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Abstract
Quantum computers are promising tools for simulating many-body quantum systems due to their
potential scaling advantage over classical computers. While significant effort has been expended on
many-fermion systems, here we simulate a model entangled many-boson system with the
contracted quantum eigensolver (CQE). We generalize the CQE to many-boson systems by
encoding the bosonic wavefunction on qubits. The CQE provides a compact ansatz for the bosonic
wave function whose gradient is proportional to the residual of a contracted Schrödinger equation.
We apply the CQE to a bosonic system, where N quantum harmonic oscillators are coupled
through a pairwise quadratic repulsion. The model is relevant to the study of coupled vibrations in
molecular systems on quantum devices. Results demonstrate the potential efficiency of the CQE in
simulating bosonic processes such as molecular vibrations with good accuracy and convergence
even in the presence of noise.

1. Introduction

Quantum computers have the potential to surpass classical computers in simulating quantum many-body
systems [1–6]. There has been tremendous effort to develop simulation algorithms for noisy
intermediate-scale quantum (NISQ) devices [7–19]. Among them, the simulation of fermions is specifically
interesting because electrons are fermions and hence, their simulation is directly related to molecular
behavior. In this paper, however, we focus on many-boson systems [20–27] that are equally important in
nature.

Computing the quantum energies of bosons is a fundamental problem in quantum mechanics, and it has
various applications in different domains. Applications include the study of atoms and molecules [28],
condensed-matter systems such as superfluids, superconductors, and Bose–Einstein condensates [29–34],
light and other optical phenomena [35, 36], chemical reactions [37], and quantum devices [38]. In principle,
the simulation of bosons should be more straightforward than fermions since they do not require the
additional encoding to account for fermion antisymmetry. However, since qubits are hard-core bosons,
which means they cannot occupy the same orbital, simulation of bosons is not exactly the same as simulating
qubit particles. Here we employ a straightforward encoding that represents each bosonic orbital with N
qubits where N is the number of bosons, which leads to linear scaling in both N and the number of qubits.

The extension to bosonic systems in this work is achieved with the contracted quantum eigensolver
(CQE) [39]. CQE is a general algorithm for solving the many-body Schrödinger equation on a quantum
computer. It is inspired from the contracted Schrödinger equation (CSE), which projects the Schrödinger
equation onto a two-particle basis [40–44]. The key challenge in solving the CSE is to ensure the
N-representability, that the two-electron reduced density matrix (2-RDM) must represent an N-particle
wavefunction, which can be achieved on a classical computer with approximation techniques such as the
cumulant expansion [45, 46] or on a quantum computer with tomographic measurements [39, 47–52]. The
method has been applied to calculate ground- and excited-state energies and properties with accurate
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results [53, 54]. Comparing to popular methods such as the variational quantum eigensolver(VQE), the CQE
uses a verifiably exact ansatz, which is expected to converge to an exact solution in a noiseless
environment [50]. Moreover, we use the gradient equation derived from the CSE to guide the optimization,
avoiding searches that can become extremely costly in high-dimensional parameter spaces.

In this paper, we apply the CQE to a system that consists of multiple one-dimensional harmonic
oscillators. Given that the harmonic oscillator provides the fundamental model for quantum vibrations, we
can consider the system where N quantum harmonic oscillators are coupled by a pairwise potential as a basic
approximation to coupled molecular vibrational modes [55–61]. The elegance of this system resides in the
fact that an analytical solution can be obtained through a normal coordinate transformation and can thus be
directly used to benchmark the performance of CQE on noiseless simulators as well as on NISQ devices.
Using this prototype, the energies are computed with CQE and benchmarked with exact solutions.

2. Theory

We review the quantum algorithm for solving the anti-Hermitian part of the CSE (ACSE) in section 2.1 and
introduce the bosonic mapping used in this work in section 2.2. The coupled harmonic oscillator system is
presented in section 2.3.

2.1. Anti-Hermitian CSE
Consider a quantum system of N identical bosons in r orbitals described by the Schrödinger equation

Ĥ|Ψ⟩= E|Ψ⟩. (1)

Here E and |Ψn⟩ are the many-boson ground-state energy and wave function, and Ĥ is the Hamiltonian
operator. One can write the Hamiltonian in second-quantized form as

Ĥ=
∑
pqst

2Kpq
st b̂

†
p b̂

†
q b̂tb̂s (2)

in which 2K is the reduced Hamiltonian matrix, the indices ranging from one to r denote the orbitals. The b̂†p
and b̂p are the bosonic creation and annihilation operators with respect to the pth orbital. Taking the
expectation value of the above equation yields the energy as a function of the two-particle reduced density
matrix 2D (2-RDM).

E=
∑
pqst

2Kpq
st ⟨Ψ |b̂†p b̂†q b̂tb̂s|Ψ⟩= Tr

[
2K 2D

]
(3)

where

2Dpq
st = ⟨Ψ |b̂†p b̂†q b̂tb̂s|Ψ⟩. (4)

The ACSE, which has been used to solve for energies and properties of many-particle systems [39, 44, 62,
63], has the following form

⟨Ψ |
[
b̂†p b̂

†
q b̂tb̂s,Ĥ

]
|Ψ⟩= 0. (5)

The ACSE can be solved for the 2-RDM without direct computation of the many-particle wavefunction, and
in previous work we have presented an algorithm to solve the ACSE on quantum devices [39]. The method is
briefly reviewed here. Consider the variational ansatz,

|Ψn+1⟩= eϵÂn |Ψn⟩ (6)

where Ân is a two-body anti-hermitian operator

Ân =
∑
pqst

2Apq;st
n b̂†p b̂

†
q b̂tb̂s, (7)

that constructs the unitary transformation for updating the wavefunction. Here we select Ân to be the
residual of the ACSE

2Apq;st
n = ⟨Ψn|

[
b̂†p b̂

†
q b̂tb̂s,Ĥ

]
|Ψn⟩. (8)
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Table 1. ACSE-based CQE algorithm for the quantum simulation of many-boson systems.

Algorithm. ACSE-based CQEmethod for bosons.
Given n= 0 and 0< δ ⩽ 1.
Choose initial wave function |Ψ0⟩.
Repeat until ||2An|| is small.

Step 1: prepare |Λ±
n ⟩ from |Λ±

n ⟩= e±iδĤ|Ψn⟩,
Step 2:measure 2An from

2Aij;kl
n = 1

2iδ

(
⟨Λ+

n |b̂†i b̂
†
j b̂lb̂k|Λ

+
n ⟩− ⟨Λ−

n |b̂†i b̂
†
j b̂lb̂k|Λ

−
n ⟩

)
,

Step 3: prepare |Ψn+1⟩ from |Ψn+1⟩= eϵÂn |Ψn⟩,
Step 4:measure 2Dn+1 from

2Dpq;st
n+1 = ⟨Ψn+1|b̂†p b̂†q b̂tb̂s|Ψn+1⟩,

Step 5: iterate Steps 3 and 4 to minimize the energy with respect to ϵ,
Step 6: set n= n+ 1.

From equation (3), we take the derivative of energy at the nth iteration with respect to 2Apq;st
n and obtain

∂En
∂
(
2Apq;st

n

) =−ϵ⟨Ψn|
[
b̂†p b̂

†
q b̂tb̂s,Ĥ

]
|Ψn⟩+O

(
ϵ2
)
, (9)

which shows that the negative of the residual of the ACSE yields the derivative of En. Following the gradient
downhill, we obtain an iterative expression for the 2-RDM

2Dpq;st
n+1 =

2Dpq;st
n + ϵ⟨Ψn|

[
b̂†p b̂

†
q b̂tb̂s, Ân

]
|Ψn⟩+O

(
ϵ2
)
, (10)

which can be expressed as a linear functional of the 1-, 2-, and 3-RDMs. On a classical computer we can
approximately reconstruct the 3-RDM from the lower-order RDMs. On quantum computers we can measure
the 2-RDM by measuring the expectation value of tomographic Pauli strings which does not require higher
order RDMs [50, 64]. Similarly, we can measure Ân in equation (7) from numerical gradient techniques that
are in principle exact when the step size is infinitesimal. Table 1 summarizes the ACSE-based CQE algorithm
for bosons. The algorithm, which is similar to the algorithm for fermions in [64], is applicable to any bosonic
two-body Hamiltonian including the Hamiltonian of coupled harmonic oscillators, discussed in section 2.3.
In practical terms, the simulation and numerical gradient outcomes are collectively influenced by the step
size, sampling error, and device noises. The effects of these factors will be further discussed in the results
section.

2.2. Boson to qubit mapping
Since qubits are hard-core bosons, we require N qubits to encode the wavefunction of N bosons in a single
orbital. The total number of qubits required for bosonic system simulation is then equal to the number of
bosons times the number of orbitals. We map the creation and annihilation operators onto qubits using the
following equations, which is different from the fermionic transformation such as the Jordan–Wigner
mapping [65]:

b†j,r = 1⊗ 1⊗ . . .︸ ︷︷ ︸
r×( j-1)+r-1

⊗
(
X− iY

2

)
⊗ 1⊗ . . .⊗ 1 (11)

bj,r = 1⊗ 1⊗ . . .︸ ︷︷ ︸
r×( j-1)+r-1

⊗
(
X+ iY

2

)
⊗ 1⊗ . . .⊗ 1 (12)

where b†j,r and bj,r represents annihilate and create the jth boson in the rth orbital. By summing over indices j,
we obtain the bosonic annihilation and creation operator in rth orbital

b†r =
1√
N

N∑
j=1

b†r,j,br =
1√
N

N∑
j=1

br,j. (13)

2.3. Hamiltonian of coupled harmonic oscillators
Our model system consists of N spinless bosons subject to harmonic interactions in the one-dimensional
space first inspected by Sage [55] and later by other authors [56–61, 66]. The one-body interactions are
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attractive with a scaled force constant Z and the pairwise two-body interactions are repulsive. The
Hamiltonian can be written as

Ĥ=
N∑

i=1

h(i)+
∑
i>j

u(i, j) =
∑
i>j

h(i, j) (14)

where

h(i) =− ∂2

∂x2i
+Zx2i , (15)

u(i, j) =−
(
xi − xj

)2
, (16)

and

h(i, j) =
1

N− 1
[h(i)+ h( j)]+ u(i, j). (17)

Comparing equations (2) and (17), we obtain the matrix elements of the two-particle reduced
Hamiltonian (2K)

2Kpq
st =

1

N− 1

(
δps ⟨q|ĥ|t⟩+ δ

q
t ⟨p|ĥ|s⟩

)
+ ⟨pq|û|st⟩. (18)

It has been shown by Sage [55] that, using the following normal coordinate transformation, we can decouple
the N harmonic oscillators,

Qi =


1√
N

N∑
i=1

xi, i = 1

1√
i(i−1)

[
(i− 1)xi −

N−1∑
i=1

xi

]
, 2⩽ i ⩽ N

(19)

where the Hamiltonian in terms of these coordinates is

Ĥ=
N∑

i=1

(
− ∂2

∂Q2
i

)
+Zx21 +(Z−N)

N∑
i=2

x2i . (20)

The system becomes N uncoupled harmonic oscillators with the first one having a force constant of
√
Z and

the remaining (N− 1) indistinguishable ones having force constants of
√
Z−N. The system is analytically

solvable and the exact ground-state energy is given as

Eexact =
√
Z+(N− 1)

√
(Z−N) (21)

which can be used to benchmark results from numerical simulations. The nth natural orbital of the system
has the form

ϕn =
(
2nn!

√
π
)− 1

2 γ
1
2Hn (γx)e

−γ2x2/2 (22)

where Hn(γx) is the nth order Hermite polynomial and γ is a scaling factor that is determined from
diagonalizing the exact 1-RDM of the system. For simulation with CQE as described below, we use the
natural-orbital basis because it provides fast convergence, though other bases would also work with larger
basis sizes. Note that the analytical solution in principle can be viewed as the full configuration interaction
(CI) obtained from an infinite basis set. The numerical solution in a finite basis set is thus be an upper bound
to the analytical solution as can be seen from figure 1(a).

To approach the problem from a numerical perspective, first, consider the mean-field approximation in
which the energy can be easily written down as

EMF = N
√
(Z−N+ 1). (23)

The value N/Z quantifies the correlation effects. When N/Z approaches zero, the two-body interaction is
negligible compared to the one-body term. The system can then be viewed as N almost-independent
harmonic oscillators with the mean-field solution approaching the exact solution. When N/Z approaches 1,
the correlation effects cannot be ignored and the energy of the mean-field approximation starts to deviate
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Figure 1. Energies in (a) and natural orbital occupations (normalized by the number of bosons) in (b) are shown as functions of
N/Z. MF and full CI denote mean field and full configuration interaction (exact diagonalization), and Z is the harmonic force
constant.

Figure 2. Energies from different methods in the strongly correlated region, including the mean-field solution, the exact solution,
the full CI with two-orbital and three-orbital bases, and a quantum ACSE (CQE) simulation performed with two orbitals.

from the full CI result as shown in figure 1(a). This can also be seen from figure 1(b), where the occupation
number of the first natural orbital is plotted as a function of N/Z. The normalized value starts from 1, where
all bosons are in the lowest orbitals, and drops significantly when N/Z is close to 1, which is a result of strong
correlation of the bosons. It is also worth noting that when more bosons are present, the correlation effect is
reduced. This can be conceptualized as the mean-field approximation being improved by the environment
that the (N− 1) bosons form when N becomes large and eventually infinite.

For capturing the correlation effects correctly, different numerical methods have been proposed besides
full CI, including the connected moments expansion (CMX) methods [58] and the reduced Hamiltonian
interpolation (RHI) [60, 61]. Discussion of these classical methods is beyond the scope of the article and is
not pursued here. In this paper, we will implement CQE in strong correlated regime and benchmark with full
CI and analytical exact results.

3. Applications

3.1. Model Hamiltonian simulations
We perform simulations on a quantum state-vector simulator and IBMQ Lagos devices. 8192 shots were used
for experiments on devices. For the stepsize to evaluate Apq;st

n , we used 0.01 for simulator and 0.5 for
quantum devices. The convergence tolerance for the simulator is set to 10−7. All experiments were conducted
with the Qiskit package [67].
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Figure 3. Energy at each iteration when solving ACSE on simulator and real devices. Part (a) shows two bosons in two orbitals in a
four-qubit experiment and part (b) shows two bosons in three orbitals in a six-qubit experiment. Z= 2.2.

We first compare the energies from different methods in the strong correlated region (N/Z> 0.7, N = 2,
r= 2) in figure 2. The highest and lowest curves correspond to the mean-field and exact solutions,
respectively. It is clear that the mean-field solution fails in the strongly correlated region. We also plot the full
CI results with basis-set sizes r= 2,3 for benchmarking purposes. As can be seen, CI with a three-orbital
basis is sufficient to capture most of the correlation energy. The two-orbital basis performs almost as well as
the three-orbital basis when N/Z< 0.8 but deteriorates afterwards. This basis-set truncation error exists for
finite basis sets and can be improved easily with larger basis sets. The curve with triangle tickmarks shows the
CQE results performed on actual quantum computers. We observe that the difference between CQE and full
CI with the same basis set is much smaller than the error caused by basis-size truncation, which indicates
that the accuracy of CQE is limited by the basis-set size and we expect the CQE to achieve greater accuracy
with larger basis sets.

3.2. Convergence of quantum ACSE
In figure 3(a) we show a convergence diagram with two bosons in two orbitals, where a total number of four
qubits are used to represent the wavefunction of the system. The starting guess places both bosons in the
lowest orbital, which is the ground state in the absence of correlation. It can be seen that for both the
quantum simulator and the quantum computer, the optimization converges to a stable solution in eight or
fewer iterations. On an ideal state-vector simulator the error arises from the non-infinitesimal stepsize
employed when evaluating Ân as well as the first-order Trotter error. Despite such error, the CQE achieves an
accuracy within 10−7 comparing to full CI, verifying the exactness of the CQE algorithm [39]. In the
presence of device noise and sampling error, the results on a real quantum computer are only∼0.01 higher
than those on the noise-free simulator. This error is also fairly uniform across the iterations of the
optimization.

6
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Figure 4. Energy at each iteration in the solution of the ACSE (four boson and two orbitals in an eight qubit simulation, Z= 5).

Table 2. Full CI and CQE(computer) energies of the ground- and first-excited states for the coupled harmonic oscillator system (N= 2,
r= 2). For ground and excited ACSE calculations, starting guesses of |0101⟩ and |1001⟩ are used respectively.

Ground Excited

N/Z Exact CQE Exact CQE

0.2 5.990 719 5.998 725 11.665 688 11.672 398
0.4 3.968 379 3.972 838 7.492 909 7.498 718
0.8 2.367 377 2.370 212 4.221 183 4.231 868

Second, we study the effect of basis-set size by including an additional basis function. In figure 3(a), the
CQE results are close to those from the full CI with two orbitals, but are relatively different from those from
the calculation in the infinite-orbital basis set. By increasing the basis-set size by one, we observe in
figure 3(b) that our CQE result is much closer to the exact result with a difference of 0.015. This
demonstrates that the error in figure 3(a) comes mostly from the finite basis set and that the CQE can
reproduce a low error relative to full CI with larger basis-set sizes.

Third, we perform a simulation with four bosons in two orbitals on the quantum simulator. This
calculation shows that the algorithm can be straightforwardly extended to more bosons on noise-free
simulators while still preserving good accuracy. The convergence diagram is plotted in figure 4. As can be
seen, the CQE still offers a near-exact solution on ideal simulators in approximately ten iterations. For
molecules with more vibrational degrees of freedom, a linearly increasing number of qubits should fulfill the
task, which is advantageous over certain classical algorithms.

Lastly, we explore the ability of CQE in calculating excited states. Noted that in the derivation of the
ACSE in section IIA, we do not explicitly require the energy to be the ground-state energy. Indeed, the system
of differential equations in equations (9) and (10) is capable of producing energy and 2-RDM solutions of
the ACSE for both ground and excited states [68]. Even though excited states correspond to local stationary
points rather than global energy minima of the optimization, they can be obtained from a reasonable starting
guess, usually at the level of a Hartree–Fock calculation. In table 2, we report the ground- and first
excited-state energies, obtained from full CI and CQE on quantum devices. It can be seen that performance
of CQE is quite uniform in both ground- and excited-state optimization, giving an error less than 0.01 for
every selected point (except for the excited state at N/Z = 0.8). Here we show the CQE can be extended to
treat excited states, and in future work we will show that excited states and ground state can be treated on an
equal footing [69, 70] on quantum devices.

4. Conclusions

The simulation of bosonic systems is a fundamental problem in quantum mechanics with applications
ranging from atomic and molecular physics, condensed-matter physics, and particle physics to quantum
optics, quantum chemistry, and quantum computing. We generalize the CQE to simulate many-boson
systems without losing generality in treating strong correlation. In particular, we simulate a molecular

7



New J. Phys. 25 (2023) 103005 Y Wang et al

vibrational problem by solving the ACSE of the system with CQE. The many-boson wavefunction is encoded
to qubits by grouping N qubits to represent a single bosonic orbital, where N is the number of bosons in the
system. The total number of required qubits thus scales linearly with the number of both bosons and
orbitals. Despite the simplicity of the encoding, the algorithm makes use of a 2-RDM-like tomography with
complexity up to O(r4) where r is the number of qubits, demonstrating a potential polynomial scaling
advantage over classical methods.

We apply CQE to a system of vibrationally coupled quantum harmonic oscillators. Quantum harmonic
oscillators—each of which is a good approximation to a single molecular vibration—are coupled by a
pairwise potential to account for the coupled vibrational modes. This model can be used to treat coupled
molecular modes when a normal-mode separation could be costly. We report simulation results on both a
quantum simulator and a quantum device. On a noise-free simulator, the CQE results are almost exact,
where the only errors arise from the Trotterized unitary transformation and the small but not infinitesimal
stepsize taken in measuring the residual of ACSE. On NISQ devices, we achieve a very good accuracy in
comparison with full CI results for both ground and excited states. The present work provides an important
step towards the simulation of molecular vibrations on quantum devices. Future work will extend the
present formalism to treat mixed fermion and boson systems. Given that the CSE ansatz is verifiably exact,
we anticipate such systems can also be accurately treated on quantum computers with tools like the CQE.
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