

(12) United States Patent Koide et al.

METHODS AND COMPOSITION INVOLVING THERMOPHILIC FIBRONECTIN TYPE III (FN3) MONOBODIES

(71) Applicant: The University of Chicago, Chicago, IL (US)

(72) Inventors: Shohei Koide, Chicago, IL (US); Shun-Ichi Tanaka, Chicago, IL (US); Akiko Koide, Chicago, IL (US)

(73) Assignee: The University of Chicago, Chicago,

IL (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

15/733,530 (21) Appl. No.:

(22) PCT Filed: Feb. 21, 2019

(86) PCT No.: PCT/US2019/018866

§ 371 (c)(1),

(2) Date: Aug. 21, 2020

(87) PCT Pub. No.: WO2019/165017 PCT Pub. Date: Aug. 29, 2019

(65)**Prior Publication Data**

Mar. 18, 2021 US 2021/0079063 A1

Related U.S. Application Data

- (60) Provisional application No. 62/634,616, filed on Feb. 23, 2018.
- (51) Int. Cl. C07K 14/78 (2006.01)C40B 40/10 (2006.01)
- (52) U.S. Cl. CPC C07K 14/78 (2013.01); C40B 40/10 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

6,180,341	В1	1/2001	Iverson et al.
6,673,901	B2	1/2004	Koide
6,703,199	В1	3/2004	Koide
6,818,418	В1	11/2004	Lipovsek et al
7,119,171	B2	10/2006	Koide
7,153,661	B2	12/2006	Koide
7,556,925	B2	7/2009	Koide et al.
7,598,352	B2	10/2009	Koide
8,263,350	B2	9/2012	Koide et al.
9,885,050	B2	2/2018	Koide et al.
2002/0025317	A1	2/2002	Leung et al.
2002/0090607	A1	7/2002	Fields et al.
2002/0197694	A1	12/2002	Shao
2003/0027209	A1	2/2003	Huse
2003/0170615	A1	9/2003	Ustav et al.

(10) Patent No.: US 11,680,091 B2

(45) **Date of Patent:** Jun. 20, 2023

2004/0005540	A1	1/2004	Petrenko et al.		
2004/0018570	$\mathbf{A}1$	1/2004	Sedivy et al.		
2004/0058400	A1	3/2004	Holliger et al.		
2007/0196274	$\mathbf{A}1$	8/2007	Sun		
2007/0264234	A1	11/2007	Sayers et al.		
2009/0087445	A1	4/2009	Freund et al.		
2010/0227913	A1	9/2010	Lyakhov et al.		
2010/0311094	$\mathbf{A}1$	12/2010	Mui et al.		
2011/0289625	A1*	11/2011	Chen	C12N	15/8247
					426/54
2013/0096058	$\mathbf{A}1$	4/2013	Baca et al.		
2014/0057807	A1	2/2014	Loew et al.		
2014/0141994	A1	5/2014	Wu et al.		
2014/0377776	$\mathbf{A}1$	12/2014	Salafsky		
2015/0218251	A1	8/2015	Chuang et al.		
2016/0024191	$\mathbf{A}1$	1/2016	Koide		
2018/0208678	A1	7/2018	Koide		

FOREIGN PATENT DOCUMENTS

WO	WO 01/64942	9/2001
WO	WO 02/04523	1/2002
WO	WO 2004/039845	5/2004
WO	WO 2008/031098	3/2008
WO	WO 08/066752	5/2008
WO	WO 2009/062170	5/2009
WO	WO 2010/028214	3/2010
WO	WO 2017/015119	1/2017

OTHER PUBLICATIONS

NCBI reference sequence WP_156014442, uploaded May 2021.* Howes, Laura; "Deepmind ai predicts protein structures." C&ENews, issue of Dec. 1, 2020.*

Rocklin, Gabriel J. et al; "Global analysis of protein folding using massively parallel design, synthesis, and testing." Science (2017) 357 p. 168-175.*

Smith, Jeffrey W. et al; "PRoein loop grafting to construct a variant of tissue type plasminogen activator that binds platelet integrin alpha llb beta 3." J. Biol. Chem. (1995) 270(51) p. 30486-30490.* "Together." The Merriam-Webster.Com Dictionary, www.merriam $webster.com/dictionary/together? src = search-dict-hed.\ Accessed\ Mar.$ 17, 2021.

Abbas et al. Cellular and Molecular Immunology. Maarssen-Netherlands, Netherlands, Elsevier Gezondheidszorg, 2007, p. 80,

Appleton et al., "Comparative structural analyysis of Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into the determinants of PDZ domain specificity," J Biol Chem, 281:22312-22320, 2006.

(Continued)

Primary Examiner - Fred H Reynolds (74) Attorney, Agent, or Firm — Norton Rose Fulbright US LLP

(57)**ABSTRACT**

The current application describes various compositions and methods for the production of FN3-based binding proteins with improved stability properties. Aspects of the disclosure relate to polypeptides comprising a variant fibronectin type III (FN3) domain from Sulfolobus tokodaii or Pyrococcus horikoshii comprising one or more amino acid substitutions or insertions in a loop region of FN3, in a non-loop region of FN3, or in both.

8 Claims, 18 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

OTHER PUBLICATIONS

Aslan et al., "Engineered single-chain dimeric streptavidins with an unexpected strong preference for biotin-4-fluorescein," *Proc Natl Acad Sci U.S. A.* 102:8507-12, 2005

Baird et al., "Circular permutation and receptor insertion within green fluorescent proteins," *Proc Natl Acad Sci U S A*, 96:11241-6, 1999.

Batori et al., "Exploring the potential of the of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain," *Protein Eng*, 15:1015-20, 2002.

Beebe et al. "Determination of the Binding Specificity of the SH2 Domains of Protein Tyrosine Phosphatase SHP-1 through the Screening of a Combinatorial Phosphotyrosyl Peptide Library." *Biochemistry* 2000, 39 (43), pp. 13251-60.

Berglund et al. "The Epitope Space of the Human Proteome." *Protein Science* 2008, 17(4), 606-613.

Binz et al., "Engineered proteins as specific binding reagents," *Curr Opin Biotechnol*, 16:459-69, 2005.

Binz et al., "Engineering novel binding proteins from nonimmunoglobulin domains," *Nat. Biotechnol.*, 23:1257-1268, 2005.

Birrane et al., "Novel mode of ligand recognition the Erbin PDZ domain," *J Biol Chem.*, 278:1399-1402, 2003.

Blagoev et al., "A proteomics strategy to elucidate functional protien-protein interactions applied to EGF signaling," *Nat. Biotechnol.*, 21:315-318, 2003.

Blasioli et al. "Definition of the Sites of Interaction between the Protein Tyrosine Phosphatase SHP-1 and CD22." *Journal of Biological Chemistry* 1999, 274(4), pp. 2303-2307.

Boder et al., "Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity," *Proc Natl Acad Sci.* 2000, 97:10701-5.

Boder et al., "Yeast surface display for directed evolution of protein expression, affinity, and stability," *Methods Enzymol*, 328:430-44, 2000.

Boder et al., "Yeast surface display for screening combinatorial polypeptide libraries," *Nat Biotechnol*, 15:553-7, 1997.

Bogan, "Anatomy of hot spots in protein interfaces," *J Mol Biol*, 280:1-9, 1998.

Bork et al., "Proposed acquisition of an animal protein domain by bacteria," *Proc. Natl. Acad. Sci. USA*, 89:8990-8994, 1992.

Bornscheuer et al., "Engineering the third wave of biocatalysis" Nature, 2012, 485:185-194.

Carr et al., "Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin," *Structure*, 5:949-959, 1997.

Chen et al., "Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media." Biotechnology (NY.), 1991, 9: 1073-1077. Chen-Goodspeed et al., "Enhancements, Relaxation and Reversal of

Chen-Goodspeed et al., "Enhancements, Relaxation and Reversal of the Stereoselectivity for Phosphotriesterase by Rational Evolution of Active Site Residues", Biochemistry, 2001, 40: 1332-1339.

Chou et al., "A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles," *J Biomol NMR*, 21:377-82, 2001.

Chou et al., "Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings," *J Biomol NMR* 2000, 18:217-27.

Davids et al., "Strategies for the discovery and engineering of enzymes for biocatalysis" Curr. Opin. Chem. Biol., 2013, 17:215-220.

Decanniere et al., A single domain anti-body in a complex with RNase A: non-canonical loop structures nanomolar affinity using two CDR loops. *Structure Fold Des*, 7:361-70.

Dickinson et al., "Crystal structure of the tenth type III cell adhesion module of human fibronectin," *J Mol Biol*, 236:1079-1092, 1994. Dieckman et al., "High throughput methods for gene cloning and expression," *Protein Expr Purif*, 25:1-7, 2002.

Dong et al., "Molecular forceps from cominatorial libraries prevent prevent the farnesylation of Ras by binding to its carboxyl terminus," *Chemistry and Biology*, 6:133-141, 1999.

Erickson, "Stretching fibronectin" J Muscle Res. Cell Motility, 2002, 23(5-6):575-580.

Fan et al., "Biosensors based on binding-modulated donor-acceptor distances," *Trends Biotechnol.*, 23:186-92, 2005.

Fellouse et al., "Molecular recognition by a binary code," *J Mol Biol*, 348:1153-1162. 2005.

Fellouse et al., "Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition," *Proc. Natl Acad Sci U S A*, 101:12467-72, 2004.

Ferrer et al., "Directed evolution of PDZ variants to generate high-affinity detection reagents," *Protein Eng Des Sel*, 18:165-173, 2005.

Fuh et al., "Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display," *J. Biol. Chem.*, 275:21486-91, 2000

Gilbreth et al., "A Dominant Conformational Role for Amino Acid Diversity in Minimalist Protein-Protein Interfaces" J Mol. Biol., 2008, 381:407-418.

Gilbreth et al., "Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design" Proc Natl. Acad. Sei. U.S.A., 2011, 108:7751-7756.

Goldsmith et al., "Directed enzyme evolution: beyond the low-hanging fmit" Curr. Opin. Struct. Biol., 2012, 22:406-412.

Grebien et al., "Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis" Cell, 2011, 147:306-319.

Hogrefe et al., "A bacteriophage lambda vector for the cloning and expression of immunoglobulin Fab fragments on the surface of filamentous phage," *Gene*, 128:119-26, 1993.

Hosse et al., "A new generation of protein display scaffolds for molecular recognition," *Protein Sci*, 15:14-27, (2006).

Huang et al., "A peptide tag system for facile purification and single-molecule immobilization," *Biochemistry*, 48: 11834-11836, 2009

Huang et al., "Confirmation specific affinity purifications using engineered binding proteins: Application to the estrogen receptor," *Protein Expr Purif*, 2005.

Huang et al., "Design of protein function leaps by directed domain interface evolution," *Proc Natl Acad Sci USA*, 105:6578-83, 2008. Huang et al., "IH, 13C, 15N NMR backbone assignments of 37kDa surface antigen OspC from Borrelia burgdorferi," *J Biomol NMR*, 14:283-284, 1999.

International Search Report and Written Opinion issued in Corresponding PCT Application No. PCT/US2019/018866, dated May 8, 2019

International Search Report and Written Opinion issued in International Patent Application No. PCT/US16/42516, dated Dec. 27, 2016

Ishii et al., "Controlling residual dipolar couplings in high-resolution NMR of protiens by strain induced alignment in a gel," *J Biomol NMR*, 21:141-151, 2001.

Iwakura et al., "Effects of the length of a glycine linker connecting the N-and C-termini of a circularly permuted dihydrofolate reductase," *Protein Eng*, 11:707-13, 1998.

Jacobs et al., "FN3 Domain Engineering", Protein Engineering, Kaumaya (Ed.), 2012.

Jones et al., "A quantative protein interaction network for the ERbB receptors using protein microarrays," *Nature*, 439:168-174, 2006. Kaplan et al. "Solid-Phase Synthesis and Characterization of Carcinoembryonic Antigen (CEA) Domains." *The Journal of Peptide Research* 2009, 52(4), pp. 249-260.

Karatan et al., "Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain," *Chem. Biol.*, 11:835-844, 2004. Kessels et al. "Specificity and affinity motifs of Grb2-SH2-lignad interactions," *Proc Natl Acad Sci U S A*, 99:8524-9, 2002.

Kohda et al., "Solution structure and ligand-binding site of the carboxy-terminal SH3 domain of GRB2," *Structure*, 2:1029-40, 1994.

Kohno et al., "A new general method for the biosynthesis of stabel isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: an application to the production of mastoparan-X uniformly enriched with 15N and 15N/13C," *J Biomol NMR*, 12:109-121, 1998.

(56) References Cited

OTHER PUBLICATIONS

Koide et al., "Design of single-layer beta-sheets without a hydrophobic core," *Nature*, 403:456-460, 2000.

Koide et al., "Teaching an old scaffold new tricks: Monobodies constructed using alternative surfaces ofthe FN3 scaffold" J Mol. Biol., 2012, 415:393-405.

Koide et al., "High affinity single-domain binding proteins with a binary-code interface," *Proc. Natl. Acad. Sci.*, 104:6632-6637, 2007. Koide et al., "Monobodies:antibody mimics based on the scaffold of fibronectin type III domain," *Methods Mol Biol* 35:95-109, 2007. Koide et al., "Stabilization of a fibronectin type III domain by the removal of unfavorable electrostatic interactions on the protein surface," *Biochemistry*, 40:20326-33, 2001.

Koide et al., The fibronectin type III domain as a scaffold for novel binding proteins, *J Mol Biol.*, 284:1141-1151, 1998.

Kojima et al., "Importance of terminal residues on circularly permutated *Escherichia coli* alkaline phosphatase with high specific activity," *J Biosci Bioeng*, 100:197-202, 2005.

Kunkel et al., "Rapid and efficient site-directed mutagenesis without phenotypic selection," *Methods Enzymol*, 154:367-382, 1987.

Laura et al., "The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF," *J Biol Chem*, 277:12906-12914, 2002.

Law, Brian. *Immunoassay, a practical guide*. Abingdon-United Kingdom, United Kingdom, Taylor & Francis, 2005, table of contents only.

Lo Conte et al., "The atomic structure of protein-protein recognition sites," *J. Mol Biol*, 285:2177-2199, 1999.

Looger et al., "Computational design of receptor and sensor proteins with novel functions." *Nature*, 423:185-90, 2003.

Lu et al., "Function of WW domains as phosphoserine- or phosphothreonine-binding modules," *Science* 283:1325-8, 1999. Main et al., The three-dimensional structure of the tenth type III cell adhesion module of fibronectin: an insight into RGD-mediated interactions, *Cell*, 71:671-678, 1992.

Mak et al., "Computational enzyme design: transitioning from catalytic proteins to enzymes" Curr. Opin. Struct. Biol., 2014, 27:87-94.

Martinez et al., "Thermodynamic analysis of alpha-spectrin SH3 and two of its circular permutants with different loop lengths: discerning the reasons for rapid folding in proteins," *Biochemistry* 38:549-59, 1999.

Miyawaki et al., "Dynamic and quantitative Ca2+ measurements using improved cameleons," *Proc Natl Acad Sci USA*, 96:2135-40, 1999

Miyawaki et al., "Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin," *Nature* 1997, 388:882-7.

Murphy et al., "Substrates for cell adhesion prepared via active site-directed immobilization of a protein domain," *Langmuir*, 20:1026-1030, 2004.

Nguyen et al., "Evolutionary optimization of fluorescent proteins for antracellular FRET," *Nat Biotechnol*, 23:355-60, 2005.

Nioche et al., "Crystal Structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor," *J Mol Biol*, 315:1167-77, 2002.

Nourry et al., "PDZ domain proteins: plug and play!," *Sci STKE*,RE7, 2003

Ohnishi et al., "Solution Confirmation and Amyloid-like Fibril Formation of a Polar Peptide Derived from a β-Sheet," *J Mol Biol*, 301:477-489, 2000.

Olson et al., "Design, expression and stability of a diverse protein library based on human fibronectin type III domain," *Protein Science*, 16:476-484, 2007.

Ostermeier et al., "Engineering allosteric protein switches by domain insertion," *Protein Eng Des Sel*, 18:359-64, 2005.

Osuna et al., "Improving a circularly permuted TEM-1 beta-lactamase by directed evolution," *Protein Eng*, 15:463-70, 2002. Ottiger et al., "Measurement of J and dipolar couplings from simplified two dimensional NMR spectra," *J Magn Reson*, 131:373-8, 1998.

Pankov et al., "Fibronectin at a glance" J Cell Sci., 2002, 115(pt20):3861-3863.

Panni et al., "In vitro evolution of recognition specificity mediated by SH3 domains reveals target recognition rules," *J. Biol. Chem*, 277:21666-74.

Partial Supplemental Search Report and Provisional Opinion for EP16828310.9, dated Dec. 5, 2018.

Pawson et al., "Assembly of a cell reulatory systems through protein interaction interaction domains," *Science*, 300:445-52, 2003.

Pham et al., "NMR studies of Borrelia burgdorferi OspA, a 28kDa protein containing a single-layer β -sheet," J Biomol NMR, 11:407-414, 1998.

Plaxco et al., "A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules," *J Mol Biol.*, 270:763-770, 1997.

Plaxco et al., "Rapid refolding of proline-rich all-beta-sheet fibronectin type III module," *Proc. Natl. Acad. Sci. USA*, 93:10703-10706, 1996

Portnoff et al., "Ubiquibodies, Synthetic E3 Ubiquitin Ligases Endowed with Unnatural Substrate Specificity for Targeted Protein Silencing", *The Journal of Biological Chemistry* 289:11,7844-7855.2014.

Prestegard., "New techniques in structural NMR-anisotropic interactions," *Nature Struct Biol*, 5:517-522, 1998.

Rahuel et al., "Structural basis for specificty of Grb2-SH2 revealed by a novel ligand binding mode," *Nat Struct Biol* 3:589-9, 1996. Reina et al., "Computer-aided design of a PDZ domain to recognize new target sequences," *Nat. Struct Biol.*, 9:621-7, 2002.

Rippmann et al., "Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis," *Cell Growth Differ* 11:409-16, 2000.

Robert et al., "Tumor targeting with newly designed biparatopic antibodies directed against two different epitopes of the carcinoembryonic antigen (CEA)" *Int. J. Cancer* 1999, 81, 285-291. Schlessinger et al., "SH2 and PTB domains in tyrosine kinase signaling," *Sci STKE*, RE12, 1999.

Schmitt et al., "Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity" Protein Eng., 2002, 15:595-601.

Sechler et al., "Modulatory Roles for Integrin Activation and the Synergy Site of Fibronectin during Matrix Assembly" Molec. Biol. Cell., 1997, 8(12):2563-2573.

Sha et al., "Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains" Proc Natl. Acad. Sci. U.S.A., 2013, 110:14924-14929. Shaner et al., "A guide to choosing fluorescent proteins," *Nat*

Shaner et al., "A guide to choosing fluorescent proteins," *Nat Methods*, 2:905-9, 2005.

Shierle et al., "The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the *Escherichia coli* periplasma via the signal recognition particle pathway," *J Biotechnol*, 185:5706-13, 2003.

Sidhu et al., "Phage display for selection of novel binding peptides," *Methods Enymol*, 328:333-363, 2000.

Skelton et al., "Origins of PDZ domain binds with high affinity and specificity structure. Structure determination and mutagenesis of PDZ domain," *J Biol Chem.*, 278:7645-7654, 2003.

Skerraa, "Engineered protein scaffolds for molecular recognition," *J. Mol. Recognit.*, 13(4):167-87, 2000.

Song et al., "Cloning and expression of a β -Galactosidase Gene of Bacillus Circulans" Biosci. Biotechnol. Biochem., 2011, 75:1194-1197

Songyang et al., "A single point mutation switches the specificity of group III Src homology," $J\ Biol\ Chem\ 270:26023-32,\ 1995.$

Songyang et al., "Recognition and specificty in protein tyrosine kinase-mediated signalling," *Trends Biochem Sci*, 20:470-5, 1995. Songyang et al., "SH2 Domains Recognize Specific Phosphopeptide Sequencess," *Cell*, 72:767-78, 1993.

Starkenburg et al. "Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitrobacter Winogradskyi Nb-255." *Applied and Environmental Microbiology* 2006, 72(3), pp. 2050-2063

(56) References Cited

OTHER PUBLICATIONS

Steiner et al., "Signal sequences directing cotransitonal translocation expand the range of proteins amenable to phage display," *Nat Biotechnol.*, 24:823-31, 2006.

Steitz et al., "Structural dynamics of yeast hexokinase during catalysis," *Philos. Trans. R. Soc. Lond. B. Biol Sci.*, 293:43-52,1981. Stern et al., "Tyrosine kinase signaling in breast cancer: ErbB family receptor tyrosine kinases," *Breast Cancer Res*, 2:176-83, 2000.

Tenev et al. "Both SH2 Domains Are Involved in Interaction of SHP-1 with the Epidermal Growth Factor Receptor but Cannot Confer Receptor-Directed Activity to SHP-1/SHP-2 Chimera." *Journal of Biological Chemistry* 1997, 272(9), 5966-73.

Tjandra et al., "Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion," *Nature Struct Biol*, 4:443-449, 1997. Tsien et al., "Seeing the machinery of live cells," *Science*, 280:1654-5, 1998.

Van der Veen et al., "Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α -cyclodextrin production" J Mol. Biol., 2000, 296:1027-1038.

VanAntwerp et al., "Fine affinity discrimination by yeast surface display and flow cytometry," *Biotechnol Prog* 16:31-7, 2000.

Verdecia et al., "Structural basis for phosphoserine-proline recognition by group IV WW domains," *Nat Struct Biol* 7:639-43, 2000. Weiss et al., "The development of molecular clams as drugs," *Drug Discovery Today*, 11:819-824, 2006.

Wiedemann et al, "Quantification of PDZ domain specificty, prediction of ligand affinity and rational designe of super-binding peptides," *J. Mol. Biol.*, 343:703-18, 2004.

Wilks et al., "A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework" Science, 1988, 242:1541-1544.

Wojcik et al., "A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain" Nat. Struct. Mol. Biol., 2010, 17:519-527. Xu et al., "Directed evolution of high-affinity antibody mimics using mRNAdisplay," *Chem Biol*, 9:933-942, 2000.

Yaffe et al., "A motif-base profile scanning approach for genomewide prediction of signaling pathways," *Nat. Biotechnol*, 19:348-353, 1998.

Yaffe et al., "PhosphoSerine/threonine binding domains: you can pSERious?" *Structure* 9:R33-8, 2001.

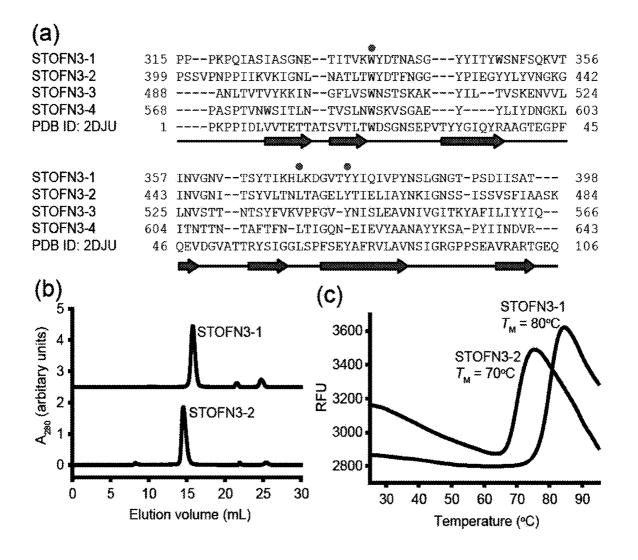
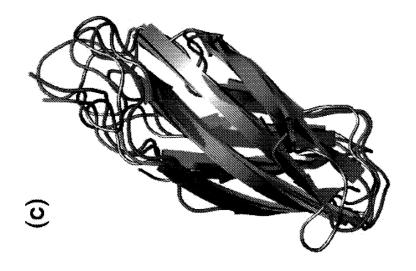
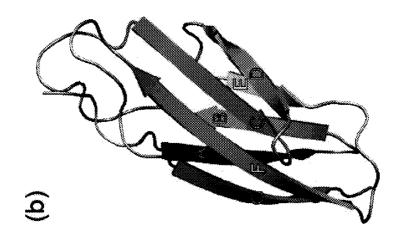
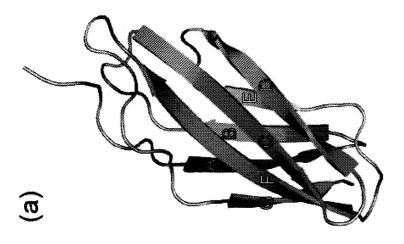
Yan et al., "Themodynamic and Kinetic Exploration of the Energy Landscape of Borrelia burgdorferi OspA by Native-state Hydrogen Exchange," *J Mol Biol*, 323:363-75, 2002. Yang et al., "TROSY-based HNCO pulse sequences for the mea-

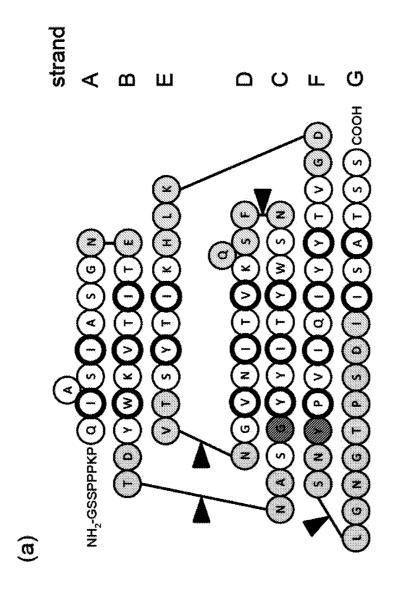
Yang et al., "TROSY-based HNCO pulse sequences for the measurement of 1HN-15N, 15N-13CO, 1HN-13CO, 13CO-13Ca and 1HN-13Ca dipolar couplings in 15N, 13C, 2H-labeled proteins," *J Biomol NMR*, 14:333-343, 1999.

Zhang et al., "Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families," *J Biol. Chem.*, 281:22299-311, 2006.

Zucconi et al., "Domain repertoires as a tool to derive protein recognition rules," FEBS Lett, 480:49-54, 2000.

* cited by examiner


FIG. 1A-C

(<u>a</u>)							
	AB	BC	CD	DE	EF	FG	ار (گ
STOFN3-1	ASGNETIT	WYDTNASG	WSNFSOK	VGNVTSY	IKHLKDGVT	PYNSLGNGTPSDII	80.0
STOFN3-1/ABSer	ASSSSSIT	WYDTNASG	WSNESQK	VGNVTSY	IKHLKDGVT	PYNSLGNGTPSDII	79.0
STOFN3-1/BCSer	ASGNETIT	WYSSSSSW	WSNFSOK	VGNVTSY	IKHLKDGVT	PYNSLGNGTPSDII	74.7
STOFN3-1/CDSer	ASGNETIT	WYDTNASG	WSSSSOK	VGNVTSY	IKHLKDGVT	PYNSLGNGTPSDII	82.2
STOFN3-1/DESer1	ASGNETIT	WYDTNASG	WSNFSOK	VGSSSSV	IKHLKDGVT	PYNSLGNGTPSDII	81.7
STOFN3-1/DESer2	ASGNETIT	WYDTNASG	WSNESOK	VSSSSSV	IKHLKDGVT	PYNSLGNGTPSDII	54.3
STOFN3-1/EFSer	ASGNETIT	WYDTNASG	WSNFSQK	VGNVTSY	IKSSSSSVT	PYNSLGNGTPSDII	64.0
STOFN3-1/FGSer1	ASGNETIT	WYDTNASG	WSNESOK	VGNVTSY	IKHLKDGVT	PYSSSSSSSDII	66.7
STOFN3-1/FGSer2	ASGNETIT	WYDTNASG	WSNESOK	VGNVTSY	IKHLKDGVT	PSSSSSSSPSDII	0.09
STOFN3-1/FGSer3	ASGNETIT	WYDTNASG	WSNFSOK	VGNVTSY	IKHLKDGVT	PYSSSSSSSSDII	63.2
STOFN3-1/FGSer4	ASGNETIT	WYDTNASG	WSNESOK	VGNVTSY	IKHLKDGVT	PSSSSSSSSSSII	62.0
STOTEMP3*	ASGPETIT	WYDTNASG	WSSSSOK	VGNVTSY	IKHLKPGVT	PYNSLGNGTPSDII	>95.0
STOTEMP4*	ASGPETIT	WYDTNASY	WSSSSOK	VGNVTSY	IKHLKPGVT	PVNSLGNGTPSDII	>95.0
STOTEMP4*/FGSer5 ASGPETI	ASGPETIT	WYDTNASY	WSSSSOK	VGNVTSY	IKHLKPGVT	PVSSSSSSSDII	89.3
STOTEMP4*/FGSer6 ASGPETI	ASGPETIT	WYDTNASY	WSSSSOK	VGNVTSY	IKHLKPGVT	PYSSSSSSSDII	82.8
STOTEMP4*/FGSer7 ASGPETI	ASGPETIT	WYDTNASY	WSSSSOK	VGNVTSY	IKHLKPGVT	PSSSSSSSSDII	86.5
*C-terminal extented.							

)									
	BC		CD		DE		FG		(S) 1.
STOFN3-1	WYDT	NASG	WSN	-FSQ	VGN	-VTSY	PYNS	LGNGTPSDII	80.0
STOFN3-1/BC+2 WYDTSS	WYDTSS	NASG	WSN	-ESQ	VGN	-VTSY	PYNS	LGNGTPSDII	80.3
STOFN3-1/BC+4 WYDTSSSS	WYDTSSSS	NASG	WSN	-FSQ	VGN	-VTSY	PYNS	LGNGTPSDII	76.7
STOFN3-1/BC+8 WYDTSSSSSSSNASG WSN-	WYDTSSSSSS	SNASG	WSN	-FSQ	VGN	-VTSY	PYNS	LGNGTPSDII	7.77
STOFN3-1/CD+2 WYDT	WYDT	NASG	WSNSS	-ESQ	VGN	-VTSY	PYNS	LGNGTPSDII	71.7
STOFN3-1/CD+4 WYDT	WYDT	NASG	-NASG WSNSSSS	-FSQ VGN-	VGN	-VESY	PYNS	LGNGTPSDII	70.0
STOFN3-1/CD+8 WYDT	WYDT	NASG	-NASG WSNSSSSSSSFSQ VGN-	SESÕ	VGN	-VTSY	PYNS	LGNGTPSDII	67.7
STOFN3-1/DE+2 WYDT	WYDT	-NASG	WSN	-FSQ	-FSQ VGNSS	-VTSY	PYNS	LGNGTPSDII	55.8
STOFN3-1/DE+4 WYDT	WYDT	-NASG WSN-	WSN	-ESQ	-FSQ VGNSSSSVTSY	-VTSY	PYNS	LGNGTPSDII	55.0
STOFN3-1/DE+8 WYDT	WYDT	NASG	WSN	-FSQ	FSQ VGNSSSSSSSVTSY	SVTSY	PYNS	LGNGTPSDII	54.8
STOFN3-1/FG+2 WYDT	WYDT	-NASG	WSW	-FSQ	VGN	VTSY	PYNSSS	LGNGTPSDII	68.2
STOFN3-1/FG+4 WYDT	WYDT	-NASG	WSN	-FSQ	-FSQ VGN	VTSY		PYNSSSSSLGNGTPSDII	68.0
STOFN3-1/FG+8 WYDT	WYDT	-NASG WSN-	WSN	-FSQ	VGN	VTSY	PYNSSSSSSS	PYNSSSSSSSSSSLGNGTPSDII	67.2

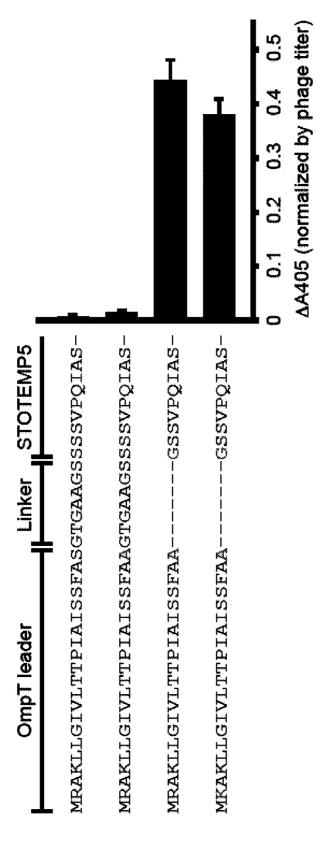


FIG. 5

4			40.2									
(a)	iarger	Cione	K (MM)	Ammo acid sequece	93							
BC FG				315 320	330 18	BC	350	DE	370	9	380 FG	400
				•	•		•	•	•		•	•
		Library		asssypolasiascpetiivkam (k)nyyiitymssssokytinvg(x.,sytikbikpgytyyiolyp (x)	PETITVKWY (X.,)XY	(ITYRSSSS)	KVIINVG(X	SYTIKELK	PGVIYYI	OIVP (X,,,,)	-PSDIISATPSSs
というと	VSUMO	SUMOMBL03	63±18	SSSSVPQIASIAS	SPETITVK#YD	TRASYY	TIYMSSSS	KVT INVGR?	VSYTIKELE	PGVIYYI	sssypūtastasgpetitykandtnas——yyyitymssssokytinverpysytknikpeytyiotypyyžepsdprngipsdifatpss	PSDIISATPSSS
	YSUMO	SUMOMINE 14	44 ±15	SSSSVPQIASIAS	SPETITVKHYD	TRASYY	TIYWSSSS(KVTINVGSP	SYTIKELK	PGVTYYI(sssypqiasiasgpetitykaydinasyyyitymssssgkytinygspisytikhikpgytyiqivpyytisperyyi-psdiisatpss	-PSDIISATPSSs
	90	MEPWIN 08	12±3	SSSTVPOIRSIAS	PETITVKWYN	SSYYWSPFYY	(IIIMSSSS(KVTINVGNV	ISYTIKELK	PGVIYYIK	sssypolasiasgpeiitvanykssyrmspryxiitymssssokytinvgnvisytikhikpgytyyiotvpywyytprys-psdiisaipsb	-PSDIISATPSSs
	20	MBPMbL17	41+14	SSSVPQIASIAV	PETITVKWYR	IPRAYYY	(ITYRSSSS)	KVTINVGNV	ISYTIKELK	PGVIYYI	sssvpqiasiavgpeiitvxmyrledaayyiitvmssssqxviinvgnvisytikbikegvtyyiqivpyyespwilsyg-psdiisatessb	-PSDIISATPSSs
2 G 4 5	EGFP	EGFPMb/24	8F 8G	SSSSVPQIASIAS	SPETITVKWYS	EYSKYYY	IITYWSSSS(SEVIENVENT	ISYTIKELK	PGVIYYIC	asssupolasiasgpetitukkayahetsnyyyyiiyasssorvy iawantsytikhikegktyyiolvedagydks	-PSDIISATESS3
	EGFP	EGFPMb/26	73 FJ	SSSSVPQIASIAS(SPETITYKHYD	AIYIVI	(IIXWSSSS)	KVTINVGNV	TSYTIKHLK	PGVTYYI(sssypolasiasgpetiivampalytytyyyiiymssssokviinvgnyesyiihhikpgytyyiolvpesgwyskw	-PSDIISATPSSs
	AbiSH2	ADISH ZMDL03	105±11	SSSTVPQIASIAS	PETITVKNY	WAYGE-YY	(III'MSSSS)	KVTINVGRR	YSYTIKHLK	PGVIYYI	sssypolasiasopetiivkanfrvayes——inyiitasssokviinvgrrystikhikpgytytiolvpvisigaet———	-PSDIISATPSSs
	AbiSH2		78±18	SSSVPQIASIASGPETITVKWYYSIDV	PETITVKWYY	YSIDVYN	IITYNSSSS(KVT INVGPQ	TSYTIKELE	PGVIYYI	-yyyiiywssssoxyiinvgpotsyiikhikpgytyyioivpysfysdsdygyy-psdiisaipsss	-PSDIISATPSSs
	NSH2	NSH2Mbl 06	84 178	SSSVPQIASIASGPETITVKWYPIGY-	SPETITVKWYP		/ITYWSSSS/	KVIINVGYR	KSYTIKELK	PGVIYYI	-YYYITYWSSSSQRYTINVGYRXSYTIKHIKPGYTYYIQIVPRYYLSSXGATPPSDIISATPSSB	-PSDIISATPSSs
N.	NSH2	NSH2Mbl.10	158 ±54	SSSVPQIASIASGPETITVKWYFTGY-	SPETITVKNYF		/ITYWSSSS/	KVTINVGYR	KSYTIKHLK	PGVTYYIK	YIYIIYMSSSSQXVIINVGYRNSYIIKHLKPGVIYYIQIVPASYVVPYDIPSDIISAIPSSB	-PSDIISAIPSSs
)	CSHZ	CSH2Mbl.01	67±17	SSSSVPOIASIASGPETITVKHYDINAS-	SPETITVK#YD	- 1	11145555	KVTINVGRM	HSYTIKHLK	PGVIYYIC	-yyyithwssssonytinvgrmsytikhikpgytyyioiveggadyrmih-psdiisatpss	-PSDIISAIPSSs
	CSH2	CSH2MbL03	103 ±53	SSSVPQIASIASGPETITVR#YDTMAS-	PETITVKWYD		111795555	KVTINVGRM	YSYTIKHLK	PGVIYYI	- VYYITYWSSSSGKVTINVGRZYSYTIKHLKPGVTYYIQIVPGGK35PTYTWY PSDIISATPSSS	-PSDIISAIPSSs
(Q)	Target	Clone	K, (nM)	Amino acid sequece	8							
2				315 320	330	25.	8	360	370	38	380 FG	400
				•	•	•	•	•	•	•		•
		Library		SSSSVPQIASIAS	PETITVENTO	TRASYYIBY	73 (X,) 2ZV	ZIZVGNVIS	YTIKHLKPG	VIVIOIN	SSSVPQIASIASGPETIIVKWYDTWASYYYIBYUS (K.,.) ZZVZIZVGWYTSYTIKHIKPGVIYYIQIVP (K.,)PSDIISAIPSSS	DIISAIPSSa
へのして、よ	VSUMO	SUMOMBSDB	65±16	SSSSVPOIRSIAS	PPETITYKWYD	THASYTYITY	RIGITREA	KIEVGNVTS	YTIKHLKPG	VIYYIQIV	SSSVPQIASIRSGPETITVWWYDTNASYTIYWSLQTYRRRAVKIRYGWTSYTIKHIKPGVTYTOTVPFREFGFGWYSGDPSDISATPSSS	DIISATPSSs
	VSLIMO	SUMOMBS20	95 ± 26	SSSVPOIASIAW	PETITVKWYD	THRSTYTY	SKEPKKV	KIEVGMVTS	YTIKHLKPG	VIVIOUS	sssypolasiavgpetitykhydinasyyyixyhskrekkvzevgkytsytikhekpgytyiolypetsyydlysgdisatess	DIISATESSS
	ySUMO		97 127	SSSSVPQIASIAS(PETITUKNYD	THASYTYTY	SGPYYYKK,	TITVENVIS	YTIKHLKPG	VIYILLI	sssypolasiasgpetiivknydinasyyiiynsepyyyknyiivgnyisyiikhikpgytyyioivpyhykdroyyy-psdiisaipss	DIISATPSSs
	9	MBPMbS01	33±13	SSSSVPOIRSIAS	SPETITUKEYD	THASYYYISY	PSADYDSEAN	RIAWENTE	YTIKHLKFG	VIYYIQIY	sssypqiasiasgpetiitykydinasyyyistwsadydseavalaygkytyytkhikpgytyyiqivpykansyypgygyddisaipsss	DIISATPSSa
G F D		MBPMbS09	1 ∓6	SSSSVPQIASIAS	SPETITVKWYD	THASYYYISY	SYSTETV	RIAVGNVTS	YTIKHLKPG	VIYYIQIY	sssypqlasiasgpetityknydtnasyyisygsys-atyalavgnytsytikhlkpgyty1olypyysyrppsysypdisatpssb	DIISATPSSB
レ		MBPMbS12	484 ±66	SSSSVPQIASIAS	SPETITVENYD	THASYYYIST	RGOSETA	MIEVGNVTS	YTIKHLKPG	VIVIOUS	sssvpqiasiasgpiiivkmydinasyyisvmsggs2ivalevgnvisyiikalkrgytviiqivpvypgyyv-psdiisaipss	DIISATPSSB
	EGFP	EGFPMbS04	47	SSSVPOIASIAW	SPETITVKWYD	THASYYVIDY	SHEEIL	ELAWGAVIS	YTIKHLKPC	VIVIOUS	assspoqiasiavgoetiivkavdiaasyrvidyashee—Eiveiavgaatsytiikhekpgytyiqivpyygdghlgl——Psdiisatdss	DIISATESSa
	EGFP	EGFPMDS05	¥.	SSSSVPQIASIASGPETITVKWYDTWASYYYIDYWSYSKZTVTIEVGNVTSYTIKALKPGVTYYIQIVPYYGPSLGQ-	PETITVENYD	THASYTYLDY	PSYSKEIV	TIEVENVIS	YTIKHLKFG	VIYYIQIY	Ì	-PSDIISAIPSSa
	EGFP	EGFPMbS12	417	SSSSVPQIASIAS	SPETITVKWYD	THASYTYIDY	SYGI-ETA	TINVENTE	YTIKHLKPG	VIVYIOIV	sssypqiasiasgpetitumndinasyyyiddhsyggetytinvgnvisytikhekpgytyiqivpyyygu.apsdiisatpssb	DIISATPSSB
	ADISH2	ADSHZMDS01	71±10	SSSSVPQIASIASGRRIIIVKAYDIMASYYYIYYWSIMWYSLZVZINVGNVISYIIKALKRGVTYYIQIVPVMSLGNGI	PETITVKWYD	TRASYTYITY	STREVSEE.	TINVENTE	YTIKHLKPG	VIYYIQIY	- j	-PSDIISATPSSa
9	APISTS		13±6		SPETITVKWYD	THASFYYIYT	STYPVIEE	EIKVGNVTS	YTIKHLKPG	VIYYIQIY	sssspolasiasgpetiivkmydinasprviiyimsiypviteveikvgnvisytikhekpgvyyxiolvpqynylgagypsdiisaipsss	DIISATPSSa
	AbiSH2	AbiSH2MbS07	827 ±140		PETITVKNYD	THASYYYIYY	SSYPVIEE	TIKVGNVIS	YTIKHLKPG	VIYYIQIY	sssypolasiasgpelitvenyddaasylviivinssypviizveikvgnyisytikhiargytyijoivegyssypyilspsdiisaipssa	DITSATPSSB

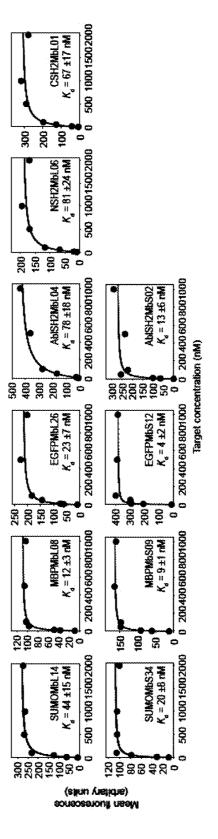


FIG. 6C

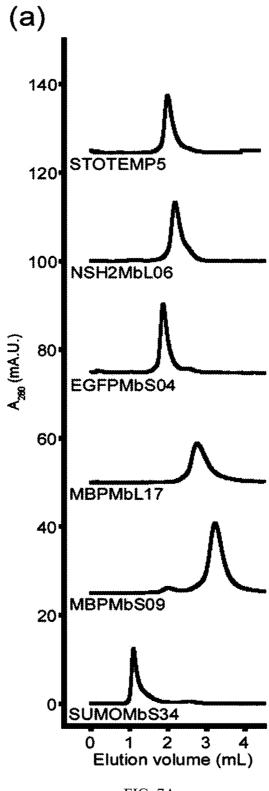


FIG. 7A

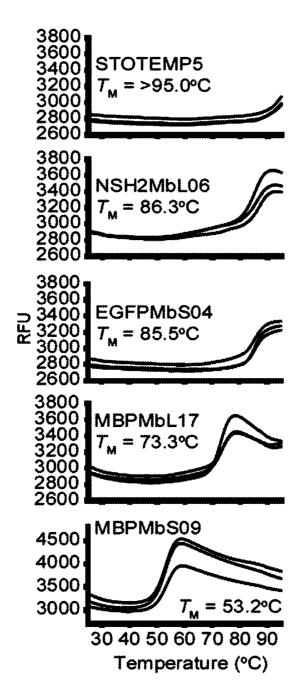
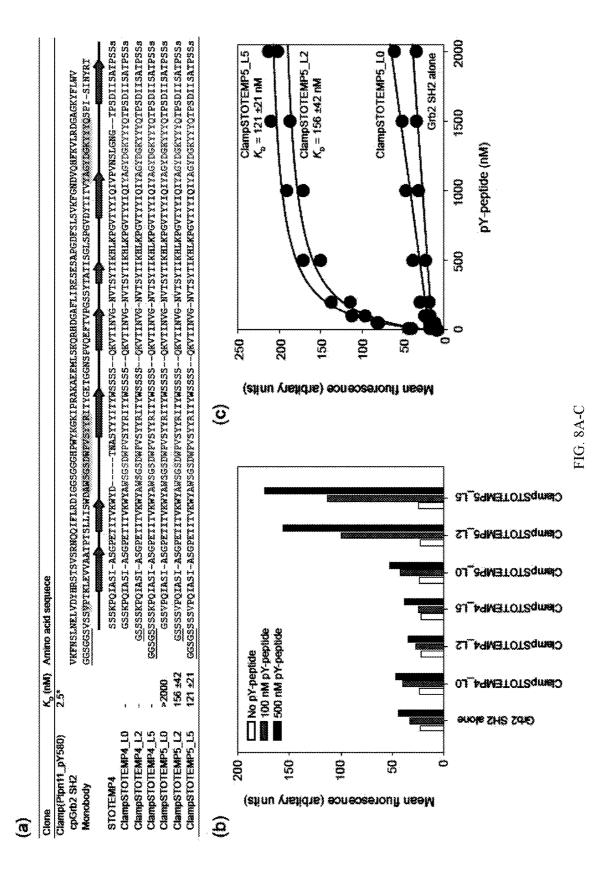
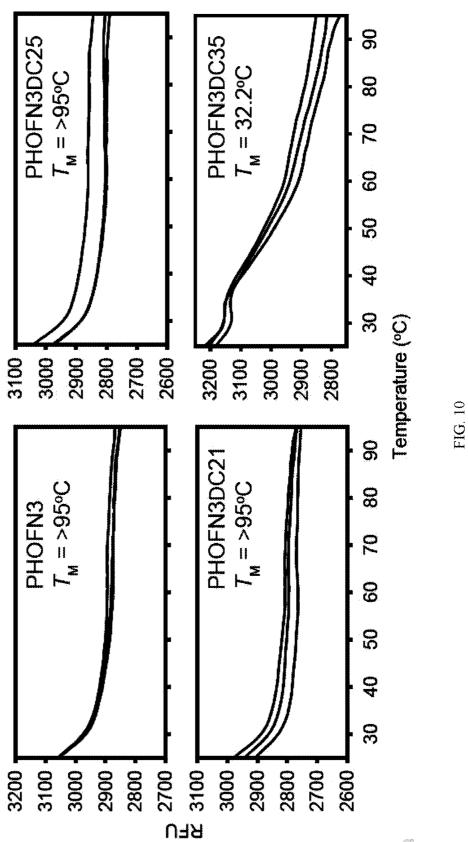



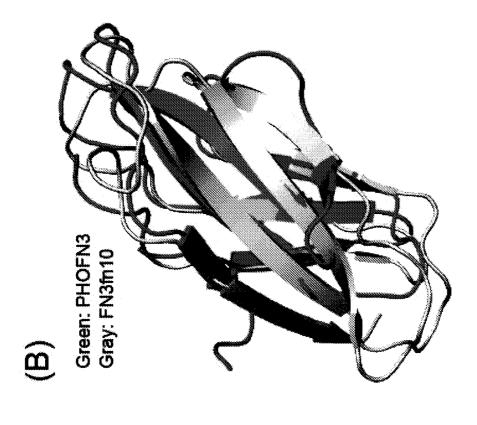
FIG. 7B

(c)

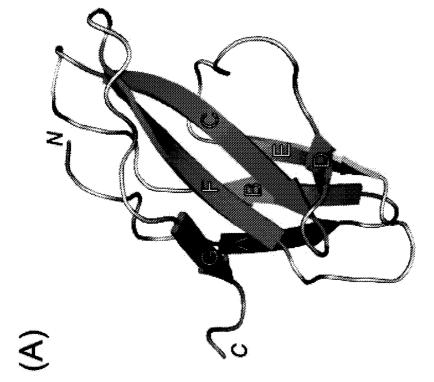
	Oligomerization state	Themal stability $(T_{\mathrm{M}}, {}^{\mathrm{o}}\mathrm{C})$
STOTEMP5	Monomeric	>95.0
SUMOMbL03	Monomeric	63.5
SUMOMbL14	Monomeric	63.5
MBPMbL08	Large aggregate	der
MBPMbL17	Late elution*	73.3
EGFPMbL24	Monomeric	54.2
EGFPMbL26	Late elution*	53.5
AbiSH2MbL03	Monomeric	74.0
AbiSH2MbL04	Monomeric	69.5
NSH2MbL06	Monomeric	86.3
NSH2MbL10	Monomeric	80.5
CSH2MbL01	Late elution*	64.8
CSH2MbL03	Late elution*	66.5
	Mean	68.1 ±10.1
SUMOMbS08	Large aggregate	,
SUMOMbS20	Monomeric	53.5
SUMOMbS34	Large aggregate	
MBPMbS01	Late elution*	53.7
MBPMbS09	Late elution*	53.2
MBPMbS12	Monomeric	53.5
EGFPMbS04	Monomeric	85.5
EGFPMbS05	Monomeric	70.2
EGFPMbS12	Monomeric	66.0
AbiSH2MbS01	Monomeric	71.0
AbiSH2MbS02	Monomeric	53.5
AbiSH2MbS07	Monomeric	50.5
	Mean	61.1 ±11.6

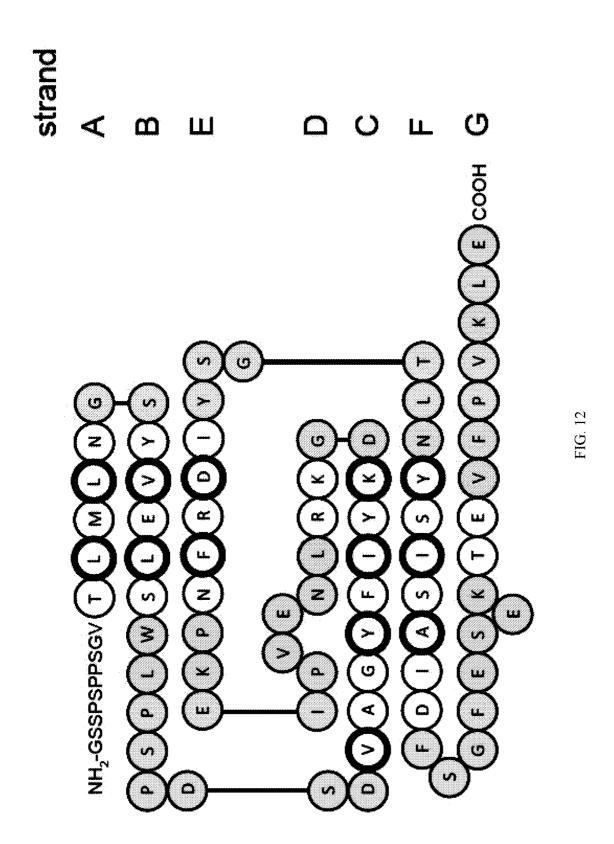
^{*}Mono-dispersed single peak

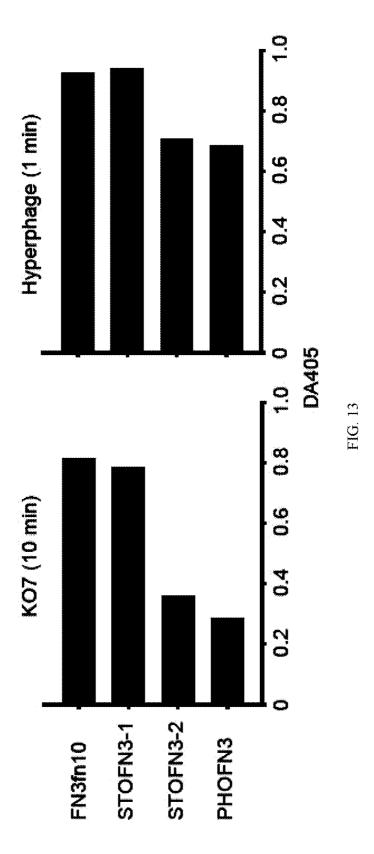

236 KPN--FRDIYSGT-LNYSISAIDFSGFESEKTEVFPVKLEVDEENLTA 1963 ETSYTFKKLNRHTIYNFKIAAK-YSNGEVSSKESLTLRT 9 片 DI. 1919 199


PDB ID: 2W1N

PHOFN3







1

METHODS AND COMPOSITION INVOLVING THERMOPHILIC FIBRONECTIN TYPE III (FN3) MONOBODIES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase application under 35 U.S.C. § 371 of International Application No. PCT/US2019/018866 filed Feb. 21, 2019, which claims the benefit of priority of U.S. Provisional Patent Application No. 62/634, 616 filed Feb. 23, 2018, all of which are hereby incorporated by reference in their entirety.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under GM090324 awarded by the National Institutes of Health. The government has certain rights in the invention.

SEQUENCE LISTING

The application contains a Sequence Listing prepared in compliance with ST.25 format and is hereby incorporated by 25 reference in its entirety. Said Sequence Listing, created on Oct. 10, 2022 is named ARCD.P0616US_ST25 and is 114,037 bytes in size.

BACKGROUND OF THE INVENTION

Field of the Invention

Embodiments are directed generally to biology, medicine, and protein engineering.

Background

The fibronectin type III domain (FN3) has been established as an effective non-antibody, "alternative" scaffold for 40 the generation of novel binding proteins. A member of the immunoglobulin superfamily, FN3 has three surface exposed loops at one end of the molecule which are analogous to antibody CDRs. Engineering strategies using this scaffold are based on combinatorial libraries created by 45 diversifying both the length and amino acid sequence of these surface loops. From such libraries, FN3 variants capable of binding to a target of interest can be isolated using various selection methods. The utility of the FN3 scaffold has been demonstrated in producing high-affinity binding 50 proteins to a number of different protein targets (reviewed in Bloom and Calabro, 2009). These binding proteins generated from this scaffold are referred to as monobodies. The FN3 scaffold offers many advantages compared to conventional antibodies or fragments thereof because it lacks 55 disulfide bonds, can be readily and highly expressed in bacterial systems, and is relatively small.

The FN3 scaffold has produced high-affinity binding proteins to a number of distinct targets, achieving dissociation constants in the low- to mid-nanomolar range and as 60 low as 1.1 picomolar (Bloom and Calabro, 2009; Hackel et al., 2008). Binding proteins based on the FN3 domain have also been used in a number of applications including, conformation specific purification of a target protein (Huang et al., 2006), probing protein conformational changes in 65 cells (Koide et al., 2002), antagonism of a growth factor receptor for therapeutic use (Getmanova et al., 2006), inhi-

2

bition of virus replication (Liao et al., 2009), and specifically inhibiting a protein-protein interaction in cells (Wojcik et al., 2010).

The ability to generate novel binding proteins capable of interacting with other proteins with high-affinity and/or specificity is important in biotechnology, medicine and molecular biology. Such designer binding proteins can be used in numerous applications. They can be used to label a protein of interest for detection and visualization, to purify a target protein from a complex mixture or to functionally perturb a target by blocking a functional site. Because of their broad utility, there is a need to develop strategies for producing novel binding proteins quickly and effectively and with improved stability prperties. To date, FN3-based binding proteins have been constructed by selections from combinatorial libraries in which loop regions are diversified (Bloom and Calabro, 2009).

SUMMARY OF THE INVENTION

The present application describes various compositions and methods for the production and use of FN3-based binding proteins with improved stability properties. Aspects of the disclosure relate to polypeptides comprising a variant fibronectin type III (FN3) domain from *Sulfolobus tokodaii* that includes one or more amino acid substitutions or insertions in a loop region of FN3, in a non-loop region of FN3, or in both.

In some embodiments, a polypeptide comprises a nonvariant FN3 domain. In particular embodiments, the nonvariant FN3 domain comprises at least 70% identity to SEQ ID NO:1. In some embodiments, the non-variant FN3 domain comprises SEQ ID NO: 1. In further embodiments, the non-variant FN3 domain comprises a polypeptide with at least 70% identity to SEQ ID NO:2 (STOFN3-2), 3 (STOFN3-3), or 4 (STOFN3-4). In some embodiments, the non-variant FN3 domain comprises SEQ ID NO:2, 3, or 4. In some embodiments, the amino acid substitution comprises one or more substitutions of the FN3 domain corresponding to amino acid positions 1, 2, and 3 of SEQ ID NO:1. In some embodiments, the amino acid substitutions at one or more positions corresponding to amino acid positions 1, 2, and/or 3 of SEQ ID NO:1 are a substitution with a hydrophilic amino acid or combinations thereof. In some embodiments, the amino acid insertion comprises one or more amino acid insertions of the FN3 domain after the amino acid corresponding to amino acid position 84 of SEQ ID NO:1. In some embodiments, the amino acid insertion comprises 1-3 amino acids. In some embodiments, the inserted amino acids are proline and serine or combinations thereof. In some embodiments, the substitution comprises one or more substitutions of the FN3 domain corresponding to amino acid positions 4, 14, 28, and 58 of SEQ ID NO:1. In some embodiments, the substitution corresponding to amino acid position 4 of SEQ ID NO:1 is with a valine. In some embodiments, the substitution corresponding to amino acid position 14 of SEQ ID NO:1 is with a proline. In some embodiments, the substitution corresponding to amino acid position 28 of SEQ ID NO:1 is with a tyrosine. In some embodiments, the substitution corresponding to amino acid position 58 of SEQ ID NO:1 is with a proline. In some embodiments, the one or more amino acid substitutions or insertions in the non-loop segment is in one or more of beta strand C or beta strand D. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 28, 29, 30, 31, 32, 33, 34, or 35 of SEQ ID NO:1. In some embodiments, the one or more amino acid

substitutions or insertions correspond to or after positions 38, 39, 40, 41, 42, 43, 44, 45, or 46 of SEQ ID NO:1. In some embodiments, the one or more amino acid substitutions or insertions in the loop region of FN3 are in the BC loop, DE loop, FG loop and/or CD loop. In some embodiments, the DE loop does not comprise any inserted amino acids. In some embodiments, the EF loop comprises less than 3 substitutions or insertions. In some embodiments, the FN3 domain does not have substitutions at amino acid positions corresponding to positions 69 and 77 of SEQ ID NO:1. In some embodiments, the polypeptide further comprises a non-FN3 polypeptide that enhances the FN3 polypeptide binding affinity for a target molecule. In some embodiments, the polypeptide comprises or further comprises an insertion or deletion of at least 1 amino acids in at 15 least one loop region of FN3. In some embodiments, at least one loop region of FN3 comprises an insertion of at least 2 amino acids. In some embodiments, at least one region of FN3 comprises an insertion of 2 to 25 amino acids in at least one loop region. In some embodiments, at least two loop 20 regions comprise an insertion. In some embodiments, at least one loop region of FN3 comprises a deletion of at least 1 amino acid. In some embodiments, at least one loop region of FN3 comprises a deletion of 2 to 10 amino acids. In some embodiments, at least two loop regions comprise a deletion 25 of at least 1 amino acid. In some embodiments, the polypeptide comprises at least 1 amino acid insertion and 1 amino acid deletion in at least one loop region. In some embodiments, the polypeptide comprises an insertion and deletion of at least 1 amino acid in the same loop region. In 30 some embodiments, the polypeptide further comprises one or more serine residues immediately before amino acid 1 or immediately after amino acid 84 of SEQ ID NO:1.

In certain aspects, the insertion, deletion, or substitution, when described with respect to an amino acid at a position 35 in SEQ ID NO:1 may be the corresponding amino acid at a corresponding position in SEQ ID NO:2, 3, and/or 4. The corresponding positions are those that are aligned with the amino acid in SEQ ID NO:1 in FIG. 1.

In some embodiments, the AB, BC, CD, DE, EF, and/or 40 FG loop or A, B, C, D, E, F, or G beta-strand may have at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 amino acid substitutions, insertions and/or deletions (or combinations 45 thereof). In certain aspects, beta strand variations can be used in conjunction with variations in the AB loop, the BC loop, the CD loop, the DE loop, and/or the FG loop of FN3 to generate a polypeptide library or a nucleic acid library encoding the same. FN3 polypeptides can be modified by 50 inserting or deleting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 or more amino acids, or any range derivable therein, in a FN3 loop. In certain aspects, variations in loops AB, CD, and EF may be specifically excluded from invention, either individually or in various combinations. In some embodiments it is 55 contemplated that an FN3 variant does not include a substitution, insertion and/or deletion in a bottom loop (loop AB, CD, EF). In further embodiments modifications in the bottom loop(s) is limited to 1, 2, 3, 4, or 5 or fewer substitutions, insertions, and/or deletions.

In certain embodiments, polypeptides comprise a variant fibronectin type III (FN3) domain comprising one or more amino acid substitutions in both a loop region of FN3 and in a non-loop region of FN3. In certain aspects, the one or more amino acid substitution in the non-loop segment is one or 65 more substitution in beta strand C, beta strand D, beta strand F, and/or beta strand G.

4

In certain embodiments, the polypeptide can comprise 1, 2, 3, 4 or more insertions and/or deletions of amino acids corresponding to amino acids of SEQ ID NO:1. Insertions can include, but are not limited to stretches of poly-serine, poly-alanine, poly-valine, poly-threonine, or polymers of any other of the 20 amino acids, that is subsequently mutagenized or diversified for generating a combinatorial polypeptide library. Diversification of these inserted residues can include alteration to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 of the other natural amino acids. In certain aspects 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more contiguous amino acids are inserted into one or more of the AB, BC, CD, DE, EF, FG loops of a FN3 domain polypeptide. In a further aspect, the polypeptide can comprise an insertion, a deletion, or both an insertion and a deletion. The insertion and/or deletion can be at the beginning and/or end of the polypeptide. The insertion and deletion need not be located at the same position and may be located at sites distal or proximal to each other. The insertion and/or deletion can be in a loop or non-loop portion of the FN3 domain polypeptide. In certain aspects, at least one loop region of FN3 comprises an insertion of at least 2 amino acids. In a further aspect, at least one region of FN3 comprises an insertion of 2 to 25 amino acids in at least one loop region. In certain aspects at least 2, 3, or more loop regions comprise an insertion. In certain aspects, the polypeptide has at least one loop region of FN3 comprises a deletion of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids, including all values and ranges there between. In certain aspects, at least 2, 3, or 4 loop or non-loop segments, portions, or regions comprise a deletion of at least 1 amino acid. In certain aspects, the polypeptide comprises at least one insertion and one deletion in at least one loop or non-loop region. In a further aspect, the polypeptide comprises an insertion and a deletion in the same loop or non-loop region. The term region indicates the amino acids of a particular structural segment of the polypeptide as defined by secondary structure and/or crystal structure corresponding to the amino acids of SEQ ID NO:1 or its variants.

Further aspects relate to a polypeptide comprising a variant fibronectin type III (FN3) domain from Pyrococcus horikoshii comprising one or more amino acid substitutions or insertions in a loop region of FN3, in a non-loop region of FN3, or in both. In some embodiments, the non-variant FN3 domain comprises at least 70% identity to SEQ ID NO:6. In some embodiments, the non-variant FN3 domain comprises SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or insertions in the non-loop segment is in one or more of beta strand C or beta strand D. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 13 and/or 14 of SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 20, 21, 22, 23, 24, 25, 26, and/or 27 of SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 36 and/or 37 of SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 40, 41, 42, 43, 44, 45, 46, 47, and/or 48 of SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 54, 55, 56, 57, 58, and/or 59 of SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or insertions correspond to or after positions 67, 68, 69, 70. 71, 72, 73, and/or 74 of SEQ ID NO:6. In some embodiments, the one or more amino acid substitutions or

insertions in the loop region of FN3 are in the AB loop, BC loop, CD loop, DE loop, EF loop, and/or FG loop. In some embodiments, the polypeptide further comprises a non-FN3 polypeptide that enhances the FN3 polypeptide binding affinity for a target molecule. In some embodiments, the polypeptide further comprises an insertion or deletion of at least 1 amino acids in at least one loop region of FN3. In some embodiments, at least one loop region of FN3 comprises an insertion of at least 2 amino acids. In some embodiments, at least one region of FN3 comprises an insertion of 2 to 25 amino acids in at least one loop region. In some embodiments, at least two loop regions comprise an insertion. In some embodiments, at least one loop region of FN3 comprises a deletion of at least 1 amino acid. In some embodiments, at least one loop region of FN3 comprises a deletion of 2 to 10 amino acids. In some embodiments, at least two loop regions comprise a deletion of at least 1 amino acid. In some embodiments, the polypeptide comprises at least 1 amino acid insertion and 1 amino acid deletion in at 20 least one loop region. In some embodiments, the polypeptide comprises an insertion and deletion of at least 1 amino acid in the same loop region.

In certain aspects, the polypeptide is at least or at most 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 25 99, or 100% identical (or any derivable range therein) to a polypeptide sequence of the disclosure, including any of SEQ ID NOS:1-4 or 6.

In some embodiments, the polypeptide is isolated, recombinant, a non-natural polypeptide, engineered, and/or syn- 30 thetic.

In some embodiments, the polypeptides of the disclosure bind specifically to a site on a target motif. In some embodiments, the polypeptides of the disclosure specifically bind a target motif. In some embodiments, the polypeptide further 35 comprises a polypeptide comprising a biorecognition module including a molecular recognition domain; wherein the polypeptide comprising the biorecognition molecule and the polypeptide comprising the variant FN3 domain are operatively linked together either directly or indirectly via the 40 linker, and are spatially oriented to bind the same, overlapping, or distinct sites on the target motif. In some embodiments, the polypeptide comprising the biorecognition molecule and the polypeptide comprising the variant FN3 domain bind overlapping sites on the target motif at the same 45 time and are capable of forming a complex with the target motif. In some embodiments, the Kd for the polypeptide being equal to or lower than one μ M. In some embodiments, the target motif is a peptide, a phosphorylated peptide or a methylated peptide. In some embodiments, the peptide is 50 present within a protein. In some embodiments, the molecular recognition domain comprises an interaction domain or mutants of interaction domains. In some embodiments, the interaction domain is selected from the group consisting of PDZ, WW, SH2, PTB, SH3, Bromo, Chromo, PHD, Polo- 55 box and FHA domains. In further embodiments, the polypeptide comprising the variant FN3 domain further comprises a first signaling moiety and the polypeptide comprising the biorecognition molecule further comprises a second signaling moiety and wherein the first and second 60 signaling moieties are capable of interacting to produce a detectable signal. In some embodiments, the signaling moiety is a dye, a quencher, a reporter protein, or a quantum dot. In some embodiments, the first and second signaling moieties comprise a fluorescent resonance energy transfer 65 (FRET) donor group and a FRET acceptor group, respectively, and binding of the first and second molecular recog-

nition domains to the target motif results in a change in the FRET efficiency between the FRET donor and FRET acceptor groups.

The polypeptides of the invention can be comprised in a polypeptide library or encoded in a polypucleotide library that can be screened for particular polypeptide characteristics, e.g., biding affinity. One or more members of the library can then isolated from other members of the library and analyzed. In certain aspects the library comprises or encodes a plurality of those polypeptides described herein. In certain aspects, the polypeptide library is pre-selected to bind a target and those preselected members are then further diversified in selected amino acid position to generate a targeted library that is subsequently screened for a particular characteristic or property.

Certain aspects relate to a polypeptide library comprising a plurality of modified FN3 domain polypeptides comprising one or more amino acid substitutions, insertions, or deletions a loop region of FN3, in a non-loop region of FN3, or in both; wherein the unmodified FN3 domain comprises a polypeptide comprising the amino acid sequence of SEQ ID NOS:1-4 or 6. In some embodiments, the FN3 domain polypeptides comprises one or more amino acid substitutions corresponding to amino acid positions corresponding to positions 1, 2, 3, 4, 14, 28, and/or 58 of SEQ ID NO:1.

Certain aspects are directed to polynucleotides encoding one or more polypeptide described herein. In certain embodiments the polynucleotide is an expression cassette or an expression construct. The expression construct can be capable of expressing the encoded polypeptide in a host cell, such as a prokaryotic or eukaryotic cell line or strain. In certain aspects the expression construct is functional in one or more polypeptide expression systems known in the art. In a further aspect, the expression construct is functional in bacteria, yeast, insect cells or the like.

The polypeptide can further comprise a second FN3 domain that may or may not have been selected for affinity to a particular target. The second FN3 domain may or may not contain additional amino acid variations or diversification. In other aspects, the polypeptide can further comprise a non-FN3 polypeptide that enhances the FN3 polypeptide binding affinity for a target molecule. The non-FN3 polypeptide can include, but is not limited to domains involved in phospho-tyrosine binding (e.g., SH2, PTB), phosphoserine binding (e.g., UIM, GAT, CUE, BTB/POZ, VHS, UBA, RING, HECT, WW, 14-3-3, Polo-box), phosphothreonine binding (e.g., FHA, WW, Polo-box), proline-rich region binding (e.g., EVH1, SH3, GYF), acetylated lysine binding (e.g., Bromo), methylated lysine binding (e.g., Chromo, PHD), apoptosis (e.g., BIR, TRAF, DED, Death, CARD, BH), cytoskeleton modulation (e.g., ADF, GEL, DH, CH, FH2), or other cellular functions (e.g., EH, CC, VHL, TUDOR, PUF Repeat, PAS, MH1, LRR1 IQ, HEAT, GRIP, TUBBY, SNARE, TPR, TIR, START, SOCS Box, SAM, RGS, PDZ, PB1, LEVI, F-BOX, ENTH, EF-Hand, SHADOW, ARM, ANK).

In certain aspects, variants in any one or more of positions that correspond with amino acid position 13, 14, 15, 16, 22, 23, 24, 25, 26, 27, 36, 37, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 71, 72, 73, 74, 75, 76, 77, 78, 79 and/or 80 of SEQ ID NO:1, including all ranges there between, can be specifically included in the claimed embodiments.

In other embodiments, variants in any one or more of positions that correspond with amino acid positions 13, 14, 20, 21, 22, 23, 24, 25, 26, 27, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 72, 73

6

and 74 of SEQ ID NO:6, including all ranges there between, can be specifically included in the claimed embodiments.

In some embodiments, the polypeptide library comprises domain polypeptides are at least 50%, 60%, 70%, 80%, or 90% identical to SEQ ID NO:1, 2, 3, 4, or 6.

In some embodiments, the length of the polypeptide is at least, at most, or exactly about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 10, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 505, 510, 515, 520, 525, 530, 535, 540, 15, 550, 555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 625, 650, 675, 700, 750, 800, or 900 amino acids (or any derivable range therein). In some embodiments, the polypeptide is truncated or not full length.

In some embodiments, the polypeptide library further 20 comprises a non-FN3 polypeptide that enhances the FN3 polypeptide binding affinity for a target molecule. In some embodiments, the polypeptide library futher comprises an insertion or deletion of at least 1 amino acids in at least one loop region of the FN3 domain polypeptides. In some 25 embodiments, at least one loop region of FN3 comprises an insertion of at least 2 amino acids. In some embodiments, at least one region of FN3 comprises an insertion of 2 to 25 amino acids in at least one loop region. In some embodiments, at least two loop regions comprise an insertion. In 30 some embodiments, at least one loop region of FN3 comprises a deletion of at least 1 amino acid. In some embodiments, at least one loop region of FN3 comprises a deletion of 2 to 10 amino acids. In some embodiments, at least two loop regions comprise a deletion of at least 1 amino acid. In 35 some embodiments, the polypeptide comprises at least 1 amino acid insertion and 1 amino acid deletion in at least one loop region. In some embodiments, the FN3 domain polypeptides comprise an insertion and deletion of at least 1 amino acid in the same loop region. In some embodiments, 40 the library is pre-selected to bind a target.

Certain embodiments are directed to a monobody library comprising a plurality of polypeptides having a variant fibronectin type III (FN3) domain, compared to wildtype (SEQ ID NO:1-4 or 6), comprising one or more alterations 45 or variants in a beta strand or a loop region. In some embodiments, the alterations are in one or more of beta strand C, beta strand D, BC loop, CD loop, DE loop, or and/or FG loop. In some embodiments, the monobody comprises one or more of the variant amino acids corresponding to position 1, 2, 3, 4, 14, 28, and/or 58 of SEQ ID NO:1. In some embodiments, the variant FN3 domains further comprise an insertion, substitution, or deletion of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 amino acids in at least one loop region of FN3.

The monobody library can also comprise variant FN3 domains comprising an amino acid insertion in loop FG. The monobody library can also comprise a plurality of those polypeptides described above.

Certain embodiments include methods of making a polypeptide or polynucleotide library comprising a plurality of FN3 variants. In certain aspects the library can contain 10, 100, 1000, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015 or more different polypeptide or polynucleotide variants, including all values and ranges there 65 between, though it will be understood that there may be duplicate variants. The methods of making such a polypep-

tide or polynucleotide include the engineering of various amino acids substitutions, deletions, and/or insertion described herein.

Certain embodiments include methods of selecting one or more FN3 variants comprising conducting one or more binding assays using a FN3 library having a plurality of different FN3 variants. In certain aspects the library can comprise FN3 polypeptides having amino acid variations in the FN3 loops, FN3 beta-strands, or both FN3 loops and beta-strands. After conducting the binding assay(s) one or more FN3 variants are selected that have a particular property, such as binding specificity and/or binding affinity to a target. In certain aspects, the amino acid or nucleic acid sequence of one or more of the selected library members can be determined using conventional methods. The sequence of the selected FN3 polypeptide(s) can then be used to produce a second library that introduces further variation of the selected sequences. The second library can then be screened for FN3 polypeptides having a particular property. The process can be repeated 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more times. Additional iterations would enrich the library as well as potentially include other variants.

In certain aspects the method for selecting a protein binding domain specific for a target comprises (a) detecting target specific binding of one or more members of a polypeptide library comprising a plurality of FN3 domain polypeptides as described herein; and (b) selecting the protein binding domain that specifically binds the target. The method can further comprise first preparing the plurality of FN3 domain polypeptide variants described herein. A polypeptide identified as exhibiting a particular characteristic can be isolated. In certain aspects, the method can further comprise determining the nucleic acid and/or the amino acid of sequence of the selected protein binding domain. The selected protein binding domain can then be synthesized or expressed.

Methods can further comprise conducting a first screen of a library having amino acid variations in only FN3 loops or only FN3 beta strands and conducting a second screen using variations in only FN3 loops or only FN3 beta strands. In certain aspects the first screen uses only variations in the FN3 loops and the second screen only uses variations in the FN3 beta-strands. In a further aspect, the second screen can use variations in both FN3 loops and beta-strands. In certain aspects, the FN3 amino acid residues varied in the first screen are or are not varied in the second screen.

Further aspects include methods of identifying a polypeptide that specifically binds a target comprising detecting specific binding of one or more polypeptides of a polypeptide library, the library comprising a plurality of fibronectin type III (FN3) polypeptides as described herein.

Further aspects include methods of detecting a target molecule comprising contacting a sample containing the target with a fibronectin type III (FN3) binding domain that specifically binds the target.

Yet further aspects relate to a method of making a polypeptide or polypeptide library according to the disclosure, the method comprising expressing a polynucleotide of the disclosure or a polynucleotide encoding such polypeptide in a host cell.

Certain aspects include methods of producing a fibronectin type III (FN3) variant comprising: (a) expressing a polypeptide comprising an amino acid sequence; and (b) isolating and/or purifying the expressed variant FN3 domain from a host cell expressing the variant FN3.

Certain embodiments are directed to kits. In certain aspects, a kit can comprise a plurality of polypeptides as

described herein. In a further aspect, a kit can comprise a plurality of polynucleotides encoding FN3 domain variants as described herein.

Further aspects of the disclosure relate to methods for testing a polypeptide according to the embodiments described herein, the method comprising contacting the polypeptide with a target molecule and testing for binding activity between the polypeptide and the target molecule.

The term "fibronectin type III domain" or "FN3 domain" refers to a domain (region) from a wild-type fibronectin from any organism.

The term "fibronectin type III domain variant" or "FN3 variant domain" refers to a polypeptide region in which one or more amino acid substitutions, deletions, and/or insertions are present as compared to the amino acid sequence of a wildtype FN3 domain. In certain embodiments, the FN3 variant or FN3 variant domain has an alteration with respect to specifically the fibronectin type III domain of SEQ ID NO:1-4 or 6. The term "substitutional variant" includes the 20 replacement of one or more amino acids in a peptide sequence with a conservative or non-conservative amino acid(s). In some embodiments, the FN3 domain variant has increased binding properties compared to the wildtype FN3 domain relative to a particular target.

The term "FN3-domain polypeptide" refers to a polypeptide that includes at least one FN3 domain. A "variant FN3 domain polypeptide" refers to a polypeptide that includes at least one variant FN3 domain. It is contemplated that such polypeptides are capable of specifically binding a polypep- 30 tide or protein.

A "non-FN3 binding sequence" refers to an amino acid sequence of more than 15 contiguous amino acid residues that is not present in an FN3 domain or an FN3 domain variant and that specifically binds to a protein or polypep- 35 tide. In some embodiments, a non-FN3 binding sequence is specifically a non-tenth module fibronectin type III domain binding sequence.

The β sheet is a form of regular secondary structure in proteins. Beta sheets consist of beta strands connected 40 laterally by at least two or three backbone hydrogen bonds, forming a generally twisted, pleated sheet. A beta strand (also β strand) is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an almost fully extended conformation.

A loop is a less ordered, flexible stretch of amino acids (as compared to alpha helices and beta sheets) that typically connect other structural elements of a protein. In the context of FN3, the loops are designated by the beta-strands they connect, for example the loop connecting beta-strand A and 50 beta-strand B is the AB loop.

Beta strand A refers to the amino acids preceding the AB loop

Beta strand B refers to the amino acids connecting the AB and BC loops

Beta strand C refers to the amino acids connecting the BC and CD loops.

Beta strand D refers to the amino acids connecting the CD

and DE loops Beta strand E refers to the amino acids connecting the DE 60

and EF loops Beta strand F refers to the amino acids connecting the EF

and FG loops

Beta strand G refers to the amino acids after the FG loop. The term "binding protein" refers to a polypeptide that 65 specifically binds another compound, such as a polypeptide through non-covalent chemical interactions.

10

As used herein, "monobody" is intended to mean a polypeptide having a sequence and structure related to the tenth module of the fibronectin type III domain (FN3) that includes a beta-strand domain lacking in disulfide bonds and containing a plurality of beta-strands, two or more loop regions each connecting one beta-strand to another betastrand, and optionally an N-terminal tail, a C-terminal tail, or both, wherein at least one of the two or more loop regions, the N-terminal tail, and or the C-terminal tail is characterized by activity in binding a target protein or molecule. More specifically, in some embodiments such monobodies can include three or more loop regions or, even more specifically, four or more loop regions. The size of such polypeptide monobodies is preferably less than about 30 kDa, more preferably less than about 20 kDa.

The term "library" refers to a collection (e.g., to a plurality) of polypeptides having different amino acid sequences and different protein binding properties. In some embodiments there is a variant FN3 domain library comprising polypeptides having different variations of the FN3 domain. Unless otherwise noted, the library is an actual physical library of polypeptides or nucleic acids encoding the polypeptides. In further embodiments, there is a database that comprises information about a library that has been generated or a theoretical library that can be generated. This information may be a compound database comprising descriptions or structures of a plurality of potential variant FN3 domains. "FN3-based molecule" refers to a molecule having an amino acid sequence of an FN3 domain or FN3 variant domain.

The term "specifically binds" or "specific binding" refers to the measurable and reproducible ability of an FN3-based molecule to bind another molecule (such as a target), that is determinative of the presence of the target molecule in the presence of a heterogeneous population of molecules including biological molecules. For example, an FN3-based molecule that specifically or preferentially binds to a target is a polypeptide that binds this target with greater affinity, avidity, more readily, and/or with greater duration than it binds to most or all other molecules. "Specific binding" does not necessarily require (although it can include) exclusive bind-

An polypeptide that specifically binds to a target with an affinity of at least 1×10-6 M at room temperature under physiological salt and pH conditions, as measured by surface plasmon resonance.

The term "non-natural amino acid residue" refers to an amino acid residue that is not present in the naturally occurring FN3 domain in a mammal, such as a human. The term "non-natural polypeptide" refers to a polypeptide that is not wild-type and/or not found in nature.

The terms "tag", "epitope tag" or "affinity tag" are used interchangeably herein, and usually refers to a molecule or domain of a molecule that is specifically recognized by an antibody or other binding partner. The term also refers to the binding partner complex as well. Thus, for example, biotin or a biotin/avidin complex are both regarded as an affinity tag. In addition to epitopes recognized in epitope/antibody interactions, affinity tags also comprise "epitopes" recognized by other binding molecules (e.g., ligands bound by receptors), ligands bound by other ligands to form heterodimers or homodimers, His6 bound by Ni-NTA, biotin bound by avidin, streptavidin, or anti-biotin antibodies, and the

Epitope tags are well known to those of skill in the art. Moreover, antibodies specific to a wide variety of epitope tags are commercially available. These include but are not

limited to antibodies against the DYKDDDDK epitope, c-myc antibodies (available from Sigma, St. Louis), the HNK-1 carbohydrate epitope, the HA epitope, the HSV epitope, the His4, His5, and His6 epitopes that are recognized by the His epitope specific antibodies (see, e.g., 5 Qiagen), and the like. In addition, vectors for epitope tagging proteins are commercially available. A polypeptide can be tagged with the FLAG® epitope (N-terminal, C-terminal or internal tagging), the c-myc epitope (C-terminal) or both the FLAG (N-terminal) and c-myc (C-terminal) 10 enitones

The term "conjugate" in the context of an FN3-based molecule refers to a chemical linkage between the FN3-based molecule and a non-FN3-based molecule. It is specifically contemplated that this excludes a regular peptide bond found between amino acid residues under physiologic conditions in some embodiments.

Other embodiments of the invention are discussed throughout this application. Any embodiment discussed with respect to one aspect of the invention applies to other aspects 20 of the invention as well and vice versa. The embodiments in the Example section are understood to be embodiments of the invention that are applicable to all aspects of the invention

"Biorecognition module" and "recognition module" (used 25 interchangeably), as used herein, refer to a biomolecule which makes up one module of the modular molecular affinity clamp embodying the principles of the invention. A biorecognition module contains a molecular recognition domain that has affinity for a target motif of interest.

"Molecular recognition domain" and "recognition domain", (used interchangeably), as used herein, refer to a binding domain within a biorecognition module that demonstrates an ability to bind to a target motif, i.e., has binding affinity for a target motif.

The terms "target" and "target molecule," as used herein, refer to a peptide, antigen or epitope that specifically binds to an FN3-based binding molecule or monobody described herein, or any biomolecule of interest for which a molecular affinity clamp is sought. Targets include, but are not limited 40 to, epitopes present on proteins, peptides, carbohydrates, and/or lipids. Exemplary targets include, but are not limited to, secreted peptide growth factors, pharmaceutical agents, cell signaling molecules, blood proteins, portions of cell surface receptor molecules, portions of nuclear receptors, 45 steroid molecules, viral proteins, carbohydrates, enzymes, active sites of enzymes, binding sites of enzymes, portions of enzymes, small molecule drugs, cells, bacterial cells, proteins, epitopes of proteins, surfaces of proteins involved in protein-protein interactions, cell surface epitopes, diag- 50 nostic proteins, diagnostic markers, plant proteins, peptides involved in protein-protein interactions, and foods. The target may be associated with a biological state, such as a disease or disorder in a plant or animal as well as the presence of a pathogen. When a target is "associated with" a certain biological state, the presence or absence of the target or the presence of a certain amount of target can identity the biological state.

A "target motif", as used herein, refers to any portion or sequence of a target of interest for which a molecular affinity 60 clamp is sought, e.g., refers to a pattern of amino acid residues which is recognized by particular recognition domains. In accordance with the invention, the target motif can bind more than one recognition domain. In other words, a target motif is one to which an affinity clamp embodying 65 the principles of the invention can bind with high affinity and specificity. Of particular importance are target motifs that

are short peptides of about 2-100 amino acid residues, especially those of 3-10 amino acid residues. A target motif may be, be at least, or be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 residues in length (or any range derivable therein), which may or may not be contiguous. A target motif may include 1, 2, 3, 4, 5 or more noncontiguous residues and/or regions of residues that may be, be at least, or be at most 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 residues in length (or any range derivable therein).

12

As used herein, the term "binds" in connection with the interaction between a target motif and a recognition domain indicates that the recognition domain associates with (e.g., interacts with or complexes with) the target motif to a statistically significant degree as compared to association with proteins generally (i.e., non-specific binding). Thus, the term "molecular recognition domain" is also understood to refer to a domain that has a statistically significant association or binding with a target motif.

In the context of a recognition domain binding to a target motif, the term "greater affinity" indicates that an affinity clamp binds more tightly than a reference domain, or than the same domain in a reference condition, i.e., with a lower dissociation constant. In particular embodiments, the greater affinity is at least 2-fold.

Also in the context of recognition domain binding to a target motif, the term "altered specificity" indicates that relative binding affinity of an affinity clamp is different from that exhibited by a biorecognition module alone. In other words, "altered binding specificity" may refer to an increased binding constant of the affinity clamp for one target motif without the same level of increase for another target, an unchanged binding constant for one target with a decreased binding constant for another, target or a combination thereof

The term "linked" refers to any method of functionally connecting peptides, particularly the two modules of the modular affinity clamps embodying the principles of the invention. "Linked" may also refer to non-covalent physical association. The biomolecular modules making up the biorecognition modules of the affinity clamps may be linked directly covalently, e.g., via a peptide linkage, or non-covalently, or indirectly via a linker.

A "linker" or "linker moiety," (used interchangeably) may refer to a peptide sequence of about 30 or more amino acid residues that is configured to associate two biorecognition modules in an orientation that facilitates binding of each module to a target motif. The linker, generally, is bifunctional in that it includes a functionality for linking the first biorecognition module and a functionality for linking the second biorecognition module.

By "binding site" is meant an area or region within a recognition domain where a biomolecule can bind non-covalently, i.e., interact with higher affinity than background interactions between molecules. Binding sites embody particular shapes and often can contain multiple binding pockets present within the binding site. The particular shapes are

often conserved within a class of molecules, such as a protein family. Binding sites within a class also can contain conserved structures such as, for example, chemical moieties, the presence of a binding pocket, and/or an electrostatic charge at the binding site or some portion of the binding site, all of which can influence the shape of the binding site. It is noted that a molecular affinity clamp is distinguishable from other protein-based compositions that are multivalent—i.e., bind multiple but separate target motifs that are the same. Moreover, in some embodiments a molecular affinity clamp has one component that specifically binds to a target motif or an amino acid sequence that is distinct, overlapping, or the same as another target motif or amino acid sequence specifically bound by another component in the affinity clamp. The different binding components of a molecular affinity clamp do not compete against one another for binding to a target motif.

By "binding pocket" is meant a specific volume of space within a binding site that is available for occupation by a 20 biomolecule. A binding pocket can often be a particular shape, indentation, groove, or cavity in the binding site. Binding pockets can contain particular chemical groups or structures that are important in the non-covalent binding of another molecule such as, for example, groups that contribute to ionic, hydrogen bonding, or van der Waals interactions between the molecules.

By "orientation" or "oriented," in reference to a biorecognition module bound to a target motif, is meant the spatial relationship of the biorecognition module, and at least some 30 of its constituent atoms, to the atoms of the target motif.

By "assaying" is meant the creation of experimental conditions and the gathering of data regarding a particular result of the experimental conditions. For example, enzymes can be assayed based on their ability to act upon a detectable 35 substrate. A particular target motif, in a test sample, can be assayed based on its ability to bind to a monobody or molecular affinity clamp.

As used herein, the terms "peptide," "polypeptide," and "protein" are used interchangeably and mean polymers of 40 amino acid monomers linked by peptide linkages between carboxyl (COOH) groups and amine (NH2) groups. A peptide may consist entirely of naturally occurring amino acid monomers, non-naturally occurring amino acids, or mixtures thereof. Unless denoted otherwise, whenever an 45 amino acid sequence is represented, it will be understood that the amino acids are in N-terminal to C-terminal order from left to right. The term "polypeptide" may refer to small peptides, larger polypeptides, proteins containing single polypeptide chains, proteins containing multiple polypeptide chains, and multi-subunit proteins.

The term "amino acid", as used herein, refers to any amino acid, natural or non-natural, that may be incorporated, either enzymatically or synthetically, into a polypeptide or protein. Amino acids may also be altered. The term thus 55 encompasses amino acids that have been modified naturally or by interaction. Examples may include, but are not limited to, phosphorylation, glycosylation, methylation, biotinylation, and any covalent and non-covalent additions to a protein that do not result in a change in amino acid sequence. 60

The term "label" as used herein refers to any tag, marker, or identifiable moiety. The skilled artisan will appreciate that many labels may be used in the methods of the invention. For example, labels include, but are not limited to, affinity tags, fluorophores, radioisotopes, chromogens, dyes, magnetic probes, magnetic particles, paramagnetic particles, electrophoretic molecules and particles, dielectrophoretic

particles, phosphorescence groups, chemiluminescent, mobility modifiers, and particles that confer a dielectrophoretic change.

14

As used herein, the term "modulating" or "modulate" refers to an effect of altering a biological activity, especially a biological activity associated with a particular biomolecule. For example, an agonist or antagonist of a particular biomolecule modulates the activity of that biomolecule, e.g., an enzyme.

As used herein, the term "library" refers to any collection of two or more different polypeptides or proteins. In certain embodiments, a library may be a collection of polypeptides that have been modified to favor the inclusion of certain amino acid residues, or polypeptides of certain lengths.

As used herein, the term "variant" is meant to refer to a polypeptide differing from another polypeptide by one or more amino acid substitutions resulting from engineered mutations in the gene coding the polypeptide.

As used herein in connection with numerical values, the terms "approximately" and "about" are meant to encompass variations of ±20% to ±10% or less of the indicated value.

The terms "inhibiting," "reducing," or "preventing," or any variation of these terms, when used in the claims and/or the specification includes any measurable decrease or complete inhibition to achieve a desired result.

The use of the word "a" or "an" when used in conjunction with the term "comprising" in the claims and/or the specification may mean "one," but it is also consistent with the meaning of "one or more," "at least one," and "one or more than one."

It is contemplated that any embodiment discussed herein can be implemented with respect to any other embodiment discussed herein, and vice versa. Furthermore, compositions and kits can be used to achieve recited methods.

Throughout this application, the term "about" is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.

The use of the term "or" in the claims is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and "and/or." It is also contemplated that anything listed using the term "or" may also be specifically excluded.

As used in this specification and claim(s), the words "comprising" (and any form of comprising, such as "comprise" and "comprises"), "having" (and any form of having, such as "have" and "has"), "including" (and any form of including, such as "includes" and "include") or "containing" (and any form of containing, such as "contains" and "contain") are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better

understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

FIG. 1A-C. Sequence alignment and biophysical properties of predicted STOFN3 domains. (a) Alignment of four predicted STOFN3 domains and the homologue FN3 domain of human receptor-type tyrosine-protein phosphatase F (PDB ID: 2DJU). Gaps are denoted as dashes. The human FN3 domain shows the sequence identities of 27, 29, 19 and 18% to STOFN3-1, STOFN3-2, STOFN3-3 and STOFN3-4, respectively. The ranges of the secondary structure of the human FN3 domain are shown below the sequences. Dots indicate the highly conserved residues of FN3 domains reported by Main et al. and Dickinson et al. (Main et al., 1992; Dickinson et al., 1994). Shown are SEQ ID NOS:8-17. (b) Size-exclusion chromatograms of STOFN 3-1 and STOFN3-2. The chromatographs are shown with vertical offsets for clarity. Both STOFN3 domains exhibited a mono-dispersed peak with the calculated molecular weight 20 of ~12 kDa based on the calibration standards (not yet done, will do it). (c) Thermal stability of purified STOFN3-1 and STOFN3-2 monitored by DSF. One representative trace of three technical replicates is shown for each STOFN3 domains. The TM value is the mean of three replicates. The 25 melting curves were measured by heating the samples at a rate of 0.5° C. per 30 seconds.

FIG. **2**A-C. The crystal structures of STOFN3-1 (a) and STOFN3-2 (b). For panel (a) and (b), the β -strands are labeled A-G. (c) Superposition of STOFN3-1, STOFN3-2 and FN3fn10 (PDBID: 1FNA). STOFN3-1, STOFN3-2 and FN3fn10 are colored green, cyan and gray, respectively.

FIG. 3A-D. The structures of STOFN3-1 (STOTEMP1) and STOTEMP4 around the N-terminal (a-b) and C-terminal (c) regions. The 2Fo-Fc maps around the N-terminal regions 35 of STOTEMP1 (a) and STOTEMP4 (b) are shown as mesh at the 1.5σ level. The N-terminal residues are indicated by green stick models, in which the oxygen and nitrogen atoms are colored red and blue, respectively. The BC-, DE- and FG-loops are colored yellow, pink and red. The low electron 40 density of the segment N-terminal to P316S of STOTEMP4 indicates that this segment is conformationally disordered and dislodged from the folded portion. (c) Superposition of STOTEMP1 and STOTEMP4. STOTEMP1 is colored gray and the C-terminal residues are indicated as gray stick 45 models. The C-terminal residues and A- and F-strands of STOTEMP4 are colored green, and the C-terminal residues are indicated as green stick models. The label of position 399 for STOTEMP1 is shown in parentheses. (d) Structure based alignment of STOFN3-1 with FN3fn10 (PDB ID: 1FNA) 50 and amino acid sequences and melting temperatures of STOFN3-1 mutants. The ranges of the secondary structure of FN3fn10 are shown above the sequences. Mutated residues are colored in red. The mean TM values from three replicates are indicated. Shown are SEQ ID NOS:18-25.

FIG. 4A-C. Schematic drawing of the amino acid sequence of STOFN3-1 in its secondary structure context (a). Loop residues as assigned by the program DSSP are shown in yellow. G342 and Y383 subjected to mutation in this work are also shown in cyan. An arrow marks the site 60 at which poly-Serine residues were inserted. Residues of the β-strands whose side chain forms the hydrophobic core are enclosed in circles with thicker ring. (b)-(c) Amino acid sequences and melting temperatures of STOFN3-1 variants. Mutated residues are colored in red. The mean TM values 65 from three replicates are indicated. FIG. 4B shows SEQ ID NOS:26-41. FIG. 4C shows SEQ ID NOS:42-54.

FIG. **5**. Optimization of the signal sequence and linker length for the efficient display of STOTEMP5. The amino acid sequences corresponding to OmpT leader, linker and STOTEMP5 are shown. Mutated residues are colored in red. Deleted residues are denoted as dashes. The display of STOTEMP5 on phage particle was measured by phage ELISA using an anti-V5 tag antibody and a HRP conjugated anti-M13 phage antibody. The absorbance changes at 405 nm after the reaction with 1-step Ultra TMB ELISA for 10 min at 25° C. are shown. For this measurement, aliquots of 50 μL of phage particles with normalized titers of 2×106 cfu/mL pre-blocked in 0.5% BSA/TBS were added per well. Shown are SEQ ID NOS:55-58.

16

FIG. 6A-C. therMonobody library designs and generated clones. Amino acid sequences of therMonobodies generated from the loop-only library (a) and the side-and-loop library (b). The locations of diversified residues in the libraries are shown as spheres on the STOTEMP4 structure. "X" denotes a mixture of 30% Tyr, 13% Ser, 10% Gly, 5% Asp, 5% Leu, 5% Pro, 5% Trp and 2.5% each of all pther amino acids except for Cys and Met; "B", a mixture of Ala, Ser, Thr, Asn, Asp and Tyr; "U", a mixture of Ser, Thr, Asn and Tyr; "Z" a mixture of Ala, Glu, Lys and Thr. (c) Binding measurements by yeast surface display of representative therMonobodies for each combination of library and target. The mean fluorescence intensities of yeast cells displaying therMonobodies are plotted as a function of the target concentration. The error indicated are the standard deviations from curve fitting of the 1:1 binding model. FIG. 6A shows SEQ ID NOS:59-71. FIG. 6B shows SEQ ID NOS:72-84.

FIG. 7A-C. Oligomerization state and thermal stability of generated therMonobodies. (a) Size-exclusion chromatograms of therMonobodies. The chromatographs are shown with vertical offsets for clarity. The labels show the identities of analyzed samples. MBPMbL17 and MBPMbS09 exhibited a mono-dispersed peak but appeared to interact with the chromatography media, resulting in late elution. SUMOMbS34 was eluted at the void volume fraction, indicating the large aggregate. (b) Thermal stability of therMonobodies monitored by DSF. The traces of three technical replicates are shown for each therMonobody. The TM value is the mean of three replicates. The melting curves were measured by heating the samples at a rate of 0.5° C. per 30 seconds. (c) Summary of oligomerization state and thermal stability measurements of 24 therMonobodies.

FIG. 8A-C. Affinity clamp using therMonobody. (a) Amino acid sequences of Clamp(Ptpn11_pY580) and STO-TEMP4 variants. The monobody segment of Clamp (Ptpn11 pY580) and STOTEMP4 variants are aligned based on structure based alignment of the monobody segment and STOTEMP4. The ranges of the secondary structure of the monobody segment of Clamp(Ptpn11_pY580) are shown below its sequence. Residues grafted to the structurally equivalent positions of STOTEMP4 are shaded in yellow. Mutated residues in STOTEMP4 are colored in red. Linkers are indicated by underlining. Shown in FIG. 8a are SEQ ID NOS:85-93. (b)-(c) pY-peptide binding properties of designed pY-clamps measured by yeast surface display. In panel (b), binding of the designed pY-clamps to the target pY-peptide (Ptpn11 pY580) at the concentration of 0, 100 and 500 nM is shown. In panel (c), binding titration curves and the dissociation constants (KD) of the designed pYclamps are shown. The mean fluorescence intensities of yeast cells displaying the designed pY-clamp are plotted as a function of the target peptide concentration. The errors shown are the standard deviations from curve fitting of the 1:1 binding model.

FIG. 9. Sequence alignment of predicted PHOFN3 and the bacterial FN3 domain in Clostridium Perfringens Glycoside Hydrolase Gh84c (PDB ID: 2W1N). Gaps are denoted as dashes. The bacterial FN3 domain shows the sequence identities of 25% to PHOFN3, which is the highest among PDB entries. The locations of beta-strands in the bacterial FN3 domain are shown as the green arrows. Red dots indicate the highly conserved residues of FN3 domains reported by Main et al. and Dickinson et al. (Main et al., 1992; Dickinson et al., 1994). Shown in FIG. **9** are SEQ ID 10 NOS:94-98.

FIG. 10. Thermal stability of purified PHOFN3 and its truncated variants monitored by DSF. Triplicate measurements are shown for each sample. The melting curves were measured by heating the samples at a rate of 0.5° C. per 30 seconds. Only PHOFN3 C35 exhibited an inflection point indicative of thermal denaturation. The TM value for PHOFN3□C35 is the mean of the inflection points from

FIG. 11A-B. A) The crystal structures of SeMet-labeled PHOFN3 Δ C25. The seven β -strands are colored and labeled A-G. N- and C-terminus are labeled. B) Superposition of PHOFN3∆C25 (PDBID:1FNA). FN3fn10 and PHOFN3ΔC25 and FN3fn10 are colored green and gray, ²⁵ respectively.

FIG. 12. Schematic drawing of the amino acid sequence of PHOFN3ΔC25 in its secondary structure context. Loop residues as assigned by the program DSSP are shown in yellow. Residues of the β -strands whose side chain forms the hydrophobic core are enclosed in circles with thicker ring.

FIG. 13. Phage ELISA analysis for surface display of PHOFN3 on phage particles. Binding of phage particles to an anti-V5 tag antibody. The V5 tag is located in the linker between PHOFN3 and the phage coat protein, P3, in the phage display vector. The absorbance changes at 405 nm after the HRP reaction with 1-step Ultra TMB ELISA for 10 min for phages produced with the M13KO7 helper phage or 1 min for hyperphage-produced phages are shown. For these $_{40}$ measurements, 50 µL of 0.5% BSA/TBS containing 2.3×106 cfu/mL M13KO7-produced phages or 7.4×106 cfu/mL hyperphage-produced phages were added to each well and bound phages were detected with a HRP conjugated anti-M13 phage antibody.

DETAILED DESCRIPTION OF THE INVENTION

The fibronectin type III domain (FN3) has been particu- 50 larly successful as a protein scaffold for generating synthetic binding proteins. Since the pioneering work by inventors on the tenth FN3 of human fibronectin (FNfn10), numerous binding proteins, termed monobodies, have been generated to diverse target molecules. To date, all FN3-based scaffolds have been derived from human proteins, primarily because of the prediction that molecules engineered from a human protein may have low immunogenicity, an important consideration in biotherapeutic development. However, immunogenicity concerns are less important in applications where synthetic binding proteins are not exposed directly to patients or consumers including chemical processing and research tools. Therefore, this current application is directed toward the development of a molecular scaffold for indus- 65 trial applications using FN3's from non-human origins, in particular thermophiles.

18

Fibronectin Type III (FN3) Domain

A. Sulfolobus tokodaii

The inventors utilized the SMART database to explore FN3 domains from hyperthermophiles. The database predicted many FN3 domains in hyperthermophilic archaea and bacteria such as Thermococcus kodakaraensis, Sulfolobus tokodaii, Pvrococcus horikoshii and Thermotoga lettingae. The inventors first eliminated predicted domains that were shorter than the length of the shortest FN3 domains that had been structurally characterized (75 amino acids). Then, four predicted FN3 domains in the sequence of Kelch domaincontaining protein ST0939 from the hyperthermophilic archaeon Sulfolobus tokodaii DSM 16993 were chosen as the candidate proteins, because of their detectably homology to a human FN3. In the predicted constructs, termed STOFN3-1, -2, -3 and -4.

STOFN3-1 comprises 84 amino acids at positions 315-

(SEO ID NO: 1) PPPKPOTASTASGNETTTVKWYDTNASGYYTTYWSNFSOKVTTNVGNVTS

YTIKHLKDGVTYYIQIVPYNSLGNGTPSDIISAT.

STOFN3-2 comprises 86 amino acids at positions 399-484:

(SEO ID NO. 2) PSSVPNPPIIKVKIGNLNATLTWYDTFNGGYPIEGYYLYVNGKGINVGNI TSYVLTNLTAGELYTIELIAYNKIGNSSISSVSFIA.

STOFN3-3 comprises 79 amino acids at positions 488-³⁵ 566:

(SEO ID NO: 3) ANLTVTVYKKINGFLVSWNSTSKAKYILTVSKENVVLLNVSTTNTSYFVK

VPFGVYNISLEAVNIVGITKYAFILIYYI.

45

STOFN3-4 comprises 76 amino acids at positions 568-643:

(SEQ ID NO: 4) PASPTVNWSITLNTVSLNWSKVSGAEYYLIYDNGKLITNTTNTAFTFNLT TGONETEVYAANAYYKSAPYTINDVR

Each construct maintains at least two of the three highly conserved hydrophobic amino acids of FN3 domains (FIG.

The full-length ST0939 comprises the sequence:

(SEQ ID NO: 5) ${\tt MKRNTLLALVLVILIFPTLSTAYIEFTTSINQAIPDSLVYATSAYYDGKI}$ FLIGGENLYSTPVNSVYVYENGSWYLGPSLPFSLSSAGATVCNNTLYVVG GANSTSIFGGILEFIGNGWKVITNSMPIPVYGAIVFSYDYKIYVIGGMNY SGNSLVPPVNYIOVYNLKTNSWOIIGNAPLRLAYSAYYFNGSALFVVGGF TQSATLTSSVFVYYPENNTWISLPSLPGVEAGGVLGYYNGYMYLVGGLYY VSGAYOLGEILYYYNGTWRNTNIOEOIPTOFSTSVOIGNKLIILGGFGPG NIPSNAMQTVSIYLPPPKPQIASIASGNETITVKWYDTNASGYYITYWSN

FSQKVTINVGNVTSYTIKHLKDGVTYYIQIVPYNSLGNGTPSDIISATPS
SVPNPPIIKVKIGNLNATLTWYDTFNGGYPIEGYYLYVNGKGINVGNITS
YVLTNLTAGELYTIELIAYNKIGNSSISSVSFIAASKANLTVTVYKKING
FLVSWNSTSKAKYILTVSKENVVLLNVSTTNTSYFVKVPFGVYNISLEAV
NIVGITKYAFILIYYIQPASPTVNWSITLNTVSLNWSKVSGAEYYLIYDN
GKLITNTTNTAFTFNLTIGQNEIEVYAANAYYKSAPYIINDVRNYIVVVN
STAISISVPQIKVVSGENTDAPLQTNNIDLKSAIIVITVFVIALLMILVI
LRERSDNYW.

In certain aspects, the FN3 domain comprises beta strand A, beta strand B, beta strand C, beta strand D, beta strand E, beta strand F, and beta strand G. Connecting beta strands A, B, C, D, E, F, and G are loop regions AB, BC, CD, DE, EF, and FG. Beta strand A precedes the AB loop and beta strand G follows the FG loop. The loop regions correspond to the following amino acid positions in SEQ ID NO:1—AB (13-16), BC (22-27), CD (36-37), DE (47-49), EF (54-60), and FG (71-80). The loop regions in STOFN3-2, STOFN3-3, and STOFN3-4 are the corresponding amino acids in SEQ ID NO:2, 3, and 4, respectively. The corresponding amino acids in SEQ ID NO:2, 3, and 4, respectively. The corresponding amino acids in SEQ ID NO:2 The full The

20

FN3 polypeptides can be modified by inserting or deleting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 or more amino acids, or any range derivable therein, in a FN3 loop. Variants are discussed in U.S. Pat. No. 6,673,901, which is hereby incorporated by reference with respect to embodiments regarding FN3 monobodies.

B. Pvrococcus horikoshii

The inventors also characterized a FN3 domain in the sequence of putative uncharacterized protein PH0954 from the hyperthermophilic archaeon *Pyrococcus horikoshii* OT3, termed PHOFN3, as the candidate protein, because of its detectably homology to a bacterial FN3 domain in the *Clostridium Perfringens* Glycoside Hydrolase Gh84c whose FN3 fold has been experimentally confirmed. The SMART database predicted PHOFN3 with 108 (P1873-A1980) amino acid residues, but the C-terminal 26 residues (E1955-A1980) did not have detectable homology to the sequence of the bacterial homologue (FIG. 9) and shown below:

(SEQ ID NO: 6)
PSPPSGVTLMLNGSYVELSWLPSPDSDVAGYFIYKDGKRLNEVPIEKPNF
RDIYSGTLNYSISAIDFSGFESEKTEVFPVKLEVDEENLTAGYPGAVKVK
VENLDGEA.

(SEQ ID NO: 7)

The full-length PH0954 comprises the sequence:

MINIKGLILTLILFISLIPPWALGEGSKDTKVFADYYLAGDSVVINATLYDAGSCNLTF SVFSPIEAPNVSEISFTWMNLSEYIES ATEATYGEYLRDGNVIMREDDGYFIYELPFSL NYFGREIKKIAVNTNGLIELLEEYEEPRIEDYYGIHEEGEFYESDVIFGLDEDLVTYDG YLLLVNLODKIVIEWLASTYEDYESEIVDNINFOVIINSNGTITWSYKSLEYSYHDYDL FSGYYSKVSGDVKGFTKGEGKSFAIQVPLGTPKLYTYQVRESGSYLLTLPLSNYHVE VFANCMDDPDLSNNLAEVGVWPGDYWVENASINNLIPGEFASINFKVRTTSKIPSAK VKLLRNGVEEKIEYLSFYNGIAEGEISWLVQGGNYTLALLVEGKGDINSSNNIYLLGN YNFPLPNFEVGNYSIDLPTCVDSTGEVRVNVTSTANWSIPVRLTLVYEEGNRSYTRYI STKGEEESEVIFTPMIKAGTLEKVVIEIDPWNEVEESNESDNKVEVPYHIIIEKPDFTVK SLNI PGNVSI GNLY EVNVTLDNLGGCYGRNVLVKLY ENGTSKDWRRVR I NNETNVT LTWKPGNAGLVNLTVVVDPYSYVDEINEGNNRLSRLIFVNAPDFKISKVELLSFDGIA GSKAKFNVTVKNEGEDYSGYFSIAVYGGLRSSIAYLRGIKSGEEKWTIISLPINGGNST LIFVVDPHNVISETNEGNNVIFYNMGYIPKPNFVVKEISLPNNTVGYIPLNITIGNVGAP YNATSYOVPVKTKTEYGWKVSYLRGTTRDNYTTSTDSLAMLPPGSTTNVTVNYNMKV NETSYSDNSLIINYTTGYPDLELGIIPPSGELSAGKDVKITFLVKNVGNATLRIDRSSW YSPYLGLYVTLEDENGKTHTLGRYELAPATLSPGANTSOVVWITLNGGTNKINGRIV DEYENIYENNNDTLILTLEKPDFAILNYSIPDEILNGTAYLYKAYPIVLNISNLGGNFSD GIRVDLFDNGIIKTSTSVYGLESGASRDVTLRYLPSSGKHNLSIVLDPYNRWIEENEEN NNLTFSLSFGKPDLKVEGITWAPYNFTSGENVLFTIYVKNLGOPFLKSFTVRAEIWNG TRKIYSTNAYPRNWSFGKGETKEFNWRWYNAKPGNLTVKIVVDYYNSIPEGNESNN EFSAFLGNVGTPDFKLENLSVEDLAYGKFVRINATVKNLGDSIYRPITVLFNVSGERY YRTVYGIKENESKSVTLPWYVDRVGEVRVKVEVDPGNRIVEGNESNNIIERTYYVES PELMLSGYEWLEEEVRRGYLAYKVNVTNTGGDVYRGFYVOMFVDGEPKSSVWINK

-continued
LLHGETAERTLRWRFSSGGRKEVRIVVDPQDYIPESNEDNNAIVENVTIVLPDIEVLSL NIPSMHANSYFKVNATIKNSGGODVKRIFYVSLYODGKLLGSAPVYSLASGEVKEVT LTIRPYPGNSTFKVVVDPTNAVVELNEDNNEISVRSYVKAPDIVVVSADLGNFTYPGE MVNAKVRIRNSGDYKSGVYLLIRNKRRKLGSAYVDSITPGEEIEVNVPWLVDSGDY NVSVIADPYNSVREWDEENNKLDIEVSVPSPDLTVENITHSGKEVAGEEIIIKVTVKNI GESSKLPFYIVLYANSSFVGINRVTKIDKGESITLEFKWRASYGEYALRAIVDPYDEV YEENESNNEGMVKVFIEDEEPPVLKLTYPENGTFTNKPYIGAYLRDEGSGVKFGEIEV YREGTSVPGSTKFSGGWLIFONSTPLLDGKYTVTVKAVDRAGNEITYSWNFTLDREP ${\tt PRIVCNLTDGTLYNGTVVPGVQVIDDNLDWYKVKVNGREFSGPIKLDGTYTLNVTA}$ KDKAGNI AEKTI RETVNGVPS PPSGVTI MI NGSYVELSWI PSPDSDVAGYETYKDGK $\verb"RLNEVPIEKPNFRDIYSGTLNYSISAIDFSGFESEKTEVFPVKLEVDEENLTAGYPGAV"$ KVKVENLDGEANGTLSIILIDEFGNEIEKLSRKVEVPRGRSSHEFVFMVPRGLTLIRGE LKVGNSTARIIHRAKVREGENPEIRVGKLLAGFPGLVEVEIRNCGIVELNTSETLMKL DNSSGELIEAPLTIPPGKKTVLRYKIVPPKKGSYNLTFRIADVEVRKIVNVSESVLNPIT ISTENFIKGGKAKIYVSFRNIGSAPIFVKSIELNGMSKRLSIELPPNLSVEESFEYLISEEN ${\tt VEINATVNTDVGKFRKSLTLTAEQPEYNADVSVSSVYEVGKEILITGVAYNESGMLS}$ NVPVKVSIARGGFVREYIVTTNENGYFNLTFRPFKGESGHFIVSATHPKIELLERDAEF DVVGIEVIPSLYLLTVPVEFNGTVRVRLINYWRASDVSVSVKAPPEYEVSIPKVLHLK PGSNIINIGLSSKNAVNGSIMITFKARQLGLNITRSLTLKLKVLPPAPAIVTSPNFLDVG VLTNETASAEVVVRNLGFTALRNVSIRSSIPWVKVVSNFTEVDPKDNESISLYIEPPRN VTGTFKGEITISSSNYNPIKVPMRIRVTPNATGGVKVTVMDPNATRLENVKLTLYNG YFHFEGYTNKNGTLEVENVPIGEYKLFASLEGYYGYSTSITIEVGVEKNVSIILTPSILE VEWEVVPVTIQDVYIIKHEMWYSTHVPAPEIRMEGGDLEVYVDYEKLAEEGMLEFR ${\tt GQVIVRNTHQYISVYNVTFESGGSHYIDVEFGINRIDELKPGEAVIVPYVVRIYYSRSP}$ PINPCLHETKVFKLKAGVVCVEEAGKITLKAORIHOIVVKPTCKGCWESVFPVAGKL ${\tt AFMAIAQKVGQALGNIDDTGVLSTLAGEALNNLESLFDAYNAYKANPTKENMENY}$ VKTFNSVKANLASLFMFDPVAYOEINSLOLTLIKTPKGDIAGFAVSRTATPVYALGM ${\tt GVGKIENGQLKVDYKKAVNIANGIVLNVMSKMGGALGGIASGVGLLQLLDKAAED}$ LPPYIAOLFLNCAICLMRNDCTLPEGEEIRPIOIIASGSLGGYPSMIPSGLAGGGDGGTA $\tt VGRFTCGGLPTVKKSSTSMSCSTCSSEDVVKERVCRLFRESETHDEEEPSNTLHMCV$ DLVLTIEORLTFEROAFRASLKFTNTNRNYSLENVSVRVIFFDEEGNRVDDKFFVRLD EKAGLSGSSLEPEKTAEMKWLIIPKVGAAEKFRARYYVMANITARVGSTKLVYETW PAMIEVEPVPOLVLDYVLPSYVFGDDPYTPEKELPIPFIFGVRVKNVGYGTARKLRIA SAQPKIERSNYPGVYIDFKIIGTLVNGKKVPNSLTIDFGDLNPGESSTAAWLMIAEVSG KFLOYNATFKHSDELGGNETSLIKEVRTHFLIRAFNNTENDDGMLDFLVDDDGDGKP $\verb"EKIIDSRGFDYNVLLLNFTEVEEGSMRKIIPEMKTPFWVYFTVPFKGSVVRSDGKNPM"$ DOWMENGTI.HVI.DI.GTPEFYTI.KSNOPPTPRTYVKEPVTANETVVI.DGSI.SYDPDGSTT $\verb|AYTWKIGNESFVGDKVSYVFREPGTYNVTLTVRDDKGTESSKTMEIKVYLGPKFNES||$ I,KVEPOWGIVPENI,SITENVTNVGDVSGEYSYIIKI,GNSTIAEGSEIIESGRWKVINSTV EIRKEGNYTVTANNLSKTVTAYRKVYGNLTENYIKEKDFGHYKSFYWNEFKRDFEG WVEEALSTIELPKVNFKVLNYFPGNWSLLNYSEMLNITKGWGWINATYARRVRVEG

-continued

LEEFKYLIVNVTQLVVLLGNATHELDESPPTLNVTPSSGIYSEIPKIQVRTCDETGITLV
WGAVGNYTKEFTEVESNGTCSTWEGIVPLNIGNNTVAIYAEDEFGNRGNVSLWIYLN
PEAPVIYIESPEEKVYNSREVMINYTVVNHDLVGVVAYLNGELISSNASYSGFIKLDY
GWHNFTIYAWDVSYNVSKSVIFRVNEPPSVDFSWEVDNLTVKFEANASDEDGISKYL
WDFGDNESSLLVNPTHTYRKGGRYNVTLTVWDSYNLSSSISKEVVVFGSSTLTMVK
EYSYTKDFGFYNTTSWKDFLKDFEVWVNLTLRNVTLPLEYFEEIIEVNVENWSLISVE
KNLKNDIGEMSAEYERNATIVGIMNYTRVTLKLTQEVILSGRARKVEDKIPPLVEILFP
RNMTYNETIREIKVRATDESGIANVTATINGESLSLEKVNETWIGRVELDDGKYELNV
FASDKWGNVGCSTVNFTINRSVKVRIINGTEIVTIPGDIKTRVYFEGDIIVEIVKESLRF
KIPSGGTLVIDERGRKDPWLLARINSTIENISKTSRIFEENGKKVHEIRYRISISRGYAIL
VVPLEGMKVSSIRIIKNGTVTRDEKHGNYYKLSKGYLFIFLSEDPIVEVTLSKIEKKDIF
RVLYYAGIIWERNYLRLKEEFIMKMSNETSQEAIRLHEEAEKYYLKGREYYPRIPSPS
AIYWYAVYMRKAYLTERKALELLSIS.

In certain aspects, the FN3 domain comprises beta strand A, beta strand B, beta strand C, beta strand D, beta strand E, beta strand F, and beta strand G. Connecting beta strands A, B, C, D, E, F, and G are loop regions AB, BC, CD, DE, EF, and FG. Beta strand A precedes the AB loop and beta strand G follows the FG loop. The loop regions correspond to the following amino acid positions in SEQ ID NO:6—AB (13-14) BC (20-27), CD (36-37), DE (40-48), EF (54-59), and FG (67-74).

FN3 polypeptides can be modified by inserting or deleting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 or more amino acids, or any 35 range derivable therein, in a FN3 loop. Variants are discussed in U.S. Pat. No. 6,673,901, which is hereby incorporated by reference with respect to embodiments regarding FN3 monobodies.

C. FN3 Library

A combinatorial library is a collection of diverse compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks." For example, a linear combinatorial chemical library such as a polypeptide (e.g., mutein or variant) library is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length. Millions of compounds can be synthesized through such combinatorial mixing of chemical building blocks. For example, one commentator has observed that the systematic, combinatorial mixing of 100 interchangeable chemical building blocks results in the theoretical synthesis of 100 million tetrameric compounds or 10 billion pentameric compounds (Gallop et al., 1994).

Embodiments of the disclosure are directed to a combinatorial library of FN3 domains. In certain aspects, polypeptides of the library include variations of amino acid sequence in one or more of the beta strands or body of the FN3 domains. In certain aspects, the library includes variations of amino acid sequences in one or more loops of the 60 FN3 domains. In still further aspects, the library includes variation in both loops and beta strands of the FN3 domain.

FN3 variants can include alanine substitutions at one or more of amino acid positions. In certain aspects, any of the 19 other amino acids can be substituted for one or more 65 amino acid of SEQ ID NO:1-4 or 6. Substitutions include, but are not limited to conservative substitutions that have

little or no effect on the overall net charge, polarity, or hydrophobicity of the protein.

In certain aspects, FN3 domains will have, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acid substitutions that include, but are not limited to the following FN3 residue substitutions (corresponding to SEQ ID NO:1): K4V, N14P, D58P, G28Y, Y22A, Y22C, Y22D, Y22E, Y22F, Y22G, Y22H, Y22I, Y22K, Y22L, Y22M, Y22N, Y22P, Y22Q, Y22R, Y22S, Y22T, Y22V, Y22W, D23A, D23C, D23E, D23F, D23G, D23H, D23I, D23K, D23L, D23M, D23N, D23P, D23Q, D23R, D23S, D23T, D23V, D23W, D23Y, T24A, T24C, T24D, T24E, T24F, T24G, T24H, T24I, T24K, T24L, T24M, T24N, T24P, T24Q, T24R, T24S, T24V, T24W, T24Y, N25A, N25C, N25D, N25E, N25F, N25G, N25H, N25I, N25K, N25L N25M, N25P, N25Q, N25R, N25S, N25T, N25V, N25W, N25Y, A26C, A26D, A26E, A26F, A26G, A26H, A26I, A26K, A26L, A26M, A26N, A26P, A26Q, A26R, A26S, A26T, A26V, A26W, A26Y, S27A, S27C, S27D, S27E, S27F, S27G, S27H, S27I, S27K, S27L, S27M, S27N, S27P, S27Q, S27R, S27T, S27V, S27W, S27Y, N47A, N47C, N47D, N47E, N47F, N47G, N47H, N47I, N47K, N47L N47M, N47P, N47Q, N47R, N47S, N47T, N47V, N47W, N47Y, V48A, V48C, V48D, V48E, V48F, V48G, V48H, V48I, V48K, V48L, V48M, V48N, V48P, V48Q, V48R, V48S, V48T, V48W, V48Y, T49A, T49C, T49D, T49E, T49F, T49G, T49H, T49I, T49K, T49L, T49M, T49N, T49P, T49Q, T49R, T49S, T49V, T49W, T49Y, S71A, S71C, S71D, S71E, S71F, S71G, S71H, S71I, S71K, S71L, S71M, S71N, S71P, S71Q, S71R, S71T, S71V, S71W, S71Y, L72A, L72C, L72D, L72E, L72F, L72G, L72H, L72I, L72K, $L72M,\ L72N,\ L72P,\ L72Q,\ L72R,\ L72S,\ L72T,\ L72V,$ L72W, L72Y, G73A, G73C, G73D, G73E, G73F, G73H, G73I, G73K, G73L, G73M, G73N, G73P, G73Q, G73R, G73S, G73T, G73V, G73W, G73Y, N74A, N74C, N74D, N74E, N74F, N74G, N74H, N74I, N74K, N74L, N74M, N74P, N74Q, N74R, N74S, N74T, N74V, N74W, N74Y, G75A, G75C, G75D, G75E, G75F, G75H, G75I, G75K, G75L, G75M, G75N, G75P, G75Q, G75R, G75S, G75T, G75V, G75W, G75Y, T76A, T76C, T76D, T76E, T76F, T76G, T76H, T76I, T76K, T76L, T76M, T76N, T76P,

T76Q, T76R, T76S, T76V, T76W, T76Y, P77A, P77C P77D, P77E, P77F, P77G, P77H, P77I, P77K, P77L, P77M, P77N, P77Q, P77R, P77S, P77T, P77V, P77W, P77Y, S78A, S78C, S78D, S78E, S78F, S78G, S78H, S78I, S78K, S78L, S78M, S78N, S78P, S78Q, S78R, S78T, S78V, S78W, S78Y, D79A, D79C, D79E, D79F, D79G, D79H, D79I, D79K, D79L, D79M, D79N, D79P, D79Q, D79R, D79S, D79T, D79V, D79W, D79Y, I80A, I80C, I80D, I80E, I80F, I80G, 180H, 180K, 180L, 180M, 180N, 180P, 180Q, 180R, 180S, 180T, 180V, 180W, 180Y, N36A, N36C, N36D, N36E, N36F, N36G, N36H, N36I, N36K, N36L, N36M, N36P, N36Q, N36R, N36S, N36T, N36V, N36W, N36Y, F37A, F37C, F37D, F37E, F37G, F37H, F37I, F37K, F37L, F37M, F37N, F37P, F37Q, F37R, F37S, F37T, F37V, F37W, F37Y, G28A, G28C, G28D, G28E, G28F, G28H, G28I, G28K, G28L, 15 G28M, G28N, G28P, G28Q, G28R, G28S, G28T, G28V, G28W, G28Y, Y29A, Y29C, Y29D, Y29E, Y29F, Y29G, Y29H, Y29I, Y29K, Y29L, Y29M, Y29N, Y29P, Y29Q, Y29R, Y29S, Y29T, Y29V, Y29W, Y30A, Y30C, Y30D, Y30N, Y30P, Y30Q, Y30R, Y30S, Y30T, Y30V, Y30W, I31A, I31C, I31D, I31E, I31F, I31G, I31H, I31K, I31L, I31M, I31N, I31P, I31Q, I31R, I31S, I31T, I31V, I31W, 131Y, T32A, T32C, T32D, T32E, T32F, T32G, T32H, T32I, T32K, T32L, T32M, T32N, T32P, T32Q, T32R, T32S, 25 T32V, T32W, T32Y, Y33A, Y33C, Y33D, Y33E, Y33F, Y33G, Y33H, Y33I, Y33K, Y33L, Y33M, Y33N, Y33P, Y33Q, Y33R, Y33S, Y33T, Y33V, Y33W, W34A, W34C, W34D, W34E, W34F, W34G, W34H, W34I, W34K, W34L, W34M, W34N, W34P, W34Q, W34R, W34S, W34T, W34V, W34Y, S35A, S35C, S35D, S35E, S35F, S35G, S35H, S35I, S35K, S35L, S35M, S35N, S35P, S35Q, S35R, S35T, S35V, S35W, S35Y, S38A, S38C, S38D, S38E, S38F, S38G, S38H, S38I, S38K, S38L, S38M, S38N, S38P, S38Q, S38R, S38T, $S38V,\ S38W,\ S38Y,\ Q39A,\ Q39C,\ Q39D,\ Q39E,\ Q39F,\ \ 35$ Q39G, Q39H, Q39I, Q39K, Q39L, Q39M, Q39N, Q39P, Q39R, Q39S, Q39T, Q39V, Q39W, Q39Y, K40A, K40C, K40D, K40E, K40F, K40G, K40H, K40I, K40L, K40M, K40N, K40P, K40Q, K40R, K40S, K40T, K40V, K40W, K40Y, V41A, V41C, V41D, V41E, V41F, V41G, V41H, 40 V41I, V41K, V41L, V41M, V41N, V41P, V41Q, V41R, V41S, V41T, V41W, V41Y, T42A, T42C, T42D, T42E, T42F, T42G, T42H, T42I, T42K, T42L, T42M, T42N, T42P, T42Q, T42R, T42S, T42V, T42W, T42Y, I43A, I43C, I43D, I43E, I43F, I43G, I43H, I43K, I43L, I43M, I43N, I43P, 45 143Q, 143R, 143S, 143T, 143V, 143W, 143Y, N44A, N44C, N44D, N44E, N44F, N44G, N44H, N44I, N44K, N44L, N44M, N44P, N44Q, N44R, N44S, N44T, N44V, N44W, N44Y, V45A, V45C, V45D, V45E, V45F, V45G, V45H, V45I, V45K, V45L, V45M, V45N, V45P, V45Q, V45R, 50 V45S, V45T, V45W, V45Y, G46A, G46C, G46D, G46E, G46F, G46H, G46I, G46K, G46L, G46M, G46N, G46P, G46Q, G46R, G46S, G46T, G46V, G46W, and/or G46Y, and combinations thereof. It is contemplated that one or more of these substitutions may be specifically excluded in embodi- 55 ments described herein.

In still further embodiments other amino acid substitutions can be introduced before, during, or after introduction of those amino acid substitutions listed above. Further substitutions (corresponding to SEQ ID NO:1) include, but 60 is not limited to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 of P1A, P1C, P1D, P1E, P1F, P1G, P1H, P1I, P1K, P1L, P1M, P1N, P1Q, P1R, P1S, P1T, P1V, P1W, P1Y, 65 P2A, P2C, P2D, P2E, P2F, P2G, P2H, P2I, P2K, P2L, P2M, P2N, P2Q, P2R, P2S, P2T, P2V, P2W, P2Y, P3A, P3C, P3D,

P3E, P3F, P3G, P3H, P3I, P3K, P3L, P3M, P3N, P3Q, P3R, P3S, P3T, P3V, P3W, P3Y, K4A, K4C, K4D, K4E, K4F, K4G, K4H, K4I, K4L, K4M, K4N, K4P, K4Q, K4R, K4S, K4T, K4V, K4W, K4Y, P5A, P5C, P5D, P5E, P5F, P5G, P5H, P5I, P5K, P5L, P5M, P5N, P5Q, P5R, P5S, P5T, P5V, P5W, P5Y, Q6A, Q6C, Q6D, Q6E, Q6F, Q6G, Q6H, Q6I, Q6K, Q6L, Q6M, Q6N, Q6P, Q6R, Q6S, Q6T, Q6V, Q6W, Q6Y, I7A, I7C, I7D, I7E, I7F, I7G, I7H, I7K, I7L, I7M, I7N, 17P, 17Q, 17R, 17S, 17T, 17V, 17W, 17Y, A8C, A8D, A8E, A8F, A8G, A8H, A8I, A8K, A8L, A8M, A8N, A8P, A8Q, A8R, A8S, A8T, A8V, A8W, ABY, S9A, S9C, S9D, S9E, S9F, S9G, S9H, S9I, S9K, S9L, S9M, S9N, S9P, S9Q, S9R, S9T, S9V, S9W, S9Y, I10A, I10C, I10D, I10E, I10F, I10G, I10H, 110K, 110L, 110M, 110N, 110P, 110Q, 110R, 110S, 110T, 110V, 110W, 110Y, A11C, A11D, A11E, A11F, A11G, A11H, A11I, A11K, A11L, A11M, A11N, A11P, A11Q, A11R, A11S, A11T, A11V, A11W, A11Y, S12A, S12C, S12D, S12E, S12F, S12G, S12H, S12I, S12K, S12L, S12M, S12N, S12P, S12Q, S12R, S12T, S12V, S12W, S12Y, G13A, G13C Y30E, Y30F, Y30G, Y30H, Y30I, Y30K, Y30L, Y30M, 20 G13D, G13E, G13F, G13H, G13I, G13K, G13L, G13M, G13N, G13P, G13Q, G13R, G13S, G13T, G13V, G13W, G13Y, N14A, N14C, N14D, N14E, N14F, N14G, N14H, N14I, N14K, N14L, N14M, N14P, N14Q, N14R, N14S, N14T, N14V, N14W, N14Y, E15A, E15C, E15D, E15F, E15G, E15H, E15I, E15K, E15L, E15M, E15N, E15P, E15Q, E15R, E15S, E15T, E15V, E15W, E15Y, T16A, T16C, T16D, T16E, T16F, T16G, T16H, T16I, T16K, T16L, T16M, T16N, T16P, T16Q, T16R, T16S, T16V, T16W, T16Y, 117A, 117C, 117D, 117E, 117F, 117G, 117H, 117K, I17L, I17M, I17N, I17P, I17Q, I17R, I17S, I17T, I17V, 117W, 117Y, T18A, T18C, T18D, T18E, T18F, T18G, T18H, T18I, T18K, T18L, T18M, T18N, T18P, T18Q, T18R, T18S, T18V, T18W, T18Y, V19A, V19C, V19D, V19E, V19F, V19G, V19H, V19I, V19K, V19L, V19M, V19N, V19P, V19Q, V19R, V19S, V19T, V19W, V19Y, K20A, K20C, K20D, K20E, K20F, K20G, K20H, K20I, K20L, K20M, K20N, K20P, K20Q, K20R, K20S, K20T, K20V, K20W, K20Y, W21A, W21C, W21D, W21E, W21F, W21G, W21H, W21I, W21K, W21L, W21M, W21N, W21P, W21Q, W21R, W21S, W21T, W21V, W21Y, S50A, S50C, S50D, S50E, S50F, S50G, S50H, S50I, S50K, S50L, S50M, S50N, S50P, S50Q, S50R, S50T, S50V, S50W, S50Y, Y51A, Y51C, Y51D, Y51E, Y51F, Y51G, Y51H, Y51I, Y51K, Y51L, Y51M, Y51N, Y51P, Y51Q, Y51R, Y51S, Y51T, Y51V, Y51W, T52A, T52C, T52D, T52E, T52F, T52G, T52H, T52I, T52K, T52L, T52M, T52N, T52P, T52Q, T52R, T52S, T52V, T52W, T52Y, I53A, I53C, I53D, I53E, I53F, I53G, 153H, 153K, 153L, 153M, 153N, 153P, 153Q, 153R, 153S, 153T, 153V, 153W, 153Y, K54A, K54C, K54D, K54E, K54F, K54G, K54H, K54I, K54L, K54M, K54N, K54P, K54Q, K54R, K54S, K54T, K54V, K54W, K54Y, H55A, H55C, H55D, H55E, H55F, H55G, H55I, H55K, H55L, H55M, H55N, H55P, H55Q, H55R, H55S, H55T, H55V, H55W, H55Y, L56A, L56C, L56D, L56E, L56F, L56G, L56H, L56I, L56K, L56M, L56N, L56P, L56Q, L56R, L56S, L56T, L56V, L56W, L56Y, K57A, K57C, K57D, K57E, K57F, K57G, K57H, K57I, K57L, K57M, K57N, K57P, K57Q, K57R, K57S, K57T, K57V, K57W, K57Y, D58A, D58C D58E, D58F, D58G, D58H, D58I, D58K, D58L, D58M, D58N, D58P, D58Q, D58R, D58S, D58T, D58V, D58W, D58Y, G59A, G59C, G59D, G59E, G59F, G59H, G59I, G59K, G59L, G59M, G59N, G59P, G59Q, G59R, G59S, G59T, G59V, G59W, G59Y, V60A, V60C, V60D, V60E, V60F, V60G, V60H, V60I, V60K, V60L, V60M, V60N, V60P, V60Q, V60R, V60S, V60T, V60W, V60Y, T61A, T61C, T61D, T61E, T61F, T61G, T61H, T61I, T61K, T61L,

T61M, T61N, T61P, T61Q, T61R, T61S, T61V, T61W,

T61Y, Y62A, Y62C, Y62D, Y62E, Y62F, Y62G, Y62H, Y62I, Y62K, Y62L, Y62M, Y62N, Y62P, Y62Q, Y62R, Y62S, Y62T, Y62V, Y62W, Y63A, Y63C, Y63D, Y63E, Y63F, Y63G, Y63H, Y63I, Y63K, Y63L, Y63M, Y63N, Y63P, Y63Q, Y63R, Y63S, Y63T, Y63V, Y63W, I64A, 164C, 164D, 164E, 164F, 164G, 164H, 164K, 164L, 164M, 164N, 164P, 164Q, 164R, 164S, 164T, 164V, 164W, 164Y, Q65A, Q65C, Q65D, Q65E, Q65F, Q65G, Q65H, Q65I, Q65K, Q65L, Q65M, Q65N, Q65P, Q65R, Q65S, Q65T, Q65V, Q65W, Q65Y, I66A, I66C, I66D, I66E, I66F, I66G, 166H, 166K, 166L, 166M, 166N, 166P, 166Q, 166R, 166S, 166T, 166V, 166W, 166Y, V67A, V67C, V67D, V67E, V67F, V67G, V67H, V67I, V67K, V67L, V67M, V67N, V67P, V67Q, V67R, V67S, V67T, V67W, V67Y, P68A, P68C, P68D, P68E, P68F, P68G, P68H, P68I, P68K, P68L, P68M, 15 P68N, P68Q, P68R, P68S, P68T, P68V, P68W, P68Y, Y69A, Y69C, Y69D, Y69E, Y69F, Y69G, Y69H, Y69I, Y69K, Y69L, Y69M, Y69N, Y69P, Y69Q, Y69R, Y69S, Y69T, Y69V, Y69W, N70A, N70C, N70D, N70E, N70F, N70G, N70H, N70I, N70K, N70L, N70M, N70P, N70Q, N70R, 20 N70S, N70T, N70V, N70W, N70Y, I81A, I81C, I81D, I81E, I81F, I81G, I81H, I81K, I81L, I81M, I81N, I81P, I81Q, I81R, I81S, I81T, I81V, I81W, I81Y, S82A, S82C, S82D, S82E, S82F, S82G, S82H, S82I, S82K, S82L, S82M, S82N, S82P, S82Q, S82R, S82T, S82V, S82W, S82Y, A83C, A83D, 25 A83E, A83F, A83G, A83H, A83I, A83K, A83L, A83M, A83N, A83P, A83Q, A83R, A83S, A83T, A83V, A83W, A83Y, T84A, T84C, T84D, T84E, T84F, T84G, T84H, T84I, T84K, T84L, T84M, T84N, T84P, T84Q, T84R, T84S, T84T, T84V, T84W, or T84Y or combinations thereof. It is contemplated that one or more of these substitutions may be specifically excluded in embodiments described herein.

In certain aspects, FN3 domains will have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acid substitutions that include, but are not limited to the following FN3 residue substitutions (corresponding to SEQ ID NO:6): G13A, G13C, G13D, G13E, G13F, G13H, G13I, G13K, G13L, G13M, G13N, G13P, G13Q, G13R, G13S, 40 G13T, G13V, G13W, G13Y, S14A, S14C, S14D, S14E, S14F, S14G, S14H, S14I, S14K, S14L, S14M, S14N, S14P, S14Q, S14R, S14T, S14V, S14W, S14Y, Y15A, W20A, W20C, W20D, W20E, W20F, W20G, W20H, W20I, W20K, W20L, W20M, W20N, W20P, W20Q, W20R, W20S, W20T, 45 W20V, W20Y, L21A, L21C, L21D, L21E, L21F, L21G, L21H, L21I, L21K, L21M, L21N, L21P, L21Q, L21R, L21S, L21T, L21V, L21W, L21Y, P22A, P22C, P22D, P22E, P22F, P22G, P22H, P22I, P22K, P22L, P22M, P22N, P22Q, P22R, P22S, P22T, P22V, P22W, P22Y, S23A, S23C, S23D, 50 S23E, S23F, S23G, S23H, S23I, S23K, S23L, S23M, S23N, S23P, S23Q, S23R, S23T, S23V, S23W, S23Y, P24A, P24C, P24D, P24E, P24F, P24G, P24H, P24I, P24K, P24L, P24M, P24N, P24Q, P24R, P24S, P24T, P24V, P24W, P24Y, D25A, D25C, D25E, D25F, D25G, D25H, D25I, D25K, D25L, 55 D25M, D25N, D25P, D25Q, D25R, D25S, D25T, D25V, D25W, D25Y, S26A, S26C, S26D, S26E, S26F, S26G, S26H, S26I, S26K, S26L, S26M, S26N, S26P, S26Q, S26R, S26T, S26V, S26W, S26Y, D27A, D27C, D27E, D27F, D27G, D27H, D27I, D27K, D27L, D27M, D27N, D27P, D27Q, D27R, D27S, D27T, D27V, D27W, D27Y, D36A, D36C, D36E, D36F, D36G, D36H, D36I, D36K, D36L, D36M, D36N, D36P, D36Q, D36R, D36S, D36T, D36V, D36W, D36Y, G37A, G37C, G37D, G37E, G37F, G37H, G37I, G37K, G37L, G37M, G37N, G37P, G37Q, G37R, 65 G37S, G37T, G37V, G37W, G37Y, L40A, L40C, L40D, L40E, L40F, L40G, L40H, L40I, L40K, L40M, L40N, L40P,

L40Q, L40R, L40S, L40T, L40V, L40W, L40Y, N41A, N41C, N41D, N41E, N41F, N41G, N41H, N41I, N41K, N41L, N41M, N41P, N41Q, N41R, N41S, N41T, N41V, N41W, N41Y, E42A, E42C, E42D, E42F, E42G, E42H, E42I, E42K, E42L, E42M, E42N, E42P, E42Q, E42R, E42S, E42T, E42V, E42W, E42Y, V43A, V43C, V43D, V43E, V43F, V43G, V43H, V43I, V43K, V43L, V43M, V43N, V43P, V43Q, V43R, V43S, V43T, V43W, V43Y, P44A, P44C, P44D, P44E, P44F, P44G, P44H, P44I, P44K, P44L, P44M, P44N, P44Q, P44R, P44S, P44T, P44V, P44W, P44Y, I45A, I45C, I45D, I45E, I45F, I45G, I45H, I45K, I45L, I45M, I45N, I45P, I45Q, I45R, I45S, I45T, I45V, 145W, 145Y, E46A, E46C, E46D, E46F, E46G, E46H, E46I, E46K, E46L, E46M, E46N, E46P, E46Q, E46R, E46S, E46T, E46V, E46W, E46Y, K47A, K47C, K47D, K47E, K47F, K47G, K47H, K47I, K47L, K47M, K47N, K47P, K47Q, K47R, K47S, K47T, K47V, K47W, K47Y, P48A, P48C, P48D, P48E, P48F, P48G, P48H, P48I, P48K, P48L, P48M, P48N, P48Q, P48R, P48S, P48T, P48V, P48W, P48Y, Y54A, Y54C, Y54D, Y54E, Y54F, Y54G, Y54H, Y54I, Y54K, Y54L, Y54M, Y54N, Y54P, Y54Q, Y54R, Y54S, Y54T, Y54V, Y54W, S55A, S55C, S55D, S55E, S55F, S55G, S55H, S55I, S55K, S55L, S55M, S55N, S55P, S55Q, S55R, S55T, S55V, S55W, S55Y, G56A, G56C, G56D, G56E, G56F, G56H, G56I, G56K, G56L, G56M, G56N, G56P, G56Q, G56R, G56S, G56T, G56V, G56W, G56Y, T57A, T57C, T57D, T57E, T57F, T57G, T57H, T57I, T57K, T57L, T57M, T57N, T57P, T57Q, T57R, T57S, T57V, T57W, T57Y, L58A, L58C, L58D, L58E, L58F, L58G, L58H, L58I, L58K, L58M, L58N, L58P, L58Q, L58R, L58S, L58T, L58V, L58W, L58Y, N59A, N59C, N59D, N59E, N59F, N59G, N59H, N59I, N59K, N59L, N59M, N59P, N59Q, N59R, N59S, N59T, N59V, N59W, N59Y, F67A, F67C, F67D, F67E, F67G, F67H, F67I, F67K, F67L, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 35 F67M, F67N, F67P, F67Q, F67R, F67S, F67T, F67V, F67W, F67Y, S68A, S68C, S68D, S68E, S68F, S68G, S68H, S68I, S68K, S68L, S68M, S68N, S68P, S68Q, S68R, S68T, S68V, S68W, S68Y, G69A, G69C, G69D, G69E, G69F, G69H, G69I, G69K, G69L, G69M, G69N, G69P, G69Q, G69R, G69S, G69T, G69V, G69W, G69Y, F70A, F70C, F70D, F70E, F70G, F70H, F70I, F70K, F70L, F70M, F70N, F70P, F70Q, F70R, F70S, F70T, F70V, F70W, F70Y, E71A, E71C, E71D, E71F, E71G, E71H, E71I, E71K, E71L, E71M, E71N, E71P, E71Q, E71R, E71S, E71T, E71V, E71W, E71Y, S72A, S72C, S72D, S72E, S72F, S72G, S72H, S72I, S72K, S72L, S72M, S72N, S72P, S72Q, S72R, S72T, S72V, S72W, S72Y, E73A, E73C, E73D, E73F, E73G, E73H, E73I, E73K, E73L, E73M, E73N, E73P, E73Q, E73R, E73S, E73T, E73V, E73W, E73Y, K74A, K74C, K74D, K74E, K74F, K74G, K74H, K74I, K74L, K74M, K74N, K74P, K74Q, K74R, K74S, K74T, K74V, K74W, and/or K74Y or combinations thereof. It is contemplated that one or more of these substitutions may be specifically excluded in embodiments described herein.

In still further embodiments other amino acid substitutions can be introduced before, during, or after introduction of those amino acid substitutions listed above. Further substitutions (corresponding to SEQ ID NO:6) include, but is not limited to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 of P1A, P1C, P1D, P1E, P1F, P1G, P1H, P1I, P1K, P1L, P1M, P1N, P1Q, P1R, P1S, P1T, P1V, P1W, P1Y, S3A, S3C, S3D, S3E, S3F, 53G, S3H, S3I, S3K, S3L, S3M, S3N, S3P, S3Q, 53R, S3T, S3V, S3W, S3Y, P4A, P4C, P4D, P4E, P4F, P4G, P4H, P4I, P4K, P4L, P4M, P4N, P4Q, P4R, P4S, P4T, P4V, P4W, P4Y, S5A, S5C, S5D, S5E, S5F, S5G, S5H, S5I, S5K, S5L, S5M, S5N, 55P, S5Q, S5R, S5T, S5V, S5W, S5Y, G6A, G6C, G6D, G6E, G6F, G6H, G6I, G6K, G6L, G6M, G6N, G6P, G6Q, G6R, G6S, G6T, G6V, G6W, G6Y, V7A, V7C, V7D, V7E, V7F, V7G, V7H, V7I, V7K, V7L, V7M, V7N, V7P, V7Q, V7R, V7S, V7T, V7W, V7Y, T8A, T8C, T8D, T8E, T8F, T8G, T8H, T8I, T8K, T8L, T8M, T8N, T8P, T8Q, T8R, T8S, T8V, T8W, T8Y, L9A, L9C, L9D, L9E, L9F, L9G, L9H, L9I, L9K, L9M, L9N, L9P, L9Q, L9R, L9S, L9T, L9V, L9W, L9Y, M10A, M10C, M10D, M10E, M10F, M10G, M10H, M10I, M10K, M10L, M10N, M10P, M10Q, M10R, M10S, M10T, M10V, M10W, M10Y, L11A, LUC, L11D, L11E, L11F, L11G, L11H, L11I, L11K, L11M, L11N, L11P, L11Q, L11R, L11S, L11T, L11V, L11W, L11Y, N12A, N12C, N12D, N12E, N12F, N12G, N12H, N12I, N12K, N12L, N12M, N12P, N12Q, N12R, N12S, N12T, N12V, N12W, N12Y, Y15C, Y15D, Y15E, Y15F, Y15G, Y15H, Y15I, Y15K, Y15L, Y15M, Y15N, Y15P, Y15Q, Y15R, Y15S, Y15T, Y15V, Y15W, V16A, V16C, V16D, V16E, V16F, V16G, V16H, V16I, V16K. V16L, V16M, V16N, V16P, V16Q, V16R, V16S, V16T, 20 F78W, F78Y, P79A, P79C, P79D, P79E, P79F, P79G, P79H, V16W, V16Y, E17A, E17C, E17D, E17F, E17G, E17H, E17I, E17K, E17L, E17M, E17N, E17P, E17Q, E17R, E17S, E17T, E17V, E17W, E17Y, L18A, L18C, L18D, L18E, L18F, L18G, L18H, L18I, L18K, L18M, L18N, L18P, L18Q, L18R, L18S, L18T, L18V, L18W, L18Y, S19A, 25 S19C, S19D, S19E, S19F, S19G, S19H, S19I, S19K, S19L, S19M, S19N, S19P, S19Q, S19R, S19T, S19V, S19W, S19Y, V28A, V28C, V28D, V28E, V28F, V28G, V28H, V28I, V28K, V28L, V28M, V28N, V28P, V28Q, V28R, V28S, V28T, V28W, V28Y, A29C, A29D, A29E, A29F, A29G, 30 A29H, A29I, A29K, A29L, A29M, A29N, A29P, A29Q, A29R, A29S, A29T, A29V, A29W, A29Y, G30A, G30C, G30D, G30E, G30F, G30G, G30H, G30I, G30K, G30L, G30M, G30N, G30P, G30Q, G30R, G30S, G30T, G30V, G30W, G30Y, Y31A, Y31C, Y31D, Y31E, Y31F, Y31G, 35 D85K, D85L, D85M, D85N, D85P, D85Q, D85R, D85S, Y31H, Y31I, Y31K, Y31L, Y31M, Y31N, Y31P, Y31Q, Y31R, Y31S, Y31T, Y31V, Y31W, F32A, F32C, F32D, F32E, F32G, F32H, F32I, F32K, F32L, F32M, F32N, F32P, F32Q, F32R, F32S, F32T, F32V, F32W, F32Y, I33A, I33C, 133D, 133E, 133F, 133G, 133H, 133K, 133L, 133M, 133N, 40 133P, 133Q, 133R, 133S, 133T, 133V, 133W, 133Y, Y34A, Y34C, Y34D, Y34E, Y34F, Y34G, Y34H, Y34I, Y34K, Y34L, Y34M, Y34N, Y34P, Y34Q, Y34R, Y34S, Y34T, Y34V, Y34W, K35A, K35C, K35D, K35E, K35F, K35G, K35H, K35I, K35L, K35M, K35N, K35P, K35Q, K35R, 45 K35S, K35T, K35V, K35W, K35Y, K38A, K38C, K38D, K38E, K38F, K38G, K38H, K38I, K38L, K38M, K38N, K38P, K38Q, K38R, K38S, K38T, K38V, K38W, K38Y, R39A, R39C, R39D, R39E, R39F, R39G, R39H, R39I, R39K, R39L, R39M, R39N, R39P, R39Q, R39S, R39T, 50 A91T, A91V, A91W, A91Y, G92A, G92C, G92D, G92E, R39V, R39W, R39Y, N49A, N49C, N49D, N49E, N49F, N49G, N49H, N49I, N49K, N49L, N49M, N49P, N49Q, N49R, N49S, N49T, N49V, N49W, N49Y, F50A, F50C, F50D, F50E, F50G, F50H, F50I, F50K, F50L, F50M, F50N, F50P, F50Q, F50R, F50S, F50T, F50V, F50W, F50Y, R51A, 55 R51C, R51D, R51E, R51F, R51G, R51H, R51I, R51K, R51L, R51M, R51N, R51P, R51Q, R51S, R51T, R51V, R51W, R51Y, D52A, D52C, D52E, D52F, D52G, D52H, D52I, D52K, D52L, D52M, D52N, D52P, D52Q, D52R, D52S, D52T, D52V, D52W, D52Y, I53A, I53C, I53D, I53E, 153F, 153G, 153H, 153K, 153L, 153M, 153N, 153P, 153Q, 153R, 153S, 153T, 153V, 153W, 153Y, Y60A, Y60C, Y60D, Y60E, Y60F, Y60G, Y60H, Y60I, Y60K, Y60L, Y60M, Y60N, Y60P, Y60Q, Y60R, Y60S, Y60T, Y60V, Y60W, S61A, S61C, S61D, S61E, S61F, S61G, S61H, S61I, S61K. 65 S61L, S61M, S61N, S61P, S61Q, S61R, S61T, S61V, S61W, S61Y, I62A, I62C, I62D, I62E, I62F, I62G, I62H, I62K,

I62L, I62M, I62N, I62P, I62Q, I62R, I62S, I62T, I62V, 162W, 162Y, S63A, S63C, S63D, S63E, S63F, S63G, S63H, S63I, S63K, S63L, S63M, S63N, S63P, S63Q, S63R, S63T, S63V, S63W, S63Y, A64C, A64D, A64E, A64F, A64G, A64H, A64I, A64K, A64L, A64M, A64N, A64P, A64Q, A64R, A64S, A64T, A64V, A64W, A64Y, I65A, I65C, I65D, I65E, I65F, I65G, I65H, I65K, I65L, I65M, I65N, I65P, 165Q, 165R, 165S, 165T, 165V, 165W, 165Y, D66A, D66C, D66E, D66F, D66G, D66H, D66I, D66K, D66L, D66M, D66N, D66P, D66Q, D66R, D66S, D66T, D66V, D66W, D66Y, T75A, T75C, T75D, T75E, T75F, T75G, T75H, T75I, T75K, T75L, T75M, T75N, T75P, T75Q, T75R, T75S, T75V, T75W, T75Y, E76A, E76C, E76D, E76F, E76G, E76H, E76I, E76K, E76L, E76M, E76N, E76P, E76Q, E76R, E76S, E76T, E76V, E76W, E76Y, V77A, V77C V77D, V77E, V77F, V77G, V77H, V77I, V77K, V77L, V77M, V77N, V77P, V77Q, V77R, V77S, V77T, V77W, V77Y, F78A, F78C, F78D, F78E, F78G, F78H, F78I, F78K, F78L, F78M, F78N, F78P, F78Q, F78R, F78S, F78T, F78V, P79I, P79K, P79L, P79M, P79N, P79Q, P79R, P79S, P79T, P79V, P79W, P79Y, V80A, V80C, V80D, V80E, V80F, V80G, V80H, V80I, V80K, V80L, V80M, V80N, V80P, V80Q, V80R, V80S, V80T, V80W, V80Y, K81A, K81C, K81D, K81E, K81F, K81G, K81H, K81I, K81L, K81M, K81N, K81P, K81Q, K81R, K81S, K81T, K81V, K81W, K81Y, L82A, L82C, L82D, L82E, L82F, L82G, L82H, L82I, L82K, L82M, L82N, L82P, L82Q, L82R, L82S, L82T, L82V, L82W, L82Y, E83A, E83C, E83D, E83F, E83G, E83H, E83I, E83K, E83L, E83M, E83N, E83P, E83Q, E83R, E83S, E83T, E83V, E83W, E83Y, V84A, V84C, V84D, V84E, V84F, V84G, V84H, V84I, V84K, V84L V84M, V84N, V84P, V84Q, V84R, V84S, V84T, V84W, V84Y, D85A, D85C, D85E, D85F, D85G, D85H, D85I, D85T, D85V, D85W, D85Y, E86A, E86C, E86D, E86F, E86G, E86H, E86I, E86K, E86L, E86M, E86N, E86P, E86Q, E86R, E86S, E86T, E86V, E86W, E86Y, E87A, E87C, E87D, E87F, E87G, E87H, E87I, E87K, E87L, E87M, E87N, E87P, E87Q, E87R, E87S, E87T, E87V, E87W, E87Y, N88A, N88C, N88D, N88E, N88F, N88G, N88H, N88I, N88K, N88L, N88M, N88P, N88Q, N88R, N88S, N88T, N88V, N88W, N88Y, L89A, L89C, L89D, L89E, L89F, L89G, L89H, L89I, L89K, L89M, L89N, L89P, L89Q, L89R, L89S, L89T, L89V, L89W, L89Y, T90A, T90C, T90D, T90E, T90F, T90G, T90H, T90I, T90K, T90L, T90M, T90N, T90P, T90Q, T90R, T90S, T90V, T90W, T90Y, A91C, A91D, A91E, A91F, A91G, A91H, A91I, A91K, A91L, A91M, A91N, A91P, A91Q, A91R, A91S, G92F, G92H, G92I, G92K, G92L, G92M, G92N, G92P, G92Q, G92R, G92S, G92T, G92V, G92W, G92Y, Y93A, Y93C, Y93D, Y93E, Y93F, Y93G, Y93H, Y93I, Y93K, Y93L, Y93M, Y93N, Y93P, Y93Q, Y93R, Y93S, Y93T, Y93V, Y93W, P94A, P94C, P94D, P94E, P94F, P94G, P94H, P94I, P94K, P94L, P94M, P94N, P94O, P94R, P94S, P94T, P94V, P94W, P94Y, G95A, G95C, G95D, G95E, G95F, G95H, G95I, G95K, G95L, G95M, G95N, G95P, G95Q, G95R, G95S, G95T, G95V, G95W, G95Y, A96C, A96D, A96E, A96F, A96G, A96H, A96I, A96K, A96L, A96M, A96N, A96P, A96Q, A96R, A96S, A96T, A96V, A96W, A96Y, V97A, V97C, V97D, V97E, V97F, V97G, V97H, V97I, V97K, V97L, V97M, V97N, V97P, V97Q, V97R, V97S, V97T, V97W, V97Y, K98A, K98C, K98D, K98E, K98F, K98G, K98H, K98I, K98L, K98M, K98N, K98P, K98Q, K98R, K98S, K98T, K98V, K98W, K98Y,

V99A, V99C, V99D, V99E, V99F, V99G, V99H, V99I,

V99K, V99L, V99M, V99N, V99P, V99Q, V99R, V99S. V99T, V99W, V99Y, K100A, K100C, K100D, K100E, K100F, K100G, K100H, K100I, K100L, K100M, K100N, K100P, K100Q, K100R, K100S, K100T, K100V, K100W, V101Y, V101A, V101C, V101D, V101E, V101F, V101G, V101H, V101I, V101K, V101L, V101M, V101N, V101P, V101Q, V101R, V101S, V101T, V101W, V101Y, E102A, E102C, E102D, E102F, E102G, E102H, E102I, E102K, E102L, E102M, E102N, E102P, E102Q, E102R, E102S, E102T, E102V, E102W, E102Y, N103A, N103C, N103D, N103E, N103F, N103G, N103H, N103I, N103K, N103L, N103M, N103P, N103Q, N103R, N103S, N103T, N103V, N103W, N103Y, L104A, L104C, L104D, L104E, L104F, L104G, L104H, L104I, L104K, L104M, L104N, L104P, L104Q, L104R, L104S, L104T, L104V, L104W, L104Y, D105A, D105C, D105E, D105F, D105G, D105H, D105I, D105K, D105L, D105M, D105N, D105P, D105Q, D105R, D105S, D105T, D105V, D105W, D105Y, G106A, G106C, G106D, G106E, G106F, G106H, G106I, G106K, G106L, 20 G106M, G106N, G106P, G106Q, G106R, G106S, G106T, G106V, G106W, G106Y, E107A, E107C, E107D, E107F, E107G, E107H, E107I, E107K, E107L, E107M, E107N, E107P, E107Q, E107R, E107S, E107T, E107V, E107W, E107Y, A108C, A108D, A108E, A108F, A108G, A108H, 25 A108I, A108K, A108L, A108M, A108N, A108P, A108Q, A108R, A108S, A108T, A108V, A108W, and/or A108Y and combinations thereof. It is contemplated that one or more of these substitutions may be specifically excluded in embodiments described herein.

In certain aspects, the library comprises a variation in an amino acid corresponding to amino acid 1 of SEQ ID NO:1 in combination with one or more residue corresponding to amino acid 2, 3, 4, 14, 28, and 58.

In a further aspect, the library comprises a variation in an 35 amino acid corresponding to amino acid 2 of SEQ ID NO:1 in combination with one or more residue corresponding to amino acid 1, 3, 4, 14, 28, and/or 58.

In a still a further aspect, the library comprises a variation in an amino acid corresponding to amino acid 3 of SEQ ID 40 NO:1 in combination with one or more residue corresponding to amino acid 1, 2, 4, 14, 28, and/or 58.

In a further aspect, the library comprises a variation in an amino acid corresponding to amino acid 4 of SEQ ID NO:1 in combination with one or more residue corresponding to 45 amino acid 1, 2, 3, 14, 28, and/or 58.

In a certain aspect, the library comprises a variation in an amino acid corresponding to amino acid 14 of SEQ ID NO:1 in combination with one or more residue corresponding to amino acid 1, 2, 3, 4, 28, and/or 58.

In a further aspect, the library comprises a variation in an amino acid corresponding to amino acid 28 of SEQ ID NO:1 in combination with one or more residue corresponding to amino acid 1, 2, 3, 4, 14, and/or 58.

In a further aspect, the library comprises a variation in an 55 amino acid corresponding to amino acid 58 of SEQ ID NO:1 in combination with one or more residue corresponding to amino acid 1, 2, 3, 4, 14, and/or 28.

D. Library Screening

Library screening can be conducted in order to select FN3 60 variants that bind to specific ligands or targets. Combinatorial screening can easily produce and screen a large number of variants, which is not feasible with specific mutagenesis ("rational design") approaches. Amino acid variant at various amino acid positions in FN3 can be generated using a 65 degenerate nucleotide sequence. FN3 variants with desired binding capabilities can be selected in vitro, recovered and

amplified. The amino acid sequence of a selected clone can be identified readily by sequencing the nucleic acid encoding the selected FN3.

32

In some embodiments, a particular FN3-based molecule has an affinity for a target that is at least 2-fold greater than the affinity of the polypeptide prior to substitutions discussed herein. In some embodiments, the affinity is, is at least, or is at most about 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 60-, 70-, 80-, 90-, 100-fold increased (or any range derivable therein) compared to another FN3-based molecule.

Phage Display Library and Selection. A FN3 polypeptide library can be created using a "shaved" template containing polyserine sequence at locations to be diversified (Koide et al., 2007 and Wojcik et al., 2010). A synthetic DNA fragment that encodes signal sequence of DsbA (Steiner et al., 2006) can be fused to the gene for the template, and the fusion gene can be cloned into a phage display vector (Koide et al., 1998). A phage-display combinatorial library can be constructed by introducing codons for amino acid variation into the FN3 polypeptide. Library construction procedures have previously been described (Koide and Koide, 2007).

Phagemid particles can be prepared by growing XL1-Blue cells transfected with the phagemid library in the presence of IPTG and helper phage (Lo Conte et al., 1999; Fellouse et al., 2005). Phagemid library selection can be performed as follows. In the first round, 0.5 $\square M$ of a target protein modified with EZ-Link Sulfo-NHS-SS-Biotin (Sulfosuccinimidyl 2(biotinamido)-ethyl-1,3-dithiopropionate; Pierce) can be mixed with a sufficient amount of streptavidinconjugated magnetic beads (Streptavidin MagneSphere Pramagnetic Particles; Promega, Z5481/2) in TBS (50 mM Tris HCl buffer pH 7.5 150 mM NaCl) containing 0.5% Tween20 (TBST). To this target solution, 1012-13 phagemids suspended in 1 ml TBST plus 0.5% BSA can be added, and the solution can then be mixed and incubated for 15 min at room temperature. After washing the beads twice with TBST, the beads suspension containing bound phagemids can be added to fresh E. coli culture. Phagemids were amplified as described before (Fellouse et al., 2005). In a second round, phagemids can be incubated with 0.1 □M target in TBST plus 0.5% BSA, and then captured by streptavidin-conjugated magnetic beads. Phagemids bound to the target protein can be eluted from the beads by cleaving the linker within the biotinylation reagent with 100 mM DTT in TBST. The phagemids can then be washed and recovered as described above. After amplification, the third round of selection may be performed using 0.02 \(\sum M \) target. Phage display is an established technique for generating binding members and has been described in detail in many publications such as Kontermann & Dubel (2001) and WO92/01047, each of which is incorporated herein by reference in its entirety.

Yeast Surface Display. Yeast surface experiments can be performed according to Boder and Wittrup (2000) with minor modifications. The Express-tag in the yeast display vector, pYD1, (Invitrogen) may be removed, since it can cross-react with anti-FLAG antibodies (Sigma). The genes for monobodies in the phagemid library after three rounds of selection can be amplified using PCR and mixed with the modified pYD1 cut with EcoRI and XhoI, and yeast EBY100 cells can transformed with this mixture. The transformed yeast cells can grown in the SD-CAA media at 30□C for two days, and then monobody expression can be induced by growing the cells in the SG-CAA media at 30□C for 24 h

Sorting of monobody-displaying yeast cells may be performed as follows. The yeast cells may be incubated with a biotinylated target (50 nM) and mouse anti-V5 antibody (Sigma), then after washing incubated with anti-mouse antibody-FITC conjugate (Sigma) and neutravidin-PE conjugate (Invitrogen). The stained cells can be sorted based on the FITC and PE intensities. Typically, cells exhibiting the top \square 1% PE intensity and top 10% FITC intensity are recovered.

After FACS sorting, individual clones can be analyzed. Approximate Kd values can be determined from a titration curve by FACS analysis (Boder and Wittrup, 2000). Amino 10 acid sequences can be deduced from DNA sequencing.

Effects of *E. coli* lysate on monobody-target interaction can be tested by comparing binding in the presence and absence of *E. coli* lysate prepared from cell suspension with OD600 of 50.

Protein Expression and Purification. The nucleic acid encoding any targets can be cloned in the appropriate expression vector. In one example, genes for monobodies can be cloned in the expression vector, pHFT2, which is a derivative of pHFT1 (Huang et al., 2006) in which the His-6 20 tag had been replaced with a His-10 tag. Protein expression and purification can be performed as described previously (Huang et al., 2006).

An expression vector comprising cDNA encoding a FN3 polypeptide or a target molecule is introduced into Escheri- 25 chia coli, yeast, an insect cell, an animal cell or the like for expression to obtain the polypeptide. Polypeptides used in the methods and compositions of the disclosure can be produced, for example, by expressing a DNA encoding it in a host cell using a method described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997) or the like. A recombinant vector is produced by inserting a cDNA downstream of a promoter in an appropriate expression vector. 35 The vector is then introduced into a host cell suitable for the expression vector. The host cell can be any cell so long as it can express the gene of interest, and includes bacteria (e.g., Escherichia coli), an animal cell and the like. Expression vector can replicate autonomously in the host cell to be used 40 or vectors which can be integrated into a chromosome comprising an appropriate promoter at such a position that the DNA encoding the polypeptide can be transcribed.

Affinity Claims

Embodiments of the disclosure, particularly those comprising a polypeptide comprising a biorecognition module including a molecular recognition domain relate to a polypeptide capable of forming an "affinity clamp" to a target 50 described as a ternary complex composition of the type: motif.

It is informative to compare characteristics of molecular affinity clamps with those of antibodies, the gold standard of affinity reagents. Antibodies are general and versatile affinity reagents. The immune system can produce an antibody to virtually any molecule. The diversity of the immunoglobulin repertoire is 1010-12, which is similar in size to the diversity of a typical phage display library (1010). This versatility of the antibodies, however, also means that the antibody repertoire is not focused and that only a small subset of the foundaries repertoire is available to bind to a particular class of antigen. For example, antibodies that bind to lysozyme and those that bind to a phospho-Ser peptide are distinct subsets of the same repertoire.

Economical and scalable production is another important 65 area of consideration for affinity reagents. As noted above, polyclonal antibodies cannot be reproduced, once the origi-

nal stock is depleted. Monoclonal antibodies can be reproduced, but the maintenance and large-scale culture of hybridoma cells are cumbersome and expensive. Antibodies can also be produced by recombinant technologies, but the natural diversity throughout the antibody molecules (i.e., framework diversity in addition to the extensive diversity within the antigen binding loops) makes formatting them for different applications fundamentally low throughput.

Moreover, because of the presence of critical disulfide bonds, recombinant production of antibodies is not straightforward. For this reason, a number of alternative "molecular scaffolds" for engineering affinity reagents have been developed that are small and devoid of disulfide bonds (8-10). Although these new-generation affinity reagents generally have good affinity and specificity, developing affinity reagents for short peptide motifs remains a major challenge in the field, because of the fundamental difficulties stated hereinabove.

In contrast, molecular affinity clamps in accordance with the disclosure are affinity reagents directed to a pre-defined motif. In one aspect, molecular affinity clamps are built with a particular biorecognition module comprising an interaction domain that is specific primarily to the class of target motifs that the interaction domain recognizes. Because of this pre-defined binding specificity, repertoire diversity can then be used to enhance the properties of affinity reagents rather than to blindly search for initial hits. This distinctive feature of the invention may lead to an increased success rate of producing high-affinity reagents for a motif of interest. In another embodiment, the molecular affinity clamps are build with one or more variant FN3 domains.

The two polypeptide molecules of the affinity clamp (e.g. the first polypeptide comprising the variant FN3 domain and the second polypeptide comprising the biorecognition module, which can include an interaction domain or a second variant FN3 domain) are spatially oriented to bind distinct, overlapping, or the same sites within target motif of a target. The configuration of the two biorecognition modules about the target motif is clamp-like or clamshell-like, i.e., the target motif is "clamped" between the two biorecognition modules. The two biorecognition modules of the affinity clamp are capable of together binding a single target motif on a single target. The first polypeptide molecule and second polypeptide molecules may bind at least overlapping por-45 tions the target motif on a target. This is unlike other binding molecules, such as an antibody, where the binding molecules recognize non-overlapping target motifs, different target motifs, or the same target motif located on more than one target. In another aspect, the affinity clamp is suitably

wherein M1 and M2 are independently the polypeptide comprising the variant FN3 domain and the polypeptide comprising the biorecognition module, L is a direct bond or linker moiety used for tethering the first and second biorecognition modules, and T is a target motif. M1 includes a variant FN3 domain bound to a first site of the target motif, and M2 includes a molecular recognition domain bound to a second site of the target motif (or vice versa) without disrupting the binding of the variant FN3 domain. The first and second sites can be the same, overlapping, or distinct sites within the target motif. L as a linker is selected from the

group consisting of a peptide which is equal to or shorter than 30 residues, a group capable of disulfide bonding, and a chemical crosslinker.

35

B. Target Motif

A target motif suitable in accordance with the disclosure 5 may be any motif which can be recognized by a biorecognition module, e.g., an interaction domain. Such target motifs include peptides and covalently modified peptides, including but not limited to peptides that are phosphorylated, methylated, acetylated, ubiquinated, SUMOylated, 16 ISGylated, glycosylated, acylated, prenylated, ribosylated, gammacarboxylated, or sulfated.

C. Biorecognition Module

Among the commonly occurring domains identified in signaling proteins are the so-called "interaction domains." Interaction domains are typically small (usually less than ~100 amino acids) and autonomously folded. Many of them bind to short peptide motifs that often contain modified amino acids. It has been found that a primary binding domain, i.e., the molecular recognition domain, of the 20 biorecognition module is suitably an interaction domain. With molecular affinity clamp technology, the interaction domains as the biorecognition modules can be engineered in such a way that the enhancer domain can be connected in a proper orientation. The bifunctional module architecture of 25 the molecular affinity clamps in accordance with the invention, after optimization, significantly increases the surface areas of the peptide-binding interface by forming the clamshell architecture, leading to higher affinity and/or specificity. Use of interaction domains as the primary binding domain is based on the following common features of these domains: a target peptide motif binds to a shallow groove on the interaction domain surface, and the peptide is still highly exposed; there are turns and/or loops located close to the peptide-binding site; and the N- and C-termini are juxta- 35 posed in space so that they could be connected and a new set of termini could be created elsewhere.

In short, molecular affinity clamp technology makes it possible to define the primary specificity of affinity reagents in advance (e.g., using the specificity of the interaction 40 domain), and then, enhance that affinity and/or specificity. This modular architecture in accordance with the disclosure transforms affinity reagent development from an "unguided fishing expedition" to a focused, rational and robust process.

Interaction domains, suitable as the recognition domain, 45 include, but are not limited to, domains involved in phoshotyrosine binding (e.g. SH2, PTB), phospho-serine binding (e.g. UIM, GAT, CUE, BTB/POZ, VHS, UBA, RING, HECT, WW, 14-3-3, Polo-box), phospho-threonine binding (e.g. FHA, WW, Polo-box), proline-rich region binding (e.g. EVH1, SH3, GYF), acetylated lysine binding (e.g. Bromo), methylated lysine binding (e.g. Chromo, PHD), apoptosis (e.g. BIR, TRAF, DED, Death, CARD, BH), cytoskeleton modulation (e.g. ADF, GEL, DH, CH, FH2), or other cellular functions (e.g. EH, CC, VHL, TUDOR, PUF 55 Repeat, PAS, MH1, LRR, IQ, HEAT, GRIP, TUBBY, SNARE, TPR, TIR, START, SOCS Box, SAM, RGS, PDZ, PB1, LIM, F-BOX, ENTH, EF-Hand, SHADOW, ARM, ANK).

D. Linkers

The variant FN3 polypeptide and polypeptide comprising the biorecognition module may be linked together either directly, e.g., bound together with a peptide sequence via a tail from one of the modules, or indirectly via a linker. As to the latter, the linker generally is bifunctional in that it 65 includes a functionality for linking the biorecognition module and a functionality for linking variant FN3 polypeptide.

36

The linker may suitably be a specific moiety, such as an amino acid sequence of about 30 or fewer residues. It is also contemplated that the two polypeptide domains may be linked non-covalently through a high affinity binding interaction or physical association such as the interaction mediated by coiled-coil peptides.

E. Detection of Affinity Clamp Binding

In general, the different conformational states of modular affinity clamps used in accordance with the disclosure will correspond to different separation distances between the polypeptide modules, whereby changes in conformation may be conveniently monitored by means of a separation sensitive signal.

Various forms of separation sensitive signal systems may be used with the affinity clamps of the disclosure. In such embodiments, the biorecognition module includes a first signaling moiety and the variant FN3 polypeptide includes a second signaling moiety, and the first and second signaling moieties are capable of interacting to produce a detectable signal. The signaling moieties may include dyes, quenchers, reporter proteins and quantum dots. Particularly useful are embodiments in which the polypeptide domains include optical signaling pairs that can produce a detectable signal when the proximity of the modules with respect to each other changes with the binding of the polypeptide domains. Suitably, the first and second signaling modules are a fluorescence resonance energy (FRET) donor group and a receptor group, respectively. The change in proximity of the FRET groups produces an optical signal which differs between when the target motif is present and not present.

It will also be appreciated that various other means may be used for "reading" the presence of target motif binding to a modular affinity clamp, and/or the resultant change in conformational state of the affinity clamp structure. Many different labeling systems may be used, such as fluorophore labeling (including quantum dot), radio-labeling, and redox labeling.

F. Use of Affinity Clamps as Biosensors

Molecular affinity clamps in accordance with the disclosure may be suitably used as a biosensor wherein the polypeptide modules are each labeled with paired signaling moieties as described above.

A plurality of affinity clamps described herein may be immobilized, directly or indirectly to a support or substrate to form an array of clamps or an array of biosensors. Supports or substrates can take a variety of forms such as polymers, glasses, metal and those with coating therein. Arrays are ordered arrangements of elements, allowing them to be displayed and examined in parallel. Arrays of immobilized affinity clamps can be used to detect the target motif and demonstrate the binding reaction. Certain array formats are sometimes referred to as "biochips." Biochips may include a plurality of locations configured so that each location is spatially addressable. Typically, the clamp format is configured in a row and column format with regular spacing between locations, wherein each location has machine-readable (e.g., computer-readable) information to identify the location on the surface of the substrate.

The affinity clamp technology provides a method of detecting the presence and amount of a target motif in a sample by using the affinity clamp as a biosensor. Specifically, a sample is contacted under specific conditions with a biosensor. Fluorescence events are sensed with the binding of the polypeptide modules to the target motif in the sample and in the absence of the sample, and the fluorescence sensing in the absence of the target motif is correlated with a change in the FRET signal in the presence of the target

motif. Thus, absence of the target motif generates a specific FRET signal in terms of the wavelength and amplitude of the emission, and the presence of the target motif generates a modulated FRET signal emission in terms of either the wavelength or amplitude or both. Samples may include 5 blood, saliva or tissue.

Accordingly, an affinity clamp array as a biosensor array includes a plurality of affinity clamps or biosensors anchored to the surface of a substrate, each at an addressable site on the substrate.

G. Construction of a Modular Molecular Affinity Clamp
The general engineering of a molecular affinity clamp is
given basically in four steps. Step 1 involves identifying the
potential locations for attachment, via a linker, of the variant
FN3 polypeptide to the biorecognition module by visual
inspection of the interaction domain structure and/or from
sequence variability among interaction domain family members, and testing the tolerance of identified locations for
extensive modifications, for example, by inserting four Gly
residues.

Step 2 includes two sub-steps, Step 2a and 2b. Step 2a is included if circular permutations are performed to construct new termini closer to the interaction domain binding site. In some embodiments, Step 2a is not needed. In Step 2a, if circular permutation is performed, a domain is constructed 25 by joining the original termini and cutting the polypeptide at a location closer to the target-binding site of the interaction domain that tolerates mutations. Then, in Step 2b, the variant FN3 polypeptide is attached to the C-terminus of the circularly permutated domain or the natural C-terminus (in the 30 case where no circular permutation is performed.) The N-terminus of FN3 is located close to its functional loops, and thus, connecting the FN3 N-terminus to the interaction domain ensures that the FN3 binding loops are facing the target motif-binding site.

In Step 3, amino acid diversity is introduced in FN3 loops to construct a large combinatorial library of mutated polypeptides, and in Step 4, library sorting is performed to optimize the enhancer domain for a specific target motif.

Further embodiments of the affinity clamp are described 40 in WO/2009/062170, which is herein incorporated by reference.

Polypeptide Compositions

The polypeptides or polynucleotides of the disclosure may include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 or more variant amino acids or nucleic acid 50 substitutions or be at least 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% similar, identical, or 55 homologous with at least, or at most 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, $129,\,130,\,131,\,132,\,133,\,134,\,135,\,136,\,137,\,138,\,139,\,140,\,\,_{65}$ 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,

165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 300, 400, 500, 550, 1000 or more contiguous amino acids or nucleic acids, or any range derivable therein, of SEQ ID NOs:1-7.

38

The polypeptides or polynucleotides of the disclosure may include 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, $230,\,231,\,232,\,233,\,234,\,235,\,236,\,237,\,238,\,239,\,240,\,241,$ 242, 243, 244, 245, 246, 247, 248, 249, 250, 300, 400, 500, 550, 1000 or more contiguous amino acids, or any range derivable therein, of SEQ ID NO:1-7.

In some aspects there is a nucleic acid molecule or polypeptide starting at position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357,358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429,

```
430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441,
442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453,
454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465,
466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477,
478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489,
490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501,
502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513,
514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525,
526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537,
538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 10
550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561,
562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573,
574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 15
610, 611, 612, 613, 614, or 615 of any of SEQ ID NOS:1-7
and comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 20
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 25
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169,\,170,\,171,\,172,\,173,\,174,\,175,\,176,\,177,\,178,\,179,\,180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 30
193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205,\, 206,\, 207,\, 208,\, 209,\, 210,\, 211,\, 212,\, 213,\, 214,\, 215,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,\, 216,
217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 35
253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288,
289,\,290,\,291,\,292,\,293,\,294,\,295,\,296,\,297,\,298,\,299,\,300,
301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 40
313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,
325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336,
337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348,
349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360,
361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 45
373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384,
385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396,
397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408,
409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420,
421,\,422,\,423,\,424,\,425,\,426,\,427,\,428,\,429,\,430,\,431,\,432,\,_{\,50}
433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444,
445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456,
457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,
481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 55
493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504,
505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516,
517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528,
529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540,
541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 60
553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564,
565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576,
577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588,
589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600,
601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 65
613, 614, or 615 contiguous nucleotides or polyeptpdies of
any of SEQ ID NOS:1-7.
```

The polypeptides and nucleic acids of the disclosure may include at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, or 615 substitutions.

The substitution may be at amino acid position or nucleic acid position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,

```
205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,
217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 5
265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288,
289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300,
301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312,
313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,
325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336,
337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348,
349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360,
361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372,
373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 15
385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396,
397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408,
409,\,410,\,411,\,412,\,413,\,414,\,415,\,416,\,417,\,418,\,419,\,420,
421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432,
433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 20
445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456,
457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,
481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492,
493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 25
505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516,
517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528,
529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540,
541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 30
565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576,
577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588,
589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600,
601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612,
613, 614, or 615 of one of SEQ ID NO:1-7.
```

Embodiments include polypeptides and polynucleotides with at least, at most, or exactly 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) identity, 40 similarity, or homology to one of SEQ ID NO:1-7.

Substitutional variants typically contain the exchange of one amino acid for another at one or more sites within the protein, and may be designed to modulate one or more properties of the polypeptide, with or without the loss of 45 other functions or properties. Substitutions may be conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well known in the art and include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine 50 or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine 55 to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine. Alternatively, substitutions may be non-conservative such that a function or activity of the polypeptide is 60 affected. Non-conservative changes typically involve substituting a residue with one that is chemically dissimilar, such as a polar or charged amino acid for a nonpolar or uncharged amino acid, and vice versa.

The current disclosure concerns methods and compositions related to the identification and use of variants of FN3 and libraries containing the same. As used herein, a "poly-

peptide" generally is defined herein to refer to a peptide sequence of about 10 to about 1,000 or more amino acid residues.

The polypeptides included in the methods set forth herein are variants in that they comprise a FN3 amino acid sequence that has been altered by substitution, insertion and/or deletion of one or more amino acid. The polypeptides set forth herein may demonstrate a selective and/or specific binding affinity for particular target molecules or portions thereof.

In certain embodiments, the polypeptide is a fusion polypeptide that includes a variant FN3 amino acid sequence linked at the N- or C-terminus to a second peptide or polypeptide. In other embodiments, the polypeptide comprises a linker interposed between the FN3 amino acid sequence and the second peptide or polypeptide sequence. Linkers are discussed in greater detail in the specification below.

Furthermore, the polypeptides set forth herein may comprise a sequence of any number of additional amino acid residues at either the N-terminus or C-terminus of the amino acid sequence that includes the variant FN3 amino acid sequence. For example, there may be an amino acid sequence of about 3 to about 1,000 or more amino acid residues at either the N-terminus, the C-terminus, or both the N-terminus and C-terminus of the amino acid sequence that includes the variant FN3 amino acid sequence.

The polypeptide may include the addition of an antibody epitope or other tag, to facilitate identification, targeting, and/or purification of the polypeptide. The use of 6xHis and GST (glutathione S transferase) as tags is well known. Inclusion of a cleavage site at or near the fusion junction will facilitate removal of the extraneous polypeptide after purification. Other amino acid sequences that may be included in the polypeptide include functional domains, such as active sites from enzymes such as a hydrolase, glycosylation domains, cellular targeting signals or transmembrane regions. The polypeptide may further include one or more additional tissue-targeting moieties.

Polypeptides may possess deletions and/or substitutions of amino acids relative to the native sequence. Sequences with amino acid substitutions are contemplated, as are sequences with a deletion, and sequences with a deletion and a substitution. In some embodiments, these polypeptides may further include insertions or added amino acids.

Substitutional or replacement variants typically contain the exchange of one amino acid for another at one or more sites within the protein and may be designed to modulate one or more properties of the polypeptide, particularly to increase its efficacy or specificity. Substitutions of this kind may or may not be conservative substitutions. Conservative substitution is when one amino acid is replaced with one of similar shape and charge. Being that the libraries of variant FN3 domains serves to provide a diversity of amino acid sequences and binding selectivity conservative substitutions are not required. However, if used, conservative substitutions are well known in the art and include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine. Changes other than those discussed above are

generally considered not to be conservative substitutions. It is specifically contemplated that one or more of the conservative substitutions above may be included as embodiments. In other embodiments, such substitutions are specifically excluded. Furthermore, in additional embodiments, substitutions that are not conservative are employed in variants.

In addition to a deletion or substitution, the polypeptides may possess an insertion of one or more residues.

The variant FN3 amino acid sequence may be structurally equivalent to the native counterparts. For example, the variant FN3 amino acid sequence forms the appropriate structure and conformation for binding targets, proteins, or peptide segments.

The following is a discussion based upon changing of the amino acids of a polypeptide to create a library of molecules or a second-generation molecule. For example, certain amino acids may be substituted for other amino acids in a polypeptide without appreciable loss of function, such as ability to interact with a target peptide sequence. Since it is 20 the interactive capacity and nature of a polypeptide that defines that polypeptide's functional activity, certain amino acid substitutions can be made in a polypeptide sequence and nevertheless produce a polypeptide with like properties.

In making such changes, the hydropathic index of amino 25 acids may be considered. The importance of the hydropathic amino acid index in conferring interactive function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like

It also is understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine 45 (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5±1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still produce a biologically equivalent and immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those that are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

As outlined above, amino acid substitutions generally are based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. However, in some aspects a non-conservative substitution is contemplated. In certain aspects a random substitution is also contemplated. Exemplary substitutions that take into consideration the various 65 foregoing characteristics are well known to those of skill in the art and include: arginine and lysine; glutamate and

44

aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

Polynucleotides

Aspects of the disclosure relate to polypeptides and polynucleotides encoding such polypeptides. The terms 'polynucleotide" and "oligonucleotide" are used interchangeably and refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any threedimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for example, a probe, primer, EST or SAGE tag), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, dsRNA, siRNA, miRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide. The sequence of nucleotides can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component. The term also refers to both double- and single-stranded molecules. Unless otherwise specified or required, any embodiment of the disclosure that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.

The term "complementary" as used herein refers to Wat-35 son-Crick base pairing between nucleotides and specifically refers to nucleotides hydrogen bonded to one another with thymine or uracil residues linked to adenine residues by two hydrogen bonds and cytosine and guanine residues linked by three hydrogen bonds. In general, a nucleic acid includes a nucleotide sequence described as having a "percent complementarity" to a specified second nucleotide sequence. For example, a nucleotide sequence may have 80%, 90%, or 100% complementarity to a specified second nucleotide sequence, indicating that 8 of 10, 9 of 10 or 10 of 10 nucleotides of a sequence are complementary to the specified second nucleotide sequence. For instance, the nucleotide sequence 3'-TCGA-5' is 100% complementary to the nucleotide sequence 5'-AGCT-3'. Further, the nucleotide sequence 3'-TCGA- is 100% complementary to a region of the nucleotide sequence 5'-TTAGCTGG-3'. It will be recognized by one of skill in the art that two complementary nucleotide sequences include a sense strand and an antisense strand.

Polypeptides may be encoded by a nucleic acid molecule in the composition. In certain embodiments, the nucleic acid molecule can be in the form of a nucleic acid vector. The term "vector" is used to refer to a carrier nucleic acid molecule into which a heterologous nucleic acid sequence can be inserted for introduction into a cell where it can be replicated and expressed. A nucleic acid sequence can be "heterologous," which means that it is in a context foreign to the cell in which the vector is being introduced or to the nucleic acid in which is incorporated, which includes a sequence homologous to a sequence in the cell or nucleic acid but in a position within the host cell or nucleic acid where it is ordinarily not found. Vectors include DNAs, RNAs, plasmids, cosmids, viruses (bacteriophage, animal

viruses, and plant viruses), and artificial chromosomes (e.g., YACs). One of skill in the art would be well equipped to construct a vector through standard recombinant techniques (for example Sambrook et al., 2001; Ausubel et al., 1996, both incorporated herein by reference). Vectors may be used 5 in a host cell to produce an antibody.

The term "expression vector" refers to a vector containing a nucleic acid sequence coding for at least part of a gene product capable of being transcribed or stably integrate into a host cell's genome and subsequently be transcribed. In 10 some cases, RNA molecules are then translated into a protein, polypeptide, or peptide. Expression vectors can contain a variety of "control sequences," which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are described herein. It is contemplated that expression vectors that express a 20 marker may be useful in the methods and compositions of the disclosure. In other embodiments, the marker is encoded on an mRNA and not in an expression vector.

A "promoter" is a control sequence. The promoter is typically a region of a nucleic acid sequence at which 25 initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors. The phrases "operatively positioned," "operatively linked," "under control," and "under transcriptional control" mean that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence to control transcriptional initiation and expression of that sequence. A promoter may or may not be used in conjunction with an "enhancer," which refers to a cis-acting 35 regulatory sequence involved in the transcriptional activation of a nucleic acid sequence.

The particular promoter that is employed to control the expression of a peptide or protein encoding polynucleotide is not believed to be critical, so long as it is capable of 40 expressing the polynucleotide in a targeted cell, preferably a bacterial cell. Where a human cell is targeted, it is preferable to position the polynucleotide coding region adjacent to and under the control of a promoter that is capable of being expressed in a human cell. Generally speaking, such a 45 promoter might include either a bacterial, human or viral promoter. In some embodiments, the host cell is an eukaryotic cell. In some embodiments, using eukaryotic cells is beneficial, as it provides for secondary modifications that may not be present in certain prokaryotic systems.

A specific initiation signal also may be required for efficient translation of coding sequences. These signals include the ATG initiation codon or adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may need to be provided. One of ordinary 55 skill in the art would readily be capable of determining this and providing the necessary signals.

Vectors can include a multiple cloning site (MCS), which is a nucleic acid region that contains multiple restriction enzyme sites, any of which can be used in conjunction with 60 standard recombinant technology to digest the vector. (See Carbonelli et al., 1999, Levenson et al., 1998, and Cocea, 1997, incorporated herein by reference.)

Most transcribed eukaryotic RNA molecules will undergo RNA splicing to remove introns from the primary transcripts. Vectors containing genomic eukaryotic sequences may require donor and/or acceptor splicing sites to ensure

proper processing of the transcript for protein expression. (See Chandler et al., 1997, incorporated herein by reference.)

46

The vectors or constructs will generally comprise at least one termination signal. A "termination signal" or "terminator" is comprised of the DNA sequences involved in specific termination of an RNA transcript by an RNA polymerase. Thus, in certain embodiments a termination signal that ends the production of an RNA transcript is contemplated. A terminator may be necessary in vivo to achieve desirable message levels. In eukaryotic systems, the terminator region may also comprise specific DNA sequences that permit site-specific cleavage of the new transcript so as to expose a polyadenylation site. This signals a specialized endogenous polymerase to add a stretch of about 200 A residues (polyA) to the 3' end of the transcript. RNA molecules modified with this polyA tail appear to more stable and are translated more efficiently. Thus, in other embodiments involving eukaryotes, it is preferred that that terminator comprises a signal for the cleavage of the RNA, and it is more preferred that the terminator signal promotes polyadenylation of the message.

In expression, particularly eukaryotic expression, one will typically include a polyadenylation signal to effect proper polyadenylation of the transcript.

In order to propagate a vector in a host cell, it may contain one or more origins of replication sites (often termed "ori"), which is a specific nucleic acid sequence at which replication is initiated. Alternatively an autonomously replicating sequence (ARS) can be employed if the host cell is yeast.

Some vectors may employ control sequences that allow it to be replicated and/or expressed in both prokaryotic and eukaryotic cells. One of skill in the art would further understand the conditions under which to incubate all of the above described host cells to maintain them and to permit replication of a vector. Also understood and known are techniques and conditions that would allow large-scale production of vectors, as well as production of the nucleic acids encoded by vectors and their cognate polypeptides, proteins, or peptides.

The polynucleotides and polypeptides of the disclosure may be transfected of transformed into host cells or expressed in host cells. As used herein, the terms "cell," "cell line," and "cell culture" may be used interchangeably. All of these terms also include both freshly isolated cells and ex vivo cultured, activated or expanded cells. All of these terms also include their progeny, which is any and all subsequent generations. It is understood that all progeny may not be identical due to deliberate or inadvertent mutations. In the context of expressing a heterologous nucleic acid sequence, "host cell" refers to a prokaryotic or eukaryotic cell, and it includes any transformable organism that is capable of replicating a vector or expressing a heterologous gene encoded by a vector. A host cell can, and has been, used as a recipient for vectors or viruses. A host cell may be "transfected" or "transformed," which refers to a process by which exogenous nucleic acid, such as a recombinant protein-encoding sequence, is transferred or introduced into the host cell. A transformed cell includes the primary subject cell and its progeny. Common host cells include bacteria (such as E. coli, B. subtilis, S. viofoceoruber), yeast (such as S. cerevisiae, P. pastoris), fungi (such as A. oryzae) or eukaryotic cells.

Kits

Kits are also contemplated as being made or used in certain aspects of the present disclosure. For instance, a

polypeptide or nucleic acid of the disclosure can be included in a kit or in a library provided in a kit. A kit can be included in a sealed container. Non-limiting examples of containers include a microtiter plate, a bottle, a metal tube, a laminate tube, a plastic tube, a dispenser, a pressurized container, a barrier container, a package, a compartment, or other types of containers such as injection or blow-molded plastic containers into which the dispersions or compositions or desired bottles, dispensers, or packages are retained. Other examples of containers include glass or plastic vials or bottles. The kit and/or container can include indicia on its surface. The indicia, for example, can be a word, a phrase, an abbreviation, a picture, or a symbol.

The containers can dispense or contain a pre-determined amount of a composition of the present disclosure. The ¹⁵ composition can be dispensed as a liquid, a fluid, or a semi-solid. A kit can also include instructions for using the kit and/or compositions. Instructions can include an explanation of how to use and maintain the compositions.

EXAMPLES

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion. One skilled in the art will appreciate readily that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those objects, ends and advantages mentioned, as well as those objects, ends and advantages inherent herein. The present examples, along with the methods described herein are presently representative of particular embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.

Example 1: Thermonobodies, Synthetic Binding Proteins Based on a Hyperthermophilic Fibronectin Type III Domain

A. Identification of FN3 Domain from Hyperthermophiles The inventors utilized the SMART database to explore FN3 domains from hyperthermophiles. The database predicted many FN3 domains in hyperthermophilic archaea and bacteria such as Thermococcus kodakaraensis, Sulfolobus 45 tokodaii, Pyrococcus horikoshii and Thermotoga lettingae. The inventors first eliminated predicted domains that were shorter than the length of the shortest FN3 domains that had been structurally characterized (75 amino acids). Then, four FN3 domains in the sequence of Kelch domain-containing 50 protein ST0939 from the hyperthermophilic archaeon Sulfolobus tokodaii DSM 16993 were chosen as the candidate proteins, because of their detectably homology to a human FN3. In the predicted constructs, termed STOFN3-1, -2, -3 and -4, consist of 84 (positions 315-398), 86 (399-484), 79 55 (488-566) and 76 (568-643) amino acids, respectively, and each construct maintain at least two of the three highly conserved hydrophobic amino acids of FN3 domains (FIG.

Expression vectors for these constructs were constructed 60 using synthetic genes. It was found that only the N-terminal two domains (STOFN3-1 and -2) were robustly produced in *E. coli* as soluble proteins that were predominantly monomeric (FIG. 1B). We detected little protein for the third domain, and the fourth domain was expressed mostly as 65 insoluble proteins. These results demonstrate the challenge of predicting constructs that behave well as purified pro-

teins, even for members of the well characterized FN3 domain. Melting temperatures obtained by differential scanning fluorimetry (DSF) were 80° C. for STOFN3-1 and 70° C. for STOFN3-2, respectively, confirming that they were indeed thermostable proteins (FIG. 1C).

48

To confirm that STOFN3-1 and STOFN3-2 had the FN3 fold, we determined their crystal structures at 1.28 and 2.45 Å resolutions, respectively. Both segments indeed adopt the FN3 fold consisting of seven anti-parallel β -strands and six loops (FIG. 2A, 2B). Superposition with the FN3fn10 (PD-BID: 1FNA), the well characterized FN3 scaffold, demonstrated that the structures of the segments are highly similar to FN3fn10 with an average RMSD value of 1.9 Å for STOFN3-1 and 1.8 Å for STOFN3-2, respectively, for aligned backbone Ca atoms (excluding loops) (FIG. 2C). STOFN3-1 was then chosen for further experiments, because of its superior biophysical properties to STOFN3-2 in terms of expression level, thermal stability, solubility and the ease to obtain high-resolution structure.

In the crystal structure, three continuous Pro residues (P315, P316 and P317) in the N-terminal region of STOFN3-1 were highly ordered and positioned between the BC and FG loops, the loops commonly utilized for presenting diversified residues (FIG. 3A). Because this N-terminal segment may interfere with creating a target binding site by presenting BC and/or FG loops, the Pro residues were substituted with Ser residues to reduce hydrophobicity and increase flexibility. The high-resolution crystal structure showed that the segment N-terminal to P317S of the mutant had low electron density indicative of conformational disorder (FIG. 3B), strongly suggesting that this segment was dislodged from the folded portion within the construct. The apparent dissociation of this fragment only slightly decreased the stability FIG. 3D).

The crystal structure of STOFN3-1 also revealed that, surprisingly, the last residues of the FN3 domain according to the SMART database prediction (T398) was located in the middle of the last β -strand (G strand). The β -strand continued by incorporating a Ser residue we added as an artificial extension to the predicted C-terminus (FIG. 3C), suggesting that the predicted boundaries did not accurately match the structural boundary of the domain. We thus extended the C-terminus by adding four residues (P399, 5400, 5401 and an extra Serine residue) of ST0939, of which P399-S401 were predicted to be N-terminal residues of ST0FN3-2 by the SMART database. The crystal structure of this extended construct confirmed that the added segment was properly incorporated into the β -sheet (FIG. 3C), and the construct was more thermostable than the original one (FIG. 3D).

The stability of STOFN3-1 was further improved by structure-guided design. Based on a structure-guided alignment with FN3 domains, it was found that STOFN3-1 lacked highly conserved Proline residues in FN3 domains. Replacing these residues with Pro (N328P in the AB loop and D372P in the EF loop) improved the thermostability (FIG. 3D). The variant containing all the improvements, namely, the N-terminal substitution, C-terminal extension and Pro mutations now exhibited very high thermal stability with the melting temperature exceeding 95° C. (FIG. 3D). This construct was used as the template for constructing combinatorial libraries (termed STOTEMP2).

B. Identification of Positions Permissive to Amino Acid Diversification

In parallel to the scaffold improvements described above, the inventors identified positions of STOFN3-1 that are tolerant to amino acid diversification so that library designs avoid mutating positions critical for maintaining thermal

stability and high solubility. A series of point mutations and insertions were introduced to the STOFN3-1 construct and their thermal stabilities were measured (FIG. 4A-C).

On the bottom end of the molecule as depicted in FIG. 2A, the poly-Ser mutations of the AB and CD loops resulted in 5 little destabilization. In contrast, whereas that of EF loop destabilized STOFN3-1 by 16° C. The sensitivity of the $\ensuremath{\mathsf{EF}}$ loop to mutations is consistent with previous reports for other FN3 domains, which can be rationalized by the presence of the structurally important "Tyrosine corner" motif in the EF loop of STOFN3-1. On the top end of the molecule, the mutation of the BC loop slightly destabilized STOFN3-1 and that of the DE loop showed no destabilizing effect. The serine mutation of G360 immediately N-terminal to the DE loop resulted in inclusion body formation in E. coli and also 15 dramatically decreased the stability (Tm reduction by more than 15° C.). Four sets of poly-Serine mutations of the FG loop all showed karge destabilization effect (13-20° C.), and all but FGser1 were expressed predominantly as inclusion bodies. This result suggested that both Y383 and P391, 20 residues not mutated in the FGser1 mutant, were critical for efficient folding of STOFN3-1.

In addition to substation mutations, insertions of 2, 4 and 8 Serine residues into the BC, CD, DE and FG loops, the loops that tolerated substitution mutations were tested (FIG. 25 4C). Of these loops, the BC loop highly tolerated the insertions, whereas insertions in the CD and FG loops were destabilizing but these mutants still maintained the Tm of around 70° C. A very large destabilizing effect was observed for the DE-loop elongation. Even an insertion of two residues decreased the stability by 25° C. None of these insertion mutants resulted in substantial inclusion body formation. Taken together, these systematic mutation experiments identified that DE, EF and FG loops are less permissive to mutations than the other loops, but the most destablized 35 mutants still had Tm higher than 50° C.

In the crystal structure, the side chain of Y383, the structurally important Tyr in the F strand, interacts with G342 in the C strand, apparently providing the "Aromatic rescue" of the destabilizing Gly residue in a □-strand 40 (Regan ref). The impact of Y383 mutation completely disappeared when we substituted G342 with Tyr, an equivalent residue in FN3fn10 (FIG. 3D and FIG. 4B). Because it was envisioned that introducing Tyr, an amino acid particularly suitable for binding, at position 342 and the ability to 45 diversify position 383 would both positively contribute to creating molecular recognition surfaces, the G342Y mutation was incorporated in the scaffold.

C. Phage and Yeast Display of STOFN3-1

Efficient display of a scaffold on the phage particle is a 50 prerequisite for efficient selection of binding proteins using phage display. Highly stable, rapidly folding proteins present challenges in phage display, because phage display requires that the displayed protein fused to a phage coat protein be translocated into the periplasm of E. coli and 55 highly stable proteins are not efficiently translocated across the E. coli inner membrane using a conventional, posttranslational secretion signal such as OmpT. An elegant solution was to use a co-translational secretion signal sequence such as the DsbA signal. Different signal sequences were examined for robust display of STOFN3-1. For this examination, the variant of STOTEMP4 with K318V mutation (STO-TEMP5) was used because this mutation was crucial to function as the enhancer domain of affinity clamp (see below). Unexpectedly, it was found that an OmpT-based 65 system achieved high levels of display of STOFN3-1 on the phage after optimization of the signal sequence and a linker

length between the signal and STOFN3-1 with use of the C-terminal domain of M13 pIII. Notably, a single point mutation of the signal peptidase cleavage site from -SSFA/S- found in the vector pET12a (where the slash denotes the cleavage site) to -SSFA/A- and no additional residues between this signal sequence and the first residue of STOFN3-1 were crucial for the efficient display (FIG. 5). Unlike in a previous report, the R2K mutation of the OmpT signal did not improve surface display. For yeast surface display of STOFN3-1, a standard Aga2-mediated system as previously described that robustly displayed the protein as confirmed using flow cytometric analysis was used (data not shown).

50

D. Design and Evaluation of Combinatorial Libraries

Following previous designs of combinatorial libraries of FNfn10, two distinct libraries were constructed. One library is "loop only" library where positions in the BC, DE, and FG loops are utilized (FIG. 6A). The other library is "side-andloop library" where residues in the C strand (residues 346 and 348) and the D strand (residues 352-354, 356 and 358) as well as residues in the CD and FG loops are utilized (FIG. 6B). Both libraries used highly biased amino acid diversity that emphasized Tyr, Ser, Gly and excluded Cys and Met, similar to designs used for FNfn10 and Fab libraries. In both libraries, the length of the FG loop was varied. In the "loop only" library, the length of the BC loop was varied. In the "side-and-loop" library, the same design of diversification as previous studies was applied to residues in the C and D strands and the CD loop. For diversifying the position of W348 on the C-strand, two sets of oligos were used for each length of CD-loop (3, 4, and 5 residues). One contains a codon for Tryptophan and the other contains codons for Serine, Threonine, Asparagine and Tyrosine so that this position could be diversified to five amino acids. Both libraries were constructed using the STOTEMP5 as a template scaffold in the phage-display format described above with estimated numbers of independent sequences of 2.5× 109 and 1.7×109 for the loop only and side-and-loop libraries, respectively.

The inventors evaluated the performance of the two libraries using a total of six target proteins, yeast small ubiquitin-like modifier (ySUMO), maltose-binding protein (MBP), enhanced green fluorescent protein (GFP), Abl SH2, SHP2 N- and C-SH2 domains. For each combination of target and library, the inventors first enriched binding clones from the phage-display library, performed gene shuffling among the enriched population and identified high-affinity clones using yeast surface display. The inventors successfully generated binding proteins, called therMonobodies (thermophilic Monobodies), to ySUMO, MBP, EGFP and AbISH2 from both libraries and SHP2 N- and C-SH2 from the loop-only library (FIG. 6A, 6B). Most therMonobodies had Kd values in the low nanomolar range as measured in the yeast-display format (FIG. 6C). Residues in the FG loop were mutated in almost all the therMonobodies derived from either library, suggesting the importance of residues in the FG loop in target binding. Only exceptions were tMb (ABLSH2_L03) and tMb(ABLSH2_S01) that had no mutations in the FG loop, suggesting the possibility of achieving high affinity without utilizing the FG loop. We identified loop lenths that were not encoded in our designs. tMb (SUMO_L03) had 13 residues in the FG oop, one residue longer than the longest design, and tMb(NSH2_L06) and tMb(NSH2_L10) had four residues in the BC loop, one residue shorter than the shorted design. These sequences probably arose from errors in DNA synthesis and/or PCR errors, and their high functionality indicates that we could

potentially expand the range of loop lengths in our library designs. For position 348, only Trp was selected, even though the position was diversified to a combination of five amino acids, Trp, Ser, Thr, Asn and Tyr. Subsequent mutation analysis showed that the replacement of W348 with Tyr 5 or Ser destabilized STOTEMP5 by >18° C. and >25° C., respectively, indicating the importance of W348. In the crystal structure, the indole ring of W348 interacts with Y377 on the adjacent F-strand and also form a cation-7c interaction with K354 on the adjacent D-strand. Replacement of W348 may well disrupt or weaken these interactions, and this destabilization effect may lead to the low occurrence frequencies.

These results clearly demonstrate that the combinatorial libraries constructed on the newly developed scaffold and 15 the selection strategy can generate high affinity binding proteins.

E. Biophysical Characterization of therMonobodies

The inventors characterized the oligomerization state and thermal stability of purified therMonobodies (FIG. 7). Of 24 20 therMonobodies tested, 15 were predominantly monomeric as assayed using size-exclusion chromatography (SEC). Six eluted from the SEC as a monodispersed peak at the volume corresponding to a molecular weight much smaller than expected, suggesting that they were predominantly mono- 25 meric but weakly interacted with the column. The remaining three proteins eluted at the void volume, indicative of large aggregates. Thus, the vast majority (21/24) of these ther-Monobodies were produced as soluble, monomeric species. The thermal stability of the monomeric therMonobodies was assessed using DSF (FIG. 7B, C). The therMonobodies derived from the loop only library had a mean Tm value of 68±10° C. with the highest and lowest of 86.3 and 53.5° C., respectively. Those generated from the side-and-loop library had a mean Tm value of 59.2±11.3° C. with the highest and 35 lowest of 85.5 and 50.5° C., respectively. Interestingly, the most stable clones, tMb(NSH2_L06) and tMb(NSH2_L10), had four residues in the BC loop, which is one residue shorter than the designed range of the BC loop length. This finding suggests a new library design that better maintain the 40 high stability of the underlying STOFN3-1 scaffold.

The highest Tm value of 86° C. and the lowest Tm value of 50° C. are both 13° C. higher than those of previously generated monobodies built from the FNfn10 scaffold (ref. results suggest that the therMonobodies system is better suited for generating thermostable binding proteins.

F. therMonobody Functions as the Enhancer Domain of Affinity Clamps

The affinity clamping technology involves connecting a 50 FN3 domain to a peptide-binding domain (such as an interaction domain or another FN3 domain) and subsequent optimization of the FN3 domain via directed evolution so as to create clamshell architecture that "clamps" a target motif in the newly generated interface between the two domains. 55 The enlarged ligand interaction interface relative to that afforded by either domain achieves high specificity and high affinity. In this context, the FN3 portion is termed as the enhancer domain. To determine whether therMonobody can be used as the enhancer domain for affinity clamping technology, the FNfn10-based monobody was replaced in an affinity clamp directed to a phosphotyrosine (pY)-containing peptide with a therMonobody. The pY-clamp consists of an engineered Grb2 SH2 domain linked, via short linker, to a FNfn10 monobody. STOFN3-1 was structurally aligned 65 with the FNfn10 monobody segment in the pY-clamp, clamp(Ptpn11_pY580). Residues of the monobody segment

that were located within 5A from the Grb2 SH2 domain or 6A from the target pY-peptide were grafted to the structurally equivalent positions of STOTEMP4 (FIG. 8A). Because V4 located in the N-terminal tail of the monobody segment participates in the interaction with the Grb2 SH2 domain in the pY-clamp, the inventors also prepared a construct in which structurally equivalent K318 of STOTEMP4 was mutated to Val.

The inventors first examined biophysical properties of the designed therMonobody segments of the designed pY-clamps in isolation, i.e. not linked to the engineered SH2 domain. The therMonobody segments with and without the K318V mutation were expressed as >50% of soluble proteins and showed monodispersed size-exclusion chromatography profiles with an elution time consistent with that of their parent templates. The Tm values obtained from DSF were 68.7 and 63.5° C. for the variants without and with K318V mutation, respectively, indicating that both variants retained high stability. Together with the results mentioned in the above section, these results demonstrate the high tolerance of therMonobody template to extensive mutations.

Next the inventors examined binding properties of the designed pY-clamps to the target pY-peptide (Ptpn11 pY580). A total of six constructs were tested by combining the presence and absence of the K318V mutation with linker lengths of 0, 2 and 5 amino acids between the Grb2 SH2 domain and the therMonobody segment. Two of them, with the K318V mutation and linker lengths of 2 or 5 residues showed significantly higher binding to the pY-peptide than the original Grb2 SH2 domain alone (FIG. 8B), with KD values of 156±42 and 121±21 nM for the 2- and 5-residue linkers, respectively (FIG. 8C). For comparison, clamp (Ptpn11_pY580) with the optimized enhancer domain based on FNfn10 had a 6 amino acids linker between the Grb2 SH2 domain and the monobody segment and a KD value of 2.5 nM. Although the affinity of the therMonobody versions of the pY-clamp was lower, these results clearly indicates that therMonobody can readily be used as a building block for generating affinity clamps.

Example 2: Hyperthermophilic Fn3 Domain from Pyrococcus horikoshii OT3

The inventors utilized the SMART database to explore Vazquez-Lombardi, 2015, Drug Discov Today). Thus, these 45 FN3 domains from hyperthermophiles. The database predicted many FN3 domains in hyperthermophilic archaea and bacteria such as Thermococcus kodakaraensis, Sulfolobus tokodaii, Pyrococcus horikoshii and Thermotoga lettingae. Predicted domains that were shorter than the length of the shortest FN3 domains that had been structurally characterized (75 amino acids) were first eliminated. Then, a FN3 domain in the sequence of putative uncharacterized protein PH0954 from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, termed PHOFN3 was chosen as the candidate protein, because of its detectably homology to a bacterial FN3 domain in the Clostridium Perfringens Glycoside Hydrolase Gh84c whose FN3 fold has been experimentally confirmed (PDBID: 2W1N). The SMART database predicted PHOFN3 with 108 (P1873-A1980) amino acid residues, but the C-terminal 26 residues (E1955-A1980) did not have detectable homology to the sequence of the bacterial homologue (FIG. 9).

In order to confirm whether the C-terminal extended region is a part of the core structure of PHOFN3, the inventors constructed expression vectors for different segments of PHOFN3 with the same N-terminus but with different truncations from the C-terminus, PHOFN3 (P1873-

A1980), PHOFN3ΔC21 (P1873-E1959), PHOFN3ΔC25 (P1873-E1955) and PHOFN3ΔC35 (P1873-E1945), and analyzed their soluble expressions in E. coli and thermal stabilities. It was found that PHOFN3, PHOFN3ΔC21 and PHOFN3ΔC25 were robustly produced in *E. coli* as soluble proteins that were predominantly monomeric. Melting temperatures obtained by differential scanning fluorimetry (DSF) were >95° C. for PHOFN3, PHOFN3∆C21 and PHOFN3ΔC25 at pH 7.4, confirming that they were highly thermostable proteins (FIG. 10). These results suggested that the C-terminal extended region, which was not aligned with the bacterial homologue, was not a part of the core structure of PHOFN3. In contrast, PHOFN3ΔC35 was expressed mostly as insoluble proteins and the melting temperature was 32.2° C. at pH 7.4 (FIG. 10), suggesting that the region of K1946-E1955 was important for folding a proper structure and for thermal stability as the region was aligned with the last β -strand (G strand) of the bacterial homologue.

To confirm that PHOFN3 had the FN3 fold, the inventors determined the crystal structure of PHOFN3 Δ C25 at 1.7 Å resolution with Se-Met labeled at M1882 and I1905M. The PHOFN3 Δ C25 segment indeed adopts the FN3 fold consisting of seven anti-parallel β -strands and six loops (FIG. 11A). Superposition with the FN3fn10 (PDBID: 1FNA), the most well characterized FN3 domain, demonstrated that the structure of the segment is highly similar to FN3fn10 with an average RMSD value of 2.2 Å for aligned backbone Ca atoms excluding residues in loops (FIG. 11B). Figure E shows the schematic drawing of the amino acid sequence of PHOFN3 Δ C25 in its secondary structure context.

Phage display of PHOFN3. A vector for phage display of PHOFN3 (without C-terminal deletion, P1873-A1980) was constructed based on the previously reported DsbA-based

vector containing the V5 tag sequence for display detection (Wojcik et al., NSMB). Phage particles were produced using helper phage, M13K07 or hyperphage, and the display of PHOFN3 on phage particles was examined by phage ELISA using an anti-V5 tag antibody, a HRP conjugated anti-M13 phage antibody and 1-step Ultra TMB ELISA (Thermo Scientific). The absorbance changes at 405 nm after the HRP reaction for 10 min for M13KO7-produced phages or 1 min for hyperphage-produced phages are shown in FIG. 12. FIG. 13 shows the significant levels of display of PHOFN3 on phage particles. The phage ELISA signals for PHOFN3 with M13K07 and hyperphage were lower than those for FN3fn10 only by 2.9 and 1.3-folds, respectively, strongly suggesting that a combinatorial library similar to those for FNfn10 can be constructed using phage display from which novel binding proteins can be identified.

54

Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. Any reference to a patent publication or other publication is a herein a specific incorporation by reference of the disclosure of that publication. The claims are not to be interpreted as including means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) "means for" or "step for," respectively.

SEOUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 7
<210> SEO ID NO 1
<211> LENGTH: 84
<212> TYPE: PRT
<213> ORGANISM: Sulfolobus tokodaii
<400> SEOUENCE: 1
Pro Pro Pro Lys Pro Gln Ile Ala Ser Ile Ala Ser Gly Asn Glu Thr 1 \phantom{\bigg|} 5
Ile Thr Val Lys Trp Tyr Asp Thr Asn Ala Ser Gly Tyr Tyr Ile Thr 20 \ \ 25 \ \ 30
Tyr Trp Ser Asn Phe Ser Gln Lys Val Thr Ile Asn Val Gly Asn Val 35 \phantom{\bigg|}40\phantom{\bigg|}40\phantom{\bigg|}45\phantom{\bigg|}
Thr Ser Tyr Thr Ile Lys His Leu Lys Asp Gly Val Thr Tyr Tyr Ile 50 \, 60
Gln Ile Val Pro Tyr Asn Ser Leu Gly Asn Gly Thr Pro Ser Asp Ile 65 70 70 75 80
Ile Ser Ala Thr
<210> SEQ ID NO 2
<211> LENGTH: 86
<212> TYPE: PRT
<213> ORGANISM: Sulfolobus tokodaii
Pro Ser Ser Val Pro Asn Pro Pro Ile Ile Lys Val Lys Ile Gly Asn
```

```
Leu Asn Ala Thr Leu Thr Trp Tyr Asp Thr Phe Asn Gly Gly Tyr Pro 20 \  \  \, 20 \  \  \, 25 \  \  \,
Ile Glu Gly Tyr Tyr Leu Tyr Val Asn Gly Lys Gly Ile Asn Val Gly 35 $40$
Asn Ile Thr Ser Tyr Val Leu Thr Asn Leu Thr Ala Gly Glu Leu Tyr 50 60
Thr Ile Glu Leu Ile Ala Tyr Asn Lys Ile Gly Asn Ser Ser Ile Ser 65 70 75 80
Ser Val Ser Phe Ile Ala
<210> SEQ ID NO 3
<211> LENGTH: 79
<212> TYPE: PRT
<213> ORGANISM: Sulfolobus tokodaii
<400> SEQUENCE: 3
Ala Asn Leu Thr Val Thr Val Tyr Lys Lys Ile Asn Gly Phe Leu Val 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Ser Trp Asn Ser Thr Ser Lys Ala Lys Tyr Ile Leu Thr Val Ser Lys 20 25 30
Glu Asn Val Val Leu Leu Asn Val Ser Thr Thr Asn Thr Ser Tyr Phe 35 40 45
Val Lys Val Pro Phe Gly Val Tyr Asn Ile Ser Leu Glu Ala Val Asn 50 \phantom{\bigg|}55\phantom{\bigg|}
Ile Val Gly Ile Thr Lys Tyr Ala Phe Ile Leu Ile Tyr Tyr Ile 65 70 75
<210> SEQ ID NO 4 <211> LENGTH: 76
<212> TYPE: PRT
<213> ORGANISM: Sulfolobus tokodaii
<400> SEQUENCE: 4
Pro Ala Ser Pro Thr Val Asn Trp Ser Ile Thr Leu Asn Thr Val Ser 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Leu Asn Trp Ser Lys Val Ser Gly Ala Glu Tyr Tyr Leu Ile Tyr Asp 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30
Asn Gly Lys Leu Ile Thr Asn Thr Thr Asn Thr Ala Phe Thr Phe Asn 35 \  \  \, 40 \  \  \, 45
Leu Thr Ile Gly Gln Asn Glu Ile Glu Val Tyr Ala Ala Asn Ala Tyr 50 \, 55 \, 60 \,
Tyr Lys Ser Ala Pro Tyr Ile Ile Asn Asp Val Arg 65 70 75
<210> SEQ ID NO 5
<211> LENGTH: 709
<212> TYPE: PRT
<213> ORGANISM: Sulfolobus tokodaii
<400> SEOUENCE: 5
Met Lys Arg Asn Thr Leu Leu Ala Leu Val Leu Val Ile Leu Ile Phe 1 5 5 10 15 10
Pro Thr Leu Ser Thr Ala Tyr Ile Glu Phe Thr Thr Ser Ile Asn Gln 20 \phantom{000}25 \phantom{000} Thr Ser Ile Asn Gln
Ala Ile Pro Asp Ser Leu Val Tyr Ala Thr Ser Ala Tyr Tyr Asp Gly 35 40 45
```

Lys	Ile 50	Phe	Leu	Ile	Gly	Gly 55	Glu	Asn	Leu	Tyr	Ser 60	Thr	Pro	Val	Asn
Ser 65	Val	Tyr	Val	Tyr	Glu 70	Asn	Gly	Ser	Trp	Tyr 75	Leu	Gly	Pro	Ser	Leu 80
Pro	Phe	Ser	Leu	Ser 85	Ser	Ala	Gly	Ala	Thr 90	Val	CÀa	Asn	Asn	Thr 95	Leu
Tyr	Val	Val	Gly 100	Gly	Ala	Asn	Ser	Thr 105	Ser	Ile	Phe	Gly	Gly 110	Ile	Leu
Glu	Phe	Ile 115	Gly	Asn	Gly	Trp	Lys 120	Val	Ile	Thr	Asn	Ser 125	Met	Pro	Ile
Pro	Val 130	Tyr	Gly	Ala	Ile	Val 135	Phe	Ser	Tyr	Asp	Tyr 140	ГÀа	Ile	Tyr	Val
Ile 145	Gly	Gly	Met	Asn	Tyr 150	Ser	Gly	Asn	Ser	Leu 155	Val	Pro	Pro	Val	Asn 160
Tyr	Ile	Gln	Val	Tyr 165	Asn	Leu	Lys	Thr	Asn 170	Ser	Trp	Gln	Ile	Ile 175	Gly
Asn	Ala	Pro	Leu 180	Arg	Leu	Ala	Tyr	Ser 185	Ala	Tyr	Tyr	Phe	Asn 190	Gly	Ser
Ala	Leu	Phe 195	Val	Val	Gly	Gly	Phe 200	Thr	Gln	Ser	Ala	Thr 205	Leu	Thr	Ser
Ser	Val 210	Phe	Val	Tyr	Tyr	Pro 215	Glu	Asn	Asn	Thr	Trp 220	Ile	Ser	Leu	Pro
Ser 225	Leu	Pro	Gly	Val	Glu 230	Ala	Gly	Gly	Val	Leu 235	Gly	Tyr	Tyr	Asn	Gly 240
Tyr	Met	Tyr	Leu	Val 245	Gly	Gly	Leu	Tyr	Tyr 250	Val	Ser	Gly	Ala	Tyr 255	Gln
Leu	Gly	Glu	Ile 260	Leu	Tyr	Tyr	Tyr	Asn 265	Gly	Thr	Trp	Arg	Asn 270	Thr	Asn
Ile	Gln	Glu 275	Gln	Ile	Pro	Thr	Gln 280	Phe	Ser	Thr	Ser	Val 285	Gln	Ile	Gly
Asn	Lys 290	Leu	Ile	Ile	Leu	Gly 295	Gly	Phe	Gly	Pro	Gly 300	Asn	Ile	Pro	Ser
Asn 305	Ala	Met	Gln	Thr	Val 310	Ser	Ile	Tyr	Leu	Pro 315	Pro	Pro	Lys	Pro	Gln 320
Ile	Ala	Ser	Ile	Ala 325	Ser	Gly	Asn	Glu	Thr 330	Ile	Thr	Val	Lys	Trp 335	Tyr
Asp	Thr	Asn	Ala 340	Ser	Gly	Tyr	Tyr	Ile 345	Thr	Tyr	Trp	Ser	Asn 350	Phe	Ser
Gln	Lys	Val 355	Thr	Ile	Asn	Val	Gly 360	Asn	Val	Thr	Ser	Tyr 365	Thr	Ile	ГÀа
His	Leu 370	Lys	Asp	Gly	Val	Thr 375	Tyr	Tyr	Ile	Gln	Ile 380	Val	Pro	Tyr	Asn
Ser 385	Leu	Gly	Asn	Gly	Thr 390	Pro	Ser	Asp	Ile	Ile 395	Ser	Ala	Thr	Pro	Ser 400
Ser	Val	Pro	Asn	Pro 405	Pro	Ile	Ile	Lys	Val 410	Lys	Ile	Gly	Asn	Leu 415	Asn
Ala	Thr	Leu	Thr 420	Trp	Tyr	Asp	Thr	Phe 425	Asn	Gly	Gly	Tyr	Pro 430	Ile	Glu
Gly	Tyr	Tyr 435	Leu	Tyr	Val	Asn	Gly 440	Lys	Gly	Ile	Asn	Val 445	Gly	Asn	Ile
Thr	Ser 450	Tyr	Val	Leu	Thr	Asn 455	Leu	Thr	Ala	Gly	Glu 460	Leu	Tyr	Thr	Ile

```
Glu Leu Ile Ala Tyr Asn Lys Ile Gly Asn Ser Ser Ile Ser Ser Val
Ser Phe Ile Ala Ala Ser Lys Ala Asn Leu Thr Val Thr Val Tyr Lys
Lys Ile Asn Gly Phe Leu Val Ser Trp Asn Ser Thr Ser Lys Ala Lys 500 \hspace{1.5cm} 505 \hspace{1.5cm} 510 \hspace{1.5cm}
Tyr Ile Leu Thr Val Ser Lys Glu Asn Val Val Leu Leu Asn Val Ser 515 520 525
Thr Thr Asn Thr Ser Tyr Phe Val Lys Val Pro Phe Gly Val Tyr Asn 530 \phantom{0000} 535 \phantom{0000} 540
Ile Ser Leu Glu Ala Val Asn Ile Val Gly Ile Thr Lys Tyr Ala Phe 545 550 560
Glu Tyr Tyr Leu Ile Tyr Asp Asn Gly Lys Leu Ile Thr Asn Thr Thr 595 \hspace{1.5cm} 600 \hspace{1.5cm} 605 \hspace{1.5cm}
Asn Thr Ala Phe Thr Phe Asn Leu Thr Ile Gly Gln Asn Glu Ile Glu 610 \, 615 \, 620
Val Tyr Ala Ala Asn Ala Tyr Tyr Lys Ser Ala Pro Tyr Ile Ile Asn 625 \phantom{\bigg|} 630 \phantom{\bigg|} 635 \phantom{\bigg|} 640
Ser Val Pro Gln Ile Lys Val Val Ser Gly Glu Asn Thr Asp Ala Pro \phantom{-}660\phantom{000}
Leu Gln Thr Asn Asn Ile Asp Leu Lys Ser Ala Ile Ile Val Ile Thr
Val Phe Val Ile Ala Leu Leu Met Ile Leu Val Ile Leu Arg Glu Arg
Ser Asp Asn Tyr Trp
705
<210> SEQ ID NO 6
<211> LENGTH: 108
<212> TYPE: PRT
<213> ORGANISM: Pyrococcus horikoshii
<400> SEOUENCE: 6
Pro Ser Pro Pro Ser Gly Val Thr Leu Met Leu Asn Gly Ser Tyr Val 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Glu Leu Ser Trp Leu Pro Ser Pro Asp Ser Asp Val Ala Gly Tyr Phe 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}
Asn Phe Arg Asp Ile Tyr Ser Gly Thr Leu Asn Tyr Ser Ile Ser Ala
Ile Asp Phe Ser Gly Phe Glu Ser Glu Lys Thr Glu Val Phe Pro Val
Lys Leu Glu Val Asp Glu Glu Asn Leu Thr Ala Gly Tyr Pro Gly Ala
Val Lys Val Lys Val Glu Asn Leu Asp Gly Glu Ala
```

		ENGTH		136											
				Pyro	ococo	cus l	noril	oshi	Li						
< 400)> SI	EQUE	ICE:	7											
Met 1	Ile	Asn	Ile	Lys 5	Gly	Leu	Ile	Leu	Thr 10	Leu	Ile	Leu	Phe	Ile 15	Ser
Leu	Ile	Pro	Pro 20	Trp	Ala	Leu	Gly	Glu 25	Gly	Ser	Lys	Asp	Thr 30	Lys	Val
Phe	Ala	Asp 35	Tyr	Tyr	Leu	Ala	Gly 40	Asp	Ser	Val	Val	Ile 45	Asn	Ala	Thr
Leu	Tyr 50	Asp	Ala	Gly	Ser	Сув 55	Asn	Leu	Thr	Phe	Ser 60	Val	Phe	Ser	Pro
Ile 65	Glu	Ala	Pro	Asn	Val 70	Ser	Glu	Ile	Ser	Phe 75	Thr	Trp	Met	Asn	Leu 80
Ser	Glu	Tyr	Ile	Glu 85	Ser	Ala	Thr	Glu	Ala 90	Thr	Tyr	Gly	Glu	Tyr 95	Leu
Arg	Asp	Gly	Asn 100	Val	Ile	Met	Arg	Glu 105	Asp	Asp	Gly	Tyr	Phe 110	Ile	Tyr
Glu	Leu	Pro 115	Phe	Ser	Leu	Asn	Tyr 120	Phe	Gly	Arg	Glu	Ile 125	Lys	Lys	Ile
Ala	Val 130	Asn	Thr	Asn	Gly	Leu 135	Ile	Glu	Leu	Leu	Glu 140	Glu	Tyr	Glu	Glu
Pro 145	Arg	Ile	Glu	Asp	Tyr 150	Tyr	Gly	Ile	His	Glu 155	Glu	Gly	Glu	Phe	Tyr 160
Glu	Ser	Asp	Val	Ile 165	Phe	Gly	Leu	Asp	Glu 170	Asp	Leu	Val	Thr	Tyr 175	Asp
Gly	Tyr	Leu	Leu 180	Leu	Val	Asn	Leu	Gln 185	Asp	ГЛа	Ile	Val	Ile 190	Glu	Trp
Leu	Ala	Ser 195	Thr	Tyr	Glu	Asp	Tyr 200	Glu	Ser	Glu	Ile	Val 205	Asp	Asn	Ile
Asn	Phe 210	Gln	Val	Ile	Ile	Asn 215	Ser	Asn	Gly	Thr	Ile 220	Thr	Trp	Ser	Tyr
Lys 225	Ser	Leu	Glu	Tyr	Ser 230	Tyr	His	Asp	Tyr	Asp 235	Leu	Phe	Ser	Gly	Tyr 240
Tyr	Ser	Lys	Val	Ser 245	Gly	Asp	Val	Lys	Gly 250	Phe	Thr	Lys	Gly	Glu 255	Gly
Lys	Ser	Phe	Ala 260	Ile	Gln	Val	Pro	Leu 265	Gly	Thr	Pro	Lys	Leu 270	Tyr	Thr
Tyr	Gln	Val 275	Arg	Glu	Ser	Gly	Ser 280	Tyr	Leu	Leu	Thr	Leu 285	Pro	Leu	Ser
Asn	Tyr 290	His	Val	Glu	Val	Phe 295	Ala	Asn	Сув	Met	300	Asp	Pro	Asp	Leu
Ser 305	Asn	Asn	Leu	Ala	Glu 310	Val	Gly	Val	Trp	Pro 315	Gly	Asp	Tyr	Trp	Val 320
Glu	Asn	Ala	Ser	Ile 325	Asn	Asn	Leu	Ile	Pro 330	Gly	Glu	Phe	Ala	Ser 335	Ile
Asn	Phe	Lys	Val 340	Arg	Thr	Thr	Ser	Lys 345	Ile	Pro	Ser	Ala	Lys 350	Val	Lys
Leu	Leu	Arg 355	Asn	Gly	Val	Glu	Glu 360	Lys	Ile	Glu	Tyr	Leu 365	Ser	Phe	Tyr
Asn	Gly 370	Ile	Ala	Glu	Gly	Glu 375	Ile	Ser	Trp	Leu	Val 380	Gln	Gly	Gly	Asn
Tyr	Thr	Leu	Ala	Leu	Leu	Val	Glu	Gly	Lys	Gly	Asp	Ile	Asn	Ser	Ser

						63				•		,		,0).	
											-	con	tin	ued	
385					390					395					400
Asn	Asn	Ile	Tyr	Leu 405	Leu	Gly	Asn	Tyr	Asn 410	Phe	Pro	Leu	Pro	Asn 415	Phe
Glu	Val	Gly	Asn 420	Tyr	Ser	Ile	Asp	Leu 425	Pro	Thr	CAa	Val	Asp 430	Ser	Thr
Gly	Glu	Val 435	Arg	Val	Asn	Val	Thr 440	Ser	Thr	Ala	Asn	Trp 445	Ser	Ile	Pro
Val	Arg 450	Leu	Thr	Leu	Val	Tyr 455	Glu	Glu	Gly	Asn	Arg 460	Ser	Tyr	Thr	Arg
Tyr 465	Ile	Ser	Thr	rys	Gly 470	Glu	Glu	Glu	Ser	Glu 475	Val	Ile	Phe	Thr	Pro 480
Met	Ile	Lys	Ala	Gly 485	Thr	Leu	Glu	ГЛа	Val 490	Val	Ile	Glu	Ile	Asp 495	Pro
Trp	Asn	Glu	Val 500	Glu	Glu	Ser	Asn	Glu 505	Ser	Asp	Asn	ГÀа	Val 510	Glu	Val
Pro	Tyr	His 515	Ile	Ile	Ile	Glu	Lys 520	Pro	Asp	Phe	Thr	Val 525	Lys	Ser	Leu
Asn	Ile 530	Pro	Gly	Asn	Val	Ser 535	Ile	Gly	Asn	Leu	Tyr 540	Glu	Val	Asn	Val
Thr 545	Leu	Asp	Asn	Leu	Gly 550	Gly	Сув	Tyr	Gly	Arg 555	Asn	Val	Leu	Val	560 Lys
Leu	Tyr	Glu	Asn	Gly 565	Thr	Ser	Lys	Asp	Trp 570	Arg	Arg	Val	Arg	Ile 575	Asn
Asn	Glu	Thr	Asn 580	Val	Thr	Leu	Thr	Trp 585	Lys	Pro	Gly	Asn	Ala 590	Gly	Leu
Val	Asn	Leu 595	Thr	Val	Val	Val	Asp 600	Pro	Tyr	Ser	Tyr	Val 605	Asp	Glu	Ile
Asn	Glu 610	Gly	Asn	Asn	Arg	Leu 615	Ser	Arg	Leu	Ile	Phe 620	Val	Asn	Ala	Pro
Asp 625	Phe	Lys	Ile	Ser	630	Val	Glu	Leu	Leu	Ser 635	Phe	Asp	Gly	Ile	Ala 640
Gly	Ser	Lys	Ala	Lys 645	Phe	Asn	Val	Thr	Val 650	Lys	Asn	Glu	Gly	Glu 655	Asp
Tyr	Ser	Gly	Tyr 660	Phe	Ser	Ile	Ala	Val 665	Tyr	Gly	Gly	Leu	Arg 670	Ser	Ser
Ile	Ala	Tyr 675	Leu	Arg	Gly	Ile	680	Ser	Gly	Glu	Glu	685	Trp	Thr	Ile
Ile	Ser 690	Leu	Pro	Ile	Asn	Gly 695	Gly	Asn	Ser	Thr	Leu 700	Ile	Phe	Val	Val
Asp 705	Pro	His	Asn	Val	Ile 710	Ser	Glu	Thr	Asn	Glu 715	Gly	Asn	Asn	Val	Ile 720
Phe	Tyr	Asn	Met	Gly 725	Tyr	Ile	Pro	Lys	Pro 730	Asn	Phe	Val	Val	Lys 735	Glu
Ile	Ser	Leu	Pro 740	Asn	Asn	Thr	Val	Gly 745	Tyr	Ile	Pro	Leu	Asn 750	Ile	Thr
Ile	Gly	Asn 755	Val	Gly	Ala	Pro	Tyr 760	Asn	Ala	Thr	Ser	Tyr 765	Gln	Val	Pro
Val	Lys 770	Ile	Lys	Thr	Glu	Tyr 775	Gly	Trp	Lys	Val	Ser 780	Tyr	Leu	Arg	Gly
Ile 785	Ile	Arg	Asp	Asn	Tyr 790	Thr	Ile	Ser	Ile	Asp 795	Ser	Leu	Ala	Met	Leu 800

Pro Pro Gly Ser Thr Ile Asn Val Thr Val Asn Tyr Asn Met Lys Val 805 $$\rm 810$ $$\rm 815$

Asn	Glu	Thr	Ser 820	Tyr	Ser	Asp	Asn	Ser 825	Leu	Ile	Ile	Asn	Tyr 830	Thr	Thr
Gly	Tyr	Pro 835	Asp	Leu	Glu	Leu	Gly 840	Ile	Ile	Pro	Pro	Ser 845	Gly	Glu	Leu
Ser	Ala 850	Gly	Lys	Asp	Val	Lys 855	Ile	Thr	Phe	Leu	Val 860	Lys	Asn	Val	Gly
Asn 865	Ala	Thr	Leu	Arg	Ile 870	Asp	Arg	Ser	Ser	Trp 875	Tyr	Ser	Pro	Tyr	Leu 880
Gly	Leu	Tyr	Val	Thr 885	Leu	Glu	Asp	Glu	Asn 890	Gly	Lys	Thr	His	Thr 895	
Gly	Arg	Tyr	Glu 900	Leu	Ala	Pro	Ala	Thr 905	Leu	Ser	Pro	Gly	Ala 910	Asn	Ile
Ser	Gln	Val 915	Val	Trp	Ile	Thr	Leu 920	Asn	Gly	Gly	Thr	Asn 925	Lys	Ile	Met
Gly	Arg 930	Ile	Val	Asp	Glu	Tyr 935	Glu	Asn	Ile	Tyr	Glu 940	Asn	Asn	Asn	Asp
Thr 945	Leu	Ile	Leu	Thr	Leu 950	Glu	ГЛа	Pro	Asp	Phe 955	Ala	Ile	Leu	Asn	Tyr 960
Ser	Ile	Pro	Asp	Glu 965	Ile	Leu	Asn	Gly	Thr 970	Ala	Tyr	Leu	Tyr	Lys 975	
Tyr	Pro	Ile	Val 980	Leu	Asn	Ile	Ser	Asn 985	Leu	Gly	Gly	Asn	Phe 990	Ser	Asp
Gly	Ile	Arg 995	Val	Asp	Leu	Phe	Asp		n Gly	y Ile	∋ Ile	e Ly		hr S	er Thr
Ser	Val 1010		r Gly	/ Let	ı Glu	Sei 101		ly A	la Se	er A:		sp '	Val	Thr	Leu
Arg	Tyr 1025		ı Pro	Se:	r Ser	Gly 103		ys H	is As	sn Le		er 035	Ile	Val	Leu
Asp	Pro 1040		r Asr	ı Arç	g Trp	104		lu G	lu As	sn G		lu 2 050	Asn .	Asn	Asn
Leu	Thr 1055		e Sei	. Le	ı Ser	Phe 106		ly L	ys Pi	ro As		eu :	Lys '	Val	Glu
Gly	Ile 1070		r Trp	Ala	a Pro	107		sn Pl	ne Th	nr Se		ly (080	Glu .	Asn	Val
Leu	Phe 1085		r Ile	э Туг	r Val	Lys 109		sn Le	eu G	ly G		ro :	Phe	Leu	Lys
Ser	Phe 1100		r Val	L Arç	g Ala	Glu 110		le T	rp As	en G		nr . 110	Arg	ŗÀa	Ile
Tyr	Ser 1115		r Asr	n Ala	a Tyr	Pro		rg A	sn Ti	rp Se		ne (125	Gly	ŗÀa	Gly
Glu	Thr 1130		s Glu	ı Phe	e Asr	Trp		rg T	rp Ty	yr A:		la : 140	Lys	Pro	Gly
Asn	Leu 1145		r Val	L Lys	; Il∈	Va:		al A	sp Ty	yr Ty		sn . 155	Ser	Ile	Pro
Glu	Gly 1160		n Glu	ı Sei	r Asn	Ası 116		lu Pl	ne Se	∍r Ai		ne :	Leu	Gly	Asn
Val	Gly 1175		r Pro	o Asl	Phe	Lys		eu G	lu As	sn Le		er '	Val	Glu	Asp
Leu	Ala 1190	_	r Gly	/ Ly:	3 Phe	Val		rg I	le As	en Al		nr ' 200	Val	ГХа	Asn
Leu	Gly 1205	_	Sei	: Ile	e Tyr		g P:	ro I	le Ti	nr Va	al L		Phe .	Asn	Val
	-20					141					Τ.				

Ser	Gly 1220	Glu	Arg	Tyr	Tyr	Arg 1225	Thr	Val	Tyr	Gly	Ile 1230		Glu	Asn		
Glu	Ser 1235		Ser	Val	Thr	Leu 1240		Trp	Tyr	Val	Asp 1245	Arg	Val	Gly		
Glu	Val 1250	_	Val	Lys		Glu 1255		Asp	Pro	Gly	Asn 1260	Arg	Ile	Val		
Glu	Gly 1265	Asn	Glu	Ser		Asn 1270		Ile	Glu	Arg	Thr 1275	Tyr	Tyr	Val		
Glu	Ser 1280		Glu	Leu	Met	Leu 1285	Ser	Gly	Tyr	Glu	Trp 1290	Leu	Glu	Glu		
Glu	Val 1295	Arg	Arg	Gly	Tyr	Leu 1300	Ala	Tyr	ГЛа	Val	Asn 1305	Val	Thr	Asn		
Thr	Gly 1310	Gly	Asp	Val	Tyr	Arg 1315	Gly	Phe	Tyr	Val	Gln 1320	Met	Phe	Val		
Asp	Gly 1325	Glu	Pro	Lys	Ser	Ser 1330	Val	Trp	Ile	Asn	Lys 1335	Leu	Leu	His		
Gly	Glu 1340	Thr	Ala	Glu	Arg	Thr 1345	Leu	Arg	Trp	Arg	Phe 1350	Ser	Ser	Gly		
Gly	Arg 1355	Lys	Glu	Val	Arg	Ile 1360	Val	Val	Asp	Pro	Gln 1365	Asp	Tyr	Ile		
Pro	Glu 1370	Ser	Asn	Glu	Asp	Asn 1375	Asn	Ala	Ile	Val	Glu 1380	Asn	Val	Thr		
Ile	Val 1385	Leu	Pro	Asp	Ile	Glu 1390	Val	Leu	Ser	Leu	Asn 1395	Ile	Pro	Ser		
Met	His 1400	Ala	Asn	Ser	Tyr	Phe 1405	Lys	Val	Asn	Ala	Thr 1410	Ile	ГÀа	Asn		
Ser	Gly 1415	Gly	Gln	Asp	Val	Lys 1420	Arg	Ile	Phe	Tyr	Val 1425	Ser	Leu	Tyr		
Gln	Asp 1430	Gly	Lys	Leu	Leu	Gly 1435	Ser	Ala	Pro	Val	Tyr 1440	Ser	Leu	Ala		
Ser	Gly 1445	Glu	Val	Lys	Glu	Val 1450	Thr	Leu	Thr	Ile	Arg 1455	Pro	Tyr	Pro		
Gly	Asn 1460	Ser	Thr	Phe	Lys	Val 1465	Val	Val	Asp	Pro	Thr 1470	Asn	Ala	Val		
Val	Glu 1475	Leu	Asn	Glu	Asp	Asn 1480		Glu	Ile	Ser	Val 1485	Arg	Ser	Tyr		
Val	Lys 1490		Pro	Asp	Ile	Val 1495		Val	Ser	Ala	Asp 1500		Gly	Asn		
Phe	Thr 1505	Tyr	Pro	Gly	Glu	Met 1510	Val	Asn	Ala	Lys	Val 1515	Arg	Ile	Arg		
Asn	Ser 1520	Gly	Asp	Tyr	Lys	Ser 1525	Gly	Val	Tyr	Leu	Leu 1530	Ile	Arg	Asn		
Lys	Arg 1535	Arg	Lys	Leu	Gly	Ser 1540	Ala	Tyr	Val	Asp	Ser 1545	Ile	Thr	Pro		
Gly	Glu 1550	Glu	Ile	Glu	Val	Asn 1555	Val	Pro	Trp	Leu	Val 1560	Asp	Ser	Gly		
Asp	Tyr 1565	Asn	Val	Ser	Val	Ile 1570	Ala	Asp	Pro	Tyr	Asn 1575	Ser	Val	Arg		
Glu	Trp 1580	Asp	Glu	Glu	Asn	Asn 1585	Lys	Leu	Asp	Ile	Glu 1590	Val	Ser	Val		
Pro	Ser 1595	Pro	Asp	Leu	Thr	Val 1600	Glu	Asn	Ile	Thr	His 1605	Ser	Gly	Lya		
Glu	Val	Ala	Gly	Glu	Glu	Ile	Ile	Ile	Lys	Val	Thr	Val	Lys	Asn		

							69								
The Gly Glu Ser Ser Lys Leu Pro Phe Tyr The Val Leu Tyr Ala 1635 Ser Phe Val Gly The 1645 Ser Tyr Gly Glu Tyr Ala 1665 Ser The Thr Leu Glu Tyr 1666 Ser Tyr Gly 1665 Ser Tyr Gly Tyr 1666 Ser Tyr Gly Tyr Ty												- COI	ntir	nued	i
Ash See See Phe Val Gly Ilee Ash Arg Val Thr Lys Ilee Ash Lys Ilee Ilee		1610					1615					1620			
1640 1645 1645 1645 1646	Ile		Glu	Ser	Ser	ГЛа		Pro	Phe	Tyr	Ile		Leu	Tyr	Ala
1655	Asn			Phe	Val	Gly		Asn	Arg	Val	Thr		Ile	Asp	Lys
1670	Gly			Ile	Thr	Leu		Phe	Lys	Trp	Arg		Ser	Tyr	Gly
1695	Glu			Leu	Arg	Ala		Val	Asp	Pro	Tyr		Glu	Val	Tyr
1700	Glu			Glu	Ser	Asn		Glu	Gly	Met	Val		Val	Phe	Ile
1715	Glu		Glu	Glu	Pro	Pro		Leu	Lys	Leu	Thr		Pro	Glu	Asn
1730	Gly		Phe	Thr	Asn	Lys		Tyr	Ile	Gly	Ala		Leu	Arg	Asp
1745	Glu			Gly	Val	ГÀа			Glu	Ile	Glu		Tyr	Arg	Glu
1760	Gly			Val	Pro	Gly			Lys	Phe	Ser		Gly	Trp	Leu
1775	Ile			Asn	Ser	Thr		Leu	Leu	Asp	Gly		Tyr	Thr	Val
Leu Thr Asp Gly Thr Leu Tyr 1810 Roy Val 1805 Roy Val 1805 Roy Val 1815 Roy Sql Val 1816 Roy Sql Val 1815 Roy Sql Val 1820 Roy Sql Val 1825 Roy Trp Tyr Lys Val Lys Val Asn 1820 Roy Sql Val 1825 Roy Sql	Thr		Lys	Ala	Val	Asp			Gly	Asn	Glu		Thr	Tyr	Ser
1805	Trp		Phe	Thr	Leu	Asp		Glu	Pro	Pro	Arg		Val	Cys	Asn
1820 1825 1830 Thr Tyr Thr 1835 Gly Arg 1835 Glu Phe Ser Gly Pro 1840 1le Lys Leu Asp Gly 1845 Thr Tyr Thr 1840 Leu Asn 1850 Val Thr Ala Lys Asp 1855 Lys Ala Gly Asn Leu Asp 1860 Ala Glu Lys 1860 Ile Ile Arg Phe Thr Val Asn 1870 Gly Val Pro Ser Pro 1875 Pro Ser Gly 1875 Val Thr 1880 Leu Met Leu Asn Gly 1885 Ser Tyr Val Glu Leu 1890 Ser Trp Leu 1890 Pro Ser 1895 Pro Asp Ser Asp Val 1900 Ala Gly Tyr Phe 11e 1990 Tyr Lys Asp 1905 Gly Lys 1895 Arg Leu Asn Glu Val 1915 Pro Ile Glu Lys Pro Asn Phe Arg 1920 Asn Phe Arg 1920 Asp 1995 Tyr Ser Gly Thr Leu 1930 Asn Tyr Ser Ile Ser 1935 Ala Ile Asp 1935 Phe Ser 1996 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1935 Pro Val Lys 1950 Leu Glu 1990 Val Asp Glu Asn 1960 Leu Thr Ala Gly Tyr 1965 Pro Gly Ala 1965 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala Asn 1980 Pro Gly Ala 1980 Leu Ser 1998 Ile Ile Leu Ile Asp 1990 Pro Arg Gly Asn Glu Asn 1995 Ile Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Leu		Asp	Gly	Thr	Leu		Asn	Gly	Thr	Val		Pro	Gly	Val
Leu Asn 1850 Val Thr Ala Lys Asp 1855 Lys Ala Gly Asn Leu 1860 Ala Glu Lys 1860 Ille Ile 11e Arg Phe Thr Val Asn 1860 Gly Val Pro Ser Pro 1875 Pro Ser Gly 1875 Val Thr 1880 Leu Met Leu Asn Gly 1885 Ser Tyr Val Glu Leu 1890 Ser Trp Leu 1890 Pro Ser 1895 Pro Asp Ser Asp Val 1900 Ala Gly Tyr Phe 11e 1905 Tyr Lys Asp 1900 Gly Lys 1990 Arg Leu Asn Glu Val 1915 Pro Ile Glu Lys Pro 1920 Asn Phe Arg 1920 Asp 11e 1990 Tyr Ser Gly Thr Leu 1945 Asn Tyr Ser Ile Ser 1935 Ala Ile Asp 1935 Phe Ser 1994 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1950 Pro Val Lys 1950 Leu Glu 1955 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr Pro Gly Ala 1965 Val Lys 1950 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala 1980 Pro Gly Ala 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asn Glu Asn 1995 Ile Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Gln		Ile	Asp	Asp	Asn		Asp	Trp	Tyr	Lys		Lys	Val	Asn
1850 1855 1860 Pro Ser Gly 11e Ile Ile Sarg Phe Thr Val Asn 1870 Gly Val Pro Ser Pro 1875 Pro Ser Gly 1875 Val Thr 1880 Leu Met Leu Asn Gly 1885 Ser Tyr Val Glu Leu 1890 Ser Trp Leu 1890 Pro Ser Pro Asp Ser Asp Val 1885 Ala Gly Tyr Phe Ile 1905 Tyr Lys Asp 1900 Gly Lys 1990 Arg Leu Asn Glu Val 1915 Pro Ile Glu Lys Pro 1920 Asn Phe Arg 1920 Asp Ile 1992 Tyr Ser Gly Thr Leu 1930 Asn Tyr Ser Ile Ser 1935 Ala Ile Asp 1935 Phe Ser 1994 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1950 Pro Val Lys 1950 Leu Glu 1995 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr Pro Gly Ala 1965 Val Lys 1990 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala 1880 Asn Gly Thr 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asn Glu Asn 1995 Ile Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Gly		Glu	Phe	Ser	Gly		Ile	Lys	Leu	Asp		Thr	Tyr	Thr
1865 1870 1875 1870 1875 1876	Leu		Val	Thr	Ala	Lys		Lys	Ala	Gly	Asn		Ala	Glu	Lys
1880 1885 1890 Pro Ser 1895 Pro Asp Ser Asp Val 1900 Ala Gly Tyr Phe 11e 11e Tyr Lys Asp 1905 Tyr Lys Asp Asp 11e 1905 Gly Lys 1910 Arg Leu Asn Glu Val 1915 Pro Ile Glu Lys Pro 1920 Asn Phe Arg 1920 Asp 11e 1910 Tyr Ser Gly Thr Leu 1930 Asn Tyr Ser Ile Ser 1935 Ala Ile Asp 1935 Phe Ser 1940 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1950 Pro Val Lys 1950 Leu Glu 1955 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr 1965 Pro Gly Ala 1960 Val Lys 1970 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala 1980 Asn Gly Thr 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asn Gly Arg Ser Ser His Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Ile		Arg	Phe	Thr	Val		Gly	Val	Pro	Ser		Pro	Ser	Gly
1895 1900 1905 Gly Lys 1910 Arg Leu Asn Glu Val 1915 Pro Ile Glu Lys Pro 1920 Asn Phe Arg 1920 Asp 11e 1915 Tyr Ser Gly Thr Leu 1930 Asn Tyr Ser Ile Ser 1935 Ala Ile Asp 1935 Phe Ser 1940 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1950 Pro Val Lys 1950 Leu Glu 1955 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr 1965 Pro Gly Ala 1965 Val Lys 1950 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala 1980 Asn Gly Thr 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asn Glu 1995 Ile Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Val			Met	Leu	Asn		Ser	Tyr	Val	Glu		Ser	Trp	Leu
1910 1915 1920 Asp Ile 1925 Tyr Ser Gly Thr Leu 1930 Asn Tyr Ser Ile Ser 1935 Ala Ile Asp 1935 Phe Ser 1940 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1950 Pro Val Lys 1950 Leu Glu 1955 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr 1965 Pro Gly Ala 1965 Val Lys 1970 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala 1980 Asn Gly Thr 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asn Glu 1995 Ile Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Pro			Asp	Ser	Asp			Gly	Tyr	Phe		Tyr	ГÀз	Asp
1925 1930 1935 Phe Ser 1940 Gly Phe Glu Ser Glu 1945 Lys Thr Glu Val Phe 1950 Pro Val Lys 1950 Leu Glu 1955 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr 1965 Pro Gly Ala 1965 Val Lys 1970 Val Lys Val Glu Asn 1975 Leu Asp Gly Glu Ala 1980 Asn Gly Thr 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asn Glu 1995 Ile Glu Lys 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Gly			Leu	Asn	Glu		Pro	Ile	Glu	ГÀв		Asn	Phe	Arg
Leu Glu 1955 Val Asp Glu Glu Asn 1960 Leu Thr Ala Gly Tyr 1965 Pro Gly Ala 1965 Val Lys Val Glu Asn 1970 Leu Asp Gly Glu Asp 1980 Asn 1980 Leu Ser 1985 Ile Ile Leu Ile Asp 1990 Glu Phe Gly Asp Glu Asp 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Asp		Tyr	Ser	Gly	Thr		Asn	Tyr	Ser	Ile		Ala	Ile	Asp
Val Lys Val Lys Val Glu Asn Leu Asp Gly Glu Ala Asn Gly Thr Leu Ser Ile Ile Leu Ile Asp Glu Phe Gly Asn Glu Ile Glu Lys Leu Ser Arg Lys Val Glu Pro Arg Gly Arg Ser Fis Glu	Phe		Gly	Phe	Glu	Ser		Lys	Thr	Glu	Val		Pro	Val	Lys
Leu Ser Ile Ile Leu Ile Asp Glu Phe Gly Asn Glu Ile Glu Lys 1985	Leu		Val	Asp	Glu	Glu		Leu	Thr	Ala	Gly	•	Pro	Gly	Ala
1985 1990 1995 Leu Ser Arg Lys Val Glu Val Pro Arg Gly Arg Ser Ser His Glu	Val	-		Lys	Val	Glu		Leu	Asp	Gly	Glu		Asn	Gly	Thr
	Leu		Ile	Ile	Leu	Ile			Phe	Gly	Asn		Ile	Glu	Lys
	Leu		Arg	Lys	Val	Glu		Pro	Arg	Gly	Arg		Ser	His	Glu

Phe	Val 2015	Phe	Met	Val	Pro	Arg 2020	Gly	Leu	Thr	Leu	Ile 2025	Arg	Gly	Glu
Leu	Lys 2030	Val	Gly	Asn	Ser	Thr 2035	Ala	Arg	Ile	Ile	His 2040	Arg	Ala	Lys
Val	Arg 2045	Glu	Gly	Glu	Asn	Pro 2050	Glu	Ile	Arg	Val	Gly 2055	Lys	Leu	Leu
Ala	Gly 2060	Phe	Pro	Gly	Leu	Val 2065	Glu	Val	Glu	Ile	Arg 2070	Asn	Cys	Gly
Ile	Val 2075	Glu	Leu	Asn	Thr	Ser 2080	Glu	Thr	Leu	Met	Lys 2085	Leu	Asp	Asn
Ser	Ser 2090	Gly	Glu	Leu	Ile	Glu 2095	Ala	Pro	Leu	Thr	Ile 2100	Pro	Pro	Gly
ГÀв	Lys 2105	Thr	Val	Leu	Arg	Tyr 2110	Lys	Ile	Val	Pro	Pro 2115	Lys	Lys	Gly
Ser	Tyr 2120	Asn	Leu	Thr	Phe	Arg 2125	Ile	Ala	Asp	Val	Glu 2130	Val	Arg	Lys
Ile	Val 2135	Asn	Val	Ser	Glu	Ser 2140	Val	Leu	Asn	Pro	Ile 2145	Thr	Ile	Ser
Thr	Glu 2150	Asn	Phe	Ile	Lys	Gly 2155	Gly	Lys	Ala	Lys	Ile 2160	Tyr	Val	Ser
Phe	Arg 2165	Asn	Ile	Gly	Ser	Ala 2170	Pro	Ile	Phe	Val	Lys 2175	Ser	Ile	Glu
Leu	Asn 2180	Gly	Met	Ser	Lys	Arg 2185	Leu	Ser	Ile	Glu	Leu 2190	Pro	Pro	Asn
Leu	Ser 2195	Val	Glu	Glu	Ser	Phe 2200	Glu	Tyr	Leu	Ile	Ser 2205	Glu	Glu	Asn
Val	Glu 2210	Ile	Asn	Ala	Thr	Val 2215	Asn	Thr	Asp	Val	Gly 2220	Lys	Phe	Arg
Lys	Ser 2225	Leu	Thr	Leu	Thr	Ala 2230	Glu	Gln	Pro	Glu	Tyr 2235	Asn	Ala	Asp
Val	Ser 2240	Val	Ser	Ser	Val	Tyr 2245	Glu	Val	Gly	Lys	Glu 2250	Ile	Leu	Ile
Thr	Gly 2255	Val	Ala	Tyr	Asn	Glu 2260	Ser	Gly	Met	Leu	Ser 2265	Asn	Val	Pro
Val	Lys 2270	Val	Ser	Ile	Ala	Arg 2275	Gly	Gly	Phe	Val	Arg 2280	Glu	Tyr	Ile
Val	Thr 2285	Thr	Asn	Glu	Asn	Gly 2290	Tyr	Phe	Asn	Leu	Thr 2295	Phe	Arg	Pro
Phe	Lys 2300	Gly	Glu	Ser	Gly	His 2305	Phe	Ile	Val	Ser	Ala 2310	Thr	His	Pro
Lys	Ile 2315	Glu	Leu	Leu	Glu	Arg 2320	Asp	Ala	Glu	Phe	Asp 2325	Val	Val	Gly
Ile	Glu 2330	Val	Ile	Pro	Ser	Leu 2335	Tyr	Leu	Leu	Thr	Val 2340		Val	Glu
Phe	Asn 2345	Gly	Thr	Val	Arg	Val 2350	Arg	Leu	Ile	Asn	Tyr 2355	Trp	Arg	Ala
Ser	Asp 2360	Val	Ser	Val	Ser	Val 2365	Lys	Ala	Pro	Pro	Glu 2370		Glu	Val
Ser	Ile 2375	Pro	Lys	Val	Leu	His 2380	Leu	ГЛа	Pro	Gly	Ser 2385	Asn	Ile	Ile
Asn	Ile 2390	Gly	Leu	Ser	Ser	Lys 2395	Asn	Ala	Val	Asn	Gly 2400		Ile	Met

Ile	Thr 2405	Phe	Lys	Ala	Arg	Gln 2410		Gly	Leu	Asn	Ile 2415	Thr	Arg	Ser
Leu	Thr 2420	Leu	Lys	Leu	Lys	Val 2425	Leu	Pro	Pro	Ala	Pro 2430	Ala	Ile	Val
Thr	Ser 2435	Pro	Asn	Phe	Leu	Asp 2440	Val	Gly	Val	Leu	Thr 2445	Asn	Glu	Thr
Ala	Ser 2450	Ala	Glu	Val	Val	Val 2455	Arg	Asn	Leu	Gly	Phe 2460	Thr	Ala	Leu
Arg	Asn 2465	Val	Ser	Ile	Arg	Ser 2470	Ser	Ile	Pro	Trp	Val 2475	Lys	Val	Val
Ser	Asn 2480	Phe	Thr	Glu	Val	Asp 2485		Lys	Asp	Asn	Glu 2490	Ser	Ile	Ser
Leu	Tyr 2495		Glu	Pro	Pro	Arg 2500	Asn	Val	Thr	Gly	Thr 2505	Phe	Lys	Gly
Glu	Ile 2510		Ile	Ser	Ser	Ser 2515	Asn	Tyr	Asn	Pro	Ile 2520	Lys	Val	Pro
Met	Arg 2525	Ile	Arg	Val	Thr	Pro 2530		Ala	Thr	Gly	Gly 2535		Lys	Val
Thr	Val 2540	Met	Asp	Pro	Asn	Ala 2545		Arg	Leu	Glu	Asn 2550		Lys	Leu
Thr	Leu 2555	Tyr	Asn	Gly	Tyr	Phe 2560	His	Phe	Glu	Gly	Tyr 2565	Thr	Asn	Lys
Asn	Gly 2570	Thr	Leu	Glu	Val	Glu 2575	Asn	Val	Pro	Ile	Gly 2580	Glu	Tyr	Lys
Leu	Phe 2585	Ala	Ser	Leu	Glu	Gly 2590		Tyr	Gly	Tyr	Ser 2595	Thr	Ser	Ile
Thr	Ile 2600	Glu	Val	Gly	Val	Glu 2605		Asn	Val	Ser	Ile 2610	Ile	Leu	Thr
Pro	Ser 2615	Ile	Leu	Glu	Val	Glu 2620		Glu	Val	Val	Pro 2625		Thr	Ile
Gln	Asp 2630	Val	Tyr	Ile	Ile	Lys 2635		Glu	Met	Trp	Tyr 2640		Thr	His
Val	Pro 2645	Ala	Pro	Glu	Ile	Arg 2650	Met	Glu	Gly	Gly	Asp 2655		Glu	Val
Tyr	Val 2660	Asp	Tyr	Glu	Lys	Leu 2665	Ala	Glu	Glu	Gly	Met 2670	Leu	Glu	Phe
Arg	Gly 2675	Gln	Val	Ile	Val	Arg 2680	Asn	Thr	His	Gln	Tyr 2685	Ile	Ser	Val
Tyr	Asn 2690	Val	Thr	Phe	Glu	Ser 2695	Gly	Gly	Ser	His	Tyr 2700	Ile	Asp	Val
Glu	Phe 2705	Gly	Ile	Asn	Arg	Ile 2710		Glu	Leu	Lys	Pro 2715		Glu	Ala
Val	Ile 2720		Pro	Tyr	Val	Val 2725		Ile	Tyr	Tyr	Ser 2730		Ser	Pro
Pro	Ile 2735	Asn	Pro	Сув	Leu	His 2740		Thr	Lys	Val	Phe 2745	-	Leu	Lys
Ala	Gly 2750	Val	Val	Сув	Val	Glu 2755		Ala	Gly	Lys	Ile 2760		Leu	ГÀа
Ala	Gln 2765	Arg	Ile	His	Gln	Ile 2770	Val	Val	Lys	Pro	Thr 2775	_	ГÀа	Gly
Cys	Trp 2780	Glu	Ser	Val	Phe	Pro 2785	Val	Ala	Gly	Lys	Leu 2790		Phe	Met
Ala	Ile	Ala	Gln	Lys	Val	Gly	Gln	Ala	Leu	Gly	Asn	Ile	Asp	Asp

15		/0
	-continued	

											-001	.10.11	ıuec		
	2795					2800					2805				
Thr	Gly 2810		Leu	Ser	Thr	Leu 2815	Ala	Gly	Glu	Ala	Leu 2820		Asn	Leu	
Glu	Ser 2825	Leu	Phe	Asp	Ala	Tyr 2830	Asn	Ala	Tyr	Lys	Ala 2835	Asn	Pro	Thr	
Lys	Glu 2840		Met	Glu	Asn	Tyr 2845	Val	Lys	Thr	Phe	Asn 2850	Ser	Val	Lys	
Ala	Asn 2855	Leu	Ala	Ser	Leu	Phe 2860	Met	Phe	Asp	Pro	Val 2865	Ala	Tyr	Gln	
Glu	Ile 2870		Ser	Leu	Gln	Leu 2875	Thr	Leu	Ile	Lys	Thr 2880	Pro	Lys	Gly	
Asp	Ile 2885	Ala	Gly	Phe	Ala	Val 2890	Ser	Arg	Thr	Ala	Thr 2895	Pro	Val	Tyr	
Ala	Leu 2900		Met	Gly	Val	Gly 2905	Lys	Ile	Glu	Asn	Gly 2910		Leu	Lys	
Val	Asp 2915	_	Lys	ГЛа	Ala	Val 2920	Asn	Ile	Ala	Asn	Gly 2925		Val	Leu	
Asn	Val 2930		Ser	Lys	Met	Gly 2935	Gly	Ala	Leu	Gly	Gly 2940	Ile	Ala	Ser	
Gly	Val 2945	Gly	Leu	Leu	Gln	Leu 2950	Leu	Asp	Lys	Ala	Ala 2955	Glu	Asp	Leu	
Pro	Pro 2960	-	Ile	Ala	Gln	Leu 2965	Phe	Leu	Asn	Сув	Ala 2970		Cys	Leu	
Met	Arg 2975	Asn	Asp	Сув	Thr	Leu 2980	Pro	Glu	Gly	Glu	Glu 2985		Arg	Pro	
Ile	Gln 2990		Ile	Ala	Ser	Gly 2995	Ser	Leu	Gly	Gly	Tyr 3000		Ser	Met	
Ile	Pro 3005		Gly	Leu	Ala	Gly 3010	Gly	Gly	Asp	Gly	Gly 3015	Thr	Ala	Val	
Gly	Arg 3020		Thr	Cys	Gly	Gly 3025	Leu	Pro	Thr	Val	3030 TÀa		Ser	Ser	
Thr	Ser 3035		Ser	Cys	Ser	Thr 3040		Ser	Ser	Glu	Asp 3045		Val	ГЛа	
Glu	Arg 3050		CAa	Arg	Leu	Phe 3055		Glu	Ser	Glu	Thr 3060		Asp	Glu	
Glu	Glu 3065	Pro	Ser	Asn	Thr	Leu 3070	His	Met	Cys	Val	Asp 3075	Leu	Val	Leu	
Thr	Ile 3080		Gln	Arg	Leu	Thr 3085	Phe	Glu	Arg	Gln	Ala 3090		Arg	Ala	
Ser	Leu 3095		Phe	Thr	Asn	Thr 3100		Arg	Asn	Tyr	Ser 3105		Glu	Asn	
Val	Ser 3110		Arg	Val	Ile	Phe 3115	Phe	Asp	Glu	Glu	Gly 3120	Asn	Arg	Val	
Asp	Asp 3125	Lys	Phe	Phe	Val	Arg 3130		Asp	Glu	ГÀа	Ala 3135	_	Leu	Ser	
Gly	Ser 3140		Leu	Glu	Pro	Glu 3145	_	Thr	Ala	Glu	Met 3150	_	Trp	Leu	
Ile	Ile 3155		Lys	Val	Gly	Ala 3160	Ala	Glu	Lys	Phe	Arg 3165		Arg	Tyr	
Tyr	Val 3170		Ala	Asn	Ile	Thr 3175	Ala	Arg	Val	Gly	Ser 3180		Lys	Leu	
Val	Tyr 3185	Glu	Thr	Trp	Pro	Ala 3190	Met	Ile	Glu	Val	Glu 3195	Pro	Val	Pro	

Gln	Leu 3200	Val	Leu	Asp	Tyr	Val 3205		Pro	Ser	Tyr	Val 3210	Phe	Gly	Asp
Asp	Pro 3215	Tyr	Thr	Pro	Glu	Lys 3220		Leu	Pro	Ile	Pro 3225	Phe	Ile	Phe
Gly	Val 3230	Arg	Val	Lys	Asn	Val 3235	Gly	Tyr	Gly	Thr	Ala 3240	Arg	Lys	Leu
Arg	Ile 3245	Ala	Ser	Ala	Gln	Pro 3250	Lys	Ile	Glu	Arg	Ser 3255	Asn	Tyr	Pro
Gly	Val 3260	Tyr	Ile	Asp	Phe	Lys 3265		Ile	Gly	Thr	Leu 3270	Val	Asn	Gly
Lys	Lys 3275	Val	Pro	Asn	Ser	Leu 3280		Ile	Asp	Phe	Gly 3285	Asp	Leu	Asn
Pro	Gly 3290	Glu	Ser	Ser	Thr	Ala 3295	Ala	Trp	Leu	Met	Ile 3300		Glu	Val
Ser	Gly 3305	ГÀа	Phe	Leu	Gln	Tyr 3310		Ala	Thr	Phe	Lys 3315	His	Ser	Asp
Glu	Leu 3320	Gly	Gly	Asn	Glu	Thr 3325		Leu	Ile	ГЛа	Glu 3330	Val	Arg	Thr
His	Phe 3335	Leu	Ile	Arg	Ala	Phe 3340	Asn	Asn	Thr	Glu	Asn 3345	Asp	Asp	Gly
Met	Leu 3350	Asp	Phe	Leu	Val	Asp 3355	Asp	Asp	Gly	Asp	Gly 3360	Lys	Pro	Glu
ràa	Ile 3365	Ile	Asp	Ser	Arg	Gly 3370	Phe	Asp	Tyr	Asn	Val 3375	Leu	Leu	Leu
Asn	Phe 3380	Thr	Glu	Val	Glu	Glu 3385	Gly	Ser	Met	Arg	3390 Lys	Ile	Ile	Pro
Glu	Met 3395	ГÀа	Thr	Pro	Phe	Trp 3400	Val	Tyr	Phe	Thr	Val 3405	Pro	Phe	ГÀа
Gly	Ser 3410	Val	Val	Arg	Ser	Asp 3415	Gly	Lys	Asn	Pro	Met 3420	Asp	Gln	Trp
Met	Glu 3425	Asn	Gly	Thr	Leu	His 3430	Val	Leu	Asp	Leu	Gly 3435	Thr	Pro	Glu
Phe	Tyr 3440	Ile	Leu	Lys	Ser	Asn 3445	Gln	Pro	Pro	Ile	Pro 3450	Arg	Ile	Tyr
Val	Lys 3455	Glu	Pro	Val	Ile	Ala 3460	Asn	Glu	Thr	Val	Val 3465	Leu	Asp	Gly
Ser	Leu 3470	Ser	Tyr	Asp	Pro	Asp 3475	Gly	Ser	Ile	Ile	Ala 3480	Tyr	Thr	Trp
ГÀа	Ile 3485	Gly	Asn	Glu	Ser	Phe 3490	Val	Gly	Asp	Lys	Val 3495	Ser	Tyr	Val
Phe	Arg 3500	Glu	Pro	Gly	Thr	Tyr 3505	Asn	Val	Thr	Leu	Thr 3510	Val	Arg	Asp
Asp	Lув 3515	Gly	Thr	Glu	Ser	Ser 3520	Lys	Thr	Met	Glu	Ile 3525	Lys	Val	Tyr
Leu	Gly 3530	Pro	Lys	Phe	Asn	Glu 3535	Ser	Leu	Lys	Val	Glu 3540	Pro	Gln	Trp
Gly	Ile 3545	Val	Pro	Phe	Asn	Leu 3550	Ser	Ile	Thr	Phe	Asn 3555	Val	Thr	Asn
Val	Gly 3560	Asp	Val	Ser	Gly	Glu 3565	Tyr	Ser	Tyr	Ile	Ile 3570	Lys	Leu	Gly
Asn	Ser 3575	Thr	Ile	Ala	Glu	Gly 3580		Glu	Ile	Ile	Glu 3585	Ser	Gly	Arg

											-001	.10.11	iuec	1
Trp	Lys 3590	Val	Ile	Asn	Ser	Thr 3595	Val	Glu	Ile	Arg	3600 Lys		Gly	Asn
Tyr	Thr 3605	Val	Thr	Ala	Asn	Asn 3610	Leu	Ser	Lys	Thr	Val 3615		Ala	Tyr
Arg	Lys 3620	Val	Tyr	Gly	Asn	Leu 3625	Thr	Glu	Asn	Tyr	Ile 3630		Glu	Lys
Asp	Phe 3635	Gly	His	Tyr	Lys	Ser 3640	Phe	Tyr	Trp	Asn	Glu 3645		Lys	Arg
Asp	Phe 3650	Glu	Gly	Trp	Val	Glu 3655	Glu	Ala	Leu	Ser	Thr 3660		Glu	Leu
Pro	Lys 3665	Val	Asn	Phe	Lys	Val 3670	Leu	Asn	Tyr	Phe	Pro 3675	Gly	Asn	Trp
Ser	Leu 3680	Leu	Asn	Tyr	Ser	Glu 3685	Met	Leu	Asn	Ile	Thr 3690		Gly	Trp
Gly	Trp 3695	Ile	Asn	Ala	Thr	Tyr 3700	Ala	Arg	Arg	Val	Arg 3705	Val	Glu	Gly
Leu	Glu 3710	Glu	Phe	Lys	Tyr	Leu 3715	Ile	Val	Asn	Val	Thr 3720		Leu	Val
Val	Leu 3725	Leu	Gly	Asn	Ala	Thr 3730	His	Glu	Leu	Asp	Glu 3735		Pro	Pro
Thr	Leu 3740	Asn	Val	Thr	Pro	Ser 3745	Ser	Gly	Ile	Tyr	Ser 3750	Glu	Ile	Pro
Lys	Ile 3755	Gln	Val	Arg	Thr	Сув 3760	Asp	Glu	Thr	Gly	Ile 3765	Thr	Leu	Val
Trp	Gly 3770	Ala	Val	Gly	Asn	Tyr 3775	Thr	Lys	Glu	Phe	Thr 3780	Glu	Val	Glu
Ser	Asn 3785	Gly	Thr	Cys	Ser	Thr 3790	Trp	Glu	Gly	Ile	Val 3795	Pro	Leu	Asn
Ile	Gly 3800	Asn	Asn	Thr	Val	Ala 3805	Ile	Tyr	Ala	Glu	Asp 3810	Glu	Phe	Gly
Asn	Arg 3815	Gly	Asn	Val	Ser	Leu 3820	Trp	Ile	Tyr	Leu	Asn 3825	Pro	Glu	Ala
Pro	Val 3830	Ile	Tyr	Ile	Glu	Ser 3835	Pro	Glu	Glu	ГÀв	Val 3840		Asn	Ser
Arg	Glu 3845	Val	Met	Ile	Asn	Tyr 3850	Thr	Val	Val	Asn	His 3855		Leu	Val
Gly	Val 3860	Val	Ala	Tyr	Leu	Asn 3865	-	Glu	Leu	Ile	Ser 3870		Asn	Ala
Ser	Tyr 3875	Ser	Gly	Phe	Ile	1880 3880	Leu	Asp	Tyr	Gly	Trp 3885		Asn	Phe
Thr	Ile 3890	Tyr	Ala	Trp	Asp	Val 3895	Ser	Tyr	Asn	Val	Ser 3900		Ser	Val
Ile	Phe 3905	Arg	Val	Asn	Glu	Pro 3910	Pro	Ser	Val	Asp	Phe 3915		Trp	Glu
Val	Asp 3920	Asn	Leu	Thr	Val	Lys 3925	Phe	Glu	Ala	Asn	Ala 3930	Ser	Asp	Glu
Asp	Gly 3935	Ile	Ser	Lys	Tyr	Leu 3940	Trp	Asp	Phe	Gly	Asp 3945	Asn	Glu	Ser
Ser	Leu 3950	Leu	Val	Asn	Pro	Thr 3955	His	Thr	Tyr	Arg	1960 3960	_	Gly	Arg
Tyr	Asn 3965	Val	Thr	Leu	Thr	Val 3970	Trp	Asp	Ser	Tyr	Asn 3975		Ser	Ser
Ser	Ile	Ser	ГЛа	Glu	Val	Val	Val	Phe	Gly	Ser	Ser	Thr	Leu	Thr

-continued

	3980					3985					3990			
Met	Val 3995	Lys	Glu	Tyr	Ser	Tyr 4000	Thr	Lys	Asp	Phe	Gly 4005	Phe	Tyr	Asn
Thr	Thr 4010	Ser	Trp	Lys	Asp	Phe 4015	Leu	Lys	Asp	Phe	Glu 4020	Val	Trp	Val
Asn	Leu 4025	Thr	Leu	Arg	Asn	Val 4030	Thr	Leu	Pro	Leu	Glu 4035	Tyr	Phe	Glu
Glu	Ile 4040	Ile	Glu	Val	Asn	Val 4045	Glu	Asn	Trp	Ser	Leu 4050	Ile	Ser	Val
Glu	Lys 4055	Asn	Leu	Lys	Asn	Asp 4060	Ile	Gly	Glu	Met	Ser 4065	Ala	Glu	Tyr
Glu	Arg 4070	Asn	Ala	Thr	Ile	Val 4075	Gly	Ile	Met	Asn	Tyr 4080	Thr	Arg	Val
Thr	Leu 4085	ГÀа	Leu	Thr	Gln	Glu 4090	Val	Ile	Leu	Ser	Gly 4095	Arg	Ala	Arg
Lys	Val 4100	Glu	Asp	Lys	Ile	Pro 4105	Pro	Leu	Val	Glu	Ile 4110	Leu	Phe	Pro
Arg	Asn 4115	Met	Thr	Tyr	Asn	Glu 4120	Thr	Ile	Arg	Glu	Ile 4125	Lys	Val	Arg
Ala	Thr 4130	Asp	Glu	Ser	Gly	Ile 4135	Ala	Asn	Val	Thr	Ala 4140	Thr	Ile	Asn
Gly	Glu 4145	Ser	Leu	Ser	Leu	Glu 4150	Lys	Val	Asn	Glu	Thr 4155	Trp	Ile	Gly
Arg	Val 4160	Glu	Leu	Asp	Asp	Gly 4165	Lys	Tyr	Glu	Leu	Asn 4170	Val	Phe	Ala
Ser	Asp 4175	Lys	Trp	Gly	Asn	Val 4180	Gly	CÀa	Ser	Thr	Val 4185	Asn	Phe	Thr
Ile	Asn 4190	Arg	Ser	Val	ГÀа	Val 4195	Arg	Ile	Ile	Asn	Gly 4200	Thr	Glu	Ile
Val	Thr 4205	Ile	Pro	Gly	Asp	Ile 4210	Lys	Thr	Arg	Val	Tyr 4215	Phe	Glu	Gly
Asp	Ile 4220	Ile	Val	Glu	Ile	Val 4225	Lys	Glu	Ser	Leu	Arg 4230	Phe	ràa	Ile
Pro	Ser 4235	Gly	Gly	Thr	Leu	Val 4240	Ile	Asp	Glu	Arg	Gly 4245	Arg	ГÀа	Aap
Pro	Trp 4250	Leu	Leu	Ala	Arg	Ile 4255	Asn	Ser	Thr	Ile	Glu 4260	Asn	Ile	Ser
ГÀз	Thr 4265	Ser	Arg	Ile	Phe	Glu 4270	Glu	Asn	Gly	ГЛа	Lys 4275	Val	His	Glu
Ile	Arg 4280	Tyr	Arg	Ile	Ser	Ile 4285	Ser	Arg	Gly	Tyr	Ala 4290	Ile	Leu	Val
Val	Pro 4295	Leu	Glu	Gly	Met	Lys 4300	Val	Ser	Ser	Ile	Arg 4305	Ile	Ile	Lys
Asn	Gly 4310	Thr	Val	Thr	Arg	Asp 4315	Glu	ГÀа	His	Gly	Asn 4320	Tyr	Tyr	Lys
Leu	Ser 4325	Lys	Gly	Tyr	Leu	Phe 4330	Ile	Phe	Leu	Ser	Glu 4335	Asp	Pro	Ile
Val	Glu 4340	Val	Thr	Leu	Ser	Lys 4345	Ile	Glu	Lys	Lys	Asp 4350	Ile	Phe	Arg
Val	Leu 4355	Tyr	Tyr	Ala	Gly	Ile 4360	Ile	Trp	Glu	Arg	Asn 4365	Tyr	Leu	Arg
Leu	Lys 4370	Glu	Glu	Phe	Ile	Met 4375	Lys	Met	Ser	Asn	Glu 4380	Thr	Ser	Gln

Glu Ala Ile Arg Leu His Glu Glu Ala Glu Lys Tyr Leu Lys

Gly Arg Glu Tyr Tyr Pro Arg 4405

Trp Tyr Ala Val Tyr Met Arg 4420

Lys Ala Tyr Leu Tyr 4415

Ala Leu Glu Leu Leu Ser Ile Arg 4435

Ser 4430

The invention claimed is:

- 1. A polypeptide comprising a region corresponding to the beta strand A region of SEQ ID NO:1, a region corresponding to the AB loop region of SEQ ID NO:1, a region corresponding to the EF loop region of SEQ ID NO:1, and a region corresponding to the beta strand G region of SEQ 20 ID NO:1, wherein the region corresponding to the beta strand A region of SEQ ID NO:1 comprises amino acids 1-12 of SEQ ID NO:1 with P1S, P2S, and P3S substitutions and optionally a K4V substitution, the region corresponding to the AB loop region of SEQ ID NO:1 comprises amino acids 13-16 of SEQ ID NO:1 with a substitution of N14P; the region corresponding to the EF loop region of SEQ ID NO:1 comprises amino acids 54-60 of SEQ ID NO:1 with a substitution of D58P; and wherein the region corresponding to the beta strand G region of SEQ ID NO:1 comprises amino acids 81-84 of SEQ ID NO:1 with an insertion of the amino acids P5S after amino acid 84.
- 2. The polypeptide of claim 1, wherein the polypeptide comprises a region corresponding to the beta strand C region of SEQ ID NO:1, which comprises amino acids 28-35 of SEQ ID NO:1, a region corresponding to the CD loop region of SEQ ID NO:1, which comprises amino acids 36-37 of SEQ ID NO:1, a region corresponding to the beta strand D region of SEQ ID NO:1, which comprises amino acids 38-46 of SEQ ID NO:1, and a region corresponding to the FG loop region of SEQ ID NO:1, which comprises amino acids 71-80 of SEQ ID NO:1, wherein the regions corresponding to the

- 15 beta strand C region, CD loop region, beta strand D region, and/or FG loop region of SEQ ID NO:1 comprises one or more amino acid substitutions or insertions relative to the beta strand C region, CD loop region, beta strand D region, and FG loop regions of SEQ ID NO:1.
 - 3. The polypeptide of claim 1, wherein the polypeptide comprises a region corresponding to the BC loop region of SEQ ID NO:1, which comprises amino acids 22-27 of SEQ ID NO:1, a region corresponding to the DE loop region of SEQ ID NO:1, which comprises amino acids 47-49 of SEQ ID NO:1, and a region corresponding to the FG loop region of SEQ ID NO:1, which comprises amino acids 71-80 of SEQ ID NO:1; wherein the BC, DE, and/or FE loop regions comprises one or more amino acid substitutions or insertions relative to the BC, DE, and FE loop regions of SEQ ID NO:1.
 - 4. The polypeptide of claim 1, wherein the polypeptide comprises a substitution at the amino acid position corresponding to amino acid 28 of SEQ ID NO:1.
- 5. The polypeptide of claim 4, wherein the substitution corresponding to amino acid position 28 of SEQ ID NO:1 is with a tyrosine.
 - 6. The polypeptide of claim 1, wherein the polypeptide is recombinant.
- 7. The polypeptide of claim 1, wherein the polypeptide is synthetic.
 - 8. A kit comprising the polypeptide of claim 1.

* * * * *