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(57) ABSTRACT 

According to one or more embodiments, a computer imple­
mented method for implementing a convolutional neural 
network (CNN) using a crosspoint array includes configur­
ing the crosspoint array corresponding to a convolution layer 
in the CNN by storing one or more convolution kernels of 
the convolution layer in one or more crosspoint devices of 
the crosspoint array. The method further includes perform­
ing computations for the CNN via the crosspoint array by 
transmitting voltage pulses corresponding to a vector of 
input data of the convolution layer to the crosspoint array. 
Performing the CNN computations further includes output­
ting an electric current representative of performing a mul­
tiplication operation at a crosspoint device in the crosspoint 
array based on a weight value stored by the crosspoint 
device and the voltage pulses from the input data. Perform­
ing the CNN computations further includes passing the 
output electric current from the crosspoint device to a 
selected integrator. 

PATHWAY 
H18 y~ 

,,../ 

RON PATHWAY 
no 

116 
j 

~ I \ 
OUTPUTS 

l~.e. HO 

tHER . · 
URON .·. 



Patent Application Publication Apr. 16, 2020 Sheet 1 of 12 

212 
.~-( ( ~-

\ INPUTS 
,. 

✓-.,., 

RESULT 

FIG. 2 

US 2020/0117986 Al 



Patent Application Publication Apr. 16, 2020 Sheet 2 of 12 US 2020/0117986 Al 

Yi zf(X1) 
Y2:::P(X2) 
Y3zF(X3) 

Y4 z F(MYY1 + M5*Y2 + MS"Y3) 
¥5 ::: F(M2•fl + M6'Y2 + MWY3) 
YS zF(M3:'Y1 + MJ*Y2 + MWVJ) 
Y7 z F(M4'Y1 + M8*Y2 + M12''Y3) 

'ffz FJMrY4.., M15'% + MH'YS • MWYl) 
Yi z F{MWY4 + M1WY5 + MWY6 + MW'Y7) 

FIG. 3 



w 

LO (Input) 
512x512 

\ 
400 

# 
;//i 

''-., 

" 

Convolution 

v, 

• 
• 
• 

Ll 
256x256 

110 

-------► 

·, A 
'., / 

\ ~/·. 
\ 

V n! 1x 
;\ 

/ ~ 

--------► 

L2 
128~28 

I 
420 

FIG.4 

Fully connected __ )._ __ . 
·, " 

.,.. 

ill-
r: >,''Cc;~ 

L3 L4 
64x64 32x~2 

\ \ 
430 440 

F\5 . F6 . 
450 (OutRut) 

J50 

""O 
~ .... 
('D 

= .... 
t 
"e -.... (') 

~ .... .... 
0 = 
""O = O" -.... (') 

~ .... .... 
0 = 

t 
:-: .... 

~Cl's 

N 
0 
N 
0 

rJJ 
=­('D 
('D .... 
~ 

0 .... .... 
N 

c 
rJJ 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
Cl's 

> .... 



500~ 

Input Maps 510 * Convolution Kernels 520 + Bias 525 => Output Maps 530 

D input maps 

~;;JJ,?.t;?t.ff:1 
f&f~Kfef1 
k;✓ ,-·:'/7., 

~: NxMxD 
Input neurons 

The input is a set of D maps, 
Each map is a matrix of size (N x 
M) pixels divided into pieces of 
size (k x k). 

INPUT 

F filters 

~tk 
4--1>-

k 

Trainable Parameters 

FIG. 5 

Output Maps 

'ltilt~i~ii 
ltitf~I 
'lf~tI11 ',,/".,_,.-....,,,·-,.,,-....,_.,.. . ..,. . .,/',,.."'•/".,_,.-....,,,:-,, 

N'xM'xF 
Output neurons 

The output is a set of 
corresponding maps. 

OUTPUT 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 

t 
:-: .... 

~Cl's 

N 
0 
N 
0 

rJJ 
=­('D 
('D ..... 
.i;... 

0 .... .... 
N 

c 
rJJ 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
Cl's 

> .... 



Patent Application Publication Apr. 16, 2020 Sheet 5 of 12 

0 
0 
~ 

N 

US 2020/0117986 Al 

c.o 
C) 

LL.. 



700 

~ 

Shared ctrcuUry 714 
\ 

Input/ 1• l-1 

Clr~~~ry ii I ::::::[:array 

ii I _L _____ ~_, __ _. __ ,_:_1, 
r:· ,, ~w,,.w,,,,-,,_w;~,/.,..1~ f:II IIIW 11 WIil 
S?A>+?:>:·i t - I ·-----l"IJ"'-1111", 
m~~iyv '~ ~ ~ ~ :-..i 11111 ffl 7Tl-·c~luf!1n 

1 1\ c1rctntry 726 
Support/ 1 \ 

circuitry ... - - - - ------~ - - - - - - - - - - -
722 Output Circuitry 720 724 

FIG. 7 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 

t 
:-: .... 

~Cl's 

N 
0 
N 
0 

rJJ 

=­('D 
('D ..... 
Cl's 
0 .... .... 
N 

c 
rJJ 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
Cl's 

> .... 



Patent Application Publication Apr. 16, 2020 Sheet 7 of 12 

Lf') 

0 
I""'-

:('.-1 ;;;:~,.......,_..,. ___ ..,. 
C> «>•:-..._ __ ..,. ............ 

© 
~ ... ~~ . .._..._,.. __ ..., 

N 

1-· = 
~~--<:~:;> 

~ 

= 
.. ~ ........ . 

= -

US 2020/0117986 Al 

00 

(.9 

LL. 



Patent Application Publication Apr. 16, 2020 Sheet 8 of 12 US 2020/0117986 Al 

0 
N 
)' 

.---/~-
_;'· I I 

<:t I >11-----l-
rl 

I ;::!; I 
00 m 0) 

I I 
"' I I (9 

N >11-t- LL 
rl N 
00 rl I vi 

I 
N 

~ 
0 o I 
rl rl co C!) I 

I 
.-< 

f---+-
co 00 I 0 0 co C!) ____ ., 



520 

k > k weights/plwe/filt.er 

510 

0 lnput P!an0., .} . 

522 . 

. 

0 • }52~ 
} 526 ": 

.} 528 -

522 

530 

F output Planes 

512 

~~&~ 
FIG.10 908 910 912 914 

700 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 

t 
:-: .... 

~Cl's 

N 
0 
N 
0 

rJJ 
=­('D 
('D ..... 
1,0 

0 .... .... 
N 

c 
rJJ 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
Cl's 

> .... 



Time-step 1 

520 

k x k weight,/p!an<'/filtF.f 

510 

D input P!,mes 

..... -: .•.•.• .... } 522 
··• 

0c } ":. 
- -

'' } 526 "! 

!7f'7~} 528 •••• ,•.·.· ·.·.!-; 

530 

F output Planes 

FIG. 11 -,--........... . ....,..... ... ,....-.... 

908 910 912 914 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 

t 
:-: .... 

~a--­
N 
0 
N 
0 

rJ'1 
=­('D 
('D ..... .... 
0 
0 .... .... 
N 

c 
rJ'1 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
a--

> .... 



5 

51 

Time-step 2 

510 

D in!)ut P!J:ie,; 

520 

k, k weightS-/plane/fi!ter 

}522 

I},,~ 
} 526 53 

530 

F output Planes 

FIG. 12 .-.........-..,.....,... 
908 910 912 914 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 

t 
:-: .... 

~Cl's 

N 
0 
N 
0 

rJJ 
=­('D 
('D ..... .... .... 
0 .... .... 
N 

c 
rJJ 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
Cl's 

> .... 



514 

512 

Time-step 3 

510 

D in!)ut P!J:ie,; 

520 

k, k weightS-/plane/fi!ter 

}522 

S26 532 
5 

530 

F output Planes 

FIG. 13 .-.........-..,.....,... 
908 910 912 914 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 

t 
:-: .... 

~Cl's 

N 
0 
N 
0 

rJJ 
=­('D 
('D ..... .... 
N 
0 .... .... 
N 

c 
rJJ 
N 
0 
N 
0 

---0 .... .... 
-....J 
1,0 
QO 
Cl's 

> .... 



US 2020/0117986 Al 

EFFICIENT PROCESSING OF 
CONVOLUTIONAL NEURAL NETWORK 

LAYERS USING ANALOG-MEMORY-BASED 
HARDWARE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This patent application claims pnonty to U.S. 
Provisional Patent Application Ser. No. 62/745,132, filed 
Oct. 12, 2018, which is incorporated herein by reference in 
its entirety. 

BACKGROUND 

[0002] The present invention relates in general to novel 
configurations of resistive crosspoint devices, which are 
referred to herein as resistive processing units (RPUs). More 
specifically, the present invention relates to performing 
operations of convolutional neural network layers using 
such crosspoint devices in crossbar arrays, such as in analog­
memory-based hardware. 
[0003] Technical problems such as character recognition 
and image recognition by a computer are known to be well 
handled by machine-learning techniques. "Machine learn­
ing" is used to broadly describe a primary function of 
electronic systems that learn from data. In machine learning 
and cognitive science, neural networks are a family of 
statistical learning models inspired by the biological neural 
networks of animals in particular, the brain. Neural networks 
can be used to estimate or approximate systems and func­
tions that are generally unknown and depend on a large 
number of inputs. Neural networks use a class of algorithms 
based on a concept of inter-connected "neurons." In a typical 
neural network, neurons have a given activation function 
that operates on the inputs. By determining proper connec­
tion weights (a process also referred to as "training"), a 
neural network achieves efficient recognition of a desired 
patterns, such as images and characters. Oftentimes, these 
neurons are grouped into "layers" to make connections 
between groups more obvious and to organize the compu­
tation process. With these proper connection weights, other 
patterns of interest that have never been seen by the network 
during training can also be correctly recognized, a process 
known as "Forward Inference." 

SUMMARY 

[0004] According to one or more embodiments, a com­
puter implemented method for implementing a convolu­
tional neural network (CNN) using a crosspoint array or 
arrays includes configuring the crosspoint array(s) corre­
sponding to a convolution layer in the CNN by storing one 
or more convolution kernels of the convolution layer in one 
or more crosspoint devices of each crosspoint array. The 
method further includes performing computations for the 
CNN via the crosspoint array by transmitting voltage pulses 
corresponding to a vector of input data of the convolution 
layer to the crosspoint array. Performing the CNN compu­
tations further include outputting an electric current repre­
sentative of performing a multiplication operation at a 
crosspoint device in the crosspoint array based on a weight 
value stored by the crosspoint device and the voltage pulses 
from the input data. Performing the CNN computations 
further include passing the output electric current from the 
one or more crosspoint devices to a selected integrator. 
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[0005] According to one or more embodiments of the 
present invention, an electronic circuit for performing com­
putations of a trained convolutional neural network (CNN) 
includes a crosspoint array, and an output circuit that 
includes one or more integrators. Performing the computa­
tions of the trained CNN comprises performing a method 
that includes configuring the crosspoint array(s) correspond­
ing to a convolution layer in the CNN by storing one or more 
convolution kernels of the convolution layer in one or more 
crosspoint devices of each crosspoint array. The method 
further includes performing computations for the CNN via 
the crosspoint array by transmitting voltage pulses corre­
sponding to a vector of input data of the convolution layer 
to the crosspoint array. Performing the CNN computations 
further include outputting an electric current representative 
of performing a multiplication operation at a crosspoint 
device in the crosspoint array based on a weight value stored 
by the crosspoint device and the voltage pulses from the 
input data. Performing the CNN computations further 
include passing the output electric current from the one or 
more crosspoint devices to a selected integrator. 

[0006] According to one or more embodiments of the 
present invention, an electronic circuit includes an array of 
resistive memory elements. The array provides a vector of 
current outputs equal to an analog vector-matrix-product 
between (i) a vector of voltage inputs to the array encoding 
a vector of analog input values and (ii) a matrix of analog 
resistive weights within the array. The electronic circuit 
further includes accumulation wires and circuits aggregating 
a current from a dedicated subset of the resistive memory 
elements. The electronic circuit further includes integration 
capacitors, each of the integration capacitors being electri­
cally switchable so as to aggregate current from one of a 
plurality of accumulation wires during a single integration 
step. The electronic circuit further includes data-output 
circuitry to allow an integrated charge from a subset of the 
integration capacitors, accumulated over a plurality of inte­
gration steps, to be suitably converted and transmitted either 
as an analog duration or as a digital representation using 
binary digits. 

[0007] It is to be understood that the technical solutions 
are not limited in application to the details of construction 
and to the arrangements of the components set forth in the 
following description or illustrated in the drawings. The 
technical solutions are capable of embodiments in addition 
to those described and of being practiced and carried out in 
various ways. Also, it is to be understood that the phrase­
ology and terminology employed herein, as well as the 
abstract, are for the purpose of description and should not be 
regarded as limiting. As such, those skilled in the art will 
appreciate that the conception upon which this disclosure is 
based may readily be utilized as a basis for the designing of 
other structures, methods and systems for carrying out the 
several purposes of the presently described technical solu­
tions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0008] The examples described throughout the present 
document will be better understood with reference to the 
following drawings and description. The components in the 
figures are not necessarily to scale. Moreover, in the figures, 
like-referenced numerals designate corresponding parts 
throughout the different views. 
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[0009] FIG. 1 depicts a simplified diagram of input and 
output connections of a mathematical neuron; 
[0010] FIG. 2 depicts a simplified model of the math­
ematical neuron shown in FIG. 1; 
[0011] FIG. 3 depicts a simplified model of an ANN 
incorporating the mathematical neuron model shown in FIG. 
2; 
[0012] FIG. 4 illustrates a simplified block diagram of a 
representative CNN, which is interpreting a sample input 
map; 
[0013] FIG. 5 illustrates an example convolutional layer in 
a CNN being trained using training data that include input 
maps and convolution kernels; 
[0014] FIG. 6 depicts a system for performing a matrix­
matrix multiplication using a crossbar array according to one 
or more embodiments of the present invention; 
[0015] FIG. 7 depicts a two-dimensional (2D) crossbar 
system that performs forward matrix multiplication, back­
ward matrix multiplication, and weight updates according to 
the present description; 
[0016] FIG. 8 depicts an expanded view of the crossbar 
array according to one or more embodiments; 
[0017] FIG. 9 depicts a typical output circuitry in a cross­
bar system; 
[0018] FIG. 10 depicts existing operations to perform such 
operations using the crossbar array; 
[0019] FIG. 11 depicts performing CNN operations using 
selective integrators according to one or more embodiments; 
[0020] FIG. 12 depicts performing CNN operations using 
selective integrators according to one or more embodiments; 
and 
[0021] FIG. 13 depicts performing CNN operations using 
selective integrators according to one or more embodiments. 

DETAILED DESCRIPTION 

[0022] The technical solutions described herein facilitate 
efficient implementation of deep learning techniques that use 
convolutional neural networks. Deep learning techniques are 
widely used in machine-based pattern recognition problems, 
such as image and speech recognition. Deep learning inher­
ently leverages the availability of massive training datasets 
(that are enhanced with the use of Big Data) and computing 
power (that is expected to grow according to Moore's Law). 
[0023] It is understood in advance that although one or 
more embodiments are described in the context of biological 
neural networks with a specific emphasis on modeling brain 
structures and functions, implementation of the teachings 
recited herein are not limited to modeling a particular 
environment. Rather, embodiments of the present invention 
are capable of modeling any type of environment, including 
for example, weather patterns, arbitrary data collected from 
the Internet, and the like, as long as the various inputs to the 
environment can be turned into a vector. 
[0024] ANNs are often embodied as so-called "neuromor­
phic" systems of interconnected processor elements that act 
as simulated "neurons" and exchange "messages" between 
each other in the form of electronic signals. Similar to the 
so-called "plasticity" of synaptic neurotransmitter connec­
tions that carry messages between biological neurons, the 
connections in ANNs that carry electronic messages 
between simulated neurons are provided with numeric 
weights that correspond to the strength or weakness of a 
given connection. The weights can be adjusted and tuned 
based on experience, making ANNs adaptive to inputs and 
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capable of learning. For example, an ANN for handwriting 
recognition is defined by a set of input neurons which can be 
activated by the pixels of an input image. After being 
weighted and transformed by a function determined by the 
network's designer, the activations of these input neurons 
are then passed to other downstream neurons, which are 
often referred to as "hidden" neurons. This process is 
repeated until an output neuron is activated. The activated 
output neuron determines which character was read. 
[0025] Crossbar arrays, also known as crosspoint arrays, 
crosswire arrays, or resistive processing unit (RPU) arrays, 
are high density, low cost circuit architectures used to form 
a variety of electronic circuits and devices, including ANN 
architectures, neuromorphic microchips and ultra-high den­
sity nonvolatile memory. A basic crossbar array configura­
tion includes a set of conductive row wires and a set of 
conductive column wires formed to intersect the set of 
conductive row wires. The intersections between the two 
sets of wires are separated by so-called crosspoint devices, 
which can be formed from thin film material. 
[0026] Crosspoint devices, in effect, function as the 
ANN's weighted connections between neurons. Nanoscale 
two-terminal devices, for example memristors having 
"ideal" conduction state switching characteristics, are often 
used as the crosspoint devices in order to emulate synaptic 
plasticity with high energy efficiency. The conduction state 
( e.g., resistance) of the ideal memristor material can be 
altered by controlling the voltages applied between indi­
vidual wires of the row and column wires. Digital data can 
be stored by alteration of the memristor material's conduc­
tion state at the intersection to achieve a high conduction 
state, a low conduction state, or any intermediate conduc­
tance state in between. The memristor material can also be 
programmed to maintain one of these distinct conduction 
states-high, low, or intermediate-by selectively setting 
the conduction state of the material. The conduction state of 
the memristor material can be read by applying a voltage 
across the material and measuring the current that passes 
through the target crosspoint device. 
[0027] In order to limit power consumption, the crosspoint 
devices of ANN chip architectures are often designed to 
utilize oflline learning techniques, wherein the approxima­
tion of the target function does not change once the initial 
training phase has been resolved. Oflline learning allows the 
crosspoint devices of crossbar-type ANN architectures to be 
simplified such that they draw very little power. 
[0028] Providing simple crosspoint devices that can 
implement Forward Inference of previously-trained ANN 
networks with low power consumption, high computational 
throughput, and low latency would improve overall ANN 
performance and allow a broader range of ANN applica­
tions. 
[0029] Although the present invention is directed to an 
electronic system, for ease of reference and explanation 
various aspects of the described electronic system are 
described using neurological terminology such as neurons, 
plasticity and synapses, for example. It will be understood 
that for any discussion or illustration herein of an electronic 
system, the use of neurological terminology or neurological 
shorthand notations are for ease of reference and are meant 
to cover the neuromorphic, ANN equivalent(s) of the 
described neurological function or neurological component. 
[0030] ANNs, also known as neuromorphic or synaptronic 
systems, are computational systems that can estimate or 
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approximate other functions or systems, including, for 
example, biological neural systems, the human brain and 
brain-like functionality such as image recognition, speech 
recognition, and the like. ANN s incorporate know ledge from 
a variety of disciplines, including neurophysiology, cogni­
tive science/psychology, physics (statistical mechanics), 
control theory, computer science, artificial intelligence, sta­
tistics/mathematics, pattern recognition, computer vision, 
parallel processing and hardware ( e.g., digital/analog/VLSI/ 
optical). 

[0031] Instead of utilizing the traditional digital model of 
manipulating zeros and ones, ANN s create connections 
between processing elements that are substantially the func­
tional equivalent of the core system functionality that is 
being estimated or approximated. For example, a computer 
chip that is the central component of an electronic neuro­
morphic machine attempts to provide similar form, function, 
and architecture to the mammalian brain. Although the 
computer chip uses the same basic transistor components as 
conventional computer chips, its transistors are configured 
to mimic the behavior of neurons and their synapse connec­
tions. The computer chip processes information using a 
network of just over one million simulated "neurons," which 
communicate with one another using electrical spikes simi­
lar to the synaptic communications between biological neu­
rons. The architecture of such a computer chip includes a 
configuration of processors (i.e., simulated "neurons") that 
read a memory (i.e., a simulated "synapse") and perform 
simple operations. The communications between these pro­
cessors (pathways), which are typically located in different 
cores, are performed by on-chip network routers. 

[0032] As background, a general description of how a 
typical ANN operates will now be provided with reference 
to FIGS. 1, 2, and 3. As previously noted herein, a typical 
ANN is a mathematical model inspired by the human brain, 
which includes about one hundred billion interconnected 
cells called neurons. FIG. 1 depicts a simplified diagram of 
a mathematical neuron 102 having pathways 104, 106, 108, 
110 that connect it to upstream inputs 112, 114, downstream 
outputs 116, and downstream "other" neurons 118, config­
ured and arranged as shown. Each mathematical neuron 102 
sends and receives electrical impulses through pathways 
104, 106, 108, 110. The nature of these electrical impulses 
and how they are processed in biological neurons (not 
shown) are primarily responsible for overall brain function­
ality. Mimicking this functionality is the intent of a math­
ematical ANN constructed from mathematical neurons 102 
organized in a network. Just as the pathway connections 
between biological neurons can be strong or weak, so can 
the pathways between mathematical neurons. When a given 
neuron receives input impulses, the neuron processes the 
input according to the neuron's function and sends the result 
of the function to downstream outputs and/or downstream 
"other" neurons. 

[0033] Mathematical neuron 102 is modeled in FIG. 2 as 
a node 202 having a mathematical function, f(x), depicted by 
the equation shown in FIG. 2. Node 202 takes electrical 
signals from inputs 212, 214, multiplies each input 212, 214 
by the strength of its respective connection pathway 204, 
206, takes a sum of the inputs, passes the sum through a 
function, f(x), and generates a result 216, which can be a 
final output or an input to another node, or both. In the 
present description, an asterisk (*) is used to represent a 
multiplication, which can be a matrix multiplication. For 
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example, the matrix multiplication can be used to perform 
convolution operations between input data and one or more 
convolution kernels to generate output maps. Weak input 
signals are multiplied by a very small connection strength 
number, so the impact of a weak input signal on the function 
is very low. Similarly, strong input signals are multiplied by 
a higher connection strength number, so the impact of a 
strong input signal on the function is larger. The function 
f(x) is a design choice, and a variety of functions can be 
used. A typical design choice for f(x) is the hyperbolic 
tangent function, which takes the function of the previous 
sum and outputs a number between minus one and plus one. 
An alternative design choice off(x) is the ReLU or Rectified 
Linear Unit, a function in which the output matches the input 
for positive inputs and is zero otherwise. 

[0034] FIG. 3 depicts a simplified ANN model 300 orga­
nized as a weighted directional graph, wherein the artificial 
neurons are nodes (e.g., 302, 308, 316), and wherein 
weighted directed edges (e.g., ml to m20) connect the 
nodes. ANN model 300 is organized such that nodes 302, 
304, 306 are input layer nodes, nodes 308, 310, 312, 314 are 
hidden layer nodes, and nodes 316, 318 are output layer 
nodes. Each node is connected to every node in the adjacent 
layer by connection pathways, which are depicted in FIG. 3 
as directional arrows having connection strengths ml to 
m20. Although only one input layer, one hidden layer, and 
one output layer are shown, in practice, multiple input 
layers, hidden layers, and output layers can be provided. 

[0035] In this attempt to mimic the functionality of a 
human brain, each input layer node 302, 304, 306 of ANN 
300 receives inputs xl, x2, x3 directly from a source (not 
shown) with no connection strength adjustments and no 
node summations. Accordingly, yl=f(xl), y2=f(x2) and 
y3=f(x3), as shown by the equations listed at the bottom of 
FIG. 3. Each hidden layer node 308, 310, 312, 314 receives 
its inputs from all input layer nodes 302, 304, 306, according 
to the connection strengths associated with the relevant 
connection pathways. Thus, in hidden layer node 308, 
y4=f(ml *yl+m5*y2+m9*y3), wherein* represents a mul­
tiplication. In one or more examples, the multiplication can 
be a matrix multiplication used to perform a convolution 
operation. A similar connection strength multiplication and 
node summation is performed for hidden layer nodes 310, 
312, 314 and output layer nodes 316, 318, as shown by the 
equations defining functions y5 to y9 depicted at the bottom 
of FIG. 3. 

[0036] ANN model 300 processes data records one at a 
time, and it "learns" by comparing an initially arbitrary 
classification of the record with the known actual classifi­
cation of the record. Using a training methodology knows as 
"backpropagation" (i.e., "backward propagation of errors"), 
the errors from the initial classification of the first record are 
fed back into the network and used to modify the network's 
weighted connections the second time around, and this 
feedback process continues for many iterations. In the 
training phase of an ANN, the correct classification for each 
record is known, and the output nodes can therefore be 
assigned "correct" values, for example, a node value of" 1" 
(or 0.9) for the node corresponding to the correct class, and 
a node value of"0" (or 0.1) for the others. It is thus possible 
to compare the network's calculated values for the output 
nodes to these "correct" values, and to calculate an error 
term for each node (i.e., the "delta" rule). These error terms 
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are then used to adjust the weights in the hidden layers so 
that in the next iteration the output values will be closer to 
the "correct" values. 
[0037] There are many types of neural networks, but the 
two broadest categories are feed-forward and feedback/ 
recurrent networks. ANN model 300 is a non-recurrent 
feed-forward network having inputs, outputs, and hidden 
layers. The signals used for forward-inference can only 
travel in one direction. Input data are passed onto a layer of 
processing elements that perform calculations. Each pro­
cessing element makes its computation based upon a 
weighted sum of its inputs. The new calculated values then 
become the new input values that feed the next layer. This 
process continues until it has gone through all the layers and 
determined the output. A threshold transfer function is 
sometimes used to quantify the output of a neuron in the 
output layer. 
[0038] A feedback/recurrent network includes feedback 
paths, which mean that the signals used for forward-infer­
ence can travel in both directions using loops. All possible 
connections between nodes are allowed. Because loops are 
present in this type of network, under certain operations, it 
can become a non-linear dynamical system that changes 
continuously until it reaches a state of equilibrium. Feed­
back networks are often used in associative memories and 
optimization problems, wherein the network looks for the 
best arrangement of interconnected factors, and in the learn­
ing of sequences of characters and/or words. 
[0039] The speed and efficiency of machine learning in 
feed-forward and recurrent ANN architectures depend on 
how effectively the crosspoint devices of the ANN crossbar 
array perform the core operations of typical machine learn­
ing algorithms. Although a precise definition of machine 
learning is difficult to formulate, a learning process in the 
ANN context can be viewed as the problem of updating the 
crosspoint device connection weights so that a network can 
efficiently perform a specific task. The crosspoint devices 
typically learn the necessary connection weights from avail­
able training patterns. Performance is improved over time by 
iteratively updating the weights in the network. Instead of 
following a set of rules specified by human experts, ANN s 
"learn" underlying rules (like input-output relationships) 
from the given collection of representative examples. 
Accordingly, a learning algorithm can be generally defined 
as the procedure by which learning rules are used to update 
and/or adjust the relevant weights. 
[0040] The three main learning algorithm paradigms are 
supervised, unsupervised, and hybrid. In supervised learn­
ing, or learning with a "teacher," the network is provided 
with a correct answer (output) for every input pattern. 
Weights are determined to allow the network to produce 
answers as close as possible to the known correct answers. 
Reinforcement learning is a variant of supervised learning in 
which the network is provided with only a critique on the 
correctness of network outputs, not the correct answers 
themselves. In contrast, unsupervised learning, or learning 
without a teacher, does not require a correct answer associ­
ated with each input pattern in the training data set. It 
explores the underlying structure in the data, or correlations 
between patterns in the data, and organizes patterns into 
categories from these correlations. Hybrid learning com­
bines supervised and unsupervised learning. Parts of the 
weights are usually determined through supervised learning, 
while the others are obtained through unsupervised learning. 
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Additional details of ANNs and learning rules are described 
in Artificial Neural Networks: A Tutorial, by Anil K. Jain, 
Jianchang Mao and K. M. Mohiuddin, IEEE, March 1996, 
the entire description of which is incorporated by reference 
herein. 
[0041] Beyond the application of training ANNs, the For­
ward Inference of already trained networks includes appli­
cations ranging from implementations of cloud-based ser­
vices built on ANNs to smartphone, Internet-Of-Things 
(IOT), and other battery-constrained applications which 
require extremely low power operation. In general, while 
training is an application that calls for high throughput (in 
order to learn from many training examples), Forward 
Inference is an application that calls for fast latency (so that 
any given new test example can be classified, recognized, or 
otherwise processed as rapidly as possible). 
[0042] Described here are technical solutions for perform­
ing convolutional neural network computations using ana­
log-memory-based hardware, such as crossbar arrays that 
include crosspoint devices. Deep Neural Network (DNN) 
accelerators based on crossbar arrays of non-volatile memo­
ries (NVMs)-such as Phase-Change Memory (PCM) or 
Resistive Memory (RRAM)-can implement multiply-ac­
cumulate operations that are extensively used in DNN 
acceleration in a parallelized manner. In such systems, 
computation occurs in the analog domain at the location of 
weight data encoded into the conductance (resistance) of the 
NVM devices. Such NVM devices are also referred to as 
RPU devices and crosspoint devices. The computation of 
multiply-accumulate operations can be mathematically 
described as vector-matrix multiplication between a vector 
of neuron excitations and a dense matrix of weights. The 
DNN computations for a Fully-Connected (FC) layer 
include such multiply-accumulate operations and, accord­
ingly, using crossbar arrays to implement the FC layers of a 
DNN is computationally efficient. 
[0043] In one or more examples, DNNs used for feature 
detection in input data include convolutional layers. Such 
DNNs are commonly referred to as convolutional neural 
networks (CNN). In a CNN, kernels convolute overlapping 
regions, such as those in a visual field, and accordingly 
emphasize the importance of spatial locality in feature 
detection. Computing the convolutional layers of the CNN 
typically encompasses more than 90% of computation time 
in neural network training and inference. Accelerating the 
forward-inference of CNN networks and reducing the 
amount of electrical power used, by performing the math­
ematical operations of the convolutional layers efficiently 
and with a minimum of extraneous data movement or 
computation, as described by the examples of the technical 
solutions herein, is a desirable improvement. As such the 
technical solutions are rooted in and/or tied to computer 
technology in order to overcome a problem specifically 
arising in the realm of computers, specifically neural net­
works, and more particularly convolutional neural networks. 
[0044] However, in a convolutional layer as is used in 
many image-processing applications, multiple smaller vec­
tors of neuron excitations (image patches) each are multi­
plied by smaller kernel matrices (filters). While this is 
advantageous for digital accelerators since there are fewer 
weights to retrieve from off-chip memory, the analog 
memory-based approach that increases efficiency for fully­
connected layers is now at a disadvantage. If there is only 
one copy of the kernel matrices, then each vector of neuron 
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excitations must be computed in serial fashion, leading to 
computational performance that is not very interesting. 
Alternatively, multiple copies of the kernel matrices can be 
stored and operated simultaneously. However, the output 
excitations resulting from each copy of the kernel matrix 
must be organized, stored, duplicated, shuffled, and prepared 
to fill the neuron excitation vectors for the next convolu­
tional layer. These operations significantly limit perfor­
mance efficiency of the neural network by requiring digiti­
zation of the neuron excitation values and a significant 
amount of local digital storage and local digital processing, 
in order to convert raw output vectors into the next set of 
neuron excitation vectors. 

[0045] The technical solutions described herein address 
such technical problems by facilitating the organization of 
the analog memory computations in such a way as to greatly 
simplify the processing and bookkeeping of the resulting 
computational outputs. In one or more examples, the analog 
memory computations are organized so that the neural 
network processes each set of inputs to a convolutional layer 
(an image with rows and columns, organized into multiple 
input "planes") one row (or colunm) at a time. 

[0046] FIG. 4 illustrates a simplified block diagram of a 
CNN. In the depicted example, the CNN is being used for 
interpreting a sample input map 400, and in this particular 
example uses a handwritten letter "w" as an input map. 
However, it is understood that other types of input maps are 
possible and also that the technical solutions described 
herein are applicable to a CNN performing other operations, 
such as other types of feature detections. In the illustrated 
example, the input map 100 is used to create a set of values 
for the input layer 410, or "layer-1." For example, layer-1 
can be generated by direct mapping of a pixel of the sample 
input map 400 to a particular neuron in layer-1, such that the 
neuron shows a 1 or a O depending on whether the pixel 
exhibits a particular attribute. Another example method of 
assigning values to neurons is discussed below with refer­
ence to convolutional neural networks. Depending on the 
vagaries of the neural network and the problem it is created 
to solve, each layer of the network can have differing 
numbers of neurons, and these may or may not be related to 
particular qualities of the input data. 

[0047] Referring to FIG. 4, neurons in layer-1 410 are 
connected to neurons in a next layer, layer-2 420, as 
described earlier (see FIG. 3). The neurons in FIG. 4 are as 
described with reference to FIG. 1. A neuron in layer-2 420, 
consequently, receives an input value from each of the 
neurons in layer-1 410. The input values are then summed 
and this sum compared to a bias. If the value exceeds the 
bias for a particular neuron, that neuron then holds a value, 
which can be used as input to neurons in the next layer of 
neurons. This computation continues through the various 
layers 430-450 of the CNN, which include at least one FC 
layer 450, until it reaches a final layer 460, referred to as 
"output" in FIG. 4. In some CNN networks, "residual" 
results from earlier layers may be combined with the results 
of later layers, skipping over the layers in between. In an 
example of a CNN used for character recognition, each 
value in the layer is assigned to a particular character. When 
designed for classification tasks, the network is configured 
to end with the output layer having only one large positive 
value in one neuron, which then demonstrates which char­
acter the network has computed to be the most likely 
handwritten input character. In other scenarios, the network 
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may have been designed such that output neuron values may 
be used to estimate probability (likelihood), confidence or 
other metrics of interest. 

[0048] The data values for each layer in the CNN are 
typically represented using matrices ( or tensors in some 
examples), and computations are performed as matrix com­
putations. The indexes (and/or sizes) of the matrices vary 
from layer to layer and network to network, as illustrated in 
FIG. 4. Different implementations orient the matrices or map 
the matrices to computer memory differently. Referring to 
FIG. 4, in the example CNN illustrated, each level is a tensor 
of neuron values, as is illustrated by matrix dimensions for 
each layer of the neural network. At the input of the CNN, 
an example might be multiple input "planes," each a two­
dimensional image. For instance, there might be a red plane, 
a green plane, and a blue plane, stemming from a full-color 
image. Deeper into the CNN, layers may take intermediate 
data in the form of many "planes" and produce for the next 
layer a large number of output planes. The values in an input 
tensor at a layer are multiplied by connection strengths, 
which are in a transformation tensor known as a filter. This 
matrix multiplication scales each value in the previous layer 
according to the connection strengths, with the aggregate 
total of these contributions then summed. This fundamental 
operation is known as a multiply-accumulate operation. A 
bias matrix may then be added to the resulting product 
matrix to account for the threshold of each neuron in the next 
level. Further, an activation function is applied to each 
resultant value, and the resulting values are placed in the 
output tensor to be applied to the next layer. In an example, 
the activation function can be rectified linear units, sigmoid, 
or tan h( ). Thus, as FIG. 4 shows, the connections between 
each layer, and thus an entire network, can be represented as 
a series of matrices. Training the CNN includes finding 
proper values for these matrices. 

[0049] While fully-connected neural networks are able, 
when properly trained, to recognize input patterns, such as 
handwriting or photos of household pets, they do not exhibit 
shift-invariance. In order for the network to recognize the 
whiskers of a cat, it must be supplied with cat images with 
the whiskers located at numerous different 2-D locations 
within the image. Each different image location will lead to 
neuron values that interact with different weights in such a 
fully-connected network. In contrast, in a CNN, the connec­
tion strengths are convolution kernels. The convolution 
operation introduces shift-invariance. Thus, as multiple 
images are presented with cats with whiskers, as long as the 
scale, color, and rotation of the whiskers is unchanged from 
image to image, the 2-D position within the image no longer 
matters. Thus, during training, all examples of similar fea­
tures work together to help learn this feature, independent of 
the feature location within the 2-D image. After training, a 
single or much smaller set of filters is sufficient to recognize 
such image features, allowing a bank of many filters (which 
is what a CNN layer is) to then recognize many different 
features that are useful for discriminating images ( dogs from 
cats, or even subtleties that are representative of different 
breeds of cats). 

[0050] FIG. 5 illustrates an example convolutional layer 
500 in a CNN being trained using training data that include 
input maps 510 and convolution kernels 520. For simplicity, 
FIG. 5 does not illustrate bias matrices 525. The input maps 
510 (also referred to as input planes) can include multiple 
input patterns, for example, D input maps. Each input map 
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is a matrix, such as a matrix of size NxM. Accordingly, a 
total number of input neurons in this case is NxMxD. The 
input maps are convolved with F convolution kernels 520 of 
size kxk as illustrated to produce corresponding output maps 
530. Each output map can have a dimension N'xM'. In case 
the input maps are square matrices of size n, the output maps 
are of size n-k+ 1 xn-k+ 1. Each convolution is a 3D convo­
lution involving the D input maps. A CNN can include 
multiple such layers, where the output maps 530 from a 
previous layer are used as input maps 510 for a subsequent 
layer. The backpropagation algorithm can be used to learn 
the kxkxDxF weight values of the filters. 

[0051] For example, the input maps 510 are convolved 
with each filter bank to generate a corresponding output 
map. For example, in case the CNN is being trained to 
identify handwriting, the input maps 510 are combined with 
a filter bank that includes convolution kernels representing 
a vertical line. The resulting output map identifies vertical 
lines that are present in the input maps 510. Further, another 
filter bank can include convolution kernels representing a 
diagonal line, such as going up and to the right. An output 
map resulting from a convolution of the input maps 510 with 
the second filter bank identifies samples of the training data 
that contain diagonal lines. The two output maps show 
different information for the character, while preserving 
pixel adjacency. This can result in more efficient character 
recognition. 

[0052] FIG. 6 depicts a system 600 in which the crossbar 
array 700 is controlled using a controller 610 for performing 
the matrix-matrix multiplication among other operations 
according to one or more embodiments of the present 
invention. For example, the controller 610 sends the input 
data 510 to be multiplied by the crossbar array 700. In one 
or more examples, the controller 610 stores the weight 
values, such as from convolution kernels 520, in the crossbar 
array 700 and sends the input vectors. In one or more 
examples, the controller 610 and the crossbar array 700 are 
coupled in a wired or a wireless manner, or a combination 
thereof. The controller 610 further sends and instruction/ 
command to the crossbar array 700 to initiate the operations 
for one or more layers in the CNN. The controller 610 
further can read the output data 530 from the crossbar array 
700 after receiving a notification that the computations have 
been performed. The controller 610 can be a processing unit, 
or a computing system, such as a server, a desktop computer, 
a tablet computer, a phone, and the like. The controller 610 
can include a memory device that has computer executable 
instructions stored therein, the instructions when executed 
by the controller cause the matrix-matrix computation. 

[0053] Turning now to an overview of the present descrip­
tion, one or more embodiments are directed to a two­
terminal programmable resistive crosspoint component 
referred to herein as a resistive processing unit (RPU), which 
provides local data storage functionality and local data 
processing functionality. In other words, when performing 
data processing, the weighted contribution represented by 
each crosspoint device is contributed into a massively­
parallel multiply-accumulate operation that is performed at 
the stored location of data. This eliminates the need to move 
relevant data in and out of a processor and a separate storage 
element. Accordingly, implementing a machine learning 
CNN architecture having the described crosspoint device 
enables the implementation of online machine learning 
capabilities that optimize the speed, efficiency, and power 
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consumption when performing Forward-Inference of previ­
ously trained CNN models. The described crosspoint device 
and resulting CNN architecture improve overall CNN per­
formance and enable a broader range of practical CNN 
applications. 
[0054] The described crosspoint device can be imple­
mented as a two-terminal resistive crosspoint device. For 
example, the described crosspoint device can be imple­
mented with resistive random access memory (RRAM), 
phase change memory (PCM), programmable metallization 
cell (PMC) memory, non-linear memristive systems, or any 
other two-terminal device that offers a wide range to analog­
tunable non-volatile resistive memory states that are suffi­
ciently stable over time. 
[0055] FIG. 7 depicts a two-dimensional (2D) crossbar 
system 700 that performs forward inference according to the 
present description. While such a crossbar system can be 
used to implement simple matrix multiplication, backward 
matrix-multiplication, and even in-situ weight-update 
according to the backpropagation algorithm, the present 
invention concerns the efficient implementation of convo­
lutional layers for previously-trained networks. The crossbar 
system 700 includes a crossbar array 705, an input circuitry 
710, and an output circuitry 720, among other components. 
The crossbar system 700 can be a computer chip in one or 
more examples. 
[0056] FIG. 8 depicts an expanded view of the crossbar 
array 705 according to one or more embodiments. The 
crossbar array 705 is formed from a set of conductive row 
wires 802, 804, 806 and a set of conductive column wires 
808, 810, 812, 814 that intersect the set of conductive row 
wires 802, 804, 806. The intersections between the set of 
row wires and the set of column wires are separated by 
crosspoint devices, which are shown in FIG. 8 as resistive 
elements each having its own adjustable/updateable resistive 
weight, depicted as 0 11 , 0 21 , 0 31 , 0 41 , 0 12, 0 22, 0 32, 0 42 , 

o 13 , 0 23 , 0 33 and 0 43 , respectively. For ease of illustration, 
only one crosspoint device 820 is labeled with a reference 
number in FIG. 8. In forward matrix multiplication, the 
conduction state (i.e., the stored weights) of the crosspoint 
device can be read by applying a voltage across the cros­
spoint device and measuring the current that passes through 
the crosspoint device. 
[0057] Input voltages Vi, V2 , V3 are applied to row wires 
802, 804, 806, respectively. Each column wire 808, 810, 
812, 814 sums the currents Ii, 12 , 13 , 14 generated by each 
crosspoint device along the particular colunm wire using an 
integrator, such as a capacitor. For example, as shown in 
FIG. 8, the current 14 generated by column wire 814 is given 
by the equation I4 =V1041 +V2042+V304y Thus, array 700 
computes the forward matrix multiplication by multiplying 
the values stored in the crosspoint devices by the row wire 
inputs, which are defined by voltages V 1 , V2 , V3 . 

[0058] Referring to FIG. 7, the input circuitry 710 
includes, in one or more examples, at least a support 
circuitry 712, a shared circuitry 714, and a row circuitry 716. 
The row circuitry includes hardware components associated 
with each row wire 802, 804, and 806. The input circuitry 
710 facilitates providing the input voltages to the crossbar 
array 705. 
[0059] FIG. 9 depicts a typical output circuitry 720. The 
output circuitry includes integrators 908, 910, 912, and 914 
corresponding to the colunm wires 808, 810, 812, and 814, 
respectively. The integrators 908, 910, 912, and 914, in one 



US 2020/0117986 Al 

or more examples, are capacitors. The output currents along 
each colunm wire are accumulated in the integrators and 
passed on to a next layer of the CNN. As described earlier, 
such an arrangement of the integrators makes the computa­
tions of the FC layers very efficient; however, for the 
convolution operations, to use such an arrangement of the 
integrators incurs significant additional overhead in terms of 
data transport, storage, organization and subsequent data 
transport. Such operations require additional resources such 
as time, power, and additional circuit-area, thus making the 
overall system inefficient. 
[0060] FIG. 10 depicts existing operations to perform such 
operations using the crossbar array. It should be noted that 
the dimensions of the matrices shown in the figures herein 
are just examples, and in one or more examples different 
dimensions can be used. 
[0061] As depicted in FIG. 10, one image-row (512, 514, 
and 516) of all input planes 510 is presented concurrently as 
a column of inputs to the array-rows (802, 804, and 806) of 
the crossbar array 705 of the crossbar system 700. The 
crosspoint devices 820 at each crosspoint contains weight­
elements from the filters 525, each leading to a multiplica­
tion between the array-row excitation, x,, and the stored 
weight, wiJ by Ohm's law (voltage times conductance equals 
current). The integration of all such read current contribu­
tions is surmned along each array-colunm and stored in the 
corresponding integrators (908, 910, 912, and 914) of the 
array-colunms (808, 810, 812, and 814). The computation 
can be expressed as: the current 11 on colunm #1 (808) is 
stored on capacitor C1 (908), 12 is stored on capacitor C2 , 13 

on C3 , and so on. In the existing technical solutions that use 
such crossbar arrays 705, the integrated charge on the 
capacitors (908, 910, 912, and 914) is treated as the output 
of the multiply-accumulate operation and is either converted 
to a digital number or to pulse-duration for shipment to a 
next array 705. 
[0062] In this manner, at each time-step (i.e., each com­
putation performed by the array 705), values across all input 
planes 510 are integrated producing an output for all output 
planes 530. However, this results only in one output pixel 
per time-step. 
[0063] Further, every output from convolutional layer i 
has to be combined with outputs from other convolutional 
layers as part of pooling. The other convolutional layers 
from which the outputs that are to be pooled depend on the 
number of elements in the filter kernels 520. Alternatively, 
or in addition, every output from layer i has to be positioned 
at different spots in the input planes 510 for the convolu­
tional layer i+ 1. Such organization of the output values for 
the purpose of pooling can also require additional computing 
resources, such as read-write access, power and the like. 
[0064] The technical solutions described herein address 
technical challenges of existing technical solutions by facili­
tating, after the multiply-accumulate operations are per­
formed, the steering of the aggregate current to a selected 
integrator, from any of the integrators in the output circuitry 
720. For instance, current 11 might now be steered to 
capacitor C2 , 12 to capacitor C3 , and 13 to capacitor C1 , 

instead of retaining the charges in the same columns, with 
the next image-row of the input planes to this convolutional 
layer being similarly presented to the same array 705. The 
purpose of this is to allow each capacitor to integrate the 
total current contributions for different colunms of the 
k-by-k weight kernel substantially simultaneously ( each 
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driven into the array by various array-row excitations) and 
for different rows of the weight kernel in time (added to any 
given capacitor over k different time-steps by steering the 
aggregate current from the array-column corresponding to 
the appropriate weight kernel coefficients). 
[0065] "Pooling" as used in neural network operations can 
include determining results such as the maximum, sum, or 
average of the output excitations. The technical solutions 
described herein facilitate such pooled results being com­
puted locally and then transmitted, only after all relevant 
weight kernels are fully integrated. In an alternative embodi­
ment, the unpooled results are computed locally, and are 
only pooled after transmission. 
[0066] FIGS. 11-14 depict the operations performed by the 
array 705 with the modified output circuit 720, according to 
one or more embodiments. At each time-step, each of the 
integrators (908, 910, 912, and 914) receives contributions 
from k*D multiply-accumulate terms, where D is the num­
ber of input planes 510. After k time-steps, the total charge 
on an integrator contains all k*k*D terms and is ready to be 
output to the next convolutional layer. Except for during the 
first k or last k time-steps, after each integration step, every 
kth integrator from the output circuit 720 reaches this status, 
and accordingly, is ready to generate all the output pixels of 
one image-row (512-A, 514-A, and 516-A) of the convolu­
tional-layer output. All other jth integrators have a different 
phase in their respective integration phase, depending the 
value of j. 
[0067] For example, as shown in FIG. 11, the first rows of 
each input plane 512-A, 514-A, 516-A are input to the 
convolutional layer. The crosspoint devices 820 of the 
crossbar array 705 are loaded with the filters 520 as shown. 
Particularly, filter kernels 522-A and 522-B are loaded in the 
crosspoint devices 820 to perform a convolution with the 
first rows of the first input plane 516-A. Similarly, filter 
kernels 524-A and 524-B from a second bank of filter 
kernels 520 are convolved with the first row of a second 
input plane 514-A, and so on. The results of the respective 
convolutions are forwarded to one or more of the integrators 
(908, 910, 912, 914) from the output circuitry 720 by output 
controller 1110. 
[0068] The output controller 1110 can be part of the output 
circuitry 720 or an external controller that is coupled with 
the output circuitry 720. The output controller 1110 steers 
the output of the multiply-accumulate operations from each 
column in the array 705 to a particular integrator in the 
output circuitry 720. In one or more examples, the output 
controller 1110 receives a mode signal that provides a 
selection of the integrators for each colunm at each time­
step. Alternatively, the output controller 1110 is provided a 
mode signal that indicates the selection of the integrator for 
each colunm until all convolutional layers are executed. The 
mode signal, in one or more examples, can be a bit pattern 
that is indicative of the selected integrators for each colunm. 
[0069] In the example of FIG. 11, the outputs from the 
columns 808 and 814 are stored in the integrators 908 and 
912, respectively, at time-step #1. FIG. 12 depicts the 
operations performed in time-step #2. Here, second rows 
512-B, 514-B, and 516-B from the input planes 510 are used 
as input to the crosspoint array 705. The crosspoint devices 
820 are still loaded with the kernel filters 520 as in time-step 
#1 (FIG. 11). In the time-step #2, the output controller 1110 
selects the same integrators 908 and 912 for the outputs of 
the colunms 810 and 816 (different from time-step #1). 



US 2020/0117986 Al 

Accordingly, the integrators 908 and 912, in this case, 
receive outputs from different colunms in different time­
steps. 
[0070] FIG. 13 depicts the operations performed in time­
step #3. In a manner similar to the first two time-steps, in 
time-step #3, a third row 512-C, 514-C, and 516-C from the 
input planes 510 is used as input to the crosspoint array 705. 
In the time-step #3, the output controller 1110 selects the 
same integrators 908 and 912 for the outputs of the colunms 
812 and 818 (different from time-step #1). Accordingly, the 
integrators 908 and 912, in this case, receive outputs from 
different columns in different time-steps. In this manner, in 
general, after k time-steps, an entire row in the output planes 
530 is computed (compared to a single output pixel in the 
existing solution). 
[0071] It should be noted that, while the only the compu­
tations of the first two entries (A and B) from the first output 
row in the output plane 530 is described above, in a similar 
manner, the other portions of the output planes 530 are 
computed in parallel by other portions of the crosspoint 
array 705. Further yet, the crosspoint array 705 can be 
accumulating computation outputs for other output rows (C 
and D) at each time-step using the other integrators (910 and 
914) as shown in FIG. 13. 
[0072] Accordingly, as a result of the output controller 
1110 steering the output of the crosspoint array 705, all input 
is in the form of a complete and contiguous image-row over 
all input planes. Further, after the first k time-steps before 
any output is available, (that is, from the k+ 1th time-step), a 
complete and contiguous image-row over all the output 
planes is produced at each time-step. Accordingly, the output 
maps 530 produced by such operations can be pipelined to 
a subsequent convolutional layer without any intermediate 
storage of the neuron excitations. Because pooling opera­
tions such as sum, average, and maximum can be performed 
incrementally on data as they arrive, any pooling operation 
only requires temporary storage sufficient for the output 
image-row. These intermediate results are stored and 
updated as each set of neuron excitations arrive until the 
R-by-R pooling operation is complete, at which point the 
buffer of intermediate results is effectively the output of the 
pooling layer. 
[0073] It should be noted that although in the examples 
used in the above description to explain the technical 
solutions, a single image-row is used for calculations, in one 
or more examples, more than a single image-row can be 
used. For example, in an alternative embodiment, two 
image-rows of the output planes 530 are output simultane­
ously, and so on. The output rows are further supplied as the 
data for pooling operations, for example, a 2x2 pooling 
operation can be performed simultaneously using the two 
output rows. In such examples with additional output rows, 
the need to organize, store, or even transmit the output data 
elsewhere is eliminated by steering the output to the inte­
grators in the output circuitry 720 of the crossbar system 700 
itself. 
[0074] The examples herein use k=3 in most cases, how­
ever, it is understood that k can be any other value in other 
examples. 
[0075] The technical solutions described herein accord­
ingly facilitate improving performance efficiency in terms of 
speed, computing resources, and power used when imple­
menting a CNN. Empirical data for the inventors suggest the 
improvements are at least an order of magnitude in some 
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cases. The technical solutions described herein are rooted in 
computer technology, particularly implementing CNN using 
a neural network computing chip that is typically configured 
to increase efficiency of fully connected layers in the CNN 
by performing multiply-accumulate operations along a col­
unm of the crossbar array. The technical solutions described 
herein allow the computer chip to maintain those efficien­
cies, and in addition, to be configured during convolutional 
layer computations to steer output of the colunms to par­
ticular integrators in the crossbar array, and to maintain the 
output in the integrators and directly provide that output to 
subsequent convolutional layers. Such operations reduce, if 
not eliminate, read-write operations and digitization opera­
tions of outputs of each convolutional layer. 

[0076] It should also be noted that although the examples 
described herein use rows of the input planes 510 to perform 
the computations of the CNN, in one or more examples, the 
colunms can be used with corresponding adjustments to the 
matrices in the operations, as will be obvious to a person 
skilled in the art. 

[0077] The technical solutions described herein accord­
ingly provide a circuit that includes an array of resistive 
memory elements, the array providing a vector of current 
outputs equal to the analog vector-matrix-product between 
(i) a vector of voltage inputs to the array encoding a vector 
of analog input values and (ii) a matrix of analog resistive 
weights within the array. The circuit further includes accu­
mulation wires and circuits aggregating the current from a 
dedicated subset of the resistive elements. Further, the 
circuit includes integration capacitors, each of the integra­
tion capacitors being electrically switchable (selectable) so 
as to aggregate current from at least one of the accumulation 
wires during a single integration step. The circuit also 
includes data-output circuitry to allow the integrated charge 
from a subset of the integration capacitors, accumulated over 
multiple integration steps, to be converted and transmitted 
either as an analog duration or as a digital representation 
using binary digits. 

[0078] The subset of resistive elements can include one or 
more colunm of the array. Alternatively, the subset of 
resistive elements can include one or more rows of the array. 
In one or more examples, the resistive elements are non­
volatile memory devices. In one or more examples, the 
resistive elements store synaptic weights of a neural net­
work. 

[0079] In one or more examples, the resistive memory 
elements are arranged so as to implement the colunms of the 
weight kernels of a given layer of a convolutional neural 
network. The accumulation over the integration steps imple­
ments the multiply-accumulate operations across multiple 
rows of said weight kernels, as the input neuron excitations 
to the said layer of the convolutional neural network are 
presented one row at a time. Further, the integrated charge 
representing an output excitation is suitably converted and 
transmitted only after all rows of said weight kernel are fully 
integrated. 

[0080] Further, in one or more examples, the integrated 
charge stored by multiple capacitors representing respective 
output excitations are suitably converted and a suitable 
pooled result such as the maximum, sum, or average of the 
said plurality of output excitations is computed locally and 
then transmitted, only after all relevant weight kernels are 
fully integrated. 
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[0081] In one or more examples, the resistive memory 
elements are arranged so as to implement the rows of the 
weight kernels of a given layer of a convolutional neural 
network. The accumulation over the integration steps imple­
ments the multiply-accumulate operations across multiple 
colunms of said weight kernels, as the input neuron excita­
tions to the said layer of the convolutional neural network 
are presented one column at a time. Further, the integrated 
charge representing an output excitation is suitably con­
verted and transmitted only after all colunms of said weight 
kernel are fully integrated. Further, in one or more examples, 
the integrated charge stored by multiple capacitors repre­
senting respective output excitations are suitably converted 
and a suitable pooled result such as the maximum, sum, or 
average of the said plurality of output excitations are com­
puted locally and then transmitted, only after all relevant 
weight kernels are fully integrated. 

[0082] The present technical solutions may be a system, a 
method, and/or a computer program product at any possible 
technical detail level of integration. The computer program 
product may include a computer readable storage medium 
(or media) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present technical solutions. 

[0083] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device. The computer readable 
storage medium may be, for example, but is not limited to, 
an electronic storage device, a magnetic storage device, an 
optical storage device, an electromagnetic storage device, a 
semiconductor storage device, or any suitable combination 
of the foregoing. A non-exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following: a portable computer diskette, a hard disk, a 
random access memory (RAM), a read-only memory 
(ROM), an erasable programmable read-only memory 
(EPROM or Flash memory), a static random access memory 
(SRAM), a portable compact disc read-only memory (CD­
ROM), a digital versatile disk (DVD), a memory stick, a 
floppy disk, a mechanically encoded device such as punch­
cards or raised structures in a groove having instructions 
recorded thereon, and any suitable combination of the fore­
going. A computer readable storage medium, as used herein, 
is not to be construed as being transitory signals per se, such 
as radio waves or other freely propagating electromagnetic 
waves, electromagnetic waves propagating through a wave­
guide or other transmission media ( e.g., light pulses passing 
through a fiber-optic cable), or electrical signals transmitted 
through a wire. 

[0084] Computer readable program instructions described 
herein can be downloaded to respective computing/process­
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net­
work, for example, the Internet, a local area network, a wide 
area network and/or a wireless network. The network may 
comprise copper transmission cables, optical transmission 
fibers, wireless transmission, routers, firewalls, switches, 
gateway computers and/or edge servers. A network adapter 
card or network interface in each computing/processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing/processing 
device. 
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[0085] Computer readable program instructions for carry­
ing out operations of the present technical solutions may be 
assembler instructions, instruction-set-architecture (ISA) 
instructions, machine instructions, machine dependent 
instructions, microcode, firmware instructions, state-setting 
data, configuration data for integrated circuitry, or either 
source code or object code written in any combination of one 
or more programming languages, including an object ori­
ented programming language such as Smalltalk, C++, or the 
like, and procedural programming languages, such as the 
"C" programming language or similar programming lan­
guages. The computer readable program instructions may 
execute entirely on the user's computer, partly on the user's 
computer, as a stand-alone software package, partly on the 
user's computer and partly on a remote computer or entirely 
on the remote computer or server. In the latter scenario, the 
remote computer may be connected to the user's computer 
through any type of network, including a local area network 
(LAN) or a wide area network (WAN), or the connection 
may be made to an external computer (for example, through 
the Internet using an Internet Service Provider). In some 
embodiments, electronic circuitry including, for example, 
programmable logic circuitry, field-programmable gate 
arrays (FPGA), or programmable logic arrays (PLA) may 
execute the computer readable program instructions by 
utilizing state information of the computer readable program 
instructions to personalize the electronic circuitry, in order to 
perform aspects of the present technical solutions. 

[0086] Aspects of the present technical solutions are 
described herein with reference to flowchart illustrations 
and/or block diagrams of methods, apparatus (systems), and 
computer program products according to embodiments of 
the technical solutions. It will be understood that each block 
of the flowchart illustrations and/or block diagrams, and 
combinations of blocks in the flowchart illustrations and/or 
block diagrams, can be implemented by computer readable 
program instructions. 

[0087] These computer readable program instructions may 
be provided to a processor of a general purpose computer, 
special purpose computer, or other programmable data pro­
cessing apparatus to produce a machine, such that the 
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus, 
create means for implementing the functions/acts specified 
in the flowchart and/or block diagram block or blocks. These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer, a programmable data processing apparatus, and/ 
or other devices to function in a particular manner, such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function/act 
specified in the flowchart and/or block diagram block or 
blocks. 

[0088] The computer readable program instructions may 
also be loaded onto a computer, other programmable data 
processing apparatus, or other device to cause a series of 
operational steps to be performed on the computer, other 
programmable apparatus or other device to produce a com­
puter implemented process, such that the instructions which 
execute on the computer, other programmable apparatus, or 
other device implement the functions/acts specified in the 
flowchart and/or block diagram block or blocks. 
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[0089] The flowchart and block diagrams in the Figures 
illustrate the architecture, functionality, and operation of 
possible implementations of systems, methods, and com­
puter program products according to various embodiments 
of the present technical solutions. In this regard, each block 
in the flowchart or block diagrams may represent a module, 
segment, or portion of instructions, which comprises one or 
more executable instructions for implementing the specified 
logical function(s). In some alternative implementations, the 
functions noted in the blocks may occur out of the order 
noted in the Figures. For example, two blocks shown in 
succession may, in fact, be executed substantially concur­
rently, or the blocks may sometimes be executed in the 
reverse order, depending upon the functionality involved. It 
will also be noted that each block of the block diagrams 
and/or flowchart illustration, and combinations of blocks in 
the block diagrams and/or flowchart illustration, can be 
implemented by special purpose hardware-based systems 
that perform the specified functions or acts or carry out 
combinations of special purpose hardware and computer 
instructions. 

[0090] A second action may be said to be "in response to" 
a first action independent of whether the second action 
results directly or indirectly from the first action. The second 
action may occur at a substantially later time than the first 
action and still be in response to the first action. Similarly, 
the second action may be said to be in response to the first 
action even if intervening actions take place between the 
first action and the second action, and even if one or more 
of the intervening actions directly cause the second action to 
be performed. For example, a second action may be in 
response to a first action if the first action sets a flag and a 
third action later initiates the second action whenever the 
flag is set. 

[0091] To clarify the use of and to hereby provide notice 
to the public, the phrases "at least one of <A>, <B>, ... and 
<N>" or "at least one of <A>, <B>, <N>, or combinations 
thereof' or "<A>, <B>, ... and/or <N>" are to be construed 
in the broadest sense, superseding any other implied defi­
nitions hereinbefore or hereinafter unless expressly asserted 
to the contrary, to mean one or more elements selected from 
the group comprising A, B, ... and N. In other words, the 
phrases mean any combination of one or more of the 
elements A, B, ... or N including any one element alone or 
the one element in combination with one or more of the 
other elements which may also include, in combination, 
additional elements not listed. 

[0092] It will also be appreciated that any module, unit, 
component, server, computer, terminal or device exempli­
fied herein that executes instructions may include or other­
wise have access to computer readable media such as 
storage media, computer storage media, or data storage 
devices (removable and/or non-removable) such as, for 
example, magnetic disks, optical disks, or tape. Computer 
storage media may include volatile and non-volatile, remov­
able and non-removable media implemented in any method 
or technology for storage of information, such as computer 
readable instructions, data structures, program modules, or 
other data. Such computer storage media may be part of the 
device or accessible or connectable thereto. Any application 
or module herein described may be implemented using 
computer readable/executable instructions that may be 
stored or otherwise held by such computer readable media. 
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[0093] The descriptions of the various embodiments of the 
technical features herein have been presented for purposes 
of illustration but are not intended to be exhaustive or 
limited to the embodiments disclosed. Many modifications 
and variations will be apparent to those of ordinary skill in 
the art without departing from the scope and spirit of the 
described embodiments. The terminology used herein was 
chosen to best explain the principles of the embodiments, the 
practical application or technical improvement over tech­
nologies found in the marketplace, or to enable others of 
ordinary skill in the art to understand the embodiments 
disclosed herein. 

What is claimed is: 
1. A computer implemented method for implementing a 

convolutional neural network (CNN) using a crosspoint 
array, the method comprising: 

configuring the crosspoint array, the crosspoint array 
corresponding to a convolution layer in the CNN, by 
storing one or more convolution kernels of the convo­
lution layer in one or more crosspoint devices of the 
crosspoint array; and 

performing computations for the CNN via the crosspoint 
array by: 
transmitting voltage pulses corresponding to a vector of 

input data of the convolution layer to the crosspoint 
array; 

outputting an electric current representative of per­
forming a multiplication operation at a crosspoint 
device in the crosspoint array, the electric current 
based on a weight value stored by the crosspoint 
device and the voltage pulses from the input data; 
and 

passing the output electric current from the crosspoint 
device to a selected integrator. 

2. The computer implemented method of claim 1, wherein 
the integrator is a capacitor. 

3. The computer implemented method of claim 1, wherein 
the output electric current is generated by the crosspoint 
device, the crosspoint device being at an intersection of a 
first row wire of the crosspoint array and a first colunm wire 
of the crosspoint array, and said integrator is physically 
proximate to a second colunm wire of the crosspoint array, 
and is electrically coupled to said first colunm wire of the 
crosspoint array in order to receive said output electric 
current. 

4. The computer implemented method of claim 1, wherein 
the output electric current is a first output electric current, 
the crosspoint device being a first crosspoint device that is 
at an intersection of a first row wire of the crosspoint array 
and a first colunm wire of the crosspoint array, the method 
comprising: 

outputting a second electric current by a second cros­
spoint device in the crosspoint array, based on a weight 
value stored by the second crosspoint device and the 
voltage pulses from the input data, the second cros­
spoint device being at an intersection of a second row 
wire of the crosspoint array and a second colunm wire 
of the crosspoint array; and 

passing the second output electric current from the cros­
spoint device to said selected integrator, where said 
integrator is physically proximate to said first column 
wire of the crosspoint array, and is electrically coupled 
to said second colunm wire of the crosspoint array in 
order to receive said second electric current. 
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5. The computer implemented method of claim 1, wherein 
the selected integrator is selected by an output controller, 
based on a mode signal that maps the output electric current 
from the crosspoint device to the selected integrator. 

6. The computer implemented method of claim 1, wherein 
the crosspoint devices are arranged to implement one or 
more colunms of the convolution kernels of a given layer of 
the CNN, and wherein the vector of input data represents 
neuron excitations to the given layer of the CNN presented 
from the input data, one row at a time. 

7. The computer implemented method of claim 6, wherein 
a charge held by the selected integrator represents an output 
excitation according to the given layer of the CNN, the 
output excitation being converted and transmitted only after 
all rows of said convolution kernel are integrated. 

8. The computer implemented method of claim 1, wherein 
the crosspoint devices are arranged to implement one or 
more rows of the convolution kernels of a given layer of the 
CNN, and wherein the vector of input data represents neuron 
excitations to the given layer of the CNN presented one 
colunm at a time. 

9. The computer implemented method of claim 8, wherein 
a charge held by the selected integrator represents an output 
excitation according to the given layer of the CNN, the 
output excitation being converted and transmitted only after 
all columns of said convolution kernel are integrated. 

10. An electronic circuit for performing computations of 
a trained convolutional neural network (CNN), the elec­
tronic circuit comprising: 

a crosspoint array; and 
an output circuit compnsmg one or more integrators; 

wherein performing the computations of the trained 
CNN comprises performing a method that comprises: 
configuring the crosspoint array corresponding to a 

convolution layer in the CNN by storing one or more 
convolution kernels of the convolution layer in one 
or more crosspoint devices of the crosspoint array; 
and 

performing computations for the CNN via the cros­
spoint array by: 
transmitting voltage pulses corresponding to a vector 

of input data of the convolution layer to the 
crosspoint array; 

outputting an electric current representative of per­
forming a multiplication operation at a crosspoint 
device in the crosspoint array, the electric current 
based on a weight value stored by the crosspoint 
device and the voltage pulses from the input data; 
and 

passing the output electric current from the cros­
spoint device to a selected integrator from the 
output circuit. 

11. The electronic circuit of claim 10, wherein the inte­
grator is a capacitor. 

12. The electronic circuit of claim 10, wherein the output 
electric current is generated by the crosspoint device, the 
crosspoint device being at an intersection of a first row wire 
of the crosspoint array and a first column wire of the 
crosspoint array, and said integrator is physically proximate 
to a second colunm wire of the crosspoint array, yet is 
electrically coupled to said first colunm wire of the cros­
spoint array in order to receive said output electric current. 

13. The electronic circuit of claim 10, wherein the output 
electric current is a first output electric current, the eras-
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spoint device is a first crosspoint device that is at an 
intersection of a first row wire of the crosspoint array and a 
first column wire of the crosspoint array, the method further 
comprising: 

outputting a second electric current by a second cros­
spoint device in the crosspoint array based on a weight 
value stored by the second crosspoint device and the 
voltage pulses from the input data, the second cros­
spoint device being at an intersection of a second row 
wire of the crosspoint array and a second colunm wire 
of the crosspoint array; and 

passing the second output electric current from the cros­
spoint device to said selected integrator, where said 
integrator is physically proximate to said first column 
wire of the crosspoint array, yet is electrically coupled 
to said second colunm wire of the crosspoint array in 
order to receive said second electric current. 

14. The electronic circuit of claim 10, wherein the 
selected integrator is selected by an output controller based 
on a mode signal that maps the output electric current from 
the crosspoint device to the selected integrator. 

15. The electronic circuit of claim 10, wherein the cros­
spoint devices are arranged to implement one or more 
columns of the convolution kernels of a given layer of the 
CNN, and wherein the vector of input data represents neuron 
excitations to the given layer of the CNN presented from the 
input data, one row at a time. 

16. The electronic circuit of claim 15, wherein a charge 
held by the selected integrator represents an output excita­
tion according to the given layer of the CNN, the output 
excitation is converted and transmitted only after all rows of 
said convolution kernel are integrated. 

17. The electronic circuit of claim 10, wherein the cros­
spoint devices are arranged to implement one or more rows 
of the convolution kernels of a given layer of the CNN, and 
wherein the vector of input data represents neuron excita­
tions to the given layer of the CNN presented from the input 
data, one colunm at a time. 

18. The electronic circuit of claim 17, wherein a charge 
held by the selected integrator represents an output excita­
tion according to the given layer of the CNN, the output 
excitation is converted and transmitted only after all col­
unms of said convolution kernel are integrated. 

19. An electronic circuit comprising: 

an array of resistive memory elements, the array provid­
ing a vector of current outputs equal to an analog 
vector-matrix-product between (i) a vector of voltage 
inputs to the array encoding a vector of analog input 
values and (ii) a matrix of analog resistive weights 
within the array; 

accumulation wires and circuits aggregating a current 
from a dedicated subset of the resistive memory ele­
ments; 

integration capacitors, each of the integration capacitors 
being electrically switchable so as to aggregate current 
from one of a plurality of accumulation wires during a 
single integration step; 

data-output circuitry to allow an integrated charge from a 
subset of the integration capacitors, accumulated over 
a plurality of integration steps, to be suitably converted 
and transmitted either as an analog duration or as a 
digital representation using binary digits. 
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20. The electronic circuit of claim 19, wherein the subset 
of the resistive memory elements corresponds to one or 
more colunm(s) of the array. 

21. The electronic circuit of claim 19, wherein the subset 
of the resistive memory elements corresponds to one or 
more row(s) of the array. 

22. The electronic circuit of claim 19, wherein the resis­
tive memory elements are non-volatile memory devices. 

23. The electronic circuit of claim 19, wherein the resis­
tive memory elements store synaptic weights of a neural 
network. 

24. The electronic circuit of claim 19, 
wherein the resistive memory elements are arranged so as 

to implement colunms of weight kernels of a given 
layer of a convolutional neural network; 

wherein accumulation over a plurality of integration steps 
implements multiply-accumulate operations across 
multiple rows of said weight kernels, as the input 
neuron excitations to the said layer of the convolutional 
neural network are presented one row at a time; 
wherein the integrated charge representing an output 
excitation is suitably converted and transmitted only 
after all rows of said weight kernel are fully integrated; 
and 

wherein the integrated charge on a plurality of capacitors 
representing a plurality of output excitations is suitably 
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converted and a suitable pooled result such as the 
maximum, sum, or average of the said plurality of 
output excitations is computed locally and then trans­
mitted, only after all relevant weight kernels are fully 
integrated. 

25. The electronic circuit of claim 19, 
wherein the resistive memory elements are arranged so as 

to implement rows of weight kernels of one layer of a 
convolutional neural network; 

wherein accumulation over a plurality of integration steps 
implement the integration across multiple columns of 
said weight kernels as the input data to said layer of the 
convolutional neural network are presented one colunm 
at a time; 

wherein the integrated charge is suitably converted and 
transmitted only after all colunms of said weight kernel 
are fully integrated; and 

wherein the integrated charge on a plurality of capacitors 
representing a plurality of output excitations is suitably 
converted and a suitable pooled result such as the 
maximum, sum, or average of the said plurality of 
output excitations is computed locally and then trans­
mitted, only after all relevant weight kernels are fully 
integrated. 

* * * * * 


