
1111111111111111 IIIIII IIIII 111111111111111 111111111111111 IIIII 1111111111 1111111111 11111111
US 20190332518Al

c19) United States
c12) Patent Application Publication

Lukman et al.
c10) Pub. No.: US 2019/0332518 Al
(43) Pub. Date: Oct. 31, 2019

(54) MODEL CHECKER FOR FINDING
DISTRIBUTED CONCURRENCY BUGS

(71) Applicants:Futurewei Technologies, Inc., Plano,
TX (US); University of Chicago,
Chicago, IL (US)

(72) Inventors: Jeffrey Lukman, Chicago, IL (US);
Huan Ke, Chicago, IL (US); Haryadi
Gunawi, Chicago, IL (US); Feng Ye,
Mississauga (CA); Chen Tian, Union
City, CA (US); Shen Chi Chen, San
Jose, CA (US)

(21) Appl. No.: 15/962,873

(22) Filed:

(51) Int. Cl.

Apr. 25, 2018

Publication Classification

G06F 11136 (2006.01)

100

" 104 106

node A node B
102

(52) U.S. Cl.
CPC G06F 1113632 (2013.01); G06F 1113692

(2013.01); G06F 1113688 (2013.01)

(57) ABSTRACT

Described herein are systems and methods for distributed
concurrency (DC) bug detection. The method includes iden­
tifying a plurality of nodes in a distributed computing
cluster; identifying a plurality of messages to be transmitted
during execution of an application by the distributed com­
puting cluster; determining a set of orderings of the plurality
of messages for DC bug detection, the set of orderings
determined based upon the plurality of nodes and the
plurality of messages; removing a subset of the orderings
from the set of orderings based upon one or more of a state
symmetry algorithm, a disjoint-update independence algo­
rithm, or a zero-crash-impact reordering algorithm; and
performing DC bug detection testing using the set of order­
ings after the subset of the orderings is removed from the set
of orderings.

Model checking
server

110

Patent Application Publication Oct. 31, 2019 Sheet 1 of 4

100

"' 104 106

node A node B
102

FIG.1

200

"' 202 204 202

Af Bf A B A B Af
0 0 0 0

bl 0 1 1 0 al

a2 2 1 1 2

b2 2 2 2 2 a2

al 2 2 2 2

US 2019/0332518 Al

Model checking
server

110

204

Bf

b2

bl

"-----v---/ "----..v,,_--/ "-----v---/
210 230 220

FIG. 2

Patent Application Publication Oct. 31, 2019 Sheet 2 of 4 US 2019/0332518 Al

300

"' 310 320

A/ Bf

400

"' 410 420

a2

func msgVote (int vote){
if (node.vote< vote)

{

al node.vote= vote;
}

}

func msglnsertData
(String key, String value)
{

a2

value;

FIG. 3

Single Flips:
(1) al a2 bl b2 b3 b4
(2) al a2 bl b2 b4 b3
(3) al a2 bl b4 b2 b3

430

FIG. 4

node.data [key] =

}

Parallel Flips:
(1) al al bl b2 b3 b4
(2) al al bl b2 b4 b3
(3) a2 al bl b4 b2 b3

440

330

f

340

f

Patent Application Publication Oct. 31, 2019 Sheet 3 of 4 US 2019/0332518 Al

500

"' 510

identifying a plurality of nodes in a distributed computing cluster f

5 20
identifying a plurality of messages to be transmitted during execution of f

an application by the distributed computing cluster;

,,
5 30

determining a set of orderings of the plurality of messages for DC bug f detection, the set of orderings determined based upon the plurality of

nodes and the plurality of messages;

1 ,

removing a subset of the orderings from the set of orderings based upon
5

f
one or more of a state symmetry algorithm, a disjoint-update

40

independence algorithm, or a zero-crash-impact reordering algorithm;

1 •

5 50
performing DC bug detection testing using the set of orderings after the If

subset of orderings is removed from the set of orderings.

FIG. 5

Patent Application Publication

600

Ingress
Ports

610

\

620

Oct. 31, 2019 Sheet 4 of 4

N et:v?ork Device

630

'"""'"'""""'"" J "'"'"'"'"""'"·'
Processor 640

660

FIG. 6

US 2019/0332518 Al

Egress
Ports

650

------- l

US 2019/0332518 Al

MODEL CHECKER FOR FINDING
DISTRIBUTED CONCURRENCY BUGS

TECHNICAL FIELD

[0001] The disclosure is related to the technical field of
distributed computing, in particular detection of distributed
concurrency bugs in a distributed computing system.

BACKGROUND

[0002] Cloud computing systems such as distributed com­
puting frameworks, storage systems, lock services, and
cluster managers are the backbone engines of many software
based applications. Cloud computing systems typically
include many nodes physically distributed and connected via
a network, e.g., the Internet. The nodes store, manage, and
process data. Groups of nodes are often referred to as
clusters. The complexities and intricacies of the cloud com­
puting systems make them difficult to manage. One issue is
the problem of distributed concurrency (DC) bugs which are
caused by concurrent distributed events occurring in a
nondeterministic order. DC bugs can cause harmful conse­
quences in cloud computing systems including system
crashes, failed jobs, node/cluster unavailability, data loss,
and data inconsistency. For example, a cloud computing
system is configured to transmit messages A, B, and C to or
from one of nodes 1, 2, and 3. The messages are transmitted
in response to completion of a task or operation at the node
that transmits the message. When node 2 receives message
A, node 3 receives message B, and then node 2 receives
message C from node 3, the system functions as expected.
When the ordering of the messages is changed, e.g., node 3
receives message B and then transmits message C to node 2
prior to node 2 receiving message A from node 1, a failure
will happen at node 2. A DC bug has occurred by changing
the order of the messages received at node 2.

SUMMARY

[0003] In an embodiment, the disclosure includes a
method for distributed concurrency (DC) bug detection. The
method includes identifying, by a computing device, a
plurality of nodes in a distributed computing cluster; iden­
tifying, by the computing device, a plurality of messages to
be transmitted during execution of an application by the
distributed computing cluster; determining, by the comput­
ing device, a set of orderings of the plurality of messages for
DC bug detection, the set of orderings determined based
upon the plurality of nodes and the plurality of messages;
removing, by the computing device, a subset of the order­
ings from the set of orderings based upon one or more of a
state symmetry algorithm, a disjoint-update independence
algorithm, or a zero-crash-impact reordering algorithm; and
performing, by the computing device, DC bug detection
testing using the set of orderings after the subset of the
orderings is removed from the set of orderings.
[0004] Optionally, in any of the preceding aspects, remov­
ing the subset of the orders from the set of orderings based
upon the state symmetry algorithm comprises includes com­
paring a first state transition of a first node of a first ordering
of the set of orderings with a second state transition of a
second node of a second ordering of the set of orderings; and
adding the second ordering to the subset of the orderings
when the first state transition and the second state transition
are symmetrical.

1
Oct. 31, 2019

[0005] Optionally, in any of the preceding aspects, remov­
ing the subset of the orders from the set of orderings based
upon the disjoint-update independence algorithm includes
comparing a first variable in a first message of a first
ordering of the set of orderings with a second variable in a
second message of the first ordering of the set of orderings;
and adding a second ordering to the subset of the orderings
when the first variable and the second variable are different
and the second ordering comprises the first message and the
second message.

[0006] Optionally, in any of the preceding aspects, the
method further includes determining, prior to performing the
DC bug detection, one or more parallel flip orderings, each
of the parallel flip orderings comprising a first plurality of
messages for a first node and a second plurality of messages
for a second node, wherein the first plurality of messages are
independent of the second plurality of messages, and
wherein the first plurality of messages and the second
plurality of messages are reordered in each of the parallel
flip orderings; and prioritizing the parallel flip orderings
when performing the DC bug detection.

[0007] Optionally, in any of the preceding aspects, the
zero-crash-impact reordering algorithm includes a crash­
after-discard reduction or a consecutive-crash reduction.

[0008] Optionally, in any of the preceding aspects, remov­
ing the subset of the orders from the set of orderings based
upon crash-after-discard reduction includes determining a
first message of a first ordering will be discarded by a node;
determining a second message of the first ordering causes a
crash of the node; and adding a second ordering comprising
the first message and the second message to the subset of the
orderings.

[0009] Optionally, in any of the preceding aspects, remov­
ing the subset of the orders from the set of orderings based
upon consecutive-crash reduction includes determining a
first message of a first ordering causes a crash of a node;
determining a second message of the first ordering causes
another crash of the node; and adding a second ordering
comprising the first message and the second message to the
subset of the orderings.

[0010] Optionally, in any of the preceding aspects, the set
of orderings includes unique orderings for each permutation
of the plurality of messages received at each of the plurality
of nodes.

[0011] Optionally, in any of the preceding aspects, the
method further includes determining the subset of the order­
ings based upon each of the state symmetry algorithm, the
disjoint-update independence algorithm, the zero-crash-im­
pact reordering algorithm, and a parallel flips algorithm.

[0012] In an embodiment, the disclosure includes a device.
The device includes a memory storage comprising instruc­
tions; and a processor in communication with the memory.
The processor executes the instructions to identify a plural­
ity of nodes in a distributed computing cluster; identify a
plurality of messages to be transmitted during execution of
an application by the distributed computing cluster; deter­
mine a set of orderings of the plurality of messages for
distributed concurrency (DC) bug detection, the set of
orderings determined based upon the plurality of nodes and
the plurality of messages; remove a subset of the orderings
from the set of orderings based upon one or more of a state
symmetry algorithm, a disjoint-update independence algo­
rithm, or a zero-crash-impact reordering algorithm; and

US 2019/0332518 Al

perform DC bug detection testing using the set of orderings
after the subset of the orderings is removed from the set of
order.

[0013] Optionally, in any of the preceding aspects, the
instructions to remove the subset of the orders from the set
of orderings based upon the state symmetry algorithm
include instructions to compare a first state transition of a
first node of a first ordering of the set of orderings with a
second state transition of a second node of a second ordering
of the set of orderings; and add the second ordering to the
subset of the orderings when the first state transition and the
second state transition are symmetrical.

[0014] Optionally, in any of the preceding aspects, the
instructions to remove the subset of the orders from the set
of orderings based upon the disjoint-update independence
algorithm include instructions to compare a first variable in
a first message of a first ordering of the set of orderings with
a second variable in a second message of the first ordering
of the set of orderings, and add a second ordering to the
subset of the orderings when the first variable and the second
variable are different and the second ordering comprises the
first message and the second message.

[0015] Optionally, in any of the preceding aspects, the
processor further executes the instructions to determine,
prior to performing the DC bug detection, one or more
parallel flip orderings, each of the parallel flip orderings
comprising a first plurality of messages for a first node and
a second plurality of messages for a second node, wherein
the first plurality of messages are independent of the second
plurality of messages, and wherein the first plurality of
messages and the second plurality of messages are reordered
in each of the parallel flip orderings, and prioritize the
parallel flip orderings when performing the De bug detec­
tion.
[0016] Optionally, in any of the preceding aspects, the
zero-crash-impact reordering algorithm includes a crash­
after-discard reduction or a consecutive-crash reduction.

[0017] Optionally, in any of the preceding aspects, instruc­
tions to remove the subset of the orders from the set of
orderings based upon the crash-after-discard reduction
include instructions to determine a first message of a first
ordering will be discarded by a node, determine a second
message of the first ordering causes a crash of the node, and
add a second ordering comprising the first message and the
second message to the subset of the orderings.

[0018] Optionally, in any of the preceding aspects, instruc­
tions to remove the subset of the orders from the set of
orderings based upon the consecutive-crash reduction
includes instructions to determine a first message of a first
ordering causes a crash of a node, determine a second
message of the first ordering causes another crash of the
node, and add a second ordering comprising the first mes­
sage and the second message to the subset of the orderings.

[0019] Optionally, in any of the preceding aspects, the set
of orderings includes unique orderings for each permutation
of the plurality of messages received at each of the plurality
of nodes.

[0020] Optionally, in any of the preceding aspects, the
processor further executes the instructions to determine the
subset of the orderings based upon each of the state sym­
metry algorithm, the disjoint-update independence algo­
rithm, the zero-crash-impact reordering algorithm, and a
parallel flips algorithm.

2
Oct. 31, 2019

[0021] In an embodiment, the disclosure includes a non­
transitory computer readable medium storing computer
instructions, that when executed by a processor, causes the
processor to perform identify a plurality of nodes in a
distributed computing cluster; identify a plurality of mes­
sages to be transmitted during execution of an application by
the distributed computing cluster; determine a set of order­
ings of the plurality of messages for distributed concurrency
(DC) bug detection; remove a subset of the orderings from
the set of orderings based upon one or more of a state
symmetry algorithm, a disjoint-update independence algo­
rithm, or a zero-crash-impact reordering algorithm; and
perform DC bug detection testing using the set of orderings
after the subset of the orderings is removed from the set of
orderings.
[0022] Optionally, in any of the preceding aspects, the the
instructions that cause the processor to remove the subset of
the orders from the set of orderings based upon the state
symmetry algorithm include instructions that cause the
processor to compare a first state transition of a first node of
a first ordering of the set of orderings with a second state
transition of a second node of a second ordering of the set
of orderings, and add the second ordering to the subset of the
orderings when the first state transition and the second state
transition are symmetrical.
[0023] Optionally, in any of the preceding aspects, the the
instructions that cause the processor to remove the subset of
the orders from the set of orderings based upon the disjoint­
update independence algorithm include instructions that
cause the processor to compare a first variable in a first
message of a first ordering of the set of orderings with a
second variable in a second message of the first ordering of
the set of orderings, and add a second ordering to the subset
of the orderings when the first variable and the second
variable are different and the second ordering comprises the
first message and the second message.
[0024] Optionally, in any of the preceding aspects, the
instructions further cause the processor to determine, prior to
the DC bug detection, one or more parallel flip orderings,
each of the parallel flip orderings comprising a first plurality
of messages for a first node and a second plurality of
messages for a second node, wherein the first plurality of
messages are independent of the second plurality of mes­
sages, and wherein the first plurality of messages and the
second plurality of messages are reordered in each of the
parallel flip orderings, and prioritize the parallel flip order­
ings when performing the DC bug detection.
[0025] Optionally, in any of the preceding aspects, the
zero-crash-impact reordering algorithm is a crash-after-dis­
card reduction or a consecutive-crash reduction.
[0026] Optionally, in any of the preceding aspects, the
instructions that cause the processor to remove the subset of
the orders from the set of orderings based upon the crash­
after-discard reduction include instructions that cause the
processor to determine a first message of a first ordering will
be discarded by a node, determine a second message of the
first ordering causes a crash of the node, and add a second
ordering comprising the first message and the second mes­
sage to the subset of the orderings.
[0027] Optionally, in any of the preceding aspects, the
instructions that cause the processor to remove the subset of
the orders from the set of orderings based upon the con­
secutive-crash reduction include instructions that cause the
processor to determine a first message of a first ordering

US 2019/0332518 Al

causes a crash of a node, determine a second message of the
first ordering causes another crash of the node, and add a
second ordering comprising the first message and the second
message to the subset of the orderings.
[0028] Optionally, in any of the preceding aspects, the set
of orderings includes unique orderings for each permutation
of the plurality of messages received at each of the plurality
of nodes.
[0029] Optionally, in any of the preceding aspects, the
instructions further cause the processor to determine the
subset of the orderings based upon each of the state sym­
metry algorithm, the disjoint-update independence algo­
rithm, the zero-crash-impact reordering algorithm, and a
parallel flips algorithm.
[0030] For the purpose of clarity, any one of the foregoing
embodiments may be combined with any one or more of the
other foregoing embodiments to create a new embodiment
within the scope of the present disclosure.
[0031] These and other features will be more clearly
understood from the following detailed description taken in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] For a more complete understanding of this disclo­
sure, reference is now made to the following brief descrip­
tion, taken in connection with the accompanying drawings
and detailed description, wherein like reference numerals
represent like parts.
[0033] FIG. 1 is a diagram of an embodiment of DC bug
detection architecture.
[0034] FIG. 2 is a diagram of an embodiment of permu­
tations used in state symmetry reductions.
[0035] FIG. 3 is a diagram of an embodiment of disjoint­
update independence.
[0036] FIG. 4 is a diagram of an embodiment of parallel
flips testing.
[0037] FIG. 5 is a diagram of an embodiment of a method
for DC bug detection.
[0038] FIG. 6 is a schematic diagram of a network device
according to an embodiment of the disclosure.

DETAILED DESCRIPTION

[0039] It should be understood at the outset that, although
an illustrative implementation of one or more embodiments
are provided below, the disclosed systems and/or methods
may be implemented using any number of techniques,
whether currently known or in existence. The disclosure
should in no way be limited to the illustrative implementa­
tions, drawings, and techniques illustrated below, including
the exemplary designs and implementations illustrated and
described herein, but may be modified within the scope of
the appended claims along with their full scope of equiva­
lents.
[0040] Cloud computing involves performing operations
across a network of nodes. The operations may be performed
responsive to execution of a software application (or "appli­
cation"). As used herein, an application includes instructions
or operations that will be executed in a cloud based system.
Cloud based systems include nodes physically distributed
and connected via a network, e.g., the Internet. The nodes of
a cloud based system can store, manage, and process data.
The data storage, management, and processing capabilities
of the nodes of the cloud based system can be shared to

3
Oct. 31, 2019

perform computing tasks. Instructions or operations of an
application executed by a cloud based system may distrib­
uted across one or more of the nodes. Cloud based systems
include distributed computing frameworks, storage systems,
lock services, and cluster managers. When an operation is
executed, the state of the node that executes the operation
may change. A change in state of the node may occur based
upon the operation performed or the current state of the
node. In some cases, an operation may not cause the state of
the node to change. Other nodes may or may not be aware
of the current state of the node that executed the operation.
The node that executed the operations may send a message
comprising a command or data to a second node. Messages
include instructions or operations sent from one node of the
cloud based system to another node of the cloud based
system. For example, messages can include instructions to
update a variable, perform a calculation, or display a vari­
able. Sometimes the second node may crash or experience
other performance issues if the message from the node that
executed the operation is incompatible with the current state
of the second node. As used herein distributed concurrency
(DC) bugs may refer to an error resulting from the order and
timing transmission and receipt of messages, between two or
more nodes in a cloud computing system.

[0041] Embodiments of the present disclosure are directed
to methods, systems, and apparatuses for detecting DC bugs
in a cloud computing system. In an embodiment, a distrib­
uted system model checker may implement algorithms for
improving the ability to detect DC bugs. In some embodi­
ments, the algorithms may reduce the search space of testing
the permutations of message ordering in a cloud based
system. A message ordering includes a time ordered
sequence of messages arriving at one or more nodes during
execution of an application. Permutations of message order­
ings includes several message orderings with a varied time
sequence of arrival of the messages in each permutation. In
some embodiments, the algorithms may prioritize certain
permutations to decrease the time required for testing. The
algorithms may include a state symmetry algorithm, a dis­
joint-update independence algorithm, a parallel flips algo­
rithm, and/or a zero-crash-impact reordering algorithm, each
of which are described in greater detail herein.

[0042] FIG. 1 is a diagram of an embodiment of DC bug
detection architecture 100. The DC bug detection architec­
ture 100 includes a model checking server 110, node A 104,
and node B 106. In other embodiments, more than two nodes
may be present in the architecture. The number of nodes
depends upon the characteristics of the cloud based system
where the application under test is executed. NodeA104 and
node B 106 are be grouped as a cluster 102. By way of
illustration, cluster 102 executes an application under test
wherein the application can send several messages: al, a2,
bl, and b2. While four messages are depicted in this
illustration, an application under test may transmit and
receive many more messages depending upon the function­
ality of the application. The number of permutations of
messages may be equal to the number of messages factorial.
In this illustration, the number of permutations of messages
is four factorial or twenty-four possible permutations. The
model checking server 110 may enable the messages in each
of the possible permutations and monitor the results of the
various permutations of messages. Enabling a message may
include the model checking server 110 sending a message or
the model checking server 110 causing a node to send a

US 2019/0332518 Al

message. The model checking server 110 tracks permuta­
tions that have been executed and permutations that are
to-be executed. A permutation is considered executed after
all of the messages in the permutation have been sent, i.e.,
enabled, according to the message ordering in the permuta­
tion. For permutations that have been executed, the model
checking server 110 tracks whether or not there was an error
in relation to that particular permutation of messages. While
the model checking server 110 is depicted as communicating
with node B 106, model checking server 110 can commu­
nicate with all or some of the nodes under test in a distrib­
uted computing environment. In some embodiments, algo­
rithms are used to determine that certain permutations need
not to be tested. Those algorithms will be discussed in detail
below.

[0043] In some embodiments, a state symmetry algorithm
can be executed to reduce the number of permutations that
need to be tested. The state symmetry algorithm can identify
pairs of permutations that result in symmetrical state tran­
sitions. For pairs of permutations with symmetrical state
transitions, only one of the permutations may need to be
tested. FIG. 2 is a diagram of an embodiment of a permu­
tations 200 used in state symmetry reductions. By way of
illustration, FIG. 2 represents the first phases of a leader
election implementation with two concurrent updates from
node A 202 and node B 204. While the state symmetry
algorithm can be used with other distributed computing
protocols, leader election is used here as an example to
illustrate the state symmetry algorithm. Leader election is a
process of designating a node or process as the organizer of
a task distributed among multiple nodes, in this case, node
A 202 and node B 204. Node A 202 broadcasts 'prepare'
messages al and bl while node B 204 broadcasts 'prepare'
messages a2 and b2. The messages arrive at their destina­
tions at different times based on a number of factors, e.g.,
network configuration and/or network loading. Message
flow 210 represents a first permutation of message arrivals
and message flow 220 represents a second permutation of
message arrivals. Table 230 depicts the state of each node
after a message is received, e.g., state transition of the nodes
when messages are received. The left column of table 230
corresponds to message flow 210 and the right column of
table 230 corresponds to message flow 220. Message flow
210 receives messages at their respective destinations in the
following order: bl, a2, b2, al. Message flow 220 receives
messages at their respective destinations in the following
order: al, b2, a2, bl. The messages may include a ballot
number in this example. In the context of leader election, a
ballot number is an identifier for a round of a leader election.
Outside the context of leader election, a ballot number can
be an identifier for a particular process to be distributed in
a consensus. Messages with a '1 ', e.g., al, bl, can represent
a ballot number of 1. Messages with a '2' e.g., a2, b2, can
represent a ballot number of 2. Each row of table 230
represents a particular time and the states of the nodes with
respect to receipt messages al, a2, bl, and b2 at that time.
The first row represents an initial state where both nodes are
all zeroes. At the second row, message flow 210 receives
message bl at node B 204 and the state on the left column
of table 230 is set to zero for node A 202 and one for node
B 204. Also at the second row, message flow 220 receives
message al at node A 202 and the state on the right column
of table 230 is set to one for node A 202 and zero for node
B 204. At the completion of message flow 210 and message

4
Oct. 31, 2019

flow 220, the state changes tracked in table 230 of node A
202 with respect to message flow 210 are the same as the
state changes tracked in table 230 of node B 204 for message
flow 220. Likewise, the state changes tracked in table 230 of
node B 204 with respect to message flow 210 are the same
as the state changes of node A 202 with respect to message
flow 220. Thus, the results are considered to have symmetry
and one of the permutations can be omitted from testing in
a leader election process. By identifying which permutations
result in state symmetry, the identified permutations can be
eliminated from testing and the test time will be reduced
thusly.

[0044] In further embodiments, a disjoint-update indepen­
dence algorithm can be utilized to reduce the number of
permutations that need to be tested. The disjoint-update
independence algorithm detects permutations with messages
that update different variables. If the messages update dif­
ferent variables, then testing both permutations may be
unnecessary. FIG. 3 is a diagram of an embodiment of
disjoint-update independence 300. Node B 320 concurrently
transmits messages al and a2 to node A 310. Message
content 330 of message al can include a read and write of
the 'vote' variable, for example. Message content 340 of
message a2 can include a write of the 'key' variable, for
example. The variable updated by message al is different
than the variable updated by message a2. When messages
update unrelated variables, a disjoint-update can occur.
When different variables are updated by two messages, the
order of arrival of the messages at the node may not be
relevant to the final state of the node. For example, the value
of 'vote' at node A 310 will have the same final value
whether message al is received first or message a2 is
received first. Likewise, the value of variable 'key' at node
A 310 will have the same final value whether message al is
received first or message a2 is received first. In this case,
message ordering al, a2 and a2, al result in a same final state
of node A 310, thus one of the orderings may be discarded.
[0045] Disjoint-update independence 300 can be further
described in light of the following. For messages ni and nj
sent to a node N, a static analysis can be used to build live
variable sets: readSet, updateSet and persistSet. The static
analysis includes identifying variables in the messages of
two or more permutations. The readSet includes to-be-read
variables in the messages, i.e., variables that will be read
when a message is transmitted. The updateSet includes
to-be-updated variables in the messages, i.e., variables that
will be read when a message is transmitted. The persistSet
includes to-be-persisted variables, i.e., variables that will be
unchanged when a message is transmitted. The live variable
sets reflect changes in ni's and nj's read, update, and send
sets as node N transitions to a different state after receiving
message ni or nj. Given such information, ni and nj are
marked disjoint-update independent if ni's readSet, update­
Set, and persistSet do not overlap with nj's updateSet, and
vice versa. I.e., nj's udateSet does not reflect an update to
any of ni's live variable sets, and vice versa. Thus, the
ordering of message ni and nj may have the same result as
reordering nj and ni, and one of the orderings may be
skipped during testing.
[0046] In further embodiments, a parallel flips algorithm
can be used to speed up testing relative to existing model
checking systems. The parallel flips algorithm includes
identifying independent messages in a permutation involv­
ing at least two nodes. The independent messages may be

US 2019/0332518 Al

flipped, e.g., reordered, in parallel for the two or more nodes
in a single permutation. FIG. 4 is a diagram of an embodi­
ment of parallel flips testing example test 400. In this
example, nodeA410 receives messages al and a2, and node
B 420 receives messages bl, b2, b3, and b4. Single flip
orderings 430 represent a portion of the permutations tested
in single flip testing of node A 410 and node B 420 with
respect to messages al, a2, bl, b2, b3, and b4. Parallel flip
orderings 440 represent a portion of the permutations tested
in parallel flip testing of node A 410 and node B 420 with
respect to messages al, a2, bl, b2, b3, and b4. As shown,
only one message, b4, is flipped (e.g., reordered) from
permutation (1) to permutation (2) in single flips orderings
430. For parallel flips, two messages, b4 and a2, are flipped
(e.g., reordered) from permutation (1) to permutation (2) in
parallel flips orderings 440. Parallel flips algorithm can
speed up testing by flipping pairs of messages that are
independent of each other. For example, message a2 arrives
at node A 410 and is independent of message b4 which
arrives at node B 420. Therefore, the messages can be
flipped in parallel rather than one at a time, thereby speeding
up the testing of the nodes. Parallel flips orderings can be
prioritized over single flips orderings in order to more
quickly test the messages. For example, a parallel flip
ordering tests two messages arrival at two nodes simulta­
neously. The same testing using single flips may require at
least two testing cycles. In some embodiments, orderings
with a single flip that is tested using a parallel flip may be
skipped during testing.

[0047] A zero-crash-impact reduction algorithm may be
executed to reduce the number of permutations that need to
be tested. The zero-crash impact reduction algorithm iden­
tifies permutations that result in a crash and removes per­
mutations that include the crash from further testing. Zero­
crash-impact reduction includes two cases where certain
reorderings that cause a node to crash may be discarded from
testing. The two cases may include crash-after-discard
reduction and consecutive-crash reduction. Crash-after-dis­
card reduction may include cases where 'mx' is a reordering.
Message 'm' may be discarded after received by the node,
e.g., message 'm' may not change the state of the node where
it is received before being discarded. Message 'x' may be a
message that causes a crash on the same node. Reordering
is unnecessary as 'm' does not create any state change and
'x' always causes a crash. Hence the reordering 'mx' may be
removed. Consecutive-crash reduction may include cases
where 'xy' is a reordering, where message 'x' and message
'y' are both crashes. In this case reordering is unnecessary as
two consecutive crashes are equivalent to one in terms of
system state. Hence reordering 'xy' may be removed from
testing.

[0048] FIG. 5 is a diagram of an embodiment of a method
500 for DC bug detection. The method 500 begins at block
510 where a model checking server identifies a plurality of
nodes in a distributed computing cluster. The plurality of
nodes can be identified using one or more of a number of
network discovery techniques. For example, a listing of the
nodes can be programmed into the model checking server
and/or the model checking server can interact with a net­
working device to learn the topology of the distributed
computing cluster.

[0049] At block 520, the model checking server identifies
a plurality of messages that result from execution of an
application by the distributed computing cluster. For

5
Oct. 31, 2019

example, an application comprises a number of operations
that can be performed at one or more of the nodes in the
distributed computing cluster. The operations can provide
data to other nodes in order to perform a subsequent opera­
tion of the application. The data can be provided in messages
that are transmitted between nodes.
[0050] At block 530, the model checking server deter­
mines a set of orderings of the plurality of messages for use
in DC bug detection. An ordering may be an arrival
sequence of the messages of the application at one or more
nodes, i.e., a permutation of messages. Each ordering can be
a unique sequence of message arrival at one or more of the
nodes of the distributed computing cluster. The set of
orderings can include all possible sequences of message
arrival for each of the plurality of nodes in the distributed
computing cluster. By testing all sequences, DC bugs can be
detected for sequences that cause performance issues in the
distributed computing cluster, e.g., degraded performance
and/or node crashes.
[0051] At block 540, the model checking server removes
a subset of the orderings from the set of orderings based
upon one or more of a state symmetry algorithm, a disjoint­
update independence algorithm, or a zero-crash-impact reor­
dering algorithm. The model checking server executes one
or more of the algorithms in order to reduce the number of
orderings that need to be tested for DC bug detection.
Removing some of the orderings from the set of orderings
reduces the testing time required for DC bug detection. As
described above, the algorithms can determine orderings
that are redundant and don't need to be tested. Optionally at
block 540, the model checking server may execute a parallel
flips algorithm to prioritize certain orderings during testing.
By prioritizing parallel flip orderings, testing time may be
reduced.
[0052] At block 550, the model checking server performs
DC bug detection testing using the set of orderings after the
subset of the orderings is removed from the set of orderings.
When the set of orderings has been optimized by removing
the orderings identified by the algorithms, the testing can be
performed with increased efficiency.
[0053] FIG. 6 is a schematic diagram of a network device
600 (e.g., a model checking server) according to an embodi­
ment of the disclosure. The network device 600 is suitable
for implementing the disclosed embodiments as described
herein. In an embodiment, the network device 600 is a model
checking server. The network device 600 comprises ingress
ports 610 and receiver units (Rx) 620 for receiving data; a
processor, logic unit, or central processing unit (CPU) 630
to process the data; transmitter units (Tx) 640 and egress
ports 650 for transmitting the data; and a memory 660 for
storing the data. The network device 600 may also comprise
optical-to-electrical (OE) components and electrical-to-op­
tical (EO) components coupled to the ingress ports 610, the
receiver units 620, the transmitter units 640, and the egress
ports 650 for egress or ingress of optical or electrical signals.
[0054] The processor 630 can be implemented by hard­
ware and/or software. The processor 630 can be imple­
mented as one or more CPU chips, cores (e.g., as a multi­
core processor), field-programmable gate arrays (FPGAs),
application specific integrated circuits (ASICs), and digital
signal processors (DSPs). The processor 630 is in commu­
nication with the ingress ports 610, receiver units 620,
transmitter units 640, egress ports 650, and memory 660.
The processor 630 comprises a model checking module 670.

US 2019/0332518 Al

The model checking module 670 implements the disclosed
embodiments described above. For instance, the model
checking module 670 implements, processes, prepares, or
provides the various algorithms described herein. The inclu­
sion of the model checking module 670 therefore provides
a substantial improvement to the functionality of the net­
work device 600 and effects a transformation of the network
device 600 to a different state. Alternatively, the model
checking module 670 is implemented as instructions stored
in the memory 660 and executed by the processor 630.

[0055] The memory 660 comprises one or more disks,
tape drives, and solid-state drives and can be used as an
over-flow data storage device, to store programs when such
programs are selected for execution, and to store instructions
and data that are read during program execution. The
memory 660 can be volatile and/or non-volatile and can be
read-only memory (ROM), random access memory (RAM),
ternary content-addressable memory (TCAM), and/or static
random-access memory (SRAM).

[0056] A method for distributed concurrency (DC) bug
detection including means for identifying a plurality of
nodes in a distributed computing cluster; identifying a
plurality of messages to be transmitted during execution of
an application by the distributed computing cluster; deter­
mining a set of orderings of the plurality of messages for DC
bug detection, the set of orderings determined based upon
the plurality of nodes and the plurality of messages; remov­
ing a subset of the orderings from the set of orderings based
upon one or more of a state symmetry algorithm, a disjoint­
update independence algorithm, or a zero-crash-impact reor­
dering algorithm; and performing DC bug detection testing
using the set of orderings after the subset of the orderings is
removed from the set of orderings.

[0057] A memory storage means comprising instructions;
and a processor means in communication with the memory
means. The processor means executes the instructions to
identify a plurality of nodes in a distributed computing
cluster; identify a plurality of messages to be transmitted
during execution of an application by the distributed com­
puting cluster; determine a set of orderings of the plurality
of messages for distributed concurrency (DC) bug detection,
the set of orderings determined based upon the plurality of
nodes and the plurality of messages; remove a subset of the
orderings from the set of orderings based upon one or more
of a state symmetry algorithm, a disjoint-update indepen­
dence algorithm, or a zero-crash-impact reordering algo­
rithm; and perform DC bug detection testing using the set of
orderings after the subset of the orderings is removed from
the set of order.

[0058] Anon-transitory computer readable medium means
storing computer instructions, that when executed by a
processor means, causes the processor means to perform
identify a plurality of nodes in a distributed computing
cluster; identify a plurality of messages to be transmitted
during execution of an application by the distributed com­
puting cluster; determine a set of orderings of the plurality
of messages for distributed concurrency (DC) bug detection;
remove a subset of the orderings from the set of orderings
based upon one or more of a state symmetry algorithm, a
disjoint-update independence algorithm, or a zero-crash­
impact reordering algorithm; and perform DC bug detection
testing using the set of orderings after the subset of the
orderings is removed from the set of orderings.

6
Oct. 31, 2019

[0059] While several embodiments have been provided in
the present disclosure, it should be understood that the
disclosed systems and methods might be embodied in many
other specific forms without departing from the spirit or
scope of the present disclosure. The present examples are to
be considered as illustrative and not restrictive, and the
intention is not to be limited to the details given herein. For
example, the various elements or components can be com­
bined or integrated in another system or certain features can
be omitted, or not implemented.
[0060] In addition, techniques, systems, subsystems, and
methods described and illustrated in the various embodi­
ments as discrete or separate can be combined or integrated
with other systems, modules, techniques, or methods with­
out departing from the scope of the present disclosure. Other
items shown or discussed as coupled can be directly coupled
or can be indirectly coupled or communicating through
some interface, device, or intermediate component whether
electrically, mechanically, or otherwise. Other examples of
changes, substitutions, and alterations are ascertainable by
one skilled in the art and could be made without departing
from the spirit and scope disclosed herein.

1. A method for distributed concurrency (DC) bug detec­
tion, the method comprising:

identifying, by a computing device, a plurality of nodes in
a distributed computing cluster;

identifying, by the computing device, a plurality of mes­
sages to be transmitted during execution of an appli­
cation by the distributed computing cluster;

determining, by the computing device, a set of orderings
of the plurality of messages for DC bug detection, the
set of orderings determined based upon the plurality of
nodes and the plurality of messages;

removing, by the computing device, a subset of the
orderings, where each ordering comprises a unique
sequence of message arrival at one or more of the
nodes, from the set of orderings based upon one or
more of a state symmetry algorithm, a disjoint-update
independence algorithm, or a zero-crash-impact reor­
dering algorithm; and

performing, by the computing device, DC bug detection
testing using the set of orderings after the subset of the
orderings is removed from the set of orderings.

2. The method of claim 1, wherein removing the subset of
the orders from the set of orderings based upon the state
symmetry algorithm comprises:

comparing a first state transition of a first node of a first
ordering of the set of orderings with a second state
transition of a second node of a second ordering of the
set of orderings; and

adding the second ordering to the subset of the orderings
when the first state transition and the second state
transition are symmetrical.

3. The method of claim 1, wherein removing the subset of
the orders from the set of orderings based upon the disjoint­
update independence algorithm comprises:

comparing a first variable in a first message of a first
ordering of the set of orderings with a second variable
in a second message of the first ordering of the set of
orderings; and

adding a second ordering to the subset of the orderings
when the first variable and the second variable are
different and the second ordering comprises the first
message and the second message.

US 2019/0332518 Al

4. The method of claim 1, further comprising:
determining, prior to performing the DC bug detection,

one or more parallel flip orderings, each of the parallel
flip orderings comprising a first plurality of messages
for a first node and a second plurality of messages for
a second node, wherein the first plurality of messages
are independent of the second plurality of messages,
and wherein the first plurality of messages and the
second plurality of messages are reordered in each of
the parallel flip orderings; and

prioritizing the parallel flip orderings when performing
the DC bug detection.

5. The method of claim 1, wherein the zero-crash-impact
reordering algorithm is a crash-after-discard reduction or a
consecutive-crash reduction.

6. The method of claim 5, wherein removing the subset of
the orders from the set of orderings based upon crash-after­
discard reduction comprises:

determining a first message of a first ordering will be
discarded by a node;

determining a second message of the first ordering causes
a crash of the node; and

adding a second ordering comprising the first message
and the second message to the subset of the orderings.

7. The method of claim 5, wherein removing the subset of
the orders from the set of orderings based upon consecutive­
crash reduction comprises:

determining a first message of a first ordering causes a
crash of a node;

determining a second message of the first ordering causes
another crash of the node; and

adding a second ordering comprising the first message
and the second message to the subset of the orderings.

8. The method of claim 1, wherein the set of orderings
comprises unique orderings for each permutation of the
plurality of messages received at each of the plurality of
nodes.

9. The method of claim 1, further comprising determining
the subset of the orderings based upon each of the state
symmetry algorithm, the disjoint-update independence algo­
rithm, the zero-crash-impact reordering algorithm, and a
parallel flips algorithm.

10. A device comprising:
a memory storage comprising instructions; and
a processor in communication with the memory, wherein

the processor executes the instructions to:
identify a plurality of nodes in a distributed computing

cluster;
identify a plurality of messages to be transmitted during

execution of an application by the distributed com­
puting cluster;

determine a set of orderings of the plurality of mes­
sages for distributed concurrency (DC) bug detec­
tion, the set of orderings determined based upon the
plurality of nodes and the plurality of messages;

remove a subset of the orderings, where each ordering
comprises a unique sequence of message arrival at
one or more of the nodes, from the set of orderings
based upon one or more of a state symmetry algo­
rithm, a disjoint-update independence algorithm, or a
zero-crash-impact reordering algorithm; and

perform DC bug detection testing using the set of
orderings after the subset of the orderings is removed
from the set of orderings.

7
Oct. 31, 2019

11. The device of claim 10, wherein the instructions to
remove the subset of the orders from the set of orderings
based upon the state symmetry algorithm comprise instruc­
tions to:

compare a first state transition of a first node of a first
ordering of the set of orderings with a second state
transition of a second node of a second ordering of the
set of orderings; and

add the second ordering to the subset of the orderings
when the first state transition and the second state
transition are symmetrical.

12. The device of claim 10, wherein the instructions to
remove the subset of the orders from the set of orderings
based upon the disjoint-update independence algorithm
comprise instructions to:

compare a first variable in a first message of a first
ordering of the set of orderings with a second variable
in a second message of the first ordering of the set of
orderings; and

add a second ordering to the subset of the orderings when
the first variable and the second variable are different
and the second ordering comprises the first message
and the second message.

13. The device of claim 10, wherein the processor further
executes the instructions to:

determine, prior to performing the DC bug detection, one
or more parallel flip orderings, each of the parallel flip
orderings comprising a first plurality of messages for a
first node and a second plurality of messages for a
second node, wherein the first plurality of messages are
independent of the second plurality of messages, and
wherein the first plurality of messages and the second
plurality of messages are reordered in each of the
parallel flip orderings; and

prioritize the parallel flip orderings when performing the
De bug detection.

14. The device of claim 10, wherein the zero-crash-impact
reordering algorithm is a crash-after-discard reduction or a
consecutive-crash reduction.

15. The device of claim 14, wherein instructions to
remove the subset of the orders from the set of orderings
based upon the crash-after-discard reduction comprise
instructions to:

determine a first message of a first ordering will be
discarded by a node;

determine a second message of the first ordering causes a
crash of the node; and

add a second ordering comprising the first message and
the second message to the subset of the orderings.

16. The device of claim 14, wherein instructions to
remove the subset of the orders from the set of orderings
based upon the consecutive-crash reduction comprise
instructions to:

determine a first message of a first ordering causes a crash
of a node;

determine a second message of the first ordering causes
another crash of the node; and

add a second ordering comprising the first message and
the second message to the subset of the orderings.

17. The device of claim 10, wherein the set of orderings
comprises unique orderings for each permutation of the
plurality of messages received at each of the plurality of
nodes.

US 2019/0332518 Al

18. The device of claim 10, wherein the processor is
further configured to determine the subset of the orderings
based upon each of the state symmetry algorithm, the
disjoint-update independence algorithm, the zero-crash-im­
pact reordering algorithm, and a parallel flips algorithm.

19. A non-transitory computer readable medium storing
computer instructions, that when executed by a processor,
causes the processor to perform:

identify a plurality of nodes in a distributed computing
cluster;

identify a plurality of messages to be transmitted during
execution of an application by the distributed comput­
ing cluster;

determine a set of orderings of the plurality of messages
for distributed concurrency (DC) bug detection;

remove a subset of the orderings, where each ordering
comprises a unique sequence of message arrival at one
or more of the nodes, from the set of orderings based
upon one or more of a state symmetry algorithm, a
disjoint-update independence algorithm, or a zero­
crash-impact reordering algorithm; and

perform DC bug detection testing using the set of order­
ings after the subset of the orderings is removed from
the set of orderings.

20. The non-transitory computer readable medium of
claim 19, wherein the instructions that cause the processor
to remove the subset of the orders from the set of orderings
based upon the state symmetry algorithm comprise instruc­
tions that cause the processor to perform:

compare a first state transition of a first node of a first
ordering of the set of orderings with a second state
transition of a second node of a second ordering of the
set of orderings; and

add the second ordering to the subset of the orderings
when the first state transition and the second state
transition are symmetrical.

21. The non-transitory computer readable medium of
claim 19, wherein the instructions that cause the processor
to remove the subset of the orders from the set of orderings
based upon the disjoint-update independence algorithm
comprise instructions that cause the processor to perform:

compare a first variable in a first message of a first
ordering of the set of orderings with a second variable
in a second message of the first ordering of the set of
orderings; and

add a second ordering to the subset of the orderings when
the first variable and the second variable are different
and the second ordering comprises the first message
and the second message.

8
Oct. 31, 2019

22. The non-transitory computer readable medium of
claim 19, wherein the instructions further cause the proces­
sor to perform:

determine, prior to the DC bug detection, one or more
parallel flip orderings, each of the parallel flip orderings
comprising a first plurality of messages for a first node
and a second plurality of messages for a second node,
wherein the first plurality of messages are independent
of the second plurality of messages, and wherein the
first plurality of messages and the second plurality of
messages are reordered in each of the parallel flip
orderings; and

prioritize the parallel flip orderings when performing the
DC bug detection.

23. The non-transitory computer readable medium of
claim 19, wherein the zero-crash-impact reordering algo­
rithm is a crash-after-discard reduction or a consecutive­
crash reduction.

24. The non-transitory computer readable medium of
claim 23, wherein instructions that cause the processor to
remove the subset of the orders from the set of orderings
based upon the crash-after-discard reduction comprise
instructions that cause the processor to perform:

determine a first message of a first ordering will be
discarded by a node;

determine a second message of the first ordering causes a
crash of the node; and

add a second ordering comprising the first message and
the second message to the subset of the orderings.

25. The non-transitory computer readable medium of
claim 23, wherein instructions that cause the processor to
remove the subset of the orders from the set of orderings
based upon the consecutive-crash reduction comprise
instructions that cause the processor to perform:

determine a first message of a first ordering causes a crash
of a node;

determine a second message of the first ordering causes
another crash of the node; and

add a second ordering comprising the first message and
the second message to the subset of the orderings.

26. The non-transitory computer readable medium of
claim 19, wherein the set of orderings comprises unique
orderings for each permutation of the plurality of messages
received at each of the plurality of nodes.

27. The non-transitory computer readable medium of
claim 19, wherein the instructions further cause the proces­
sor to determine the subset of the orderings based upon each
of the state symmetry algorithm, the disjoint-update inde­
pendence algorithm, the zero-crash-impact reordering algo­
rithm, and a parallel flips algorithm.

* * * * *

