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Abstract

Many factors affect the risks for neurodevelopmental maladies such as autism spectrum disorders (ASD) and intellectual
disability (ID). To compare environmental, phenotypic, socioeconomic and state-policy factors in a unified geospatial
framework, we analyzed the spatial incidence patterns of ASD and ID using an insurance claims dataset covering nearly one
third of the US population. Following epidemiologic evidence, we used the rate of congenital malformations of the
reproductive system as a surrogate for environmental exposure of parents to unmeasured developmental risk factors,
including toxins. Adjusted for gender, ethnic, socioeconomic, and geopolitical factors, the ASD incidence rates were
strongly linked to population-normalized rates of congenital malformations of the reproductive system in males (an
increase in ASD incidence by 283% for every percent increase in incidence of malformations, 95% CI: [91%, 576%], p,
661025). Such congenital malformations were barely significant for ID (94% increase, 95% CI: [1%, 250%], p = 0.0384). Other
congenital malformations in males (excluding those affecting the reproductive system) appeared to significantly affect both
phenotypes: 31.8% ASD rate increase (CI: [12%, 52%], p,661025), and 43% ID rate increase (CI: [23%, 67%], p,661025).
Furthermore, the state-mandated rigor of diagnosis of ASD by a pediatrician or clinician for consideration in the special
education system was predictive of a considerable decrease in ASD and ID incidence rates (98.6%, CI: [28%, 99.99%],
p = 0.02475 and 99% CI: [68%, 99.99%], p = 0.00637 respectively). Thus, the observed spatial variability of both ID and ASD
rates is associated with environmental and state-level regulatory factors; the magnitude of influence of compound
environmental predictors was approximately three times greater than that of state-level incentives. The estimated county-
level random effects exhibited marked spatial clustering, strongly indicating existence of as yet unidentified localized factors
driving apparent disease incidence. Finally, we found that the rates of ASD and ID at the county level were weakly but
significantly correlated (Pearson product-moment correlation 0.0589, p = 0.00101), while for females the correlation was
much stronger (0.197, p,2.26610216).
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Introduction

Autism spectrum disorders (ASD) are a collection of chronic,

complex neuropsychiatric diseases with well-characterized comor-

bidities and increasing apparent prevalence [1]. With few and

limited effective treatments and considerable financial burden, its

etiology remains a scientific puzzle. Evidence suggests that autism

is highly heritable and clustered within families; consequently,

much scientific attention has been dedicated to the discovery of

predisposing genetic factors [2–7]. There is also evidence for

environmental influences, such as prenatal exposure to pesticides

or valproate, but it is challenging to account systematically for

these factors because they are mostly undocumented. In addition,

there are numerous factors that could affect or distort the observed

variation in temporal and spatial disease prevalence: evolving

diagnostic criteria, socioeconomic, legal, and cultural incentives

for diagnosis [8], changing environmental exposures, and the

accumulation of genetic burden in the growing human population.

However, the relative importance of all these putative causal

factors and confounders on ASD prevalence, the nature of

interactions between contributing factors, and the underlying

biological mechanisms, remain unclear.

Along these lines, geospatial clustering of ASD has been

observed in California [9,10], Texas [11,12], North Carolina [13]

and Utah [14]. Clustering could indicate the existence of localized

risk factors, such as environmental toxins [15] or maternal

education [13]. However, studies to date have focused primarily

on within-state patterns and socioeconomic predictors, such as the
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level of parental education, the controversial financial incentives

induced by state policies for special-education services, and broad

environmental indicators. Now, the increasing availability of large

administrative clinical datasets, with national coverage and fine

spatial granularity, along with data on possible causal and

confounding factors, provides an opportunity to compare the

magnitudes of these and other factors within a unified mathemat-

ical framework.

Here, we report a mixed-effect Poisson regression analysis of the

spatial incidence patterns of ASD and, for comparison, intellectual

disability (ID). The data was derived from a very large insurance

claims database containing nearly 100 million patients in the

United States, which was augmented with census data to introduce

additional county-level covariates that captured socioeconomic,

demographic, and environmental effects. We present strong

statistical evidence for environmental and legal factors driving

the apparent spatial heterogeneity of both phenotypes, while

documented socioeconomic factors and population structure have

much weaker effects.

Results

We analyzed the strength of disparate factors on the apparent

incidence rates of ASD and ID by computationally interrogating

insurance claims for approximately one third of the US

population, using a bivariate-response, three-level, mixed-effects

Poisson regression model with 50 free parameters, 44 of which

correspond to the fixed effects of known factors while the

remaining 6 account for the variance and covariance among the

random effects (see Methods). The bivariate outcomes modeled by

these parameters were the incidence counts for the ASD and ID

phenotypes, tabulated separately for males and females in 3,111

counties, nested within 50 states (plus the District of Columbia)

and adjusted for population size.

The results are summarized in Figures 1–5 and Table 1: We

observed clear spatial clusters for both ASD and ID. The raw data

analyzed prior to complex modeling (see Figure 1) indicated that

putative environmental variables were strongly predictive of rates

of ASD and ID across the US. This trend persisted after the

analysis was corrected for confounding variables using mixed-

effect Poisson regression, see Figures 2–5. We found that ASD in

males (normalized by county population) has a county-level mean

rate of 0.1% per male of any age. The distribution of rates across

counties is skewed: the median is 0.023% while maximum

observed value is 5.2%. Similarly, for ID, the average rate over

the whole country is 0.024% per any male, 0.025% per any

female. The maximum per county per person rate reached 0.9%

and 0.58% for males and females, respectively. Furthermore, for

males, the rates of ASD and ID at the county level were weakly but

significantly correlated (Pearson product-moment correlation

0.0589, p = 0.00101), while for females the correlation was much

stronger (0.197, p,2.26610216). The estimated Poisson rates of

incidence produced by model-based inference are shown in

Figure 2. When direct comparison was possible, we compared our

conclusions with those of prior studies ([9–14], see Table 2) and

found that they were consistent.

Accumulating evidence [16–28] suggests that the rate of birth

malformations, especially of those affecting the reproductive

system in newborn boys [17], adjusted for population size and

structure, could serve as an indicator of average parental exposure

to toxins within a geographic unit. After controlling for ethnicity,

gender, and socioeconomic factors, the strongest predictor of ASD

was the rate of male congenital malformations of the reproductive

system, used as an approximate measurement for exposure to

teratogens, based on extensive epidemiological evidence ([16,17],

see Figure 3 and Discussion). Every additional percent incidence of

male congenital malformations of the reproductive system was

predictive of a 283% increase in the rate of the ASD incidence

(95% confidence interval, CI: [91%, 576%], p,661025). Simi-

larly, non-reproductive congenital male malformations accounted

for a 31.8% ASD rate increase (CI: [12%, 52%], p,661025). In

contrast, male congenital malformations of the reproductive

system were barely significantly predictive for ID (94%, CI:

[1%, 250%], p = 0.0383). However, the effect of non-reproductive

congenital malformations in males on ID incidence was statisti-

cally significant and strong: an increase of 43% (CI: [23%, 67%],

p,661025). Another variable significantly affecting both ASD

and ID was population-adjusted incidence of viral infections in

males (Table 1, Figure 3, and Discussion). Moreover, comorbidity

analysis demonstrated that male children with ASD are 5.53 times

more likely to have congenital genital malformations than

unaffected males (odds ratio 95% CI [5.22, 5.87], p,2.2610216,

Fisher’s exact test).

Male congenital malformations of the reproductive system are

subdivided in the ICD9 taxonomy [29], which was used to encode

the data in this analysis, into unspecified malformations, hypo-

spadias (abnormally placed external urethral orifice), epispadias

(the urethra does not develop into a full tube), micropenis,

congenital chordees and undescended testicles. The US average

incidence rate for all male congenital malformations of reproduc-

tive system was 0.2687% per male of any age group; of these 18%

were hypospadias (0.049% rate), 6% congenital chordees

(0.0161% rate), 1% micropenis (0.00275% rate), and 0.083%

epispadias (0.00227% rate). The rest of the malformations were in

the unspecified category; undescended testicles were not encoded

explicitly. Per-county rates of hypospadias and congenital chor-

dees were significantly correlated with each other (Pearson’s

r = 0.34, 95% CI [0.31, 0.372], p,2.2610216), as were hypospa-

dias and epispadias (r = 0.066, 95% CI [0.031, 0.101],

p = 0.00022). The highest per county rates of malformations were

2.4% (all male genital malformations), 1.1% (hypospadias), 0.91%

(chordees), 1.1% (epispadias), and 0.23% (micropenis). There were

counties with no reported malformations (zero apparent rate). All

discussed groups of malformations were significantly correlated

with autism rates. Female birth malformations of reproductive

system, variable ConGenF, showed very similar disease-specific

predictive behavior to the congenital male malformations of

reproductive system, variable ConGenM. The female malformations

were predictive of an increase in both ASD and ID, but the

magnitude of the statistical effect associated with this factor was

much smaller than ConGenM, although highly correlated.

Both ASD and ID showed significant gender-specific incidence

effects, with males affected more frequently than females; this was

Author Summary

Disease clusters are defined as geographically compact
areas where a particular disease, such as a cancer, shows a
significantly increased rate. It is presently unclear how
common such clusters are for neurodevelopmental mala-
dies, such as autism spectrum disorders (ASD) and
intellectual disability (ID). In this study, examining data
for one third of the whole US population, the authors
show that (1) ASD and ID display strong clustering across
US counties; (2) counties with high ASD rates also appear
to have high ID rates, and (3) the spatial variation of both
phenotypes appears to be driven by environmental, and,
to a lesser extent, economic incentives at the state level.

Environment/Incentives and Autism Clusters
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more extreme for ASD (Table 1 and Figure 3). Using ethnicity

variables to account for genetic heterogeneity of the US

population, corrected for socioeconomic factors, such as the mean

county-specific income, we found the incidence of the two diseases

significantly varied across ethnic groups (Table 1), with Pacific

Islanders, for example, having significantly lower risk for both

diseases. The per capita income of the county was weakly

positively correlated with the incidence rates for both diseases: the

income variable was associated with 3.2% rate increase per every

additional $1,000 of income above the country average for ASD

(CI: [2.3%, 4.2%], p,661025) and a 2.7% rate increase for ID

(CI: [1.8%, 3.7%], p,661025). Other important socioeconomic

predictors included the percentage of urban population in a

county; a one percent increase in urbanization predicted about a

3% increase in ASD and ID incidence (Table 1). Our analysis also

indicated that state-specific laws [30,31] had a large but only

marginally significant effect on the incidence rates of ASD and ID

(Table 1, Figure 1). The strictest form of diagnostic evaluation

(variable Eval, the state-mandated diagnosis of autism or autism

spectrum disorders by a pediatrician or clinician for consideration

in the special education system) was predictive of a considerable

decrease in ASD and ID incidence rates, 98.6% (CI: [28%,

Figure 1. Deciles of putative predictors for ASD (A) and ID (B) per-male rates. Plots for females look essentially identical, but the absolute
rate of incidence is lower (data not shown). The predictor variables shown here are male congenital malformations of reproductive system (ConGenM),
viral infections in males of any age (Viral_M), congenital malformations excluding malformations of the genitals in males, CongMrepM, and
spontaneous abortion (spont_abort).
doi:10.1371/journal.pcbi.1003518.g001

Environment/Incentives and Autism Clusters
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99.99%], p = 0.02475) and 99% (CI: [68%, 99.99%], p = 0.00637)

respectively.

Discussion

By analyzing the spatial incidence patterns of autism and

intellectual disability drawn from insurance claims for nearly one

third of the total US population, we found strong statistical

evidence that environmental factors drive the apparent spatial

heterogeneity of both phenotypes while economic incentives and

population structure appear to have relatively large albeit weaker

effects. The strongest predictors for autism were associated with

the environment: congenital malformations of the reproductive

system in males (an increase in ASD incidence by 283% for every

per cent of increase in the incidence of malformations), non-

reproductive congenital malformations (31.8% ASD rate increase),

and viral infections in males (19% ASD rate increase). For ID we

observed similar but weaker effects: 93% increase of ID rate for

every per cent of increase in congenital malformations of the

reproductive system in males, 43% increase for per cent of non-

reproductive congenital malformations, and 23% for viral

infections in males.

We highlight the role of male congenital genitourinary

malformations as an approximate measurement of environmental

exposure to unmeasured developmental risk factors, including

toxins. Some infants are born with congenital malformations with

unknown genetic etiology–not explained by known Mendelian

mutations or detectable chromosomal aberrations. At least a

fraction of such birth defects may be due to parental exposure to

environmental insults. The environmental factors implicated so far

include pesticides [18,19], environmental lead [20], sex hormone

analogs [21,22], medications [23], plasticizers [24], and other

synthetic molecules [25]. More generally, the risk of congenital

birth defects is statistically linked to parental occupation [26–28].

There is a statistically significant increase in birth defects

associated with some maternal occupations (janitor, maid,

landscaper), and significant decrease associated with others (non-

preschool teacher) [27,28]. It is very likely that the list of

Figure 2. Estimated Poisson rates of incidence of ASD (A) and ID (B) per male individual of any age.
doi:10.1371/journal.pcbi.1003518.g002

Environment/Incentives and Autism Clusters
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environmental factors potentially affecting development of human

embryo is large and yet predominantly undocumented; corre-

spondingly, detailed statistics on these factors do not exist.

It is known that some birth malformations are caused by de novo

genetic events, such as large copy number variants that have been

found to increase the risk for ASD by approximately 400% [32].

Single-gene deletions, for example, involving CHD7 are known to

cause CHARGE syndrome [33,34] associated with genital

abnormalities and putatively associated with ASD [35]. However,

these genetic events may have currently poorly identified

environmental triggers, and 70 to 80% of male congenital

malformations of the reproductive system have no clear genetic

causes [36]. Instead, they appear to be driven by specific

environmental insults that were not serious enough to lead to

more serious adverse events during pregnancy, such as spontane-

ous abortion. Therefore, in this study, we used the rate of birth

malformations as a surrogate measure for environmental burden.

The hypospadias of the male urethra can arise during early

embryonic development, specifically weeks 9–12 (p. 206 in [36]).

This window corresponds to the time when cell division and

migration takes place in brain development. Furthermore,

maternal exposure to estrogen and estrogen analogs in animal

models affects both brain and genital development in male

progeny (p. 206 in [36]), and small physical malformations appear

enriched in autistic children compared to healthy children [37].

Following similar logic, in addition to causing birth defects,

environmental toxins, such as pesticides [38,39] can substantially

weaken the human immune system, especially in men, which

results in more frequent infections. (The rates of female viral

infections were highly correlated with male viral infections; these

can serve a somewhat weaker fixed effect predictor, data not

shown.) This suggests that per capita rate of viral infection, when

socioeconomic and other biological factors have been controlled

for, may serve as another environmental indicator, although

specifics of the causal, biological mechanisms remain unresolved.

In our analysis we found that the rate of viral infection in males

was significant for both ASD and ID, see Table 1.

Importantly, the effect of state-level regulations involving ASD

appeared relatively large in magnitude (over 98% ASD and ID

rate decrease) but with a wide confidence interval and inconsistent

effects across states, resulting in only marginal significance.

Furthermore, our estimates of random effects at the state and

county levels, see Figure 2, suggest that additional yet unknown

confounder factors exist at both state and county levels, as is

evident from the clear state boundaries seen in Figure 2.

As with other statistical analyses (see Table 3), significant

associations are not necessarily causal. Identified predictor

variables may reflect underlying mechanisms, or may be

correlated with unmeasured causal factors. However, we have

Figure 3. Comparison of fixed effects (geographically varying factors) governing rate variation in ASD (A) and ID (B). The asterisks
indicate the level of significance of individual regression coefficients; see the figure key and Table 1.
doi:10.1371/journal.pcbi.1003518.g003

Figure 4. Total state-level random effects of ASD and ID
incidence in the USA: (A) ASD and (B) ID. In the figures we color-
coded the Empirical Bayes estimates of the state-level random effects,
separately for ASD and ID. County- and state-level random effects
model the unknown factors that vary geographically and govern
differences in county-specific disease rates after accounting for all fixed
effects (see Methods).
doi:10.1371/journal.pcbi.1003518.g004

Environment/Incentives and Autism Clusters
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included variables, such as the rate of birth malformations and

male viral infections, that have well-documented environmental

causes. Overall, this increases our confidence in their scientific

relevance. Furthermore, because we have controlled for many

county-level socioeconomic variables, strong state-specific effects

are almost certainly rooted in legal and regulatory differences that

exist at this level.

Our results have implications for the ongoing scientific quest for

the etiology of neurodevelopmental disorders. We provide

evidence that routinely expanding the scope of inquiry to include

environmental, demographic and socioeconomic factors, and

governmental policies at a broad scale in a unified geospatial

framework. It appears that detailed documentation of environ-

mental factors should be recorded and used in genetic analyses of

ASDs and failure to do so risks omitting important information

about possibly strong confounders.

Materials and Methods

Ethics statement
Our analysis involved de-identified patient data and was

approved by the University of Chicago Institutional Review

Board.

Our multi-level, mixed-effects model predicted the incidence of

ASD and ID conditional on several individual-level, county-level,

and state-level covariates. For the regression analysis described

below, we used county level variables to predict disease rate. In the

analysis of the comorbidity between congenital malformations and

ASD or ID, we used patient-level data.

Data
We used the Truven Health Analytics MarketScan Commercial

Claims and Encounters Database to provide geocoded diagnosis

Figure 5. Total county-level random effects of ASD and ID incidence in the USA: (A) ASD and (B) ID. In the figures we color-coded the
Empirical Bayes estimates of the state-level random effects, separately for ASD and ID. While county-specific random effects are directly comparable
within the same state, comparison of these effects across different states is not meaningful, because each state-specific random effect determines the
baseline disease rate for each county in the corresponding state, and these baseline rates vary across states.
doi:10.1371/journal.pcbi.1003518.g005

Environment/Incentives and Autism Clusters
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Table 1. Markov chain Monte Carlo estimates of regression weights, corresponding event rate ratios (exponential of regression
weights) and 95% event estimate credible intervals.

Parameter Effect Estimate Event Rate Estimate’s CI Rate’s CI p-value

Lower Upper Lower Upper

AU 0.366869 1.443209 -0.972727 1.754813 0.378051 5.782366 0.56225

AU:Eval1 2 -4.231486 0.014531 -8.877964 -0.328180 0.000139 0.720233 0.02475

AU:Gender 2 -0.699367 0.496900 -0.709451 -0.689520 0.491914 0.501817 ,661025

AU:Pacific 2 -0.438859 0.644772 -0.700535 -0.173497 0.496320 0.840720 0.00150

AU:Eval2 - -0.213462 0.807783 -2.921955 2.470602 0.053828 11.829566 0.88300

AU:ASD1 - -0.175057 0.839409 -1.582356 1.164197 0.205490 3.203350 0.83788

AU:AmInd 2 -0.131310 0.876946 -0.224315 -0.054407 0.799063 0.947047 ,661025

AU:B 2 -0.130750 0.877437 -0.216518 -0.053650 0.805318 0.947764 ,661025

AU:WHisp 2 -0.127715 0.880104 -0.213386 -0.052847 0.807844 0.948525 ,661025

AU:W 2 -0.121627 0.885479 -0.210127 -0.046265 0.810481 0.954789 ,661025

AU:CFR1 - -0.099843 0.904979 -1.789320 1.490554 0.167074 4.439554 0.95962

AU:Asian - -0.045453 0.955565 -0.136669 0.036981 0.872259 1.037673 0.34550

AU:Poor 2 -0.035009 0.965597 -0.049626 -0.020552 0.951585 0.979658 ,661025

AU:Insured 2 -0.012102 0.987971 -0.021311 -0.003377 0.978914 0.996629 0.00725

AU:Income + 0.032462 1.032995 0.023206 0.041997 1.023477 1.042891 ,661025

AU:Urban + 0.036144 1.036805 0.034184 0.038026 1.034775 1.038758 ,661025

AU:BHisp + 0.085030 1.088750 -0.101763 0.254757 0.903244 1.290148 0.34987

AU:DSM1 + 0.138073 1.148059 -1.120050 1.462245 0.326263 4.315637 0.80438

AU:Viral_M + 0.180043 1.197269 0.122006 0.238505 1.129761 1.269350 ,661025

AU:CongMrepM + 0.276762 1.318852 0.119429 0.421873 1.126853 1.524815 0.00025

AU:Eval-1 + 0.667525 1.949407 -0.773906 2.342192 0.461208 10.404017 0.36600

AU:ConGenM + 1.344962 3.838041 0.752946 1.912499 2.123246 6.769986 ,661025

ID -0.227338 0.796652 -1.393526 0.980272 0.248199 2.665181 0.66487

ID:Eval1 2 -4.535572 0.010721 -8.642693 -1.122879 0.000176 0.325342 0.00637

ID:Pacific 2 -0.373752 0.688148 -0.611520 -0.120910 0.542526 0.886114 0.00487

ID:AmInd 2 -0.138735 0.870459 -0.216428 -0.069898 0.805391 0.932489 ,661025

ID:B 2 -0.130235 0.877889 -0.205861 -0.066371 0.813946 0.935784 ,661025

ID:WHisp 2 -0.130204 0.877916 -0.203526 -0.066016 0.815849 0.936116 ,6610-5

ID:W 2 -0.126588 0.881097 -0.200798 -0.060878 0.818078 0.940938 ,661025

ID:Gender 2 -0.114004 0.892254 -0.127122 -0.101693 0.880626 0.903307 ,661025

ID:ASD1 - -0.109237 0.896518 -1.370748 1.037993 0.253917 2.823544 0.89650

ID:Asian - -0.065537 0.936564 -0.146325 0.003463 0.863877 1.003469 0.05613

ID:Eval2 - -0.063085 0.938864 -2.418593 2.326817 0.089047 10.245279 0.97462

ID:Poor - -0.013068 0.987017 -0.027450 0.001640 0.972923 1.001641 0.08038

ID:Insured + 0.004845 1.004857 -0.004074 0.014573 0.995934 1.014680 0.30088

ID:Income + 0.027171 1.027543 0.018098 0.036522 1.018263 1.037197 ,661025

ID:Urban + 0.031155 1.031645 0.029295 0.032969 1.029728 1.033518 ,661025

ID:BHisp + 0.032889 1.033436 -0.129128 0.194847 0.878861 1.215125 0.66837

ID:CFR1 + 0.102626 1.108077 -1.421645 1.452865 0.241317 4.275346 0.82900

ID:DSM1 + 0.149366 1.161098 -0.971742 1.285555 0.378423 3.616675 0.76525

ID:Viral_M + 0.211402 1.235409 0.153162 0.269626 1.165514 1.309475 ,661025

ID:CongMrepM + 0.362239 1.436542 0.210009 0.516094 1.233689 1.675470 ,6610-5

ID:Eval-1 + 0.417890 1.518754 -0.871996 1.849778 0.418116 6.358408 0.54113

Environment/Incentives and Autism Clusters
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counts by gender. This database spans the years 2003 to 2010 and

consists of approved commercial health insurance claims for

between 17.5 and 45.2 million people annually, with linkage across

years, yielding a total of approximately 105 million patient

records. (Note that, consistent with low prevalence of both

phenotypes, only a small proportion of individuals described in

this enormous dataset were diagnosed with either ASD or ID.)

This national database contains information contributed by well

over 100 insurance carriers and large self-insuring companies. We

scanned approximately 4.6 billion inpatient and outpatient service

claims and identified almost 6 billion diagnostic codes. After

removing duplicates, almost 1.3 billion diagnostic codes were

found to be associated with over 99.1 million individuals, yielding

approximately 12.89 unique diagnostic codes per individual.

Claims were de-identified, that is, all patient-level personal

information was redacted, and geocoded at the county level by

Truven, and thus, this did not require any additional processing on

the authors’ part.

The MarketScan insurance claims dataset is not a random

sample of the USA population. This is because compilation of this

dataset required reaching agreements between Truven and

numerous individual insurance providers to share data, and the

insurance providers inherently had uneven and non-random

coverage of geographic areas. It is possible, therefore, that the

dataset carries traces of hidden correlations imposed by the data

collection method. Furthermore, while the entire USA is well

represented in the data, it is possible that coverage across

geographic areas is not perfectly proportional to population

density.

Statistical analysis
We framed our analysis as a mixed-effect regression model for

Poisson-distributed count data [40], independently implemented

in SuperMix [41], lme4 [42,43], MCMCglmm [44], and

GLLAMM [45,46]. The choice of the Poisson model was

motivated by the countable nature of data and the rarity of the

disease incidence events.

The model parameters were estimated using a joint statistical

inference as follows. Most of the parameters (44 out of 50) were

real-valued coefficients representing regression weights of individ-

ual factors, such as average income in county, percentage of ethnic

groups, per cent of urban and poor population, see Table 1. The

factors that are a priori suspected to be relevant to disease incidence

and are deliberately included into the model, are referred to in the

mixed effect model formalism as the fixed effects. In addition, the

model included zero-centered and normally distributed random

effects, uncorrelated for the same disease between a county and the

encapsulating state, but geographically correlated between two

diseases, see equations below and Figures 4 and 5. The six

parameters associated with the random effects included the

variances and covariances for the state- and county-level random

effects (see Table 2 and equations below). Note that the random

effects themselves were not parameters, but Gaussian zero-

centered random variables.

Table 1. Cont.

Parameter Effect Estimate Event Rate Estimate’s CI Rate’s CI p-value

Lower Upper Lower Upper

ID:ConGenM + 0.660186 1.935152 0.013537 1.255318 1.013629 3.508954 0.03838

The 3-level Poisson mixed-effect model included 12,444 level-1 units (incidence counts for two diseases), 3,111 Level-2 units (counties), and 51 level-3 units (states). The
table is designed to mirror Figure 1: fixed-effect parameter estimates for autism spectrum disorders (AU) are followed by the corresponding estimates for intellectual
disability (ID). For each group of diseases the first parameter listed (AU and ID, respectively) is the intercept. The rest of the fixed-effect parameters are ordered from the
strongest negative effect to the strongest positive effect, as in Figure 1. Abbreviations: AU – autism spectrum disorders; ID – intellectual disabilities; AmInd –
proportion of American Indians; Asian – proportion of Asians; WHisp – White Hispanics; W – White non-Hispanic; BHisp – black Hispnics; B – black non-Hispaic; Pacific –
Pacific Islanders; Insured – proportion of insured; Poor – proportion of poor; Urban – proportion of urban; CongMrepM – congenital malformations excluding
malformations of genitals in males; ConGenM – congenital malformations of genitals in males; Viral_M – viral infections affecting males; ASD – inclusion of Autism
Spectrum Disorders; CFR – Code of Federal Regulations; DSM – requirement of reference to Diagnostic and Statistical Manual of Mental Disorders; Eval – rigor of
evaluation of diagnosis veracity. The regulations were encoded in the following way (23). For CFR: Code 21 if criteria included information from the autism section of
CFR only, and +1 if the criteria incorporated additional non-CFR information. For DSM: Code 21 if the entire DSM-IV-TR criteria were used, and +1 otherwise. For ASD: 2

1 if autism spectrum disorders were included in diagnostic criteria, and +1 if they were not included. For Eval: 21 if a diagnosis by a pediatrician or clinician was
mandatory, 1 if a diagnosis of autism or autism spectrum disorders by a pediatrician or clinician was mandated, and 2 if no requirements in addition to those mandated
by the Individuals with Disabilities Education Act were added.
doi:10.1371/journal.pcbi.1003518.t001

Table 2. Markov chain Monte Carlo estimates of covariances and correlations of random effects across two phenotypes.

Covariance Correlation Cov: 95% CI

Lower Upper

AU:AU (State) 3.126 1 0.6062 7.239

AU:ID (State) 2.666 0.974 0.5198 6.088

ID:ID (State) 2.398 1 0.5610 5.358

AU:AU (County) 0.7699 1 0.7142 0.8285

AU:ID (County) 0.6960 0.962 0.6462 0.7488

ID:ID (County) 0.6796 1 0.6261 0.7357

doi:10.1371/journal.pcbi.1003518.t002
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Fixed effects by design have stochastic but predictable influence

on data, while random effects describe zero-centered random

influence, not captured by the fixed effects. Below we present more

formal formulation of the model.

Fixed-effect variables
The Truven database was augmented with US census data

[30] consisting of county-level measurements for a variety of

socioeconomic, demographic, and geospatial factors. Our fixed-

effect county-level covariates were gender, Gender, average per

capita income, Income, percent ethnicity (separately for Amer-

ican Indians, AmInd, Asians, Asian, White Hispanics, WHisp,

White non-Hispanics, W, Black Hispanics, BHisp, Black non-

Hispanics, B, and Pacific Islanders, Pacific), and the proportions

of various socioeconomic groups (poor, Poor, urban, Urban,

insured, Insured). Our county-level environmental indicators

used as fixed-effect covariates (normalized by county population

size) comprised congenital malformations excluding malforma-

tions of the genitals (separately for females and males, CongMrepF

and CongMrepM, respectively), congenital malformations of the

genitals (separately for females and males, ConGenF and

ConGenM, respectively), viral infections (separately for females

and males, Viral_F and Viral_M, respectively), ectopic pregnancy

(ect_pr), abnormal conception (abnormal_concept), spontaneous

abortion(spont_abort), and multiple gestations (mult_gest). The

county-level environmental indicators were extracted from the

Truven database and normalized by county population,

separately for males and females.

To account for variation in policies for special education

eligibility and reimbursement, we used four variables derived by

hand-coding the state policies for eligibility in special education

programs under the Individuals with Disabilities Education Act

[31] with categorical variables: (i) CFR, to indicate whether state

criteria met (21) or, alternatively, exceeded Code of Federal

Regulation requirements (1), (ii) DSM, to indicate whether state

criteria mentioned all of the criteria from the Diagnostic and

Statistical Manual of Mental Disorders (21, if no, and 1, if yes),

(iii) ASD, to indicate whether Autism Spectrum Disorder criteria

were mentioned in the state criteria (21 if no, 1 if yes), and (iv)

Eval, to indicate the degree of diagnostic rigor required by the state

(21, 22, 1, 2). Details of the coding are described in the

abbreviations. All predictor variables were mean-centered.

Assumptions of the model
The assumptions of the Poisson regression model [40] were as

follows. First, we assumed that the data, corresponding to the

observed counts of people within each county diagnosed with

either ASD or ID, were generated by a Poisson process, with rate

(lijkl) varying over counties,

f (yijkl Dh)~
exp({lijkl)lijkl

yijkl

yijkl !
,

where: h is a vector of all 50 model parameters, (b, S). The

observed counts of disease incidence (the response variable yijkl)

was defined as the number of disease cases per county for ASD

(k = 1) and ID (k = 2). Subscripts i and ij were used to indicate a

state and a county nested within that state, and subscript l to

indicate gender. The second assumption was that the logarithm of

Poisson rate (lijkl) was expressed as a linear combination of fixed

and random effects.

lijkl~Nijkl exp(Xikbkzzkvk)

~Nijkl exp
XM
m~1

ximkbmkzvikzvijk

 !
:

Here matrix Xk is the design matrix for the fixed effects associated

with disease k; bk is the corresponding vector of unknown

regression weights; zk is a design matrix for random effects; vk is

the vector of random effects; vik, vijk, are i-state- and ij-county-

specific random effects for disease k. The fixed-effect design matrix

is simply a matrix of county-specific zero-centered properties, such

as the mean income, or proportions of ethnic groups. The design

matrix z has a very simple form: entries of 1 for random effects of a

given county and corresponding state, and zeros in all other cells.

Nijkl is a state-, county-, disease- and gender-specific offset—the

total number of people with a specified gender living within a

given county.

The third assumption was that data was hierarchical: the zero-

centered random effects were independently introduced at i-state

and ij-county levels. However, the random effects associated with

the two diseases (1 and 2) were geographically correlated,

Table 3. Summary of the prior state-level studies regarding geographic clustering of ASD.

Study (state)

[19] (CA) [20] (CA) [21,22] (TX) [23] (NC) [24] (UT)

Data source All live births and
diagnostic records for
children born in CA
between 1992 and 2000.

All live births in
CA occurring in
1996–2000

Administrative educational
data for prevalence of
autism and other special
education categories for
the academic years 2000–
2001 through 2005–2006.

Record-based surveillance
for 8 NC counties biennially
from the Autism and
Developmental Disabilities
Monitoring Network.

Record-based surveillance for eight-
year-old children born in 1994 and
living in Utah in 2002 from the Utah
Registry of Autism and Developmental
Disabilities Program.

Cases + controls 4,906,926 2,453,717 4,057,712 11,034 26,108

Cases 18,731 9,900 7,022 (ASD+ID) 532 (ASD), 1,028 (ID) 99 (ASD-only), 33 (ASD and ID), 113
(ID-only)

Modeling
formalism

Multilevel logistic
regression.

Spatial clustering
and bivariate mixed
Poisson regression.

Multilevel Poisson regression. Generalized additive model. Multiple single-variable logistic
regressions.

doi:10.1371/journal.pcbi.1003518.t003
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(vi1,vi2,vij1,vij2)*N

0

0

0

0

0
BBBB@

1
CCCCA,

s2
i1 risi1si2 0 0

risi1si2 s2
i2 0 0

0 0 s2
ij1 rijsij1sij2

0 0 rijsij1sij2 s2
ij2

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA~N (0,S),

where s2
ik, and s2

ijk, are variances of state-level and county-level

random effects for disease k and ri, and rij are correlation

coefficients for random effects for diseases 1 and 2 at the state

and county levels, correspondingly.

Together these assumptions define the following likelihood for

the given ij-county, i-state, l-gender and k-disease:

log l(yijkl jh)~ {½ Nijkl exp(
XM
m~1

ximkbmkzvikzvijk)z

yijkl(logNijklz
XM
m~1

ximkbmkzvikzvijk){log(yijkl !)
�
:

The full log-likelihood is obtained by summing the individual log-

likelihoods specific to each yijkl over all possible indices.

While estimates varied slightly across different implementations

of the model and estimation approaches, the major trends were

identical across all. Here we present the results of the Markov

chain Monte Carlo/Empirical Bayes analysis. The estimation

methods and starting parameter values varied considerably across

the implementations. For example, SuperMix started with finding

an analytical solution of the fixed-effect part of the equations and

then estimated parameters for the full model involving random

effects. The Markov chain Monte Carlo-based GLLAMM started

with a random set of parameter guesses and then rather quickly

discovered the high-probability area of parameter values.

Confounders
We tested several putative confounding variables, such as

county-specific median mother’s age at childbirth, and the

proportion of county population in the childbearing age. While

these variables produced statistically significant fixed-effect coef-

ficients, they did not affect the relationship between the outcome

variable and the compound environmental predictor variables as

would be expected if these added variables were true confounders.
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