
1111111111111111 IIIIII IIIII 1111111111 11111 1111111111 lllll 111111111111111 1111111111 11111111
US 20200117986Al

c19) United States
c12) Patent Application Publication

BURR et al.
c10) Pub. No.: US 2020/0117986 Al
(43) Pub. Date: Apr. 16, 2020

(54) EFFICIENT PROCESSING OF
CONVOLUTIONAL NEURAL NETWORK
LAYERS USING ANALOG-MEMORY-BASED
HARDWARE

(71) Applicants:INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US); THE
UNIVERSITY OF CHICAGO,
Chicago, IL (US)

(72) Inventors: GEOFFREY BURR, CUPERTINO,
CA (US); BENJAMIN KILLEEN, ST.
LOUIS, MO (US)

(21) Appl. No.: 16/363,463

(22) Filed: Mar. 25, 2019

Related U.S. Application Data

(60) Provisional application No. 62/745,132, filed on Oct.
12, 2018.

Publication Classification

(51) Int. Cl.
G06N 3/063
G06F 17118

(2006.01)
(2006.01)

PATH\VAY
104
j

G06F 71544
G06F 17115

(52) U.S. Cl.

(2006.01)
(2006.01)

CPC G06N 3/0635 (2013.01); G06F 17115
(2013.01); G06F 715443 (2013.01); G06F

17118 (2013.01)

(57) ABSTRACT

According to one or more embodiments, a computer imple­
mented method for implementing a convolutional neural
network (CNN) using a crosspoint array includes configur­
ing the crosspoint array corresponding to a convolution layer
in the CNN by storing one or more convolution kernels of
the convolution layer in one or more crosspoint devices of
the crosspoint array. The method further includes perform­
ing computations for the CNN via the crosspoint array by
transmitting voltage pulses corresponding to a vector of
input data of the convolution layer to the crosspoint array.
Performing the CNN computations further includes output­
ting an electric current representative of performing a mul­
tiplication operation at a crosspoint device in the crosspoint
array based on a weight value stored by the crosspoint
device and the voltage pulses from the input data. Perform­
ing the CNN computations further includes passing the
output electric current from the crosspoint device to a
selected integrator.

PATHWAY
H18 y~

,,../

RON PATHWAY
no

116
j

~ I \
OUTPUTS

l~.e. HO

tHER . ·
URON .·.

Patent Application Publication Apr. 16, 2020 Sheet 1 of 12

212
.~-((~-

\ INPUTS
,.

✓-.,.,

RESULT

FIG. 2

US 2020/0117986 Al

Patent Application Publication Apr. 16, 2020 Sheet 2 of 12 US 2020/0117986 Al

Yi zf(X1)
Y2:::P(X2)
Y3zF(X3)

Y4 z F(MYY1 + M5*Y2 + MS"Y3)
¥5 ::: F(M2•fl + M6'Y2 + MWY3)
YS zF(M3:'Y1 + MJ*Y2 + MWVJ)
Y7 z F(M4'Y1 + M8*Y2 + M12''Y3)

'ffz FJMrY4.., M15'% + MH'YS • MWYl)
Yi z F{MWY4 + M1WY5 + MWY6 + MW'Y7)

FIG. 3

w

LO (Input)
512x512

\
400

;//i

''-.,

"

Convolution

v,

•
•
•

Ll
256x256

110

-------►

·, A
'., /

\ ~/·.
\

V n! 1x
;\

/ ~

--------►

L2
128~28

I
420

FIG.4

Fully connected __)._ __ .
·, "

.,..

ill-
r: >,''Cc;~

L3 L4
64x64 32x~2

\ \
430 440

F\5 . F6 .
450 (OutRut)

J50

""O
~
('D

=
t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~Cl's

N
0
N
0

rJJ
=­('D
('D
~

0
N

c
rJJ
N
0
N
0

---0
-....J
1,0
QO
Cl's

>

500~

Input Maps 510 * Convolution Kernels 520 + Bias 525 => Output Maps 530

D input maps

~;;JJ,?.t;?t.ff:1
f&f~Kfef1
k;✓ ,-·:'/7.,

~: NxMxD
Input neurons

The input is a set of D maps,
Each map is a matrix of size (N x
M) pixels divided into pieces of
size (k x k).

INPUT

F filters

~tk
4--1>-

k

Trainable Parameters

FIG. 5

Output Maps

'ltilt~i~ii
ltitf~I
'lf~tI11 ',,/".,_,.-....,,,·-,.,,-....,_.,.. . ..,. . .,/',,.."'•/".,_,.-....,,,:-,,

N'xM'xF
Output neurons

The output is a set of
corresponding maps.

OUTPUT

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~Cl's

N
0
N
0

rJJ
=­('D
('D
.i;...

0
N

c
rJJ
N
0
N
0

---0
-....J
1,0
QO
Cl's

>

Patent Application Publication Apr. 16, 2020 Sheet 5 of 12

0
0
~

N

US 2020/0117986 Al

c.o
C)

LL..

700

~

Shared ctrcuUry 714
\

Input/ 1• l-1

Clr~~~ry ii I ::::::[:array

ii I _L _____ ~_, __ _. __ ,_:_1,
r:· ,, ~w,,.w,,,,-,,_w;~,/.,..1~ f:II IIIW 11 WIil
S?A>+?:>:·i t - I ·-----l"IJ"'-1111",
m~~iyv '~ ~ ~ ~ :-..i 11111 ffl 7Tl-·c~luf!1n

1 1\ c1rctntry 726
Support/ 1 \

circuitry ... - - - - ------~ - - - - - - - - - - -
722 Output Circuitry 720 724

FIG. 7

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~Cl's

N
0
N
0

rJJ

=­('D
('D
Cl's
0
N

c
rJJ
N
0
N
0

---0
-....J
1,0
QO
Cl's

>

Patent Application Publication Apr. 16, 2020 Sheet 7 of 12

Lf')

0
I""'-

:('.-1 ;;;:~,.......,_..,. ___ ..,.
C> «>•:-..._ __ ..,.

©
~ ... ~~ . .._..._,.. __ ...,

N

1-· =
~~--<:~:;>

~

=
.. ~

= -

US 2020/0117986 Al

00

(.9

LL.

Patent Application Publication Apr. 16, 2020 Sheet 8 of 12 US 2020/0117986 Al

0
N
)'

.---/~-
_;'· I I

<:t I >11-----l-
rl

I ;::!; I
00 m 0)

I I
"' I I (9

N >11-t- LL
rl N
00 rl I vi

I
N

~
0 o I
rl rl co C!) I

I
.-<

f---+-
co 00 I 0 0 co C!) ____ .,

520

k > k weights/plwe/filt.er

510

0 lnput P!an0., .} .

522 .

.

0 • }52~
} 526 ":

.} 528 -

522

530

F output Planes

512

~~&~
FIG.10 908 910 912 914

700

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~Cl's

N
0
N
0

rJJ
=­('D
('D
1,0

0
N

c
rJJ
N
0
N
0

---0
-....J
1,0
QO
Cl's

>

Time-step 1

520

k x k weight,/p!an<'/filtF.f

510

D input P!,mes

..... -: .•.•.• } 522
··•

0c } ":.
- -

'' } 526 "!

!7f'7~} 528 •••• ,•.·.· ·.·.!-;

530

F output Planes

FIG. 11 -,--...........,..... ... ,....-....

908 910 912 914

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~a--­
N
0
N
0

rJ'1
=­('D
('D
0
0
N

c
rJ'1
N
0
N
0

---0
-....J
1,0
QO
a--

>

5

51

Time-step 2

510

D in!)ut P!J:ie,;

520

k, k weightS-/plane/fi!ter

}522

I},,~
} 526 53

530

F output Planes

FIG. 12 .-.........-..,.....,...
908 910 912 914

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~Cl's

N
0
N
0

rJJ
=­('D
('D
0
N

c
rJJ
N
0
N
0

---0
-....J
1,0
QO
Cl's

>

514

512

Time-step 3

510

D in!)ut P!J:ie,;

520

k, k weightS-/plane/fi!ter

}522

S26 532
5

530

F output Planes

FIG. 13 .-.........-..,.....,...
908 910 912 914

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

t
:-:

~Cl's

N
0
N
0

rJJ
=­('D
('D
N
0
N

c
rJJ
N
0
N
0

---0
-....J
1,0
QO
Cl's

>

US 2020/0117986 Al

EFFICIENT PROCESSING OF
CONVOLUTIONAL NEURAL NETWORK

LAYERS USING ANALOG-MEMORY-BASED
HARDWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application claims pnonty to U.S.
Provisional Patent Application Ser. No. 62/745,132, filed
Oct. 12, 2018, which is incorporated herein by reference in
its entirety.

BACKGROUND

[0002] The present invention relates in general to novel
configurations of resistive crosspoint devices, which are
referred to herein as resistive processing units (RPUs). More
specifically, the present invention relates to performing
operations of convolutional neural network layers using
such crosspoint devices in crossbar arrays, such as in analog­
memory-based hardware.
[0003] Technical problems such as character recognition
and image recognition by a computer are known to be well
handled by machine-learning techniques. "Machine learn­
ing" is used to broadly describe a primary function of
electronic systems that learn from data. In machine learning
and cognitive science, neural networks are a family of
statistical learning models inspired by the biological neural
networks of animals in particular, the brain. Neural networks
can be used to estimate or approximate systems and func­
tions that are generally unknown and depend on a large
number of inputs. Neural networks use a class of algorithms
based on a concept of inter-connected "neurons." In a typical
neural network, neurons have a given activation function
that operates on the inputs. By determining proper connec­
tion weights (a process also referred to as "training"), a
neural network achieves efficient recognition of a desired
patterns, such as images and characters. Oftentimes, these
neurons are grouped into "layers" to make connections
between groups more obvious and to organize the compu­
tation process. With these proper connection weights, other
patterns of interest that have never been seen by the network
during training can also be correctly recognized, a process
known as "Forward Inference."

SUMMARY

[0004] According to one or more embodiments, a com­
puter implemented method for implementing a convolu­
tional neural network (CNN) using a crosspoint array or
arrays includes configuring the crosspoint array(s) corre­
sponding to a convolution layer in the CNN by storing one
or more convolution kernels of the convolution layer in one
or more crosspoint devices of each crosspoint array. The
method further includes performing computations for the
CNN via the crosspoint array by transmitting voltage pulses
corresponding to a vector of input data of the convolution
layer to the crosspoint array. Performing the CNN compu­
tations further include outputting an electric current repre­
sentative of performing a multiplication operation at a
crosspoint device in the crosspoint array based on a weight
value stored by the crosspoint device and the voltage pulses
from the input data. Performing the CNN computations
further include passing the output electric current from the
one or more crosspoint devices to a selected integrator.

1
Apr. 16, 2020

[0005] According to one or more embodiments of the
present invention, an electronic circuit for performing com­
putations of a trained convolutional neural network (CNN)
includes a crosspoint array, and an output circuit that
includes one or more integrators. Performing the computa­
tions of the trained CNN comprises performing a method
that includes configuring the crosspoint array(s) correspond­
ing to a convolution layer in the CNN by storing one or more
convolution kernels of the convolution layer in one or more
crosspoint devices of each crosspoint array. The method
further includes performing computations for the CNN via
the crosspoint array by transmitting voltage pulses corre­
sponding to a vector of input data of the convolution layer
to the crosspoint array. Performing the CNN computations
further include outputting an electric current representative
of performing a multiplication operation at a crosspoint
device in the crosspoint array based on a weight value stored
by the crosspoint device and the voltage pulses from the
input data. Performing the CNN computations further
include passing the output electric current from the one or
more crosspoint devices to a selected integrator.

[0006] According to one or more embodiments of the
present invention, an electronic circuit includes an array of
resistive memory elements. The array provides a vector of
current outputs equal to an analog vector-matrix-product
between (i) a vector of voltage inputs to the array encoding
a vector of analog input values and (ii) a matrix of analog
resistive weights within the array. The electronic circuit
further includes accumulation wires and circuits aggregating
a current from a dedicated subset of the resistive memory
elements. The electronic circuit further includes integration
capacitors, each of the integration capacitors being electri­
cally switchable so as to aggregate current from one of a
plurality of accumulation wires during a single integration
step. The electronic circuit further includes data-output
circuitry to allow an integrated charge from a subset of the
integration capacitors, accumulated over a plurality of inte­
gration steps, to be suitably converted and transmitted either
as an analog duration or as a digital representation using
binary digits.

[0007] It is to be understood that the technical solutions
are not limited in application to the details of construction
and to the arrangements of the components set forth in the
following description or illustrated in the drawings. The
technical solutions are capable of embodiments in addition
to those described and of being practiced and carried out in
various ways. Also, it is to be understood that the phrase­
ology and terminology employed herein, as well as the
abstract, are for the purpose of description and should not be
regarded as limiting. As such, those skilled in the art will
appreciate that the conception upon which this disclosure is
based may readily be utilized as a basis for the designing of
other structures, methods and systems for carrying out the
several purposes of the presently described technical solu­
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The examples described throughout the present
document will be better understood with reference to the
following drawings and description. The components in the
figures are not necessarily to scale. Moreover, in the figures,
like-referenced numerals designate corresponding parts
throughout the different views.

US 2020/0117986 Al

[0009] FIG. 1 depicts a simplified diagram of input and
output connections of a mathematical neuron;
[0010] FIG. 2 depicts a simplified model of the math­
ematical neuron shown in FIG. 1;
[0011] FIG. 3 depicts a simplified model of an ANN
incorporating the mathematical neuron model shown in FIG.
2;
[0012] FIG. 4 illustrates a simplified block diagram of a
representative CNN, which is interpreting a sample input
map;
[0013] FIG. 5 illustrates an example convolutional layer in
a CNN being trained using training data that include input
maps and convolution kernels;
[0014] FIG. 6 depicts a system for performing a matrix­
matrix multiplication using a crossbar array according to one
or more embodiments of the present invention;
[0015] FIG. 7 depicts a two-dimensional (2D) crossbar
system that performs forward matrix multiplication, back­
ward matrix multiplication, and weight updates according to
the present description;
[0016] FIG. 8 depicts an expanded view of the crossbar
array according to one or more embodiments;
[0017] FIG. 9 depicts a typical output circuitry in a cross­
bar system;
[0018] FIG. 10 depicts existing operations to perform such
operations using the crossbar array;
[0019] FIG. 11 depicts performing CNN operations using
selective integrators according to one or more embodiments;
[0020] FIG. 12 depicts performing CNN operations using
selective integrators according to one or more embodiments;
and
[0021] FIG. 13 depicts performing CNN operations using
selective integrators according to one or more embodiments.

DETAILED DESCRIPTION

[0022] The technical solutions described herein facilitate
efficient implementation of deep learning techniques that use
convolutional neural networks. Deep learning techniques are
widely used in machine-based pattern recognition problems,
such as image and speech recognition. Deep learning inher­
ently leverages the availability of massive training datasets
(that are enhanced with the use of Big Data) and computing
power (that is expected to grow according to Moore's Law).
[0023] It is understood in advance that although one or
more embodiments are described in the context of biological
neural networks with a specific emphasis on modeling brain
structures and functions, implementation of the teachings
recited herein are not limited to modeling a particular
environment. Rather, embodiments of the present invention
are capable of modeling any type of environment, including
for example, weather patterns, arbitrary data collected from
the Internet, and the like, as long as the various inputs to the
environment can be turned into a vector.
[0024] ANNs are often embodied as so-called "neuromor­
phic" systems of interconnected processor elements that act
as simulated "neurons" and exchange "messages" between
each other in the form of electronic signals. Similar to the
so-called "plasticity" of synaptic neurotransmitter connec­
tions that carry messages between biological neurons, the
connections in ANNs that carry electronic messages
between simulated neurons are provided with numeric
weights that correspond to the strength or weakness of a
given connection. The weights can be adjusted and tuned
based on experience, making ANNs adaptive to inputs and

2
Apr. 16, 2020

capable of learning. For example, an ANN for handwriting
recognition is defined by a set of input neurons which can be
activated by the pixels of an input image. After being
weighted and transformed by a function determined by the
network's designer, the activations of these input neurons
are then passed to other downstream neurons, which are
often referred to as "hidden" neurons. This process is
repeated until an output neuron is activated. The activated
output neuron determines which character was read.
[0025] Crossbar arrays, also known as crosspoint arrays,
crosswire arrays, or resistive processing unit (RPU) arrays,
are high density, low cost circuit architectures used to form
a variety of electronic circuits and devices, including ANN
architectures, neuromorphic microchips and ultra-high den­
sity nonvolatile memory. A basic crossbar array configura­
tion includes a set of conductive row wires and a set of
conductive column wires formed to intersect the set of
conductive row wires. The intersections between the two
sets of wires are separated by so-called crosspoint devices,
which can be formed from thin film material.
[0026] Crosspoint devices, in effect, function as the
ANN's weighted connections between neurons. Nanoscale
two-terminal devices, for example memristors having
"ideal" conduction state switching characteristics, are often
used as the crosspoint devices in order to emulate synaptic
plasticity with high energy efficiency. The conduction state
(e.g., resistance) of the ideal memristor material can be
altered by controlling the voltages applied between indi­
vidual wires of the row and column wires. Digital data can
be stored by alteration of the memristor material's conduc­
tion state at the intersection to achieve a high conduction
state, a low conduction state, or any intermediate conduc­
tance state in between. The memristor material can also be
programmed to maintain one of these distinct conduction
states-high, low, or intermediate-by selectively setting
the conduction state of the material. The conduction state of
the memristor material can be read by applying a voltage
across the material and measuring the current that passes
through the target crosspoint device.
[0027] In order to limit power consumption, the crosspoint
devices of ANN chip architectures are often designed to
utilize oflline learning techniques, wherein the approxima­
tion of the target function does not change once the initial
training phase has been resolved. Oflline learning allows the
crosspoint devices of crossbar-type ANN architectures to be
simplified such that they draw very little power.
[0028] Providing simple crosspoint devices that can
implement Forward Inference of previously-trained ANN
networks with low power consumption, high computational
throughput, and low latency would improve overall ANN
performance and allow a broader range of ANN applica­
tions.
[0029] Although the present invention is directed to an
electronic system, for ease of reference and explanation
various aspects of the described electronic system are
described using neurological terminology such as neurons,
plasticity and synapses, for example. It will be understood
that for any discussion or illustration herein of an electronic
system, the use of neurological terminology or neurological
shorthand notations are for ease of reference and are meant
to cover the neuromorphic, ANN equivalent(s) of the
described neurological function or neurological component.
[0030] ANNs, also known as neuromorphic or synaptronic
systems, are computational systems that can estimate or

US 2020/0117986 Al

approximate other functions or systems, including, for
example, biological neural systems, the human brain and
brain-like functionality such as image recognition, speech
recognition, and the like. ANN s incorporate know ledge from
a variety of disciplines, including neurophysiology, cogni­
tive science/psychology, physics (statistical mechanics),
control theory, computer science, artificial intelligence, sta­
tistics/mathematics, pattern recognition, computer vision,
parallel processing and hardware (e.g., digital/analog/VLSI/
optical).

[0031] Instead of utilizing the traditional digital model of
manipulating zeros and ones, ANN s create connections
between processing elements that are substantially the func­
tional equivalent of the core system functionality that is
being estimated or approximated. For example, a computer
chip that is the central component of an electronic neuro­
morphic machine attempts to provide similar form, function,
and architecture to the mammalian brain. Although the
computer chip uses the same basic transistor components as
conventional computer chips, its transistors are configured
to mimic the behavior of neurons and their synapse connec­
tions. The computer chip processes information using a
network of just over one million simulated "neurons," which
communicate with one another using electrical spikes simi­
lar to the synaptic communications between biological neu­
rons. The architecture of such a computer chip includes a
configuration of processors (i.e., simulated "neurons") that
read a memory (i.e., a simulated "synapse") and perform
simple operations. The communications between these pro­
cessors (pathways), which are typically located in different
cores, are performed by on-chip network routers.

[0032] As background, a general description of how a
typical ANN operates will now be provided with reference
to FIGS. 1, 2, and 3. As previously noted herein, a typical
ANN is a mathematical model inspired by the human brain,
which includes about one hundred billion interconnected
cells called neurons. FIG. 1 depicts a simplified diagram of
a mathematical neuron 102 having pathways 104, 106, 108,
110 that connect it to upstream inputs 112, 114, downstream
outputs 116, and downstream "other" neurons 118, config­
ured and arranged as shown. Each mathematical neuron 102
sends and receives electrical impulses through pathways
104, 106, 108, 110. The nature of these electrical impulses
and how they are processed in biological neurons (not
shown) are primarily responsible for overall brain function­
ality. Mimicking this functionality is the intent of a math­
ematical ANN constructed from mathematical neurons 102
organized in a network. Just as the pathway connections
between biological neurons can be strong or weak, so can
the pathways between mathematical neurons. When a given
neuron receives input impulses, the neuron processes the
input according to the neuron's function and sends the result
of the function to downstream outputs and/or downstream
"other" neurons.

[0033] Mathematical neuron 102 is modeled in FIG. 2 as
a node 202 having a mathematical function, f(x), depicted by
the equation shown in FIG. 2. Node 202 takes electrical
signals from inputs 212, 214, multiplies each input 212, 214
by the strength of its respective connection pathway 204,
206, takes a sum of the inputs, passes the sum through a
function, f(x), and generates a result 216, which can be a
final output or an input to another node, or both. In the
present description, an asterisk (*) is used to represent a
multiplication, which can be a matrix multiplication. For

3
Apr. 16, 2020

example, the matrix multiplication can be used to perform
convolution operations between input data and one or more
convolution kernels to generate output maps. Weak input
signals are multiplied by a very small connection strength
number, so the impact of a weak input signal on the function
is very low. Similarly, strong input signals are multiplied by
a higher connection strength number, so the impact of a
strong input signal on the function is larger. The function
f(x) is a design choice, and a variety of functions can be
used. A typical design choice for f(x) is the hyperbolic
tangent function, which takes the function of the previous
sum and outputs a number between minus one and plus one.
An alternative design choice off(x) is the ReLU or Rectified
Linear Unit, a function in which the output matches the input
for positive inputs and is zero otherwise.

[0034] FIG. 3 depicts a simplified ANN model 300 orga­
nized as a weighted directional graph, wherein the artificial
neurons are nodes (e.g., 302, 308, 316), and wherein
weighted directed edges (e.g., ml to m20) connect the
nodes. ANN model 300 is organized such that nodes 302,
304, 306 are input layer nodes, nodes 308, 310, 312, 314 are
hidden layer nodes, and nodes 316, 318 are output layer
nodes. Each node is connected to every node in the adjacent
layer by connection pathways, which are depicted in FIG. 3
as directional arrows having connection strengths ml to
m20. Although only one input layer, one hidden layer, and
one output layer are shown, in practice, multiple input
layers, hidden layers, and output layers can be provided.

[0035] In this attempt to mimic the functionality of a
human brain, each input layer node 302, 304, 306 of ANN
300 receives inputs xl, x2, x3 directly from a source (not
shown) with no connection strength adjustments and no
node summations. Accordingly, yl=f(xl), y2=f(x2) and
y3=f(x3), as shown by the equations listed at the bottom of
FIG. 3. Each hidden layer node 308, 310, 312, 314 receives
its inputs from all input layer nodes 302, 304, 306, according
to the connection strengths associated with the relevant
connection pathways. Thus, in hidden layer node 308,
y4=f(ml *yl+m5*y2+m9*y3), wherein* represents a mul­
tiplication. In one or more examples, the multiplication can
be a matrix multiplication used to perform a convolution
operation. A similar connection strength multiplication and
node summation is performed for hidden layer nodes 310,
312, 314 and output layer nodes 316, 318, as shown by the
equations defining functions y5 to y9 depicted at the bottom
of FIG. 3.

[0036] ANN model 300 processes data records one at a
time, and it "learns" by comparing an initially arbitrary
classification of the record with the known actual classifi­
cation of the record. Using a training methodology knows as
"backpropagation" (i.e., "backward propagation of errors"),
the errors from the initial classification of the first record are
fed back into the network and used to modify the network's
weighted connections the second time around, and this
feedback process continues for many iterations. In the
training phase of an ANN, the correct classification for each
record is known, and the output nodes can therefore be
assigned "correct" values, for example, a node value of" 1"
(or 0.9) for the node corresponding to the correct class, and
a node value of"0" (or 0.1) for the others. It is thus possible
to compare the network's calculated values for the output
nodes to these "correct" values, and to calculate an error
term for each node (i.e., the "delta" rule). These error terms

US 2020/0117986 Al

are then used to adjust the weights in the hidden layers so
that in the next iteration the output values will be closer to
the "correct" values.
[0037] There are many types of neural networks, but the
two broadest categories are feed-forward and feedback/
recurrent networks. ANN model 300 is a non-recurrent
feed-forward network having inputs, outputs, and hidden
layers. The signals used for forward-inference can only
travel in one direction. Input data are passed onto a layer of
processing elements that perform calculations. Each pro­
cessing element makes its computation based upon a
weighted sum of its inputs. The new calculated values then
become the new input values that feed the next layer. This
process continues until it has gone through all the layers and
determined the output. A threshold transfer function is
sometimes used to quantify the output of a neuron in the
output layer.
[0038] A feedback/recurrent network includes feedback
paths, which mean that the signals used for forward-infer­
ence can travel in both directions using loops. All possible
connections between nodes are allowed. Because loops are
present in this type of network, under certain operations, it
can become a non-linear dynamical system that changes
continuously until it reaches a state of equilibrium. Feed­
back networks are often used in associative memories and
optimization problems, wherein the network looks for the
best arrangement of interconnected factors, and in the learn­
ing of sequences of characters and/or words.
[0039] The speed and efficiency of machine learning in
feed-forward and recurrent ANN architectures depend on
how effectively the crosspoint devices of the ANN crossbar
array perform the core operations of typical machine learn­
ing algorithms. Although a precise definition of machine
learning is difficult to formulate, a learning process in the
ANN context can be viewed as the problem of updating the
crosspoint device connection weights so that a network can
efficiently perform a specific task. The crosspoint devices
typically learn the necessary connection weights from avail­
able training patterns. Performance is improved over time by
iteratively updating the weights in the network. Instead of
following a set of rules specified by human experts, ANN s
"learn" underlying rules (like input-output relationships)
from the given collection of representative examples.
Accordingly, a learning algorithm can be generally defined
as the procedure by which learning rules are used to update
and/or adjust the relevant weights.
[0040] The three main learning algorithm paradigms are
supervised, unsupervised, and hybrid. In supervised learn­
ing, or learning with a "teacher," the network is provided
with a correct answer (output) for every input pattern.
Weights are determined to allow the network to produce
answers as close as possible to the known correct answers.
Reinforcement learning is a variant of supervised learning in
which the network is provided with only a critique on the
correctness of network outputs, not the correct answers
themselves. In contrast, unsupervised learning, or learning
without a teacher, does not require a correct answer associ­
ated with each input pattern in the training data set. It
explores the underlying structure in the data, or correlations
between patterns in the data, and organizes patterns into
categories from these correlations. Hybrid learning com­
bines supervised and unsupervised learning. Parts of the
weights are usually determined through supervised learning,
while the others are obtained through unsupervised learning.

4
Apr. 16, 2020

Additional details of ANNs and learning rules are described
in Artificial Neural Networks: A Tutorial, by Anil K. Jain,
Jianchang Mao and K. M. Mohiuddin, IEEE, March 1996,
the entire description of which is incorporated by reference
herein.
[0041] Beyond the application of training ANNs, the For­
ward Inference of already trained networks includes appli­
cations ranging from implementations of cloud-based ser­
vices built on ANNs to smartphone, Internet-Of-Things
(IOT), and other battery-constrained applications which
require extremely low power operation. In general, while
training is an application that calls for high throughput (in
order to learn from many training examples), Forward
Inference is an application that calls for fast latency (so that
any given new test example can be classified, recognized, or
otherwise processed as rapidly as possible).
[0042] Described here are technical solutions for perform­
ing convolutional neural network computations using ana­
log-memory-based hardware, such as crossbar arrays that
include crosspoint devices. Deep Neural Network (DNN)
accelerators based on crossbar arrays of non-volatile memo­
ries (NVMs)-such as Phase-Change Memory (PCM) or
Resistive Memory (RRAM)-can implement multiply-ac­
cumulate operations that are extensively used in DNN
acceleration in a parallelized manner. In such systems,
computation occurs in the analog domain at the location of
weight data encoded into the conductance (resistance) of the
NVM devices. Such NVM devices are also referred to as
RPU devices and crosspoint devices. The computation of
multiply-accumulate operations can be mathematically
described as vector-matrix multiplication between a vector
of neuron excitations and a dense matrix of weights. The
DNN computations for a Fully-Connected (FC) layer
include such multiply-accumulate operations and, accord­
ingly, using crossbar arrays to implement the FC layers of a
DNN is computationally efficient.
[0043] In one or more examples, DNNs used for feature
detection in input data include convolutional layers. Such
DNNs are commonly referred to as convolutional neural
networks (CNN). In a CNN, kernels convolute overlapping
regions, such as those in a visual field, and accordingly
emphasize the importance of spatial locality in feature
detection. Computing the convolutional layers of the CNN
typically encompasses more than 90% of computation time
in neural network training and inference. Accelerating the
forward-inference of CNN networks and reducing the
amount of electrical power used, by performing the math­
ematical operations of the convolutional layers efficiently
and with a minimum of extraneous data movement or
computation, as described by the examples of the technical
solutions herein, is a desirable improvement. As such the
technical solutions are rooted in and/or tied to computer
technology in order to overcome a problem specifically
arising in the realm of computers, specifically neural net­
works, and more particularly convolutional neural networks.
[0044] However, in a convolutional layer as is used in
many image-processing applications, multiple smaller vec­
tors of neuron excitations (image patches) each are multi­
plied by smaller kernel matrices (filters). While this is
advantageous for digital accelerators since there are fewer
weights to retrieve from off-chip memory, the analog
memory-based approach that increases efficiency for fully­
connected layers is now at a disadvantage. If there is only
one copy of the kernel matrices, then each vector of neuron

US 2020/0117986 Al

excitations must be computed in serial fashion, leading to
computational performance that is not very interesting.
Alternatively, multiple copies of the kernel matrices can be
stored and operated simultaneously. However, the output
excitations resulting from each copy of the kernel matrix
must be organized, stored, duplicated, shuffled, and prepared
to fill the neuron excitation vectors for the next convolu­
tional layer. These operations significantly limit perfor­
mance efficiency of the neural network by requiring digiti­
zation of the neuron excitation values and a significant
amount of local digital storage and local digital processing,
in order to convert raw output vectors into the next set of
neuron excitation vectors.

[0045] The technical solutions described herein address
such technical problems by facilitating the organization of
the analog memory computations in such a way as to greatly
simplify the processing and bookkeeping of the resulting
computational outputs. In one or more examples, the analog
memory computations are organized so that the neural
network processes each set of inputs to a convolutional layer
(an image with rows and columns, organized into multiple
input "planes") one row (or colunm) at a time.

[0046] FIG. 4 illustrates a simplified block diagram of a
CNN. In the depicted example, the CNN is being used for
interpreting a sample input map 400, and in this particular
example uses a handwritten letter "w" as an input map.
However, it is understood that other types of input maps are
possible and also that the technical solutions described
herein are applicable to a CNN performing other operations,
such as other types of feature detections. In the illustrated
example, the input map 100 is used to create a set of values
for the input layer 410, or "layer-1." For example, layer-1
can be generated by direct mapping of a pixel of the sample
input map 400 to a particular neuron in layer-1, such that the
neuron shows a 1 or a O depending on whether the pixel
exhibits a particular attribute. Another example method of
assigning values to neurons is discussed below with refer­
ence to convolutional neural networks. Depending on the
vagaries of the neural network and the problem it is created
to solve, each layer of the network can have differing
numbers of neurons, and these may or may not be related to
particular qualities of the input data.

[0047] Referring to FIG. 4, neurons in layer-1 410 are
connected to neurons in a next layer, layer-2 420, as
described earlier (see FIG. 3). The neurons in FIG. 4 are as
described with reference to FIG. 1. A neuron in layer-2 420,
consequently, receives an input value from each of the
neurons in layer-1 410. The input values are then summed
and this sum compared to a bias. If the value exceeds the
bias for a particular neuron, that neuron then holds a value,
which can be used as input to neurons in the next layer of
neurons. This computation continues through the various
layers 430-450 of the CNN, which include at least one FC
layer 450, until it reaches a final layer 460, referred to as
"output" in FIG. 4. In some CNN networks, "residual"
results from earlier layers may be combined with the results
of later layers, skipping over the layers in between. In an
example of a CNN used for character recognition, each
value in the layer is assigned to a particular character. When
designed for classification tasks, the network is configured
to end with the output layer having only one large positive
value in one neuron, which then demonstrates which char­
acter the network has computed to be the most likely
handwritten input character. In other scenarios, the network

5
Apr. 16, 2020

may have been designed such that output neuron values may
be used to estimate probability (likelihood), confidence or
other metrics of interest.

[0048] The data values for each layer in the CNN are
typically represented using matrices (or tensors in some
examples), and computations are performed as matrix com­
putations. The indexes (and/or sizes) of the matrices vary
from layer to layer and network to network, as illustrated in
FIG. 4. Different implementations orient the matrices or map
the matrices to computer memory differently. Referring to
FIG. 4, in the example CNN illustrated, each level is a tensor
of neuron values, as is illustrated by matrix dimensions for
each layer of the neural network. At the input of the CNN,
an example might be multiple input "planes," each a two­
dimensional image. For instance, there might be a red plane,
a green plane, and a blue plane, stemming from a full-color
image. Deeper into the CNN, layers may take intermediate
data in the form of many "planes" and produce for the next
layer a large number of output planes. The values in an input
tensor at a layer are multiplied by connection strengths,
which are in a transformation tensor known as a filter. This
matrix multiplication scales each value in the previous layer
according to the connection strengths, with the aggregate
total of these contributions then summed. This fundamental
operation is known as a multiply-accumulate operation. A
bias matrix may then be added to the resulting product
matrix to account for the threshold of each neuron in the next
level. Further, an activation function is applied to each
resultant value, and the resulting values are placed in the
output tensor to be applied to the next layer. In an example,
the activation function can be rectified linear units, sigmoid,
or tan h(). Thus, as FIG. 4 shows, the connections between
each layer, and thus an entire network, can be represented as
a series of matrices. Training the CNN includes finding
proper values for these matrices.

[0049] While fully-connected neural networks are able,
when properly trained, to recognize input patterns, such as
handwriting or photos of household pets, they do not exhibit
shift-invariance. In order for the network to recognize the
whiskers of a cat, it must be supplied with cat images with
the whiskers located at numerous different 2-D locations
within the image. Each different image location will lead to
neuron values that interact with different weights in such a
fully-connected network. In contrast, in a CNN, the connec­
tion strengths are convolution kernels. The convolution
operation introduces shift-invariance. Thus, as multiple
images are presented with cats with whiskers, as long as the
scale, color, and rotation of the whiskers is unchanged from
image to image, the 2-D position within the image no longer
matters. Thus, during training, all examples of similar fea­
tures work together to help learn this feature, independent of
the feature location within the 2-D image. After training, a
single or much smaller set of filters is sufficient to recognize
such image features, allowing a bank of many filters (which
is what a CNN layer is) to then recognize many different
features that are useful for discriminating images (dogs from
cats, or even subtleties that are representative of different
breeds of cats).

[0050] FIG. 5 illustrates an example convolutional layer
500 in a CNN being trained using training data that include
input maps 510 and convolution kernels 520. For simplicity,
FIG. 5 does not illustrate bias matrices 525. The input maps
510 (also referred to as input planes) can include multiple
input patterns, for example, D input maps. Each input map

US 2020/0117986 Al

is a matrix, such as a matrix of size NxM. Accordingly, a
total number of input neurons in this case is NxMxD. The
input maps are convolved with F convolution kernels 520 of
size kxk as illustrated to produce corresponding output maps
530. Each output map can have a dimension N'xM'. In case
the input maps are square matrices of size n, the output maps
are of size n-k+ 1 xn-k+ 1. Each convolution is a 3D convo­
lution involving the D input maps. A CNN can include
multiple such layers, where the output maps 530 from a
previous layer are used as input maps 510 for a subsequent
layer. The backpropagation algorithm can be used to learn
the kxkxDxF weight values of the filters.

[0051] For example, the input maps 510 are convolved
with each filter bank to generate a corresponding output
map. For example, in case the CNN is being trained to
identify handwriting, the input maps 510 are combined with
a filter bank that includes convolution kernels representing
a vertical line. The resulting output map identifies vertical
lines that are present in the input maps 510. Further, another
filter bank can include convolution kernels representing a
diagonal line, such as going up and to the right. An output
map resulting from a convolution of the input maps 510 with
the second filter bank identifies samples of the training data
that contain diagonal lines. The two output maps show
different information for the character, while preserving
pixel adjacency. This can result in more efficient character
recognition.

[0052] FIG. 6 depicts a system 600 in which the crossbar
array 700 is controlled using a controller 610 for performing
the matrix-matrix multiplication among other operations
according to one or more embodiments of the present
invention. For example, the controller 610 sends the input
data 510 to be multiplied by the crossbar array 700. In one
or more examples, the controller 610 stores the weight
values, such as from convolution kernels 520, in the crossbar
array 700 and sends the input vectors. In one or more
examples, the controller 610 and the crossbar array 700 are
coupled in a wired or a wireless manner, or a combination
thereof. The controller 610 further sends and instruction/
command to the crossbar array 700 to initiate the operations
for one or more layers in the CNN. The controller 610
further can read the output data 530 from the crossbar array
700 after receiving a notification that the computations have
been performed. The controller 610 can be a processing unit,
or a computing system, such as a server, a desktop computer,
a tablet computer, a phone, and the like. The controller 610
can include a memory device that has computer executable
instructions stored therein, the instructions when executed
by the controller cause the matrix-matrix computation.

[0053] Turning now to an overview of the present descrip­
tion, one or more embodiments are directed to a two­
terminal programmable resistive crosspoint component
referred to herein as a resistive processing unit (RPU), which
provides local data storage functionality and local data
processing functionality. In other words, when performing
data processing, the weighted contribution represented by
each crosspoint device is contributed into a massively­
parallel multiply-accumulate operation that is performed at
the stored location of data. This eliminates the need to move
relevant data in and out of a processor and a separate storage
element. Accordingly, implementing a machine learning
CNN architecture having the described crosspoint device
enables the implementation of online machine learning
capabilities that optimize the speed, efficiency, and power

6
Apr. 16, 2020

consumption when performing Forward-Inference of previ­
ously trained CNN models. The described crosspoint device
and resulting CNN architecture improve overall CNN per­
formance and enable a broader range of practical CNN
applications.
[0054] The described crosspoint device can be imple­
mented as a two-terminal resistive crosspoint device. For
example, the described crosspoint device can be imple­
mented with resistive random access memory (RRAM),
phase change memory (PCM), programmable metallization
cell (PMC) memory, non-linear memristive systems, or any
other two-terminal device that offers a wide range to analog­
tunable non-volatile resistive memory states that are suffi­
ciently stable over time.
[0055] FIG. 7 depicts a two-dimensional (2D) crossbar
system 700 that performs forward inference according to the
present description. While such a crossbar system can be
used to implement simple matrix multiplication, backward
matrix-multiplication, and even in-situ weight-update
according to the backpropagation algorithm, the present
invention concerns the efficient implementation of convo­
lutional layers for previously-trained networks. The crossbar
system 700 includes a crossbar array 705, an input circuitry
710, and an output circuitry 720, among other components.
The crossbar system 700 can be a computer chip in one or
more examples.
[0056] FIG. 8 depicts an expanded view of the crossbar
array 705 according to one or more embodiments. The
crossbar array 705 is formed from a set of conductive row
wires 802, 804, 806 and a set of conductive column wires
808, 810, 812, 814 that intersect the set of conductive row
wires 802, 804, 806. The intersections between the set of
row wires and the set of column wires are separated by
crosspoint devices, which are shown in FIG. 8 as resistive
elements each having its own adjustable/updateable resistive
weight, depicted as 0 11 , 0 21 , 0 31 , 0 41 , 0 12, 0 22, 0 32, 0 42 ,

o 13 , 0 23 , 0 33 and 0 43 , respectively. For ease of illustration,
only one crosspoint device 820 is labeled with a reference
number in FIG. 8. In forward matrix multiplication, the
conduction state (i.e., the stored weights) of the crosspoint
device can be read by applying a voltage across the cros­
spoint device and measuring the current that passes through
the crosspoint device.
[0057] Input voltages Vi, V2 , V3 are applied to row wires
802, 804, 806, respectively. Each column wire 808, 810,
812, 814 sums the currents Ii, 12 , 13 , 14 generated by each
crosspoint device along the particular colunm wire using an
integrator, such as a capacitor. For example, as shown in
FIG. 8, the current 14 generated by column wire 814 is given
by the equation I4 =V1041 +V2042+V304y Thus, array 700
computes the forward matrix multiplication by multiplying
the values stored in the crosspoint devices by the row wire
inputs, which are defined by voltages V 1 , V2 , V3 .

[0058] Referring to FIG. 7, the input circuitry 710
includes, in one or more examples, at least a support
circuitry 712, a shared circuitry 714, and a row circuitry 716.
The row circuitry includes hardware components associated
with each row wire 802, 804, and 806. The input circuitry
710 facilitates providing the input voltages to the crossbar
array 705.
[0059] FIG. 9 depicts a typical output circuitry 720. The
output circuitry includes integrators 908, 910, 912, and 914
corresponding to the colunm wires 808, 810, 812, and 814,
respectively. The integrators 908, 910, 912, and 914, in one

US 2020/0117986 Al

or more examples, are capacitors. The output currents along
each colunm wire are accumulated in the integrators and
passed on to a next layer of the CNN. As described earlier,
such an arrangement of the integrators makes the computa­
tions of the FC layers very efficient; however, for the
convolution operations, to use such an arrangement of the
integrators incurs significant additional overhead in terms of
data transport, storage, organization and subsequent data
transport. Such operations require additional resources such
as time, power, and additional circuit-area, thus making the
overall system inefficient.
[0060] FIG. 10 depicts existing operations to perform such
operations using the crossbar array. It should be noted that
the dimensions of the matrices shown in the figures herein
are just examples, and in one or more examples different
dimensions can be used.
[0061] As depicted in FIG. 10, one image-row (512, 514,
and 516) of all input planes 510 is presented concurrently as
a column of inputs to the array-rows (802, 804, and 806) of
the crossbar array 705 of the crossbar system 700. The
crosspoint devices 820 at each crosspoint contains weight­
elements from the filters 525, each leading to a multiplica­
tion between the array-row excitation, x,, and the stored
weight, wiJ by Ohm's law (voltage times conductance equals
current). The integration of all such read current contribu­
tions is surmned along each array-colunm and stored in the
corresponding integrators (908, 910, 912, and 914) of the
array-colunms (808, 810, 812, and 814). The computation
can be expressed as: the current 11 on colunm #1 (808) is
stored on capacitor C1 (908), 12 is stored on capacitor C2 , 13

on C3 , and so on. In the existing technical solutions that use
such crossbar arrays 705, the integrated charge on the
capacitors (908, 910, 912, and 914) is treated as the output
of the multiply-accumulate operation and is either converted
to a digital number or to pulse-duration for shipment to a
next array 705.
[0062] In this manner, at each time-step (i.e., each com­
putation performed by the array 705), values across all input
planes 510 are integrated producing an output for all output
planes 530. However, this results only in one output pixel
per time-step.
[0063] Further, every output from convolutional layer i
has to be combined with outputs from other convolutional
layers as part of pooling. The other convolutional layers
from which the outputs that are to be pooled depend on the
number of elements in the filter kernels 520. Alternatively,
or in addition, every output from layer i has to be positioned
at different spots in the input planes 510 for the convolu­
tional layer i+ 1. Such organization of the output values for
the purpose of pooling can also require additional computing
resources, such as read-write access, power and the like.
[0064] The technical solutions described herein address
technical challenges of existing technical solutions by facili­
tating, after the multiply-accumulate operations are per­
formed, the steering of the aggregate current to a selected
integrator, from any of the integrators in the output circuitry
720. For instance, current 11 might now be steered to
capacitor C2 , 12 to capacitor C3 , and 13 to capacitor C1 ,

instead of retaining the charges in the same columns, with
the next image-row of the input planes to this convolutional
layer being similarly presented to the same array 705. The
purpose of this is to allow each capacitor to integrate the
total current contributions for different colunms of the
k-by-k weight kernel substantially simultaneously (each

7
Apr. 16, 2020

driven into the array by various array-row excitations) and
for different rows of the weight kernel in time (added to any
given capacitor over k different time-steps by steering the
aggregate current from the array-column corresponding to
the appropriate weight kernel coefficients).
[0065] "Pooling" as used in neural network operations can
include determining results such as the maximum, sum, or
average of the output excitations. The technical solutions
described herein facilitate such pooled results being com­
puted locally and then transmitted, only after all relevant
weight kernels are fully integrated. In an alternative embodi­
ment, the unpooled results are computed locally, and are
only pooled after transmission.
[0066] FIGS. 11-14 depict the operations performed by the
array 705 with the modified output circuit 720, according to
one or more embodiments. At each time-step, each of the
integrators (908, 910, 912, and 914) receives contributions
from k*D multiply-accumulate terms, where D is the num­
ber of input planes 510. After k time-steps, the total charge
on an integrator contains all k*k*D terms and is ready to be
output to the next convolutional layer. Except for during the
first k or last k time-steps, after each integration step, every
kth integrator from the output circuit 720 reaches this status,
and accordingly, is ready to generate all the output pixels of
one image-row (512-A, 514-A, and 516-A) of the convolu­
tional-layer output. All other jth integrators have a different
phase in their respective integration phase, depending the
value of j.
[0067] For example, as shown in FIG. 11, the first rows of
each input plane 512-A, 514-A, 516-A are input to the
convolutional layer. The crosspoint devices 820 of the
crossbar array 705 are loaded with the filters 520 as shown.
Particularly, filter kernels 522-A and 522-B are loaded in the
crosspoint devices 820 to perform a convolution with the
first rows of the first input plane 516-A. Similarly, filter
kernels 524-A and 524-B from a second bank of filter
kernels 520 are convolved with the first row of a second
input plane 514-A, and so on. The results of the respective
convolutions are forwarded to one or more of the integrators
(908, 910, 912, 914) from the output circuitry 720 by output
controller 1110.
[0068] The output controller 1110 can be part of the output
circuitry 720 or an external controller that is coupled with
the output circuitry 720. The output controller 1110 steers
the output of the multiply-accumulate operations from each
column in the array 705 to a particular integrator in the
output circuitry 720. In one or more examples, the output
controller 1110 receives a mode signal that provides a
selection of the integrators for each colunm at each time­
step. Alternatively, the output controller 1110 is provided a
mode signal that indicates the selection of the integrator for
each colunm until all convolutional layers are executed. The
mode signal, in one or more examples, can be a bit pattern
that is indicative of the selected integrators for each colunm.
[0069] In the example of FIG. 11, the outputs from the
columns 808 and 814 are stored in the integrators 908 and
912, respectively, at time-step #1. FIG. 12 depicts the
operations performed in time-step #2. Here, second rows
512-B, 514-B, and 516-B from the input planes 510 are used
as input to the crosspoint array 705. The crosspoint devices
820 are still loaded with the kernel filters 520 as in time-step
#1 (FIG. 11). In the time-step #2, the output controller 1110
selects the same integrators 908 and 912 for the outputs of
the colunms 810 and 816 (different from time-step #1).

US 2020/0117986 Al

Accordingly, the integrators 908 and 912, in this case,
receive outputs from different colunms in different time­
steps.
[0070] FIG. 13 depicts the operations performed in time­
step #3. In a manner similar to the first two time-steps, in
time-step #3, a third row 512-C, 514-C, and 516-C from the
input planes 510 is used as input to the crosspoint array 705.
In the time-step #3, the output controller 1110 selects the
same integrators 908 and 912 for the outputs of the colunms
812 and 818 (different from time-step #1). Accordingly, the
integrators 908 and 912, in this case, receive outputs from
different columns in different time-steps. In this manner, in
general, after k time-steps, an entire row in the output planes
530 is computed (compared to a single output pixel in the
existing solution).
[0071] It should be noted that, while the only the compu­
tations of the first two entries (A and B) from the first output
row in the output plane 530 is described above, in a similar
manner, the other portions of the output planes 530 are
computed in parallel by other portions of the crosspoint
array 705. Further yet, the crosspoint array 705 can be
accumulating computation outputs for other output rows (C
and D) at each time-step using the other integrators (910 and
914) as shown in FIG. 13.
[0072] Accordingly, as a result of the output controller
1110 steering the output of the crosspoint array 705, all input
is in the form of a complete and contiguous image-row over
all input planes. Further, after the first k time-steps before
any output is available, (that is, from the k+ 1th time-step), a
complete and contiguous image-row over all the output
planes is produced at each time-step. Accordingly, the output
maps 530 produced by such operations can be pipelined to
a subsequent convolutional layer without any intermediate
storage of the neuron excitations. Because pooling opera­
tions such as sum, average, and maximum can be performed
incrementally on data as they arrive, any pooling operation
only requires temporary storage sufficient for the output
image-row. These intermediate results are stored and
updated as each set of neuron excitations arrive until the
R-by-R pooling operation is complete, at which point the
buffer of intermediate results is effectively the output of the
pooling layer.
[0073] It should be noted that although in the examples
used in the above description to explain the technical
solutions, a single image-row is used for calculations, in one
or more examples, more than a single image-row can be
used. For example, in an alternative embodiment, two
image-rows of the output planes 530 are output simultane­
ously, and so on. The output rows are further supplied as the
data for pooling operations, for example, a 2x2 pooling
operation can be performed simultaneously using the two
output rows. In such examples with additional output rows,
the need to organize, store, or even transmit the output data
elsewhere is eliminated by steering the output to the inte­
grators in the output circuitry 720 of the crossbar system 700
itself.
[0074] The examples herein use k=3 in most cases, how­
ever, it is understood that k can be any other value in other
examples.
[0075] The technical solutions described herein accord­
ingly facilitate improving performance efficiency in terms of
speed, computing resources, and power used when imple­
menting a CNN. Empirical data for the inventors suggest the
improvements are at least an order of magnitude in some

8
Apr. 16, 2020

cases. The technical solutions described herein are rooted in
computer technology, particularly implementing CNN using
a neural network computing chip that is typically configured
to increase efficiency of fully connected layers in the CNN
by performing multiply-accumulate operations along a col­
unm of the crossbar array. The technical solutions described
herein allow the computer chip to maintain those efficien­
cies, and in addition, to be configured during convolutional
layer computations to steer output of the colunms to par­
ticular integrators in the crossbar array, and to maintain the
output in the integrators and directly provide that output to
subsequent convolutional layers. Such operations reduce, if
not eliminate, read-write operations and digitization opera­
tions of outputs of each convolutional layer.

[0076] It should also be noted that although the examples
described herein use rows of the input planes 510 to perform
the computations of the CNN, in one or more examples, the
colunms can be used with corresponding adjustments to the
matrices in the operations, as will be obvious to a person
skilled in the art.

[0077] The technical solutions described herein accord­
ingly provide a circuit that includes an array of resistive
memory elements, the array providing a vector of current
outputs equal to the analog vector-matrix-product between
(i) a vector of voltage inputs to the array encoding a vector
of analog input values and (ii) a matrix of analog resistive
weights within the array. The circuit further includes accu­
mulation wires and circuits aggregating the current from a
dedicated subset of the resistive elements. Further, the
circuit includes integration capacitors, each of the integra­
tion capacitors being electrically switchable (selectable) so
as to aggregate current from at least one of the accumulation
wires during a single integration step. The circuit also
includes data-output circuitry to allow the integrated charge
from a subset of the integration capacitors, accumulated over
multiple integration steps, to be converted and transmitted
either as an analog duration or as a digital representation
using binary digits.

[0078] The subset of resistive elements can include one or
more colunm of the array. Alternatively, the subset of
resistive elements can include one or more rows of the array.
In one or more examples, the resistive elements are non­
volatile memory devices. In one or more examples, the
resistive elements store synaptic weights of a neural net­
work.

[0079] In one or more examples, the resistive memory
elements are arranged so as to implement the colunms of the
weight kernels of a given layer of a convolutional neural
network. The accumulation over the integration steps imple­
ments the multiply-accumulate operations across multiple
rows of said weight kernels, as the input neuron excitations
to the said layer of the convolutional neural network are
presented one row at a time. Further, the integrated charge
representing an output excitation is suitably converted and
transmitted only after all rows of said weight kernel are fully
integrated.

[0080] Further, in one or more examples, the integrated
charge stored by multiple capacitors representing respective
output excitations are suitably converted and a suitable
pooled result such as the maximum, sum, or average of the
said plurality of output excitations is computed locally and
then transmitted, only after all relevant weight kernels are
fully integrated.

US 2020/0117986 Al

[0081] In one or more examples, the resistive memory
elements are arranged so as to implement the rows of the
weight kernels of a given layer of a convolutional neural
network. The accumulation over the integration steps imple­
ments the multiply-accumulate operations across multiple
colunms of said weight kernels, as the input neuron excita­
tions to the said layer of the convolutional neural network
are presented one column at a time. Further, the integrated
charge representing an output excitation is suitably con­
verted and transmitted only after all colunms of said weight
kernel are fully integrated. Further, in one or more examples,
the integrated charge stored by multiple capacitors repre­
senting respective output excitations are suitably converted
and a suitable pooled result such as the maximum, sum, or
average of the said plurality of output excitations are com­
puted locally and then transmitted, only after all relevant
weight kernels are fully integrated.

[0082] The present technical solutions may be a system, a
method, and/or a computer program product at any possible
technical detail level of integration. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present technical solutions.

[0083] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD­
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch­
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore­
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave­
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0084] Computer readable program instructions described
herein can be downloaded to respective computing/process­
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net­
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

9
Apr. 16, 2020

[0085] Computer readable program instructions for carry­
ing out operations of the present technical solutions may be
assembler instructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one
or more programming languages, including an object ori­
ented programming language such as Smalltalk, C++, or the
like, and procedural programming languages, such as the
"C" programming language or similar programming lan­
guages. The computer readable program instructions may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present technical solutions.

[0086] Aspects of the present technical solutions are
described herein with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems), and
computer program products according to embodiments of
the technical solutions. It will be understood that each block
of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or
block diagrams, can be implemented by computer readable
program instructions.

[0087] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro­
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0088] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com­
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

US 2020/0117986 Al

[0089] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com­
puter program products according to various embodiments
of the present technical solutions. In this regard, each block
in the flowchart or block diagrams may represent a module,
segment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur­
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

[0090] A second action may be said to be "in response to"
a first action independent of whether the second action
results directly or indirectly from the first action. The second
action may occur at a substantially later time than the first
action and still be in response to the first action. Similarly,
the second action may be said to be in response to the first
action even if intervening actions take place between the
first action and the second action, and even if one or more
of the intervening actions directly cause the second action to
be performed. For example, a second action may be in
response to a first action if the first action sets a flag and a
third action later initiates the second action whenever the
flag is set.

[0091] To clarify the use of and to hereby provide notice
to the public, the phrases "at least one of <A>, , ... and
<N>" or "at least one of <A>, , <N>, or combinations
thereof' or "<A>, , ... and/or <N>" are to be construed
in the broadest sense, superseding any other implied defi­
nitions hereinbefore or hereinafter unless expressly asserted
to the contrary, to mean one or more elements selected from
the group comprising A, B, ... and N. In other words, the
phrases mean any combination of one or more of the
elements A, B, ... or N including any one element alone or
the one element in combination with one or more of the
other elements which may also include, in combination,
additional elements not listed.

[0092] It will also be appreciated that any module, unit,
component, server, computer, terminal or device exempli­
fied herein that executes instructions may include or other­
wise have access to computer readable media such as
storage media, computer storage media, or data storage
devices (removable and/or non-removable) such as, for
example, magnetic disks, optical disks, or tape. Computer
storage media may include volatile and non-volatile, remov­
able and non-removable media implemented in any method
or technology for storage of information, such as computer
readable instructions, data structures, program modules, or
other data. Such computer storage media may be part of the
device or accessible or connectable thereto. Any application
or module herein described may be implemented using
computer readable/executable instructions that may be
stored or otherwise held by such computer readable media.

10
Apr. 16, 2020

[0093] The descriptions of the various embodiments of the
technical features herein have been presented for purposes
of illustration but are not intended to be exhaustive or
limited to the embodiments disclosed. Many modifications
and variations will be apparent to those of ordinary skill in
the art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech­
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:
1. A computer implemented method for implementing a

convolutional neural network (CNN) using a crosspoint
array, the method comprising:

configuring the crosspoint array, the crosspoint array
corresponding to a convolution layer in the CNN, by
storing one or more convolution kernels of the convo­
lution layer in one or more crosspoint devices of the
crosspoint array; and

performing computations for the CNN via the crosspoint
array by:
transmitting voltage pulses corresponding to a vector of

input data of the convolution layer to the crosspoint
array;

outputting an electric current representative of per­
forming a multiplication operation at a crosspoint
device in the crosspoint array, the electric current
based on a weight value stored by the crosspoint
device and the voltage pulses from the input data;
and

passing the output electric current from the crosspoint
device to a selected integrator.

2. The computer implemented method of claim 1, wherein
the integrator is a capacitor.

3. The computer implemented method of claim 1, wherein
the output electric current is generated by the crosspoint
device, the crosspoint device being at an intersection of a
first row wire of the crosspoint array and a first colunm wire
of the crosspoint array, and said integrator is physically
proximate to a second colunm wire of the crosspoint array,
and is electrically coupled to said first colunm wire of the
crosspoint array in order to receive said output electric
current.

4. The computer implemented method of claim 1, wherein
the output electric current is a first output electric current,
the crosspoint device being a first crosspoint device that is
at an intersection of a first row wire of the crosspoint array
and a first colunm wire of the crosspoint array, the method
comprising:

outputting a second electric current by a second cros­
spoint device in the crosspoint array, based on a weight
value stored by the second crosspoint device and the
voltage pulses from the input data, the second cros­
spoint device being at an intersection of a second row
wire of the crosspoint array and a second colunm wire
of the crosspoint array; and

passing the second output electric current from the cros­
spoint device to said selected integrator, where said
integrator is physically proximate to said first column
wire of the crosspoint array, and is electrically coupled
to said second colunm wire of the crosspoint array in
order to receive said second electric current.

US 2020/0117986 Al

5. The computer implemented method of claim 1, wherein
the selected integrator is selected by an output controller,
based on a mode signal that maps the output electric current
from the crosspoint device to the selected integrator.

6. The computer implemented method of claim 1, wherein
the crosspoint devices are arranged to implement one or
more colunms of the convolution kernels of a given layer of
the CNN, and wherein the vector of input data represents
neuron excitations to the given layer of the CNN presented
from the input data, one row at a time.

7. The computer implemented method of claim 6, wherein
a charge held by the selected integrator represents an output
excitation according to the given layer of the CNN, the
output excitation being converted and transmitted only after
all rows of said convolution kernel are integrated.

8. The computer implemented method of claim 1, wherein
the crosspoint devices are arranged to implement one or
more rows of the convolution kernels of a given layer of the
CNN, and wherein the vector of input data represents neuron
excitations to the given layer of the CNN presented one
colunm at a time.

9. The computer implemented method of claim 8, wherein
a charge held by the selected integrator represents an output
excitation according to the given layer of the CNN, the
output excitation being converted and transmitted only after
all columns of said convolution kernel are integrated.

10. An electronic circuit for performing computations of
a trained convolutional neural network (CNN), the elec­
tronic circuit comprising:

a crosspoint array; and
an output circuit compnsmg one or more integrators;

wherein performing the computations of the trained
CNN comprises performing a method that comprises:
configuring the crosspoint array corresponding to a

convolution layer in the CNN by storing one or more
convolution kernels of the convolution layer in one
or more crosspoint devices of the crosspoint array;
and

performing computations for the CNN via the cros­
spoint array by:
transmitting voltage pulses corresponding to a vector

of input data of the convolution layer to the
crosspoint array;

outputting an electric current representative of per­
forming a multiplication operation at a crosspoint
device in the crosspoint array, the electric current
based on a weight value stored by the crosspoint
device and the voltage pulses from the input data;
and

passing the output electric current from the cros­
spoint device to a selected integrator from the
output circuit.

11. The electronic circuit of claim 10, wherein the inte­
grator is a capacitor.

12. The electronic circuit of claim 10, wherein the output
electric current is generated by the crosspoint device, the
crosspoint device being at an intersection of a first row wire
of the crosspoint array and a first column wire of the
crosspoint array, and said integrator is physically proximate
to a second colunm wire of the crosspoint array, yet is
electrically coupled to said first colunm wire of the cros­
spoint array in order to receive said output electric current.

13. The electronic circuit of claim 10, wherein the output
electric current is a first output electric current, the eras-

11
Apr. 16, 2020

spoint device is a first crosspoint device that is at an
intersection of a first row wire of the crosspoint array and a
first column wire of the crosspoint array, the method further
comprising:

outputting a second electric current by a second cros­
spoint device in the crosspoint array based on a weight
value stored by the second crosspoint device and the
voltage pulses from the input data, the second cros­
spoint device being at an intersection of a second row
wire of the crosspoint array and a second colunm wire
of the crosspoint array; and

passing the second output electric current from the cros­
spoint device to said selected integrator, where said
integrator is physically proximate to said first column
wire of the crosspoint array, yet is electrically coupled
to said second colunm wire of the crosspoint array in
order to receive said second electric current.

14. The electronic circuit of claim 10, wherein the
selected integrator is selected by an output controller based
on a mode signal that maps the output electric current from
the crosspoint device to the selected integrator.

15. The electronic circuit of claim 10, wherein the cros­
spoint devices are arranged to implement one or more
columns of the convolution kernels of a given layer of the
CNN, and wherein the vector of input data represents neuron
excitations to the given layer of the CNN presented from the
input data, one row at a time.

16. The electronic circuit of claim 15, wherein a charge
held by the selected integrator represents an output excita­
tion according to the given layer of the CNN, the output
excitation is converted and transmitted only after all rows of
said convolution kernel are integrated.

17. The electronic circuit of claim 10, wherein the cros­
spoint devices are arranged to implement one or more rows
of the convolution kernels of a given layer of the CNN, and
wherein the vector of input data represents neuron excita­
tions to the given layer of the CNN presented from the input
data, one colunm at a time.

18. The electronic circuit of claim 17, wherein a charge
held by the selected integrator represents an output excita­
tion according to the given layer of the CNN, the output
excitation is converted and transmitted only after all col­
unms of said convolution kernel are integrated.

19. An electronic circuit comprising:

an array of resistive memory elements, the array provid­
ing a vector of current outputs equal to an analog
vector-matrix-product between (i) a vector of voltage
inputs to the array encoding a vector of analog input
values and (ii) a matrix of analog resistive weights
within the array;

accumulation wires and circuits aggregating a current
from a dedicated subset of the resistive memory ele­
ments;

integration capacitors, each of the integration capacitors
being electrically switchable so as to aggregate current
from one of a plurality of accumulation wires during a
single integration step;

data-output circuitry to allow an integrated charge from a
subset of the integration capacitors, accumulated over
a plurality of integration steps, to be suitably converted
and transmitted either as an analog duration or as a
digital representation using binary digits.

US 2020/0117986 Al

20. The electronic circuit of claim 19, wherein the subset
of the resistive memory elements corresponds to one or
more colunm(s) of the array.

21. The electronic circuit of claim 19, wherein the subset
of the resistive memory elements corresponds to one or
more row(s) of the array.

22. The electronic circuit of claim 19, wherein the resis­
tive memory elements are non-volatile memory devices.

23. The electronic circuit of claim 19, wherein the resis­
tive memory elements store synaptic weights of a neural
network.

24. The electronic circuit of claim 19,
wherein the resistive memory elements are arranged so as

to implement colunms of weight kernels of a given
layer of a convolutional neural network;

wherein accumulation over a plurality of integration steps
implements multiply-accumulate operations across
multiple rows of said weight kernels, as the input
neuron excitations to the said layer of the convolutional
neural network are presented one row at a time;
wherein the integrated charge representing an output
excitation is suitably converted and transmitted only
after all rows of said weight kernel are fully integrated;
and

wherein the integrated charge on a plurality of capacitors
representing a plurality of output excitations is suitably

12
Apr. 16, 2020

converted and a suitable pooled result such as the
maximum, sum, or average of the said plurality of
output excitations is computed locally and then trans­
mitted, only after all relevant weight kernels are fully
integrated.

25. The electronic circuit of claim 19,
wherein the resistive memory elements are arranged so as

to implement rows of weight kernels of one layer of a
convolutional neural network;

wherein accumulation over a plurality of integration steps
implement the integration across multiple columns of
said weight kernels as the input data to said layer of the
convolutional neural network are presented one colunm
at a time;

wherein the integrated charge is suitably converted and
transmitted only after all colunms of said weight kernel
are fully integrated; and

wherein the integrated charge on a plurality of capacitors
representing a plurality of output excitations is suitably
converted and a suitable pooled result such as the
maximum, sum, or average of the said plurality of
output excitations is computed locally and then trans­
mitted, only after all relevant weight kernels are fully
integrated.

* * * * *

