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Multi‑model sequential analysis 
of MRI data for microstructure 
prediction in heterogeneous tissue
Francisco E. Enríquez‑Mier‑y‑Terán 1,2,7, Aritrick Chatterjee 3,4, Tatjana Antic 5, Aytekin Oto 3, 
Gregory Karczmar 3 & Roger Bourne 6,7*

We propose a general method for combining multiple models to predict tissue microstructure, 
with an exemplar using in vivo diffusion‑relaxation MRI data. The proposed method obviates the 
need to select a single ’optimum’ structure model for data analysis in heterogeneous tissues where 
the best model varies according to local environment. We break signal interpretation into a three‑
stage sequence: (1) application of multiple semi‑phenomenological models to predict the physical 
properties of tissue water pools contributing to the observed signal; (2) from each Stage‑1 semi‑
phenomenological model, application of a tissue microstructure model to predict the relative volumes 
of tissue structure components that make up each water pool; and (3) aggregation of the predictions 
of tissue structure, with weightings based on model likelihood and fractional volumes of the water 
pools from Stage‑1. The multiple model approach is expected to reduce prediction variance in tissue 
regions where a complex model is overparameterised, and bias where a model is underparameterised. 
The separation of signal characterisation (Stage‑1) from biological assignment (Stage‑2) enables 
alternative biological interpretations of the observed physical properties of the system, by application 
of different tissue structure models. The proposed method is exemplified with human prostate 
diffusion‑relaxation MRI data, but has potential application to a wide range of analyses where a single 
model may not be optimal throughout the sampled domain.

Modelling of MRI data seeks to characterise measured signals in terms of simplified physical and/or mathemati-
cal expressions that can be used to predict structural and functional tissue characteristics. Such models can be 
broadly categorised as either phenomenological or structural.

Phenomenological approaches focus on mathematical descriptions of the signal, and may or may not have 
biophysical interpretations. For example, in diffusion-weighted MRI (dMRI), calculation of an apparent diffu-
sion coefficient (ADC) is based on a model that assumes tissue water has a Gaussian displacement probability, 
and a consequent monoexponential decrease of signal intensity with increasing diffusion weighting (‘b-factor’):

where S and S0 are the diffusion-weighted and unweighted signals respectively. In biological tissue, such water 
displacement behavior is rare, due to the structural heterogeneity of tissues at both micro and meso scales. In 
the prostate, the micro scale would roughly encompass cells and subcellular structures, and the meso scale the 
highly variable glandular and stromal components present within single measurement voxels. The Gleason 
grading scheme for prostate  cancer1 is based on ’glandular architecture’—the arrangement and relative volumes 
of meso scale tissue components.

Phenomenological parameters are often interpreted to reflect tissue structure or function features. The most 
common example is the assumption that ADC reflects cell density or ’cellularity’. The cellularity interpretation 

S/S0 = e−b·ADC

OPEN

1School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney 2008, Australia. 2The 
Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia. 3Department of Radiology, University 
of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago 60637, IL, USA. 4Sanford J. Grossman Center 
of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago 60637, IL, 
USA. 5Department of Pathology, University of Chicago, Chicago 60637, IL, USA. 6Discipline of Medical Imaging 
Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, 
Sydney 2006, Australia. 7These authors contributed equally: Francisco E. Enríquez-Mier-y-Terán and Roger 
Bourne. *email: roger.bourne@sydney.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43329-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16486  | https://doi.org/10.1038/s41598-023-43329-x

www.nature.com/scientificreports/

is widespread despite demonstrations that cell type and tissue microstructure, rather than simple cell density, 
are major determinants of the calculated  ADC2–4.

The typically non-monoexponential signal attenuation in tissue measurements can be characterised by a 
kurtosis parameter (K):

where D is a ’kurtosis-adjusted’ diffusion coefficient. K can be roughly interpreted to characterise a degree of 
tissue structure heterogeneity that causes a deviation from a Gaussian displacement probability. An alternative 
’stretched exponential’  formalism5 is based on an assumed continuum of water pools, each having Gaussian 
behavior:

where D is a ’distributed diffusion coefficient’ and α a ’stretching factor’.
Any water displacement, resulting from either diffusion or incoherent flow, will contribute to dMRI signal 

attenuation. Flow effects, generally due to blood flow in microvasculature, are most evident in low b-factor 
measurements. IVIM (Intravoxel Incoherent Motion)  analysis6 uses a biexponential signal model to separate 
vascular flow from true diffusion:

where f is the ’perfusion fraction’ and D∗ is a pseudodiffusion coefficient representing flow in randomly oriented 
capillaries.

Separate from large-displacement flow effects, dMRI measurements that include intermediate and high b-fac-
tors also often show a distinct biexponential behavior, indicating the presence of distinct ’slow’ and ’fast’ water 
diffusion pools. These were initially assumed to represent intra and extracellular water, however several studies 
have demonstrated this to be an overly simplified interpretation, and biexponential diffusion signal behavior 
has been reported inside single  cells7,8. Some biexponential T2 relaxation behavior is thought to reflect distinct 
pools of ’free’ water and water bound to  macromolecules9.

Although these models are essentially phenomenological, they may provide some general insight into tissue 
microstructure features. The IVIM model helps to resolve vasculature from surrounding tissue, and any signal 
with distinct biexponential decay behavior suggests the presence of two dominant water pools with distinct aver-
age water diffusivities, and minimal exchange of water between the pools. Such water pools need not be physically 
separated in structural compartments. The distinct observed diffusivities simply reflect structural features that 
determine water displacement probability over the time scale of the dMRI  measurement10.

A dMRI study of whole prostate specimens ex vivo (where perfusion effects are absent) used a ’stretched biex-
ponential’ formalism to demonstrate that the commonly reported two major water pools each display distinctly 
non-Gaussian displacement  behavior11. In the human prostate, signal modelling based on T2 relaxation behavior 
(’Lumenal Water Imaging’), without diffusion weighting, also indicates the presence of two major water pools, 
with the signal from the longer T2 pool correlating strongly with histological measurements of gland lumen 
 volume12. This correlation does not imply that the long-T2 lumen space is a separate ’compartment’ from the 
short-T2 environment. The short T2 is likely due to high protein/macromolecule concentration, but the model 
does not interpret this as either an intra- or extracellular compartment.

In contrast to purely or semi-phenomenological descriptions of MRI signal behavior, microstructural mod-
els attempt to define the way the measurement technique (scan protocol) and tissue characteristics interact to 
produce the measured signal, and to thus predict either specific tissue structural features such as cell size, type, 
density, shape, and orientation, or the more general features that define pathology. Examples of microstructural 
models for human prostate MRI include, though are not limited to, VERDICT (Vascular, Extracellular, and 
Restricted Diffusion for Cytometry in Tumors)13 and HM-MRI (Hybrid Multidimensional MRI)14,15. These two 
models will be discussed here because they illustrate some important features and limitations of microstructure 
modelling. Our exemplar of the multi-model method is based on HM-MRI data.

The different measurement techniques of VERDICT and HM-MRI create constraints on the structural fea-
tures that the associated models can predict. The VERDICT protocol includes measurements over incremented 
diffusion times and diffusion weightings, enabling prediction of cell diameter, intra and extracellular volume 
fractions, and vascular volume. The HM-MRI protocol includes multiple echo times and diffusion weightings 
to predict the relative volume fractions of epithelium, stroma, and lumen space. An extended version of VER-
DICT (rVERDICT) adds multiple echo times to increase the ability to resolve tissue compartments based on T2 
 differences16. Here there is some convergence with HM-MRI in terms of scan protocols (data acquisition), while 
maintaining distinct data modelling. These differences also serve to highlight the important distinction between 
data acquisition and data analysis choices.

Conceptually, the scan protocol defines and limits the information content of the data. Different data models 
may extract different parts of the embedded information from the data, and one model may do this better than 
another for a particular application, however no model can extract absent information. Much of the modelling 
research literature neglects the possible limitations of scan method, and implicitly assumes that optimisation 
of imaging applications depends only on determining the best data model for a fixed measurement  method17.

Both VERDICT and HM-MRI models are simplified descriptors of tissue structure. The model parameters 
are assigned directly to tissue components despite the known heterogeneity and complexity of the tissue, mean-
ing that multiple tissue features, besides the one assigned, may contribute to the observed model parameter 
variations.

S/S0 = e−b·D+b2·D2·K/6

S/S0 = e−(b·D)α

S/S0 = f · e−b(D+D∗) + (1− f )e−b·D
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A wide diversity of microstructure models have been applied to different tissues in recent literature. Their 
relative performance has been compared in terms of accuracy in prediction of disease (eg. presence and grade 
of cancer) or histological features, and in more abstract theoretical terms using information criteria. A signifi-
cant finding of studies that have compared models using information criteria is that there is generally no single 
’best’ model, and that the preferred model varies from voxel to voxel throughout the tissue, as demonstrated in 
 brain18,  prostate19,  breast20, and lymph node  tissue21. This finding is unsurprising and entirely consistent with the 
structural heterogeneity of both normal and diseased tissue, yet presents a dilemma for model choice.

The absence of a single best or optimum model, despite the wealth of literature focusing on relative overall 
performance of specific single models, suggests the need for an approach that can incorporate the predictions of 
multiple models with weightings related to the appropriateness of each model for the local tissue environment.

Multi-model averaging methods are used extensively in a wide range of fields, from econometrics to ecology 
and weather forecasting, yet seem rare in medical  imaging22,23. Brix et al.24 describe the application of a model 
averaging technique to the analysis of simulated dynamic contrast MRI data, although not with the specific aim 
of addressing tissue heterogeneity.

Applied to tissue microstructure prediction based on MRI data, the multi-model approach would appear 
limited to models that share some specific parameter (eg. intracellular volume fraction or cellularity). In this 
case model-averaging could be used to predict a consensus value of the shared parameter (as in Brix et al.24).

In this paper we present a method for multi-model analysis, exemplified using in vivo prostate HM-MRI data. 
By separating the signal description model parameters from specific tissue structure assignment, the method 
relaxes the conventional direct connection between signal model parameters and tissue structure features - ena-
bling a consensus of diverse signal and structure models, and avoiding the need to select a single ’optimum’ model.

Methods
The method we illustrate here combines the predictions of multiple models that do not share parameters directly 
representing tissue properties. We separate the conventional ’direct’ microstructure imaging approach into dis-
tinct phenomenological/physical and structural/biological modelling steps (Fig. 1). The generic features of the 
approach are emphasised in italic. 

1. Multi-model semi-phenomenological signal analysis that predicts the physical properties of the predominant 
water pools. For each model, Akaike Information Criterion (AIC) is used to estimate model likelihood. Water 
pools are not attributed to specific microstructural features. In the example we predict ADC, T2, and fractional 
volumes ( fi ) of each water pool in prostate tissue.

2. Application of a single biological microstructure model to predict the relative volumes ( fi ) of tissue components 
contributing to the individual water pool physical properties predicted at Step 1. In the example, we predict 
epithelium, lumen, and stroma (ESL) volumes, as for HM-MRI. As an alternative example, we predict ’cel-
lularity’.

3. Microstructure model predictions from Step 2 are combined, with weighting according to model likelihood and 
water pool fractional volume, to estimate the relative volumes of tissue structural components making up each 
voxel.

Figure 1.  Schematic representation of the sequential modelling approach that separates initial signal analysis 
from structure assignment. The five phenomenological models are defined in Table 1. In a clinical application, a 
pathology model may be added to the sequence - for example, to predict the presence of cancer.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16486  | https://doi.org/10.1038/s41598-023-43329-x

www.nature.com/scientificreports/

Using previously acquired in vivo prostate HM-MRI data, we fit five progressively more complex models that 
describe signals arising from one, two, or three non-mixing water pools with Gaussian diffusion characteristics 
and a homogeneous T2 value throughout the pool. The simplest, single-pool, model equates to the conventional 
ADC model with T2 relaxation. Models 2 and 3 each describe two water pools. In Model 2 both pools have the 
same T2, while distinct T2 values are allowed in Model 3. These ’biexponential’ models are distinct from the 
IVIM (intravascular incoherent motion)  model6 in accommodating T2 relaxation, however, in the example 
data analysed here, the sampled b-values (0, 150, 750, and 1500 s/mm2) do not permit accurate assessment of 
an incoherent perfusion component. Models 4 and 5 describe three water pools with distinct diffusivities. In 
Model 4 two of these pools share an identical T2 value. Model 5 is equivalent to the mathematical form of the 
’standard’ HM-MRI  model14, but with a broader range of possible diffusivity and T2 values for each water pool 
(see Supplementary Table S1 online), and no direct assignment of water pools to tissue structure features.

In our exemplar the five models are nested, with the higher order models being less constrained versions of the 
simpler models. While each of the phenomenological models has a plausible tissue microstructure interpretation 
(Table 1), this interpretation is not essential, and is not used in this demonstration.

We note that the use of nested models is not a requirement of the method. The only constraint, in our exem-
plar, is that each model should predict a T2 and D for each water pool.

The conventional HM-MRI approach directly and specifically assigns the ESL structural compartments to 
the three components of the triexponential model. This approach precludes a similar microstructural assign-
ment of the water pools of the mono and biexponential models which may be more appropriate descriptors 
of the tissue structure in some voxels. To avoid direct assignment, we apply a structural model in the second 
stage of data analysis to predict the fractional ESL volumes contributing to the predicted water pool D and T2. 
The microstructural model assumes that the ESL compartments are internally homogeneous but, throughout 
the prostate tissue, have a Gaussian distribution of D and T2 values. The chosen mean and sigma values for the 
distributions were based on literature reports and, where available, measurements from defined tissue regions 
validated by histology (see  Supplementary Material online).

By applying the structure modelling to the detected water pools, rather than to the total voxel signal, our 
method is sensitive to signal variations that would be masked by non-linear multiexponential decay, while 
incorporation of mono and biexponential models reduces parameter variance in voxels where the higher order 
models are overparameterised.

More method details are available in  Supplementary Material.

Image acquisition and preprocessing
In vivo prostate HM-MRI imaging was performed as described  previously15. Briefly, men with biopsy proven 
prostate cancer were scanned in a 3T system with cardiac phased-array and endorectal coils. Diffusion weighted 
images were acquired with all combinations of echo times TE = 57, 70, 150, and 200 ms, and b = 0, 150, 750, 
and 1500 s/mm2, giving a 4 × 4 array of diffusion-relaxation measurements for each voxel. The image planes 
were oriented perpendicular to the rectal wall, and approximately transaxial to the prostatic urethra, as guided 
by sagittal T2 images, to approximately align MRI planes with whole mount histology slices. Diffusion encoding 
gradients ( �\δ = 21/35 ms) were applied in three orthogonal directions with the resultant images averaged. The 
raw image data used in the current study were also used in previously described  work25.

Magnitude mode images were coregistered to reduce motion effects (see Supplementary Fig. S1 online), and 
Rician noise floor bias was corrected voxelwise according to the method of Gudbjartsson and  Patz26.

Step 1. Phenomenological model fitting
Models 1–5 (Table 1) were fitted progressively, starting with the simplest model, with the parameter estimates of 
the lower order models used to define the parameter limits and starting points for the next higher order model(s) 
(see Supplementary Fig. S2 online). Non-linear least squares model fitting was performed in Matlab.

Table 1.  Five phenomenological models, with possible biological interpretations. S0 is not fitted as signals are 
normalised to the intensity in the minimum b, minimum TE image.

Model
Water 
pools Equation Fitted parameters Possible tissue composition

1 1 S/S0 = e−bD × e−TE/T2 D
T2 Water in an acellular compartment (e.g. large cystic region)

2 2 S/S0 = f1(e
−bD1 × e−TE/T2)+ (1− f1)(e

−bD2 × e−TE/T2)

D1 , D2

T2
f1

Water in two structurally distinct high-protein environments hav-
ing identical T2 but different diffusivities (e.g. intra and extracel-
lular water in a high cell density region)

3 2 S/S0 = f1(e
−bD1 × e−TE/T21 )+ (1− f1)(e

−bD2 × e−TE/T22 )

D1 , D2

T21 , T22
f1

Water in two structurally distinct high-protein environments hav-
ing different T2 and diffusivities (e.g. intra and extracellular water 
in a low cell density region)

4 3
S/S0 = f1(e

−bD1 × e−TE/T21 )+ f2(e
−bD2

×e−TE/T21 )+ (1− f1 − f2)(e
−bD3 × e−TE/T22 )

D1 , D2 , D3

T21 , T22
f1 , f2

Water in three structurally distinct high-protein environments 
each having different diffusivities but two compartments having 
identical T2 (e.g. intra and extracellular water in a high cell den-
sity region, plus water in lumen space)

5 3
S/S0 = f1(e

−bD1 × e−TE/T21 )+ f2(e
−bD2 × e−TE/T22 )

+(1− f1 − f2)(e
−bD3 × e−TE/T23 )

D1 , D2 , D3

T21 , T22 , T23
f1 , f2

Water in three structurally distinct high-protein environments 
each having different diffusivities and T2 (e.g. intra and extracel-
lular water in a low cell density region, plus water in lumen space)
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For each voxel we calculated the corrected Akaike information  criterion27:

where SSE is the sum of squared residuals, N is the number of measurement data points (16 in our example), 
and p is the number of estimated model parameters (2–8 in our example). AICc is used in Step 3 to assign a 
model weight.

Step 2. ESL microstructure model fitting
We assume that, across the prostate and the patient population, for any water pool D and T2 combination the 
contributions of epithelium, stroma, and lumen (ESL) tissues each have a Gaussian probability distribution with 
mean and sigma as specified in Table 2. For each water pool T2 and D value predicted by the phenomenological 
models, we calculate a Z-score ( ZE , ZS , ZL ; range 0–1) of the Gaussian distribution for the E, S, and L components. 
The predicted fractional volume (x) of the tissue component contributing to the water pool is then calculated as:

This step predicts the tissue structure (fractional volumes of the ESL compartments) giving rise to the physical 
properties of each water pool (Fig. 1, ’Predicted tissue composition for each water pool’).

Step 3. Weighted model averaging
The AICc values from the five models (Step 1) were used to calculate model weights ( Wm = normalised likeli-
hood) according  to28 (p. 447):

where �m is the AICc difference between model m and the model with lowest AICc value ( AICcm − AICcmin).
The weighted multi-model ESL prediction for voxel structure was calculated based on the fractional volume 

of ESL components in each water pool and the associated model weight:

where X ∈ {E, S, L} is the model-averaged fractional volume of a given ESL component, m = model number 
(1, 2, ..., 5), n = number of water pools in model m, f pm = fractional volume of water pool p in model m, and xpm 
= fractional volume of ESL component x in pool p of model m.

Cancer probability prediction
As a demonstration of the possible application of a pathology model to the predicted ESL composition of the 
prostate tissue, we calculated a hypothetical cancer probability ( PCa ) for each voxel based on the clinical obser-
vation that prostatic adenocarcinoma is characterised by proliferation of epithelial cells and occlusion of lumen 
 space29:

where E and L are the predicted fractional volumes of epithelium and lumen. Stroma volume is omitted as it 
correlates poorly with presence and grade of prostate  cancer2, and is redundant given the epithelium and lumen 
fractional volumes ( E + S + L = 1 ). This model is a simple extension of the binary cancer prediction model of 
conventional HM-MRI14.

Alternative ‘cellularity’ model
To illustrate the ease of implementing an alternative microstructure model, we replaced the ESL model with a 
hypothetical simple cell density model. This model assumes intra and extracellular water having a Gaussian dis-
tribution of T2 and D values with mean and sigma as shown in Table 3. In this example ’cellularity’ is presented 
as intracellular volume fraction, and has a range of 0–1.

(1)AICc = N ln

(

SSE

N

)

+ 2(p+ 1)

(

1+
p+ 2

N − p− 2

)

(2)x =
ZX

ZE + ZS + ZL

(3)Wm =
e−

�m
2

∑5
m=1 e

−�m
2

(4)X =

∑5
m=1

∑n
p=1 Wm · f

p
m · x

p
m

∑5
m=1 Wm

(5)PCa = E · (1− L)

Table 2.  Assumed Gaussian probability distributions for contributions of the three compartments of the ESL 
microstructure model (details in  Supplementary Material online).

E S L

D (µm2/ms) Mean (sigma) 0.3 (0.2) 1.3 (0.5) 2.5 (0.5)

T2 (ms) Mean (sigma) 60 (30) 220 (90) 550 (150)
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Histology data
For the exemplar data presented, there was no precise alignment of histology sections with MRI planes. Radical 
prostatectomy specimens were sliced in 3 mm thick sections transverse to the posterior surface of the prostate. 
Thus the histology images lie approximately parallel to the the MRI data, although not necessarily co-planar. 
We note that rigorous histological validation of MRI studies is an ongoing  challenge30, beyond the scope of the 
general method proposal presented here. In the figures presented here, we show the histology image which has 
the best overall anatomical match to the MRI features.

Results
Figure 2 shows predicted water pool T2 and D values from the five phenomenological models across a transverse 
slice of a human prostate that includes a large high grade tumour. The pixel colour represents T2 and D value, 
while the pixel brightness is weighted according to water pool fractional volume. This weighting emphasises the 

Table 3.  Assumed Gaussian probability distributions for D and T2 in the compartments of the ’cellularity’ 
microstructure model. Note that, as this cellularity model is presented solely as an example of the ability of the 
general method to employ alternative structural models, the D and T2 values are somewhat arbitrary and not 
based on literature or measurement data.

Intracellular water Extracellular water

D (µm2/ms) Mean (sigma) 0.5 (0.3) 1.2 (0.3)

T2 (ms) Mean (sigma) 50 (20) 150 (40)

Figure 2.  Voxelwise water pool T2 and D predictions from five phenomenological models. Pixel colour 
indicates water pool T2 or D value, while brightness is scaled according to fractional volume of the water pool. 
Dashed grey boxes connect models that share a single T2 parameter across two water pools (note that the 
fractional volume pixel brightness weighting means that these T2 maps will not appear identical, despite the 
shared T2 value). The histology section lies in approximately the same plane as the MRI slice, and shows a large 
high grade tumour in the right peripheral zone (left side of image). Unweighted D and T2 maps are provided 
together with fractional volume maps in  Supplementary Material (see Supplementary Fig. S3 online).
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parameter values of voxels where signal to noise ratio (SNR) for the associated water pool is high and the effect 
of noise on parameter variance is low. When the fractional volume of a water pool is low the associated SNR will 
be low, leading to unreliable estimates of T2 and D. These voxels are darkened in the maps. The corresponding 
unweighted D and T2 maps are provided together with fractional volume maps in the  Supplementary Material.

Figures 3 and 4 provide similar data for two further patients.
The T2 maps indicate that for all models the large majority of voxels show water pool T2 estimates that are 

biopyhsically plausible and lie inside the allowed model fitting range of 10–1000 ms. The two-pool models show 
distinct differences in T2 values between the two pools. In comparison, the three-pool models show relatively 
minor differences between pools 1 and 2, with pool 3 having similar T2 to pool 2 of the two-pool models.

The two-pool models show distinct diffusivity differences between the pools. Diffusivity values are mostly 
biophysically plausible, although in Models 2 and 3 there are significant areas with D > 3.1 µm2/ms (the free 
diffusion maximum at body temperature). These high D regions, which, based on prostate anatomy, are unlikely 
to represent true perfusion effects, are much reduced in Models 4 and 5.

All models show clear differences between the large high grade (Gleason 4+ 5 ) tumour in the right peripheral 
zone (PZ) and the non-cancerous regions of the prostate. However, the two- and three-pool model parameter 
values show much more variation within the benign tissue than the single pool ‘ADC’ model. The generally high 
T2 values in the PZ are consistent with conventional T2-weighted imaging, where benign PZ tissue is typically 
hyperintense relative to the central prostate. As there was no precise alignment of histology sections and MRI 
 planes30, a close match between the location and boundaries of the tumour in the histology and MR images is 
not expected.

Figure 5 shows maps of model likelihood, and corresponding predictions of the partial volumes of epithelium, 
stroma, and lumen space predicted by application of the ESL microstructural model to each of the phenom-
enological model water pool properties. For the multi-pool models, the ESL predictions from each pool in the 
model are averaged, with weighting according to pool fractional volume. In addition, the model-averaged ESL 
map is provided with weighting based on individual model likelihoods. The single-model ESL maps illustrate 
how selection of a single model would influence the structure prediction, and the degree to which the prediction 
from weighted model averaging differs from the single model predictions.

To demonstrate the ability to apply alternative structural models to the multi-model water pool predictions, 
results from the alternative ’cellularity’ structural model are shown in the third row of Fig. 5. In this model a 

Figure 3.  Patient 2 voxelwise water pool T2 and D predictions from five phenomenological models. Details as 
for Fig. 2.
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cellularity of 1 indicates that all water is intracellular, and a cellularity of 0 indicates that all water is extracellular 
(zero cell density).

The likelihood maps indicate that Model 3 provides the best signal description in a little more than half the 
voxels, with the majority of remaining voxels best described by the simpler two-pool Model 2 or the single pool 
Model 1. The three-pool models have very low likelihoods in all but a few voxels—a result that is unsurprising 
given the small number of measurements relative to the number of model parameters, and the relatively low 
SNR of the in vivo measurements.

Despite their low likelihoods, the three-pool models predict very similar ESL values to the two-pool mod-
els—suggesting that the multi-step structure modelling approach may compensate overparameterisation.

The weighted multi-model ESL map shows small differences from each of the individual model ESL maps, 
and patterns that are consistent with the approximately aligned histology section. Notably, highly cystic (acel-
lular) regions of the PZ and central zone roughly correspond to high lumen volume regions (dark blue) in the 
ESL maps. Model 1 predicts very high stromal density throughout the non-tumourous prostate—a result not 
supported by the histology section. In contrast, the two and three pool models, and the weighted combination, 
predict a heterogeneous mixture of lumen and stroma, in good agreement with the histology and normal pros-
tate anatomy.

Figure 5 also presents a possible pathological interpretation of the multi-model ESL prediction by calculating 
a hypothetical cancer probability based on fractional volumes of epithelium and lumen space (Eq. 5). Notwith-
standing the imperfect alignment of histology section with MRI slice, the probability map shows a qualitatively 
good agreement with the histologically defined cancer extent.

The cellularity model correctly predicts high cell density in the tumour, but in contrast to the ESL model, fails 
to reflect normal anatomical heterogeneity in the peripheral and central regions of the prostate.

Results from the two other patients are provided in Figs. 6 and 7 . The broadly consistent and anatomically 
plausible ESL predictions across the three patients suggest that the assumptions of T2 and D statistical distribu-
tions used for the structure model (Table 2) are reasonable.

Figure 8 provides a qualitative comparison of ESL structure predictions from the multi-model method and 
the ’conventional’ three-compartment HM-MRI  model15 in three patients. As the alignment of histology sec-
tions and in vivo MRI slice planes is imperfect, close correspondence of MRI-predicted structure and histology 
is not expected. However, based on general prostate anatomical features, there appear to be some advantages 

Figure 4.  Patient 3 voxelwise water pool T2 and D predictions from five phenomenological models. Details as 
for Fig. 2.
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of the multi-model approach. In Prostate 1 (i.e., from patient 1), the HM-MRI method appears to overestimate 
the fractional volume of epithelium (bright red) in the tumour, and the fractional volume of lumen space (dark 
blue) in the posterior peripheral zone. HM-MRI also, implausibly, suggests high epithelium volume at the left 
and anterior edges of the prostate. In Prostates 2 and 3 the multi-model prediction appears to show the dense 
part of the left side tumour more distinctly than the HM-MRI prediction.

Discussion
We have proposed a method for predicting tissue microstructure from MRI data based on combining the predic-
tions of multiple models, with weighting according to calculated model likelihood. Conceptually, our method 
avoids direct assignment of tissue structure features to signal characteristics. The multiple phenomenological 
models account for both meso and micro scale heterogeneity of the signal source (usually one voxel) in terms 
of pools of water that may, or may not, have distinct physical properties. We then apply a single tissue structure 
model to predict the microstructural features that give rise to the signal behavior of each detected water pool, 
and aggregate these pool predictions to summarise the structure of the signal source (voxel).

Our approach differs significantly from Brix et al’s multi-model analysis of simulated dynamic contrast 
enhanced MRI  data24, in that we do not directly assign tissue properties to the model parameters, and that we 
apply the likelihood-based model weightings, not to the signal models, but to the tissue structure predictions 
made subsequent to the initial semi-phenomenological signal modelling. Below we discuss some of the underly-
ing assumptions and potential refinements and modifications of our approach.

Figure 5.  Model likelihoods based on AICc and predictions of ESL fractional volumes from each model. RGB 
values for each ESL voxel are proportional to fractional volumes of epithelium (red), stroma (green), and lumen 
(blue). Predictions of the five models are combined, with weighting according to model likelihood, to produce 
the weighted multi-model ESL prediction. ‘Cellularity’ maps are based on application of a two-component intra- 
extracellular water model as an alternative to the ESL model. ESL cancer probability is based on a pathology 
model (Eq. 5) applied to the ESL weighted multi-model prediction. The histology section lies in approximately 
the same plane as the MRI data and shows a large high grade tumour (outlined in blue) in the right PZ.
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Choice of the five phenomenological models was based on what we considered likely biophysical properties 
of water pools in prostate tissue. Models with constrained/shared diffusivity and free T2 were not tested as we 
assumed that while many equally protein-dense tissue structures may exist, giving similar T2 but varying D, the 
alternative of equal diffusion restriction/hindrance but varying protein density is unlikely in animal tissue. Either 
way, we emphasise that these five models are presented simply to illustrate the general multi-model approach, 
and the models are not specifically nor exclusively appropriate to the prostate tissue from which the exemplar 
data were acquired.

Our phenomenological ’water pools’ approach accounts for mesoscopic tissue heterogeneity. Numerous 
experimental works have demonstrated that multiple signal components are often simplistically overinterpreted 
as representing distinct microstructural compartments. However, these studies are mostly based on mesoscopi-
cally homogeneous tissues and cell suspensions. Many tissues are highly heterogeneous at the meso scale, such 
that in any single voxel there may be large regions of very different structure. Fig. 9 illustrates such meso scale 
structure heterogeneity in a 2 × 2 mm section of prostate tissue that could represent a cross-section of a typical 
MRI voxel. This section, as a 3-D volume, could plausibly give rise to three distinct water pool signals: (1) free 
water in the large cystic spaces; (2) highly hindered and restricted water in the dense stroma; and (3) water in 
the complex of small glands. At the microscopic scale, both the stroma and glandular spaces would be internally 
heterogeneous, and very different from each other. A three-component signal model might directly and errone-
ously interpret these three water pools as ‘intracellular’, ‘interstitial’, and ‘lumenal’, on the basis of distinct average 
diffusivities, when the first two pools actually contain both intracellular and interstitial water, and the second 
water pool contains lumen spaces. This example illustrates how, depending on mesoscopic tissue structure and 
voxel size, distinct water pools (signals) may be observed and yet be inaccurately characterised by an applied 
microstructure model.

While we did not explicitly model a vascular signal component, several of the models predicted a significant 
number of voxels with high D values (D > 3.1 µm2/ms) in one water pool. The high D values are generally less 
concerning when assessed in conjunction with the corresponding model likelihood maps. In Fig. 2 the very 

Figure 6.  Patient 2 model likelihoods based on AICc and predictions of ESL fractional volumes from each 
model. Details as for Fig. 5.
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high D values seen in the anterior of the prostate in pool 2 of Model 2 mostly occur when Model 2 has a low 
likelihood. The high D values are much less frequent in pool 2 of Model 3 where the likelihood is high. The 
low likelihood of the Model 2 predictions in this region result in a low weighting in the multi-model structure 
prediction. In the combined ESL model prediction of Fig. 5 the predicted structure in this region is a mixture 
of stroma and lumen—generally consistent with the structures present in the corresponding histology sections. 
Nevertheless, there is possibly an excess of high D voxels, and it is unlikely that most prostates would have such 
a high vascular volume. Similar ‘excess vasculature’ results have been reported for VERDICT, which specifically 
aims to quantify the vascular component. This is an issue that requires deeper investigation, although we believe 
it is outside the scope of this paper.

Our ESL microstructure model assumes a Gaussian probability distribution for the contributions of individual 
E, S, and L components to an observed or predicted combination of water pool D and T2 values. Where available, 
we based our choice of probability distributions on related literature data, as detailed in Supporting Material. 
Other probability distributions may be more accurate, and could potentially be ascertained in a specific study 
that employs precision alignment of MRI and histology data. Nevertheless, the distributions defined in Table 2 
produced ESL microstructure maps in generally good agreement with conventional HM-MRI results from the 
same  data15. Given the uncertainties in histological validation of studies based on in vivo  imaging30, we cannot 
at this stage provide a quantitative comparison of the structure prediction accuracy of the multi-model ESL 
method versus conventional HM-MRI.

As for the five signal models, the ESL and ’cellularity’ models are presented here only as exemplars of the 
flexibility of structure model assignments that is made possible when signal model parameters are not directly 
assigned to tissue features. While we focus on the ESL microstructure model, the proposed separation of signal 
modelling from tissue microstructure modelling opens the door to application of alternative biological interpre-
tations of the signal model predictions. The two-component ’cellularity’ model was provided as an example of 
an alternative to the ESL model. The ESL model does not account for any perfusion effects from vascular water 

Figure 7.  Patient 3 model likelihoods based on AICc and predictions of ESL fractional volumes from each 
model. Details as for Fig. 5.
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(cf. VERDICT), but this could be added as a fourth, high apparent diffusivity component with mean T2 = ∼350 
ms, as expected for  blood9.

Where the signal acquisition protocol permits, higher order microstructure models could be applied. An 
obvious candidate is the addition of a third ’time-dependence’ or restriction radius coordinate to the D and 
T2 distributions to enable characterisation of diffusion-restricting structure  features10,13, as used in VERDICT.

We used AICc as the information criterion for calculation of model weights. This choice is somewhat arbitrary, 
although model ranking based on AICc has previously been shown to correlate well with an independent test 
of model prediction error in a dMRI study of whole prostates ex vivo31. The ’correction’ to standard AIC aims 
to account for situations (such as our higher order models) where number of samples (TE and b values) is low 
relative to number of model parameters. Other corrections (penalty terms), or information criteria such as BIC 
(Bayesian information criterion), might be considered. BIC tends to favour simpler models than AIC. However, 

Figure 8.  Qualitative comparison of ESL gland component predictions from the multi-model method and the 
three-component HM-MRI  method15. Data are shown for three patients with approximately aligned histology 
sections (regions of cancer are outlined in blue). Note that, due to the imperfect alignment of histology and MRI 
sections, close correspondence of MRI-predicted structure and histology is not expected.

Figure 9.  Prostate histology section illustrating possible meso scale tissue heterogeneity giving rise to distinct 
water pools in a voxel of size 2 ×2× 2 mm. In this example there are plausibly three distinct environments: 
acellular cystic space; dense non-glandular stroma; and loosely packed glands.
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discussions of best information criteria are generally focused on model selection and its  implications32, rather 
than weighting for multi-model prediction.

This paper focuses on a proposed generic method, and provides exemplars using existing MRI data. Valida-
tion of the sequential multi-model method in terms of a quantitative assessment of prediction accuracy will be 
highly application-specific, and is beyond the scope of the presented work. Rigorous histological validation, 
while particularly  challenging30, is important future work.

In summary, we have proposed a method for sequential multi-model analysis of complex MRI data where no 
single model accounts for both meso and micro scale tissue structure heterogeneity. In addition to implementing 
a method for prediction from multiple models, we suggest the proposed sequential separation of phenomeno-
logical signal modelling from structure assignment or clinical interpretation has potentially broad application 
in biology and other fields.

Data availability
Data are available on application to the corresponding author.
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