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30 I Obtain 3D isotropic MRA 
volume data from axial slices 

1 
Apply at least one selective 

30 \ enhancement filter (e.g., dot) to volume 
data to obtain enhanced image data 

l 
30 3 Segment anatomical regions (e.g., major 

vessels) in enhanced image data 

1 
304 Dilate segmented anatomical regions 

using a morphological filter 

l 
Apply multiple-gray-level thresholding to 

30 5 enhanced image data to obtain initial 

" candidates based on effective diameter 

1 
Calculate image features and segment 

" 
initial candidates using a region-growing 

technique based on the image features 

306 

(52) U.S. Cl. ............................................ 382/130; 382/254 

(57) ABSTRACT 

A method, system, and computer program product for deter­
mining existence of an abnormality in a medical image, 
including (1) obtaining volume image data corresponding to 
the medical image; (2) filtering the volume image data using 
an enhancement filter to produce a filtered image in which 
a predetermined pattern is enhanced; (3) detecting, in the 
filtered image, a first plurality of abnormality candidates 
using multiple gray-level thresholding; (4) grouping, based 
on size and local structures, the first plurality of abnormality 
candidates into a plurality of abnormality classes; (5) remov­
ing false positive candidates from each abnormality class 
based on class-specific image features to produce a second 
plurality of abnormality candidates; and ( 6) applying the at 
least one abnormality to a classifier and classifying each 
candidate in the second plurality of abnormality candidates 
as a false positive candidate or an abnormality. 

rl Group initial candidates into large and 
small candidates based on effective diameter 

307 

1 
Remove false positives in each candidate 308 

group using a first rule-based scheme 

l 
Further group remaining small candidates 

into at least two candidates groups 
309 

1 
Remove false positives in the small 
candidate group based on calculated V 

310 

localized image features. 

l 
Classify all remaining candidates as 
false positives or abnormalities using I/ 

311 

a classifier ( e.g., linear discriminant) 
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30 Obtain 3D isotropic MRA . 
' volume data from axial slices 

Apply at least one selective 
30 enhancement filter (e.g., dot) to volume 

' data to obtain enhanced image data 

30 Segment anatomical regions ( e.g., major 
' vessels) in enhanced image data 

30 Dilate segmented anatomical regions 

' using a morphological filter 

. 
Apply multiple-gray-level thresholding to 

30 enhanced image data to obtain initial 
' candidates based on effective diameter 

Calculate image features and segment 
306 initial candidates using a region-growing 

technique based on the image features 

Group initial candidates into large and 
small candidates based on effective diameter 

Remove false positives in each candidate 
group using a first rule-based scheme 

,Ir 

Further group remaining small candidates 
into at least two candidates groups 

... 
Remove false positives in the small 
candidate group based on calculated 

localized image features . 

. .. 
Classify all remaining candidates as 
false positives or abnormalities using 
a classifier ( e.g., linear discriminant) 

FIG. 3 
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METHOD FOR DETECTION OF ABNORMALITIES 
IN THREE-DIMENSIONAL IMAGING DATA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0001] The present invention was made in part with U.S. 
Government support under USPHS Grant Nos. CA62625 
and CA98119. The U.S. Government may have certain 
rights to this invention. 

BACKGROUND OF THE INVENTION 

[0002] Field of the Invention 

[0003] The present invention relates generally to the auto­
mated detection of structures and assessment of abnormali­
ties in medical images, and more particularly to methods, 
systems, and computer program products for the detection of 
intercranial aneurysm in medical images (such as MRA 
images) using selective enhancement filters. 

[0004] The present invention also generally relates to 
computerized techniques for automated analysis of digital 
images, for example, as disclosed in one or more of U.S. Pat. 
Nos. 4,839,807; 4,841,555; 4,851,984; 4,875,165; 4,907, 
156; 4,918,534; 5,072,384; 5,133,020; 5,150,292; 5,224, 
177; 5,289,374; 5,319,549; 5,343,390; 5,359,513; 5,452, 
367; 5,463,548; 5,491,627; 5,537,485; 5,598,481; 5,622, 
171; 5,638,458; 5,657,362; 5,666,434; 5,673,332; 5,668, 
888; 5,732,697; 5,740,268; 5,790,690; 5,832,103; 5,873, 
824; 5,881,124; 5,931,780; 5,974,165; 5,982,915; 5,984, 
870; 5,987,345; 6,011,862; 6,058,322; 6,067,373; 6,075, 
878; 6,078,680; 6,088,473; 6,112,112; 6,138,045; 6,141, 
437; 6,185,320; 6,205,348; 6,240,201; 6,282,305; 6,282, 
307; 6,317,617; 6,466,689; 6,363,163; 6,442,287; 6,335, 
980; 6,594,378; 6,470,092; 6,483,934; as well as U.S. patent 
application Ser. Nos. 08/398,307; 09/759,333; 09/760,854; 
09/773,636; 09/816,217; 09/830,562; 09/818,831; 09/860, 
574; 10/270,674; 09/990,311; 09/990,310; 09/990,377; 
10/078,694; 10/079,820; 10/120,420; 10/126,523; 10/301, 
836; 10/355,147; 10/360,814; 10/366,482; all of which are 
incorporated herein by reference. 

[0005] The present invention includes the use of various 
technologies referenced and described in the above-noted 
U.S. Patents and Applications, as well as described in the 
documents identified in the following LIST OF REFER­
ENCES, which are cited throughout the specification by the 
corresponding reference number in brackets: 

LIST OF REFERENCES 

[0006] (1) Weir B., Unruptured intracranial aneurysms: 
a review. J Neurosurg 2002; 96: 3-42. 

[0007] (2) Wardlaw J M and White PM., The detection 
and management of unruptured intracranial aneurysms. 
Brain 2000; 123: 205-221. 

[0008] (3) Fogelholm R, Hemesniemi J, Vapalahti M., 
Impact of early surgery on outcome after aneurysm 
subarachnoid hemorrhage: a population-based study. 
Stroke 1993; 24: 1649-54. 

[0009] (4) Hop J W, Rinkel G J, Algra A, van Gijn J., 
Case-fatality rates and functional outcome after sub­
arachnoid hemorrhage: a systematic review. [Review]. 
Stroke 1997; 28: 660-4. 
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[0035] Discussion of the Background 

[0036] An intracranial aneurysm is a swelling along a 
blood vessel in a brain, which could cause a subarachnoid 
hemorrhage (SAH) due to the rupture of the aneurysm [1]. 
SAH is a serious disorder with high mortality and morbidity 
[2-6]. Prospective autopsy and angiographic studies indicate 
that between 3.6% and 6% of the general population have 
intracranial aneurysms [2]. The rupture rate of asymptom­
atic aneurysms was estimated to be 1-2% per year [2]. 
Recently, the International Study of Unruptured Intracranial 
Aneurysms [7] reported that the cumulative rupture rate of 
aneurysms smaller than 10 mm in diameter was 0.05% per 
year in patients with no prior SAH, and 0.5% per year for 
aneurysms larger than 10 mm and for all aneurysms in 
patients with previous SAH 

[0037] The accepted reference standard for identification 
of intracranial aneurysms is intraarterial digital subtraction 
angiography (DSA)[8-10], which is invasive, time-consum­
ing, and relatively expensive. During the past decade, there 
has been considerable interest in the roles of "noninvasive" 
imaging modalities such as computed tomographic angiog­
raphy (CTA) and magnetic resonance angiography (MRA) 
in the detection of intracranial aneurysms [2,8-14]. How­
ever, CTA should be considered an invasive examination 
with higher cost, because the patients are exposed to X-rays 
together with the injection of a contrast medium. On the 
other hand, MRA can non-invasively detect unruptured 
intracranial aneurysms without the use of contrast media, at 
a performance level comparable to that of CTA[lO]. Despite 
these advantages of MRA, it is difficult and time-consuming 
for radiologists to find small aneurysms, aneurysms over­
lapping with adjacent vessels, or aneurysms in unusual 
locations, on maximum intensity projection (MIP) images of 
MRA. Korogi et al. [14] reported an observer study for 
detecting intracranial aneurysms on MIP images with 78 
aneurysms (including 60 (77%) less than 5 mm in diameter) 
obtained from 61 patients for assessment of the accuracy of 
MRA. As a result, the sensitivity for five observers ranged 
from 58% to 68% (mean, 63%). White et al. [10] compared 
the observer performance obtained with CTA and MRA in 
the detection of 108 intracranial aneurysms from 142 
patients (with 72 (66%) less than 5 mm in diameter). 
According to their results, the highest sensitivity between 
two observers was 69% with CTA and 52% with MRA. 
Thus, a computer-aided diagnostic (CAD) scheme would be 
useful in assisting radiologists in the detection of intracranial 
aneurysms by use of MRA. During the last two decades, a 
number of CAD schemes have been developed for detection 
and classification of various abnormalities such as micro­
calcifications and masses in mammograms [15,16], pulmo­
nary nodules and interstitial infiltrates in chest radiographs 
[17,18], and nodules and diffuse lung diseases in CT [19, 
20]. The usefulness of these schemes has been demonstrated 
by carrying out a number of observer performance studies 
[21,22]. 

[0038] Recently, Li et al. [23] developed three selective 
enhancement filters based on the eigenvalues of a Hessian 
matrix with multi-scales for dot, line, and plane that can 
simultaneously enhance objects of specific shapes (such as 
dot-like lung nodules) and suppress objects of other shapes 
(such as line-like vessels). Compared with the existing 
enhancement filters in computer-aided diagnostic schemes 
for lung nodule detection, the dot-enhancement filter would 
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be useful for improving the sens1tlv1ty of lung nodule 
detection and for reducing the number of false positives at 
the initial detection step. 

SUMMARY OF THE INVENTION 

[0039] Accordingly, one object of the present invention is 
to provide a method for determining existence of at least one 
abnormality in at least one medical image. In particular, one 
object of the present invention is to provide an automated 
computerized scheme for detection of intracranial aneu­
rysms in MRA images. One embodiment of the present 
invention is based on the use of a three-dimensional (3 D) 
selective enhancement filter [23] for dots, which correspond 
to aneurysms. Further, aneurysm candidates and false posi­
tives are distinguished by the analysis of localized image 
features and by the use of rules based on candidate size and 
local structures. 

[0040] Accordingly, there is provided a method, system, 
and computer program product for determining existence of 
an abnormality in a medical image, including: (1) obtaining 
volume image data corresponding to the medical image; (2) 
filtering the volume image data using an enhancement filter 
to produce a filtered image in which a predetermined pattern 
is enhanced; (2) detecting, in the filtered image, a first 
plurality of abnormality candidates using multiple gray­
level thresholding; (3) grouping, based on size and local 
structures, the first plurality of abnormality candidates into 
a plurality of abnormality classes; (4) removing false posi­
tive candidates from each abnormality class based on class­
specific image features to produce a second plurality of 
abnormality candidates; and (5) applying the at least one 
abnormality to a classifier and classifying each candidate in 
the second plurality of abnormality candidates as a false 
positive candidate or an abnormality. 

[0041] In one embodiment of the present invention, the 
obtaining step comprises obtaining three-dimensional mag­
netic resonance angiography (MRA) volume image data. 

[0042] In another embodiment of the present invention, 
the obtaining step comprises: (1) obtaining a plurality of 
axial MRA images; and (2) processing the plurality of axial 
MRA images to obtain the volume image data, wherein the 
processing includes at least one of interpolation and crop­
ping of said plurality of axial MRA images; and the volume 
image data is isotropic. 

[0043] In another embodiment of the present invention, 
the filtering step comprises using a dot enhancement filter to 
produce a filtered image in which dot-like objects are 
enhanced. 

[0044] In another embodiment of the present invention, 
the method, system, and computer program product for 
detecting at least one abnormality in a medical image further 
includes identifying, in the filtered image, a search region 
corresponding to anatomy associated with the at least one 
abnormality, wherein the detecting step includes detecting 
the first plurality of abnormality candidates in the search 
region. 

[0045] In another embodiment of the present invention, 
the identifying step includes: (1) segmenting major vessels 
in said filtered image; and (2) dilating the segmented major 
vessels in said filtered image using a morphological filter 
having a circular kernel. 
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[0046] In another embodiment of the present invention, 
the identifying step includes identifying the search region to 
include a blood vessel associated with aneurysms. 

[0047] In another embodiment of the present invention, 
the detecting step includes: (1) forming a pixel-value histo­
gram in a search area of the filtered image; (2) selecting a 
threshold value based on the pixel-value histogram; (2) 
identifying islands in the filtered image having pixel values 
greater than the selected threshold; (3) determining an 
effective diameter of each island; ( 4) selecting islands hav­
ing an effective diameter greater than a predetermined 
diameter to be in the first plurality of abnormality candi­
dates; and ( 5) segmenting each of the first plurality of 
abnormality candidates by performing region-growing 
based on at least one image feature. 

[0048] In another embodiment of the present invention, 
the grouping step includes: (1) calculating an effective 
diameter of each of the first plurality of abnormality candi­
dates; and (2) grouping the first plurality of abnormality 
candidates into a large abnormality class and a small abnor­
mality class based on the calculated effective diameter of 
each of the first plurality of abnormality candidate. 

[0049] In another embodiment of the present invention, 
the removing step comprises: (1) calculating the class­
specific image features for each abnormality in each of the 
plurality of abnormality classes; and (2) removing the false 
positive candidates from each abnormality class based on 
the calculated class-specific image features. 

[0050] In another embodiment of the present invention, 
the class-specific image features include at least one of 
average voxel value, a relative standard deviation in voxel 
value, a relative contrast, an average contrast, effective 
diameter, sphericity, a relative standard deviation of a dis­
tance between a centroid and a surface, and a maximum and 
minimum distance between the centroid and the surface. 

[0051] In another embodiment of the present invention, 
the step of applying and classifying is performed by: (1) 
calculating at least one feature value of each candidate in the 
second plurality of abnormality candidates; and (2) applying 
the at least one feature value to a classifier performing linear 
discriminant analysis on the calculated at least one feature 
value. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0052] A more complete appreciation of the invention and 
many of the attendant advantages thereof will be readily 
obtained as the same becomes better understood by refer­
ence to the following detailed description when considered 
in connection with the accompanying drawings, in which 
like reference numerals refer to identical or corresponding 
parts throughout the several views, and in which: 

[0053] FIG. 1 illustrates a distribution of diameters of 36 
unruptured aneurysms in MRA images; 

[0054] FIG. 2 illustrates a distribution of 36 aneurysms at 
various locations, including internal carotid artery (ICA) and 
middle cerebral artery (MCA), anterior communicating 
artery (ACoA), basilar artery (BA), anterior cerebral artery 
(ACA), posterior cerebral artery (PCA), and vertebral artery 
(VA); 



US 2005/0259854 Al 

[0055] FIG. 3 illustrates a method for the automated 
detection of abnormalities such as aneurysms in 3 D MRA 
images according to an embodiment of the present inven­
tion; 

[0056] FIG. 4 is an illustration of (a) an original MRA 
image and three images selectively enhanced for (b) dot, (c) 
line, and (d) plane objects, all of which were produced by 
MIP image processing, wherein an arrow indicates a large 
(7.5 mm) aneurysm; 

[0057] FIG. 5 is an illustration of (a) an original image; 
(b) segmented major vessels; (c) search area for initial 
candidates; (d) dot-enhanced image; (e) search area in 
dot-enhanced image; and (f) search area in original image, 
in which all of the images were produced by MIP image 
processing; 

[0058] FIGS. 6A and 6B shows the dependence of the 
image features on % gray level concerning sphericity and 
effective diameter (6A); and average voxel values in the 
inside and outside regions and the average contrast (6B), in 
which the transition points ( dotted line) were defined at the 
% gray level for a large change in image features; 

[0059] FIG. 7 is an illustration of core and rind regions in 
the candidate region, where the core region was defined by 
a 2-mm sphere at the centroid, and the rind region was 
defined by a 1-mm thick region inside the surface of the 
candidate region; 

[0060] FIG. 8 shows the relationship between the average 
voxel values in the core and rind regions for small and large 
aneurysms; 

[0061] FIG. 9 is a schematic diagram for classification of 
small candidates into three groups including short-branch 
type, single-vessel type, and bifurcation type based on the 
skeleton image; 

[0062] FIG. 10 is an illustration of a method for searching 
for a short branch adjacent to the original candidate region 
in the skeleton image; 

[0063] FIG. 11 illustrates results obtained with the seg­
mentation of (a) small and (b) large aneurysms by use of the 
region-growing technique on the dot-enhanced or original 
images; 

[0064] FIG. 12 illustrates a relationship between the rela­
tive contrast in the original image and the relative contrast 
in the dot-enhanced images for small and large aneurysms as 
well as small and large false positives; 

[0065] FIG. 13 illustrates a relationship between the sphe­
ricity and the relative SD of the distance between the 
centroid and the surface for small and large aneurysms as 
well as small and large false positives in the dot-enhanced 
image; 

[0066] FIG. 14 illustrates a relationship between the 
effective diameter in the dot-enhanced image and the rela­
tive SD of the voxel value in the original image for small and 
large aneurysms as well as small and large false positives in 
the dot-enhanced image; 

[0067] FIG. 15 illustrates a relationship between the 
effective diameter and the protrusion length in the original 
image, for short-branch-type candidates; 
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[0068] FIG. 16 shows a relationship between the maxi­
mum distance value in the candidate region and average 
distance value in the outside region, for single-vessel-type 
candidates; 

[0069] FIG. 17 shows a relationship between the effective 
diameter in the dot-enhanced image and the relative SD of 
the distance between the centroid and the surface, for 
bifurcation-type candidates; 

[0070] FIG. 18 shows an FROC curve for overall perfor­
mance of an embodiment of the present invention in auto­
mated detection of intracranial aneurysms in MRA images; 
and 

[0071] FIG.19 illustrates a system for detecting an abnor­
mality in three-dimensional medical images according to an 
embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

[0072] FIG. 3 shows a method for the detection of abnor­
malities in medical images according to an embodiment of 
the present invention. 

[0073] In step 301, three-dimensional isotropic volume 
data is obtained from a plurality of axial MRA images. For 
example, each axial image could be 512x512 pixels with a 
pixel size of 0.391 mm and 128 slices having a slice 
thickness of 0.5 mm. Then, all original 3 D MRA images 
would be converted to isotropic volume data by use of linear 
interpolation and/or cropping such that the volume data was 
400x400x128 voxels with a voxel size of 0.5 mm. 

[0074] In step 302, at least one selective enhancement 
filter is applied to the isotropic volume data to enhance 
objects having specific shapes. For example, because some 
aneurysms are round protrusions and others are balloon-like 
objects, which appear on intracranial vessels, many aneu­
rysm shapes were hemispherical or spherical. Therefore, in 
order to enhance aneurysms and suppress other objects such 
as vessels, the isotropic 3 D MRA images are processed by 
use of the dot-enhancement filter, and the dot-enhanced 
images are employed for identification of initial aneurysm 
candidates and segmentation of candidate regions. Further­
more, the isotropic 3 D images are processed by use of line­
and plane-enhancement filters for "vessels" (i.e., blood 
flow), and vessel walls (i.e., surface of blood flow) for 
determination of localized image features ( average voxel 
value and standard deviation of voxel value) of aneurysm 
candidates, because these image features for aneurysms are 
different from those for non-aneurysms in the line- and 
plane-enhanced images. 

[0075] FIG. 4 shows (a) an original MRAimage and three 
images selectively enhanced for (b) dot, ( c) line, and ( d) 
plane objects, all of which were produced by MIP image 
processing. In the dot-enhanced image (b), an aneurysm was 
enhanced well and "vessels" disappeared, although some 
"non-aneurysms" were also enhanced, which included bend­
ing regions and vessel bifurcations. On the other hand, the 
aneurysm disappeared in the line-enhanced image (c), but 
most of the vessels remained, and the walls of the aneurysm 
and vessels were enhanced in the plane-enhanced image (d). 

[0076] In steps 303-306, initial aneurysm candidates are 
obtained. As shown in FIG. 2, most aneurysms appear on 
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specific vessels, i.e., the internal carotid artery (ICA) and 
middle cerebral artery (MCA), anterior cerebral artery 
(ACA), posterior cerebral artery (PCA), basilar artery (BA), 
anterior communicating artery (ACoA), posterior commu­
nicating artery (PCoA), vertebral artery (VA), etc., which are 
major vessels and small vessels bifurcated from major 
vessels. Therefore, it is reasonable to assume that the area 
for searching initial candidates would be related to major 
vessels and adjacent regions with small bifurcated vessels. 
By selecting a limited search area for initial candidates of 
aneurysms, the number of false positives, which would be 
located in irrelevant areas such as brain regions, can be 
reduced. 

[0077] In step 303, objects such as major vessels are 
segmented on each isotropic image by use of linear dis­
criminant analysis [24] on the histogram of voxel values in 
a cube (10 mmxlO mmxlO mm), which includes the voxel 
with the maximum value near the center of each image and 
its surrounding volume. The histogram usually contains two 
main peaks for major vessels and the background, and a 
threshold value is automatically determined for segmenting 
the region with major vessels. However, irrelevant objects 
other than major vessels are usually also segmented at this 
stage. To identify only major vessels from all segmented 
objects, the four largest objects are selected from the objects 
within a large cylinder with a length equal to the depth of the 
isotropic 3 D image and a diameter slightly larger than the 
Willis circle near the center of the image. 

[0078] In step 304, for determining the search area, which 
is defined by a distance of 10 mm from the surface of the 
segmented major vessels, the segmented major vessels are 
dilated by use of a morphological filter with a circular kernel 
(20 mm diameter). FIG. 5 shows the original image (a) and 
the segmented major vessels (b), respectively. FIG. 5 also 
shows the search area (c), dot-enhanced image (d), and 
search areas in the original ( e) and dot-enhanced (t) images, 
respectively. It is important to note that many of the 
enhanced background structures (d) shown in FIG. 5 could 
become false positives, but are excluded from the search 
area of the dot-enhanced image (t), whereas most of vessels 
and adjacent regions, where aneurysms are commonly 
located, are included in the search area of the original image 
(e) shown in FIG. 5. 

[0079] In step 305, for identification of initial aneurysm 
candidates, a multiple-gray-level thresholding technique is 
applied to the dot-enhanced image which is smoothed by 
averaging with a square kernel (3x3x3) to reduce noise. 
Each threshold level is determined according to a certain 
specific upper percentage of the area under the pixel-value 
histogram in the dot-enhanced image within the search area. 
The pixel values of aneurysms in the dot-enhanced image 
are usually located at the high end of its histogram ( the 
portion of the histogram closest to the highest pixel value), 
which ranged from approximately 0.008% to 0.8% for the 
cases used in a study based on the present invention. The 
regions in the dot-enhanced image above a certain threshold 
value are called "islands" (3 D objects in 3 D space), which 
are initial candidates. Note that the area under the histogram 
for each threshold level is equivalent to the total volume of 
all islands emerged. For picking up initially as many aneu­
rysms as possible, the island volume and the corresponding 
threshold level should be increased by a small enough 
volume for detecting a small aneurysm. Therefore, the 
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incremental percentage of the area under the histogram for 
each threshold level is determined empirically by a fraction 
of a small volume relative to the total volume of the search 
area, which is equivalent to the total area of the histogram; 
e.g., a small volume of approximately 20 mm3 and 85 mm3 

(the corresponding cube size of approximately 2.7 mm and 
4.4 mm) for higher and lower threshold levels, respectively. 
At the first % threshold level where each island emerged 
(referred to as "starting % threshold level"), the effective 
diameter is determined for selection of initial aneurysm 
candidates. The effective diameter of a candidate is defined 
by the diameter of a sphere with the same volume as that of 
the candidate. If the effective diameter of an island is greater 
than 2 mm at the starting % threshold level, the island is 
considered an initial aneurysm candidate. An initial candi­
date thus selected at a starting % threshold level is not 
examined again at the subsequent % threshold levels. 

[0080] In step 306, for each of the initial candidates, the 
region of the initial candidate is determined by applying a 
region-growing technique to the dot-enhanced image in 
order to obtain the image features of the candidates for 
subsequent rule-based schemes. The candidate regions are 
determined within a volume of interest (VOi) ( 40 mmx40 
mmx40 mm), where the center of the VOi is located at the 
voxel with a maximum value for each initial candidate in the 
dot-enhanced image. The segmentation of the candidate 
region is based on finding a large change in some image 
features, which implies that the candidate region merges 
with its adjacent background structures or other candidates, 
as the candidate region grows. The region growing begins at 
the location where the voxel value is the maximum in the 
initial candidate region, and is repeated at various gray 
levels, which are decreased from each previous gray level 
with a decrement of 5% of the maximum voxel value. The 
percentage of a gray-level decrease from the maximum 
value, which is referred to as "% gray level," changes from 
5% to 90%. At each% gray level, two image features for the 
candidate grown region, i.e., the effective diameter and 
average contrast, are determined for finding the large change 
in these features. The average contrast is defined by the 
difference in the average voxel values between the inside 
and outside regions in the original image divided by the 
average voxel value of the inside region. The inside and 
outside regions for each candidate is defined by the candi­
date region at a current% gray level and the increased region 
at the subsequent % gray level, respectively. 

[0081] FIG. 6A shows the abrupt change in the effective 
diameter as the % gray level increased. At a certain % gray 
level, the effective diameters of many candidates tended to 
increase abruptly. This abrupt change in the size indicated 
that the candidate merged with its adjacent background 
structures or other candidates at that % gray level. The % 
gray level just before the abrupt change occurs was referred 
to as a 'transition point,' shown by a dotted line in FIG. 6A. 
FIG. 6B shows the changes in the average voxel values in 
the inside and outside regions, and the average contrast, as 
the % gray level increased. If the outside region at a certain 
% gray level included the adjacent background, the average 
voxel value in the outside region became much lower than 
that in the inside region, and the average contrast tended to 
become large. By finding this large change in the average 
contrast, the candidate region could be segmented properly 
so that the candidate region would not be extended beyond 
the surface of the aneurysm or vessel in the original image. 
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Therefore, the candidate region was segmented by detection 
of these transition points on the effective diameter and the 
average contrast, as shown by the dotted lines in FIGS. 6A 
and 6B. 

[0082] The transition point was thus found by either one of 
the two methods: (1) a large change in the size, i.e., when the 
subsequent effective diameter increased by more than 1.5 
times the current effective diameter, and (2) a large change 
in the average contrast of the grown region, i.e., when the 
average contrast increased by more than 0.2. For candidates 
without the transition points, however, the candidate regions 
were determined at the 90% gray level. 

[0083] In step 307, all initial candidates are grouped into 
small and large candidates based on their effective diam­
eters. It is important to note that the characteristics of large 
aneurysms in MRA images are quite different from those of 
small aneurysms. For example, the voxel values in the core 
region (near the center) for large aneurysms are commonly 
lower than those in the rind region adjacent to the aneurysm 
wall due to the slow speed or turbulence of blood flow inside 
the aneurysm. By observing the original axial images of 
many aneurysms, it was found that aneurysms with diam­
eters larger than about 6.5 mm had this unique characteristic. 
To determine the average voxel values in the core and rind 
regions on the original image, the core and the rind regions 
are defined by a 2-mm sphere at the centroid, and a 1-mm 
thick region inside the surface of the candidate region, 
respectively, as shown in FIG. 7. FIG. 8 shows the rela­
tionship between the average voxel values in the core and 
rind regions for small and large aneurysms, where a thresh­
old size of 6.5 mm was used for classification. In general, the 
average voxel values of large aneurysms in the rind region 
on the original image were greater than those in the core 
region, whereas the average voxel values of small aneu­
rysms in the rind region were close to or smaller than those 
in the core region. Initial candidates were grouped into small 
and large candidates by use of an effective diameter of 6.5 
mm. 

[0084] In step 308, some of the small and large false 
positives are removed by use of different rules in each group 
( the first rule-based scheme). For the initial removal of small 
and large false positives, the image features on the gray 
level, size, and shape are employed. Generally, the sizes of 
some false positives are smaller or larger than those of 
aneurysms, and some are less circular or more irregular 
compared with aneurysms. The average voxel values, stan­
dard deviations (SDs), and contrasts of some false positives 
are smaller or larger than those of aneurysms, because of 
slow blood flow in some small vessels or fast speed in the 
bifurcation or bending regions on some vessels, respectively, 
and also for some other reasons due to the turbulence of the 
blood flow inside some aneurysms, and the nonuniform 
blood flow speed inside some vessels with nonuniform 
diameters. 

[0085] Therefore, the gray level features are determined in 
the dot-enhanced and original images, i.e., the average voxel 
value, the relative SD of voxel value, the relative contrast, 
the average contrast ( defined in subsection D .3), the relative 
difference in the SD of voxel values between the candidate 
and outside regions, and the morphological features, i.e., the 
effective diameter, the sphericity, the relative SD of the 
distance between the centroid and the surface, and the 
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maximum and minimum distance between the centroid and 
the surface. The 'relative' value means the value relative to 
the average value. The degree of sphericity is defined by the 
fraction of the overlap volume between the candidate region 
and the sphere (with the same volume as the candidate 
volume). The relative SDs of voxel values are obtained in 
both the candidate and outside regions, because local struc­
tures inside and outside aneurysms could differ from those 
for false positives. The relative contrast used is defined by 
the difference between the maximum and minimum voxel 
values within the candidate region divided by the average 
voxel value. The average voxel values and the relative SD of 
the voxel values are determined in the line- and plane­
enhanced images as well, because, as shown in FIG. 4, 
aneurysms almost disappeared, but vessels were enhanced 
well in the line-enhanced images, and the appearances inside 
the aneurysm surfaces were different from those of the 
"non-aneurysm" vessels in the plane-enhanced images. The 
relative SD of the distance between the centroid and the 
surface is related to the degree of irregularity for the surface 
of the candidate region. In addition, for removal of large 
false positives, specific features relevant to the characteris­
tics of large aneurysms are determined, i.e., the average 
voxel values in the core and rind regions on the original 
image, the relative SDs of the voxel values in both regions, 
the relative differences in the average voxel values and the 
SDs between the core and rind regions. 

[0086] All of the rules used in the two rule-based schemes 
are based on removal of false positives by use of simple 
thresholding for both the upper limits and the lower limits of 
the features determined from all aneurysms included in each 
group; upper and lower limits were obtained, respectively, 
by 5% higher and 5% lower than the maximum and mini­
mum values of each feature. If one of the features for a 
candidate is larger than the upper limit or smaller than the 
lower limit, the candidate is removed as a false positive. 

[0087] In step 309, the remaining small candidates are 
further classified into three groups according to the local 
structures based on the skeleton image, which include a 
short-branch type, a single-vessel type, and a bifurcation 
type (including trifurcation), and some of the three types of 
false positives are removed by use of another set of different 
rules in each group (the second rule-based scheme). It 
should be noted that the image features for small aneurysms 
and non-aneurysms are different in each group because of 
differences in the types of local structures. Therefore, small 
candidates are classified into three groups (short-branch 
type, single-vessel type, and bifurcation type), and a number 
of effective rules to remove many non-aneurysms in each 
group are established. Grouping is made according to the 
local structures based on the skeleton image, which is 
obtained from the distance-transformed image, because the 
topological properties (based on connectivity) are preserved 
in the skeleton image [25,26]. For example, the structure of 
a vessel is simplified by maintaining voxels with only one 
voxel width. The local structure of the candidate is deter­
mined by counting the number of the skeleton objects in a 
rind region (a rind thickness of 1.0 mm) of a sphere of 
diameter 1.4 times larger than the candidate region. For 
example, if the number of the skeleton objects is one or two, 
the local structure is a vessel end or a single vessel, 
respectively. 
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[0088] FIG. 9 shows the schematic diagram for classifi­
cation of small candidates into three groups based on the 
skeleton image. First, the candidate region was segmented 
within the VOi (30 mmx30 mmx30 mm) in the original 
image, where the centroid of the candidate region is located 
at the center of the VOi by use of the region growing 
technique, which is similar to that used for the dot-enhanced 
image. The distance-transformed image is derived by cal­
culation of a Euclidean minimum distance from each voxel 
in the segmented region to the nearest background in the 
binary image [25]. Next, the skeleton image is obtained by 
use of a thinning algorithm [26] based on the distance­
transformed image, where deletable voxels with smaller 
distance values are removed first so that the topological 
properties of the segmented vessels are preserved. 

[0089] For classification of the local structures, the skel­
eton images of candidates are analyzed as shown in FIG. 9. 
Note that "lump" candidates and short-branch-type candi­
dates are identified in this classification scheme, as 
described in detail in the next two paragraphs. If the degree 
of lump for the candidate (defined in the next paragraph) is 
smaller than 0.1, the number of skeleton objects is counted 
in the rind region. If not, the candidates are classified as the 
bifurcation type, because most aneurysms with a degree of 
lump greater than 0.1 are located at the bifurcation. If the 
number of skeleton objects in the rind region is one, the local 
structure is considered as a single vessel. If the number of 
the skeleton objects is equal to or greater than two, the 
nearest short branch is searched in the large sphere including 
the original candidate. If a short branch is found, then the 
candidate is determined as the short-branch type. If the short 
branch is not found, and if the number of the skeleton objects 
is equal to two, the candidate is a single-vessel type; if the 
number of skeleton objects is equal to or greater than three, 
the candidate is a bifurcation type. 

[0090] The skeleton objects for some candidates have a 
"lump" composed of many short "skeletons," which look 
like short hairs and are not "true" skeletons; therefore, the 
number of the skeleton objects in the rind region is incorrect. 
Thus, before counting the skeleton objects in the rind region, 
the degree of lump for each candidate is determined for 
identifying the "lump" candidates, where the degree of lump 
is defined by a fraction of the total volume of skeleton 
objects in a 2.0-mm sphere which is placed at the centroid 
of the candidate region. 

[0091] A small protrusion, a small branching vessel (non­
aneurysm), and a small aneurysm on a single vessel or 
bifurcation (parent vessel) in the original image is consid­
ered as a short branch attached to a parent skeleton in the 
skeleton image, as shown in FIG. 10. Such candidates with 
a short branch are referred to as short-branch type and 
should be examined carefully, because this short branch 
could be an aneurysm. Note that some small aneurysms 
adjacent to large regions, such as the bending region of a 
large parent vessel, are hardly enhanced in the dot-enhanced 
image, because such large regions tend to be strongly 
enhanced by the dot-enhancement filter. Such small aneu­
rysms are detected by finding the short branch adjacent to 
the original candidate region in the skeleton image. Thus, the 
short branch is searched as illustrated in FIG. 10: (1) the 
nearest short branch with an end point is searched within a 
sphere of diameter four times larger than the original can­
didate region, and the large sphere is placed at the centroid 
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of the original candidate region; (2) if the short-branch 
length is larger than the radius of a parent vessel, and if the 
difference between the length and the radius is in the range 
from 1.5 mm to 6.5 mm, then the short branch could be a 
small protrusion on the parent vessel or a small aneurysm; 
and thus, (3) the short branch is considered as a new 
candidate of a short-branch type at this stage. Otherwise, the 
candidate is classified into either the bifurcation type or 
single vessel type. The difference between the short-branch 
length and the radius of a parent vessel is defined as the 
protrusion length, which was obtained as an image feature 
for the short-branch-type candidates used in the second 
rule-based scheme. Because both the short branch and the 
vessel end have an end point, it is difficult to distinguish 
between them. Therefore, it is not examined whether the 
vessel-end candidates are the short-branch type, and the 
vessel-end candidates are classified as the single-vessel type, 
because a vessel end consists of a single vessel. 

[0092] In step 310, in the second rule-based scheme for 
further removal of many small false positives (more than 
80% false positives) for each group of the candidates, 
respective rules based on the localized image features are 
used. In this rule-based scheme, additional localized features 
are determined in both the distance-transformed image and 
the candidate region segmented in the original image. Note 
that the distance value in the distance-transformed image is 
related to the thickness of the vessel or the diameter of the 
vessel cross-section. In general, because small aneurysms 
may be considered as protrusions on the vessels, the diam­
eter of the vessel cross-section with the aneurysm would be 
larger than the vessel without the aneurysm. Therefore, the 
maximum distance values in the candidate and the outside 
regions, and the average distance values in the outside 
regions are obtained from the distance-transformed image, 
and also the relative difference in the maximum distance 
values (and the average distance values) between the can­
didate and the outside regions are determined. 

[0093] For the segmentation of the candidate region in the 
original image, a region growing technique is applied as 
described above. It was found, however, that not only the 
regions of the aneurysms (and false positives), but also 
connected vessels were segmented at this stage. Therefore, 
the candidate region in the original image is segmented by 
region growing only within the dilated volume of the 
candidate region obtained in the dot-enhanced image. How­
ever, for candidates of the short-branch type, the dilated 
volume is derived by dilation of the skeleton image of the 
short branch, because the candidates of the short-branch type 
are found based on the skeleton image, not the dot-enhanced 
image. The morphological features for the candidate region 
in the original image include the effective diameter, the 
sphericity, the relative SD of the distance between the 
centroid and the surface, and the maximum and minimum 
distances between the centroid and the surface, which are the 
same as those used for the candidate region obtained in the 
dot-enhanced image. Additional features are determined for 
the short-branch-type candidates, i.e., the protrusion length 
and the average distance value in the candidate region 
obtained from the distance-transformed image. 

[0094] All of the rules used in the second rule-based 
scheme are based on removal of false positives by use of the 
same simple thresholding (upper and lower limits) as those 
used in the first rule-based scheme described above. 
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[0095] In step 311, a classifier is used to classify all 
remaining candidates as false positives or abnormalities, 
such as aneurysms. In an embodiment of the present inven­
tion, forty-three image features are used for the LDA for 
further removal of false positives. However, because the 
short-branch-type candidates are detected only in the second 
step for the removal of small false positives, the number of 
features for the short-branch-type candidates is limited, i.e., 
the average voxel value, the relative SD of the voxel value, 
the relative contrast in the original image, and the effective 
diameter, the sphericity, the relative SD of the distance 
between the centroid and the surface, and the maximum and 
minimum distances between the centroid and the surface. 
Because some of the features are insignificant, the most 
effective combination of image features are selected by use 
of a linear discriminant function for classification of the 
remaining candidates as aneurysms or false positives. The 
receiver operating characteristic (ROC) curves are deter­
mined for distinction between aneurysms and false positives 
by use of the stepwise feature selection method based on 
Wilks' lambda, which is defined by the ratio of within-group 
variance to the total variance, and the F value, which is a cost 
function based on Wilks' lambda [27,28]. Consequently, the 
final combination includes four features, i.e., the average 
voxel value, the relative SD of the voxel value, the relative 
SD of the distance between the centroid and the surface, and 
the difference between the maximum and minimum distance 
(between the centroid and the surface). For determining the 
free response receiver operating characteristic (FROC) 
curve of the CAD scheme by use of the LDA, a round-robin 
test method is performed per candidate-basis ( or leave-one­
out test). With this method, all candidates except one are 
used for training, and the one candidate left out is used for 
testing with the linear discriminant function. This procedure 
is repeated for all candidates, so that each candidate is used 
once as a test candidate. 

[0096] Study 

[0097] For evaluation of possible intracranial vascular 
disease, MRA studies of 60 patients were acquired on a 1.5 
T MRI scanner (Magneto Vision, Siemens Medical Systems, 
Erlanger, Germany) by use of a 3 D time-of-flight technique 
in the Department of Radiology, Kumamoto University. 
Each axial image was 512x512 pixels with a pixel size of 
0.391 mm for 56 cases, and a pixel size of 0.410 mm for 4 
cases. The 3 D MRAimages included 128 slices for 55 cases 
with a slice thickness of 0.5 mm, 96 slices for 2 cases with 
a slice thickness of 0.67 mm, and 64 slices for 3 cases with 
a slice thickness of 1.0 mm. All original 3 D MRA images 
were converted to isotropic volume data, which were used 
for training and testing in this study, by use of linear 
interpolation and/or cropping, where each of the volume 
data was 400x400x128 voxels with a voxel size of 0.5 mm. 

[0098] The clinical cases used in this study consisted of 29 
cases with 36 aneurysms ( diameter measured by radiolo­
gists: 3-26 mm, mean of 6.6 mm) and 31 non-aneurysm 
cases. Thirty-one non-aneurysm cases included 26 normal 
and 5 abnormal cases with other vascular diseases, i.e., old 
brain infarction, old brain hemorrhage, intracranial steno­
occlusive disease, meningioma, pituitary microadenoma, 
and azygous anterior cerebral artery, whereas 12 of 29 
aneurysm cases also included other vascular diseases. FIG. 
1 shows the distributions of measured diameters for the 36 
unruptured aneurysms. About two thirds of all aneurysms 
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were smaller than 6.0 mm, and one aneurysm was very large. 
Thirty-four aneurysms were saccular in shape, and two were 
fusiform. FIG. 2 shows the distribution of aneurysms at 
various locations, which was considered similar to the 
distribution in a clinical environment. About two thirds of all 
aneurysms were found on the internal carotid artery (ICA) 
and middle cerebral artery (MCA). 

[0099] An embodiment of the present invention for the 
detection of the intracranial aneurysms in MRA was applied 
to the 31 non-aneurysm cases and 29 abnormal cases with 36 
aneurysms, for which image data was obtained as discussed 
above. MRA images of all cases were processed by use of 
the selective enhancement filter for dots. Most of the aneu­
rysms were enhanced well in the dot-enhanced image, as 
shown in FIG. 4B. Initial aneurysm candidates with an 
effective diameter greater than 2 mm were identified based 
on the multiple gray-level thresholding technique and the 
region growing technique in the dot-enhanced image. All of 
the 36 aneurysms with 22.3 false positives per patient were 
detected at the initial identification step. For evaluation of an 
embodiment of the present invention, a criterion was 
employed such that an aneurysm was considered correctly 
detected, if the location of the maximum voxel value in the 
candidate region was within the diameter of the aneurysm 
measured by radiologists for aneurysms smaller than 7.0 
mm, and within the diameter of 7.0 mm for aneurysms larger 
than 7.0 mm. 

[0100] FIG. 1 shows the results obtained with the seg­
mentation of ( a) small and (b) large aneurysms by use of the 
region growing technique on the dot-enhanced or original 
images, where most of small and large aneurysms were 
segmented well. However, segmentation of large aneurysms 
tended to be less accurate, where not only the aneurysm but 
also adjacent vessel regions (or background) were included 
in the segmented candidate region, e.g., large aneurysms in 
the middle and bottom of FIG. 11B. These inaccuracies of 
segmentation occurred, because the contrasts of the surface 
area of such large aneurysms were very low, and the average 
voxel values in the core region for the aneurysms were lower 
than those in the rind region, as shown in FIG. 8. Never­
theless, it was not difficult to distinguish between large 
aneurysms and large false positives, because of the unique 
image features of large aneurysms, as illustrated in FIG. 8. 

[0101] In the first rule-based scheme, all initial candidates 
were grouped into small and large candidates, and many 
false positives were removed by use of rules based on the 
localized image features. FIG. 12 shows the relationship 
between the relative contrast in the original image and the 
relative contrast in the dot-enhanced images for small and 
large aneurysms as well as small and large false positives. 
The relative contrasts of most candidates in the dot-en­
hanced image were greater than those in the original image. 
This result shows the usefulness of the dot-enhancement 
filter on the increased contrast of the initial candidates. 
However, the contrasts of some false positives such as very 
small vessels and bending regions of the vessels were lower 
and higher, respectively, than those of the aneurysms. Thus, 
such false positives, which were different from the aneu­
rysms in terms of image features, were removed by use of 
simple rules in each group. 

[0102] FIG. 13 shows the relationship between the sphe­
ricity and the relative SD of the distance between the 
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centroid and the surface for small and large aneurysms as 
well as small and large false positives in the dot-enhanced 
image. In general, the relative SD of the distance between 
the centroid and the surface decreased as the sphericity 
increased, because the relative SD of the distance would be 
related to the degree of irregularity, which generally 
decreases as the sphericity increases. Note, however, that 
some false positives with very small sphericities such as 
large vessels can be removed, because the shape of aneu­
rysms tended to be round, thus yielding relatively large 
sphericities. In addition, some small false positives with 
very large sphericities could be removed because such false 
positives contained a large relative SD of distance between 
the centroid and the surface, probably due to irregular 
surfaces. 

[0103] FIG. 14 shows the relationship between the effec­
tive diameter in the dot-enhanced image and the relative SD 
of the voxel value in the original image. The effective 
diameters of some false positives such as small short vessels 
and large long vessels were smaller and larger, respectively, 
than those of aneurysms. In addition, because the distribu­
tion of voxel values inside some vessels (e.g., vessels of 
elderly patients with stenosis and occlusion) were more 
nonuniform than those of aneurysms, the relative SDs of the 
voxel values for these false positives were greater than those 
of aneurysms. By use of the first rule-based scheme for the 
initial removal of small and large false positives, all aneu­
rysms were retained, and the average number of false 
positives per patient was reduced from 22.3 to 5.8. At this 
stage, the majority of remaining false positives were due to 
bending single vessels and bifurcation vessels, most of 
which were further removed by use of the second rule-based 
scheme, as described below. 

[0104] For short-branch-type candidates, FIG. 15 shows 
the relationship between the effective diameter in the origi­
nal image and the protrusion length. The effective diameter 
and the protrusion length of some false positives such as 
very small vessels bifurcated from parent vessels were 
smaller and larger, respectively, than those of aneurysms. 

[0105] For single-vessel-type candidates, FIG. 16 shows 
the relationship between the average distance values in the 
outside region and the maximum distance values in the 
candidate region, where the distance values were obtained 
from the distance-transformed images. Note that many 
bending regions of large vessels were included as false 
positives in single-vessel-type candidates, and the average 
distance values in the outside region for such false positives 
were larger than those of aneurysms as shown by many false 
positives on the right side in FIG. 16. In addition, the 
difference in the distance values between the candidate 
region and outside region tended to be larger for aneurysms 
than those for most of the false positives. 

[0106] For bifurcation-type candidates, FIG. 17 shows the 
relationships between the effective diameter in the dot­
enhanced image and the relative SD of the distance between 
the centroid and the surface. The effective diameters of some 
false positives located on the bifurcations were smaller than 
those of aneurysms located on the bifurcations. Moreover, 
some false positives in bifurcation-type candidates were 
more irregular than aneurysms. 

[0107] Finally, many false positives in each group were 
removed based on the differences in the image features 
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between aneurysms and false positives as shown in FIGS. 
15, 16, and 17. As a result, all 36 aneurysms were detected 
correctly with 0.55 false positives per patient. FIG. 18 
shows the FROC curve for the overall performance of our 
scheme by use of LDA. According to this result, our CAD 
scheme achieved a sensitivity of 90% with 0.26 false posi­
tives per patient. 

[0108] In conclusion, all of the 36 aneurysms in 60 cases 
were detected correctly with 0.55 false positives per patient. 
Thus, embodiments of the present invention would be useful 
in assisting radiologists in the detection of unruptured intrac­
ranial aneurysms in MRA. 

[0109] FIG. 19 illustrates a system configured to imple­
ment the detection of abnormalities such as aneurysms in 
medical images. 

[0110] The image acquisition unit 101 is configured to 
produce three-dimensional isotropic volume data from a 
plurality of axial images, e.g., MRA axial images. For 
example, each axial image could be 512x512 pixels with a 
pixel size of 0.391 mm and 128 slices having a slice 
thickness of 0.5 mm. Then, all original 3 D MRA images 
would be converted to isotropic volume data by use of linear 
interpolation and/or cropping such that the volume data was 
400x400x128 voxels with a voxel size of 0.5 mm. Axial and 
volume image data is stored in image database 110 and may 
be retrieved as necessary by the other system components. 

[0111] The selective enhancement filter 102 is configured 
to enhance objects in the volume data having specific 
shapes. For example, in order to enhance aneurysms and 
suppress other objects such as vessels, the isotropic 3 D 
MRA images are processed by use of the dot-enhancement 
filter. Furthermore, the isotropic 3 D images are processed 
by use of line- and plane-enhancement filters for "vessels" 
(i.e., blood flow), and vessel walls (i.e., surface of blood 
flow) for determination of localized image features ( average 
voxel value and standard deviation of voxel value) of 
aneurysm candidates, because these image features for aneu­
rysms are different from those for non-aneurysms in the line­
and plane-enhanced images. The selectively enhanced vol­
ume image data are stored in the image database 110. 

[0112] The abnormality candidate determination unit 103 
is configured to determine initial abnormality candidates 
using multiple-gray-level thresholding on the selectively 
enhanced image data. In determining initial abnormality 
candidates, the abnormality candidate determination unit 
103 unit is also configured to segment major vessels on each 
isotropic image by use of linear discriminant analysis on the 
histogram of voxel values in a cube (10 mmxlO mmxlO 
mm), which includes the voxel with the maximum value 
near the center of each image and its surrounding volume. 
Further, for determining a search area, segmented major 
vessels are dilated by use of a morphological filter with a 
circular kernel. As described above, the region of an abnor­
mality candidate region is determined by applying a region­
growing technique to the selectively-enhanced image based 
on image features of the candidates determined by the 
feature calculation unit 104. The abnormality candidates 
determined by the abnormality candidate determination unit 
103 are stored in the abnormality database 120 for use by 
other system units. 

[0113] In addition to calculating feature values of the 
abnormality candidates in the region-growing process, the 
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feature calculation unit 104 calculates feature values used by 
the candidate abnormality grouping unit 105, the rule-base 
false-positive removal unit 106, and the classifier unit 107. 

[0114] The candidate abnormality grouping unit 105 is 
configured to group the candidate abnormalities into groups, 
e.g., large and small abnormalities. Further, the candidate 
abnormality grouping unit 105 is configured to group the 
small candidates into subgroups based on various features. 
For example, in the context of detecting aneurysms, small 
candidates are further classified into the three groups accord­
ing to the local structures based on the skeleton image, 
which included a short-branch type, a single-vessel type, and 
a bifurcation type (including trifurcation). As described 
above, grouping is made according to the local structures 
based on the skeleton image, which is obtained from the 
distance-transformed image, because the topological prop­
erties (based on connectivity) are preserved in the skeleton 
image. 

[0115] The rule-based false positive removal unit 106 is 
configured to remove false positive abnormalities from the 
various candidate groups determined by the candidate 
abnormality grouping unit. As described above, some of the 
small and large false positives are removed by use of 
different rules in each group under a first rule-based scheme. 
For example, for the initial removal of small and large false 
positives, the image features based on the gray level, size, 
and shape are used. Further, a second rule-based scheme is 
used for the further removal of many small false positives 
(more than 80% false positives) for each group of candi­
dates. In this rule-based scheme, additional localized fea­
tures are determined in both the distance-transformed image 
and the candidate region segmented in the original image. As 
described above, the rules used in the second rule-based 
scheme are based on removal of false positives by use of 
simple thresholding (upper and lower limits). 

[0116] The classifier unit 107 is configured to classify the 
remaining abnormality candidates (those not removed by the 
rule-based false-positive removal unit 106) as either abnor­
malities or false positives. As discussed above, a linear 
discriminant may be used to classify the remaining abnor­
malities. Alternatively, another type of classifier, e.g., an 
artificial neural network, can be used to classify the remain­
ing abnormalities. The output of the classifier unit 107 is 
displayed on the display device 108. Further, the outputs of 
the other system components may also be output on the 
display device 108. 

[0117] For the purposes of this description we shall define 
an image to be a representation of a physical scene, in which 
the image has been generated by some imaging technology: 
examples of imaging technology could include television or 
CCD cameras or X-ray, sonar or ultrasound imaging 
devices. The initial medium on which an image is recorded 
could be an electronic solid-state device, a photographic 
film, or some other device such as a photostimulable phos­
phor. That recorded image could then be converted into 
digital form by a combination of electronic ( as in the case of 
a CCD signal) or mechanical/optical means (as in the case 
of digitizing a photographic film or digitizing the data from 
a photostimulable phosphor). The number of dimensions 
which an image could have could be one (e.g. acoustic 
signals), two (e.g. X-ray radiological images) or more (e.g. 
nuclear magnetic resonance images). 
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[0118] All embodiments of the present invention conve­
niently may be implemented using a conventional general 
purpose computer or micro-processor programmed accord­
ing to the teachings of the present invention, as will be 
apparent to those skilled in the computer art. Appropriate 
software may readily be prepared by programmers of ordi­
nary skill based on the teachings of the present disclosure, 
as will be apparent to those skilled in the software art. 

[0119] As disclosed in cross-referenced U.S. patent appli­
cation Ser. No. 09/773,636, a computer 900 may implement 
the methods of the present invention, wherein the computer 
housing houses a motherboard which contains a CPU, 
memory (e.g., DRAM, ROM, EPROM, EEPROM, SRAM, 
SDRAM, and Flash RAM), and other optional special 
purpose logic devices (e.g., ASICS) or configurable logic 
devices (e.g., GAL and reprogrammable FPGA). The com­
puter also includes plural input devices, (e.g., keyboard and 
mouse), and a display card for controlling a monitor. Addi­
tionally, the computer may include a floppy disk drive; other 
removable media devices (e.g. compact disc, tape, and 
removable magneto-optical media); and a hard disk or other 
fixed high density media drives, connected using an appro­
priate device bus (e.g., a SCSI bus, an Enhanced IDE bus, 
or an Ultra DMA bus). The computer may also include a 
compact disc reader, a compact disc reader/writer unit, or a 
compact disc jukebox, which may be connected to the same 
device bus or to another device bus. 

[0120] Examples of computer readable media associated 
with the present invention include compact discs, hard disks, 
floppy disks, tape, magneto-optical disks, PROMs (e.g., 
EPROM, EEPROM, Flash EPROM), DRAM, SRAM, 
SDRAM, etc. Stored on any one or on a combination of 
these computer readable media, the present invention 
includes software for controlling both the hardware of the 
computer and for enabling the computer to interact with a 
human user. Such software may include, but is not limited 
to, device drivers, operating systems and user applications, 
such as development tools. Computer program products of 
the present invention include any computer readable 
medium which stores computer program instructions (e.g., 
computer code devices) which when executed by a computer 
causes the computer to perform the method of the present 
invention. The computer code devices of the present inven­
tion may be any interpretable or executable code mecha­
nism, including but not limited to, scripts, interpreters, 
dynamic link libraries, Java classes, and complete execut­
able programs. Moreover, parts of the processing of the 
present invention may be distributed (e.g., between (1) 
multiple CPUs or (2) at least one CPU and at least one 
configurable logic device) for better performance, reliability, 
and/or cost. For example, an outline or image may be 
selected on a first computer and sent to a second computer 
for remote diagnosis. 

[0121] The present invention may also be complemented 
with additional filtering techniques and tools to account for 
image contrast, degree of irregularity, texture features, etc. 

[0122] The invention may also be implemented by the 
preparation of application specific integrated circuits or by 
interconnecting an appropriate network of conventional 
component circuits, as will be readily apparent to those 
skilled in the art. 

[0123] The source of image data to the present invention 
may be any appropriate image acquisition device such as an 
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X-ray machine, CT apparatus, and MRI apparatus. Further, 
the acquired data may be digitized if not already in digital 
form. Alternatively, the source of image data being obtained 
and processed may be a memory storing data produced by an 
image acquisition device, and the memory may be local or 
remote, in which case a data communication network, such 
as PACS (Picture Archiving Computer System), may be 
used to access the image data for processing according to the 
present invention. 

[0124] Numerous modifications and variations of the 
present invention are possible in light of the above teach­
ings. For example, the invention may be applied to images 
other than MRA images. 

[0125] Of course, the particular hardware or software 
implementation of the present invention may be varied while 
still remaining within the scope of the present invention. It 
is therefore to be understood that within the scope of the 
appended claims and their equivalents, the invention may be 
practiced otherwise than as specifically described herein. 

1. A method for determining existence of an abnormality 
in at least one medical image, comprising: 

obtaining volume image data corresponding to the at least 
one medical image; 

filtering said volume image data using an enhancement 
filter to produce a filtered image in which a predeter­
mined pattern is enhanced; 

detecting, in said filtered image, a first plurality of abnor­
mality candidates using multiple gray-level threshold­
ing; 

grouping, based on size and local structures, the first 
plurality of abnormality candidates into a plurality of 
abnormality classes; 

removing false positive candidates from each abnormality 
class based on class-specific image features to produce 
a second plurality of abnormality candidates; and 

applying the second plurality of abnormality candidates to 
a classifier and classifying each candidate in the second 
plurality of abnormality candidates as a false positive 
candidate or an abnormality. 

2. The method of claim 1, wherein the obtaining step 
comprises: 

obtaining three-dimensional magnetic resonance angiog­
raphy (MRA) volume image data. 

3. The method of claim 2, wherein the obtaining step 
comprises: 

obtaining a plurality of axial MRA images; and 

processing said plurality of axial MRA images to obtain 
isotropic volume image data, including at least one of 
interpolating and cropping of said plurality of axial 
MRAimages. 

4. The method of claim 1, wherein said filtering step 
comprises: 

using a geometric enhancement filter to produce a filtered 
image in which a geometric pattern is enhanced. 

5. The method of claim 1, wherein said filtering step 
comprises: 
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using a dot enhancement filter to produce a filtered image 
in which dot-like objects are enhanced. 

6. The method of claim 1, further comprising: 

identifying, in said filtered image, a search region corre­
sponding to anatomy associated with the at least one 
abnormality, 

wherein said detecting step comprises detecting said first 
plurality of abnormality candidates in said search 
region. 

7. The method of claim 6, wherein the identifying step 
comprises: 

segmenting major vessels in said filtered image; and 

dilating the segmented major vessels in said filtered image 
using a morphological filter having a circular kernel. 

8. The method of claim 6, wherein the identifying step 
comprises: 

identifying a search region including a blood vessel 
associated with aneurysms. 

9. The method of claim 1, wherein the detecting step 
comprises: 

forming a pixel-value histogram in a search area of said 
filtered image; 

selecting a threshold value based on said pixel-value 
histogram; 

identifying islands in said filtered image having pixel 
values greater than the selected threshold; 

determining an effective diameter of each island; 

selecting islands having an effective diameter greater than 
a predetermined diameter to be in the first plurality of 
abnormality candidates; and 

segmenting each of the first plurality of abnormality 
candidates by performing region-growing based on at 
least one image feature. 

10. The method of claim 1, wherein the grouping step 
comprises: 

calculating an effective diameter of each of the first 
plurality of abnormality candidates; and 

grouping the first plurality of abnormality candidates into 
a large abnormality class and a small abnormality class 
based on the calculated effective diameter of each of the 
first plurality of abnormality candidates. 

11. The method of claim 10, further comprising: 

determining a skeleton image of each abnormality in the 
small abnormality class; and 

partitioning the candidate abnormalities in the small 
abnormality class into at least two abnormality classes 
based on the determined skeleton images. 

12. The method of claim 11, wherein the partitioning step 
comprises: 

grouping the candidate abnormalities in the small abnor­
mality class into a short-branch type abnormality class, 
a single-vessel type abnormality class, and a bifurca­
tion type abnormality class based on the determined 
skeleton images. 

13. The method of claim 12, wherein the removing step 
comprises: 
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calculating, based on the volume image data for each 
candidate abnormality in the short-branch type abnor­
mality class, the single-vessel type abnormality class, 
and the bifurcation type abnormality class, at least one 
morphological feature including sphericity, a relative 
standard deviation of a distance between a centroid and 
a surface, and a maximum and a minimum distance 
between the centroid and the surface; and 

removing the false positive candidates from the short­
branch type abnormality class, the single-vessel type 
abnormality class, and the bifurcation type abnormality 
class based on the calculated morphological image 
features. 

14. The method of claim 1, wherein the removing step 
comprises: 

calculating the class-specific image features for each 
abnormality in each of the plurality of abnormality 
classes; and 

removing the false positive candidates from each abnor­
mality class based on the calculated class-specific 
image features. 

15. The method of claim 14, wherein the class-specific 
image features include at least one of average voxel value, 
a relative standard deviation in voxel value, a relative 
contrast, an average contrast, effective diameter, sphericity, 
a relative standard deviation of a distance between a centroid 
and a surface, and a maximum and a minimum distance 
between the centroid and the surface. 

16. The method of claim 1, wherein the applying and 
classifying step comprises: 

calculating at least one feature value of each candidate in 
the second plurality of abnormality candidates; and 

applying the at least feature value of each candidate to a 
classifier performing linear discriminant analysis on the 
calculated at least one feature value. 

17. The method of claim 16, wherein the at least one 
feature value includes an average voxel value, a relative 
standard deviation of voxel value, a relative standard devia­
tion of a distance between a centroid and a surface, and a 
difference between a maximum and a minimum distance 
between the centroid and the surface. 

18. A computer program product configured to store 
plural computer program instructions which, when executed 
by a computer, cause the computer perform a method 
including the following steps: 

obtaining volume image data corresponding to the at least 
one medical image; 

filtering said volume image data using an enhancement 
filter to produce a filtered image in which a predeter­
mined pattern is enhanced; 

detecting, in said filtered image, a first plurality of abnor­
mality candidates using multiple gray-level threshold­
ing; 

grouping, based on size and local structures, the first 
plurality of abnormality candidates into a plurality of 
abnormality classes; 

removing false positive candidates from each abnormality 
class based on class-specific image features to produce 
a second plurality of abnormality candidates; and 
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applying the second plurality of abnormality candidates to 
a classifier and classifying each candidate in the second 
plurality of abnormality candidates as a false positive 
candidate or an abnormality. 

19. The computer program product of claim 18, wherein 
the obtaining step comprises: 

obtaining three-dimensional magnetic resonance angiog­
raphy (MRA) volume image data. 

20. The computer program product of claim 19, wherein 
the obtaining step comprises: 

obtaining a plurality of axial MRA images; and 

processing said plurality of axial MRA images to obtain 
isotropic volume image data, including at least one of 
interpolating and cropping of said plurality of axial 
MRAimages. 

21. The computer program product of claim 18, wherein 
said filtering step comprises: 

using a geometric enhancement filter to produce a filtered 
image in which a geometric pattern is enhanced. 

22. The computer program product of claim 18, wherein 
said filtering step comprises: 

using a dot enhancement filter to produce a filtered image 
in which dot-like objects are enhanced. 

23. The computer program product of claim 18, wherein 
said method further comprises: 

identifying, in said filtered image, a search region corre­
sponding to anatomy associated with the at least one 
abnormality, 

wherein said detecting step comprises detecting said first 
plurality of abnormality candidates in said search 
region. 

24. The computer program product of claim 23, wherein 
the identifying step comprises: 

segmenting major vessels in said filtered image; and 

dilating the segmented major vessels in said filtered image 
using a morphological filter having a circular kernel. 

25. The computer program product of claim 23, wherein 
the identifying step comprises: 

identifying a search region including a blood vessel 
associated with aneurysms. 

26. The computer program product of claim 18, wherein 
the detecting step comprises: 

forming a pixel-value histogram in a search area of said 
filtered image; 

selecting a threshold value based on said pixel-value 
histogram; 

identifying islands in said filtered image having pixel 
values greater than the selected threshold; 

determining an effective diameter of each island; 

selecting islands having an effective diameter greater than 
a predetermined diameter to be in the first plurality of 
abnormality candidates; and 

segmenting each of the first plurality of abnormality 
candidates by performing region-growing based on at 
least one image feature. 
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27. The computer program product of claim 18, wherein 
the grouping step comprises: 

calculating an effective diameter of each of the first 
plurality of abnormality candidates; and 

grouping the first plurality of abnormality candidates into 
a large abnormality class and a small abnormality class 
based on the calculated effective diameter of each of the 
first plurality of abnormality candidates. 

28. The computer program product of claim 27, wherein 
said method further comprises: 

determining a skeleton image of each abnormality in the 
small abnormality class; and 

partitioning the candidate abnormalities in the small 
abnormality class into at least two abnormality classes 
based on the determined skeleton images. 

29. The computer program product of claim 28, wherein 
the partitioning step comprises: 

grouping the candidate abnormalities in the small abnor­
mality class into a short-branch type abnormality class, 
a single-vessel type abnormality class, and a bifurca­
tion type abnormality class based on the determined 
skeleton images. 

30. The computer program product of claim 29, wherein 
the removing step comprises: 

calculating, based on the volume image data for each 
candidate abnormality in the short-branch type abnor­
mality class, the single-vessel type abnormality class, 
and the bifurcation type abnormality class, at least one 
morphological feature including sphericity, a relative 
standard deviation of a distance between a centroid and 
a surface, and a maximum and a minimum distance 
between the centroid and the surface; and 

removing the false positive candidates from the short­
branch type abnormality class, the single-vessel type 
abnormality class, and the bifurcation type abnormality 
class based on the calculated morphological image 
features. 

31. The computer program product of claim 18, wherein 
the removing step comprises: 

calculating the class-specific image features for each 
abnormality in each of the plurality of abnormality 
classes; and 

removing the false positive candidates from each abnor­
mality class based on the calculated class-specific 
image features. 
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32. The computer program product of claim 31, wherein 
the class-specific image features include at least one of 
average voxel value, a relative standard deviation in voxel 
value, a relative contrast, an average contrast, effective 
diameter, sphericity, a relative standard deviation of a dis­
tance between a centroid and a surface, and a maximum and 
a minimum distance between the centroid and the surface. 

33. The computer program product of claim 18, wherein 
the applying and classifying step comprises: 

calculating at least one feature value of each candidate in 
the second plurality of abnormality candidates; and 

applying the at least one feature value of each candidate 
to a classifier performing linear discriminant analysis 
on the calculated at least one feature value. 

34. The computer program product of claim 33, wherein 
the at least one feature value includes an average voxel 
value, a relative standard deviation of voxel value, a relative 
standard deviation of a distance between a centroid and a 
surface, and a difference between a maximum and a mini­
mum distance between the centroid and the surface. 

35. A system configured to detect at least one abnormality 
in at least one medical image, comprising: 

a mechanism configured to obtain volume image data 
corresponding to the at least one medical image; 

a mechanism configured to filter said volume image data 
using an enhancement filter to produce a filtered image 
in which a predetermined pattern is enhanced; 

a mechanism configured to detect, in said filtered image, 
a first plurality of abnormality candidates using mul­
tiple gray-level thresholding; 

a mechanism configured to group, based on size and local 
structures, the first plurality of abnormality candidates 
into a plurality of abnormality classes; 

a mechanism configured to remove false positive candi­
dates from each abnormality class based on class­
specific image features to produce a second plurality of 
abnormality candidates; and 

a mechanism configured to apply the second plurality of 
abnormality candidates to a classifier and to classify 
each candidate in the second plurality of abnormality 
candidates as a false positive candidate or an abnor­
mality. 

* * * * * 


