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ABSTRACT 

In an emission imaging method, emission imaging data are 
acquired for a subject using an emission imaging scanner 
(10) including radiation detectors (12). The emission imag­
ing data are reconstructed to generate a reconstructed image 
by executing a constrained optimization program including 
a measure of data fidelity between the acquired emission 
imaging data an a reconstruct-image transformed by a data 
model of the imaging scanner to emission imaging data. 
During the reconstructing, each iteration of the constrained 
optimization program is constrained by an image variability 
constraint. The reconstructed image is displayed the recon­
structed image on a display device. The emission imaging 
may be positron emission tomography (PET) imaging data, 
optionally acquired using a sparse detector array. The image 
variability constraint may be a constraint that an image total 
variation (image TV) of a latent image defined using a 
Gaussian blurring matrix be less than a maximum value. 
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OPTIMIZATION-BASED RECONSTRUCTION 
WITH AN IMAGE-TOTAL-VARIATION 

CONSTRAINT IN PET 

[0001] This invention was made with Government support 
under grants CA158446, CA182264, and EB018102 
awarded by the National Institutes of Health (NIH). The 
Government has certain rights in this invention. 

FIELD 

[0002] The following relates generally to the medical 
imaging arts, positron emission tomography (PET) arts, 
image reconstruction arts, and the like. 

BACKGROUND 

[0003] Image reconstruction is a key component in the 
development and application of advanced positron-emission 
tomography (PET) imaging. Some known PET image recon­
struction algorithms have been developed based upon expec­
tation-maximization (EM), row-action maximum-likelihood 
(RAMLA), maximum a posteriori (MAP), and penalized 
maximum-likelihood (PML) algorithms. The algorithms 
have also been extended to list-mode, time-of-flight (TOF) 
PET imaging, and 4D spatial-temporal/parametric image 
reconstructions. Notwithstanding the foregoing, further 
improvement in image quality in PET imaging would be 
advantageous. Such improvements may, for example, enable 
use of PET detection and electronic technologies with 
reduced density of detectors without ( or with reduced) 
concomitant loss in image quality. The ability to reduce the 
density of detectors while (at least substantially) retaining 
image quality would enable reduction in PET imaging 
device cost and could also provide benefits such as more 
efficient data processing due to the reduced data set sizes 
being reconstructed. 

[0004] The following discloses a new and improved sys­
tems and methods that address the above referenced issues, 
and others. 

SUMMARY 

[0005] In one disclosed aspect, an em1ss10n imaging 
device comprises an emission imaging seamier including 
radiation detectors for acquiring emission imaging data, an 
electronic data processing device programmed to recon­
struct emission imaging data acquired by the emission 
imaging scanner to generate a reconstructed image, and a 
display device connected to display the reconstructed image. 
The emission imaging data are reconstructed to generate the 
reconstructed image by executing a constrained optimiza­
tion program that is constrained by an image variability 
constraint IIT(u)llst0 in which t0 is an image variability 
constraint parameter, u is the reconstructed image at a 
current iteration of the constrained optimization program, 
T(u) is a sparsifying image transform, and II ... II is a norm 
that outputs a strictly positive scalar value for the trans­
formed image T(u). 

[0006] In another disclosed aspect, an emission imaging 
method comprises: acquiring emission imaging data gm for 
a subject using an emission imaging seamier including 
radiation detectors; reconstructing the emission imaging 
data to generate a reconstructed image by executing the 
optimization program 

1 
Jul. 8, 2021 

u' = argmin D(gm, g(u)) 

where g(u) denotes a data model of the emission imaging 
scanner that transforms the reconstructed image u at the 
current iteration of the optimization program into emission 
imaging data and D(gm,g(u)) denotes a measure of data 
fidelity between the gm and g(u); during the reconstructing, 
constraining each iteration of the optimization program by 
an image variability constraint IIT(u)llst0 in which t0 is an 
image variability constraint parameter, T(u) is a sparsifying 
image transform, and II ... II is a norm that outputs a strictly 
positive scalar value for the transformed image T(u); and 
displaying the reconstructed image on a display device. 
[0007] In another disclosed aspect, a positron emission 
tomography (PET) imaging device comprises: a PET scan­
ner including an amiular ring of radiation detectors for 
acquiring PET imaging data; an electronic data processing 
device (20) programmed to reconstruct PET imaging data 
acquired by the PET scanner to generate a reconstructed 
image; and a display device (34) connected to display the 
reconstructed image. The PET imaging data are recon­
structed to generate the reconstructed image by executing a 
constrained optimization program: 

u' = argmin D(gm, g(u)) subject to llfllrv s to and fJ 2 0 
u 

where g(u) denotes a data model of the PET scanner that 
transforms the reconstructed image u at the current iteration 
of the constrained optimization program into emission imag­
ing data, D(gm,g(u)) denotes a measure of data fidelity 
between the gm and g(u), ll~lrvst0 is an image total variation 
constraint in which t0 is a total variation constraint parameter 
and f is a latent image defined by u= g f where g is a 
blurring matrix which is not an identity matrix, and ½"'O is 
a positivity constraint. 
[0008] One advantage resides in providing PET imaging 
with reduced equipment cost by enabling the use of a 
reduced number of crystals and associated electronics. 
[0009] Another advantage resides in providing more effi­
cient PET reconstruction via acquisition of smaller PET 
imaging data sets. 
[0010] Another advantage resides in providing either one 
or both of the foregoing advantages without a concomitant 
degradation in clinical value of the PET images. 

[0011] A given embodiment may provide none, one, two, 
more, or all of the foregoing advantages, and/or may provide 
other advantages as will become apparent to one of ordinary 
skill in the art upon reading and understanding the present 
disclosure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0012] The invention may take form in various compo­
nents and arrangements of components, and in various steps 
and arrangements of steps. The drawings are only for 
purposes of illustrating the preferred embodiments and are 
not to be construed as limiting the invention. 

[0013] FIG. 1 diagrammatically shows a positron emission 
tomography (PET) imaging system. 
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[0014] FIGS. 2-24 present simulation and experimental 
results as described herein. 

[0015] FIG. 25 illustrates a PET imaging method suitably 
performed using the PET imaging system of FIG. 1. 

[0016] FIG. 26 diagrammatically shows an IEC phantom 
used in some studies presented herein. 

DETAILED DESCRIPTION 

[0017] With reference to FIG. 1, a positron em1ss10n 
tomography (PET) imaging system includes a PET scanner 
10 including one or more annular rings of PET detectors 12 
mounted in a suitable housing 14, with a patient support 16 
arranged to move a patient along an axial direction 18 
oriented generally transverse to the plane of the rings 12. 
Note that while diagrammatic FIG. 1 shows the PET detec­
tor ring(s) 12 in the housing 14, more typically the housing 
is opaque and would occlude the PET detectors from view. 
Further, while the illustrative PET scanner 10 is a standalone 
device, PET reconstruction algorithms disclosed herein are 
equally applicable to hybrid imaging systems with a PET 
component, such as a computed tomography (CT)/PET 
scanner. 

[0018] When used for medical imaging, a radiopharma­
ceutical is administered to a human imaging subject, and the 
subject is disposed on the support 16 and moved into the 
PET rings 12. The radiopharmaceutical includes radioiso­
topes that produce positrons during radioactive decay 
events, and each positron annihilates with an electron in a 
positron-electron annihilation event that outputs two oppo­
sitely directed 511 keV gamma rays. PET imaging data are 
acquired by the PET detectors 12 in the form of gamma ray 
detection event, which may be stored in a list mode format 
in which each event is time stamped. 

[0019] In illustrative FIG. 1, an electronic data processing 
device 20 processes the PET data to generate a reconstructed 
image. The illustrative electronic data processing device 20 
is a computer 22, e.g. a server computer, desktop computer, 
a cloud computing resource, or the like. The list mode data 
are stored in a list mode PET data memory 24 ( e.g. hard 
drive, RAID disk, solid state drive, et cetera) which is a 
component of, or accessible by, the device 20. The list mode 
data are filtered to retain events within a window about 511 
keV (energy filtering) and to identify substantially simulta­
neous events attributable to positron-electron annihilation 
events (coincidence detection). Such a pair defines a line of 
response (LOR) between the two simultaneous detection 
events. Some detected events are not due to positron­
electron annihilation events, but rather are random events. 
Some detected events may be due to positron-electron 
annihilation events, but one or both 511 keV gamma rays 
may have undergone scattering so that the pair no longer 
defines a true LOR these are called scattering events. A 
reconstruction processor 30 processes the filtered list mode 
data to generate a reconstructed PET image that is stored in 
an image data memory 32 (e.g. hard drive, RAID disk, solid 
state drive, et cetera) which is a component of, or accessible 
by, the device 20. Various suitable reconstruction algorithms 
that may be implemented by the reconstruction processor 30 
are described herein. The reconstructed image may be 
displayed on a display device 34, e.g. a computer LCD 
display component of a workstation, desktop computer, 
notebook computer, or the like. 
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[0020] In the following, some illustrative embodiments of 
reconstruction algorithms that may be implemented by the 
reconstruction processor 30 are described. 

[0021] With reference to FIG. lA, a full-scan PET detector 
array 12F suitably used as the PET ring 12 of FIG. 1 is 
shown. The PET detector array 12F is formed by tightly 
assembling P identical detector modules 40, each of which 
itself is a flat panel containing LxK identical tiles 42 of 
square shape, on a cylindrical surface of radius R. In 
particular, the centers of the modules 40 are placed on the 
same circular ring on the cylindrical surface, while the 
horizontal central lines of the modules 40 are parallel to the 
central axis of a cylindrical surface. Therefore, the full-scan 
configuration consists effectively of L rings of PxK tiles. 
Each of the tightly congregated tiles itself within a module 
is composed of J xJ identical crystal bins of square shape and 
length d. A straight line connecting the centers of two crystal 
detector-bins forms a line-of-response (LOR) along which a 
data sample is collected. A PET configuration with M 
distinct LORs thus yields a data set of at most M samples. 
In the work, this configuration is referred to as the full-scan 
configuration, and data collected with the configuration the 
"full data". 

[0022] In the Monte-Carlo-simulation and real-data stud­
ies described herein, PET data were collected by use of the 
full PET detector configuration 12F of FIG. lA, in a digital 
prototype PET/CT system, identical to that described above 
with P=18, L=5, K=4, J=S, and d=4 mm, yielding a total of 
M=153,446,400 distinct LORs. Also investigated was image 
reconstruction from data collected from a sparse-scan PET 
detector array configuration 12S also shown in FIG. lA, that 
is formed by removing odd- or even-numbered tiles 42 in 
odd- or even-numbered rings in the full-scan configuration 
12F. The sparse-scan configuration 12S thus includes L rings 
each of which is composed only of P/2xK uniformly, but 
sparsely, distributed tiles 42, as depicted in FIG. lA for the 
sparse PET detector array 12S. Data collected with the 
sparse-scan configuration is referred to herein as "sparse 
data". It can be shown that the sparse-scan configuration has 
a total ofM=38,361,600 possible distinct LORs (i.e. line of 
response paths). The sparse-scan configuration 12S is rep­
resentative of an approach for PET imaging with a consid­
erably reduced number of crystals and associated electronics 
(relative to the full-scan configuration 12F). The clinically 
useful image reconstruction of sparse data sets as described 
herein thus facilitates PET imaging with reduced equipment 
costs. Processing of the sparse data set also is more com­
putationally efficient since, for a given radiopharmaceutical 
dose and acquisition time, the sparse data set is smaller than 
the equivalent full data set. 

[0023] The following notation is used in illustrative 
examples herein. discrete image is defined on a three­
dimensional (3D) array containing N=NxxNYxk identical 
voxels of cubic shape, where Nx, Ny, and N, denote the 
numbers of voxels along the Cartesian x-, y-, and z-axis, 
respectively. The z-axis coincides with the central axis of the 
PET configuration 12F (or 12S) shown in FIG. lA, which is 
the axial direction 18 labeled in FIG. 1. We use vector u of 
size N to denote the image in a concatenated form. The 
PET-data model used in the study (that is, the data model of 
the emission imaging scanner 10 that transforms the image 
u into emission imaging data) is given by: 

g(u)~J{ u+g,+gr 
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where vector g(u) of size M denotes the model data, JC is 
an MxN system matrix in which element hi/ is the intersec­
tion length of LOR i with voxel j, vectors gs and gr of size 
M denote scatter and random events, which are assumed to 
be known in the work. In the following, the notation g is 
generally used as a shorthand for g(u). We use vector gm of 
size M to denote the measured data. In this work, gm, g,, and 
gr are corrected for the effect of photon attenuation. The goal 
of PET-image reconstruction is to determine (i.e., recon-

struct) u from knowledge of gm, JC, g,, and gr. 
[0024] Using Equation (1), we form an optimization pro­
gram in the form of: 

u' = argmin D(gm, g) s.t. llfllrv s to and fJ 2: 0 (2) 

where D(gm,g) denotes a measure of data fidelity between 
measured data gm and model data g, and "s.t." is standard 
notation indicating "subject to" the constraint that follows. 
[0025] One constraint in Equation (2) is a positivity con­
straint, i.e. t2:0, which ensures that the voxels of latent 
image f have positive values. The other constraint is an 
image total variation (TV) constraint. The image TV norm 
ll~lrv in this image TV constraint may be defined as: 

llfllrv = ~ llfx.yl = ~ ✓ (fx.y - fx-!.y)2 + (fx.y - fx.y-iJ 2 (2a) 

x,y x,y 

where x and y denote pixel labels or, for a three-dimensional 
(3D) image: 

llfllrv = ~ llfx.vl = I 
x,y,z x,y,z 

(fx.v - + (fx.v -

(fx.v-

+ 
(2b) 

It will be appreciated that the image TV norm may be written 
with other handedness, e.g. the "-1" operations in the 
subscripts may be replaced by "+1" operations. 
[0026] The image u to be reconstructed is related to latent 
image vector f of size N through: 

u=!.JJ (3) 

In Equation (3), !.J a matrix of size NxN, ll~lrv is the image 
total variation norm of f and is constrained by the total 
variation (TV) constraint parameter t0 , ½ the jth element of 
vector u, and j=l, 2, ... , N. 
[0027] In some tested illustrative reconstruction algo­
rithms, the blurring matrix g was obtained as follows. For 
a three-dimensional (3D), isotropic Gaussian function cen­
tered at a given voxel in the image array, we calculate its 
values at the center locations of N voxels within the image 
array, and use the calculated values in a concatenated form 
identical to that of vector u to create a vector of size N. 
Repeating the calculation for each of the N voxels in the 
image array, N such vectors can be formed; and matrix g of 
size NxN can subsequently be built in which a row is the 
transpose of one of the N vectors, and the N rows are in an 
order consistent with the concatenated order of entries of u. 
The unit of standard deviation of the Gaussian function is 
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defined in terms of voxel size. With standard deviation 
taking zero value, !.J reduces to the trivial case of the 

identity matrix J . (That is, in some embodiments it is 
contemplated to replace the Gaussian blurring matrix or 
blurring operator g with the identity matrix so that Equation 
(3) becomes u=f). Other blurring operators, e.g. with other 
than an identity matrix or Gaussian form, are also contem­
plated). 
[0028] In illustrative reconstruction algorithms, three spe­
cific implementations of the "generic" divergence D(gm,g) 
of Equation (2) were tested. 
[0029] The first tested divergence was the Kullback­
Leibler (KL) divergence, for which the program of Equation 
(2) becomes: 

u' = argmin DKL(gm, g) s.t. llfllrv s to and fJ 2: 0 (4) 

where DKL(gm,g) denotes the data-KL divergence given by: 

M 

DKL(gm,g)= ~[g-gm+gm lngm-gm lng]; 
(4a) 

where [.], denotes the ith element of vector [.]. When 
computing DKL, (gm,g) in experiments reported herein, the 
entries in g that are smaller than E=l0-20 are replaced with 
E. For the convenience of devising convergence conditions 
below, a normalized data-KL divergence is defined as D'KL 
(gm,g)=DKL(gm,g)IDKL(gm,gs), where gs is obtained by 
replacing all of the entries in g with E. We refer to the 
optimization program in Equation ( 4) as program "DKL­
fTV". 
[0030] The second tested divergence employed the 

f 2 -norm. The program of Equation (2) becomes: 

u' = ar~n Dr2 (gm, g) s.t. llfllrv s to and fJ 2: 0 (5) 

which is obtained by the replacement ofD(gm,g) in Equation 
(2) with: 

(5a) 

[0031] This fidelity metric takes the f 2 -norm of the 
difference between the measured data and model data. Also, 
for the convenience of specifying convergence conditions 

below, a normalized data-f 2 is defined as D'e2 (gm,g)= 

De2 (gm,g)/ De2 (gm,0). We refer to the optimization program 
in Equation (5) as the program "DL2-fTV". 
[0032] The third tested divergence employed the 

f 1 -norm. The program of Equation (2) becomes: 

u' = ar~n Dr2 (gm, g) s.t. llfllrv s to and fJ 2: 0 (6) 

which is obtained by the replacement ofD(gm,g) in Equation 
(2) with: 

(6a) 
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denoting the f 1 -norm of difference between measured data 
and model data. Again, for the convenience of describing 

convergence conditions below, a normalized data-f 1 is 

defined as D' e1 (gm,g)= D;1 (gm,g)/ D;1 (gm,0). We refer to 
the optimization program in Equation (6) as the program 
"DLl-ITV". 

[0033] In an optimization-based reconstruction, numerous 
parameters are employed to specify explicitly the program, 
i.e., the solution set, which are referred to as "program 
parameters". We consider "algorithm parameters" to be 
those that affect only algorithm's convergence path leading 
to the solution set, and thus have no impact on the theoretical 
specification (or design) of the solution set. Clearly, the 
solution set depends upon the specific form of the optimi­
zation program, and thus the optimization program itself 
constitutes a program parameter. Moreover, an optimization 
program of a given form itself involves additional program 
parameters. For the optimization programs considered in 
Equations ( 4 )-( 6), additional program parameters include 

system matrix J{ , scatter and random components gs and g" 
the voxel size, TV-constraint parameter t0 , and blurring 

matrix J{. 

[0034] The optimization algorithms used in experiments 
disclosed herein can solve the convex optimization pro­
grams of Equations ( 4)-(6), but like any other iterative 
algorithms, they only converge to a solution in the limit of 
infinite iterations. Due to the limitation of computer preci­
sion and computation time, one can obtain reconstructions 
only at finite iterations. Therefore, practical convergence 
conditions are specified under which reconstructions can be 
achieved within a finite number of iterations; and the prac­
tical convergence conditions thus play a role in defining an 
actual solution set achievable within a finite number of 
iterations. In experiments reported herein, when the practical 
conditions are satisfied, the reconstruction stops and is 
referred to as the "convergent reconstruction" u*; and we 
also denote the corresponding latent image as fl', where u*= 
gfl'. 

[0035] As already described, system matrix J{ contains 
M row vectors of size N in which each entry depicts the 
intersection of an LOR with a voxel in the image array. In 
the validation and Monte-Carlo-simulation studies reported 
herein, scatter and random events gs and gr are not consid­
ered; whereas in the phantom and human imaging studies 
reported herein, the single-scatter simulation method (Wat­
son et al., "A single scatter simulation technique for scatter 
correction in 3d pet", in 3D Img. Recon. Radio!. Nucl. Med. 
Springer, 1996, pp. 255-68) and the delayed coincidence 
method (Badawi et al., "Randoms variance reduction in 3D 
PET", Phys. Med. Biol., vol. 44, no. 4, p. 941, 1999) were 
employed for estimating gs and gr, respectively. A voxel size 
of 4 mm was selected for the studies because it is used often 
in clinical studies. Blurring matrix g generated by use of a 
3D isotropic Gaussian function with a standard deviation of 
2.4 mm, which is 0.6 times the image-voxel size, appears to 
yield appropriate reconstructions for data conditions con­
sidered. 
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[0036] For designing the practical convergence condi­
tions, we introduce two unitless metrics as: 

CTV(J;,)~llif,,llrv-10 1/10 (7) 

and 

(8) 

where un and fn denote reconstructions at iteration n, gn = 

J{ un+gs+gr the model data estimated at the nth iteration, 
obtained by replacing u with un in Equation (1). Practical 
convergence conditions are devised with CTV(fn) and D'(un) 
for the studies performed herein. 
[0037] With the program parameters and practical conver­
gence conditions specified above, only image-TV-constraint 
parameter t0 remains to be determined. We discuss the 
determination oft0 in each specific study carried out below, 
because different data conditions in the studies can have 
considerably different impacts on the appropriate selection 
of t0 • 

[0038] Optimization programs DKL-ITV, DL2-ITV, and 
DLl-ITV in Equations (4)-(6) are convex, and can be solved 
with a number of existing algorithms. Experiments reported 
herein utilize algorithms belonging to a class of algorithms 
known as the primal-dual algorithms. 

[0039] A specific set of first-order, primal-dual algorithms 
developed by Chambolle and Pock (CP) (Chambolle and 
Pock, "A first-order primal-dual algorithm for convex prob­
lems with applications to imaging", J. Math. Imag. Vis., vol. 
40, pp. 1-26, 2011) has been demonstrated to be an effective 
investigative tool for solving a variety of convex optimiza­
tion programs in CT imaging, including the convex pro­
grams having the form of Equations (4)-(6). Pseudo-code for 
the CP algorithm is given below: 

Algorithm: Pseudo-code for N steps of the CP algorithm for solving 
Eq. (4)-(6) 

1: 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

11: 

12: 
13: 
14: 
15: 
16: 
17: 

INPUT: measured events gm, scatter events gs, random events gr, 
TV constraint parameter t0 , Gaussian blurring operator g 
INPUT: parameter 1c 
v ~ 111£911sv11Vllsv, c ~ vto 
L - 111£9, V)llsv 
T - 1//cL; a - ic/L; 0 - 1; n - 0 

INITIALIZE: f0 , u0 , y0 , and z O to zero 
fo - fo 
while Not done do 

Yn+! ~ <P(Ym gm gm) 

t ~ zn + ovvt 
zn+! ~ (1 - 0Project0nto£1Ballc(ltl/o)/ltl) t 
fn+! ~ pos(fn -TIQT1tTYn+! + vVTzn+1l) 
lln+l =Qfn+l 

t+l ~ fn+l + 0(fn+l - fn) 
n - n + 1 

end while 
OUTPUT: image u* ~ UN 

[0040] In this algorithm, 'v depicts a matrix representing 
a finite differencing approximation of the image gradient, 

yielding vectors 'v f, t, and 7n N-elementvectors with each 
entry a vector of size 3, norm 11-llsv of a linear operator 
computes the largest singular value of that linear operator, 

gn = J[[j In +gs +g" It I denotes an N-element vector by taking 

the magnitude of each entry of t, operator [ProjOnto 

f 1 Balle] yields a vector of size N by projection of vector I 
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ti/a onto the f ,-ball of scale c, the multiplication oft and 

(1-aProjectOntof 1Ba1Ultl/a)/ltl) in Line 11 is per­
formed component-wise, and superscript "T" transpose 
operation. Operator pos(.) enforces non-negativity of the all 
entries of the input vector. Algorithm parameter A can affect 
the convergence path and rate of the CP algorithms espe­
cially at early iterations. For the studies reported herein, 
A=0.01 was used because it has been shown in the study to 
yield a reasonable convergence rate at early iterations. 
[0041] We note that all of the lines in the pseudo-code are 
identical for the three optimization programs in Equations 
( 4)-(6), except for vector <I> of size Min line 9, which may 
vary depending upon the specific data divergence consid­
ered. For the program in Equation ( 4): 

(9) 

where ln is a vector of size M filled with ls. For the 
optimization program in Equation (5): 

<I>(yn,gn,gmM.Yn+a(gn-gm)J/(l+a) (10) 

and for the optimization program in Equation (6): 

(11) 

where max(.) is performed element-wise. 
[0042] Reconstruction techniques based upon the Row­
action maximum-likelihood algorithm (RAMLA) (Browne 
et al., "A row-action alternative to the EM algorithm for 
maximizing likelihood in emission tomography", IEEE 
Trans. Med. Imag., vol. 15.5, pp. 687-99, 1996) are used 
frequently in PET image reconstruction. RAMLA can be 
viewed as a relaxed ordered-subset algorithm in which the 
step size is subset-independent and gradually decreases to 
zero. Under certain conditions, the RAMLA algorithm is 
mathematically equivalent to the Expectation-Maximization 
(EM) algorithm, but they involve different implementation 
procedures and can lead to different solutions when a finite 
number of iterations are used as in all practical reconstruc­
tions. 
[0043] In experiments reported herein, the RAMLA algo­
rithm was applied to reconstructing from full data PET 
images urefi and the full data RAMLA reconstructions were 
used as reference reconstructions for comparative purposes. 
Specifically, the RAMLA implementation in the study con­
sists of subsets with the number ofLORs varying from 291 
to 291x40, and yields the reconstruction after two full 
iterations, as is done typically in practical research and 
clinical applications. RAMLA reconstructions from sparse 
data were also carried out in each of the studies described 
below, and were observed to have quality substantially lower 
than that of the reference reconstructions. Therefore, the 
RAMLA reconstructions of sparse data are not illustrated 
herein. 
[0044] For the purpose of validation and computation­
efficiency consideration, we used the full-scan configuration 
12F of FIG. lA, but with only one ring of tiles, and a 3D 
image array consisting of 50x50x8 identical cubic voxels of 
size 4 mm. With the configuration and image array given, 

system matrix JC , and Gaussian matrix g can be formed as 
already described. 
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[0045] FIG. 2 shows a truth image u,rue, a convergent 
reconstruction u*, and difference u*-u,rue· Display window 
[0.0, 0.1] is used for the truth image and reconstruction, and 
display window [-0.0001, 0.0001] is used for their differ­
ence. Image values are in arbitrary units. In accord with 
Equation (3), we create truth image u,rue shown in FIG. 2 
(left image) by application of matrix g to a known, numeri­
cal IEC (International Electrotechnical Commission) phan­
tom f,rue' i.e., the truth latent image. Subsequently, model 

data g is generated from u,rue by use of system matrix JC . 
Without loss of generality, random and scatter are not 
considered (i.e., gs =0 and gr=0) in the study. 

[0046] The mathematical convergence conditions for the 
CP algorithms include CTV(fn)-0, D'(un)-0, and cPD(un) 
-o, as n-oo, where cPD (un) denotes the conditional 
primal-dual (cPD) gap. They are unachievable, however, 
due to limited computer precision and computation time 
involved in any practical, numerical study. Therefore, for the 
inverse-crime study considered, we designed practical con­
vergence conditions, namely: 

CTV(f,,)<10-5 

(12) 

and require that the convergence metrics maintain their 
decaying trends even after that the conditions are satisfied, 

as n increases, where D'(un)=D'KL(un), D' £2 (un), and 

D' £1 (un), respectively, for optimization programs in Equa­
tions (4), (5), and (6). Practical convergence conditions that 
are tighter or looser than those in Equation (12) can readily 
be designed, depending upon the amount of computation 
resources to be invested. 

[0047] In the following, we report performed inverse­
crime studies on reconstructions based upon the three opti­
mization programs in Equations ( 4)-(6) in which t0 =llf,ruellrv 
is computed from truth-latent-image f,rue· For brevity, we 
show results obtained only for program DKL-fTV in Equa­
tion ( 4), as similar results were obtained also for programs 
in Equations (5) and (6). It can be observed in FIG. 2 that 
convergent reconstruction u* (middle image) is visually 
virtually identical to truth image u,rue (left image). 

[0048] FIG. 3 shows convergence metrics CTV(fn), DKL' 
(un), cPD(un) as functions of iteration number n. FIG. 3 
shows how convergence metrics evolve as functions of the 
iteration number, demonstrating that the practical conver­
gence conditions in Equation (12) are satisfied. Because u,rue 
is known, we also calculated 

and display it also in FIG. 3 (rightmost plot), which indicates 
that the reconstruction converges to the truth image. Fur­
thermore, it can be observed that the convergent metrics 
maintain their decaying trends beyond the convergence 
conditions in Equation (12). Therefore, the results of the 
inverse-crime study numerically assure the correct computer 
implementation of the CP algorithms. 
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[0049] In the studies reported in the following, we 
designed practical convergence conditions: 

CTV(fn)<l0-5 

D'(un)-plateau (13) 

as n increases. The convergence conditions of Equation (13) 
are less restrictive than those in Equation (12) for the 
inverse-crime study, and they are designed based upon the 
practical considerations: (a) in a real-data study, because 
inconsistency exists between measured data gm and model 
data g, D'(u)>0 is generally non-zero; and because full 
knowledge is unavailable about model data g, the value of 
D'(u) is generally unknown. Therefore, condition D'(un) 
---;,plateau, instead of D'(un)----;,0, is considered. Unlike met­
rics CTV(f) and D'(u) that provide directly meaningful 
measures of physical properties of reconstructions in a 
practical study, metric cPD (un) yields a mathematical check 
on the correctness of the algorithm implementation. Conse­
quently, once the implementation correctness is verified in 
the inverse-crime study, metric cPD (un) is not used in 
real-data studies in which practical convergence conditions 
in Equation (13) appear to yield reconstructions of practical 
relevance, as the study results below show. 
[0050] Prior to physical-phantom and human studies, we 
conducted a Monte-Carlo-simulation study in which full 
data of -200 million total counts were generated from the 
digital Jaszczak phantom by using the GATE simulation 
package for the full-scan configuration 12F (FIG. lA). From 
the full data, we also extracted sparse data (thus simulating 
the sparse configuration 12S) and carried out reconstructions 
for the sparse-scan configuration. Without loss of generality, 
the simulation study includes only truth events. Images are 
reconstructed on a 3D array of 70x70x41 identical cubic 
voxels of size 4 mm. Digital phantom u,rue consists of cold­
and hot-rod sections each of which contains six types of 
cylindrical-shaped rods of diameters 4.8, 6.4, 7.9, 9.5, 11.1, 
and 12.7 mm. Although GATE data contain only true 
coincidence events, they are inconsistent with the model 
data in Equation (1) due to noise and other physical factors 
included by GATE, but not in the data model. Using GATE 
data and knowledge of truth image u,rue, we characterize 
how optimization-based reconstruction responds to data 
inconsistency prior to its application to real data in which 
knowledge of the truth image is unavailable. 
[0051] In a first aspect of the Monte-Carlo simulations, the 
TV-constraint parameter t0 was determined. More particu­
larly, in the study, given the convergence conditions in 
Equation (13), all of the program parameters are determined, 
except for TV-constraint parameter t0 , which is determined 
by use of the root-mean-square error (RMSE): 

1 ,, 
RMSE = ,{ii llu,m, - u 112 

(14) 

between truth image u,rue and convergent reconstruction u*. 
For each of a set of t0 values, we solve program DKL-ITV 
in Equation (4) to obtain convergent reconstruction u* from 
full data and calculate the RMSE. Repeating the reconstruc­
tion and calculation for all values oft0 , we obtain an RMSE 
of t0 • 

[0052] FIG. 4A shows convergent reconstructions u* 
within transverse slices containing cold (row 1) and hot (row 
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2) rods in the Jaszczak phantom obtained from full data with 
program DKL-ITV for different t0 values. The plot of FIG. 
4B shows metrics RMSE calculated from u* (solid) and the 
reference reconstruction ( dashed), as functions of t0 • Based 
upon the RMSE result, we selected t0 =13488, which yields 
a minimum RMSE, for obtaining reconstruction results in 
subsequent sections. The RMSE metric was used for select­
ing t0 in the study because knowledge of truth image u,rue is 
available. 
[0053] Next, the different optimization programs were 
compared via Monte-Carlo simulations. Using the selected 
t0 , we obtained reconstructions from full data by solving 
programs DKL-ITV, DL2-ITV, and DLl-ITV in Equations 
(4)-(6), and these reconstructions are shown in FIG. 5. More 
particularly, FIG. 5 shows convergent reconstructions u* 
within transverse slices containing cold (row 1) and hot (row 
2) rods in the Jaszczak phantom obtained from full data with 
programs DKL-ITV, DL2-ITV, and DLl-ITV in Equations 
(4)-(6), respectively. Display windows for FIG. 5 are: [0, 
40000] (row 1) and [0, 15000] (row 2). It can be observed 
that all of the convergent reconstructions u* for the cold-rod 
section appear visually comparable, only with slightly dif­
ferent noise textures, while program DKL-ITV yields a 
reconstruction of the hot-rod section with spatial resolution 
slightly superior to those obtained with programs DL2-ITV 
and DLl-ITV. However, the DLl-ITV reconstruction of the 
hot-rod section appears to contain prominent zero-valued 
artifacts. Indeed, the DLl-ITV reconstructions from data of 
the IEC phantom and human subject reported later herein 
also shows significant artifacts (see FIGS. 11 and 18). 
[0054] In an effort to elicit the artifact source, we define: 

(15) 

where g'm denotes the measured data with scatter/random 
corrected for, and g' the model data estimated from the 
convergent reconstruction u*, also with scatter/random cor-

rected for. In particular, we use g'KL, g'e,, and g'e1 to 
specify explicitly the model data estimated, respectively, by 
use of programs DKL-ITV, DL2-ITV, and DLl-ITV. 
[0055] With reference to FIGS. 6A, 6B, and 6C, profiles 
are shown of measured data g'm (thin solid), and model data 

g'KL (thick solid), g'e, (dotted), and g'e1 (dashed) obtained 
with programs DKL-ITV, DL2-ITV, and DLl-ITV for the 
Jaszczak phantom (FIG. 6A), the IEC phantom (FIG. 6B), 
and a human subject (FIG. 6C). The profile results suggest 

that the minimization of data f 1 -norm in program D L 1-ITV 
yields the estimated model data biased toward zero due to 
the prevalence of zero or small-valued measurements, thus 
producing artifacts observed in the DLl-ITV-based recon­
struction of the hot-rod section in FIG. 5. It is possible that 
artifacts in DLl-ITV reconstructions may be different when 
program parameters different than those used here. 
[0056] The foregoing results indicate that for the subject 
data sets the program DKL-ITV produces reconstructions of 
reasonable visual textures for both cold- and hot-rod sec­
tions. Thus, optimization program DKL-ITV was chosen as 
the optimization program for further investigations. (As can 
be seen from the example in FIG. 18, the DKL-ITV recon­
structions tended to have better delineated boundaries than 
the DL2-ITV reconstructions, while DLl-ITVyielded zero­
valued reconstructions.) For completeness, visualization of 
converged patient data reconstructions (not shown) was 
conducted at different values of t0 for each optimization 
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program. The results of patient data reconstructions at 
different values oft0 showed the same trends at all values of 
t0 considered. Thus, in the following, the DKL-fTV program 
was used except where otherwise noted. 
[0057] FIG. 7 shows reference reconstructions (left col­
unm labeled uref), and convergent reconstructions u* within 
transverse slices containing cold rods (row 1) and hot rods 
(row 2) in the Jaszczak phantom obtained from full data 
(middle colunm) and sparse data (right colunm). The opti­
mization program DKL-fTV was used for these reconstruc­
tions. In FIG. 7, the display windows are: [0, 40000] (row 1) 
and [0, 15000] (row 2). In FIG. 7, the convergent recon­
structions u* were obtained from both full and sparse data by 
use of the CP algorithm to solve DKL-fTV with t0=13488. 
The results indicate that, in general, reconstructions from 
full data appear visually to possess better spatial resolution 
and lower noise level than do those from sparse data, and 
that reconstructions obtained with program DKL-fTV seem 
to reveal enhanced spatial and contrast resolution in which 
hot/cold rods of size 6.4 mm appear to remain resolved. 
[0058] As shown in the pseudo-code (Algorithm) for the 
CP algorithm, latent image f defined in Equation (3) can also 
be reconstructed. FIG. 8 shows convergent reconstructions 
u* and fl' within transverse slices containing cold rods (row 
1) and hot rods (row 2) in the Jaszczak phantom obtained 
from full data (leftmost two colunms) and sparse data 
(rightmost two columns), again using optimization program 
DKL-fTV. Display windows in FIG. 8 are: [0, 40000] (row 
1) and [0, 15000] (row 2). As shown in FIG. 8, it can be 
observed that fl' tends to have noisier textures than u*. 
[0059] Reconstruction as a function of iterations is next 
considered. 
[0060] The reconstructions above were obtained when the 
convergence conditions in (Equation (13)) were satisfied. To 
inspect how reconstructions evolve as a function of itera­
tions, FIG. 9A shows reconstructions un at iteration n=50, 
300, and 800 within a transverse image containing cold rods 
in the Jaszczak phantom from full data with program DKL­
fTV, along with convergent reconstruction u* (obtained at 
iteration 71160). Display windows in FIG. 9A are: [0, 
40000]. FIG. 9B shows plots displaying convergence met­
rics CTV(fn) and D'KL(un) as functions of iterations n. 
Similar reconstructions and plots were obtained also for the 
sparse-data study, but are not shown here. These results 
reveal that the reconstruction at, e.g., about iterations 300 is 
visually similar to the convergent reconstruction. 
[0061] In a next set of experiments, physical phantom data 
studies were performed using an IEC phantom. We collected 
full data of: 100 million total counts from the phantom by 
using a full-scan configuration in a digital prototype PET/CT 
system. From the full data, we extracted sparse data to 
mimic data collected with the sparse-scan configuration. The 
IEC phantom is composed of 6 fillable spheres of diameters 
10, 13, 17, 22, 28, and 37 mm, respectively, in which the two 
largest spheres have zero activity, while the other four 
spheres are filled with positron-emitter activity at a concen­
tration level four times the background-activity level. Scat­
ter and random events were measured, and used as known 
components in the study. Images were reconstructed on a 3D 
array of 100x100x41 identical cubic voxels of size 4 mm. 
[0062] A first task was determination of the image-con­
straint parameter t0 • In the study, given the practical con­
vergence conditions in Equation (13), all program param­
eters except the image-constraint parameter t0 were 
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determined as described. Percent contrasts of hot and cold 
spheres and percent background variability, described in the 
Appendix, are standard metrics designed for evaluation of 
reconstruction quality of the !EC-phantom. In this study, full 
knowledge of the truth image is unknown. Therefore, com­
bining the metrics, we form in the Appendix a single quality 
metric, referred to as the QNR, for determination of t0 • For 
a set of t0 values, convergent reconstructions from full data 
of the IEC phantom were obtained by use of the CP 
algorithm to solve program DKL-fTV in Equation (4). 
[0063] The QNRs calculated from the reconstructions are 
plotted in FIG. lOB, along with the reconstructions (FIG. 
l0A) with the QNRs of these reconstructions highlighted by 
black diamonds in the plots of FIG. lOB. More particularly, 
FIG. l0A shows convergent reconstructions u* within the 
central transverse slice of the IEC phantom obtained from 
full data with program DKL-fTV for different t0 values. FIG. 
l0B plots metrics QNR calculated from u* (solid) and the 
reference reconstruction ( dashed), as functions of t0 • Based 
upon the QNR result, we selected t0 =977, which yields a 
maximum QNR in the plot, for reconstructions from full and 
sparse data of the IEC phantom below. 
[0064] Reconstructions based upon different optimization 
programs was also investigated. FIG. 11 shows convergent 
reconstructions u* within the central transverse slice of the 
IEC phantom obtained from full data with programs DKL­
fTV, DL2-fTV, and DLl-fTV, respectively (see Equations 
(4)-(6)). The display windows in FIG. 11 are: [0, 16000]. 
Again, it is observed that convergent reconstructions 
obtained with programs DKL-fTV and DL2-fTV appear 
visually comparable, while the DL2-fTV reconstruction has 
slightly noisier textures than the DKL-fTV reconstruction. 
By contrast, the program DLl-fTV yields reconstructions 
with prominent cupping artifacts. Similar to the results 

obtained in the Jaszczak-phantom study, the data- f 1 -norm 
minimization yields the estimated model data of the IEC 
phantom biased toward zero (cf. FIG. 6b), and such a 
data-estimate bias is believed to give rise to the artifacts 
observed in the DLl-fTV-based reconstruction of the IEC 
phantom in FIG. 11. Again, artifacts in the DLl-fTV recon­
struction may vary with program parameters different than 
those used in the work. 
[0065] In view of the foregoing, reconstructions using 
optimization program DKL-fTV were chosen for further 
investigation. FIG. 12 shows reference reconstructions (left 
colunm), and convergent reconstructions u*, within the 
central transverse slice (row 1) and central coronal slice 
(row 2) of the IEC phantom, obtained from full data (middle 
colunm) and sparse data (right colunm) with program DKL­
fTV. The display windows in FIG. 12 are: [0, 16000]. As 
expected, the reconstruction from full data appears to have 
a level of spatial and contrast resolution slightly higher than 
the reconstruction from sparse data, while both convergent 
reconstructions have a relatively low level of background 
noise in which the hot spot of the smallest size (i.e., diameter 
of 10 mm) remains visible. 
[0066] We computed from the reconstructions quantitative 
metrics described in the Appendix, and display them in FIG. 
13, which plots: percent contrast ~J of hot spheres (left 
plot), where j=l, 2, 3, and 4; percent contrast Qc, of cold 
spheres (middle plot), where i=5 and 6; and perc~nt back­
ground variability Nk (right plot), where k=l, 2, 3, 4, 5, and 
6, respectively, calculated based upon reference reconstruc­
tion (uref) and convergent reconstructions u* from full and 
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sparse data of the IEC phantom shown in FIG. 12. These 
results suggest that convergent reconstructions from sparse 
data are slightly inferior to those from full data, as expected, 
and that they appear to be largely comparable to, or better 
than, the reference reconstructions from full data. 
J0067] FIG. 14 displays convergent reconstructions u* and 
f* within the central transverse slice (row 1) and the central 
coronal slice (row 2) of the IEC phantom obtained from full 
data (two leftmost columns) and sparse data (two rightmost 
colunms) with optimization program DKL-fTV. Display 
window: [O, 16000J. Again, comparing the convergent 
reconstructions u * and fl' of desired and latent images u and 
f, we observe that the latter is slightly noisier than the 
former. 
[0068] Reconstruction as a function of iterations was next 
investigated. Convergent reconstructions u* of the IEC 
phantom were obtained again when the convergence condi­
tions in Equation (13) are satisfied. FIG. 15 shows recon­
structions un at iteration n=lO, 50, and 200, along with the 
convergent reconstruction ( obtained at iteration 2701 ), 
within the central transverse slice (row 1) and central 
coronal slice (row 2) of the IEC phantom obtained from full 
data with program DKL-fTV. In FIG. 15 the display win­
dows are: [O, 16000J. It is observed that the reconstruction 
at, e.g., about iteration 200 visually resembles convergent 
reconstruction u*. Similar observations can be made for 
reconstructions obtained from sparse data (not shown). 
[0069] FIG. 16 shows calculated quality metrics described 
in the Appendix from full- and sparse-data reconstructions at 
different iterations shown in of FIG. 15. FIG. 16 plots: ~ 2 

of the hot sphere 2 with a diameter of 13 mm (left plot); Qc
0

5 

of the cold sphere 5 with a diameter of28 mm (middle plot); 
and N3 within the ROis of size 17 mm of sphere 3 (right 
plot). The results plotted in FIG. 16 confirm that reconstruc­
tions at about iteration 200 resemble their corresponding 
convergent reconstructions. 
[0070] In addition to the phantom studies reported above 
with reference to FIGS. 2-16, a human data study was also 
performed. In the human-data study, full data were acquired 
from the subject by use of the full-scan configuration (see 
FIG. lA) in a digital prototype PET/CT system at a single 
patient-bed position. To increase the longitudinal coverage 
of the human subject, five full scans were performed at five 
bed positions along the central axis of the system with a 
separation of70 mm between the centers of two consecutive 
bed positions. The five sets of full data acquired contain 
approximately 23.9, 25.0, 26.7, 24.3, and 22.1 million total 
counts. A sparse data set was extracted from each one of the 
five sets of full data, thus yielding a corresponding five 
sparse data sets. Scatter and random measurements were 
included in the study. The human image was reconstructed 
on a 3D array consisting of N=144x144x41 identical cubic 
voxels of size 4 mm. 
[0071] Determination of the image-constraint parameter t0 

was first considered. Again, given the practical convergence 
conditions in Equation (13), all of the program parameters 
except image-constraint parameter t0 were determined as 
previously described. Unlike the phantom studies, in which 
quantitative metrics were used for selecting t0 , for the human 
study t0 was selected based upon qualitative visual inspec­
tion. 
[0072] FIG. 17 shows negative convergent reconstructions 
u* within a transverse slice of the human subject obtained 
from full data at bed position 3 with program DKL-fTV for 
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different t0 values. In FIG. 17, the display windows are: 
[-1600, OJ. FIG. 17 shows convergent reconstructions 
obtained with t0 =230, 287, 345, 460, 575, and 690, respec­
tively. As expected, high t0 values yield reconstructions with 
noisy texture while revealing some additional structural 
details; whereas, low t0 values lead to reconstructions with 
smoothed texture but which are missing some structural 
details. Based upon visual inspection of the reconstructions, 
t0 =460 was selected as it appears to yield reconstructions 
with a reasonable balance between structural details and 
image-noise texture. Using the same method, t0 values were 
determined for reconstructions from other full- and sparse­
data sets. 
[0073] With reference to FIG. 18, reconstructions using 
different optimization programs were investigated. FIG. 18 
shows negative convergent reconstructions u* within a 
transverse slice of the human subject obtained from full data 
at bed position 3 with programs DKL-fTV (left image), 
DL2-fTV (middle image), and DLl-fTV (right image). Note 
that the right image obtained using optimization program 
DLl-fTV yields a zero-valued reconstruction. In FIG. 18, 
the display windows are: [ -1600, OJ. In these reconstruc­
tions, for full data collected at a single bed position, we 
selected t0 as described with reference to FIG. 17, and then 
reconstructed human images by solving the three programs 
of Equations ( 4)-(6). FIG. 18 shows the reconstructions from 
full data collected at bed position 3. The reconstruction 
obtained with program DKL-fTV appears to possess better 
delineated boundaries, more structural details, and lower 
texture noise than do that obtained with program DL2-fTV. 
However, program DLl-fTV yields a convergent recon­
struction with strong artifacts, namely numerically zero 
values, as depicted in the "blank" right image of FIG. 18. 
Again, the estimated model data become negatively biased 

as a result of the data--l' 1 -norm minimization and scatter 
correction. Consequently, zero-valued estimated model data 
revealed in FIG. 6c and, the zero-valued u* ( or, equivalently, 
zero-valued fl') shown in FIG. 18, were obtained with the 
positivity constraint. When different program parameters 
such as t0 are used, program DLl-fTV may yield recon­
structions different than a zero-valued image. Although not 
shown, similar results were obtained for reconstructions 
from full and sparse data collected at this and other bed 
positions. 
[007 4] In view of the foregoing, the optimization program 
DKL-fTV was selected for use in further investigations. For 
a single bed position, using t0 selected as described with 
reference to FIG. 17, we reconstructed images from full data 
collected by using the CP algorithm to solve program 
DKL-fTV. Repeating this for all of the five bed positions, we 
obtained five convergent reconstructions, and then summed 
them up to form a final-convergent reconstruction with an 
extended longitudinal coverage. Following the same proce­
dure, we also obtained the final-convergent reconstruction of 
the human subject from the five sets of sparse data. 
[0075] With reference to FIGS. 19-21, the final-conver­
gent reconstructions are displayed within transverse, coro­
nal, and sagittal slices of the human subject. 
[0076] FIG. 19 shows negative reference reconstructions 
(left column), and negative final-convergent reconstructions 
u*, within two transverse slices (rows 1 and 2) of the human 
subject obtained from full data (middle column) and sparse 
data (right colunm) with program DKL-fTV. In FIG. 19 the 
display windows are [-1600, OJ. 
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[0077] FIG. 20 shows negative reference reconstructions 
(left column), and negative final-convergent reconstructions 
u*, within two coronal slices (rows 1 and 2) of the human 
subject obtained from full data (middle colunm) and sparse 
data (right colunm) with program DKL-ITV. In FIG. 20 the 
display windows are [-1600, OJ. 
[0078] FIG. 21 shows negative reference reconstructions 
(left column), and negative final-convergent reconstructions 
u*, within two sagittal slices (rows 1 and 2) of the human 
subject obtained from full data (middle colunm) and sparse 
data (right colunm) with program DKL-ITV. In FIG. 21 the 
display windows are [-1600, OJ. 
[0079] With reference to FIGS. 19-21, it is observed that 
program DKL-ITV appears to yield reconstructions from 
full data with well-delineated boundaries and suppressed 
noise in the background region. Similar observation can be 
drawn for reconstructions from sparse data as well, although 
reconstructions from sparse data are visually somewhat 
noisier than those from full data, as expected. 
[0080] FIG. 22 shows negative final-convergent recon­
structions u* and f* of desired and latent images u and f 
within a transverse slice (row 1 ), a coronal slice (row 2), and 
a sagittal slice (row 3) of the human subject obtained from 
full data (colunms 1 & 2) and sparse data (colunms 3 & 4) 
with program DKL-ITV. Display windows for the images in 
FIG. 22 are [-1600, OJ. 
[0081] Reconstruction of the human images as a function 
of the number of iterations was next considered. Recon­
structions of the human images were obtained again when 
the practical convergence conditions in Equation (13) are 
satisfied. We also investigated how the summed reconstruc­
tion of the human subject evolves as a function of the 
iteration number. To illustrate, FIG. 23 shows negative 
reconstructions un at iterationn=lO, 100,400,500,600,800, 
and 1000, along with negative final-convergent reconstruc­
tion u*, within a coronal slice of the human subject obtained 
from full data of all bed positions with optimization program 
DKL-ITV. The display windows are [-1600, OJ. It can be 
observed that the reconstruction at, e.g., about iteration 600, 
visually resembles the convergent reconstruction. Similar 
observations can also be made for reconstructions obtained 
from sparse data of the human subject (not shown). 
[0082] In a human subject, the scatter component gs with 
attenuation-effect correction, is a program parameter that 
can be estimated from experimental measurements. The 
degree of estimation variability of gs can impact the recon­
struction. To inspect the impact, we repeated the DKL-ITV 
reconstruction from full data of the human subject at bed 
position 3. Using gs obtained experimentally at bed position 
3, we created hypothetically under- and over-estimated 
scatter events by scaling gs with a factor ranging from O to 
2. 
[0083] FIG. 24 shows negative convergent reconstructions 
u* within a transverse slice (row 1), a coronal slice (row 2), 
and a sagittal slice (row 3) of the human subject obtained 
with program DKL-ITV from full data at bed position 3 
corrected for scatter events by use of O.Ogs (left colunm), gs 
(middle column), and 1.Sgs (right colunm), respectively. In 
FIG. 24 the display windows are [-1600, OJ. The visual 
difference among these images indicates the effect of dif­
ferent estimates of the scatter events on the reconstruction. 
The study can conversely be exploited for fine-tuning the 
estimate of the scatter events for yielding desired recon­
structions. 

9 

Jul. 8, 2021 

[0084] Data collected in PET imaging generally have 
signal-to-noise ratio (SNR) considerably lower than that of 
data in typical computed tomography (CT) imaging. This is 
a consequence of the low radioactivity of a radiopharma­
ceutical administered to a patient for PET imaging, com­
pared with the much higher permissible x-ray beam flux 
commonly used in clinical CT imaging. Furthermore, tran­
sitions among different uptake regions or other clinically 
salient features in a PET-activity map are commonly 
observed to be generally not as sharp as transitions among 
anatomic regions in a CT image. This is a consequence of 
the typical spread distribution of radiopharmaceutical in 
organs and tissue, i.e. the radiopharmaceutical is not entirely 
contained within the organ or tissue of interest but rather its 
concentration is higher (by design of the radiopharmaceu­
tical) in the organ or tissue of interest compared with 
surrounding tissue. 
[0085] To accommodate these significant differences as 
compared with CT, it is disclosed herein to formulate the 
optimization program (Equation (2)) with the PET image u 
represented as a product of a latent image f and a Gaussian 
blurring matrix or blurring operator g, as shown in Equation 
(3). This formulation allows for a latent image with sparser 
gradient magnitude image than the desired image, and 
avoids yielding an image with significant patchy textures for 
PET data with low SNR. Further, as seen in the optimization 
program of Equation (2) a limit on the image total variability 
is enforced as a constraint, rather than as a term of an 
objective function that is optimized thus separating out 
enforcement of the total variability limit from the optimi­
zation objective function. 
[0086] As shown herein, the form of the optimization 
program itself can also significantly affect PET-image recon­
struction. The studies reported here indicate that the opti­
mization program DKL-ITV employing the Kullback­
Leibler divergence (Equation ( 4)) yields reconstructions 
superior to those obtained with the other two programs 
investigated (Equations (5) and (6)). In addition to the 
program form, numerous parameters used for specification 
of a program can have a significant impact on the final 
reconstruction. Among the parameters of the optimization 
program, image-TV-constraint parameter t0 was observed to 
strongly affect reconstruction properties. 
[0087] Image reconstructions have been carried out in 
different studies involving objects with considerably distinct 
activity-uptake distributions of practical relevance and data 
with different quality/quantity conditions of interest. The 
results show that the reconstruction based upon program 
DKL-ITV appears to be robust for the different activity 
up-takes and data sets under consideration. Moreover, a 
study was conducted for image reconstruction from data 
collected ( or simulated to be collected via extraction from 
the full data set) with a PET configuration containing only 
half of the detectors in a digital prototype PET/CT scanner 
(the sparse configuration of FIG. lA). The study reveals the 
robustness of DKL-ITV reconstruction with respect to sig­
nificantly different data conditions. Viewed in another way, 
this study shows that the DKL-ITV reconstruction enables 
PET-scanner configurations with various sparse detector 
distributions. 
[0088] The use of image total variation (image TV) as a 
constraint has numerous advantages. As a constraint, the 
impact of the image TV on the image is readily understood 
it enforces an upper limit on the permissible total image 
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variability. This can be seen, for example, by considering the 
limiting cases. Ift0 approaches zero then no image variabil­
ity is permitted, resulting in a flat (i.e. perfectly smooth) 
image. By contrast, if t0 becomes sufficiently large then the 
image variability constraint is effectively removed, as the 
constraint does not impact the image no matter how much 
image variability is present. In general, a smaller value oft0 

biases toward a smoother image, albeit at a possible loss of 
some detail; whereas, a larger value of t0 biases toward 
improved image sharpness, albeit at a possible increase in 
overall image noise. However, unlike in the case of applying 
a post-reconstruction image smoothing filter, applying the 
image TV constraint during image reconstruction generally 
does not adversely impact overall image contrast. 
[0089] Another advantage of using image TV as a con­
straint is that it is generally operable with other constraints, 
and the various constraints can be considered to be operating 
(at least approximately) independently. For example, in the 
optimization program examples of Equations (2) and ( 4)-(6), 
in addition to the TV constraint an additional positivity 
constraint is applied (the constraint ½"'O). 
[0090] While the illustrative image TV constraint is shown 
by experiments reported herein to provide enhanced image 
quality for both full and sparse data sets, in other embodi­
ments another constraint performing analogous function 
could be used. For example, more generally a norm of a 
sparse gradient magnitude image could be used as a con­
straint in place of the illustrative image TV constraint. Even 
more generally, a norm of another image sparsifying image 
transform such as a wavelet, curvet, or Fourier transform 
could be used as the constraint. The generalized form of the 
image variability constraint may be written as IIT(u)llst0 , 

where u is the reconstructed image at a current iteration of 
the constrained optimization program, T(u) is the sparsify­
ing image transform ( e.g. wavelet, curvet, Fourier transform, 
et cetera) and outputs a transformed version of the image u, 
and II ... II is a norm, i.e. a function that outputs a strictly 
positive scalar value for the transformed image T(u). In the 
example of Equations (2) and (3), T(u)=f= g-1u and the 
norm II ... II is the image total variability, i.e. II ... llrv· (In 
the limiting case where g is the identity matrix, T(u)=u.) 
These constraints generally serve to constrain the maximum 
permissible image variability, albeit less directly than the 
illustrative image TV constraint. Note that in this general­
ized framework the positivity constraint ½"'O becomes [T(u)] 
J"'O. 
[0091] While the illustrative embodiments are directed to 
PET imaging, it will be appreciated that the disclosed image 
reconstruction techniques are readily applied to other types 
of emission imaging data, such as time-of-flight (TOF) PET 
imaging data or single photon emission computed tomog­
raphy (SPECT) imaging data, with suitable adjustment of 
the model of Equation (1). In designing the reconstruction 
for such imaging data, the disclosed approaches for selecting 
and/or optimizing parameters of the optimization program 
(parameters and form, e.g. choice of divergence) are suitably 
performed to tailor the reconstruction. 
[0092] The benefits of the disclosed image reconstruction 
with image variability constraint demonstrated for full and 
sparse PET data sets as per FIG. lA are also expected to 
accrue for any type of incomplete emission data set, whether 
due to a sparse detector array (i.e. with missing elements 
compared with a full regular or two-dimensional period 
array), or due to a reduced number of views (e.g. SPECT 

10 
Jul. 8, 2021 

step-and-shoot imaging with fewer steps), or so forth. In 
general, by constraining the image total variability the 
impact of artifacts due to incomplete sampling can be 
suppressed, but the image total variability constraint has less 
tendency to introduce new artifacts as compared with post­
reconstruction image filters. Thus, benefits may be obtained 
such as reduced equipment cost due to a reduced number of 
detectors, and/or reduced imaging time due to acquisition 
over fewer views. The benefits are also expected to accrue 
for imaging with reduced total data quantity, for example 
due to reduced acquisition time and/or reduced radiophar­
maceutical dosage. 
[0093] In general, it is expected that performing an inte­
grated design of both the sparse detector configuration (e.g., 
selecting the pattern, or randomness, of omitted detector 
elements) and the image reconstruction with image total 
variability constraint (selecting/optimizing the optimization 
program form and parameters) should yield improved per­
formance for the overall system combination including the 
PET scanner (or SPECT gamma camera) with sparse detec­
tor array(s) and the image reconstruction algorithm. In this 
regard, it should be understood that the sparse detector array 
configuration 12S of FIG. lA is merely an illustrative 
example, and that more generally the sparse array may be 
sparsified by omission of selected detector elements at 
various levels (e.g. tile, module) and in various chosen 
patterns ( or lack of pattern, e.g. random omission of tiles 
and/or modules). 
[0094] Yet another advantage of the disclosed approach 
employing iterative reconstruction with an image variability 
constraint is that the constraint can be tuned, or "dialed in" 
to accommodate run-to-run differences in imaging data, 
and/or to accommodate different clinical tasks that may 
benefit from different trade-offs between, on the one hand, 
highly smooth image texture (enforced with a lower maxi­
mum allowable image variability, e.g. lower t0 in the illus­
trative optimization programs employing image TV); and, 
on the other hand, high image sharpness (obtained by a 
higher maximum allowable image variability that effectively 
relaxes the image variability constraint, e.g. higher t0 in the 
illustrative optimization programs employing image TV). 
[0095] With reference to FIG. 25, an illustrative PET 
imaging method suitably performed using the PET imaging 
system of FIG. 1 is described. In an operation 50, PET 
imaging data are acquired, e.g. using the full scan configu­
ration 12F or the sparse scan configuration 12S (see FIG. 
lA). In an operation 52 the PET imaging system operator 
(e.g. a radiological technician or a radiologist) sets up the 
reconstruction. In some embodiments, this includes identi­
fying the clinical task being performed. The set-up 52 makes 
reference to configuration look-up tables and/or formulas 54 
to select parameters of the optimization program (and in 
some embodiments, also to select the form of the optimi­
zation program, e.g. the choice of divergence). In illustrative 
FIG. 25, only selection of the image TV constraint parameter 
t0 is illustrated, so that t0 dial-in tables and/or formulas are 
shown, but as just mentioned it is contemplated to have 
similar tables and/or formulas for dialing in other optimi­
zation parameters, and/or to select the program form. For 
example, in some embodiments the standard deviation or 
other parameter of the Gaussian blurring matrix or blurring 
operator g (Equation (3)) could be similarly dialed in. 
[0096] The illustrative t0 dial-in tables and/or formulas 54 
include a task-t0 look-up table 56 that includes (task, t0 ) 
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pairs. This look-up table 56 is suitably constructed by a 
skilled radiologist, for example, using the visual inspection 
approach described with reference to FIG. 17, but perhaps 
with the number of iterations limited to a reduced number 
typically used in clinical reconstruction tasks. Optionally, 
both t0 and the number of iterations may be optimized in this 
way for various tasks, so that in this variant embodiment the 
look-up table 56 includes triplet entries of the form (task, t0 , 

n) where n is the number of iterations to be performed for a 
particular task. In another approach, a task-specific conver­
gence criterion is substituted for n. The clinical tasks may be 
defined in various ways, such as by anatomical region, 
clinical objective(s ), patient characteristics (age, gender, 
etc), or so forth. 

[0097] The illustrative t0 dial-in tables and/or formulas 54 
further include a data quantity t0 adjustment 56 that adjusts 
t0 based on the quantity of acquired PET data. In general, if 
a large quantity of data is available (for example, due to a 
long imaging data acquisition time and/or high radiophar­
maceutical dosage used in the operation 50) then the image 
TV constraint parameter t0 is adjusted upward to impose a 
less aggressive constraint on the permissible image variabil­
ity, in the expectation that the large data set should produce 
a correspondingly high quality reconstructed image without 
aggressive variability constraint. By contrast, if a small 
quantity of data is available (for example, due to a short 
imaging data acquisition time and/or low radiopharmaceu­
tical dosage used in the operation 50) then the image TV 
constraint parameter t0 is adjusted downward to impose a 
more aggressive constraint on the permissible image vari­
ability, in the expectation that the small data set may lead to 
large artifacts that should be countered by more aggressive 
constraint on the image total variability. The data quantity 
adjustment 56 may be implemented as a look-up table (e.g. 
assigning various t0 values to different quantity range bins) 
or as an empirical formula, e.g. of the form t0=f(N) where N 
is a metric of the quantity of acquired PET data. In some 
embodiments the quantity adjustment 56 may be tied to the 
clinical task by integrating the adjustment 56 into the task 
look-up table 54 (e.g., having different data quantity adjust­
ment formulas defined for different clinical tasks). While a 
quantity adjustment 56 is illustrated, other data set-specific 
t0 adjustments may be similarly made, e.g. based on PET 
scanner configuration, the particular PET scanner that 
acquired the data set (in radiology laboratories having 
multiple PET scanners connected to a common reconstruc­
tion system) or so forth. 

[0098] With continuing reference to FIG. 25, when the 
operator is satisfied with the reconstruction set-up then the 
reconstruction is initiated and performed in an operation 60 
to generate a reconstructed image by executing the chosen 
optimization program (i.e. with the form and parameters 
chosen in the operation 52) to generate a reconstructed 
image that is displayed in an operation 62. In some con­
templated embodiments, the operator is given the opportu­
nity to adjust one or more reconstruction parameters based 
on visual assessment of the image displayed in the operation 
62. As an illustrative example, an image adjustment slide bar 
64 may be displayed via which the user may select for 
smoother texture (achievable by lowering t0 ) or may select 
for sharpened detail (achievable by raising t0). The limits on 
the range of t0 achievable using the slide bar 64 may be 
variously defined, for example as a percentage of the value 
chosen in the set-up 52 (e.g. maximum smoothness -80% of 
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the original t0 to maximum sharpness -120% of the original 
t0 ), or within a range pre-defined for the identified clinical 
task. Upon user selection of this change in t0 via the slide bar 
64, process flows back to the image reconstruction 60 to 
perform further iterations of the optimization program with 
the updated value for t0 , and the resulting updated image 
using the updated t0 value is displayed in a second pass 
through the display operation 62. In this approach, the 
reconstructed image initially generated during the first pass 
through block 60 may be used as the initial image for the 
further iterations of the optimization program. It may be 
noted that the choice of user interface dialog for modifying 
t0 may be other than the illustrative slide bar. Further, as in 
the illustrative embodiment the user interface dialog does 
not necessarily explicitly identify that t0 is the parameter 
being adjusted ( e.g., illustrative slide bar 64 is labeled with 
the "smoother texture" and "sharpen detail" labels). 

APPENDIX IEC PHANTOM AND ASSOCIATED 
METRICS 

[0099] FIG. 26 illustrates a transverse slice of the IEC 
(International Electrotechnical Commission) phantom used 
in the IEC phantom studies. In this phantom, six spheres 
labeled in FIG. 26 as s1 , s2 , s3 , s4 , s5 , and s6 , respectively, are 
embedded within the background and have diameters of 10, 
13, 17, 22, 28, and 3 7 mm, respectively. Spheres s 1 -s4 , 

referred to hot spheres, have an identical concentration level 
of positron emitters, which is four times of that in the 
background. Spheres s5 and s6 , referred to as cold spheres, 
contain no positron emitters. The dark circle at the center 
displays a transverse cross-section of the cylinder containing 
zero activity in the phantom. Additionally, twelve identical 
circular background regions of interest (ROis) of diameter 
37 mm are drawn in the slice, as shown in FIG. 26, and also 
in each of its four nearest neighboring slices, thus amounting 
to a total of 60 background ROis. Within each ROI, 6 
sub-RO Is of sizes corresponding to those of the hot and cold 
spheres are also drawn, as indicated in the top ROI in FIG. 
26, and thus a total ofT=60 sub-ROis for each of the sphere 
sizes is obtained, which are used below for calculating the 
average background activity for the corresponding sphere. 

[0100] Using CB,k to denote the average background 
activity within sub:ROI t of the size of sphere k, we define 
an average background activity corresponding to sphere k as 
CB.k=~tccl r CB.,.k· With this, percent contrasts ~J and Qc., 
for hot sphere j, where j=l, 2, 3, and 4, and cold sphere i, 
where i=5 and 6, and background variability Nk for sphere 
k, where k=l, 2, 3, 4, 5 and 6, defined in NEMANU 2-2012, 
are calculated as: 

and 

Qc · = 1 - ------"- X 100% ( Cc) 
.1 C 

B,i 

and 

✓ IXccl (Cs.,.k - Cs.d /(T-1) 
N, = ~-------- X 100% 

Cs., 

(16) 

(17) 

(18) 
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where aH and aB denote truth activity concentrations in a hot 
sphere and background, aH=4xaB, and CHJ and Cc,, are the 
average activities within hot sphere j and cold sphere i. 
[0101] We define a metric, which takes into account the 
trade-off between contrast and background noise, as: 

(19) 

where ~ 2 and Qc 5 denote percent contrasts for hot sphere 
s2 of dian{eter 13 ~ and for cold sphere s5 of diameter 28 
mm, and N 2 and N 5 percent background variabilities corre­
sponding to the two spheres. 
[0102] The invention has been described with reference to 
the preferred embodiments. Modifications and alterations 
may occur to others upon reading and understanding the 
preceding detailed description. It is intended that the inven­
tion be construed as including all such modifications and 
alterations insofar as they come within the scope of the 
appended claims or the equivalents thereof. 

1. An emission imaging device comprising: 
an emission imaging scanner including radiation detectors 

for acquiring emission imaging data; 
an electronic data processing device programmed to 

reconstruct emission imaging data acquired by the 
emission imaging scanner to generate a reconstructed 
image by executing a constrained optimization pro­
gram that is constrained by an image variability con­
straint IIT(u)llst0 in which t0 is an image variability 
constraint parameter, u is the reconstructed image at a 
current iteration of the constrained optimization pro­
gram, T(u) is a sparsifying image transform, and II ... 
II is a norm that outputs a strictly positive scalar value 
for the transformed image T(u); and 

a display device connected to display the reconstructed 
image. 

2. The emission imaging device of claim 1 wherein the 
norm II ... II is the image total variation norm II ... llrv· 

3. The emission imaging device of claim 1 wherein the 
sparsifying image transform is T(u) is a wavelet, curvet, or 
Fourier transform. 

4. The emission imaging device of claim 1 wherein the 
sparsifying image transform is T(u)= g-1u where g is a 
Gaussian blurring matrix. 

5. The emission imaging device of claim 1 wherein the 
image variability constraint is an image total variation 
constraint ll~lrvst0 in which t0 is a total variation constraint 
parameter and f is a latent image defined by u= g f where 
g is a Gaussian blurring matrix which is not an identity 
matrix. 

6. The emission imaging device of claim 4 wherein the 
Gaussian blurring matrix g is defined by a Gaussian func­
tion whose unit of standard deviation is defined in terms of 
image voxel size. 

7. The emission imaging device of claim 1 wherein the 
constrained optimization program has the form: 

u' = argmin D(gm, g(u)) subject to IIT(u)II s to and [T(u)]1 2 0 

12 
Jul. 8, 2021 

where gm denotes the emission imaging data, g(u) denotes a 
data model of the emission imaging scanner that transforms 
the reconstructed image u at the current iteration of the 
constrained optimization program into emission imaging 
data, D(gm,g(u)) denotes a measure of data fidelity between 
the gm and g(u), and [T(u)]}e:0 is a positivity constraint. 

8. The emission imaging device of claim 1 wherein the 
constrained optimization program has the form: 

u' = argminD(gm, g(u)) subject to llfllrv s to and fJ 2 0 
u 

where gm denotes the emission imaging data, g(u) denotes a 
data model of the emission imaging scanner that transforms 
the reconstructed image u at the current iteration of the 
constrained optimization program into emission imaging 
data, D(gm,g(u)) denotes a measure of data fidelity between 
the gm and g( u ), I I~ lrvst0 is an image total variation constraint 
in which t0 is a total variation constraint parameter, f is a 
latent image defined by u= g f where g is a Gaussian 
blurring matrix which is not an identity matrix, and ½"'O is 
a positivity constraint. 

9. The emission imaging device of claim 7 wherein 
D(gm,g(u)) is the Kullback-Leibler (KL) divergence. 

10. The emission imaging device of claim 1 wherein the 
emission imaging scanner is a positron emission tomogra­
phy (PET) scanner, a time-of-flight positron emission 
tomography (TOF-PET) scanner, or a single photon emis­
sion computed tomography (SPECT) gamma camera. 

11. The emission imaging device of claim 1 wherein the 
emission imaging scanner is a positron emission tomogra­
phy (PET) scanner including an annular ring of PET radia­
tion detectors, and the emission imaging data comprise line 
of response (LOR) data. 

12. The emission imaging device of claim 1 wherein the 
electronic data processing device is further programmed to 
set up the constrained optimization program prior to its 
execution including selecting the image variability con­
straint parameter t0 at least in part using a look-up table 
associating different values for t0 to different clinical tasks. 

13. The emission imaging device of claim 1 wherein the 
electronic data processing device is further programmed to 
set up the constrained optimization program prior to its 
execution including selecting the image variability con­
straint parameter t0 at least in part based on a data quantity 
of the acquired emission imaging data. 

14. An emission imaging method comprising: 
acquiring emission imaging data gm for a subject using an 

emission imaging scanner including radiation detec­
tors; 

reconstructing the emission imaging data to generate a 
reconstructed image by executing the optimization pro­
gram: 

u' = argminD(gm, g(u)) 

where g(u) denotes a data model of the emission imaging 
scanner that transforms the reconstructed image u at the 
current iteration of the optimization program into emis­
sion imaging data and D(gm,g(u)) denotes a measure of 
data fidelity between the gm and g(u); 
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during the reconstructing, constraining each iteration of 
the optimization program by an image variability con­
straint IIT(u)llst0 in which t0 is an image variability 
constraint parameter, T(u) is a sparsifying image trans­
form, and 11- . -11 is a norm that outputs a strictly positive 
scalar value for the transformed image T(u); and 

displaying the reconstructed image on a display device. 
15. The emission imaging method of claim 14 further 

comprising: 
during the reconstructing, further constraining each itera­

tion of the optimization program by the positivity 
constraint [T(u)]1;;,;0. 

16. The emission imaging method of claim 14 wherein the 
norm is an image total variation (image TV) norm. 

17. The emission imaging method of claim 14 wherein 
D(gm,g(u)) is a Kullback-Leibler (KL) divergence. 

18. The emission imaging method of claim 14 further 
comprising: 

after the displaying, receiving a user input indicating an 
updated value for the image variability constraint 
parameter t0 ; 

executing further iterations of the optimization program to 
generate an updated reconstructed image with each 
further iteration of the optimization program con­
strained by the image variability constraint IIT(u)llst0 

using the updated value for the image variability con­
straint parameter t0 ; and 

displaying the updated reconstructed image on the display 
device. 

19. A positron emission tomography (PET) imaging 
device comprising: 

a PET scanner including an annular ring of radiation 
detectors for acquiring PET imaging data; 

an electronic data processing device programmed to 
reconstruct PET imaging data acquired by the PET 
scanner to generate a reconstructed image by executing 
a constrained optimization program: 

u' = argminD(gm, g(u)) subject to llfllrv s to and fJ 2 0 
u 
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where g(u) denotes a data model of the PET scanner that 
transforms the reconstructed image u at the current 
iteration of the constrained optimization program into 
emission imaging data, D(gm,g(u)) denotes a measure 
of data fidelity between the gm and g(u), ll~lrvst0 is an 
image total variation constraint in which t0 is a total 
variation constraint parameter and f is a latent image 
defined by u= g f where g is a blurring matrix which is 
not an identity matrix, and ½"'O is a positivity con­
straint; and 

a display device connected to display the reconstructed 
image. 

20. The PET imaging device of claim 19 wherein the 
blurring matrix g is a Gaussian blurring matrix. 

21. The PET imaging device of claim 20 wherein the 
Gaussian blurring matrix g is defined by a Gaussian func­
tion whose unit of standard deviation is defined in terms of 
image voxel size. 

22. The PET imaging device of claim 19 wherein D(gm, 
g(u)) is the Kullback-Leibler (KL) divergence. 

23. The PET imaging device of claim 19 wherein the PET 
scanner is a time-of-flight (TOF) PET scanner and the 
electronic data processing device is programmed to recon­
struct TOF-PET imaging data acquired by the TOF-PET 
scanner to generate the reconstructed image. 

24. The PET imaging device of claim 19 wherein the 
annular ring of radiation detectors of the PET scanner has a 
sparse configuration in which some detectors of a regular 
pattern of detectors are omitted. 

25. The PET imaging device of claim 19 wherein the 
electronic data processing device is further programmed to 
set up the constrained optimization program prior to its 
execution including selecting the total variation constraint 
parameter t0 at least in part using a look-up table associating 
different values for t0 to different clinical tasks. 

26. The PET imaging device of claim 19 wherein the 
electronic data processing device is further programmed to 
set up the constrained optimization program prior to its 
execution including selecting the total variation constraint 
parameter t0 at least in part based on a data quantity of the 
acquired PET imaging data. 

* * * * * 


