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Abstract
In this paper we construct uniformly expanding random walks on smooth man-
ifolds. Potrie showed that given any open set U of Diff∞vol(T2), there exists an
uniformly expanding random walk µ supported on a finite subset of U. In this
paper we extend those results to closed manifolds of any dimension, building
on the work of Potrie and Chung to build a robust class of examples. Adapting
to higher dimensions, we work with a new definition of uniform expansion
that measures volume growth in subspaces rather than norm growth of single
vectors.
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1. Introduction

LetM be a closed smooth Riemannian manifold of dimension d, and denote by Diff∞(M) the
set of smooth diffeomorphisms ofM. We define a random walk onM by a probability measure
µ on Diff∞(M); each step of the walk is determined by a random diffeomorphism with distri-
butionµ. In this paper wewill discuss a new class of randomwalks called uniformly expanding,
and construct a broad set of examples of such walks. Uniform expansion has received quite a
bit of attention in recent years, and we will explain some of the motivation for this after stating
our main theorem.

Original Content from this work may be used under the terms of the Creative Commons Attribution
3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1361-6544/23/+18$33.00 © 2023 IOP Publishing Ltd & London Mathematical Society Printed in the UK 5955

https://doi.org/10.1088/1361-6544/acfa5a
https://orcid.org/0000-0001-7391-6050
mailto:relliottsmith@uchicago.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/acfa5a&domain=pdf&date_stamp=2023-10-3
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Nonlinearity 36 (2023) 5955 R Elliott Smith

Definition 1.1. We say a probability measure µ on Diff∞(M) is uniformly expanding if there
exists a C> 0,N ∈ N such that for all x ∈M, and v ∈ T1

xM, we have1

ˆ
Diff∞(M)

log ||Dx f(v) ||dµ(N) ( f)> C.

This property tells us that the dynamical system is, on average, expanding everywhere. Note
that uniform expansion is a finitary condition (see lemma 6.4).

We begin with a few natural questions—how common are uniformly expanding random
walks, and in what settings can they exist? The answer is not obvious, especially when we
restrict to finitely supported random walks. For example, if µ= δf0 for f0 ∈ Diff∞vol(M), the
random walk with law given by µ is never uniformly expanding, i.e. a purely deterministic
conservative system cannot be uniformly expanding. It is then surprising that they prove to be
common when d= 2; Potrie [1] showed that given any open set U of Diff∞vol(T2), there exists
an uniformly expanding random walk µ supported on a finite subset of U.

In this paper, we demonstrate the abundance of finitely supported uniformly expanding
random walks in smooth dynamical settings of arbitrary dimension, building on the work of
Potrie [1]. Additionally, we work with the stronger version of uniform expansion, that is, uni-
form expansion in dimension k:

Definition 1.2. Fix k ∈ {1, . . . ,d− 1}. We say µ is uniformly expanding in dimension k if
there exists a C> 0,N ∈ N such that for all x ∈M, and v ∈ ΛkTxM such that ||v||= 1 and
v= v1 ∧ ·· · ∧ vk for v1, . . . ,vk ∈ TxM independent, we have

ˆ
Diff∞(M)

log ||Dx f(v) ||dµ(N) ( f)> C.

If µ is uniformly expanding in dimension k for all k ∈ {1, . . . ,d− 1}, we will call µ uni-
formly expanding in all dimensions. This extension allows us to characterize volume growth
in subspaces of TM in addition to the norm growth of single vectors—a natural generalization
in higher dimensions.

This leads us to the main theorem of the paper:

Theorem 1.3. Let M be a closed smooth Riemannian manifold of dimension d. For any open
U⊂ Diff∞vol(M), there is a finitely supported measure µ on Diff∞vol(M) such that supp(µ)⊂ U,
µ is uniformly expanding in all dimensions in the sense of definition 1.2, and there is no finite
µ-invariant subset of M.

A consequence of uniform expansion is positivity of top Lyapunov exponent. Using pro-
position 2.1, we obtain:

Corollary 1.4. For any open U⊂ Diff∞vol(M), there is a finitely supported measure µ on
Diff∞vol(M) such that supp(µ)⊂ U, and the top Lyapunov exponent of µ with respect to any
stationary measure is positive.

One motivation for constructing uniformly expanding random walks is the study of station-
ary and invariantmeasures. In the case of a single iterate dynamical system, a classic theorem of
Krylov and Bogolyubov proves there must be at least one invariant measure onM. Such meas-
ures often inform an understanding of the dynamical system, characterizing various properties.

1 Here we have µ(N) := µ ∗µ ∗ · · · ∗µ (N times).
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In particular, we can construct an invariant measure supported on a subset of the orbit closure
of any point x ∈M, and so understanding invariant measures furthers our understanding of
orbits closures as well.

In the random walk setting, however, invariant measures may fail to exist, and measures
that are invariant on average—i.e. µ-stationary—take their place. Kukutani showed that µ-
stationary measures always exist. Stationary measures can be thought of as a weaker analogue
of invariant measures, and they serve many of the same purposes. Thus, it is useful to study
when a given stationary measure is genuinely invariant, and when invariant measures exist in
a random dynamical system at all.

When all the stationary measures of a system are invariant, we call the system stiff. This
notion was introduced by Furstenberg in [2], where he studies this property in the homogen-
eous setting. In smooth dynamics, this question has had very recent developments, some of
which are detailed below.

Recent work of Chung [3] in the conservative setting—using the work of Brown–Rodriguez
Hertz [4]– showed that all uniformly expanding random walks are stiff when d= 2. In com-
bination with our work, we obtain the following corollary:

Corollary 1.5. Let M be a surface. For µ as in theorem 1.3, volume is the only µ-stationary
measure.

Proof. Let ν be a µ-stationary measure. By proposition 3.1 of [3], ν is either volume, or
supported on a finite set of points. By theorem 1.3, there is no finite µ-invariant subset of M,
and as ν is µ-stationary, we know supp(ν) must be µ-invariant. Thus, we can conclude that ν
is volume.

In higher dimensions, the ongoing work of Brown, Eskin, Filip, and Rodriguez Hertz (in
prep, [5]) provides an analogous stiffness result. Here, Diff∞vol(M) denotes the set of volume
preserving smooth diffeomorphisms of M.

TheoremA ([5]). Letµ be uniformly expanding in all dimensions, supp(µ)⊆ Diff∞vol(M). Then
any µ-stationary measure on M is µ-invariant.

Thus we see that uniformly expanding random walks form a new class of stiff actions, far
removed from the homogeneous setting. An immediate corollary, using the main theorem of
this work, is the following:

Corollary 1.6. Let M be a closed smooth Riemannian manifold of dimension d. For any open
U⊂ Diff∞vol(M), there is a finitely supported measure µ on Diff∞vol(M) such that supp(µ)⊂ U
and the action of the random walk defined by µ is stiff.

Remark. As a bookkeeping comment: only corollary 1.6 depends on the as-of-writing unpub-
lished work of Brown, Eskin, Filip, and Rodriguez Hertz. All proofs below are independent of
that work.

2. Setup and rationale

The structure of the paper is as follows: in section 2, we recall some classical results, and
formulate a criterion for detecting measures that are not uniformly expanding. In section 3, we
will use an invariance principle to sharpen this criterion and describe it in terms of non-random
algebraic structures. In sections 4 and 5, we will lay out a concrete construction of a uniformly
expanding measure. Finally, in section 6 we will use the tools of section 3 to conclude.
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For the remainder of the paper, let M be a closed smooth manifold of dimension d with
Riemannian volume form ω. The measure induced by ω will be denoted volM. We let µ be a
probability measure on Diff∞vol(M) with bounded support, and consider the random walk on
M defined by the law µ. For the time being, this is an unspecified measure—a more concrete
construction will be provided later, and we will also denote this measure µ.

One of our primary objects of study will be the stationary measures of µ. We recall the
definition here.

Definition 2.1. Let ν be a Borel probability measure onM. We call ν µ-stationary if ν = µ ∗ ν
in the sense of convolution of measures. A stationary measure ν is ergodic if given any ν
measurable set A⊂M such that ν( f(A)∆A) = 0 for µ-a.e. f, then ν(A) = 0 or 1.2

It is worth noting that µ-stationary measures can also be characterized as follows: let σ :

Diff∞(M)
N → Diff∞(M)

N be the left shift map, i.e. σ(α)i = fi+1 for i ∈ N, α= ( f0, f1, . . .) ∈
Diff∞(M)

N.3 Then the µ-stationary measures on M are precisely the measures ν such that
µN × ν is invariant under the skew product map

T : Diff∞ (M)
N ×M→ Diff∞ (M)

N ×Mwhere T(α,x) = (σ (α) , f0 (x)) .

See [6] for details. This is a non-random dynamical system that characterizes µ, ν, and the
relationship between them. We will study it often in the remainder of the paper.

Finally, we set out the relevant spaces for our dynamics. In addition to the tangent bundle
TM, here we will also study the change of k-dimensional subspaces of the tangent bundle
for k ∈ {1, . . . ,d− 1}. Thus, we extend the action of our dynamics to the kth Grassmanian of
TxM, denoted Grk(TxM). Under the Plücker Embedding, any element of Grk(TxM) can be
viewed as a decomposable element of P(ΛkTxM), the projectivized kth exterior power of TM.
Write v for both an element of P(

∧kTM) and for an element of
∧kTM that represents it. Here,

decomposable means that it can be written as a single wedge product—such elements span
ΛkTxM, and precisely make up the image of Grk(TxM) under the Plücker Embedding. It is
often be useful to move between Grk(TM) and its image in P(

∧kTM), and we will use them
interchangeably. We denote the full Grassmannian bundle overM by Grk(TM)– at each point
x ∈M, the fiber is given by Grk(TxM).

Similarly, the bundle of conformal structures of TM over M will be denoted by CS(TM),
and at each point x ∈M the fiber is denoted by CS(TxM), the conformal structures on TxM,
i.e. the set of all possible positive definite inner products up to rotation and scaling. More
formally,

CS(TxM) = {RiemannianmetricsonTxM}/∼ ,

where two metrics g1,g2 are equivalent iff g1 = Ag2 for a conformal linear transformation A.
As M has a Riemannian metric denoted by 〈·, ·〉, each fiber CS(TxM) can be identified with
the orbits of Sd under multiplication by Cd, where Sd is the set of d× d symmetric positive
definite matrices and

Cd =
{
A ∈ GLd (R) | A⊤A= c2Id, for some c> 0

}
.

2 Here, ∆ is symmetric difference.
3 The ith coordinate of α ∈ Diff∞(M)N is denoted by αi.
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Note that the standard norm of a decomposable vector v= v1 ∧ ·· · ∧ vk in ΛkTxM is given
by the determinant of the Gram matrix, [〈vi,vj〉]ij. This is the k-volume of the parallelotope
spanned by v1, . . . ,vk; studying its change is an intuitive measurement of expansion or con-
traction of our dynamical system. In this setting, given f ∈ Diff∞(M) and x ∈M, we extend
the action of Dx f ∈ Hom(TxM,Tf(x)M) to Dx f ∈ Hom(ΛkTxM,ΛkTf(x)M) by

Dx f(v1 ∧ ·· · ∧ vk) = Dx f v1 ∧ ·· · ∧Dx f vk.

Let k ∈ {1, . . . ,d− 1}, ν be an ergodic µ-stationary measure on M. Given an f ∈ Diff∞(M),
we define Fkf :

∧kTM→
∧kTM by Fkf (x,v) = ( f(x),Dx f(v)). We will suppress the k when it

is clear what exterior power we are considering. Consider the cocycle

Ak : Diff∞ (M)
N ×

k∧
TM→ Diff∞ (M)

N×
k∧
TM

Ak (α,(x,v)) = (σ (α) ,Ff0 (x,v)) .

By Oseledets’ theorem [7], ∃dk ∈ {1, . . . ,
(d
k

)
} such that for ν-a.e. x ∈M and µN-a.e. α ∈

Diff∞(M)
N, there is a flag of subspaces ΛkTxM= V1(x,k)⊃ ·· · ⊃ Vdk(x,k) and a set of cor-

responding λ1(ν,k)> · · ·> λdk(ν,k) such that for any v ∈ Vi(x,k)\Vi+1(x,k) with ||v||= 1,

lim
n→∞

1
n
log ||Dx f

n
αv||= λi (ν,k) .

Here f nα = fn−1 ◦ · · · ◦ f0. We will call λi(ν,k) the ith Lyapunov exponent of Ak with respect
to ν, or simply the Lyapunov exponent of ν when the cocycle is clear.

We say two cocycles B,Ak : Diff∞(M)
N ×

∧kTM→ Diff∞(M)
N×

∧kTM are Lyapunov
cohomologous by a transfer cocycle C : Diff∞(M)

N ×
∧kTM→ Diff∞(M)

N×
∧kTM if

B(α,x) = C−1
T(α,x) (Ak)(α,x)C(α,x)

where B(α,x) : Λ
kTxM→ ΛkTf0(x)M] is the associated map between fibers of the cocycle B.

Note that this conjugation does not lose the information given by Oseledets’ Theorem, as we
may choose C so that the Lyapunov exponents of B and Ak agree (see [8] proposition 8.2).

Noting that part of proposition 3.17 of [3] can easily be extended tomanifolds of any dimen-
sion, we can formulate a criterion for verifying that µ is uniformly expanding in all dimensions
in terms of µ-stationary measures on Grk(TM). We state the extended theorem and adjusted
proof here for clarity. It is worth noting that the core adjustment is the switch from T1M to
Grk(TM).

Theorem 2.2. If the measure µ is not uniformly expanding in all dimensions, then for some k ∈
{1, . . . ,d− 1}, there is an ergodic µ-stationary measure η on Grk(TM) that has non-positive
top Lyapunov exponent on

∧kTM.

Proof. Assume that µ is not uniformly expanding in all dimensions, and fix ϵ> 0. Then
∃k ∈ {1, . . . ,d− 1} such that for all n ∈ N, there exists (xn,vn) ∈ P(

∧kTxnM) such that vn is
decomposable and

ˆ
log ||Dxn f(vn) ||dµ(n) ( f)< ϵ.

5959



Nonlinearity 36 (2023) 5955 R Elliott Smith

We will construct a limit of finite measures supported on the orbits of the points (xn,vn) to
build a measure η that has non-positive exponent. For all n, define

ηn :=
1
n

n−1∑
m=0

µ(m) ∗ δ(xn,vn) =
1
n

n−1∑
m=0

ˆ
δFf(xn,vn)dµ

(m) ( f) .

Now, we evaluate the following to estimate how far from µ-stationary ηn is.

µ ∗ ηn− ηn =
1
n

n−1∑
m=0

[ˆ
δFf(xn,vn)dµ

(m+1) ( f)−
ˆ
δFf(xn,vn)dµ

(m) ( f)

]
=

1
n

[ˆ
δFf(xn,vn)dµ

(n) ( f)− δ(xn,vn)

]
.

And so we have,

lim
n→∞

µ ∗ ηn− ηn = 0.

Take η to be a weak-∗ limit of ηn. By the above we see that η is a µ-stationary measure on
Grk(TM), and also induces a µ-stationary measure on P(

∧kTM) by the pushforward of η.
Define Φ: Diff∞(M)×Grk(TM)→ R by Φ(g,(x,v)) = log ||Dxg(v)||. Note that for α=

( f0, f1, . . .) we can write

log ||Dx f
n
α (v) ||⩽

n−1∑
m=0

Φ
(
fm,Ffmα (x,v)

)
||.

We can separate the variables fm and fmα in integration, and conclude the following for any
(x, v):

ˆ
log ||Dx f(v) || dµ(n) ( f) =

ˆ
log ||Dx f

n
α (v) || dµN (α)

⩽
n−1∑
m=0

ˆ
Φ
(
fm,Ffmα (x,v)

)
dµN (α)

⩽
n−1∑
m=0

ˆ
Φ(g,Ff (x,v)) dµ(g) dµ

(m) ( f) .

Therefore, for any n ∈ N, we have
ˆ ˆ

log ||Dxg(v) ||dµ(g) dηn (x,v) =
ˆ ˆ

Φ(g,(x,v))dηn (x,v) dµ(g)

⩽ 1
n

n−1∑
m=0

ˆ ˆ
Φ(g,Ff (xn,vn))dµ

(m) ( f) dµ(g)

⩽ 1
n

ˆ
log ||Dxn f(vn) ||dµ(n) ( f)

⩽ ϵ

n
.
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By weak-∗ convergence and the continuity of log, we see
ˆ ˆ

log ||Dxg(v) || dµ(g)dη (x,v)⩽ 0.

Possibly passing to an ergodic component of η that preserves the above, we can assume η is
an ergodic µ-stationary measure on Grk(TM) such that

´ ´
log ||Dxg(v)|| dµ(g) dη(x,v)⩽ 0.

Define T : Diff∞(M)
N ×Grk(TM) by T(α,(x,v)) = (σ(α), f0(x,v)). As η is ergodic and µ-

stationary, we know µN × η is an ergodic T-invariant measure on Diff∞(M)
N ×Grk(TM).

Thus, by the Birkhoff Ergodic Theorem, for µN × η-a.e. (α,(x,v)), we have

lim
n→∞

1
n

n−1∑
m=0

Φ( f0, f
n
α (x,v)) =

ˆ ˆ
Φ( f0,(x,v)) dµ

N (α) dη (x,v)

=

ˆ ˆ
log ||Dx f(v) || dµ( f) dη (x,v) .

By the construction of η, this equality is non-positive, and so we can conclude

lim
n→∞

log ||Dx f
n
α (v) ||

n
⩽ 0.

This directly shows that the Lyapunov exponents of η are non-positive, and thus the theorem
is proved.

Definition 2.3. Let ν be a µ-stationary measure on M, π : Grk(TM)→M be projection on to
M. We say E⊆Grk(TM) is a µ-invariant ν-measurable algebraic structure in Grk(TM) if:

(1) Ex is an algebraic subset4 ofGrk(TxM) for ν-a.e x ∈M, where Ex = E∩π−1(x) is the fiber
of E over x, and

(2) for µ-a.e. f ∈ Diff∞(M), ν-a.e. x ∈M, Ef(x) = Dx fEx.

Similarly, we say C is a µ-invariant ν-measurable conformal structure on TM if C : M→
CS(TM) is a ν-measureable map and for ν-a.e. x ∈M, µ-a.e. f ∈ Diff∞(M), we have Cf(x) =
Dx fCx, where Cx = C(x).

Corollary 2.4. If µ is not uniformly expanding in all dimensions, then there is an ergodic µ-
stationary measure ν on M, a k ∈ {1, . . . ,d− 1}, and a µ-invariant ν-measurable algebraic
structure of Grk(TM)– denoted E– such that the image of Ex in

∧kTM is contained in the
non-positive Lyapunov subspaces of ν on

∧kTM. Further, if λ1(ν,k)> 0, then E is proper.

Proof. From theorem 2.2, we know there is an ergodic µ-stationary measure η on Grk(TM)

that has non-positive top Lyapunov exponent on
∧kTM for some k ∈ {1, . . . ,d− 1}. Let ν :=

π∗η. Then ν is an ergodic µ-stationary measure onM as π is equivariant and η is ergodic and
µ-stationary. This corollary is essentially asking when η has full support on fibers.

Let ηx be the disintegration of η along fibers over x ∈M, and define Vx := supp(ηx),
V := ∪x∈MVx, and V ′ := ∪x∈Mspan(Vx). Note that as V is f -invariant for µ-a.e. f ∈ Diff∞(M),
we see that V⊆Grk(TM) defines a µ-a.e. f -invariant closed subset of Grk(TM). V

′
forms a

4 By algebraic we mean ‘defined by polynomial equations’.
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similarly invariant subbundle of
∧kTM. As V

′
is an invariant subbundle, there is a well-defined

restriction of Ak to V
′
, and Lyapunov exponents with respect to ν on V

′
are non-positive.

Let

E := V ′ ∩Grk (TM) .

As the fibers of V
′
are subspaces, they are algebraic. Thus E is a µ-invariant ν-measurable

algebraic structure in Grk(TM) with non-positive Lyapunov exponents.
Finally, if ν has positive top Lyapunov exponent, then V is a proper subset of Grk(TM),

and so V
′
must be a proper subbundle of

∧kTM and E must be a proper subset of Grk(TM),
as decomposable elements span

∧kTM.

Finally, we include a proof of positivity of top Lyapunov exponent. This is nearly identical
to the proof of proposition 2.2 in [3], with minor adjustments for higher dimensions. We have
included it here for completeness.

Proposition 2.1. Let µ be uniformly expanding in dimension k with compact support. Then
∃c> 0 such that λ1(ν,k)> c for any ergodic µ-stationary measure ν.

Proof. For the following proof, we will borrow some notation from probability theory. By
assumption, we know that ∃C> 0,N ∈ N such that for all x ∈M, v ∈ P(ΛkTxM),

ˆ
Diff∞(M)

log ||Dx f(v) ||dµ(N) ( f)> C.

We will let c= C/N. Fix x ∈M, v ∈ P(ΛkTxM). For any α ∈ Diff∞(M)
N, we define vn =

vn(α) := Dx f nαv and xn = xn(α) := f nα(x).
For j ∈ N, we will consider the random variable

Xj = Xj (α) := log ||vjN|| − log ||v( j−1)N||.

Intuitively, this is the change of ||vn|| after N steps of the random walk. We want to show
this is uniformly bounded from below for µN-a.e. α. Let Fj be the σ-algebra on Diff∞(M)

N

that is generated by the cylinder sets on the first jN coordinates. By construction, Xj is Fj

measurable for all j, as they do not depend on the coordinates past jN. Define the random
variables Zj = Zj(α) := Xj−E[Xj | Fj−1], where this is the conditional expectation of Xj given
Fj−1. We denote the sum of the Zj by Sℓ, i.e. Sℓ =

∑ℓ
j=1Zj.

Notice that for any ℓ ∈ N,

log ||vℓN||=
ℓ∑

j=1

Xj = Sℓ +
ℓ∑

j=1

E [Xj | Fj−1] .

Note that E[Xj | Fj−1] = E[ log ||vjN|| | Fj−1]− log ||v( j−1)N||
This tells us that to understand the change of the norm after ℓN steps, we can shift to studying

Sℓ and the corresponding sum of conditional expectations. The key observation here is that the
conditional expectations are integrals against µ(N), and are thus bounded from below as µ is
uniformly expanding.

We only need to compute E[ log ||vjN|| | Fj−1], as E[Xj | Fj−1] = E[ log ||vjN|| | Fj−1]−
log ||v( j−1)N||. Notice that this is an integral against µN, but that the random variable does not
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depend on anything past the jNth coordinate, and the information that is not given by Fj−1 is
only the ( j− 1)N thru jNth coordinates. Thus,

E [ log ||vjN|| | Fj−1] =

ˆ
log ||Dx( j−1)N

f
(
v( j−1)N

)
|| dµ(N) ( f)

and so

E [Xj | Fj−1] =

ˆ
log ||Dx( j−1)N

f

(
v( j−1)N

||v( j−1)N||

)
|| dµ(N) ( f) .

Therefore for any j, we have

E [Xj | Fj−1]⩾ C.

Finally, note that Sℓ is a martingale—

E [Sℓ+1 | Fℓ] = E [Sℓ +Zℓ+1 | Fℓ] = Sℓ +E [Xℓ+1 −E [Xℓ+1 | Fℓ] | Fℓ]

= Sℓ +Xℓ+1 −E [[Xℓ+1 | Fℓ] | Fℓ] = Sℓ.

As µ is compactly supported, Sℓ is square integrable, and so by the Strong Law
of Large Numbers for square integrable martingales we have Sℓ/ℓ→ 0 as ℓ→∞ for
µN-a.e. choice of α.

Thus, taking ℓ= b nNc, we see that for µN-a.e. α,

liminf
n→∞

log ||Dx f nα (v) ||
n

⩾ lim
n→∞

Sℓ
n
+ lim

n→∞

1
n

ℓ∑
j=1

E [Xj | Fj−1]⩾
C
N

= c.

Given any ergodicµ-stationarymeasure ν,λ1(ν,k)⩾ liminfn→∞
log ||Dx f

n
α(v)||

n , andwemay
conclude.

3. Reduction to studying Invariance

In this section, we will discuss how to reduce the problem of establishing uniform expansion
to the study of invariant structures on Grk(TM). We start with a lemma.

Lemma 3.1. Let ν be an ergodic µ-stationary measure, supp(µ)⊂ Diff∞vol(M). If λ1(ν,k)⩽ 0
for some k ∈ {1, . . . ,d− 1}, then λi(ν,1) = 0 for any i, i.e. the Lyapunov exponents of A1 on
TM with respect to ν are zero.

Proof. It suffices to prove the stronger statement that λ1(ν,1)⩽ 0 if and only if λ1(ν,k)⩽ 0
for all k ∈ {1, . . . ,d− 1}. As µ is supported on volume preserving diffeomorphisms, the
Lyapunov exponents of A1 with respect to ν on TM must sum to 0. On the exterior product,
the top Lyapunov exponent of Ak is given by the sum of the top k Lyapunov exponents of A1

on TM. If λ1(ν,1)⩽ 0, then λi(ν,1) = 0 for all i ∈ {1, . . . ,d}, and so λ1(ν,k) = 0. To prove
the other direction, we show the converse: if λ1(ν,1)> 0, then as the Lyapunov exponents
are listed in decreasing order

∑d−1
i=1 λi(ν,1) =−λd(ν,1)> 0. This means λ1(ν,k)> 0 for any

k ∈ {1, . . . ,d− 1}, and so all exterior powers will have positive top exponent.

Wewill use a classical invariance principle of Ledrappier [9], extended byAvila-Viana [10],
in the following theorem.
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Theorem 3.2. If µ is not uniformly expanding in all dimensions, then there is an ergodic µ-
stationary measure ν on M such that one of the following is true:

(a) for some k ∈ {1, . . . ,d− 1}, there is a proper µ-a.e. invariant ν-measurable algebraic
structure of Grk(TM), or

(b) there is a µ-a.e. invariant ν-measurable conformal structure on TM.

Using this theorem, we will show that all µ-stationary measures have positive top Lyapunov
exponent and do not admit a non-random invariant measurable algebraic structure Grk(TM)
or a conformal structure on TM. It is with this fact that we will prove our measure is uniformly
expanding. If λ1(ν,k)> 0, corollary 2.4 tells us we are in case one. If λ1(ν,1) = 0, we will
apply lemma 3.5.

To do this, wewill first need to extend our dynamical system T from the one sided shift to the
two sided shift. Let σ̂ : Diff∞(M)

Z → Diff∞(M)
Z be the two sided left shift, i.e. σ̂(α)i = fi+1

and σ̂−1(α)i = fi−1 for any α= (· · · , f−1, f0, f1, . . .). We define the map T as before, and its
extension T̂ by the following:

T : Diff∞ (M)
N×M→ Diff∞ (M)

N ×M T̂ : Diff∞ (M)
Z×M→ Diff∞ (M)

Z ×M

T(α,x) = (σ (α) , f0 (x)) T̂(α,x) = (σ̂ (α) , f0 (x)) .

On the tangent bundle, we consider the adjusted cocycle

Â1 : Diff∞ (M)
Z ×T1M→ Diff∞ (M)

Z ×T1M, where

Â1 (α,(x,v)) =

(
σ̂ (α) ,

(
f0 (x) ,

Dx f0v
||Dx f0v||

))
.

Lemma 3.3. Let µ be a probability measure on Diff∞vol(M), γ a µ-stationary probability meas-
ure on T1M. Assume limn→∞

1
n log ||Dx f

n
αv||= 0 for γ-a.e. (x,v) ∈ T1M, µ-a.e.α. Then µZ × γ

is an invariant measure under Â1.

Proof. Wewill work with the natural extension ρ of themeasureµN × γ onDiff∞(M)
N ×M to

the two sided shift space Diff∞(M)
Z ×T1M. Unlike the one sided case, it is not immediate that

µZ × γ is invariant under Â1 if γ is µ-stationary5. Our first step will establish that ρ= µZ × γ
under our assumptions.

We know that ρ has a unique characterization given by

ρα = lim
n→∞

f−1
0 f−1

−1 · · · f
−1
−n+1γ.

See example 3.13 in [10] or section 1.6 of [6] for details. As before, ρα is the disintegration
of ρ over α ∈ Diff∞(M)

Z. In particular, ρ is invariant under Â1 and all Lyapunov exponents
of ρ are zero. Note that µZ is a product measure and so has a local product structure, and
Â1 admits s and u holonomies that are constant on the local stable and unstable laminations,
respectively. Therefore, by Theorem D of [10], ρ has a disintegration that is su-invariant and
varies continuously over the support of µZ. As the holonomies are constant on the local stable
and unstable laminations, ρmust be independent of the choice ofα forµZ-a.e.α ∈ Diff∞(M)

Z,
and thus, ρ= µZ × γ.

5 In fact, this is generally not true.
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Lemma 3.4. Let µ be a probability measure on Diff∞vol(M), ν a µ-stationary probability meas-
ure on M. Assume λ1(ν,1) = 0. Then µZ × ν is an invariant measure under T̂.

Proof. This proof is identical to the proof of lemma 3.3.

Lemma 3.5. Let ν be an ergodic µ-stationary measure on M. If λ1(ν,k)⩽ 0 for some k ∈
{1, . . . ,d− 1}, then there is either a proper algebraic subbundle of TMor a conformal structure
on TM that is µ-a.e. invariant and ν-measurable.

Proof. Fix k ∈ {1, . . . ,d− 1} such that λ1(ν,k)⩽ 0. By lemma 3.1, we may assume k= 1 and
all Lyapunov exponents on TM are zero. We are now in the situation to apply the invariance
principle, as our extremal Lyapunov exponents agree. We will study µ-stationary measures γ
on T1M that project to ν on M– at least one such measure always exists.

By lemma 3.4, we know µ× ν is T̂ invariant. As γ projects to ν on M, we know
limn→∞

1
n log ||Dx f

n
αv||= 0 for γ-a.e. (x,v) ∈ T1M. Thus by lemma 3.3, µZ × γ is Â1 invari-

ant. We now consider two cases, based on the structure of our measure and cocycle. We say a
cocycle B : Diff∞(M)

Z ×TM→ Diff∞(M)
Z ×TM is conformal if B(α,x) is a conformal linear

transformation for µZ × ν-a.e. (α,x) ∈ TM.
Case 1: Assume Â1 is cohomologous to a conformal cocycle B by a transfer cocycleC. Then

we can define a measure β on Diff∞(M)
Z ×T1M by β(α,x) := C−1

(α,x)m, where m is Lebesgue

measure on Rd, and β =
´
β(α,x) dµZ × ν. Note that β is invariant under Â1 by construction,

and as we may insist C is µZ × ν-measurable, β projects to µZ × ν on Diff∞(M)
Z ×M. By

theorem D of [10], the disintegration of β is independent of the choice of α ∈ Diff∞(M)
Z (but

not necessarily independent of the choice of x ∈M). Thus, for any (α,x) ∈ Diff∞(M)
Z ×Mwe

have a conformal structure on TM given by C−1
(α,x)g, where g is the standard euclidean metric,

and this conformal structure is µ-invariant and ν-measurable.
Case 2: Assume Â1 is not cohomologous to a conformal cocycle. Let γ be any station-

ary measure of µ on T1M that projects to ν on M. A lemma of Furstenberg (lemma 3.21 of
[8]) shows that γ(α,x) is supported on the union of two proper subspaces of TxM for µZ × ν-

a.e. (α,x) ∈ Diff∞(M)
Z ×M. As γ(α,x) is not dependent on α, we have that supp(γf(x)) =

Dx fsupp(γx) for µ a.e. f ∈ Diff∞(M) ν a.e. x ∈M. This support is proper, and so the structure
formed by supp(γ) will be a proper µ-invariant ν-measurable algebraic structure.

Proof of theorem 3.2. By corollary 2.4 and lemma 3.1, there is an ergodic µ-stationary meas-
ure ν onM that has either λ1(ν,k)⩽ 0 for all k ∈ {1, . . . ,d− 1}, or admits a proper µ-invariant
ν-measurable algebraic structure of Grk(TM) for some k ∈ {1, . . . ,d− 1}. In the first case,
lemma 3.5 shows that there is either a proper µ-a.e. invariant ν measurable algebraic structure
or a conformal structure on TM. Thus the theorem is proved.

With this reduction, we have pivoted from general criteria for uniformly expanding meas-
ures, to a specific characterization in terms of invariant structures in the dynamics. It now
remains to construct our measure and show that it can have no such invariant objects. Our
construction will hinge on picking a specific family of diffeomorphisms of M that are strictly
compatible with volume, in the sense that they can only coexist with invariant structures if the
µ-stationary measure in question is mutually singular with volume.

4. Studying invariance

In the following section we will construct a set of specific maps gax ∈ Diff∞(M), for any x ∈
M, that depend smoothly on a. We then demonstrate several key properties of gax , and use
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the compactness of M to restrict to a finite set of base points x1, . . . ,xj ∈M. The goal of this
section is to create gax1 , . . . ,g

a
xj so that we may eliminate the invariant structures identified in

the previous section.
Let gax ∈ Diff∞(M) be defined as follows. Fix an R> 1, and let Bh(0) denote the ball of

radius h in Rd for h> 0. By Moser’s Theorem (see 5.1.27 of [11]), for any x ∈M there is a
neighborhood U ′

x of x and a ϕx : U ′
x → BR(0) such that ϕx is a diffeomorphism, ϕx(x) = 0, and

ϕx takes divergence free vector fields to divergence free vector fields. We then select a more
restricted open neighborhood of x, denoted Ux, such that Ux ⊂ U ′

x and ϕx(Ux) = B1/2(0). For
fixed a, we will construct a volume preserving map ψa1 on BR(0) that is affine on B1/2(0) and
smoothly interpolates to the identity on ∂BR(0). Finally, we will construct gax by conjugating
ψa1 on BR(0) by ϕx– gax will be affine on Ux, and the identity outside of U ′

x.
To begin, let d ′ := d2 + d− 1. Set a= (a1, . . . ,ad,ad+2, · · ·ad2+d) ∈ Rd×Rd2−1 = Rd ′

,
ba := (a1, . . . ,ad) and consider

A ′
a :=


ca ad+2 · · · a2d

a2d+1 a2d+2 · · · a3d
...

...
ad2+1 · · · · · · ad2+d


where ca =−

∑d
i=2 aid+i. The Lie group G of affine transformations of Rd is given by (d+

1)× (d+ 1) matrices of the form

(
A b
0 1

)
, for A ∈ SLd(R), and its action on Rd is given by

(
A b
0 1

)
· y= Ay+ b.

We will work in the open neighborhood of the identity in g, the Lie algebra of G, where the
exponential map has inverse given by log. Note that for small a, we may choose b ′

a and Aa so
that

exp

(
A ′
a b ′

a
0 0

)
=

(
Aa ba
0 1

)
.

By the choice of ca we know tr(A ′
a) = 0, and so det(Aa) = 1. Moving forward, we will

denote

(
A ′
a b ′

a
0 0

)
∈ g by Xa.

Take Xa ∈ g for a ∈ (−1,1)d
′
small enough, and consider the flow defined on Rd given by

ϕat (y) = etXa · y. Note that at time t= 1, ϕa1(y) = Aay+ ba, and as Xa is a trace free vector field,
we know ϕat is a volume preserving diffeomorphism of Rd. Without loss of generality, we
choose R to be large so that Aa(B1(0))+ ba ⊂ BR(0) for any a ∈ (−1,1)d

′
, that is, the affine

transformation exp(Xa) maps B1(0) inside BR(0).
Let αa = ιXaω. Since αa is a closed (d− 1)-form there is a (d− 2)-form χa such that dχa =

αa. Let f : BR(0)→ [0,1] be a smooth bump function such that f(y) = 1 for y ∈ B1(0) and
f(y) = 0 on a neighborhood of ∂BR(0). Then d( fχa) = ιYaω, where Ya is a trace free vector
field that agrees with Xa on B1(0) and vanishes on a neighborhood of ∂BR(0). Let ψa1(y) be
the time one map of the flow of d( fχa) for small a. This map will agree with ϕa1 on B1(0), and
the identity on ∂BR(0). Further, it is volume preserving for any given a by the above.
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Define gax(y) = ϕ−1
x ◦ψa1 ◦ϕx(y) for any y ∈ Ux. By construction, the maps gax are volume

preserving diffeomorphisms onMwith several key properties that we establish in the following
theorem.

Theorem 4.1. Let x ∈M, k ∈ {1, . . . ,d− 1}, a ∈ (−1,1)d
′
. For fixed y ∈ Ux, v ∈Grk(TyM),

the map

a 7→ (gax (y) ,Dyg
a
x (v)) ∈Grk (TM)

is smooth and has surjective derivative at a= 0.

Proof. As the question is local, we may conjugate by ϕx and assume M= Rd, Ux = B1/2(0),
and gax = ψa1 .

Fix y ∈ B1/2(0), y= (y1, . . . ,yd). On B1/2(0), ψa1(y) = exp(Xa) · y. As a 7→ Xa is invertible,
we restrict to a neighborhood g(ϵ) of the identity of g. Thus we reduce to the study of the
derivative of F : g(ϵ)→ Rd×Grk(Rd) where

F(Xa) = (exp(Xa) · y,Dy exp(Xa) · y(v)) = (Aay+ ba,Dy (Aay)(v)) .

Note that the derivative of the exponential map at zero is the identity, and so the derivative
of F at zero is D0F : g→ Rd×TvGrk(Rd),6 given by

D0F(Xa) = (Xa · (y1, . . . ,yd,1) ,Xa · (1, . . . ,1,0)(v)) = (A ′
ay+ b ′

a,A
′
av) .

It remains to argue why this is surjective, but this is clear—all but one of the entries of A ′
a

can be changed independently between (−1,1), and so A ′
a acts transitively on subspaces of

dimension k. Further, translation by b ′
a is transitive, and so the entire map is surjective.

These facts give us a local transitive property on the manifold and every Grassmanian,
as they imply the maps a 7→ gax(y),a 7→ Dygax(v) are submersions. Finally, note that as M is
compact, we may choose a subset gax1 , . . . ,g

a
xj such that the corresponding sets Ux1 , . . . ,Uxj

cover M. We are now equipped to begin constructing our measure in earnest.

5. Constructing the measure

Take f0 ∈ U⊂ Diff∞vol(M), for U an open set. Let 0< ϵ < 1/2 be such that gaxi ◦ f0 ∈ U for all

a ∈ (−ϵ,ϵ)d ′
, i ∈ {1, . . . , j}. Choose pi > 0 so

∑j
i=0 pi = 1. Define

µ= Cp0δf0 +C
j∑

i=1

pi

ˆ
[−ϵ,ϵ]d

2+d
δgax◦f0da,

where C> 0 is a normalizing constant that makes µ a probability measure. Going forward, we
will absorb the C into pi. Observe that µ can be split into an outer integral over ad+2, . . . ,ad2+d
and an inner integral over a1, . . . ,ad. This inner integral corresponds to the pure translation
portion of gaxi , and will be used to force additional regularity with respect to volume.

6 Under the identification T0g(ϵ)≃ g.
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Theorem 5.1. Let µ be as defined above, and ν be a µ-stationary probability measure. Then
ν = ρ+ ν ′, where ρ,ν ′ are positive measures such that ρ� volM and ρ(M)> 0.

Proof. Let ν be a µ-stationary probability measure onM. We will show that convolution by µ
produces a non-zero absolutely continuous part of ν.

For fixed z ∈M, we know that f0(z) ∈ Uxk for at least one k. Fix such a k. For y ∈ Uxk , we have
gaxk(y) = ϕ−1

xk ◦ϕ1 ◦ϕxk(y). Let ad+2, . . . ,ad ′ be fixed, Aa be as above, and let ba = (a1, . . . ,ad)
be variable. By construction,Aaϕxk( f0(z)) ∈ B1/2(0), and soAaϕxk( f0(z))+ ba ∈ B1(0). Where
ϕxi( f0(z)) is well defined, let

Bi (z) := ϕ−1
xi

(
Aaϕxi ( f0 (z))+ [−ϵ,ϵ]d

)
.

We will bound the inner integral from below. As ω is a Riemannian volume form, there is a
smooth positive g : U ′

xk → R such that ω = gdx1 ∧ ·· ·dxd on U ′
xk . Fix ck > 0 such that c−1

k <
g< ck on Uxk . Note that for any such Aa, these constants and the compactness ofM imply that
volM(Bi(z)) will be uniformly bounded from below and above by a constant not depending on
z,Aa. Fix Aa. Then for E⊆M measurable, we have,

j∑
i=1

pi

(ˆ
[−ϵ,ϵ]d

δgaxi◦f0(z)
(E)da1 · · ·dad

)
=

j∑
i=1

pi

(ˆ
[−ϵ,ϵ]d

1E
(
ϕ−1
xi ◦ψa1 ◦ϕxi ◦ f0 (z)

)
da1 · · ·dad

)

⩾ pk

ˆ
[−ϵ,ϵ]d

1E
(
ϕ−1
xk (Aaϕxk ( f0 (z))+ ba)

)
dba

⩾ pk

ˆ
Bk(z)

1E (y)
g(y)

dvolM (y)

⩾ pk
ck

volM (E∩Bk (z)) .

We now consider µ ∗ ν. Note that

µ= p0δf0 +
ˆ
[−ϵ,ϵ]d

2−1

j∑
i=1

pi

(ˆ
[−ϵ,ϵ]d

δgaxi◦f0
da1 · · ·dad

)
dad+2 · · ·dad2+d.

For any ν we may write ν(E) =
´
M δz(E)dν(z). By Fubini’s Theorem and the fact µ ∗ ν = ν,

we have,

ˆ
M
δz (E)dν (z) = ν (E) = µ ∗ ν (E) =

ˆ
U

ˆ
M
δh(z) (E)dν (z)dµ(h)

=

ˆ
M

ˆ
U
δh(z) (E)dµ(h)dν (z) .

Since this holds for any E measurable, it follows that for any E we have νz(E) =´
U δh(z)(E)dµ(h), where ν =

´
νz dν(z). It then suffices to show νz has an absolutely con-

tinuous part for any given z. But
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νz (E) =
ˆ
U
δh(z) (E)dµ(h)

= p0δf0(z) (E)+
j∑

i=1

pi

ˆ
[−ϵ,ϵ]d

′
δgax◦f0(z) (E)da

⩾
ˆ
[−ϵ,ϵ]d

2−1

j∑
i=1

pi

ˆ
Bi(z)

1E (y)
g(y)

· 1Ui ( f0 (z))dvolM (y)dAa

⩾
ˆ
[−ϵ,ϵ]d

2−1
max
i

{
pi
ci
volM (E∩Bi (z))

}
dAa.

Let ρz(E) :=
´
[−ϵ,ϵ]d2−1 maxi{ pici volM(E∩Bi(z))}dAa. Then ρz is absolutely continuous with

respect to volume. If volM(E)> 0, then there is a positive volume set of z such that ρz(E) is
bounded from below by a uniform constant not depending on z. Thus, we can conclude.

6. Proving uniform expansion

Theorem 6.1. Let ν be a µ-stationary probability measure on M such that ν = ν0 + ν⊥, where
ν0,ν⊥ are positive measures and ν0 � volM. Then there are no ν-measurable proper algebraic
µ-invariant structures of Grk(TM).

Proof. Wewill proceed by contradiction, assuming there is a ν-measurable µ-invariant algeb-
raic structure E and showing ν0 = 0. Given an algebraic subset Ex of Grk(TM), there is a
corresponding subspace Vx = 〈Ex〉 generated by its image in

∧kTM. As Dx fEx = Ef(x) for ν-
a.e. x ∈M, µ-a.e. f ∈ Diff∞(M), definition 2.3 implies h= h(x) := dimVx is constant ν-almost
everywhere. Thus, any µ-invariant ν-measurable algebraic structureE inGrk(TM) can be writ-
ten as a ν-measurable µ-invariant map E : M→Grh(

∧kTM), for some fixed h ∈ N. By the
construction, µ-invariance implies E is invariant under the action of both gaxi ◦ f0 and f 0 for any
i, m-a.e. a ∈ (−ϵ,ϵ)d ′

. This implies E is invariant under gaxi for any i, m-a.e. a ∈ (−ϵ,ϵ)d ′
.

Let ϵ> 0. By Lusin’s Theorem, there is a compact set Kϵ ⊂M such that ν0(Kϵ)⩾ (1−
ϵ)ν0(M) and E is continuous when restricted toKε. As ν0 is absolutely continuous with respect
to volume, we may assume Kϵ has no isolated points. AsM is compact, there is someUxk such
that ν0(Kϵ ∩Uxk)> 0. For any y ∈ Kϵ ∩Uxk , wemay choose a ′ ∈ (−ϵ,ϵ)d ′

such that ga
′

xk (y) = y

and Dyga
′

xk E(y) 6= E(y). This is due to theorem 4.1 and the fact E(y) corresponds to a proper
closed subset of Grk(TyM), so surjectivity on a neighborhood of Grk(TyM) lets us perturb
proper subspaces.

Let

L :=
{
a ∈ (−ϵ,ϵ)d

′
| E
(
gaxk (y)

)
= Dyg

a
xkE(y)

}
and define L ′ := {z ∈ Uxk | z= gaxk(y),a ∈ L}. We know m(L) = 1, so by theorem 4.1, we
have volM(L ′ ∩Kϵ) = volM(Kϵ ∩Uxk). As ν0 is absolutely continuous with respect to volM,
ν0(L ′)> 0. Thus, there is a sequence an → a ′ such that an ∈ L and ganxk (y) ∈ Kϵ. As E is con-
tinuous on Kϵ and a→ gaxk is continuous, we have

Dyg
an
xkE(y) = E

(
ganxk (y)

)
→ E

(
ga

′

xk (y)
)
= E(y)
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but

Dyg
an
xkE(y)→ Dyg

a ′

xk E(y) 6= E(y) ,

a contradiction. Thus, ν0 = 0.

Theorem 6.2. Let ν be a µ-stationary probability measure on M such that ν = ν0 + ν⊥, where
ν0,ν⊥ are positive measures and ν0 � volM. Then there are no ν-measurable µ-invariant con-
formal structures on TM.

Proof. For the sake of contradiction, assume there is a map C : M→ CS(TM) that is µ-
invariant and ν-measurable. We will show ν0 = 0. Let ϵ> 0. By Lusin’s Theorem, there is
a compact set Kϵ ⊂M such that ν0(Kϵ)⩾ (1− ϵ)ν0(M) and C is continuous when restricted to
Kϵ. As ν0 is absolutely continuous with respect to volume, we may assume Kϵ has no isolated
points. As M is compact, there is some Uxk such that ν0(Kϵ ∩Uxk)> 0.

Note that the image of a→ Aa is a neighborhood of the identity in SLd(R), so for some
choice of a, the corresponding matrix Aa is not conformal. Thus Dygaxi will not preserve a
conformal structure on TyM for any y ∈ Uxk . Arguing as in the proof of theorem 6.1, we obtain
that for any y ∈ Kϵ there is an a ′ ∈ (−ϵ,ϵ)d ′

such that ga
′

xk (y) = y and Dyga
′

xk C(y) 6= C(y). The
remainder of the proof is identical to the proof of 6.1.

With these two theorems we now have all the machinery in place to show that µ is uniformly
expanding.

Theorem 6.3. The measure µ is uniformly expanding in all dimensions.

Proof. Assume for the sake of contradiction that µ is not uniformly expanding in some dimen-
sion k. By theorem 3.2, there is a µ-stationary measure ν such that there is either a µ-invariant
ν-measurable algebraic structure onGrk(TM) or a µ-invariant ν-measurable conformal struc-
ture on TM. By theorem 5.1, ν must have an absolutely continuous part with respect to volume.
But by theorems 6.1 and 6.2, absolute continuity prevents the existence of invariant structures.
Thus, the theorem is proved.

Finally, let us show that uniform expansion in all dimensions is an open property—thus, we
can discretize µ to construct a measure with finite support that is also uniformly expanding.

Lemma 6.4. Let µ0 be a probability measure on Diff
∞(M) that is uniformly expanding in

dimension k ∈ {1, . . . ,d− 1}. Assume that supp(µ0) is contained in some compact set K. Then
there is an open neighborhood V of µ0 in the weak-∗ topology of P(K) so that any ρ ∈ V is also
uniformly expanding in dimension k. Here, P(K) is the set of probability measures on K.

Proof. We know ∃C> 0,N> 0 such that for any (x,v) ∈Grk(TM), we have
ˆ
K
log ||Dx fv||dµ(N)

0 ( f)> C.

As K is compact, ϕ(x,v)( f) := log ||Dx fv|| is continuous and so uniformly bounded for f ∈ K.
Define

ϕ : K×Grk (TM)→ Rby ϕ( f,(v,v)) := ϕ(x,v) ( f) .

This is a continuous function in all variables, and the domain is compact, so the family of
continuous functions fromGrk(TM)→ R given by {ϕ ◦ f | f ∈ K} is uniformly equicontinuous.
By compactness of K and M, there exists a finite cover B1, . . . ,Bℓ of Grk(TM) by open balls
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of fixed radius δ > 0 centered at (x1,v1), . . .(xℓ,vℓ) in Grk(TM) such that for all i, for any
(x,v) ∈ Bi:

|ϕ(xi,vi) ( f)−ϕ(x,v) ( f) |<
C
4
forall f ∈ K, (⋆)

and ∣∣∣∣ˆ ϕ(xi,vi) ( f)dρ
(N) −

ˆ
ϕ(x,v) ( f)dρ

(N)

∣∣∣∣< C
4
for all ρ ∈ P(Diff∞ (M)) . (⋆⋆)

We now define the sets

Vi :=

{
ρ(N) ∈ P(K) |

∣∣∣∣ˆ
K
ϕ(xi,vi) ( f)ρ

(N) ( f)−C

∣∣∣∣< C
4

}
.

These are open non-empty sets in the weak-∗ topology by definition, and comprise of all meas-
ures that meet the criteria for uniform expansion on the point (xi,vi). By (⋆) and (⋆⋆), for any
(x,v) ∈ Bi, ρ(N) is uniformly expanding at the point (x, v) by constant C2 . Thus, ρ ∈ V := ∩ℓ

i=1Vi
is uniformly expanding at all points in M. As V is the finite intersection of non-empty open
sets and µ0 ∈ Vi for all i, it too is a non-empty open set, and the claim is shown.

Finally, we may prove the main theorem of the paper:

Proof of theorem 1.3. Let µ be the measure constructed in section 5.Wewill build a sequence
of finitely supported measures µn such that µn → µ in the weak-∗ topology, and there are no
finite µn-invariant subsets of M.

We will first eliminate finite invariant sets. Choose a0,a1 ∈ [−ϵ,ϵ]d ′
so that Aa0 and Aa1 are

distinct irrational rotations of Rd that do not share a real eigenvector, and ba0 = ba1 = 0. Note
that {0} is the only finite set in Rd invariant under the action y 7→ Aa0y+ ba0 and y 7→ Aa1y+
ba1 . For any xi ∈ {x1, . . . ,xj}, let h0i = ga0xi and h1i = ga1xi . As ba0 = ba1 = 0, for any y ∈ Uxi we
have h0i = ϕ−1

xi (Aa0ϕxi( f0(y))) and h
1
i = ϕ−1

xi (Aa1ϕxi( f0(y))). This implies that the only proper
subset of Uxi preserved by both h0i and h

1
i is {xi}.

For each i ∈ {1, . . . , j}, define Ki = {gaxi ◦ f0 | a ∈ [−ϵ,ϵ]d ′}. As M is compact and Ki is a
compact subset of a finite parameter family of diffeomorphisms, Ki is a complete metric space
under the uniform metric and thus a Baire space. Define Dj

i := {g ∈ Ki | gj(xi) 6= xi}. This is
an open and dense set in Ki, and so Di = ∩j⩾1D

j
i is also open and dense in Ki by the Baire

Category Theorem. The set Di is all diffeomorphisms in Ki that do not have xi as a periodic
point. For each i, fix hi ∈ Di. By construction, there is no finite subset of Uxi invariant under
the action of {h1i ,h0i ,hi}.

Fix n ∈ N. We subdivide [−ϵ,ϵ]d ′
into nd

′
cubical cells of side length 2ϵ/n. Let z1, . . . ,zN be

the points in [−ϵ,ϵ]d ′
corresponding to the vertices of this subdivision, where N= (n+ 1)d

′
.

We will use these points to approximate the Lebesgue integral. Here we denote gzℓxi by giℓ.
Define

µn = p0δf0 +
j∑

i=1

pi
3+N

[
δh1i + δh0i + δhi +

N∑
ℓ=1

δgiℓ◦f0

]
.

Note that the weak-∗ limit of µn is µ. For any n, µn is a finitely supported probability
measure and there is no finite µn-invariant subset of M. Further, the support of both µ and µn
is contained in the compact set K := ∪j

i=1Ki. By applying theorem 6.4 for each dimension k
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in {1, . . . ,d− 1}, we see there is an open neighborhood V of µ such that every measure in V is
uniformly expanding in all dimensions. As µn

∗−→ µ, the sequence {µn} must eventually enter
the set V. Thus there is some n such that µn is uniformly expanding.
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