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3.2.1 Review of the Fréchet-Stein structure of the distribution algebra of G 46
3.2.2 Some equivariant sheaves on smooth rigid analytic varieties over K . 49

3.3 G-equivariant D∞-modules on smooth rigid analytic varieties . . . . . . . . . 52
3.3.1 Coadmissible equivariant D∞-Modules on smooth rigid analytic affi-

noid varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



3.3.2 Coadmissible Equivariant D∞-Modules on smooth rigid analytic vari-
eties over K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Beilinson-Bernstein localization of admissible locally analytic representations
of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.1 G = Zp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.2 G = GL2 and Principal series . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



ACKNOWLEDGMENTS

The author is deeply indebted and grateful to her adviser Professor Matthew Emerton, for

his encouragement in finishing this thesis project, for sharing his expertise and insight, for

showing the author many pieces of beautiful mathematics. The author would like to thank

Professor Liang Xiao, Professor Keerthi Madapusi Pera, Professor Matthias Strauch, Lue

Pan and Yiwen Zhou for helpful discussions. The author also would like to thank Valia

Gazaki and Isabel Leal for their sincere friendship and support.

vi



ABSTRACT

In this article, we construct the abelian category of coadmissible p-adic D∞-modules on

a smooth rigid analytic variety over a complete discrete valued field. We also consider

equivariant D∞-modules and prove a p-adic analogue of the Beilinson-Bernstein localization

theorem for admissible locally analytic representations.
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CHAPTER 1

INTRODUCTION

1.1 Notations

Throughout this article, we use the following notations.

Let K be a complete discrete valued field of mixed characteristic, let OK be its ring of

integers, and let πK be an uniformizer. Assume p equals the the characteristic of the residue

field k = OK/(πK), and assume that the p-adic norm | · | on K is normalized so that |p| = 1
p .

Assume α ∈ K such that 0 < |α| < 1.

In Chapter 3, let L ⊆ K be a finite extension of Qp, and OL be its ring of integers. We

will assume that α ∈ L× such that 0 < |α| < 1 and αp−1 ∈ pOL.

If R is a p-adically complete commutative noetherian algebra, then R〈x1, x2, ..., xn〉 is

the p-adic completion of the polynomial ring R[x1, x2, ..., xn], and (R ⊗Z Q)〈x1, x2, ..., xn〉

is (R〈x1, x2, ..., xn〉) ⊗Z Q. The symbol A := B means A is defined to be B. The symbol

n >> 0 (resp. n << 0) means there exists N ∈ Z, such that n > N (resp. n < N).

If A is an algebra with an increasing filtration FnA, then the associated graded algebra is

denoted as grF. A. If A is a sheaf of algebra on a topological space X with an increasing filtra-

tion FnA, then grF. A is the sheaf associated to the presheaf U →
⊕
n

Fn+1A(U)/FnA(U),

where U is an open subset of X. If (X,OX) is a locally ringed space and F is a locally free

sheaf of finite rank, then the symmetric algebra of F over OX is SymOX F . The i-th graded

piece of SymOX F is Symi
OX F .

If X is a scheme over L, then XK := X×Spec(L) Spec(K). If V is a vector space over L,

then VK := V ⊗L K.
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1.2 Main results

In this article, we explore the potential p-adic analogues of the beautiful theory of D-modules

on smooth complex varieties.

In Chapter 2 we define a sheaf of infinite order twisted differential operators A∞T , which

carries a natural Fréchet topology, on a smooth rigid analytic variety X over K. We construct

a category Mcoad(A∞T ) of modules over A∞T with appropriate finiteness properties. The key

result is Proposition 2.3.9, which tells us that a sheaf in Mcoad(A∞T ) satisfies an analogue

of Serre’s theorem of quasi-coherent sheaves on schemes. Then it follows that the category

Mcoad(A∞T ) is abelian. This category is first constructed and studied by Ardakov and

Wadsley in [2] and [3]. In comparison, the approach in this article makes more systematic

use of formal models and techniques from the paper [1]. We also construct a sheaf of

microlocal differential operators E on the cotangent bundle of X whose restriction to the

zero section is the sheaf of differential operators D.

In Chapter 3 we define a category Mcoad
G (A∞T ) of equivariant A∞T -module with appro-

priate finiteness properties and prove that this category is abelian. As an application, we

show in Theorem 3.4.4 that under some technical assumptions, when X is the flag variety of

a reductive algebraic group G over L, and G(L) is the L-rational points of G viewed as a

p-adic Lie group, the category of admissible locally analytic representations of G(L) with a

fixed infinitesimal central character is equivalent to the category of coadmissible equivariant

twisted D∞X -modules, where X is the rigid analytification of X. Similar results are also

obtained by Huyghe, Patel, Schmidt and Strauch in [17]. In comparison, we do not consider

divided power structures because of Lemma 3.2.2, nor do we assume the infinitesimal central

character is trivial.
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CHAPTER 2

D∞-MODULES ON SMOOTH RIGID ANALYTIC VARIETIES

OVER A COMPLETE DISCRETE VALUED FIELD

2.1 Introduction

To motivate the constructions in this article, let us briefly recall some stories of analytic D-

modules on a smooth complex analytic manifold. Suppose X is a smooth complex manifold

and i : Z ↪→ X is a closed analytic subset of codimension d with the sheaf of ideals IZ .

Let DX and DZ be the sheaves of differential operators on X and Z respectively. The

classical Kashiwara’s equivalence says that the subcategory of coherent DX -modules which

are annihilated by a power of IZ is equivalent to the category of coherent DZ -modules, via

the functors

N → i∗(DX←↩Z ⊗DZ N ), if N is a coherent DZ -module,

and

M→ i−1HomDX (DX←↩Z ,M), if M is a coherent DX -module such that Γ[Z](M) 'M,

where by definition Γ[Z](M) = lim−→
k

HomOX (OX/IkZ ,M) for any OX -module M, and

DX←↩Z is the transferring (i−1DX ,DZ)-bimodule ([21] Theorem 4.30). In particular, under

the Kashiwara’s equivalence, the algebraic local cohomology

BZ/X = lim−→
k

ExtdOX (OX/IkZ ,OX) ' i∗(DX←↩Z ⊗DZ OZ)

of Z inX, is a coherentDX -module. However, if we consider the local cohomology RdΓZ(OX),

where ΓZ(M) = {s ∈M | s|X\Z = 0} for any OX -moduleM, and RdΓZ is the d-th derived

functor of ΓZ , this is not coherent over DX anymore. It is demonstrated in Mebkhout’s paper

[24] that there exists a sheaf of infinite order differential operator operator with convergence
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conditions D∞X , such that D∞X ⊗DX BZ/X ' RdΓZ(OX).

The most important feature of a coherent DX -module is the existence of its characteristic

variety, which is a conic closed analytic subset of the cotangent bundle of X, involutive with

respect to the canonical symplectic structure on the cotangent bundle. When the associated

characteristic variety is Lagrangian, we say the coherent DX -module is holonomic. The

Riemann-Hilbert correspondence states that the category of regular holonomic DX -modules

is equivalent to the category of perverse sheaves via the de Rham functor

DRX :M→ RHomDX (OX ,M), if M is a regular holonomic DX -module.

There is no explicit inverse functor to the de Rham functor. However, if we are willing to

consider D∞X -modules, for any holonomic DX -module M, we have (Theorem 3.4.11 in [6]):

D∞X ⊗DXM' RHomCX (SolX(M),OX),

where the solution functor SolX is related to DRX explicitly:

SolX(M) = RHomDX (M,OX) ' DRX(DX(M)),

and

DX(M) = RHomDX (M,DX ⊗OX Ω−1
X )[ dimension of X ]

is the duality functor. Moreover, there exists a unique regular holonomic DX -moduleMreg

such that D∞X ⊗DX Mreg = D∞X ⊗DX M, Mreg contains all the regular holonomic DX -

submodules of D∞X ⊗DXM, and SolX(M) = SolX(Mreg) (Theorem 5.2.22 [6]).

To explore p-adicD-modules, let us first look at a simple case. LetX = Spa(Qp〈x〉,Zp〈x〉)

be the unit disk, let Z = {0} be the origin, and let j : U ↪→ X be the open immersion,

where U = X\{0}. Then the algebraic local cohomology of Z in X is BZ/X ' DX/DXx,

and the local cohomology of Z in X is R1Γ{0}(OX) ' j∗OU/OX . In order to have

4



R1Γ{0}(OX) ' D∞X ⊗DX (DX/DXx), we study the convergent condition of j∗OU/OX

at Z and propose the following definition of a presheaf of infinite order differential operators

D∞X :

D∞X (V ) =

∑
i≥0

ai∂
i
∣∣∣ ai ∈ OX(V ), for any n ∈ N

∥∥∥∥ aipni
∥∥∥∥ −−−→i→∞

0

 ,

where ∂ is the dual to the differential dx, and V ⊆ X is an open affinoid subdomain. We

observe that this definition generalizes easily to any smooth rigid analytic variety.

If X is a smooth rigid analytic variety over K, it is proved in Definition-Lemma 2.4.1

that D∞X is a sheaf of Fréchet-Stein algebra (see Definition 2.2.9). A Fréchet-Stein algebra

is a inverse limit of noetherian Banach algebra with flat transition maps. In [28], Schneider

and Teitelbaum systematically developed a general theory of coadmissible modules over

Fréchet-Stein algebras. Here being codamissible is the analogous condition of being coherent.

In Lemma 2.4.5 we prove that there exists a good definition of coadmissible modules over

sheaves of Fréchet-Stein algebras. For example, when X is the unit disk,M is a coadmissible

D∞X -module, if and only if Γ(X,M) is a coadmissible module over Γ(X,D∞X ) and M(V ) '

D∞X (V )⊗̂Γ(X,D∞X )Γ(X,M) is a coadmissible module over D∞X (V ), for any V ⊆ X open

affinoid subdomain. We also remark that it is proved in [3] that Kashiwara’s equivalence

holds for coadmissible D∞X -modules.

In section 2.5, we give the definitions of p-adic microlocal differential operators EX and

E∞X on the cotangent bundle T ∗X of X.

2.2 Preliminaries

2.2.1 Preliminaries about sheaves on ringed topological spaces

Let (X,OX) be a ringed topological space and let BX be a set of basis for the topology on

X.

A presheaf of OX -modules F on BX is a rule which assigns to each U ∈ BX a OX(U)-
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module F(U), and to each inclusion V ⊆ U of elements of BX a morphism ofOX(U)-modules

ρUV : F(U) → F(V ), such that if W ⊆ V ⊆ U in BX , then ρUW = ρVW ◦ ρ
U
V . A sheaf OX -

modules F on BX is a presheaf of OX -modules on BX such that for any U ∈ BX , any

covering U =
⋃
i∈I

Ui with Ui ∈ BX , and any coverings Ui ∩ Uj =
⋃
k∈Iij

Uijk with Uijk ∈ BX ,

for any collection of sections si ∈ F(Ui) such that si|Uijk = sj |Uijk , there exists a unique

s ∈ F(U) such that si = s|Ui .

There are no distinctions between sheaves of OX -modules and sheaves of OX -modules

on BX because of the following lemma.

Lemma 2.2.1. The natural restriction functor from the category of sheaves of OX -modules

on X to the category of sheaves of OX -modules on BX is an equivalence.

Proof. This is [30] Lemma 30.13.

Convention-Notation 1. Without further specifying, if X is a scheme, we take BX to be the

set of open affine subschemes of X. If X is a formal scheme, we take BX to be the set of

open affine formal subschemes of X. If X is a rigid analytic variety, we take BX to be the

set of open affinoid subdomains of X. By the theorem of Gerritzen-Grauert, every affinoid

subdomain is a finite union of rational subdomains, so equivalently we can take BX to be

rational subsets.

Convention-Notation 2. If U = {Ui}i∈I is an open cover of X, fix a well-ordering of the

index set I. Let C ·(U,F) be the associated Čech complex, where

Cp(U,F) :=
∏

α0<α1<...<αp

F(Uα0 ∩ Uα1 ∩ ... ∩ Uαp)

and the coboundry maps δp : Cp(U,F)→ Cp+1(U,F) are:

(δσ)α0,...,αp+1 :=

p+1∑
j=0

(−1)jσα0,...,αj−1,αj+1,...,αp |Uα0∩Uα1∩...∩Uαp+1
.
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Let Ȟi(U,F) be the i-th cohomology of the complex C ·(U,F).

Lemma 2.2.2. Let (X,OX) be a ringed topological space and BX is a set of basis for the

topology of X such that

1. If U ∈ BX , then U is quasi-compact.

2. If U, V ∈ BX , then U ∩ V is a finite union of elements in BX .

Let Fpre be a presheaf OX -modules on BX equipped with an increasing exhaustive filtration

of presheaves of OX -modules F·F such that FiF = 0 for i << 0. Assume the presheaf

U → grF· (Fpre(U)) is a sheaf on BX . Then

1. Fpre is a sheaf on BX .

2. If X is a quasi-separated noetherian scheme and grF· Fpre is a quasi-coherent OX -

module, then Fpre is a quasi-coherent OX -module.

Proof. Let U ∈ BX and let U ⊆ BX be a finite open cover of U . Suppose Ui∩Uj =
⋃
k∈Iij

Uijk

for finitely many Uijk ∈ BX .

1. To show Fpre is a sheaf on BX , it suffices to check that

0→ Fpre(U)
δ0−→ C0(U,Fpre)

δ1−→
∏
i<j

∏
k∈Iij

Fpre(Uijk)

is an exact sequence of abelian groups, where (δ1σ)ijk = σi|Uijk − σj |Uijk .

This is reduced to checking that

0→ grF· Fpre(U)
δ0−→ C0(U, grF· Fpre)

δ1−→
∏
i<j

∏
k∈Iij

grF· Fpre(Uijk)

is exact.
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2. Let V ⊆ U in BX . It suffices to check that the natural morphism of OX(V )-modules

OX(V )⊗OX(U) Fpre(U)→ Fpre(V ) is an isomorphism, which is reduced to checking

that OX(V )⊗OX(U) grF· Fpre(U)→ grF· Fpre(V ) is an isomorphism.

We summarize the following general results proved by Berthelot from [5] section (3.3):

Theorem 2.2.3. Let X be a locally noetherian formal scheme, and let I ⊆ OX be an ideal

of definition. Suppose D is a sheaf of rings on X, with a homomorphism OX → D such that

the image of I is central in D. Further assume D satisfies the following conditions:

1. D ' lim←−
i
D/IiD, and D/IiD is quasi-coherent as a left OX/IiOX-module.

2. If U ⊆ X is open affine, the ring D(U) is left noetherian.

Let M be a D-module. The following statements are true:

1. If X is affine, the following statements are equivalent :

(a) For all i ∈ Z≥1, the D/IiD-moduleM/IiM is coherent, andM' lim←−
i
M/IiM.

(b) There exists an isomorphism M ' lim←−
i
Mi, where {Mi} is a projective system

of coherent D/IiD-modules, and the transition morphisms induce isomorphisms

Mi+1/IiMi+1 'Mi.

(c) There exists a finite module M over D := Γ(X,D) and an isomorphism

M' lim←−
i

(D/IiD)⊗(D/IiD) (M/IiM),

where I := Γ(X, I) and Γ(X,D/IiD) ' D/IiD.

(d) The D-module Γ(X,M) is finite, and for any U ⊆ X open affine, the homomor-

phism D(U)⊗D Γ(X,M)→M(U) is an isomorphism.

(e) The D-module M is coherent over D.

8



2. If X is noetherian and U1∪U2 is an open cover of X. LetMi be a coherent D|Ui without

p-torsion, where i = 1, 2. Suppose there is an isomorphism ε :M1 ⊗Z Q 'M2 ⊗Z Q

on U1 ∩ U2. Then there exists a coherent D-module M without p-torsion extending

M1, together with an isomorphism M⊗Z Q|U2
'M2 ⊗Z Q extending ε.

We will need the following version of [16] (13.2.4):

Proposition 2.2.4. Let C· = {C ·n}n∈Z be a projective system of complexes of K-Fréchet

spaces such that the differentials are continuous. Assume Hi−1(C ·n) → Hi−1(C ·n−1) is a

continuous morphism between K-Fréchet spaces with dense image. Then

Hi(lim←−n
C ·n) ' lim←−n

Hi(C ·n).

2.2.2 Review of the formal models of a rigid analytic variety over K

We refer to [9] section 9.3 for the definition of a rigid analytic space over K. Huber ([18]

1.1.11) constructed a fully faithful functor r from the category of rigid analytic spaces over

Sp(K) to the category of adic spaces over Spa(K,OK), such that for affinoids r(Sp(A)) =

Spa(A,A◦). In this article, a rigid analytic variety X over K is a quasi-separated reduced

rigid analytic space locally of topologically finite type over K, viewed as an adic space via the

functor r. The notation XTate will be used if we wish to consider only the classical points

in X, and XTate is equipped with the Grothendieck topology generated by finite unions of

rational subdomains. All fibre products are considered within the category of rigid analytic

spaces over K.

A formal scheme X overOK is admissible, if X is locally of topologically finite presentation

over OK and (πK)-torsion free. The special fiber of X, which is denoted as Xk, is a scheme of

finite type over k. In [26] Raynaud constructed a functor rig from the category of admissible

formal schemes over OK to the category of rigid analytic spaces over K which commutes

with fibre products. A formal scheme X over OK is an admissible formal model of the rigid

analytic variety X over K, if X is admissible and rig(X) is isomorphic to X.

9



Recall from [15] section 7.1-7.3 that a prime filter p on XTate (resp. Xk,cl the set of

closed points of Xk) is a collection of admissible open subsets (resp. Zariski open subsets),

such that

1. X ∈ p and ∅ ∈ p.

2. If U1, U2 ∈ p then U1 ∩ U2 ∈ p.

3. If V ∈ p and V ⊆ U then U ∈ p.

4. If U ∈ p and {Ui}i∈I is an admissible open covering (resp. open covering) of U , then

there exists i ∈ I such that Ui ∈ p.

Let P(XTate) be the set of prime filters of XTate. Then P(XTate) is a topological

space with open sets {P(UTate) | UTate is an admissible open in XTate}. By [? ] there is

an isomorphism between topological spaces P(XTate)
'−→ X, that is compatible with open

immersions.

Let P(Xk,cl) be the set of prime filters of X. Then P(Xk,cl) is a topological space with

open sets {P(Uk,cl) | Uk is a Zariski open in Xk }. There is an isomorphism as topological

spaces between Xk
'−→ P(Xk,cl), that sends p ∈ Xk to the prime filter {Uk Zariski open in Xk |

(the closure of p) ∩ Uk 6= ∅}, and is compatible with open immersions.

Proposition 2.2.5. Let X be a quasi-compact rigid analytic variety over K. Suppose

{Ui}i∈I is a finite affinoid open cover of X. Then there exists a quasi-compact admissi-

ble formal model X over OK of X with an open cover {Ui}i∈I such that:

1. Ui is a finite union of open affines.

2. The associated specialization map sp : X → Xk is a continuous surjection between

topological spaces.

3. sp−1(Ui) = Ui, and the inclusions OUi ↪→ sp∗OUi induces the isomorphisms

OUi ⊗Z Q ' sp∗OUi for any i ∈ I.
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Proof. By [26] there exists a quasi-compact admissible formal model X′ of X. By [7] Lemma

4.4, there exists an admissible formal blowing-up X → X′ with an open cover {Ui}i∈I of X

such that Ui is a finite union of open affines, and rig(Ui) ' Ui for any i ∈ I.

We briefly recall the construction of the specialization map using rig-points in [8] 8.3.

If x ∈ X, then there exists an open affine admissible formal subscheme Spf(A) of X such

that rig(Spf(A)) is an open affinoid neighborhood of x. If x ∈ XTate, then x is given by a

maximal ideal m of A⊗OK K. Then p := m ∩A is an non-open prime ideal of A such that

A/p is a local integral domain of dimension 1, and x̄ : A⊗OK k → (A/p)⊗OK k determines a

unique closed point in Xk. Define sp(x) = x̄ and this construction is independent of choices

of Spf(A). By [8] page 200 Proposition 8, we see that sp is surjective from XTate onto Xk,cl.

To extend sp to X, we view a point x ∈ Ui as a prime filter in P(UTatei ), and define

sp(x) to be the prime filter

{V | V is an open subscheme of Ui such that sp−1(V) ∈ x}.

By the proof of [? ] Lemma 3.4 and gluing, we get a continous surjection sp : X → X, such

that if U ⊆ Xk is open affine, then sp−1(U) ' rig(U).

Example 2.2.6. X is an affinoid rigid analytic variety over K.

Assume X ' Spa(A,A◦), where A is a reduced Banach algebra topologically finite type

over K, and A◦ is the OK -subalgebra of A consisting of power-bounded elements. Then X

is quasi-compact. By [9] p.251 Corollary 6, we see that A◦ is topologically of finite type over

OK , and in particular is noetherian. Thus Spf(A◦) is an admissible formal model of X, and

the specialization map coincides with the canonical reduction in [9] 6.3. If X′ → Spf(A◦) and

X′′ → X′ are admissible formal blow-ups, then X′′ → Spf(A◦) is also an admissible formal

blow-up by [8] p.190 Proposition 11. Therefore, given any finite affinoid open cover of X, an

admissible formal model X of X that satisfies Proposition 1 can be obtained by an admissible
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formal blow-up of Spf(A◦). In other words, there exists an open coherent ideal sheaf a of

Spf(A◦), such that X is the formal completion of X̃ along its special fiber, where X̃ is the

blow up of Spec(A◦) along Γ(Spf(A◦), a). Explicitly, assume that {g0, g1, ..., gm} ⊆ A◦ is a

set of generators of Γ(Spf(A◦), a). There is an open affine cover {Ui}i=0,1,...,m of X, where

Ui ' Spf(A◦〈yj ; j 6= i〉/(giyj − gj ; j 6= i) modulo (πK)-torsion ),

We observe that the generic fiber rig(Ui) is a rational subset of X. The global section of

OX is an OK -lattice of A, since A ' Γ(X,OX ⊗Z Q) ' Γ(X,OX) ⊗Z Q. The fact that X̃

is proper over Spec(A◦) implies that Γ(X,OX) is a finite module over A◦. Because A◦ is

integrally closed in A, we conclude that Γ(X,OX) ' A◦.

From the construction, we also see that LX := aOX is an invertible sheaf on X, and Ui is

the locus in X where gi generates LX. If L is the ample invertible sheaf on the blow-up X̃,

then the formal completion of L along the special fiber of X̃ is LX. For any OX-module M

and s ∈ Z, let M(s) be M⊗OX
LsX, and let (s)M be LsX ⊗OX

M. Then M(s) ' (s)M as

OX-modules. By the theorem of formal functions, we know that Hi(X,LX(s)) = 0 for s� 0

and i ≥ 1. Since {LX(s); s ∈ Z} generate the category of coherent sheaves of OX-modules

on X, we see that Hi(X,M(s)) = 0 for a coherent OX-module M, for s� 0 and i ≥ 1.

Remark 2.2.7. A choice of admissible formal model X of X may be viewed as a choice of

integral structure on OX . If U ⊆ X is an open affine formal subscheme, then a presentation

OX(U) ' OK〈x1, x2, ..., xN 〉/I, where I is a finite generated ideal, gives rise to a presentation

of OX(rig(U)). The gauge norm on OX(rig(U)) defined by the OK -lattice OX(U) is the

residue norm associated to the presentation

0→ I ⊗OK K → K〈x1, x2, ..., xN 〉 → OX(rig(U))→ 0.

On the other hand, we have the spectral norm on OX(rig(U)) with respect to which the

unit ball is O◦X(rig(U)). Since the spectral norm is equivalent to all the residue norms by

12



the open mapping theorem [8], we conclude that O◦X(rig(U)) and OX(U) are commensurable

OK -lattices in OX(rig(U)).

Lemma 2.2.8. Let X be an affinoid rigid analytic variety over K. If M is a presheaf on

BX such that sp∗M is a sheaf on BX, for any admissible formal model X of X obtained by

an admissible formal blow-up of Spf(Γ(X,O◦X)). Then M is a sheaf on BX .

Proof. Let U ∈ BX , and let {Ui}i∈I be a finite open cover of affinoid subdomains of U . By

Proposition 2.2.5 there exists an admissible formal model X of X obtained by an admissible

formal blow-up of Spf(Γ(X,O◦X)), such that there is an open cover {U,Ui}i∈I of X with

sp−1(Ui) = Ui and sp−1(U) = U . Then the conclusion follows from the assumption that

sp∗M is a sheaf on BX for X.

2.2.3 Coadmissible modules over sheaves of Frechet-Stein algebras on

admissible formal models

We refer to [28] for the properties of the category of coadmissible modules over Fréchet-Stein

algebras.

Definition 2.2.9. Let X be a ringed space such that the structure sheaf OX is a K-algebra,

and let BX be a basis for the topology of X. A sheaf of OX -algebra D is a sheaf of Fréchet-

Stein algebras on BX if there exists a projective system of OX -algebras {Dn}n∈N, and an

isomorphism D ' lim←−n
Dn of OX -algebras such that

1. Dn is a coherent sheaf of rings.

2. If U ∈ BX , then Dn(U) is a left and right noetherian K-Banach algebra, and the

transition morphisms Dn(U)→ Dn+1(U) are flat and continuous.

3. If U, V ∈ BX and V ⊆ U , then the restriction morphisms Dn(U)→ Dn(V ) is continu-

ous.
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Lemma 2.2.10. Let f : D → B be a morphism between Fréchet-Stein algebras, and let M

be a coadmissible module over D. Assume the isomorphisms D ' lim←−n
Dn and B ' lim←−n

Bn

realize the the Fréchet-Stein structures of D and B, such that f factors through Dn → Bn

for each n ∈ N. Then the isomorphism

B⊗̂DM ' lim←−n
Bn ⊗Dn Mn,

where Mn = Dn ⊗D M , realizes B⊗̂DM as a coadmissible module over B.

Proof. Let kern be the kernel of the surjection Bn⊗̂KMn � Bn⊗DnMn, so kern is the the

closure of the K-linear span of the set {ba ⊗ m − b ⊗ am | b ∈ Bn, a ∈ Dn,m ∈ Mn} in

Bn⊗̂KMn.

Let ker be the kernel of the surjection B⊗̂KM � B⊗̂DM , so ker is the closure of the

K-linear span of the set {ba⊗m− b⊗ am | b ∈ B, a ∈ D,m ∈M} in B⊗̂KM .

Next, consider the exact sequence

0→ lim←−n
kern → lim←−n

Bn⊗̂KMn → lim←−n
Bn ⊗Dn Mn → R1 lim←−n

kern.

We know that B⊗̂KM ' lim←−n
Bn⊗̂KMn. Since B → Bn, D → Dn and M → Mn have

dense image, we see that ker → kern also has dense image. Therefore ker ' lim←−n
kern and

R1 lim←−n
kern = 0. The desired isomorphism follows.

Since Mn is a finite module over Dn, we see that Bn ⊗Dn Mn is finite module over Bn.

Moreover, Bn ⊗Dn Mn ' Bn ⊗Dn (Dn ⊗Dn+1
Mn+1) ' Bn ⊗Bn+1

(Bn+1 ⊗Dn+1
Mn+1).

Lemma 2.2.11. Suppose D ' lim←−n
Dn is a sheaf of Fréchet-Stein algebras on BX , and the

isomorphism D := Γ(X,D) ' lim←−n
Γ(X,Dn) realizes Γ(X,Dn) as a Fréchet-Stein algebra. If

M is a coadmissible module over D, then for U ∈ BX , Lemma 2.2.10 implies that M̃(U) :=

D(U)⊗̂DM is a coadmissible module over D(U). In this way we get a presheaf M̃ on BX .
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If the functors Γ(X,−) and Dn ⊗Γ(X,Dn) − induce an equivalence between the category of

coherent Dn-modules and the category of coherent Γ(X,Dn)-modules, then

1. Mn := Dn ⊗Γ(X,D) M is a coherent Dn-module.

2. M̃ ' lim←−n
Mn. In particular M̃ is a sheaf on BX .

Proof. By [28] Corollary 3.1, we see that Mn := Γ(X,Dn) ⊗Γ(X,D) M is a finite generated

module over Γ(X,Dn), so Mn ' Dn ⊗Γ(X,Dn) Mn is a coherent Dn-module.

For any U ∈ BX , we haveMn(U) ' Dn(U)⊗Γ(X,Dn)Mn. Therefore M̃(U) ' lim←−n
Mn(U).

Lemma 2.2.12. Let X be an admissible formal model of a rigid analytic variety X over K.

Let D ' lim←−n
Dn be a sheaf of Fréchet-Stein algebras on BX, such that

1. Dn := Γ(X,Dn) is a left and right noetherian K-Banach algebra for n ∈ N, and the

isomorphism D := Γ(X,D) ' lim←−n
Dn realizes D as a Fréchet-Stein algebra.

2. If U ∈ BX, the restriction morphism Dn → Dn(U) is continuous for n ∈ N.

Assume that the functors Γ(X,−) and Dn⊗Dn− induce an equivalence between the category

of coherent Dn-modules and the category of coherent Dn-modules. If there exists a finite open

affine cover {Ui}i∈I of X and coadmissible modules M i over D(Ui) such that M|Ui ' M̃ i.

Then

1. Γ(X,M) is a coadmissible module over D, andM' ˜Γ(X,M) (defined in Lemma 2.2.11).

2. Hi(X,M) = 0 for i ≥ 1.

Proof. Denote Mn := Dn ⊗DM and Mn := Γ(X,Mn).

1. We know that M i ' lim←−n
M i
n where M i

n = Dn(Ui)⊗D(Ui)
M i. Since

Mn|Ui ' Dn|Ui ⊗D|Ui M̃
i ' Dn|Ui ⊗Dn(Ui)

M i
n,

15



we see that Mn is a coherent module over Dn. It follows that Mn := Γ(X,Mn) is a

finite module over Γ(X,Dn). Since

Mn ' Dn ⊗Dn+1
Mn+1 ' Dn ⊗Dn+1

Mn+1

' Dn ⊗Dn (Dn ⊗Dn+1
Mn+1),

we see that Mn ' Dn ⊗Dn+1
Mn+1. Since M|Ui ' lim←−n

Mn|Ui , the natural morphism

M→ lim←−n
Mn is an isomorphism. Thus Γ(X,M) ' lim←−n

Mn is a coadmissible module

over D, and M' ˜Γ(X,M).

2. Consider the C̆ech complex of Mn associated to a finite refinement {Vj}j∈J of the

cover {Ui}i∈I . Then {
C ·({Vj}j∈J ,Mn)

}
n∈N

is a projective system of K-Fréchet spaces with continuous differentials. By [28] The-

orem A, we see that

Ȟ0({Vj}j∈J ,Mn+1)→ Ȟ0({Vj}j∈J ,Mn)

has dense image. Therefore, Proposition 2.2.4 implies the isomorphism

Ȟ1({Vj}j∈J ,M) ' lim←−n
Ȟ1({Vj}j∈J ,Mn) = 0.

Hence for i > 1 we can apply Proposition 2.2.4 again to conclude that

Ȟi({Vj}j∈J ,M) ' lim←−n
Ȟi({Vj}j∈J ,Mn) = 0.

Thus Hi(X,M) = 0 for i ≥ 1.
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2.2.4 Review of smooth and étale morphisms of adic spaces

We first recall from [18] 1.6 and 1.7 some properties of smooth and étale morphisms of rigid

analytic varieties.

Proposition 2.2.13. Let X
f−→ Y be a smooth morphism between rigid analytic varieties

over K. Then the following statements are true:

1. The relative sheaf of differentials Ω1
X/Y

is a locally free coherent OX -module.

2. If Y ' Spa(B,B◦) is an affinoid, then for any x ∈ X, there exists an open affinoid

neighborhood U of x such that:

(a) Ω1
X/Y
|U is free.

(b) There exists an étale morphism U
g−→ Spa(B〈x1, x2, ..., xd〉, C+) such that f |U =

h ◦ g, where C+ is the integral closure of B◦〈x1, x2, ..., xd〉) in B〈x1, x2, ..., xd〉,

and Spa(B〈x1, x2, ..., xd〉, C+)
h−→ Spa(B,B◦) is the natural projection.

3. If X ' Spa(A,A◦) and Y ' Spa(B,B◦) are affinoids, then f is étale if and only if

there exists a presentation of X as A ' B〈x1, x2, ..., xN 〉/(f1, f2, ..., fN ), such that

fi ∈ B〈x1, x2, ..., xN 〉 and the determinant of the Jacobian matrix (
∂fi
∂xj

) is invertible

in A.

Convention-Notation 3. A rigid analytic variety X over K is smooth if the morphism X →

Spa(K,K◦) is smooth. By Proposition 2.2.13 we know that for any x ∈ X, there exists an

open affinoid neighborhood U of x, such that Ω1
X |U is free and there exists an étale morphism

U → Spa(K〈x1, x2, ..., xd〉, K◦〈x1, x2, ..., xd〉).

We shall call {x1, x2, ..., xd} a system of local coordinates around x on X.
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Remark 2.2.14. Let TX := HomOX (Ω1
X ,OX) be the tangent sheaf of X. If X is smooth over

K, a choice of local coordinates for X gives rise to a set of generators {ξ1, ξ2, ..., ξd} ⊆ TX(U)

of TX |U as a free OX |U -module, where ξi is dual to dxi.

If U is an admissible formal model of U over OK , and let TU := HomOU
(ΩU,OU) be the

tangent sheaf of U. It follows from Proposition 2.2.5 that the natural morphism Ω1
U⊗ZQ

'−→

sp∗Ω1
U is an isomorphism, which induces the isomorphism TU ⊗Z Q ' sp∗TU . Since OU

is (πK)-torsion free, there is an inclusion TU ↪→ TU ⊗Z Q. Thus, we get the isomorphisms

Γ(U, TU)⊗Z Q ' Γ(U, TU ⊗Z Q) ' TX(U).

Based on the definitions of a smooth Lie algebroid and the associated twisted differential

algebras on schemes given in [4] and [20], we define the following:

Definition 2.2.15. A smooth Lie algebroid T on a smooth rigid analytic variety X is a

locally free coherent OX -module with a morphism of OX -modules σ : T → TX and a

K-linear pairing [·, ·] : T ⊗K T → T such that

1. [·, ·] is a Lie algebra bracket and σ commutes with the brackets.

2. For l1, l2 ∈ T and f ∈ OX , one has [l1, f l2] = f [l1, l2] + σ(l1)(f)l2.

Definition 2.2.16. A twisted sheaf of differential algebras AT associated to a smooth Lie

algebroid T is a sheaf of algebras equipped with a morphism between sheaves of algebras

i : OX → AT , and an increasing filtration F·AT of OX -modules such that

1. AT =
⋃
n

FnAT and Fn = 0 if n < 0.

2. i induces an isomorphism OX
'−→ F0AT of OX -modules.

3. Fm1AT · Fm2AT ⊆ Fm1+m2AT , for m1,m2 ∈ N.

4. [Fm1AT , Fm2AT ] ⊆ Fm1+m2−1AT , for m1,m2 ∈ N, where the bracket is the commu-

tator.
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5. There is an isomorphism of Lie algebroids: grF1 AT ' T .

6. The natural morphism SymOX (T ) → grF· (AT ) is an isomorphism of sheaves of OX -

algebras.

A morphism between twisted sheaves of differential algebras AT and A′T which are

associated to a smooth Lie algebroid T is a morphism AT → A′T of sheaves of filtered

OX -algebras.

Lemma 2.2.17. If T is a smooth Lie algebroid on X, there exists a twisted sheaf of differ-

ential algebras U(T ), which is called the universal enveloping algebra of T , such that

1. There is a morphism T iT−→ F1U(T ) that splits the exact sequence of OX -modules

0→ OX
i−→ F1U(T )→ T → 0.

2. If f ∈ OX and ξ, µ ∈ T , then [iT (ξ), i(f)] = i(σ(ξ)(f)) and [iT (ξ), iT (µ)] = iT ([ξ, µ]).

Proof. We first recall some constructions from [25]. Define F0(U(T )) := OX and F1(U(T )) :=

OX ⊕T , and i : OX → F1(U(T )) is the natural inclusion. For U ∈ BX , the OX(U)-module

F1(U(T ))(U) is a Lie algebra over K with the Lie bracket [r+α, s+µ] = σ(α)(s)−σ(µ)(r)+

[α, µ] for r, s ∈ OX(U) and α, µ ∈ T (U). Let U+(OX(U), T (U)) be subalgebra of the uni-

versal enveloping algebra of F1(U(T ))(U) generated by the image of F1(U(T ))(U). Let

V (OX(U), T (U)) be the quotient of U+(OX(U), T (U)) by the two-sided ideal generated by

{r · z − ı(rz) | r ∈ OX(U), z ∈ F1(U(T ))(U)} ,

where r · z denotes the multiplication in U+(OX(U), T (U)) and

ı : F1(U(T ))(U)→ U+(OX(U), T (U))
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is the canonical inclusion. Let iT be the composition of morphisms

T (U) ↪→ F1(U(T ))(U)
ı−→ U+(OX(U), T (U))� V (OX(U), T (U)).

For s ∈ Z>0, let Vs(OX(U), T (U)) be the left OX(U)-submodule of V (OX(U), T (U)) gen-

erated by OX(U) and at most s elements of the image of T (U) in V (OX(U), T (U)), and

define V0(OX(U), T (U)) := OX(U). By [25] section 2 and Theorem 3.1, we know that

F1(U(T ))(U)→ V (OX(U), T (U)) induces an isomorphism

F1(U(T ))(U)
'−→ V1(OX(U), T (U)),

and moreover,

SymOX(U)(T (U))→
⊕
s∈N

Vs(OX(U), T (U))/Vs−1(OX(U), T (U))

is an isomorphism as graded OX(U)-algebras.

It follows that we can define a presheaf U(T ) such that U(T )(U) := V (OX(U), T (U))

for U ∈ BX , and an increasing exhaustive filtration FiU(T )pre such that FiU(T )pre(U) :=

Vi(OX(U), T (U)) for U ∈ BX . Since SymOXT ' grF· U(T ) as presheaves of OX -modules,

by Lemma 2.2.2 and Lemma 2.2.1, we see that U(T ) is a sheaf on X. Let FiU(T ) be the

sheafification of FiU(T )pre, and we see that U(T ) is a twisted sheaf of differential algebras

that satisfies (1) and (2).

Example 2.2.18.

1. If X
f−→ Y is a smooth morphism between smooth rigid analytic varieties over K, then

the relative tangent sheaf TX/Y := HomOX (Ω1
X/Y

,OX) is a smooth Lie algebroid on

X. If U ⊆ X and V ⊆ Y are open affinoids such that f(U) ⊆ V , then TX/Y (U) is the

set of continuous OY (V )-derivations from OX(U) to OX(U), so TX/Y carries a Lie
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bracket. Moreover, the exact sequence of OX -modules

0→ f∗Ω1
Y → Ω1

X → Ω1
X/Y → 0

implies that there is a morphism of OX -modules TX/Y
σ−→ TX which preserves the Lie

brackets.

2. If X is a smooth rigid analytic variety over K, then the tangent sheaf TX is a smooth

Lie algebroid and U(TX) is the sheaf of finite order differential operators on X, which

will be denoted by DX .

2.3 D∞-modules on smooth affinoid rigid analytic varieties over

K

In section 2.3, we assume that X ' Spa(A,A◦) is an affinoid rigid analytic variety over

K and T is a smooth Lie algebroid on X such that T is a free OX -module. Let X be an

admissible formal model of X obtained by an admissible formal blow-up of Spf(A◦), with

sp : X → X defined in Proposition 2.2.5. Let AT be a twisted sheaf of differential algebras

associated to T .

2.3.1 The Fréchet completion of the twisted sheaf of differential algebra on

smooth affinoid rigid analytic varieties over K

In this subsection we define a completion of AT which has the structure of a sheaf of Fréchet-

Stein algebra on BX (see Definition 2.2.9).

There exists {ξ1, ξ2, ...ξd} ⊆ Γ(X, T ) such that ξi generates T as a free OX -module. For

n ∈ N, let Tn be the free OX-submodule of sp∗T generated by {αnξ1, αnξ2, ...αnξd}. By the

discussion in Remark 2.2.14, we see that there exists N > 0 such that for n > N :

1. [Tn,Tn] ⊆ Tn.
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2. σ(ξi) ∈ Γ(X, TX) ⊆ Γ(X, TX).

By Definition 2.2.16 we have the exact sequence of OX -modules:

0→ OX
i0−→ F1(AT )

q1−→ T → 0

Let ξ̃i ∈ F1(AT ) such that q1(ξ̃i) = ξi. Let F1(ATn,X) be the sheaf associated to the presheaf

F1(ATn,X)pre on X, where F1(ATn,X)pre(U) is the OX(U)-submodule of F1(AT )(sp−1U)

generated by i0(OX(U)) and αnξ̃i, for U ∈ BX. It follows from the construction that we have

the following exact sequences of OX-modules:

0→ OX → F1(ATn,X)→ Tn → 0.

By the structure theorem of coherent OX-modules, if U is an open affine formal subscheme

of X, then F1(ATn,X)pre|U ' F1(ATn,X)|U is a sheaf.

Let ATn,X be the sheaf on X associated to the presheaf

Apre
Tn,X

(U) := the subalgebra of AT (sp−1(U)) generated by F1(ATn,X)(U),

for U ∈ BX. Let us define an increasing exhaustive filtration on ATn,X inductively. Let

Fi(ATn,X) be sheaf associated to the presheaf

Fi(ATn,X)pre(U) := F1(ATn,X)pre(U) · Fi−1(ATn,X)pre(U)

for U ∈ BX and i ∈ Z>0, and let F0(ATn,X) := OX. It follows from the construction that

Fi(ATn,X) · Fj(ATn,X) ⊆ Fi+j(ATn,X), and [Fi(ATn,X)), Fj(ATn,X)] ⊆ Fi+j−1(ATn,X),

so grF. (UX(Tn) is a commutative OX-ring. Therefore, in addition to the isomorphism
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grF1 (ATn,X)
'−→ Tn, we have a surjective morphism of graded OX-rings:

SymOX
(Tn)→ grF. (ATn,X).

Since grFi (ATn,X)) is flat over OK , the isomorphism Symi
OX (T )

'−→ grFi (AT ) implies

that Symi
OX

(Tn) → grFi (ATn,X) is injective. Therefore SymOX
(Tn) → grF (ATn,X) is an

isomorphism.

Lemma 2.3.1. Let ÂTn,X be the p-adic completion of ATn,X, and ÂTn,X,Q := ÂTn,X⊗Z Q.

Then the following statements are true:

1. ATn,X and ÂTn,X are left (resp. right) coherent sheaves of rings.

2. ÂTn,X,Q is a left (resp. right) coherent sheaf of left (resp. right) noetherian Banach

algebra. i.e. ÂTn,X,Q is a left (resp. right) coherent sheaf of rings, and if U ⊆ X is

open affine, then ÂTn,X,Q(U) is a left (resp. right) noetherian Banach algebra.

3. Γ(X, ÂTn,X,Q) is a left (resp. right) noetherian Banach algebra.

Proof. Since grF· ATn,X ' OX[αnξ1, α
nξ2, ..., α

nξd], by Lemma 2.2.2, we see that ATn,X is a

quasi-coherent sheaf of OX-module, in the sense that ATn,X/(π
i
K) is a quasi-coherent sheaf

of (OX/(π
i
K))-module, for any i ∈ Z≥1. By [28] Proposition 1.2, we also see that ATn,X(U) is

left (resp. right) noetherian. By [5] 3.2.3, the p-adic completion ÂTn,X(U) is left (resp. right)

noetherian. It follows that the algebra ÂTn,X,Q(U) is left (resp. right) noetherian. Also, since

ÂTn,X,Q(U) ' ÂTn,X(U)⊗OK K, we may endow ÂTn,X,Q(U) an K-Banach space structure

with the gauge norm define by the lattice ÂTn,X(U). The continuity of the multiplication

follows from the definition.

To show that ATn,X, ÂTn,X and ÂTn,X,Q are left (resp. right) coherent sheaf of rings,

it suffices to show that if U1 ⊆ U2 are open affine formal subschemes of X, the restriction

morphisms from U2 to U1 are flat. First observe that ATn,X(U2)→ ATn,X(U1) is flat, since
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grF· ATn,X(U2)→ grF· ATn,X(U1) is flat. By [5] 3.2.3, the morphism ÂTn,X(U2)→ ÂTn,X(U1)

is flat. It follows that ÂTn,X,Q(U2)→ ÂTn,X,Q(U1) is flat.

Since Γ(X,OX) ' A◦ by Example 2.2.6, we see that Γ(X, grF· ATn,X) ' A◦[αnξ1, αnξ2, ..., αnξd].

Therefore Γ(X,ATn,X) is left (resp. right) noetherian, and Γ(X, ÂTn,X,Q) is a left (resp.

right) noetherian Banach algebra.

Definition-Lemma 2.3.2. Consider the projective system of sheaves
{
ÂTn,X,Q

}
n∈N

with

transition maps induced by the natural inclusions. Define a sheaf of OX-algebra A∞T ,X on X

to be lim←−n
ÂTn,X,Q. Then

1. The definition of A∞T ,X is independent of the trivializations of sp∗T .

2. The admissible blow-up X→ Spf(A◦) induces an isomorphism

Γ(Spf(A◦),A∞T ,Spf(A◦))
'−→ Γ(X,A∞T ,X).

Proof. If T′ is another OX-submodule of sp∗T such that T′ ⊗Z Q ' sp∗T , then for n >>

0, there exists N ∈ N such that α−NF1ATn,X ⊆ F1AT′n,X
⊆ αNF1ATn,X, which in-

duces ATn−N ,X ⊆ AT′n,X
⊆ ATn+N ,X. Therefore, we get an isomorphism lim←−n

ÂT′n,X,Q '

lim←−n
ÂTn,X,Q.

(2) follows from Lemma 2.3.1.

Definition-Lemma 2.3.3. If U ⊂ X is an affinoid, define

A∞T ,X(U) := Γ(Spf(O◦X(U)),A∞T ,Spf(O◦X(U))).

Then A∞T ,X is a presheaf of OX -algebras.

Proof. If U1 ⊆ U2 are open affinoids in X, for n sufficiently large, we may assume that

αnξi ∈ Γ(Spf(O◦X(Uj)), TSpf(O◦X(Uj))
), for i = 1, 2, ..., d and j = 1, 2. Let Tj be the free
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OSpf(O◦X(Uj))
-submodule of spj∗(T ) generated by ξi for i = 1, 2, ..., d, where spj : X →

Spf(O◦X(Uj) is the specialization map as in Proposition 2.2.5 and j = 1, 2. For n sufficiently

large, the homomorphism

Γ(Spf(O◦X(U2)), ÂT2,n,Spf(O◦X(U2)),Q)→ Γ(Spf(O◦X(U1)), ÂT1,n,Spf(O◦X(U1)),Q)

induces the restriction morphism

Γ(Spf(O◦X(U2)),A∞T ,Spf(O◦X(U2)))→ Γ(Spf(O◦X(U1)),A∞T ,Spf(O◦X(U1))).

The restriction morphism is independent of the trivializations of T .

Lemma 2.3.4.

1. There is an isomorphism A∞T ,X
'−→ sp∗A∞T ,X as presheaves of OX-algebras on BX, and

in particular A∞T is a sheaf by Lemma 2.2.8.

2. There is an inclusion of sheaves of OX -algebras AT → A∞T with dense image.

3. A morphism AT → A′T of twisted sheaf of differential algebras associated to T extends

uniquely to a continuous homomorphism between sheaves of OX -algebras A∞T → A
′∞
T .

4. A∞T is a sheaf of Fréchet-Stein algebra on BX .

Proof. For U ∈ BX , let spU : U → Spf(O◦X(U)) be the specialization map described in

Proposition 2.2.5. A choice of trivialization {ξi}i=1,2,...,d of T induces an isomorphism

A∞T ,X ' lim←−n
ÂTn,X,Q. Let T′n be the OSpf(O◦X(U))-submodule of spU∗(T |U ) generated by

αnξi for i = 1, 2, ..., d.

1. The natural inclusion of sheaves of algebrasOX ↪→ sp∗OX factors through the inclusion

sp∗O◦X ↪→ sp∗OX . For U ∈ BX, let U := sp−1(U). For n >> 0, from Lemma 2.3.1 we
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see that ATn,X(U) ↪→ Γ(Spf(O◦X(U)),AT′n,Spf(O◦X(U))) are commensurable lattices in

AT (U), and therefore induce an isomorphism A∞T ,X(U)→ A∞T (U).

2. For n >> 0, we see that ATn,Spf(O◦X(U)) ↪→ spU∗(AT |U ) induces an isomorphism

AT′n,Spf(O◦X(U))⊗ZQ
'−→ spU∗(AT |U ). Hence we have spU∗(AT |U ) ↪→ ÂT′n,Spf(O◦X(U)),Q,

and spU∗(AT |U ) ↪→ lim←−n
ÂT′n,Spf(O◦X(U)),Q. Evaluating on U we get AT (U) ↪→ A∞T (U)

which gives us an inclusion of sheaves of OX -algebras AT ↪→ A∞T with dense image.

3. There existsN,M ∈ N, such that for n > N , we haveAT′n+M ,Spf(O◦X(U)) → A′T′n,Spf(O◦X(U))
,

such that the following diagram commutes:

AT′n+M ,Spf(O◦X(U)) ⊗Z Q −−−→ A′
T′n,Spf(O◦X(U))

⊗Z Qy' y'
spU∗(AT |U ) −−−→ spU∗(A′T |U )

Therefore we get a continuous morphism of OX(U)-algebras A∞T (U) → A′∞T (U) that

extends AT (U)→ A′T (U).

4. We will show that the isomorphism

A∞T (U) ' lim←−n
Γ(Spf(O◦X(U)), ÂT′n,Spf(O◦X(U)),Q)

realizes A∞T (U)-as a Fréchet-Stein algebra. By Lemma 2.3.1 we know

Γ(Spf(O◦X(U)), ÂT′n,Spf(O◦X(U)),Q)

is a noetherian K-Banach algebra. We will apply [14] Proposition 5.3.10 to show that

the transition morphism

Γ(Spf(O◦X(U)), ÂT′n+1,Spf(O◦X(U)),Q)→ Γ(Spf(O◦X(U)), ÂT′n,Spf(O◦X(U)),Q)
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is flat. Let G. be the filtration on Γ(Spf(O◦X(U)),AT′n,Spf(O◦X(U))) defined as

Gi := Γ(Spf(O◦X(U)),AT′n+1,Spf(O◦X(U))) · Γ(Spf(O◦X(U)), FiAT′n,Spf(O◦X(U))).

Then G0 = Γ(Spf(O◦X(U)),AT′n+1,Spf(O◦X(U))). To show that Gi ·Gj ⊆ Gi+j , it suffices

to check that

Γ(Spf(O◦X(U)), FiAT′n,Spf(O◦X(U))) · Γ(Spf(O◦X(U)),AT′n+1,Spf(O◦X(U))) ⊆

Γ(Spf(O◦X(U)),AT′n+1,Spf(O◦X(U))) · Γ(Spf(O◦X(U)), FiAT′n,Spf(O◦X(U))).

Fix a multi-index I := (ν1, ν2, ..., νd) ∈ Nd and |I| :=
d∑
i=1

νi. Let ∂Ix :=
d∏
i=1

ξ̃νii . By

induction on i, it suffices to check that if f = aIα
n|I|∂Ix where aI ∈ O◦X(U), and

g = aJα
(n+1)|J |∂Jx , then

fg ∈ Γ(Spf(O◦X(U)),AT′n+1,Spf(O◦X(U))) · Γ(Spf(O◦X(U)), F|I|AT′n,Spf(O◦X(U))).

Since

fg = aIaJα
(n+1)|J |+n|I|∂Ix∂

J
x + aI [∂

J
x , aJ ]α(n+1)|J |+n|I|∂Ix,

and [∂Jx , aJ ] has order less than |J |, the conclusion follows. Finally, observe that

grG. Γ(Spf(O◦X(U)),ATn,Spf(O◦X(U))) is an algebra over Γ(Spf(O◦X(U)),ATn+1,Spf(O◦X(U)))

generated by the central elements
{
αnξ̃i

}
i=1,2,...,d

.

Remark 2.3.5. The proofs of Lemma 2.3.4 and Lemma 2.3.1 also imply that the isomorphism

Γ(X,A∞T ) ' lim←−n
Γ(X, ÂTn,X,Q) realizes Γ(X,Γ(X,A∞T )) as a Fréchet-Stein algebra.

Example 2.3.6. If T = TX and AT = DX , we will use D∞X to represent A∞T .

Let us choose a system of local coordinates x := {x1, x2, ..., xd} on X, which gives rise to
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a set of sections { ∂

∂x1
,
∂

∂x2
, ...,

∂

∂xd
} ⊆ Γ(X, TX) that trivializes TX as a free OX -module.

Since the derivations
∂

∂xi
are continous, replacing

∂

∂xi
by αN

∂

∂xi
for sufficiently large N ,

we may assume that
∂

∂xi
(O◦X(U)) ⊆ O◦X(U) for 1 ≤ i ≤ d. Recall that for a multi-index

I = (ν1, ν2, ..., νd) ∈ Nd, we have |I| =
d∑
i=1

νi and ∂Ix =
d∏
i=1

∂νi

∂xνii
. As a OX(U)-module, we

have the following description of D∞X (U):

D∞X (U) '

{∑
I

aI∂
I
x

∣∣∣ aI ∈ OX(U), for any n ∈ N
∥∥∥∥ aI

αn|I|

∥∥∥∥
U
−−−−→
|I|→∞

0

}
,

where ‖ ‖U is the spectral norm on U . Note that this identification is compatible with

the restriction morphisms, and it is straightforward to check that D∞X is a sheaf by the

maximum principle. If we choose another system of local coordinates z = {z1, z2, ..., zd}

on U . Then
∂

∂xi
=

d∑
j=1

∂zj
∂xi

∂

∂zj
, where the Jacobian matrix (

∂zj
∂xi

) ∈ Md×d(OX(U)) is

invertible. The convergent condition ensures the definition D∞X is independent of the choice

of local coordinates.

2.3.2 Coadmissible modules over A∞T on affinoid rigid analytic varieties

over K

In this subsection, we define the category of coadmissible modules over the sheaf of Fréchet-

Stein algebraA∞T on BX , and prove an analogue of Serre’s theorem on quasi-coherent sheaves

for such coadmissible modules.

Lemma 2.3.7. We continue to use the notations introduced in section 2.3.1.

1. Let M0 be a coherent left ÂTn,X-module. If U ∈ BX , then M0(U) is a p-adically

complete coherent left ÂTn,X(U)-module. Moreover, if V ⊆ U is open affine, then
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M0(V) is isomorphic to

ÂTn,X(V)⊗ÂTn,X(U)
M0(U),

which is also isomorphic to

lim←−
i
ATn,X(V)⊗ATn,X(U) (M0(U)/πiKM0(U)).

In particular, we see that

M0 ' lim←−
i
M0/π

i
KM0.

2. If M is a coherent left ÂTn,X,Q-module, then there exists a (πK)-torsion free coherent

left ÂTn,X-module M0 such that M'M0 ⊗Z Q.

Proof.

1. This immediately follows from Theorem 2.2.3.

2. Consider a finite open affine cover {Ui}i=1,2,...,N of X. There exists a coherent ÂTn,X|Ui-

module Mi such that Mi ⊗Z Q ' M|Ui , for i = 1, 2, ..., N . We may assume Mi is

(πK)-torsion free since the π
j
K -torsion subsheaf Mi [π

j
K ] of Mi is ÂTn,X|Ui-coherent.

By Theorem 2.2.3 we conclude that there exists a coherent ÂTn,X-moduleM0 without

(πK)-torsion, such that M'M0 ⊗Z Q.

Lemma 2.3.8. ÂTn,X,Q has vanishing higher cohomology groups.

Proof. The set
{

(αnξ̃1)n1(αnξ̃2)n2 ...(αnξ̃d)
nd | (n1, n2, ..., nd) ∈ Nd

}
forms a basis of ATn,X

as a free OX-module. As sheaves of OX ⊗Z Q-modules, we get an isomorphism

ÂTn,X,Q ' (OX ⊗Z Q)〈αnξ1, αnξ2, ..., αnξd〉.
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Let pr : X ×K B(|αn|)d → X be the natural projection, where

B(|αn|)d := Spa(K〈αnξ1, αnξ2, ..., αnξd〉, K◦〈αnξ1, αnξ2, ..., αnξd〉)

is the rigid analytic closed ball of radius 1
|αn| . Then as sp∗OX -modules, we have an isomor-

phism

ÂTn,X,Q ' sp∗pr∗OX×KB(|αn|)d .

Since X ×K B(|α|)d ' Spa(A⊗̂KK〈αnξ1, αnξ2, ..., αnξd〉) is an affinoid, we know that the

higher cohomology groups of OX×KB(|α|)d vanish. Since the C̆ech complex of ÂTn,X,Q asso-

ciated to an open affine cover {Ui} could be identified with the C̆ech complex of OX×KB(|α|)d

associated with the affinoid cover {rig(Ui) ×K B(|α|)d}, the higher cohomology groups of

ÂTn,X,Q vanish.

Proposition 2.3.9. A coherent ÂTn,X,Q-module M has trival higher cohomology groups,

and is generated by global sections. Therefore, we haveM' ÂTn,X,Q⊗Γ(X,ÂTn,X,Q)
Γ(X,M),

where Γ(X,M) is finitely generated over Γ(X, ÂTn,X,Q) .

Proof. The arguments are inspired by [1], and we use the notations introduced in Exam-

ple 2.2.6.

Step1. We show that
{
ÂTn,X(s); s ∈ Z

}
generate the category of coherent ÂTn,X(s)-

modules.

LetM0 be a (πK)-torsion free coherent ÂTn,X-module, and let mk beM0/π
k
KM0. Thus

m1 is a coherent module over ÂTn,X/πKÂTn,X ' ATn,X/πKATn,X, and is quasi-coherent as

a (OX/(πK))-module. Since m1 is the direct limit of its coherent (OX/(πK))-submodules, we

can find a coherent (OX/(πK))-submodule F of m1, such that there is a surjective morphism

φ : ATn,X ⊗OX
F � m1. The filtration F·ATn,X induces a filtration on ATn,X/πKATn,X,

such that

grF·(ATn,X/πKATn,X) ' (OX/(πK))[αnξ1, α
nξ2, ..., α

nξd].
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Define a filtration on m1 by letting Fi(m1) be Fi(ATn,X) ·F . The associated graded sheaf

grF·(m1) is a coherent grF·(ATn,X/πKATn,X)-module. Thus grF·(m1) can be viewed as a

coherent O
X̃
⊗A◦ A◦[αnξ1, αnξ2, ..., αnξd]-module on the scheme X̃. In addition, we have

that (s)(grF·m1) ' Ls ⊗O
X̃

grF·m1 as O
X̃

-modules on X̃. Consider the following digram of

schemes over Spec(A◦):

X̃ ×Spec(A◦) Ad
p2−−−→ Ad

p1

y y
X̃ −−−→ Spec(A◦),

where Ad := Spec(A◦[αnξ1, αnξ2, ..., αnξd]). There exists a coherent O
X̃×Ad-module n1,

such that p1∗n1 ' grF·m1. Since p1
∗L is ample relative to p2, the twist

n1(s) := n1 ⊗O
X̃×Spec(A◦)A

d
(p1
∗L)s

is p2∗-acyclic for s� 0. Since Ad is affine,

Hi(X̃ ×Spec(A◦) A
d, n1(s)) ' Γ(Ad, Rip2∗n1(s)) = 0

for i ≥ 1 and s � 0. Because p1 is an affine morphism, we have the isomorphism

Hi(X̃, p1∗(n1(s))) ' Hi(X̃ ×Spec(A◦) Ad, n1(s)). By the projection formula p1∗(n1(s)) '

(grF·m1)(s), so it follows that Hi(X, (grF·m1)(s)) = 0 for i ≥ 1 and s � 0. As a result,

each graded component of (grF·m1)(s), and therefore each filtered piece Fi(m1)(s), have

trivial higher cohomology groups. Since m1(s) '
⋃
i

Fi(m1)(s) as OX-modules, and tak-

ing cohomology commutes with taking direct limit on noetherian spaces, we conclude that

Hi(X,m1(s)) = 0 for s� 0 and i ≥ 1.

Let A(s)
Tn,X

:= LsX ⊗OX
ATn,X ⊗OX

L−sX , which is a left (resp. right) coherent sheaf of

rings locally isomorphic to ATn,X. Then (s)m1 is naturally a A(s)
Tn,X

-module. The surjection

φ induces a surjection A(s)
Tn,X

⊗OX
(s)F � (s)m1. Since (s)F is OX-coherent, we can find a

surjection
⊕

finite sum

OX � (s)F for s� 0. Thus, there exists a surjection
⊕

finite sum

A(s)
Tn,X

�
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(s)m1 for s� 0.

Consider the following short exact sequence with the second arrow induced by multipli-

cation by πiK :

0→ (s)m1 → (s)mi+1 → (s)mi → 0.

Taking the associated long exact sequence of cohomology groups, we get a surjective map

Γ(X, (s)mi+1) � Γ(X, (s)mi) for s � 0, because H1(X,m1(s)) = 0. Since lim←−
i
mi ' M0,

we are able to lift a finite set of global sections for (s)m1 that generate (s)m1 as a A(s)
Tn,X

-

module to global sections of (s)M0. By Nakayama’s lemma we see that there is a surjection⊕
finite sum

̂
A(s)
Tn,X

� (s)M0, where
̂
A(s)
Tn,X

is the p-adic completion of A(s)
Tn,X

, which is isomor-

phic to LsX ⊗OX
ÂTn,X ⊗OX

L−sX . Thus, we get a surjection
⊕

finite sum

ÂTn,X(−s)�M0.

Step 2. By Lemma 2.3.7, we may choose a coherent (πK)-torsion free ÂTn,X-moduleM0,

such that M0 ⊗Z Q 'M. Since LX ⊗Z Q ' OX ⊗Z Q, there exists an exact sequence

0→ N1 →
⊕

finite sum

ÂTn,X,Q →M→ 0,

for a coherent ÂTn,X,Q-moduleN1. Taking the associated long exact sequence of cohomology

groups, we see that Hi(X,M) ' Hi+1(X,N1) for i ≥ 1 by Lemma 2.3.8. We conclude by

the dimension shifting argument that M has no higher cohomology.

Let us choose a finite presentation of M:

⊕
finite sum

ÂTn,X,Q →
⊕

finite sum

ÂTn,X,Q →M→ 0.

Taking the global sections and applying ÂTn,X,Q⊗Γ(X,ÂTn,X,Q)
− to the above exact sequence,

we get the following commutative diagram, with exact rows and the first two columns being
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isomorphic:

⊕
finite sum

ÂTn,X,Q −−−→
⊕

finite sum

ÂTn,X,Q −−−→ ÂTn,X,Q ⊗Γ(X,ÂTn,X,Q)
Γ(X,M) −−−→ 0

'
y '

y y⊕
finite sum

ÂTn,X,Q −−−→
⊕

finite sum

ÂTn,X,Q −−−→ M −−−→ 0

By diagram chasing, we see that M is generated by global sections.

If M is a coadmissible module over Γ(X,A∞T ) ' lim←−n
Γ(X, ÂTn,X,Q), then M ' lim←−n

Mn,

where Mn is a finitely generated Γ(X, ÂTn,X,Q)-module, and

Mn ' Γ(X, ÂTn,X,Q)⊗
Γ(X,ÂTn,X,Q)

Mn+1.

By Definition-Lemma 2.2.11 we can associate to M a sheaf MX of A∞T ,X-modules on X in

the following way:

MX := lim←−n
ÂTn,X,Q ⊗Γ(X,ÂTn,X,Q)

Mn.

If U ∈ BX, then MX(U) ' A∞T ,X(U)⊗̂Γ(X,A∞T )M is a coadmissible A∞T ,X(U)-module.

Definition-Lemma 2.3.10. If M is a coadmissible module over Γ(X,A∞T ), let us define

a presheaf of A∞T -module M̃ on X in the following way: if U ∈ BX , then M(U) :=

A∞T (U)⊗̂Γ(X,A∞T )M is a coadmissible module over A∞T (U) by Lemma 2.2.10. Then M̃ is

a sheaf, and we call M̃ the sheaf of coadmissible A∞T -module associated to the coadmissible

Γ(X,A∞T )-module M .

Proof. By Definition-Lemma 2.2.11 and Lemma 2.3.4, we have the isomorphism MX
'−→

sp∗M̃ of sheaves of A∞T ,X-modules. By Lemma 2.2.8, we see that M̃ is a sheaf.
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2.4 D∞-modules on smooth rigid analytic variety over K

In section 2.4, let X be a smooth rigid analytic variety over K, let T be a smooth Lie

algebroid on X, and let AT be a twisted differential algebra associated to T . We shall glue

the constructions on affinoids in section 2.3 to obtain some global results.

2.4.1 The Fréchet completion of a twisted sheaf of differential algebra on

smooth rigid analytic varieties over K

Definition-Lemma 2.4.1. Let {Ui}i∈I be an affinoid open cover of X such that T |Ui is free,

and let A∞Ui,T be the Fréchet completion of A∞T |Ui on Ui as in Definition-Lemma 2.3.3. By

Lemma 2.3.4, we have the isomorphisms A∞Ui,T |Ui∩Uj
tij−−→ A∞Uj ,T |Uj∩Ui, such that tij = t−1

ji

and tik = tjk ◦ tij. Therefore we can glue A∞Ui,T and get a sheaf of OX -algebras A∞T ,{Ui}i∈I .

Then

1. There is an inclusion of sheaves of OX -algebras AT ↪→ A∞T ,{Ui}i∈I .

2. If {Vj}j∈J is another affinoid open cover of X of finite type such that T |Ui is free,

then there is a unique isomorphism A∞T ,{Ui}i∈I ' A
∞
T ,{Vj}j∈J

such that the following

diagram commutes:

AT −−−→ A∞T ,{Ui}i∈Iy=

y'
AT −−−→ A∞T ,{Vj}j∈J

Thus we shall write A∞T ,{Ui}i∈I as A∞T , which will be called the Fréchet completion of

AT .

Proof.

1. This follows from Lemma 2.3.4 and gluing.
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2. Consider the cover {Ui ∩ Vj}i∈I,j∈J . Then the restriction morphisms

A∞Ui,T |Ui∩Vj → A
∞
Ui∩Vj ,T

induce an isomorphism A∞T ,{Ui}i∈I
'−→ A∞T ,{Ui∩Vj}i∈I,j∈J . Similarly we have an isomor-

phism

A∞T ,{Vj}j∈J → A
∞
T ,{Ui∩Vj}i∈I,j∈J .

Thus we get an isomorphism A∞T ,{Ui}i∈I
'−→ A∞T ,{Vj}j∈J that is compatible with the

inclusion of AT . The uniqueness follows from Lemma 2.3.4.

Proposition 2.4.2. A∞T is flat over AT as a right module. Moreover, if U ∈ BX such that

U has a smooth admissible formal model, then A∞T (U) is faithfully flat over AT (U).

Proof. Let U ⊆ X be an open affinoid with such that T |U is free. By Lemma 2.3.4 the

isomorphism

A∞T (U) ' lim←−n
Γ(Spf(O◦X(U)), ÂTn,Spf(O◦X(U)),Q)

realizes A∞T (U) as a Féchet-Stein algebra. It follows from [5] 3.2.3 (iv) that

Γ(Spf(O◦X(U)), ÂTn,Spf(O◦X(U))) is flat over Γ(Spf(O◦X(U)),ATn,Spf(O◦X(U))), so

Γ(Spf(O◦X(U)), ÂTn,Spf(O◦X(U)),Q) is flat over AT (U) as a right module. By [28] Remark

3.2, we see that A∞X (U) is flat over Γ(Spf(O◦X(U)), ÂTn,Spf(O◦X(U)),Q) as a right module.

If U has a smooth integral model, [27] Proposition 3.4 implies the faithful flatness.

Remark 2.4.3. It is unclear whether a smooth quasi-compact rigid analytic variety X has

a finite open cover of affinoids that have smooth formal models. However, by [10] at every

classical point of X, we can find a neighborhood that has a smooth integral model.
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2.4.2 Coadmissible modules over A∞T on a smooth rigid variety over K.

Definition 2.4.4. A sheaf of A∞T -moduleM is coadmissible if there exists an open affinoid

cover {Ui}i∈I such that

1. T |Ui is free.

2. M|Ui ' M̃i, where M̃i is the sheaf of coadmissible A∞T |Ui-module associated to a

coadmissible A∞T (Ui)-module Mi defined in Definition-Lemma 2.3.10.

Lemma 2.4.5. LetM be a sheaf of coadmissible left A∞T -module on a smooth rigid analytic

variety over K. If U is an affinoid subdomain of X such that T |U is free, then

1. M(U) is a coadmissible left module over A∞T (U), and M|U ' M̃(U).

2. The higher cohomology groups of M|U vanish.

Proof. Let {Ui}i∈I be an open affinoid cover such that T |Ui is free and M|Ui is associated

to a coadmissible module over A∞T (Ui). Since finitely many U ∩Ui will cover U , by Proposi-

tion 2.2.5 there exists an admissible formal model U of U obtained by an admissible formal

blow-up of Spf(O◦X(U)), such that {Ui} is a finite open cover of U and sp−1(Ui) = U ∩ Ui,

where sp : U → U is the associated specialization map. Replacing {Ui}i∈I by a finite re-

finement, we may assume that {Ui}i∈I is a finite open affine cover of U. By Lemma 2.2.12,

we see that M(U) ' Γ(U, sp∗M|U ) is a coadmissible module over Γ(U,A∞T ,U)
'−→ A∞T (U),

and Hi(U, sp∗(M|U )) ' Ȟi({Ui}i∈I ,M|U ) = 0 for i ≥ 1. Therefore, we conclude that

Hi(U,M|U ) = 0 for i ≥ 1.

Proposition 2.4.6. Let Modcoad(A∞T ) be the full subcategory of the category of sheaves of

A∞T -modules, whose objects are coadmissible A∞T -modules. Then Modcoad(A∞T ) is an abelian

category.

Proof. This follows from Lemma 2.4.5 and [28] Proposition 2.1.

36



2.5 Microlocal differential operators

In section 2.5, let X be a smooth rigid analytic variety of dimension d, and let π : T ∗X →

X be the natural projection from of the cotangent bundle. We will construct a sheaf of

microlocal differential operators EX on T ∗X whose restriction to the zero section is DX . We

conjecture that if M is a coherent DX -module, then the characteristic variety of M equals

to the support of EX ⊗π−1DX π−1M as sets.

Convention-Notation 4. Let F. be the order filtration on DX , so it induces an isomorphism

between sheaves of algebras SymOXTX
'−→ grF. DX , and we view SymOXTX as a subsheaf

of rings in π∗OT ∗X as in [21] 2.1. The image of an m-th order differential operator P

under σm : grmF DX → Symm
OXTX is called the principal symbol of P . Let U ∈ BX such

that Ω1
X |U is trivial. If x = (x1, x2, ...xd) is a system of local coordinates on U , let ξi

be the image of ∂
∂xi

under the inclusion grF.DX ↪→ π∗OT ∗X , for i = 1, 2, ..., d. We call

(x, ξ) = (x1, .., xd, ξ1, ..., ξd) a canonical chart on T ∗U . For m ∈ K, let OT ∗U (m) be the

sheaf that assigns to every Ω ∈ BT ∗U the sections

OT ∗U (m)(Ω) =

f(x, ξ) ∈ OT ∗U (Ω)
∣∣∣ d∑
i=1

ξi
∂

∂ξi
f(x, ξ) = mf(x, ξ)

 .

The definition of OT ∗U (m) is independent of choices of canonical charts, since if (x̃, ξ̃) is

another canonical chart on T ∗U , then
∑d
i=1 ξi

∂
∂ξi

=
∑d
i=1 ξ̃i

∂
∂ξ̃i

. By glueing we get a sheaf

OT ∗X(m) on T ∗X. Also, note that gr.FDX
'−→ π∗(

⊕
m∈N

OT ∗X(m)).

Similar to the case of a complex manifold, there is a canonical 1-form ω on T ∗X, char-

acterized by the following condition: for y ∈ T ∗XTate, if we view y as a 1-form on X, then

〈ωp, µ〉 = 〈yπ(p), dπy(µ)〉, where p ∈ T ∗XTate, µ ∈ Ty(T ∗X) the tangent space of T ∗X at

y, and dπy : Ty(T ∗X) → Tπ(y)X is the derivative of π at y. To properly define ω, we can

first define it in a canonical chart ω :=
d∑
i=1

ξidxi, and then glue. It follows that θX := dω is

a non-degenerate anti-symmetric bilinear form, which gives rise to a canonical identification
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H : T ∗(T ∗X) → T (T ∗X) such that if y ∈ T ∗XTate, v ∈ Ty(T ∗X) and ν ∈ T ∗y (T ∗X), then

〈θX , v ∧Hy(ν))〉 = 〈ν, v〉. The Poisson bracket {, } on T ∗X is defined as {f, g} = (H(df))g

if f, g ∈ OT ∗X . In a canonical chart H(dξi) = ∂
∂xi

, H(dxi) = − ∂
∂ξi

, and

{f(x, ξ), g(x, ξ)} =
d∑
i=1

(
∂f

∂ξi

∂g

∂xi
− ∂g

∂ξi

∂f

∂xi
).

We say a rigid analytic subspace of T ∗X is involutive if its defining ideal is closed under the

Poisson bracket.

2.5.1 Characteristic varieties of coherent DX-modules

In this subsection, we check that the construction of the characteristic variety of a coherent

D-module on a complex manifold also works in the p-adic case.

Lemma 2.5.1. DX is a noetherian sheaf of rings. (See [21] Appendix A for the definition

of a noetherian sheaf of rings.)

Proof. By [11] Proposition 15.1.1, the local ring of a point in adic space is noetherian. Since

OX(U) is noetherian for U ∈ BX , we see that OX is a sheaf of neotherian rings. It follows

from [21] Theorem A.29 that DX is a noetherian sheaf of rings.

Therefore, it follows from [21] Lemma A.26 that a coherent module M over DX locally

has a good filtration. Recall that an increasing exhaustive filtration G. on M is good if

1. FmDX ·GlM⊆ Gl+mM for m, l ∈ Z.

2.
⊕
m∈Z

Gm(M) is a locally finitely generated module over the Rees algebra
⊕
m∈Z

Fm(DX).

For instance, if M is generated by sections u1, u2, ..., uv, then Gn(M) :=
v∑
i=1

Fn(DX)ui

is a good filtration. Therefore, if G. is a good filtration on M, then grG. M is coherent
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over grF. DX . By [6] Appendix III 3.21, the annihilating ideal Jalg of grG. M in grF. DX is

independent of choices of good filtrations. Hence J := OT ∗X ⊗grF. DX Jalg is a coherent

sheaf of ideals of OT ∗X , and we can define the characteristic variety Ch(M) of M, to be

the rigid analytic subspace of T ∗X vanishing on J .

Lemma 2.5.2. The characteristic variety of a coherent DX -module M is a conic involutive

rigid analytic subspace of T ∗X.

Proof. It follows from the construction of Ch(M) that it is preserved by the Gm-action on

the fiber of T ∗X. By [6] Appendix III Theorem 3.25, we see that under the Poisson bracket

{Jalg,x,Jalg,x} ⊆ Jalg,x for x ∈ X. By the product rule, we have {Jx,Jx} ⊆ Jx, and thus

J is closed under the Poisson bracket.

2.5.2 Microlocal differential operators on smooth affinoid rigid analytic

varieties over K

In this subsection, suppose X = Spa(A,A◦) is a smooth affinoid rigid analytic variety such

that Ω1
X is free. Let (x, ξ) be a canonical chart on T ∗X.

Definition 2.5.3. Let EX be the presheaf that assigns to every Ω ∈ BT ∗X the sections

EX(Ω) =
{

(pk(x, ξ))k∈Z
∣∣ pk(x, ξ) ∈ OT ∗X(k)(Ω) satisfying the following conditions 1 and 2.

}
1. There exists N ∈ Z such that pk(x, ξ) = 0 if k > N .

2. There exists M ≥ 0 such that

lim
k→−∞

‖pk(x, ξ)

pkM
‖Ω = 0.

By the maximum principle we see that EX is a sheaf of K-vector spaces on X.
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Definition-Lemma 2.5.4. If (pk(x, ξ))k∈Z, (qk(x, ξ))k∈Z ∈ EX(Ω), define the product

(pk(x, ξ))k∈Z · (qk(x, ξ))k∈Z to be (rk(x, ξ))k∈Z, where

rk(x, ξ) =
∑
I∈Nd

k=i+j−|I|

1

I!
(∂Iξ pi(x, ξ))(∂

I
xqj(x, ξ)),

and if I = (v1, ...vd), then I! = v1!v2!...vd! and 0! = 1.

Then EX(Ω) is an associative ring with a unit.

Proof. To check the product is well-defined, we verify the convergence condition of rk(x, ξ)

when k → −∞. Since ∂
∂xi

and ∂
∂ξi

are continuous derivations on OT ∗X(Ω), we assume

their operator norms ‖ ∂
∂xi
‖ ≤ |c| and ‖ ∂∂ξi‖ ≤ |c| for c ∈ K̄ and i = 1, 2, ...d. Since

vp(n!) = n−sum of p-adic digits of n
p−1 , we see that |I!| ≥ |p|I||. Therefore,

‖rk(x, ξ)

pkn
‖Ω ≤

∑
I∈Nd
i∈Z

| 1

p|I|
c2|I|pn|I||‖pi(x, ξ)

pin
‖Ω‖

qk+|I|−i(x, ξ)

p(k+|I|−i)n ‖Ω.

Let M > 0 such that lim
k→−∞

‖pk(x, ξ)

pkM
‖Ω = 0 and lim

k→−∞
‖qk(x, ξ)

pkM
‖Ω = 0. Let n >

max{M, 1 − 2vp(c)}, so | 1
p|I|

c2|I|pn|I|| < 1. For any ε > 0, there exits N > 0 such that

pi(x, ξ) = 0 for i > N and qj(x, ξ) = 0 for j > N , and ‖qj(x,ξ)
pjM

‖Ω < ε if j < −N , and

‖pi(x,ξ)
piM

‖Ω < ε if i < −N , and | 1
p|I|

c2|I|pn|I|| < ε if |I| > N . Then {‖pk(x,ξ)
pkn

‖Ω, ‖
qk(x,ξ)
pkn

‖Ω}k∈Z

is bounded by C > 0. It follows that

∑
I∈Nd
|i|>N

‖pi(x, ξ)
pin

‖Ω‖
qk+|I|−i(x, ξ)

p(k+|I|−i)n ‖Ω < ε · C.

If |i| ≤ N , |I| ≤ N and k < −3N , then k + |I| − i < |I| − 2N ≤ −N , so we have

∑
|I|≤N
|i|≤N

‖pi(x, ξ)
pin

‖Ω‖
qk+|I|−i(x, ξ)

p(k+|I|−i)n ‖Ω < C · ε.
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If |i| ≤ N and |I| > N , then

∑
|I|>N
|i|<N

| 1

p|I|
c2|I|pn|I||‖pi(x, ξ)

pin
‖Ω‖

qk+|I|−i(x, ξ)

p(k+|I|−i)n ‖Ω < ε · C2.

We conclude that lim
k→−∞

‖rk(x, ξ)

pkn
‖Ω = 0.

The associativity follows from the Leibniz’s formula.

Lemma 2.5.5. If x̃ is another choice of local coordinates on X, then Φ : EX(Ω) → EX(Ω)

defined as

Φ(pk(x̃, ξ̃)) =
∑
s∈N

I1,I2,...Is∈Nd
|Ij |≥2(j=1,...,s)

l=k+
∑s
j=1(|Ij |−1)

∏s
j=1(∂

Ij
x (
∑d
t=1 x̃tξ̃t))

s!I1!...Is!
(∂I1+...+Is
ξ pl(x, ξ)).

is an isomorphism between rings, where ξ̃t =
d∑
j=1

∂xj
∂x̃t

ξj. In particular, we see that the

definition of EX is independent of choices of local coordinates.

Proof. By [21] Lemma 7.4 and 7.5 we are reduced to showing that there exists n such that

lim
k→−∞

‖Φ(pk(x̃, ξ̃))

pkn
‖Ω = 0. Assume ‖

d∑
t=1

x̃tξ̃t)‖Ω ≤ C1, and the operator norms ‖ ∂
∂xi
‖ ≤ |c|

and ‖ ∂∂ξi‖ ≤ |c| for c ∈ K̄ and i = 1, 2, ...d. Let M > 0 such that lim
k→−∞

‖pk(x, ξ)

pkM
‖Ω = 0.

Because of the assumption on the summation indexes
s∑
t=1

|It| − s ≥ s ≥ 0, if vp(c) < 1,

then (2vp(c) + n − 1)(
s∑
t=1

|It| − s) + 2s(vp(c) − 1) ≥
s∑
t=1

|It| − s when n ≥ −4vp(c) + 4.

Let n = max{M,−2vp(c) + 2} if vp(c) ≥ 1, and let n = max{M,−4vp(c) + 4} if vp(c) < 1,

so {‖pk(x, ξ)

pkn
‖Ω}k∈Z is bounded by constant C2. For any ε > 0, there exits N > 0 such

that pi(x, ξ) = 0 for i > N , and ‖pi(x, ξ)
piM

‖Ω < ε if i < −N , and |p
∑s
t=1 |It|−s| < ε if
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s∑
t=1

|It| − s ≥ N . Therefore,

‖Φ(pk(x̃, ξ̃))

pkn
‖Ω ≤

∑
s∈N

I1,I2,...Is∈Nd
|Ij |≥2(j=1,...,s)

|p
2vp(c)(

∑s
t=1 |It|)+(

∑s
t=1 |It|−s)n

ps+
∑s
t=1 |It|

|C1‖
pk+

∑s
t=1 |It|−s(x, ξ)

p(k+
∑s
t=1 |It|−s)n

‖Ω

≤
∑
s∈N

I1,I2,...Is∈Nd
|Ij |≥2(j=1,...,s)

|p
∑s
t=1 |It|−s|C1‖

pk+
∑s
t=1 |It|−s(x, ξ)

p(k+
∑s
t=1 |It|−s)n

‖Ω.

If
s∑
t=1

|It| − s ≥ N , then

∑
s>N

I1,I2,...Is∈Nd
|Ij |≥2(j=1,...,s)

|p
∑s
t=1 |It|−s|‖

pk+
∑s
t=1 |It|−s(x, ξ)

p(k+
∑s
t=1 |It|−s)n

‖Ω < εC2.

If
s∑
t=1

|It| − s < N , and k < −2N , then k − (
∑s
t=1 |It| − s) < −N , so

∑
s<N

I1,I2,...Is∈Nd
|Ij |≥2(j=1,...,s)

|p
∑s
t=1 |It|−s|‖

pk+
∑s
t=1 |It|−s(x, ξ)

p(k+
∑s
t=1 |It|−s)n

‖Ω < ε

Remark 2.5.6. Let E∞X be the presheaf that assigns to every Ω ∈ BT ∗X the sections

E∞X (Ω) =
{

(pk(x, ξ))k∈Z
∣∣ pk(x, ξ) ∈ OT ∗X(k)(Ω) satisfying the following growth conditions.

}
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1. For any n ≥ 0

lim
k→+∞

‖pk(x, ξ)

pkn
‖Ω = 0

2. There exists M ≥ 0 such that

lim
k→−∞

‖pk(x, ξ)

pkM
‖Ω = 0

One can similarly check that E∞X is a sheaf of K-vector spaces on X. Moreover, the formula

in Definition-Lemma 2.5.4 defines a ring structure on E∞X .

2.5.3 Microlocal differential operators on smooth rigid analytic varieties

over K

In this subsection, let X be a smooth rigid analytic variety over K.

Definition-Lemma 2.5.7. Let {Ui}i∈I be an affinoid open cover of X such that Ω1
X |Ui is

trivial. By Lemma 2.5.5 and [21] Lemma 7.5, we can glue EUi (see Definition 2.5.3) to get

a sheaf of rings EX on X. The definition is independent of the choice of covers.

By the definition of EX , we see that there is an inclusion of sheaves of rings π−1DX ↪→ EX .

Moreover, let T ∗XX be the zero section of T ∗X, we have DX ' EX |T ∗XX .

Remark 2.5.8. Similarly E∞X is a sheaf on X such that there is an inclusion of sheaves of

rings π−1D∞X ↪→ E∞X , and D∞X ' E
∞
X |T ∗XX . We wonder whether these sheaves could have

applications in the study of p-adic differential equations.
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CHAPTER 3

EQUIVARIANT D∞-MODULES ON SMOOTH RIGID

ANALYTIC VARIETIES OVER A COMPLETE DISCRETE

VALUED FIELD

3.1 Introduction and notations

Let us briefly recall the relation between the unitary representations of a real semi-simple

Lie group GR with finite center and the geometry of the complex flag variety. Let g be

the complexification of the Lie algebra of GR, and K be the complexifiction of a maximal

compact KR of GR. Let X be the flag variety of g, whose analytification is Xan. Let U(g)

be the universal enveloping algebra of g, and DX be the sheaf of differential operators on X.

Suppose E is an irreducible unitary representation of GR over C. On one hand, the subspace

M = EKR−finite of KR-finite vectors of E is a Harish-Chandra module. For simplicity we as-

sume M has trivial infinitesimal central character. Hence by Beilinson-Bernstein localization

theorem, the sheaf M = DX ⊗U(g) E
KR−finite is a K-equivariant coherent DX -module on

X, whose global section is M . Since there are finitely many K-orbits on X, a K-equivariant

coherent DX -module is regular holonomic. Therefore by Riemman-Hilbert correspondence,

DRX(M) = RHomDX (OX ,M) is a K-equivariant perverse sheaves on X. On the other

hand, the Matsuki duality generalizes to an equivalence Φ in Theorem 1.42 [22] between the

bounded K-equivariant derived category of CX -sheaves and the GR-equivariant derived cat-

egory of CX -sheaves. Let C∞(GR) be space of smooth functions on GR. Then the maximal

globalization of M is Hom
top
U(g)

(M∗, C∞(GR)), which is an admissible GR-representations of

finite length with nuclear Fréchet topology, whose KR-finite vectors are M . By [22] section

1.7

RHom
top
U(g)

(M∗, C∞(GR)) ' RHomCX (Φ(DRX(M)),ΩXan [dimension of X]).
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Let Γc(GR, DistGR) be the space of distribution on GR with compact support. Then

the minimal globalization of M is Γc(GR, DistGR) ⊗U(g) M , which is an admissible GR-

representations of finite length with dual nuclear Fréchet topology, whose KR-finite vectors

are M . By [22] section 1.7

Γc(GR, DistGR)⊗L
(g,KR) M ' RΓ

top
c (Xan,Φ(DRX(M))⊗OXan).

For example, when G = GL2, KR = O(2) and X = P1, there are two K-orbits {i,−i}

and the complement P1\{i,−i}. By Matsuki duality, the K-orbit {i,−i} corresponds to the

GL2(R)-orbit P1\P1(R), and the K-orbit P1\{i,−i} corresponds to GL2(R)-orbit P1(R).

By Beilinson-Bernstein localization, the K-orbit {i,−i} corresponds to discrete series, and

the K-orbit P1\{i,−i} corresponds to principal series.

We would like to know whether it is possible to have a parallel story for admissible locally

analytic representations of p-adic groups. In section 3.3, if G is a rigid analytic group acting

on X and ATX is a G-equivariant twisted differential operators, we define an abelian category

of coadmissible G-equivariant A∞TX -modules on X, where G is the Qp-rational points of G,

viewed as a p-adic Lie group. In Thereom 3.4.4, we show that under certain restrictions,

when G is the rigid analytification of a connected split reductive linear algebraic group G

and X is the rigid analytification of the flag variety of G, the category of admissible locally

analytic representations of G with a fixed infinitesimal central character is equivalent to the

category of coadmissible G-equivariant twisted D∞-modules on X.

For example, let X = P1 and G = GL2. If j : U ↪→ X is the natural inclusion of the

Drinfeld upper half plane U in P1 with the complement P1(Qp), we have the following exact

sequence of coadmissible GL2(Qp)-equivariant D∞-modules on P1:

0→ OX → j∗OU → H1
P1(Qp) → 0,

where H1
P1(Qp)

is defined to be the quotient j∗OU/OX . The global sections of H1
P1(Qp)

45



form a principal series (the Orlik-Strauch induction of weight −2 Verma module). By the

computation in section 3.5, we see that in general a principal series corresponds to an equiv-

ariant twisted D∞-module on P1 with support in P1(Qp). By the work of Dospinescu and

Le Bras [13], the push-forward of the structure sheaves of Drinfeld covers are also coadmis-

sible GL2(Qp)-equivariant D∞-modules on P1. Motiviated by the classical GL2(R)-picture

and the proof of [23] Proposition 7.1.3, we conjecture that ifM is a coadmissible GL2(Qp)-

equivariant D∞-module on P1, and u ∈ P1 is not a Qp-rational point, then the support of

M cannot be the closure of the GL2(Qp)-orbit of u.

In Chapter 3, let G be a connected linear algebraic group over L of rank q. Let G be the

rigid analytification of GK := G×Spec(L) Spec(K) ([8] section 5.4). Let m : G×K G→ G

be the group multiplication. Let G be the L-rational points of G, viewed as a locally L-

analytic group. Let g be the Lie algebra of G over L. The universal enveloping algebra of

gK := g⊗L K is U(gK).

3.2 Preliminaries

3.2.1 Review of the Fréchet-Stein structure of the distribution algebra of G

Let us recall some notations and facts from [14] section 5.2. Let r′ ∈ K̄ such that |r′| = r

and 0 < r ≤ 1. Let B(r)d := Spa( ˆ̄K〈r′t1, r′t2, ..., r′td〉,O ˆ̄K
〈r′t1, r′t2, ..., r′td〉) be the rigid

analytic ball of radius r. If h is a sufficiently small OL-Lie sublattice of g, then fixing a set

of basis of h, we have an isomorphism between rigid analytic groups exp : B(1)d → H, where

H is an analytic open subgroup of the rigid analytification of G, and B(1)d is equipped with

the rigid analytic group structure by the Baker-Campbell-Hausdorff formula. We call such

H a good analytic open subgroup of G obtained by exponentiating h, and the coordinate

(t1, t2, ..., td) on B(1)d is called the canonical coordinates of the second kind of H. Let H be

the L-rational points of H. Recall that H◦ :=
⋃
r<1

B(r)d is a rigid analytic open subgroup

of H. Let Hn be the good analytic open subgroup of G obtained by exponentiating αnh for
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n ∈ N, and let H◦n be the L-rational points of H◦n.

Remark 3.2.1. As a locally L-analytic group H◦n is isomorphic to the L-rational points of the

analytic open subgroup obtained by exponentiating πe1n−1
L h, where πL is an uniformizer of

L, and e1 ∈ N such that |πe1
L | = |α|. In particular H◦n is a compact open normal subgroup

of H of finite index.

Lemma 3.2.2. Consider the inclusion of algebras U(gK)→ Dla(H,K) as in [14] p.94, and

let U(gK) be the closure of U(gK) in Dla(H,K).

1. There exists an isomorphism

Dla(H◦, K) ' lim←−n
Û(αnh)K ⊗K[H◦n+1] K[H◦]

that realizes Dla(H◦, K) as a Fréchet-Stein algebra.

2. Under the isomorphism in 1, we have the isomorphism U(gK) ' lim←−n
Û(αnh)K that

realizes U(gK) as a Fréchet-Stein algebra, where Û(αnh)K is the p-adic completion of

U(αnh) inverting p, and U(αnh) is the OK-subring of U(gK) generated by αnh. In

particular, the closure U(gK) is independent of choice of compact open subgroup H of

G.

Proof. Assume that {Xj}j=1,2,...,q is a set of OL-basis of h. For m ∈ N, let U(αnh)(m)

be the OK -subring of U(gK) generated by the elements
(αnXj)

i

i! , where 0 ≤ i ≤ pm and

1 ≤ j ≤ q. Let Û(αnh)(m) be the p-adic completion of U(αnh)(m), and let Û(αnh)
(m)
K

be Û(αnh)(m) ⊗OK K. Then Dan(H◦n, K) ' lim−→m
Û(αnh)

(m)
K . In addition, we have the

inclusion of algebras K[H◦n+1] → Û(αnh)K . Explicitly if g ∈ H◦n+1 corresponds to the

vector x ∈ π
e1(n+1)−1
L h under the exponential map, then g →

+∞∑
n=0

xn

n!
. The conjugation

action of H◦ on Û(αnh)K equips Û(αnh)K ⊗K[H◦n+1] K[H◦] with an algebra structure, and
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the natural inclusion K[H◦] ↪→ Dan(H◦, K) factors through

K[H◦]→ Û(αnh)K ⊗K[H◦n+1] K[H◦]→ Dan(H◦, K).

1. By [14] 5.3.13, the homomorphism of algebras Dan(H◦n+1, K)→ Dan(H◦n, K) factors

through Û(αnh)
(mn)
K , for mn ∈ N. Let r = max

0≤i≤pmn
{| 1
i!
|
1
i |α|n}, and choose r(n) ∈ N

such that |αr(n)+1| ≤ r ≤ |αr(n)|. Then we have

Dan(H◦n+1, K)→ Û(αr(n)h)K → Dan(H◦r(n), K).

The p-adic ordinal of i! is equal to
i−s(i)
p−1 , where s(i) is the sum of the p-adic digits of

i. Therefore r(n)→ +∞ as n→ +∞. Since

Dla(H◦, K) ' lim←−n
Dan(H◦n, K)⊗K[H◦n+1] K[H◦],

we see that Dla(H◦, K) is isomorphic to the projective limit of the system of noetherian

Banach algebras
{
Û(αnh)K ⊗K[H◦n+1] K[H◦]

}
n∈N

. Consider the following commuta-

tive diagram:

Û(αn+1h)K
pn−−−→ Û(αnh)K

in+1

y in

y
Û(αn+1h)K ⊗K[H◦n+2] K[H◦]

p̃n−−−→ Û(αnh)K ⊗K[H◦n+1] K[H◦]

As in [14] Proposition 5.3.18, we find a filtration of normal open subgroups

H◦n+2 = G0 E G1 E ... E Gw = H◦

such that Gi+1/Gi is cyclic. Therefore in+1 factor though

Û(αn+1h)K → A1 → ...→ Aq,
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where Ai := Û(αn+1h)K ⊗K[G0] K[Gi]. Since in, in+1 and pn are flat, by [14] Lemma

5.3.17, we see that p̃n is also flat.

2. Û(αnh)K is a closed subspace of Û(αnh)K ⊗K[H◦n+1]K[H◦]. Therefore lim←−n
Û(αnh)K is

a closed subspace in Dla(H◦, K). Since U(gK) is dense in lim←−n
Û(αnh)K , we conclude

that U(gK)
'−→ lim←−n

Û(αnh)K is an isomorphism.

3.2.2 Some equivariant sheaves on smooth rigid analytic varieties over K

Let X be a smooth rigid analytic variety over K. Let the morphisms p1 : X ×K G→ X be

the natural projection to the first factor, and p12 : X ×K G ×K G → X ×K G be the

natural projection to the first and second factors. Let e ∈ G be the identity element.

Definition 3.2.3. A rigid analytic variety X over K is a right G-variety if there exists a

morphism a : X ×K G → X of rigid analytic varieties over K, such that the following two

diagrams commute:

1.

X ×K G×K G a×idG−−−−→ X ×K GyidX×m ya
X ×K G a−−−→ X

2.

X ×K Spa(K,K◦)
idX×e−−−−→ X ×K Gy' ya

X
idX−−−→ X

Definition 3.2.4. Let X be a right G-variety.

1. A sheaf of OX -module M is G-equivariant if there exists an isomorphism

θ : p∗1M' a∗M
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of OX×KG-modules such that the following diagram commutes:

(a ◦ (a× idG))∗M
(a×idG)∗θ
−−−−−−−→ (p1 ◦ (a× idG))∗M = (a ◦ p12)∗My=

yp∗12θ

(a ◦ (idX ×m))∗M
(idX×m)∗θ
−−−−−−−−→ (p1 ◦ (idX ×m))∗M = (p1 ◦ p12)∗M

2. A sheaf of OX -module M is G-equivariant if for all g ∈ G, we have isomorphisms of

OX -modules θg : g∗M→M, such that the following diagram commutes:

(g1g2)∗M
g∗1θg2−−−−→ g∗1Myθg1g2 θg1

y
M =−−−→ M

where g is viewed as an automorphism of X.

3. A morphism f :M→N is a morphism between sheaves of G-equivariant OX -modules

M and N , if f is a morphism between sheaves of OX -modules, such that the following

diagram commutes:

M f−−−→ Nyθg yθg
g∗M g∗f−−−→ g∗N

Remark 3.2.5. Let X be a right G-variety.

1. Since G ↪→ G is a continuous inclusion between topological groups, we see that a

induces a jointly continuous action morphism of topological spaces X ×G→ X, such

that G preserves the classical points of X.

2. The morphism a−1OX → OX×KG induces an isomorphism

a∗OX = OX×KG ⊗a−1OX a−1OX
'−→ OX×KG.
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Together with the isomorphism p∗1OX
'−→ OX×KG we see that OX is G-equivariant.

3. If M is a G-equivariant sheaf of OX -modules on X, and g ∈ G is a K-rational point,

then restricting the isomorphism a∗O ' p∗1M to {g} ×K X ⊆ G ×K X gives the

isomorphism g∗M ' M. Therefore, M is G-equivariant. When M = OX and H is

a compact open subgroup of G which preserves an affinoid subdomain U of X, then

the left action of H on OX(U) can be described as (g.f)(x) = f(x.g) for f ∈ OX ,

x ∈ UTate and g ∈ H.

Let G(1) be the rigid analytification of Spec(K ⊕ g∗Kε), where ε2 = 0. This is the

first infinitesimal neighborhood of the identity of G. Restricting the isomorphism

a∗M' p∗1M to G(1)×X gives us an endomorphism ofM⊗K (K⊕g∗Kε), which gives

rise to a morphism gK → EndK(M) that preserves Lie brackets. When M = OX ,

we get the morphism between Lie algebras gK → TX , which is given by the familar

formula: x.f = lim
t∈L,|t|→0

exp (tx).f − f
t

for x ∈ g and f ∈ OX . Therefore, we have the

morphism between sheaves of algebras U(gK)→ DX .

4. TX is G-equivariant. If g ∈ G, the action is explicitly given by the formula (g.x)f =

g(x(g−1.f)), where x ∈ TX , and f ∈ OX are local sections.

Lemma 3.2.6. Let X be a right G-variety over K. If H is a sufficiently small good analytic

subgroup of G obtained by exponentiating h, such that the action of H preserves an affinoid

subdomain U of X, then the action of H on OX(U) is jointly continuous.

Proof. Equip OX(U) with the spectral norm. By maximum principle H acts through isom-

etry. Scale h by a power of α we can assume that the operator norm of x ∈ h on OX(U)

is less than 1. Therefore, if f ∈ OX(U), since x.f = lim
t∈L,|t|→0

exp (tx).f − f
t

, we see that

|| exp (tx).f − f ||U ≤ ||tx.f ||U ≤ ||f ||U |t|. In other words, the orbit map of : H → OX(U) is

continuous. Therefore, the morphism H ×OX(U)→ OX(U) is continuous by [14] 3.1.1.
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Definition 3.2.7. Let X be a smooth right G-variety. A twisted differential algebra ATX
associated to TX is a G-equivariant twisted differential algebra if ATX is G-equivariant as a

OX -module and there is a morphism of Lie algebras igK : gK → ATX , such that

1. The G-equivariant structure is compactible with the ring structure of A. i.e. g ∈ G(K)

acts on ATX as ring homomorphism.

2. igK is G-equivariant, if gK is equipped with the conjugation action of G.

3. The gK -action on ATX that comes from differentiating the G-action (see Remark 3.2.5)

is adigK
= [igK (−),−].

Remark 3.2.8. The definition of equivariant twisted differential algebras is modeled based

on [4] section 1.8. It implies that i : OX → ATX is G-equivariant.

Example 3.2.9. If X is a smooth right G-variety, then DX is a G-equivariant twisted

differential algebra. The G-equivariant structure is determined by the equivariant structure

on OX and TX . The Lie algebra map igK : gK → DX is defined in Remark 3.2.5.

3.3 G-equivariant D∞-modules on smooth rigid analytic varieties

In section 3.3, we assume that X is a smooth right G-variety over K of dimension d, and ATX
is a G-equivariant twisted sheaf of differential algebra associated to TX . We also assume

that there exists a good analytic open subgroup H of G such and an open affinoid cover {Ui}

of X such that the action of H preserves each Ui. We shall define the abelian category of

coadmissible G-equivariant A∞TX -modules.

3.3.1 Coadmissible equivariant D∞-Modules on smooth rigid analytic

affinoid varieties

The goal of this subsection is to define coadmissible H-equivariant A∞TX |U -modules, where

U = Spa(A,A◦) is a small affinoid subdomain of X, such that TX |U is trivial, and H is a

52



good analytic open subgroup of G that acts on U .

Lemma 3.3.1. Let U be an admissible formal model of U obtained by an admissible formal

bow-up of Spf(A◦). Then there exists a open compact subgroup H ′ of G such that H ′ acts

on OU (rig(V)) for V ∈ BU. In particular, we see that for any affinoid subdomain V of U ,

there exists a compact open subgroup of G that acts on OU (V ).

Proof. Consider ATX = DX and use the notations from section 2.3.1 and 3.2.1. There

exists a good analytic open subgroup H′ of H obtained by exponentiating h and N ∈ N

such that the image of h under the morphism gK → DX |U (defined in Example 3.2.9) lies

in ATN ,U. Therefore we have a morphism of sheaves of rings Û(h)K → ÂTN ,U,Q. Since

K[H◦1 ] ↪→ Û(h)K via exponential map, we see that H ′ := H◦1 acts on OU(V)⊗OK K.

Recall in section 2.3.1, we choose a set sections {ξ1, ξ2, ..., ξd} of TX |U that trivialize

TX |U as a free OU -module, and ξ̃i liftings of ξi in F1(ATX |U ). For n >> 0, replacing H by

a smaller good analytic open subgroup if necessary, we can assume that

1. The image of αnh under the morphism gK
igK−−→ ATX lies in ATn,U.

2. H · αnξ̃i ⊆ Γ(U, F1(ATn,U)).

3. H · sp∗(OX)(V) ⊆ sp∗(OX)(V) for V ∈ BU. (by Lemma 3.3.1)

Therefore we have a morphism of sheaves of rings U(αnh)→ ATn,U, which extends to a

morphism of sheaves of algebras Û(αnh)K → ÂTn,U,Q. Taking inverse limit over n, we get

a morphism between sheaves of Fréchet-Stein algebras U(gK) → A∞TX |U that extends the

morphism U(gK)→ ATX |U .

Definition-Lemma 3.3.2. By Lemma 3.2.2 there is an algebra homomorphism K[H◦n+1]→

Û(αnh)K , so we can define the sheaves of OU-modules AH◦Tn,U
:= ÂTn,U,Q ⊗K[H◦n+1] K[H◦],

and AH
◦
TX ,U := lim←−n

AH
◦

Tn,U
. Then
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1. AH◦Tn,U
is a left (resp. right) coherent sheaf of noetherian Banach algebras. i.e. AH◦Tn,U

is a left (resp. right) coherent sheaf of rings, such that if V ⊆ U is open affine, then

AH◦Tn,U
(V) is a left (resp. right) noetherian Banach algebra.

2. AH◦TX ,U is a sheaf of Fréchet-Stein algebras on BU.

3. The isomorphism Γ(U,AH
◦
TX ,U) ' lim←−n

Γ(U,AH
◦

Tn,U
) realizes Γ(U,AH◦TX ,U) as a Féchet-

Stein algebra.

Proof. Let V ∈ BU. By the above discussion, we see that H acts on Γ(U, F1(ATn,U))

and on F1(ATn,U)(V). Hence H acts on ATn,U(V) and on ÂTn,U(V). It follows that

ÂTn,U,Q(V) ⊗K[H◦n+1] K[H◦] has an algebra structure. Since the morphisms of sheaves of

algebras

K[H◦n+1]→ Û(αnh)K → ÂTn,U,Q(V)

are H-equivariant, we get a continuous morphism between algebras

Û(αnh)K ⊗K[H◦n+1] K[H◦]→ ÂTn,U,Q(V)⊗K[H◦n+1] K[H◦].

1. By Lemma 2.3.1, we see that ÂTn,U,Q is a coherent sheave of noetherian Banach

subalgebras of finite index in AH◦Tn,U
. It follows that AH◦Tn,U

is also a coherent sheave of

noetherian Banach algebras.

2. The flatness of the transition morphism AH◦Tn+1,U
→ AH◦Tn,U

can be shown by the same

arguments in Lemma 3.2.2.

3. It follows from Lemma 2.3.1.

Lemma 3.3.3. If V ∈ BU, or V = U, there is an isomorphism

AH
◦
TX ,U(V) ' A∞TX (rig(V))⊗̂U(gK)

Dla(H◦, K)
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of (A∞TX (rig(V)), Dla(H◦, K))-bimodules.

Proof. The conclusion follows from the following isomorphisms:

A∞TX (rig(V))⊗̂U(g)
Dla(H◦, K)

'−→ lim←−n
ÂTn,U,Q(V)⊗Û(αnh)K

(Û(αnh)K ⊗K[H◦n+1] K[H◦])

'−→ lim←−n
ÂTn,U,Q(V)⊗K[H◦n+1] K[H◦]

'−→ AH
◦
TX ,U(V)

Lemma 3.3.4. A coherent AH◦Tn,U
-module has trivial higher cohomology groups and is gen-

erated by its global sections.

Proof. A coherent AH◦Tn,U
-module is coherent over ÂTn,U,Q. The result follows from Propo-

sition 2.3.9.

If M is a coadmissible Γ(U,AH◦TX ,U)-module, similarly as in Definition-Lemma 2.3.10, we

could associate to M a sheaf MU of AH◦TX ,U-module on U in the following way:

MU := lim←−n
AH

◦
Tn,U

⊗
Γ(U,AH◦TX,U)

M,

such that if V ∈ BU, then we have the isomorphisms

MU(V)
'−→ lim←−n

AH
◦

Tn,U
(V)⊗

Γ(U,AH◦Tn,U
)
Mn

'←− AH
◦
TX ,U(V)⊗̂

Γ(U,AH◦TX,U)
M,

where Mn := Γ(U,AH◦Tn,U
)⊗

Γ(U,AH◦TX,U)
M is a finite generated module over Γ(U,AH◦Tn,U

).
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Lemma 3.3.5. Let H′ be a good analytic subgroup of G, such that H′ is a normal subgroup

of H.

1. The natural homomorphism AH ′◦TX ,U → A
H◦
TX ,U between sheaves of Fréchet-Stein algebras

realizes AH◦TX ,U as a coadmissible module over AH ′◦TX ,U.

2. Let M be a coadmissible module over Γ(U,AH◦TX ,U), then by [28] Lemma 3.8, M is also a

coadmissible module over Γ(U,AH
′◦
TX ,U). We have the following isomorphism of sheaves

of coadmissible modules over AH ′◦TX ,U:

AH
′◦
TX ,U⊗̂Γ(U,AH′◦TX,U)

M
'−→ AH

◦
TX ,U⊗̂Γ(U,AH◦TX,U)

M

In particular, the definition of MU is independent of the choices of H.

Proof.

1. If g is a representative of ḡ ∈ H◦/H ′◦ in H◦, then

Dla(H◦, K) '
⊕

ḡ∈H/H ′
Dla(H ′◦g,K) ' Dla(H ′◦, K)⊗K[H ′]◦ K[H◦].

It follows that AH
◦
TX ,U ' A

H ′◦
TX ,U ⊗K[H ′◦] K[H◦] as a finite AH ′◦TX ,U-module.

2. If V ∈ BU , then AH◦TX ,U(V)⊗̂
Γ(U,AH◦TX,U)

M

'−→ lim←−n
(ÂTn,U,Q(V)⊗K[H◦n+1] K[H◦])⊗

(Γ(U,ÂTn,U,Q)⊗K[H◦n+1]K[H◦])
Mn

' lim←−n
ÂTn,U,Q(V)⊗

Γ(U,ÂTn,U,Q)
Mn

' A∞TX (rig(V))⊗̂A∞TX (U)M

56



Definition-Lemma 3.3.6. If V ∈ BU , by Lemma 3.3.3 and Lemma 3.3.1 there exists a good

analytic open subgroup H such that A∞TX (V )⊗̂U(gK)
Dla(H◦, K) has a Fréchet-Stein algebra

structure. If M a coadmissible module over A∞TX (U)⊗̂U(gK)
Dla(H◦, K), then

M̃(V ) := (A∞TX (V )⊗̂U(gK)
Dla(H◦, K))⊗̂(A∞TX (U)⊗̂U(gK )

Dla(H◦,K))M

is a coadmissible module over A∞TX (V )⊗̂U(gK)
Dla(H◦, K). Lemma 3.3.5 shows that

M̃(V ) ' A∞TX (V )⊗̂A∞X (U)M

and therefore M̃ is a presheaf. In fact M̃ is a sheaf on U , which will be called the sheaf of

coadmissible equivariant A∞TX |U -module associated to M .

Proof. Let U be an admissible formal model of U obtained by an admissible formal blow-up

of Spf (A◦). There is an isomorphism MU → sp∗(M̃) of A∞TX ,U-modules. By Lemma 2.2.11,

we see that M̃ is a sheaf.

3.3.2 Coadmissible Equivariant D∞-Modules on smooth rigid analytic

varieties over K

Definition 3.3.7. A sheaf of coadmissible G-equivariant A∞TX -moduleM is a sheaf of A∞TX -

module that satisfies the following conditions:

1. M is a G-equivariant OX -module, whose OX -module structure is compatible with the

inclusion OX → A∞TX .

2. There exists an open cover of affinoid subdomains {Ui}i∈I such that TX |Ui is free,

and good analytic open subgroup Hi of G such that M|Ui is isomorphic to M̃i (see

Definition-Lemma 3.3.6), where Mi is a coadmissible A∞TX (Ui)⊗̂U(gK)
Dla(H◦i , K)-

module.
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3. TheK[H◦i ]-module structure onM(Ui) is compatible with theA∞TX (Ui)⊗̂U(gK)
Dla(H◦i , K)-

module structure on Mi.

Lemma 3.3.8. Let U ⊆ X be an open affinoid with TX |U trivial, and M is a coadmissible

G-equivariant A∞TX -module on X. Then

1. M|U is isomorphic to M̃ (see Definition-Lemma 3.3.6), where M is a coadmissible

A∞TX (U)⊗̂U(gK)
Dla(H◦, K)-module, for a sufficiently small good analytic open sub-

group H of G. In particular, we see that the definition of coadmissible G-equivariant

modules is independent of the choice of affinoid open covers of X.

2. M|U has trivial higher cohomology.

Proof. Let {Ui}i∈I be an open affinoid cover of X such that TX |Ui is free, and good analytic

open subgroups Hi of G such thatM|Ui∩U is isomorphic to M̃i, where Mi is a coadmissible

A∞TX (Ui ∩ U)⊗̂U(gK)
Dla(H◦i , K)-module. Since U is quasi-compact, we can assume that I

is finite. By Proposition 2.3.9, let U be an admissible formal model of U obtained by an

admissible formal blow-up of Spf(O◦X(U)) with associated specialization map sp : U → U,

such that {Ui} is an open cover of U with sp−1(Ui) = Ui ∩ U . By passing to a finite

refinement, we can assume that Ui is affine. Then there exists a good analytic open sub-

group H such that sp∗(M|U )|Ui is associated to a coadmissible module over AH◦TX ,U(Ui).

By Lemma 3.3.4 and Lemma 2.2.12, we see that there is a coadmissible module M over

A∞TX (U)⊗̂U(gK)
Dla(H◦, K) such that MU

'−→ sp∗(M|U ). It follows that M̃ → M|U is an

isomorphism. Since Hi(U, sp∗(M|U )) = 0 for i ≥ 0, we conclude that Hi(U,M|U ) = 0 for

i ≥ 0.

IfM andN are sheaves of coadmissibleG-equivariantA∞TX -modules, define HomG
A∞TX

(M,N )

to be the set of morphisms of sheaves of A∞TX -modules that are also G-equivariant. Let

Modcoad
G (A∞X ) be the category of coadmissible G-equivariant A∞TX -modules.
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Proposition 3.3.9. ModcoadG (A∞X ) is an abelian category.

Proof. This follows from Lemma 3.3.7 and [28] Proposition 2.1.

3.4 Beilinson-Bernstein localization of admissible locally analytic

representations of G

In this section we assume that G is a connected and split reductive linear algebraic group

over L. Fix a Borel subgroup B of G with the unipotent radical N. We will use the letter T

to denote the universal Cartan B/N and implicitly use the canonical isomorphism between

T and a maximal torus of G. Let W be the Weyl group of the root system of G relative

to B, and let ρ be the half sum of positive roots. Let B be the Borel subgroup opposite

to B. Let b, n, n and t be the Lie algebra of B, N, N and T over L respectively. Let

X := G/B be the flag variety, and let Y := G/N be the base affine. The right G-action

on X (resp. Y) is given by (g′B).g := g−1g′B (resp. (g′N).g := g−1g′N) for g ∈ G and

g′B ∈ X (resp. g ∈ G and g′N ∈ Y). The T-action on Y is given by bN.gN := gbN for

bN ∈ T and gN ∈ Y, and the T action commuters with the G-action. We know that the

natural projection ξ : Y → X is a T-torsor. Let X, Y , G, T be the rigid analytification of

XK , YK , GK and TK respectively.

We also assume that there exists a connected and split reductive linear algebraic group

G over OK with a Borel subgroup B whose unipotent radical is N and the universal Cartan

H, such that G ⊗OK K ' GK , B ⊗OK K ' BK , N ⊗OK K ' NK and H ⊗OK K ' TK .

Let g◦, b◦, t◦ be the Lie algebra of G, B, H respectively. Then g◦ can be viewed as

a OK -Lie sublattice of gK , and G/B is a smooth projective scheme over OK such that

(G/B)⊗OK K ' XK . Let X be the formal completion of G/B along the special fiber, let Y

be the formal completion of G/N along the special fiber , and let Ĥ be the formal completion

of H along the special fiber. Thus X (resp. Y or Ĥ) can be viewed as an admissible formal
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model of X (resp. Y or T). Let sp : X → X be the specialization map. The Bruhat

decomposition implies that there exists a finite open affine cover {Ui} that trivializes the

torsor ξ̂, such that Ui ' Spf(OK〈x1, x2, ..., xm〉).

Let us recall the construction of the construction of GK -equivariant twisted differential

algebras on XK [4] section 3.2, 2.5 and 1.8. The Poincaré-Birkhoff-Witt theorem gives a

vector space decomposition:

U(gK) ' U(tK)⊕ (nKU(gK) + U(gK)nK).

Let Z(gK) be the center of U(gK). The composition of the natural inclusion Z(gK) →

U(gK) with the projection U(gK)→ U(tK) is an injective algebra homomorphism, which is

called the Harish-Chandra homomorphism. We have the following commutative diagram by

[1] 4.10:

Z(gK)
Harish-Chandra−−−−−−−−−−→ U(tK)yinclusion

ydifferentiate the T-action on Y

U(gK) −−−−−−−−−−−−−−−−−−−−−−−−→
differentiate the right G-action on Y

((ξ∗DY)T)⊗L K

Since U(tK) can be naturally identified with the ring of polynomial functions on t∗K , the

translation t∗K → t∗K : x → x − ρ gives rise to an automorphism of U(tK). Composing

the Harish-Chandra homomorphism with this automorphism of U(tK), we get the Harish-

Chandra isomorphism Z(gK)
'−→ U(tK)W, and U(tK)W is isomorphic to the polynomial

ring over K. For λ ∈ t∗K , let Kλ be the corresponding 1-dimensional representation of U(tK),

which gives rise to a homomorphism χλ : Z(gK)→ K. If β ∈ t∗K , then χλ = χβ if and only

if λ− ρ and β− ρ are in the same W-orbit. Let Kθ be the character of Z(gK) associated to

the Kλ−ρ. Define DX,λ := (ξ∗DY)T ⊗U(tK) Kλ−ρ, and U(gK)θ := U(gK) ⊗Z(gK) Kθ. We

know by [4] 3.2 that DX,λ is a G-equivariant twisted differential algebra.

Remark 3.4.1. If we further assume that G is semi-simple, simply connected and p is a very

good prime for G as in [1] 6.8, or G is GLn and n 6= pm for m ∈ N, then:
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1. Let Z(g◦) be the center of U(g◦). By [1] 6.9 we see that Z(g◦) is isomorphic to a

polynomial ring over OK . Let F.Z(g◦) be the filtration on Z(g◦) induced from the

PBW filtration on U(g◦). Let Z(g◦)n :=
∑
αinFiZ(g◦), let Ẑ(g◦)n be the p-adic

completion of Z(g◦)n, and let (Ẑ(g◦)n)K := Ẑ(g◦)n⊗OK K. There exists N ∈ N such

that αN (λ − ρ) maps t◦ to OK . Let (λ − ρ)n be αNn(λ − ρ), which can be viewed

as an element of HomOK (αnt◦,OK), and (λ − ρ)n ⊗OK K = λ − ρ. Thus (λ − ρ)n

determines a 1-dimensional representation of Û(αnt◦)K , which will also be written

as Kλ−ρ. If Z(gK) is the center of U(gK), then the isomorphism lim←−n
(Ẑ(g◦)n)K '

Z(gK) realizes Z(gK) as a Fréchet-Stein algebra. By [1] 6.10, we see that there is

a ring homomorphism Z(g◦)n → U(αnt◦), which agrees with the Harish-Chandra

homomorphism after tensoring K over OK . Thus we get a morphism between Fréchet-

Stein algebras lim←−n
(Ẑ(g◦)n)K → lim←−n

Û(αnt◦)K ' U(tK). We will also use Kθ to

represent the 1-dimensional representation of (Ẑ(g◦)n)K determined by (λ− ρ)n.

2. By [19] Thereom 2.1.6, the Harish-Chandra isomorphism extends to an isomorphism

of Fréchet-Stein algebras Z(gK)
'−→ U(tK)

W ' rigid analytic functions on Ad. Also

[19] tells us that the center of Dla(G,K) is isomorphic to Dla(Z,K)⊗̂U(zK)
Z(gK),

where Z is center of G and z is the Lie algebra of Z.

Definition-Lemma 3.4.2. Let {Ui} be a finite open affine cover of X that ξ|Ui
is trivial,

and Ui be the rigid analytification of Ui. If U ⊆ Ui is an open affinoid, define DX,λ(U) :=

OX(U)⊗OX(Ui)
DX,λ(Ui).

1. DX,λ is a sheaf of G-equivariant twisted differential algebra associated to TX .

2. Let D∞X,λ be the Fréchet completion of DX,λ as defined in section 2.4.1. Then D∞X,λ|Ui '

D∞X |Ui.

3. Assume the assumptions in Remark 3.4.1 and define U(gK)θ := U(gK)⊗̂Z(gK)
Kθ.

There is a morphism between sheaves of Fréchet-Stein algebras U(gK)θ → D∞X,λ that

extends the morphism between algebras U(gK)θ → DX,λ.
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Proof.

1. The G-equivariant structure on DX,λ comes from the G-equivariant structure on

((ξ∗DY)T)⊗LK, and the Lie algebra morphism gK → DX,λ comes from differentiat-

ing the right G-action on Y, i.e. the Lie algebra morphism gK → ((ξ∗DY)T) ⊗L K.

It follows that DX,λ is a sheaf of G-equivariant twisted differential algebra associated

to TX .

2. It follows from the isomorphism DX,λ|Ui
' DX|Ui

.

3. Define Û(αng◦)K,θ := Û(αng◦)K ⊗(Ẑ(g◦)n)K
Kθ. Then Û(αng◦)K,θ is isomorphic to

Û(αng◦)K/{the ideal generated by z − θ(z) for z ∈ Z(gK)}

as topological algebras. Thus the isomorphism lim←−n
Û(αng◦)K,θ ' U(gK)θ realizes

U(gK)θ as a Fréchet-Stein algebra. The existence of the morphism U(gK)θ → D∞X,λ
follows from [1] 4.10.

Let us briefly recall the definition of the sheaf of completed twisted differential operators

D̂λ−ρn,K of deformation parameter n on X introduced in [1]. Let D′ (resp. D) be the sheaf

of crystalline differential operators on G/N (resp. G/B). Since ξ̃ : G/N → G/B is a

left H-torsor, the sheaf of algebra D̃ := (ξ̃∗D′)H is locally isomorphic to D ⊗OK U(t◦).

Let F.D̃ be the filtration on D̃ induced from the order filtration on D′. Let D̃n be the

sheaf associated to the presheaf U →
∑
i

αinFiD̃(U). Then D̃n is locally isomorphic to

D⊗OK U(αnt◦). Let (
̂̃Dn)K be the p-adic completion of D̃n tensoring K over OK , and define

D̂λ−ρn,K := (
̂̃Dn)K ⊗Û(αnt◦)K

Kλ−ρ. From the construction, we see that D̂λ−ρn,K |Ui ' ÂTn,Ui,Q,

where ATX = DX,λ and T = TX|Ui , and lim←−n
D̂λ−ρn,K ' sp∗D∞X,λ as sheaves of topological

algebras.
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Let H be a sufficiently small good analytic open subgroup ofG obtained by exponentiating

h, we can assume that h ⊗OL OK is a OK -Lie sublattic of g◦. Therefore, we have algebra

homomorphisms K[H◦n+1] → Û(αnh)K → Û(αng◦)K . Similar to Definition-Lemma 3.3.2,

let us define DH◦X,n,λ := D̂λ−ρn,K ⊗K[H◦n+1] K[H◦], and DH
◦

X,λ := lim←−n
DH

◦
X,n,λ. It follow from

the construction that there are isomorphisms of sheaves of topological algebras DH◦X,n,λ|Ui '

AH◦Ui,Tn
, and DH◦X,λ|Ui ' A

H◦
TX ,Ui .

Lemma 3.4.3. Let λ be regular and dominant, and assume the assumptions in Remark 3.4.1.

The category of finitely generated modules over Û(αng◦)K,θ⊗K[H◦n+1]K[H◦] is equivalent to

the category of coherent modules over DH◦X,n,λ.

Proof. By [1] Theorem 6.12, the category of finite generated Û(αng◦)K,θ-modules is equiva-

lent to the category of D̂λ−ρn,K -modules, via the functors D̂λ−ρn,K ⊗Û(αng◦)K,θ
− and Γ(X,−). It

follows that the functors DH◦X,n,λ⊗(Û(αng◦)K,θ⊗K[H◦n+1]K[H◦])
− and Γ(X,−) induce an equiv-

alence between the category of finitely generated modules over Ûαng◦)K,θ ⊗K[H◦n+1] K[H◦],

and the category of coherent modules over DH◦X,n,λ.

Theorem 3.4.4. Let λ be regular dominant, and assume the assumptions in Remark 3.4.1.

Define Dla(G,K)θ := Dla(G,K)⊗̂Z(gK)
Kθ. Then the following statements are true:

1. U(g)θ
'−→ Γ(X,D∞X,λ) as Fréchet-Stein algebras.

2. The category of coadmissible U(g)θ-modules is equivalent to the category of sheaves of

coadmissible D∞X,λ-modules on X.

3. Dla(H◦, K)θ
'−→ Γ(X,DH◦X,λ) as Fréchet-Stein algebras.

4. The category of coadmissible Dla(G,K)θ-module is equivalent to the category of sheaves

of coadmissible G-equivariant D∞X,λ-modules on X.

Proof.
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1. This follows from the following isomorphisms:

Γ(X,D∞X,λ) ' Γ(X, sp∗D∞X,λ) ' Γ(X, lim←−n
D̂λ−ρn,K ) ' lim←−n

Γ(X, D̂λ−ρn,K )

' lim←−n
Û(αng◦)K ⊗(Ẑ(g◦)n)K

Kθ ' Dla(G,K)θ

2. If M is a coadmissible U(g)θ-module, we can define a presheaf ∆(M)pre, such that if

U ⊆ X is an open affinoid such that TX |U is trivial, then

∆(M)pre(U) = D∞X,λ(U)⊗̂U(g)θ
M.

Let ∆(M) be the sheafification of ∆(M)pre, then ∆(M)|U ' ∆(M)pre|U is the sheaf

associated to the coadmissible module D∞X,λ(U)⊗̂U(g)θ
M over D∞X,λ(U) by Definition-

Lemma 2.3.10. In particular, we see that ∆(M) is a sheaf of coadmissible D∞X,λ-module

Definition 2.4.4.

If M is a sheaf of coadmissible D∞X,λ-module, then Mn := D̂λ−ρn,K ⊗(sp∗D∞X,λ) sp∗M is

a coherent D̂λ−ρn,K -module on X, such that Mn+1 ' D̂
λ−ρ
n+1,K ⊗D̂λ−ρn,K

Mn, and sp∗M'

lim←−n
Mn. By Lemma 2.4.5 and Theorem 6.12 in [1] that Γ(X,M) ' Γ(X, sp∗M) '

lim←−n
Γ(X,Mn) is a coadmissible U(g)θ-module.

Then we can check directly that ∆ ◦ Γ ' Id and Γ ◦∆ ' Id.

3. This follows from the isomorphisms:

Γ(X,DH
◦

X,λ) ' Γ(X, lim←−n
D̂λ−ρn,K ⊗K[H◦n+1] K[H◦])

' lim←−n
Γ(X, D̂λ−ρn,K )⊗K[H◦n+1] K[H◦]

' lim←−n
(Û(αng◦)K ⊗K[H◦n+1] K[H◦])⊗

(Ẑ(g◦)n)K
Kθ

' Dla(H◦, K)⊗̂Z(gK)
Kθ

64



4. If M is a coadmissible Dla(G,K)θ-module, and U ⊆ X is an open affinoid such that

TX |U is trivial, Let H be a sufficiently small good analytic open subgroup of G. Then

D∞X,λ(U)⊗̂Γ(X,D∞X,λ)M ' (D∞X,λ(U)⊗̂U(gK)
Dla(H◦, K))⊗̂Dla(H◦,K)θ

M

is a coadmissible module over D∞X,λ(U)⊗̂U(gK)
Dla(H◦, K). Let us define a presheaf

∆pre(M), such that ∆pre(M)(U) = D∞X,λ(U)⊗̂Γ(X,D∞X,λ)M . Let ∆(M) be the sheafifi-

cation of ∆pre(M). Since ∆pre(M)|U is the sheaf associated to the coadmissible module

M of D∞X,λ(U)⊗̂U(gK)
Dla(H◦, K), we see that ∆pre(M)|U ' ∆(M)|U by Definition-

Lemma 3.3.6. Moreover, if g ∈ G, x ∈ D∞X,λ(U) and m ∈M , we have a natural action

g.(x⊗m) := g.x⊗g.m. Therefore ∆(M) is a G-equivariant coadmissible D∞X,λ-module.

IfM is a G-equivariant coadmissible D∞X,λ-module, by Lemma 3.4.3 and Lemma 2.4.5,

we see that Γ(X, sp∗M) is a coadmissible module over Γ(X,DH◦X,λ). It follows that

Γ(X,M) is a coadmissible module over Dla(H◦, K)⊗̂Z(gK)
Kθ. Because Γ(X,M) is

a G-representation, and Dla(G,K) '
⊕

ḡ∈G/H◦
Dla(H◦, K) ∗ δg, where g is a set of

representatives of ḡ in G, we see that Γ(X,M) is a coadmissible Dla(G,K)θ-module.

Then we can check directly that ∆ ◦ Γ ' Id and Γ ◦∆ ' Id.

3.5 Examples

3.5.1 G = Zp

In this subsection, let X = Spa(K〈y〉, K◦〈y〉), and G = X is the abelian additive group. Let

t := ∂
∂y be the generator of the Lie algebra g of G. We have isomorphisms exp : pnZp

'−→ Gn,

for n > 0. Therefore,

Dla(G,K) ' lim←−n
K〈pnt〉 ⊗K[Gn+1] K[Zp]
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Let Dn = {
∑
n≥0

as(p
nt)s | an ∈ K〈y〉, lim

s→+∞
as = 0} whose multiplication structure

is given by ty = yt + 1. Then a coadmissible G-equivariant D∞X -module is a coadmissible

module over lim←−n
Dn⊗K[Gn+1]K[Zp]. We see that Dla(G,K) ' lim←−n

(Dn/Dny)⊗K[Gn+1]K[Zp]

can be viewed as a G-equivariant D∞X -module. Geometrically, Dla(G,K) is a sheaf on X

supported on Zp-rational points.

Remark 3.5.1. By Amice transform Dla(G,K) can be identified with the rigid analytic

function on the open unit disk:

Dla(G,K) ' lim←−n
K〈p−

1
nT 〉,

where t = log(1 + T ). The latter ring is usually represented as R+ in the world of (φ,Γ)-

modules. Therefore, inverting t in R+ can be interpreted as inverting differential operators.

3.5.2 G = GL2 and Principal series

Let U0 = Spa(K〈x〉, K◦〈x〉), and U1 = Spa(K〈y〉, K◦〈y〉) be the standard cover of P1. The

GL2-action on P1 is given by

a b

c d

x = ax+b
cx+d , and

a b

c d

 y = c+dy
a+by . Assume that y = 0

is the point ∞.

Let w =

0 1

1 0

, e =

0 1

0 0

, f =

0 0

1 0

, h =

1 0

0 −1

. Then the center of U(gl2)

is generated by z =

1 0

0 1

 and the Casimir C = 1
2h

2 + ef + fe.

Fix two characters δ1, δ2 : Q∗p → K. Let δ = δ1δ
−1
2 χ−1, and ω = δ1δ2χ

−1. Let

κ(δi) = δ′i(1) be the derivative of δi for i = 1, 2. Assume κ(δ) = κ(δ1) − κ(δ2) − 1 does

not equal any nonegative integer. Let DP1,κ(δ) be the twisted differential operator given

explicitly by gluing as follows: i0 : DP1,κ(δ)|U0

'−→ DU0
, i1 : DP1,κ(δ)|U1

'−→ DU1
, and

i1i
−1
0 |U0∩U1

is P → x−κ(δ)Pxκ(δ). The homomorphism α : gl2 → Γ(P1,DP1,κ(δ)) is given
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by:

i0 ◦ α : h→ −2x∂x − κ(δ) i1 ◦ α : h→ 2y∂y + κ(δ)

e→ −∂x e→ y2∂x + κ(δ)y

f → x2∂x + κ(δ)x f → −∂y

z → −κ(δ1)− κ(δ2) + 1 z → −κ(δ1)− κ(δ2) + 1

Then C acts as −1
2((κ(δ1)− κ(δ2))2 − 1).

Recall that the locally analytic principal series is: Ban(δ1, δ2) =

{f ∈ Cla(Qp, K)| δ(x)f(
1

x
) can be extend to an analytic function in a neighborhood of 0},

with GL2(Qp)-acts as

a b

c d

 f(x) = δ2(ad− bc)δ(a− cx)f(dx−ba−cx). Another description of

the locally analytic principal series is:

IndG
B̄

(δ1χ
−1 ⊗ δ2) = {φ ∈ Cla(G,K)|φ(gb) = (δ1χ

−1 ⊗ δ2)(b−1)φ(g) if b ∈ B̄},

with GL2(Qp)-action gφ(x) = φ(g−1x), where B̄ is the lower triangular Borel subgroup. We

see that f(x) = φ(

1 x

0 1

) defines an isomorphism of G-representations

IndG
B̄

(δ1χ
−1 ⊗ δ2)

'−→ Ban(δ1, δ2).

By [12] Proposition 4.14 we have the relationship between locally analytic principal series

and (φ,Γ)-modules:

(Ban(δ1, δ2))∗ = R+(χδ−1
1 )�ω−1 P1.

Let Ī be the mod p lower triangular Iwahori subgroup, so the action of Ī on P1 preserves

67



U1. Let N̄ be the unipotent subgroup of B̄. Then Ī ∩N ' U1(Zp) via

1 0

y 1

→ y. Define

M1 := (IndĪ
Ī∩B((δ2 ⊗ δ1χ−1))∗.

By Proposition 5.1 in [29], M1 is a finitely generated Dla(Ī , K)-module, and as Dla(Ī∩N,K)-

modules, we have

M1 ' Dla(Ī ∩N,K) ' R+.

Under the second isomorphism (Amice) we see that

1 0

0 a

 acts T → (χδ−1
1 )(a)(1 + T )a.

Therefore, we can write M1 ' R+(χδ−1
1 ).

Using the notations in section 3.5.1, as Ī ∩ N̄ -equivariant D∞P1,κ(δ)
(U1)-modules, we have

M1 ' lim←−n
(Dn/Dny)⊗Gn+1

K[Ī ∩ N̄ ].

Thus M1 is a finitely generated module over Dla(Ī , K)⊗̂U(gl2)
D∞P1,κ(δ)

(U1), and M̃1 :=

D∞P1,κ(δ)
|U1
⊗̂D∞

P1,κ(δ)
(U1)M1 is therefore an Ī-equivariant D∞P1,κ(δ)

|U1
-module on U1. Note

that the stalk M̃1,∞ =
⋂
n≥0

K〈pn∂y〉 is the delta function supported at ∞, which has an

action of the upper triangular Borel B such that

1 0

0 p

 acts as ∂y → (χδ−1
1 )(p)p∂y.

Similarly, if I is the mod p upper triangular Iwahori subgroup, define

M0 := (IndI
I∩B̄(δ1χ

−1 ⊗ δ2))∗

Then M0 ' Dla(I ∩ N,K) ' R+ such that

a 0

0 1

 acts as T → (χδ−1
1 )(a)(1 + T )a.

Therefore M̃0 := D∞P1,κ(δ)
|U0
⊗̂D∞

P1,κ(δ)
(U0)M0 is an I-equivariant D∞P1,κ(δ)

|U0
-module on U0.

It follows that M̃1(U0 ∩ U1) ' R+(χδ−1
1 )� Z×p ' M̃0(U0 ∩ U1). If we glue M̃1 and M̃0
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via

∫
Z×p

f(x)µ0 =

∫
Z×p

δ2(−1)δ(−x)f(
1

x
)µ1 for µi ∈Mi and i = 1, 2. Then by the definition

of Colmez’s � construction and Čech cohomology, the global section of the glued sheaf is

R+(χδ−1
1 )�ω−1 P1.

Remark 3.5.2. We wonder whether it is possible to give D
\
rig � P1 a similar interpretation.

Remark 3.5.3. The locally analytic Steinberg is the global section of Ω1
U where U ↪→ P1 is

the Drinfeld upper half plane. However, Ω1
U is naturally a G equivariant D∞P1,2

-module.
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