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Abstract

The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory,
plasticity at the Parallel Fiber (PF) to Purkinje Cell (PC) synapses is guided by the Climbing fibers (CF), which encode an ‘error
signal’. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal
capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with
experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not
binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has
a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the
weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as
seen experimentally.
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Introduction

Purkinje cells (PCs) are the only outputs of the cerebellar cortex,

a brain structure involved in motor learning. They receive a very

large number (*150,000) of excitatory synaptic inputs from

Granule Cells (GCs) through parallel fibers (PFs), and a single very

strong input from the inferior olive through climbing fibers (CFs).

Single PCs have long been considered as a neurobiological

implementation of a perceptron [1,2], the simplest feedforward

network endowed with supervised learning [3], since CFs are

thought to provide PCs with an error signal [4]. A perceptron

learns associations between input patterns and a binary output that

are imposed to it. Learning is due to synaptic modifications, under

the control of an error signal. The learning capabilities of

perceptrons have been extensively studied for unbiased [5,6] as

well as biased patterns [6], and for unconstrained synapses [5,6].

In real neurons, synapses are either excitatory (glutamatergic

synapses), or inhibitory (GABAergic synapses), depending on the

identity of the pre-synaptic neurons (except during early develop-

ment, when GABAergic synapses are initially excitatory and then

become inhibitory). A multitude of experiments characterizing

synaptic plasticity have shown that the strength, but not the sign,

of a synapse can be modified by patterns of neuronal activity. This

has led to the study of perceptrons with sign-constrained weights

[7,8,9,10]. In particular, Brunel et al. [10] showed that when

synaptic weights are constrained to be excitatory (positive or zero),

a perceptron at maximal capacity has a distribution of synaptic

weights with two components: a finite fraction of zero-weight

(‘silent’) synapses; and a truncated Gaussian distribution for the

rest of the synapses. They further showed that this distribution is in

striking agreement with experimental data [10].

Numerous experiments show however that in the course of specific

motor tasks, the firing rate of Purkinje cell varies in an analog, not

binary, fashion [11,12,13,14]. We therefore set out to investigate the

capacity and distribution of synaptic weights of a perceptron storing

associations between analog inputs and outputs. More precisely, each

input or output unit can take an analog value drawn from a distribution

with a given mean and variance. We show that the optimal input

distribution matches the firing pattern of the Granule cells, and weight

distribution at maximal capacity reproduces the experimental Parallel

Fiber to Purkinje cell synaptic weight distribution.

Results

The analog perceptron
The perceptron consists of N inputs and one output. Both inputs

and outputs take continuous values. We require this perceptron to

learn a set of p prescribed random input-output associations, where

the inputs G
m
i (i~1, . . . ,N, m~1, . . . ,p) are drawn randomly and

independently from a distribution rin(G), with mean mG and

standard deviation sG while the target outputs P
m
t are drawn

randomly and independently from a distribution rout(P) with mean

mP and standard deviation sP. Note that since G
m
i and P

m
t represent

firing rates of input and output cells, respectively, they must be non-

negative quantities. In particular, mGw0, mPw0 represent the mean

firing rates of granule/Purkinje cell, respectively. The output of the

perceptron when a pattern m is presented in input is given by

Pm~w
1ffiffiffiffiffi
N
p

XN

i~1

wiG
m
i {hN

 !" #
, ð1Þ
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where w is a monotonically increasing static transfer function (f-I

curve), wi are the synaptic weights from input i~1, . . . ,N, hN

represents inhibitory inputs that cancel the leading order term inPN
i~1 wiG

m
i so that the argument of w is of order 1. In Purkinje cells,

these inhibitory inputs are provided by interneurons of the

molecular layer. The goal of perceptron learning is to find a set of

synaptic weights fwi§0g,i~1, . . . ,N for which Pm~P
m
t for all

m~1, . . . ,p.

We focus for simplicity on a linear transfer function w(x)~x,

but our results can be applied to arbitrary invertible transfer

functions w. Indeed, the problem of learning associations (G
m
i ?Pm)

in a perceptron with an arbitrary invertible transfer function w is

equivalent to the problem of learning (G
m
i ?w{1(Pm)) in a linear

perceptron. All the results derived in this paper can then be

applied to a perceptron with transfer function w, except that mP

and sP are now defined to be the two first moments of w{1(P
m
t ).

Storage capacity
In the large N limit the probability of finding a set of weights

that satisfies Pm~P
m
t for all m~1, . . . ,p is expected to be 1 if

a:p=N is below a critical value ac, while it is 0 when awac [15].

ac is therefore the number of associations that can be learned per

synapse, and is commonly used as a measure of storage capacity.

This storage capacity can be computed analytically using the

replica method (see Methods) [6,16,17,10,15]. The capacity is

given by

ac~

ð?
B

dtffiffiffiffiffiffi
2p
p exp({t2=2):H(B): ð2Þ

B is given by the equation

B

G(B){BH(B)
~c, ð3Þ

G(B)~exp({B2=2)=
ffiffiffiffiffiffi
2p
p

, H(B)~ 1
2

(1{erf(B=
ffiffiffi
2
p

)), and c de-

pends on the statistics of the associations as

c~
s2

Pm2
G

h2s2
G

: ð4Þ

Therefore, the maximal capacity only depends on a single

parameter c, which is a function of the statistics of the patterns that

need to be learned. This dependence is shown in Fig. 1A. It shows

that the capacity is exactly equal to 0.5 when c~0, while it

decreases monotonically as c increases.

If the number of patterns to be learned exceeds the maximal

capacity, the mean squared error becomes strictly positive. It can

also be computed using the replica method (see Methods, Eq. (17)).

Unsurprisingly, it increases monotonically with a, as shown in

Fig. 1B which shows the result of the analytical calculation, as well

as numerical simulations. If uncorrelated noise is added to the

perceptron, the total mean squared error is the sum of the error

without noise (Eq. 17) and the variance of the uncorrelated noise.

In the simulations, inputs and outputs are drawn from an

exponential distribution. The weight update at each presentation

is the standard perceptron one, i.e.

Dwi~bGi(Pt{P), ð5Þ

where b is the learning rate. wi is set to zero if application of the

update leads to a negative weight. This corresponds to a gradient

descent of a cost function proportional to
P

m (Pm{P
m
t )2, in the

closed orthant fwi§0g,i~ . . . ,N.

This learning rule is in qualitative agreement with experimental

data on synaptic plasticity in GC to PC synapses [18,19]. In

Purkinje cells, the error signal is thought to be conveyed by

climbing fiber (CF) activation. Two protocols have been shown to

be effective in eliciting long-term plasticity. Pairing GC with and

CF activation leads to Long-Term Depression (LTD) of the

synapse, while Long-Term Potentiation (LTP) is induced by

stimulating the GC alone (see Fig. 3AB of [19] for details). Writing

climbing fiber activation as C~P{PtzC0, we see that Eq. (5) is

recovered if one chooses Dwi!Gi(C0{C), which captures the

two experimental protocols described above.

Distribution of synaptic weights
The distribution of synaptic weights at maximal capacity can

also be computed using the replica method (see [10] for details of

the calculation). It turns out that the distribution obeys exactly the

same equation as in the binary perceptron, i.e.

P(w)~H({B)d(w)z
1ffiffiffiffiffiffi

2p
p

ws

exp {
1

2w2
s

wzBwsð Þ2
� �

H(w), ð6Þ

where

ws~
w

G(B){BH(B)
, ð7Þ

and w is the average synaptic weight. In particular the fraction of

zero weight synapses is S~H({B). Interestingly, there is a very

simple relationship between capacity and fraction of silent

synapses, Szac~1, that holds for any value of c. The fraction

of silent synapses S is shown as a function of c in Fig. 2A. It shows

that S~0:5 when c~0, and increases monotonically with c.

The full distribution of weights is shown in Fig. 2B, together

with the results of a numerical simulation (see parameters in the

caption of Fig. 2B). The theoretical distribution of synaptic weights

is in good agreement with experimental measurements of the

efficacy of a large set of GC to PC synapses, using paired

recordings in vitro (see Fig. 6A of [10] for details) [20,21,10].

Above maximal capacity, awac, the distribution of synaptic

weights is still given by Eq. (6), but the fraction of zero weight

synapses decreases monotonically with a, and goes to zero in the

large a limit (see Fig. 2C). In that limit the distribution becomes

Author Summary

Learning properties of neuronal networks have been
extensively studied using methods from statistical physics.
However, most of these studies ignore a fundamental
constraint in networks of real neurons: synapses are either
excitatory or inhibitory, and cannot change sign during
learning. Here, we characterize the optimal storage
properties of an analog perceptron with excitatory
synapses, as a simplified model for cerebellar Purkinje
cells. The information storage capacity is shown to be
optimized when inputs have a sparse binary distribution,
while the weight distribution at maximal capacity consists
of a large amount of zero-weight synapses. Both features
are in agreement with electrophysiological data.
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Figure 1. A. Maximal capacity as a function of c. B. Mean squared error between the output P and the target output Pt as a function of a, for
c~1 (ac*0:4). Red: analytical calculation, Eq. (17); Blue, numerical simulations (with parameters: N~1000, h~sP~mP~sG~mG~1, b~0:01,
simulation length ~100000N , average over 20 trails, error bars: standard deviation).
doi:10.1371/journal.pcbi.1002919.g001

Figure 2. A. Fraction of silent synapses at maximal capacity as a function of c. B. Distribution of synaptic weights for c~1, at maximal
capacity (ac*0:4). Red: analytical calculation, Eq. (6); Blue, numerical simulations (with parameters: N~1000, h~sP~mP~sG~mG~1, b~0:01,
simulation length ~10000N). C. Fraction of silent synapses as a function of a, beyond the maximal capacity (ac*0:4), for c~1 (red: analytical
calculation, S~H({B)); blue: numerical simulations, with parameters N~1000, h~sP~mP~sG~mG~1, b~0:01, simulation length ~300000N ,
average over 10 trails, error bars: standard deviation).
doi:10.1371/journal.pcbi.1002919.g002
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increasingly close to a Gaussian distribution peaked around a

positive value, with a width that tends to zero in the large a limit.

Statistics of inputs and outputs maximizing storage
capacity

To maximize storage capacity, c should be as small as possible.

We first ask which distribution of inputs maximize capacity. From

Eq. (4), it is clear that to maximize capacity, mG should be as small

as possible, while sG should be as large as possible. Since rin is a

distribution of firing rates, it must be bounded between 0 and a

maximal firing rate Gmax. The distribution of a bounded variable

that maximizes the variance with a fixed mean mG is a binary

distribution rin(G)~(1{mG=Gmax)d(G)zmG=Gmaxd(G{Gmax).
Thus, we predict that to optimize capacity, patterns of activity

in the Granule cell layer should be sparse (to ensure mG is small),

but active cells should be active close to their maximal firing rates.

Interestingly, this is in striking agreement with available data

[22,19,23] showing that (i) Granule cells have very sparse activity

in vivo (average firing rates of 0.5 Hz [22]) (ii) they can respond

with brief, high frequency bursts of action potentials to sensory

inputs (with an average frequency of 77 Hz within the burst, and

maximal frequencies up to 250 Hz, see e.g. Fig. 3 of [22]).

The next question is which distribution of output firing rates

optimizes the capacity. Eq. (4) makes it clear the capacity is

optimized for sP~0. In this limit however, all input patterns lead

to exactly the same output, and the Purkinje cell output contains

no information on which input was presented. This is of course not

a desirable outcome, and suggests the capacity is not the correct

measure to maximize in this case. We therefore turn to the

Shannon mutual information between the Purkinje cell output and

its inputs as a more suitable measure. In the presence of additive

Gaussian noise of zero mean and standard deviation sn, this is

simply the mutual information of a Gaussian channel with a

signal-to-noise ratio s2
P=s2

n, i.e. log2 (1zs2
P=s2

n)=2 bits per pattern

(see e.g. [24]). The total information in bits per synapse is therefore

I~ac log2 (1zs2
P=s2

n)=2. The information is zero when sP~0,

and reaches a maximum for a finite value of sP, which depends on

both the noise standard deviation sn and seff ~sGh=mG. Fig. 3A

shows the information as a function of sP, for different values of

seff , for sn~1. It shows that the optimal value of sP increases

approximately linearly with seff for large seff (see Fig. 3B).

Discussion

In this paper, we have considered an analog firing rate model

for a Purkinje cell with plastic excitatory weights, and derived both

its maximal capacity and the distribution of weights at maximal

capacity. We showed that the capacity is of the same order as in a

binary perceptron model.

The distribution of synaptic weights of the analog perceptron is

composed at maximal capacity of two parts: a large fraction

(w0:5) of silent synapses and a truncated Gaussian. It has exactly

the same shape as in several other models: a standard binary

perceptron [10], and a bistable perceptron [25]. This distribution

is in quantitative agreement with a combination of electron

microscopy and electrophysiological data in adult rat slices

[20,21,10]. Furthermore, a gradient descent learning rule leading

to maximal capacity bears strong similarities with synaptic

plasticity experiments: LTD when PF and CF are coactivated,

LTP when PF fires alone (i.e. CF below baseline, thus PtwP)

[18,19].

We found that in order to maximize the capacity, the input

variance should be as large as possible. We argue that GCs in vivo

are close to such an optimal distribution, since they fire high-

frequency bursts at very low rates [22,19,23]. Furthermore, GC

bursts have been found in some experiments to be critical to induce

plasticity in PF to PC synapse [26]. Indeed, no plasticity is induced

in those protocols with a single GC spike. Secondly, lower variance

in the output also increases the capacity, but at a cost of losing

information contained in the output, in the presence of noise. For a

given variance of the noise, there is an optimal variance of the

output that maximizes the information contained in the output.

The model we have studied here is essentially equivalent to the

ADALINE (Adaptive Linear Neuron) model [27], whose storage

capacity, in the absence of constraints on synaptic weights, is equal

to 1. The result can be easily intuitively understood by the fact that

when a~1, there are exactly N linear equations to solve, Eq. 1,

with N unknowns, wi (see e.g. [15]). We have shown here that the

constraints that all synaptic weights should be positive or zero

leads to a capacity which is decreased by a factor 2 or more,

depending on the value of c. This decrease in capacity is similar to

what is observed in the standard perceptron with excitatory

synapses [7,8,9,10]. Note that learning associations with con-

strained weights is similar conceptually to non-negative matrix

factorization [28,29]. Generalizations of such models in the

temporal domain (the so-called adaptive filter models) have been

proposed to describe learning in the cerebellar cortex

[30,31,32,33]. It would be of interest to investigate capacity and

distribution of synaptic weights of such models.

In this paper, we have focused on a single plasticity site, the GC

to PC synapse. Many other sites of plasticity are known to exist in

the cerebellum [18]. Future studies are needed to clarify the

impact of these additional sites of plasticity on the learning

capabilities of this structure.

Methods

Calculation of the storage capacity
The replica method involves calculating the average logarithm

of the volume of the space of weights satisfying all constraints given

by Eq. (1) [6]. To compute the average logarithm, one uses the

replica trick: n replicas of the system are introduced, one computes

SVnT~S
ð
P
i,a

dwia P
m,a

d w
1ffiffiffiffiffi
N
p

XN

i~1

wiaG
m
i {hN

 ! !
{P

m
t

 !
T,

where S:T represents an average over the patterns, and a is a

replica index. This calculation is done using a standard procedure.

After introducing integral representations for the delta functions,

one averages over the distribution of the patterns. One then

introduces order parameters

1

N

X
j

wa
j ~

h

mG

z
Maffiffiffiffiffi

N
p :wz

Maffiffiffiffiffi
N
p ð8Þ

1

N

X
j

wa
j

� �2

~Qa ð9Þ

1

N

X
j

wa
j wb

j ~qab, ð10Þ

together with conjugate parameters M̂Ma, Q̂Qa and q̂qab. We then use

a replica-symmetric ansatz (all the order parameters are taken to
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be independent of replica index a), perform the limit n?0 and

obtain

SVnT!
ð

dMdQdqdM̂MdQ̂Qdq̂q exp(NnF ), ð11Þ

F~{Q̂QQz
1

2
q̂qqzwM̂M

z

ðz?

{?

duffiffiffiffiffiffi
2p
p exp {

u2

2

� �
log

ð?
0

dw exp (Q̂Q{
q̂q

2
)w2zw(u

ffiffiffî
qq

p
{M̂M)

� �

za {log(Q{q){
q

2(Q{q)
{

(mGM{mP)2zs2
P

2s2
G(Q{q)

 !
,

ð12Þ

where in the Equation for F (Eq. (12)), the two first lines are identical

to the binary perceptron with excitatory weights [10], while the

last line is specific to the analog perceptron.

In the large N limit, the integral in Eq. (11) is dominated by the

extremum of F . The typical values of all order parameters are then

obtained by the resulting saddle point equations, setting the

derivatives of F with respect to all order parameters to zero. The

maximal capacity aC is obtained in the limit q?Q, for which the

volume vanishes. This limit yields Eqs. (2,4).

Calculation of the mean squared error
Following [34], we introduce a cost function which is given by

the sum of the squared error for all patterns,

C(wi)~
X

m

1ffiffiffiffiffi
N
p

X
i

wiG
m
i {hN

 !
{Pm

 !2

ð13Þ

and compute its minimum over the space of weights. This is done

introducing a partition function Z(h),

Z(h)~

ð
P
i,a

dwi exp({hC(wi)) ð14Þ

where h is an inverse temperature, and computing Slog Z(h)T
using the replica method. The mean squared error is then given by

Emin~ lim
h??

{
d

dh

Slog Z(h)T
p

ð15Þ

To perform this calculation, a new parameter has to be

introduced,

r~2hs2
G(Q{q) ð16Þ

which will remain finite when awac in the limit h??, q?Q. The

mean squared error is then given by

Emin~
s2

G �ww2

1zr
cz

rK

1zr
{2B

ffiffiffiffi
K

a

r
{

1

a
(B2z1)H(B){BG(B))
	 
 !

ð17Þ

where

K~cz
(1zB2)H(B){BG(B)

G(B){BH(B)ð Þ2
ð18Þ

a~(1zB2)H(B){BG(B)zc G(B){BH(B)ð Þ2 ð19Þ

r~
H(B)

a{H(B)
ð20Þ

When a~ac, r diverges to infinity, Emin~0, and Eqs. (19,20) reduce

to Eqs. (2,3).
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