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ABSTRACT

In this article, we construct the abelian category of coadmissible p-adic D°°-modules on
a smooth rigid analytic variety over a complete discrete valued field. We also consider
equivariant D°°-modules and prove a p-adic analogue of the Beilinson-Bernstein localization

theorem for admissible locally analytic representations.
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CHAPTER 1
INTRODUCTION

1.1 Notations

Throughout this article, we use the following notations.

Let K be a complete discrete valued field of mixed characteristic, let O be its ring of
integers, and let 7 be an uniformizer. Assume p equals the the characteristic of the residue
field k = Ok /(7 ), and assume that the p-adic norm |-| on K is normalized so that |p| = %.
Assume a € K such that 0 < |a| < 1.

In Chapter 3, let L C K be a finite extension of Qp, and Of, be its ring of integers. We
will assume that a € L* such that 0 < |a| < 1 and o~ € pOy.

If R is a p-adically complete commutative noetherian algebra, then R(x1,x3,...,xy) is
the p-adic completion of the polynomial ring R[x1,z9,...,zy], and (R ®y7 Q)(x1,z2, ..., Tn)
is (R{x1,x9,...,2n)) ®7 Q. The symbol A := B means A is defined to be B. The symbol
n >> 0 (resp. n << 0) means there exists NV € Z, such that n > N (resp. n < N).

If A is an algebra with an increasing filtration Fj, A, then the associated graded algebra is
denoted as ng A. If Ais a sheaf of algebra on a topological space X with an increasing filtra-
tion Fy, A, then grf” A is the sheaf associated to the presheaf U — @ F, 1 A(U)/F,AU),
where U is an open subset of X. If (X, Ox) is a locally ringed spacenand F is a locally free
sheaf of finite rank, then the symmetric algebra of F over Ox is Symg . F. The i-th graded
piece of Symp, F is Symlbx F.

If X is a scheme over L, then X := X XSpec(L) Spec(K). If V' is a vector space over L,
then Vi =V ®p K.



1.2 Main results

In this article, we explore the potential p-adic analogues of the beautiful theory of D-modules
on smooth complex varieties.

In Chapter 2 we define a sheaf of infinite order twisted differential operators A%, which
carries a natural Fréchet topology, on a smooth rigid analytic variety X over K. We construct
a category M Coad(.A%o ) of modules over A with appropriate finiteness properties. The key
result is Proposition 2.3.9, which tells us that a sheaf in M Coad(AQro ) satisfies an analogue
of Serre’s theorem of quasi-coherent sheaves on schemes. Then it follows that the category
M Coad(A%’—o) is abelian. This category is first constructed and studied by Ardakov and
Wadsley in [2] and [3]. In comparison, the approach in this article makes more systematic
use of formal models and techniques from the paper [1]. We also construct a sheaf of
microlocal differential operators £ on the cotangent bundle of X whose restriction to the
zero section is the sheaf of differential operators D.

In Chapter 3 we define a category Méoad(A%’—o ) of equivariant A%-module with appro-
priate finiteness properties and prove that this category is abelian. As an application, we
show in Theorem 3.4.4 that under some technical assumptions, when X is the flag variety of
a reductive algebraic group G over L, and G(L) is the L-rational points of G viewed as a
p-adic Lie group, the category of admissible locally analytic representations of G(L) with a
fixed infinitesimal central character is equivalent to the category of coadmissible equivariant
twisted DF-modules, where X is the rigid analytification of X. Similar results are also
obtained by Huyghe, Patel, Schmidt and Strauch in [17]. In comparison, we do not consider
divided power structures because of Lemma 3.2.2, nor do we assume the infinitesimal central

character is trivial.



CHAPTER 2
D>*-MODULES ON SMOOTH RIGID ANALYTIC VARIETIES
OVER A COMPLETE DISCRETE VALUED FIELD

2.1 Introduction

To motivate the constructions in this article, let us briefly recall some stories of analytic D-
modules on a smooth complex analytic manifold. Suppose X is a smooth complex manifold
and ¢ : Z — X is a closed analytic subset of codimension d with the sheaf of ideals Z,.
Let Dx and Dy be the sheaves of differential operators on X and Z respectively. The
classical Kashiwara’s equivalence says that the subcategory of coherent D x-modules which
are annihilated by a power of Z5 is equivalent to the category of coherent Dy-modules, via
the functors

N —i(Dx .z @p, N), if N is a coherent D z-module,

and
M — i_l?‘{ompx (Dx ¢z, M), if M is a coherent Dx-module such that I'(7(M) =~ M,

where by definition I'i7(M) = lil)nHom@X(OX/Ié,M) for any Ox-module M, and
k
Dx .y is the transferring (i~ 1Dy, Dy)-bimodule ([21] Theorem 4.30). In particular, under

the Kashiwara’s equivalence, the algebraic local cohomology
Bz x = 11_2;15:1;%)((0)(/15, Ox) ~ix(Pxez ®p, Og)

of Z in X, is a coherent D y-module. However, if we consider the local cohomology RIT 7(0x),
where I' (M) = {s € M | s|x\ z = 0} for any O x-module M, and RIT is the d-th derived
functor of I' 7, this is not coherent over Dx anymore. It is demonstrated in Mebkhout’s paper

[24] that there exists a sheaf of infinite order differential operator operator with convergence
3



conditions DF, such that DF ®p . Bz x ~ RIT ,(Ox).

The most important feature of a coherent D x-module is the existence of its characteristic
variety, which is a conic closed analytic subset of the cotangent bundle of X, involutive with
respect to the canonical symplectic structure on the cotangent bundle. When the associated
characteristic variety is Lagrangian, we say the coherent Dx-module is holonomic. The
Riemann-Hilbert correspondence states that the category of regular holonomic D xy-modules

is equivalent to the category of perverse sheaves via the de Rham functor
DRy : M — RHomp, (Ox, M), if M is a regular holonomic D y-module.

There is no explicit inverse functor to the de Rham functor. However, if we are willing to

consider DF-modules, for any holonomic D x-module M, we have (Theorem 3.4.11 in [6]):
DY @p, M ~RHomg, (Solx(M),Ox),
where the solution functor Solx is related to DRy explicitly:
Solx (M) = RHomp, (M,0x) ~ DRx(Dx(M)),

and

Dx (M) = RHomp, (M, Dx ®0, Q)_(l)[ dimension of X |

is the duality functor. Moreover, there exists a unique regular holonomic D x-module Mg
such that DF Qpy Mreg = DY ®p, M, Myeg contains all the regular holonomic D x-
submodules of DF ®@p, M, and Solx (M) = Sol x (Myeg) (Theorem 5.2.22 [6]).

To explore p-adic D-modules, let us first look at a simple case. Let X = Spa(Qp(x), Zp(z))
be the unit disk, let Z = {0} be the origin, and let j : U < X be the open immersion,
where U = X\{0}. Then the algebraic local cohomology of Z in X is By, x ~ Dx /Dxu,

and the local cohomology of Z in X is RIF{O}((’)X) ~ 740y /Ox. In order to have
4



RlF{O}(OX) ~ DY ®py (Dx/Dxr), we study the convergent condition of jOp/Ox
at Z and propose the following definition of a presheaf of infinite order differential operators
DF:

-

DEV) =1 a0 i

120

—— 00,
1— 00

a; € Ox(V),for any n € N ‘

where 0 is the dual to the differential dz, and V' C X is an open affinoid subdomain. We
observe that this definition generalizes easily to any smooth rigid analytic variety.

If X is a smooth rigid analytic variety over K, it is proved in Definition-Lemma 2.4.1
that DF is a sheaf of Fréchet-Stein algebra (see Definition 2.2.9). A Fréchet-Stein algebra
is a inverse limit of noetherian Banach algebra with flat transition maps. In [28], Schneider
and Teitelbaum systematically developed a general theory of coadmissible modules over
Fréchet-Stein algebras. Here being codamissible is the analogous condition of being coherent.
In Lemma 2.4.5 we prove that there exists a good definition of coadmissible modules over
sheaves of Fréchet-Stein algebras. For example, when X is the unit disk, M is a coadmissible
DS -module, if and only if I'(X, M) is a coadmissible module over I'(X, DY) and M(V') ~
D?(V)@F(X’D%O)F(X,M> is a coadmissible module over DF(V), for any V' C X open
affinoid subdomain. We also remark that it is proved in [3] that Kashiwara’s equivalence
holds for coadmissible DE-modules.

In section 2.5, we give the definitions of p-adic microlocal differential operators £x and

ES on the cotangent bundle 7% X of X.

2.2 Preliminaries

2.2.1 Preliminaries about sheaves on ringed topological spaces

Let (X, Ox) be a ringed topological space and let Bx be a set of basis for the topology on
X.

A presheaf of Ox-modules F on By is a rule which assigns to each U € Bx a Ox (U)-



module F(U), and to each inclusion V' C U of elements of Bx a morphism of O x (U)-modules
Py« F(U) = F(V), such that if W C V C U in By, then plj, = p}j, 0 p¥/. A sheaf Ox-
modules F on By is a presheaf of Ox-modules on By such that for any U € By, any

covering U = U U; with U; € Bx, and any coverings U; NU; = U Uijr with Uy, € By,
el kEIZ]
for any collection of sections s; € F(U;) such that Si|Uijk = s Uiji there exists a unique

s € F(U) such that s; = s|,.
There are no distinctions between sheaves of O x-modules and sheaves of O x-modules

on By because of the following lemma.

Lemma 2.2.1. The natural restriction functor from the category of sheaves of O x-modules

on X to the category of sheaves of Ox-modules on Bx is an equivalence.

Proof. This is [30] Lemma 30.13.
[

Convention-Notation 1. Without further specifying, if X is a scheme, we take Bx to be the
set of open affine subschemes of X. If X is a formal scheme, we take Bx to be the set of
open affine formal subschemes of X. If X is a rigid analytic variety, we take Bx to be the
set of open affinoid subdomains of X. By the theorem of Gerritzen-Grauert, every affinoid
subdomain is a finite union of rational subdomains, so equivalently we can take Bx to be

rational subsets.

Convention-Notation 2. If U = {U;};cs is an open cover of X, fix a well-ordering of the

index set I. Let C"(U, F) be the associated Cech complex, where

CPUF):= ][] FUaNUaN..0UVs,)

ap<ar<...<ap

and the coboundry maps &, : CP(U, F) — CPTH(U, F) are:

p+1
(50-)040,...7041,4_1 = Z(_1)jgao,...,aj,1,aj+1,...,ap|Ua0ﬁUa1ﬂ...ﬁUap+l .
7=0
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Let H'(U, F) be the i-th cohomology of the complex C"(U, F).

Lemma 2.2.2. Let (X,Ox) be a ringed topological space and Bx is a set of basis for the

topology of X such that
1. If U € By, then U is quasi-compact.
2. If U,V € Bx, then UNV is a finite union of elements in By .

Let FP™ be a presheaf Ox-modules on Bx equipped with an increasing exhaustive filtration
of presheaves of Ox-modules F.F such that F;F = 0 for i << 0. Assume the presheaf

U — grF (FP(U)) is a sheaf on Bx. Then
1. FP" is a sheaf on Bx.

2. If X 1is a quasi-separated noetherian scheme and gr,F}"pTe is a quasi-coherent Ox -

module, then FP"¢ is a quasi-coherent O x-module.
Proof. Let U € By and let U C Bx be a finite open cover of U. Suppose U;NU; = U Uijk
kEIZ‘j

for finitely many U1, € Bx.

1. To show FP' is a sheaf on By, it suffices to check that

0 — FPe(u) 2% cOw, 7oy 25 T T FP W)
1<J k‘elm

is an exact sequence of abelian groups, where (610);1, = 05| Uiip — ajl Usin

This is reduced to checking that

0 — grf o) 2 O, grF 7o) 25 T T exf PP (Ui0)
1<J k‘GIZJ

is exact.



2. Let V C U in By. It suffices to check that the natural morphism of Ox (V')-modules
Ox (V) @0y @) FP(U) = FP(V) is an isomorphism, which is reduced to checking

that Ox (V) ®o 1) grf FPre(U) — g FPr(V) is an isomorphism.

]

We summarize the following general results proved by Berthelot from [5] section (3.3):

Theorem 2.2.3. Let X be a locally noetherian formal scheme, and let T C Ox be an ideal
of definition. Suppose D is a sheaf of rings on X, with a homomorphism Oy — D such that

the image of T is central in D. Further assume D satisfies the following conditions:

1. D~lim D/I'D, and D/T'D is quasi-coherent as a left Ox /T Ox-module.

2

2. If 4 C X is open affine, the ring D() is left noetherian.
Let M be a D-module. The following statements are true:

1. If X s affine, the following statements are equivalent :

(a) For alli € Z21, the D/T'D-module M/I' M is coherent, and M ~ lim M /T M.
]

(b) There exists an isomorphism M ~ lim M, where {M;} is a projective system
)
of coherent D/I"D-modules, and the transition morphisms induce isomorphisms

Mip1 /T Mipy ~ M.

(c) There exists a finite module M over D :=T'(X,D) and an isomorphism
M = 1im(D/T'D) @ p1ipy (M/T'M),

(_

(3
where I :=T(%,Z) and T'(X,D/T'D) ~ D/I'D.

(d) The D-module I'(X, M) is finite, and for any 4 C X open affine, the homomor-
phism DY) @p I'(X, M) = M(Y) is an isomorphism.

(e) The D-module M is coherent over D.
8



2. If X is noetherian and £ Uily is an open cover of X. Let M; be a coherent D|y(, without
p-torsion, where i = 1,2. Suppose there is an isomorphism € : M1 ®7 Q ~ Mo ®7 Q
on 1 Ns. Then there exists a coherent D-module M without p-torsion extending

My, together with an isomorphism M ®y, (@m2 ~ Mo ®y Q extending e.
We will need the following version of [16] (13.2.4):

Proposition 2.2.4. Let C' = {C,,} ez be a projective system of complexes of K-Fréchet
spaces such that the differentials are continuous. Assume H'™Y(C;) — Hi_l(C'ﬁ_l) is a

continuous morphism between K -Fréchet spaces with dense image. Then
H'(lim C;,) ~ lim H(C;,).
(im ;) = ln H'(C;,)

2.2.2  Review of the formal models of a rigid analytic variety over K

We refer to [9] section 9.3 for the definition of a rigid analytic space over K. Huber ([18]
1.1.11) constructed a fully faithful functor r from the category of rigid analytic spaces over
Sp(K) to the category of adic spaces over Spa(K, Of), such that for affinoids r(Sp(A)) =
Spa(A, A°). In this article, a rigid analytic variety X over K is a quasi-separated reduced
rigid analytic space locally of topologically finite type over K, viewed as an adic space via the
functor r. The notation X 7€ will be used if we wish to consider only the classical points
in X, and X7 ig equipped with the Grothendieck topology generated by finite unions of
rational subdomains. All fibre products are considered within the category of rigid analytic
spaces over K.

A formal scheme X over O is admissible, if X is locally of topologically finite presentation
over O and (7 )-torsion free. The special fiber of X, which is denoted as X}, is a scheme of
finite type over k. In [26] Raynaud constructed a functor rig from the category of admissible
formal schemes over O to the category of rigid analytic spaces over K which commutes
with fibre products. A formal scheme X over O is an admissible formal model of the rigid

analytic variety X over K, if X is admissible and rig(X) is isomorphic to X.
9



Recall from [15] section 7.1-7.3 that a prime filter p on X7€ (resp. X}) o the set of
closed points of X},) is a collection of admissible open subsets (resp. Zariski open subsets),

such that
1. X €pand 0 € p.
2. fUy,Ugy € pthen Uy NUy € p.
3. fVepand V C U then U € p.

4. f U € p and {U;};cs is an admissible open covering (resp. open covering) of U, then

there exists ¢« € I such that U; € p.

Let P(XTat€) be the set of prime filters of X7%€  Then P(XT€) is a topological
space with open sets {P(UL%€) | UT%€ is an admissible open in X7%€}. By [? ] there is
an isomorphism between topological spaces P(X Tate) =X , that is compatible with open
immersions.

Let P(X}, ) be the set of prime filters of X. Then P(X}, ) is a topological space with
open sets {P(Ly, 7) | LUy, is a Zariski open in X, }. There is an isomorphism as topological
spaces between Xj, — P(X) 1), that sends p € X}, to the prime filter {8l Zariski open in X}, |

(the closure of p) N4y, # (0}, and is compatible with open immersions.

Proposition 2.2.5. Let X be a quasi-compact rigid analytic variety over K. Suppose
{Ui}tier is a finite affinoid open cover of X. Then there exists a quasi-compact admissi-

ble formal model X over Ok of X with an open cover {i;};c1 such that:
1. 3; is a finite union of open affines.

2. The associated specialization map sp : X — Xj 1S a continuous surjection between

topological spaces.

3. sp_l(ﬂi) = U;, and the inclusions Oy, — sp«Oy, induces the isomorphisms

Oy, ®7 Q =~ sp Oy, for anyi € I.
10



Proof. By [26] there exists a quasi-compact admissible formal model X" of X. By [7] Lemma
4.4, there exists an admissible formal blowing-up X — X’ with an open cover {;};cs of X
such that 4; is a finite union of open affines, and rig(;) ~ U; for any i € I.

We briefly recall the construction of the specialization map using rig-points in [8] 8.3.
If z € X, then there exists an open affine admissible formal subscheme Spf(.A) of X such
that rig(Spf(A)) is an open affinoid neighborhood of z. If € X7 then z is given by a
maximal ideal m of A ®@,. K. Then p :=mN A is an non-open prime ideal of A such that
A/p is alocal integral domain of dimension 1, and 7 : A®p, k — (A/p)®0, k determines a
unique closed point in X;,. Define sp(z) = Z and this construction is independent of choices

of Spf(.A). By [8] page 200 Proposition 8, we see that sp is surjective from X Tate

onto Xy ..
To extend sp to X, we view a point € U; as a prime filter in P(UZT atey “and define

sp(z) to be the prime filter
{U | U is an open subscheme of £; such that sp~ (W) € z}.

By the proof of [? | Lemma 3.4 and gluing, we get a continous surjection sp : X — X, such

that if & C X}, is open affine, then sp~1(8() ~ rig(L1).

Example 2.2.6. X is an affinoid rigid analytic variety over K.

Assume X ~ Spa(A, A°), where A is a reduced Banach algebra topologically finite type
over K, and A° is the O-subalgebra of A consisting of power-bounded elements. Then X
is quasi-compact. By [9] p.251 Corollary 6, we see that A° is topologically of finite type over
Ok, and in particular is noetherian. Thus Spf(A°) is an admissible formal model of X, and
the specialization map coincides with the canonical reduction in [9] 6.3. If X’ — Spf(A°) and
X" — X' are admissible formal blow-ups, then X" — Spf(A°) is also an admissible formal
blow-up by [8] p.190 Proposition 11. Therefore, given any finite affinoid open cover of X, an

admissible formal model X of X that satisfies Proposition 1 can be obtained by an admissible

11



formal blow-up of Spf(A°). In other words, there exists an open coherent ideal sheaf a of
Spf(A°), such that X is the formal completion of X along its special fiber, where X is the
blow up of Spec(A°) along I'(Spf(A°), a). Explicitly, assume that {gg,91,...,gm} C A° is a

set of generators of I'(Spf(A°),a). There is an open affine cover {{;};—0 1. of X, where

8 =~ Spt(A°(y;;J # 1)/(9:y; — 9537 # 1) modulo (7 )-torsion ),

We observe that the generic fiber rig(4l;) is a rational subset of X. The global section of
Oy is an Op-lattice of A, since A ~ I'(X,0x ®z Q) ~ I'(X,0x) ®7 Q. The fact that X
is proper over Spec(A°) implies that I'(X, Ox) is a finite module over A°. Because A° is
integrally closed in A, we conclude that I'(X, Oy) ~ A°.

From the construction, we also see that Ly := aOx is an invertible sheaf on X, and 4{; is
the locus in X where g; generates Ly. If £ is the ample invertible sheaf on the blow-up X ,
then the formal completion of £ along the special fiber of X is Ly. For any Ox-module M
and s € Z, let M(s) be M ®@p, L%, and let (s)M be L3 ®0, M. Then M(s) ~ (s)M as
Ox-modules. By the theorem of formal functions, we know that H’(X, Lx(s)) = 0 for s > 0
and ¢ > 1. Since {Lx(s);s € Z} generate the category of coherent sheaves of Oy-modules

on X, we see that H' (X, M(s)) = 0 for a coherent Oy-module M, for s > 0 and i > 1.

Remark 2.2.7. A choice of admissible formal model X of X may be viewed as a choice of
integral structure on Oy . If 4 C X is an open affine formal subscheme, then a presentation
Ox(U) ~ Ok (x1,x9,...,xN) /1, where [ is a finite generated ideal, gives rise to a presentation
of Ox(rig(#1)). The gauge norm on Ox(rig(il)) defined by the Op-lattice Ox (L) is the

residue norm associated to the presentation
0= I ®o, K— K(z1,79,...,71N) = Ox(rig(i)) — 0.

On the other hand, we have the spectral norm on Ox (rig(l)) with respect to which the

unit ball is OS5 (rig(4)). Since the spectral norm is equivalent to all the residue norms by
12



the open mapping theorem [8], we conclude that O% (rig(4l)) and Ox(4) are commensurable

O-lattices in Ox (rig(L)).

Lemma 2.2.8. Let X be an affinoid rigid analytic variety over K. If M is a presheaf on
Bx such that spxM is a sheaf on By, for any admissible formal model X of X obtained by
an admissible formal blow-up of Spf(I'(X, 0% )). Then M is a sheaf on By.

Proof. Let U € By, and let {U;};c1 be a finite open cover of affinoid subdomains of U. By
Proposition 2.2.5 there exists an admissible formal model X of X obtained by an admissible
formal blow-up of Spf(I'(X,0%)), such that there is an open cover {l l;};cr of X with
sp~1(4;) = U; and sp~1(4) = U. Then the conclusion follows from the assumption that

spxM is a sheaf on By for X.

2.2.8  Coadmissible modules over sheaves of Frechet-Stein algebras on
admissible formal models

We refer to [28] for the properties of the category of coadmissible modules over Fréchet-Stein

algebras.

Definition 2.2.9. Let X be a ringed space such that the structure sheaf O is a K-algebra,
and let By be a basis for the topology of X. A sheaf of Ox-algebra D is a sheaf of Fréchet-
Stein algebras on By if there exists a projective system of Ox-algebras {Dy,},en, and an

isomorphism D ~ li%n Dy, of Ox-algebras such that

1. Dy, is a coherent sheaf of rings.

2. If U € By, then D, (U) is a left and right noetherian K-Banach algebra, and the

transition morphisms Dy, (U) — Dy,41(U) are flat and continuous.

3. f U,V € Bx and V C U, then the restriction morphisms Dy, (U) — Dy (V) is continu-

ous.
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Lemma 2.2.10. Let f : D — B be a morphism between Fréchet-Stein algebras, and let M
be a coadmissible module over D. Assume the isomorphisms D ~ li%n D,, and B ~ li%n B,
realize the the Fréchet-Stein structures of D and B, such that f factors through D, — By

for each n € N. Then the isomorphism
BRpM ~ 11%11 By ®p, Mp,

where My, = Dy, ®p M, realizes BRpM as a coadmissible module over B.

Proof. Let kery be the kernel of the surjection Bn@)KMn — Bp ®p, Mp, so kery, is the the
closure of the K-linear span of the set {ba @ m —b® am | b € By,a € Dp,m € My} in
Bn® g Mp,.

Let ker be the kernel of the surjection BRx M — BR&pM, so ker is the closure of the
K-linear span of the set {ba @ m —b®am | b€ B,a€ D,m € M} in B M.

Next, consider the exact sequence

We know that BRyg M ~ li%n Bn®p M,. Since B — By, D — Dy and M — M, have
dense image, we see that ker — kery, also has dense image. Therefore ker ~ li%n ker, and
R! li%n kery = 0. The desired isomorphism follows.

Since My, is a finite module over Dy, we see that By, ®p, My, is finite module over By,.
Moreover, By ®@p, Mp =~ Bp ®p, (Dn ®p,, . Mn+1) = Bn ®@p, , (Bat1 ®p,,y Mpt1)-

O

Lemma 2.2.11. Suppose D ~ li%nDn 1s a sheaf of Fréchet-Stein algebras on By, and the
isomorphism D = T'(X,D) ~ li%n ['(X,Dy) realizes I'(X,Dy) as a Fréchet-Stein algebra. If
M s a coadmissible module over D, then for U € By, Lemma 2.2.10 implies that M(U) =

D(U)&pM is a coadmissible module over D(U). In this way we get a presheafﬂ on Bx.

14



If the functors I'(X,—) and Dy Or(X,p,) ~ induce an equivalence between the category of

coherent Dy,-modules and the category of coherent T'(X, Dy)-modules, then
1. M,, =Dy, ®F(X,D) M is a coherent Dy-module.
2. M ~ li%n My, In particular M isa sheaf on Bx .

Proof. By [28] Corollary 3.1, we see that M,, := I'(X, D) ®px,p) M is a finite generated
module over I'(X, Dy,), so My, ~ D, (X, D) M, is a coherent D,,-module.

For any U € By, we have My (U) = Dy (U)®r(x p,,)Mn. Therefore M(U) ~ li%n./\/ln(U).

]

Lemma 2.2.12. Let X be an admissible formal model of a rigid analytic variety X over K.

Let D ~ li%n Dy, be a sheaf of Fréchet-Stein algebras on By, such that

1. Dy :=T(X,Dy) is a left and right noetherian K-Banach algebra for n € N, and the

isomorphism D :=T'(X,D) ~ li%n Dy, realizes D as a Fréchet-Stein algebra.
2. If sl € By, the restriction morphism Dy, — Dy (L) is continuous for n € N.

Assume that the functors I'(X, —) and Dy, ® p, — induce an equivalence between the category

of coherent Dy-modules and the category of coherent Dy-modules. If there exists a finite open
affine cover {;}Y;icr of X and coadmissible modules M" over D(8L;) such that My, =~ M.
Then

1. T'(X, M) is a coadmissible module over D, and M ~ Fm) (defined in Lemma 2.2.11).
2. H'(X,M) =0 fori>1.

Proof. Denote My, := Dy, @p M and M,, :==T'(X, My,).
1. We know that M’ ~ 1%11 M;, where M}, = D (&) ®p(y,) M'. Since

Maly; =~ Dalyy, ®D|u,- M? = Dyly, D, (84;) My,
15



we see that My, is a coherent module over D,,. It follows that M, := I'(X, M) is a

finite module over I'(X, Dy,). Since

Mp =Dy @p, ; Mnt1~Dn®p, ., Myt

n+1 n+1

~ Dy, XD, (Dn ®Dn+1 Mn+1)a

we see that My ~ Dy, ®p, ., M. Since M|y, ~ li%n Maly;, the natural morphism

n+1

M — li%n M, is an isomorphism. Thus I'(X, M) ~ li%n M, is a coadmissible module

—_——

over D, and M ~ T'(X, M).

. Consider the Cech complex of M,, associated to a finite refinement {B;}jcy of the

cover {4; };cr. Then
{C.({mj}jeLMn)}neN

is a projective system of K-Fréchet spaces with continuous differentials. By [28] The-

orem A, we see that
H({B;} jeg, Muy1) = HO{D;}jeq, Ma)
has dense image. Therefore, Proposition 2.2.4 implies the isomorphism
H' ({3} e, M) ~ lim H' ({3} je.s, Mn) = 0.
Hence for ¢ > 1 we can apply Proposition 2.2.4 again to conclude that
H'({B;} e, M) ~ lim H'({8;} e, Mn) = 0.

Thus H (X, M) =0 for i > 1.
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2.2.4 Rewiew of smooth and étale morphisms of adic spaces

We first recall from [18] 1.6 and 1.7 some properties of smooth and étale morphisms of rigid

analytic varieties.

f

Proposition 2.2.13. Let X — Y be a smooth morphism between rigid analytic varieties

over K. Then the following statements are true:
1. The relative sheaf of differentials Q}(/Y 15 a locally free coherent O x -module.

2. If Y ~ Spa(B, B°) is an affinoid, then for any x € X, there exists an open affinoid

netghborhood U of x such that:

(a) Qﬁ(/Y|U is free.
(b) There ezists an étale morphism U 9, Spa(B(z1,x9,...,14),CT) such that f|y =
ho g, where CT is the integral closure of B°(x1,x9,...,xq)) in B{wy,x9,...,24),

and Spa(B{x1, 9, ...,z),CT") i> Spa(B, B°) is the natural projection.

3. If X ~ Spa(A, A°) and Y ~ Spa(B, B°) are affinoids, then f is étale if and only if
there exists a presentation of X as A ~ B{xy,x9,....,xN)/(f1, f2, -, [N), such that

of:
fi € B(z1,x9,...,xN) and the determinant of the Jacobian matrix (l) is invertible

&Ej
mn A.

Convention-Notation 3. A rigid analytic variety X over K is smooth if the morphism X —
Spa(K, K°) is smooth. By Proposition 2.2.13 we know that for any = € X, there exists an

open affinoid neighborhood U of x, such that Q%(|  is free and there exists an étale morphism
U = Spa(K (a1, 29, - 2), K1, 79, - 24)).

We shall call {1, 29, ...,24} a system of local coordinates around = on X.
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Remark 2.2.14. Let Tx = Hom@X(Q%(, Ox) be the tangent sheaf of X. If X is smooth over
K, a choice of local coordinates for X gives rise to a set of generators {1, &2, ..., &4} C Tx (U)
of Tx | as a free Ox|y-module, where &; is dual to dx;.

If £l is an admissible formal model of U over Ok, and let Ty := Homp, (€, Oy) be the
tangent sheaf of l. It follows from Proposition 2.2.5 that the natural morphism Qill ®7Q =
sp*Qllj is an isomorphism, which induces the isomorphism 75 ®7 Q ~ sp«Tyr. Since Oy
is (mg)-torsion free, there is an inclusion 75 — Ty ®7 Q. Thus, we get the isomorphisms

I, Ty) @7 Q ~ T4, Ty ®7 Q) =~ Tx (U).

Based on the definitions of a smooth Lie algebroid and the associated twisted differential

algebras on schemes given in [4] and [20], we define the following:

Definition 2.2.15. A smooth Lie algebroid 7 on a smooth rigid analytic variety X is a
locally free coherent Ox-module with a morphism of Ox-modules ¢ : T — Tx and a

K-linear pairing [-,-] : T ® g T — T such that
1. [-,-] is a Lie algebra bracket and o commutes with the brackets.
2. For ly,lp € T and f € Ox, one has [l1, flo] = fll1,l2] + o(l1)(f)lo.

Definition 2.2.16. A twisted sheaf of differential algebras A7 associated to a smooth Lie
algebroid 7T is a sheaf of algebras equipped with a morphism between sheaves of algebras

i: Ox — A7, and an increasing filtration F.. A7 of O x-modules such that
1. Ar =|JFuAy and F, = 0if n < 0.
n

2. 4 induces an isomorphism O x = Fy A1 of Ox-modules.
3. Fm AT - Fig AT € Fing+mp A7, for my,mo € N

4. [Fmy A1, Fing A1) C Fipy4mg—1AT, for mp,mg € N, where the bracket is the commu-

tator.
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5. There is an isomorphism of Lie algebroids: gr{ Ar~T.

6. The natural morphism Syme, (7) — arf’ (A7) is an isomorphism of sheaves of Ox-

algebras.

A morphism between twisted sheaves of differential algebras A7 and A'T which are
associated to a smooth Lie algebroid 7 is a morphism Ay — A/T of sheaves of filtered

O x-algebras.

Lemma 2.2.17. If T is a smooth Lie algebroid on X, there exists a twisted sheaf of differ-

ential algebras U(T), which is called the universal enveloping algebra of T, such that

1. There is a morphism T T, F1U(T) that splits the exact sequence of Ox-modules

0—>OX1>F1U(T)—>T—>0.

2. 1f f € Ox and & p €T, then [i7(€),i(f)] = i(a(§)(f)) and [i(£), i ()] = iT([€, pl)-

Proof. We first recall some constructions from [25]. Define Fo(U(T)) := Ox and Fy(U(T)) :

Ox®T,andi: Ox — F(U(T)) is the natural inclusion. For U € By, the Ox(U)-module
Fi1(U(T))(U) is a Lie algebra over K with the Lie bracket [r+a, s+ pu| = o(a)(s) —o(u)(r) +
[, ] for 7,5 € Ox(U) and o, € T(U). Let UT(Ox(U), T(U)) be subalgebra of the uni-
versal enveloping algebra of Fy(U(T))(U) generated by the image of Fy(U(T))(U). Let
V(Ox(U), T(U)) be the quotient of U (Ox (U), T (U)) by the two-sided ideal generated by

{r-z—urz) |r e Ox(U),z e LUT))U)},

where 7 - 2z denotes the multiplication in UT(Ox (U), T (U)) and

v P UT))(U) = UT(Ox(U), T(U))
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is the canonical inclusion. Let ¢7- be the composition of morphisms
T(U) = FU(T))U) = UHOx(U), T(U)) - V(Ox (U), T(U)).

For s € 270, let V5(Ox(U), T(U)) be the left Ox (U)-submodule of V(Ox (U), T(U)) gen-
erated by Ox (U) and at most s elements of the image of T(U) in V(Ox(U),T(U)), and
define Vp(Ox (U), T(U)) := Ox(U). By [25] section 2 and Theorem 3.1, we know that
FiU(T))(U) = V(Ox(U), T(U)) induces an isomorphism

FU(T))(U) = Vi(Ox (U), T(U)),
and moreover,

Symo . (1) (T(U)) = @ Vs(Ox (U), T(U))/Vsu1(Ox (U), T(U))
seN

is an isomorphism as graded O x (U)-algebras.

It follows that we can define a presheaf U(7) such that U(T)(U) := V(Ox(U), T(U))
for U € By, and an increasing exhaustive filtration F;U/(7)P™ such that F;U/(T)P™(U) =
Vi(Ox (U), T(U)) for U € Bx. Since Symp, T ~ grFU(T) as presheaves of O x-modules,
by Lemma 2.2.2 and Lemma 2.2.1, we see that U(T) is a sheaf on X. Let F;U(T) be the
sheafification of F;U/(7T)P™, and we see that U(T) is a twisted sheaf of differential algebras

that satisfies (1) and (2).

Example 2.2.18.

1. If X i) Y is a smooth morphism between smooth rigid analytic varieties over K, then
the relative tangent sheaf Ty /v := Homo (Q%(/Y’ Ox) is a smooth Lie algebroid on
X. IfUC X and V CY are open affinoids such that f(U) €V, then Tx/y(U) is the

set of continuous Oy (V)-derivations from Ox (U) to Ox(U), so Ty y carries a Lie
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bracket. Moreover, the exact sequence of O x-modules
*yl 1 1
0—f QY—>QX—>QX/Y—>O

implies that there is a morphism of O x-modules Ty 1% Z Tx which preserves the Lie

brackets.

2. If X is a smooth rigid analytic variety over K, then the tangent sheaf 7y is a smooth
Lie algebroid and U(Ty) is the sheaf of finite order differential operators on X, which

will be denoted by Dy .

2.3 D*-modules on smooth affinoid rigid analytic varieties over

K

In section 2.3, we assume that X ~ Spa(A, A°) is an affinoid rigid analytic variety over
K and T is a smooth Lie algebroid on X such that 7 is a free Ox-module. Let X be an
admissible formal model of X obtained by an admissible formal blow-up of Spf(A°), with
sp : X — X defined in Proposition 2.2.5. Let At be a twisted sheaf of differential algebras

associated to T .

2.8.1 The Fréchet completion of the twisted sheaf of differential algebra on

smooth affinoid rigid analytic varieties over K

In this subsection we define a completion of A7 which has the structure of a sheaf of Fréchet-
Stein algebra on By (see Definition 2.2.9).

There exists {£1,&a,...{4} C T'(X,T) such that & generates T as a free O x-module. For
n € N, let T, be the free Ox-submodule of sp«T generated by {a"&1, a"&a, ... }. By the
discussion in Remark 2.2.14, we see that there exists N > 0 such that for n > N:

L. [%n, %n] €%,
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2. 0(&) € (X, Tx) € T(X, Tx).

By Definition 2.2.16 we have the exact sequence of O x-modules:
0—>OXZ—O>F1(AT)q—1>T—>0

Let & € Fy (A7) such that ¢1(&) = &. Let F1(Ag, x) be the sheaf associated to the presheaf
F1(Ag, £)P*¢ on X, where Fi(Ag, x)P™(U) is the Ox(4)-submodule of Fi (A7) (sp~1d)
generated by ig(Ox(U)) and a”&;, for 4 € By. It follows from the construction that we have

the following exact sequences of Ox-modules:
0— O0x = Fi(Ag, x) = Tn — 0.

By the structure theorem of coherent Oyx-modules, if 4l is an open affine formal subscheme
of X, then F(Ag, x)P"°[y ~ Fi(Asg, x)y is a sheaf.

Let Ag, x be the sheaf on X associated to the presheaf

Ag:ae(ﬂ) := the subalgebra of A7 (Sp_l(u)) generated by F1(Ag, x)(W),

for 86 € By. Let us define an increasing exhaustive filtration on Ag, x inductively. Let

F;(Asz, x) be sheaf associated to the presheaf
FilAg, 2P () = Fi(Ag, 0P () - Fro (Ag, 1) (1)

for 44 € By and i € 270, and let Fy(Ag, x) := Ox. It follows from the construction that

Fi(Ag, x) - Fj(Ag, x) € Fiyj(Ag, x), and [F(Ag, %)), Fj(Ag, )] € Fiyj-1(Ag, %),

so grf (Ux(%,) is a commutative Oy-ring. Therefore, in addition to the isomorphism
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grf (Az, x) = %, we have a surjective morphism of graded Oy-rings:

Symo, (Tn) — gr’ (As, x).

Since grf’ (Ag, x)) is flat over Ok, the isomorphism SymZbX(T) = grf' (A7) implies
that Symlbx(Tn) — gl (Ag, x) is injective. Therefore Symp. (Tn) — grf’ (Ag, %) is an

isomorphism.

Lemma 2.3.1. Let A\gmx be the p-adic completion of Az, x, and .Zl\rgmgg@ = A\Qm:{ ®z7 Q.

Then the following statements are true:
1. Az, x and “Zin,% are left (resp. right) coherent sheaves of rings.

2. ﬁzn,x,@ is a left (resp. right) coherent sheaf of left (resp. right) noetherian Banach
algebra. i.e. ./zl\rgmx’(@ is a left (resp. right) coherent sheaf of rings, and if 4 C X is

open affine, then ﬁgm%@(u) is a left (resp. right) noetherian Banach algebra.
3. T'(%, ‘an»fv@) is a left (resp. right) noetherian Banach algebra.

Proof. Since g?".F.Agn,x ~ Oxla"{1,a"&s, ..., a"&y], by Lemma 2.2.2, we see that Ag, x is a
quasi-coherent sheaf of Ox-module, in the sense that Az x/ (W%) is a quasi-coherent sheaf
of ((’)x/(w%))—module, for any i € ZZ1. By [28] Proposition 1.2, we also see that Az, x(4) is
left (resp. right) noetherian. By [5] 3.2.3, the p-adic completion ﬁgmx(ﬂ) is left (resp. right)
noetherian. It follows that the algebra .Zl\rgmx’@(ﬂ) is left (resp. right) noetherian. Also, since
A\Sn,%7(@(u) r~ ./Zl\cgmx(il) ®o, K, we may endow “Zl\%,%,(@(u) an K-Banach space structure
with the gauge norm define by the lattice ./Zl\(zmjf(ﬂ). The continuity of the multiplication
follows from the definition.

To show that Ag %, j‘ln,% and ./zl\g:m:{’(@ are left (resp. right) coherent sheaf of rings,
it suffices to show that if {l; C s are open affine formal subschemes of X, the restriction

morphisms from s to 4y are flat. First observe that Ag x(U2) — Ag, x(th1) is flat, since
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gl As x(Us) — grf A (1) is flat. By [5] 3.2.3, the morphism Ag, x(ts) — Az, x(¢h)
is flat. It follows that A\gjmx’(@(ﬂg) — .,Zl\gn,ggv(@(ill) is flat.

Since I'(X, Ox) ~ A° by Example 2.2.6, we see that I'(X, grf’ Az, x) = A°%[@"€1,a"8, ..., a"Ey].
Therefore T'(X, Ag,, %) is left (vesp. right) noetherian, and T'(X, "Z‘En,%#@) is a left (resp.
right) noetherian Banach algebra.

O

Definition-Lemma 2.3.2. Consider the projective system of sheaves {ﬁgn 35@} N with
) ) ne

transition maps induced by the natural inclusions. Define a sheaf of Ox-algebra A%—Ox on X

to be li%n j‘Sm%,Q- Then

1. The definition of AF y is independent of the trivializations of spsT .

2. The admissible blow-up X — Spf(A°) induces an isomorphism
L(SpAA%), AP g a0y) — DX AF ).

Proof. If ¥ is another Ox-submodule of sp,T such that T ®7 Q ~ sp,T, then for n >>
0, there exists N € N such that a_NFlAgn’x C Ay x C aNFl.Ag;n’x, which in-
duces Az, x © Ag x © Ag, v x. Therefore, we get an isomorphism li%n ./Zl\‘zln X0 =
lim Az, 20

(2) follows from Lemma 2.3.1.

Definition-Lemma 2.3.3. If U C X is an affinoid, define

AF x (U) = T(SpOX (), AF g0 1))

Then A% x 1s a presheaf of O x-algebras.

Proof. If Uy C Us are open affinoids in X, for n sufficiently large, we may assume that

al'E; € F(Spf(og((Uj))aTSpf(OS’((Uj)))a for i = 1,2,...,d and j = 1,2. Let T; be the free
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Ospf(o%(Uj))—submodule of sp;«(T) generated by & for i = 1,2,....d, where sp; : X —
Spf(O% (U;) is the specialization map as in Proposition 2.2.5 and j = 1,2. For n sufficiently

large, the homomorphism

F(Spf(O%(Uﬁ),J‘TsQ,n,spf(ogg(Ug)),@) — F(Spf(@%(Ul)),jfl,n,spf(og((m)),@)

induces the restriction morphism

P(SPHO% (U2)), AT sp505, (1)) — TSPHO% (V1) AT 15005, (1))

The restriction morphism is independent of the trivializations of 7T .

Lemma 2.3.4.

1. There is an isomorphism AF 5 = sp«AF i as presheaves of Ox-algebras on By, and

i particular A?ro s a sheaf by Lemma 2.2.8.
2. There is an inclusion of sheaves of Ox -algebras A7 — .,49[0 with dense image.

3. A morphism A1 — .A’T of twisted sheaf of differential algebras associated to T extends

uniquely to a continuous homomorphism between sheaves of O x -algebras A%—O — .A/79°.
4. ,4%9 1s a sheaf of Fréchet-Stein algebra on Bx .

Proof. For U € By, let spyy : U — Spf(O%(U)) be the specialization map described in
Proposition 2.2.5. A choice of trivialization {{;};—12 4 of 7 induces an isomorphism
AT x =~ li%n A\SW:{,Q. Let T), be the OSpf(O%(U))-submodule of sp«(T|7) generated by

a¢ fori=1,2,...,d.

1. The natural inclusion of sheaves of algebras Oy — sp«Ox factors through the inclusion

spxO0% = sp«Ox. For t € By, let U := sp~1(4). For n >> 0, from Lemma 2.3.1 we
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see that Az x(U) — F(Spf((’);((U)),Ag%’spf(o%(U))) are commensurable lattices in

A7(U), and therefore induce an isomorphism .A?ro ) = ,A%.O(U ).

. For n >> 0, we see that Ag Sp(OS (1)) spy«(Arl|r) induces an isomorphism
A spt(03(0))®2Q = sp0+(ATlyr). Hence we have spy. (A1ly) = Az speos (1))
and spy . (Ar1ly) = l%n A‘Ig,Spf(Og((U)),Q' Evaluating on U we get Ar(U) — AF(U)

which gives us an inclusion of sheaves of O y-algebras Ay < A% with dense image.

. There exists N, M € N, such that for n > NN, we have A(I;erMvSPf(Og((U)) — A‘Z;L,Spf((?o v))

such that the following diagram commutes:

Azt Sp0% () @2 Q — Az gpros (1)) @2 Q
spu+(ATD) —  spu(Arlo)

Therefore we get a continuous morphism of Ox (U)-algebras AF(U) — A;QO(U ) that
extends A7 (U) — AL(U).

. We will show that the isomorphism

AF(U) =~ %n I'(Spf(O% (U )),«‘ng,spf(o;((U)),@)

realizes A% (U)-as a Fréchet-Stein algebra. By Lemma 2.3.1 we know
P(Spf(O% (U)), Az, spi(0% (1)),0)

is a noetherian K-Banach algebra. We will apply [14] Proposition 5.3.10 to show that

the transition morphism

I (Spf(O% (1)), Ag

n+1°

Spf(0% (17)),0) = TSpi(O% (U)), “ZSQL,Spf(O%(U)),Q)
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is flat. Let G. be the filtration on I'(Spf(O% (U)), Agln,spf(og(([]))) defined as

Gi = F(Spf(@%(U)), ‘AT/

n+1’

spi(0%, (1)) - T SPHO% (U), FiAzy spe(os, (1))

Then Gy = I'(Spf(O% (U)), Ags

+1,Spf((’)§((U)))' To show that GzG] - GH—jv it suffices

to check that

LSp(O% (U)), FiAzy spros ) - TSPHOX (V) Azr | spros (1)) €

I'(Spf(O% (1)), A‘I;T_"_I’Spf(og((U))) - D(Spf(O% (U)), Fz’AS;L,Spf(Og((U)))-

d d
Fix a multi-index I := (v, 19, ...,vy) € N® and |I| := ZVZ" Let 8£ = Hg@% By
1=1 i=1
induction on i, it suffices to check that if f = aja"u |3£ where a; € O%(U), and

g =a;a "t I9) then

fg€e F(Spf(ogc(U))»Aggﬁl,spf(og(((]))) - T(Spi(O% (U)), Fi1 1Ay, spi(o5, (U))):

Since

f9 = ara o IEIIGT + arlo]], aglalm I e]

and [856] ,ay] has order less than |J|, the conclusion follows. Finally, observe that

gr_GF(Spf(O%—(U)), Afzn’Spf(Og{(U))) is an algebra over I'(Spf(O%(U)), AgnJrl’Spf(Og((U)))

generated by the central elements {a"éi}. Lo
i=1,2,...,

]

Remark 2.3.5. The proofs of Lemma 2.3.4 and Lemma 2.3.1 also imply that the isomorphism
N(X, AF) ~ li%n (%, .ng%@) realizes I'(X,I'(X, A%)) as a Fréchet-Stein algebra.

Example 2.3.6. If T = Tx and A = Dy, we will use DF to represent A,

Let us choose a system of local coordinates = := {x1,x9, ..., x4} on X, which gives rise to
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0 0
5w Dea’ D } CT'(X, Tx) that trivializes Tx as a free Ox-module.
1 ) ZTd

0 0
Since the derivations — are continous, replacing — by oV — for sufficiently large N,

s,
we may assume that 8_«93(([] )) € O%(U) for 1 < i < d. Recall that for a multi-index
)

a set of sections {

d d .
o
I = (v,v9,...,v5) € N? we have |I| = E v; and 9L = H 57 As a Ox (U)-module, we
=1

xXr
>0 0,
U |00

=1 )
where || || is the spectral norm on U. Note that this identification is compatible with

have the following description of DS (U):

ar

ar € Ox(U),for any n € N
an|l|

DX(U) ~ {ZGI@I;

I

the restriction morphisms, and it is straightforward to check that DS is a sheaf by the
maximum principle. If we choose another system of local coordinates z = {z1, 29, ..., 24}
d
0 0z; O 0z;
on U. Then — = —J_— where the Jacobian matrix (—2%) € M, Ox(U)) is
invertible. The convergent condition ensures the definition DS is independent of the choice

of local coordinates.

2.3.2  Coadmissible modules over A% on affinoid rigid analytic varieties

over K

In this subsection, we define the category of coadmissible modules over the sheaf of Fréchet-
Stein algebra AOTO on By, and prove an analogue of Serre’s theorem on quasi-coherent sheaves

for such coadmissible modules.

Lemma 2.3.7. We continue to use the notations introduced in section 2.3.1.

1. Let My be a coherent left .nggg—module. If sl € By , then My(U) is a p-adically

complete coherent left ﬁgmx(ﬂ)—module. Moreover, if U C Ll is open affine, then
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My(0) is isomorphic to

which s also isomorphic to

lim Az, 2(0) ® 4 (1) (Mo(Lh)/me Mo (81))-

2

In particular, we see that

2. If M is a coherent left ﬁgmx’(@—module, then there exists a (g )-torsion free coherent

left ﬁgmx—module My such that M ~ My ®7 Q.

Proof.
1. This immediately follows from Theorem 2.2.3.

2. Consider a finite open affine cover {{;},_1 o n of X. There exists a coherent ﬁgmx\ [T
module M; such that M; ®7 Q ~ M|LLZ-7 fori =1,2,..., N. We may assume M is
(7 g )-torsion free since the W%{—torsion subsheaf M, [ﬂ'jK] of M; is ﬁsn,ad g(;~coherent.
By Theorem 2.2.3 we conclude that there exists a coherent ﬁgmgg—module M without

(7 )-torsion, such that M ~ My ®z Q.

Lemma 2.3.8. A\gn’%v@ has vanishing higher cohomology groups.

Proof. The set {(a"fl)nl(anég)”?..((x”éd)”d | (n1,n9,...,n4) € Nd} forms a basis of Ag, x

as a free Ox-module. As sheaves of Oy ®7 Q-modules, we get an isomorphism

ﬁ%,x,@ ~ (Ox @z Q)(a"&1, 0", ..., a"Ey).
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Let pr: X x g B(]a")4 — X be the natural projection, where

B(|a")? := Spa(K (a1, a"Ey, ..., ™€), K°(a"€, 0"y, ... a"Ey))

is the rigid analytic closed ball of radius ﬁ. Then as spxO x-modules, we have an isomor-
phism

Az, 2,0 = PP Ox o B(|an|)d-

Since X x g B(|a|)? ~ Spa(A® i K (a"&1, a"Ey, ..., aEy)) is an affinoid, we know that the
higher cohomology groups of O X x g B(|a] )¢ vanish. Since the Cech complex of ./Zl\gm:{’@ asso-
ciated to an open affine cover {81;} could be identified with the Cech complex of @ X x g B(|a)
associated with the affinoid cover {rig({;) Xz B(|a|)?}, the higher cohomology groups of
"zl\i"n,%@ vanish.

[

Proposition 2.3.9. A coherent ﬁgmgg?@-module M has trival higher cohomology groups,

and is generated by global sections. Therefore, we have M =~ .@zmx’@@)F( rx,M),

XAz, x0)
where T'(X, M) is finitely generated over I'(X, Az, x @) -

Proof. The arguments are inspired by [1], and we use the notations introduced in Exam-
ple 2.2.6.

Stepl. We show that {ﬁgm%(s); s € Z} generate the category of coherent ./Zl\gm:{(s)—
modules.

Let My be a (7 )-torsion free coherent A\gmx—module, and let my, be ./\/l()/ﬂ'é:{./\/lo. Thus
my is a coherent module over A\Sn,% /7 K-’Zl\fsn,% ~ Az x/mkAg, x, and is quasi-coherent as
a (Ox/(mf))-module. Since my is the direct limit of its coherent (Ox /(7 ))-submodules, we
can find a coherent (O /(7 ))-submodule F of my, such that there is a surjective morphism
¢ Az, x ®0, F — my. The filtration F.Ag, x induces a filtration on A, y/mxAg, x,

such that

grp (Ag, x/TrAs, x) = (Ox/(7K))[@"E1, ", ..., a""E ).
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Define a filtration on my by letting F;(m1) be F;(Ag, x)-F. The associated graded sheaf
grp(myp) is a coherent grp (As, x/7x Ag, x)-module. Thus grp(my) can be viewed as a
coherent O 5 ®40 A°[a"&1, a6, ..., ¢ ]-module on the scheme X. In addition, we have
that (s)(grpmy) ~ L° R0, grpmy as O ¢-modules on X. Consider the following digram of

schemes over Spec(A°):

oy p2
X XSpeC(AO) Ad — Ad

n| |

X —— Spec(A°),
where A% := Spec(A°[a"&1,aEa, ..., a™Ey]). There exists a coherent Ofod—module ny,

such that pj,ny ~ grpmy. Since p;*L is ample relative to pa, the twist

ny(s) :=m Dog, ioyh (p17L)°
pec

is po,-acyclic for s > 0. Since A? is affine,
H'(X Xgpec(ac) A% n1(s)) ~ T(AY, R'pa,ny(s)) = 0

for + > 1 and s > 0. Because p; is an affine morphism, we have the isomorphism
HY(X,p1.(n1(s))) 2~ H(X Xgpec(ac) A% n1(s)). By the projection formula py,(ni(s)) ~
(grpmy)(s), so it follows that H* (X, (grpmy)(s)) = 0 for i > 1 and s > 0. As a result,
each graded component of (grpmy)(s), and therefore each filtered piece Fj(mp)(s), have

trivial higher cohomology groups. Since my(s) ~ UFi(ml)(s) as Ox-modules, and tak-
1

ing cohomology commutes with taking direct limit on noetherian spaces, we conclude that
H'(%,mq(s)) =0 for s> 0 and i > 1.

Let A%z x = L% ®0, Az, x ®0, L£5°, which is a left (resp. right) coherent sheaf of
(s)

rings locally isomorphic to Ag, x. Then (s)my is naturally a Ain x-module. The surjection

¢ induces a surjection .A(;) x ®0y (8)F — (s)my. Since (s)F is Ox-coherent, we can find a

surjection @ Ox — (s)F for s > 0. Thus, there exists a surjection @ .A(;) x =

3]
finite sum finite sum
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(s)my for s > 0.
Consider the following short exact sequence with the second arrow induced by multipli-
cation by W}.(Z

0— (s)m1 — (S)mi+1 — (s)mZ — 0.

Taking the associated long exact sequence of cohomology groups, we get a surjective map
D(%, (s)mjp1) — T(X, (s)m;) for s > 0, because H (X, m;(s)) = 0. Since limm; ~ My,
)
(s)

we are able to lift a finite set of global sections for (s)m; that generate (s)m; as a Ay’ 5-
3

module to global sections of (s) M. By Nakayama’s lemma we see that there is a surjection

—

@ Agﬁ 1 — (8)Mo, where A((;rz x is the p-adic completion of .A((;z x> Which is isomor-

finite sum
phic to L3 ®0, Ag, x ®0, L5°. Thus, we get a surjection @ Az, x(—s) = M.
finite sum

Step 2. By Lemma 2.3.7, we may choose a coherent (7 )-torsion free /Alrgmx—module Mo,

such that My ®7 Q ~ M. Since Ly ®7 Q ~ O ®7 Q, there exists an exact sequence

0— N — @ A\gmx’(@%/\/l—)o,
finite sum
for a coherent A\gm x,Q-module Nj. Taking the associated long exact sequence of cohomology
groups, we see that H' (¥, M) ~ H'*1 (% N}) for i > 1 by Lemma 2.3.8. We conclude by
the dimension shifting argument that M has no higher cohomology.

Let us choose a finite presentation of M:

@ ./zt\gn’x’(@ — @ ./Zl\gm%’(@ — M = 0.

finite sum finite sum

Taking the global sections and applying .Zg;n’ x,0% ( = to the above exact sequence,

XAz, 2.0
we get the following commutative diagram, with exact rows and the first two columns being
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isomorphic:

D Anxo— D Arxe — Ar.xc Bp(x, A, xq) L M) — 0

finite sum finite sum

| g l
@ “1%36,@ — ED ﬁsn,x,@ — M — 0

finite sum finite sum

By diagram chasing, we see that M is generated by global sections.
O

If M is a coadmissible module over I'(X, AF) ~ li%n (%, A\Tm%,@)’ then M ~ li%n My,

where M, is a finitely generated I'(X, A\gm%@)—module, and

My ~T(X, A{me’(@) ®F($,ﬁsn %,0) Mps1.

By Definition-Lemma 2.2.11 we can associate to M a sheaf My of AF y-modules on X in

the following way:

Mf = h%n AET“x’Q ®F(%,A\‘Zn7x7(@) Mn
If 31 € By, then My () ~ A%x(u)<§>F(3€7A$_o)M is a coadmissible A (4)-module.

Definition-Lemma 2.3.10. If M is a coadmissible module over I'(X, ATF), let us define
a presheaf of A%O—module M on X in the following way: if U € Bx , then M(U) :=
A%—O(U)(@F(X7A%9)M is a coadmissible module over AF(U) by Lemma 2.2.10. Then M is
a sheaf, and we call M the sheaf of coadmissible A%—O-module associated to the coadmissible

I'(X, AF)-module M.

Proof. By Definition-Lemma 2.2.11 and Lemma 2.3.4, we have the isomorphism My =

sp*]TJ of sheaves of A% x-modules. By Lemma 2.2.8, we see that M is a sheaf.
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2.4 D*-modules on smooth rigid analytic variety over K

In section 2.4, let X be a smooth rigid analytic variety over K, let 7 be a smooth Lie
algebroid on X, and let A7 be a twisted differential algebra associated to 7. We shall glue

the constructions on affinoids in section 2.3 to obtain some global results.

2.4.1 The Fréchet completion of a tunsted sheaf of differential algebra on

smooth rigid analytic varieties over K

Definition-Lemma 2.4.1. Let {U;};cr be an affinoid open cover of X such that Ty, is free,
and let A?fi,T be the Fréchet completion of AF|y, on U; as in Definition-Lemma 2.5.3. By
Lemma 2.3.4, we have the isomorphisms A(()](;T|UiﬂUj ti> AOU(;’7—|U].QU¢, such that t;; = tj_z-l
and ti, = tj . ot;j. Therefore we can glue A%i,T and get a sheaf of Ox -algebras A%{Ui}id.
Then

1. There is an inclusion of sheaves of Ox-algebras Ay — A%O{U‘}‘ef'

2. If {Vj}jes is another affinoid open cover of X of finite type such that T|y, is free,
then there is a unique isomorphism AOTO,{UZ-}Z-EI ~ A%S);{Vj}jej such that the following

diagram commutes:

At A%S),{Ui}ie[

-k

AT = AT e

: 0 0 ‘ . , .
Thus we shall write ATv{Ui}iEI as .AT, which will be called the Fréchet completion of
Ar.

Proof.

1. This follows from Lemma 2.3.4 and gluing.
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2. Consider the cover {U; N Vj}icr jey. Then the restriction morphisms

(0.¢] (0.¢]
AUZ‘,T|U¢OVj - AUiﬂVj,T

induce an isomorphism Agij, (Usbies = A%’% (UNViierjes Similarly we have an isomor-
phism
oo o
ATa{Vj}jEJ - AT,{UiﬁVj}z’eI,jeJ'
Thus we get an isomorphism .A%-O (Uihies = .A%-O Vidies that is compatible with the
) 11e A BNIS

inclusion of A7. The uniqueness follows from Lemma 2.3.4.
O

Proposition 2.4.2. A%—O is flat over A1 as a right module. Moreover, if U € Bx such that
U has a smooth admissible formal model, then AZF(U) is faithfully flat over Ax(U).

Proof. Let U C X be an open affinoid with such that 7|y is free. By Lemma 2.3.4 the

isomorphism

AF (U) = m D (SpH(O% (U)), As,, 8105 (1)) 0)

realizes A (U) as a Féchet-Stein algebra. It follows from [5] 3.2.3 (iv) that
L(Spt(O%(V)), A, spe(0s, (1)) is flat over T'(Spl(O% (U)), Az, sp(03,(1)))» 50
F(Spf(og((U))7A\Sn,Spf(O%(U)),Q) is flat over A7 (U) as a right module. By [28] Remark
3.2, we see that AF(U) is flat over I'(Spf(O5 (U)), A‘In7spf(og(<U)),Q> as a right module.
If U has a smooth integral model, [27] Proposition 3.4 implies the faithful flatness.
[

Remark 2.4.3. Tt is unclear whether a smooth quasi-compact rigid analytic variety X has
a finite open cover of affinoids that have smooth formal models. However, by [10] at every

classical point of X, we can find a neighborhood that has a smooth integral model.
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2.4.2  Coadmissible modules over A% on a smooth rigid variety over K.

Definition 2.4.4. A sheaf of A%-O—module M is coadmissible if there exists an open affinoid

cover {U; };er such that

L. Tly, is free.

2. M|y, ~ ]\Z, where ]\Z is the sheaf of coadmissible .A%9|Ui—module associated to a

coadmissible A% (U;)-module M; defined in Definition-Lemma 2.3.10.

Lemma 2.4.5. Let M be a sheaf of coadmissible left AF -module on a smooth rigid analytic

variety over K. If U is an affinoid subdomain of X such that T\ is free, then

—_~—

1. M(U) is a coadmissible left module over AF(U), and M|y ~ M(U).

2. The higher cohomology groups of M|y vanish.

Proof. Let {U;};cr be an open affinoid cover such that 7|y, is free and M|y, is associated
to a coadmissible module over A% (U;). Since finitely many U N U; will cover U, by Proposi-
tion 2.2.5 there exists an admissible formal model 4 of U obtained by an admissible formal
blow-up of Spf(O% (U)), such that {&;} is a finite open cover of i and sp~ N W) = UNU;,
where sp : U — 4l is the associated specialization map. Replacing {U;};cr by a finite re-
finement, we may assume that {l;};cs is a finite open affine cover of {. By Lemma 2.2.12,
we see that M(U) ~ T'(4, sp«M|7) is a coadmissible module over I'(4, Ai’ﬁu) = AF(U),
and H'(U, spx«(M|p)) ~ H'({U;}ier, M|y) = 0 for i > 1. Therefore, we conclude that
HY(U,M|) =0 for i > 1.

O

Proposition 2.4.6. Let Modcoad(A%o) be the full subcategory of the category of sheaves of
7 -modules, whose objects are coadmissible AF°-modules. Then Modcoad(Ag—o) is an abelian

category.

Proof. This follows from Lemma 2.4.5 and [28] Proposition 2.1.
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2.5 Microlocal differential operators

In section 2.5, let X be a smooth rigid analytic variety of dimension d, and let 7 : T*X —
X be the natural projection from of the cotangent bundle. We will construct a sheaf of
microlocal differential operators £x on T* X whose restriction to the zero section is Dy. We
conjecture that if M is a coherent D x-module, then the characteristic variety of M equals

to the support of Ex Or-1Dy 71 M as sets.

Convention-Notation 4. Let F. be the order filtration on Dy, so it induces an isomorphism
between sheaves of algebras Symp, Ty = ng Dy, and we view Symp, Tx as a subsheaf
of rings in mOp«x as in [21] 2.1. The image of an m-th order differential operator P
under oy, @ gt Dx — Sym?}XTX is called the principal symbol of P. Let U € By such
that Q}(|U is trivial. If x = (x1,29,...x4) is a system of local coordinates on U, let ¢;
be the image of % under the inclusion grp Dy — m«Ops+x, for i« = 1,2,...,d. We call
(x,&) = (x1,.,24,&1,---,&g) a canonical chart on T*U. For m € K, let Op«(m) be the

sheaf that assigns to every {2 € By« the sections
d
0
Oy (m)(2) = § f(2,6) € Orey ()| 3 &g F(2.6) = mf(2,6)
i=1 !

The definition of Op«;7(m) is independent of choices of canonical charts, since if (%, €) is
another canonical chart on T*U, then 2?21 @a%, = Zglzl 5@% By glueing we get a sheaf

Op+x(m) on T*X. Also, note that grpDx N @ Op«x(m)).
meN
Similar to the case of a complex manifold, there is a canonical 1-form w on T*X, char-

XTate

acterized by the following condition: for y € T* , if we view y as a 1-form on X, then

(Wp, ) = (Yr(p)> dmy (1)), where p € TxTate ¢ Ty(T*X) the tangent space of T*X at

y, and dmy : Ty(T*X) — Tr(y)X is the derivative of m at y. To properly define w, we can
d
first define it in a canonical chart w := Z@dwi, and then glue. It follows that 0y := dw is

1=1
a non-degenerate anti-symmetric bilinear form, which gives rise to a canonical identification
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H : T*(T*X) — T(T*X) such that if y € T*X7%¢ » Ty(T*X) and v € Ty (T*X), then
(Ox,v A Hy(v))) = (v,v). The Poisson bracket { } on T*X is defined as {f, g} = (H(df))g

if f,g € Op+x. In a canonical chart H(d¢;) = 8 H(dx;) = %, and

of o dg 0
{F(@,9),9(0, )} = j<—a§ o 8]
i=1 2 7 2 7

We say a rigid analytic subspace of 7% X is involutive if its defining ideal is closed under the

Poisson bracket.

2.5.1 Characteristic varieties of coherent Dx-modules

In this subsection, we check that the construction of the characteristic variety of a coherent

D-module on a complex manifold also works in the p-adic case.

Lemma 2.5.1. Dy is a noetherian sheaf of rings. (See [21] Appendiz A for the definition

of a noetherian sheaf of rings.)

Proof. By [11] Proposition 15.1.1, the local ring of a point in adic space is noetherian. Since
Ox (U) is noetherian for U € By, we see that Ox is a sheaf of neotherian rings. It follows
from [21] Theorem A.29 that Dy is a noetherian sheaf of rings.

O

Therefore, it follows from [21] Lemma A.26 that a coherent module M over Dy locally

has a good filtration. Recall that an increasing exhaustive filtration G, on M is good if
1. FwDx - GiM C Gl—i—mM for m,l € Z.

2. @ Gm (M) is alocally finitely generated module over the Rees algebra EB Fn(Dx).
meZ meZ

For instance, if M is generated by sections uj,us, ..., uy, then Gy (M ZF” (Dx)u

is a good filtration. Therefore, if G, is a good filtration on M, then ng./\/l is coherent
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over grf’ Dy. By [6] Appendix III 3.21, the annihilating ideal Talg of gt M in grf' Dy is
independent of choices of good filtrations. Hence J := Opxx QgD Jalg 18 a coherent
sheaf of ideals of Op«x, and we can define the characteristic variety Ch(M) of M, to be

the rigid analytic subspace of T*X vanishing on 7.

Lemma 2.5.2. The characteristic variety of a coherent Dx -module M is a conic involutive

rigid analytic subspace of T*X .

Proof. It follows from the construction of Ch(M) that it is preserved by the G,,-action on
the fiber of 7" X. By [6] Appendix III Theorem 3.25, we see that under the Poisson bracket
{Tatg,2s Talga} € Jag,x for x € X. By the product rule, we have {7z, Tz} C Jz, and thus

J is closed under the Poisson bracket.

2.5.2  Microlocal differential operators on smooth affinoid rigid analytic

varieties over K

In this subsection, suppose X = Spa(A, A°) is a smooth affinoid rigid analytic variety such

that Qk— is free. Let (z,£) be a canonical chart on 7% X.

Definition 2.5.3. Let £x be the presheaf that assigns to every Q2 € By« x the sections
Ex () = {(pr(x.))kez | pr(x. &) € Op=x(k)(Q) satisfying the following conditions 1 and 2.}

1. There exists N € Z such that p(z,&) =0if k > N.

2. There exists M > 0 such that

lim pk(xj\f )

=0.
i 1P o

By the maximum principle we see that £x is a sheaf of K-vector spaces on X.
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Definition-Lemma 2.5.4. If (pi(x,))iez, (qp(2,€))rez € Ex (), define the product

(Pr(x, )kez - ((7,8))kez to be (rp(z,§)) ez, where

ne = Y A0k, 0)@ka(r.),

IeNd
k=i+j—|I|

and if I = (vq,...vq), then I' = vilvgl...vy! and 0! = 1.

Then Ex () is an associative ring with a unit.

Proof. To check the product is well-defined, we verify the convergence condition of r(z,¢)
when k& — —oo. Since 8%, and % are continuous derivations on Opxx(Q2), we assume

their operator norms ||%|| < |e| and ||%|| < |c| for ¢ € K and i = 1,2,...d. Since
(2 1

v (n,) _ n—sum of p-adic digits of n
p\'t:) —

= , we see that 11| > |pH!|. Therefore,

1P < 3 |-l 2 et e)
phkn | plk+IT=)n

rend P

1€Z

N UCRS : qr(, &)
Let M > 0 h that 1 =0 and 1 = 0. Let n >
e such that  lim | o It and  lim | o It et n

max{M,1 — 2vp(c)}, so ‘ﬁ02|f|pn|f|| < 1. For any € > 0, there exits N > 0 such that

pi(z,§) = 0 for i > N and gj(x,§) = 0 for j > N, and ||q || <eifj<—N, and

1258 o < eii < =N, and [reTlpnlTl| < eit|2] > . Then{up’f o %682 o} hez

is bounded by C' > 0. It follows that

Di xf Qk+|1|— i(,€)
> Il il < e .

TeNd
li|>N

If |i| <N, |I| <N and k < —3N, then k+ |I| —i < [I| —2N < —N, so we have

l w€)
e @) g 2l

k+|[| i)

—lla<C-e
I[<N
li|<N
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If |{] < N and |I| > N, then

|| ||Qk—|—|I| z( )
Q pUkHT[=i)n

R ‘ o 2l n|1||||pz(:v 3,

lo <e-C?.

|I|>N
li|<N

We conclude that hm |
%

k( 5) lg = 0.
pkn

The associativity follows from the Leibniz’s formula.

]

Lemma 2.5.5. If T is another choice of local coordinates on X, then ® : Ex () — Ex(Q)

defined as
.z H§:1<0§<Z§Ll F&))  paosl
D(py(2,€)) = > ST (0 “pi(z,€)).
SGN L]eeidlge
I.,I5,..I,eN?

|I;|>2(j=1,....s)

I=k+323 (|1;]-1)
4 oz

s an isomorphism between rings, where & Z o7, ]fj In particular, we see that the

definition of Ex s independent of choices of local coordmates.

Proof. By [21] Lemma 7.4 and 7.5 we are reduced to showing that there exists n such that
U d
o -
WHQ = 0. Assume || Y #&) g < C1, and the operator norms || 2| < ¢
p 1

lim || <
t=1

k——o00

and H%H <|c| forc € K and i = 1,2,...d. Let M > 0 such that klim ”pk(x 5)H = 0.
1 ——

S
Because of the assumption on the summation indexes Z It —s > 5 >0, if vp(c) < 1,
t=1
S

S
then (2up(c) +n — 1)(2 \It] — s) + 2s(vp(c) — 1) > Z |It| — s when n > —4uy(c) + 4.
t=1 t=1
Let n = max{M, —2vp(c) + 2} if vp(c) > 1, and let n = max{M, —4vy(c) + 4} if vp(c) < 1,

{”pk(x ,€)

that p;(z,£) = 0 for ¢ > N, and sz( )|| < eif i < =N, and |pi=1ut|_8| < e if

lo}rez is bounded by constant Co. For any e > 0, there exits N > 0 such
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S
Z |It| —s > N. Therefore,

t=1
O(p,. (7. € p20p() (it e+ (i e =s)n Rt N NS
|| (pk(x’g))HQ < Z | pLC t= t 01” kJth:}gut' s( )HQ
pkn N pS+Zt:1 |1t p(k+2t:1 It —s)n
I.Is,..I,eN?
IG1>2(=1.....5)

Pty [1]-s(%:6)
< E >t el = el t=1 .
= = ’p ’ ” kJth L —s)n ||Q

11,12,...13€N
|1;|>2(j=1,...,s)

S
If Y || — s > N, then
t=1

Pi+ I s( )
Sl il oy

k+ i—1 | 1t|—s)
s>N E =
I1.,Io,...IseN?
|1;1>2(j=1,....s)

S
Y |It| — s < N,and k < 2N, then k — (337_; [It] — s) < =N, so
t=1

AT AL

(k+ It|—s)n
= i1 [ Ie|=s)n
I, Is,..IseN?
|1;|>2(j=1,...,s)

Remark 2.5.6. Let £5F be the presheaf that assigns to every (2 € By« x the sections

EX Q) = {(pp(=,)kez | pr(x,€) € Opsx(k)(Q) satisfying the following growth conditions. }
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1. For any n > 0

. pi(7,§)
dim PR g — o
—+00 p
2. There exists M > 0 such that
: pi(,§)
lim =0
b oo ” pkM HQ

One can similarly check that £5° is a sheaf of K-vector spaces on X. Moreover, the formula

in Definition-Lemma 2.5.4 defines a ring structure on £°.

2.5.8  Microlocal differential operators on smooth rigid analytic varieties

over K

In this subsection, let X be a smooth rigid analytic variety over K.

Definition-Lemma 2.5.7. Let {U;};c1 be an affinoid open cover of X such that Q§(|Uz is
trivial. By Lemma 2.5.5 and [21] Lemma 7.5, we can glue Ey; (see Definition 2.5.3) to get

a sheaf of rings Ex on X. The definition is independent of the choice of covers.
By the definition of £, we see that there is an inclusion of sheaves of rings 7 1Dy — Ex.
Moreover, let T% X be the zero section of T* X, we have Dy ~ 5X|T§(X-

Remark 2.5.8. Similarly £ is a sheaf on X such that there is an inclusion of sheaves of
rings W_lpg(o — £, and DY ~ SS’(O|T)*< x- We wonder whether these sheaves could have

applications in the study of p-adic differential equations.
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CHAPTER 3
EQUIVARIANT D*-MODULES ON SMOOTH RIGID
ANALYTIC VARIETIES OVER A COMPLETE DISCRETE
VALUED FIELD

3.1 Introduction and notations

Let us briefly recall the relation between the unitary representations of a real semi-simple
Lie group G with finite center and the geometry of the complex flag variety. Let g be
the complexification of the Lie algebra of G, and K be the complexifiction of a maximal
compact Kg of Gr. Let X be the flag variety of g, whose analytification is X*". Let U(g)
be the universal enveloping algebra of g, and Dx be the sheaf of differential operators on X.
Suppose E is an irreducible unitary representation of G over C. On one hand, the subspace
M = EEr—finite of Kp-finite vectors of E' is a Harish-Chandra module. For simplicity we as-
sume M has trivial infinitesimal central character. Hence by Beilinson-Bernstein localization
theorem, the sheaf M = Dy D14 (g) EXr—finite is a K-equivariant coherent D x-module on
X, whose global section is M. Since there are finitely many K-orbits on X, a K-equivariant
coherent D x-module is regular holonomic. Therefore by Riemman-Hilbert correspondence,
DRx (M) = RHomp, (Ox, M) is a K-equivariant perverse sheaves on X. On the other
hand, the Matsuki duality generalizes to an equivalence ® in Theorem 1.42 [22] between the
bounded K-equivariant derived category of C x-sheaves and the Gr-equivariant derived cat-
egory of Cx-sheaves. Let C°°(GR) be space of smooth functions on Gg. Then the maximal
globalization of M is H OWZ)& )(M *,C*°(GRr)), which is an admissible Gr-representations of
finite length with nuclear Fréchet topology, whose Kp-finite vectors are M. By [22] section
1.7

RHomZ)éDg)(M*, C*(Gr)) =~ RHomc, (P(DRx(M)), Qxaen[dimension of X]).
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Let I'c(GR, Distgg) be the space of distribution on Gg with compact support. Then
the minimal globalization of M is I'¢(GR, Disty) ®yy(q) M, which is an admissible Gg-
representations of finite length with dual nuclear Fréchet topology, whose KR-finite vectors

are M. By [22] section 1.7
Te(Gr, Distay) @y gy M = RIYP (X ®(DRx(M)) @ Oxan).

For example, when G = GLg, Kgp = O(2) and X = P!, there are two K-orbits {i, —i}
and the complement P1\ {i, —i}. By Matsuki duality, the K-orbit {i, —i} corresponds to the
G Lo(R)-orbit PI\P!(R), and the K-orbit P'\{i, —i} corresponds to GLo(R)-orbit P!(R).
By Beilinson-Bernstein localization, the K-orbit {i, —i} corresponds to discrete series, and
the K-orbit P1\{i, —i} corresponds to principal series.

We would like to know whether it is possible to have a parallel story for admissible locally
analytic representations of p-adic groups. In section 3.3, if G is a rigid analytic group acting
on X and Ar, is a G-equivariant twisted differential operators, we define an abelian category
of coadmissible G-equivariant A%‘;( -modules on X, where G is the QQ)-rational points of G,
viewed as a p-adic Lie group. In Thereom 3.4.4, we show that under certain restrictions,
when G is the rigid analytification of a connected split reductive linear algebraic group G
and X is the rigid analytification of the flag variety of G, the category of admissible locally
analytic representations of G with a fixed infinitesimal central character is equivalent to the
category of coadmissible G-equivariant twisted D°°-modules on X.

For example, let X = P! and G = GLy. If j : U < X is the natural inclusion of the
Drinfeld upper half plane U in P! with the complement P! (Qp), we have the following exact

sequence of coadmissible GLa(Qp)-equivariant D*°-modules on Pl
, 1

where 7—[%,1 ( is defined to be the quotient jxOp/Ox. The global sections of 7-[[191

Qp) (@Qp)
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form a principal series (the Orlik-Strauch induction of weight —2 Verma module). By the
computation in section 3.5, we see that in general a principal series corresponds to an equiv-
ariant twisted D*°-module on P! with support in P! (Qp). By the work of Dospinescu and
Le Bras [13], the push-forward of the structure sheaves of Drinfeld covers are also coadmis-
sible GLa(Qp)-equivariant D>°-modules on P!. Motiviated by the classical G Lo (R)-picture
and the proof of [23] Proposition 7.1.3, we conjecture that if M is a coadmissible GLo(Qp)-
equivariant D®°-module on P!, and v € P! is not a Qyp-rational point, then the support of
M cannot be the closure of the GLa(Qp)-orbit of u.

In Chapter 3, let G be a connected linear algebraic group over L of rank ¢. Let G be the
rigid analytification of G 1= G Xgpec(r) Spec(K) ([8] section 5.4). Let m : G xg G — G
be the group multiplication. Let G be the L-rational points of G, viewed as a locally L-

analytic group. Let g be the Lie algebra of G over L. The universal enveloping algebra of

g =9 KisU(gx).

3.2 Preliminaries

3.2.1 Review of the Fréchet-Stein structure of the distribution algebra of G

Let us recall some notations and facts from [14] section 5.2. Let 7’ € K such that |r/| = r
and 0 < r < 1. Let B(r)¢ := Spa(f((r’tl,r’tg, ...,r'td>,(9f(<r’t1,r’t2,...,r’td)) be the rigid
analytic ball of radius r. If b is a sufficiently small Oy -Lie sublattice of g, then fixing a set
of basis of h, we have an isomorphism between rigid analytic groups exp : ]B%(l)d — HI, where
H is an analytic open subgroup of the rigid analytification of G, and B(l)d is equipped with
the rigid analytic group structure by the Baker-Campbell-Hausdorff formula. We call such
H a good analytic open subgroup of G obtained by exponentiating h, and the coordinate
(t1,t2, ..., t5) on B(1)? is called the canonical coordinates of the second kind of H. Let H be

the L-rational points of H. Recall that H° := U IB%(r)d is a rigid analytic open subgroup

r<l1
of H. Let H,, be the good analytic open subgroup of G obtained by exponentiating o'l for
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n € N, and let Hj, be the L-rational points of Hj.

Remark 3.2.1. As a locally L-analytic group H,, is isomorphic to the L-rational points of the

ein—1

analytic open subgroup obtained by exponentiating 7 b, where 77 is an uniformizer of
L, and e; € N such that |7rzl| = |a|. In particular H,, is a compact open normal subgroup

of H of finite index.

Lemma 3.2.2. Consider the inclusion of algebras U(gg) — D'“(H, K) as in [14] p.94, and
let U(gg) be the closure of U(gg) in D'(H, K).

1. There exists an isomorphism

~

D'*(H°, K) U(Q"D) g D pe ] KIH]

~ lim
i
that realizes D'*(H®, K) as a Fréchet-Stein algebra.

2. Under the isomorphism in 1, we have the isomorphism U(gx) =~ li%nl:{\(oz”h)K that
realizes U(gx;) as a Fréchet-Stein algebra, where a(a"f))[( is the p-adic completion of
U(a™) inverting p, and U(a™h) is the Og-subring of U(gf) generated by a™h. In

particular, the closure U(gg) is independent of choice of compact open subgroup H of

G.

Proof. Assume that {X;}i—192 4 is a set of Op-basis of h. For m € N, let U(a"b)(m)

be the Op-subring of U(gg) generated by the elements (anjfj )Z, where 0 < i < p™ and
1 <75 <gq Let &(anh)(“ﬂ be the p-adic completion of Z/{(oznh)(m), and let Z/Al(oz”h)(Km)
be U(a"h)m) ®0, K. Then D"(H,, K) ~ li%nlji\(anb)g?). In addition, we have the

inclusion of algebras K[Hp 4] — LA{(a”h) K- Explicitly if g € Hp_; corresponds to the

+00 n
vector ¢ € Wzl(m_l)_lb under the exponential map, then g — Z ?_' The conjugation
n!
n=0

action of H on U(a"h) i equips LAl(a”h)K OK[HE,,] K[H°®] with an algebra structure, and
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the natural inclusion K[H°] — D (H°®, K) factors through

1.

K[H®) = U(a"h) g ® e, ) K[H?] = D™ (H°, K).

By [14] 5.3.13, the homomorphism of algebras D" (H?>

n+1s K) — D (H,, K) factors

~ 1
through Z/I(oz”l‘))(Km"), for my, € N. Let r = 0<rl_n<a5<mn{|5|%|oz|"}, and choose r(n) € N

such that |ar(”)+1| <r< |of(”)\. Then we have
D™ (Hy ,q, K) = U(a""b) g — D(H,, K).

i—s(1)
p—1

The p-adic ordinal of ! is equal to , where s(7) is the sum of the p-adic digits of

i. Therefore r(n) — 400 as n — +o0. Since
l o : O o
DI(H®, K) = lim D" (B, K) © ey, ) K[H?)

we see that Dla(H °, K) is isomorphic to the projective limit of the system of noetherian
Banach algebras {LA{ (@"h) g O] HE ) K[H O]} N Consider the following commuta-
n ne

tive diagram:

U™y g e, U(a™h)

in+1J/ ZnJ/

ﬁ(an+1b)K OK[HZ, ) K(i) — ﬁ(anh)K OK(H

As in [14] Proposition 5.3.18, we find a filtration of normal open subgroups

HO+2:G0§1G1§]...§]GU):HO

n

such that G 1/G; is cyclic. Therefore i),41 factor though

U ) g — Al — .. = Ay,
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where A; :=U(a"1h) x ®K[qo] KGil- Since in, iny1 and py, are flat, by [14] Lemma
5.3.17, we see that p, is also flat.

2. U(a"™)  is a closed subspace of U (a”h) OK[HE. ] K[H°®]. Therefore li%nﬁ(a”h)[( is

~

a closed subspace in D'*(H®° K). Since U(gg ) is dense in lim /(o) g, we conclude

m
n
that U (g ) — li% U(a"h) g is an isomorphism.

3.2.2  Some equivariant sheaves on smooth rigid analytic varieties over K

Let X be a smooth rigid analytic variety over K. Let the morphisms p1 : X X G — X be
the natural projection to the first factor, and p19 : X X G X G — X X G be the

natural projection to the first and second factors. Let e € G be the identity element.

Definition 3.2.3. A rigid analytic variety X over K is a right G-variety if there exists a
morphism a : X X G — X of rigid analytic varieties over K, such that the following two

diagrams commute:

1.
X xgGxpG 2 X v G
lidxxm Ja
XxgG S5 X
2. ’
X x g Spa(K, K°) 2255 X x i G

| Lo
X idx X
Definition 3.2.4. Let X be a right G-variety.
1. A sheaf of Ox-module M is G-equivariant if there exists an isomorphism

0 : piM ~a*M
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of Ox « ,g-modules such that the following diagram commutes:

axi *0
(ao(axidg)yM M0 0o (0 x idg))* M = (a0 pra)*M

I o

idx xm)*0
(a0 (idy x m)*M SO 0o idy x m))*M = (py 0 pra)*M

2. A sheaf of Ox-module M is G-equivariant if for all g € GG, we have isomorphisms of

Ox-modules 6, : g*M — M, such that the following diagram commutes:

910
(9192)* M —25 giM

199192 991 J

M — M
where ¢ is viewed as an automorphism of X.

3. A morphism f : M — A is a morphism between sheaves of G-equivariant O xy-modules
M and NV, if f is a morphism between sheaves of O x-modules, such that the following

diagram commutes:

Remark 3.2.5. Let X be a right G-variety.

1. Since G — G is a continuous inclusion between topological groups, we see that a
induces a jointly continuous action morphism of topological spaces X x G — X, such

that G preserves the classical points of X.

2. The morphism ¢ 10y — Oxy G Induces an isomorphism
—1 o~
a*Ox = Oxx6 D10y @ Ox — Ox G-
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Together with the isomorphism p]Ox =0 X x G We see that Oy is G-equivariant.

. If M is a G-equivariant sheaf of O x-modules on X, and g € G is a K-rational point,
then restricting the isomorphism a*O ~ piM to {g} xx X C G xg X gives the
isomorphism ¢*M ~ M. Therefore, M is G-equivariant. When M = Ox and H is
a compact open subgroup of G which preserves an affinoid subdomain U of X, then
the left action of H on Ox(U) can be described as (g.f)(x) = f(z.g) for f € Oy,

z e UTate and g € H.

Let G be the rigid analytification of Spec(K @ gj-€), where €2 = (. This is the
first infinitesimal neighborhood of the identity of G. Restricting the isomorphism
a*M >~ piM to G x X gives us an endomorphism of M R (K @ gjee), which gives
rise to a morphism g — Endg (M) that preserves Lie brackets. When M = Oy,

we get the morphism between Lie algebras g — Tx, which is given by the familar

tr).f —
formula: r.f = lim M
teL,|t|—0 t
morphism between sheaves of algebras U(gx) — Dx.

for r € g and f € Ox. Therefore, we have the

. Tx is G-equivariant. If g € G, the action is explicitly given by the formula (g.r)f =

g(x(g7 1. f)), where r € Ty, and f € Oy are local sections.

Lemma 3.2.6. Let X be a right G-variety over K. If H is a sufficiently small good analytic

subgroup of G obtained by exponentiating by, such that the action of H preserves an affinoid

subdomain U of X, then the action of H on Ox (U) is jointly continuous.

Proof. Equip Ox (U) with the spectral norm. By maximum principle H acts through isom-

etry. Scale h by a power of o we can assume that the operator norm of ¢t € h on Ox (U)

is less than 1. Therefore, if f € Ox(U), since p.f =  lim

exp (tr).f — f

el o ; , we see that

lexp (tr).f — flly < |lte-flly < |Ifllult]. In other words, the orbit map oy : H — Ox(U) is

continuous. Therefore, the morphism H x Ox(U) — Ox (U) is continuous by [14] 3.1.1.

[]
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Definition 3.2.7. Let X be a smooth right G-variety. A twisted differential algebra A,
associated to Tx is a G-equivariant twisted differential algebra if A7, is G-equivariant as a

O x-module and there is a morphism of Lie algebras ig, : gx — ATy, such that

1. The G-equivariant structure is compactible with the ring structure of A. i.e. g € G(K)

acts on Ap, as ring homomorphism.
2. ig, is G-equivariant, if g is equipped with the conjugation action of G.

3. The gg-action on A7, that comes from differentiating the G-action (see Remark 3.2.5)
is adigK = ligg (=), —)-
Remark 3.2.8. The definition of equivariant twisted differential algebras is modeled based

on [4] section 1.8. It implies that i : Ox — Ap, is G-equivariant.

Example 3.2.9. If X is a smooth right G-variety, then Dy is a G-equivariant twisted
differential algebra. The G-equivariant structure is determined by the equivariant structure

on Ox and Tx. The Lie algebra map ig, : gg — Dy is defined in Remark 3.2.5.

3.3 G-equivariant D>*-modules on smooth rigid analytic varieties

In section 3.3, we assume that X is a smooth right G-variety over K of dimension d, and ATX
is a G-equivariant twisted sheaf of differential algebra associated to Tx. We also assume
that there exists a good analytic open subgroup H of G such and an open affinoid cover {U;}
of X such that the action of H preserves each U;. We shall define the abelian category of

coadmissible G-equivariant A%(—modules.

3.3.1 Coadmissible equivariant D>*-Modules on smooth rigid analytic

affinoid varieties

The goal of this subsection is to define coadmissible H-equivariant .A%)( |--modules, where

U = Spa(A, A°) is a small affinoid subdomain of X, such that Tx|;7 is trivial, and H is a
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good analytic open subgroup of G that acts on U.

Lemma 3.3.1. Let 4 be an admissible formal model of U obtained by an admissible formal
bow-up of Spf(A°). Then there exists a open compact subgroup H' of G such that H' acts
on Oy (rig(V)) for B € By. In particular, we see that for any affinoid subdomain V' of U,

there ezists a compact open subgroup of G that acts on Oy (V).

Proof. Consider A7, = Dx and use the notations from section 2.3.1 and 3.2.1. There
exists a good analytic open subgroup H’ of H obtained by exponentiating h and N € N
such that the image of h under the morphism gx — Dx|y (defined in Example 3.2.9) lies
in Az, ¢ Therefore we have a morphism of sheaves of rings u 0 — ./Zl\‘IN’LL’Q. Since
K[H7] — U(h) g via exponential map, we see that H' := HY acts on Oy () @0, K.

0

Recall in section 2.3.1, we choose a set sections {{1,&9,...,&§4} of Tx|y that trivialize
Tx | as a free Op-module, and & liftings of & in F} (A7y ). For n >> 0, replacing H by

a smaller good analytic open subgroup if necessary, we can assume that
1. The image of oh under the morphism gg Z'g—K> AT, lies in Ag g
2. H-a"¢; CT(8, Fi(Ag, g))-
3. H-sp«(Ox)(V) C spx(Ox)(V) for Y € By. (by Lemma 3.3.1)

Therefore we have a morphism of sheaves of rings U(a"h) — Ag, ¢, which extends to a
morphism of sheaves of algebras (&b — «‘Tzn,u,@ Taking inverse limit over n, we get

a morphism between sheaves of Fréchet-Stein algebras U(gr) — AS’& |7 that extends the

morphism U(gr) — A7y U

Definition-Lemma 3.3.2. By Lemma 5.2.2 there is an algebra homomorphism K[H 1] —

U(a™) ¢, so we can define the sheaves of Oy-modules Ag:u = ﬁsn,u@ O[S, K[H°],
H° o He°

and ATX,H = ll%n Asn,u- Then
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1. Ag:u is a left (resp. Tight) coherent sheaf of noetherian Banach algebras. i.e. Ag:u
is a left (resp. right) coherent sheaf of rings, such that if 0 C i is open affine, then

Ag:’u(‘ll) is a left (resp. right) noetherian Banach algebra.
2. A%;’u 15 a sheaf of Fréchet-Stein algebras on By.

3. The isomorphism T'(4, A%; ) li%n (4, Agnou) realizes T'(4, A%; g) as a Féchet-

Stein algebra.

Proof. Let 0 € By. By the above discussion, we see that H acts on T'(U, | (Ag, )
and on F(Ag, ¢)(U). Hence H acts on Ag (%) and on A\Tmil(m)‘ It follows that
.,Zl\gn,u7(@(%) ® K[HS, ] K[H®] has an algebra structure. Since the morphisms of sheaves of

algebras

K[HY 4] = U™ — Ag, 1.0(D)

are H-equivariant, we get a continuous morphism between algebras

Uk @xipge, | KIH] = As, 90(0) ©xge ) KIH).

1. By Lemma 2.3.1, we see that ,Zl\gmu@ is a coherent sheave of noetherian Banach
subalgebras of finite index in Ags ¢~ 1t follows that Ag:u is also a coherent sheave of

noetherian Banach algebras.

2. The flatness of the transition morphism Ag OH g Ag: ¢ can be shown by the same
n Yy Yy

arguments in Lemma 3.2.2.

3. It follows from Lemma 2.3.1.

Lemma 3.3.3. IfU € By, or U =4, there is an isomorphism

AL () ~ AT, (xig(V)) By D" (H°, K)
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of (AP (rig()), D'%(H®, K))-bimodules.
Proof. The conclusion follows from the following isomorphisms:
AT (Pig(‘n))@@l)m(ffo, K)
= lim T QD)D) U(QD) K O, ) K[H?])

= lim A, 4.0(0) @, ) K[H°]

]

Lemma 3.3.4. A coherent Agsu—module has trivial higher cohomology groups and is gen-

erated by its global sections.

Proof. A coherent Ag: (module is coherent over ./Zl\gmu’(@. The result follows from Propo-
sition 2.3.9.
O

If M is a coadmissible I'(4L, A%: ¢)-module, similarly as in Definition-Lemma 2.3.10, we

could associate to M a sheaf M of A%;’u—module on i in the following way:
My = limAZ ® o M
% ‘Inaﬂ F(M’ATX,H) !
such that if U € By, then we have the isomorphisms

My (0) = lim AL (D) @ M,

(WAL, )

<— ATX7L[(€U)®F(LL,A¥;7H)M’

where M, := I'(4l, _Ag?: u) ®r ) M is a finite generated module over T'(4, Ag: 11)'

(u’A%X 81t
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Lemma 3.3.5. Let H' be a good analytic subgroup of G, such that H' is a normal subgroup

of H.

1. The natural homomorphism A%;ou — A%; ¢ between sheaves of Fréchet-Stein algebras

/
realizes A%; ¢ s a coadmissible module over A%(Ou.

2. Let M be a coadmissible module over I'(4A, Ago s(); then by [28] Lemma 3.8, M is also a
X
coadmissible module over T'(4, AT u) We have the following isomorphism of sheaves

of coadmissible modules over ‘ATX e

AH/O o~ .
TXau F(ﬂAHO )

M= AL & o M
Tx 4 F(LL,A%(’H)
In particular, the definition of My is independent of the choices of H.

Proof.

1. If g is a representative of g € HO/H/o in H°, then

D'(H°, K)~ @ D"(H"g,K)~ D'"(H" K)® e K[H°).
geH/H'

HO - H/O 1o . Hlo
It follows that A7~ AT ®ppro) K[H"] as a finite ATX ¢-module.

2. 1 0 € By , then AL (U )@W ae g M
X

~

= lim(Asg,, 4 0(D) @x g

n ) KHD © g 2 M

(CEAzy 1,0k e KIH])

%H‘A nAl, Q( ) ® (LL?A\Tn,ﬂ,Q) M,

~ A%%{ (I‘ig(m))@A%@X(U)M
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Definition-Lemma 3.3.6. IfV € By, by Lemma 3.5.3 and Lemma 3.3.1 there exists a good
analytic open subgroup H such that A%)(( )®u( )Dl“(HO K) has a Fréchet-Stein algebra

structure. If M a coadmissible module over ATX( )®lea(H°, K), then

M(V) i= (AF (V) 8p 7" (H* KNS s ()it sep™

is a coadmissible module over AT (V)@JMDZ“(HO, K). Lemma 3.3.5 shows that

—~

M(V) ~ A%%((V)@A%O(U)M

and therefore M is a presheaf. In fact M is a sheaf on U, which will be called the sheaf of

coadmissible equivariant A%{|U—m0dule associated to M.

Proof. Let i be an admissible formal model of U obtained by an admissible formal blow-up
of Spf (A°). There is an isomorphism Mg — spx(M) of AT, yrmodules. By Lemma 2.2.11,

we see that M is a sheaf.

3.3.2  Coadmissible Equivariant D*°-Modules on smooth rigid analytic

varieties over K

Definition 3.3.7. A sheaf of coadmissible G-equivariant A%‘-;( -module M is a sheaf of A%%( -

module that satisfies the following conditions:

1. M is a G-equivariant O x-module, whose O x-module structure is compatible with the

inclusion Ox — A%{.

2. There exists an open cover of affinoid subdomains {U;};er such that Tx|y, is free,
and good analytic open subgroup H; of G such that M| U; 1s isomorphic to MV (see

Definition-Lemma 3.3.6), where M; is a coadmissible AF (U, )®u Dl (H?, K)-

(0x)

module.
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3. The K[H7]-module structure on M(U;) is compatible with the A%{ (Ui)@)lea(Hf, K)-

module structure on M;.
Lemma 3.3.8. Let U C X be an open affinoid with Tx |y trivial, and M is a coadmissible

G-equivariant AS—?{ -module on X. Then

1. M|y is isomorphic to M (see Definition-Lemma 3.3.6), where M is a coadmissible

A%((U)&X\) Dl(H°, K)-module, for a sufficiently small good analytic open sub-

U(gr)

group H of G. In particular, we see that the definition of coadmissible G-equivariant

modules is independent of the choice of affinoid open covers of X.
2. M|y has trivial higher cohomology.

Proof. Let {U; };er be an open affinoid cover of X such that Tx |y, is free, and good analytic
open subgroups H; of G such that M|~y is isomorphic to ]\Z, where M; is a coadmissible
A%{(Ui N U)@lea(Hio, K)-module. Since U is quasi-compact, we can assume that [
is finite. By Proposition 2.3.9, let il be an admissible formal model of U obtained by an
admissible formal blow-up of Spf(O% (U)) with associated specialization map sp : U — 4,
such that {$(;} is an open cover of { with sp~'(4;) = U; N U. By passing to a finite
refinement, we can assume that 4; is affine. Then there exists a good analytic open sub-
group H such that sp.(M]y)]y, is associated to a coadmissible module over A%;’u(ili).
By Lemma 3.3.4 and Lemma 2.2.12, we see that there is a coadmissible module M over
A% U
isomorphism. Since H'(L, spx(M|rr)) = 0 for i > 0, we conclude that H*(U, M|y;) = 0 for

D'%(H° K) such that My — spsx(M]|y). It follows that M — M|y is an

1> 0.

]

If M and N are sheaves of coadmissible G-equivariant A%(—modules, define Homﬁgg (M, N)
X
to be the set of morphisms of sheaves of A%(—modules that are also G-equivariant. Let

Modg)‘erd (AS) be the category of coadmissible G-equivariant A%{ -modules.

o8



Proposition 3.3.9. Mod&?“d(A%o) is an abelian category.

Proof. This follows from Lemma 3.3.7 and [28] Proposition 2.1.

3.4 Beilinson-Bernstein localization of admissible locally analytic

representations of ¢

In this section we assume that G is a connected and split reductive linear algebraic group
over L. Fix a Borel subgroup B of G with the unipotent radical N. We will use the letter T
to denote the universal Cartan B/N and implicitly use the canonical isomorphism between
T and a maximal torus of G. Let W be the Weyl group of the root system of G relative
to B, and let p be the half sum of positive roots. Let B be the Borel subgroup opposite
to B. Let b, n, m and t be the Lie algebra of B, N, N and T over L respectively. Let
X := G/B be the flag variety, and let Y := G/IN be the base affine. The right G-action
on X (resp. Y) is given by (¢'B).g := g 1¢'B (resp. (¢N).g := g_lg’N) for ¢ € G and
¢B € X (resp. g € G and ¢'N € Y). The T-action on Y is given by bN.gN := gbN for
bN € T and gN € Y, and the T action commuters with the G-action. We know that the
natural projection £ : Y — X is a T-torsor. Let X, Y, G, T be the rigid analytification of
X, Y, G and T respectively.

We also assume that there exists a connected and split reductive linear algebraic group
& over O with a Borel subgroup 8 whose unipotent radical is 91 and the universal Cartan
9, such that & ®p, K ~ Gk, BRp, K ~Bg, NQp, K ~ Ng and H ®p, K ~ Tkg.
Let g°, b° t° be the Lie algebra of &, B, $ respectively. Then g° can be viewed as
a Op-Lie sublattice of g, and &/%B is a smooth projective scheme over O such that
(8/B)®0p, K ~ X[ Let X be the formal completion of & /% along the special fiber, let 2)
be the formal completion of & /91 along the special fiber , and let $ be the formal completion

of $ along the special fiber. Thus X (resp. ) or fj) can be viewed as an admissible formal
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model of X (resp. Y or T). Let sp : X — X be the specialization map. The Bruhat
decomposition implies that there exists a finite open affine cover {l;} that trivializes the
torsor &, such that 4; ~ Spf(Og (x1, 29, ..., Tm)).

Let us recall the construction of the construction of G g-equivariant twisted differential
algebras on Xy [4] section 3.2, 2.5 and 1.8. The Poincaré-Birkhoff-Witt theorem gives a

vector space decomposition:

U(gr) =U(tg) © (ngU(gk) +U(gK)nK)-

Let Z(gg) be the center of U(gg). The composition of the natural inclusion Z(gx) —
U(gx) with the projection U(gg) — U(tx ) is an injective algebra homomorphism, which is

called the Harish-Chandra homomorphism. We have the following commutative diagram by

[1] 4.10:
z (gK) Harish-Chandra_ U ( tK)
linclusion ldiﬁerentiate the T-action on Y
U(gk) (&Dy)Y) e K

differentiate the right G-action on 'Y

Since U(tf) can be naturally identified with the ring of polynomial functions on t7, the
translation tj- — tj- : ¥ — 2 — p gives rise to an automorphism of U(tg). Composing
the Harish-Chandra homomorphism with this automorphism of U(tg ), we get the Harish-
Chandra isomorphism Z(gg) — U(tg)W, and U(tx)W is isomorphic to the polynomial
ring over K. For \ € tj,, let K\ be the corresponding 1-dimensional representation of U (t),
which gives rise to a homomorphism x) : Z(gg) — K. If 8 € tj, then x) = xg if and only
if A —p and  — p are in the same W-orbit. Let Ky be the character of Z(gg) associated to

the Ky_,. Define Dx ) := (&:Dy)T @y (1)) Ka—p, and U(gx)g = U(gK) @z (g)) Ko We

9K

know by [4] 3.2 that Dx ) is a G-equivariant twisted differential algebra.

Remark 3.4.1. If we further assume that & is semi-simple, simply connected and p is a very

good prime for & as in [1] 6.8, or & is GL;, and n # pm for m € N, then:
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1. Let Z(g°) be the center of U(g°). By [1] 6.9 we see that Z(g°) is isomorphic to a
polynomial ring over O . Let F.Z(g°) be the filtration on Z(g°) induced from the
PBW filtration on U(g°). Let Z(g°) := > a™F;Z(g°), let Z/(go\)n be the p-adic

—_—

completion of Z(g°)n, and let (Z(g°)n) i := Z(8°)n @0, K. There exists N € N such
that o™ (A — p) maps t© to O. Let (A — p)n be V(X — p), which can be viewed

as an element of Homp, (a"t°, Ok ), and (A — p)p ®0,. K = A — p. Thus (A — p)p

determines a 1-dimensional representation of U(a"t°) g, which will also be written

- —

as Ky_,. If Z(gk) is the center of U(gf), then the isomorphism li%n(Z(go)n)K ~

Z(gg) realizes Z(gg) as a Fréchet-Stein algebra. By [1] 6.10, we see that there is
a ring homomorphism Z(g°), — U(a"t°), which agrees with the Harish-Chandra

homomorphism after tensoring K over O . Thus we get a morphism between Fréchet-

— o~ -

Stein algebras li%n(Z(go)n)K — li%nU(oz”to)K ~ U(tg). We will also use Ky to

—_—

represent the 1-dimensional representation of (Z(g°),)x determined by (A — p)y,.

2. By [19] Thereom 2.1.6, the Harish-Chandra isomorphism extends to an isomorphism

of Fréchet-Stein algebras Z (g ) — U (tK)W ~ rigid analytic functions on A% Also

[19] tells us that the center of D'(G, K) is isomorphic to D'(Z, K>®u(5K)Z<gK)’

where Z is center of G and 3 is the Lie algebra of Z.

Definition-Lemma 3.4.2. Let {U;} be a finite open affine cover of X that {|y, is trivial,
and U; be the rigid analytification of U;. If U C U; is an open affinoid, define DX,)\(U) =

Ox(U) @0 ;) PxA(Ui).

1. Dx ) is a sheaf of G-equivariant twisted differential algebra associated to Tx .

2. Let Dg?’)\ be the Fréchet completion of Dx y as defined in section 2.4.1. Then Dj’?’)\wi o~

D¥|u;-

3. Assume the assumptions in Remark 3.4.1 and define U(gg )y = U(QK)@)MKG-

There is a morphism between sheaves of Fréchet-Stein algebras U(gx )y — DY\ that

extends the morphism between algebras U(gx ) — DX -
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Proof.

1. The G-equivariant structure on Dy \ comes from the G-equivariant structure on
((¢+Dy)T) @1 K, and the Lie algebra morphism gy — D x,) comes from differentiat-
ing the right G-action on Y, i.e. the Lie algebra morphism gx — ((£+Dy)T) @1 K.
It follows that Dy ) is a sheaf of G-equivariant twisted differential algebra associated

to Tx.
2. It follows from the isomorphism Dx |y, =~ Dx|u;-

3. Define Zj(a"go)Kﬁ = U(a"g%)  ® Ky. Then ﬁ(a”go)Kﬁ is isomorphic to

(@n)[(

~

U(a"g°) i /{the ideal generated by z — 6(z) for z € Z(gx )}

as topological algebras. Thus the isomorphism l%nlj{ (a"g°)Kp ~ U(gg)g realizes

U(gk )y as a Fréchet-Stein algebra. The existence of the morphism U(gx )y — Dy

follows from [1] 4.10.
[

Let us briefly recall the definition of the sheaf of completed twisted differential operators

2327_]? of deformation parameter n on X introduced in [1]. Let D’ (resp. D) be the sheaf
of crystalline differential operators on & /9 (resp. &/%B). Since £ : /N — G/B is a
left $-torsor, the sheaf of algebra D = (&D')¥ is locally isomorphic to D ®o, U).
Let F D be the filtration on D induced from the order filtration on D’. Let st be the

sheaf associated to the presheaf U — ZamFﬂS(U ). Then D,, is locally isomorphic to

2

Do, U(a"t°). Let (571) J be the p-adic completion of Dj, tensoring K over O, and define
132}? = (571)}( ®Z{\(a”t°)K K)_,. From the construction, we see that ﬁz}(pml o~ ./Zl\gn,ub@,
where A7, = Dx ) and T = Txy;, and li%n ﬁgif(p o~ sp*Dg(o, ) as sheaves of topological

algebras.
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Let H be a sufficiently small good analytic open subgroup of GG obtained by exponentiating
b, we can assume that h ®p, O is a Og-Lie sublattic of g°. Therefore, we have algebra

homomorphisms K[H® ;] — ﬁ(a”h)K — U(a"g°) k. Similar to Definition-Lemma 3.3.2,

n+1
o \— H° . H°

let us define Dgn)\ = Dn,fé) K [H2, ] K[H®], and D ) := l%an’n’A. It follow from

the construction that there are isomorphisms of sheaves of topological algebras Dg ; /\| i =

H° H° ~ AH°
Ay 0 04 Pl = A7 g

Lemma 3.4.3. Let \ be reqular and dominant, and assume the assumptions in Remark 3.4.1.
The category of finitely generated modules over Z:{\(oz”go)Kﬂ OK(HE, ] K[H®] is equivalent to

the category of coherent modules over Dgg; \:

Proof. By [1] Theorem 6.12, the category of finite generated u (a"g°) g p-modules is equiva-

lent to the category of ﬁg%-modules, via the functors ﬁg_l(p R —and I'(X,—). It

U(a™g°) K.

follows that the functors Dg ;’ L\ ® = and I'(X, —) induce an equiv-

(LA{(@"GO)Kﬂ@K[HZH]K[HO
alence between the category of finitely generated modules over U ag°) g ® K[HS, ] K[H?],
and the category of coherent modules over Dg ;7 A\

]

Theorem 3.4.4. Let A be reqular dominant, and assume the assumptions in Remark 3.4.1.

Define D'(G, K)y := D'(G, K)@)MKQ- Then the following statements are true:

1. U(g)y — T(X, DY ) as Fréchet-Stein algebras.

2. The category of coadmissible U(g)y-modules is equivalent to the category of sheaves of

coadmissible Dg(o)\—modules on X.
3. Dla(Hoa K)g = F(%,Dgi\) as Fréchet-Stein algebras.

4. The category of coadmissible Dla(G, K)g-module is equivalent to the category of sheaves

of coadmissible G-equivariant DY \-modules on X.

Proof.
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1. This follows from the following isomorphisms:

2. If M is a coadmissible U(g)gs-module, we can define a presheaf A(M )P, such that if
U C X is an open affinoid such that Tx|; is trivial, then

AM)PH(U) = D%},/\(U)@@e

Let A(M) be the sheafification of A(M)P'®) then A(M)|; ~ A(M)P™|;; is the sheaf
associated to the coadmissible module D%O, WU )@WHM over Dga (U) by Definition-
Lemma 2.3.10. In particular, we see that A(M) is a sheaf of coadmissible D ,-module

Definition 2.4.4.
If M is a sheaf of coadmissible D%o /\—module, then M,, := ﬁ;}b_Kp ®( 5pDY,) sps M is

a coherent ﬁQX-module on X, such that M, ;1 ~ ﬁ:{;iK ®6)\}<p My, and speM ~
n,

li%n./\/ln. By Lemma 2.4.5 and Theorem 6.12 in [1] that I'(X, M) ~ I'(X, sps M) =~

li%n I'(%X, M) is a coadmissible U(g)g-module.

Then we can check directly that AoI' >~ Id and "o A ~ Id.

3. This follows from the isomorphisms:

© Y. o
I'(X, ng) ~ (%, 1%111)“’[5 Ox(ms, ) K[H)

~ 11%11(1/1(04”90)[( O[S, | K[H"]) ®(Z(g°)n)K K
~ D'(H° K)& Ky



4. If M is a coadmissible D'*(G, K)p-module, and U C X is an open affinoid such that

Tx |y is trivial, Let H be a sufficiently small good analytic open subgroup of G. Then
~ ~ l ~
DXAU)@r(x,p )M = (DA, 5D (H” K) @ pra o o), M

. . o l o

is a coadmissible module over Dg(o) L, o) D'“(H°,K). Let us define a presheaf

AP®(M), such that AP*(M)(U) = D%OA(U)®F<X7D%OA)M. Let A(M) be the sheafifi-

cation of AP (/). Since AP™(M)|ys is the sheaf associated to the coadmissible module
o~ l ) -~ "

M of D%O,/\(U)@)MD “(H° K), we see that AP™(M)|; ~ A(M)|y by Definition-

Lemma 3.3.6. Moreover, if g € G, r € DY, (U) and m € M, we have a natural action

g-(x®m) := g.r®g.m. Therefore A(M) is a G-equivariant coadmissible D \-module.

If M is a G-equivariant coadmissible DF y-mmodule, by Lemma 3.4.3 and Lemma 2.4.5,

we see that I'(X, spxM) is a coadmissible module over I'(X, Dg ;) It follows that

['(X, M) is a coadmissible module over Dl“(HO,K)ééng. Because I'(X, M) is

a G-representation, and Dla(G, K) ~ GB Dla(Hc’?K) * 0g, where g is a set of
geG/H®

representatives of § in G, we see that I'(X, M) is a coadmissible D'*(G, K)p-module.

Then we can check directly that Ao’ >~ Id and "o A ~ Id.

3.5 Examples

3.5.1 G=1,

In this subsection, let X = Spa(K (y), K°(y)), and G = X is the abelian additive group. Let
t:= % be the generator of the Lie algebra g of G. We have isomorphisms exp : p"Z, = Gn,

for n > 0. Therefore,

DG, K) = lim K"t} @xc(G,,,.,) K12
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Let D, = {Z as(p"t)® | an € K(y), lim as = 0} whose multiplication structure
>0 §——+00

is given by ty = yt + 1. Then a coadmissible G-equivariant DE-module is a coadmissible
module over li%n Dn®g1a,,11KZp]. We see that DG, K) ~ I%H(Dn/Dn?/)@?K[GnH]K[Zp]
can be viewed as a G-equivariant DF-module. Geometrically, Dla(G, K) is a sheaf on X

supported on Zy-rational points.

Remark 3.5.1. By Amice transform Dla(G,K ) can be identified with the rigid analytic

function on the open unit disk:
DG, K) ~ lim K{(p=nT),

where ¢ = log(1 + T). The latter ring is usually represented as R™ in the world of (¢,I')-

modules. Therefore, inverting ¢ in R can be interpreted as inverting differential operators.

3.5.2 G = GLsy and Principal series

Let Uy = Spa(K (z), K°(z)), and Uy = Spa(K (y), K°(y)) be the standard cover of P'. The

a b a b
G Ly-action on P! is given by xr = gﬂfi‘g, and y = Zi%lz Assume that y = 0
c d c
is the point oo.
01 01 0 0 1 0
Let w = e = = ,h= . Then the center of U(gly)
10 0 0 10 0 —1

1 0
is generated by z = and the Casimir C' = %h2 +ef + fe.
0 1

Fix two characters 41,02 : Q) — K. Let § = 5152_1X_17 and w = 6109x L. Let
k(6;) = 6}(1) be the derivative of §; for i = 1,2. Assume k(6) = £(d1) — £(d2) — 1 does
not equal any nonegative integer. Let D]Pﬂﬁ((;) be the twisted differential operator given
explicitly by gluing as follows: i : D]P’l,lﬁ‘,((S)|UO = Dy, i1 - DIP’l,n(6)|U1 = Dyy,, and

ilio_l\UoﬂUl is P — 2 %(0) pz#()  The homomorphism « : gly — F(]P’I,DW’K((;)) is given
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igoa: h— —2x0; — Kk(0) i1oa: h— 2ydy + k()
e — —0y e — 20 + k(0)y
f— 220, + k(0)z f— =0y
z — —k(01) — K(d9) + 1 z — —k(d1) — Kk(d2) + 1

Then C acts as —%((/{(51) — k(89))2 = 1).

Recall that the locally analytic principal series is: BY*(d1, o) =

1
{f e C’la(Qp, K)| 5(m)f(;) can be extend to an analytic function in a neighborhood of 0},

a b
with G'La(Qp)-acts as F(z) = 6a(ad — be)d(a — cx) f(22=0) . Another description of

a—Ccx
c d

the locally analytic principal series is:

Ind%(51x ! @ 82) = {# € C'(G, K)|d(gb) = (b1x " ® &) (b~ )o(g) if b € B,

with G'Lo(Qp)-action gp(x) = ¢(g~ '), where B is the lower triangular Borel subgroup. We

1 =
see that f(x) = ¢( ) defines an isomorphism of G-representations

01
Ind (513" @ 82) = B (41, 82).

By [12] Proposition 4.14 we have the relationship between locally analytic principal series
and (¢, I')-modules:
(BY(61,62))" = RF (xoy ") K -1 P.

Let I be the mod p lower triangular Iwahori subgroup, so the action of I on P! preserves

67



_ _ _ 1 0
Uy. Let N be the unipotent subgroup of B. Then I NN ~ Uy(Zy) via — 7. Define

y 1
My = (Indk (G @ d1x )"

By Proposition 5.1 in [29], M is a finitely generated D'(I, )-module, and as D'*(INN, K)-
modules, we have

M; ~D'(INN,K)~R".

10
Under the second isomorphism (Amice) we see that acts T — (07 D(a)(1+ 1)

0 a

Therefore, we can write My ~ R+(X51_1).

Using the notations in section 3.5.1, as I N N-equivariant DI‘E)? i 5)(U1)—rnodules, we have

K[I N NJ.

Ml = I%H<Dn/Dny) ®Gn+1

Thus M; is a finitely generated module over D'(I, K)@meﬁ n(é)(U1)7 and M, =

DI%Ol,m(éﬂUl@Dﬁﬁ(é)(Ul)Ml is therefore an I-equivariant Dgfﬁ(&)ml-module on Uy. Note
that the stalk Ml,oo = n K(p"0y) is the delta function supported at oo, which has an
n>0
10 .
action of the upper triangular Borel B such that acts as Jy — (x07 ) (p)pdy.
0 p

Similarly, if I is the mod p upper triangular Iwahori subgroup, define

My = (Ind} 501X " @ d3))*

a 0
Then My ~ DI N N,K) ~ RT such that acts as T — (Xél_l)(a)(l + T)%.

01

—_ L m o
Therefore My := Dpl,n(é)‘%@pﬁm(é)

It follows that ]\71(U0 NUy) ~ R+(X51_1) X Zy ~ MO(UO NUy). If we glue M and M,
68
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via i f(x)po = /X 52(—1)5(—x)f(§),u1 for pi; € M; and i = 1, 2. Then by the definition
of Colfnez’s X Constfuction and Cech cohomology, the global section of the glued sheaf is
R (xo7 1) X1 PL.

Remark 3.5.2. We wonder whether it is possible to give DEi o X P! a similar interpretation.

Remark 3.5.3. The locally analytic Steinberg is the global section of Q%] where U — Pl is

the Drinfeld upper half plane. However, Q%] is naturally a G equivariant Dﬁﬁ Q-module.
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