invention are human immunoglobulins. Also, an antigen-binding and/or variable domain comprising fragment of an immunoglobulin is meant. Antigen-binding fragments include, inter alia, Fab, F(ab'), F(ab')2, Fv, dAb, Fd, complementarity-determining region (CDR) fragments, single-chain antibodies (scFv), bivalent single-chain antibodies, single-chain phage antibodies, diabodies, triabodies, tetrabodies, (poly)peptides that contain at least a fragment of an immunoglobulin that is sufficient to confer specific antigen binding to the (poly) peptide, etc.

[0192] An antigen composition or vaccine of the present invention can be administered to a recipient who then acts as a source of immunoglobulin, produced in response to challenge from the specific vaccine. A subject thus treated would donate plasma from which hyperimmune globulin would be obtained via conventional plasma fractionation methodology. The hyperimmune globulin would be administered to another subject in order to impart resistance against or treat staphylococcal infection. Hyperimmune globulins of the invention are particularly useful for treatment or prevention of staphylococcal disease in infants, immune compromised individuals or where treatment is required and there is no time for the individual to produce antibodies in response to vaccination.

[0193] An additional aspect of the invention is a pharmaceutical composition comprising one or more monoclonal antibodies (or fragments thereof; preferably human or humanized) reactive against constituents of the immunogenic composition of the invention, which could be used to treat or prevent infection by Gram positive bacteria, preferably staphylococci, more preferably *S. aureus* or *S. epidermidis*. Such

pharmaceutical compositions comprise monoclonal antibodies that can be whole immunoglobulins of any class e.g. IgG, IgM, IgA, IgD or IgE, chimeric antibodies or hybrid antibodies with specificity to antigens of the invention. They may also be fragments, e.g., F(ab')2, Fab', Fab, Fv and the like including hybrid fragments.

[0194] Methods of making monoclonal antibodies are well known in the art and can include the fusion of splenocytes with myeloma cells (Kohler and Milstein, 1975; Harlow and Lane, 1988). Alternatively, monoclonal Fv fragments can be obtained by screening a suitable phage display library (Vaughan et al., 1998). Monoclonal antibodies may be human, humanized, or partly humanized by known methods.

[0195] C. Combination Therapy

[0196] The compositions and related methods of the present invention, particularly administration of a staphylococcal antigen, including a polypeptide or peptide of Emp, AdsA and/or Eap in combination with one or more of EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein peptide or protein to a patient/subject, may also be used in combination with the administration of traditional therapies. These include, but are not limited to, the administration of antibiotics such as streptomycin, ciprofloxacin, doxycycline, gentamycin, chloramphenicol, trimethoprim, sulfamethoxazole, ampicillin, tetracycline or various combinations of antibiotics. In one aspect, it is contemplated that a polypeptide vaccine and/or therapy is used in conjunction with a small molecule or nonpeptide inhibitor of AdsA activity.

[0197] In one aspect, it is contemplated that a polypeptide vaccine and/or therapy is used in conjunction with antibacterial treatment. Alternatively, the therapy may precede or follow the treatment with the other agent by intervals ranging from minutes to weeks. In embodiments where the other agents and/or a proteins or polynucleotides are administered separately, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and antigenic composition would still be able to exert an advantageously combined effect on the subject. In such instances, it is contemplated that one may administer both modalities within about 12-24 h of each other and, more preferably, within about 6-12 h of each other. In some situations, it may be desirable to extend the time period for administration significantly, however, where several days (2, 3, 4, 5, 6 or 7) to several weeks (1, 2, 3, 4, 5, 6, 7 or 8) lapse between the respective administrations.

[0198] Various combinations may be employed, for example antibiotic therapy is "A" and an immunogenic mol-

ecule or antibody given as part of an immune therapy regime, such as an antigen or an AdsA modulator, is "B":

[**0199**] A/B/A B/A/B B/B/A A/A/B A/B/B B/A/A A/B/B/B B/A/B/B

[0200] B/B/B/A B/B/A/B A/A/B/B A/B/A/B A/B/B/A B/B/A/A

[**0201**] B/A/B/A B/A/A/B A/A/A/B B/A/A/A A/B/A/A A/A/B/A

[0202] Administration of the immunogenic compositions of the present invention to a patient/subject will follow general protocols for the administration of such compounds, taking into account the toxicity, if any, of the Emp, Eap, and/or AdsA composition, or composition of any other antigen or antigen combination described herein. It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various standard therapies, such as hydration, may be applied in combination with the described therapy.

III. Pharmaceutical Compositions

[0203] In some embodiments, pharmaceutical compositions are administered to a subject. Different aspects of the present invention involve administering an effective amount of a composition to a subject. In some embodiments of the present invention, Emp, \ Eap and/or AdsA antigens in combination with members of the Ess pathway and including polypeptides or peptides of the Esa or Esx class, and/or members of sortase substrates, and/or secreted virulence factor and or polysaccharides may be administered to the patient to protect against or treat infection by one or more staphylococcus pathogens. Alternatively, an expression vector encoding one or more such polypeptides or peptides may be given to a patient as a preventative treatment. Additionally, such compounds can be administered in combination with an antibiotic. Such compositions will generally be dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.

[0204] As used herein, the term "pharmaceutically acceptable" or "pharmacologically acceptable" refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem complications commensurate with a reasonable benefit/ risk ratio. The term "pharmaceutically acceptable carrier," means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a chemical agent. Pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients, its use in immunogenic and therapeutic compositions is contemplated. Supplementary active ingredients, such as other anti-bacterial agents, can also be incorporated into the compositions.

[0205] In addition to the compounds formulated for parenteral administration, such as those for intravenous or intramuscular injection, other pharmaceutically acceptable forms include, e.g., tablets or other solids for oral adminis-

tration; time release capsules; and any other form currently used, including creams, lotions, mouthwashes, inhalants and the like.

[0206] The active compounds of the present invention can be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, sub-cutaneous, or even intraperitoneal routes.

[0207] Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

[0208] The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil, or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that it may be easily injected. It also should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.

[0209] The proteinaceous compositions may be formulated into a neutral or salt form. Pharmaceutically acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

[0210] The carrier also can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[0211] Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques, which yield a powder of the active

ingredient, plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0212] Administration of the compositions according to the present invention will typically be via any common route. This includes, but is not limited to oral, nasal, or buccal administration. Alternatively, administration may be by orthotopic, intradermal, subcutaneous, intramuscular, intraperitoneal, intranasal, or intravenous administration. In certain embodiments, a vaccine composition may be inhaled (e.g., U.S. Pat. No. 6,651,655, which is specifically incorporated by reference). Such compositions would normally be administered as pharmaceutically acceptable compositions that include physiologically acceptable carriers, buffers or other excipients.

[0213] For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous, and intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in isotonic NaCl solution and either added to hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, Remington's Pharmaceutical Sciences, 1990). Some variation in dosage will necessarily occur depending on the condition of the subject. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.

[0214] An effective amount of therapeutic or prophylactic composition is determined based on the intended goal. The term "unit dose" or "dosage" refers to physically discrete units suitable for use in a subject, each unit containing a predetermined quantity of the composition calculated to produce the desired responses discussed above in association with its administration, i.e., the appropriate route and regimen. The quantity to be administered, both according to number of treatments and unit dose, depends on the protection desired.

[0215] Precise amounts of the composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the subject, route of administration, intended goal of treatment (alleviation of symptoms versus cure), and potency, stability, and toxicity of the particular composition.

[0216] Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically or prophylactically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above.

[0217] A. In Vitro, Ex Vivo, or in Vivo Administration

[0218] As used herein, the term in vitro administration refers to manipulations performed on cells removed from or outside of an animal, including, but not limited to cells in culture. The term ex vivo administration refers to cells which have been manipulated in vitro, and are subsequently administered to a living animal. The term in vivo administration includes all manipulations performed within an animal.

[0219] In certain aspects of the present invention, the compositions may be administered either in vitro, ex vivo, or in vivo. In certain in vitro embodiments, autologous B-lymphocyte cell lines are incubated with a virus vector of the instant

invention for 24 to 48 hours or with Emp, Eap and/or AdsA, and/or EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SpA, vWa, Coa, Ebh, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008, 341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U55,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein (or any combination thereof). The transduced cells can then be used for in vitro analysis, or alternatively for ex vivo administration.

[0220] U.S. Pat. Nos. 4,690,915 and 5,199,942, both incorporated herein by reference, disclose methods for ex vivo manipulation of blood mononuclear cells and bone marrow cells for use in therapeutic applications.

[0221] B. Lipid Components and Moieties

[0222] In certain embodiments, the present invention concerns compositions comprising one or more lipids associated with a nucleic acid or a polypeptide/peptide. A lipid is a substance that is insoluble in water and extractable with an organic solvent. Compounds other than those specifically described herein are understood by one of skill in the art as lipids, and are encompassed by the compositions and methods of the present invention. A lipid component and a nonlipid may be attached to one another, either covalently or non-covalently.

[0223] A lipid may be a naturally occurring lipid or a synthetic lipid. However, a lipid is usually a biological substance. Biological lipids are well known in the art, and include for example, neutral fats, phospholipids, phosphoglycerides, steroids, terpenes, lysolipids, glycosphingolipids, glucolipids, sulphatides, lipids with ether and ester-linked fatty acids and polymerizable lipids, and combinations thereof.

[0224] A nucleic acid molecule or a polypeptide/peptide associated with a lipid may be dispersed in a solution containing a lipid, dissolved with a lipid, emulsified with a lipid, mixed with a lipid, combined with a lipid, covalently bonded to a lipid, contained as a suspension in a lipid or otherwise associated with a lipid. A lipid-associated composition of the present invention is not limited to any particular structure. For example, they may also simply be interspersed in a solution, possibly forming aggregates which are not uniform in either size or shape. In another example, they may be present in a bilayer structure, as micelles, or with a "collapsed" structure. In another non-limiting example, a lipofectamine (Gibco BRL) or Superfect (Qiagen) complex is also contemplated.

[0225] In certain embodiments, a composition may comprise about 1%, about 2%, about 3%, about 4% about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, about 26%, about 27%, about 28%, about 29%, about 30%, about 31%, about 32%, about 33%, about 34%, about 35%, about

36%, about 37%, about 38%, about 39%, about 40%, about 41%, about 42%, about 43%, about 44%, about 45%, about 46%, about 47%, about 48%, about 49%, about 50%, about 51%, about 52%, about 53%, about 54%, about 55%, about 56%, about 57%, about 58%, about 59%, about 60%, about 61%, about 62%, about 63%, about 64%, about 65%, about 66%, about 67%, about 68%, about 69%, about 70%, about 71%, about 72%, about 73%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or any range therebetween, of a particular lipid, lipid type, or non-lipid component such as an adjuvant, antigen, peptide, polypeptide, sugar, nucleic acid or other material disclosed herein or as would be known to one of skill in the art. In a non-limiting example, a composition may comprise about 10% to about 20% neutral lipids, and about 33% to about 34% of a cerebroside, and about 1% cholesterol. In another non-limiting example, a liposome may comprise about 4% to about 12% terpenes, wherein about 1% of the micelle is specifically lycopene, leaving about 3% to about 11% of the liposome as comprising other terpenes; and about 10% to about 35% phosphatidyl choline, and about 1% of a non-lipid component. Thus, it is contemplated that compositions of the present invention may comprise any of the lipids, lipid types or other components in any combination or percentage range.

IV. Polysaccharides

[0226] The immunogenic compositions of the invention may further comprise capsular polysaccharides including one or more of PIA (also known as PNAG) and/or *S. aureus* Type V and/or type VIII capsular polysaccharide and/or *S. epidermidis* Type I, and/or Type II and/or Type III capsular polysaccharide.

[0228] It is now clear that the various forms of staphylo-

[0227] A. PIA (PNAG)

coccal surface polysaccharides identified as PS/A, PIA, and SAA are the same chemical entity—PNAG (Maira-Litran et al., 2004). Therefore the term PIA or PNAG encompasses all these polysaccharides or oligosaccharides derived from them. [0229] PIA is a polysaccharide intercellular adhesin and is composed of a polymer of β -(1 \rightarrow 6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents. This polysaccharide is present in both *S. aureus* and *S. epidermidis* and can be isolated from either source (Joyce et al., 2003; Maira-Litran et al., 2002). For example, PNAG may be isolated from *S. aureus* strain MN8m (WO04/43407). PIA isolated from *S. epidermidis* is a integral constituent of biofilm. It is responsible for mediating cell-cell adhesion and probably also functions to shield the growing colony from the host's immune response.

[0230] The polysaccharide previously known as poly-N-succinyl- β -(1 \rightarrow 6)-glucosamine (PNSG) was recently shown not to have the expected structure since the identification of N-succinylation was incorrect (Maira-Litran et al., 2002). Therefore the polysaccharide formally known as PNSG and now found to be PNAG is also encompassed by the term PIA. PIA (or PNAG) may be of different sizes varying from over 400 kDa to between 75 and 400 kDa to between 10 and 75 kDa to oligosaccharides composed of up to 30 repeat units (of β -(1 \rightarrow 6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents). Any size of PIA polysaccharide or

oligosaccharide may be use in an immunogenic composition of the invention, however a size of over 40 kDa is preferred. Sizing may be achieved by any method known in the art, for instance by microfluidization, ultrasonic irradiation or by chemical cleavage (WO 03/53462, EP497524, EP497525). Preferred size ranges of PIA (PNAG) are 40-400 kDa, 40-300 kDa, 50-350 kDa, 60-300 kDa, 50-250 kDa and 60-200 kDa. PIA (PNAG) can have different degrees of acetylation due to substitution on the amino groups by acetate. PIA produced in vitro is almost fully substituted on amino groups (95-100%). Alternatively, a deacetylated PIA (PNAG) can be used having less than 60%, preferably less than 50%, 40%, 30%, 20%, 10% acetylation. Use of a deacetylated PIA (PNAG) is preferred since non-acetylated epitopes of PNAG are efficient at mediating opsonic killing of Gram positive bacteria, preferably S. aureus and/or S. epidermidis. Most preferably, the PIA (PNAG) has a size between 40 kDa and 300 kDa and is deacetylated so that less than 60%, 50%, 40%, 30% or 20% of amino groups are acetylated. The term deacetylated PNAG (dPNAG) refers to a PNAG polysaccharide or oligosaccharide in which less than 60%, 50%, 40%, 30%, 20% or 10% of the amino groups are acetylated.

[0231] In an embodiment, PNAG is a deaceylated to form dPNAG by chemically treating the native polysaccharide. For example, the native PNAG is treated with a basic solution such that the pH rises to above 10. For instance the PNAG is treated with 0.1-5 M, 0.2-4 M, 0.3-3 M, 0.5-2 M, 0.75-1.5 M or 1 M NaOH, KOH or NH₄OH. Treatment is for at least 10 to 30 minutes, or 1, 2, 3, 4, 5, 10, 15 or 20 hours at a temperature of 20-100, 25-80, 30-60 or 30-50 or 35-45° C. dPNAG may be prepared as described in WO 04/43405.

[0232] The polysaccharide(s) included in the immunogenic composition of the invention are preferably conjugated to a carrier protein as described below or alternatively unconjugated.

[0233] B. Type 5 and Type 8 Polysaccharides from *Staphylococcus*

[0234] Most strains of *S. aureus* that cause infection in man contain either Type 5 or Type 8 polysaccharides. Approximately 60% of human strains are Type 8 and approximately 30% are Type 5. The structures of Type 5 and Type 8 capsular polysaccharide antigens are described in Moreau et al., 1990 and Fournier et al., 1984). Both have FucNAcp in their repeat unit as well as ManNAcA which can be used to introduce a sulfhydryl group. The structures were reported as:

[0235] Type 5 \rightarrow 4)- β -D-ManNAcA(3OAc)-(1 \rightarrow 4)- α -L-FucNAc(1 \rightarrow 3)- β -D-FucNAc-(1 \rightarrow

[0236] Type 8 \rightarrow 3)- β -D-ManNAcA(4OAc)-(1 \rightarrow 3)- α -L-FucNAc(1 \rightarrow 3)- β -D-FucNAc-(1 \rightarrow

[0237] Recently (Jones, 2005) NMR spectroscopy revised the structures to:

[0238] Type 5 \rightarrow 4)- β -D-ManNAcA-(1 \rightarrow 4)- α -L-FucNAc (3OAc)-(1 \rightarrow 3)- β -D-FucNAc-(1 \rightarrow

[0239] Type $8\rightarrow 3$)- β -D-ManNAcA(4OAc)- $(1\rightarrow 3)$ - α -L-FucNAc($1\rightarrow 3$)- α -D-FucNAc($1\rightarrow$

[0240] Polysaccharides may be extracted from the appropriate strain of *S. aureus* using known methods, U.S. Pat. No. 6,294,177. ATCC 12902 is a Type 5 *S. aureus* strain and ATCC 12605 is a Type 8 *S. aureus* strain.

[0241] Polysaccharides are of native size or alternatively may be sized, for instance by microfluidisation, ultrasonic irradiation or by chemical treatment. The type 5 and 8 polysaccharides included in the immunogenic composition of the invention are preferably conjugated to a carrier protein

as described below or are alternatively unconjugated. The immunogenic compositions of the invention alternatively contains either type 5 or type 8 polysaccharide.

[0242] C. S. Aureus 336 Antigen

[0243] In an embodiment, the immunogenic composition of the invention comprises the S.~aureus~336 antigen described in U.S. Pat. No. 6,294,177. The 336 antigen comprises β-linked hexosamine, contains no O-acetyl groups and specifically binds to antibodies to S.~aureus Type 336 deposited under ATCC 55804. In an embodiment, the 336 antigen is a polysaccharide which is of native size or alternatively may be sized, for instance by microfluidisation, ultrasonic irradiation or by chemical treatment. The invention also covers oligosaccharides derived from the 336 antigen. The 336 antigen, where included in the immunogenic composition of the invention is preferably conjugated to a carrier protein as described below or are alternatively unconjugated.

[0244] D. Type I, II and III Polysaccharides from S. Epidermidis

[0245] Strains ATCC-31432, SE-360 and SE-10 of *S. epidermidis* are characteristic of three different capsular types, I, II and III respectively (Ichiman and Yoshida, 1981). Capsular polysaccharides extracted from each serotype of *S. epidermidis* constitute Type I, II, and III polysaccharides. Polysaccharides may be extracted by several methods including the method described in U.S. Pat. No. 4,197,290 or as described in Ichiman et al., 1991.

[0246] In one embodiment of the invention, the immunogenic composition comprises type I and/or II and/or III polysaccharides or oligosaccharides from *S. epidermidis*.

[0247] Polysaccharides are of native size or alternatively may be sized, for instance by microfluidisation, ultrasonic irradiation or chemical cleavage. The invention also covers oligosaccharides extracted from *S. epidermidis* strains. These polysaccharides are unconjugated or are preferably conjugated as described below.

[0248] E. Conjugation of Polysaccharides

[0249] Amongst the problems associated with the use of polysaccharides in vaccination, is the fact that polysaccharides per se are poor immunogens. It is preferred that the polysaccharides utilized in the invention are linked to such a protein carrier to improve immunogenicity. Examples of such carriers which may be conjugated to polysaccharide immunogens include the Diphtheria and Tetanus toxoids (DT, DT CRM197 and TT respectively), Keyhole Limpet Haemocyanin (KLH), and the purified protein derivative of Tuberculin (PPD), Pseudomonas aeruginosa exoprotein A (rEPA), protein D from Haemophilus influenzae, pneumolysin or fragments of any of the above. Fragments suitable for use include fragments encompassing T-helper epitopes. In particular the protein D fragment from H. influenza will preferably contain the N-terminal 1/3 of the protein. Protein D is an IgD-binding protein from Haemophilus influenzae (EP 0 594 610 B1) and is a potential immunogen. In addition, staphylococcal proteins/antigens may be used as carrier protein in the polysaccharide conjugates of the invention.

[0250] A carrier protein that would be particularly advantageous to use in the context of a staphylococcal vaccine is staphylococcal alpha toxoid. The native form may be conjugated to a polysaccharide since the process of conjugation reduces toxicity. Preferably a genetically detoxified alpha toxins such as the His35Leu or His35Arg variants are used as carriers since residual toxicity is lower. Alternatively the

alpha toxin is chemically detoxified by treatment with a cross-linking reagent, formaldehyde or glutaraldehyde.

[0251] The polysaccharides may be linked to the carrier protein(s) by any known method (for example, U.S. Pat. Nos. 4,372,945, 4,474,757, and 4,356,170).

[0252] Preferably, CDAP conjugation chemistry is carried out (see WO95/08348). In CDAP, the cyanylating reagent 1-cyano-dimethylaminopyridinium tetrafluoroborate (CDAP) is preferably used for the synthesis of polysaccharide-protein conjugates. The cyanilation reaction can be performed under relatively mild conditions, which avoids hydrolysis of the alkaline sensitive polysaccharides. This synthesis allows direct coupling to a carrier protein.

[0253] The polysaccharide is solubilized in water or a saline solution. CDAP is dissolved in acetonitrile and added immediately to the polysaccharide solution. The CDAP reacts with the hydroxyl groups of the polysaccharide to form a cyanate ester. After the activation step, the carrier protein is added. Amino groups of lysine react with the activated polysaccharide to form an isourea covalent link. After the coupling reaction, a large excess of glycine is then added to quench residual activated functional groups. The product is then passed through a gel permeation column to remove unreacted carrier protein and residual reagents.

[0254] Conjugation preferably involves producing a direct linkage between the carrier protein and polysaccharide. Optionally a spacer (such as adipic dihydride (ADH)) may be introduced between the carrier protein and the polysaccharide.

V. Immune Response and Assays

[0255] As discussed above, the invention concerns evoking or inducing an immune response in a subject against an Emp, Eap and/or AdsA polypeptide. In other embodiments an immune response to other peptides or antigens can be evoked or induced, including EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SpA, Ebh, Coa, vWa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibringen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF(WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or any other Staphylococcal peptide or protein. In one embodiment, the immune response can protect against or treat a subject (e.g., limiting abscess persistence) having, suspected of having, or at risk of developing an infection or related disease, particularly those related to staphylococci. One use of the immunogenic compositions of the invention is to prevent nosocomial infections by inoculating or treating a subject prior to hospital treatment.

[0256] A. Immunoassays

[0257] The present invention includes the implementation of serological assays to evaluate if an immune response is

induced or evoked by Emp, Eap and/or AdsA and any other polypeptide or peptide agent described herein. There are many types of immunoassays that can be implemented. Immunoassays encompassed by the present invention include, but are not limited to, those described in U.S. Pat. No. 4,367,110 (double monoclonal antibody sandwich assay) and U.S. Pat. No. 4,452,901 (western blot). Other assays include immunoprecipitation of labeled ligands and immunocytochemistry, both in vitro and in vivo.

[0258] Immunoassays generally are binding assays. Certain preferred immunoassays are the various types of enzyme linked immunosorbent assays (ELISAs) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. In one example, the antibodies or antigens are immobilized on a selected surface, such as a well in a polystyrene microtiter plate, dipstick, or column support. Then, a test composition suspected of containing the desired antigen or antibody, such as a clinical sample, is added to the wells. After binding and washing to remove nonspecifically bound immune complexes, the bound antigen or antibody may be detected. Detection is generally achieved by the addition of another antibody, specific for the desired antigen or antibody, that is linked to a detectable label. This type of ELISA is known as a "sandwich ELISA". Detection also may be achieved by the addition of a second antibody specific for the desired antigen, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.

[0259] Variations on ELISA techniques are known to those of skill in the art. In one such variation, the samples suspected of containing a target antigen or antibody are immobilized onto the well surface and then contacted with the antibodies or antigens of the invention. After binding and appropriate washing, the bound immune complexes are detected. Where the initial antigen specific antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first antigen specific antibody, with the second antibody being linked to a detectable label.

[0260] Competition ELISAs are also possible implementations in which test samples compete for binding with known amounts of labeled antigens or antibodies. The amount of reactive species in the unknown sample is determined by mixing the sample with the known labeled species before or during incubation with coated wells. The presence of reactive species in the sample acts to reduce the amount of labeled species available for binding to the well and thus reduces the ultimate signal.

[0261] Irrespective of the format employed, ELISAs have certain features in common, such as coating, incubating or binding, washing to remove non specifically bound species, and detecting the bound immune complexes.

[0262] In ELISAs, it is more customary to use a secondary or tertiary detection means rather than a direct procedure. Thus, after binding of the antigen or antibody to the well, coating with a non reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the clinical or biological sample to be tested under conditions effective to allow immune complex (antigen/antibody) formation. Detection of the immune complex then requires a labeled secondary binding ligand or

antibody, or a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or third binding ligand.

[0263] After all incubation steps in an ELISA are followed, the contacted surface is washed so as to remove non complexed material. Washing often includes washing with a solution of PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.

[0264] To provide a detecting means, the second or third antibody can have an associated label to allow detection. In certain aspects, this label will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate. Thus, for example, one will desire to contact and incubate the first or second immune complex with a urease, glucose oxidase, alkaline phosphatase, or hydrogen peroxidase conjugated antibody for a period of time and under conditions that favor the development of further immune complex formation, e.g., incubation for 2 hours at room temperature in a PBS containing solution such as PBS Tween.

[0265] After incubation with the labeled antibody, and subsequent to washing to remove unbound material, the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea and bromocresol purple or 2,2' azino-di(3-ethyl benzthiazoline-6-sulfonic acid [ABTS] and $\rm H_2O_2$, in the case of peroxidase as the enzyme label. Quantification is then achieved by measuring the degree of color generation, e.g., using a visible spectra spectrophotometer. Alternatively, the label may be a chemiluminescent label (see, U.S. Pat. Nos. 5,310,687, 5,238,808 and 5,221,605).

[0266] B. Diagnosis of Bacterial Infection

[0267] In addition to the use of proteins, polypeptides, and/ or peptides, as well as antibodies binding these polypeptides, proteins, and/or peptides to treat or prevent infection as described above, the present invention contemplates the use of these polypeptides, proteins, peptides, and/or antibodies in a variety of ways, including the detection of the presence of Staphylococci and diagnosing an infection, whether in a patient or on medical equipment which may also become infected. In accordance with the invention, a preferred method of detecting the presence of infections involves the steps of obtaining a sample suspected of being infected by one or more staphylococcal bacteria species or strains, such as a sample taken from an individual, for example, from one's blood, saliva, tissues, bone, muscle, cartilage, or skin. Following isolation of the sample, diagnostic assays utilizing the polypeptides, proteins, peptides, and/or antibodies of the present invention may be carried out to detect the presence of staphylococci, and such assay techniques for determining such presence in a sample are well known to those skilled in the art and include methods such as radioimmunoassay, western blot analysis and ELISA assays. In general, in accordance with the invention, a method of diagnosing an infection is contemplated wherein a sample suspected of being infected with staphylococci has added to it the polypeptide, protein, peptide, antibody, or monoclonal antibody in accordance with the present invention, and staphylococci are indicated by antibody binding to the polypeptides, proteins, and/or peptides, or polypeptides, proteins, and/or peptides binding to the antibodies in the sample.

[0268] Accordingly, antibodies in accordance with the invention may be used for the prevention of infection from staphylococcal bacteria, for the treatment of an ongoing infection, or for use as research tools. The term "antibodies" as used herein includes monoclonal, polyclonal, chimeric, single chain, bispecific, human, simianized, and humanized or primatized antibodies as well as Fab fragments, such as those fragments which maintain the binding specificity of the antibodies, including the products of an Fab immunoglobulin expression library. Accordingly, the invention contemplates the use of single chains such as the variable heavy and light chains of the antibodies. Generation of any of these types of antibodies or antibody fragments is well known to those skilled in the art. Specific examples of the generation of an antibody to a bacterial protein can be found in U.S. Patent Publication 20030153022, which is incorporated herein by reference in its entirety.

[0269] Any of the above described polypeptides, proteins, peptides, and/or antibodies may be labeled directly with a detectable label for identification and quantification of staphylococcal bacteria. Labels for use in immunoassays are generally known to those skilled in the art and include enzymes, radioisotopes, and fluorescent, luminescent and chromogenic substances, including colored particles such as colloidal gold or latex beads. Suitable immunoassays include ELISAs.

[0270] C. Protective Immunity

[0271] In some embodiments of the invention, proteinaceous compositions confer protective immunity on a subject. Protective immunity refers to a body's ability to mount a specific immune response that protects the subject from developing a particular disease or condition that involves the agent against which there is an immune response. An immunogenically effective amount is capable of conferring protective immunity to the subject.

[0272] As used herein in the specification and in the claims section that follows, the term polypeptide and peptide refers to a stretch of amino acids covalently linked there amongst via peptide bonds. Different polypeptides have different functionalities according to the present invention. While according to one aspect, a polypeptide is derived from an immunogen designed to induce an active immune response in a recipient, according to another aspect of the invention, a polypeptide is derived from an antibody which results following the elicitation of an active immune response, in, for example, an animal, and which can serve to induce a passive immune response in the recipient. In both cases, however, the polypeptide can be encoded by a polynucleotide according to any possible codon usage.

[0273] As used herein the phrase "immune response" or its equivalent "immunological response" refers to the development of a humoral (antibody mediated), cellular (mediated by antigen-specific T cells or their secretion products) or both humoral and cellular response directed against a protein, peptide, carbohydrate or polypeptide of the invention in a recipient patient. Such a response can be an active response induced by administration of immunogen or a passive response induced by administration of antibody, antibody containing material, or primed T-cells.

[0274] A cellular immune response is elicited by the presentation of polypeptide antigens or epitopes in association with Class I or Class II MHC molecules, to activate antigenspecific CD4 (+) T helper cells and/or CD8 (+) cytotoxic T cells. The response may also involve activation of monocytes,

macrophages, NK cells, basophils, dendritic cells, astrocytes, microglia cells, eosinophils or other components of innate immunity.

[0275] As used herein "active immunity" refers to any immunity conferred upon a subject by administration of an antigen.

[0276] As used herein "passive immunity" refers to any immunity conferred upon a subject without administration of an antigen to the subject. "Passive immunity" therefore includes, but is not limited to, administration of activated immune effectors including cellular mediators or protein mediators (e.g., monoclonal and/or polyclonal antibodies) of an immune response.

[0277] A monoclonal or polyclonal antibody composition may be used in passive immunization for the prevention or treatment of infection by organisms that carry or may be exposed to the antigen recognized by the antibody. An antibody composition may include antibodies that bind to a variety of antigens that may in turn be associated with various organisms. The antibody component can be a polyclonal antiserum. In certain aspects the antibody or antibodies are affinity purified from an animal or second subject that has been challenged with an antigen(s). Alternatively, an antibody mixture may be used, which is a mixture of monoclonal and/or polyclonal antibodies to antigens present in the same, related, or different microbes or organisms, such as grampositive bacteria, gram-negative bacteria, including but not limited to *staphylococcus* bacteria.

[0278] Passive immunity may be imparted to a patient or subject by administering to the patient immunoglobulins (Ig) and/or other immune factors obtained from a donor or other non-patient source having a known immunoreactivity. In other aspects, an antigenic composition of the present invention can be administered to a subject who then acts as a source or donor for globulin, produced in response to challenge with the antigenic composition ("hyperimmune globulin"), that contains antibodies directed against Staphylococcus or other organism. A subject thus treated would donate plasma from which hyperimmune globulin would then be obtained, via conventional plasma-fractionation methodology, and administered to another subject in order to impart resistance against or to treat staphylococcus infection. Hyperimmune globulins according to the invention are particularly useful for immunecompromised individuals, for individuals undergoing invasive procedures or where time does not permit the individual to produce their own antibodies in response to vaccination. See U.S. Pat. Nos. 6,936,258, 6,770,278, 6,756,361, 5,548, 066, 5,512,282, 4,338,298, and 4,748,018, each of which is incorporated herein by reference in its entirety, for exemplary methods and compositions related to passive immunity.

[0279] In certain aspects, methods include treating or preventing infection by administering the antibody compositions, such as antibodies that bind the above-described antigens, to a subject in need thereof. A target patient population for the treatment and prevention of infection includes mammals, such as humans, who are infected with or at risk of being infected by bacterial pathogens. In one embodiment, the infection to be treated or prevented is an *S. aureus* infection, including an infection of methicillin-resistant *S. aureus* or *S. aureus* producing alpha-toxin, or an *S. epidermidis* infection.

[0280] In accordance with one embodiment, the invention provides a method for treating or preventing an *S. aureus* infection using compositions comprising one or more *S.*

aureus AdsA, Emp, Eap, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SpA, Ebh, vWa, Coa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibringen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF(WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein antibodies and a pharmaceutically acceptable carrier. The S. aureus antibody can bind to any of those antigens described above. In one embodiment, the antibody composition is a antibody composition or a hyperimmune composition. In another embodiment, the antibodies are recombinant, human, or humanized antibodies. In yet another embodiment, the antibodies are monoclonal antibodies, or fragments thereof. [0281] A therapeutically or prophylactically effective

amount of the antibody compositions can be determined by methods that are routine in the art. Skilled artisans will recognize that the amount may vary according to the particular antibodies within the composition, the concentration of antibodies in the composition, the frequency of administration, the severity of infection to be treated or prevented, and subject details, such as age, weight and immune condition. In some embodiments, the dosage will be at least 1, 5, 10, 25, 50, or 100 μg or mg of antibody composition per kilogram of body weight (mg/kg), including at least 100 mg/kg, at least 150 mg/kg, at least 200 mg/kg, at least 250 mg/kg, at least 500 mg/kg, at least 750 mg/kg and at least 1000 mg/kg. Dosages for monoclonal antibody compositions typically may be lower, such as 1/10 of the dosage of an antibody composition, such as at least about 1, 5, 10, 25, or 50 µg or mg/kg, at least about 10 mg/kg, at least about 15 mg/kg, at least about 20 mg/kg, or at least about 25 mg/kg. The route of administration may be any of those appropriate for a passive vaccine. Thus, intravenous, subcutaneous, intramuscular, intraperitoneal, inhalation, and other routes of administration are envisioned. As noted above, a therapeutically or prophylactically effective amount of antibody is an amount sufficient to achieve a therapeutically or prophylactically beneficial effect.

[0282] A protective antibody composition may neutralize and/or prevent infection. A protective antibody composition may comprise amounts of AdsA, Emp, Eap, EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, SpA, Ebh, Coa, vWa, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288, 214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating

protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein antibodies that are not protective on their own, but which, in combination, yield a protective antibody composition.

[0283] The antibody composition may be administered in conjunction with an anti-infective agent, an antibiotic agent, and/or an antimicrobial agent, in a combination therapy. Antiinfective agents include, but are not limited to vancomycin and lysostaphin. Antibiotic agents and antimicrobial agents include, but are not limited to penicillinase-resistant penicillins, cephalosporins and carbapenems, including vancomycin, lysostaphin, penicillin G, ampicillin, oxacillin, nafcillin, cloxacillin, dicloxacillin, cephalothin, cefazolin, cephalexin, cephradine, cefamandole, cefoxitin, imipenem, meropenem, gentamycin, teicoplanin, lincomycin and clindamycin. The dosages of these antibiotics are well known in the art. See for example, Merck Manual Of Diagnosis And Therapy, §13, Ch. 157, 100th Ed. (Beers & Berkow, eds., 2004). The anti-infective, antibiotic and/or antimicrobial agents may be combined prior to administration, or administered concurrently or sequentially with active or passive immunotherapies described herein.

[0284] In some embodiments, relatively few doses of antibody composition are administered, such as one or two doses, and conventional antibiotic therapy is employed, which generally involves multiple doses over a period of days or weeks. Thus, the antibiotics can be taken one, two or three or more times daily for a period of time, such as for at least 5 days, 10 days or even 14 or more days, while the antibody composition is usually administered only once or twice. However, the different dosages, timing of dosages and relative amounts of antibody composition and antibiotics can be selected and adjusted by one of ordinary skill in the art.

[0285] For purposes of this specification and the accompanying claims the terms "epitope" and "antigenic determinant" are used interchangeably to refer to a site on an antigen to which B and/or T cells respond or recognize B-cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols (1996). Antibodies that recognize the same epitope can be identified in a simple immunoassay showing the ability of one antibody to block the binding of another antibody to a target antigen. T-cells recognize continuous epitopes of about nine amino acids for CD8 cells or about 13-15 amino acids for CD4 cells. T cells that recognize the epitope can be identified by in vitro assays that measure antigen-dependent proliferation, as determined by ³H-thymidine incorporation by primed T cells in response to an epitope (Burke et al., 1994), by antigendependent killing (cytotoxic T lymphocyte assay, Tigges et al., 1996) or by cytokine secretion.

[0286] The presence of a cell-mediated immunological response can be determined by proliferation assays (CD4 (+) T cells) or CTL (cytotoxic T lymphocyte) assays. The relative contributions of humoral and cellular responses to the protective or therapeutic effect of an immunogen can be distinguished by separately isolating IgG and T-cells from an immunized syngeneic animal and measuring protective or therapeutic effect in a second subject.

[0287] As used herein and in the claims, the terms "antibody" or "immunoglobulin" are used interchangeably and refer to any of several classes of structurally related proteins that function as part of the immune response of an animal or recipient, which proteins include IgG, IgD, IgE, IgA, IgM and related proteins.

[0288] Under normal physiological conditions antibodies are found in plasma and other body fluids and in the membrane of certain cells and are produced by lymphocytes of the type denoted B cells or their functional equivalent. Antibodies of the IgG class are made up of four polypeptide chains linked together by disulfide bonds. The four chains of intact IgG molecules are two identical heavy chains referred to as H-chains and two identical light chains referred to as L-chains.

[0289] In order to produce polyclonal antibodies, a host, such as a rabbit, goat, sheep or human, is immunized with the antigen or antigen fragment, generally with an adjuvant and, if necessary, coupled to a carrier. Antibodies to the antigen are subsequently collected from the sera of the host. The polyclonal antibody can be affinity purified against the antigen rendering it monospecific.

[0290] In order to produce monoclonal antibodies, hyperimmunization of an appropriate donor, generally a mouse, with the antigen is undertaken. Isolation of splenic antibody producing cells is then carried out. These cells are fused to a cell characterized by immortality, such as a myeloma cell, to provide a fused cell hybrid (hybridoma) which can be maintained in culture and which secretes the required monoclonal antibody. The cells are then cultured, in bulk, and the monoclonal antibodies harvested from the culture media for use. By definition, monoclonal antibodies are specific to a single epitope. Monoclonal antibodies often have lower affinity constants than polyclonal antibodies raised against similar antigens for this reason.

[0291] Monoclonal antibodies may also be produced exvivo by use of primary cultures of splenic cells or cell lines derived from spleen (Anavi, 1998). In order to produce recombinant antibody (see generally Huston et al., 1991; Johnson et al., 1991; Mernaugh et al., 1995), messenger RNAs from antibody producing B-lymphocytes of animals, or hybridoma are reverse-transcribed to obtain complementary DNAs (cDNAs). Antibody cDNA, which can be full length or partial length, is amplified and cloned into a phage or a plasmid. The cDNA can be a partial length of heavy and light chain cDNA, separated or connected by a linker. The antibody, or antibody fragment, is expressed using a suitable expression system to obtain recombinant antibody. Antibody cDNA can also be obtained by screening pertinent expression libraries.

[0292] The antibody can be bound to a solid support substrate or conjugated with a detectable moiety or be both bound and conjugated as is well known in the art. For a general discussion of conjugation of fluorescent or enzymatic moieties see Johnstone et al. (1982). The binding of antibodies to

a solid support substrate is also well known in the art (Harlow et al., 1988; Borrebaeck, 1992).

[0293] As used herein and in the claims, the phrase "an immunological portion of an antibody" include a Fab fragment of an antibody, a Fv fragment of an antibody, a heavy chain of an antibody, a light chain of an antibody, an unassociated mixture of a heavy chain and a light chain of an antibody, a heterodimer consisting of a heavy chain and a light chain of an antibody, a catalytic domain of a heavy chain of an antibody, a catalytic domain of a light chain of an antibody, a variable fragment of a light chain of an antibody, a variable fragment of a heavy chain of an antibody, and a single chain variant of an antibody, which is also known as scFv. In addition, the term includes chimeric immunoglobulins, which are the expression products of fused genes derived from different species. One of the species can be a human, in which case a chimeric immunoglobulin is said to be humanized. Typically, an immunological portion of an antibody competes with the intact antibody from which it was derived for specific binding to an antigen.

[0294] Optionally, an antibody or preferably an immunological portion of an antibody, can be chemically conjugated to, or expressed as, a fusion protein with other proteins. For purposes of this specification and the accompanying claims, all such fused proteins are included in the definition of antibodies or an immunological portion of an antibody.

[0295] As used herein the terms "immunogenic agent" or "immunogen" or "antigen" are used interchangeably to describe a molecule capable of inducing an immunological response against itself on administration to a recipient, either alone, in conjunction with an adjuvant, or presented on a display vehicle.

VI. Nucleic Acids

[0296] In certain embodiments, the present invention concerns recombinant polynucleotides encoding the proteins, polypeptides and peptides of the invention. The nucleic acid sequences for Emp, Eap or AdsA, and other bacterial proteins including, but not limited to EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, Coa, vWa, Ebh, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648, 240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF(WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein are included.

[0297] As used in this application, the term "polynucleotide" refers to a nucleic acid molecule that either is recombinant or has been isolated free of total genomic nucleic acid. Included within the term "polynucleotide" are oligonucleotides (nucleic acids 100 residues or less in length), recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like. Polynucleotides include, in certain aspects, regulatory sequences, isolated substantially away from their naturally occurring genes or protein encoding sequences. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be RNA, DNA (genomic, cDNA or synthetic), analogs thereof, or a combination thereof. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide.

[0298] In this respect, the term "gene," "polynucleotide," or "nucleic acid" is used to refer to a nucleic acid that encodes a protein, polypeptide, or peptide (including any sequences required for proper transcription, post-translational modification, or localization). As will be understood by those in the art, this term encompasses genomic sequences, expression cassettes, cDNA sequences, mRNA sequences, and smaller engineered nucleic acid segments that express, or may be adapted to express, proteins, polypeptides, domains, peptides, fusion proteins, and mutants. A nucleic acid encoding all or part of a polypeptide may contain a contiguous nucleic acid sequence encoding all or a portion of such a polypeptide of the following lengths: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 441, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000, 1010, 1020, 1030, 1040, 1050, 1060, 1070, 1080, 1090, 1095, 1100, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000,7500, 8000, 9000, 10000, or more nucleotides, nucleosides, or base pairs of a polypeptide of the invention. It also is contemplated that a particular polypeptide may be encoded by nucleic acids containing variations having slightly different nucleic acid sequences but, nonetheless, encode the same or substantially similar protein (see Table 2 above).

[0299] In particular embodiments, the invention concerns isolated nucleic acid segments and recombinant vectors incorporating nucleic acid sequences that encode Emp, Eap and/or AdsA, that may also be in combination with EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein. Thus, an isolated nucleic acid segment or vector containing a nucleic acid segment may encode, for example, Emp Eap and/or AdsA, and/or EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase,

autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008, 341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/ saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein that is/are immunogenic. The term "recombinant" may be used in conjunction with a polypeptide or the name of a specific polypeptide, and this generally refers to a polypeptide produced from a nucleic acid molecule that has been manipulated in vitro or that is a replication product of such a molecule.

[0300] In other embodiments, the invention concerns isolated nucleic acid segments and recombinant vectors incorporating nucleic acid sequences that encode a peptide or polypeptide to generate an immune response in a subject. In various embodiments the nucleic acids of the invention may be used in genetic vaccines.

[0301] The nucleic acid segments used in the present invention, regardless of the length of the coding sequence itself, may be combined with other nucleic acid sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant nucleic acid protocol. In some cases, a nucleic acid sequence may encode a polypeptide sequence with additional heterologous coding sequences, for example to allow for purification of the polypeptide, transport, secretion, post-translational modification, or for therapeutic benefits such as targeting or efficacy. As discussed above, a tag or other heterologous polypeptide may be added to the modified polypeptide-encoding sequence, wherein "heterologous" refers to a polypeptide that is not the same as the modified polypeptide.

[0302] In certain other embodiments, the invention concerns isolated nucleic acid segments and recombinant vectors that include within their sequence a contiguous nucleic acid sequence from SEQ ID NO:1 (Emp), SEQ ID NO:3 (Eap), SEQ ID NO:5 (EsxA), SEQ ID NO:7 (EsxB), SEQ ID NO:9 (SdrD), SEQ ID NO:11 (SdrE), SEQ ID NO:13 (IsdA), SEQ ID NO:15 (IsdB), SEQ ID NO:17 (SpA), SEQ ID NO:19 (ClfB), SEQ ID NO:21 (IsdC), SEQ ID NO:23 (SasF), SEQ ID NO:25 (SdrC), SEQ ID NO:27 (ClfA), SEQ ID NO:29 (EsaB), SEQ ID NO:31 (EsaC), SEQ ID NO:33 (SasB), or SEQ ID NO:35 (Sas) or any other nucleic acid sequences encoding secreted virulence factors and/or surface proteins.

[0303] In certain embodiments, the present invention provides polynucleotide variants having substantial identity to the sequences disclosed herein; those comprising at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity, including all values and ranges there between, compared to a polynucleotide sequence of this invention using the methods described herein (e.g., BLAST analysis using standard parameters). In certain aspects, the

isolated polynucleotide of the invention will comprise a nucleotide sequence encoding a polypeptide that has at least 90%, preferably 95% and above, identity to an amino acid sequence of the invention, over the entire length of the sequence; or a nucleotide sequence complementary to said isolated polynucleotide.

[0304] The invention also contemplates the use of polynucleotides which are complementary to all the above described polynucleotides.

[0305] The invention also provides for the use of a fragment of a polynucleotide of the invention which when administered to a subject has the same immunogenic properties as a polynucleotide.

[0306] The invention also provides for the use of a polynucleotide encoding an immunological fragment of a protein of the invention as hereinbefore defined.

[0307] A. Vectors

[0308] Polypeptides of the invention may be encoded by a nucleic acid molecule comprised in a vector. The term "vector" is used to refer to a carrier nucleic acid molecule into which a heterologous nucleic acid sequence can be inserted for introduction into a cell where it can be replicated and expressed. A nucleic acid sequence can be "heterologous," which means that it is in a context foreign to the cell in which the vector is being introduced or to the nucleic acid in which is incorporated, which includes a sequence homologous to a sequence in the cell or nucleic acid but in a position within the host cell or nucleic acid where it is ordinarily not found. Vectors include DNAs, RNAs, plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs). One of skill in the art would be well equipped to construct a vector through standard recombinant techniques (for example Sambrook et al., 2001; Ausubel et al., 1996, both incorporated herein by reference). In addition to encoding an Emp, Eap or AdsA polypeptide the vector can encode an EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibringen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF(WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or any other Staphylococcal peptides or proteins, a vector may encode polypeptide sequences such as a tag or immunogenicity enhancing peptide. Useful vectors encoding such fusion proteins include pIN vectors (Inouye et al., 1985), vectors encoding a stretch of histidines, and pGEX vectors, for use in generating glutathione S-transferase (GST) soluble fusion proteins for later purification and separation or cleavage.

[0309] Vectors of the invention may be used in a host cell to produce an Emp or Eap or AdsA polypeptide. In certain aspects the vectors may also produce EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB,

ClfA, ClfB, IsdC, SasB, SasF, Ebh, Coa, vWa, SpA, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/ 0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor, Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF(WO 00/12689), SdrG/ Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or any other Staphylococcal peptides or proteins that may subsequently be purified for administration to a subject or the vector may be purified for direct administration to a subject for expression of the protein in the subject. [0310] The term "expression vector" refers to a vector containing a nucleic acid sequence coding for at least part of a

taining a nucleic acid sequence coding for at least part of a gene product capable of being transcribed. In some cases, RNA molecules are then translated into a protein, polypeptide, or peptide. Expression vectors can contain a variety of "control sequences," which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are described herein.

[0311] 1. Promoters and Enhancers

[0312] A "promoter" is a control sequence. The promoter is typically a region of a nucleic acid sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors. The phrases "operatively positioned," "operatively linked," "under control," and "under transcriptional control" mean that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence to control transcriptional initiation and expression of that sequence. A promoter may or may not be used in conjunction with an "enhancer," which refers to a cis-acting regulatory sequence involved in the transcriptional activation of a nucleic acid sequence.

[0313] A promoter may be one naturally associated with a gene or sequence, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon. Such a promoter can be referred to as "endogenous." Similarly, an enhancer may be one naturally associated with a nucleic acid sequence, located either downstream or upstream of that sequence. Alternatively, certain advantages will be gained by positioning the coding nucleic acid segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a nucleic acid sequence in its natural environment. A recombinant or heterologous enhancer refers also to an enhancer not normally associated with a nucleic acid sequence in its natural state. Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other prokaryotic, viral, or eukaryotic cell, and promoters or enhancers not "naturally occurring," i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including PCRTM, in connection with the compositions disclosed herein (see U.S. Pat. No. 4,683,202, U.S. Pat. No. 5,928,906, each incorporated herein by reference).

[0314] Naturally, it may be important to employ a promoter and/or enhancer that effectively directs the expression of the DNA segment in the cell type or organism chosen for expression. Those of skill in the art of molecular biology generally know the use of promoters, enhancers, and cell type combinations for protein expression (see Sambrook et al., 2001, incorporated herein by reference). The promoters employed may be constitutive, tissue-specific, or inducible and in certain embodiments may direct high level expression of the introduced DNA segment under specified conditions, such as large-scale production of recombinant proteins or peptides.

[0315] Various elements/promoters may be employed in the context of the present invention to regulate the expression of a gene. Examples of such inducible elements, which are regions of a nucleic acid sequence that can be activated in response to a specific stimulus, include but are not limited to Immunoglobulin Heavy Chain (Banerji et al., 1983; Gilles et al., 1983; Grosschedl et al., 1985; Atchinson et al., 1986, 1987; Imler et al., 1987; Weinberger et al., 1984; Kiledjian et al., 1988; Porton et al.; 1990), Immunoglobulin Light Chain (Queen et al., 1983; Picard et al., 1984), T Cell Receptor (Luria et al., 1987; Winoto et al., 1989; Redondo et al.; 1990), HLA DQ a and/or DQ β (Sullivan et al., 1987), β Interferon (Goodbourn et al., 1986; Fujita et al., 1987; Goodbourn et al., 1988), Interleukin-2 (Greene et al., 1989), Interleukin-2 Receptor (Greene et al., 1989; Lin et al., 1990), MHC Class II 5 (Koch et al., 1989), MHC Class II HLA-DRα (Sherman et al., 1989), 13-Actin (Kawamoto et al., 1988; Ng et al.; 1989), Muscle Creatine Kinase (MCK) (Jaynes et al., 1988; Horlick et al., 1989; Johnson et al., 1989), Prealbumin (Transthyretin) (Costa et al., 1988), Elastase I (Ornitz et al., 1987), Metallothionein (MTII) (Karin et al., 1987; Culotta et al., 1989), Collagenase (Pinkert et al., 1987; Angel et al., 1987), Albumin (Pinkert et al., 1987; Tronche et al., 1989, 1990), α-Fetoprotein (Godbout et al., 1988; Campere et al., 1989), γ-Globin (Bodine et al., 1987; Perez-Stable et al., 1990), β-Globin (Trudel et al., 1987), c-fos (Cohen et al., 1987), c-Ha-Ras (Triesman, 1986; Deschamps et al., 1985), Insulin (Edlund et al., 1985), Neural Cell Adhesion Molecule (NCAM) (Hirsh et al., 1990), α1-Antitrypain (Latimer et al., 1990), H₂B (TH2B) Histone (Hwang et al., 1990), Mouse and/or Type I Collagen (Ripe et al., 1989), Glucose-Regulated Proteins (GRP94 and GRP78) (Chang et al., 1989), Rat Growth Hormone (Larsen et al., 1986), Human Serum Amyloid A (SAA) (Edbrooke et al., 1989), Troponin I (TN I) (Yutzey et al., 1989), Platelet-Derived Growth Factor (PDGF) (Pech et al., 1989), Duchenne Muscular Dystrophy (Klamut et al., 1990), SV40 (Banerji et al., 1981; Moreau et al., 1981; Sleigh et al., 1985; Firak et al., 1986; Herr et al., 1986; Imbra et al., 1986; Kadesch et al., 1986; Wang et al., 1986; Ondek et al., 1987; Kuhl et al., 1987; Schaffner et al., 1988), Polyoma (Swartzendruber et al., 1975; Vasseur et al., 1980; Katinka et al., 1980, 1981; Tyndell et al., 1981; Dandolo et al., 1983; de Villiers et al., 1984; Hen et al., 1986; Satake et al., 1988; Campbell et al., 1988), Retroviruses (Kriegler et al., 1982,

1983; Levinson et al., 1982; Kriegler et al., 1983, 1984a, b, 1988; Bosze et al., 1986; Miksicek et al., 1986; Celander et al., 1987; Thiesen et al., 1988; Celander et al., 1988; Choi et al., 1988; Reisman et al., 1989), Papilloma Virus (Campo et al., 1983; Lusky et al., 1983; Spandidos and Wilkie, 1983; Spalholz et al., 1985; Lusky et al., 1986; Cripe et al., 1987; Gloss et al., 1987; Hirochika et al., 1987; Stephens et al., 1987), Hepatitis B Virus (Bulla et al., 1986; Jameel et al., 1986; Shaul et al., 1987; Spandau et al., 1988; Vannice et al., 1988), Human Immunodeficiency Virus (Muesing et al., 1987; Hauber et al., 1988; Jakobovits et al., 1988; Feng et al., 1988; Takebe et al., 1988; Rosen et al., 1988; Berkhout et al., 1989; Laspia et al., 1989; Sharp et al., 1989; Braddock et al., 1989), Cytomegalovirus (CMV) IE (Weber et al., 1984; Boshart et al., 1985; Foecking et al., 1986), Gibbon Ape Leukemia Virus (Holbrook et al., 1987; Quinn et al., 1989). [0316] Inducible elements include, but are not limited to MT II—Phorbol Ester (TFA)/Heavy metals (Palmiter et al., 1982; Haslinger et al., 1985; Searle et al., 1985; Stuart et al., 1985; Imagawa et al., 1987, Karin et al., 1987; Angel et al., 1987b; McNeall et al., 1989); MMTV (mouse mammary tumor virus)—Glucocorticoids (Huang et al., 1981; Lee et al., 1981; Majors et al., 1983; Chandler et al., 1983; Lee et al., 1984; Ponta et al., 1985; Sakai et al., 1988); β-Interferonpoly(rI)x/poly(rc) (Tavernier et al., 1983); Adenovirus 5 E2—ElA (Imperiale et al., 1984); Collagenase—Phorbol Ester (TPA) (Angel et al., 1987a); Stromelysin—Phorbol Ester (TPA) (Angel et al., 1987b); SV40-Phorbol Ester (TPA) (Angel et al., 1987b); Murine MX Gene—Interferon, Newcastle Disease Virus (Hug et al., 1988); GRP78 Gene-

[0317] The particular promoter that is employed to control the expression of a peptide or protein encoding polynucle-otide of the invention is not believed to be critical, so long as it is capable of expressing the polynucleotide in a targeted cell, preferably a bacterial cell. Where a human cell is targeted, it is preferable to position the polynucleotide coding region adjacent to and under the control of a promoter that is capable of being expressed in a human cell. Generally speaking, such a promoter might include either a bacterial, human, or viral promoter.

A23187 (Resendez et al., 1988); α-2-Macroglobulin—IL-6

(Kunz et al., 1989); Vimentin—Serum (Rittling et al., 1989);

MHC Class I Gene H-2 Kb—Interferon (Blanar et al., 1989);

HSP70—ElA/SV40 Large T Antigen (Taylor et al., 1989,

1990a, 1990b); Proliferin—Phorbol Ester/TPA (Mordacq et

al., 1989); Tumor Necrosis Factor—PMA (Hensel et al.,

1989); and Thyroid Stimulating Hormone a Gene—Thyroid

Hormone (Chatterjee et al., 1989).

[0318] In various embodiments, the human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, or the Rous sarcoma virus long terminal repeat can be used to obtain high level expression of an Emp, AdsA and/or Eap polynucleotide. In other embodiments Emp, Eap and/or AdsA can be used expressed in combination with EsaB, EsaC, EsxA, EsxB, SdrC, SdrD, SdrE, Hla or a variant thereof, IsdA, IsdB, ClfA, ClfB, IsdC, SasB, SasF, Spa, vWa, Coa, Ebh, 52 kDa vitronectin binding protein (WO 01/60852), Aaa, Aap, Ant, autolysin glucosaminidase, autolysin amidase, Cna, collagen binding protein (U.S. Pat. No. 6,288,214), EFB (FIB), Elastin binding protein (EbpS), EPB, FbpA, fibrinogen binding protein (U.S. Pat. No. 6,008,341), Fibronectin binding protein (U.S. Pat. No. 5,840,846), FnbA, FnbB, GehD (US 2002/0169288), HarA, HBP, Immunodominant ABC transporter, IsaA/P isA, laminin receptor,

Lipase GehD, MAP, Mg2+ transporter, MHC II analogue (U.S. Pat. No. 5,648,240), MRPII, Npase, RNA III activating protein (RAP), SasA, SasB, SasC, SasD, SasK, SBI, SdrF (WO 00/12689), SdrG/Fig (WO 00/12689), SdrH (WO 00/12689), SEA exotoxins (WO 00/02523), SEB exotoxins (WO 00/02523), SitC and Ni ABC transporter, SitC/MntC/saliva binding protein (U.S. Pat. No. 5,801,234), SsaA, SSP-1, SSP-2, and/or Vitronectin binding protein or any other bacterial polypeptide. The use of other viral or mammalian cellular or bacterial phage promoters, which are well known in the art, to achieve expression of polynucleotides is contemplated as well.

[0319] In embodiments in which a vector is administered to a subject for expression of the protein, it is contemplated that a desirable promoter for use with the vector is one that is not down-regulated by cytokines or one that is strong enough that even if down-regulated, it produces an effective amount of an Emp, Eap and/or AdsA polypeptide for eliciting an immune response. Non-limiting examples of these are CMV IE and RSV LTR. In other embodiments, a promoter that is upregulated in the presence of cytokines is employed. The MHC I promoter increases expression in the presence of IFN-γ.

[0320] Tissue specific promoters can be used, particularly if expression is in cells in which expression of an antigen is desirable, such as dendritic cells or macrophages. The mammalian MHC I and MHC II promoters are examples of such tissue-specific promoters.

[0321] 2. Initiation Signals and Internal Ribosome Binding Sites (IRES)

[0322] A specific initiation signal also may be required for efficient translation of coding sequences. These signals include the ATG initiation codon or adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may need to be provided. One of ordinary skill in the art would readily be capable of determining this and providing the necessary signals. It is well known that the initiation codon must be "in-frame" with the reading frame of the desired coding sequence to ensure translation of the entire insert. The exogenous translational control signals and initiation codons can be either natural or synthetic and may be operable in bacteria or mammalian cells. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements.

[0323] In certain embodiments of the invention, the use of internal ribosome entry sites (IRES) elements are used to create multigene, or polycistronic, messages. IRES elements are able to bypass the ribosome scanning model of 5' methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988). IRES elements from two members of the picornavirus family (polio and encephalomyocarditis) have been described (Pelletier and Sonenberg, 1988), as well an IRES from a mammalian message (Macejak and Sarnow, 1991). IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, creating polycistronic messages. By virtue of the IRES element, each open reading frame is accessible to ribosomes for efficient translation. Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message (see U.S. Pat. Nos. 5,925,565 and 5,935,819, herein incorporated by reference).

[0324] 3. Multiple Cloning Sites

[0325] Vectors can include a multiple cloning site (MCS), which is a nucleic acid region that contains multiple restric-

tion enzyme sites, any of which can be used in conjunction with standard recombinant technology to digest the vector. (See Carbonelli et al., 1999, Levenson et al., 1998, and Cocea, 1997, incorporated herein by reference.) Frequently, a vector is linearized or fragmented using a restriction enzyme that cuts within the MCS to enable exogenous sequences to be ligated to the vector. Techniques involving restriction enzymes and ligation reactions are well known to those of skill in the art of recombinant technology.

[0326] 4. Splicing Sites

[0327] Most transcribed eukaryotic RNA molecules will undergo RNA splicing to remove introns from the primary transcripts. Vectors containing genomic eukaryotic sequences may require donor and/or acceptor splicing sites to ensure proper processing of the transcript for protein expression. (See Chandler et al., 1997, incorporated herein by reference.)

[0328] 5. Termination Signals

[0329] The vectors or constructs of the present invention will generally comprise at least one termination signal. A "termination signal" or "terminator" is comprised of the DNA sequences involved in specific termination of an RNA transcript by an RNA polymerase. Thus, in certain embodiments a termination signal that ends the production of an RNA transcript is contemplated. A terminator may be necessary in vivo to achieve desirable message levels.

[0330] In eukaryotic systems, the terminator region may also comprise specific DNA sequences that permit site-specific cleavage of the new transcript so as to expose a polyadenylation site. This signals a specialized endogenous polymerase to add a stretch of about 200 A residues (polyA) to the 3' end of the transcript. RNA molecules modified with this polyA tail appear to more stable and are translated more efficiently. Thus, in other embodiments involving eukaryotes, it is preferred that that terminator comprises a signal for the cleavage of the RNA, and it is more preferred that the terminator signal promotes polyadenylation of the message.

[0331] Terminators contemplated for use in the invention include any known terminator of transcription described herein or known to one of ordinary skill in the art, including but not limited to, for example, the bovine growth hormone terminator or viral termination sequences, such as the SV40 terminator. In certain embodiments, the termination signal may be a lack of transcribable or translatable sequence, such as due to a sequence truncation.

[0332] 6. Polyadenylation Signals

[0333] In expression, particularly eukaryotic expression, one will typically include a polyadenylation signal to effect proper polyadenylation of the transcript. The nature of the polyadenylation signal is not believed to be crucial to the successful practice of the invention, and/or any such sequence may be employed. Preferred embodiments include the SV40 polyadenylation signal and/or the bovine growth hormone polyadenylation signal, convenient and/or known to function well in various target cells. Polyadenylation may increase the stability of the transcript or may facilitate cytoplasmic transport.

[0334] 7. Origins of Replication

[0335] In order to propagate a vector in a host cell, it may contain one or more origins of replication sites (often termed "ori"), which is a specific nucleic acid sequence at which replication is initiated. Alternatively an autonomously replicating sequence (ARS) can be employed if the host cell is yeast.

[0336] 8. Selectable and Screenable Markers

[0337] In certain embodiments of the invention, cells containing a nucleic acid construct of the present invention may be identified in vitro or in vivo by encoding a screenable or selectable marker in the expression vector. When transcribed and translated, a marker confers an identifiable change to the cell permitting easy identification of cells containing the expression vector. Generally, a selectable marker is one that confers a property that allows for selection. A positive selectable marker is one in which the presence of the marker allows for its selection, while a negative selectable marker is one in which its presence prevents its selection. An example of a positive selectable marker is a drug resistance marker.

[0338] Usually the inclusion of a drug selection marker aids in the cloning and identification of transformants, for example, markers that confer resistance to neomycin, puromycin, hygromycin, DHFR, GPT, zeocin or histidinol are useful selectable markers. In addition to markers conferring a phenotype that allows for the discrimination of transformants based on the implementation of conditions, other types of markers including screenable markers such as GFP for colorimetric analysis. Alternatively, screenable enzymes such as herpes simplex virus thymidine kinase (tk) or chloramphenicol acetyltransferase (CAT) may be utilized. One of skill in the art would also know how to employ immunologic markers that can be used in conjunction with FACS analysis. The marker used is not believed to be important, so long as it is capable of being expressed simultaneously with the nucleic acid encoding a protein of the invention. Further examples of selectable and screenable markers are well known to one of skill in the art.

[0339] B. Host Cells

[0340] As used herein, the terms "cell," "cell line," and "cell culture" may be used interchangeably. All of these terms also include their progeny, which is any and all subsequent generations. It is understood that all progeny may not be identical due to deliberate or inadvertent mutations. In the context of expressing a heterologous nucleic acid sequence, "host cell" refers to a prokaryotic or eukaryotic cell, and it includes any transformable organism that is capable of replicating a vector or expressing a heterologous gene encoded by a vector. A host cell can, and has been, used as a recipient for vectors or viruses. A host cell may be "transfected" or "transformed," which refers to a process by which exogenous nucleic acid, such as a recombinant protein-encoding sequence, is transferred or introduced into the host cell. A transformed cell includes the primary subject cell and its progeny.

[0341] Host cells may be derived from prokaryotes or eukaryotes, including bacteria, yeast cells, insect cells, and mammalian cells for replication of the vector or expression of part or all of the nucleic acid sequence(s). Numerous cell lines and cultures are available for use as a host cell, and they can be obtained through the American Type Culture Collection (ATCC), which is an organization that serves as an archive for living cultures and genetic materials (www.atcc.org). An appropriate host can be determined by one of skill in the art based on the vector backbone and the desired result. A plasmid or cosmid, for example, can be introduced into a prokaryote host cell for replication of many vectors or expression of encoded proteins. Bacterial cells used as host cells for vector replication and/or expression include Staphylococcus strains, DH5α, JM109, and KC8, as well as a number of commercially available bacterial hosts such as SURE® Competent Cells and SOLOPACKTM Gold Cells (STRATAGENE®, La Jolla, Calif.). Alternatively, bacterial cells such as *E. coli* LE392 could be used as host cells for phage viruses. Appropriate yeast cells include *Saccharomyces cerevisiae*, *Saccharomyces pombe*, and *Pichia pastoris*.

[0342] Examples of eukaryotic host cells for replication and/or expression of a vector include HeLa, NIH3T3, Jurkat, 293, Cos, CHO, Saos, and PC12. Many host cells from various cell types and organisms are available and would be known to one of skill in the art. Similarly, a viral vector may be used in conjunction with either a eukaryotic or prokaryotic host cell, particularly one that is permissive for replication or expression of the vector.

[0343] Some vectors may employ control sequences that allow it to be replicated and/or expressed in both prokaryotic and eukaryotic cells. One of skill in the art would further understand the conditions under which to incubate all of the above described host cells to maintain them and to permit replication of a vector. Also understood and known are techniques and conditions that would allow large-scale production of vectors, as well as production of the nucleic acids encoded by vectors and their cognate polypeptides, proteins, or peptides.

[0344] C. Expression Systems

[0345] Numerous expression systems exist that comprise at least a part or all of the compositions discussed above. Prokaryote- and/or eukaryote-based systems can be employed for use with the present invention to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Many such systems are commercially and widely available.

[0346] The insect cell/baculovirus system can produce a high level of protein expression of a heterologous nucleic acid segment, such as described in U.S. Pat. Nos. 5,871,986, 4,879,236, both herein incorporated by reference, and which can be bought, for example, under the name MAXBAC® 2.0 from INVITROGEN® and BACPACKTM BACULOVIRUS EXPRESSION SYSTEM FROM CLONTECH®.

[0347] In addition to the disclosed expression systems of the invention, other examples of expression systems include STRATAGENE®'s COMPLETE CONTROL™ Inducible Mammalian Expression System, which involves a synthetic ecdysone-inducible receptor, or its pET Expression System, an E. coli expression system. Another example of an inducible expression system is available from INVITROGEN®, which carries the T-REXTM (tetracycline-regulated expression) System, an inducible mammalian expression system that uses the full-length CMV promoter. INVITROGEN® also provides a yeast expression system called the Pichia methanolica Expression System, which is designed for highlevel production of recombinant proteins in the methylotrophic yeast Pichia methanolica. One of skill in the art would know how to express a vector, such as an expression construct, to produce a nucleic acid sequence or its cognate polypeptide, protein, or peptide.

[0348] D. Amplification of Nucleic Acids

[0349] Nucleic acids used as a template for amplification may be isolated from cells, tissues or other samples according to standard methodologies (Sambrook et al., 2001). In certain embodiments, analysis is performed on samples without substantial purification of the template nucleic acid. The nucleic acid may be genomic DNA. Where RNA is used, it may be desired to first convert the RNA to a complementary DNA.

[0350] The term "primer," as used herein, is meant to encompass any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Typically, primers are oligonucleotides from ten to twenty and/or thirty base pairs in length, but longer sequences can be employed. Primers may be provided in double-stranded and/or single-stranded form, although the single-stranded form is preferred.

[0351] Pairs of primers designed to selectively hybridize to nucleic acids corresponding to sequences of genes identified herein are contacted with the template nucleic acid under conditions that permit selective hybridization. Depending upon the desired application, high stringency hybridization conditions may be selected that will only allow hybridization to sequences that are completely complementary to the primers. In other embodiments, hybridization may occur under reduced stringency to allow for amplification of nucleic acids containing one or more mismatches with the primer sequences. Once hybridized, the template-primer complex is contacted with one or more enzymes that facilitate template-dependent nucleic acid synthesis. Multiple rounds of amplification, also referred to as "cycles," are conducted until a sufficient amount of amplification product is produced.

[0352] A number of template dependent processes are available to amplify the oligonucleotide sequences present in a given template sample. One of the best known amplification methods is the polymerase chain reaction (referred to as PCRTM) which is described in detail in U.S. Pat. Nos. 4,683, 195, 4,683,202 and 4,800,159, and in Innis et al., 1988, each of which is incorporated herein by reference in their entirety. [0353] Alternative methods for amplification of target nucleic acid sequences that may be used in the practice of the present invention are disclosed in U.S. Pat. Nos. 5,843,650, 5,846,709, 5,846,783, 5,849,546, 5,849,497, 5,849,547, 5,858,652, 5,866,366, 5,916,776, 5,922,574, 5,928,905, 5,928,906, 5,932,451, 5,935,825, 5,939,291 and 5,942,391, GB Application No. 2 202 328, and in PCT Application No. PCT/US89/01025, each of which is incorporated herein by reference in its entirety.

[0354] E. Methods of Gene Transfer

[0355] Suitable methods for nucleic acid delivery to effect expression of compositions of the present invention are believed to include virtually any method by which a nucleic acid (e.g., DNA, including viral and nonviral vectors) can be introduced into a cell, a tissue or an organism, as described herein or as would be known to one of ordinary skill in the art. Such methods include, but are not limited to, direct delivery of DNA such as by injection (U.S. Pat. Nos. 5,994,624, 5,981, 274, 5,945,100, 5,780,448, 5,736,524, 5,702,932, 5,656,610, 5,589,466 and 5,580,859, each incorporated herein by reference), including microinjection (Harland and Weintraub, 1985; U.S. Pat. No. 5,789,215, incorporated herein by reference); by electroporation (U.S. Pat. No. 5,384,253, incorporated herein by reference); by calcium phosphate precipitation (Graham and Van Der Eb, 1973; Chen and Okayama, 1987; Rippe et al., 1990); by using DEAE dextran followed by polyethylene glycol (Gopal, 1985); by direct sonic loading (Fechheimer et al., 1987); by liposome mediated transfection (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987; Wong et al., 1980; Kaneda et al., 1989; Kato et al., 1991); or by microprojectile bombardment (PCT Application Nos. WO 94/09699 and 95/06128; U.S. Pat. Nos. 5,610,042; 5,322,783, 5,563,055, 5,550,318, 5,538,877 and 5,538,880, and each incorporated herein by reference). Through the application of techniques such as these, organelle(s), cell(s), tissue(s) or organism(s) may be stably or transiently transformed.

VII. EXAMPLES

[0356] The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion. One skilled in the art will appreciate readily that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those objects, ends and advantages inherent herein. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.

Example 1

Envelope Proteins Associated with Abscess Formation and Vaccine Protection

A. Results

[0357] The inventors sought to study the pathogenesis of staphylococcal abscess formation and identify the bacterial factors that enable staphylococcal survival and proliferation within this lesion. The studies used the murine renal abscess model, wherein mice are infected with a sub-lethal dose of S. aureus to develop a sustained infection (Burts et al., 2005). Mice were killed on the fifth day post-infection, their kidneys excised and subjected to histopathology of thin-sectioned hemotoxylin-eosin stained tissue or to enumeration of staphylococcal load by plating tissue homogenate for colony forming units (CFU). In comparison to the wild-type clinical isolated S. aureus Newman (Baba et al., 2008), an isogenic variant with a transposon insertion in the structural gene for sortase A failed to form abscesses (FIGS. 1B, 1D, and 1F). Sortase A, which anchors a large spectrum of surface proteins with LPXTG motif sorting signals to the cell wall envelope, is responsible for the surface display of many different virulence factors (Mazmanian et al., 2000; Mazmanian et al., 1999). To quantify abscess formation, kidneys were visually inspected, and each individual organ was given a score of one (surface abscesses present) or zero (absent). The final sum was divided by the total number of kidneys to obtain a fractional value. In addition, three randomly chosen right-sided kidneys were placed in 10% formalin overnight, embedded, sectioned, and stained with hematoxylin and eosin. For each kidney, four sagittal sections at 200 µM intervals were viewed by microscopy. If a lesion was observed in any plane of inspection, the organ was judged positive for abscess formation. Mice infected with 3×10⁷ CFU/ml S. aureus Newman displayed visible lesions on 16/20 kidneys (80% surface abscess) and were positive for abscess formation in 3/3 kidneys examined for histopathology (Table 3). In contrast, mice infected with the AsrtA mutant presented with 0% surface abscesses and 0/3 histological lesions (Table 3).

TABLE 3

Recovered Recovered CFUs with standard error, log reduction with respect to Newman, P-value (student's t-test), % surface abscesses observed, # histological abscesses observed.

			Kidney absc	ess formation	
	Staphylocoo	ecal load in kic		Histo-	
Strain	$\log_{10}\mathrm{CFU}\mathrm{g}^{-1}$	P-value	Reduction	Surface %	pathology
wild-type	6.040 ± 0.095	_	_	80	3
ΔsrtA	3.911 ± 0.389	0.0002	1.830	0	0
		Surface pro	tein genes		
sdrD	3.629 ± 0.758	0.0040	2.411	22	1
isdB	4.253 ± 0.510	0.0027	1.790	5	1
clfB	4.624 ± 0.446	0.0067	1.398	30	2
isdA	4.723 ± 0.280	0.0002	1.320	15	1
sasB	5.089 ± 0.448	0.0433	0.951	38	2
sasD	5.206 ± 0.375	0.0371	0.833	45	1
sasC	5.222 ± 0.400	0.0594	0.824	50	2
sasF	5.421 ± 0.360	0.1051	0.619	30	2
sasA	5.431 ± 0.403	0.1217	0.609	40	2
sasG	5.433 ± 0.360	0.1051	0.607	40	2
isdC	5.498 ± 0.292	0.0945	0.541	33	2
fnbpB	5.530 ± 0.359	0.1856	0.511	30	1
sasI	5.599 ± 0.416	0.2681	0.441	38	2
spa	5.681 ± 0.455	0.4487	0.359	10	1
fnbpA	5.751 ± 0.322	0.3800	0.289	40	2
sdrE	5.848 ± 0.334	0.5686	0.192	61	3
clfA	5.898 ± 0.296	0.1470	(+) 0.472	40	2
		PNAG (PI	` '		
icaA	5.326 ± 0.452	0.1122	0.822	40	3
icaB	5.894 ± 0.306	0.4917	0.254	35	2
icaC	5.651 ± 0.441	0.3004	0.497	35	
icaD	5.886 ± 0.278	0.4394	0.262	45	2 2 2
icaR	6.201 ± 0.309	0.8837	-0.053	60	2
ica:tet	5.692 ± 0.280	0.1909	0.456	55	2
rea.tet	3.052 2 0.200	Envelope pr		33	2
	6.520 0.205	0.1217	(.)0.40	50	2
eap	6.530 ± 0.385	0.1217	(+)0.49	50	2
emp	5.716 ± 0.080	0.1051	0.324	10	1
eap/∆srtA	4.708 ± 0.545	0.0129	1.332	0	0
emp/∆srtA	3.165 ± 0.496	5.53 × 10 ⁻⁴ Capsular polysa	2.875 ccharide genes	0	0
сарО	_	_	_	_	

 $^{^{\}circ}$ Means of staphylococcal load in colony forming units (CFU) calculated as \log_{10} CFU g $^{-1}$ in homogenized renal tissues 5 days following infection in cohorts of fifteen BALB/c mice per challenge strain. Standard error of the means (\pm SEM) is indicated. $^{\circ}$ Statistical significance was calculated with the students t-test and P-values recorded.

Recovered CFUs with standard error, log reduction with respect to Newman, P-value (student's t-test), % surface abscesses observed, # histological abscesses observed.

[0358] Scanning electron microscopy was used to examine infected tissues. Kidneys were sectioned, fixed, dehydrated in hexamethyldisilazane (HMDS), and sputter coated with 80% Pt/20% Pd prior to viewing. Kidney tissue infected with S. aureus Newman harbored bacteria within a central region of the abscess. Wild-type staphylococci were found in tightly associated lawns (FIG. 1G), contained by a fibrous structure that is internal to the larger fibrin capsule. These staphylococcal nests are devoid of leukocytes and appear to be embedded by an adhesive extracellular matrix. Kidneys tissue infected with the srtA mutant also harbored staphylococci, however the bacteria were dispersed throughout healthy renal tissue and significantly reduced in number compared to the wildtype (FIG. 1H).

[0359] To identify the specific sortase A substrates responsible for abscess formation, the inventors transduced bursa aurealis insertions in 17 sortase substrate genes (Bae et al., 2004) into S. aureus Newman and screened the variants for virulence defects. Mutations in sdrD, isdB, clfB, isdA, sasB, and sasD caused significantly reduced bacterial load (P<0.05) (FIG. 2). Further, mutations in sdrD, isdB, and isdA presented with fewer abscesses when analyzed by macroscopic and microscopic techniques (Table 3). The inventors considered mutants with <30% surface abscesses and <1/3 histological scores to display a significant defect in abscess formation. Mutants with mismatched surface histological scores were not counted as defective; rather, it is attributed to screening errors. Interestingly, mutations in clfB and sasB exhibited defects in staphylococcal load but not in abscess formation, whereas mutations in protein A displayed increased load but

^cReduction in bacterial load calculated as log₁₀ CFU g⁻¹.

^cAbscess formation in kidney tissues five days following infection. was measured by macroscopic inspection (% positive) and histopathology of hematoxylene-eosine stained, thin sectioned tissues from three animals, whereby positive tissues were recorded as fractional values (3/n).

also displayed a defect in abscess formation. The inventors wondered whether defects in abscess formation and survival in renal tissue were due to the inability of these mutants to form functional biofilms. In other words, is the defect in abscess formation attributable to defects for in vitro biofilm growth? To study this the inventors cultured staphylococci in 96 well assay plates or on coverslips and measured safraninstained biofilm by absorbance at 405 nm. S. aureus Newman does not form biofilm in laboratory broth, however Morrissey and colleagues reported biofilm growth in iron-depleted RPMI and 5% atmospheric CO₂ (Johnson et al., 2008). Using these conditions, all mutant strains tested here grew equally well (data not shown), however mutations in srtA, isdB, sdrD or isdA exhibited significant (P<0.05) defects in biofilm formation. These results were corroborated by scanning electron microscopy experiments (FIG. 3B, 3C, 3D, 3E, 3F, 3G, and Table 4), where S. aureus Newman grows as multicellular complexes embedded in a granular extracellular matrix (FIG. 3B). Multicellular complexes are reduced and the extracellular matrix is diminished in staphylococci with mutations in srtA, isdB, or sdrD, the same mutations that also abolished abscess formation in mice. Thus, in vitro biofilm formation may indeed be correlated with the ability of staphylococci to form abscesses. The inventors also tested mutations in genes that abrogate the synthesis of other envelope factors in staphylococci, including poly-N-acetylglucosamine (PNAG/ PIA which is synthesized by products of ica genes) (Heilmann et al., 1996; Gotz, 2002) as well as the cell wall associated proteins Eap (Scriba et al., 2008; Xie et al., 2006) and Emp (Hussain et al., 2001). Regulatory factors for staphylococcal virulence were also tested: saeR (Novick and Jiang, 2003), sarA (Cheung et al., 1992), mgrA (Chen et al., 2006), agrC, and agrA (Novick, 2003). Mutation in emp displayed the largest defect in biofilm formation with an 86% reduction in safranin absorbance and the absence of multicellular complexes by scanning EM, results that are in agreement with a similar study of Johnson et al (2008). In contrast, the Eap mutant displayed a slight, but significant defect in biofilm formation (FIG. 3A, Table 4). Emp and Eap are envelope adhesins that mediate interaction between staphylococci and host extracellular matrix proteins fibronectin, vibronectin, and collagen (Scriba et al., 2008; Xie et al., 2006; Hussain et al., 2001). All sequenced strains of S. aureus harbor genes for both proteins, which are positively regulated by the twocomponent system SaeRS and the global transcription factor SarA, mutations in which also impact biofilm formation (Harraghy et al., 2005) (FIG. 3A, Table 4).

TABLE 4

96 well plate in vitro biofilm assay. Mean absorbance at 450 nm with standard error, fraction reduction from Newman absorbance, P-value (student's t-test)

Strain	Mean absorbance @ 450 nm ± SEM	% Reduction (0.967-Abs)/0.967	P-value
Newman	0.967 ± 0.054	_	_
Eap	0.621 ± 0.152	0.357	0.011
Emp	0.131 ± 0.026	0.861	$2.30 \times 10 - 10$
SaeR	0.161 ± 0.025		$6.80 \times 10 - 12$
SarA	0.252 ± 0.051	0.83	$1.37 \times 10 - 5$
MgrA	0.630 ± 0.012	0.793	0.064
AgrC	0.701 ± 0.121	0.319	0.388
AgrA	0.889 ± 0.106	0.272	0.204
IcaA	0.516 ± 0.121	0.081	$4.34 \times 10-4$
IcaC	0.653 ± 0.204	0.466	0.041

TABLE 4-continued

96 well plate in vitro biofilm assay. Mean absorbance at 450 nm with standard error, fraction reduction from Newman absorbance, P-value (student's t-test)

Strain	Mean absorbance @ 450 nm ± SEM	% Reduction (0.967-Abs)/0.967	P-value
IcaD	0.791 ± 0.158	0.325	0.194
IcaB	0.713 ± 0.184	0.182	0.08
IcaR	0.511 ± 0.169	0.472	$1.19 \times 10 - 3$
Ica:tet	0.546 ± 0.169	0.2	$4.28 \times 10 - 3$
SrtA	0.524 ± 0.081	0.458	$6.51 \times 10 - 5$
IsdB	0.415 ± 0.042	0.57	$8.79 \times 10 - 8$
SdrD	0.447 ± 0.090	0.537	0.002
IsdA	0.658 ± 0.913	0.32	0.029
SasD	0.679 ± 0.187	0.298	0.064
SasA	0.707 ± 0.077	0.268	0.388
SasG	0.774 ± 0.184	0.2	0.204
SasH	0.777 ± 0.156	0.197	0.196
SpA	0.824 ± 0.136	0.176	0.136
SasC	0.833 ± 0.087	0.147	0.39
SasI	0.797 ± 0.142	0.138	0.419
SasB	0.841 ± 0.127	0.13	0.374
IsdC	0.863 ± 0.024	0.107	0.433
FnbA	0.886 ± 0.368	0.084	0.677
ClfB	0.913 ± 0.181	0.056	0.705
ClfA	1.061 ± 0.107	-0.097	0.705
SdrE	1.070 ± 0.124	-0.107	0.465
FnbB	1.120 ± 0.118	-0.158	0.419

[0360] To study if Emp is required for abscess formation, mice were challenged with emp mutant staphylococci and kidneys analyzed five days following infection. The emp mutant staphylococci were isolated from kidney tissue with similar abundance as the wild-type parent (FIG. 4A), however these mutants failed to form abscesses and instead remained dispersed throughout kidney tissue (FIG. 4B). These results identify Emp as an envelope factor that is uniquely required for abscess and biofilm formation in vitro and in vivo. It is noted that mutations in ica genes (icaABCDR), which mediate PNAG synthesis (Heilmann et al., 1997), exhibited only a slight decrease in biofilm formation. Although unable to produce exopolysaccharide, ica mutants were able to generate the extracellular matrix that can be detected by electron microscopy. Further, ica mutants failed to display in vivo defects in abscess formation or bacterial load (FIGS. 6A, 6B, Table 5). These data suggest therefore that the extracellular matrix of S. aureus Newman biofilms is not comprised of PNAG. Emp and Eap are cell wall associated surface proteins, whose production can be detected by SDS extraction of staphylococci and separation on Coomassie-stained PAGE (FIG. 5A). With this assay it was observed that S. aureus Newman produces large quantities of Eap and Emp. Mutations in srtA or isdB do not affect production or cell wall association of Emp and Eap, in agreement with the conjecture that the observed defects of srtA and isdB mutants in abscess and biofilm formation are not due to secondary effects on Eap and Emp. Of note, mutations in emp affect the abundance of Eap and it is surmised that envelope deposition of Emp may affect the surface display of Eap.

TABLE 5

Ica virulence. Mean recovered CFUs, log reduction from Newman, P-value (student's t-test), % surface abscesses observed, # histological abscesses.

Strain	Mean S. aureus per kidneys ± SEM (log10(CFU)/mL)	Reduction (log10(CFU)/mL)	P-value	% surface abscess	# histology abscess
Newman	6.148 ± 0.194	_	_	0.7	3
IcaA	5.326 ± 0.452	0.822	0.1122	0.4	2
IcaB	5.894 ± 0.306	0.254	0.4917	0.35	2
IcaC	5.651 ± 0.441	0.497	0.3004	0.35	2
IcaD	5.886 ± 0.278	0.262	0.4394	0.45	2
IcaR	6.201 ± 0.309	-0.053	0.8837	0.6	2
Ica:tet	5.692 ± 0.280	0.456	0.1909	0.55	2
SrtA	3.319 ± 0.604	2.849	$2.26 \times 10-4$	0	0
IcaA/SrtA	2.247 ± 0.559	3.901	$3.45 \times 10 - 6$ (N)	0	0
			$1.84 \times 10 - 5$	(I)	
			0.2097 (S)	

[0361] As both proteins displayed prominently on the staphylococcal surface, the inventors contemplated that Emp and Eap represent suitable vaccine antigens to prevent staphylococcal disease. The structural genes for each protein were cloned into pET15b and recombinant products purified by affinity chromatography via N-terminal His-6 tag under denaturing conditions. Following purification, Eap could be folded and soluble product purified by a second round of Ni-NTA chromatography in renaturing buffer. Purified Emp could not be refolded and was thenceforth kept in 8 M urea (FIG. 5B). Mice were immunized with PBS, Eap or Emp emulsified in complete Freund adjuvant (CFA) and challenged mice with 3×10^7 CFU S. aureus Newman. FIG. **5**C shows that immunization with Emp or Eap conferred significant protection (P<0.05) against staphylococcal infection. Mice vaccinated with Eap displayed a two log reduction in staphylococcal load, whereas Emp immunized mice exhibited a 2.5 log reduction. Mice immunized with Eap (1:24,000) or Emp (>64,000) developed high titers of reactive IgG (FIG. 5D). As expected, animal mock immunized with PBS developed 70% surface and 4/5 histological abscesses. In contrast, mice immunized with Eap and Emp presented with <20% surface abscesses and 1/5 histological lesions (FIG. 5E). Thus, immunization with Eap or Emp generates specific humoral immune responses and protective immunity against staphylococcal infection.

[0362] Studies reveal an association between staphylococcal biofilm growth and the ability to form abscesses in infected host tissues. Previous work established that biofilms are required for colonization and persistent infection of implanted medical devices and allow for protection from antibiotics, antibodies, and phagocytic cells. Evidence presented here suggests that biofilms are required for effective seeding and persistent proliferation of staphylococci within organ tissues. Three sortase substrate genes were identified, sdrD, isdB, and isdA that displayed combinatorial defects in abscess formation, staphylococcal load in infected tissues and in vitro biofilm growth. Remarkably, the products of these surface protein genes were also identified as premier vaccine candidates in a comparative evaluation of staphylococcal sortase anchored surface proteins (Stranger-Jones et al., 2006). Such attribute can now also be expanded for two cell wall associated factors Emp and Eap. At least emp is required for abscess formation and biofilm growth and immunization with Emp product affords protective immunity against staphylococcal disease. Thus, these studies expand the list of suitable vaccine candidates to prevent human infections with *S. aureus* to select cell wall anchored and cell wall associated proteins, whose combined formulation should provide strong protective immunity against all staphylococcal strains.

[0363] Animal model for staphylococcal abscess formation and persistent infection. To characterize the pathogenesis of S. aureus abscess formation, the renal abscess model was modified (Albus et al., 1991), wherein BALB/c mice were infected by intravenous injection with 1×107 CFU of the human clinical isolate S. aureus Newman (Baba et al., 2007). Within 6 hours following infection, 99.999% of staphylococci disappeared from the blood stream and were distributed via the vasculature (FIG. 7A). Staphylococcal dissemination to peripheral tissues occurred rapidly, as the bacterial load in kidney and other peripheral organ tissues reached 1×10⁵ CFU g⁻¹ within the first three hours (FIG. 7B). The staphylococcal load in kidney tissues increased by 1.5 log CFU within twenty-four hours (FIG. 7B). Forty-eight hours following infection, mice developed disseminated abscesses in multiple organs, detectable by light microscopy of hematoxylin-eosin stained, thin-sectioned kidney tissue (FIG. 7D-K). The initial abscess diameter was 524 μM (±65 μM); lesions were initially marked by an influx of polymorphonuclear leukocytes (PMNs) and harbored no discernable organization of staphylococci, most of which appeared to reside within PMNs (FIG. **8**A-C). On day 5 of infection, abscesses had increased in size and enclosed a central population of staphylococci, surrounded by a layer of eosinophilic, amorphous material and a large cuff of PMNs (FIG. 8D-F). Histopathology revealed massive necrosis of PMNs in proximity to the staphylococcal nidus at the center of abscess lesions as well as a mantle of healthy phagocytes (FIG. 8D-F). A rim of necrotic PMNs at the periphery of abscess lesions, bordering eosinophilic, amorphous material that separated healthy renal tissue from the infected lesion were also observed (FIG. 8D-F). Abscesses eventually reached a diameter of ≥1,524 µM on day 15 or 36 (FIG. 7K). At later time intervals, staphylococcal load was increased to 10⁴-10⁶ CFU g⁻¹ and growing abscess lesions migrated towards the organ's capsule (FIG. 7J-K). Peripheral lesions were prone to rupture, thereby releasing necrotic material and staphylococci into the peritoneal cavity or the retroperitoneal space. These events resulted in bacteremia as well as a secondary wave of abscesses, eventually precipitating a lethal outcome of these infections (data not shown).

[0364] Staphylococcal abscess communities are enclosed by a pseudocapsule. To enumerate staphylococcal load in renal tissue, animals were killed, their kidneys excised and tissue homogenate spread on agar media for colony formation. On day 5 of infection, a mean of 1×10⁶ CFU g⁻¹ renal tissue for S. aureus Newman was observed (FIG. 9P). To quantify abscess formation, kidneys were visually inspected, and each individual organ was given a score of one (FIG. 9A) or zero (FIG. 9F). The final sum was divided by the total number of kidneys to calculate percent surface abscesses (Table 6). In addition, randomly chosen kidneys were fixed in formalin, embedded, thin sectioned, and stained with hematoxylin and eosin. For each kidney, four sagittal sections at 200 µM intervals were viewed by microscopy (FIG. 9). The numbers of lesions were counted for each section and averaged to quantify the number of abscesses within kidneys. S. aureus Newman caused 4.364±0.889 abscesses per kidney, and surface abscesses were observed on 14 out of 20 kidneys (70%) (Table 6).

[0365] Kidneys were sectioned, fixed, dehydrated and sputter coated with platinum/palladium for scanning electron microscopy. FIG. 10A shows S. aureus Newman in tightly associated lawns at the center of abscesses. Staphylococci were contained by an amorphous pseudocapsule (white arrow heads, FIG. 10A) that separated bacteria from the cuff of abscesses leukocytes. No immune cells were observed in these central nests of staphylococci, however occasional red blood cells were located among the bacteria (R, FIG. 10A). Bacterial populations at the abscess center, designated staphylococcal abscess communities (SAC), appeared homogenous and were coated by an electron-dense, granular material. The kinetics of the appearance of infectious lesions and the morphological attributes of abscesses formed by S. aureus Newman were similar to those observed following mouse infection with S. aureus USA300 (LAC), the current epidemic community acquired methicillin-resistant S. aureus (CA-MRSA) clone in the United States (Diep et al., 2006) (FIG. 9K-O and 10C).

TABLE 6

	Staphylococcal		for S. aureus Newi		ss formation in kidney t	rissue
Genotype	^a log ₁₀ CFU g ^{−1} tissue		^c Reduction (log ₁₀ CFU g ⁻¹)	dSurface abscesses (%)	"Number of abscesses per kidney	fSignificance (P-value)
wild-type	6.141 ± 0.192	_	_	70	4.364 ± 0.889	_
Δ srt A	4.095 ± 0.347	6.7×10^{-6}	2.046	0	0.000 ± 0.000	0.0216
			Surface protein	genes		
sdrD	4.092 ± 0.454	0.0001	2.049	15	0.600 ± 0.267	0.0265
isdB	4.535 ± 0.298	5.7×10^{-5}	1.606	5	0.500 ± 0.167	0.0227
clfB	4.672 ± 0.302	0.0001	1.469	30	1.852 ± 0.654	0.1298
isdA	4.723 ± 0.299	0.0002	1.418	15	0.375 ± 0.182	0.0350
isdC	5.050 ± 0.208	0.0004	1.091	27	1.000 ± 0.327	0.0737
clfA	5.103 ± 0.260	0.0025	1.038	40	1.125 ± 0.350	0.0848
spa	5.137 ± 0.374	0.0144	1.004	13	0.375 ± 0.374	0.0356
sasG	5.139 ± 0.287	0.0054	1.002	45	1.222 ± 0.425	0.0770
sasC	5.193 ± 0.337	0.0167	0.948	56	1.375 ± 0.595	0.1335
sasD	5.312 ± 0.291	0.0212	0.829	48	1.500 ± 0.462	0.1272
sasA	5.355 ± 0.217	0.0102	0.786	39	2.250 ± 0.453	0.2568
sdrE	5.498 ± 0.255	0.0475	0.643	65	2.333 ± 0.667	0.5023
sasF	5.518 ± 0.318	0.0884	0.623	47	1.333 ± 0.408	0.3187
isdH	5.555 ± 0.251	0.0676	0.586	44	1.125 ± 0.479	0.0859
sasB	5.650 ± 0.255	0.1641	0.491	59	1.720 ± 0.620	0.1651
fnbA	5.678 ± 0.270	0.1294	0.463	51	2.125 ± 0.666	0.2338
sdrC	5.693 ± 0.287	0.1908	0.448	33	1.000 ± 0.378	0.0741
fnbB	5.823 ± 0.246	0.3124	0.318	54	2.000 ± 0.567	0.2074
			PNAG (PIA) g	genes		
icaA	5.326 ± 0.452	0.3122	0.815	40	2.667 ± 1.453	0.5768
icaB	5.894 ± 0.306	0.4917	0.247	35	1.000 ± 0.270	0.2690
icaC	5.651 ± 0.441	0.3004	0.491	35	2.000 ± 1.527	0.4384
icaD	5.886 ± 0.278	0.4394	0.255	45	1.667 ± 0.667	0.3741
icaR	6.201 ± 0.309	0.8837	+0.06	60	2.333 ± 0.333	0.5033
ica:tet	5.692 ± 0.280	0.1909	0.449	55	2.333 ± 0.667	0.5023
			welope associated p	rotein genes		
eap	6.530 ± 0.385	0.1217	+0.49	55	1.250 ± 0.412	0.0971
emp	5.540 ± 0.040	0.0576	0.601	20	0.800 ± 0.416	0.0361
-mp	5.540 ± 6.040		Capsular polysaccha		J.000 ± J.710	0.0301
сарО	6.028 ± 0.579	0.9825	0.113	50	3.000 ± 1.054	0.6035

 $^{^{}a}$ Means of staphylococcal load calculated as \log_{10} CFU g⁻¹ in homogenized renal tissues 5 days following infection in cohorts of fifteen BALB/c mice per challenge strain. Standard error of the means (\pm SEM) is indicated. b Statistical significance was calculated with the Students t-test and P-values recorded; P-values <0.05 were deemed significant.

^cReduction in bacterial load calculated as log₁₀ CFU g^{−1}.

^dAbscess formation in kidney tissues five days following infection was measured by macroscopic inspection (% positive)

[&]quot;Histopathology of hematoxylene-eosin stained, thin sectioned kidneys from eight to ten animals: the average number of abscesses per kidney was recorded and averaged again for the final mean (±SEM).

'Statistical significance was calculated with the Students t-test and P-values recorded, P-values <0.05 were deemed significant.

[0366] Sortase mutants cannot establish abscess lesions and fail to persist. Sortase A is a transpeptidase that immobilizes nineteen surface proteins in the envelope of S. aureus strain Newman (Mazmanian et al., 1999; Mazmanian et al., 2000). Earlier work identified sortase A as a virulence factor in multiple animal model systems, however the contributions of this enzyme and its anchored surface proteins to abscess formation or persistence have not yet been revealed (Jonsson et al. 2002; Weiss et al., 2004). Compared to the wild-type parent (Baba et al., 2007), an isogenic srtA variant (ΔsrtA) failed to form abscess lesions on either macroscopic or histopathology examination on days 2, 5 or 15 (FIG. 9F-J and Table 6). In mice infected with the strA mutant, only 1×10^4 CFU g⁻¹ was recovered from kidney tissue on day 5 of infection, which is a 2.046 log₁₀CFU g⁻¹ reduction compared to the wild-type parent strain ($P=6.73\times10^{-6}$)(FIG. 9P). A similar defect was observed for the srtA mutant of MRSA strain USA300 (data not shown). Scanning electron microscopy showed that srtA mutants (arrow heads) were highly dispersed and often associated with leukocytes in otherwise healthy renal tissue (FIG. 10B). On day fifteen following infection, srtA mutants were cleared from renal tissues, a $\geq 3.5 \log_{10} CFU g_{-1}$ reduction compared to the wild-type (FIG. 9P). Thus, sortase A anchored surface proteins enable the formation of abscess lesions and the persistence of bacteria in host tissues, wherein staphylococci replicate as communities embedded in an extracellular matrix and shielded from surrounding leukocytes by an amorphous pseudocapsule.

[0367] Genetic requirements for staphylococcal surface proteins. Sortase A anchors a large spectrum of proteins with LPXTG motif sorting signals to the cell wall envelope, thereby providing for the surface display of many virulence factors (Mazmanian et al., 2002). To identify surface proteins required for staphylococcal abscess formation, bursa aurealis insertions were introduced in 5' coding sequences of genes that encode polypeptides with LPXTG motif proteins (Bae et al., 2004) and transduced these mutations into S. aureus Newman. Following intravenous infection of mice and analysis through the renal abscess model, the severity of observed virulence defects was rank ordered as the log₁₀ reduction of the means of staphylococcal CFU g^{-1} (FIG. 11 and Table 6). Mutations in sdrD, isdB, clfB, isdA, clfA, and isdC caused reduced bacterial load (Table 6). The inventors considered mutants <30% or less surface abscesses and histology abscess average P<0.05 as significant for defects in abscess formation, which included variants with mutations in sdrD, isdB, and isdA (Table 6). Interestingly, mutations in clfA and clfB exhibited defects in staphylococcal load but not in abscess formation (FIG. 11). These virulence findings are in agreement with previous studies suggesting that clumping factor proteins mediate fibrinogen binding as well as resistance to phagocytic clearance, attributes required for pathogen survival and dissemination in blood (McDevitt et al., 1994; Ni Eidhin et al. 1998). Protein A impedes phagocytosis by binding the Fc component of immunoglobulin (Uhlen et al., 1984; Jensen et al., 1958), activates platelet aggregation via the von Willebrand factor (Hartleib et al., 2000), functions as a B cell superantigen by capturing the Fab region of VH3 bearing IgM (Roben et al., 1995), and, through its activation of TNFR1, can initiate staphylococcal pneumonia (Gomez et al., 2004). Protein A mutants (spa) exhibited a modest reduction in staphylococcal load (day 5), however, in contrast to wildtype,

clfA and clfB strains, the ability of spa variants to form abscesses was diminished (FIG. 11 and Table 6).

[0368] Staphylococcal carbohydrates and envelope associated proteins. S. aureus elaborates two carbohydrate structures, capsular polysaccharide (CPS) (Jones 2005) and poly-N-acetylglucosamine (PNAG) (Gotz 2002). S. aureus Newman and USA300 synthesize type 5 CPS, which is composed of a repeating trisaccharide subunit [→4)-β-D-ManAcA- $(1\rightarrow 4)$ -α-L-FucNAc(3OAc)- $(1\rightarrow 3)$ -β-D-Fuc-NAc- $(1\rightarrow)$ (Baba et al., 2007). Nucleotide sequences of the cap5 gene cluster comprise a 16 gene operon (capA-P) and two of its products, CapP and CapO, function as epimerase and dehydrogenase in the synthesis UDP-N-acetylmannosaminuronic acid (UDP-ManNAcA) (O'Riordan and Lee, 2004; Sau et al., 1997). As expected, bursa aurealis insertion into cap0 abrogated CPS5 synthesis (data not shown). PNAG (or PIA), a linear $\beta(1-6)$ -linked glucosaminoglycan, is composed of 2-deoxy-2-amino-D-glucopyranosyl residues, of which 80-85% are N9 acetylated (Mack et al., 1996); the remaining glucosamine residues are positively charged and promote association of the polysaccharide with the bacterial envelope (Vuong et al., 2004). PNAG is synthesized by products of the intercellular adhesin locus (icaADBC) (Heilmann et al., 1996; Cramton et al., 1999). Both S. aureus carbohydrate structures were dispensable for the pathogenesis of animal infections, as mutations in capO as well as icaADBC or the regulator icaR did not affect bacterial load on day 5, the establishment of staphylococcal communities or renal abscess formation (Table 6). The contribution of envelope associated proteins to staphylococcal abscess formation was also examined. The hallmark of envelope associated proteins is that they can be extracted by boiling in hot SDS. This method was used to detect the deposition of two such proteins, Eap and Emp, in the envelope of S. aureus Newman. A mutant with bursa aurealis insertion in emp displayed reduced bacterial load in kidney tissue on day 5 of infection in addition to significant defects in the formation of abscesses and in bacterial persistence within host tissues (FIG. 12, Table 6). No reduction in abscess formation was observed for the eap mutant, whereas the reduced staphylococcal load on day 5 and 15 suggests a defect in bacterial peristence within host tissues (FIG. 12, Table 6). Expression of Emp and Eap during infection was detected with immunofluorescence experiments (FIG. 12J-K). Eap was found deposited within the pseudocapsule, whereas Emp was detected in staphylococal abscess communities. These observations support a model whereby Emp contributes to the formation of staphylococcal communities that elicit abscess lesions, whereas Eap deposition in the pseudocapsule promotes bacterial persistence in host tissues.

[0369] Envelope associated proteins as vaccine antigens. Previous work sought to characterize *S. aureus* vaccine antigens by interrogating purified sortase A substrates for their ability to elicit protective immunity towards staphylococcal disease (Stranger-Jones et al., 2006). When used as individual subunit vaccine antigens, surface proteins generated variable degrees of protection; immunization with SdrD, IsdA, IsdB, SdrE, SpA, ClfA as well as ClfB achieved a significant reduction in bacterial load, however none of these vaccines afforded complete protection. In contrast, a combination of four antigens generated much more robust vaccine protection against abscess formation or lethal challenge with several different *S. aureus* strains (Stranger-Jones et al., 2006). Recombinant Eap and Emp was purified from *Escherichia*

coli and used these proteins to immunize BALB/c mice for subsequent challenge with *S. aureus* Newman (FIG. 13). Following immunization, mice developed humoral immune responses against both envelope associated proteins (FIG. 13A). Immunization with Emp caused a modest 0.959 log₁₀ CFU g⁻¹ reduction in staphylococcal load within kidney tissues (P=0.5114), whereas a significant level of protection was achieved with Eap (1.939 log₁₀CFU g⁻¹ reduction in bacterial load, P=0.0079) (FIG. 13B). To test whether Emp or Eap specific antibodies can provide protection against staphylococcal challenge, rabbits were immunized and Emp-as well as Eap-specific antibodies were purified by affinity chromatography.

[0370] Passive immunization with 5 mg kg⁻¹ (85 µg per animal) purified antibodies into the peritoneal cavity of naïve BALB/c mice resulted in low, but detectable levels of serum IgG 24 hours following transfer (antibody titers of 1,000±110 for Eap and 1,124±236 for Emp, FIG. 13C). In parallel, passively immunized animals were challenged by intravenous inoculation with *S. aureus* Newman, which, when compared to mock controls, resulted in a 1.36 log₁₀CFU g⁻¹ reduction in staphylococcal load for Eap immunized animals (n=10) on day 4 (P=0.0085) and a reduction in the number of abscesses formed (mock treated 4.64±1.09 abscesses kidney⁻¹ vs. Eap immunized 1.40±0.48, P=0.028, n=14 and 10, FIG. 13D-E).

[0371] Animals (n=9) that received Emp-specific antibodies displayed a 1.20 log₁₀CFU g⁻¹ reduction in staphylococcal load on day 4 (P=0.0132), but only a slightly reduced number of abscesses formed (2.0±0.98, P=0.1362, FIG. 13D-E). In summary, similar to sortase anchored surface proteins, antibodies against envelope associated factors can generate protection against staphylococcal infection in mice.

B. Materials and Methods

[0372] Bacterial Strains and Growth. Staphylococci were cultured on tryptic soy agar or broth at 37° C. *E. coli* strains DH5a and BL21(DE3) were cultured on Luria agar or broth at 37° C. Ampicillin (100 μ g/ml) and erythromycin (10 μ g/ml) were used for plasmid and transposon mutant selection, respectively.

[0373] Transposon Mutagenesis. Insertional mutations from the *Phoenix* library were transduced into human clinical isolate *S. aureus* Newman. Each mutant carries the transposon *bursa aurealis* containing an erythromycin resistance cassette in the gene of interest. The mutations were verified as previously described (Bae et al., 2004). Briefly, chromosomal DNA was extracted (Promega Wizard Kit), digested with Acil (NEB), religated with T4 Ligase (Promega) to form individual plasmids, and PCR amplified using primers specific to the transposon bursa aurealis. These products were sequenced to verify the site of transposon insertion in the target gene.

[0374] Cloning, purification, and antibody generation. Coding sequences for Eap and Emp were PCR-amplified using *S. aureus* Newman template DNA (Baba et al., 2007). PCR products were cloned into pET15b to express recombinant proteins with an N-terminal His6 tag fusion. Bacteria were disrupted in a French press, membrane and insoluble components sedimented by ultracentrifugation. His-tagged Emp was purified by affinity chromatography in its native state. Extract containing Eap was solubilized at room temperature in 8 M urea, 50 mM Tris-HCl pH 8.0 for 4-5 hours, then centrifuged at 10,000×g. The supernatant containing the

denatured protein was subjected to nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography (Promega). Protein was eluted in PBS-8M urea containing successively higher concentrations of imidazole (100-500 mM). Eluate fractions positive for Eap were pooled, diluted into PBS-1M Urea and passed over a second Ni-NTA column. Refolded Eap was eluted with PBS buffer containing imidazole. Protein concentration was determined by absorbance at 280 nm. Rabbits (6 month old New-Zealand white, females, Charles River Laboratories) were immunized with 500 µg protein emulsified in CFA (Difco) for initial immunization or IFA for booster immunizations on day 24 and 48. On day 60, rabbits were bled and serum recovered for immunoblotting, immune-fluorescence microscopy or passive transfer experiments.

[0375] Scanning Electron Microscopy. Infected kidneys (right side) were fixed for 24-48 hours in 8% glutaraldehyde at 4° C. and sectioned into 2-5 mm pieces to expose internal tissues or abscesses. These samples were then dehydrated by successive incubations in 25, 50, 75, 90, 100% ethanol, followed by 100% HMDS. Following dehydration, samples were mounted and sputter coated with 80% Pt/20% Pd to 8 nm before viewing under a Fei NovaNano SEM200 scanning electron microscope. For biofilm assays, staphylococci were grown on coverslips in iron depleted RPMI in 5% CO₂ and washed 3 times in PBS. Cover slips were serially dehydrated by incubation in ethanol and HMDS, mounted, and sputter coated prior to viewing under the scanning electron microscope.

[0376] Biofilm formation. *S. aureus* strains were grown in Chelex (Sigma) treated RPMI 1640 (Gibco) supplemented with 10% RPMI 1640 and 1% Casamino acids (Difco). Overnight cultures were grown at 37° C. in 6% CO₂, then inoculated 1:10 in quadruplicate into 96-well flat-bottomed tissue culture plates (Costar) containing fresh media. These plates were incubated statically at 37° C. in 6% CO₂ for 24 hours. Wells were washed three times with 1×PBS, dried for 2 hours at 37° C., and stained with 1% safranin. Absorbance at 450 nm was measured to quantify biofilm formation. Each strain was tested in at least 3 separate experiments and a two-tailed Student t test was used to compare mutants to wild-type.

[0377] Renal Abscess. Overnight cultures of S. aureus Newman were inoculated 1:100 into fresh tryptic soy broth and grown for 2 hours at 37° C. Staphylococci were sedimented, washed with 1×PBS, and suspended in a volume of PBS to yield an A600 of 0.6 (3×10⁸ CFU/ml). The inoculum was verified by plating and colony enumeration. Mice were anesthetized by intraperitoneal injection of 100 mg/ml of ketamine and 2 mg/ml of xylazine per kilogram of body weight. 6-8 week old female BALB/c mice (Charles River Laboratories) were infected with 100 µl of bacterial suspension $(3\times10^7 \text{ CFU})$ by retroorbital injection. Cohorts of 10 or 20 mice were infected per staphylococcal strain. On the day 5 following infection, mice were killed by CO₂ inhalation, dissected, and the kidneys were excised and homogenized in 0.01% Triton X-100 using a sonicator. Aliquots (20 μl) were serially diluted and plated for determination of CFU. Three to four right kidneys from each cohort of mice were fixed in 10% formalin for 24 h at room temperature. Tissues were embedded in paraffin, thin-sectioned, stained with hematoxylin and eosin, and examined by microscopy. 3-4 week old female BALB/c mice were used for persistence studies.

[0378] Immunization. BALB/c mice (24-day-old female, 8-10 mice per group, Charles River Laboratories, Wilmington, Mass.) were immunized by intramuscular injection into

the hind leg with purified protein. Antigen (25 μ g purified protein per animal) was administered on days 0 (emulsified 1:1 with complete Freund's adjuvant) and 11 (emulsified 1:1 with incomplete Freund's adjuvant). Mice were bled periorbitally on day 20, followed by retro-orbital challenge in the opposite eye with 10^7 CFU/ml bacteria on day 21. Mice were killed on day 25 and processed according to the renal abscess model.

[0379] Immunofluorescence microscopy. Kidneys of infected animals were dissected, placed in 1×PBS on ice, and then flash frozen in Tissue Tek OCT Compound within cryomolds. Samples were thin sliced (4 µm thick), mounted on slides, and stored at -80° C. Prior to staining, slides were warmed to room temperature for 30 minutes, fixed in ice cold acetone for 10 minutes, and washed twice with ice cold PBS. The slides were blocked in 3% BSA, 1:20 Human IgG (Sigma), 1×PBS, 0.1% Tween-80 for 1 hour at room temperature with shaking Specific rabbit antibody (1:2,000) was added to the mixture and slides were allowed to incubate for another hour. The solution was decanted and glass slides were washed 3 times with PBS and 10 minute incubations each. Slides were placed in 3% BSA, 1×PBS, 0.1% Tween-80, 1:200 AlexaFluor-647 mouse anti-rabbit secondary antibody and allowed to incubate at room temperature in the dark, with shaking. The solution was decanted, slides were washed 3 times with PBS, placed in PBS containing 1:1,000 Hoechst dye (Invitrogen) as well as 1 µg/ml BODIPY-vancomycin and allowed to incubate in the dark for 5 minutes with shaking The slides were washed once more with PBS, mounted in Npropylgallate, and viewed under a Leica SP5 AOBS spectral two-photon confocal microscope.

[0380] Active and passive immunization. BALB/c mice (n=15) were immunized with purified Eap or Emp or PBS on day 0, 11. On day 20 following immunization, 5 mice were bled to obtain sera to determine antibody titers and on day 21, all mice were challenged with 1×10⁷ CFU *S. aureus* Newman. Five days following infection, kidneys were removed during necropsy and renal tissue analyzed for staphylococcal load or histopathology.

[0381] Rabbit Eap or Emp antibodies were purified by affinity chromatography (purified Eap or Emp covalently linked to sepharose) and transferred by intraperitoneal injection into mice. Passively immunized animals were challenged twenty-four hours later by retroorbital injection with 1×10⁷ CFU *S. aureus* Newman. Serum IgG titers of actively or passively immunized animals were analyzed by ELISA. Four days following infection, kidneys were removed during necropsy and renal tissue was analyzed for staphylococcal load or histopathology.

Example 2

Staphylococcus Aureus Synthesizes Adenosine to Escape Host Immune Responses

A. Results

[0382] AdsA is required for staphylococcal survival in blood. To identify staphylococcal genes required for escape from innate immune responses, the ability of *S. aureus* strain Newman to survive in whole blood from BALB/c mice or Sprague-Dawley rats was examined by recording bacterial load at timed intervals via the formation of colonies on agar medium (FIG. 15). As expected, immune cells within blood of naïve mice and rats, which lack antibodies specific for staphylococci (data not shown), were unable to phagocytose

and kill S. aureus Newman (FIGS. 15A and 15D). In contrast to the wild-type strain, a variant lacking the structural gene for sortase A (srtA) displayed a defect in staphylococcal escape from phagocytic killing (P<0.05) (FIGS. 15A and 15D). Sortase A anchors a large spectrum of different polypeptides in the staphylococcal envelope, using a transpeptidation mechanism and LPXTG motif sorting signal at the C-terminus of surface proteins (Mazmanian et al., 2002). To examine these surface proteins for their contribution to staphylococcal escape from phagocytic killing, the inventors transduced bursa aurealis insertions in surface protein genes (Bae et al., 2004) into wild-type strain S. aureus Newman and measured survival of staphylococcal variants in blood (FIGS. 15B and 15E). Mutations in clfA and sasH (Staphylococcus aureus surface protein), hereafter named adsA, displayed consistent survival defects. The phenotype of clfA mutants represents an expected result, as the encoded clumping factor A (ClfA) product is known to precipitate fibrin and interfere with macrophage and neutrophil phagocytosis (Palmqvist et al., 2004; Higgins et al., 2006). The contribution of AdsA to pathogenesis is not yet known. AdsA harbors a 5'-nucleotidase domain with the two signature sequences ILHTnDiHGrL (residues 124-134) and YdamaVGNHEFD (residues 189-201), suggesting that the protein may catalyze the synthesis of adenosine from 5'-AMP. To further examine the importance of adsA in staphylococcal virulence, the inventors complemented the adsA gene by cloning the entire adsA gene and upstream promoter sequences into expression vector pOS1, generating padsA. Transformation of adsA mutant staphylococci with pads A restored their ability to survive in mouse or rat blood, indicating that the observed virulence defect is indeed caused by the absence of adsA expression (FIGS. 15C and 15F, and FIG. 20). S. aureus survival was also examined in blood of human volunteers. As with murine blood, the number of adsA mutant staphylococci was reduced and staphylococcal phagocytosis by neutrophils was increased as compared to wild-type strain S. aureus Newman (FIGS. 15G and 15H).

[0383] AdsA is required for staphylococci virulence and abscess formation. To investigate the contribution of adsA in invasive staphylococcal disease, BALB/c mice were infected by intravenous inoculation with 10^7 colony forming units (CFU) of wild type S. aureus Newman or its isogenic asdA variant. Animals were killed 5 days post-infection and both kidneys were removed. The right kidney was homogenized and staphylococcal load enumerated by plating on agar and colony formation (FIG. 16A). The left kidney was fixed with glutaraldehyde, embedded in paraffin, thin sectioned and analyzed by histology (FIG. 16B). As expected, wild-type S. aureus Newman formed abscesses in kidney tissue with an average bacterial load of 10⁷ CFU per gram of organ tissue. In contrast, adsA mutant staphylococci were unable to form abscesses and displayed a greater than ten-fold reduction in bacterial load, as compared to the wild-type (FIG. 16A).

[0384] Infections with MRSA strains that were acquired in communities of the United States (CA-MRSA) have been characterized by pulsed-field gel electrophoresis and DNA sequencing. Currently, the major CA-MRSA clone is USA300 (McDougal et al., 2003), the predominant cause of skin and soft tissue infections as well as bacteremia (Carleton et al., 2004). To assess the contribution of adsA towards virulence of USA300, an isogenic adsA mutant was isolated using phage transduction and *S. aureus* strain LAC (USA300) (Bae et al., 2004). BALB/c mice were infected by retroorbital injection of staphylococci into the blood stream. Five

days following challenge, staphylococci were enumerated in homogenized kidney tissue and the histopathologies of abscesses were visualized in hematoxylin-eosin stained thin sections of this organ (FIG. 16C). Similar to *S. aureus* Newman, the inventors observed a one-log reduction in CFU recovered from the kidneys of animals infected with the adsA mutant of *S. aureus* USA300. Further, fewer abscesses and smaller lesions were observed in kidneys of mice infected with the adsA variant (FIG. 16D and FIG. 21). Together these results document the requirement of adsA for virulence in two clinical isolates, *S. aureus* strains Newman and USA300.

[0385] Differences in abscess formation and recovery of CFUs from kidneys of infected mice may stem from enhanced bacterial clearance in the blood stream, causing fewer bacteria to reach peripheral organ tissues. Alternatively, ads A could play a direct role in the formation of abscesses and infectious foci. To discern between these possibilities, BALB/c mice were infected by retro-orbital inoculation and peripheral blood was sampled at timed intervals by cardiac puncture. In agreement with observations of enhanced clearance of adsA mutant staphylococci in vitro, significantly fewer CFU of adsA mutant staphylococci were retrieved 90 minutes post-infection, as compared to the wild-type parent strain S. aureus Newman. Further, transformation of the adsA mutant strain with padsA restored its ability to survive in blood following intravenous challenge (FIG. 16E). Although we cannot rule out the possibility that adsA contributes also specifically to abscess formation, these data suggest that the reduced virulence of adsA mutant staphylococci results from their decreased survival in blood.

[0386] AdsA-mediated synthesis of adenosine correlates with staphylococcal survival in blood. Given that AdsA harbors a 5'nucleotidase signature sequence, it was asked whether AdsA can synthesize adenosine from AMP. Cell wall peptidoglycan of S. aureus wild-type, adsA and isdB (iron surface determinant B, a gene that does not contribute to AMP hydrolysis) (Mazmanian et al., 2003) mutant strains, and the adsA:padsA strain was degraded with lysostaphin (Schindler and Schuhardt, 1964), and cell wall extracts were incubated with radiolabeled [14C]AMP. Production of adenosine was monitored by thin layer chromatography (TLC). Lysostaphin extracts of adsA mutant staphylococci displayed significantly reduced adenosine synthase activity (~25% of wild-type). Adenosine synthase activity was restored to wild-type levels when adsA mutants were transformed with padsA (FIG. 17A). Disruption of isdB, in contrast, did not affect the generation of adenosine by S. aureus.

[0387] To characterize the enzymatic activity of AdsA, we expressed and purified a soluble recombinant form of AdsA from *Escherichia coli*. Purified AdsA cleaved [14C]AMP to generate adenosine and maximal activity (K_{Ad} =44 nM) was observed in the presence of 5 mM MgCl₂ or 5 mM MnCl₂, similar to the metal requirements of other adenosine synthases (Zimmermann, 1992). On the other hand, incubation of AdsA with 5 mM ZnCl₂ or 5 mM CuSO₄ prior to the addition of [14C]AMP, completely inhibited adenosine synthase activity (FIG. 17B, lanes 6 and 7). A similar inhibiting effect was observed when EDTA, a divalent metal ion chelator, was added to AdsA, demonstrating that AdsA requires divalent cations for adenosine synthase activity in vitro.

[0388] It was contemplated that staphylococci escape phagocytic clearance in blood by synthesizing adenosine. The survival defect of adsA mutant staphylococci in blood could be rescued by exogenous supplies of adenosine. This

was tested, revealing a dose-dependent increase in the survival of adsA mutant staphylococci upon the addition of 1-100 μM adenosine (FIG. 17F). Under physiological conditions, the concentration of AMP in the extracellular milieu is estimated to be in the nanomolar range. Immunological insult or tissue injury, however, causes release of AMP whose concentration may increase up to 100 µM. It therefore seems plausible that these AMP stores may be converted to adenosine during staphylococcal infection. To assess the relative abundance of adenosine during staphylococcal infection, mouse blood was infected with S. aureus for 60 min. Plasma was retrieved, protein removed and samples subjected to reverse phase high pressure liquid chromatography (rpHPLC). For calibration, commercially purified adenosine was separated by rpHPLC and determined its molecular mass in the eluate (FIG. 18A). Chromatography of uninfected blood revealed the adenosine absorption peak, whose identity was confirmed by mass spectrometry (FIG. 18A). The adenosine peak in blood was increased ten-fold following infection with S. aureus Newman (FIG. 18C), whereas infection with the isogenic adsA mutant produced less than a two-fold increase in adenosine (FIG. 18D). Of note, extracellular adenosine is imported rapidly by blood cells (half life <1 min) (Thiel et al., 2003). In view of this, the observed ten-fold increase of adenosine in blood during S. aureus infection represents a substantial accumulation of this signaling molecule and an important virulence strategy whereby staphylococci combat host immunity.

[0389] Bacillus anthracis survives in blood and synthesizes adenosine. To investigate whether other pathogenic bacteria also employ adenosine synthase to promote escape from phagocytic clearance, bacterial genome sequences were searched for products harboring the adenosine synthase domain of AdsA and several different genes were identified (Table 3). The genome of B. anthracis encodes BasA (Bacillus anthracis surface protein, NCBI locus tag BAS4031) with a 5'-nucleotidase signature sequence (YdvisLGNHEFN, residues 131-142) and a C-terminal LPXTG sorting signal, indicating that this surface protein is also deposited by sortase A in the cell wall envelope (Gaspar et al. 2005). To determine whether BasA functions as an adenosine synthase and contributes to escape from innate immune responses, we constructed a deletion mutant of basA by allelic replacement (FIG. 19). Mutanolysin, a muralytic enzyme that cleaves N-acetylmuramyl-($\beta 1 \rightarrow 4$)-N-acetylglucosamine peptidoglycan (Yokigawa et al., 1974), was used to generate cell wall lysates. Cell wall extracts from wild-type bacilli harbored adenosine synthase activity, however extracts derived from bas A mutant bacilli displayed a reduction in this activity (FIG. 19A). Deletion of the structural gene basA abolished expression (FIG. 19B) and surface display of BasA in B. anthracis (FIG. 19C) and reduced the ability of bacilli to synthesize adenosine (FIG. 19A). Residual amounts of AMP hydrolysis may be attributable to other phosphatases, for example alkaline phosphatase. The inventors expressed and affinity purified tagged BasA from E. coli. Similar to S. aureus AdsA, optimal adenosine synthase activity of BasA was observed in the presence of 5 mM MnCl₂ (K_M =2.01 nM), whereas 5 mM MgCl₂ showed reduced activity (FIG. 19D). When inoculated into mouse blood, increased phagocytic clearance of the basA mutant was observed, as compared to the wild-type parent B. anthracis Sterne (FIG. 19E). Together these experiments suggest that, similar to staphylococci, B. anthracis also employs AdsA to synthesize adenosine and escape innate immune responses.

TABLE 7

	TABLE /	
Other mi	crobes with putative 5'-nucleotidases	
Organism	Function	Pubmed Accession
Parasites	_	
Trichinella spiralis Giardia lamblia Gram Positive bacteria	Secreted 5'-nucleotidase Putative uncharacterized protein	Q8MQS9 A8BZM2
Bacillus anthracis Bacillus cereus Clostridium perfringens Enterococcus faecalis Listeria monocytogenes Listeria monocytogenes Staphylococcus aureus str. MW2 Staphylococcus epidermis Streptococcus pyogenes Streptococcus mutans Streptococcus gordonii Streptococcus suis Gram Negative bacteria	2',3'-cyclic-nucleotide 2'-phospodiesterase 5'-nucleotidase domain protein 5'-nucleotidase family protein 5'-nucleotidase family protein Putative uncharacterized protein Putative uncharacterized protein Putative 5'-nucleotidase 5'-nucleotidase family protein Putative surface-anchored 5'-nucleotidase Putative 5'-nucleotidase 5'-nucleotidase family protein Putative 5'-nucleotidase	Q6HTQ7 A7GMX9 B1BIR2 Q839U0 A3FTX4L A4DAM1 Q8NYQ6 Q5HQE0 A2RF30 Q8CVC5 A8AXM1 A4VV27
Aeromonas salmonicida Burkholderia dolosa Bacteroides fragilis Bacteroides caccai Enterobacter Escherichia coli str. UTI89 Haemophilus parasuis Haemophilus influenzae Klebsiella pneumoniae Salmonella choleraesuis Salmonella typhimurium Salmonella paratyphi A Trepenoma denticola Vibrio cholerae Vibrio parahaemolyticus Yersenia pestis str Antiqua	Putative 5'-nucleotidase 5'-nucleotidase/2',3'-cyclic phosphodiesterase Possible secreted 5'-nucleotidase Putative uncharacterized protein 5'-nucleotidase domain protein Putative uncharacterized protein Putative uncharacterized protein Putative uncharacterized protein Probable 5'-nucleotidase precursor Putative 5'-nucleotidase precursor UDP-sugar hydrolase 5'-nucleotidase Putative 5'-nucleotidase Putative secreted 5'-nucleotidase Phosphatase/5'-nucleotidase 5'-nucleotidase precursor 5'-nucleotidase precursor 5'-nucleotidase precursor 5'-nucleotidase precursor	A4SNE6 A2W738 A5ZBW1 Q5LHW0 A4W7G3 Q1R3X2 B0QT39 P44569 A6TGD1 Q57S69 Q7CR96 Q5PDK6 Q73PC9 Q9KQ30 P22848 Q1C4S3

[0390] Other microbes with putative 5'-nucleotidases represent well known pathogens (Table 7) and we sought to analyze their ability to synthesize adenosine. Similar to cell wall extracts from *S. aureus* and *B. anthracis, Enterococcus faecilis* and *Staphylococcus epidermidis* both synthesized adenosine from AMP, whereas the non-pathogenic microbe *Bacillus subtilis* did not (data not shown). The inventors conclude that the ability of bacterial pathogens to synthesize adenosine and release this immunosuppressive compound into host tissues may represent a universal virulence strategy.

B. Materials and Methods

[0391] Bacterial Strains. *S. aureus* strains were grown in TSB at 37° C. *S. aureus* strain USA300 was obtained through the Network on Antimicrobial Resistance in *S. aureus* (NARSA, NIAID). All mutants used in this study were obtained from the *Phoenix* (SNE) library (Bae et al., 2004). Each *Phoenix* isolate is a derivative of the clinical isolate Newman (Duthie and Lorenz, 1952) or USA300 (Carleton et al., 2004) as indicated. All bursa aurealis insertions were transduced into wild-type *S. aureus* Newman or USA300 using bacteriophage \$65 and verified by PCR analysis. Chloramphenicol was used at 10 mg l⁻¹ for plasmid and allele selection with pads A. Erythromycin was used at 10 mg l⁻¹ for allele selection in *S. aureus* Newman and at 50 mg l⁻¹ for allele selection in USA300. Mutants of *B. anthracis* strain

Sterne were generated with pLM4, containing a thermosensitive origin of replication. Plasmids with 1 kb DNA sequence flanking each side of the mutation were transformed into *B. anthracis* and transformants grown at 30° C. (permissive temperature) in LB broth (20 µg ml⁻¹ kanamycin). Cultures were diluted 1:100 and plated on LB agar (20 µg ml⁻¹ kanamycin) at 43° C. overnight (restrictive temperature). Single colonies were inoculated into LB broth without antibiotics and grown overnight at 30° C. To ensure loss of pLM4-based plasmid, these cultures were diluted four times into fresh LB broth without antibiotic pressure and propagated at 30° C. Cultures were diluted and plated on LB agar and colonies examined for kanamycin resistance. DNA from kanamycinsensitive colonies was analyzed by PCR for the presence or absence of mutant alleles.

[0392] Plasmids. The following primers were employed for PCR amplification reactions P55 (5'-TTTCCCGGGAC-GATCCAGCTCTAATCGCTG-3') (SEQ ID NO:42), P56 (5'-TTTGAGCTCAAAGCAAATAGATAATC-GAGAAATAAAAAAG-3) (SEQ ID NO:43), P57 (5'-TTTCAACGTCAACTTCCAACGTCAACTTTCAACGTCAACTTCCAACGTCAACTTTCAACT

TTTGAGCTCAGTTGCTCCAGCCAGCAT T-3') (SEQ ID NO:44), P58 (5'-TTTGAATTCAAACGGATTCATTC-CAGCC-3') (SEQ ID NO:45), FP10 (5'-TACGAATTC-GACTTGGCAGGCAATTGAAAA-3') (SEQ ID NO:46), RP10 (5'-TGTGAATTCTTAGCTAGCTTTTCTACGTCG-3') (SEQ ID NO:47), FP3C (5'-TCGGGATCCGCTGAG-

CAGCATACACCAATG-3') (SEQ ID NO:48), RPB (5'-TGTGGATCCTTATTGATTAATTTGTTCAGCTAATGC-3') (SEQ ID NO:49). Ligation of FP10/RP10 (adsA+700 bp upstream from start site) PCR products into pOS1 (EcoRI) generated padsA. Insertion of P55/P56 (basA 1 kb 5' flanking sequence) and P57/P58 (basA 1 kb 3' flanking sequence) PCR products into pLM4 (EcoRI, SacI, and XmaI sites) generated pJK34. This plasmid was used to delete the basA coding sequence. Ligation products were transformed into E. coli DH5α, and plasmid DNA into E. coli K1077 (dam⁻, dcm⁻) and purified (non-methylated) plasmid DNA was transformed into B. anthracis following a previously developed protocol (Gaspar et al., 2005). Ligation of FP3C/RPB (1.2 kb truncation of adsA starting 5' after the signal peptide) PCR products into pGEX-2T (GE Healthcare) generated the adsA expression vector pVT1 and this plasmid was transformed

[0393] Animal experiments. All experimental protocols were reviewed, approved and performed under regulatory supervision of The University of Chicago's Institutional Biosafety Committee (IBC) and Institutional Animal Care and Use Committee (IACUC). BALB/c mice were purchased from Charles River Laboratories and Sprague-Dawley rats were purchased from Harlan. Overnight cultures of S. aureus strains were diluted 1:100 into fresh TSB and grown for 3 h at 37° C. Staphylococci were centrifuged, washed twice and diluted in PBS to yield an OD_{600} of 0.5 (1×10⁸ CFU ml⁻¹). Viable staphylococci were enumerated by colony formation on tryptic soy agar plates to quantify the infectious dose. Mice were anaesthetized by intraperitoneal injection of 80-120 mg of ketamine and 3-6 mg of xylazine per kilogram of body weight. One hundred microliters of bacterial suspension $(1 \times 10^7 \text{ CFU})$ were administered intravenously via retro-orbital injection into BALB/c mice (6-wk old female). On day 5, mice were killed by compressed CO₂ inhalation. Kidneys were removed and homogenized in PBS containing 1% Triton X-100. Aliquots of homogenates were diluted and plated on agar medium for triplicate determination of CFU. Student's t-test was performed for statistical analysis using Prizm software. For histopathology, kidney tissue was incubated at room temperature in 10% formalin for 24 h. Tissues were embedded in paraffin, thin-sectioned, stained with haematoxylin-eosin and examined by microscopy.

[0394] To measure staphylococcal survival in blood, 6-week old female BALB/c mice were infected with 1×10^7 CFU of staphylococci by retro-orbital injection. At 30 or 90 minutes, mice were killed by compressed CO₂ inhalation and blood was collected by cardiac puncture using a 25 gauge needle. Aliquots were incubated on ice for 30 minutes in a final concentration of 0.5% saponin/PBS to lyse host eukary-otic cells. Dilutions were plated on TSA for enumeration of surviving CFU at the two different time points.

[0395] Chemicals. Mutanolysin (Sigma) was suspended at a concentration of 5,000 units ml⁻¹ in 100 mM sodium phosphate, pH 6.0, containing 1 mM PMSF and stored at -20 C. [¹⁴C]AMP and [¹⁴C]adenosine were purchased from Moravek Biochemicals. Lysostaphin was purchased from AMBI and purified adenosine was purchased from Sigma.

[0396] Bacterial survival in blood. Overnight cultures of S. aureus strains were diluted 1:100 into fresh TSB and grown for 3 h at 37° C. Staphylococci were centrifuged, washed twice and diluted in PBS to yield an OD $_{600}$ of 0.5 (1×10 8 CFU ml $^{-1}$). Whole blood was collected by cardiac puncture of Sprague-Dawley rats or BALB/c mice and 5 μ g ml $^{-1}$ of lepirudin anticoagulant immediately added. 100 μ l of 10 5 CFU ml $^{-1}$ of bacteria were mixed with 900 μ l of rat or mouse blood. For human blood studies, 100 μ l of 10 8 CFU ml $^{-1}$ of bacteria

was mixed with 900 μ l of freshly drawn human blood. The tubes were then incubated at 37° C. with slow rotation for the indicated time points, at which time aliquots were incubated on ice for 30 minutes in a final concentration of 0.5% saponin/ PBS to lyse eukaryotic cells. Dilutions of staphylococci were plated on TSA for enumeration of surviving CFU. Experiments with blood from human volunteers involved protocols that were reviewed, approved and performed under regulatory supervision of The University of Chicago's Institutional Review Board (IRB).

[0397] Adenosine synthase activity. Overnight cultures of S. aureus strains were diluted 1:100 into fresh TSB and grown for 3 h at 37° C. Staphylococci were centrifuged and washed twice with PBS. 3 ml of cells were spun down and resuspended in 100 µL TSM buffer (50 mM Tris-HCL pH 7.5, 10 mM MgCl₂, and 0.5 M sucrose); 2 μl of lysostaphin was then added and allowed to incubate for 30 min at 37° C. The solution was then spun down for 5 min at 10 k rpm and supernatants containing released cell surface proteins collected. 15 µl of lysostaphin extracts were then incubated with 3 μCi [¹⁴C]AMP for 30 minutes at 37° C. Samples were then spotted on a silica plate followed by separation by TLC using a (75:25 isopropanol: ddH2O) 0.2 M ammonia bicarbonate solvent. For cell wall extracts of S. aureus, E. faecilis, B. anthracis and S. epidermidis digested with mutanolysin, mutanolysin was substituted for lysostaphin and used per the manufacturer's recommended conditions. When assayed with purified proteins, 2 µM of purified AdsA or BasA was incubated in a final volume of 15 μ l with 3 μ Ci [14C]AMP in the presence of the indicated metal cations in TSM buffer. [0398] Adenosine concentration in blood. Whole blood killing assay with staphylococci was performed as described above. Extraction of plasma was performed as described (Mo and Ballard, 2001). Briefly, after conclusion of the whole blood killing assay, blood samples were centrifuged at 13 k rpm for 5 minutes and non-cellular plasma was collected. 600 μl of plasma was then extracted with 75 μl perchloric acid (1.5 M) and 1 mM EDTA. The supernatant (500 μl) was withdrawn after centrifugation for 5 min at 13 k rpm and neutralized with 29 µl 4 M KOH. After ice cooling for 10 min, the sample was again centrifuged at 13 k rpm for 5 min. The pH of the supernatant was finally adjusted to 6-7, diluted 1:4 with PBS, filtered with a 0.22 µm syringe filter prior to reverse phase high performance liquid chromatography (rpHPLC). [0399] HPLC and mass spectrometry. Presence of adenosine production was determined by rpHPLC. Samples were chromatographed on a 250 mm×3 mm column (BDS Hypersil C18, 5 µm particle size, Thermoscientific). The mobile phase consisted of solution A (dH₂0: 0.1% trifluoroacetic acid) and solution B (acetonitrile: 0.1% trifluoroacetic acid). Adenosine was eluted with a solvent B gradient from 1 to 100%, run from 5 to 50 min. The solvent flow rate was 0.5 ml/min. Peaks were detected by their UV absorbance at 280 nm. The peak of adenosine in the HPLC chromatogram was identified by comparison of its retention time to the retention time of purified adenosine (Sigma) used as a standard sample. Fractions containing adenosine were then co-spotted with matrix (α-cyano-4-hydroxycinnamic acid) and subjected to MALDI-MS under reflector positive conditions.

REFERENCES

[0400] The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

[0401] U.S. Pat. No. 3,791,932 [0402] U.S. Pat. No. 3,949,064

[0403]	U.S. Pat. No. 4,174,384
[0404]	U.S. Pat. No. 4,197,290
[0405]	U.S. Pat. No. 4,338,298
[0406]	U.S. Pat. No. 4,356,170
[0407]	U.S. Pat. No. 4,367,110
[0408]	U.S. Pat. No. 4,372,945
[0409]	U.S. Pat. No. 4,452,901
-	
[0410]	U.S. Pat. No. 4,474,757
[0411]	U.S. Pat. No. 4,554,101
[0412]	U.S. Pat. No. 4,578,770
[0413]	U.S. Pat. No. 4,596,792
[0414]	U.S. Pat. No. 4,599,230
[0415]	U.S. Pat. No. 4,599,231
[0416]	U.S. Pat. No. 4,601,903
[0417]	U.S. Pat. No. 4,608,251
[0418]	U.S. Pat. No. 4,683,195
[0419]	U.S. Pat. No. 4,683,202
[0420]	U.S. Pat. No. 4,690,915
[0421]	U.S. Pat. No. 4,748,018
[0422]	U.S. Pat. No. 4,800,159
[0423]	U.S. Pat. No. 4,879,236
[0424]	U.S. Pat. No. 5,084,269
[0425]	U.S. Pat. No. 5,199,942
[0426]	U.S. Pat. No. 5,221,605
[0427]	U.S. Pat. No. 5,238,808
[0427]	U.S. Pat. No. 5,310,687
[0429]	U.S. Pat. No. 5,322,783
[0429]	U.S. Pat. No. 5,384,253
[0431]	U.S. Pat. No. 5,512,282
[0432]	U.S. Pat. No. 5,538,877
[0433]	U.S. Pat. No. 5,538,880
[0434]	U.S. Pat. No. 5,548,066
[0435]	U.S. Pat. No. 5,550,318
[0436]	U.S. Pat. No. 5,563,055
[0437]	U.S. Pat. No. 5,580,859
[0438]	U.S. Pat. No. 5,589,466
[0439]	U.S. Pat. No. 5,610,042
[0440]	U.S. Pat. No. 5,620,896
[0441]	U.S. Pat. No. 5,656,610
[0442]	U.S. Pat. No. 5,702,932
[0443]	U.S. Pat. No. 5,736,524
[0444]	U.S. Pat. No. 5,780,448
[0445]	U.S. Pat. No. 5,789,215
[0446]	U.S. Pat. No. 5,801,234
[0447]	U.S. Pat. No. 5,840,846
[0448]	U.S. Pat. No. 5,843,650
[0449]	U.S. Pat. No. 5,846,709
[0450]	U.S. Pat. No. 5,846,783
[0451]	U.S. Pat. No. 5,849,497
[0452]	U.S. Pat. No. 5,849,546
[0453]	U.S. Pat. No. 5,849,547
[0454]	U.S. Pat. No. 5,858,652
[0455]	U.S. Pat. No. 5,866,366
[0456]	U.S. Pat. No. 5,871,986
[0457]	U.S. Pat. No. 5,916,776
[0458] [0459]	U.S. Pat. No. 5,922,574 U.S. Pat. No. 5,925,565
[0460]	U.S. Pat. No. 5,928,905
[0461]	U.S. Pat. No. 5,928,906
[0462]	U.S. Pat. No. 5,932,451
[0463]	U.S. Pat. No. 5,935,819
[0464]	U.S. Pat. No. 5,935,825
[0465]	U.S. Pat. No. 5,939,291
[0466]	U.S. Pat. No. 5,942,391

```
[0467] U.S. Pat. No. 5,945,100
[0468]
        U.S. Pat. No. 5,958,895
[0469]
       U.S. Pat. No. 5,981,274
[0470] U.S. Pat. No. 5,994,624
[0471] U.S. Pat. No. 6,008,341
[0472] U.S. Pat. No. 6,288,214
[0473] U.S. Pat. No. 6,294,177
[0474] U.S. Pat. No. 6,482,240
[0475] U.S. Pat. No. 6,651,655
[0476]
        U.S. Pat. No. 6,656,462
[0477]
        U.S. Pat. No. 6,733,754
[0478]
        U.S. Pat. No. 6,756,361
[0479]
       U.S. Pat. No. 6,770,278
[0480] U.S. Pat. No. 6,793,923
[0481] U.S. Pat. No. 6,814,971
[0482] U.S. Pat. No. 6,936,258
[0483] U.S. Patent Appln. 20030153022
[0484] U.S. Patent Appln. 20020169288
[0485]
        Albus et al., Infect. Immun., 59:1008-1014, 1991.
[0486]
        An, J. Virol., 71(3):2292-302, 1997.
[0487]
        Anavi, Sc. thesis from the department of Molecular
  Microbiology and Biotechnology of the Tel-Aviv Univer-
  sity, Israel, 1998.
[0488] Andersen et al., J. Immunol., 154, 3359-3372, 1995.
[0489] Angel et al., Cell, 49:729, 1987b.
[0490] Angel et al., Mol. Cell. Biol., 7:2256, 1987a.
[0491] Archer, Clin. Infect. Dis., 26, 1179-1181, 1998.
[0492] Atchison and Perry, Cell, 46:253, 1986.
[0493]
        Atchison and Perry, Cell, 48:121, 1987.
[0494] Ausubel et al., In: Current Protocols in Molecular
  Biology, John, Wiley & Sons, Inc, New York, 1996.
[0495] Baba et al., J. Bacteriol., 190:300-310, 2008.
[0496] Baba et al., Lancet., 359:1819-1827, 2007.
[0497] Bae and Schneewind, Plasmid, 55:58-63, 2006.
[0498] Bae et al., Proc. Natl. Acad. Sci. USA, 101, 12312-
  12317, 2004.
[0499] Banerji et al., Cell, 27(2 Pt 1):299-308, 1981.
        Banerji et al., Cell, 33(3):729-740, 1983.
[0501] Barany and Merrifield, In: The Peptides, Gross and
  Meienhofer (Eds.), Academic Press, NY, 1-284, 1979.
[0502] Bellus, J. Macromol. Sci. Pure Appl. Chem., A31(1):
  1355-1376, 1994.
[0503] Berkhout et al., Cell, 59:273-282, 1989.
[0504] Blanar et al., EMBO J., 8:1139, 1989.
[0505] Bodine and Ley, EMBO J., 6:2997, 1987.
[0506] Borges et al., Vet. Parasitol, 143(2):106-11, 2007.
[0507] Borrebaeck, In: Antibody Engineering—A Practical
  Guide, W. H. Freeman and Co., 1992.
[0508] Boshart et al., Cell, 41:521, 1985.
[0509] Bosze et al., EMBO J., 5(7):1615-1623, 1986.
[0510] Braddock et al., Cell, 58:269, 1989.
[0511] Brady et al., FEMS Immunol. Med. Microbiol.,
  52:13-22, 2008.
[0512] Brady et al., Infect. Immun., 74:3415-3426, 2006.
[0513] Bubeck-Wardenburg et al., Proc. Natl. Acad. Sci.
  USA, 103:13831-13836, 2006.
[0514] Buckley et al. J. Pediatr., 130:378-387, 1997.
[0515] Bulla and Siddiqui, J. Virol., 62:1437, 1986.
[0516] Burke et al. J. Inf. Dis., 170:1110-1119, 1994.
[0517] Burlak et al., Cell Microbiol., 9:1172-1190, 2007.
[0518] Burts et al., Proc. Natl. Acad. Sci. USA, 102:1169-
  1174, 2005.
[0519] Campbell and Villarreal, Mol. Cell. Biol., 8:1993,
```

1988.

- [0520] Campere and Tilghman, *Genes and Dev.*, 3:537, 1989.
- [0521] Campo et al., Nature, 303:77, 1983.
- [0522] Carbonelli et al., FEMS Microbiol. Lett., 177(1):75-82, 1999.
- [0523] Carleton et al., Infect. Dis., 190:1730-1738, 2004.
- [0524] Cassat et al., *Methods Mol. Biol.*, 391:127-144, 2007.
- [0525] Celander and Haseltine, J. Virology, 61:269, 1987.
- [0526] Celander et al., J. Virology, 62:1314, 1988.
- [0527] Champion et al., Science, 313:1632-1636, 2006.
- [0528] Chandler et al., Cell, 33:489, 1983.
- [0529] Chandler et al., *Proc. Natl. Acad. Sci. USA*, 94(8): 3596-601, 1997.
- [0530] Chang et al., Mol. Cell. Biol., 9:2153, 1989.
- [0531] Chatterjee et al., *Proc. Natl. Acad. Sci. USA*, 86:9114, 1989.
- [0532] Chen and Okayama, *Mol. Cell. Biol.*, 7(8):2745-2752, 1987.
- [0533] Chen et al. Nat. Chem. Biol., 2:591-5, 2006.
- [0534] Cheung et al., *Proc. Natl. Acad. Sci. USA* 89, 6462-6466, 1992.
- [0535] Choi et al., Cell, 53:519, 1988.
- [0536] Cocea, Biotechniques, 23(5):814-816, 1997.
- [0537] Cohen et al., J. Cell. Physiol., 5:75, 1987.
- [0538] Costa et al., Mol. Cell. Biol., 8:81, 1988.
- [0539] Cramton et al., Infect. Immun., 67:5427-5433, 1999.
- [0540] Cripe et al., *EMBO J.*, 6:3745, 1987.
- [0541] Cronstein et al., Clin. Invest., 85:1150-1157, 1990.
- [0542] Culotta and Hamer, Mol. Cell. Biol., 9:1376, 1989.
- [0543] Dalbey and Wickner, *J. Biol. Chem.*, 260:15925-15931, 1985.
- [0544] Dandolo et al., J. Virology, 47:55-64, 1983.
- [0545] de Haas, C. J. et al. J. Exp. Med. 199, 687-695 (2004).
- [0546] De Villiers et al., Nature, 312(5991):242-246, 1984.
- [0547] Deschamps et al., Science, 230:1174-1177, 1985.
- [0548] Deussen et al., J. Am. J. Physiol., 264:692-700, 1993.
- [0549] Devereux et al., Nucl. Acid Res., 12:387-395, 1984.
- [0550] Diep et al., J. Infect. Dis., 193:1495-1503, 2006a.
- [0551] Diep et al., Lancet., 367:731-739, 2006b.
- [0552] Dinges et al., Clin. Microbiol. Rev., 13:16-34, 2000.
- [0553] Drenkard and Ausubel, *Nature*, 416, 740-743, 2002.
- [0554] Duthie and Lorenz, J. Gen. Microbiol., 6:95-107, 1952.
- [0555] Edbrooke et al., Mol. Cell. Biol., 9:1908, 1989.
- [0556] Edlund et al., Science, 230:912-916, 1985.
- [0557] Eltzschig et al. J. Exp. Med., 198:783-796, 2003.
- [0558] Emorl and Gaynes, Clin. Microbiol. Rev., 6:428-442, 1993.
- [0559] EP 0 594 610 B1
- [0560] EP497524
- [0561] EP497525
- [0562] Epitope Mapping Protocols In: *Methods in Molecular Biology*, Vol. 66, Morris (Ed.), 1996.
- [0563] Fechheimer, et al., *Proc Natl. Acad. Sci. USA*, 84:8463-8467, 1987.
- [0564] Feng and Holland, *Nature*, 334:6178, 1988.
- [0565] Firak and Subramanian, Mol. Cell. Biol., 6:3667, 1986.
- [0566] Firestein, G. S. et all. *Immunol*. 154, 326-334 (1995).

- [0567] Foecking and Hofstetter, *Gene*, 45(1):101-105, 1986.
- [0568] Fortune et al., *Proc Natl. Acad. Sci. USA*, 102: 10676-10681, 2005.
- [0569] Foster, Nat. Rev. Microbiol., 3:948-958, 2005.
- [0570] Fournier et al., Infect. Immun. 45:87-93, 1984.
- [0571] Fraley et al., Proc. Natl. Acad. Sci. USA, 76:3348-3352, 1979.
- [0572] Fujita et al., Cell, 49:357, 1987.
- [0573] Gaspar et al., J. Bacteriol., 187, 4646-55, 2005.
- [**0574**] GB Appln. 2 202 328
- [0575] Giblett et al., Lancet., 2:1067-1069, 1972.
- [0576] Gilles et al., Cell, 33:717, 1983.
- [0577] Gloss et al., *EMBO J.*, 6:3735, 1987.
- [0578] Godbout et al., Mol. Cell. Biol., 8:1169, 1988.
- [0579] Gomez et al., Nature Med., 10:842-848, 2004.
- [0580] Goodbourn and Maniatis, *Proc. Natl. Acad. Sci. USA*, 85:1447, 1988.
- [0581] Goodbourn et al., Cell, 45:601, 1986.
- [0582] Gopal, Mol. Cell. Biol., 5:1188-1190, 1985.
- [0583] Gotz, Mol. Microbiol., 43:1367-1378, 2002.
- [0584] Graham and Van Der Eb, Virology, 52:456-467, 1973.
- [0585] Greene et al., Immunology Today, 10:272, 1989
- [0586] Grosschedl and Baltimore, Cell, 41:885, 1985.
- [0587] Guinn et al., Mol. Microbiol., 51:359-370, 2004.
- [0588] Hall-Stoodley et al., *Nat. Rev. Microbiol.*, 2:95-108, 2004.
- [0589] Harland and Weintraub, J. Cell Biol., 101(3):1094-1099, 1985.
- [0590] Harlow and Lane, Antibodies: A Laboratory Manual. 1988.
- [0591] Harraghy et al. Microbiology, 151:1789-1800. 2005.
- [0592] Hartleib et al., Blood, 96:2149-2156, 2000.
- [0593] Haskó and Pacher, Leukoc. Biol., 83:447-455, 2008.
- [0594] Haslinger and Karin, Proc. Natl. Acad. Sci. USA, 82:8572, 1985.
- [0595] Hauber and Cullen, J. Virology, 62:673, 1988.
- [0596] Heilmann et al., Mol. Microbiol., 24:1013-1024, 1997.
- [0597] Hen et al., Nature, 321:249, 1986.
- [0598] Hensel et al., Lymphokine Res., 8:347, 1989.
- [0599] Herr and Clarke, Cell, 45:461, 1986.
- [0600] Higgins et al., FEMS Microbiol. Lett., 258:290-296, 2006.
- [0601] Hirochika et al., J. Virol., 61:2599, 1987.
- [0602] Hirsch et al., Mol. Cell. Biol., 10:1959, 1990.
- [0603] Holbrook et al., Virology, 157:211, 1987.
- [0604] Horlick and Benfield, *Mol. Cell. Biol.*, 9:2396, 1989.
- [0605] Hsu et al., *Proc. Natl. Acad. Sci. USA*, 100:12420-12425, 2003.
- [0606] Huang et al., Cell, 27:245, 1981.
- [0607] Hug et al., Mol. Cell. Biol., 8:3065, 1988.
- [0608] Hussain et al., J. Bacteriology, 183:6778-86. 2001.
- [0609] Huston et al., In: *Methods in Enzymology*, Langone (Ed.), Academic Press, NY, 203:46-88, 1991.
- [0610] Hwang et al., Mol. Cell. Biol., 10:585, 1990.
- [0611] Ichiman and Yoshida, J. Appl. Bacterid., 51:229-241, 1981.
- [0612] Ichiman et al., J. Appl. Bacterid., 71:176-181, 1991.
- [0613] Imagawa et al., Cell, 51:251, 1987.
- [0614] Imbra and Karin, Nature, 323:555, 1986.

- [0615] Imler et al., Mol. Cell. Biol., 7:2558, 1987.
- [0616] Imperiale and Nevins, Mol. Cell. Biol., 4:875, 1984.
- [0617] Innis et al., *Proc Natl Acad Sci USA*, 85(24):9436-9440, 1988.
- [0618] Inouye and Inouye, *Nucleic Acids Res.*, 13: 3101-3109, 1985.
- [0619] Iwamoto et al., Planta Med., 54(5):422-5, 1988.
- [0620] Jakobovits et al., Mol. Cell. Biol., 8:2555, 1988.
- [0621] Jameel and Siddiqui, Mol. Cell. Biol., 6:710, 1986.
- [0622] Jardetzky et al., Nature, 368:711-718, 1994.
- [0623] Jaynes et al., Mol. Cell. Biol., 8:62, 1988.
- [0624] Jensen, Acta Path. Microbiol. Scandin., 44:421-428, 1958.
- [0625] Jin et al., J. Immunol., 172:1169-1176, 2004.
- [0626] Johnson et al., *Methods in Enzymol.*, 203:88-99, 1991.
- [0627] Johnson et al., Mol. Cell. Biol., 9:3393, 1989.
- [0628] Johnson et al., Infect. Immun. 76, 1756-1765, 2008.
- [0629] Johnstone et al., In: *Immunochemistry in Practice*, Blackwell Scientific Publications, Oxford, 1982.
- [0630] Jones, Carb. Research, 340:1097-1106, 2005.
- [0631] Jonsson et al., J. Infect. Dis., 185:1417-1424, 2002.
- [0632] Joyce et al., Carbohydrate Res., 338:903-922, 2003.
- [0633] Kadesch and Berg, Mol. Cell. Biol., 6:2593, 1986.
- [0634] Kaeppler et al., *Plant Cell Rep.*, 8:415-418, 1990.
- [0635] Kaneda et al., Science, 243:375-378, 1989.
- [0636] Karin et al., Mol. Cell. Biol., 7:606, 1987.
- [0637] Katinka et al., *Cell*, 20:393, 1980.
- [0638] Kato et al., J. Biol. Chem., 266:3361-3364, 1991.
- [0639] Kawamoto et al., Mol. Cell. Biol., 8:267, 1988.
- [0640] Khoa et al. J. Immunol., 167:4026-4032, 2001.
- [0641] Kiledjian et al., *Mol. Cell. Biol.*, 8:145, 1988.
- [0642] Klamut et al., Mol. Cell. Biol., 10:193, 1990.
- [0643] Klevens et al., Clin. Infect. Dis., 42, 389-91, 2006.
- [0644] Klevens et al., Jama, 298:1763-71, 2007.
- [0645] Koch et al., Mol. Cell. Biol., 9:303, 1989.
- [0646] Kohler and Milstein, *Nature* 256:495-497, 1975.
- [0647] Kolter and Greenberg, Nature 441, 300-302, 2006.
- [0648] Kriegler and Botchan, In: Eukaryotic Viral Vectors, Gluzman (Ed.), Cold Spring
- [0649] Harbor: Cold Spring Harbor Laboratory, NY, 1982.
- [0650] Kriegler and Botchan, Mol. Cell. Biol., 3:325, 1983.
- [0651] Kriegler et al., Cell, 38:483, 1984a.
- [0652] Kriegler et al., Cell, 53:45, 1988.
- [0653] Kriegler et al., *In: Cancer Cells 2/Oncogenes and Viral Genes*, Van de Woude et al. eds, Cold Spring Harbor, Cold Spring Harbor Laboratory, 1984b.
- [0654] Kuhl et al., Cell, 50:1057, 1987.
- [0655] Kunz et al., Nucl. Acids Res., 17:1121, 1989.
- [0656] Kuroda et al., Lancet., 357:1225-1240, 2001.
- [0657] Kyte and Doolittle, *J. Mol. Biol.*, 157(1):105-132, 1982.
- [0658] Larsen et al., *Proc Natl. Acad. Sci. USA.*, 83:8283, 1986.
- [0659] Laspia et al., Cell, 59:283, 1989.
- [0660] Latimer et al., Mol. Cell. Biol., 10:760, 1990.
- [0661] Lee et al., *Nature*, 294:228, 1981.
- [0662] Lee et al., Nucleic Acids Res., 12:4191-206, 1984.
- [0663] Lee Trends Microbiol., 4(4):162-166, 1996.
- [0664] Levenson et al., *Hum. Gene Ther.*, 9(8):1233-1236, 1998.
- [0665] Levinson et al., *Nature*, 295:79, 1982.
- [0666] Lin et al., Mol. Cell. Biol., 10:850, 1990.
- [0667] Lowy, New Engl. J. Med., 339:520-532, 1998.

- [0668] Luria et al., EMBO J., 6:3307, 1987.
- [0669] Lusky and Botchan, *Proc. Natl. Acad. Sci. USA*, 83:3609, 1986.
- [0670] Lusky et al., Mol. Cell. Biol., 3:1108, 1983.
- [0671] Macejak and Sarnow, Nature, 353:90-94, 1991.
- [0672] MacGurn et al., Mol. Microbiol., 57:1653-1663, 2005.
- [0673] Macket al., J. Bacteriol. 178, 175-183, 1996.
- [0674] Maira-Litran et al., *Infect. Immun.*, 70:4433-4440, 2002.
- [0675] Maira-Litran et al., Vaccine, 22:872-879, 2004.
- [0676] Majors and Varmus, *Proc. Natl. Acad. Sci. USA*, 80:5866, 1983.
- [0677] Mazmanian et al., Mol. Microbiol. 40, 1049-1057, 2001.
- [0678] Mazmanian et al., *Proc. Natl. Acad. Sci. USA*, 99:2293-2298, 2002.
- [0679] Mazmanian et al., Science, 285, 760-763, 1999.
- [0680] Mazmanian et al., Science, 299:906-909, 2003.
- [0681] McColl et al. FASEB J., 20:187-189, 2006.
- [0682] McDevitt et al., Mol. Microbiol., 11:237-248, 1994.
- [0683] McDougal et al., *J. Clin. Microbiol.*, 41:5113-5120, 2003.
- [0684] McLaughlin et al., PLoS Pathog., 3:e105, 2007.
- [0685] McNeall et al., Gene, 76:81, 1989.
- [0686] Merck Manual Of Diagnosis And Therapy, §13, Ch. 157, 100th Ed. (Beers & Berkow, Eds., 2004
- [0687] Mernaugh et al., In: *Molecular Methods in Plant Pathology*, Singh et al. (Eds.), CRC Press Inc., Boca Raton, Fla., 359-365, 1995.
- [0688] Merrifield, Science, 232(4748):341-347, 1986.
- [0689] Miksicek et al., Cell, 46:203, 1986.
- [0690] Mo and Ballard, J. Physiol., 536:593-603, 2001.
- [0691] Mordacq and Linzer, Genes and Dev., 3:760, 1989.
- [0692] Moreau et al., Carbohydrate Res., 201:285-297, 1990.
- [0693] Moreau et al., Nucl. Acids Res., 9:6047, 1981.
- [0694] Mosmann and Coffman, Ann. Rev. Immunol., 7:145-173, 1989.
- [0695] Muesing et al., Cell, 48:691, 1987.
- [0696] Musher et al., *Medicine* (Baltimore), 73:186-208, 1994.
- [0697] Needleman & Wunsch, J. Mol. Biol., 48:443, 1970.
- [0698] Nemeth et al. J. Immunol., 176:5616-5626, 2006.
- [0699] Ng et al., Nuc. Acids Res., 17:601, 1989.
- [0700] Ni Eidhin et al., Mol. Microbiol., 30:245-257, 1998.
- [0701] Nicolau and Sene, *Biochim. Biophys. Acta*, 721: 185-190, 1982.
- [0702] Nicolau et al., Methods Enzymol., 149:157-176, 1987.
- [0703] Novick, Mol. Microbiol., 48:1429-1449, 2003.
- [0704] Novick and Jiang. *Microbiology* 149, 2709-17 (2003).
- [0705] Omirulleh et al., *Plant Mol. Biol.*, 21(3):415-28, 1993.
- [0706] Ondek et al., EMBO J., 6:1017, 1987.
- [0707] O'Riordan and Lee, *Clin. Microbiol. Rev.*, 17:218-234, 2004.
- [0708] Ornitz et al., Mol. Cell. Biol., 7:3466, 1987.
- [0709] Pallen, Trends Microbiol., 10:209-212, 2002.
- [0710] Palmiter et al., *Nature*, 300:611, 1982.
- [0711] Palmqvist et al., *Microbes Infect.*, 6:188-195, 2004.
- [0712] Panther et al., FASEB J., 15:1963-1970, 2001.
- [0713] PCT Appln. PCT/US89/01025

- [0714] PCT Appln. WO 00/02523
- [0715] PCT Appln. WO 00/12689
- [0716] PCT Appln. WO 01/60852
- [0717] PCT Appln. WO 03/53462
- [0718] PCT Appln. WO 04/43405
- [0719] PCT Appln. WO 04/43407
- [0720] PCT Appln. WO 95/08348
- [0721] Pearson & Lipman, Proc. Natl. Acad. Sci. USA, 85:2444, 1988.
- [0722] Pech et al., Mol. Cell. Biol., 9:396, 1989.
- [0723] Pelletier and Sonenberg, *Nature*, 334(6180):320-325, 1988.
- [0724] Perez-Stable and Constantini, *Mol. Cell. Biol.*, 10:1116, 1990.
- [0725] Peschel and Sahl, *Nat. Rev. Microbiol.*, 4:529-536, 2006.
- [0726] Picard and Schaffner, *Nature*, 307:83, 1984.
- [0727] Pinkert et al., Genes and Dev., 1:268, 1987.
- [0728] Ponta et al., *Proc. Natl. Acad. Sci. USA*, 82:1020, 1985.
- [0729] Porton et al., Mol. Cell. Biol., 10:1076, 1990.
- [0730] Potrykus et al., Mol. Gen. Genet., 199(2):169-177, 1985.
- [0731] Pugsley, Microbiol. Rev., 57:50-108, 1993.
- [0732] Pym et al., Mol. Microbiol., 46; 709-717, 2002.
- [0733] Pym et al., Nat. Med., 9:533-539, 2003.
- [0734] Queen and Baltimore, Cell, 35:741, 1983.
- [0735] Quinn et al., Mol. Cell. Biol., 9:4713, 1989.
- [0736] Redondo et al., Science, 247:1225, 1990.
- [0737] Reisman and Rotter, Mol. Cell. Biol., 9:3571, 1989.
- [0738] Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1289-1329, 1990.
- [0739] Resendez Jr. et al., Mol. Cell. Biol., 8:4579, 1988.
- [0740] Ripe et al., Mol. Cell. Biol., 9:2224, 1989.
- [0741] Rippe, et al., Mol. Cell. Biol., 10:689-695, 1990.
- [0742] Rittling et al., Nuc. Acids Res., 17:1619, 1989.
- [0743] Roben et al., J. Immunol., 154:6437-6445, 1995.
- [0744] Rooijakkers et al., Trends Microbiol., 13:596-601, 2005.
- [0745] Rosen et al., Cell, 41:813, 1988.
- [0746] Sakai et al., Genes and Dev., 2:1144, 1988.
- [0747] Sambrook et al., In: Molecular cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001.
- [0748] Sau et al., *Microbiology*, 143:2395-2405, 1997.
- [0749] Schaffner et al., J. Mol. Biol., 201:81, 1988.
- [0750] Schindler and Schuhardt, Proc. Natl. Acad. Sci. USA, 51:414-421, 1964.
- [0751] Scriba, T. J. et al. *The Infect. Immun.* 76, 2164-2168 (2008).
- [0752] Searle et al., Mol. Cell. Biol., 5:1480, 1985.
- [0753] Sharp and Marciniak, Cell, 59:229, 1989.
- [0754] Shaul and Ben-Levy, *EMBO J.*, 6:1913, 1987.
- [0755] Shaw et al., Microbiology, 150:217-228, 2004.
- [0756] Sherman et al., Mol. Cell. Biol., 9:50, 1989.
- [0757] Sibbald et al., Microbiol. Mol. Biol. Rev., 70:755-788, 2006.
- [0758] Singh et al., Nature, 417, 552-555, 2002.
- [0759] Sleigh and Lockett, *J. EMBO*, 4:3831, 1985.
- [0760] Smith & Waterman, Adv. Appl. Math., 2:482, 1981.
- [0761] Sorensen et al., *Infect. Immun.*, 63:1710-1717, 1995.
- [0762] Spalholz et al., Cell, 42:183, 1985.
- [0763] Spandau and Lee, J. Virology, 62:427, 1988.
- [0764] Spandidos and Wilkie, EMBO J., 2:1193, 1983.

- [0765] Stanley et al., *Proc. Natl. Acad. Sci. USA*, 100: 13001-13006, 2003.
- [0766] Stephens and Hentschel, Biochem. J., 248:1, 1987.
- [0767] Stewart and Young, In: Solid Phase Peptide Synthesis, 2d. ed., Pierce Chemical Co., 1984.
- [0768] Stranger-Jones et al., *Proc. Nat. Acad. Sci. USA*, 103:16942-16947, 2006.
- [0769] Stuart et al., Nature, 317:828, 1985.
- [0770] Sullivan and Peterlin, *Mol. Cell. Biol.*, 7:3315, 1987.
- [0771] Swartzendruber and Lehman, *J. Cell. Physiology*, 85:179, 1975.
- [0772] Takebe et al., Mol. Cell. Biol., 8:466, 1988.
- [0773] Tam et al., J. Am. Chem. Soc., 105:6442, 1983.
- [0774] Tavernier et al., Nature, 301:634, 1983.
- [0775] Taylor and Kingston, *Mol. Cell. Biol.*, 10:165, 1990a.
- [0776] Taylor and Kingston, *Mol. Cell. Biol.*, 10:176, 1990b.
- [0777] Taylor et al., J. Biol. Chem., 264:15160, 1989.
- [0778] Thiel et al., Microbes Infect., 5:515-526, 2003.
- [0779] Thiesen et al., J. Virology, 62:614, 1988.
- [0780] Thompson et al., *Biochem. Biophys. Res. Commun.*, 145:118-125, 1987.
- [0781] Thompson et al., *J. Immunol.*, 143:1815-1821, 1989.
- [0782] Thomson et al., J. Immunol., 157(2):822-826, 1996.
- [0783] Tigges et al., J. Immunol., 156(10):3901-3910, 1996.
- [0784] Toukairin et al., *Chem. Pharm. Bull.* (Tokyo), 39(6): 1480-3, 1991.
- [0785] Treisman, Cell, 42:889, 1985.
- [0786] Tronche et al., Mol. Biol. Med., 7:173, 1990.
- [0787] Trudel and Constantini, *Genes and Dev.*, 6:954, 1987.
- [0788] Tyndell et al., Nuc. Acids. Res., 9:6231, 1981.
- [0789] Uchino et al., Planta. Medt., 54(5):419-22, 1988.
- [0790] van den Ent and Lowe, *FEBS Lett.*, 579:3837-3841, 2005.
- [0791] van Wely et al., FEMS Microbiol. Rev., 25:437-454, 2001.
- [0792] Vannice and Levinson, J. Virology, 62:1305, 1988.
- [0793] Vasseur et al., *Proc Natl. Acad. Sci. USA*, 77:1068, 1980.
- [0794] Vaughan et al., Nat. Biotech., 16:535-539, 1998.
- [0795] Voyich et al., J. Immunol., 175:3907-3919, 2005.
- [0796] Vuong et al., J. Biol. Chem., 279:54881-54886, 2004.
- [0797] Wang and Calame, Cell, 47:241, 1986.
- [0798] Wang et al., Nat. Med., 13:1510-1514, 2007.
- [0799] Weber et al., Cell, 36:983, 1984.
- [0800] Weinberger et al. Mol. Cell. Biol., 8:988, 1984.
- [0801] Weiss et al., J. Antimicrob. Chemother., 53:480-486, 2004.
- [0802] Winoto and Baltimore, Cell, 59:649, 1989.
- [0803] Wong et al., Gene, 10:87-94, 1980.
- [0804] Xie, C. et al. J. Exp. Med. 203, 985-994 (2006).
- [0805] Xiong et al. Antimicrob. Agents Chemother., 49:380-387, 2005.
- [0806] Xu et al., J. Infect. Dis., 189:2323-2333, 2004.
- [0807] Xu et al., Mol. Microbiol., 66(3):787-800, 2007.
- [0808] Yang et al. J. Immunol., 175:6458-6464, 2005.
- [0809] Yokogawa et al., Antimicrob. Agents Chemother., 6:156-165, 1974.
- [0810] Yutzey et al. Mol. Cell. Biol., 9:1397, 1989.
- [0811] Zimmermann, Biochem. J., 285:345-365, 1992.

SEQUENCE LISTING

<160>	> NU	MBER	OF	SEQ	ID 1	: 20I	53									
<210><211><211><212><213>	> LE	NGTH PE:	H: 10 DNA	023	ohylo	ococo	cus a	aureu	ıs							
<220><221><222>	> FE.	ATUR ME/K	RE: CEY:	CDS	-											
<400>	> SE	QUEN	ICE :	1												
atg a Met L 1																48
caa a Gln I																96
gac a Asp L	ъs															144
gct t Ala T 5																192
act g Thr A 65																240
gca g Ala A																288
cca g Pro G																336
aat c Asn A	۱rg															384
aag c Lys H 1																432
aac a Asn L 145		_							_					_		480
gtt a Val I																528
gca a Ala L																576
cct a Pro A	٩rg											_				624
gca g Ala V 2										_					_	672
agc a Ser I 225																720
aag g	gta	att	cca	cca	tat	ggt	cac	aat	tca	cat	cgt	atg	cat	gta	cca	768

							- (con	cini	uea		
Lys Val Ile	Pro Pro 245		Sly His		Ser H 250	His .	Arg	Met	His	Val 255	Pro	
agt ttc caa Ser Phe Glr			_					_		-		816
aaa gca tat Lys Ala Tyi 275	Asp Tyr							_	-			864
gtg aag aaa Val Lys Lys 290		Ser P				Asn (912
aaa cca tca Lys Pro Sei 305					Asn T							960
agt tat ago Ser Tyr Sei				Pro (1008
gca cca cga Ala Pro Arg	-											1023
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	H: 340 PRT	phyloc	occus a	ureu:	s							
<400> SEQUE	NCE: 2											
Met Lys Lys 1	Lys Leu 5	Leu V	al Leu		Met S 10	Ser '	Thr	Leu	Phe	Ala 15	Thr	
Gln Ile Met	Asn Ser 20	Asn H	Iis Ala	Lys 2 25	Ala S	Ger '	Val	Thr	Glu 30	Ser	Val	
Aap Lya Lya 35	Phe Val	Val P	ro Glu 40	Ser (Gly I	lle .	Asn	Lys 45	Ile	Ile	Pro	
Ala Tyr Asp 50	Glu Phe	-	sn Ser 55	Pro 1	Lys V		Asn 60	Val	Ser	Asn	Leu	
Thr Asp Asr 65	. Lys Asn	Phe V	al Ala	Ser (4sp :	Lys	Leu	Asn	Lys	Ile 80	
Ala Asp Sei	85			!	90	_	-			95		
	100	•		105			-	-	110			
Asn Arg Val		Ala T	hr Asn 120	Asn l	rro A	Ala .		Gln 125	GIn	Val	Asp	
Lys His Phe 130	: Val Ala	_	Sly Pro	Glu '	Val A		Arg 140	Phe	Ile	Thr	Gln	
Asn Lys Val 145	Asn His	His P 150	he Ile	Thr '		31n .55	Thr	His	Tyr	Lys	Lys 160	
Val Ile Thi	Ser Tyr 165	_	er Thr		Val H 170	His :	Lys	His	Val	Asn 175	His	
Ala Lys Asr	180			185					190			
Pro Arg Tyr	i		200					205				
Ala Val Pro 210	GIY Tyr		ala His :15	гÀа	rne V		Thr 220	Pro	GTÀ	Hls	Ala	

Ser Ile Lys Ile	Asn His Phe	e Cys Val Val	Pro Gln Ile Asn	Ser Phe
225	230	. Hi . Dan Gan	235	240
rha nai ile bio	245	250	His Arg Met His	255
Ser Phe Gln Asn 260		Ala Thr His 265	Gln Asn Ala Lys 270	Val Asn
Lys Ala Tyr Asp 275	Tyr Lys Tyr	Phe Tyr Ser 280	Tyr Lys Val Val 285	Lys Gly
Val Lys Lys Tyr 290	Phe Ser Phe 295		Asn Gly Tyr Lys 300	Ile Gly
Lys Pro Ser Leu 305	Asn Ile Lys 310	s Asn Val Asn	Tyr Gln Tyr Ala 315	Val Pro 320
Ser Tyr Ser Pro	Thr His Tyr 325	Val Pro Glu 330	Phe Lys Gly Ser	Leu Pro 335
Ala Pro Arg Val 340				
<pre><210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	755 Staphylocod			
<400> SEQUENCE:	3			
			tta gca tta ggt Leu Ala Leu Gly	
			gaa gcg tct gcc Glu Ala Ser Ala 30	
			cac cat gga tat His His Gly Tyr 45	
			ggt aca agc caa Gly Thr Ser Gln 60	
			aat att agt tat Asn Ile Ser Tyr 75	
			tca gac aga ggt Ser Asp Arg Gly	
			aaa tat act gtt Lys Tyr Thr Val 110	
			aaa gca ggt att Lys Ala Gly Ile 125	
	_	Glu Ile Lys	gct att aat att Ala Ile Asn Ile 140	-
			aaa gat aaa gca Lys Asp Lys Ala 155	

											COII	CIII	ueu			
					atc Ile										528	
					aat Asn										576	
					tca Ser										624	
_	_		-		tcg Ser	_					_				672	
					gtt Val 230										720	
					agt Ser										768	
					gaa Glu			_		_			_		816	
					aat Asn							_			864	
					cct Pro								_		912	
					aag Lys 310										960	
		_	_		gct Ala				_						1008	
					ttg Leu										1056	
					aag Lys										1104	
					aga Arg										1152	
					tta Leu 390		_					_		_	1200	
_				_	atc Ile				_		_	_	_		1248	
					gaa Glu										1296	
		_			aaa Lys			_							1344	
					ctg Leu										1392	

ata gat att gat gtt aaa aca gga act aaa gcg aaa gcg gat agc tat 1440 Ile Asp Ile Asp Val Lys Thr Gly Thr Lys Ala Lys Ala Asp Ser Tyr 465 470 475 480	
1/0 1/0	
gta cca tat aca att gca gta aat ggc aca tca aca cca att tta tca 1488	
Val Pro Tyr Thr Ile Ala Val Asn Gly Thr Ser Thr Pro Ile Leu Ser 485 490 495	
aaa ctt aaa att tcg aat aaa caa tta att agt tac aaa tat tta aat 1536 Lys Leu Lys Ile Ser Asn Lys Gln Leu Ile Ser Tyr Lys Tyr Leu Asn 500 505 510	
gac aaa gtg aaa tct gta tta aaa agt gaa aga ggc atc agt gat ctt 1584 Asp Lys Val Lys Ser Val Leu Lys Ser Glu Arg Gly Ile Ser Asp Leu 515 520 525	
gac tta aaa ttt gcg aaa caa gca aaa tat aca gta tat ttc aaa aat 1632 Asp Leu Lys Phe Ala Lys Gln Ala Lys Tyr Thr Val Tyr Phe Lys Asn 530 535 540	
gga aag aaa caa gta gtg aat tta aaa tca gac atc ttt aca cct aat 1680 Gly Lys Lys Gln Val Val Asn Leu Lys Ser Asp Ile Phe Thr Pro Asn 545 550 560	
tta ttt agt gcc aaa gat att aaa aag att gat att gat gta aaa caa 1728 Leu Phe Ser Ala Lys Asp Ile Lys Lys Ile Asp Ile Asp Val Lys Gln 565 570 575	
tac act aaa tca aaa aaa aat aaa taa 1755 Tyr Thr Lys Ser Lys Lys Asn Lys 580	
<210> SEQ ID NO 4 <211> LENGTH: 584 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	
<400> SEQUENCE: 4	
C4007 DEGOENCE. 4	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu 1 5 10 15	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu 1 10 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 20 25 30	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu 1 5 10 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 20 25 30 Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys 35 40	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 20 Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys 40 Val His Val Pro Tyr Ala Ile Thr Val Asn Gly Thr Ser Gln Asn Ile 50 Leu Ser Ser Leu Thr Phe Asn Lys Asn Gln Asn Ile Ser Tyr Lys Asp	
Met Lys Phe Lys Ser Leu Ile Thr Thr Leu Ala Leu Gly Val Leu Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Asn Asn Asn Ala Ala	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 30 Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys 45 Val His Val Pro Tyr Ala Ile Thr Val Asn Gly Thr Ser Gln Asn Ile 50 Leu Ser Ser Leu Thr Phe Asn Lys Asn Gln Asn Ile Ser Tyr Lys Asp 80 Leu Glu Asp Arg Val Lys Ser Val Leu Lys Ser Asp Arg Gly Ile Ser 95	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 20 Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys 45 Val His Val Pro Tyr Ala Ile Thr Val Asn Gly Thr Ser Gln Asn Ile 50 Leu Ser Ser Leu Thr Phe Asn Lys Asn Gln Asn Ile Ser Tyr Lys Asp 80 Leu Glu Asp Arg Val Lys Ser Val Leu Lys Ser Asp Arg Gly Ile Ser 95 Asp Ile Asp Leu Arg Leu Ser Lys Gln Ala Lys Tyr Thr Val Tyr Phe 110	
Met Lys Phe Lys Ser Leu Ile Thr Thr Thr Leu Ala Leu Gly Val Leu Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys Val His Val Pro Tyr Ala Ile Ile Asn Gly Thr Ser Gln Asn Ile Asn Ile Asn Ile Ser Tyr Lys Asp Asp Asn Lys Ser Asp Asp Asp Asp Ile Ser Asp Asp Ile Ser Asp Ile Ser Asp Ile Asp Ile Asp Ile Asp	
Met Lys Phe Lys Ser Leu Ile Thr Thr Leu Ala Leu Gly Val Leu 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 30 Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys 45 Val His Val Pro Tyr Ala Ile Thr Val Asn Gly Thr Ser Gln Asn Ile 50 Leu Ser Ser Leu Thr Phe Asn Lys Asn Gln Asn Ile Ser Tyr Lys Asp 80 Leu Glu Asp Arg Val Lys Ser Val Leu Lys Ser Asp Arg Gly Ile Ser 95 Asp Ile Asp Leu Arg Leu Ser Lys Gln Ala Lys Tyr Thr Val Tyr Phe 105 Lys Asn Gly Thr Lys Lys Val Ile Asp Leu Lys Ala Gly Ile Tyr Thr 115 Ala Asp Leu Ile Asn Thr Ser Glu Ile Lys Ala Ile Asn Ile Asn Ile Asn Val	
Met Lys Phe Lys Ser Leu Ile Thr Thr Leu Ala Leu Gly Val Leu 15 Ala Ser Thr Gly Ala Asn Phe Asn Asn Asn Glu Ala Ser Ala Ala Ala 30 Lys Pro Leu Asp Lys Ser Ser Ser Ser Leu His His Gly Tyr Ser Lys 45 Val His Val Pro Tyr Ala Ile Thr Val Asn Gly Thr Ser Gln Asn Ile 50 Leu Ser Ser Leu Thr Phe Asn Lys Asn Gln Asn Ile Ser Tyr Lys Asp 80 Leu Glu Asp Arg Val Lys Ser Val Leu Lys Ser Asp Arg Gly Ile Ser 95 Asp Ile Asp Leu Arg Leu Ser Lys Gln Ala Lys Tyr Thr Val Tyr Phe 105 Ala Asp Leu Ile Asn Thr Ser Glu Ile Lys Ala Ile Asn Ile Asn Val 135 Ala Asp Thr Lys Lys Gln Val Glu Asp Lys Lys Lys Asp Lys Asp Lys Asp Lys Asp Lys Asp Lys Asp Lys Ala Asn Tyr	

Glu	Asp	Lys 195	Val	Lys	Ser	Val	Leu 200	Glu	Ser	Asn	Arg	Gly 205	Ile	Thr	Asp
Val	Asp 210	Leu	Arg	Leu	Ser	Lys 215	Gln	Ala	Lys	Tyr	Thr 220	Val	Asn	Phe	Lys
Asn 225	Gly	Thr	Lys	Lys	Val 230	Ile	Asp	Leu	Lys	Ser 235	Gly	Ile	Tyr	Thr	Ala 240
Asn	Leu	Ile	Asn	Ser 245	Ser	Asp	Ile	Lys	Ser 250	Ile	Asn	Ile	Asn	Val 255	Asp
Thr	Lys	Lys	His 260	Ile	Glu	Asn	Lys	Ala 265	Lys	Arg	Asn	Tyr	Gln 270	Val	Pro
Tyr	Ser	Ile 275	Asn	Leu	Asn	Gly	Thr 280	Ser	Thr	Asn	Ile	Leu 285	Ser	Asn	Leu
Ser	Phe 290	Ser	Asn	Lys	Pro	Trp 295	Thr	Asn	Tyr	Lys	Asn 300	Leu	Thr	Ser	Gln
Ile 305	Lys	Ser	Val	Leu	Lys 310	His	Asp	Arg	Gly	Ile 315	Ser	Glu	Gln	Asp	Leu 320
Lys	Tyr	Ala	Lys	Lys 325	Ala	Tyr	Tyr	Thr	Val 330	Tyr	Phe	Lys	Asn	Gly 335	Gly
Lys	Arg	Ile	Leu 340	Gln	Leu	Asn	Ser	Lys 345	Asn	Tyr	Thr	Ala	Asn 350	Leu	Val
His	Ala	Lys 355	Asp	Val	Lys	Arg	Ile 360	Glu	Ile	Thr	Val	Lуз 365	Thr	Gly	Thr
ГÀа	Ala 370	Lys	Ala	Asp	Arg	Tyr 375	Val	Pro	Tyr	Thr	Ile 380	Ala	Val	Asn	Gly
Thr 385	Ser	Thr	Pro	Ile	Leu 390	Ser	Asp	Leu	Lys	Phe 395	Thr	Gly	Asp	Pro	Arg 400
Val	Gly	Tyr	Lys	Asp 405	Ile	Ser	Lys	Lys	Val 410	Lys	Ser	Val	Leu	Lys 415	His
Asp	Arg	Gly	11e 420	Gly	Glu	Arg	Glu	Leu 425	ГÀа	Tyr	Ala	ГÀа	Lys 430	Ala	Thr
Tyr	Thr	Val 435	His	Phe	ГÀв	Asn	Gly 440	Thr	Lys	Lys	Val	Ile 445	Asn	Ile	Asn
Ser	Asn 450	Ile	Ser	Gln	Leu	Asn 455	Leu	Leu	Tyr	Val	Gln 460	Asp	Ile	ГÀв	ГÀв
Ile 465	Asp	Ile	Asp	Val	Lys 470	Thr	Gly	Thr	Lys	Ala 475	Lys	Ala	Asp	Ser	Tyr 480
Val	Pro	Tyr	Thr	Ile 485	Ala	Val	Asn	Gly	Thr 490	Ser	Thr	Pro	Ile	Leu 495	Ser
Lys	Leu	Lys	Ile 500	Ser	Asn	Lys	Gln	Leu 505	Ile	Ser	Tyr	Lys	Tyr 510	Leu	Asn
Asp	ГÀЗ	Val 515	Lys	Ser	Val	Leu	Lys 520	Ser	Glu	Arg	Gly	Ile 525	Ser	Asp	Leu
Asp	Leu 530	Lys	Phe	Ala	ГÀЗ	Gln 535	Ala	ГÀЗ	Tyr	Thr	Val 540	Tyr	Phe	Lys	Asn
545	Lys	_			550			-		555					560
	Phe			565				Lys	Ile 570	Asp	Ile	Asp	Val	Lys 575	Gln
Tyr	Thr	Lys	Ser 580	LÀa	Lys	Asn	ГÀа								

```
<210> SEO ID NO 5
<211> LENGTH: 294
<212> TYPE: DNA
<213 > ORGANISM: Staphylococcus sp.
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(294)
<400> SEOUENCE: 5
atg gca atg att aag atg agt cca gag gaa atc aga gca aaa tcg caa
                                                                      48
Met Ala Met Ile Lys Met Ser Pro Glu Glu Ile Arg Ala Lys Ser Gln
                                  10
tct tac ggg caa ggt tca gac caa atc cgt caa att tta tct gat tta
                                                                      96
Ser Tyr Gly Gln Gly Ser Asp Gln Ile Arg Gln Ile Leu Ser Asp Leu
                               25
aca cgt gca caa ggt gaa att gca gcg aac tgg gaa ggt caa gct ttc
                                                                     144
Thr Arg Ala Gln Gly Glu Ile Ala Ala Asn Trp Glu Gly Gln Ala Phe
                           40
age egt tte gaa gag caa tte caa caa ett agt eet aaa gta gaa aaa
Ser Arg Phe Glu Glu Gln Phe Gln Gln Leu Ser Pro Lys Val Glu Lys
ttt gca caa tta tta gaa gaa att aaa caa caa ttg aat agc act gct
Phe Ala Gln Leu Leu Glu Glu Ile Lys Gln Gln Leu Asn Ser Thr Ala
gat gcc gtt caa gaa caa gac caa caa ctt tct aat aat ttc ggt ttg
Asp Ala Val Gln Glu Gln Asp Gln Gln Leu Ser Asn Asn Phe Gly Leu
               85
                                   90
caa taa
                                                                     294
Gln
<210> SEQ ID NO 6
<211> LENGTH: 97
<212> TYPE: PRT
<213 > ORGANISM: Staphylococcus sp.
<400> SEOUENCE: 6
Met Ala Met Ile Lys Met Ser Pro Glu Glu Ile Arg Ala Lys Ser Gln
                                   1.0
Ser Tyr Gly Gln Gly Ser Asp Gln Ile Arg Gln Ile Leu Ser Asp Leu
                               25
Thr Arg Ala Gln Gly Glu Ile Ala Ala Asn Trp Glu Gly Gln Ala Phe
                           40
Ser Arg Phe Glu Glu Gln Phe Gln Gln Leu Ser Pro Lys Val Glu Lys
                      55
Phe Ala Gln Leu Leu Glu Glu Ile Lys Gln Gln Leu Asn Ser Thr Ala
                   70
                                       75
Asp Ala Val Gln Glu Gln Asp Gln Gln Leu Ser Asn Asn Phe Gly Leu
               85
                                    90
Gln
<210> SEQ ID NO 7
<211> LENGTH: 307
<212> TYPE: DNA
<213 > ORGANISM: Staphylococcus sp.
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(306)
<400> SEQUENCE: 7
```

											con	CIII	ueu		
atg ggt Met Gly															48
gcg aaa Ala Lys															96
aag caa Lys Gln															144
gga cag Gly Gln 50															192
ttt caa Phe Gln 65	_	-		~		_		_	_				_		240
gat aac Asp Asn															288
caa gga Gln Gly		_			a										307
<210> S <211> L <212> T <213> O	ENGTI YPE :	H: 1 PRT	02	phylo	ococo	cus :	≅p.								
<400> S	EQUE	ICE :	8												
Met Gly 1	Gly	Tyr	Lys 5	Gly	Ile	Lys	Ala	Asp 10	Gly	Gly	Lys	Val	Asn 15	Gln	
Ala Lys	Gln	Leu 20	Ala	Ala	Lys	Ile	Ala 25	Lys	Asp	Ile	Glu	Ala 30	Сув	Gln	
Lys Gln	Thr 35	Gln	Gln	Leu	Ala	Glu 40	Tyr	Ile	Glu	Gly	Ser 45	Asp	Trp	Glu	
Gly Gln 50	Phe	Ala	Asn	Lys	Val 55	Lys	Asp	Val	Leu	Leu 60	Ile	Met	Ala	Lys	
Phe Gln 65	Glu	Glu	Leu	Val 70	Gln	Pro	Met	Ala	Asp 75	His	Gln	Lys	Ala	Ile 80	
Asp Asn	Leu	Ser	Gln 85	Asn	Leu	Ala	Lys	Tyr 90	Asp	Thr	Leu	Ser	Ile 95	Lys	
Gln Gly	Leu	Asp 100	Arg	Val											
<210 > S <211 > L <212 > T <213 > O <220 > F <221 > N <222 > L	ENGTI YPE: RGAN EATUI AME/I	H: 4: DNA SM: RE: KEY:	158 Stap CDS	-		cus :	≅p.								
<400> S	EQUE	ICE :	9												
atg cta Met Leu 1															48
tcc aat Ser Asn															96

gca tca att tta gta ggt aca aca tta att ttt ggt ctg ggg aac caa Ala Ser Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Gly Asn Gln 35 gaa gca aag gct gca gaa agt act aat aaa gaa ttg aac gaa gcg aca Glu Ala Lys Ala Ala Glu Ser Thr Asn Lys Glu Leu Asn Glu Ala Thr 50 act tca gca agt gat aat caa tcg agt gat aaa gtt gat atg cag caa Thr Ser Ala Ser Asp Asn Gln Ser Ser Asp Lys Val Asp Met Gln Gln
Glu Ala Lys Ala Ala Glu Ser Thr Asn Lys Glu Leu Asn Glu Ala Thr 50 55 60 act tca gca agt gat aat caa tcg agt gat aaa gtt gat atg cag caa 240
65 70 75 80
cta aat caa gaa gac aat act aaa aat gat aat caa aaa gaa atg gta 288 Leu Asn Gln Glu Asp Asn Thr Lys Asn Asp Asn Gln Lys Glu Met Val 85 90 95
tca tct caa ggt aat gaa acg act tca aat ggg aat aaa tca ata gaa 336 Ser Ser Gln Gly Asn Glu Thr Thr Ser Asn Gly Asn Lys Ser Ile Glu 100 105 110
aaa gaa agt gta caa tct acc act gga aat aaa gtt gaa gtt tca act Lys Glu Ser Val Gln Ser Thr Thr Gly Asn Lys Val Glu Val Ser Thr 115 120 125
gcc aaa tca gat gag caa gct tca cca aaa tct acg aat gaa gat tta 432 Ala Lys Ser Asp Glu Gln Ala Ser Pro Lys Ser Thr Asn Glu Asp Leu 130 135 140
aac act aaa caa act ata agt aat caa gaa ggg tta caa cct gat ttg 480 Asn Thr Lys Gln Thr Ile Ser Asn Gln Glu Gly Leu Gln Pro Asp Leu 145 150 155 160
cta gag aat aaa tca gtg gta aat gtt caa cca act aat gag gaa aac 528 Leu Glu Asn Lys Ser Val Val Asn Val Gln Pro Thr Asn Glu Glu Asn 165 170 175
aaa aag gta gat gcg aaa act gaa tca act aca tta aat gtt aaa agt 576 Lys Lys Val Asp Ala Lys Thr Glu Ser Thr Thr Leu Asn Val Lys Ser 180 185 190
gat gct atc aag agt aat gct gaa act ctt gtt gat aac aat agt aat 624 Asp Ala Ile Lys Ser Asn Ala Glu Thr Leu Val Asp Asn Asn Ser Asn 195 200 205
tca aat aat gaa aat aat gca gat atc att ttg cca aaa agt aca gca 672 Ser Asn Asn Glu Asn Asn Ala Asp Ile Ile Leu Pro Lys Ser Thr Ala 210 215 220
Cct aaa agt ttg aat aca aga atg cgt atg gca gca ata caa cca aac Pro Lys Ser Leu Asn Thr Arg Met Arg Met Ala Ala Ile Gln Pro Asn 225 230 235 240
tca aca gat tct aaa aat gtt aat gat tta atc aca tca aat aca aca 768 Ser Thr Asp Ser Lys Asn Val Asn Asp Leu Ile Thr Ser Asn Thr Thr 245 250 255
tta act gtc gtt gat gca gat aat agc aaa acg att gta cca gcc caa 816 Leu Thr Val Val Asp Ala Asp Asn Ser Lys Thr Ile Val Pro Ala Gln 260 265 270
gat tat tta tca tta aaa tca caa att aca gtt gat gac aaa gtt aaa 864 Asp Tyr Leu Ser Leu Lys Ser Gln Ile Thr Val Asp Asp Lys Val Lys 275 280 285
tca ggt gat tat ttc aca att aaa tac tca gat aca gta caa gta tat 912 Ser Gly Asp Tyr Phe Thr Ile Lys Tyr Ser Asp Thr Val Gln Val Tyr 290 295 300
gga ttg aat ccg gaa gat att aaa aat att ggt gat att aaa gat cca 960 Gly Leu Asn Pro Glu Asp Ile Lys Asn Ile Gly Asp Ile Lys Asp Pro 305 310 315 320
aat aat ggt gaa aca att gcg act gca aaa cat gat act gca aat aat 1008 Asn Asn Gly Glu Thr Ile Ala Thr Ala Lys His Asp Thr Ala Asn Asn 325 330 335

												COII	tini	aca			
					ttt Phe		_		_	_	_				_	1056	
					tac Tyr											1104	
					gtt Val											1152	
					gat Asp 390											1200	
					tca Ser	~					_			~		1248	
					ggt Gly											1296	
_	_	_	_		aaa Lys		_	_			_	_				1344	
_					aat Asn								_			1392	
					gtt Val 470											1440	
					gat Asp											1488	
	_	_			tca Ser			_	_			_			_	1536	
					gtt Val											1584	
					aca Thr											1632	
	Asn		Ser	Val	tct Ser 550	Thr	Gly		Āla	Leu	Gly	Phe				1680	
					ggt Gly											1728	
					aaa Lys											1776	
					gta Val											1824	
					act Thr											1872	
					tac Tyr 630											1920	

								COII	LIII	aca	
tat gaa g Tyr Glu V											1968
aac ggc t Asn Gly L											2016
gca gac t Ala Asp L 6											2064
tgg gaa g Trp Glu A 690						_		_	-		 2112
ata tct g Ile Ser G 705	 Thr V				_	_					2160
aaa aca g Lys Thr V											2208
gat aat g Asp Asn G											2256
ccg act a Pro Thr T 7											2304
tta aca a Leu Thr T 770											2352
agt gga t Ser Gly P 785	Lys T										2400
gaa gat a Glu Asp T	_		_	_	_			_			2448
tca ggc g Ser Gly V											2496
aca act a Thr Thr L 8											2544
aat gga a Asn Gly T 850											2592
aca caa g Thr Gln V 865	 Ser G	-	_	_			_				2640
tca aca a Ser Thr T											2688
ggt ttc t Gly Phe T											2736
aca aat a Thr Asn L 9			-		_	_	_				 2784
gta aca g Val Thr V 930											2832

Concinaca	
aca aca gat gaa aat ggt aaa tat caa ttc act gat tta aac aat gga Thr Thr Asp Glu Asn Gly Lys Tyr Gln Phe Thr Asp Leu Asn Asn Gly 955 960	2880
act tat aaa gtt gaa ttc gag aca cca tca ggt tat aca cca act tca Thr Tyr Lys Val Glu Phe Glu Thr Pro Ser Gly Tyr Thr Pro Thr Ser 965 970 975	2928
gta act tct gga aat gat act gaa aaa gat tct aat ggt tta aca aca Val Thr Ser Gly Asn Asp Thr Glu Lys Asp Ser Asn Gly Leu Thr Thr 980 985 990	2976
aca ggt gtc att aaa gat gca gat aac atg aca tta gac agt ggt ttc Thr Gly Val Ile Lys Asp Ala Asp Asn Met Thr Leu Asp Ser Gly Phe 995 1000 1005	3024
tat aaa aca cca aaa tat agt tta ggt gat tat gtt tgg tac gac agt Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val Trp Tyr Asp Ser 1010 1015 1020	3072
aat aaa gac ggc aaa caa gat tca act gaa aaa ggt atc aaa gat gtt Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly Ile Lys Asp Val 1025 1030 1035 1040	3120
aaa gtt att tta tta aat gaa aaa ggc gaa gta att gga aca act aaa Lys Val Ile Leu Leu Asn Glu Lys Gly Glu Val Ile Gly Thr Thr Lys 1045 1050 1055	3168
aca gat gaa aat ggt aaa tac cgc ttt gat aat tta gat agc ggt aaa Thr Asp Glu Asn Gly Lys Tyr Arg Phe Asp Asn Leu Asp Ser Gly Lys 1060 1065 1070	3216
tac aaa gtt att ttt gaa aag oct act ggo tta aca caa aca ggt aca Tyr Lys Val Ile Phe Glu Lys Pro Thr Gly Leu Thr Gln Thr Gly Thr 1075 1080 1085	3264
aat aca act gaa gat gat aaa gat gcc gat ggt ggc gaa gtt gat gta Asn Thr Thr Glu Asp Asp Lys Asp Ala Asp Gly Gly Glu Val Asp Val 1090 1095 1100	3312
aca att acg gat cat gat gat ttc aca ctt gat aat ggc tac tac gaa Thr Ile Thr Asp His Asp Asp Phe Thr Leu Asp Asn Gly Tyr Tyr Glu 1105 1110 1115 1120	3360
gaa gaa aca tca gat agc gac tca gat tcg gac agc gat tca gac tca Glu Glu Thr Ser Asp Ser 1125 1130 1135	3408
gac agc gat tca gac tca gat agt gat tca gat tca gat agt gat tca Asp Ser I140 1145 1150	3456
gat tca gat agt gat tca gat tca gac agc gac tca gac tca gat agt Asp Ser I155 1160 1165	3504
gac tca gac tca gat agc gat tca gat tca gat agc gat tca gac tca Asp Ser I170 1175 1180	3552
gac agc gat tca gat tca gac agc gac tca gac tca gat agc gac tca Asp Ser Asp Ser I185 1190 1195 1200	3600
gat tog gac age gat toa gac toa gat age gac toa gac toa gac age Asp Ser Asp Se	3648
gat toa gac toa gat ago gac toa gac toa gat ago gat toa gat toa Asp Ser Asp Se	3696
gac agc gat tca gat tca gac agt gat tca gat tca gac agc gac tca Asp Ser Asp Ser 1235 1240 1245	3744

get toe get agg					- (cont	LIIL	lea		
Asp Ser Asp Ser 1250						Asp :				3792
gac agc gac tca Asp Ser Asp Ser 1265			Asp Ser					Asp		3840
gat tca gat ago Asp Ser Asp Ser				Asp			Ser		Ser	3888
gat tca gac tca Asp Ser Asp Ser 130	Asp Ser					Āsp :		Āsp		3936
gat agc gac tca Asp Ser Asp Ser 1315			Asp Ser		Ser					3984
cac aca cct gtt His Thr Pro Val 1330	Lys Pro	Met Ser 1335	Thr Thr	ГÀз	Asp 1340	His 1	His	Asn	Lys	4032
gca aaa gca tta Ala Lys Ala Leu 1345	Pro Glu 1350	Thr Gly	Asn Glu	Asn 1355	Ser	Gly :	Ser	Asn 1	Asn 360	4080
gca acg tta ttt Ala Thr Leu Phe	Gly Gly 1365	Leu Phe	Ala Ala 1370	Leu			Leu		Leu	4128
ttc ggt cgt cgt Phe Gly Arg Arg 138	Lys Lys									4158
<210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM:	385	ococcus s	∍p .							
<211> LENGTH: 1 <212> TYPE: PRT	385 Staphylo	ococcus s	∍p.							
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1	385 Staphylo 10 Glu Asn 5	Lys Thr	Ala Ile		_			15		
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg	Staphylo 10 Glu Asn 5 Asn Lys	Lys Thr Phe Ser	Ala Ile 10 Ile Arg 25	Lys	Tyr	Thr :	Val 30	15 Gly	Thr	
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1 Ser Asn Arg Leu 20 Ala Ser Ile Leu 35 Glu Ala Lys Ala	Staphylo 10 Glu Asn 5 Asn Lys Val Gly Ala Glu	Lys Thr Phe Ser Thr Thr 40 Ser Thr	Ala Ile 10 Ile Arg 25 Leu Ile	Lys Phe	Tyr Gly Leu	Thr \Leu (Val 30 Gly	15 Gly Asn	Thr	
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1 Ser Asn Arg Leu 20 Ala Ser Ile Leu 35	Staphylo 10 Glu Asn 5 Asn Lys Val Gly Ala Glu	Lys Thr Phe Ser Thr Thr 40 Ser Thr 55	Ala Ile 10 Ile Arg 25 Leu Ile Asn Lys	Lys Phe Glu	Tyr Gly Leu 60	Thr Miles	Val 30 Gly Glu	15 Gly Asn Ala	Thr Gln Thr	
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1 Ser Asn Arg Leu 20 Ala Ser Ile Leu 35 Glu Ala Lys Ala 50 Thr Ser Ala Ser 65 Leu Asn Gln Glu	Staphylo 10 Glu Asn 5 Asn Lys Val Gly Ala Glu Asp Asn 70 Asp Asn 85	Lys Thr Phe Ser Thr Thr 40 Ser Thr 55 Gln Ser Thr Lys	Ala Ile 10 Ile Arg 25 Leu Ile Asn Lys Ser Asp Asn Asp 90	Lys Phe Glu Lys 75 Asn	Tyr Gly Leu 60 Val	Thr Silver Asn (Asp I	Val 30 Gly Glu Met	Gly Asn Ala Gln Met 95	Thr Gln Thr Gln 80 Val	
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1 Ser Asn Arg Leu 20 Ala Ser Ile Leu 35 Glu Ala Lys Ala 50 Thr Ser Ala Ser 65	Staphylo 10 Glu Asn 5 Asn Lys Val Gly Ala Glu Asp Asn 70 Asp Asn 85 Asn Glu	Lys Thr Phe Ser Thr Thr 40 Ser Thr 55 Gln Ser Thr Lys Thr Thr	Ala Ile 10 Ile Arg 25 Leu Ile Asn Lys Ser Asp Asn Asp 90 Ser Asn 105	Lys Phe Glu Lys 75 Asn Gly	Tyr Gly Leu 60 Val Gln Asn	Thr the	Val 30 Gly Glu Met Glu Ser	15 Gly Asn Ala Gln Met 95 Ile	Thr Gln Thr Gln 80 Val	
<211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1 Ser Asn Arg Leu 20 Ala Ser Ile Leu 35 Glu Ala Lys Ala 50 Thr Ser Ala Ser 65 Leu Asn Gln Glu Ser Ser Gln Gly 100	Staphylo 10 Glu Asn 5 Asn Lys Val Gly Ala Glu Asp Asn 70 Asp Asn 85 Asn Glu Gln Ser Glu Gln	Lys Thr Phe Ser Thr Thr 40 Ser Thr 55 Gln Ser Thr Lys Thr Thr Thr Thr	Ala Ile 10 Ile Arg 25 Leu Ile Asn Lys Ser Asp Asn Asp 90 Ser Asn 105 Gly Asn	Lys Glu Lys 75 Asn Gly	Tyr Gly Leu 60 Val Gln Asn	Thr	Val 30 Gly Glu Met Glu Ser 110	15 Gly Asn Ala Gln Met 95 Ile Ser	Thr Gln Thr S0 Val Glu Thr	
<pre><211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE: Met Leu Asn Arg 1 Ser Asn Arg Leu 20 Ala Ser Ile Leu 35 Glu Ala Lys Ala 50 Thr Ser Ala Ser 65 Leu Asn Gln Glu Ser Ser Gln Gly 100 Lys Glu Ser Val 115</pre>	Staphylo 10 Glu Asn 5 Asn Lys Val Gly Ala Glu Asp Asn 70 Asp Asn 85 Asn Glu Gln Ser Glu Gln	Lys Thr Phe Ser Thr Thr 40 Ser Thr 55 Gln Ser Thr Lys Thr Thr Thr Thr 120 Ala Ser	Ala Ile 10 Ile Arg 25 Leu Ile Asn Lys Ser Asp Asn Asp 90 Ser Asn 105 Gly Asn Pro Lys	Lys Phe Glu Lys 75 Asn Gly Lys Ser	Tyr Gly Leu 60 Val Gln Asn Val Thr	Thr No. 12 Lea (45) Asn (45) Asp I Lys (6) Lys (6) Glu No. 125 Asn (6)	Val 30 Gly Glu Met Glu Ser 110 Val	15 Gly Asn Ala Gln Met 95 Ile Ser Asp	Thr Gln Thr Gln 80 Val Glu Thr Leu	

Lys	Lys	Val	Asp 180	Ala	Lys	Thr	Glu	Ser 185	Thr	Thr	Leu	Asn	Val 190	Lys	Ser
Asp	Ala	Ile 195	Lys	Ser	Asn	Ala	Glu 200	Thr	Leu	Val	Asp	Asn 205	Asn	Ser	Asn
Ser	Asn 210	Asn	Glu	Asn	Asn	Ala 215	Asp	Ile	Ile	Leu	Pro 220	Lys	Ser	Thr	Ala
Pro 225	Lys	Ser	Leu	Asn	Thr 230	Arg	Met	Arg	Met	Ala 235	Ala	Ile	Gln	Pro	Asn 240
Ser	Thr	Asp	Ser	Lys 245	Asn	Val	Asn	Asp	Leu 250	Ile	Thr	Ser	Asn	Thr 255	Thr
Leu	Thr	Val	Val 260	Asp	Ala	Asp	Asn	Ser 265	Lys	Thr	Ile	Val	Pro 270	Ala	Gln
Asp	Tyr	Leu 275	Ser	Leu	Lys	Ser	Gln 280	Ile	Thr	Val	Asp	Asp 285	Lys	Val	Lys
Ser	Gly 290	Asp	Tyr	Phe	Thr	Ile 295	Lys	Tyr	Ser	Asp	Thr 300	Val	Gln	Val	Tyr
Gly 305	Leu	Asn	Pro	Glu	Asp 310	Ile	Lys	Asn	Ile	Gly 315	Asp	Ile	Lys	Asp	Pro 320
Asn	Asn	Gly	Glu	Thr 325	Ile	Ala	Thr	Ala	Lys 330	His	Asp	Thr	Ala	Asn 335	Asn
Leu	Ile	Thr	Tyr 340	Thr	Phe	Thr	Asp	Tyr 345	Val	Asp	Arg	Phe	Asn 350	Ser	Val
ràa	Met	Gly 355	Ile	Asn	Tyr	Ser	Ile 360	Tyr	Met	Aap	Ala	365	Thr	Ile	Pro
Val	Asp 370	Lys	Lys	Aap	Val	Pro 375	Phe	Ser	Val	Thr	Ile 380	Gly	Asn	Gln	Ile
Thr 385	Thr	Thr	Thr	Ala	390	Ile	Thr	Tyr	Pro	Ala 395	Tyr	Lys	Glu	Ala	Asp 400
Asn	Asn	Ser	Ile	Gly 405	Ser	Ala	Phe	Thr	Glu 410	Thr	Val	Ser	His	Val 415	Gly
Asn	Val	Glu	Asp 420	Pro	Gly	Tyr	Tyr	Asn 425	Gln	Val	Val	Tyr	Val 430	Asn	Pro
Met	Asp	Lys 435	Asp	Leu	Lys	Gly	Ala 440	Lys	Leu	Lys	Val	Glu 445	Ala	Tyr	His
Pro	Lys 450	Tyr	Pro	Thr	Asn	Ile 455	Gly	Gln	Ile	Asn	Gln 460	Asn	Val	Thr	Asn
Ile 465	Lys	Ile	Tyr	Arg	Val 470	Pro	Glu	Gly	Tyr	Thr 475	Leu	Asn	Lys	Gly	Tyr 480
Asp	Val	Asn	Thr	Asn 485	Asp	Leu	Val	Asp	Val 490	Thr	Asp	Glu	Phe	Lys 495	Asn
Lys	Met	Thr	Tyr 500	Gly	Ser	Asn	Gln	Ser 505	Val	Asn	Leu	Asp	Phe 510	Gly	Asp
Ile	Thr	Ser 515	Ala	Tyr	Val	Val	Met 520	Val	Asn	Thr	Lys	Phe 525	Gln	Tyr	Thr
Asn	Ser 530	Glu	Ser	Pro	Thr	Leu 535	Val	Gln	Met	Ala	Thr 540	Leu	Ser	Ser	Thr
Gly 545	Asn	TÀa	Ser	Val	Ser 550	Thr	Gly	Asn	Ala	Leu 555	Gly	Phe	Thr	Asn	Asn 560
Gln	Ser	Gly	Gly	Ala 565	Gly	Gln	Glu	Val	Tyr 570	Lys	Ile	Gly	Asn	Tyr 575	Val

Trp	Glu	Asp	Thr 580	Asn	Lys	Asn	Gly	Val 585	Gln	Glu	Leu	Gly	Glu 590	ГЛа	Gly
Val	Gly	Asn 595	Val	Thr	Val	Thr	Val 600	Phe	Asp	Asn	Asn	Thr 605	Asn	Thr	Lys
Val	Gly 610	Glu	Ala	Val	Thr	Lys 615	Glu	Asp	Gly	Ser	Tyr 620	Leu	Ile	Pro	Asn
Leu 625	Pro	Asn	Gly	Asp	Tyr 630	Arg	Val	Glu	Phe	Ser 635	Asn	Leu	Pro	Lys	Gly 640
Tyr	Glu	Val	Thr	Pro 645	Ser	Lys	Gln	Gly	Asn 650	Asn	Glu	Glu	Leu	Asp 655	Ser
Asn	Gly	Leu	Ser 660	Ser	Val	Ile	Thr	Val 665	Asn	Gly	Lys	Asp	Asn 670	Leu	Ser
Ala	Asp	Leu 675	Gly	Ile	Tyr	Lys	Pro 680	Lys	Tyr	Asn	Leu	Gly 685	Asp	Tyr	Val
Trp	Glu 690	Asp	Thr	Asn	Lys	Asn 695	Gly	Ile	Gln	Asp	Gln 700	Asp	Glu	Lys	Gly
Ile 705	Ser	Gly	Val	Thr	Val 710	Thr	Leu	Lys	Asp	Glu 715	Asn	Gly	Asn	Val	Leu 720
Lys	Thr	Val	Thr	Thr 725	Asp	Ala	Asp	Gly	Lys 730	Tyr	Lys	Phe	Thr	Asp 735	Leu
Asp	Asn	Gly	Asn 740	Tyr	Lys	Val	Glu	Phe 745	Thr	Thr	Pro	Glu	Gly 750	Tyr	Thr
Pro	Thr	Thr 755	Val	Thr	Ser	Gly	Ser 760	Asp	Ile	Glu	Lys	Asp 765	Ser	Asn	Gly
Leu	Thr 770	Thr	Thr	Gly	Val	Ile 775	Asn	Gly	Ala	Asp	Asn 780	Met	Thr	Leu	Asp
Ser 785	Gly	Phe	Tyr	Lys	Thr 790	Pro	Lys	Tyr	Asn	Leu 795	Gly	Asn	Tyr	Val	Trp 800
Glu	Asp	Thr	Asn	805	Asp	Gly	ГЛа	Gln	Asp 810	Ser	Thr	Glu	Lys	Gly 815	Ile
Ser	Gly	Val	Thr 820	Val	Thr	Leu	Lys	Asn 825	Glu	Asn	Gly	Glu	Val 830	Leu	Gln
Thr	Thr	835 Lys	Thr	Asp	Lys	Asp	Gly 840	ГÀв	Tyr	Gln	Phe	Thr 845	Gly	Leu	Glu
Asn	Gly 850	Thr	Tyr	Lys	Val	Glu 855	Phe	Glu	Thr	Pro	Ser 860	Gly	Tyr	Thr	Pro
Thr 865		Val	Gly	Ser	Gly 870		Asp	Glu		Ile 875		Ser	Asn		Thr 880
Ser	Thr	Thr	Gly	Val 885	Ile	Lys	Asp	Lys	Asp 890	Asn	Asp	Thr	Ile	Asp 895	Ser
Gly	Phe	Tyr	Lys 900	Pro	Thr	Tyr	Asn	Leu 905	Gly	Asp	Tyr	Val	Trp 910	Glu	Asp
Thr	Asn	Lys 915	Asn	Gly	Val	Gln	Asp 920	Lys	Asp	Glu	Lys	Gly 925	Ile	Ser	Gly
Val	Thr 930	Val	Thr	Leu	Lys	Asp 935	Glu	Asn	Asp	Lys	Val 940	Leu	Lys	Thr	Val
Thr 945	Thr	Asp	Glu	Asn	Gly 950	Lys	Tyr	Gln	Phe	Thr 955	Asp	Leu	Asn	Asn	Gly 960
Thr	Tyr	Lys	Val	Glu 965	Phe	Glu	Thr	Pro	Ser 970	Gly	Tyr	Thr	Pro	Thr 975	Ser
Val	Thr	Ser	Gly	Asn	Asp	Thr	Glu	Lys	Asp	Ser	Asn	Gly	Leu	Thr	Thr

_															
			980					985					990		
Thr	Gly	Val 995	Ile	Lys	Asp		Asp	Asn	Met	Thr		Asp 1005	Ser	Gly	Phe
Tyr	Lys 1010		Pro	Lys	Tyr	Ser 1015		Gly	Asp	Tyr	Val 1020		Tyr	Asp	Ser
Asn 1029	Lys	Asp	Gly		Gln 1030	Asp	Ser	Thr		Lys 1035	Gly	Ile	Lys		Val LO40
Lys	Val	Ile	Leu	Leu 104		Glu	Lys	Gly	Glu 1050		Ile	Gly	Thr	Thr 1059	
Thr	Asp	Glu	Asn 1060		Lys	Tyr	Arg	Phe 1069		Asn	Leu	Asp	Ser 1070		Lys
Tyr	Lys	Val 1075		Phe	Glu	Lys	Pro 1080		Gly	Leu	Thr	Gln 1085		Gly	Thr
Asn	Thr 1090		Glu	Asp	Asp	Lys 1095		Ala	Asp	Gly	Gly 110		Val	Asp	Val
Thr 110	Ile 5	Thr	Asp		Asp 1110	Asp	Phe	Thr		Asp 1115	Asn	Gly	Tyr		Glu L120
Glu	Glu	Thr	Ser	Asp 112		Asp	Ser	Asp	Ser 1130		Ser	Asp	Ser	Asp 1139	
Asp	Ser	Asp	Ser 114		Ser	Asp	Ser	Asp 114		Asp	Ser	Asp	Ser 1150		Ser
Asp	Ser	Asp 115		Asp	Ser	Asp	Ser 1160		Ser	Asp	Ser	Asp 1169		Asp	Ser
Asp	Ser 1170		Ser	Asp	Ser	Asp 1179		Asp	Ser	Asp	Ser 1180		Ser	Asp	Ser
Asp 1189	Ser 5	Asp	Ser		Ser 1190	Asp	Ser	Asp		Asp 1195	Ser	Asp	Ser		Ser L200
Asp	Ser	Asp	Ser	Asp 120		Asp	Ser	Asp	Ser 1210	_	Ser	Asp	Ser	Asp 1219	
Asp	Ser	Asp	Ser 122		Ser	Asp	Ser	Asp 1225		Asp	Ser	Asp	Ser 1230	_	Ser
Asp	Ser	Asp 1235		Asp	Ser	Asp	Ser 1240		Ser	Asp	Ser	Asp 1245		Asp	Ser
Asp	Ser 1250		Ser	Asp	Ser	Asp 1255		Asp	Ser	Asp	Ser 1260	_	Ser	Asp	Ser
Asp 126	Ser 5	Asp	Ser	Asp	Ser 1270		Ser	Asp	Ser	Asp 127		Asp	Ser	Asp	Ser 1280
Asp	Ser	Asp	Ser	Asp 1289		Asp	Ser	Asp	Ser 1290	_	Ser	Asp	Ser	Asp 1299	
Asp	Ser	Asp	Ser 130		Ser	Asp	Ser	Asp 130		Asp	Ser	Asp	Ser 1310		Ser
Asp	Ser	Asp 131		Asp	Ser	Asp	Ser 1320	-	Ser	Asp	Ser	Asp 1325		Gly	Lys
His	Thr 1330		Val	ГÀЗ	Pro	Met 1335		Thr	Thr	Lys	Asp 1340		His	Asn	Lys
Ala 1345	PÀa	Ala	Leu	Pro	Glu 1350		Gly	Asn	Glu	Asn 135!		Gly	Ser	Asn	Asn 1360
Ala	Thr	Leu	Phe	Gly 136	_	Leu	Phe	Ala	Ala 1370		Gly	Ser	Leu	Leu 1375	
Phe	Gly	Arg	Arg 1380		Lys	Gln	Asn	Lys 1389	5						

<211 <212 <213 <220 <221 <222)> FI L> NA 2> LO	ENGTH PE: RGANI EATUR AME/R	H: 34 DNA ISM: RE: CEY:	126 Stap CDS (1)	ohylo		cus s	₹p.							
)> SI	-													 4.0
					aat Asn			Āla					Gly		48
					aaa Lys 25										96
					ggt Gly 40										144
					gaa Glu 55										192
					gat Asp 70										240
					aat Asn 90										288
					cca Pro 105										336
					aat Asn 120										384
					gaa Glu 135										432
					gtt Val 150										480
					act Thr 170										528
-	-			_	caa Gln 185	~ -			-		~ -	-		~ 7	 576
					aaa Lys 200										624
					aat Asn 215										672
					tta Leu 230										720
			_	_	aca Thr 250	_			_	_	_			_	768

The Met Thr Ile Asn Tyr Asp Lys Asn Val Ile Pro Ser Asp Leu Thr 325 gat aaa aat gat cct atc gat att act gat cca tca gga gag gtc att Asp Lys Asn Asp Pro Ile Asp Ile Thr Asp Pro Ser Gly Glu Val Ile 340 gcc aaa gga aca ttt gat aaa gcg act aag caa atc aca tat aca ttt Ala Lys Gly Thr Phe Asp Lys Ala Thr Lys Gln Ile Thr Tyr Thr Phe 355 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act tta Thr Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys Ala Arg Leu Thr Leu 370 tac tca tat att gat aag caa gca gta cct aat gaa act agt ttg aat Tyr Ser Tyr Ile Asp Lys Gln Ala Val Pro Asn Glu Thr Ser Leu Asn 385 tac tca tat att gat aag caa gca gta cct aat gaa act agt ttg gat act act tat act gat act act act act act act act act act a																	
Agn Agn Val Agn Agp Leu Ile Thr Val Thr Lyg Gln Thr Ile Lyg Val 275 275 280 280 280 cat gac gdt aas gdt aat gdt gca gca gca cat gac gdt aas gat att Gly App Gly Lyg App Ann Val Ala Ala His App Gly Lyg App Ile 290 300 300 300 320 320 320 320 320 320 32	Asn			_	_	Phe	_	-	_		Pro	_	_	_	_		816
Gly App Gly Lys App App Wal Ala Ala Ala His App Gly Lys App Ile 290 gaa tat gat aca gag ttt aca att gac aat aaa gtc aaa aaa ggc gat Glu Tyr App Thr Glu Phe Thr Ile App App Lys Val Lys Lys Gly App 305 aca atg acg att aat tat gat aag aat gta att cct tcg gat tta aca App Lys App Thr Glu Phe Thr Ile App App Lys App Val Lys Lys Gly App 310 gat aaa aat gat cct atc gat att act gat cca tca gga gag gtc att 320 gat aaa aat gat cct atc gat att act gat cca tca gga gag gtc att 340 gat aaa aat gat cct atc gat att act gat cca tca gga gag gtc att 340 gcc aaa gga aca ttt gat aaa gcg act aag caa atc aca tat aca ttt 355 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act Thr App Tyr Val App Lys App Ile Lys Ala Arg Leu Thr Lys 360 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act tta 1104 370 375 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act tta 1177 App Tyr Val App Lys Tyr Glu App Ile Lys Ala Arg Leu Thr Leu 370 375 tac tca tat att gat aag caa gca gta cct aat gaa act agt ttg aat 177 Ser Tyr Ile App Lys Gln Ala Val Pro App Gln Thr Ser Leu App 385 400 tta acg ttt gca aca gca ggt aaa gaa act agc caa ac gtt tct gtt 1248 1405 ttt aca gac cca atg gtt cat ggt gat tca aac att caa tct App Tyr Gln App Pro Met Val His Gly App Ser Apn Ile Gln Gln Ile Tyr 425 430 ttt aca aag tta gat gaa aac aaa caa act att gaa caa caa att tat 440 dtt acc aac gtt gat gat gat gat gat ga act aca act act gat gat act 226 437 448 gt aat cct ttg aa aaa ac agc act aca act aac gtt gat at gct 327 438 440 445 gt aat caa gat gat gat gat gat ga ga act aca act act gat act gct 470 App Tyr Gly App Glu App Lys Gly Apn Ile Lys Lys Qly App Ile Ala 455 acc att att gac caa at aca gaa act aca cat act aga act gat gct 470 470 App Tyr Gly App Gly Apn Ile Lys Lys Lys App Ile Ala 485 acc att att gac caa at aca gaa act aca cat act act act Apn Gln Gln Leu Pro Gln Ser App Tyr Lys Val App Ile Ala 485 acc aca ttg gca caa gt caa ttg gat att aga act aca cat tat gat ttt aga caa cac Apn Gln Gln Leu Pro Gln Ser App Tyr Lys Val App P	Asn					Leu					Lys						864
aca at at gta gat aaa tat gaa gat at aaa gca cgt tta act tta fir Asp Tyr Val Asp Lys Gla Asp Asp Lys Gla Cat at at tat gat aag at gca at act act act act at gat aat act act gat act act ctcg gat tta aca fir met Thr 11e Asp Tyr Asp Lys Asp Val Ile Pro Ser Asp Leu Thr 325 gat aaa aat gat cct atc gat att act gat cca tca gga gag gtc att Asp Lys Asp Asp Pro Ile Asp Ile Thr Asp Pro Ser Gly Glu Val Ile 340 gcc aaa gga aca ttt gat aaa gcg act aag caa atc aca tat aca ttt Ala Lys Gly Thr Phe Asp Lys Ala Thr Lys Gln Ile Thr Tyr Thr Phe 355 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act tta Thr Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys Ala Arg Leu Thr Leu 370 aca gat tat gta gat aaa caa gca gta cct aat gaa act agt tug aat Tyr Ser Tyr Ile Asp Lys Gln Ala Val Pro Asp Glu Thr Ser Leu Asp 385 tac tca tat att gat aag caa gca gta cct aat gaa act agt tta gat tat acg ttt gca aca gca gta cat agc caa acc gtt tct gtl Leu Thr Phe Ala Thr Ala Gly Lys Glu Thr Ser Gln Asp Val Ser Val 405 tta acg ttt gca aca gca ggt aaa gaa act agc caa acc gtt tct gtl Leu Thr Phe Ala Thr Ala Gly Lys Glu Thr Ser Gln Asp Val Ser Val 405 tta aca gat tat gat gat gat act agt gat tca act act act acc App Tyr Gln Asp Pro Met Val His Gly Asp Ser Asn Ile Gln Ser Ile 420 ttt aca aag tta gat gaa aac aaa caa act att gaa caa caa act tat phe Thr Lys Leu Asp Glu Asn Lys Gln Thr Ile Glu Gln Gln Ile Tyr 440 ttt aca aag tta gat gat act agc act acc act aac gat gat att gat gat ata gcf gat act acc act act gat gat gat acc acc acc acc acc acc acc acc acc a	Gly					Asn					His						912
The Met The Ile Asn Tyr Asp Lys Asn Val Ile Pro Ser Asp Leu The 330 gat aaa aat gat cct atc gat att act gat cca tca gag aga gat att Asp Lys Asn Asp Pro Ile Asp Ile The Asp Pro Ser Gly Glu Val Ile 340 gcc aaa gga aca ttt gat aaa gcg act aag caa atc aca tat aca ttt Ala Lys Gly The Phe Asp Lys Ala The Lys Gln Ile The Try The Phe 355 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act tta The Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys Ala Arg Leu The Leu 370 aca gat tat gta gat aaa tat gaa gat ata aaa gca cgt tta act tta The Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys Ala Arg Leu The Leu 370 aca gat tat gat aag caa gca gta cct aat gaa act agt ttg aat Tyr Ser Tyr Ile Asp Lys Gln Ala Val Pro Asm Glu The Ser Leu Asm 385 aca gat tt gat aag caa gca gta cct aat gaa act agt ttg aat Tyr Ser Tyr Ile Asp Lys Gln Ala Val Pro Asm Glu The Ser Leu Asm 385 aca gat tat gat aag caa gca gta cct aat gat act agt ttg aat Tyr Ser Tyr Ile Asp Lys Glu The Ser Gln Asm Val Ser Val 400 tta acg ttt gca aca gca ggt aaa gaa act agc caa aac gtt tct gtt Leu The Phe Ala The Ala Gly Lys Glu The Ser Gln Asm Val Ser Val 405 gat tat caa gac cca atg gtt cat ggt gat tca aac att caa tct atc Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser Asm Ile Gln Ser Ile 420 ttt aca aag tta gat gaa aac aaa caa act att gaa caa caa att tat Phe The Lys Leu Asp Glu Asm Lys Gln The Ile Glu Gln Gln Ile Tyr 440 gtt aat cct ttg aaa aaa aca gca act aac act at gga aat agt agt at Cval Asm Pro Leu Lys Lys The Ala The Asm The Lys Val Asp Ile Ala 450 ggt agt caa gta gat gat gat tat gga aat att aaa cta gga aat ggt agt Cval Asm Pro Leu Lys Lys The Ala The Asm The Lys Val Asm Gly Ser 470 acc att att gac caa aat aca gaa ata aaa gtt tat agt caa cac tat acc act att att gac caa att aca cac att aca act aca aca	Glu					Phe					Lys					Asp	960
App Lys Asn Asp Pro Ile Asp Ile Thr Asp Pro Ser Gly Glu Val Ile 340 345 345 350 350 361 Val Ile 340 345 360 360 360 360 360 360 360 360 365 362 362 362 362 362 362	Thr	_	_			Tyr	-	_		_	Ile		_	_			1008
Āla Lys GIy Thr Phe Agp Lys Āla Thr Lys GIn Ile Thr Tyr Thr Phe 355 360 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 360 365 365 365 365 365 365 365 362 362 362 362 362 362 362 362 362 362 362 362 362 362 362 362 377 380 377 380 385 390 390 395 380 395 400	Asp			_		Ile	_			_	Pro				_		1056
Thr Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys Ala Arg Leu Thr Leu 375 375 375 375 380 128 tac to to tat att gat aag caa goa gat cot aat gaa act agt ttg aat Tyr Ser Tyr Ile Asp Lys Gln Ala Val Pro Asp Glu Thr Ser Leu Asp 395 400 2 tta acg ttt goa aca goa ggt aaa gaa act agc caa aac gtt tot gtt Leu Thr Phe Ala Thr Ala Gly Lys Glu Thr Ser Gln Asn Val Ser Val 415 gat tat caa gac coa atg gtt cat ggt gat to a acc att caa tot atc Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser Asn Ile Gln Ser Ile 420 ttt aca aag tta gat gaa aac aaa caa act att gaa caa caa att tat Phe Thr Lys Leu Asp Glu Asn Lys Gln Thr Ile Glu Gln Gln Ile Tyr 445 gtt aat cot ttg aaa aaa aca goa act aac act at ggt gat at gat gat gat gat gat gat	Āla					Asp					Gln						1104
Tyr Ser Tyr Ile Asp Lys Gln Ala Val Pro Asn Glu Thr Ser Leu Asn 395 1248 124	Thr	_		_	_	Lys		_	_		Lys	_	_				1152
Leu Thr Phe Ala Thr Ala Gly Lys Glu Thr Ser Gln Asn Val Ser Val 405 gat tat caa gac cca atg gtt cat ggt gat tca aac att caa tct atc Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser Asn Ile Gln Ser Ile 420 425 430 ttt aca aag tta gat gaa aac aaa caa act att gaa caa caa att tat Phe Thr Lys Leu Asp Glu Asn Lys Gln Thr Ile Glu Gln Gln Ile Tyr 435 gtt aat cct ttg aaa aaa aca gca act aac act ata gat gat ata gct Val Asn Pro Leu Lys Lys Thr Ala Thr Asn Thr Lys Val Asp Ile Ala 450 ggt agt caa gta gat gat tat gga aat att aaa cta gga aat ggt agt Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys Leu Gly Asn Gly Ser 465 acc att att gac caa aat aca gaa ata aaa gtt tat aaa gtt aac cct Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val Tyr Lys Val Asn Pro 485 aat caa caa ttg cct caa agt aat aga atc tat gat ttt agt caa tac Asn Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln Tyr 500 gaa gat gta aca atg caa ttt ggt gat att aaa aaa tca ttt agt aat aat Glu Asp Val Thr Ser Asn Asn Ser Ala Tyr Ile Ile Lys 530 gtt gtt agt aat at aca cct aca tca gat ggc gaa cta gat att gct Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 gtt gtt agt aat att aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Tyr					Lys					Asn					Asn	1200
Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser Asn Ile Gln Ser Ile 420 ttt aca aag tta gat gaa aac aaa caa act att gaa caa caa att tat Phe Thr Lys Leu Asp Glu Asn Lys Gln Thr Ile Glu Gln Gln Ile Tyr 435 gtt aat cct ttg aaa aaa aca gca act aac act aaa gtt gat ata gct Val Asn Pro Leu Lys Lys Thr Ala Thr Asn Thr Lys Val Asp Ile Ala 450 ggt agt caa gta gat gat tat gga aat att aaa cta gga aat ggt ggt ggt Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys Leu Gly Asn Gly Ser 465 acc att att gac caa aat aca gaa ata aaa gtt tat aaa gtt gat ac cct Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val Tyr Lys Val Asn Pro 485 aat caa caa ttg cct caa agt aat aga atc tat gat ttt agt caa tac Asn Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln Tyr 500 gaa gat gta aca agt caa ttt ggt gat att aat ca gcc tat att att aca Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn Asn 515 gta gca aca ttg gat ttt ggt gat att aat tca gcc tat att att aca Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Leu					Ala					Ser						1248
Phe Thr Lys Leu Asp Glu Asn Lys Gln Thr Ile Glu Gln Gln Ile Tyr 435	Asp					Met					Ser						1296
Val Asn Pro Leu Lys Lys Thr Ala Thr Asn Thr Lys Val Asp Ile Ala 450 ggt agt caa gta gat gat tat gga aat att aaa cta gga aat ggt agt Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys Leu Gly Asn Gly Ser 465 acc att att gac caa aat aca gaa ata aaa gtt tat aaa gtt aac cct Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val Tyr Lys Val Asn Pro 485 aat caa caa ttg cct caa agt aat aga atc tat gat ttt agt caa tac Asn Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln Tyr 500 gaa gat gta aca agt caa ttt gat aat aaa aaa tca tta agt aat aat Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn Asn 515 gta gca aca ttg gat ttt ggt gat att aat tca gcc tat att atc aaa Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Phe		_		_	Glu					Ile	_					1344
Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys Leu Gly Asn Gly Ser 465 470 475 480 acc att att gac caa aat aca gaa ata aaa gtt tat aaa gtt aac cct Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val Tyr Lys Val Asn Pro 485 490 495 aat caa caa ttg cct caa agt aat aga atc tat gat ttt agt caa tac Asn Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln Tyr 500 510 gaa gat gta aca agt caa ttt gat aat aaa aaa tca ttt agt aat aat Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn Asn 515 520 525 gta gca aca ttg gat ttt ggt gat att aat tca gcc tat att atc aaa Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 535 540 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct 1680 Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Val					Lys					Thr						1392
Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val Tyr Lys Val Asn Pro 485 490 495 aat caa caa ttg cct caa agt aat aga atc tat gat ttt agt caa tac Asn Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln Tyr 500 505 510 gaa gat gta aca agt caa ttt gat aat aaa aaa tca ttt agt aat aat Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn Asn 515 520 520 525 gta gca aca ttg gat ttt ggt gat att aat tca gcc tat att atc aaa Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 535 540 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Gly					Asp					Lys					Ser	1440
Asn Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln Tyr 500 505 510 gaa gat gta aca agt caa ttt gat aat aaa aaa tca ttt agt aat aat Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn Asn 515 520 525 gta gca aca ttg gat ttt ggt gat att aat tca gcc tat att atc aaa Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 535 540 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Thr					Asn					Val						1488
Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn Asn 515 520 525 gta gca aca ttg gat ttt ggt gat att aat tca gcc tat att atc aaa 1632 Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 535 540 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Asn			_		Gln	_		_		Tyr	_		_			1536
Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser Ala Tyr Ile Ile Lys 530 540 gtt gtt agt aaa tat aca cct aca tca gat ggc gaa cta gat att gct Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Glu					Gln					Lys						1584
Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile Ala	Val					Phe					Ser						1632
	Val	_	_			Thr				_	Gly	_		-		Āla	1680

cas ggt act agt atg ags aca act gat gat aas tat ggt tat tat aat tat Clark Chin Gly Thr Ser Met Axg Thr Thr Amp Lye Tyr Gly Tyr Tyr Ann Tyr 575 570 570 570 570 570 570 570 570 570	_								 			0011	CIII	aca		
Ala Gly Tyr Ser Asn Phe He Val Thr Ser Asn Asp Thr Gly Gly Gly 580 585 585 585 585 585 585 585 585 585	Gln					Arg				Tyr						1728
### Supplies of the Twill Lys Pro Silu Silu Lys Leu Tyr Lys Ile Sily Asp Tyr 605 gta tgg gaa gac gtt gat aaa gac ggt gtc caa ggt aca gat tcg aaa last lift of the Silu Lys Asp Lys Asp Gly Val Gln Gly Thr Asp Ser Lys 610 gaa aag cca atg gca aac gtt ta gtt aca tta act tac ccg gac ggt Glu Lys Pro Met Ala Asn Val Leu Val Thr Leu Thr Tyr Pro Asp Gly 625 gaa aag cca atg gta ga aca gtt ta gtt aca ggt cat tat gaa ttc ggt act act aca aca act aca gaa acg gat get aca ggt cat tat gaa ttc ggt far Thr Thr Lys Ser Val Arg Thr Asp Ala Asn Gly His Tyr Glu Phe Gly 650 ggt ttg aaa gac gga gaa act tat aca gtt aca gt gas acg cca ggt Gly Lys Asp Gly Glu Thr Tyr Thr Val Lys Phe Glu Thr Pro Ala 660 ggt ttg aaa gac gga gaa act tat aca gtt aca act gas acg cca gct Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys Phe Glu Thr Pro Ala 660 gga tat ctt cca aca aaa gta act gga aca act gas ggt gaa aca ggc Gly Thr Leu Pro Thr Lys Val Asn Gly Thr Thr Asp Gly Glu Lys Asp 675 gga tat ctt cca aca aca gt gat act gas act ggt gaa act ggt gas act ggt gar act act ggt gac gac gat act ggt gac act act ggt gac act act ggt gac	Ala					Phe				Asn						1776
Val Trp Glu Aep Val Aep Lys Aep Gly Val Gln Gly Thr Aep Ser Lys 610 gas aag cca atg gca ac gtt tta gtt aca tta act tac ccg gac ggt clu Lys Pro Met Ala Aem Val Leu Val Thr Leu Thr Tyr Pro Aep Gly 625 act aca aaa tca gta aga aca gat gct aca ggt cat tat gaa ttc ggt far far Thr Lys Ser Val Arg Thr Aep Ala Aem Gly His Tyr Glu Phe Gly 645 ggt ttg aaa gac gga gaa act tat aca gtt aaa ttc gaa acg cca gct Gly Leu Lys Aep Gly Glu Thr Thr Val Lys Phe Glu Thr Pro Ala 660 gga tat ctt cca aca aaa gta aat gga aca act ggt gat gat aaa ggc gaa aaa gac Gly Tyr Leu Pro Thr Lys Val Aep Gly Thr Thr Val Lys Aep Gly Glu Lys Aep Gly Glu Cys Aep Gly Glu Cys Aep Gly Thr Thr Val Lys Phe Glu Thr Pro Ala 660 gga tat ctt cca aca aaa gta aat gga aca act ggt ggt gaa aaa gac Cly Cly Tyr Leu Pro Thr Lys Val Aen Gly Thr Thr Aep Gly Lys Aep Aep Aep Aep Aep 680 tca aat ggt agt tct ata act gtt aaa att aat ggt aaa gat gat atg Ser Aen Gly Ser Ser Ile Thr Val Lys Ile Aen Gly Lys Aep Aep Aep Met 690 tct tta gac act ggt ttt tat aaa gaa cct aaa tat aat ctt ggt gac Ser Leu Aep Thr Gly Phe Tyr Lys Glu Pro Lys Tyr Aen Leu Gly Aep 700 tct tta gac act ggt ttt tat aaa gat ggt atc caa gat gct aat gaa Tyr Val Trp Glu Aep Thr Aen Lys Aep Gly Ile Gln Aep Ala Aen Glu 730 tat ggt atc aaa gat gtt acg tta aaa gat agt act gga aaa grad tat gga acr ggt att gat atg ggt att gga acg gat act gaa gat gt le Glu Aep Aen Gly Lys Tyr Lys Phe Thr Gly Lys 740 ggt att at ggt aca act act act gat gct ctg ggt gaa aat at aat tta ac gaa gat gat act gaa cr ggt gat act gaa gat gt act gaa act gaa gat gt act gaa act gaa gat gt act gaa gat gt act gaa act gaa gat gt act gaa act gaa gat gt gat act gaa act gat gt act gaa act gaa gat gt gt act gaa act gaa gat gt gat act gaa act gaa gat gt gt gat act gaa act gaa gat gt gt gat gat gat gat gat gat	Asp					Pro				Tyr						1824
du Lys Pro Met Ala Asm Val Leu Val Thr Leu Thr Tyr Pro Asp Gly 640 act aca asa tca gta aga aca gat gct aca ggt cat tat gga ttc ggt far Thr Lys Ser Val Arg Thr Asp Ala Asm Gly His Tyr Glu Phe Gly 650 ggt ttg asa gac gga gaa act tat aca gtt asa ttc gaa acg cca gct Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys Phe Glu Thr Pro Ala 660 ggt ttg asa gac gga gaa act tat aca gtt asa ttc gaa acg cca gct Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys Phe Glu Thr Pro Ala 660 gga tat ctt cca aca asa gta sat gga aca act gat ggt gaa asa gac Gly Tyr Leu Pro Thr Lys Val Asm Gly Thr Thr Asp Gly Glu Lys Asp 665 tca aat ggt agt tct ata act gtt asa att ast ggt asa gat gat atg ggt gaa asa gac Gly Ser Ser Ile Thr Val Lys Ile Asm Gly Lys Asp Asp Met 690 tct tta gac act ggt ttt tat asa gac ca asa tat ast ctt ggt gac ser Leu Asp Thr Gly Phe Tyr Lys Glu Pro Lys Tyr Asm Leu Gly Asp 710 tct tta gac ga gga aca act asa asa gat ggt atc cas gat ggt as gat gat gry Yal Trp Glu Asp Thr Asm Lys Asp Gly Ile Gln Asp Ala Asm Glu 730 cct ggt atc asa gat gtt asg gat ggt acc tat asa ggt act ggt gg gac 2208 ryr Val Trp Glu Asp Thr Asm Lys Asp Gly Ile Gln Asp Ala Asm Glu 730 cct ggt atc asa gat gtt asg gt acc att asa ggt act ggt gg gaa asa gat ggt gg gl at gg gac gat atg ggt gg gl	Val		_	-	_	Asp		-	 _	Gln			-	_		1872
Thr Thr Lys Ser Val Arg Thr Asp Ala Asn Gly His Tyr Glu Phe Gly 645 ggt ttg aaa gac gga gaa act tat aca gtt aaa ttc gaa acg cca gct Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys Phe Glu Thr Pro Ala 660 gga tat ctt cca aca aaa gta aat gga aca act gat ggt gaa aaa gac Coly Tyr Leu Pro Thr Lys Val Asp Gly Thr Thr Asp Gly Glu Lys Asp 675 gga tat ctt cca aca aaa gta aat gga aca act gat ggt gaa aaa gac 2064 Gly Tyr Leu Pro Thr Lys Val Asp Gly Thr Thr Asp Gly Glu Lys Asp Asp 675 tca aat ggt agt tct ata act gtt aaa att aat ggt aaa gat gat atg 2112 Ser Asp Gly Ser Ser Ile Thr Val Lys Ile Asp Gly Lys Asp Asp Met 690 tct tta gac act ggt ttt tat aaa gac cct aaa tat aat ctt ggt gac Ser Leu Asp Thr Gly Phe Tyr Lys Glu Pro Lys Tyr Asp Leu Gly Asp 705 tat gta tgg gaa gat aca ata aa gat ggt atc caa gat gct aat gaa 7yr Val Trp Glu Asp Thr Asp Lys Asp Gly Ile Gln Asp Ala Asp Glu 720 tat gta tgg gaa gat aca aat aaa gat ggt acc caaa gat gct aat gaa 7yr Val Trp Glu Asp Thr Asp Lys Asp Gly Ile Gln Asp Ala Asp Glu 725 cct ggt atc aaa gat gtt aag gtt aca tta aaa gat agt act gga aaa Pro Gly Ile Lys Asp Val Lys Val Thr Leu Lys Asp Ser Thr Gly Lys 740 gtt att ggt aca act act act gat gcc tcg ggt aaa tat aaa ttt aca 2304 val Ile Gly Thr Thr Thr Thr Thr Asp Ala Ser Gly Lys Tyr Lys Phe Thr 755 gat tta gat aat ggt aac tat aca ggt ggt aga ttt gaa aca cca gca ggt 2352 Asp Leu Asp Asp Gly Asp Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 777 tac acg cca acg gtt aaa aat act aca gct gaa gat aat aga tct aat 2400 Tyr Thr Pro Thr Val Lys Asp Thr Thr Ala Glu Asp Lys Asp Ser Asp 800 ggt tta aca aca aca aca ggt gtc att aaa gat gca gat aat agac tt act 2400 Tyr Thr Pro Thr Val Lys Asp Thr Thr Ala Glu Asp Asp Asp Met Thr Leu 805 slope agt tta aaa aca aca ggt gtc att aaa gat gca gat aat agac tt 2448 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 tgg tac gac agt att aaa aca cca aaa tac aca gat tca act gaa aaa ggt 244 Tyr Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 840 tcg tac gac agt gt tta aca gtt act tta tt	Glu					Asn				Leu					Gly	1920
Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys Phe Glu Thr Pro Ala 660 665 665 670 670 202 2064 665 665 665 670 670 680 2064 665 680 2064 670 680 2064 685 2064 687 687 687 687 687 687 687 687 687 687 687 687 687 680 2064 685 680 687 689 687 700 687 689 687 700 687 689 687 700 680 687 680 687 687 687 689	Thr					Arg				Gly						1968
tca aat ggt agt tct ata act gtt aaa att aat ggt aaa tct ggt ggc 2160 Ser Asn Gly Ser Ser Ile Thr Val Lys Ile Asn Gly Lys Asp Asp Met 690 tct tta gac act ggt ttt tat aaa gaa cct aaa tat aat ctt ggt gac 2160 Ser Leu Asp Thr Gly Phe Tyr Lys Glu Pro Lys Tyr Asn Leu Gly Asp 705 tat gta tgg gaa gat aca aat aaa gat ggt atc caa gat gct aat gaa 2208 Tyr Val Trp Glu Asp Thr Asn Lys Asp Gly Ile Gln Asp Ala Asn Glu 725 cct ggt atc aaa gat gtt aag gtt aca tta aaa gat agt act gga aaa 2256 Pro Gly Ile Lys Asp Val Lys Val Thr Leu Lys Asp Ser Thr Gly Lys 740 gtt att ggt aca act act act gat gcc tcg ggt aaa tat aaa ttt aca 2304 Yal Ile Gly Thr Thr Thr Thr Thr Asp Ala Ser Gly Lys Tyr Lys Phe Thr 765 gat tta gat aat ggt aca tat aca gta gaa ttt gaa aca cca gca ggt Asp Leu Asp Asp Asn Gly Asn Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 770 tac acg cca acg gtt aaa aat act aca gta gaa ttt gaa aca cca gca ggt Asp Leu Asp Asn Gly Asn Thr Thr Asp Ala Glu Asp Lys Asp Ser Asn 790 tac acg cca acg gtt aaa aat act aca gct gaa gat aat act aca gct gaa gat tta aca gat tta aca gta gct tta aca aca aca ggt gtc att aca aca aca aca gct gaa gat act ga gat gat act ga gat act ga gat gat act ga gac gat act ga gat gat act ga gat gat act ga gac gat act ga gac gat act ga gac gat act ga gac gat act ga gat act ga gac gat act ga gac gat act ga gac gat	Gly	_		_		Glu			_	Lys		_	_		_	2016
Ser Asn Gly Ser Ser Ile Thr Val Lys Ile Asn Gly Lys Asp Asp Met 690 tct tta gac act ggt ttt tat aaa gaa cct aaa tat aat ctt ggt gac 2160 Ser Leu Asp Thr Gly Phe Tyr Lys Glu Pro Lys Tyr Asn Leu Gly Asp 720 tat gta tgg gaa gat aca aat aaa gat ggt atc caa gat gct aat gaa 2208 Tyr Val Trp Glu Asp Thr Asn Lys Asp Gly Ile Gln Asp Ala Asn Glu 730 cct ggt atc aaa gat gtt aag gtt aca tta aaa gat agt act gga aaa 2256 Pro Gly Ile Lys Asp Val Lys Val Thr Leu Lys Asp Ser Thr Gly Lys 745 gtt att ggt aca act act act act act ggt gcc tcg ggt aaa tat aaa ttt aca 2304 Val Ile Gly Thr Thr Thr Asp Ala Ser Gly Lys Tyr Lys Phe Thr 765 gat tta gat aat ggt aac tat aca gt gaa ttt gaa aca cca gca ggt Asp Leu Asp Asn Gly Asn Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 770 tac acg cca acg gtt aaa aat act aca gct gaa gat aaa agat tct aat 1777 tac acg cca acg gtt aaa aat act aca gct gaa gat aaa agat tct aat 1777 tac acg cca acg gtt aaa aat act aca gct gaa gat aaa agat tct aat 1777 tac acg cca acg gtt aaa aat act aca gct gaa gat aat act act act acg gct gaa gat aat at act act acg gct gac act gaa gat act aat acg gct gac act act acc acc acc gct gct acc acc gca gct 1780 tac acg cca acg gtt aaa aat act aca gct gaa gat aaa agat tct aat 1777 Thr Pro Thr Val Lys Asn Thr Thr Ala Glu Asp Lys Asp Ser Asn 785 ggt tta aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta 2400 ggt tta aca aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta 2448 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 ggt tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt 248 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 tgg tac gac agt aat aaa aca cca aaa tac agt tca act gaa aaa ggt 248 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 tgg tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt 248 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 tgg tac gac agt aat aaa gac ggt aaa aaa gac gaa aaa acc gaa aaa ag gc gaa gta att 2488 Asp Ser Gly Asp Ser Thr Glu Lys	Gly					Lys				Thr						2064
Ser Leu Asp Thr Gly Phe Tyr Lys Glu Pro Lys Tyr Asn Leu Gly Asp 720 tat gta tgg gaa gat aca aat aaa gat ggt atc caa gat gct aat gaa 2208 Tyr Val Trp Glu Asp 730 cct ggt atc aaa gat gtt aag gtt aca tta aaa gat agt act gga aaa 2256 Pro Gly Ile Lys Asp Val Lys Val Thr Leu Lys Asp Ser Thr Gly Lys 740 gtt att ggt aca act act act gat gcc tcg ggt aaa tat aaa ttt aca 2304 Val Ile Gly Thr Thr Thr Thr Asp Ala Ser Gly Lys Tyr Lys Phe Thr 755 gat tta gat aat ggt aca ct act act gat gcc tcg ggt aaa tat aaa ttt aca 2304 Asp Leu Asp Asn Gly Asn Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 770 tac acg cca acg gtt aaa aat act aca gct gaa gat ttt gaa aca cca gca ggt 2352 Asp Leu Asp Asn Gly Asn Tyr Thr Ala Glu Asp Lys Asp Ser Asn 785 tac acg cca acg gtt aaa aat act aca gct gaa gat aat at ag gat gat act glu Asp Lys Asp Ser Asn 800 ggt tta aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta Asp Asn Met Thr Leu 815 gac agt ggt ttc tat aaa aca cca aca aca aca aca gat gdt aca aca cca aca ggt tac gat agt tca act aca gct gat aca aca cca gcd ggt 2448 Asp Ser Gly Phe Tyr Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 840 atc aaa gat gtt aaa gtt act tta tta at gaa aaa ggc gaa gta att 12592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Ser					Ile				Asn						2112
Tyr Val Trp Glu Asp Thr Asn Lys Asp Gly Tle Gln Asp Ala Asn Glu 735 cct ggt atc aaa gat gtt aag gtt aca tta aaa gat agt act gga aaa 2256 Pro Gly Ile Lys Asp Val Lys Val Thr Leu Lys Asp Ser Thr Gly Lys 740 gtt att ggt aca act act act gat gcc tcg ggt aaa tat aaa ttt aca 2304 Val Ile Gly Thr Thr Thr Thr Asp Ala Ser Gly Lys Tyr Lys Phe Thr 765 gat tta gat aat ggt acc tat aca gta gaa ttt gaa aca cca gca ggt Asp Leu Asp Asn Gly Asn Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 770 tac acg cca acg gtt aaa aat act act act act act gct gaa gat aaa gat tct aat 790 Tyr Thr Pro Thr Val Lys Asn Thr Thr Ala Glu Asp Lys Asp Ser Asn 800 ggt tta aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta aca gta gat gca gat aat atg aca tta 800 ggt tta aca aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta 610 Ref Gly Leu Thr Thr Thr Gly Val Ile Lys Asp Ala Asp Asn Met Thr Leu 805 gac agt ggt ttc tat aaa aca cca aca ggt gtc att aca gct ga gat tat ggt gat tat gtt 2496 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 tgg tac gac agt aat aaa gac ggt aac caa gat tca act gaa aaa ggt 2496 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 825 tgg tac gac agt aat aaa gac ggt aac caa gat tca act gaa aaa ggt 2544 Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 845 atc aaa gat gtt aaa gtt act tta tta aat gaa aaa ggc gaa gta att 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Ser					Phe				Lys					Asp	2160
Pro Gly Ile Lys Asp Val Lys Val Thr Leu Lys Asp Ser Thr Gly Lys 740 745 750 2304 2304 2304 2304 2304 2304 2304 230	Tyr					Thr				Ile						2208
Val Ile Gly Thr Thr Thr Thr Asp Ala Ser Gly Lys Tyr Lys Phe Thr 765 gat tta gat aat ggt aac tat aca gta gaa ttt gaa aca cca gca ggt Asp Leu Asp Asn Gly Asn Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 770 tac acg cca acg gtt aaa aat act aca gct gaa gat aaa gat tct aat 2400 Tyr Thr Pro Thr Val Lys Asn Thr Thr Ala Glu Asp Lys Asp Ser Asn 790 ggt tta aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta Gly Leu Thr Thr Thr Gly Val Ile Lys Asp Asp Asn Met Thr Leu 815 gac agt ggt ttc tat aaa aca cca aaa tac agt tta ggt gat tat gtt Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 825 tgg tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt 2444 Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 825 tgg tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt 2544 Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 845 atc aaa gat gtt aaa gtt act tta tta aat gaa aaa ggc gaa gta att 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Pro					Val				Lys						2256
Asp Leu Asp Asn Gly Asn Tyr Thr Val Glu Phe Glu Thr Pro Ala Gly 770	Val					Thr				Gly						2304
Tyr Thr Pro Thr Val Lys Asn Thr Thr Ala Glu Asp Lys Asp Ser Asn 785 790 795 800 ggt tta aca aca aca ggt gtc att aaa gat gca gat aat atg aca tta Gly Leu Thr Thr Thr Gly Val Ile Lys Asp Ala Asp Asn Met Thr Leu 805 810 815 gac agt ggt ttc tat aaa aca cca aaa tac agt tta ggt gat tat gtt Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 825 830 tgg tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt Asp Tyr Yal 835 840 845 atc aaa gat gtt aaa gtt act tta tta aat gaa aaa ggc gaa gta att 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Asp					Asn				Phe						2352
Gly Leu Thr Thr Gly Val Ile Lys Asp Ala Asp Asn Met Thr Leu 805 810 815 gac agt ggt ttc tat aaa aca cca aaa tac agt tta ggt gat tat gtt Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 825 830 tgg tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 845 atc aaa gat gtt aaa gtt act tta tta aat gaa aaa ggc gaa gta att 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Tyr	_		_	_	Lys			_	Glu	_		_		Asn	2400
Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val 820 825 830 tgg tac gac agt aat aaa gac ggt aaa caa gat tca act gaa aaa ggt 2544 Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 845 atc aaa gat gtt aaa gtt act tta tta aat gaa aaa ggc gaa gta att 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Gly					Gly	_		_	Āla	_		_			2448
Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly 835 840 845 atc aaa gat gtt aaa gtt act tta tta aat gaa aaa ggc gaa gta att 2592 Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	Asp	_	-			Lys				Ser			_		_	2496
Ile Lys Asp Val Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile	${\tt Trp}$					Lys				Asp						2544
	Ile					Val				Glu						2592

									aaa Lys						2640	
									gaa Glu						2688	
									gat Asp						2736	
									gat Asp						2784	
									agt Ser						2832	
_		_		_	_	_		_	tca Ser	_	_	_		_	2880	
_	_	_		_		_	_	_	tca Ser	_		_	_	_	2928	
									agc Ser						2976	
				Asp					tca Ser						3024	
	Ser					Asp			tca Ser		Ser				3072	
	Ser			Asp					agc Ser					Asp	3120	
_	Ser	_	_	_	_	Asp		_	tca Ser	_	Ser	_		-	3168	
_	Ser	_		_		Asp	_	_	tca Ser	_	Ser	_	_	-	3216	
	Ser					Asp			gca Ala		Lys				3264	
	Pro	_	_			Lys	_		cac His		Lys	_		_	3312	
	Glu			Ser					tca Ser					Leu	3360	
	Gly					Leu			tta Leu		Leu				3408	
	Lys			aaa Lys	taa										3426	

<210> SEQ ID NO 12 <211> LENGTH: 1141 <212> TYPE: PRT

<213	3 > OF	RGANI	ISM:	Star	hylo	coco	cus s	p.							
<400)> SI	EQUE	ICE:	12											
Met 1	Ile	Asn	Arg	Asp 5	Asn	Lys	Lys	Ala	Ile 10	Thr	Lys	Lys	Gly	Met 15	Ile
Ser	Asn	Arg	Leu 20	Asn	Lys	Phe	Ser	Ile 25	Arg	Lys	Tyr	Thr	Val 30	Gly	Thr
Ala	Ser	Ile 35	Leu	Val	Gly	Thr	Thr 40	Leu	Ile	Phe	Gly	Leu 45	Gly	Asn	Gln
Glu	Ala 50	Lys	Ala	Ala	Glu	Asn 55	Thr	Ser	Thr	Glu	Asn 60	Ala	Lys	Gln	Asp
Asp 65	Ala	Thr	Thr	Ser	Asp 70	Asn	Lys	Glu	Val	Val 75	Ser	Glu	Thr	Glu	Asn 80
Asn	Ser	Thr	Thr	Glu 85	Asn	Asp	Ser	Thr	Asn 90	Pro	Ile	Lys	Lys	Glu 95	Thr
Asn	Thr	Asp	Ser 100	Gln	Pro	Glu	Ala	Lys 105	Glu	Glu	Ser	Thr	Thr 110	Ser	Ser
Thr	Gln	Gln 115	Gln	Gln	Asn	Asn	Val 120	Thr	Ala	Thr	Thr	Glu 125	Thr	Lys	Pro
Gln	Asn 130	Ile	Glu	Lys	Glu	Asn 135	Val	Lys	Pro	Ser	Thr 140	Asp	Lys	Thr	Ala
Thr 145	Glu	Asp	Thr	Ser	Val 150	Ile	Leu	Glu	Glu	Lys 155	Lys	Ala	Pro	Asn	Tyr 160
Thr	Asn	Asn	Asp	Val 165	Thr	Thr	Lys	Pro	Ser 170	Thr	Ser	Glu	Ile	Gln 175	Thr
Lys	Pro	Thr	Thr 180	Pro	Gln	Glu	Ser	Thr 185	Asn	Ile	Glu	Asn	Ser 190	Gln	Pro
Gln	Pro	Thr 195	Pro	Ser	Lys	Val	Asp 200	Asn	Gln	Val	Thr	Asp 205	Ala	Thr	Asn
Pro	Lys 210	Glu	Pro	Val	Asn	Val 215	Ser	Lys	Glu	Glu	Leu 220	Lys	Asn	Asn	Pro
Glu 225	Lys	Leu	Lys	Glu	Leu 230	Val	Arg	Asn	Asp	Asn 235	Asn	Thr	Asp	Arg	Ser 240
Thr	Lys	Pro	Val	Ala 245	Thr	Ala	Pro	Thr	Ser 250	Val	Ala	Pro	Lys	Arg 255	Leu
Asn	Ala	Lys	Met 260	Arg	Phe	Ala	Val	Ala 265	Gln	Pro	Ala	Ala	Val 270	Ala	Ser
Asn	Asn	Val 275	Asn	Asp	Leu	Ile	Thr 280	Val	Thr	Lys	Gln	Thr 285	Ile	Lys	Val
Gly	Asp 290	Gly	Lys	Asp	Asn	Val 295	Ala	Ala	Ala	His	Aap	Gly	Lys	Asp	Ile
Glu 305	Tyr	Aap	Thr	Glu	Phe 310	Thr	Ile	Asp	Asn	Lys 315	Val	ГÀа	Lys	Gly	Asp 320
Thr	Met	Thr	Ile	Asn 325	Tyr	Asp	Lys	Asn	Val 330	Ile	Pro	Ser	Asp	Leu 335	Thr
Asp	Lys	Asn	Asp 340	Pro	Ile	Asp	Ile	Thr 345	Asp	Pro	Ser	Gly	Glu 350	Val	Ile
Ala	Lys	Gly 355	Thr	Phe	Asp	Lys	Ala 360	Thr	Lys	Gln	Ile	Thr 365	Tyr	Thr	Phe
Thr	Asp 370	Tyr	Val	Asp	Lys	Tyr 375	Glu	Asp	Ile	Lys	Ala 380	Arg	Leu	Thr	Leu

Tyr 385	Ser	Tyr	Ile	Asp	Lys 390	Gln	Ala	Val	Pro	Asn 395	Glu	Thr	Ser	Leu	Asn 400
Leu	Thr	Phe	Ala	Thr 405	Ala	Gly	Lys	Glu	Thr 410	Ser	Gln	Asn	Val	Ser 415	Val
Asp	Tyr	Gln	Asp 420	Pro	Met	Val	His	Gly 425	Asp	Ser	Asn	Ile	Gln 430	Ser	Ile
Phe	Thr	Lys 435	Leu	Asp	Glu	Asn	Lys 440	Gln	Thr	Ile	Glu	Gln 445	Gln	Ile	Tyr
Val	Asn 450	Pro	Leu	Lys	ГЛа	Thr 455	Ala	Thr	Asn	Thr	Lys 460	Val	Asp	Ile	Ala
Gly 465	Ser	Gln	Val	Asp	Asp 470	Tyr	Gly	Asn	Ile	Lys 475	Leu	Gly	Asn	Gly	Ser 480
Thr	Ile	Ile	Asp	Gln 485	Asn	Thr	Glu	Ile	Lys 490	Val	Tyr	Lys	Val	Asn 495	Pro
Asn	Gln	Gln	Leu 500	Pro	Gln	Ser	Asn	Arg 505	Ile	Tyr	Asp	Phe	Ser 510	Gln	Tyr
Glu	Asp	Val 515	Thr	Ser	Gln	Phe	Asp 520	Asn	Lys	Lys	Ser	Phe 525	Ser	Asn	Asn
Val	Ala 530	Thr	Leu	Asp	Phe	Gly 535	Asp	Ile	Asn	Ser	Ala 540	Tyr	Ile	Ile	Lys
Val 545	Val	Ser	ГЛа	Tyr	Thr 550	Pro	Thr	Ser	Asp	Gly 555	Glu	Leu	Asp	Ile	Ala 560
Gln	Gly	Thr	Ser	Met 565	Arg	Thr	Thr	Asp	Lys 570	Tyr	Gly	Tyr	Tyr	Asn 575	Tyr
Ala	Gly	Tyr	Ser 580	Asn	Phe	Ile	Val	Thr 585	Ser	Asn	Asp	Thr	Gly 590	Gly	Gly
Asp	Gly	Thr 595	Val	ГЛа	Pro	Glu	Glu 600	ГЛа	Leu	Tyr	ГЛа	Ile 605	Gly	Asp	Tyr
Val	Trp 610	Glu	Asp	Val	Asp	Lys 615	Asp	Gly	Val	Gln	Gly 620	Thr	Asp	Ser	Lys
Glu 625	Lys	Pro	Met	Ala	Asn 630	Val	Leu	Val	Thr	Leu 635	Thr	Tyr	Pro	Asp	Gly 640
Thr	Thr	Lys	Ser	Val 645	Arg	Thr	Asp	Ala	Asn 650	Gly	His	Tyr	Glu	Phe 655	Gly
Gly	Leu	Lys	Asp	Gly	Glu	Thr	Tyr	Thr 665	Val	Lys	Phe	Glu	Thr 670	Pro	Ala
Gly	Tyr	Leu 675		Thr	ГÀв		Asn 680		Thr	Thr		Gly 685		ГÀа	Asp
Ser	Asn 690	Gly	Ser	Ser	Ile	Thr 695	Val	Lys	Ile	Asn	Gly 700	ГÀЗ	Asp	Asp	Met
Ser 705	Leu	Asp	Thr	Gly	Phe 710	Tyr	Lys	Glu	Pro	Lys 715	Tyr	Asn	Leu	Gly	Asp 720
Tyr	Val	Trp	Glu	Asp 725	Thr	Asn	Lys	Asp	Gly 730	Ile	Gln	Asp	Ala	Asn 735	Glu
Pro	Gly	Ile	Lys 740	Asp	Val	ГÀЗ	Val	Thr 745	Leu	Lys	Asp	Ser	Thr 750	Gly	Lys
Val	Ile	Gly 755	Thr	Thr	Thr	Thr	Asp 760	Ala	Ser	Gly	Lys	Tyr 765	Lys	Phe	Thr
Asp	Leu 770	Asp	Asn	Gly	Asn	Tyr 775	Thr	Val	Glu	Phe	Glu 780	Thr	Pro	Ala	Gly
Tyr	Thr	Pro	Thr	Val	Lys	Asn	Thr	Thr	Ala	Glu	Asp	Lys	Asp	Ser	Asn

								COII	C 1110	aca	
785		790				795					800
Gly Leu Thr	Thr Thr 805	Gly Val	Ile	Lys	Asp 810	Ala	Asp	Asn	Met	Thr 815	Leu
Asp Ser Gly	Phe Tyr 820	Lys Thr		Lys 825	Tyr	Ser	Leu	Gly	Asp 830	Tyr	Val
Trp Tyr Asp 835	Ser Asn	Lys Asp	Gly 840	TÀa	Gln	Asp	Ser	Thr 845	Glu	Lys	Gly
Ile Lys Asp 850	Val Lys	Val Thr 855	Leu	Leu	Asn	Glu	860 Lys	Gly	Glu	Val	Ile
Gly Thr Thr 865	Lys Thr	Asp Glu 870	Asn	Gly	Lys	Tyr 875	Arg	Phe	Asp	Asn	Leu 880
Asp Ser Gly	Lys Tyr 885	Lys Val	Ile	Phe	Glu 890	Lys	Pro	Ala	Gly	Leu 895	Thr
Gln Thr Val	Thr Asn 900	Thr Thr	Glu	Asp 905	Asp	Lys	Asp	Ala	Asp 910	Gly	Gly
Glu Val Asp 915	Val Thr	Ile Thr	Asp 920	His	Asp	Asp	Phe	Thr 925	Leu	Asp	Asn
Gly Tyr Phe 930	Glu Glu	Asp Thr 935	Ser	Asp	Ser	Asp	Ser 940	Asp	Ser	Asp	Ser
Asp Ser Asp 945	Ser Asp	Ser Asp 950	Ser	Asp	Ser	Asp 955	Ser	Asp	Ser	Asp	Ser 960
Asp Ser Asp	Ser Asp 965	Ser Asp	Ser	Asp	Ser 970	Asp	Ser	Asp	Ser	Asp 975	Ser
Asp Ser Asp	Ser Asp 980	Ser Asp	Ser	Asp 985	Ser	Asp	Ser	Asp	Ser 990	Asp	Ser
Asp Ser Asp 995	Ser Asp	Ser Asp	Ser 1000		Ser	Asp	Ser	Asp 1005		Asp	Ser
Asp Ser Asp 1010	Ser Asp	Ser Asp 101		Asp	Ser	Asp	Ser 1020	_	Ser	Asp	Ser
Asp Ser Asp 1025	Ser Asp	Ser Asp 1030	Ser	Asp	Ser	Asp		Asp	Ser	Aap	Ser 1040
Asp Ser Asp	Ser Asp 104		Ser	Asp	Ser 1050		Ser	Asp	Ser	Asp 1055	
Asp Ser Asp	Ser Asp 1060	Ser Asp	Ser	Asp 1065		Asp	Ser	Asp	Ser 1070		Ser
Asp Ser Asp 1079		Ser Asp	Ser 1080	_	Ala	Gly	Lys	His 1085		Pro	Val
Lys Pro Met 1090	Ser Thr	Thr Lys 1099		His	His	Asn	Lys 1100		Lys	Ala	Leu
Pro Glu Thr 1105	Gly Ser	Glu Asn 1110	Asn	Gly	Ser	Asn 1115		Ala	Thr	Leu	Phe 1120
Gly Gly Leu	Phe Ala 112		Gly	Ser	Leu 1130		Leu	Phe	Gly	Arg 1135	
Lys Lys Gln	Asn Lys 1140										
<210> SEQ II <211> LENGTI <212> TYPE: <213> ORGAN: <220> FEATUI <221> NAME/I <222> LOCAT:	H: 1052 DNA ISM: Staj RE: KEY: CDS	-	cus s	p.							

<400> SEQUENCE:		13														
_					tta Leu		_	Lys				_	Gln	_		48
					att Ile 25											96
					ggc Gly 40											144
					act Thr 55											192
					aat Asn 70											240
					gac Asp 90											288
					tat Tyr 105											336
		_			ttt Phe 120			_				_		_		384
					aat Asn 135											432
					tat Tyr 150											480
					tac Tyr 170											528
					aca Thr 185											576
					ааа Lys 200											624
			_		cct Pro 215		_	_		_				_		672
					gaa Glu 230											720
_				_	caa Gln 250						_			_		768
	-			_	caa Gln 265	_				_				_		816
					aaa Lys 280											864
aat	aaa	tca	caa	caa	act	aac	aaa	gtt	aca	aaa	cat	aac	gaa	acg	cct	912

Asn Lys Ser Gln Gln Thr Asn Lys Val Thr Lys His Asn Glu Thr Pro 290 aaa caa gca tct aaa gct aaa gaa tta cca aaa act ggt tta act tca Lys Gln Ala Ser Lys Ala Lys Glu Leu Pro Lys Thr Gly Leu Thr Ser 305 gtt gat aac ttt att agc aca gtt gcc ttc gca aca ctt gcc ctt tta Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr Leu Ala Leu Leu 325 ggt tca tta tct tta tta ctt ttc aaa aga aaa gaa tct aaa ta Gly Ser Leu Ser Leu Leu Leu Phe Lys Arg Lys Glu Ser Lys 340 <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
Lys Gln Ala Ser Lys Ala Lys Glu Leu Pro Lys Thr Gly Leu Thr Ser 315 gtt gat aac ttt att agc aca gtt gcc ttc gca aca ctt gcc ctt tta 1008 Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr Leu Ala Leu Leu 325 ggt tca tta tct tta tta ctt ttc aaa aga aaa gaa tct aaa ta 1052 Gly Ser Leu Ser Leu Leu Leu Phe Lys Arg Lys Glu Ser Lys 340 <pre> </pre> <a href<="" td="">
Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr Leu Ala Leu Leu 325 330 335 ggt tca tta tct tta tta ctt ttc aaa aga aaa gaa tct aaa ta 1052 Gly Ser Leu Ser Leu Leu Leu Phe Lys Arg Lys Glu Ser Lys 340 345 350 <pre> <210> SEQ ID NO 14 <211> LENGTH: 350 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. </pre> <400> SEQUENCE: 14 Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser Glu Gln Arg Ser 1 5 10 15 Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser Ile Ile Leu Gly 20 25 30 Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr
Gly Ser Leu Ser Leu Leu Leu Phe Lys Arg Lys Glu Ser Lys 340 345 350 <210> SEQ ID NO 14 <211> LENGTH: 350 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. <400> SEQUENCE: 14 Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser Glu Gln Arg Ser 1 5 10 15 Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser Ile Ile Leu Gly 20 25 30 Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr
<pre><211> LENGTH: 350 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. <400> SEQUENCE: 14 Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser Glu Gln Arg Ser 1</pre>
<pre><400> SEQUENCE: 14 Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser Glu Gln Arg Ser 1</pre>
1 5 10 15 Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser Ile Ile Leu Gly 20 25 30 Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr
20 25 30 Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr
Glu Ala Thr Asn Ala Thr Asn Asn Gln Ser Thr Gln Val Ser Gln Ala 50 55 60
Thr Ser Gln Pro Ile Asn Phe Gln Val Gln Lys Asp Gly Ser Ser Glu 65 70 75 80
Lys Ser His Met Asp Asp Tyr Met Gln His Pro Gly Lys Val Ile Lys 85 90 95
Gln Asn Asn Lys Tyr Tyr Phe Gln Thr Val Leu Asn Asn Ala Ser Phe 100 105 110
Trp Lys Glu Tyr Lys Phe Tyr Asn Ala Asn Asn Gln Glu Leu Ala Thr 115 120 125
Thr Val Val Asn Asp Asn Lys Lys Ala Asp Thr Arg Thr Ile Asn Val 130 135 140
Ala Val Glu Pro Gly Tyr Lys Ser Leu Thr Thr Lys Val His Ile Val 145 150 155 160
Val Pro Gln Ile Asn Tyr Asn His Arg Tyr Thr Thr His Leu Glu Phe 165 170 175
Glu Lys Ala Ile Pro Thr Leu Ala Asp Ala Ala Lys Pro Asn Asn Val 180 185 190
Lys Pro Val Gln Pro Lys Pro Ala Gln Pro Lys Thr Pro Thr Glu Gln 195 200 205
Thr Lys Pro Val Gln Pro Lys Val Glu Lys Val Lys Pro Thr Val Thr 210 215 220
Thr Thr Ser Lys Val Glu Asp Asn His Ser Thr Lys Val Val Ser Thr 225 230 235 240
Asp Thr Thr Lys Asp Gln Thr Lys Thr Gln Thr Ala His Thr Val Lys 245 250 255
Thr Ala Gln Thr Ala Gln Glu Gln Asn Lys Val Gln Thr Pro Val Lys 260 265 270
Asp Val Ala Thr Ala Lys Ser Glu Ser Asn Asn Gln Ala Val Ser Asp 275 280 285

295 Lys Gln Ala Ser Lys Ala Lys Glu Leu Pro Lys Thr Gly Leu Thr Ser 310 Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr Leu Ala Leu Leu 325 330 Gly Ser Leu Ser Leu Leu Phe Lys Arg Lys Glu Ser Lys 340 345 <210> SEQ ID NO 15 <211> LENGTH: 1938 <212> TYPE: DNA <213 > ORGANISM: Staphylococcus sp. <400> SEQUENCE: 15 ttagttttta cgttttctag gtaatacgaa tgcaacgatg ctacttaaag ctagtaatgc 60 cattaatggt aatgtcatat ctttatttga ttcttcacca gtttgtggta atgattttgc 120 tttattttct tgtgtatttt tattgttttg gctttgagtg tgtccatcat ttgtgttttt aatgtttgct ttttgtaatg gagcactatc ttttgcttcg ctagaacctg ctgaagtttg aacaacatct tttgttgttt ttgatgaagc agttgttggt tttgcaacat tttgagtcgt agatactacc ttagttggag ttgtactact tgattctact tcacctttag ttggtttgt 360 agcaggcgtt ttgtctttac ctgactcact agatgcgtca ttttcttttt caacacttgg 420 taattgttta ttgtcatctt tttggctgtc ttgtttttgt gattcttttt caacaggtga 480 tggtgttggt ttgctaggcg tagctggagt agcttccttc ttagctgagt tatcttgttg 540 ttctttttttg ttagatttat cggtattggc ttttgtaaat gcttctttat caacgattct 600 gacatggtat tgtccatcat aatcaatcgt ttttacgtga actttaacga tagcatcata 660 tagagtttta ccttcaacat atgggaaaat aattgttcta gtattatttt tagcatcttt 720 qcttataqtt ctaacacqtt qaccttcaac catgaaatct ttccaqtaat cqtcattaqt 780 agtttccatg accatatatt ttttgccgtt aagcatacct gttttaatag ggtgtttaac 840 aaaagtatcc atcatagatt cgttattctc aacactttca taaacaacat attttgtatc 900 ttgtaaatca gtcatttttt catttgttgg ttgtacattt tggaattcag taatagctga 960 tttcacttgc tcatctaaag ctttctttgt atcctctaat ttcttcttgt actcagcctt 1020 taatttttca ggaagtttat cttgaatttt atttaattca taaacttgtc tttctagtgt 1080 tttcgctttt ttatatggcg ctaataattt ttcagcttta taatcttctt cagttttgaa 1140 tttatctgca ctgttataaa ttggttgtgc gaattccatt aatgtgtaat cgtattttc 1200 ttctttgtta ttgaagtgag ttgaacttac aattttaacg gcttttgttc catttgaaac 1260 agagaagcga atgtaagcgt aatctttaac agtatcgtat gatactaatt taattggcaa 1320 ctttttgtca ccttcataaa cttcaaattt tctccaaaat tgacctgatt gtaatcctaa 1380 ttcaatttct ggttttgaat cagtgaaaat aactctagca ggtttaacag agctggcata

tggtgcgcta tgatctttat cttttattgc agggttttta atcgcttctc taagttcctg

attcaaaata ggatatgtat tgttagtggc ttttgctgct ggtttaactg cttttgtttc cttaggggct ttaacttctt taacttcttt agcttctttt gtttcagaag tagggcctc

1560

Asn Lys Ser Gln Gln Thr Asn Lys Val Thr Lys His Asn Glu Thr Pro

aacttettta ttagataetg agacageatt agetaetggt ttagtttetg gagettttte	1740
agatqttqtt qttqqacttq caactqcttc agtttttqqt tqtqcttctq tatttqtacc	1800
acctgtttct tcagctgctg cttgtgcttc gccatttgac attaataata aaagtgtact	1860
aatcgctaca gatgcaacgc ctagtgatga ctttctaatt gaataaaatg atttaaattc	1920
tttttgctgt ttgttcat	1938
<210> SEQ ID NO 16 <211> LENGTH: 645 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp.	
<400> SEQUENCE: 16	
Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys 1 5 10 15	
Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu 20 25 30	
Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr 35 40 45	
Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr 50 55 60	
Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser 65 70 75 80	
Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala 85 90 95	
Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys 100 105 110	
Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu 115 120 125	
Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser 130 135 140	
Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly 145 150 155 160	
Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val 165 170 175	
Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly 180 185 190	
Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro 195 200 205	
Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg 210 215 220	
Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr 225 230 235 240	
His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe 245 250 255	
Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp 260 265 270	
Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu 275 280 285	
Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu 290 295 300	

												0011	0 111	aoa	
Lys 305	Leu	Lys	Ala	Glu	Tyr 310	Lys	Lys	Lys	Leu	Glu 315	Asp	Thr	Lys	Lys	Ala 320
Leu	Asp	Glu	Gln	Val 325	ГÀв	Ser	Ala	Ile	Thr 330	Glu	Phe	Gln	Asn	Val 335	Gln
Pro	Thr	Asn	Glu 340	Lys	Met	Thr	Asp	Leu 345	Gln	Asp	Thr	Lys	Tyr 350	Val	Val
Tyr	Glu	Ser 355	Val	Glu	Asn	Asn	Glu 360	Ser	Met	Met	Asp	Thr 365	Phe	Val	Lys
His	Pro 370	Ile	Lys	Thr	Gly	Met 375	Leu	Asn	Gly	ГЛа	380 Tàa	Tyr	Met	Val	Met
Glu 385	Thr	Thr	Asn	Asp	Asp 390	Tyr	Trp	Lys	Asp	Phe 395	Met	Val	Glu	Gly	Gln 400
Arg	Val	Arg	Thr	Ile 405	Ser	Lys	Asp	Ala	Lys 410	Asn	Asn	Thr	Arg	Thr 415	Ile
Ile	Phe	Pro	Tyr 420	Val	Glu	Gly	Lys	Thr 425	Leu	Tyr	Asp	Ala	Ile 430	Val	Lys
Val	His	Val 435	Lys	Thr	Ile	Asp	Tyr 440	Asp	Gly	Gln	Tyr	His 445	Val	Arg	Ile
Val	Asp 450	Lys	Glu	Ala	Phe	Thr 455	Lys	Ala	Asn	Thr	Asp 460	Lys	Ser	Asn	Lys
Lys 465	Glu	Gln	Gln	Asp	Asn 470	Ser	Ala	Lys	Lys	Glu 475	Ala	Thr	Pro	Ala	Thr 480
Pro	Ser	Lys	Pro	Thr 485	Pro	Ser	Pro	Val	Glu 490	ГЛа	Glu	Ser	Gln	Lys 495	Gln
Asp	Ser	Gln	Lys 500	Asp	Asp	Asn	Lys	Gln 505	Leu	Pro	Ser	Val	Glu 510	Lys	Glu
Asn	Asp	Ala 515	Ser	Ser	Glu	Ser	Gly 520	ГÀа	Asp	ГЛа	Thr	Pro 525	Ala	Thr	ГÀа
Pro	Thr 530	Lys	Gly	Glu	Val	Glu 535	Ser	Ser	Ser	Thr	Thr 540	Pro	Thr	Lys	Val
Val 545	Ser	Thr	Thr	Gln	Asn 550	Val	Ala	Lys	Pro	Thr 555	Thr	Ala	Ser	Ser	560 Lys
Thr	Thr	Lys	Asp	Val 565	Val	Gln	Thr	Ser	Ala 570	Gly	Ser	Ser	Glu	Ala 575	ГЛа
Asp	Ser	Ala	Pro 580	Leu	Gln	Lys	Ala	Asn 585	Ile	Lys	Asn	Thr	Asn 590	Asp	Gly
His	Thr	Gln 595	Ser	Gln	Asn	Asn	600	Asn	Thr	Gln	Glu	Asn 605	Lys	Ala	ГЛа
Ser	Leu 610	Pro	Gln	Thr	Gly	Glu 615	Glu	Ser	Asn	ГÀа	Asp 620	Met	Thr	Leu	Pro
Leu 625	Met	Ala	Leu	Leu	Ala 630	Leu	Ser	Ser	Ile	Val 635	Ala	Phe	Val	Leu	Pro 640
Arg	Lys	Arg	Lys	Asn 645											
	0> SI 1> LI														
<21	2 > T	YPE:	DNA		ala"										
<22	3 > OI 0 > FI	EATUI	RE:		ρυλτο)COC(us :	۶p.							
	1 > NA 2 > LO				(13	353)									
< 40	O> SI	EQUEI	NCE:	17											

					att Ile			Ile					Val			48
					ggt Gly 25											96
					caa Gln 40											144
				_	cct Pro 55				_	_		_				192
		_			gat Asp 70	_		_		_	_		_			240
					aat Asn 90											288
					aaa Lys 105											336
	_				aac Asn 120	_			_		-				_	384
					agc Ser 135											432
					caa Gln 150											480
					ttc Phe 170											528
_	_		_		ggt Gly 185				_			_	-		-	576
	_	_			ttg Leu 200		_	_		_			_			624
					aac Asn 215											672
					tta Leu 230											720
					aaa Lys 250											768
					cta Leu 265											816
					aaa Lys 280	_	_							_	-	864
		_			aaa Lys 295	_	_							-	-	912

	aac Asn															960
	aac Asn															1008
	aac Asn															1056
	aac Asn															1104
	aaa Lys															1152
	gct Ala															1200
_	aag Lys			_			_	_	_			_		_		1248
	gaa Glu															1296
	tta Leu															1344
-	cta Leu	taa														1353
<212 <212	O> SI L> LI 2> T' 3> OF	ENGTH	H: 49	50	phylo	ococo	cus s	∍ p.								
< 400	D> SI	EQUE	ICE :	18												
Met 1	Lys	Tàa	Lys	Asn 5	Ile	Tyr	Ser	Ile	Arg 10	Lys	Leu	Gly	Val	Gly 15	Ile	
Ala	Ser	Val	Thr 20	Leu	Gly	Thr	Leu	Leu 25	Ile	Ser	Gly	Gly	Val 30	Thr	Pro	
Ala	Ala	Asn 35	Ala	Ala	Gln	His	Asp 40	Glu	Ala	Gln	Gln	Asn 45	Ala	Phe	Tyr	
Gln	Val 50	Leu	Asn	Met	Pro	Asn 55	Leu	Asn	Ala	Asp	Gln 60	Arg	Asn	Gly	Phe	
Ile 65	Gln	Ser	Leu	Lys	Asp 70	Asp	Pro	Ser	Gln	Ser 75	Ala	Asn	Val	Leu	Gly 80	
Glu	Ala	Gln	Lys	Leu 85	Asn	Asp	Ser	Gln	Ala 90	Pro	Lys	Ala	Asp	Ala 95	Gln	
Gln	Asn	Asn	Phe 100	Asn	ГЛа	Asp	Gln	Gln 105	Ser	Ala	Phe	Tyr	Glu 110	Ile	Leu	
Asn	Met	Pro 115	Asn	Leu	Asn	Glu	Ala 120	Gln	Arg	Asn	Gly	Phe 125	Ile	Gln	Ser	
Leu	Lys 130	Asp	Asp	Pro	Ser	Gln 135	Ser	Thr	Asn	Val	Leu 140	Gly	Glu	Ala	Lys	

Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala Asp Asn Asn Phe Asn Lys 145 150 150 155	
Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn 165 170 175	
Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser 180 185 190	
Gln Ser Ala Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln 195 200 205	
Ala Pro Lys Ala Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe 210 215 220	
Tyr Glu Ile Leu His Leu Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly 225 230 235 240	
Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Val Ser Lys Glu Ile Leu	
Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln Ala Pro Lys Glu Glu Asp	
Asn Lys Lys Pro Gly Lys Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp	
275 280 285 Gly Asn Lys Pro Gly Lys Glu Asp Asn Lys Lys Pro Gly Lys Glu Asp	
290 295 300 Gly Asn Lys Pro Gly Lys Glu Asp Asn Asn Lys Pro Gly Lys Glu Asp	
305 310 315 320	
Gly Asn Lys Pro Gly Lys Glu Asp Asn Asn Lys Pro Gly Lys Glu Asp 325 330 335	
Gly Asn Lys Pro Gly Lys Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp 340 345 350	
Gly Asn Gly Val His Val Val Lys Pro Gly Asp Thr Val Asn Asp Ile 355 360 365	
Ala Lys Ala Asn Gly Thr Thr Ala Asp Lys Ile Ala Ala Asp Asn Lys 370 375 380	
Leu Ala Asp Lys Asn Met Ile Lys Pro Gly Gln Glu Leu Val Val Asp 385 390 395 400	
Lys Lys Gln Pro Ala Asn His Ala Asp Ala Asn Lys Ala Gln Ala Leu 405 410 415	
Pro Glu Thr Gly Glu Glu Asn Pro Phe Ile Gly Thr Thr Val Phe Gly 420 425 430	
Gly Leu Ser Leu Ala Leu Gly Ala Ala Leu Leu Ala Gly Arg Arg Arg 435 440 445	
Glu Leu 450	
<210> SEQ ID NO 19	
<211> LENGTH: 2634 <212> TYPE: DNA	
<213 > ORGANISM: Staphylococcus sp. <220 > FEATURE: <221 > NAME/KEY: CDS	
<222> LOCATION: (1)(2634) <400> SEQUENCE: 19	
ttg aaa aaa aga att gat tat ttg tcg aat aag cag aat aag tat tcg Met Lys Lys Arg Ile Asp Tyr Leu Ser Asn Lys Gln Asn Lys Tyr Ser	48
1 5 10 15 att aga cgt ttt aca gta ggt acc aca tca gta ata gta ggg gca act	96
and aga dge eet dod ged gge doo dod eed ged ded ged ggg ged dee	

Ile 20	Arg	Arg	Phe	Thr	Val 25	Gly	Thr	Thr	Ser	Val 30	Ile	Val	Gly	Ala	Thr		
	cta Leu								_		_		-		_	144	
	gat Asp		_			_				_	_	_	_		_	192	
	aac Asn															240	
	tct Ser	_		_	-				_			_	-	_		288	
	aaa Lys		_				_	_								336	
_	tca Ser			_				_	_	_					_	384	
	gct Ala	_		_		_			_			_	_			432	
	gta Val	_				_		_	_		_		_			480	
_	gag Glu								-							528	
	acg Thr															576	
	gct Ala															624	
	gct Ala															672	
	tta Leu															720	
	gcg Ala															768	
	aca Thr															816	
	tct Ser															864	
	ggc Gly															912	
	aca Thr															960	
gga	caa	ttt	tca	tta	cct	tta	ttt	aca	gac	cga	gca	aag	gca	cct	aaa	1008	

Gly 325	Gln	Phe	Ser	Leu	Pro 330	Leu	Phe	Thr	Asp	Arg 335	Ala	Lys	Ala	Pro	Lys	
				_							_	_	atg Met			1056
							_	_			_		att Ile	_		1104
												_	gat Asp		-	1152
						_			_		_		cct Pro	_		1200
													caa Gln			1248
													aaa Lys			1296
		_			_						_	_	tac Tyr		-	1344
													ttt Phe			1392
													ttt Phe			1440
													gac Asp			1488
	_					_	_			_		_	gat Asp		_	1536
													aat Asn			1584
													aat Asn			1632
													cca Pro			1680
_		_		_		_		_		_		_	cca Pro	_	_	1728
													agt Ser			1776
													tca Ser			1824
-	_	_		_	-	_		-		_	_	_	tca Ser	_		1872
gat	agc	gat	tca	gaa	tca	gat	agc	gac	tca	gat	tca	gat	agc	gat	tca	1920

_																
Asp 625	Ser	Asp	Ser	Glu	Ser 630	Asp	Ser	Asp	Ser	Asp 635	Ser	Asp	Ser	Asp	Ser 640	
_	tca Ser	_	_	_		-		_	_	_	_	_		-	_	1968
_	tca Ser	_		_	_	_		_		_	_	_		_		2016
	agt Ser															2064
	tca Ser															2112
	tca Ser															2160
	agc Ser															2208
_	tca Ser	_	_	_		_		_	_	_		_		_	_	2256
_	tca Ser	_		_	_	_		_		_	_	_	_	_		2304
	agc Ser															2352
	tca Ser															2400
	tcc Ser															2448
	aat Asn				-	-					_	_				2496
	aaa Lys															2544
	gca Ala															2592
	ttt Phe												taa			2634
<21 <21	0 > SI 1 > LI 2 > T 3 > OI	ENGTI PE:	1: 8' PRT	77	phv1	odori	cus '	. ar								
	0> SI				L2 - -			г.								
	Lys				Asp	Tyr	Leu	Ser	Asn 10	ГЛа	Gln	Asn	Lys	Tyr 15	Ser	
Ile	Arg	Arg	Phe 20	Thr	Val	Gly	Thr	Thr 25	Ser	Val	Ile	Val	Gly 30	Ala	Thr	

Ile	Leu	Phe 35	Gly	Ile	Gly	Asn	His 40	Gln	Ala	Gln	Ala	Ser 45	Glu	Gln	Ser
Asn	Asp 50	Thr	Thr	Gln	Ser	Ser 55	Lys	Asn	Asn	Ala	Ser 60	Ala	Asp	Ser	Glu
Lys 65	Asn	Asn	Met	Ile	Glu 70	Thr	Pro	Gln	Leu	Asn 75	Thr	Thr	Ala	Asn	Asp
Thr	Ser	Asp	Ile	Ser 85	Ala	Asn	Thr	Asn	Ser 90	Ala	Asn	Val	Asp	Ser 95	Thr
Thr	Lys	Pro	Met 100	Ser	Thr	Gln	Thr	Ser 105	Asn	Thr	Thr	Thr	Thr 110	Glu	Pro
Ala	Ser	Thr 115	Asn	Glu	Thr	Pro	Gln 120	Pro	Thr	Ala	Ile	Lys 125	Asn	Gln	Ala
Thr	Ala 130	Ala	Lys	Met	Gln	Asp 135	Gln	Thr	Val	Pro	Gln 140	Glu	Ala	Asn	Ser
Gln 145	Val	Asp	Asn	Lys	Thr 150	Thr	Asn	Asp	Ala	Asn 155	Ser	Ile	Ala	Thr	Asn 160
Ser	Glu	Leu	Lys	Asn 165	Ser	Gln	Thr	Leu	Asp 170	Leu	Pro	Gln	Ser	Ser 175	Pro
Gln	Thr	Ile	Ser 180	Asn	Ala	Gln	Gly	Thr 185	Ser	Lys	Pro	Ser	Val 190	Arg	Thr
Arg	Ala	Val 195	Arg	Ser	Leu	Ala	Val 200	Ala	Glu	Pro	Val	Val 205	Asn	Ala	Ala
Asp	Ala 210	Lys	Gly	Thr	Asn	Val 215	Asn	Asp	Lys	Val	Thr 220	Ala	Ser	Asn	Phe
Lys 225	Leu	Glu	Lys	Thr	Thr 230	Phe	Asp	Pro	Asn	Gln 235	Ser	Gly	Asn	Thr	Phe 240
Met	Ala	Ala	Asn	Phe 245	Thr	Val	Thr	Asp	Lys 250	Val	Lys	Ser	Gly	Asp 255	Tyr
Phe	Thr	Ala	Lys 260	Leu	Pro	Asp	Ser	Leu 265	Thr	Gly	Asn	Gly	Asp 270	Val	Asp
Tyr	Ser	Asn 275	Ser	Asn	Asn	Thr	Met 280	Pro	Ile	Ala	Asp	Ile 285	Lys	Ser	Thr
Asn	Gly 290	Asp	Val	Val	Ala	Lys 295	Ala	Thr	Tyr	Asp	Ile 300	Leu	Thr	Lys	Thr
Tyr 305	Thr	Phe	Val	Phe	Thr 310	Asp	Tyr	Val	Asn	Asn 315	ГÀЗ	Glu	Asn	Ile	Asn 320
Gly	Gln	Phe	Ser	Leu 325	Pro	Leu	Phe	Thr	Asp 330	Arg	Ala	Lys	Ala	Pro 335	ГЛЗ
Ser	Gly	Thr	Tyr 340	Asp	Ala	Asn	Ile	Asn 345	Ile	Ala	Asp	Glu	Met 350	Phe	Asn
Asn	ГЛа	Ile 355	Thr	Tyr	Asn	Tyr	Ser 360	Ser	Pro	Ile	Ala	Gly 365	Ile	Asp	Lys
Pro	Asn 370	Gly	Ala	Asn	Ile	Ser 375	Ser	Gln	Ile	Ile	Gly 380	Val	Asp	Thr	Ala
Ser 385	Gly	Gln	Asn	Thr	Tyr 390	ГÀа	Gln	Thr	Val	Phe 395	Val	Asn	Pro	ГЛа	Gln 400
Arg	Val	Leu	Gly	Asn 405	Thr	Trp	Val	Tyr	Ile 410	ГЛа	Gly	Tyr	Gln	Asp 415	Lys
Ile	Glu	Glu	Ser 420	Ser	Gly	Lys	Val	Ser 425	Ala	Thr	Asp	Thr	Lys 430	Leu	Arg

Ile	Phe	Glu 435	Val	Asn	Asp	Thr	Ser 440	Lys	Leu	Ser	Asp	Ser 445	Tyr	Tyr	Ala
Asp	Pro 450	Asn	Asp	Ser	Asn	Leu 455	Lys	Glu	Val	Thr	Asp 460	Gln	Phe	ГÀа	Asn
Arg 465	Ile	Tyr	Tyr	Glu	His 470	Pro	Asn	Val	Ala	Ser 475	Ile	ГÀв	Phe	Gly	Asp 480
Ile	Thr	Lys	Thr	Tyr 485	Val	Val	Leu	Val	Glu 490	Gly	His	Tyr	Asp	Asn 495	Thr
Gly	Lys	Asn	Leu 500	Lys	Thr	Gln	Val	Ile 505	Gln	Glu	Asn	Val	Asp 510	Pro	Val
Thr	Asn	Arg 515	Asp	Tyr	Ser	Ile	Phe 520	Gly	Trp	Asn	Asn	Glu 525	Asn	Val	Val
Arg	Tyr 530	Gly	Gly	Gly	Ser	Ala 535	Asp	Gly	Asp	Ser	Ala 540	Val	Asn	Pro	ГÀа
Asp 545	Pro	Thr	Pro	Gly	Pro 550	Pro	Val	Asp	Pro	Glu 555	Pro	Ser	Pro	Asp	Pro 560
Glu	Pro	Glu	Pro	Thr 565	Pro	Asp	Pro	Glu	Pro 570	Ser	Pro	Asp	Pro	Glu 575	Pro
Glu	Pro	Ser	Pro 580	Asp	Pro	Asp	Pro	Asp 585	Ser	Asp	Ser	Asp	Ser 590	Asp	Ser
Gly	Ser	Asp 595	Ser	Asp	Ser	Gly	Ser 600	Asp	Ser	Asp	Ser	Glu 605	Ser	Asp	Ser
Asp	Ser 610	Asp	Ser	Asp	Ser	Asp 615	Ser	Asp	Ser	Asp	Ser 620	Asp	Ser	Glu	Ser
Asp 625	Ser	Asp	Ser	Glu	Ser 630	Asp	Ser	Asp	Ser	Asp 635	Ser	Asp	Ser	Asp	Ser 640
Asp	Ser	Asp	Ser	Asp 645	Ser	Glu	Ser	Asp	Ser 650	Asp	Ser	Asp	Ser	Asp 655	Ser
Asp	Ser	Asp	Ser 660	Asp	Ser	Asp	Ser	Glu 665	Ser	Asp	Ser	Asp	Ser 670	Glu	Ser
Asp	Ser	Glu 675	Ser	Asp	Ser	Asp	Ser 680	Asp	Ser	Asp	Ser	Asp 685	Ser	Asp	Ser
Asp	Ser 690	Asp	Ser	Asp	Ser	Asp 695	Ser	Asp	Ser	Asp	Ser 700	Asp	Ser	Asp	Ser
Asp 705	Ser	Asp	Ser	Asp	Ser 710	Asp	Ser	Glu	Ser	Asp 715	Ser	Asp	Ser	Asp	Ser 720
Asp	Ser	Asp		Asp 725		Asp	Ser	_	Ser 730	_	Ser	Asp	Ser	Asp 735	Ser
Asp	Ser	Asp	Ser 740	Asp	Ser	Asp	Ser	Asp 745	Ser	Asp	Ser	Asp	Ser 750	Asp	Ser
Asp	Ser	Asp 755	Ser	Asp	Ser	Asp	Ser 760	Asp	Ser	Asp	Ser	Asp 765	Ser	Asp	Ser
Asp	Ser 770	Asp	Ser	Asp	Ser	Asp 775	Ser	Asp	Ser	Asp	Ser 780	Asp	Ser	Asp	Ser
Asp 785	Ser	Asp	Ser	Asp	Ser 790	Asp	Ser	Asp	Ser	Asp 795	Ser	Asp	Ser	Asp	Ser 800
Asp	Ser	Asp	Ser	Arg 805	Val	Thr	Pro	Pro	Asn 810	Asn	Glu	Gln	Lys	Ala 815	Pro
Ser	Asn	Pro	Lys 820	Gly	Glu	Val	Asn	His 825	Ser	Asn	Lys	Val	Ser 830	Lys	Gln
His	Lys	Thr	Asp	Ala	Leu	Pro	Glu	Thr	Gly	Asp	Lys	Ser	Glu	Asn	Thr

		025					040					0.45				
Asn	Ala	835 Thr	Leu	Phe	Gly	Ala	840 Met	Met	Ala	Leu	Leu	845 Gly	Ser	Leu	Leu	
	850				•	855					860	•				
Leu 865	Phe	Arg	Lys	Arg	Lys 870	Gln	Asp	His	Lys	Glu 875	Lys	Ala				
<210 <211 <212 <213 <220 <221 <222	> LE > TY > OF > FE > NE	ENGTE (PE: RGAN: EATUE AME/E	H: 69 DNA ISM: RE: KEY:	34 Stap CDS	-		cus :	≅p.								
< 400	> SI	EQUEI	ICE :	21												
ttg Met 1								Asn					Ala			48
atc Ile 20						_			_		_	_	_	_		96
act Thr 35																144
gct Ala 50																192
aaa Lys 65																240
atg Met 85																288
aaa Lys 100	_	_	_			_		_	_	_	_	_				336
ata Ile 115																384
cca Pro 130																432
cca Pro 145																480
tct Ser 165																528
agt Ser 180																576
aat Asn 195																624
gca Ala 210																672
aat	gtg	gaa	taa													684

Asn Val Glu 225

```
<210> SEQ ID NO 22
<211> LENGTH: 227
<212> TYPE: PRT
<213 > ORGANISM: Staphylococcus sp.
<400> SEOUENCE: 22
Met Lys Asn Ile Leu Lys Val Phe Asn Thr Thr Ile Leu Ala Leu Ile
Ile Ile Ile Ala Thr Phe Ser Asn Ser Ala Asn Ala Asp Ser Gly
                           25
Thr Leu Asn Tyr Glu Val Tyr Lys Tyr Asn Thr Asn Asp Thr Ser Ile
Ala Asn Asp Tyr Phe Asn Lys Pro Ala Lys Tyr Ile Lys Lys Asn Gly
Lys Leu Tyr Val Gln Ile Thr Val Asn His Ser His Trp Ile Thr Gly
Met Ser Ile Glu Gly His Lys Glu Asn Ile Ile Ser Lys Asn Thr Ala
Lys Asp Glu Arg Thr Ser Glu Phe Glu Val Ser Lys Leu Asn Gly Lys
Ile Asp Gly Lys Ile Asp Val Tyr Ile Asp Glu Lys Val Asn Gly Lys
Pro Phe Lys Tyr Asp His His Tyr Asn Ile Thr Tyr Lys Phe Asn Gly
                     135
Pro Thr Asp Val Ala Gly Ala Asn Ala Pro Gly Lys Asp Asp Lys Asn
                  150
                                     155
Ser Ala Ser Gly Ser Asp Lys Gly Ser Asp Gly Thr Thr Thr Gly Gln
              165
                                 170
Ser Glu Ser Asn Ser Ser Asn Lys Asp Lys Val Glu Asn Pro Gln Thr
Asn Ala Gly Thr Pro Ala Tyr Ile Tyr Ala Ile Pro Val Ala Ser Leu
                200
Ala Leu Leu Ile Ala Ile Thr Leu Phe Val Arg Lys Lys Ser Lys Gly
  210
                      215
Asn Val Glu
225
<210> SEQ ID NO 23
<211> LENGTH: 1908
<212> TYPE: DNA
<213 > ORGANISM: Staphylococcus sp.
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(1908)
<400> SEQUENCE: 23
atg gct aaa tat cga ggg aaa ccg ttt caa tta tat gta aag tta tcg
Met Ala Lys Tyr Arg Gly Lys Pro Phe Gln Leu Tyr Val Lys Leu Ser
tgt tcg aca atg atg gcg tca agt atc att tta acg aat atc ttg ccg
Cys Ser Thr Met Met Ala Ser Ser Ile Ile Leu Thr Asn Ile Leu Pro
tac gat gcc caa gct gca tct gaa aag gat act gaa att tca aaa gag
```

Tyr 35	Asp	Ala	Gln	Ala	Ala 40	Ser	Glu	Lys	Asp	Thr 45	Glu	Ile	Ser	Lys	Glu	
			_		-		tta Leu	-		-	_		-		_	192
						_	tta Leu	_	_				_			240
	_				-		aaa Lys		_	_			_	_		288
		_	_			_	gat Asp	_		_			-			336
							gat Asp									384
							tct Ser									432
_			_	_			gca Ala	_			_	_			_	480
_						_	aaa Lys	_	_			_	_	_	_	528
							cta Leu									576
	_		_	_	_		gat Asp	-	_		-	_	_			624
		_	_			_	gta Val	_		_				_		672
							aaa Lys									720
							gat Asp									768
							ttg Leu									816
							aat Asn									864
							aaa Lys									912
							cgt Arg									960
							gat Asp									1008
att	tta	gaa	agt	ata	ttt	aat	aaa	gac	gag	gca	gat	aaa	att	cta	aaa	1056

_														CIII			
	le 40	Leu	Glu	Ser	Ile	Phe 345	Asn	Lys	Asp	Glu	Ala 350	Asp	Lys	Ile	Leu	Lys	
Ā			_	_	gat Asp				_				_	-			1104
Т		_			gat Asp				_		_	_	_	-			1152
Т					gat Asp												1200
I				_	aaa Lys				_	_	_	_		_	-		1248
Ā			_		aaa Lys					_			_	_		_	1296
L	_				gca Ala				_	_			_	_			1344
L					aat Asn												1392
I			_		cgt Arg		_	_		_	_			_	_	_	1440
L					ata Ile	_		_								-	1488
L					aat Asn												1536
Α					acg Thr												1584
V					agt Ser												1632
Т	_	_			aag Lys		-			_							1680
L					cca Pro												1728
Т					ggt Gly												1776
G					ttg Leu												1824
L					gta Val												1872
L					aat Asn							taa					1908

<211	0> SE L> LE 2> TY	ENGTI	I: 63												
<213	3 > OF	RGAN]	SM:	Star	hylo	coco	cus s	æp.							
< 400)> SI	EQUE	ICE :	24											
Met 1	Ala	Lys	Tyr	Arg 5	Gly	Lys	Pro	Phe	Gln 10	Leu	Tyr	Val	ГÀв	Leu 15	Ser
Cys	Ser	Thr	Met 20	Met	Ala	Ser	Ser	Ile 25	Ile	Leu	Thr	Asn	Ile 30	Leu	Pro
Tyr	Asp	Ala 35	Gln	Ala	Ala	Ser	Glu 40	Lys	Asp	Thr	Glu	Ile 45	Ser	Lys	Glu
Ile	Leu 50	Ser	Lys	Gln	Asp	Leu 55	Leu	Asp	Lys	Val	Asp 60	ГÀв	Ala	Ile	Arg
Gln 65	Ile	Glu	Gln	Leu	Lys 70	Gln	Leu	Ser	Ala	Ser 75	Ser	ГÀз	Ala	His	Tyr 80
Lys	Ala	Gln	Leu	Asn 85	Glu	Ala	Lys	Thr	Ala 90	Ser	Gln	Ile	Asp	Glu 95	Ile
Ile	Lys	Arg	Ala 100	Asn	Glu	Leu	Asp	Ser 105	ГÀа	Glu	Asn	Lys	Ser 110	Ser	His
Thr	Glu	Met 115	Asn	Gly	Gln	Ser	Asp 120	Ile	Asp	Ser	Lys	Leu 125	Asp	Gln	Leu
Leu	Lys 130	Asp	Leu	Asn	Glu	Val 135	Ser	Ser	Asn	Val	Asp 140	Arg	Gly	Gln	Gln
Ser 145	Gly	Glu	Asp	Asp	Leu 150	Asn	Ala	Met	Lys	Asn 155	Asp	Met	Ser	Gln	Thr 160
Ala	Thr	Thr	Lys	Tyr 165	Gly	Glu	Lys	Asp	Asp 170	Lys	Asn	Asp	Glu	Ala 175	Met
Val	Asn	Lys	Ala 180	Leu	Glu	Asp	Leu	Asp 185	His	Leu	Asn	Gln	Gln 190	Ile	His
Lys	Ser	Lys 195	Asp	Ala	Leu	Lys	Asp 200	Ala	Ser	Lys	Asp	Pro 205	Ala	Val	Ser
Thr	Thr 210	Asp	Ser	Asn	His	Glu 215	Val	Ala	Lys	Thr	Pro 220	Asn	Asn	Asp	Gly
Ser 225	Gly	His	Val	Val	Leu 230	Asn	Lys	Phe	Leu	Ser 235	Asn	Glu	Glu	Asn	Gln 240
Ser	His	Ser	Asn	Gln 245	Leu	Thr	Asp	Lys	Leu 250	Gln	Gly	Ser	Asp	Lys 255	Ile
Asn	His	Ala	Met 260	Ile	Glu	ГÀв	Leu	Ala 265	Lys	Ser	Asn	Ala	Ser 270	Thr	Gln
His	Tyr	Thr 275	Tyr	His	Lys	Leu	Asn 280	Thr	Leu	Gln	Ser	Leu 285	Asp	Gln	Arg
Ile	Ala 290	Asn	Thr	Gln	Leu	Pro 295	Lys	Asn	Gln	Lys	Ser 300	Asp	Leu	Met	Ser
Glu 305	Val	Asn	Lys	Thr	310	Glu	Arg	Ile	Lys	Ser 315	Gln	Arg	Asn	Ile	Ile 320
Leu	Glu	Glu	Leu	Ala 325	Arg	Thr	Asp	Asp	1330	Lys	Tyr	Ala	Thr	Gln 335	Ser
Ile	Leu	Glu	Ser 340	Ile	Phe	Asn	Lys	Asp 345	Glu	Ala	Asp	Lys	Ile 350	Leu	Lys
Asp	Ile	Arg 355	Val	Asp	Gly	Lys	Thr 360	Asp	Gln	Gln	Ile	Ala 365	Asp	Gln	Ile

Thi	Arg 370	His	Ile	Asp	Gln	Leu 375	Ser	Leu	Thr	Thr	Ser 380	Asp	Asp	Leu	Leu			
Th:		Leu	Ile	Asp	Gln 390	Ser			Lys	Ser 395	Leu	Leu	Ile	Ser	Gln 400			
Ile	e Leu	Gln	Thr	Lys 405	Leu	Gly	ГЛа	Ala	Glu 410	Ala	Asp	ГÀв	Leu	Ala 415	Lys			
Asr	Trp	Thr	Asn 420		Gly	Leu	Ser	Asn 425	Arg	Gln	Ile	Val	Asp	Gln	Leu			
Lys	. Lys	His	Phe	Ala	Ser	Thr	Gly 440	Asp	Thr	Ser	Ser	Asp 445	Asp	Ile	Leu			
Lys	Ala 450	Ile	Leu	Asn	Asn	Ala 455	Lys		ГЛа		Gln 460	Ala	Ile	Glu	Thr			
Ile 465	e Leu	Ala	Thr	Arg	Ile 470							Leu	Leu	Ala				
		Thr	Lys			Thr	Asp	Gln			Ile	Phe	Asn		480 Val			
Lys	s Ser	Ala		485 Asn						Leu	Leu	Asn		495 Gln	Lys			
Arç	, Leu	Asn	500 Gln	Thr		Lys		505 Ile		Tyr	Ile	Leu	510 Ser	Pro	Ile			
		515 Arg					520					525						
	530					535					540							
545	5				550					555					560			
Let	ı Asp	Ser	lle	Pro 565		lle	Pro	Thr	570	ГЛЗ	Pro	Glu	ГЛЗ	Thr 575	Leu			
Thi	Leu	Gly	Lys 580			Gly		Leu 585	Ser	Gly	Leu	Leu	Asn 590	Ala	Asp			
GlΣ	/ Asn	Val 595	Ser	Leu	Pro	ГÀа	Ala 600		Glu	Thr	Ile	605	Glu	His	Trp			
Leu	Pro 610	Ile	Ser	Val	Ile	Val 615		Ala	Met	Gly	Val 620	Leu	Met	Ile	Trp			
Leu 625		Arg	Arg	Asn	630 Lys	Leu	ГÀв	Asn	ГÀв	Ala 635								
<21 <21 <21 <22 <22	.1> L .2> T .3> O :0> F :1> N	EQ II ENGTI YPE: RGANI EATUI AME/I	H: 28 DNA ISM: RE: KEY:	862 Staj CDS			cus :	≅p.										
		EQUEI aat			aca	aca	aca	aat	aga	aaa	aac	ato	ata	cca	aat	48		
		Asn						Asn					Ile					
_		aac Asn			_		_	_			_			_		96		
		gta Val														144		
		gca Ala														192		

50					55					60						
	aca Thr															240
	cta Leu		_		_			_		_	_	_				288
	atg Met															336
	cca Pro			-		-	_							_		384
-	aca Thr			-							_		-		-	432
	agt Ser															480
	act Thr															528
-	gct Ala							-		-		-			_	576
	att Ile	_				_				_					-	624
	act Thr															672
	tac Tyr			-	_		-				_					720
	tat Tyr					_				_	_					768
	caa Gln					-						-				816
	gat Asp															864
	caa Gln															912
	cgt Arg															960
	tta Leu															1008
	caa Gln							_	_							1056
	gat Asp															1104

_													0011	C III.	aca		
•	660					665					670						
]														gaa Glu			2064
]		_	_	-			-	-	-	_			_	gat Asp		_	2112
Ž														tca Ser			2160
Ž														tca Ser			2208
2														agc Ser			2256
2														agc Ser			2304
Ž	-		_	_	_		_	_	_	_	_		_	tca Ser	_	-	2352
Ž														tca Ser			2400
Ž	-		_		_	_	_		-	_	_	_	_	tca Ser	_		2448
Ž														agc Ser			2496
Ž														tca Ser			2544
Ž														tca Ser			2592
2	-	_	_		_		_	_	-		_		_	agc Ser	_		2640
2		_	_		_	_	-	_	_		_		_	gca Ala			2688
1														cat His			2736
Ž														tca Ser			2784
(_				tta Leu	_		2832
]							caa Gln		aaa Lys	taa							2862

			concinaca
<211> LENGTH: 9 <212> TYPE: PRT	53		
<213> ORGANISM:	Staphylococcu	us sp.	
<400> SEQUENCE:	26		
Met Asn Asn Lys	Lys Thr Ala 3	Thr Asn Arg Lys	Gly Met Ile Pro Asn
1		10	15
Arg Leu Asn Lys	Phe Ser Ile A	Arg Lys Tyr Ser	Val Gly Thr Ala Ser
20		25	30
Ile Leu Val Gly		Ile Phe Gly Leu	Ser Gly His Glu Ala
35		40	45
Lys Ala Ala Glu 50	His Thr Asn (Gly Glu Leu Asn	Gln Ser Lys Asn Glu 60
Thr Thr Ala Pro	Ser Glu Asn I	Lys Thr Thr Glu	Lys Val Asp Ser Arg
65		75	80
Gln Leu Lys Asp	Asn Thr Gln 3	Thr Ala Thr Ala 90	Asp Gln Pro Lys Val 95
Thr Met Ser Asp	Ser Ala Thr V	Val Lys Glu Thr 105	Ser Ser Asn Met Gln 110
Ser Pro Gln Asn		Ser Gln Ser Thr	Thr Gln Thr Ser Asn
115		120	125
Val Thr Thr Asn 130	Asp Lys Ser S	Ser Thr Thr Tyr	Ser Asn Glu Thr Asp 140
Lys Ser Asn Leu 145	Thr Gln Ala I	Lys Asn Val Ser 155	Thr Thr Pro Lys Thr
Thr Thr Ile Lys	Gln Arg Ala I	Leu Asn Arg Met	Ala Val Asn Thr Val
	165	170	175
Ala Ala Pro Gln	Gln Gly Thr A	Asn Val Asn Asp	Lys Val His Phe Thr
180		185	190
Asn Ile Asp Ile		Lys Gly His Val	Asn Lys Thr Thr Gly
195		200	205
Asn Thr Glu Phe 210	Trp Ala Thr S	Ser Ser Asp Val	Leu Lys Leu Lys Ala 220
Asn Tyr Thr Ile 225	Asp Asp Ser V	Val Lys Glu Gly 235	Asp Thr Phe Thr Phe 240
Lys Tyr Gly Gln	Tyr Phe Arg I	Pro Gly Ser Val	Arg Leu Pro Ser Gln
	245	250	255
Thr Gln Asn Leu	Tyr Asn Ala (Gln Gly Asn Ile	Ile Ala Lys Gly Ile
260		265	270
Tyr Asp Ser Lys		Thr Thr Tyr Thr	Phe Thr Asn Tyr Val
275		280	285
Asp Gln Tyr Thr	Asn Val Ser 0	Gly Ser Phe Glu	Gln Val Ala Phe Ala
290	295		300
Lys Arg Glu Asn	Ala Thr Thr A	Asp Lys Thr Ala	Tyr Lys Met Glu Val
305		315	320
Thr Leu Gly Asn	Asp Thr Tyr S	Ser Lys Asp Val 330	Ile Val Asp Tyr Gly 335
Asn Gln Lys Gly	Gln Gln Leu I	Ile Ser Ser Thr	Asn Tyr Ile Asn Asn
340		345	350
Glu Asp Leu Ser	-	Thr Val Tyr Val	Asn Gln Pro Lys Lys
355		360	365
Thr Tyr Thr Lys	Glu Thr Phe V	Val Thr Asn Leu	Thr Gly Tyr Lys Phe

	370					375					380				
Asn 385	Pro	Asp	Ala	Lys	Asn 390	Phe	ГЛа	Ile	Tyr	Glu 395	Val	Thr	Asp	Gln	Asn 400
Gln	Phe	Val	Asp	Ser 405	Phe	Thr	Pro	Asp	Thr 410	Ser	Lys	Leu	Lys	Asp 415	Val
Thr	Gly	Gln	Phe 420	Asp	Val	Ile	Tyr	Ser 425	Asn	Asp	Asn	Lys	Thr 430	Ala	Thr
Val	Asp	Leu 435	Leu	Asn	Gly	Gln	Ser 440	Ser	Ser	Asp	Lys	Gln 445	Tyr	Ile	Ile
Gln	Gln 450	Val	Ala	Tyr	Pro	Asp 455	Asn	Ser	Ser	Thr	Asp 460	Asn	Gly	Lys	Ile
Asp 465	Tyr	Thr	Leu	Glu	Thr 470	Gln	Asn	Gly	Lys	Ser 475	Ser	Trp	Ser	Asn	Ser 480
Tyr	Ser	Asn	Val	Asn 485	Gly	Ser	Ser	Thr	Ala 490	Asn	Gly	Asp	Gln	Lys 495	ГЛЗ
			500		Tyr			505					510		
Gln	Asp	Ala 515	Asn	Glu	Lys	Gly	Ile 520	Lys	Gly	Val	Tyr	Val 525	Ile	Leu	ГÀа
Asp	Ser 530	Asn	Gly	Lys	Glu	Leu 535	Asp	Arg	Thr	Thr	Thr 540	Asp	Glu	Asn	Gly
Lys 545	Tyr	Gln	Phe	Thr	Gly 550	Leu	Ser	Asn	Gly	Thr 555	Tyr	Ser	Val	Glu	Phe 560
Ser	Thr	Pro	Ala	Gly 565	Tyr	Thr	Pro	Thr	Thr 570	Ala	Asn	Ala	Gly	Thr 575	Asp
Asp	Ala	Val	Asp 580	Ser	Asp	Gly	Leu	Thr 585	Thr	Thr	Gly	Val	Ile 590	ГÀа	Asp
		595			Leu	_	600				-	605			
	610			-	Val	615					620	_			
625					Gly 630					635					640
	-			645	Ile	_			650					655	
-	J		660		Leu	-		665	•	•	•		670		
		675			Thr		680					685			
-	690		-	•	Gly	695		-			700		-		-
705				-	Asn 710	•	•	-		715				-	720
_		_		725	Ser	_		_	730	_		_		735	
Asp	Ser	Asp	Ser 740	Asp	Ser	Asp	Ser	Asp 745	Ser	Asp	Ser	Asp	Ser 750	Asp	Ser
Asp	Ser	Asp 755	Ser	Asp	Ser	Asp	Ser 760	Asp	Ser	Asp	Ser	Asp 765	Ser	Asp	Ser
Asp	Ser 770	Asp	Ser	Glu	Ser	Asp 775	Ser	Asp	Ser	Asp	Ser 780	Asp	Ser	Asp	Ser

Asp Ser As 785														
	Ser		Ser 790	Asp	Ser	Asp	Ser	Asp 795	Ser	Asp	Ser	Asp	Ser 800	
Asp Ser As		Asp 8	Ser	Asp	Ser	Asp	Ser 810	Aap	Ser	Asp	Ser	Asp 815	Ser	
Asp Ser As	Ser 820	Asp S	Ser	Asp	Asn	Asp 825	Ser	Asp	Ser	Asp	Ser 830	Asp	Ser	
Asp Ser As		Asp S	Ser	Asp	Ser 840	Asp	Ser	Asp	Ser	Asp 845	Ser	Asp	Ser	
Asp Ser As 850	Ser	Asp S		Asp 855	Ser	Asp	Ser	Asp	Ser 860	Asp	Ser	Asp	Ser	
Asp Ser As 865	Ser		Ser 870	Asp	Ser	Asp	Ser	Asp 875	Ser	Asp	Ser	Asp	Ser 880	
Asp Ser As		Asp 8	Ser	Asp	Ser	Asp	Ser 890	Asp	Ser	Asp	Ala	Gly 895	Lys	
His Thr Pr	Thr 900	ràa I	Pro	Met	Ser	Thr 905	Val	Lys	Asp	Gln	His 910	Lys	Thr	
Ala Lys Al 91		Pro (Glu	Thr	Gly 920	Ser	Glu	Asn	Asn	Asn 925	Ser	Asn	Asn	
Gly Thr Le 930	ı Phe	Gly (Gly	Leu 935	Phe	Ala	Ala	Leu	Gly 940	Ser	Leu	Leu	Leu	
Phe Gly Ar 945	g Arg	-	Lys 950	Gln	Asn	Lys								
<211> LENG <212> TYPE <213> ORGA	: DNA NISM:		hylo	0000	cus s	p.								
<220> FEAT <221> NAME <222> LOCA	KEY:	(1).	. (29	70)										
<221> NAME	KEY:	(1).	. (29	70)										
<221> NAME <222> LOCA	CLYS A sag CLYS	(1). 27 aaa a	aaa	gaa		His	_				Lys	_		48
<pre><221> NAME <222> LOCA <400> SEQU atg aat at Met Asn Me</pre>	KEY: FION: ENCE: g aag t Lys	(1). 27 aaa a Lys I 5 gtg «	aaa Lys ctt	gaa Glu gta	Lys ggt	His 1 acg	Āla .0 tta	Ile atc	Arg	Lys	Lys gga	Ser .5 cta	Ile ctc	48
<221> NAME <222> LOCA <400> SEQU atg aat at Met Asn Me 1 ggc gtg gc Gly Val Al	KEY: CION: CNCE: G aag Lys tca a Ser	(1). 27 aaa a Lys I 5 gtg a Val I 2 gca a Ala A	aaa Lys ctt Leu 25 gat	gaa Glu gta Val gca	Lys ggt Gly agt	His acg Thr	Ala .0 tta Leu aat	atc Ile 30	Arg ggt Gly gtt	Lys ttt Phe acg	Lys gga Gly caa	Ser .5 cta Leu	Ile ctc Leu gat	
<pre><221> NAME <222> LOCA <400> SEQU atg aat at Met Asn Me 1 ggc gtg gc Gly Val Al 20 agc agt aa Ser Ser Ly</pre>	KEY: FION: ENCE: G aag L Lys L tca A Ser A gaa G Glu L aac	(1). 27 aaa a Lys I 5 gtg Q Val I 2 gca Q Ala A gaa a Glu S	aaa Lys ctt Leu 25 gat Asp 40	gaa Glu gta Val gca Ala	Lys ggt Gly agt Ser	His acg Thr gaa Glu aat	Ala .0 tta Leu aat Asn	atc Ile 30 agt Ser 45	Arg ggt Gly gtt Val	ttt Phe acg Thr	Lys gga Gly caa Gln gtt	Ser .5 cta Leu tct Ser	ctc Leu gat Asp	96
<pre><221> NAME <222> LOCA <400> SEQU atg aat at Met Asn Me 1 ggc gtg gc Gly Val Al 20 agc agt aa Ser Ser Ly 35 agc gca ag Ser Ala Se</pre>	KEY: FION: ENCE: G aag : Lys : tca a Ser a gaa s Glu : aac : Asn	(1). 27 aaa a Lys I 5 gtg of Val I ggaa a ggaa a gaa a gaa a gaa a gaa a	aaa Lys ctt Leu 25 gat Asp 40 agc Ser 55	gaa Glu gta Val gca Ala aaa Lys	ggt Gly agt Ser agt Ser	His acg Thr gaa Glu aat Asn	Ala 0 tta Leu aat Asn gat Asp	atc Ile 30 agt Ser 45 tca Ser 60	Arg ggt Gly gtt Val agt Ser act	ttt Phe acg Thr agc Ser	Lys gga Gly caa Gln gtt Val	ser 5 cta Leu tct ser agt ser	ctc Leu gat Asp gct Ala	96
<pre><221> NAME <222> LOCA <400> SEQU atg aat at Met Asn Me 1 ggc gtg gc Gly Val Al 20 agc agt aa Ser Ser Ly 35 agc gca ag Ser Ala Se 50 gca cct aa Ala Pro Ly</pre>	KEY: FION: ENCE: G aag : Lys : tca a Ser a gaa s Glu : aac : Asn a aca : Thr	(1). 27 aaa a lass lass lass lass lass lass la	aaaa Lys ctt Leu 225 gat Asp 40 agc Ser 55 gac Asp	gaa Glu gta Val gca Ala aaa Lys aca Thr	Lys ggt Gly agt Ser agt Ser aac Asn	His acg Thr gaa Glu aat Asn gtg Val	Ala .0 tta Leu aat Asn gat Asp agt Ser	atc Ile 30 agt Ser 45 tca Ser 60 gat Asp 75 caa	Arg ggt Gly gtt Val agt Ser act Thr	ttt Phe acg Thr agc Ser aaa Lys	Lys 1 gga Gly caa Gln gtt Val aca Thr	Ser5 cta Leu tct Ser agt Ser tcg Ser caa	ctc Leu gat Asp gct Ala tca Ser 80	96 144 192
<pre><221> NAME <222> LOCA <400> SEQU atg aat at Met Asn Me 1 ggc gtg gc Gly Val Al 20 agc agt aa Ser Ser Ly 35 agc gca ag Ser Ala Se 50 gca cct aa Ala Pro Ly 65 aac act aa Asn Thr As</pre>	KEY: FION: ENCE: G aag Lys L tca A Ser A gaa Glu L aac Asn A aca Thr A aca A a	(1). 27 aaa a last last last last last last last	aaa Lys ctt Leu 25 gat Asp 40 agc 555 gac PASP 70 gaa Glu 90 tca	gaa Glu gta Val gca Ala aaa Lys aca Thr	ggt gly agt Ser agt Ser agt Ser aact Asn agt Ser	His acg Thr gaa Glu aat Asn gtg Val gtg Val aat	Ala .0 tta Leu aat Asn gat Asp agt Ser gcg Ala	atc Ile 30 agt Ser 45 tca Ser 60 gat Asp 75 caa Gln 95 act	Arg ggt Gly gtt Val agt Ser act Thr aat Asn	ttt Phe acg Thr agc Ser aaa Lys cca Pro	Lys gga gGly caa GGln gtt Val aca Thr	Ser 5 cta Leu tct Ser agt Ser caa Gln acg	ctc Leu gat Asp gct Ala tca Ser 80 cag Gln	96 144 192 240

			agc Ser 135									432
			act Thr 150									480
			tct Ser 170									528
			gca Ala 185									576
			aat Asn 200									624
			aga Arg 215									672
			aca Thr 230									720
			ggt Gly 250									768
			ggt Gly 265									816
			act Thr 280									864
		_	gtg Val 295				_	_	 _	-	_	912
_		_	gat Asp 310	_	_			_				960
			aaa Lys 330									1008
_		_	gaa Glu 345		_		Lys				_	1056
			 acc Thr 360			_	_	_	_		_	1104
			caa Gln 375									1152
_		_	aca Thr 390			_		_			-	1200
			aac Asn 410									1248
			agt Ser 425									1296

				 ~+ ~			~~+								1244
				gtc Val 440											1344
				gat Asp 455											1392
				aat Asn 470											1440
-				ccg Pro 490			_	_	_					-	1488
				gat Asp 505											1536
				tgg Trp 520											1584
				ggt Gly 535			_			_			_	-	1632
				gag Glu 550											1680
				ggt Gly 570											1728
_			_	ggc Gly 585	_	-				_	_			-	1776
		_	_	gat Asp 600		_	_	_		_			_	-	1824
				gat Asp 615											1872
_	_		_	gca Ala 630	_	_		_		_	_	_		-	1920
	_	_	_	gat Asp 650			_	_		_			_	-	1968
				gat Asp 665											2016
				gat Asp 680											2064
	_	_	_	gac Asp 695		_	_	_		_		_	_	-	2112
				gat Asp 710											2160
				gac Asp 730											2208

tcc gac agt g Ser Asp Ser A 740						
tca gat tca g Ser Asp Ser A 755						
agt gac tca g Ser Asp Ser A 770						
tca gat agc g Ser Asp Ser A 785						
tca gat tcc g Ser Asp Ser A 805		-		-	-	-
agt gac tcg g Ser Asp Ser A 820						
tca gat agt g Ser Asp Ser A 835						
tca gac tca g Ser Asp Ser A 850		_		_	_	_
agc gat tca g Ser Asp Ser G 865						
tca gcg agt g Ser Ala Ser A 885	_		_	_	_	-
tca gat tcc g Ser Asp Ser A 900						
agt gat tca a Ser Asp Ser A 915						
ccg cct aat t Pro Pro Asn S 930						
gct aaa gat a Ala Lys Asp S 945						
gcg aat acg t Ala Asn Thr S 965						
cta ctt ttc a Leu Leu Phe A 980					taa	2970
<210 > SEQ ID <211 > LENGTH: <212 > TYPE: P <213 > ORGANIS	989 RT					
<400> SEQUENC						
Met Asn Met L	ys Lys Lys 5	Glu Lys Hi	Ala Ile	Arg Lys	Lys Ser 15	Ile

Gly	Val	Ala	Ser 20	Val	Leu	Val	Gly	Thr 25	Leu	Ile	Gly	Phe	Gly 30	Leu	Leu
Ser	Ser	Tys	Glu	Ala	Asp	Ala	Ser 40	Glu	Asn	Ser	Val	Thr 45	Gln	Ser	Asp
Ser	Ala 50	Ser	Asn	Glu	Ser	Lув 55	Ser	Asn	Asp	Ser	Ser 60	Ser	Val	Ser	Ala
Ala 65	Pro	ГÀв	Thr	Asp	Asp 70	Thr	Asn	Val	Ser	Asp 75	Thr	ГÀв	Thr	Ser	Ser 80
Asn	Thr	Asn	Asn	Gly 85	Glu	Thr	Ser	Val	Ala 90	Gln	Asn	Pro	Ala	Gln 95	Gln
Glu	Thr	Thr	Gln 100	Ser	Ser	Ser	Thr	Asn 105	Ala	Thr	Thr	Glu	Glu 110	Thr	Pro
Val	Thr	Gly 115	Glu	Ala	Thr	Thr	Thr 120	Thr	Thr	Asn	Gln	Ala 125	Asn	Thr	Pro
Ala	Thr 130	Thr	Gln	Ser	Ser	Asn 135	Thr	Asn	Ala	Glu	Glu 140	Leu	Val	Asn	Gln
Thr 145	Ser	Asn	Glu	Thr	Thr 150	Ser	Asn	Asp	Thr	Asn 155	Thr	Val	Ser	Ser	Val 160
Asn	Ser	Pro	Gln	Asn 165	Ser	Thr	Asn	Ala	Glu 170	Asn	Val	Ser	Thr	Thr 175	Gln
Asp	Thr	Ser	Thr 180	Glu	Ala	Thr	Pro	Ser 185	Asn	Asn	Glu	Ser	Ala 190	Pro	Gln
Asn	Thr	Asp 195	Ala	Ser	Asn	Lys	Asp 200	Val	Val	Ser	Gln	Ala 205	Val	Asn	Pro
Ser	Thr 210	Pro	Arg	Met	Arg	Ala 215	Phe	Ser	Leu	Ala	Ala 220	Val	Ala	Ala	Asp
Ala 225	Pro	Ala	Ala	Gly	Thr 230	Asp	Ile	Thr	Asn	Gln 235	Leu	Thr	Asp	Val	Lys 240
Val	Thr	Ile	Asp	Ser 245	Gly	Thr	Thr	Val	Tyr 250	Pro	His	Gln	Ala	Gly 255	Tyr
Val	Lys	Leu	Asn 260	Tyr	Gly	Phe	Ser	Val 265	Pro	Asn	Ser	Ala	Val 270	Lys	Gly
Asp	Thr	Phe 275	Lys	Ile	Thr	Val	Pro 280	Lys	Glu	Leu	Asn	Leu 285	Asn	Gly	Val
Thr	Ser 290	Thr	Ala	Lys	Val	Pro 295	Pro	Ile	Met	Ala	Gly 300	Asp	Gln	Val	Leu
Ala 305		Gly	Val		Asp 310		Asp			Val 315		Tyr	Thr		Thr 320
Asp	Tyr	Val	Asp	Asn 325	Lys	Glu	Asn	Val	Thr 330	Ala	Asn	Ile	Thr	Met 335	Pro
Ala	Tyr	Ile	Asp 340	Pro	Glu	Asn	Val	Thr 345	Lys	Thr	Gly	Asn	Val 350	Thr	Leu
Thr	Thr	Gly 355	Ile	Gly	Thr	Asn	Thr 360	Ala	Ser	Lys	Thr	Val 365	Leu	Ile	Asp
Tyr	Glu 370	Lys	Tyr	Gly	Gln	Phe 375	His	Asn	Leu	Ser	Ile 380	Lys	Gly	Thr	Ile
Asp 385	Gln	Ile	Asp	Lys	Thr 390	Asn	Asn	Thr	Tyr	Arg 395	Gln	Thr	Ile	Tyr	Val 400
Asn	Pro	Ser	Gly	Asp 405	Asn	Val	Val	Leu	Pro 410	Ala	Leu	Thr	Gly	Asn 415	Leu
Ile	Pro	Asn	Thr	Lys	Ser	Asn	Ala	Leu	Ile	Asp	Ala	Lys	Asn	Thr	Asp

	420					425					430		
Ile Lys \	Val Tyr 435	Arg	Val	Asp	Asn 440	Ala	Asn	Asp	Leu	Ser 445	Glu	Ser	Tyr
Tyr Val A	Asn Pro	Ser	Asp	Phe 455	Glu	Asp	Val	Thr	Asn 460	Gln	Val	Arg	Ile
Ser Phe 1 465	Pro Asn	Ala	Asn 470	Gln	Tyr	Lys	Val	Glu 475	Phe	Pro	Thr	Asp	Asp 480
Asp Gln	Ile Thr	Thr 485	Pro	Tyr	Ile	Val	Val 490	Val	Asn	Gly	His	Ile 495	Asp
Pro Ala S	Ser Thr 500	Gly	Asp	Leu	Ala	Leu 505	Arg	Ser	Thr	Phe	Tyr 510	Gly	Tyr
Asp Ser A	Asn Phe 515	Ile	Trp	Arg	Ser 520	Met	Ser	Trp	Asp	Asn 525	Glu	Val	Ala
Phe Asn A	Asn Gly	Ser	Gly	Ser 535	Gly	Asp	Gly	Ile	Asp 540	Lys	Pro	Val	Val
Pro Glu (545	Gln Pro	Asp	Glu 550	Pro	Gly	Glu	Ile	Glu 555	Pro	Ile	Pro	Glu	Asp 560
Ser Asp S	Ser Asp	Pro 565	Gly	Ser	Asp	Ser	Gly 570	Ser	Asp	Ser	Asn	Ser 575	Asp
Ser Gly S	Ser Asp 580		Gly	Ser	Asp	Ser 585	Thr	Ser	Asp	Ser	Gly 590	Ser	Asp
Ser Ala S	Ser Asp 595	Ser	Asp	Ser	Ala 600	Ser	Asp	Ser	Asp	Ser 605	Ala	Ser	Asp
Ser Asp S	Ser Ala	Ser	Asp	Ser 615	Asp	Ser	Ala	Ser	Asp 620	Ser	Asp	Ser	Ala
Ser Asp S 625	Ser Asp	Ser	Ala 630	Ser	Asp	Ser	Asp	Ser 635	Ala	Ser	Asp	Ser	Asp 640
Ser Ala S	Ser Asp	Ser 645	Asp	Ser	Ala	Ser	Asp 650	Ser	Asp	Ser	Ala	Ser 655	Asp
Ser Asp S	Ser Ala 660	Ser	Asp	Ser	Asp	Ser 665	Ala	Ser	Asp	Ser	Asp 670	Ser	Asp
Ser Asp S	Ser Asp 675	Ser	Asp	Ser	Asp	Ser	Asp	Ser	Asp	Ser 685	Asp	Ser	Asp
Ser Asp 9	Ser Asp	Ser	Asp	Ser 695	Asp	Ser	Asp	Ser	Asp 700	Ser	Asp	Ser	Asp
Ser Asp S 705	Ser Asp	Ser	Asp 710	Ser	Asp	Ser	Asp	Ser 715	Asp	Ser	Asp	Ser	Asp 720
Ser Asp S	Ser Asp	Ser 725	Asp	Ser	Asp	Ser	Asp 730	Ser	Asp	Ser	Asp	Ser 735	Asp
Ser Asp S	Ser Asp 740		Asp	Ser	Asp	Ser 745	Asp	Ser	Asp	Ser	Asp 750	Ser	Asp
Ser Asp :	Ser Asp 755	Ser	Asp	Ser	Asp 760	Ser	Asp	Ser	Asp	Ser 765	Asp	Ser	Asp
Ser Asp S 770	Ser Asp	Ser	Asp	Ser 775	Asp	Ser	Asp	Ser	Asp 780	Ser	Asp	Ser	Asp
Ser Asp S 785	Ser Asp	Ser	Asp 790	Ser	Asp	Ser	Asp	Ser 795	Asp	Ser	Asp	Ser	Asp 800
Ser Asp S	Ser Asp	Ser 805	Asp	Ser	Asp	Ser	Asp 810	Ser	Asp	Ser	Asp	Ser 815	Asp
Ser Asp S	Ser Asp 820		Ala	Ser	Asp	Ser 825	Asp	Ser	Asp	Ser	Asp 830	Ser	Glu

Ser Asp Ser Asp 835	Ser Asp	Ser Asp 840	Ser Asp	Ser Asp	Ser Asp 845	Ser Asp	
Ser Asp Ser Asp 850	Ser Asp	Ser Glu 855	Ser Asp	Ser Asp 860	Ser Asp	Ser Asp	
Ser Asp Ser Glu 865	Ser Asp 870	Ser Asp	Ser Asp	Ser Asp 875	Ser Asp	Ser Asp 880	
Ser Ala Ser Asp	Ser Asp 885	Ser Gly	Ser Asp 890	Ser Asp	Ser Ser	Ser Asp 895	
Ser Asp Ser Asp 900		Ser Asp	Thr Gly 905	Ser Asp	Asn Asp 910	Ser Asp	
Ser Asp Ser Asn 915	Ser Asp	Ser Glu 920	Ser Gly	Ser Asn	Asn Asn 925	Val Val	
Pro Pro Asn Ser 930	Pro Lys	Asn Gly 935	Thr Asn	Ala Ser 940	Asn Lys	Asn Glu	
Ala Lys Asp Ser 945	Lys Glu 950	Pro Leu	Pro Asp	Thr Gly 955	Ser Glu	Asp Glu 960	
Ala Asn Thr Ser	Leu Ile 965	Trp Gly	Leu Leu 970	Ala Ser	Leu Gly	Ser Leu 975	
Leu Leu Phe Arg 980	Arg Lys	Lys Glu	Asn Lys 985	Asp Lys	Lys		
<pre><211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	Staphyl		ap.				
<400> SEQUENCE:	29						
atg aat cag cac Met Asn Gln His 1	-	-	_				
ggc aca tat gac Gly Thr Tyr Asp 20							
ata gct tta gta Ile Ala Leu Val			gac att				
35	40	Ser Leu					
aca caa att aaa Thr Gln Ile Lys 50	40 gtg atg	acg aaa	Asp Ile	Ser Ile 45 tta ctt	Phe Asp	Val Asn	192
aca caa att aaa Thr Gln Ile Lys	gtg atg Val Met 55	acg aaa Thr Lys	Asp Ile ggt caa Gly Gln gat gga	Ser Ile 45 tta ctt Leu Leu 60	Phe Asp gtt gaa Val Glu ttg aag	Val Asn aat gat Asn Asp tta cta	192 240
aca caa att aaa Thr Gln Ile Lys 50 cga ctc att gat Arg Leu Ile Asp	gtg atg Val Met 55 tat caa Tyr Gln	acg aaa Thr Lys	Asp Ile ggt caa Gly Gln gat gga	Ser Ile 45 tta ctt Leu Leu 60 gat att Asp Ile	Phe Asp gtt gaa Val Glu ttg aag	Val Asn aat gat Asn Asp tta cta Leu Leu	192 240
aca caa att aaa Thr Gln Ile Lys 50 cga ctc att gat Arg Leu Ile Asp 65 tag <210> SEQ ID NO <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM:	gtg atg Val Met 55 tat caa Tyr Gln 70 30 0	acg aaa Thr Lys atc gct Ile Ala	Asp Ile ggt caa Gly Gln gat gga Asp Gly	Ser Ile 45 tta ctt Leu Leu 60 gat att Asp Ile	Phe Asp gtt gaa Val Glu ttg aag	Val Asn aat gat Asn Asp tta cta Leu Leu	192 240
aca caa att aaa Thr Gln Ile Lys 50 cga ctc att gat Arg Leu Ile Asp 65 tag <210> SEQ ID NO <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: <400> SEQUENCE:	gtg atg Val Met 55 tat caa Tyr Gln 70 30 Staphylo	acg aaa Thr Lys atc gct Ile Ala	Asp Ile ggt caa Gly Gln gat gga Asp Gly	Ser Ile 45 tta ctt Leu Leu 60 gat att Asp Ile 75	Phe Āsp gtt gaa Val Glu ttg aag Leu Lys	Val Asn aat gat Asn Asp tta cta Leu Leu 80	192 240 243
aca caa att aaa Thr Gln Ile Lys 50 cga ctc att gat Arg Leu Ile Asp 65 tag <210> SEQ ID NO <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM:	gtg atg Val Met 55 tat caa Tyr Gln 70 30 Staphylo	acg aaa Thr Lys atc gct Ile Ala	Asp Ile ggt caa Gly Gln gat gga Asp Gly	Ser Ile 45 tta ctt Leu Leu 60 gat att Asp Ile 75	Phe Āsp gtt gaa Val Glu ttg aag Leu Lys	Val Asn aat gat Asn Asp tta cta Leu Leu 80	192 240 243

		20					25					30				
Ile Ala	Leu 35	Val	Leu	Asp	Ser	Leu 40	Asp	Ile	Ser	Ile	Phe 45	Asp	Val	Asn		
Thr Gln 50	Ile	Lys	Val	Met	Thr 55	Lys	Gly	Gln	Leu	Leu 60	Val	Glu	Asn	Asp		
Arg Leu 65	Ile	Asp	Tyr	Gln 70	Ile	Ala	Asp	Gly	Asp 75	Ile	Leu	Lys	Leu	Leu 80		
<210 > S <211 > L <212 > T <213 > O <220 > F <221 > N <222 > L	ENGT YPE: RGAN EATU AME/	H: 3 DNA ISM: RE: KEY:	93 Staj CDS			cus :	ap.									
<400> SEQUENCE: 31																
atg aat Met Asn 1			_		_		_	_	_	_				_	48	
att aaa Ile Lys 20															96	
gga tat Gly Tyr 35		_		-	-			_	_		_			_	144	
agt ttt Ser Phe 50	_		_	_		_	_		_	_	_	-			192	
gca aaa Ala Lys 65															240	
ccc aat Pro Asn 85	_				_		_		_	_			_		288	
gaa atg Glu Met 100															336	
gct aag Ala Lys 115	_		_		-	_	_	_	_					_	384	
atg aat Met Asn 130															393	
<210> S <211> L <212> T <213> O	ENGT YPE :	H: 1 PRT	30	phyl	000C	cus :	ap.									
<400> S	EQUE	NCE :	32													
Met Asn	Phe	Asn	Asp 5	Ile	Glu	Thr	Met	Val 10	Lys	Ser	Lys	Phe	Lуз 15	Asp		
Ile Lys	Lys	His 20	Ala	Glu	Glu	Ile	Ala 25	His	Glu	Ile	Glu	Val 30	Arg	Ser		
Gly Tyr	Leu 35	Arg	Lys	Ala	Glu	Gln 40	Tyr	Lys	Arg	Leu	Glu 45	Phe	Asn	Leu		
Ser Phe	Ala	Leu	Asp	Asp	Ile	Glu	Ser	Thr	Ala	rys	Asp	Val	Gln	Thr		

Ala Lye Ser Ser Ala Amn Lye Amp Ser Val Thr Val Lye Gly Lye Ala 65 70 75 80 95 80 75 80 80 75 80 80 95 80 80 80 80 80 80 80 80 80 80 80 80 80	50	55	60	
Glu Met Leu Glu Glu Asp Ile Asp Lys Ala Lys Glu Ser Leu Gln Lys 110	=			
Ala Lys Glu Ile Ala Gly Glu Lys Ala Ser Glu Tyr Phe Asn Lys Ala 115 Met Ann 130 <pre></pre>	_			
Met Asn 130 **C110 SEQ ID NO 33 **C2112 SEQ ID NO 33 **C2112 SEQ ID NO 33 **C2113 DENGTH: 462 **C2123 YTPE: DNA **C2123 YTPE: DNA **C2123 YTPE: DNA **C2123 YTPE: DNA **C2123 SEQUENCE: 33 **Gca gaa att aat aaa caa aca aca tca caa ggt gtc aca act gaa aaa Ala Glu Ile Asn Lys Gln Thr Thr Ser Gln Gly Val Thr Thr Glu Lys 1 **Sequence: 33 **Gca gaa att aat aaa caa aca aca gat gtg att aca act gaa aaa Ala Glu Ile Asn Lys Gln Thr Thr Ser Gln Gly Val Thr Thr Glu Lys 1 **Sequence: 33 **Gca gaa att aat aaa caa aca aca gat gtg att aca act gaa aaa Ala Glu Ile Asn Lys Gln Asn Val Ile Thr Pro Thr Val 20 **aat aat ggt atc gca gtg tta gaa caa gat gtg att aca act cgt aaa Lys Pro Gln Ala Lys Gln Asn Ile Ile Gln Ala Val Thr Thr Arg Lys 35 **aaa cct caa gcg aaa caa gat att acc aa gca gtt aca act cgt aaa 144 **Lys Pro Gln Ala Lys Gln Asn Ile Ile Gln Ala Val Thr Thr Arg Lys 35 **caa caa att aaa aag tca aat gca tca ta caa gat gaa aaa gat gta Gln Gln Ile Lys Lys Ser Asn Ala Ser Leu Gln Asp Glu Lys Asp Val 50 **caa caa att aaa aat gga aaa tt gaa aca aag gca att aaa gat att att Ala Asn Asp Lys Ile Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile 65 **gca aat gat aaa att ggt aaa att gaa aca aag gca att aaa gat att att Asp Ala Ala Thr Thr Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala 85 **gat gca gca aca aca aca act aca cct gct aca acc act aca gca gca 336 **gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca gca 11e Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 11e Glu 105 **gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca 384 **la Leu Glu Glu Phe Asp Glu Val Val Glu Ala Glu Ala Ile Glu Ala Ile Glu 115 **gct ctt gaa gaa ttt gac gaa gtt gtt caa gca gca gct att gaa 125 **cct tta aat cct gat aca aca act gaa gaa gta gcg gaa gct att gaa 126 **clu Lys SeQ ID NO 34 **c210 SEQ ID NO 34 **c211 SEQ ID NO 34 **c212 SEQ ID NO 34 **c212 SEQ ID NO 34 **c213 SEQ ID NO 34 **c213 SEQ ID NO 34 **con acc acc acc acc acc acc acc acc acc ac	_			
130	_			
C2113 LENGTH: 462 C2123 ORGANISM: Staphylococcus aureus C2133 ORGANISM: Staphylococcus aureus C2213 ORGANISM: Staphylococcus aureus C2213 NAME/KEY: CDS C2222 LOCATION: (1) (462) C2223 LOCATION: (1) (462) C2223 CACATION: (1) (462) C2223 CACATION: (1) (462) C2223 CACATION: (1) (462) C223 CACATION: (1) (462) C233 C23				
Sea gaa att aat aaa caa aca aca tca caa ggt gtc aca act gaa aaa 48	<211> LENGTH: 462 <212> TYPE: DNA <213> ORGANISM: Staj <220> FEATURE: <221> NAME/KEY: CDS			
Ala Glu Ile Asn Lys Gln Thr Thr Ser Gln Gly Val Thr Thr Glu Lys 1	<400> SEQUENCE: 33			
Asn Asn Gly Ile Ala Val Leu Glu Gln Asp Val Ile Thr Pro Thr Val 20 aaa cct caa gcg aaa caa gat att atc caa gca gtt aca act cgt aaa Lys Pro Gln Ala Lys Gln Asp Ile Ile Gln Ala Val Thr Thr Arg Lys 35 40 caa caa att aaa aag tca aat gca tca tta caa gat gaa aaa gat gta Gln Gln Ile Lys Lys Ser Asn Ala Ser Leu Gln Asp Glu Lys Asp Val 50 gca aat gat aaa att ggt aaa att gaa aca aag gca att aaa gat att Ala Asn Asp Lys Ile Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile 65 70 gat gca gca aca aca aca aat gca caa gta gaa gcc att aaa aca aca gca Asp Ala Ala Thr Thr Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala 85 90 atc aat gat att aat caa act aca cct gct aca aca gct aaa gca gca Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 100 gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 cct tta aat cct gat aca aca gat gaa gad gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 cgt att aat gca gct aaa gtt tct ggt gtt Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 **210> SEQ ID NO 34 **221> LENGTH: 154 **221> TYPE: PRT **2213> ORGANISM: Staphylococcus aureus	Ala Glu Ile Asn Lys	Gln Thr Thr Ser Gln G	ly Val Thr Thr Glu Lys	48
Lys Pro Gln Ala Lys Gln Asp Ile Ile Gln Ala Val Thr Thr Arg Lys 35 40 45 caa caa att aaa aag tca aat gca tca tta caa gat gaa aaa gat gta Gln Gln Ile Lys Lys Ser Asn Ala Ser Leu Gln Asp Glu Lys Asp Val 50 55 gca aat gat aaa att ggt aaa att gga aca aag gca att aaa gat att Ala Asn Asp Lys Ile Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile 65 70 78 gat gca gca aca aca aat gca caa gta gaa gcc att aaa aca aag gca Asp Ala Ala Thr Thr Asn Ala Gln Val Glu 85 90 atc aat gat att aat caa act aca cct gct aca aca gca gca gca Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 100 105 gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca Ala Leu Glu Glu Phe Asp Glu Val Val Glu Ala Gln Ile Asp Gln Ala 115 120 125 cct tta aat cct gat aca aca aat gaa gaa gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu 135 140 cgt att aat gca gct Asa gca caa agt aca gta gta gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu 136 140 cgt att aat gca gct Asa gct ctt ggt gtt Arg Ile Asn Ala Ala Ala 150 210 NO 34 <210 > SEQ ID NO 34 <211 > LENGTH: 154 <212 > TYPE: PRT <213 > ORGANISM: Staphylococcus aureus	Asn Asn Gly Ile Ala	Val Leu Glu Gln Asp V	al Ile Thr Pro Thr Val	96
Gln Gln Ile Lys Lys Ser Asn Ala Ser Leu Gln Asp Glu Lys Asp Val 50 gca aat gat aaa att ggt aaa att gaa aca aag gca att aaa gat att Ala Asn Asp Lys Ile Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile 65 gat gca gca aca aca aca aat gca caa gta gaa gcc att aaa aca aaa gca Asp Ala Ala Thr Thr Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala 85 atc aat gat att aat caa act aca cct gct aca aca gca aca gca gca Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 100 gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 cct tta aat cct gat aca aca aca aat gaa gaa gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 cgt att aat gca gct aaa gtt tct ggt gt Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 <a href="https://www.dec.com/schimmons.com/schimmons/schimmons.com/schimmons/schim</td><td>Lys Pro Gln Ala Lys</td><td>Gln Asp Ile Ile Gln A</td><td>la Val Thr Thr Arg Lys</td><td>144</td></tr><tr><td>Ala Asn Asp Lys Ile Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile 65 70 70 75 80 gat gca gca aca aca aat gca caa gta gaa gcc att aaa aca aaa gca Asp Ala Ala Thr Thr Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala 85 90 95 atc aat gat att aat caa act aca cct gct aca aca gct aaa gca gca Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 100 105 110 gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 120 125 cct tta aat cct gat aca aca aat gaa gaa gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 135 140 cgt att aat gca gct aaa gtt tct ggt gtt Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 <a href=" https:="" td="" www.news.news.news.news.news.news.news.n<=""><td>Gln Gln Ile Lys Lys</td><td>Ser Asn Ala Ser Leu G</td><td>In Asp Glu Lys Asp Val</td><td>192</td>	Gln Gln Ile Lys Lys	Ser Asn Ala Ser Leu G	In Asp Glu Lys Asp Val	192
Asp Ala Ala Thr Thr Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala 90 95 atc aat gat att aat caa act aca cct gct aca aca gct aaa gca gca Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 100 105 110 gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 120 125 cct tta aat cct gat aca aca aat gaa gaa gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 135 140 cgt att aat gca gct aaa gtt tct ggt gtt Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 <210> SEQ ID NO 34 <211> LENGTH: 154 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	Ala Asn Asp Lys Ile	Gly Lys Ile Glu Thr L	ys Ala Ile Lys Asp Ile	240
Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala 100 105 110 gct ctt gaa gaa ttt gac gaa gtt gtt caa gca caa att gat caa gca Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 120 125 cct tta aat cct gat aca aca aat gaa gaa gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 135 140 cgt att aat gca gct aaa gtt tct ggt gtt Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 <210> SEQ ID NO 34 <211> LENGTH: 154 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	Asp Ala Ala Thr Thr	Asn Ala Gln Val Glu A	la Ile Lys Thr Lys Āla	288
Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 120 125 cct tta aat cct gat aca aca aat gaa gaa gta gcg gaa gct att gaa Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 135 140 cgt att aat gca gct aaa gtt tct ggt gtt Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pr< td=""><td>Ile Asn Asp Ile Asn</td><td>Gln Thr Thr Pro Ala T</td><td>hr Thr Ala Lys Ala Ala</td><td>336</td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	Ile Asn Asp Ile Asn	Gln Thr Thr Pro Ala T	hr Thr Ala Lys Ala Ala	336
Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 135 140 cgt att aat gca gct aaa gtt tct ggt gtt 462 Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 <210> SEQ ID NO 34 <211> LENGTH: 154 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	Ala Leu Glu Glu Phe	Asp Glu Val Val Gln A	la Gln Ile Asp Gln Ala	384
Arg Ile Asn Ala Ala Lys Val Ser Gly Val 145 150 <210> SEQ ID NO 34 <211> LENGTH: 154 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	Pro Leu Asn Pro Asp	Thr Thr Asn Glu Glu V	al Ala Glu Ala Ile Glu	432
<211> LENGTH: 154 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	Arg Ile Asn Ala Ala	Lys Val Ser Gly Val		462
	<211> LENGTH: 154 <212> TYPE: PRT	phvlococcus aureus		

-continued
Ala Glu Ile Asn Lys Gln Thr Thr Ser Gln Gly Val Thr Thr Glu Lys 1 5 10 15
Asn Asn Gly Ile Ala Val Leu Glu Gln Asp Val Ile Thr Pro Thr Val 20 25 30
Lys Pro Gln Ala Lys Gln Asp Ile Ile Gln Ala Val Thr Thr Arg Lys 35 40 45
Gln Gln Ile Lys Lys Ser Asn Ala Ser Leu Gln Asp Glu Lys Asp Val 50 55 60
Ala Asn Asp Lys Ile Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile 65 70 75 80
Asp Ala Ala Thr Thr Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala 85 90 95
Ile Asn Asp Ile Asn Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala
Ala Leu Glu Glu Phe Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala 115 120 125
Pro Leu Asn Pro Asp Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu 130 135 140
Arg Ile Asn Ala Ala Lys Val Ser Gly Val
<210> SEQ ID NO 35 <211> LENGTH: 2319 <212> TYPE: DNA
<213> ORGANISM: Staphylococcus aureus
<400> SEQUENCE: 35
atgaaagett tattaettaa aacaagtgta tggetegttt tgetttttag tgtaatggga 60
ttatggcaag tctcgaacgc ggctgagcag catacaccaa tgaaagcaca tgcagtaaca 120
acgatagaca aagcaacaac agataagcaa caagtaccgc caacaaagga agcggctcat 180
cattetggea aagaagegge aaccaaegta teageateag egeagggaae agetgatgat 240
acaaacagca aagtaacatc caacgcacca tctaacaaac catctacagt agtttcaaca 300
aaagtaaacg aaacacgcga cgtagataca caacaagcct caacacaaaa accaactcac 360
acagcaacgt tcaaattatc aaatgctaaa acagcatcac tttcaccacg aatgtttgct 420
gctaatgcac cacaaacaac aacacataaa atattacata caaatgatat ccatggccga 480
ctagccgaag aaaaagggcg tgtcatcggt atggctaaat taaaaacagt aaaagaacaa 540
gaaaagcctg atttaatgtt agacgcagga gacgccttcc aaggtttacc actttcaaac 600
cagtctaaag gtgaagaaat ggctaaagca atgaatgcag taggttatga tgctatggca 660
gtoggtaaco atgaatttga otttggatao gatoagttga aaaagttaga gggtatgtta 720
gactteeega tgetaagtae taaegtttat aaagatggaa aaegegegtt taageettea 780
acgattgtaa caaaaaatgg tattcgttat ggaattattg gtgtaacgac accagaaaca 840
aagacgaaaa caagacctga aggcattaaa ggcgttgaat ttagagatcc attacaaagt 900
gtgacagogg aaatgatgog tatttataaa gacgtagata catttgttgt tatatcacat 960
ttaggaattg atcetteaac acaagaaaca tggegtggtg attacttagt gaaacaatta 1020
agtcaaaatc cacaattgaa gaaacgtatt acagttattg atggtcattc acatacagta 1080
cttcaaaatg gtcaaattta taacaatgat gcattggcac aaacaggtac agcacttgcg 1140

aatatcggta agattacatt	taattatcgc aatggagagg	tatcgaatat taaaccgtca	1200
ttgattaatg ttaaagacgt	tgaaaatgta acaccgaaca	aagcattagc tgaacaaatt	1260
aatcaagctg atcaaacatt	tagagcacaa actgcagagg	taattattcc aaacaatacc	1320
attgatttca aaggagaaag	agatgacgtt agaacgcgtg	aaacaaattt aggaaacgcg	1380
attgcagatg ctatggaagc	gtatggcgtt aagaatttct	ctaaaaagac tgactttgcc	1440
gtgacaaatg gtggaggtat	tcgtgcctct atcgcaaaag	gtaaggtgac acgctatgat	1500
ttaatctcag tattaccatt	tggaaatacg attgcgcaaa	ttgatgtaaa aggttcagac	1560
gtctggacgg ctttcgaaca	tagtttaggc gcaccaacaa	cacaaaagga cggtaagaca	1620
gtgttaacag cgaatggcgg	tttactacat atctctgatt	caatccgtgt ttactatgat	1680
ataaataaac cgtctggcaa	acgaattaat gctattcaaa	ttttaaataa agagacaggt	1740
aagtttgaaa atattgattt	aaaacgtgta tatcacgtaa	cgatgaatga cttcacagca	1800
tcaggtggcg acggatatag	tatgttcggt ggtcctagag	aagaaggtat ttcattagat	1860
caagtactag caagttattt	aaaaacagct aacttagcta	agtatgatac gacagaacca	1920
caacgtatgt tattaggtaa	accagcagta agtgaacaac	cagctaaagg acaacaaggt	1980
agcaaaggta gtaagtctgg	taaagataca caaccaattg	gtgacgacaa agtgatggat	2040
ccagcgaaaa aaccagctcc	aggtaaagtt gtattgttgc	tagcgcatag aggaactgtt	2100
agtagcggta cagaaggttc	tggtcgcaca atagaaggag	ctactgtatc aagcaagagt	2160
gggaaacaat tggctagaat	gtcagtgcct aaaggtagcg	cgcatgagaa acagttacca	2220
aaaactggaa ctaatcaaag	ttcaagccca gaagcgatgt	ttgtattatt agcaggtata	2280
ggtttaatcg cgactgtacg	acgtagaaaa gctagctaa		2319
<210> SEQ ID NO 36 <211> LENGTH: 745 <212> TYPE: PRT <213> ORGANISM: Staphy	/lococcus aureus		
<400> SEQUENCE: 36			
Ala Glu Gln His Thr Pr 1 5	o Met Lys Ala His Ala 10	Val Thr Thr Ile Asp 15	
Lys Ala Thr Thr Asp Ly 20	vs Gln Gln Val Pro Pro 25	Thr Lys Glu Ala Ala 30	
His His Ser Gly Lys Gl 35	Lu Ala Ala Thr Asn Val 40	Ser Ala Ser Ala Gln 45	
Gly Thr Ala Asp Asp Th	nr Asn Ser Lys Val Thr 55	Ser Asn Ala Pro Ser 60	
Asn Lys Pro Ser Thr Va	al Val Ser Thr Lys Val	Asn Glu Thr Arg Asp 80	
Val Asp Thr Gln Gln Al 85	la Ser Thr Gln Lys Pro 90	Thr His Thr Ala Thr 95	
Phe Lys Leu Ser Asn Al	la Lys Thr Ala Ser Leu 105	Ser Pro Arg Met Phe 110	
Ala Ala Asn Ala Pro Gl 115	In Thr Thr His Lys	Ile Leu His Thr Asn 125	
Asp Ile His Gly Arg Le	eu Ala Glu Glu Lys Gly 135	Arg Val Ile Gly Met 140	

Ala Lys Leu Lys Thr Val Lys Glu Gln Glu Lys Pro Asp Leu Met Leu

145					150					155					160
Asp	Ala	Gly	Asp	Ala 165	Phe	Gln	Gly	Leu	Pro 170	Leu	Ser	Asn	Gln	Ser 175	ГЛа
Gly	Glu	Glu	Met 180	Ala	Lys	Ala	Met	Asn 185	Ala	Val	Gly	Tyr	Asp 190	Ala	Met
Ala	Val	Gly 195	Asn	His	Glu	Phe	Asp 200	Phe	Gly	Tyr	Asp	Gln 205	Leu	ГЛа	ГЛа
Leu	Glu 210	Gly	Met	Leu	Asp	Phe 215	Pro	Met	Leu	Ser	Thr 220	Asn	Val	Tyr	Lys
Asp 225	Gly	Lys	Arg	Ala	Phe 230	Lys	Pro	Ser	Thr	Ile 235	Val	Thr	Lys	Asn	Gly 240
Ile	Arg	Tyr	Gly	Ile 245	Ile	Gly	Val	Thr	Thr 250	Pro	Glu	Thr	Lys	Thr 255	ГЛа
Thr	Arg	Pro	Glu 260	Gly	Ile	Lys	Gly	Val 265	Glu	Phe	Arg	Asp	Pro 270	Leu	Gln
Ser	Val	Thr 275	Ala	Glu	Met	Met	Arg 280	Ile	Tyr	Lys	Asp	Val 285	Asp	Thr	Phe
Val	Val 290	Ile	Ser	His	Leu	Gly 295	Ile	Asp	Pro	Ser	Thr 300	Gln	Glu	Thr	Trp
Arg 305	Gly	Asp	Tyr	Leu	Val 310	Lys	Gln	Leu	Ser	Gln 315	Asn	Pro	Gln	Leu	Lys 320
ГÀа	Arg	Ile	Thr	Val 325	Ile	Asp	Gly	His	Ser 330	His	Thr	Val	Leu	Gln 335	Asn
Gly	Gln	Ile	Tyr 340	Asn	Asn	Asp	Ala	Leu 345	Ala	Gln	Thr	Gly	Thr 350	Ala	Leu
Ala	Asn	Ile 355	Gly	Lys	Ile	Thr	Phe 360	Asn	Tyr	Arg	Asn	Gly 365	Glu	Val	Ser
Asn	Ile 370	ГÀв	Pro	Ser	Leu	Ile 375	Asn	Val	Lys	Asp	Val 380	Glu	Asn	Val	Thr
Pro 385	Asn	Lys	Ala	Leu	Ala 390	Glu	Gln	Ile	Asn	Gln 395	Ala	Asp	Gln	Thr	Phe 400
Arg	Ala	Gln	Thr	Ala 405	Glu	Val	Ile	Ile	Pro 410	Asn	Asn	Thr	Ile	Asp 415	Phe
Lys	Gly	Glu	Arg 420	Asp	Asp	Val	Arg	Thr 425	Arg	Glu	Thr	Asn	Leu 430	Gly	Asn
Ala	Ile	Ala 435	Asp	Ala	Met	Glu	Ala 440	Tyr	Gly	Val	Lys	Asn 445	Phe	Ser	Lys
Lys	Thr 450	Asp	Phe	Ala	Val	Thr 455	Asn	Gly	Gly	Gly	Ile 460	Arg	Ala	Ser	Ile
Ala 465	Lys	Gly	Lys	Val	Thr 470	Arg	Tyr	Asp	Leu	Ile 475	Ser	Val	Leu	Pro	Phe 480
Gly	Asn	Thr	Ile	Ala 485	Gln	Ile	Asp	Val	Lys 490	Gly	Ser	Asp	Val	Trp 495	Thr
Ala	Phe	Glu	His 500	Ser	Leu	Gly	Ala	Pro 505	Thr	Thr	Gln	Lys	Asp 510	Gly	Lys
Thr	Val	Leu 515	Thr	Ala	Asn	Gly	Gly 520	Leu	Leu	His	Ile	Ser 525	Asp	Ser	Ile
Arg	Val 530	Tyr	Tyr	Asp	Ile	Asn 535	Lys	Pro	Ser	Gly	Lys 540	Arg	Ile	Asn	Ala
Ile 545	Gln	Ile	Leu	Asn	Lуз 550	Glu	Thr	Gly	Lys	Phe 555	Glu	Asn	Ile	Asp	Leu 560

570 565 Asp Gly Tyr Ser Met Phe Gly Gly Pro Arg Glu Glu Gly Ile Ser Leu 580 585 Asp Gln Val Leu Ala Ser Tyr Leu Lys Thr Ala Asn Leu Ala Lys Tyr 600 Asp Thr Thr Glu Pro Gln Arg Met Leu Leu Gly Lys Pro Ala Val Ser 615 Glu Gln Pro Ala Lys Gly Gln Gln Gly Ser Lys Gly Ser Lys Ser Gly Lys Asp Thr Gln Pro Ile Gly Asp Asp Lys Val Met Asp Pro Ala Lys Lys Pro Ala Pro Gly Lys Val Val Leu Leu Leu Ala His Arg Gly Thr Val Ser Ser Gly Thr Glu Gly Ser Gly Arg Thr Ile Glu Gly Ala Thr 680 Val Ser Ser Lys Ser Gly Lys Gln Leu Ala Arg Met Ser Val Pro Lys Gly Ser Ala His Glu Lys Gln Leu Pro Lys Thr Gly Thr Asn Gln Ser Ser Ser Pro Glu Ala Met Phe Val Leu Leu Ala Gly Ile Gly Leu Ile Ala Thr Val Arg Arg Arg Lys Ala Ser 740 <210> SEQ ID NO 37 <211> LENGTH: 322 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus sp. <400> SEOUENCE: 37 Met Met Lys Met Lys Thr Arg Ile Val Ser Ser Val Thr Thr Leu 10 Leu Leu Gly Ser Ile Leu Met Asn Pro Val Ala Asn Ala Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser Asn Thr Thr 40 Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu Asn Gly Met His Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn His Asn Lys Lys Ile Leu Val Ile Arg Thr Lys Gly Thr Ile Ala Gly Gln Tyr Arg Val Tyr Ser Glu Glu Gly Ala Asn Lys Ser Gly Leu Ala Trp Pro Ser Ala 105 Phe Lys Val Gln Leu Gln Leu Pro Asp Asn Glu Val Ala Gln Ile Ser Asp Tyr Tyr Pro Arg Asn Ser Ile Asp Thr Lys Glu Tyr Met Ser Thr Leu Thr Tyr Gly Phe Asn Gly Asn Val Thr Gly Asp Asp Ser Gly Lys 155 Ile Gly Gly Leu Ile Gly Ala Asn Val Ser Ile Gly His Thr Leu Lys

Lys Arg Val Tyr His Val Thr Met Asn Asp Phe Thr Ala Ser Gly Gly

_																
					165					170					175	
Ту	r Va	l Gl:		ro .80	Asp	Phe	ГЛа	Thr	Ile 185	Leu	Glu	Ser	Pro	Thr 190	Asp	ГХа
Ly	s Va	l Gl; 19	-	rp	Lys	Val	Ile	Phe 200	Asn	Asn	Met	Val	Asn 205	Gln	Asn	Trp
Gl [.]	y Pr	_	r A	ap	Arg	Asp	Ser 215	Trp	Asn	Pro	Val	Tyr 220	Gly	Asn	Gln	Leu
Ph 22		t Ly	s T	hr	Arg	Asn 230	Gly	Ser	Met	ГХа	Ala 235	Ala	Glu	Asn	Phe	Leu 240
As	p Pr	o As:	n L	'nε	Ala 245	Ser	Ser	Leu	Leu	Ser 250	Ser	Gly	Phe	Ser	Pro 255	Asp
Ph	e Al	a Th		7al 260	Ile	Thr	Met	Asp	Arg 265	ГЛа	Ala	Thr	Lys	Gln 270	Gln	Thr
As	n Il	e As; 27		al.	Ile	Tyr	Glu	Arg 280	Val	Arg	Asp	Asp	Tyr 285	Gln	Leu	His
Tr	p Th 29		r T	hr	Asn	Trp	Lys 295	Gly	Thr	Asn	Thr	Tys	Asp	Lys	Trp	Thr
As;	_	g Se	r S	er	Glu	Arg 310	Tyr	Lys	Ile	Asp	Trp 315	Glu	Lys	Glu	Glu	Met 320
Th	r As:	n														
<2 <2	10> 11> 12> 13>	LENG IYPE	ΓΗ: : Ρ	10 RT	419	phylo	0000	cus :	≅p.							
< 4	00>	SEQU	ENC	E:	38											
Me 1	t As:	n Ty	r A	arg	Asp 5	Lys	Ile	Gln	Lys	Phe 10	Ser	Ile	Arg	Lys	Tyr 15	Thr
Va	l Gl	y Th		he 0	Ser	Thr	Val	Ile	Ala 25	Thr	Leu	Val	Phe	Leu 30	Gly	Phe
As	n Th	r Se	r G	ln	Ala	His	Ala	Ala 40	Glu	Thr	Asn	Gln	Pro 45	Ala	Ser	Val
Va	1 Ly 50	s Gl:	n L	'nε	Gln	Gln	Ser 55	Asn	Asn	Glu	Gln	Thr 60	Glu	Asn	Arg	Glu
Se 65	r Gl	n Va	l G	ln	Asn	Ser 70	Gln	Asn	Ser	Gln	Asn 75	Gly	Gln	Ser	Leu	Ser 80
Al	a Th	r Hi	s G		Asn 85	Glu	Gln	Pro		Ile 90	Ser	Gln	Ala	Asn	Leu 95	Val
As	p Gl:	n Ly		7al .00	Ala	Gln	Ser	Ser	Thr	Thr	Asn	Asp	Glu	Gln 110	Pro	Ala
Se	r Gl:	n As:		al	Asn	Thr	Lys	Lys 120	Asp	Ser	Ala	Thr	Ala 125	Ala	Thr	Thr
Gl:	n Pr		o L	ıλa	Glu	Gln	Ser 135	Lys	His	Lys	Gln	Asn 140	Glu	Ser	Gln	Ser
Al 14	a As	ı Lv	s A	Asn	Glv	Asn	Asp	Asn	Arg	Ala	Ala	His	Val	Glu	Asn	His
		2			1	150			_		155					160
Gl	5					150				Ser 170				Gly	Asn 175	
	5 u Al	a As:	n V	al,	Val 165	150 Thr	Ala	Ser	Asp	170	Ser	Asp	Asn	-		Val

		195					200					205			
Tyr	Val 210	Lys	Gly	Ile	Phe	Asp 215	Lys	Ile	Asn	Thr	Leu 220	Leu	Gly	Ser	Asn
Asp 225	Pro	Ile	Asn	Asn	Lys 230	Asp	Leu	Gln	Leu	Ala 235	Tyr	Lys	Glu	Leu	Glu 240
Gln	Ala	Val	Ala	Leu 245	Ile	Arg	Thr	Met	Pro 250	Gln	Arg	Gln	Gln	Thr 255	Ser
Arg	Arg	Ser	Asn 260	Arg	Ile	Gln	Thr	Arg 265	Ser	Val	Glu	Ser	Arg 270	Ala	Ala
Glu	Pro	Arg 275	Ser	Val	Ser	Asp	Tyr 280	Gln	Asn	Ala	Asn	Ser 285	Ser	Tyr	Tyr
Val	Glu 290	Asn	Ala	Asn	Asp	Gly 295	Ser	Gly	Tyr	Pro	Val 300	Gly	Thr	Tyr	Ile
Asn 305	Ala	Ser	Ser	Lys	Gly 310	Ala	Pro	Tyr	Asn	Leu 315	Pro	Thr	Thr	Pro	Trp 320
Asn	Thr	Leu	Lys	Ala 325	Ser	Asp	Ser	Lys	Glu 330	Ile	Ala	Leu	Met	Thr 335	Ala
Lys	Gln	Thr	Gly 340	Asp	Gly	Tyr	Gln	Trp 345	Val	Ile	Lys	Phe	Asn 350	Lys	Gly
His	Ala	Pro 355	His	Gln	Asn	Met	Ile 360	Phe	Trp	Phe	Ala	Leu 365	Pro	Ala	Asp
Gln	Val 370	Pro	Val	Gly	Arg	Thr 375	Asp	Phe	Val	Thr	Val 380	Asn	Ser	Asp	Gly
Thr 385	Asn	Val	Gln	Trp	Ser 390	His	Gly	Ala	Gly	Ala 395	Gly	Ala	Asn	ГÀа	Pro 400
Leu	Gln	Gln	Met	Trp 405	Glu	Tyr	Gly	Val	Asn 410	Asp	Pro	His	Arg	Ser 415	His
Asp	Phe	Lys	Ile 420	Arg	Asn	Arg	Ser	Gly 425	Gln	Val	Ile	Tyr	Asp 430	Trp	Pro
Thr	Val	His 435	Ile	Tyr	Ser	Leu	Glu 440	Aap	Leu	Ser	Arg	Ala 445	Ser	Asp	Tyr
Phe	Ser 450	Glu	Ala	Gly	Ala	Thr 455	Pro	Ala	Thr	ГÀв	Ala 460	Phe	Gly	Arg	Gln
Asn 465	Phe	Glu	Tyr	Ile	Asn 470	Gly	Gln	ГЛа	Pro	Ala 475	Glu	Ser	Pro	Gly	Val 480
Pro	Lys	Val	Tyr	Thr 485	Phe	Ile	Gly	Gln	Gly 490	Asp	Ala	Ser	Tyr	Thr 495	Ile
Ser	Phe	Lys	Thr 500	Gln	Gly	Pro	Thr	Val 505	Asn	ГÀа	Leu	Tyr	Tyr 510	Ala	Ala
Gly	Gly	Arg 515	Ala	Leu	Glu	Tyr	Asn 520	Gln	Leu	Phe	Met	Tyr 525	Ser	Gln	Leu
Tyr	Val 530	Glu	Ser	Thr	Gln	Asp 535	His	Gln	Gln	Arg	Leu 540	Asn	Gly	Leu	Arg
Gln 545	Val	Val	Asn	Arg	Thr 550	Tyr	Arg	Ile	Gly	Thr 555	Thr	Lys	Arg	Val	Glu 560
Val	Ser	Gln	Gly	Asn 565	Val	Gln	Thr	Lys	Lys 570	Val	Leu	Glu	Ser	Thr 575	Asn
Leu	Asn	Ile	Asp 580	Asp	Phe	Val	Asp	Asp 585	Pro	Leu	Ser	Tyr	Val 590	Lys	Thr
Pro	Ser	Asn 595	Lys	Val	Leu	Gly	Phe 600	Tyr	Ser	Asn	Asn	Ala 605	Asn	Thr	Asn

Ala	Phe 610	Arg	Pro	Gly	Gly	Ala 615	Gln	Gln	Leu	Asn	Glu 620	Tyr	Gln	Leu	Ser
Gln 625	Leu	Phe	Thr	Asp	Gln 630	Lys	Leu	Gln	Glu	Ala 635	Ala	Arg	Thr	Arg	Asn 640
Pro	Ile	Arg	Leu	Met 645	Ile	Gly	Phe	Asp	Tyr 650	Pro	Asp	Ala	Tyr	Gly 655	Asn
Ser	Glu	Thr	Leu 660	Val	Pro	Val	Asn	Leu 665	Thr	Val	Leu	Pro	Glu 670	Ile	Gln
His	Asn	Ile 675	Lys	Phe	Phe	Lys	Asn 680	Asp	Asp	Thr	Gln	Asn 685	Ile	Ala	Glu
ГЛа	Pro 690	Phe	Ser	ГЛа	Gln	Ala 695	Gly	His	Pro	Val	Phe 700	Tyr	Val	Tyr	Ala
Gly 705	Asn	Gln	Gly	Asn	Ala 710	Ser	Val	Asn	Leu	Gly 715	Gly	Ser	Val	Thr	Ser 720
Ile	Gln	Pro	Leu	Arg 725	Ile	Asn	Leu	Thr	Ser 730	Asn	Glu	Asn	Phe	Thr 735	Asp
Lys	Asp	Trp	Gln 740	Ile	Thr	Gly	Ile	Pro 745	Arg	Thr	Leu	His	Ile 750	Glu	Asn
Ser	Thr	Asn 755	Arg	Pro	Asn	Asn	Ala 760	Arg	Glu	Arg	Asn	Ile 765	Glu	Leu	Val
Gly	Asn 770	Leu	Leu	Pro	Gly	Asp 775	Tyr	Phe	Gly	Thr	Ile 780	Arg	Phe	Gly	Arg
Lys 785	Glu	Gln	Leu	Phe	Glu 790	Ile	Arg	Val	Lys	Pro 795	His	Thr	Pro	Thr	Ile 800
Thr	Thr	Thr	Ala	Glu 805	Gln	Leu	Arg	Gly	Thr 810	Ala	Leu	Gln	Lys	Val 815	Pro
Val	Asn	Ile	Ser 820	Gly	Ile	Pro	Leu	Asp 825	Pro	Ser	Ala	Leu	Val 830	Tyr	Leu
Val	Ala	Pro 835	Thr	Asn	Gln	Thr	Thr 840	Asn	Gly	Gly	Ser	Glu 845	Ala	Asp	Gln
Ile	Pro 850	Ser	Gly	Tyr	Thr	Ile 855	Leu	Ala	Thr	Gly	Thr 860	Pro	Asp	Gly	Val
His 865	Asn	Thr	Ile	Thr	Ile 870	Arg	Pro	Gln	Asp	Tyr 875	Val	Val	Phe	Ile	Pro 880
Pro	Val	Gly	Lys	Gln 885	Ile	Arg	Ala	Val	Val 890	Tyr	Tyr	Asn	Lys	Val 895	Val
Ala	Ser	Asn	Met 900	Ser	Asn	Ala	Val	Thr 905	Ile	Leu	Pro	Asp	Asp 910	Ile	Pro
Pro	Thr	Ile 915	Asn	Asn	Pro	Val	Gly 920	Ile	Asn	Ala	ГÀа	Tyr 925	Tyr	Arg	Gly
Asp	Glu 930	Val	Asn	Phe	Thr	Met 935	Gly	Val	Ser	Asp	Arg 940	His	Ser	Gly	Ile
Lys 945	Asn	Thr	Thr	Ile	Thr 950	Thr	Leu	Pro	Asn	Gly 955	Trp	Thr	Ser	Asn	Leu 960
Thr	Lys	Ala	Asp	Lys 965	Asn	Asn	Gly	Ser	Leu 970	Ser	Ile	Thr	Gly	Arg 975	Val
Ser	Met	Asn	Gln 980	Ala	Phe	Asn	Ser	Asp 985	Ile	Thr	Phe	Lys	Val 990	Ser	Ala
Thr	Asp	Asn 995	Val	Asn	Asn	Thr	Thr 1000		n Ası	Sei	r Glı	100		/s H:	is Val

											001	.10 11	ıucc	
Ser	Ile 1010	His	Val	Gly	Lys	Ile 1015	Ser	Glu	Asp	Ala	His 1020	Pro	Ile	Val
Leu	Gly 1025	Asn	Thr	Glu	Lys	Val 1030		Val	Val	Asn	Pro 1035	Thr	Ala	Val
Ser	Asn 1040	Asp	Glu	ГХа		Ser 1045		Ile	Thr	Ala	Phe 1050	Met	Asn	Lys
Asn	Gln 1055	Asn	Ile	Arg	Gly	Tyr 1060		Ala	Ser		Asp 1065	Pro	Val	Thr
Val		Asn	Asn	Gly			Thr	Leu	His	Tyr	Arg	Asp	Gly	Ser
Ser		Thr	Leu	Asp				Val	Met	Thr	Tyr	Glu	Pro	Val
Val	Lys	Pro	Glu	Tyr		Thr	Val	Asn	Ala	Ala	1095 Lys	Thr	Ala	Thr
Val	1100 Thr	Ile	Ala	Lys		1105 Gln	Ser	Phe	Ser		1110 Gly	Asp	Ile	Lys
Gln	1115 Tyr	Phe	Thr	Leu	Ser	1120 Asn		Gln	Pro	Ile	1125 Pro	Ser	Gly	Thr
	1130					1135	-				1140 Thr		-	
	1145					1150	_				1155			
	1160					1165					His 1170			
	1175		-			1180			Ī		Tyr 1185			
ГÀа	Ile 1190	Ile	Asp	Val	ГÀа	Gln 1195	Pro	Glu	Gly	Asp	Gln 1200	Arg	Val	Tyr
Arg	Thr 1205	Ser	Thr	Tyr	Asp	Leu 1210	Thr	Thr	Asp		Ile 1215	Ser	Lys	Val
rys	Gln 1220	Ala	Phe	Ile	Asn	Ala 1225	Asn	Arg	Asp		Ile 1230	Thr	Leu	Ala
Glu	Gly 1235	Asp	Ile	Ser	Val	Thr 1240	Asn	Thr	Pro		Gly 1245	Ala	Asn	Val
Ser	Thr 1250	Ile	Thr	Val	Asn	Ile 1255	Asn	Lys	Gly	_	Leu 1260	Thr	Lys	Ser
Phe	Ala 1265	Ser	Asn	Leu	Ala	Asn 1270	Met	Asn	Phe		Arg 1275	Trp	Val	Asn
Phe		Gln	Asp	Tyr	Thr		Thr	Trp	Thr		Ala 1290	rys	Ile	Ala
Asn	Arg	Pro	Thr	Asp	Gly	Gly	Leu	Ser	Trp	Ser	Asp	Asp	His	Lys
Ser			Tyr	Arg	Tyr			Thr	Leu	Gly	1305 Thr	Gln	Ile	Thr
Thr		Asp	Ile	Leu	Thr		Leu	Lys	Ala	Thr	1320 Thr	Thr	Val	Pro
Gly	1325 Leu		Asn	Asn	Ile	1330 Thr		Asn	Glu	Lys	1335 Ser	Gln	Ala	Glu
	1340					1345	_			-	1350 Tyr			
	1355					1360					1365			
ASI	1370	ınr	ınr	Asp	стХ	1375	arg	GIN	rne	ınr	Leu 1380	ASI	- GTÀ	GIN
TT - 7														

Val Ile Gln Val Leu Asp Ile Ile Asn Pro Ser Asn Gly Tyr Gly

											-001	ILTI	ruec	ı
	1385					1390					1395			
Gly	Gln 1400		Val	Thr	Asn	Ser 1405		Thr	Arg		Asn 1410		Ser	Asn
Ser	Thr 1415		Val	Asn	Val	Asn 1420		Pro	Ala		Asn 1425	Gly	Ala	Gly
Ala	Phe 1430		Ile	Asp	His	Val 1435		Lys			Ser 1440		His	Asn
Ala	Ser 1445		Ala	Val	Tyr	Lys 1450					Leu 1455	Thr	Pro	Tyr
Gly	Pro 1460		Gln	Tyr	Val	Glu 1465		Leu	Asn	Gln	Asn 1470	Thr	Gly	Asn
Thr	Thr 1475		Ala	Ile	Asn	Ile 1480		Phe	Val	Pro	Ser 1485	Asp	Leu	Val
Asn	Pro 1490		Ile	Ser	Val	Gly 1495		Tyr			His 1500	Gln	Val	Phe
Ser	Gly 1505		Thr	Phe	Thr	Asn 1510		Ile	Thr	Ala	Asn 1515	Asp	Asn	Phe
Gly	Val 1520		Ser	Val	Thr	Val 1525		Asn	Thr	Ser	Gln 1530	Ile	Thr	Gly
Thr	Val 1535		Asn	Asn	His	Gln 1540		Val	Ser	Ala	Thr 1545	Ala	Pro	Asn
Val	Thr 1550		Ala	Thr	Asn	Lys 1555		Ile	Asn	Leu	Leu 1560	Ala	Thr	Asp
Thr	Ser 1565		Asn	Thr	Ala	Thr 1570		Ser	Phe	Asn	Val 1575	Thr	Val	Lys
Pro	Leu 1580		Asp	Lys	Tyr	Arg 1585			Thr		Ser 1590		Ala	Ala
Asn	Pro 1595		Arg	Ile	Ala	Asn 1600		Ser	Asn	Asn	Ala 1605	Thr	Val	Ser
Gln	Ala 1610		Gln	Thr	Thr	Ile 1615		Asn	Ser	Leu	Thr 1620	Phe	Thr	Glu
Thr	Val 1625		Asn	Arg	Ser	Tyr 1630		Arg	Ala	Ser	Ala 1635	Asn	Glu	Ile
Thr	Ser 1640		Thr	Val	Ser	Asn 1645		Ser	Arg	Thr	Gly 1650	Asn	Asn	Ala
Asn	Val 1655	Thr	Val	Thr		Thr 1660	-		-	-	Thr 1665		Ser	Thr
Val	Thr 1670	Val	Pro	Val	Lys	His 1675	Val	Ile	Pro	Glu	Ile 1680	Val	Ala	His
Ser	His 1685	Tyr	Thr	Val	Gln	Gly 1690	Gln	Asp	Phe	Pro	Ala 1695	Gly	Asn	Gly
Ser	Ser 1700	Ala	Ser	Asp	Tyr	Phe 1705	Lys	Leu	Ser	Asn	Gly 1710	Ser	Asp	Ile
Ala	Asp 1715	Ala	Thr	Ile	Thr	Trp 1720	Val	Ser	Gly	Gln	Ala 1725	Pro	Asn	Lys
Asp	Asn 1730	Thr	Arg	Ile	Gly	Glu 1735	Asp	Ile	Thr	Val	Thr 1740	Ala	His	Ile
Leu	Ile 1745	Asp	Gly	Glu	Thr	Thr 1750	Pro	Ile	Thr	Lys	Thr 1755	Ala	Thr	Tyr
Lys	Val 1760	Val	Arg	Thr	Val	Pro 1765	Lys	His	Val	Phe	Glu 1770	Thr	Ala	Arg

Gly	Val 1775	Leu	Tyr	Pro	Gly	Val 1780		Asp	Met	Tyr	Asp 1785		Lys	Gln
Tyr	Val 1790	Lys	Pro	Val	Asn	Asn 1795		Trp	Ser	Thr	Asn 1800	Ala	Gln	His
Met	Asn 1805	Phe	Gln	Phe	Val	Gly 1810		Tyr	Gly	Pro	Asn 1815	Lys	Asp	Val
Val	Gly 1820	Ile	Ser	Thr	Arg	Leu 1825		Arg	Val	Thr	Tyr 1830	Asp	Asn	Arg
Gln	Thr 1835	Glu	Asp	Leu	Thr	Ile 1840		Ser	Lys	Val	Lys 1845	Pro	Asp	Pro
Pro	Arg 1850	Ile	Asp	Ala	Asn	Ser 1855		Thr	Tyr	Lys	Ala 1860	Gly	Leu	Thr
Asn	Gln 1865	Glu	Ile	Lys	Val	Asn 1870		Val	Leu	Asn	Asn 1875		Ser	Val
Lys	Leu 1880	Phe	Lys	Ala	Asp	Asn 1885		Pro	Leu	Asn	Val 1890	Thr	Asn	Ile
Thr	His 1895	Gly	Ser	Gly	Phe	Ser 1900		Val	Val	Thr	Val 1905	Ser	Asp	Ala
Leu	Pro 1910	Asn	Gly	Gly	Ile	Lys 1915	Ala	Lys	Ser	Ser	Ile 1920	Ser	Met	Asn
Asn	Val 1925	Thr	Tyr	Thr	Thr	Gln 1930		Glu	His	Gly	Gln 1935	Val	Val	Thr
Val	Thr 1940	Arg	Asn	Glu	Ser	Val 1945	Asp	Ser	Asn	Asp	Ser 1950	Ala	Thr	Val
Thr	Val 1955	Thr	Pro	Gln	Leu	Gln 1960	Ala	Thr	Thr	Glu	Gly 1965	Ala	Val	Phe
Ile	Lys 1970	Gly	Gly	Asp	Gly	Phe 1975	Asp	Phe	Gly	His	Val 1980	Glu	Arg	Phe
Ile	Gln 1985	Asn	Pro	Pro	His	Gly 1990	Ala	Thr	Val	Ala	Trp 1995	His	Asp	Ser
Pro	Asp 2000	Thr	Trp	Lys	Asn	Thr 2005	Val	Gly	Asn	Thr	His 2010	Lys	Thr	Ala
Val	Val 2015	Thr	Leu	Pro	Asn	Gly 2020	Gln	Gly	Thr	Arg	Asn 2025	Val	Glu	Val
Pro	Val 2030	Lys	Val	Tyr	Pro	Val 2035	Ala	Asn	Ala	Lys	Ala 2040	Pro	Ser	Arg
Asp	Val 2045	Lys	Gly	Gln	Asn	Leu 2050		Asn	Gly	Thr	Asp 2055	Ala	Met	Asn
Tyr	Ile 2060	Thr	Phe	Asp	Pro	Asn 2065		Asn	Thr	Asn	Gly 2070	Ile	Thr	Ala
Ala	Trp 2075	Ala	Asn	Arg	Gln	Gln 2080	Pro	Asn	Asn	Gln	Gln 2085	Ala	Gly	Val
Gln	His 2090	Leu	Asn	Val	Asp	Val 2095	Thr	Tyr	Pro	Gly	Ile 2100	Ser	Ala	Ala
Lys	Arg 2105	Val	Pro	Val	Thr	Val 2110	Asn	Val	Tyr	Gln	Phe 2115	Glu	Phe	Pro
Gln	Thr 2120	Thr	Tyr	Thr	Thr	Thr 2125	Val	Gly	Gly	Thr	Leu 2130	Ala	Ser	Gly
Thr	Gln 2135	Ala	Ser	Gly	Tyr	Ala 2140	His	Met	Gln	Asn	Ala 2145	Thr	Gly	Leu

												1011	ıucc	٠.
Pro	Thr 2150	Asp	Gly	Phe	Thr	Tyr 2155	Lys	Trp	Asn	Arg	Asp 2160	Thr	Thr	Gly
Thr	Asn 2165	Asp	Ala	Asn	Trp	Ser 2170	Ala	Met	Asn	Lys	Pro 2175	Asn	Val	Ala
Lys	Val 2180	Val	Asn	Ala	Lys	Tyr 2185	_	Val	Ile	Tyr	Asn 2190	Gly	His	Thr
Phe	Ala 2195	Thr	Ser	Leu	Pro	Ala 2200	Lys	Phe	Val	Val	Lys 2205	Asp	Val	Gln
Pro	Ala 2210	Lys	Pro	Thr	Val	Thr 2215	Glu	Thr	Ala	Ala	Gly 2220	Ala	Ile	Thr
Ile	Ala 2225	Pro	Gly	Ala	Asn	Gln 2230	Thr	Val	Asn	Thr	His 2235	Ala	Gly	Asn
Val	Thr 2240	Thr	Tyr	Ala	Asp	Lys 2245		Val	Ile	Lys	Arg 2250	Asn	Gly	Asn
Val	Val 2255	Thr	Thr	Phe	Thr	Arg 2260	Arg	Asn	Asn	Thr	Ser 2265	Pro	Trp	Val
Lys		Ala	Ser	Ala	Ala			Ala	Gly	Ile	Ala 2280	Gly	Thr	Asn
Asn		Ile	Thr	Val	Ala			Thr	Phe	Asn	Pro 2295	Ala	Asp	Thr
Ile		Val	Val	Ala	Thr		Gly	Ser	Gly	Glu	Thr 2310	Val	Ser	Asp
Glu		Arg	Ser	Asp	Asp		Thr	Val	Val	Ala	Pro 2325	Gln	Pro	Asn
Gln		Thr	Thr	Lys	Ile		Gln	Asn	Gly	His	Ile 2340	Asp	Ile	Thr
Pro	Asn	Asn	Pro	Ser	Gly		Leu	Ile	Asn	Pro	7hr 2355	Gln	Ala	Met
Asp		Ala	Tyr	Thr	Glu	Lys	Val	Gly	Asn	Gly	Ala	Glu	His	Ser
Lys		Ile	Asn	Val	Val	_	_	Gln	Asn	Asn	2370 Gln	Trp	Thr	Ile
Ala		ГÀв	Pro	Asp	Tyr			Leu	Asp	Ala	2385 Gln	Thr	Gly	Lys
Val	2390 Thr	Phe	Asn	Ala	Asn	2395 Thr	Ile	Lys	Pro	Asn	2400 Ser	Ser	Ile	Thr
Ile	2405 Thr	Pro	Lys	Ala	Glv	2410 Thr	Glv	His	Ser	Val	2415 Ser	Ser	Asn	Pro
	2420		-		_	2425	-				2430 Asn			
	2435					2440					2445			
	2450	-	_	-	-	2455					Ala 2460			
	2465					2470	•	J			Thr 2475		-	
Gly	Thr 2480		Met	Pro	Thr	Asn 2485		Ala	Gly	Gly	Ser 2490	Thr	Thr	Thr
Ile	Pro 2495		Thr	Val	Thr	Tyr 2500		Asp	Gly	Ser	Thr 2505	Glu	Glu	Val
Gln	Glu 2510	Ser	Ile	Phe	Thr	Lys 2515		Asp	ГÀа	Arg	Glu 2520	Leu	Ile	Thr
	-	-			-		_		~	m1	~ 7	~ 3	-	

Ala Lys Asn His Leu Asp Asp Pro Val Ser Thr Glu Gly Lys Lys

_														
	2525					2530					2535			
Pr	o Gly 2540		Ile	Thr		Tyr 2545		Asn	Ala	Met	His 2550	Asn	Ala	Gln
Gl	n Gln 2555		Asn	Thr	Ala	Lys 2560		Glu	Ala	Gln	Gln 2565	Val	Ile	Asn
As	n Glu 2570		Ala	Thr	Pro	Gln 2575		Val	Ser		Ala 2580	Leu	Thr	Lys
Va	1 Arg 2585		Ala	Gln		Lys 2590		Asp	Gln	Ala	Lув 2595	Ala	Leu	Leu
Gl	n Asn 2600	-	Glu	Asp		Ser 2605		Leu	Val	Thr	Ser 2610	-	Asn	Asn
Le	u Gln 2615		Ser	Val		Gln 2620		Pro	Ser		Ala 2625	Gly	Met	Thr
Gl	n Gln 2630		Ile	Asp		Tyr 2635			_	_	Arg 2640	Glu	Ala	Glu
Th	r Glu 2645		Thr	Ala	Ala	Gln 2650	_			-	Asn 2655	Gly	Asp	Ala
Th	r Ala 2660		Gln	Ile	Ser	Asp 2665					Val 2670	Asp	Asn	Ala
Le	u Thr 2675		Leu	Asn	Gln	Ala 2680					Thr 2685	Ala	Asp	Thr
Hi	s Ala 2690		Glu	Gln		Val 2695		Gln	Leu	Asn	Arg 2700	Thr	Gly	Thr
Th	r Thr 2705					Ala 2710		Ile	Thr		Tyr 2715	Asn	Asn	Ser
Il	e Arg 2720	Ala			Ser		Leu	Thr	Ser		Lys 2730	Asn	Ser	Ala
As	n Ala 2735	Ile	Ile	Gln			Ile	_	Thr	Val		Glu	Val	Gln
Se	r Ala 2750	Leu	Thr	Asn	Val		Arg					Leu	Thr	Gln
Al	a Ile 2765	Asn	Gln	Leu			Leu					Ala	Leu	Lys
Th	r Ala	Lys			Leu	Asp	Glu	Glu	Ile	Asn		Ser	Val	Thr
Th	r Asp	Gly	Met	Thr	Gln		Ser	Ile	Gln	Ala	Tyr	Glu	Asn	Ala
Ly	s Arg	Ala					Ser					Asn	Val	Ile
As	2810 n Asn	Gly	Asp	Ala	Thr	-	Gln	Gln	Ile	Ala	2820 Ala	Glu	Lys	Thr
Lv	2825 s Val		Glu	Lys	Tyr	2830 Asn		Leu	Lys	Gln	2835 Ala	Ile	Ala	Glv
_	2840 u Thr			-	-	2845			-		2850			_
	2855 n Asn		•			2860					2865			
	2870	•		-		2875					2880			
	a Ser 2885					2890					2895			
Ly	s Ile 2900		Glu	Ile	Asp	Arg 2905		Leu	Ala	Ser	His 2910	Pro	Asp	Val

Ala	Thr 2915		Arg	Gln	Asn	Val 2920		Ala	Ala	Asn	Ala 2925	Ala	Lys	Ser
Ala	Leu 2930		Gln	Ala	Arg	Asn 2935		Leu	Thr	Val	Asp 2940		Ala	Pro
Leu	Glu 2945	Asn	Ala	Lys	Asn	Gln 2950		Gln	His	Ser	Ile 2955	Asp	Thr	Gln
Thr	Ser 2960		Thr	Gly	Met	Thr 2965		Asp	Ser	Ile	Asn 2970	Ala	Tyr	Asn
Ala	Lys 2975		Thr	Ala	Ala	Arg 2980		Lys	Ile	Gln	Gln 2985		Asn	Gln
Val	Leu 2990	Ala	Gly	Ser	Pro	Thr 2995		Glu	Gln	Ile	Asn 3000		Asn	Thr
Ser	Thr 3005		Asn	Gln	Ala	Lys 3010		Asp	Leu	Asp	His 3015	Ala	Arg	Gln
Ala	Leu 3020	Thr	Pro	Asp	ГЛа	Ala 3025	Pro	Leu	Gln	Thr	Ala 3030	Lys	Thr	Gln
Leu	Glu 3035	Gln	Ser	Ile	Asn	Gln 3040		Thr	Asp	Thr	Thr 3045	Gly	Met	Thr
Thr	Ala 3050		Leu	Asn	Ala	Tyr 3055	Asn	Gln	Lys	Leu	Gln 3060	Ala	Ala	Arg
Gln	Lys 3065	Leu	Thr	Glu	Ile	Asn 3070		Val	Leu	Asn	Gly 3075	Asn	Pro	Thr
Val	Gln 3080	Asn	Ile	Asn	Asp	3082 TÀa	Val	Thr	Glu	Ala	Asn 3090	Gln	Ala	ГЛа
Asp	Gln 3095	Leu	Asn	Thr	Ala	Arg 3100	Gln	Gly	Leu	Thr	Leu 3105	Asp	Arg	Gln
Pro	Ala 3110	Leu	Thr	Thr	Leu	His 3115	Gly	Ala	Ser	Asn	Leu 3120	Asn	Gln	Ala
Gln	Gln 3125	Asn	Asn	Phe	Thr	Gln 3130		Ile	Asn	Ala	Ala 3135	Gln	Asn	His
Ala	Ala 3140	Leu	Glu	Thr	Ile	Lys 3145	Ser	Asn	Ile	Thr	Ala 3150	Leu	Asn	Thr
Ala	Met 3155	Thr	Lys	Leu	Lys	Asp 3160	Ser	Val	Ala	Asp	Asn 3165	Asn	Thr	Ile
Lys	Ser 3170	Asp	Gln	Asn	Tyr	Thr 3175	Asp	Ala	Thr	Pro	Ala 3180	Asn	Lys	Gln
Ala	Tyr 3185	Asp	Asn	Ala	Val	Asn 3190	Ala	Ala	Lys	Gly	Val 3195	Ile	Gly	Glu
Thr	Thr 3200	Asn	Pro	Thr	Met	Asp 3205	Val	Asn	Thr	Val	Asn 3210	Gln	Lys	Ala
Ala	Ser 3215	Val	Lys	Ser	Thr	Lys 3220	Asp	Ala	Leu	Asp	Gly 3225	Gln	Gln	Asn
Leu	Gln 3230	Arg	Ala	Lys	Thr	Glu 3235	Ala	Thr	Asn	Ala	Ile 3240	Thr	His	Ala
Ser	Asp 3245	Leu	Asn	Gln	Ala	Gln 3250	Lys	Asn	Ala	Leu	Thr 3255	Gln	Gln	Val
Asn	Ser 3260	Ala	Gln	Asn	Val	Gln 3265	Ala	Val	Asn	Asp	Ile 3270	Lys	Gln	Thr
Thr	Gln 3275	Ser	Leu	Asn	Thr	Ala 3280	Met	Thr	Gly	Leu	Lys 3285	Arg	Gly	Val

_													.10 11	Iuc	
Al	a Asn 329		İs	Asn	Gln	Val	Val 3295	Gln	Ser	Asp		Tyr 3300	Val	Asn	Ala
As	p Thr 330		₹n	Lys	Lys		Asp 3310	-	Asn	Asn	Ala	Tyr 3315	Asn	His	Ala
As	n Asp 332		le	Ile	Asn	Gly	Asn 3325		Gln	His	Pro	Val 3330	Ile	Thr	Pro
Se	r Asp 333		al	Asn	Asn	Ala	Leu 3340	Ser	Asn	Val	Thr	Ser 3345	-	Glu	His
Al	a Leu 335		₹n	Gly	Glu		Lys 3355		Asn	Ala	Ala	3360 Lys	Gln	Glu	Ala
As	n Thr 336		la	Leu	Gly	His	Leu 3370	Asn	Asn	Leu	Asn	Asn 3375	Ala	Gln	Arg
Gl	n Asn 338		eu	Gln	Ser	Gln	Ile 3385		Gly	Ala	His	Gln 3390	Ile	Asp	Ala
Va	1 Asn 339		ır	Ile	Lys		Asn 3400		Thr	Asn	Leu	Asn 3405	Ser	Ala	Met
Gl	y Asn 341		eu	Arg	Gln		Val 3415		Asp	Lys	_	Gln 3420	Val	Lys	Arg
Th	r Glu 342		зp	Tyr	Ala		Ala 3430		Thr	Ala	ГÀз	Gln 3435	Asn	Ala	Tyr
As	n Ser 344		la	Val	Ser	Ser	Ala 3445	Glu	Thr	Ile	Ile	Asn 3450	Gln	Thr	Thr
As	n Pro 345		ır	Met	Ser		Asp 3460	Asp	Val	Asn	Arg	Ala 3465	Thr	Ser	Ala
Va		Se	er	Asn	Lys		Ala 3475	Leu	Asn	Gly	Tyr	Glu 3480	Lys	Leu	Ala
Gl		L	/s	Thr	Asp	Ala	Ala 3490	Arg	Ala	Ile	Asp		Leu	Pro	His
Le		As	n	Ala	Gln	Lys	Ala 3505	_	Val	Lys			Ile	Asn	Ala
Al		As	sn	Ile	Ala		Val 3520		Thr	Val			Gln	Gly	Thr
As		As	sn	Thr	Ala	Met	Gly 3535	Asn	Leu	Gln	Gly		Ile	Asn	Asp
Gl	u Gln	Tì	nr	Thr	Leu	Asn	Ser	Gln	Asn	Tyr	Gln	Asp	Ala	Thr	Pro
Se	_	L	/s	Thr	Ala	Tyr	3550 Thr	Asn	Ala	Val	Gln		Ala	ГЛа	Asp
Il		As	sn	Lys	Ser	Asn	3565 Gly		Asn	Lys	Thr			Gln	Val
Th		A	la	Met	Asn	Gln	3580 Val	Asn	Ser	Ala	Lys			Leu	Asp
Gl	-	Aı	rg	Leu	Leu	Asp	3595 Gln	Ala	Lys	Gln	Thr		Lys	Gln	Gln
Le	360 u Asn		sn	Met	Thr	His	3610 Leu		Thr	Ala	Gln	3615 Lys	Thr	Asn	Leu
Th	362 r Asn		ln	Ile	Asn	Ser	3625 Gly		Thr	Val	Ala	3630 Gly		Gln	Thr
	363	5					3640 Thr					3645			
_	365		_			_	3655		In			3660			

Arg Gln Ser Ile Ala Asn Lys Asp Ala Thr Lys Ala Ser Glu Asp

_											- COI	nt ir	nuec	1 <u> </u>
	3665					3670					3675			
Т	Val 3680		Ala	Asn		Asp 3685		Gln	Thr	Ala	Tyr 3690	Asn	Asn	Ala
V	Ala 3695	Ala	Ala	Glu	Thr	Ile 3700		Asn	Ala	Asn	Ser 3705	Asn	Pro	Glu
M	Asn 3710	Pro	Ser	Thr	Ile	Thr 3715	Gln	Lys	Ala	Glu	Gln 3720	Val	Asn	Ser
S	Lys 3725	Thr	Ala	Leu		Gly 3730		Glu	Asn	Leu	Ala 3735	Ala	Ala	Lys
G	Asn 3740	Ala	Lys	Thr		Leu 3745	Asn	Thr	Leu	Thr	Ser 3750	Ile	Thr	Asp
A	Gln 3755	Lys	Asn	Asn	Leu	Ile 3760		Gln	Ile	Thr	Ser 3765	Ala	Thr	Arg
V	Ser 3770	Gly	Val	Asp	Thr	Val 3775		Gln	Asn	Ala	Gln 3780	His	Leu	Asp
G	Ala 3785	Met	Ala	Ser	Leu	Gln 3790		Gly	Ile	Asn	Asn 3795	Glu	Ser	Gln
V.	Lys 3800	Ser	Ser	Glu	Lys	Tyr 3805		Asp	Ala	Asp	Thr 3810	Asn	Lys	Gln
G	Glu 3815	Tyr	Asp	Asn	Ala	Ile 3820	Thr	Ala	Ala	Lys	Ala 3825	Ile	Leu	Asn
L	Ser 3830	Thr	Gly	Pro	Asn	Thr 3835	Ala	Gln	Asn	Ala	Val 3840	Glu	Ala	Ala
L	Gln 3845	Arg	Val	Asn		Ala 3850		Asp	Ala	Leu	Asn 3855	Gly	Asp	Ala
L	Leu 3860	Ile	Ala	Ala	Gln	Asn 3865		Ala	Lys	Gln	His 3870	Leu	Gly	Thr
L	Thr 3875	His	Ile	Thr	Thr	Ala 3880	Gln	Arg	Asn	Asp	Leu 3885	Thr	Asn	Gln
I	Ser 3890	Gln	Ala	Thr	Asn	Leu 3895	Ala	Gly	Val	Glu	Ser 3900	Val	Lys	Gln
A	Ala 3905	Asn	Ser	Leu	Asp	Gly 3910	Ala	Met	Gly	Asn	Leu 3915	Gln	Thr	Ala
I	Asn 3920	Asp	Lys	Ser	Gly	Thr 3925	Leu	Ala	Ser	Gln	Asn 3930	Phe	Leu	Asp
A	Asp 3935		Gln	_	_	Asn 3940		Tyr			Ala 3945		Ser	Ala
А	Glu 3950	Thr	Ile	Leu	Asn	Lys 3955		Thr	Gly	Pro	Asn 3960	Thr	Ala	Lys
T	Ala 3965	Val	Glu	Gln	Ala	Leu 3970		Asn	Val	Asn	Asn 3975	Ala	Lys	His
A	Leu 3980	Asn	Gly	Thr	Gln	Asn 3985		Asn	Asn	Ala	3990 TÀa	Gln	Ala	Ala
I	Thr 3995	Ala	Ile	Asn	Gly	Ala 4000		Asp	Leu	Asn	Gln 4005	Lys	Gln	ГÀв
A	Ala 4010	Leu	Lys	Ala	Gln	Ala 4015		Gly	Ala	Gln	Arg 4020	Val	Ser	Asn
A	Gln 4025	Asp	Val	Gln	His	Asn 4030		Thr	Glu	Leu	Asn 4035	Thr	Ala	Met
G	Thr 4040	Leu	Lys	His	Ala	Ile 4045		Asp	Lys	Thr	Asn 4050	Thr	Leu	Ala

Ser	Ser 4055	Lys	Tyr	Val	Asn	Ala 4060		Ser	Thr	Lys	Gln 4065		Ala	Tyr
Thr	Thr 4070	Lys	Val	Thr	Asn	Ala 4075		His	Ile	Ile	Ser 4080	Gly	Thr	Pro
Thr	Val 4085	Val	Thr	Thr	Pro	Ser 4090		Val	Thr	Ala	Ala 4095		Asn	Gln
Val	Asn 4100		Ala	Lys	Gln	Glu 4105		Asn	Gly	Asp	Glu 4110		Leu	Arg
Glu	Ala 4115	Lys	Gln	Asn	Ala	Asn 4120		Ala	Ile	Asp	Ala 4125		Thr	Gln
Leu	Asn 4130	Thr	Pro	Gln	ГЛа	Ala 4135		Leu	Lys	Glu	Gln 4140		Gly	Gln
Ala	Asn 4145	Arg	Leu	Glu	Asp	Val 4150		Thr	Val	Gln	Thr 4155		Gly	Gln
Ala	Leu 4160	Asn	Asn	Ala	Met	Lys 4165		Leu	Arg	Asp	Ser 4170		Ala	Asn
Glu	Thr 4175	Thr	Val	Lys	Thr	Ser 4180		Asn	Tyr	Thr	Asp 4185	Ala	Ser	Pro
Asn	Asn 4190	Gln	Ser	Thr	Tyr	Asn 4195		Ala	Val	Ser	Asn 4200		Lys	Gly
Ile	Ile 4205	Asn	Gln	Thr	Asn	Asn 4210		Thr	Met	Asp	Thr 4215	Ser	Ala	Ile
Thr	Gln 4220	Ala	Thr	Thr	Gln	Val 4225	Asn	Asn	Ala	Lys	Asn 4230	Gly	Leu	Asn
Gly	Ala 4235	Glu	Asn	Leu	Arg	Asn 4240		Gln	Asn	Thr	Ala 4245	Lys	Gln	Asn
Leu	Asn 4250	Thr	Leu	Ser	His	Leu 4255		Asn	Asn	Gln	Lys 4260		Ala	Ile
Ser	Ser 4265	Gln	Ile	Asp	Arg	Ala 4270		His	Val	Ser	Glu 4275	Val	Thr	Ala
Thr	Lys 4280	Asn	Ala	Ala	Thr	Glu 4285	Leu	Asn	Thr	Gln	Met 4290	Gly	Asn	Leu
Glu	Gln 4295	Ala	Ile	His	Asp	Gln 4300	Asn	Thr	Val	Lys	Gln 4305	Ser	Val	Lys
Phe	Thr 4310	Asp	Ala	Asp	Lys	Ala 4315	Lys	Arg	Asp	Ala	Tyr 4320		Asn	Ala
Val	Ser 4325	Arg	Ala	Glu	Ala	Ile 4330	Leu	Asn	Lys	Thr	Gln 4335	Gly	Ala	Asn
Thr	Ser 4340	Lys	Gln	Asp	Val	Glu 4345	Ala	Ala	Ile	Gln	Asn 4350		Ser	Ser
Ala	Lys 4355	Asn	Ala	Leu	Asn	Gly 4360	Asp	Gln	Asn	Val	Thr 4365	Asn	Ala	Lys
Asn	Ala 4370	Ala	Lys	Asn	Ala	Leu 4375	Asn	Asn	Leu	Thr	Ser 4380	Ile	Asn	Asn
	Gln 4385	-		_		4390		-		_	4395			
Val	Ala 4400	Gly	Val	Glu	Ala	Val 4405	Ser	Asn	Thr	Ser	Thr 4410	Gln	Leu	Asn
Thr	Ala 4415	Met	Ala	Asn	Leu	Gln 4420	Asn	Gly	Ile	Asn	Asp 4425	rya	Thr	Asn

												-001	ILII	iuec	1
Tì	nr	Leu 4430	Ala	Ser	Glu	Asn	Tyr 4435		Asp	Ala	Asp	Ser 4440	Asp	Lys	Lys
Tì	nr	Ala 4445	Tyr	Thr	Gln	Ala	Val 4450		Asn	Ala	Glu	Asn 4455	Ile	Leu	Asn
L	Уs	Asn 4460		Gly	Ser	Asn	Leu 4465	_	Lys	Thr	Ala	Val 4470	Glu	Asn	Ala
Le	eu	Ser 4475	Gln	Val	Ala	Asn	Ala 4480		Gly	Ala	Leu	Asn 4485	Gly	Asn	His
A	sn	Leu 4490		Gln	Ala	Lys	Ser 4495		Ala	Asn	Thr	Thr 4500	Ile	Asn	Gly
Le	eu	Gln 4505	His	Leu	Thr	Thr	Ala 4510		Lys	Asp	Lys	Leu 4515	Lys	Gln	Gln
Vā	al	Gln 4520		Ala	Gln	Asn	Val 4525		Gly	Val	Asp	Thr 4530	Val	Lys	Ser
Se	er	Ala 4535		Thr	Leu	Asn	Gly 4540		Met	Gly	Thr	Leu 4545	Arg	Asn	Ser
I	le	Gln 4550		Asn	Thr	Ala	Thr 4555		Asn	Gly	Gln	Asn 4560		Leu	Asp
A.	la	Thr 4565		Arg	Asn		Thr 4570		Tyr	Asn	Asn	Ala 4575	Val	Asp	Ser
A.	la	Asn 4580		Val	Ile	Asn	Ala 4585		Ser	Asn	Pro	Asn 4590	Met	Asp	Ala
A	sn	Ala 4595		Asn	Gln	Ile	Ala 4600		Gln	Val	Thr	Ser 4605	Thr	Lys	Asn
A.	la	Leu 4610		Gly	Thr		Asn 4615		Thr	Gln	Ala	Lys 4620	Gln	Thr	Ala
Tì	nr	Asn 4625	Ala	Ile	Asp		Ala 4630		Asn	Leu	Asn	Lys 4635	Ala	Gln	ГÀз
A	ap	Ala 4640		Lys	Ala	Gln	Val 4645		Ser	Ala	Gln	Arg 4650	Val	Ala	Asn
V	al	Thr 4655		Ile	Gln	Gln	Thr 4660		Asn	Glu	Leu	Asn 4665	Thr	Ala	Met
G:	ly	Gln 4670		Gln	His	Gly	Ile 4675		Asp	Glu	Asn	Ala 4680	Thr	Lys	Gln
Tl	nr	Gln 4685	Lys	Tyr	Arg	Asp	Ala 4690		Gln	Ser	Lys	Lys 4695	Thr	Ala	Tyr
A	ap	Gln 4700	Ala	Val	Ala	Ala	Ala 4705		Ala	Ile	Leu	Asn 4710	ГЛа	Gln	Thr
G:	ly	Ser 4715	Asn	Ser	Asp	Lys	Ala 4720	Ala	Val	Asp	Arg	Ala 4725	Leu	Gln	Gln
Vā	al	Thr 4730	Ser	Thr	Lys	Asp	Ala 4735	Leu	Asn	Gly	Asp	Ala 4740	Lys	Leu	Ala
G:	lu	Ala 4745	Lys	Ala	Ala	Ala	Lys 4750	Gln	Asn	Leu	Gly	Thr 4755	Leu	Asn	His
I	le	Thr 4760	Asn	Ala	Gln	Arg	Thr 4765	Asp	Leu	Glu	Gly	Gln 4770	Ile	Asn	Gln
A.	la	Thr 4775	Thr	Val	Asp	Gly	Val 4780	Asn	Thr	Val	Lys	Thr 4785	Asn	Ala	Asn
Tl	nr	Leu 4790	Asp	Gly	Ala	Met	Asn 4795	Ser	Leu	Gln	Gly	Ser 4800	Ile	Asn	Asp
Ly	ys	Asp	Ala	Thr	Leu	Arg	Asn	Gln	Asn	Tyr	Leu	Asp	Ala	Asp	Glu

4805					4810					4815			
_	_	Asn	Ala	Tyr	Thr 4825	Gln	Ala	Val	Thr	Ala 4830	Ala	Glu	Gly
		Lys	Gln	Thr			Asn	Thr	Ser	Lys 4845	Ala	Asp	Val
		Leu	Asn	Ala	Val 4855	Thr	Arg	Ala	Lys		Ala	Leu	Asn
		Asn	Leu	Arg	Asn 4870	Ala	Lys	Thr	Ser	Ala 4875	Thr	Asn	Thr
_		Leu	Pro	Asn	Leu 4885	Thr	Gln	Leu		-	Asp	Asn	Leu
		Val	Glu	Gln	Ala 4900	Gln	Asn	Val			Val	Asn	Gly
		Lys	Gly	Asn	Thr 4915	Leu	Asn	Thr			Gly	Ala	Leu
		Ile	Gln	Asn	Asp 4930	Asn	Thr	Thr	_		Ser	Gln	Asn
	_	Ala	Ser	_	Ser 4945	Asn	Lys	Asn		-	Asn	Thr	Ala
Asn 4955		Ala	Asn	_	Val 4960	Ile	Asn	Ala	Thr	Asn 4965	Asn	Pro	Asn
		Asn	Ala	Ile	Asn 4975	Gly	Met	Ala	Asn	Gln 4980	Val	Asn	Thr
		Ala	Leu	Asn	Gly 4990	Ala	Gln	Asn			Gln	Ala	Lys
Asn 5000		Thr	Asn	Thr	Ile 5005	Asn	Asn	Ala	His	_	Leu	Asn	Gln
		Asp	Ala	Leu	Lys 5020	Thr	Gln	Val	Asn		Ala	Gln	Arg
		Ala	Asn	Asn	Val 5035	Gln	His	Thr	Ala		Glu	Leu	Asn
Ala 5045		Thr	Ala	Leu	Lys 5050	Ala	Ala	Ile	Ala	Asp 5055	Lya	Glu	Arg
_		Ser	Gly	Asn	Tyr 5065	Val	Asn	Ala	_		Glu	Lys	Arg
	_	Asp	Ser	_							Ile	Ile	Ser
		Asn	Ala	Thr			Val	Asn	Asp	Val 5100	Asn	Ser	Ala
	G1				77.	Lvs	Thr	Ala	Leu	Asn 5115	Gly	Asp	Asn
Ser 5105	GIII	Val	Asn	АІА	5110	_				3113			
					5110	-		Asn	Asn		Ile	Asp	Gly
5105 Leu	Arg	Val	Ala	Lys	5110 Glu 5125	His	Ala			Thr 5130		_	_
5105 Leu 5120 Ala	Arg Gln	Val Leu	Ala Asn	Lys Asn	5110 Glu 5125 Ala 5140	His Gln	Ala Lys	Ala	Lys	Thr 5130 Leu 5145	Lys	Glu	Gln
5105 Leu 5120 Ala 5135 Gln	Arg Gln Ser	Val Leu Ala	Ala Asn Thr	Lys Asn Thr	5110 Glu 5125 Ala 5140 Leu 5155	His Gln Asp	Ala Lys Gly	Ala Val	Lys Gln	Thr 5130 Leu 5145 Thr 5160	Lys Val	Glu Lys	Gln Asn
	Lys 4820 Leu 4835 Asn 4850 Ala 4865 Asp 4880 His 4895 Lys 4910 Thr 4925 Leu 4940 Asn 4955 Asp 4970 Lys 4985 Asp 4970 Lys 5060 Ala 5045 Thr 5090	Lys Asp 4880 Asp 4980 Asp 4910 Asp 4940 Asp 4955 Asp 5000	Lys Arg Asn 4820 Asn Lys 4835 Asn Ala Leu 4850 Asp Asp Ala 4940 Asp Ala 4955 Asn Ala 4955 Asn Ala Asn 4970 Asn 5000 Asn Ser Asp Ala Asn Asn Ala Asn Ala Asn Ala Asn Asn Ala Asn Asn Ala Asn Asn Ala Asn Asn Asn Ala Asn Asn Asn Ala Asn	Lys 4820 Arg Asn Ala Leu 4835 Asn Leu Asn Ala 4850 Asn Leu Asn Ala 4865 Asp Asn Leu Asp 4890 Asp Lys Gly Lys 4910 Asp Lys Gly Leu 4940 Asp Lys Asn Asn 4955 Asn Ala Asn Asp 4985 Ala Asn Ala Asn 4985 Ala Ala Asn Asn 5000 Ala Thr Asn Asn 5015 Asp 5030 Ala Asn Ala Ala 5045 Ala Ser 5075 Ala Ser 5075 Asn 5080 Ala Thr 5090 Asn 5090 Asn 580 Ala Ser 580 Asn 580	Lys 4820 Arg Asn Ala Ala Tyr Asn Ala Leu 4835 Asn Lys Gln Thr Asn Ala Asn 4850 Ala Leu Asn Ala Ala Asp Asn Leu Arg 4865 Asp Asn Leu Pro Asn	Lys 4820 Arg Asn Ala Tyr Thr 4825 Leu 4835 Asn Lys Gln Thr Gly 4840 Asn 4850 Ala Leu Asn Ala Val 4855 Ala 4865 Asp Asn Leu Arg Asn 4870 Asp 4980 Gly Leu Pro Asn Leu 4900 Lys 4910 Asp Lys Gly Asn Thr 4915 Thr 4925 Asp Lys Gly Asn App 4930 Leu 4940 Asp Ala Ser Asp 4945 Asp 4945 Asp 4945 Asp 4945 Asp 4945 Asp 4945 Asp 4945 Asp 4960 Asp 4975 Asp 4975 Ala Asn 4975 Ala Asn 4975 Ala Asn 4975 Ala Asn 4975 Ala Asn 4976 Ala Asn 4975 Ala Asn 4975 Ala Asn 4975 Ala Asn 4975 Ala Asn 5	Lys 4820 Arg Asn Lys Gln Thr 4825 Gly 4835 Leu 4835 Asn Leu Asn Ala 4850 Ala Leu Asn Ala 4855 Thr 4850 Ala Asn Asp Asn Leu Arg Asn 4865 Ala 4865 Ala 4865 Ala 4865 Ala Asp 4880 Cly Leu Pro Asn Leu Asn 4880 Ala 4890 Ala 4890 His 4890 Glu Val Glu Gln Ala 4900 Ala 4900 Ala 4900 Lys 4910 Asp Lys Gly Asn Thr Leu 4915 Leu 4990 Asn Asn Asn Asn Asp 4930 Asn 4930 Luy 4910 Asp Ala Ser Asp 4930 Asn 4930 Asn 4930 Asn 4930 Asn 4930 Luy 4925 Asp Ala Ser Asp Asp 4930 Asn 4930	Lys 4820 Arg Asn Lys Gln Thr 4825 Gln Asn Asn Asn Asn Asn Asn Asn Asn Asn As	Lys 4820 Arg Asn Lys Gln Thr 4825 Gln Ala Val 4825 Leu 4835 Asn Lys Gln Thr 4840 Gly Asn Thr 4840 Asn Ala Leu Asn Ala 4855 Thr Arg Ala 4850 Ala Asp Asn Leu Arg Asn 4865 Ala Lys Thr 4865 Asp 4880 Gly Leu Pro Asn Leu Thr 61n Leu 4885 His 61n Val Glu Gln Ala 4900 Gln Asn Val 4915 Lys Asp Lys Gly Asn Thr 4915 Leu Asn Thr 4930 Leu Asp Ala Ser Asp Ser Asn Lys Asn 4940 Asn Thr Thr 4935 Leu Asp Ala Ser Asp Ser Asn Lys Asn 4940 Asn Lys Asn Ala 4960 Asn Asn Ala Asn Gly Val 4950 He Asn Ala 4960 Asp Ala Asn Ala Leu Asn 4975 Gly Met Ala 4975 Asp Ala Ala Leu Asn 61y 4990 Ala Gln Asn Ala 5900 Asn Ala Ala Leu Asn 61y 4990 Ala Gln Asn Ala 5005 Asn 5000 Ala Ala Leu Lys 5005 Ala Gln Asn Ala 5005 Asn 5015 Asp Ala Asn Asn Asn Val 5005 Ala Ala 11e 5004 Ala Met Thr Ala Leu Lys 5005 Ala Ala Ala 11e 5006 Ala Tyr Asp Ser Lys Val 5006 Ala Ala Ala Ala 5006 Ala Tyr Asp Ser Lys Val 5006 Thr Asn Ala 5007 Ala 5007 Ala Ala Thr Leu 5009 Thr Asn Ala 5009	Lys Arg Asn Ala Tyr Thr 4825 Gln Ala Val Thr 4825 Gln Ala Val Thr A826 Ala Val Asn Ala Lys Ala Lys Asn Ala Val Ala Ala Lys Ala Ala Lys Ala Lys Ala Ala	Lys Arg Asn Ala Tyr Thr 4825 Gln Ala Val 4830 Leu Asn Lys Gln Thr Gly Asn Thr Ser Lys A445 Asn Ala Leu Asn Ala Val Asn Ala Lys Ala Alas Asn Leu Asn Asn Ala Lys Ala Asn Asn Ala Asn A	Lys 4820 Arg Asn Ala Tyr Thr 4825 Gln Ala Val Thr 4830 Ala Leu 4835 Asn Lys Gln Thr Gly Asn Thr Ser Lys Ala Asn 4865 Ala Leu Asn Ala Val Asn Ala Lys Ala Ala Ala Asn Asn	Lys Asp Asp Asp Asp Ala Tyr Asp Asp Asp Ala Tyr Asp Asp Asp Ala Tyr Asp

Ala	Ser 5195	Pro	Asn	Asn	Arg	Asn 5200		Tyr	Asp	Ser	Ala 5205		Thr	Ala
Ala	Lys 5210		Ile	Ile	Asn	Gln 5215		Ser	Asn	Pro	Thr 5220	Met	Glu	Pro
Asn	Thr 5225		Thr	Gln	Val	Thr 5230		Gln	Val	Thr	Thr 5235		Glu	Gln
Ala	Leu 5240		Gly	Ala	Arg	Asn 5245		Ala	Gln	Ala	Lys 5250		Thr	Ala
ГÀа	Asn 5255		Leu	Asn	Asn	Leu 5260		Ser	Ile	Asn	Asn 5265		Gln	Lys
Asp	Ala 5270		Thr	Arg	Ser	Ile 5275		Gly	Ala	Thr	Thr 5280		Ala	Gly
Val	Asn 5285		Glu	Thr	Ala	Lув 5290		Thr	Glu	Leu	Asn 5295		Ala	Met
His	Ser 5300	Leu	Gln	Asn	Gly	Ile 5305		Asp	Glu	Thr	Gln 5310		ГЛа	Gln
Thr	Gln 5315	ГÀа	Tyr	Leu	Asp	Ala 5320		Pro	Ser	ГÀа	Lys 5325	Ser	Ala	Tyr
Asp	Gln 5330	Ala	Val	Asn	Ala	Ala 5335		Ala	Ile	Leu	Thr 5340	Lys	Ala	Ser
Gly	Gln 5345	Asn	Val	Asp	ГÀЗ	Ala 5350		Val	Glu	Gln	Ala 5355	Leu	Gln	Asn
Val	Asn 5360	Ser	Thr	Lys	Thr	Ala 5365		Asn	Gly	Asp	Ala 5370	-	Leu	Asn
Glu	Ala 5375	Lys	Ala	Ala	Ala	Lys		Thr	Leu	Gly	Thr 5385	Leu	Thr	His
Ile	Asn 5390	Asn	Ala	Gln	Arg	Thr 5395		Leu	Asp	Asn	Glu 5400		Thr	Gln
Ala	Thr 5405	Asn	Val	Glu	Gly	Val 5410		Thr	Val	Lys	Ala 5415	ГÀа	Ala	Gln
Gln	Leu 5420	Asp	Gly	Ala	Met	Gly 5425	Gln	Leu	Glu	Thr	Ser 5430		Arg	Asp
ГÀа	Asp 5435	Thr	Thr	Leu	Gln	Ser 5440		Asn	Tyr	Gln	Asp 5445	Ala	Asp	Asp
Ala	Lys 5450	Arg	Thr	Ala	Tyr	Ser 5455	Gln	Ala	Val	Asn	Ala 5460	Ala	Ala	Thr
Ile	Leu 5465	Asn	Lys	Thr	Ala	Gly 5470	Gly	Asn	Thr	Pro	Lys 5475	Ala	Asp	Val
Glu	Arg 5480	Ala	Met	Gln	Ala	Val 5485		Gln	Ala	Asn	Thr 5490	Ala	Leu	Asn
Gly	Ile 5495	Gln	Asn	Leu	Asp	Arg 5500		Lys	Gln	Ala	Ala 5505	Asn	Thr	Ala
Ile	Thr 5510	Asn	Ala	Ser	Asp	Leu 5515	Asn	Thr	Lys	Gln	Lys 5520	Glu	Ala	Leu
Lys	Ala 5525	Gln	Val	Thr	Ser	Ala 5530	Gly	Arg	Val	Ser	Ala 5535	Ala	Asn	Gly
Val	Glu 5540	His	Thr	Ala	Thr	Glu 5545	Leu	Asn	Thr	Ala	Met 5550	Thr	Ala	Leu
Lys	Arg 5555	Ala	Ile	Ala	Asp	Lys 5560	Ala	Glu	Thr	Lys	Ala 5565	Ser	Gly	Asn

S585 S590 S595 S595 Leu Thr Pro Ala Asp Val Thr Asp Ash Ala Ala Thr Gln Val Thr Asp S515 Thr Gln Leu Ash Gl2 S625 S6
Leu Thr Pro Ala Asp Val Thr Sen Ala Ala Thr Gin Val Thr Ass Sel Sel Thr Gin Leu Ass Gly Sel Ass Leu Thr Sel Leu Ass Gly Sel Thr Sel Sel Sel Thr Sel Sel Glu Gln Sel Sel Sel Sel Glu Gln Val Glu Gln Gla Gln Sel Sel Sel Glu Gln Val Gly Gln Ala Thr Thr Sel Sel Sel Glu Gln Val Gly Gln Ala Thr Thr Sel Sel Sel Glu Gln Val Gly Gln Ala Thr Thr Sel Sel Glu Gln Val Gly Gln Ala Thr Thr Sel Se
Ala Lys Thr Gln Leu Asn Gly 5620 Asn His Asn Leu Glu 5625 Val Ala Lys Can Gly 6620 Asn His Asn Leu Glu 5625 Val Ala Lys Can Gly 6620 Asn Gly Leu Thr 5640 Leu Asn Gly 6620 Leu Gly 6640 Leu Asn Gly 6620 Asn Gly Leu Thr 5640 Leu Asn Gly 6620 Asn Gly Gly Gly 6620 Asn Gly 6620 Asn Asn Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Gly 6620 Asn Asn Gly 6620 Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Gly 6620 Asn Asn Asn Asn Asn Asn Gly 6620 Asn
Gln Asn Ala Asn Thr Ala Ilea Asp Gly Leu Thr Sead Pro Gln Lys Ala Lys Leu Lys Glu Gln Val Gly Gla Thr Thr Asp Sea Gly Gly Gly Gly Asp
S630
5645 1 5650 5650 5650 5650 1 5670 Thr Leu Asn 5660 Arg Asp Asn Ala Gln Thr Leu Asn 5660 Arg Asp Asn Ala Gln Gln Thr Leu Asn 5660 Asp Ser Ile Ala Asn 5670 Glu Ala Thr 5660 Asn Lys Gln Asn 5700 Asp Ala Ser Ile Ala Asn 5700 Asn Lys Gln 5700 Asn Gln Ala Ser Gln Asn 5700 Asn Gln Ala Ser Gln Asn 5700 Asn Gln Ala Ser Gln Ala Ser Gln Gln Ala Leu Asn 6710 Gln Thr Thr Ser Pro Ser Met 5725 Asn Ala Gln Gln Gln Gln Gln Gln 5730 Asn Gln Ala Ser Gln Ala Ser Gln Gln Ala Leu Asn 610 Glu Gln 5730 Gln Gln Ala Leu Asn Asn 4810 Gln Gln Gln Gln 5730 Asn Gln Ala Ser Gln Gln Gln Ala Leu Asn 610 Gln Gln 5755 Asn Gln Ala Leu Asn 610 Gln Gln Ala Leu Asn 610 Gln Gln 5760 Asn Gln Asn 610 Gln Asn 610 Gln Asn 610 Gln Asn 6780 Asn Gln Lys Asp Ala Val Lys Asn Gln Asn 6780 Asn Gln Lys Asp Ala Val Lys Asn 610 Asn 6780 Asn Gln Asn 610 Asn 610 Gln Asn 610 Gln Asn 6780 Asn Gln Asn 610 Asn 610 Gln Asn 610 Gln Gln Gln Gln Gln Gln Gln Gln Asn 6780 Asn Gln Asn 610 Asn 610 Gln Asn 610 Gln
5665 5670 Thr Ala Ser Ser Ile Ala Asn Ser Glu Ala Thr S675 Met Lys Gly Leu Arg S680 Asp Ser Ile Ala Asn Ser Glu Asn Lys Glu S690 Ile Lys Sep Tyr Asn Ser Ala Val Sep Ser Ile Ala Asn Ser Glu Asn Lys Glu S690 Thr Asp S7705 Tyr Asn Ser Ala Val Thr Ala Ala Lys Ala Ile Ile Gly S7715 Glu Thr S700 Thr Ser Pro Ser Met S7225 Asn Ala Glu Glu Ile S730 Asn Glu Ala Leu Asn Glu Glu S730 Lys Asp S770 Glu Val Thr Ala Glu Thr Asn Ala Lys Glu Glu S745 Glu Glu Asn Gly Glu Glu S755 Asn Leu Ser S750 Arg Thr Ala Glu Thr Asp Ala Lys Glu His S746 Leu Asn Gly S775 Leu Ser S765 Asp Leu Thr Asp Ala Ser Glu Lys Asp Ala Val Lys Arg Glu S775 Ile Glu Glu Ala Thr His Val S780 Asn Glu Val Thr Glu S790 Asn Ala Asp Ala Leu Asn Thr S880 Ala Met Thr Asn Leu Lys Asn Gly S890 Ile Glu S890 Glu Ala Lys Arg Asn S890 Ala Tyr Thr Asn Leu S890 Phe Thr Asp S890 Ala Asp S910 Ala Leu Asn Lys S890 Ala Glu Gly Pro Asn S895 Thr Ser Lys S895 Ala Glu Glu Thr Ala Leu Asn Lys S891 Ala Glu Gly Pro Asn S885 Ala Leu Asn Asn Gly S890 Ala Asn Ala Lys Asn S885 Glu Leu Asn Asn Gly Asn Glu Asn Cys Glu Gly Ala Thr Thr Asn Lys S880 Thr Thr Ala Glu Gly Ala Glu Cys Ala Glu C
Sers
The Lys
Thr Asp
Signature Sign
Lys Asp 5735 Gln Val Thr Ala Lys 5740 Gln Gln Ala Leu Asn Gly Gln Gly Gln Gly Gln Gly Gly Gly Gly Gly Gly Ala Gly Asn Ala Lys Asp Ala Val Thr Asn Gly Asn Ala Gly Ala Gln Asn Asp Ala Val Thr Gln Asn Glu Val Thr Gln Asn Gln Asn Frage Asn Glu Asn San Asn Glu Asn
Asn Leu Arg Thr Ala Gln Thr Asn Ala Lys Gln His Leu Asn Gly Leu Ser Asp Leu Thr Asp Ala Asp Ala Lys Asp Ala Lys Arg Gln Ser Asp Ala Gln Asp Ala Thr Asp Ala Met Thr Asn Ala Asp Ala Gln Asn Gln Asn Gln Asn Gln Asn Gln Asn Gln Asn Glr Asn Glr Asn Glr Asn Glr Asn Glr Asn
Leu Ser 5765 Asp Leu Thr Asp Ala Gln Lys Asp Ala Val 5775 Lys Arg Gln Ile Glu Glu Ala Thr His Val 5785 Asn Glu Val Thr Gln Asn Gln Asn Glu Asn Glu Asn Glu Asn Glu Asn Glu Asn Fhe Thr Asn
Ile Glu Gly Ala Thr His Val Asn Glu Val Thr Gln Ala Gln Asn Glu Ala Met Thr Gln Asn Gly Asn Gly Asn Leu Lys Asn Gly Val Asn Leu Lys Asn Gly Val Asn Phe Thr Asp Ss20 Phe Thr Asp Asp Glu Asp Asp Glu Asp Asp Glu Asp
Asn Ala Asp Ala Leu Asn Thr 5800 Ala Met Thr Asn Leu Lys Asn Gly 5795 Selo Asp Gln Asn Thr Ile Lys Gln Gly Val Asn Phe Thr Asp 5810 Ala Asp Glu Ala Lys Arg Asn Ala Tyr Thr Asn Ala Val Thr Gln 5825 Ala Gln Ile Leu Asn Lys Ala Gln Gly Pro Asn Thr Ser Lys 5840 Ala Gly Thr Ala Leu Asn Lys 5845 Ala Gln Arg 5855 Ala Lys Asn 5860 Ala Selo Ala Lys Asn 5860 Ala Lys Asn 5875 Ala Lys Asn 5875 Ala Leu Asn Asn Ala Lys Asn 5875 Ala Leu Asn Asn Ala Lys Asn 5880 Ala Leu Asn Asn Ala Lys Asn 5885 Ala Leu Asn Asn Leu Thr Ser Ile Asn Asn Ala Gln Lys 5885 Ala Gln Lys 5885 Ala Ceu Lys Ser Gln Ile Glu Gly Ala Thr Thr Ala Gly Selo Asn Gln Val Ser Thr Thr Ala Ser Glu Leu Asn Thr Lys Ala Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
Ile Gln Ss10 Asp Gln Asn Thr Ss15 Lys Gln Gly Val Asn Ss20 Phe Thr Asp Ss15 Ala Asp Ss25 Glu Ala Lys Arg Asn Ss30 Ala Tyr Thr Asn Ala Ss35 Val Thr Gln Ss35 Ala Glu Gly Gln Ile Leu Asn Lys Ss45 Ala Gln Gly Pro Asn Thr Ser Lys Ss45 Asp Gly Val Glu Thr Ala Leu Ss860 Glu Asn Val Gln Arg Ss65 Ala Lys Asn Ss65 Glu Leu Ss70 Asn Gly Asn Gln Asn Ss75 Val Ala Asn Ala Lys Ss80 Thr Thr Ala Ss80 Lys Asn Ss85 Ala Leu Asn Asn Leu Thr Ser Ile Asn Asn Asn Ala Gln Lys Ss85 Ala Gln Lys Ss85 Glu Ala Leu Lys Ser Gln Ile Ss90 Glu Gly Ala Thr Thr Thr Ss910 Val Ala Gly Ss90 Val Asn Ss90 Gln Val Ser Thr Thr Ss20 Ala Ser Glu Leu Asn Thr Ala Met Ss915 Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
Ala Asp Glu Ala Lys Arg Asn Ala Tyr Thr Asn Ala Val Thr Gln 5825 Glu Ala Lys Arg Asn Lys Ala Gln Gly Pro Asn Thr Ser Lys 5840 Gly Val Glu Thr Ala Leu Glu Asn Val Gln Arg 5865 Ala Lys Asn 5855 Val Glu Thr Ala Leu Glu Asn Val Gln Arg 5865 Ala Lys Asn 5870 Far Thr Ala Ser Jul Ala Asn Ala Lys Thr Thr Ala 5870 Far Ser Glu Ala Leu Asn Asn Leu Ser Glu Gly Ala Thr Thr Ala Gly 5900 Far Ser Gln Ile Glu Gly Ala Thr Thr Ala Gly 5900 Far Ser Glu Leu Asn Ser Glu Leu Asn Asn Ala Gly Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
Ala Glu Gln Ile Leu Asn Lys Sa45 Ala Gln Gly Pro Asn Thr Ser Lys 5840 Gly Val Glu Thr Ala Leu Glu Asn Val Gln Arg 5865 Thr Thr Ala Ser Sa75 Val Ala Asn Ala Lys Thr Thr Ala 5870 Asn Gly Asn Gln Asn Val Ala Asn Ala Lys Thr Thr Ala 5870 Asn Gly Asn Asn Leu Thr Ser Ile Asn Asn Asn Ala Gln Lys 5885 Glu Ala Leu Lys Ser Gln Ile Glu Gly Ala Thr Thr Thr Ala Gly 5900 Thr Ser Ile Asn Asn Ala Gly Ser Thr Thr Ala Ser Glu Leu Asn Thr Ala Met 5915 Thr Asn Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
Asp Gly Val Glu Thr Ala Leu Glu Asn Val Gln Arg 5865 Glu Leu Asn Gly Asn Gln Asn Val Ala Asn Ala Lys Thr Thr Ala 5870 Lys Asn Ala Leu Asn Asn Leu Thr Ser Ile Asn Asn Ala Gln Lys 5895 Glu Ala Leu Lys Ser Gln Ile Glu Gly Ala Thr Thr Thr Ala Gly 5900 Val Asn Gln Val Ser Thr Thr 5920 Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
Glu Leu Asn Gly Asn Gln Asn Val Ala Asn Ala Lys Thr Thr Thr Ala Lys Asn Ala Leu Asn Asn Leu Thr Ser Ser Ile Asn Asn Asn Ala Glu Lys Ser Gln Ile Glu Gly Ala Thr Thr Thr Ala Gly Ala Thr Thr Ala Ala Asn Thr Ala Ala Thr Ala Ala Thr Lys Ala Thr Lys Ala Thr Lys Ala Ala Ala Thr Lys Ala Ala Ala Ala Ala Thr L
Lys Asn Ala Leu Asn Asn Leu Thr Ser Ile Asn Asn Ala Gln Lys 5885 Glu Ala Leu Lys Ser Gln Ile Glu Gly Ala Thr Thr 5910 Val Asn Gln Val Ser Thr Thr Ala Ser Glu Leu Asn 5925 Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
Glu Ala Leu Lys Ser Gln Ile Glu Gly Ala Thr Thr Val Ala Gly Ser Ser Ser Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
5900 5905 5910 Val Asn Gln Val Ser Thr Thr Ala Ser Glu Leu Asn Thr Ala Met 5915 Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala
5915 5920 5925 Ser Asn Leu Gln Asn Gly Ile Asn Asp Glu Ala Ala Thr Lys Ala

Ala Gln Lys Tyr Thr Asp Ala Asp Arg Glu Lys Gln Thr Ala Tyr

											001	1011	ıucc	۸.
	5945					5950					5955			
Asn	Asp 5960		Val	Thr	Ala	Ala 5965		Thr	Leu	Leu	Asp 5970	Lys	Thr	Ala
Gly	Ser 5975			Asn		Ala 5980		Val	Glu	Gln	Ala 5985	Leu	Gln	Arg
Val	Asn 5990			Lys		Ala 5995	Leu	Asn	Gly	Asp	Glu 6000	Arg	Leu	Asn
Glu	Ala 6005			Thr		Lys 6010		Gln	Val	Ala	Thr 6015	Met	Ser	His
Leu	Thr 6020	_		Gln		Ala 6025		Leu			Gln 6030	Ile	Glu	Ser
Gly	Thr 6035					Val 6040		Gly			Ala 6045	Asn	Ala	Gly
Thr	Leu 6050					Asn 6055					Ser 6060	Ile	Ala	Ser
Гла	Asp 6065					Ser 6070					Asp 6075	Ala	Asn	Ala
Asp	Leu 6080			Ala	_	Asn 6085	_				Asn 6090	Ala	Glu	Gly
Ile						Asn 6100					Pro 6105	Asp	Thr	Ile
Asn						Val 6115					Ser 6120	Ala	Leu	Asn
Gly	Asp 6125					Ala 6130					Ala 6135	Lys	Ser	Asp
Ile						Leu 6145					Arg 6150	Thr	Ala	Ala
Asn	Ala 6155			Asp		Ala 6160					Ala 6165	Val	Thr	Ala
Ala	Lys 6170					Ser 6175		Asn			Met 6180	Gly	Asn	Leu
Lys	His 6185		Leu	Ala	Glu	Lys 6190					Arg 6195	Ser	Val	Asn
Tyr	Thr 6200					Pro 6205		Gln	Gln	Ala	Tyr 6210		Thr	Ala
Val	Thr 6215					Ile 6220						Ser	Asn	Ala
Asn	Glu 6230	Thr	Gln	Val	Gln	Ala 6235		Leu	Asn	Gln	Leu 6240	Asn	Gln	Ala
ГЛа	Asn 6245	Asp	Leu	Asn	Gly	Asp 6250	Asn	Lys	Val	Ala	Gln 6255	Ala	Lys	Glu
Ser	Ala 6260	Lys	Arg	Ala	Leu	Ala 6265		Tyr	Ser	Asn	Leu 6270	Asn	Asn	Ala
Gln	Ser 6275	Thr	Ala	Ala	Ile	Ser 6280	Gln	Ile	Asp	Asn	Ala 6285	Thr	Thr	Val
Ala	Gly 6290	Val	Thr	Ala	Ala	Gln 6295	Asn	Thr	Ala	Asn	Glu 6300	Leu	Asn	Thr
Ala	Met 6305	Gly	Gln	Leu	Gln	Asn 6310		Ile	Asn	Asp	Gln 6315	Asn	Thr	Val
Lys		Gln	Val	Asn	Phe	Thr 6325	Asp	Ala	Asp	Gln		Lys	Lys	Asp

Ala	Tyr 6335	Thr	Asn	Ala	Val	Thr 6340		Ala	Gln	Gly	Ile 6345		Asp	Lys
Ala	His 6350	Gly	Gln	Asn	Met	Thr 6355		Ala	Gln	Val	Glu 6360		Ala	Leu
Asn	Gln 6365	Val	Thr	Thr	Ala	Lys 6370		Ala	Leu	Asn	Gly 6375	Asp	Ala	Asn
Val	Arg 6380	Gln	Ala	Lys	Ser	Asp 6385		Lys	Ala	Asn	Leu 6390	Gly	Thr	Leu
Thr	His 6395	Leu	Asn	Asn	Ala	Gln 6400		Gln	Asp	Leu	Thr 6405		Gln	Ile
Glu	Gly 6410	Ala	Thr	Thr	Val	Asn 6415		Val	Asn	Gly	Val 6420		Thr	ГÀв
Ala	Gln 6425	Asp	Leu	Asp	Gly	Ala 6430		Gln	Arg	Leu	Gln 6435		Ala	Ile
Ala	Asn 6440	ГÀа	Asp	Gln	Thr	Lys 6445		Ser	Glu	Asn	Tyr 6450		Asp	Ala
Asp	Pro 6455	Thr	ГÀа	Lys	Thr	Ala 6460		Asp	Asn	Ala	Ile 6465		Gln	Ala
Glu	Ser 6470	Tyr	Leu	Asn	Lys	Asp 6475	His	Gly	Ala	Asn	Lys 6480	Asp	Lys	Gln
Ala	Val 6485	Glu	Gln	Ala	Ile	Gln 6490		Val	Thr	Ser	Thr 6495	Glu	Asn	Ala
Leu	Asn 6500	Gly	Asp	Ala	Asn	Leu 6505	Gln	Arg	Ala	Lys	Thr 6510		Ala	Ile
Gln	Ala 6515	Ile	Asp	Asn	Leu	Thr 6520	His	Leu	Asn	Thr	Pro 6525	Gln	Lys	Thr
Ala	Leu 6530	Lys	Gln	Gln	Val	Asn 6535	Ala	Ala	Gln	Arg	Val 6540		Gly	Val
Thr	Asp 6545	Leu	Lys	Asn	Ser	Ala 6550		Ser	Leu	Asn	Asn 6555	Ala	Met	Asp
Gln	Leu 6560	Lys	Gln	Ala	Ile	Ala 6565	Asp	His	Asp	Thr	Ile 6570		Ala	Ser
Gly	Asn 6575	Tyr	Thr	Asn	Ala	Ser 6580		Asp	Lys	Gln	Gly 6585	Ala	Tyr	Thr
Asp	Ala 6590	Tyr	Asn	Ala	Ala	Lys 6595	Asn	Ile	Val	Asn	Gly 6600	Ser	Pro	Asn
Val	Ile 6605	Thr	Asn	Ala	Ala	Asp 6610	Val	Thr	Ala	Ala	Thr 6615	Gln	Arg	Val
Asn	Asn 6620	Ala	Glu	Thr	Gly	Leu 6625	Asn	Gly	Asp	Thr	Asn 6630		Ala	Thr
Ala	Lys 6635	Gln	Gln	Ala	Lys	Asp 6640	Ala	Leu	Arg	Gln	Met 6645	Thr	His	Leu
Ser	Asp 6650	Ala	Gln	Lys	Gln	Ser 6655	Ile	Thr	Gly	Gln	Ile 6660	Asp	Ser	Ala
Thr	Gln 6665	Val	Thr	Gly	Val	Gln 6670	Ser	Val	Lys	Asp	Asn 6675	Ala	Thr	Asn
Leu	Asp 6680	Asn	Ala	Met	Asn	Gln 6685	Leu	Arg	Asn	Ser	Ile 6690	Ala	Asn	Lys
Asp	Asp 6695	Val	Lys	Ala	Ser	Gln 6700	Pro	Tyr	Val	Asp	Ala 6705	Asp	Arg	Asp

Lys	Gln 6710	Asn	Ala	Tyr	Asn	Thr 6715	Ala	Val	Thr	Asn	Ala 6720	Glu	Asn	Ile			
Ile	Asn 6725	Ala	Thr	Ser	Gln	Pro 6730		Leu	Asp	Pro	Ser 6735	Ala	Val	Thr			
Gln	Ala 6740	Ala	Asn	Gln	Val	Ser 6745	Thr	Asn	Lys	Thr	Ala 6750	Leu	Asn	Gly			
Ala	Gln 6755	Asn	Leu	Ala	Asn	Lys 6760	ГЛа	Gln	Glu	Thr	Thr 6765	Ala	Asn	Ile			
Asn	Gln 6770	Leu	Ser	His	Leu	Asn 6775	Asn	Ala	Gln	Lys	Gln 6780	Asp	Leu	Asn			
Thr	Gln 6785	Val	Thr	Asn	Ala	Pro 6790	Asn	Ile	Ser	Thr	Val 6795	Asn	Gln	Val			
Lys	Thr 6800	Lys	Ala	Glu	Gln	Leu 6805	Asp	Gln	Ala	Met	Glu 6810	Arg	Leu	Ile			
Asn	Gly 6815	Ile	Gln	Asp	Lys	Asp 6820	Gln	Val	Lys	Gln	Ser 6825	Val	Asn	Phe			
Thr	Asp 6830	Ala	Asp	Pro	Glu	Lys 6835	Gln	Thr	Ala	Tyr	Asn 6840	Asn	Ala	Val			
Thr		Ala	Glu	Asn	Ile	Ile 6850	Asn	Gln	Ala	Asn		Thr	Asn	Ala			
Asn		Ser	Gln	Val	Glu	Ala 6865	Ala	Leu	Ser	Thr		Thr	Thr	Thr			
Lys		Ala	Leu	Asn	Gly	Asp 6880	Arg	Lys	Val	Thr		Ala	Lys	Asn			
Asn		Asn	Gln	Thr	Leu	Ser 6895	Thr	Leu	Asp	Asn		Asn	Asn	Ala			
Gln	Lys	Gly	Ala	Val	Thr	Gly	Asn	Ile	Asn	Gln	Ala	His	Thr	Val			
Ala		Val	Thr	Gln	Ala	6910 Ile	Gln	Thr	Ala	Gln		Leu	Asn	Thr			
Ala	6920 Met	Gly	Asn	Leu	Lys	6925 Asn	Ser	Leu	Asn	Asp	_	Asp	Thr	Thr			
Leu	6935 Gly	Ser	Gln	Asn	Phe	6940 Ala	Asp	Ala	Asp	Pro	6945 Glu	Lys	Lys	Asn			
Ala	6950 Tyr	Asn	Glu	Ala	Val	6955 His	Asn	Ala	Glu	Asn	6960 Ile	Leu	Asn	Lys			
Ser	6965 Thr	Gly	Thr	Asn	Val	6970 Pro	Lys	Asp	Gln	Val	6975 Glu	Ala	Ala	Met			
	6980					6985 Lys	-	_			6990						
	6995					7000 His					7005						
	7010					7015 Gln					7020						
	7025					7030	-				7035						
	7040					Ala 7045					7050						
	7055			_		Ala 7060		_	-		7065						
	7070					Lys 7075					7080						
Ser	Gln	Asn	ГÀа	Lys	Asp	Ala	Tyr	Asn	Asn	Ala	Val	Thr	Thr	Ala			

_												- 001	IILII	ruec	ı
		7085					7090					7095			
c	∃ln	Gly 7100			Asp		Thr 7105		Ser	Pro	Thr	Leu 7110		Pro	Thr
Ţ	/al	Ile 7115		Gln	Ala	Ala	Gly 7120			Ser		Thr 7125		Asn	Ala
Ι	Leu	Asn 7130		Asn	Glu	Asn	Leu 7135		Ala	Ala	Lys	Gln 7140	Gln	Ala	Ser
C	In	Ser 7145		Gly	Ser	Leu	Asp 7150		Leu	Asn	Asn	Ala 7155		ГÀа	Gln
1	hr	Val 7160		Asp	Gln	Ile	Asn 7165		Ala	His	Thr	Val 7170		Glu	Ala
F	Asn	Gln 7175		Lys	Gln	Asn	Ala 7180		Asn	Leu	Asn	Thr 7185	Ala	Met	Gly
I	Asn	Leu 7190		Gln	Ala	Ile	Ala 7195		Lys	Asp	Ala	Thr 7200		Ala	Thr
Ţ	/al	Asn 7205	Phe	Thr	Asp	Ala	Asp 7210		Ala	Lys	Gln	Gln 7215	Ala	Tyr	Asn
1	hr	Ala 7220	Val	Thr	Asn	Ala	Glu 7225			Ser		Ala 7230	Asn	Gly	Asn
I	Ala	Thr 7235	Gln	Ala	Glu	Val	Glu 7240			Ile		Gln 7245	Val	Asn	Ala
I	Ala	Lys 7250	Gln	Ala	Leu	Asn	Gly 7255			Asn		Gln 7260	His	Ala	Lys
I	/ap	Glu 7265	Ala	Thr	Ala	Leu	Ile 7270			Ser		Asp 7275		Asn	Gln
I	Ala	Gln 7280		Asp	Ala	Leu	Lys 7285		Gln	Val	Gln	Asn 7290	Ala	Thr	Thr
Į	/al	Ala 7295		Val	Asn	Asn	Val 7300		Gln	Thr	Ala	Gln 7305	Glu	Leu	Asn
F	\sn	Ala 7310	Met	Thr	Gln	Leu	Lys 7315		Gly	Ile	Ala	Asp 7320		Glu	Gln
1	hr	Lys 7325	Ala	Asp	Gly	Asn	Phe 7330		Asn	Ala	Asp	Pro 7335	_	Lys	Gln
I	\sn	Ala 7340		Asn	Gln	Ala	Val 7345		Lys	Ala	Glu	Ala 7350		Ile	Ser
I	Ala	Thr 7355		Asp	Val		Val 7360					Ile 7365		Ala	Ala
Ι	Leu	Asn 7370	ГÀв	Val	Thr	Gln	Ala 7375	Lys	Asn	Asp	Leu	Asn 7380	_	Asn	Thr
I	\sn	Leu 7385	Ala	Thr	Ala	Lys	Gln 7390	Asn	Val	Gln	His	Ala 7395		Asp	Gln
Ι	Jeu	Pro 7400	Asn	Leu	Asn	Gln	Ala 7405	Gln	Arg	Asp	Glu	Tyr 7410	Ser	Lys	Gln
1	[le	Thr 7415	Gln	Ala	Thr	Leu	Val 7420	Pro	Asn	Val	Asn	Ala 7425	Ile	Gln	Gln
I	Ala	Ala 7430	Thr	Thr	Leu	Asn	Asp 7435	Ala	Met	Thr	Gln	Leu 7440	_	Gln	Gly
]	le	Ala 7445	Asn	Lys	Ala	Gln	Ile 7450	Lys	Gly	Ser	Glu	Asn 7455	_	His	Asp
I	λla	Asp 7460	Thr	Asp	ГÀа	Gln	Thr 7465		Tyr	Asp	Asn	Ala 7470	Val	Thr	ГАз

Δla	Glu	Glu	Len	Len	Lvs	Gln	Thr	Thr	Δan	Pro	Thr	Met	Agn	Pro
AIA	7475	Giu	пец	пец	цув	7480	1111	1111	Abii	FIO	7485	nec	vob	FIO
Asn	Thr 7490	Ile	Gln	Gln	Ala	Leu 7495	Thr	Lys	Val	Asn	Asp 7500	Thr	Asn	Gln
Ala	Leu 7505	Asn	Gly	Asn	Gln	Lys 7510	Leu	Ala	Asp	Ala	Lys 7515	Gln	Asp	Ala
ГÀв	Thr 7520	Thr	Leu	Gly	Thr	Leu 7525	Asp	His	Leu	Asn	Asp 7530	Ala	Gln	ГЛа
Gln	Ala 7535	Leu	Thr	Thr	Gln	Val 7540	Glu	Gln	Ala	Pro	Asp 7545	Ile	Ala	Thr
Val	Asn 7550	Asn	Val	Lys	Gln	Asn 7555	Ala	Gln	Asn	Leu	Asn 7560	Asn	Ala	Met
Thr	Asn 7565	Leu	Asn	Asn	Ala	Leu 7570	Gln	Asp	Lys	Thr	Glu 7575	Thr	Leu	Asn
Ser	Ile 7580	Asn	Phe	Thr	Asp	Ala 7585	Asp	Gln	Ala	Lys	Lys 7590	Asp	Ala	Tyr
Thr	Asn 7595	Ala	Val	Ser	His	Ala 7600	Glu	Gly	Ile	Leu	Ser 7605	Lys	Ala	Asn
Gly	Ser 7610	Asn	Ala	Ser	Gln	Thr 7615	Glu	Val	Glu	Gln	Ala 7620	Met	Gln	Arg
Val	Asn 7625	Glu	Ala	Lys	Gln	Ala 7630	Leu	Asn	Gly	Asn	Asp 7635	Asn	Val	Gln
Arg	Ala 7640	Lys	Asp	Ala	Ala	Lys 7645	Gln	Val	Ile	Thr	Asn 7650	Ala	Asn	Asp
Leu	Asn 7655	Gln	Ala	Gln	Lys	Asp 7660	Ala	Leu	Lys	Gln	Gln 7665	Val	Asp	Ala
Ala	Gln 7670	Thr	Val	Ala	Asn	Val 7675	Asn	Thr	Ile	Lys	Gln 7680	Thr	Ala	Gln
Asp	Leu 7685	Asn	Gln	Ala	Met	Thr 7690	Gln	Leu	Lys	Gln	Gly 7695	Ile	Ala	Asp
ГÀа	Asp 7700	Gln	Thr	Lys	Ala	Asn 7705	Gly	Asn	Phe	Val	Asn 7710	Ala	Asp	Thr
Asp	Lys 7715	Gln	Asn	Ala	Tyr	Asn 7720	Asn	Ala	Val	Ala	His 7725	Ala	Glu	Gln
Ile	Ile 7730	Ser	Gly	Thr	Pro	Asn 7735	Ala	Asn	Val	Asp	Pro 7740	Gln	Gln	Val
Ala	Gln 7745	Ala	Leu	Gln	Gln	Val 7750	Asn	Gln	Ala	Lys	Gly 7755	Asp	Leu	Asn
Gly	Asn 7760	His	Asn	Leu	Gln	Val 7765	Ala	Lys	Asp	Asn	Ala 7770	Asn	Thr	Ala
Ile	Asp 7775	Gln	Leu	Pro	Asn	Leu 7780	Asn	Gln	Pro	Gln	Lys 7785	Thr	Ala	Leu
ГÀа	Asp 7790	Gln	Val	Ser	His	Ala 7795	Glu	Leu	Val	Thr	Gly 7800	Val	Asn	Ala
Ile	Lys 7805	Gln	Asn	Ala	Asp	Ala 7810	Leu	Asn	Asn	Ala	Met 7815	Gly	Thr	Leu
Lys	Gln 7820	Gln	Ile	Gln	Ala	Asn 7825	Ser	Gln	Val	Pro	Gln 7830	Ser	Val	Asp
Phe	Thr 7835	Gln	Ala	Asp	Gln	Asp 7840	Lys	Gln	Gln	Ala	Tyr 7845	Asn	Asn	Ala

_													.10 11	Iucc	4
A.		Asn 7850	Gln	Ala	Gln	Gln	Ile 7855	Ala	Asn	Gly	Ile	Pro 7860	Thr	Pro	Val
L		Thr 7865	Pro	Asp	Thr	Val	Thr 7870	Gln	Ala	Val	Thr	Thr 7875	Met	Asn	Gln
A.		Lys 7880	Asp	Ala	Leu	Asn	Gly 7885	_	Glu	Lys		Ala 7890	Gln	Ala	Lys
G:		Glu 7895	Ala	Leu	Ala	Asn	Leu 7900	Asp	Thr	Leu	Arg	Asp 7905	Leu	Asn	Gln
P:		Gln 7910	Arg	Asp	Ala	Leu	Arg 7915		Gln	Ile	Asn	Gln 7920	Ala	Gln	Ala
L		Ala 7925	Thr	Val	Glu	Gln	Thr 7930	-	Gln	Asn		Gln 7935	Asn	Val	Asn
T		Ala 7940	Met	Ser	Asn	Leu	Lys 7945		Gly	Ile	Ala	Asn 7950	Lys	Asp	Thr
V		Lуs 7955	Ala	Ser	Glu	Asn	Tyr 7960	His	Asp	Ala	_	Ala 7965	Asp	Lys	Gln
Tl		Ala 7970	Tyr	Thr	Asn	Ala	Val 7975		Gln	Ala		Gly 7980	Ile	Ile	Asn
G:		Thr 7985	Thr	Asn	Pro	Thr	Leu 7990	Asn	Pro	Asp		Ile 7995	Thr	Arg	Ala
L		Thr 8000	Gln	Val	Thr	Asp	Ala 8005	_	Asn	Gly	Leu	Asn 8010	Gly	Glu	Ala
Ŀ	ys l		Ala	Thr	Glu	Lys			Ala	Lys	_	Ala 8025	Val	Ser	Gly
М	et '		His	Leu	Asn	Asp	Ala 8035	Gln	Lys	Gln		Leu 8040	Lys	Gly	Gln
I	le A		Gln	Ser	Pro	Glu		Ala	Thr	Val	Asn	Gln 8055	Val	Lys	Gln
Tl	nr 2		Thr	Ser	Leu	Asp		Ala	Met	Asp	Gln	Leu 8070	Ser	Gln	Ala
I	le Z		Asp	Lys	Ala	Gln		Leu	Ala	Asp	Gly	Asn 8085	Tyr	Leu	Asn
A.	la i		Pro	Asp	Lys	Gln		Ala	Tyr	Lys	Gln	Ala 8100	Val	Ala	Lys
A.	la (Glu	Ala	Leu	Leu	Asn	Lys	Gln	Ser	Gly	Thr	Asn	Glu	Val	Gln
A.	la (Val	Glu	Ser	Ile		Asn	Glu	Val		8115 Ala	Ala	Lys	Gln
A.	la 1		Asn	Gly	Asn	Asp			Ala	Asn	Ala	8130 Lys		Gln	Ala
Ŀ	ys (Gln	Leu	Ala	Asn		Thr	His	Leu	Asn	8145 Asp		Gln	Lys
G:	ln :		Phe	Glu	Ser	Gln		Thr	Gln	Ala	Pro	8160 Leu	Val	Thr	Asp
V	al '		Thr	Ile	Asn	Gln		Ala	Gln	Thr	Leu	8175 Asp	His	Ala	Met
G:	lu 1		Leu	Arg	Asn	Ser			Asp	Asn	Gln	8190 Thr	Thr	Leu	Ala
S		8195 Glu	Asp	Tyr	His	Asp	8200 Ala	Thr	Ala	Gln	Arg	8205 Gln	Asn	Asp	Tyr
_	1	8210			_,		8215					8220			

Asn Gln Ala Val Thr Ala Ala Asn Asn Ile Ile Asn Gln Thr Thr

_											- 001	.10.11	iuec	۱
	8225	;				8230					8235			
Se	er Pro 8240		Met	Asn	Pro	Asp 8245	_	Val	Asn	_	Ala 8250	Thr	Thr	Gln
Vá	al Asn 8255			Lys		Ala 8260					Glu 8265	Asn	Leu	Ala
A]	la Ala 8270		Gln	Gln	Ala	Asn 8275					Gln 8280	Leu	Asp	His
Le	eu Asn 8285		Ala	Gln	Lys	Gln 8290		Leu	Gln	Ser	Gln 8295	Ile	Thr	Gln
Se	er Ser 8300		Ile	Ala	Ala	Val 8305					Gln 8310	Thr	Ala	Glu
Se	er Leu 8315		Thr	Ala	Met	Gly 8320		Leu	Ile	Asn	Ala 8325	Ile	Ala	Asp
Ні	ls Gln 8330		Val	Glu	Gln	Arg 8335		Asn	Phe		Asn 8340	Ala	Asp	Thr
Αs	sp Lys 8345				Tyr			Ala	Val	Asn	Glu 8355	Ala	Ala	Ala
Me	et Ile 8360		Lys	Gln	Thr	Gly 8365		Asn	Ala	Asn	Gln 8370	Thr	Glu	Val
G]	lu Gln 8375			Thr		Val 8380			Thr		Gln 8385	Ala	Leu	Asn
G]	Ly Asp 8390	His		Leu			Ala					Thr	Gln	Ala
II	Le Asp 8405	Ala		Thr			Asn	Asp		Gln		Thr	Ala	Leu
ГΖ	rs Asp 8420	Gln	Val		Ala		Thr	Leu		Thr		Val	His	Gln
IJ	le Glu 8435	Gln					Leu	Asn	Gln	Ala		His	Gly	Leu
Aı	eg Gln 8450	Ser	Ile	Gln	Asp		Ala	Ala	Thr			Asn	Ser	Lys
ТΣ	r Ile 8465	Asn	Glu	Asp	Gln		Glu	Gln	Gln			Asp	Gln	Ala
Vá	al Gln	Ala	Ala	Asn	Asn	Ile	Ile	Asn	Glu	Gln	Thr	Ala	Thr	Leu
As	8480 sp Asn	Asn	Ala	Ile	Asn		Ala	Ala	Thr	Thr		Asn	Thr	Thr
ĿΣ	8495 7s Ala	Ala	Leu	His	Gly	_		Lys	Leu	Gln		Asp	Lys	Asp
Ні	8510 Is Ala		Gln	Thr	Val	8515 Ser	Gln	Leu	Ala	His	8520 Leu	Asn	Asn	Ala
	8525 In Lys	,				8530					8535			
	8540)				8545			_		8550			
	nr Ala 8555	5	-			8560					8565		_	
	eu Met 8570) _				8575				_	8580			
Aı	g Ala 8585		Ser	Ala	Tyr	Val 8590	Asn	Ala	Glu	Pro	Asn 8595	Lys	Lys	Gln
Se	er Tyr 8600	_	Glu	Ala	Val	Gln 8605	Asn	Ala	Glu	Ser	Ile 8610	Ile	Ala	Gly

Leu	Asn 8615		Pro	Thr	Ile	Asn 8620		Gly	Asn	Val	Ser 8625		Ala	Thr
Gln	Ala 8630		Ile	Ser	Ser	Lys 8635		Ala	Leu	Asp	Gly 8640		Glu	Arg
Leu	Ala 8645		Asp	Lys	Gln	Thr 8650		Gly	Asn	Ser	Leu 8655		His	Leu
Asp	Gln 8660		Thr	Pro	Ala	Gln 8665		Gln	Ala	Leu	Glu 8670		Gln	Ile
Asn	Asn 8675		Thr	Thr	Arg	Gly 8680		Val	Ala	Gln	Lys 8685		Thr	Glu
Ala	Gln 8690		Leu	Asn	Gln	Ala 8695		Glu	Ala	Leu	Arg 8700		Ser	Ile
Gln	Asp 8705		Gln	Gln	Thr	Glu 8710		Gly	Ser	Lys	Phe 8715		Asn	Glu
Asp	Lys 8720		Gln	Lys	Asp	Ala 8725		Gln	Ala	Ala	Val 8730		Asn	Ala
ГÀа	Asp 8735	Leu	Ile	Asn	Gln	Thr 8740		Asn	Pro	Thr	Leu 8745	Asp	Lys	Ala
Gln	Val 8750	Glu	Gln	Leu	Thr	Gln 8755		Val	Asn	Gln	Ala 8760		Asp	Asn
Leu	His 8765	Gly	Asp	Gln	Lys	Leu 8770		Asp	Asp	Lys	Gln 8775		Ala	Val
Thr	Asp 8780		Asn	Gln	Leu	Asn 8785		Leu	Asn	Asn	Pro 8790		Arg	Gln
Ala	Leu 8795	Glu	Ser	Gln	Ile	Asn 8800		Ala	Ala	Thr	Arg 8805	Gly	Glu	Val
Ala	Gln 8810		Leu	Ala	Glu	Ala 8815		Ala	Leu	Asp	Gln 8820		Met	Gln
Ala	Leu 8825	Arg	Asn	Ser	Ile	Gln 8830		Gln	Gln	Gln	Thr 8835	Glu	Ser	Gly
Ser	Lys 8840	Phe	Ile	Asn	Glu	Asp 8845		Pro	Gln	Lys	Asp 8850		Tyr	Gln
Ala	Ala 8855	Val	Gln	Asn	Ala	8860 FÀa		Leu	Ile	Asn	Gln 8865	Thr	Gly	Asn
Pro	Thr 8870	Leu	Asp	Lys	Ser	Gln 8875		Glu	Gln	Leu	Thr 8880		Ala	Val
Thr	Thr 8885	Ala	ГÀз	Asp	Asn	Leu 8890	His	Gly	Asp	Gln	8895 Lys	Leu	Ala	Arg
Asp	Gln 8900	Gln	Gln	Ala	Val	Thr 8905	Thr	Val	Asn	Ala	Leu 8910	Pro	Asn	Leu
Asn	His 8915	Ala	Gln	Gln	Gln	Ala 8920		Thr	Asp	Ala	Ile 8925	Asn	Ala	Ala
Pro	Thr 8930	Arg	Thr	Glu	Val	Ala 8935	Gln	His	Val	Gln	Thr 8940	Ala	Thr	Glu
Leu	Asp 8945	His	Ala	Met	Glu	Thr 8950	Leu	Lys	Asn	ГÀа	Val 8955	Asp	Gln	Val
Asn	Thr 8960	Asp	Lys	Ala	Gln	Pro 8965	Asn	Tyr	Thr	Glu	Ala 8970	Ser	Thr	Asp
ГÀа	Lys 8975	Glu	Ala	Val	Asp	Gln 8980	Ala	Leu	Gln	Ala	Ala 8985	Glu	Ser	Ile

											001	.10 11	1400	-
Thr	Asp 8990	Pro	Thr	Asn	Gly	Ser 8995	Asn	Ala	Asn	Lys	Asp	Ala	Val	Asp
Gln	Val 9005	Leu	Thr	Lys	Leu	Gln 9010	Glu	Lys	Glu	Asn	Glu 9015	Leu	Asn	Gly
Asn	Glu 9020	Arg	Val	Ala	Glu	Ala 9025	Lys	Thr	Gln	Ala	Lys	Gln	Thr	Ile
Asp	Gln 9035	Leu	Thr	His	Leu	Asn 9040	Ala	Asp	Gln	Ile	Ala 9045		Ala	Lys
Gln	Asn 9050	Ile	Asp	Gln	Ala	Thr 9055	Lys	Leu	Gln	Pro	Ile 9060	Ala	Glu	Leu
Val	Asp 9065	Gln	Ala	Thr	Gln	Leu 9070	Asn	Gln	Ser	Met	Asp 9075	Gln	Leu	Gln
Gln	Ala 9080	Val	Asn	Glu	His	Ala 9085	Asn	Val	Glu	Gln	Thr 9090	Val	Asp	Tyr
Thr	Gln 9095	Ala	Asp	Ser	Asp	Lys 9100	Gln	Asn	Ala	Tyr	Lys 9105	Gln	Ala	Ile
Ala	Asp 9110	Ala	Glu	Asn	Val	Leu 9115	Lys	Gln	Asn	Ala	Asn 9120	rys	Gln	Gln
Val	Asp 9125	Gln	Ala	Leu	Gln	Asn 9130	Ile	Leu	Asn	Ala	Lys 9135	Gln	Ala	Leu
Asn	Gly 9140	Asp	Glu	Arg	Val	Ala 9145	Leu	Ala	Lys	Thr	Asn 9150	Gly	Lys	His
Asp	Ile 9155	Asp	Gln	Leu	Asn	Ala 9160	Leu	Asn	Asn	Ala	Gln 9165	Gln	Asp	Gly
Phe	Lys 9170	Gly	Arg	Ile	Asp	Gln 9175	Ser	Asn	Asp	Leu	Asn 9180	Gln	Ile	Gln
Gln	Ile 9185	Val	Asp	Glu	Ala	Lys 9190	Ala	Leu	Asn	Arg	Ala 9195	Met	Asp	Gln
Leu	Ser 9200	Gln	Glu	Ile	Thr	Asp 9205	Asn	Glu	Gly	Arg	Thr 9210	Lys	Gly	Ser
Thr	Asn 9215	Tyr	Val	Asn	Ala	Asp 9220	Thr	Gln	Val	Lys	Gln 9225	Val	Tyr	Asp
Glu	Thr 9230	Val	Asp	Lys	Ala	Lys 9235	Gln	Ala	Leu	Asp	Lys 9240	Ser	Thr	Gly
Gln	Asn 9245	Leu	Thr	Ala	Lys	Gln 9250	Val	Ile	Lys	Leu	Asn 9255	Asp	Ala	Val
Thr	Ala 9260	Ala	Lys	Lys	Ala	Leu 9265	Asn	Gly	Glu	Glu	Arg 9270	Leu	Asn	Asn
Arg	Lys 9275	Ala	Glu	Ala	Leu	Gln 9280	Arg	Leu	Asp	Gln	Leu 9285		His	Leu
Asn	Asn 9290	Ala	Gln	Arg	Gln	Leu 9295	Ala	Ile	Gln	Gln	Ile 9300	Asn	Asn	Ala
Glu	Thr 9305	Leu	Asn	Lys	Ala	Ser 9310	Arg	Ala	Ile	Asn	Arg 9315	Ala	Thr	Lys
Leu	Asp 9320	Asn	Ala	Met	Gly	Ala 9325	Val	Gln	Gln	Tyr	Ile 9330		Glu	Gln
His	Leu 9335	Gly	Val	Ile	Ser	Ser 9340	Thr	Asn	Tyr	Ile	Asn 9345	Ala	Asp	Asp
Asn	Leu 9350	Lys	Ala	Asn	Tyr	Asp 9355	Asn	Ala	Ile	Ala	Asn 9360	Ala	Ala	His
Glu	Leu	Asp	Lys	Val	Gln	Gly	Asn	Ala	Ile	Ala	Lys	Ala	Glu	Ala

											-COI	nt ir	iuec	1	
	9365					9370					9375				
Glu	Gln 9380	Leu	Lys	Gln	Asn	Ile 9385	Ile	Asp	Ala	Gln	Asn 9390	Ala	Leu	Asn	
Gly	Asp 9395	Gln	Asn	Leu	Ala	Asn 9400		Lys	Asp	Lys	Ala 9405	Asn	Ala	Phe	
Val	Asn 9410	Ser	Leu	Asn	Gly	Leu 9415	Asn	Gln	Gln	Gln	Gln 9420	Asp	Leu	Ala	
His	Lys 9425	Ala	Ile	Asn	Asn	Ala 9430		Thr	Val	Ser	Asp 9435	Val	Thr	Asp	
Ile	Val 9440	Asn	Asn	Gln	Ile	Asp 9445		Asn	Asp	Ala	Met 9450	Glu	Thr	Leu	
Lys	His 9455	Leu	Val	Asp	Asn	Glu 9460		Pro	Asn	Ala	Glu 9465	Gln	Thr	Val	
Asn	Tyr 9470	Gln	Asn	Ala	Asp	Asp 9475	Asn	Ala	Lys	Thr	Asn 9480	Phe	Asp	Asp	
Ala	Lys 9485	Arg	Leu	Ala	Asn	Thr 9490		Leu	Asn	Ser	Asp 9495	Asn	Thr	Asn	
Val	Asn 9500	Asp	Ile	Asn	Gly	Ala 9505		Gln	Ala	Val	Asn 9510	Asp	Ala	Ile	
His	Asn 9515	Leu	Asn	Gly	Asp	Gln 9520		Leu	Gln	Asp	Ala 9525	Lys	Asp	Lys	
Ala	Ile 9530	Gln	Ser	Ile	Asn	Gln 9535		Leu	Ala	Asn	Lys 9540	Leu	Lys	Glu	
Ile	Glu 9545	Ala	Ser	Asn	Ala	Thr 9550		Gln	Asp	Lys	Leu 9555	Ile	Ala	Lys	
Asn	Lys 9560	Ala	Glu	Glu	Leu	Ala 9565		Ser	Ile	Ile	Asn 9570	Asn	Ile	Asn	
ГÀа	Ala 9575	Thr	Ser	Asn	Gln	Ala 9580		Ser	Gln	Val	Gln 9585	Thr	Ala	Gly	
Asn	His 9590	Ala	Ile	Glu	Gln	Val 9595		Ala	Asn	Glu	Ile 9600	Pro	ГЛа	Ala	
rya	Ile 9605	Asp	Ala	Asn	Lys	Asp 9610		Asp	Lys	Gln	Val 9615	Gln	Ala	Leu	
Ile	Asp 9620	Glu	Ile	Asp	Arg	Asn 9625		Asn	Leu	Thr	Asp 9630	Lys	Glu	ГÀа	
	Ala 9635		Lys			Ile 9640					Gln 9645		Gly	His	
Asn	Gly 9650	Ile	Asn	Asn	Ala	Met 9655		Lys	Glu	Glu	Ile 9660	Glu	Gln	Ala	
Lys	Ala 9665	Gln	Leu	Ala	Gln	Ala 9670		Gln	Asp	Ile	Lys 9675	Asp	Leu	Val	
Lys	Ala 9680	Lys	Glu	Asp	Ala	Lys 9685		Asp	Val	Asp	Lys 9690	Gln	Val	Gln	
Ala	Leu 9695	Ile	Asp	Glu	Ile	Asp 9700		Asn	Pro	Asn	Leu 9705	Thr	Asp	Lys	
Glu	Lys 9710	Gln	Ala	Leu	Lys	Tyr 9715		Ile	Asn	Gln	Ile 9720	Leu	Gln	Gln	
Gly	His 9725	Asn	Asp	Ile	Asn	Asn 9730		Leu	Thr	ГЛа	Glu 9735	Glu	Ile	Glu	
Gln	Ala 9740	Lys	Ala	Gln	Leu	Ala 9745		Ala	Leu	Gln	Asp 9750	Ile	Lys	Asp	

Leu	Val 9755		Ala	Lys	Glu	Asp 9760		Lys	Asn	Ala	Ile 9765		Ala	Leu	L
Ala	Asn 9770	Ala	ГЛа	Arg	Asp	Gln 9775		Asn	Ser	Asn	Pro 9780		Leu	Thr	
Pro	Glu 9785	Gln	ГÀа	Ala	Lys	Ala 9790		Lys	Glu	Ile	Asp 9795		Ala	Glu	L
ГÀв	Arg 9800	Ala	Leu	Gln	Asn	Val 9805		Asn	Ala	Gln	Thr 9810		Asp	Glr	<u>l</u>
Leu	Asn 9815	Arg	Gly	Leu	Asn	Leu 9820		Leu	Asp	Asp	Ile 9825		Asn	Thr	
His	Val 9830	Trp	Glu	Val	Asp	Glu 9835		Pro	Ala	Val	Asn 9840		Ile	Ph∈	:
Glu	Ala 9845	Thr	Pro	Glu	Gln	Ile 9850		Val	Asn	Gly	Glu 9855		Ile	Val	
His	Arg 9860	Asp	Asp	Ile	Ile	Thr 9865		Gln	Asp	Ile	Leu 9870		His	Il∈	:
Asn	Leu 9875	Ile	Asp	Gln	Leu	Ser 9880		Glu	Val	Ile	Asp 9885		Pro	Ser	•
Thr	Ala 9890	Thr	Ile	Ser	Asp	Ser 9895	Leu	Thr	Ala	ГАЗ	Val 9900		Val	Thr	•
Leu	Leu 9905	Asp	Gly	Ser	Lys	Val 9910		Val	Asn	Val	Pro 9915		Lys	Val	
Val	Glu 9920	ГÀа	Glu	Leu	Ser	Val 9925	Val	Lys	Gln	Gln	Ala 9930		Glu	Ser	•
Ile	Glu 9935	Asn	Ala	Ala	Gln	Gln 9940		Ile	Asn	Glu	Ile 9945		Asn	Ser	•
Val	Thr 9950	Leu	Thr	Leu	Glu	Gln 9955		Glu	Ala	Ala	Ile 9960		Glu	Val	
Asn	Lys 9965	Leu	ГÀа	Gln	Gln	Ala 9970		Asp	His	Val	Asn 9975	Asn	Ala	Pro	,
Asp	Val 9980	His	Ser	Val	Glu	Glu 9985	Ile	Gln	Gln	Gln	Glu 9990		Ala	His	ı
Ile	Glu 9995	Gln	Phe	Asn	Pro	Glu 10000		n Phe	e Th:	r Ile	e Glu 100		ln A	la I	ys
	Asn 1001)		_		100	L5		_		10	020			
Asp	Glu 1002!		e Lys	8 Ala	a Arg	Thr 1003		sp Le	eu Tl	nr A		s 035	Glu :	ГЛа	Gln
Glu	Ala 10040		e Ala	a Lys	. Leu	1 Asn 1004		ln L∈	eu L	ys G		n 050	Ala	Ile	Gln
Ala	Ile 1005!		n Arg	j Ala	Glr	Ser 1000		Le As	sp G	lu I		r 065	Glu	Gln	Leu
Glu	Gln 1007		e Lys	a Ala	Glr	Met 100	-	/s A	la Ai	la A:		o 080	Thr .	Ala	Lys
Glu	Leu 1008!		a Lys	arç	j Lys	Gln 1009		Lu A	la I	le S		9 095	Ile :	ГЛа	Asp
Phe	Ser 1010		n Glu	ı Lys	; Ile	2 Asn 1010		er I	le A:	rg A		r 110	Glu	Ile	Gly
Thr	Ala 1011!		Glu	ı Lys	Glr	1012		La Me	et A	sn G		e 125	Asn (Glu	Ile

Val												COILLI	.nue	a			
10145	Val			Thr	Ile	Arg			Asn	Asn				Leu	Gln		
10160	Gln			Ala	Ala	Leu			Gly	Ile	Ala	_		Ser	Ala		
Ann His Pro Phe Asn Ser Ser 10195 Ann His Pro Phe Asn Ser Ser 10195 Ann His Pro Phe Asn Ser Ser 10195 Ann Ann Phe Glu Asn Val Ile 10220 Ann Ann Phe Glu Asn Val Ile 10220 Ile Ser Gly Leu Leu Ala Ser 10240 Ang Arg Arg Lye Glu Leu Ala Ser 10240 Ann Lye Asn Ser Ile Lye Glu 10270 Ann Lye Asn Lye His Thr Pro 10310 Ann Lye Asn Ser Ile Lye Glu 10300 Ann Lye Asn Glu Glu Lye Asn Ser Leu Asn Asn Gly Glu Glu Asn Ile 10310 Ann Lye Glu Asn Glu Glu Asn Val Glu Glu Asn Val Glu Glu Asn Ile 10310 Ann Lye Glu Asn Glu Glu Asn Val Glu His Ser Pro Leu Phe Ala 10310 Lye Ann Glu Lye Asn Lye Lye Glu Glu Asn Val Glu Thr Asn Glu Glu Ser Leu Phe Ala 10340 Lye Asn Glu Lye Asn Lye Lye Val 10360 Lye Asn Glu Lye Asn Lye Lye Val 10360 Lye Asn Thr Ser Lye Lye Val 10395 Lye Asn Thr Ser Lye Lye Val 10405 Ala Lye Lye Asn Lye Lye Ile Lye Val 10400 Ala Lye Lye Asn Lye Lye The Fre Pro 10310 Ann Thr Try Asn Asn Lye Lye Ile Pro Leu Leu Leu Ala Ser Ser Ala Ser 10415 Ann Lye Lye Glu Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser Ala Ser 10415 Ann Clu Pro Lye Glu The Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser Ile Clu Lye Lye Lye Glu Lye Lye Lye Ile Pro Lye Lye Ser Glu Na Asn Ala Glu Ser Lye Asn Tyr 20 Ser Gly Lye Ser Glu Val Asn Ala Gly Ser Lye Sen Gly Thr Leu Ile	Val			Val	Thr	Ser			Ala	rys	Gln			Ser	Thr		
App Glu	Gly			Ser	Asn	Ser			Thr	Ile	Gly			Thr	Ala		
Ash Ash Ash 10210 10215 10215 10215 10216 10226 10	Asn			Phe	Asn				Ile	Gly	His			Lys	Leu		
10220	Asp			Asp	Aap				Leu	His				Phe	Ser		
The Ser 10235 Cly Leu Leu Ala Ser 10240 Phe Trp Phe Phe Ile 10245 Arg Arg Arg Lys Clu Asp Clu	Asn			Gly	Asn	Val			Asn	Ala		_		Val	Gly		
Asn Lys	Ile			Leu	Leu		Ser	Phe	Trp	Phe	Phe			rys	Arg		
10265	Arg			Glu	Asp				Glu	Leu	Glu			Asp	Asn		
10280	Asn	-	-	Ser	Ile				Leu	Asp	Asp		-	His	Leu		
10295	Pro			Phe	Ala				Arg	Lys				Glu	Asp		
Lys Glu Asp Glu Glu Asp Val Glu Val Thr Asn Glu Asn Thr Asp 10335 Glu Lys Val Leu Lys Asp Asn Glu His Ser Pro Leu Leu Phe Ala 10340 Lys Arg Arg Lys Asp Lys Glu Glu Asp Val Glu Thr Thr Thr Ser 10355 Lys Asn Gln Lys Asp Glu Asp Val Pro Leu Leu Leu Leu Ala Lys Lys 10370 Lys Asn Gln Lys Asp Asn Gln Ser Lys Asp Lys Lys Lys Ser Ala Ser 10385 Lys Asn Thr Ser Lys Lys Val Ala Ala Lys Lys Lys Lys Lys Lys Lys 10410 Ala Lys Lys Asn Lys Lys 10415 Ala Lys Lys Asn Lys Lys Seq Il No 39 <11> <10> <10> <10> <10> <10> <10 1 <10> <10 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Val			Glu	Glu				Leu	Asn				Ser	Leu		
10325	Asp					Thr			Phe	Leu	Pro			Arg	Arg		
Lys Arg	Lys			Glu	Glu				Val	Thr	Asn			Thr	Asp		
10355 10360 10365 The Glu Ser Lys Asp Glu Asp Val Pro Leu Leu Leu Leu Ala Lys Lys 10370 10375 Lys Asn Gln Lys Asp Asn Gln Ser Lys Asp Lys Lys Ser Ala Ser 10385 Lys Asn Thr Ser Lys Lys Val Ala Ala Lys	Glu								His	Ser	Pro			Phe	Ala		
Lys Asn Gln Lys Asp Asn Gln Ser Lys Asp Lys Lys Ser Ala Ser 10385 Lys Asn Thr Ser Lys Lys Val 10405 Lys Asn Thr Ser Lys Lys Val 10405 Ala Lys	Lys		_	_	_	-			Asp	Val				Thr	Ser		
Lys Asn Thr Ser Lys Lys Val Ala Ala Lys Lys Lys Lys Lys Lys Lys Lys 10400 Ala Lys Lys Asn Lys Lys 10415 <pre> <210> SEQ ID NO 39 <211> LENGTH: 636 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. <400> SEQUENCE: 39 Met Lys Lys Gln Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser 1 5 10 15 Leu Phe Thr Trp Asp Asn Lys Ala Asp Ala Ile Val Thr Lys Asp Tyr 20 30 Ser Gly Lys Ser Gln Val Asn Ala Gly Ser Lys Asn Gly Thr Leu Ile </pre>	Ile			Lys	Asp				Pro	Leu				Lys	Lys		
10400 10405 10410 Ala Lys Lys Asn Lys Lys 10415 <210 > SEQ ID NO 39 <211 > LENGTH: 636 <212 > TYPE: PRT <213 > ORGANISM: Staphylococcus sp. <400 > SEQUENCE: 39 Met Lys Lys Gln Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser 1 5 10 15 Leu Phe Thr Trp Asp Asn Lys Ala Asp Ala Ile Val Thr Lys Asp Tyr 20 Ser Gly Lys Ser Gln Val Asn Ala Gly Ser Lys Asn Gly Thr Leu Ile	Lys			Lys	Asp				Lys	Asp			Ser	Ala	Ser		
10415 <210> SEQ ID NO 39 <211> LENGTH: 636 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. <400> SEQUENCE: 39 Met Lys Lys Gln Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser 1 5 10 15 Leu Phe Thr Trp Asp Asn Lys Ala Asp Ala Ile Val Thr Lys Asp Tyr 20 25 30 Ser Gly Lys Ser Gln Val Asn Ala Gly Ser Lys Asn Gly Thr Leu Ile	Lys		Thr	Ser	Lys	ГÀа		Ala	Ala	Lys	Lys		Lys	Lys	Lys		
<pre><211> LENGTH: 636 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. <400> SEQUENCE: 39 Met Lys Lys Gln Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser 1</pre>	Ala		Lys	Asn	ГÀа	ГÀа											
Met Lys Lys Gln Ile Ile Ser Leu Gly Ala Leu Ala Val Ala Ser Ser 1	<21 <21	1> LENG 2> TYPI	GTH: E: PI	636 RT		yloc	occus :	≅p.									
1	< 40	0> SEQU	JENCI	E: 39	9												
20 25 30 Ser Gly Lys Ser Gln Val Asn Ala Gly Ser Lys Asn Gly Thr Leu Ile		Lys Ly	ys G	ln II	le I	le Se	er Leu	Gly		Leu	Ala	Val Al			er		
	Leu	Phe Th			sp A	sn Ly	ys Ala		Ala	Ile	Val			рΤ	/r		
	Ser			er G	ln Va	al As		Gly	Ser	Lys	Asn		nr Le	eu II	Le		

Asp	Ser 50	Arg	Tyr	Leu	Asn	Ser 55	Ala	Leu	Tyr	Tyr	Leu 60	Glu	Asp	Tyr	Ile
Ile 65	Tyr	Ala	Ile	Gly	Leu 70	Thr	Asn	Lys	Tyr	Glu 75	Tyr	Gly	Asp	Asn	Ile 80
Tyr	Lys	Glu	Ala	Eys Lys	Asp	Arg	Leu	Leu	Glu 90	Lys	Val	Leu	Arg	Glu 95	Asp
Gln	Tyr	Leu	Leu 100	Glu	Arg	Lys	Lys	Ser 105	Gln	Tyr	Glu	Asp	Tyr 110	Lys	Gln
Trp	Tyr	Ala 115	Asn	Tyr	Lys	ГÀв	Glu 120	Asn	Pro	Arg	Thr	Asp 125	Leu	Lys	Met
Ala	Asn 130	Phe	His	Lys	Tyr	Asn 135	Leu	Glu	Glu	Leu	Ser 140	Met	Lys	Glu	Tyr
Asn 145	Glu	Leu	Gln	Asp	Ala 150	Leu	Lys	Arg	Ala	Leu 155	Asp	Asp	Phe	His	Arg 160
Glu	Val	Lys	Asp	Ile 165	Lys	Asp	Lys	Asn	Ser 170	Asp	Leu	Lys	Thr	Phe 175	Asn
Ala	Ala	Glu	Glu 180	Asp	Lys	Ala	Thr	Lys 185	Glu	Val	Tyr	Asp	Leu 190	Val	Ser
Glu	Ile	Asp 195	Thr	Leu	Val	Val	Ser 200	Tyr	Tyr	Gly	Asp	Lys 205	Asp	Tyr	Gly
Glu	His 210	Ala	Lys	Glu	Leu	Arg 215	Ala	Lys	Leu	Asp	Leu 220	Ile	Leu	Gly	Asp
Thr 225	Asp	Asn	Pro	His	Lys 230	Ile	Thr	Asn	Glu	Arg 235	Ile	Lys	Lys	Glu	Met 240
Ile	Asp	Asp	Leu	Asn 245	Ser	Ile	Ile	Asp	Asp 250	Phe	Phe	Met	Glu	Thr 255	Lys
Gln	Asn	Arg	Pro 260	ГÀа	Ser	Ile	Thr	Lys 265	Tyr	Asn	Pro	Thr	Thr 270	His	Asn
Tyr	ГÀа	Thr 275	Asn	Ser	Asp	Asn	Lys 280	Pro	Asn	Phe	Asp	Lys 285	Leu	Val	Glu
Glu	Thr 290	Lys	Lys	Ala	Val	Lys 295	Glu	Ala	Asp	Asp	Ser 300	Trp	Lys	Lys	Lys
Thr 305	Val	Lys	Lys	Tyr	Gly 310	Glu	Thr	Glu	Thr	Lys 315	Ser	Pro	Val	Val	Lys 320
Glu	Glu	Lys	Lys	Val 325	Glu	Glu	Pro	Gln	Ala 330	Pro	Lys	Val	Asp	Asn 335	Gln
Gln	Glu	Val	Lys 340	Thr	Thr	Ala	Gly	Lys 345	Ala	Glu	Glu	Thr	Thr 350	Gln	Pro
Val	Ala	Gln 355	Pro	Leu	Val	Lys	Ile 360	Pro	Gln	Gly	Thr	Ile 365	Thr	Gly	Glu
Ile	Val 370	Lys	Gly	Pro	Glu	Tyr 375	Pro	Thr	Met	Glu	Asn 380	Lys	Thr	Val	Gln
Gly 385	Glu	Ile	Val	Gln	Gly 390	Pro	Asp	Phe	Leu	Thr 395	Met	Glu	Gln	Ser	Gly 400
Pro	Ser	Leu	Ser	Asn 405	Asn	Tyr	Thr	Asn	Pro 410	Pro	Leu	Thr	Asn	Pro 415	Ile
Leu	Glu	Gly	Leu 420	Glu	Gly	Ser	Ser	Ser 425	ГЛа	Leu	Glu	Ile	Lys 430	Pro	Gln
Gly	Thr	Glu 435	Ser	Thr	Leu	Lys	Gly 440	Thr	Gln	Gly	Glu	Ser 445	Ser	Asp	Ile

GIN VAID LYB PRO GIN AND 455 ST 1 THY GIN ALB SER GIN TYY GIN 460 ALB SER GIN TYY GIN 460 ALB SER GIN TYY GIN 460 ALB SER GIN TYY GIN ALB SER GIN TYY ALB SER GIN TYY GIN ALB SER GIN TYY ALB SER	Glu															
485 470 470 475 475 480 Ala Gly Thr Gly Ile Arg Glu Tyr Aen Aep Gly Thr Phe Gly Tyr Glu 485 500 Pro Ser Glu Tyr Aen Aep Gly Thr Phe Gly Tyr Glu 495 500 Pro Ser Glu Thr Aen Ala Tyr Aen Val 550 Pro 5			ГЛа	Pro	Gln	Ala		Glu	Thr	Thr	Glu		Ser	Gln	Tyr	Gly
Ala Arg Pro Arg Phe Asn Lys Pro Ser Glu Thr Asn Ala Tyr Asn Val 515 Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr Tyr 5515 Lys Lys Pro Ser Glu Thr Asn Ala Tyr Asn Val Thr Thr His Ala Asn 530 Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr Gln Asn Lys Pro Ser Lys 545 Thr Asn Ala Tyr Asn Val Thr Thr His Gly Asn Gly Gln Val Ser Tyr 565 Thr Asn Ala Tyr Asn Val Thr Thr His Gly Asn Gly Gln Val Ser Tyr 575 Gly Ala Arg Pro Thr Gln Asn Lys Pro Ser Lys Thr Asn Ala Tyr Asn 590 Thr Thr His Ala Asn Gly Gln Val Ser Tyr 570 Gly Ala Arg Pro Thr Gln Asn Lys Pro Ser Lys Thr Asn Ala Tyr Asn 590 Tyr Lys Lys Pro Ser Lys Thr Asn Ala Tyr Asn Val Thr Thr His Ala Asn 610 Tyr Lys Lys Pro Ser Lys Thr Asn Ala Tyr Asn Val Thr Thr His Ala 610 Asp Gly Thr Ala Thr Tyr Gly Pro Arg Val Thr Lys 625 **C210> SEQ ID NO 40 **C211- LENGTH: 628 **C212- Type: PRT **C212- Type: PRT **C213- ORGANISM: Staphylococcus sp. **Ason		Arg	Pro	Gln	Phe		Lys	Thr	Pro	Lys	_	Val	Lys	Tyr	Arg	_
Soo	Ala	Gly	Thr	Gly		Arg	Glu	Tyr	Asn		Gly	Thr	Phe	Gly	_	Glu
S15	Ala	Arg	Pro	_	Phe	Asn	Lys	Pro		Glu	Thr	Asn	Ala	-	Asn	Val
S30	Thr	Thr		Ala	Asn	Gly	Gln		Ser	Tyr	Gly	Ala	_	Pro	Thr	Tyr
545	Lys	_	Pro	Ser	Glu	Thr		Ala	Tyr	Asn	Val		Thr	His	Ala	Asn
Secondary Seco	_	Gln	Val	Ser	Tyr	_	Ala	Arg	Pro	Thr		Asn	Lys	Pro	Ser	-
Val Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr 595 Val Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr 600 Tyr Lys Lys Pro Ser Lys Thr Asn Ala Tyr Asn Val Thr Thr His Ala 610 Asp Gly Thr Ala Thr Tyr Gly Pro Arg Val Thr Lys 625 <210 > SEQ ID NO 40 <211 > LENGTH: 628 <212 > TYPE: PRT <213 > ORGANISM: Staphylococcus sp. <400 > SEQUENCE: 40 Met Ser Asp Arg Phe Ile Lys Phe Asn Asp Glu Gln Leu Asp Ala Lys 15 Gln Val Met Met Leu Gln Asp Leu Ala Arg Leu Leu Leu Lys Asn Glu Gln Asp Lys 15 Gln Thr Gln Val Lys Ile Gln Lys Phe Pro Tyr Tyr Asn Pro Val Gln Asp Val Wet Leu Ile Thr Ser Trp Phe Trp Ser His Arg Pro Ser His Ile 50 Glu Met Ala Gly Leu Lys Thr Asp Val Met Leu Ala Ala Tyr Gly Tyr 76 His Met Met Asp Val Gln Ile Val Asn Glu Val Val Gln Asp Lys Thr 65 Phe Lys His Pro Lys Phe Tyr Gln Gln Leu Phe Lys Leu Glu Asp 100 Met Arg Val Leu Asn Ser Ile Lys Val Glu Arg Pro Ser Thr Ala Lys 110 Leu Ile Asp Leu Arg Leu Asp Thr Arg Ile Ser Tyr Thr Asp Leu Leu Glu Ser Gln 130 Tyr Leu Glu His Ala Phe Leu Ser Gln Asp Phe Phe Asp Ile Pro Ser Con Tyr Der Con Info Con In	Thr	Asn	Ala	Tyr		Val	Thr	Thr	His		Asn	Gly	Gln	Val		Tyr
TYT Lys Lys Pro Ser Lys Thr Asn Ala Tyr Asn Val Thr Thr His Ala Asp Gly Thr Ala Thr Tyr Gly Pro Arg Val Thr Lys 625	Gly	Ala	Arg		Thr	Gln	Asn	Lys		Ser	Lys	Thr	Asn		Tyr	Asn
Asp Gly Thr Ala Thr Tyr Gly Pro Arg Val Thr Lys 635 <pre></pre>	Val	Thr		His	Ala	Asn	Gly		Val	Ser	Tyr	Gly		Arg	Pro	Thr
C210 SEQ ID NO 40 C211 LENGTH: 628 C212 TYPE: PRT C213 ORGANISM: Staphylococcus sp. C400 SEQUENCE: 40	Tyr	_	Lys	Pro	Ser	Lys		Asn	Ala	Tyr	Asn		Thr	Thr	His	Ala
<pre> <211> LENGTH: 628 <212> TYPE: PRT <213> ORGANISM: Staphylococcus sp. <400> SEQUENCE: 40 Met Ser Asp Arg Phe Ile Lys Phe Asn Asp Glu Gln Leu Asp Ala Lys 15 Gln Val Met Met 20</pre>		Gly	Thr	Ala	Thr		Gly	Pro	Arg	Val		Lys				
Met 1 Ser Asp Asp 1 Arg 5 Ile Lys Phe Sen 1 Asp 10 Glu Glu Glu Leu Glu Leu Asp 15 Lys Asp 15 Lys 15 Gln Val Met Wet 20 Leu Gln Asp Leu Ala Arg Leu Leu Leu Leu Lys 30 Asn Glu 30	<211 <212	> LE 2> TY	ENGTH PE:	H: 62 PRT	28	phylo	ococo	cus s	sp.							
10	< 400)> SI	EQUE1	ICE :	40											
Second S		Ser	Asp	Arg		Ile	Lys	Phe	Asn	_	Glu	Gln	Leu	Asp		Lys
Asn Val Leu Ile Thr Ser Trp Phe Trp Ser His Arg Pro Ser His Ile 55 Glu Met Ala Gly Leu Lys Thr Asp Val Met Leu Ala Ala Tyr Gly Tyr 80 His Met Met Asp Val Gln Ile Val Asn Glu Val Val Gln Asp Lys Thr 95 Phe Lys His Pro Lys Phe Tyr Gln Gln Leu Phe Lys Leu Leu Glu Asp 100 Met Arg Val Leu Asn Ser Ile Lys Val Glu Arg Pro Ser Thr Ala Lys 115 Leu Ile Asp Leu Arg Leu Asp Thr Lys Thr Arg Ile Ser Tyr Thr Glu Ser Gln 145 Tyr Leu Glu His Ala Phe Leu Ser Gln Asp Phe Phe Asp Ile Pro Ser	Gln	Val	Met		Leu	Gln	Asp	Leu								
50 55 60 60 60 60 60 60 60 60 60 60 60 60 60	Gln	Thr		Val						Arg	Leu	Leu	Leu	-	Asn	Glu
65			35		Lys	Ile	Gln	-	25				Asn	30		
90 95 Phe Lys His Pro Lys Phe Tyr Gln Gln Leu Phe Lys Leu Leu Glu Asp 110	Asn						Trp	40	25 Phe	Pro	Tyr	Tyr Arg	Asn 45	30 Pro	Val	Gln
Met Arg Val Leu Asn Ser Ile Lys Val Glu Arg Pro Ser Thr Ala Lys 115 Leu Ile Asp Leu Arg Leu Asp Thr Arg Ile Ser Tyr Thr Glu Ser Gln 130 Thr Lys Thr Gln Tyr Thr Asp Leu Phe Leu 145 Leu Glu His Ala Phe Leu Ser Gln Asp Phe Phe Asp Ile Pro Ser	Glu	50	Leu	Ile	Thr	Ser Lys	Trp 55	40 Phe	25 Phe Trp	Pro Ser	Tyr His Leu	Tyr Arg 60	Asn 45 Pro	30 Pro Ser	Val His	Gln Ile Tyr
Leu Ile Asp Leu Arg Leu Asp Thr Arg Ile Ser Tyr Thr Glu Ser Gln 130 Thr Lys Thr Glu Ser Gln 140 Leu Ile Lys Val Tyr Arg Thr Lys Thr Gln Tyr Thr Asp Leu Leu Phe Leu 145 Thr Leu Glu His Ala Phe Leu Ser Gln Asp Phe Phe Asp Ile Pro Ser	Glu 65	50 Met	Leu Ala	Ile Gly	Thr Leu Val	Ser Lys 70	Trp 55 Thr	40 Phe Asp	25 Phe Trp Val	Pro Ser Met	Tyr His Leu 75	Tyr Arg 60 Ala	Asn 45 Pro Ala	30 Pro Ser Tyr	Val His Gly Lys	Gln Ile Tyr 80
130 135 140 Ile Lys Val Tyr Arg Thr Lys Thr Gln Tyr Thr Asp Leu Leu Phe Leu 145 150 150 160 Tyr Leu Glu His Ala Phe Leu Ser Gln Asp Phe Phe Asp Ile Pro Ser	Glu 65 His	50 Met Met	Leu Ala Met	Ile Gly Asp Pro	Thr Leu Val 85	Ser Lys 70 Gln	Trp 55 Thr	40 Phe Asp Val	25 Phe Trp Val Asn Gln	Pro Ser Met Glu	Tyr His Leu 75 Val	Tyr Arg 60 Ala Val	Asn 45 Pro Ala Gln	30 Pro Ser Tyr Asp	Val His Gly Lys 95	Gln Ile Tyr 80 Thr
145 150 155 160 Tyr Leu Glu His Ala Phe Leu Ser Gln Asp Phe Phe Asp Ile Pro Ser	Glu 65 His Phe	50 Met Met Lys	Leu Ala Met His	Ile Gly Asp Pro	Thr Leu Val 85 Lys	Ser Lys 70 Gln Phe	Trp 55 Thr Ile Tyr	40 Phe Asp Val Gln	25 Phe Trp Val Asn Gln 105	Pro Ser Met Glu 90 Leu	Tyr His Leu 75 Val	Tyr Arg 60 Ala Val	Asn 45 Pro Ala Gln Leu Ser	30 Pro Ser Tyr Asp Leu 110	Val His Gly Lys 95 Glu	Gln Ile Tyr 80 Thr
	Glu 65 His Phe Met	50 Met Met Lys Arg	Leu Ala Met His Val 115	Ile Gly Asp Pro 100 Leu	Thr Leu Val 85 Lys Asn	Ser Lys 70 Gln Phe	Trp 55 Thr Ile Tyr Ile Asp	40 Phe Asp Val Gln Lys 120	25 Phe Trp Val Asn Gln 105 Val	Pro Ser Met Glu 90 Leu	Tyr His Leu 75 Val Phe	Tyr Arg 60 Ala Val Lys Pro	Asn 45 Pro Ala Gln Leu Ser 125	30 Pro Ser Tyr Asp Leu 110 Thr	Val His Gly Lys 95 Glu Ala	Gln Ile Tyr 80 Thr Asp
	Glu 65 His Phe Met Leu	50 Met Met Lys Arg	Leu Ala Met His Val 115 Asp	Ile Gly Asp Pro 100 Leu	Thr Leu Val 85 Lys Asn	Ser Lys 70 Gln Phe Ser Leu Thr	Trp 55 Thr Ile Tyr Ile Asp 135	40 Phe Asp Val Gln Lys 120 Thr	25 Phe Trp Val Asn Gln 105 Val Arg	Pro Ser Met Glu 90 Leu Glu	Tyr His Leu 75 Val Phe Arg Ser	Tyr Arg 60 Ala Val Lys Pro Tyr 140	Asn 45 Pro Ala Gln Leu Ser 125	30 Pro Ser Tyr Asp Leu 110 Thr	Val His Gly Lys 95 Glu Ala	Gln Ile Tyr 80 Thr Asp Lys Gln Leu

Ile	His	Ser	Asp 180	Leu	Asp	Asp	Ile	Leu 185	Val	Asn	Met	Phe	Leu 190	Tyr	Leu
Pro	Asn	Phe 195	Phe	Gln	Asn	Gln	Asn 200	Ser	Glu	Asp	Asn	Met 205	Tyr	Leu	Ala
Gln	Arg 210	Ile	Met	Tyr	Gln	Val 215	Asp	Asp	Ile	Leu	Lys 220	Glu	Asp	Met	Leu
Asn 225	Glu	Tyr	Tyr	Tyr	Leu 230	Pro	Lys	Thr	Leu	Tyr 235	Asn	Thr	Leu	Ala	Ser 240
Pro	Glu	Phe	Asp	Asp 245	Leu	Lys	Arg	Thr	Asp 250	Ala	Ser	Gln	Val	Asp 255	Gly
Gln	Asp	Asp	Thr 260	Ser	Glu	Asp	Asp	Asp 265	Asn	Glu	Ser	Glu	Lys 270	Ala	Asp
Ser	Lys	Ser 275	Ala	Asp	Ser	Glu	Ser 280	Lys	Gly	Gly	Ala	Tyr 285	Leu	Glu	Met
Glu	Leu 290	His	Glu	Gly	Gln	Asn 295	Ser	Glu	Thr	Leu	Gly 300	Asn	Asp	Glu	Ala
Arg 305	Glu	Gly	Asp	Ala	Thr 310	Asp	Asp	Met	Thr	Asp 315	Met	Met	Thr	Lys	Lys 320
Gly	Lys	Gly	Ser	Asn 325	Asp	Thr	Leu	Asn	Arg 330	Glu	Glu	Gly	Asp	Ala 335	Val
Gly	Gln	Ser	Gln 340	Ala	Phe	Gln	Leu	Asp 345	Gly	Val	Asn	Lys	Asn 350	Val	Glu
Ile	Lys	Trp 355	Gln	Ile	Pro	Glu	Ile 360	Glu	Pro	Gln	Tyr	Val 365	Leu	Glu	Tyr
Gln	Glu 370	Ser	Lys	Gln	Asp	Val 375	Gln	Tyr	Glu	Ile	380	Asp	Leu	Ile	Gln
Ile 385	Ile	Lys	Lys	Thr	Ile 390	Glu	Arg	Glu	Gln	Arg 395	Asp	Ala	Arg	Phe	Asn 400
Leu	Thr	Lys	Gly	Arg 405	Leu	Gln	Lys	Asp	Leu 410	Ile	Asn	Trp	Phe	Ile 415	Asp
Asp	Gln	Tyr	Lys 420	Leu	Phe	Tyr	Lys	Lys 425	Gln	Asp	Leu	Ser	Lys 430	Ser	Phe
Asp	Ala	Thr 435	Phe	Thr	Leu	Leu	Ile 440	Asp	Ala	Ser	Ala	Ser 445	Met	His	Asp
Lys	Met 450	Ala	Glu	Thr	Lys	Lys 455	Gly	Val	Val	Leu	Phe 460	His	Glu	Thr	Leu
Lys 465	Ala	Leu	Asn	Ile	Lys 470	His	Glu	Ile	Leu	Ser 475	Phe	Ser	Glu	Asp	Ala 480
Phe	Asp	Ser	Asp	Glu 485	His	Ala	Gln	Pro	Asn 490	Ile	Ile	Asn	Glu	Ile 495	Ile
Asn	Tyr	Asp	Tyr 500	Ser	Thr	Phe	Glu	Lys 505	Asp	Gly	Pro	Arg	Ile 510	Met	Ala
Leu	Glu	Pro 515	Gln	Asp	Asp	Asn	Arg 520	Asp	Gly	Val	Ala	Ile 525	Arg	Val	Ala
Ser	Glu 530	Arg	Leu	Met	Arg	Arg 535	Asn	Gln	His	Gln	Arg 540	Phe	Leu	Ile	Val
Phe 545	Ser	Asp	Gly	Glu	Pro 550	Ser	Ala	Phe	Asn	Tyr 555	Ser	Gln	Asp	Gly	Ile 560
Ile	Asp	Thr	Tyr	Glu 565	Ala	Val	Glu	Met	Ser 570	Arg	Lys	Phe	Gly	Ile 575	Glu

Val	Phe	Asn	Val 580	Phe	Leu	Ser	Gln	Asp 585	Pro	Ile	Thr	Glu	Asp 590	Val	Glu
Gln	Thr	Ile 595	His	Asn	Ile	Tyr	Gly 600	Gln	Tyr	Ala	Ile	Phe 605	Val	Glu	Gly
Val	Ala 610	His	Leu	Pro	Gly	His 615	Leu	Ser	Pro	Leu	Leu 620	Lys	Lys	Leu	Leu
Leu 625	ГЛа	Ser	Leu												
<211 <212	-> LE 2> T	EQ II ENGTH (PE: RGAN)	1: 79 PRT		illus	s ant	hrac	cis							
< 400)> SI	EQUE	ICE :	41											
Met 1	Lys	Lys	Ser	Lys 5	Lys	Met	Leu	Ala	Gly 10	Ala	Thr	Leu	Ala	Ile 15	Gly
Val	Met	Ala	Pro 20	Gln	Val	Leu	Pro	Ala 25	Thr	Ala	His	Ala	Asp 30	Glu	Tàa
Thr	Gly	Glu 35	Ser	Thr	Val	Asn	Leu 40	Arg	Ile	Leu	Glu	Thr 45	Ser	Asp	Ile
His	Val 50	Asn	Leu	Met	Asn	Tyr 55	Asp	Tyr	Tyr	Gln	Thr 60	ГЛа	Thr	Asp	Asn
Lys 65	Val	Gly	Leu	Val	Gln 70	Thr	Ala	Thr	Leu	Val 75	Asn	ГЛа	Ala	Arg	Glu 80
Glu	Ala	ГЛа	Asn	Ser 85	Val	Leu	Phe	Asp	Asp 90	Gly	Asp	Ala	Leu	Gln 95	Gly
Thr	Pro	Leu	Gly 100	Asp	Tyr	Val	Ala	Asn 105	Lys	Ile	Asn	Asp	Pro 110	Lys	Lys
Pro	Val	Asp 115	Pro	Ser	Tyr	Thr	His 120	Pro	Leu	Tyr	Arg	Leu 125	Met	Asn	Leu
Met	Lys 130	Tyr	Asp	Val	Ile	Ser 135	Leu	Gly	Asn	His	Glu 140	Phe	Asn	Tyr	Gly
Leu 145	Asp	Tyr	Leu	Asn	Lys 150	Val	Ile	Ser	Lys	Thr 155	Glu	Phe	Pro	Val	Ile 160
Asn	Ser	Asn	Val	Tyr 165	ГÀв	Asp	Asp	ГÀв	Asp 170	Asn	Asn	Glu	Glu	Asn 175	Asp
Gln	Asn	Tyr	Phe 180	Lys	Pro	Tyr	His	Val 185	Phe	Glu	Lys	Glu	Val 190	Glu	Asp
Glu	Ser	Gly 195	Gln	ГÀЗ	Gln	ГÀЗ	Val 200	ГÀЗ	Ile	Gly	Val	Met 205	Gly	Phe	Val
Pro	Pro 210	Gln	Val	Met	Asn	Trp 215	Asp	ГÀз	Ala	Asn	Leu 220	Glu	Gly	Lys	Val
Lys 225	Ala	Lys	Asp	Ile	Val 230	Glu	Thr	Ala	ГÀз	Lys 235	Met	Val	Pro	Lys	Met 240
Lys	Ala	Glu	Gly	Ala 245	Asp	Val	Ile	Val	Ala 250	Leu	Ala	His	Ser	Gly 255	Val
Asp	Lys	Ser	Gly 260	Tyr	Asn	Val	Gly	Met 265	Glu	Asn	Ala	Ser	Tyr 270	Tyr	Leu
Thr	Glu	Val 275	Pro	Gly	Val	Asp	Ala 280	Val	Leu	Met	Gly	His 285	Ser	His	Thr
Glu	Val 290	ГЛа	Asp	Val	Phe	Asn 295	Gly	Val	Pro	Val	Val 300	Met	Pro	Gly	Val

Phe 305	Gly	Ser	Asn	Leu	Gly 310	Ile	Ile	Asp	Met	Gln 315	Leu	Lys	Lys	Val	Asn 320
Gly	Lys	Trp	Glu	Val 325	Gln	ГÀа	Glu	Gln	Ser 330	Lys	Pro	Gln	Leu	Arg 335	Pro
Ile	Ala	Asp	Ser 340	Lys	Gly	Asn	Pro	Leu 345	Val	Gln	Ser	Asp	Gln 350	Asn	Leu
Val	Asn	Glu 355	Ile	Lys	Asp	Asp	His 360	Gln	Ala	Thr	Ile	Asp 365	Tyr	Val	Asn
Thr	Ala 370	Val	Gly	Lys	Thr	Thr 375	Ala	Pro	Ile	Asn	Ser 380	Tyr	Phe	Ser	Leu
Val 385	Gln	Asp	Asp	Pro	Ser 390	Val	Gln	Leu	Val	Thr 395	Asn	Ala	Gln	Lys	Trp 400
Tyr	Val	Glu	Lys	Leu 405	Phe	Ala	Glu	Asn	Gly 410	Gln	Tyr	Ser	Lys	Tyr 415	Lys
Gly	Ile	Pro	Val 420	Leu	Ser	Ala	Gly	Ala 425	Pro	Phe	Lys	Ala	Gly 430	Gly	Arg
Asn	Gly	Ala 435	Thr	Tyr	Tyr	Thr	Asp 440	Ile	Pro	Ala	Gly	Thr 445	Leu	Ala	Ile
Lys	Asn 450	Val	Ala	Asp	Leu	Tyr 455	Val	Tyr	Pro	Asn	Thr 460	Leu	Tyr	Ala	Val
Lys 465	Val	Asn	Gly	Ala	Gln 470	Val	Lys	Glu	Trp	Leu 475	Glu	Met	Ser	Ala	Gly 480
Gln	Phe	Asn	Gln	Ile 485	Asp	Pro	Lys	Lys	Thr 490	Glu	Glu	Gln	Pro	Leu 495	Val
Asn	Ile	Gly	Tyr 500	Pro	Thr	Tyr	Asn	Phe 505	Asp	Ile	Leu	Asp	Gly 510	Leu	Lys
Tyr	Glu	Ile 515	Asp	Val	Thr	Gln	Pro 520	Ala	ГЛа	Tyr	Aap	Lys 525	Asp	Gly	Lys
Val	Val 530	Asn	Ala	Asn	Thr	Asn 535	Arg	Ile	Ile	Asn	Met 540	Thr	Tyr	Glu	Gly
Lys 545	Pro	Val	Ala	Aap	Asn 550	Gln	Glu	Phe	Ile	Val 555	Ala	Thr	Asn	Asn	Tyr 560
Arg	Gly	Ser	Ser	Gln 565	Thr	Phe	Pro	Gly	Val 570	Ser	Lys	Gly	Glu	Val 575	Val
Tyr	Gln	Ser	Gln 580	Asp	Glu	Thr	Arg	Gln 585	Ile	Ile	Val	Lys	Tyr 590	Met	Gln
Glu	Thr	Pro 595	Val	Ile	Asp	Pro	Ala 600	Ala	Asp	Lys	Asn	Trp 605	Ala	Phe	Lys
Pro	Ile 610	Val	Ala	Asp	Lys	Leu 615	Asn	Thr	Thr	Phe	Asp 620	Ser	Ser	Pro	Asn
Ala 625	Gln	Lys	Tyr	Ile	Lys	Lys	Asp	Gly	Asn	Ile 635	Ser	Tyr	Val	Gly	Pro 640
Ser	Glu	Asn	Glu	Phe 645	Ala	Lys	Tyr	Ala	Ile 650	Asp	Ile	Thr	Lys	Lys 655	Asn
Asp	Asp	Asp	Lys 660	Glu	Thr	Gly	Gly	Glu 665	Asn	Pro	Thr	Ile	Pro 670	Pro	Thr
Gly	Glu	Gly 675	Asp	Asn	Gly	Glu	Asn 680	Pro	Thr	Thr	Pro	Pro 685	Thr	Gly	Glu
Gly	Asn 690	Asn	Gly	Glu	Asn	Pro 695	Thr	Thr	Pro	Pro	Thr 700	Gly	Glu	Gly	Asn

Asn Gly Gly Asn Pro Thr Thr Pro Ser Thr Asp Glu Gly Asn Asn Ala 705 710 715 720
Gly Ser Gly Gln Thr Thr Asp Asn Gln Asn Ser Lys Glu Thr Thr
725 730 735 Thr Val Ser Glu Asn Lys Glu Glu Arg Asp Leu Pro Lys Thr Gly Thr
740 745 750
Asn Val Ala Ser Thr Ile Gly Ala Gly Leu Ala Phe Ile Gly Ala Gly 755 760 765
Phe Leu Leu Phe Arg Arg Lys Lys Ala Asn Arg 770 775 780
<210> SEQ ID NO 42 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 42 tttcccqqqa cqatccaqct ctaatcqctq 30
tttcccggga cgatccagct ctaatcgctg 30
<210> SEQ ID NO 43 <211> LENGTH: 41 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 43
tttgagctca aagcaaatag ataatcgaga aatataaaaa g 41
<210> SEQ ID NO 44 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 44
tttgagctca gttgctccag ccagcat 27
<210> SEQ ID NO 45 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 45
tttgaattca aacggattca ttccagcc 28
<210> SEQ ID NO 46 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 46
tacgaattcg acttggcagg caattgaaaa 30

<210> SEQ ID NO 47	
<211> LENGTH: 29	
<211> LENGIH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 47	
tgtgaattet tagetagett ttetaegte	29
<210> SEQ ID NO 48	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213 > ORGANISM: Artificial	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic primer	
(223) OTHER INFORMATION: Synchecic primer	
<400> SEQUENCE: 48	
tegggateeg etgageagea tacaccaatg	30
<210> SEQ ID NO 49	
<211> LENGTH: 36	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 49	
tgtggatoot tattgattaa tttgttoago taatgo	36
tytygateet tattyattaa titytteage taatye	30
<210> SEO ID NO 50	
<210> SEQ ID NO 50 <211> LENGTH: 340	
<211> LENGTH: 340	
<211> LENGTH: 340 <212> TYPE: PRT	
<211> LENGTH: 340	
<211> LENGTH: 340 <212> TYPE: PRT	
<211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus	
<pre><211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50</pre>	
<pre><211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr</pre>	
<pre><211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr</pre>	
<pre><211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1 5 10 15</pre>	
<pre><211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1 5 10 15 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 25 30</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre><211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1 5 10 15 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 25 30</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
<pre> <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Staphylococcus aureus <400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 1</pre>	
C211> LENGTH: 340 C212> TYPE: PRT C213> ORGANISM: Staphylococcus aureus C400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10 15 Gin Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 Thr Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 65 Ser Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 85 Ser Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 95	
<pre>c211> LENGTH: 340 c212> TYPE: PRT c213> ORGANISM: Staphylococcus aureus c400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10</pre>	
<pre>c211> LENGTH: 340 c212> TYPE: PRT c213> ORGANISM: Staphylococcus aureus c400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10</pre>	
See Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Leu Lys Lys Ile 80	
2211> LENGTH: 340 2212> TYPE: PRT 2213> ORGANISM: Staphylococcus aureus 4000> SEQUENCE: 50 Met Lys Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 15 Gin Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 Thr Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 80 Ser Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 90 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 125	
C211> LENGTH: 340 C212> TYPE: PRT C213> ORGANISM: Staphylococcus aureus C400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 25 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 30 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Asp Lys Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 60 Thr Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 80 Ser Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 85 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln	
2211> LENGTH: 340 2212> TYPE: PRT 2213> ORGANISM: Staphylococcus aureus 4000> SEQUENCE: 50 Met Lys Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 15 Gin Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 Thr Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 80 Ser Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 90 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 125	
C211> LENGTH: 340 C212> TYPE: PRT C213> ORGANISM: Staphylococcus aureus C400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 15 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 For Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 65 For Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 90 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln 130	
C211> LENGTH: 340 C212> TYPE: PRT C213> ORGANISM: Staphylococcus aureus C400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Fhr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 Fhr Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 65 For Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 85 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln 140 Asn Lys Val Asn His His Phe Ile Thr Thr Gln Thr His Tyr Lys Lys	
C211> LENGTH: 340 C212> TYPE: PRT C213> ORGANISM: Staphylococcus aureus C400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 15 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 For Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 65 For Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 90 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln 130	
x211> LENGTH: 340 x212> TYPE: PRT x213> ORGANISM: Staphylococcus aureus x400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10 GIn Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 45 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 For Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Lys Lys Ile 80 Ser Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 95 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 110 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln 130 Asn Lys Val Asn His His Phe Ile Thr Thr Gln Thr His Tyr Lys Lys 145	
C211> LENGTH: 340 C212> TYPE: PRT C213> ORGANISM: Staphylococcus aureus C400> SEQUENCE: 50 Met Lys Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10 Gln Leu Ile Asn Ser Asn His Ala Asn Ala Ser Val Thr Glu Ser Val 20 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Fhr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Ser Asn Leu 50 Fhr Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Lys Lys Ile 65 For Asp Pro Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val 85 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 100 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln 140 Asn Lys Val Asn His His Phe Ile Thr Thr Gln Thr His Tyr Lys Lys	

Ala	Thr	Asp	Ser 180	Ile	Asn	Lys	His	Phe 185	Ile	Val	rya	Pro	Ser 190	Glu	Ala
Pro	Arg	Tyr 195	Thr	His	Pro	Ser	Gln 200	Ser	Leu	Met	Ile	Asn 205	His	Tyr	Phe
Ala	Val 210	Pro	Gly	Tyr	His	Ala 215	His	Lys	Phe	Val	Thr 220	Pro	Gly	His	Ala
Ser 225	Ile	Lys	Ile	Asn	His 230	Phe	Cys	Val	Val	Pro 235	Gln	Ile	Asn	Ser	Phe 240
ГАв	Val	Ile	Pro	Pro 245	Tyr	Gly	His	Asn	Ser 250	His	Arg	Met	His	Val 255	Pro
Ser	Phe	Gln	Asn 260	Asn	Thr	Thr	Ala	Thr 265	His	Gln	Asn	Ala	Lys 270	Val	Asn
ГÀз	Ala	Tyr 275	Asp	Tyr	Lys	Tyr	Phe 280	Tyr	Ser	Tyr	Lys	Val 285	Val	ГÀв	Gly
Val	Lys 290	Lys	Tyr	Phe	Ser	Phe 295	Ser	Gln	Ser	Asn	Gly 300	Tyr	Lys	Ile	Gly
Lys 305	Pro	Ser	Leu	Asn	Ile 310	Lys	Asn	Val	Asn	Tyr 315	Gln	Tyr	Ala	Val	Pro 320
Ser	Tyr	Ser	Pro	Thr 325	Asn	Tyr	Val	Pro	Glu 330	Phe	Lys	Gly	Ser	Leu 335	Pro
Ala	Pro	Arg	Val 340												
<213 <213	0 > SI L > LI 2 > T' 3 > OF	ENGTH	H: 33	39	ohylo	ococo	cus a	aurei	ıs						
				-	•										
< 400)> SI	EQUE1													
	D> SI		ICE :	51	-					Ser	Thr	Leu	Phe	Ala 15	Thr
Met 1		Lys	Lys	51 Leu 5	Phe	Val	Leu	Thr	Met 10					15	
Met 1 Gln	ГЛа	Lys	ICE : Lys Asn 20	51 Leu 5	Phe Asn	Val His	Leu Ala	Thr Asn 25	Met 10 Ala	Ser	Thr	Glu	Ser 30	15 Val	Asp
Met 1 Gln Lys	Lys Leu	Lys Ile Phe 35	Lys Lys Asn 20 Val	51 Leu 5 Ser	Phe Asn Pro	Val His Glu	Leu Ala Ser 40	Thr Asn 25 Gly	Met 10 Ala Ile	Ser Asn	Thr Lys	Glu Ile 45	Ser 30 Ile	15 Val Pro	Asp Thr
Met 1 Gln Lys Tyr	Lys Leu Asn Asp	Lys Ile Phe 35 Glu	Lys Asn 20 Val	51 Leu 5 Ser Val	Phe Asn Pro Lys	Val His Glu Ala 55	Leu Ala Ser 40 Pro	Thr Asn 25 Gly Lys	Met 10 Ala Ile Val	Ser Asn Asn	Thr Lys Val 60	Glu Ile 45 Gly	Ser 30 Ile Ser	15 Val Pro Leu	Asp Thr Ala
Met 1 Gln Lys Tyr Asp 65	Lys Leu Asn Asp 50	Lys Ile Phe 35 Glu Lys	Lys Asn 20 Val Phe Asn	51 Leu 5 Ser Val Lys	Phe Asn Pro Lys Val 70	Val His Glu Ala 55	Leu Ala Ser 40 Pro	Thr Asn 25 Gly Lys	Met 10 Ala Ile Val Asp	Ser Asn Asn Lys 75	Thr Lys Val 60 Leu	Glu Ile 45 Gly Ser	Ser 30 Ile Ser	Val Pro Leu Ile	Asp Thr Ala Ala 80
Met 1 Gln Lys Tyr Asp 65 Asp	Lys Leu Asn Asp 50 Asn	Lys Ile Phe 35 Glu Lys Ser	Lys Asn 20 Val Phe Asn Ala	51 Leu 5 Ser Val Lys Phe	Phe Asn Pro Lys Val 70 Ser	Val His Glu Ala 55 Ala	Leu Ala Ser 40 Pro Ser	Thr Asn 25 Gly Lys Glu Val	Met 10 Ala Ile Val Asp	Ser Asn Asn Lys 75 Lys	Thr Lys Val 60 Leu Asn	Glu Ile 45 Gly Ser	Ser 30 Ile Ser Lys	Val Pro Leu Ile Val 95	Asp Thr Ala Ala 80 Pro
Met 1 Gln Lys Tyr Asp 65 Asp	Lys Leu Asn Asp 50 Asn	Lys Ile Phe 35 Glu Lys Ser Lys	Asn 20 Val Phe Asn Ala Leu	51 Leu 5 Ser Val Lys Phe Ala 85 Gly	Phe Asn Pro Lys Val 70 Ser Asn	Val His Glu Ala 55 Ala Lys	Leu Ala Ser 40 Pro Ser Ile Val	Thr Asn 25 Gly Lys Glu Val Pro 105	Met 10 Ala Ile Val Asp Asp 90 Glu	Ser Asn Asn Lys 75 Lys	Thr Lys Val 60 Leu Asn	Glu Ile 45 Gly Ser Phe	Ser 30 Ile Ser Lys Val Ile 110	15 Val Pro Leu Ile Val 95 Asn	Asp Thr Ala Ala 80 Pro
Met 1 Gln Lys Tyr Asp 65 Asp Glu	Lys Leu Asn Asp 50 Asn Pro	Lys Phe 35 Glu Lys Ser Lys Asn 115	Asn 20 Val Phe Asn Ala Leu 100	51 Leu 5 Ser Val Lys Phe Ala 85 Gly	Phe Asn Pro Lys Val 70 Ser Asn	Val His Glu Ala 55 Ala Lys Ile Asn	Leu Ala Ser 40 Pro Ser Ile Val Asn 120	Thr Asn 25 Gly Lys Glu Val Pro 105 Pro	Met 10 Ala Ile Val Asp 90 Glu	Ser Asn Asn Lys 75 Lys Tyr	Thr Lys Val 60 Leu Asn Lys	Glu Ile 45 Gly Ser Phe Glu Gln 125	Ser 30 Ile Ser Lys Val Ile 110 Val	15 Val Pro Leu Ile Val 95 Asn	Asp Thr Ala Ala 80 Pro Asn
Met 1 Gln Lys Tyr Asp 65 Asp Glu Arg	Lys Leu Asn Asp 50 Asn Pro Ser Val	Lys Ile Phe 35 Glu Lys Ser Lys Asn 115 Val	ICE: Lys Asn 20 Val Phe Asn Ala Leu 100 Val	51 Leu 5 Ser Val Lys Phe Ala 85 Gly Ala	Phe Asn Pro Lys Val 70 Ser Asn Thr	Val His Glu Ala 55 Ala Lys Ile Asn Pro	Leu Ala Ser 40 Pro Ser Ile Val Asn 120 Glu	Thr Asn 25 Gly Lys Glu Val Pro 105 Pro Val	Met 10 Ala Ile Val Asp 90 Glu Ala	Ser Asn Asn Lys 75 Lys Tyr Ser Arg	Thr Lys Val 60 Leu Asn Lys Gln Phe 140	Glu Ile 45 Gly Ser Phe Glu Gln 125 Ile	Ser 30 Ile Ser Lys Val Ile 110 Val	15 Val Pro Leu Ile Val 95 Asn Asp	Asp Thr Ala Ala 80 Pro Asn Lys Asn
Met 1 Gln Lys Tyr Asp 65 Asp Glu Arg His Lys 145	Lys Leu Asn Asp 50 Asn Pro Ser Val Phe 130	Lys Ile Phe 35 Glu Lys Ser Lys Val Asn	NCE: Lys Asn 20 Val Phe Asn Ala Leu 100 Val Ala His	51 Leu 5 Ser Val Lys Phe Ala 85 Gly Ala Lys	Phe Asn Pro Lys Val 70 Ser Asn Thr Gly	Val His Glu Ala 55 Ala Lys Ile Asn Pro 135 Ile	Leu Ala Ser 40 Pro Ser Ile Val Asn 120 Glu Thr	Thr Asn 25 Gly Lys Glu Val Pro 105 Pro Val Thr	Met 10 Ala Ile Val Asp 90 Glu Ala Asn Gln	Ser Asn Asn Lys 75 Lys Tyr Ser Arg Thr 155	Thr Lys Val 60 Leu Asn Lys Gln Phe 140 His	Glu Ile 45 Gly Ser Phe Glu Gln 125 Ile Tyr	Ser 30 Ile Ser Lys Val Ile 110 Val Thr	15 Val Pro Leu Ile Val 95 Asn Asp Gln Lys	Asp Thr Ala Ala 80 Pro Asn Lys Asn Val 160

Arg Tyr Thr Gln Pro Ser Gln Ser Leu Met Ile Asn His Tyr Phe Ala 200 Val Pro Gly Tyr His Ala His Lys Phe Val Thr Pro Gly His Ala Ser 215 Ile Lys Ile Asn His Phe Cys Val Val Pro Gln Ile Asn Ser Phe Lys Val Ile Pro Pro Tyr Gly His Asn Ser His Arg Met His Val Pro Ser 250 Phe Gln Asn Asn Thr Thr Ala Thr His Gln Asn Ala Lys Val Lys Lys 265 Ala Tyr Asp Tyr Lys Tyr Phe Tyr Ser Tyr Lys Val Val Lys Gly Val 280 Lys Lys Tyr Phe Ser Phe Ser Gln Ser Asn Gly Tyr Lys Ile Gly Glu Pro Ser Leu Asn Ile Lys Asn Val Asn Tyr Gln Tyr Ala Val Pro Ser 310 Tyr Ser Pro Thr His Tyr Val Pro Glu Phe Lys Gly Ser Ile Pro Ala Pro Arg Val <210> SEQ ID NO 52 <211> LENGTH: 340 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus aureus <400> SEQUENCE: 52 Met Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr 10 Gln Leu Ile Asn Ser Asn His Ala Lys Ala Ser Val Thr Glu Ser Val Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Ala Tyr Asp Glu Phe Lys Asn Ser Pro Lys Val Asn Val Ser Asn Leu Thr Asp Asn Lys Asn Phe Val Val Ser Glu Asp Lys Leu Asn Lys Ile 70 Val Asp Ser Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Ala Val 90 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 120 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln Asn Lys Val Asn His His Phe Ile Thr Thr Gln Thr His Tyr Lys Lys Val Ile Thr Ser Tyr Lys Ser Thr His Val His Lys His Val Asn His Ala Lys Asp Ser Ile Asn Lys His Phe Ile Val Lys Pro Ser Glu Ser Pro Arg Tyr Thr His Pro Ser Gln Ser Leu Ile Ile Lys His His Phe 200

Ala Val Pro Gly Tyr His Ala His Lys Phe Val Thr Pro Gly His Ala 215 Ser Ile Lys Ile Asn His Phe Cys Val Val Pro Gln Ile Asn Ser Phe 230 235 Lys Val Ile Pro Pro Tyr Gly His Asn Ser His Arg Met His Val Pro Ser Phe Gln Asn Asn Thr Thr Ala Thr His Gln Asn Ala Lys Val Asn 265 Lys Ala Tyr Asp Tyr Lys Tyr Phe Tyr Ser Tyr Lys Val Val Lys Gly 280 Val Lys Lys Tyr Phe Ser Phe Ser Gln Ser Asn Gly Tyr Lys Ile Gly 295 Lys Pro Ser Leu Asn Ile Lys Asn Val Asn Tyr Gln Tyr Ala Val Pro Ser Tyr Ser Pro Thr His Tyr Val Pro Glu Phe Lys Gly Ser Leu Pro 330 Ala Pro Arg Val <210> SEQ ID NO 53 <211> LENGTH: 340 <212> TYPE: PRT <213 > ORGANISM: Staphylococcus aureus <400> SEQUENCE: 53 Met Lys Lys Leu Leu Val Leu Thr Met Ser Thr Leu Phe Ala Thr Gln Ile Met Asn Ser Asn His Ala Lys Ala Ser Val Thr Glu Ser Val Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro 40 Thr Tyr Asn Glu Phe Lys Lys Ala Pro Lys Val Asn Val Gly Asn Leu 55 Ala Asp Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Asn Lys Ile Val Asp Ser Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Ala Val 90 Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn 105 Asn Arg Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 120 Lys His Phe Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln Asn Lys Val Asn His His Phe Ile Thr Thr Gln Thr His Tyr Lys Lys 150 155 Val Ile Thr Ser Tyr Lys Ser Thr His Val His Lys His Val Asn His Ala Lys Asp Ser Ile Asn Lys His Phe Ile Val Lys Pro Ser Glu Ser Pro Arg Tyr Thr His Pro Ser Gln Ser Leu Ile Ile Lys His His Phe Ala Val Pro Gly Tyr His Ala His Lys Phe Val Thr Pro Gly His Ala

	210					215					220				
Ser 225	Ile	Lys	Ile	Asn	His 230	Phe	Cys	Val	Val	Pro 235	Gln	Ile	Asn	Ser	Phe 240
Lys	Val	Ile	Pro	Pro 245	Tyr	Gly	His	Asn	Ser 250	His	Arg	Met	His	Val 255	Pro
Ser	Phe	Gln	Asn 260	Asn	Thr	Thr	Ala	Thr 265	His	Gln	Asn	Ala	Lys 270	Val	Asn
Lys	Ala	Tyr 275	Asp	Tyr	Lys	Tyr	Phe 280	Tyr	Ser	Tyr	Lys	Val 285	Val	Lys	Gly
Val	Lys 290	Lys	Tyr	Phe	Ser	Phe 295	Ser	Gln	Ser	Asn	Gly 300	Tyr	Lys	Ile	Gly
105 105	Pro	Ser	Leu	Asn	Ile 310	Lys	Asn	Val	Asn	Tyr 315	Gln	Tyr	Ala	Val	Pro 320
Ser	Tyr	Ser	Pro	Thr 325	His	Tyr	Val	Pro	Glu 330	Phe	Lys	Gly	Ser	Leu 335	Pro
Ala	Pro	Arg	Val 340												

- 1. An antigen composition comprising:
- (a) an isolated Emp antigen, or an immunogenic fragment thereof; and
- (b) at least one additional staphylococcal antigen selected from a group consisting of an isolated ClfA, ClfB, Eap, EsaB, EsxA, EsxB, EsaC, IsdA, IsdB, IsdC, SasF, SasB, SdrC, SdrD, SdrE, SasH, Ebh, Coa, vWa, Hla and SpA antigen, or an immunogenic fragment thereof,

wherein the antigens are comprised in a pharmaceutically acceptable composition capable of stimulating an immune response in a subject in need thereof.

- 2. The composition of claim 1, further comprising one or more of a type V capsular saccharide, a type VIII capsular saccharide, and/or a polysaccharide intracellular adhesin (PIA).
 - 3. (canceled)
 - 4. (canceled)
- 5. The composition of claim 1, wherein the at least one additional staphylococcal antigen is selected from the group consisting of an isolated ClfB, Eap, EsxA, EsxB, IsdA, and SrdD.
- **6**. The composition of claim **1**, wherein the at least one additional staphylococcal antigen is an isolated IsdA antigen.
- 7. The composition of claim 6, further comprising one or more additional staphylococcal antigens selected from the group consisting of ClfB, Eap, EsxA, EsxB, Hla, and SdrD.
- **8**. The composition of claim **7**, further comprising one or more of a type V capsular saccharide, a type VIII capsular saccharide, and/or a polysaccharide intracellular adhesin (PIA).
 - 9. (canceled)
 - 10. (canceled)
- 11. The composition of claim 1, wherein the composition comprises less than a 1% weight/weight contamination with other staphylococcal bacterial components.
- 12. The composition of claim 1, wherein one or more isolated antigens are coupled to an adjuvant.

- 13. The composition of claim 1, wherein the Emp antigen comprises at least 5, 10, 15, or 20 consecutive amino acids of SEQ ID NO:2.
- **14**. The composition of claim **1**, wherein the Emp antigen is at least 70%, 80%, 90%, 95%, or 98% identical to SEQ ID NO:2.
 - 15. (canceled)
 - 16. (canceled)
- 17. The composition of claim 1, wherein the Emp antigen comprises the amino acid sequence of SEQ ID NO:2.
 - 18. (canceled)
- 19. An antigen comprising two or more of a CIfA, CIfB, Eap, Emp, EsaB, EsxA, EsxB, EsaC, IsdA, IsdB, IsdC, SasF, SasH, Ebh, Coa, vWa, Hla, SasB, SdrC, SdrD, SdrE, and SpA antigen, wherein the two or more antigens are coupled forming a multimeric antigen.
 - 20-30. (canceled)
- **31**. A method for eliciting an immune response against a *staphylococcus* bacterium in a subject comprising administering to the subject an effective amount of a composition comprising:
 - (a) an isolated Emp antigen, or an immunogenic fragment thereof, and
 - (b) at least one additional staphylococcal antigen selected from a group consisting of an isolated ClfA, ClfB, Eap, EsaB, EsxA, EsxB, EsaC, Hla, SasB, SasH, Ebh, Coa, vWa, IsdA, IsdB, IsdC, SasF, SdrC, SdrD, SdrE, and SpA antigen, or an immunogenic fragment thereof.
- 32. The method of claim 31, wherein the subject is provided with an effective amount of an isolated antigen by administering to the subject a composition comprising:
 - i) the isolated antigen, or
 - ii) at least one isolated recombinant nucleic acid molecule encoding the antigen.
- **33**. The method of claim **31**, where the subject is also administered an adjuvant.
 - 34. (canceled)
 - 35. (canceled)

- **36**. The method of claim **31**, wherein the Emp antigen comprises at least 5, 10, 15, or 20 consecutive amino acids of SEQ ID NO:2.
- **37**. The method of claim **31**, wherein the Emp antigen is at least 70%, 80%, 90%, 95%, or 98% identical to SEQ ID NO:2.
 - 38. (canceled)
 - 39. (canceled)
- **40**. The method of claim **31**, wherein the Emp antigen comprises the amino acid sequence of SEQ ID NO:2.
- **41**. The method of claim **31**, wherein the staphylococcus bacterium is a *S. aureus* bacterium.
- **42**. The method of claim **31**, wherein the stapylococcus bacterium is a drug resistant bacterium.
 - 43-52. (canceled)
- 53. The method of claim 31, wherein the composition includes a recombinant, non-staphylococcus bacterium expressing an isolated Emp antigen, or an immunogenic fragment thereof, and at least one additional staphylococcal antigen selected from a group consisting of an isolated ClfA, ClfB, Eap, EsaB, EsxA, EsxB, EsaC, Hla, SasB, SasH, Ebh, Coa, vWa, IsdA, IsdB, IsdC, SasF, SdrC, SdrD, SdrE, and SpA antigen, or an immunogenic fragment thereof.
 - 54. (canceled)
 - 55. (canceled)
 - 56. The method of claim 31, wherein the subject is human.
- **57**. The method of claim **31**, wherein the immune response is a protective immune response.
 - 58-71. (canceled)

- 72. A method for limiting staphylococcal abscess formation and/or persistence in a subject comprising providing to a subject having or suspected of having or at risk of developing a staphylococcal infection an effective amount of an isolated Emp antigen or an immunogenic fragment thereof, and at least one additional staphylococcal antigen selected from a group consisting of an isolated ClfA, ClfB, Eap, EsaB, EsaC, EsxA, EsxB, IsdA, IsdB, IsdC, SasB, SasH, Ebh, Coa, vWa, SasF, SdrC, SdrD, SdrE, Hla and SpA antigen, or an immunogenic fragment thereof.
 - 73-97. (canceled)
- **98.** A method for eliciting an immune response against a staphylococcus bacterium in a subject comprising administering to the subject an effective amount of a composition comprising:
 - (a) an isolated Eap antigen, or an immunogenic fragment thereof, and
 - (b) at least one additional staphylococcal antigen selected from a group consisting of an isolated ClfA, ClfB, Emp, EsaB, EsaC, EsxA, EsxB, IsdA, IsdB, IsdC, SasF, SasH, Ebh, Coa, vWa, SasB, SdrC, SdrD, SdrE, Hla and SpA antigen, or an immunogenic fragment thereof.

99-162. (canceled)

163. A method for eliciting an immune response against a staphylococcus bacterium in a subject comprising administering to the subject an effective amount of a composition comprising an isolated AdsA peptide, or an immunogenic fragment thereof.

164-215. (canceled)