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Abstract

Background: In spite of the scale-free degree distribution that characterizes most protein interaction networks (PINs), it is
common to define an ad hoc degree scale that defines ‘‘hub’’ proteins having special topological and functional
significance. This raises the concern that some conclusions on the functional significance of proteins based on network
properties may not be robust.

Methodology: In this paper we present three objective methods to define hub proteins in PINs: one is a purely topological
method and two others are based on gene expression and function. By applying these methods to four distinct PINs, we
examine the extent of agreement among these methods and implications of these results on network construction.

Conclusions: We find that the methods agree well for networks that contain a balance between error-free and unbiased
interactions, indicating that the hub concept is meaningful for such networks.
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Introduction

A large number of cellular processes are mediated by physical

interactions among proteins, including signal transduction,

enzyme activity, and post-translational modification. The elucida-

tion of large networks of protein-protein interactions has

contributed to the identification of biochemical and signaling

pathways, and to functional annotation of genes. Such networks

have been systematically determined and explored in the baker’s

yeast Saccharomyces cerevisiae [1,2,3,4,5,6], bacteria [7] and, more

recently, in other organisms [8] such as the fruit fly [9] and the

nematode worm [10] via a combination of high-throughput

experimental methods, data mining, and computational predic-

tions. One of the earliest observations relevant to the topology of a

large protein-protein interaction network was that it possesses the

‘‘scale-free’’ property [11], i.e., the nodal degree distribution of the

network is a power-law distribution [12,13], or nearly so, and

hence does not help identify any special degree ‘‘scale’’. Even so it

has been a common practice in the analysis of protein interaction

networks to define an ad hoc threshold or degree scale such that all

nodes (proteins) that have degree higher than this threshold are

considered to be special in some sense and are called ‘‘hub’’ nodes.

The notion of a hub protein is a compelling one because hub

proteins, though defined arbitrarily, often do have special

biological properties: they tend to be more essential than non-

hub proteins [14,15], they are found to play a central role in

modular organization of the protein interaction network [16,17],

and some studies indicate that hub proteins may also be

evolutionarily conserved to a larger extent than non-hubs [18].

However, at least partly because of the ‘‘scale-free’’ nature of

protein interaction networks there is no consensus in the literature

on the degree threshold that defines a hub. It is also unclear

whether the biological significance of hubs is relatively insensitive

to their precise definition. Examples of varying criteria used to

define hubs include: in Batada et al. [19], the top 95% and 50% of

the high degree nodes were defined as hubs in two different

contexts; in Reguly et al. [20], the network was partitioned

according to scale and in each sub-network hubs were identified as

nodes with 95% of the connectivity; in Han et al. [17], nodes with

degree greater than 5 were labeled as hubs; in Ekman et al. [21],

nodes with degree greater than 8 were labeled as hubs; in [22], a

degree cutoff of 20 was used to define hub proteins. In Jin et al.

[23], the top 20% of proteins each with more than 12 partners

were selected as hubs.

Given the largely ad hoc definition of hub proteins it is possible

that many special properties attributed to hubs may be simply a

consequence of the definition used. While this ambiguity may be

alleviated by examining correlations between degree and other

attributes without defining a category of nodes called hubs

[24,25,26], it is still true that the notion of a special class of hub

nodes remains ingrained in the literature without systematic

analysis of whether it is reasonable to define this class. This work

represents an attempt to carry out such an analysis.

The class of hub nodes in a protein interaction network may be

defined by specifying, as stated above, a degree threshold such that

all proteins with degree higher than this threshold are hubs or by

specifying a number threshold such that when proteins are ranked

by their degree a certain number of proteins from the top of this
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ranked list are hubs. In either case an objective definition of hub

proteins will require criteria used to specify these thresholds that

can be applied in the same manner to different networks.

What might these criteria be? Hub proteins (defined in an ad hoc

fashion) are often found to have lower connectivity among

themselves than non-hub proteins [27,28]. Therefore, one way to

define hub proteins could involve identifying the set of high-degree

proteins that has significantly lower mutual connectivity than

proteins that do not lie in this set. Whether such a definition is

reasonable depends on whether proteins so identified have the

biologically interesting properties that are usually attributed to hubs.

In contrast, it is also possible to define the set of hub proteins

using the biological properties themselves. For example, it has been

reported that the set of hub proteins in Saccharomyces cerevisiae may be

divided into the so-called ‘‘date’’ and ‘‘party’’ hubs that are

functionally quite distinct [19]. This division is in turn possible when

the coexpression between hub proteins and their network neighbors

follows a bimodal distribution. The bimodality implies the existence

of two classes of hubs, one with low (albeit positive) averaged

coexpression values and another with high averaged coexpression

values [17]. Thus, another way to define hub proteins is to find the

set of high degree proteins whose neighbor coexpression distribution

is statistically significantly bimodal. If the set is not unique, we may

more precisely define hub proteins as those whose neighbor

coexpression distribution is maximally bimodal.

Yet another biologically important property that hub proteins

are found to have is that they are significantly enriched for

essential proteins [14]. Thus, a third way of defining the set of hub

proteins is to identify the set of high degree proteins that is

statistically significantly enriched for essential proteins as com-

pared to non-hubs, perhaps maximally so.

The three criteria discussed above are not meant to represent an

exhaustive set; rather, they represent three properties most

commonly attributed to hubs: lack of intra-set connectivity,

bimodality of coexpression, and enrichment for essentiality. As a

way of examining the meaning (or lack thereof) of the hub concept,

we apply hub definitions based on these three criteria to four

differently constructed high confidence protein interaction net-

works in Saccharomyces cerevisiae (Methods), examine the extent to

which the definitions agree, and report our results and

interpretations thereof below.

Methods

Protein interaction and mRNA expression data
In order to test our criteria for defining hubs in protein

interaction networks, we used four different multi-validated

protein networks constructed for S. cerevisiae: the HC network

(with 2998 nodes and 9258 edges) was obtained from Batada et al.

[19]; the literature curated LC network (with 3307 nodes and

14169 edges) was obtained from Reguly et al. [20] by filtering the

full literature curated dataset for protein-protein interactions and

removing redundant edges; the FYI network (with 1379 nodes and

2493 edges) was obtained from Han et al. [17]; finally, the HCh

network (with 1787 nodes and 3004 edges) [19] was constructed

from HC by selecting only those high-throughput interactions that

were multi-validated by two or more different methods.

The coexpression criterion for defining hubs (Results) requires

the use of gene expression data. Yeast mRNA expression data

profiles corresponding to five different conditions [29] were used

in this study: stress response [30] (174 data points), cell cycle [31]

(77 data points), pheromone treatment [32] (56 data points),

unfolded protein response [33] (10 data points) and sporulation

[34] (9 data points), all of which were normalized and combined

into a single dataset - the yeast compendium [17]. This

compendium of 326 data points was constructed by combining

the expression data for the five different conditions from [29] and

normalizing the datasets such that data for each gene had zero

mean and unit standard deviation across all experimental

conditions. Missing data points were imputed by means of row

averages for each gene. Finally, a list of essential genes in yeast

(required for the essentiality criterion – see Results) was obtained

from [35].

Relative connectivity of degree-ordered subgraphs
One way to define hubs is to use the mutual connectivity

properties of high degree nodes in protein interaction networks. It

has been reported, for example, that hub-hub connections in PINs

are suppressed [27,28]. To define hubs using a mutual

connectivity criterion, one may therefore construct a subgraph

connectivity measure in the following way.

Relative connectivity of a subgraph. A simple measure of

topological connectivity of a graph is the relative size of its largest

component, i.e., the number of nodes in the largest component

divided by the total number of nodes in the graph. We will call this

measure the relative connectivity f of the graph. Clearly, when

f = 1, the graph is topologically connected, while a graph with a

small value of f must be composed of a large number of

disconnected components or fragments.

Suppose we are now given a large network G, and we construct

a ranked list of nodes ordered by their degree in decreasing order.

We may extract from the original network the subgraph

corresponding to the first n nodes in this ranked list, and call

this subgraph Gn. Note that, if hub-hub interactions are indeed

suppressed, then the relative connectivity of Gn should be small up

to a certain value of n beyond which, as more and more ‘‘non-

hubs’’ are included in Gn, the relative connectivity should begin to

increase, eventually reaching the relative connectivity of the entire

network G. The process of constructing successive subgraphs of

increasing size and computing their relative connectivities is

illustrated in Figure 1. The key point here is that the value n at

which the subgraph connectivity begins to rise could be

interpreted as a natural boundary between ‘‘hub’’ nodes and

‘‘non-hub’’ nodes, thus leading to an objective characterization of

what constitutes a hub node that is based purely on the topology of

the network.

Note that other natural measures of relative connectivity are

also possible. One example is a suitably normalized entropy of the

distribution of component sizes. This entropy would be zero for

connected networks and maximal for completely fragmented

networks where every node is isolated. We found similar results

when using this measure but ultimately chose the simpler

definition of relative connectivity.

Statistical significance of a rapid increase in subgraph

connectivity. We examined whether the boundary between

hubs and non-hubs, i.e., the occurrence of a minimum followed by

a rapid increase in the subgraph connectivity is a statistically

significant feature. To assess this, we constructed, corresponding to

each network studied, 10,000 random networks of the same size

and degree sequence, following the configuration model of

Newman [36]. The relative subgraph connectivity profiles were

constructed for each of these randomized networks. The

significance of an increase in a relative connectivity value fn for

subgraph Gn was then assessed by using the test statistic sn ;
fn+k2fn. This statistic basically measures the increase in subgraph

connectivity following the addition of the next k nodes to the

subgraph. The corresponding P-value, for each n, was then

empirically found as the fraction of random networks that had sn

Identifying Hubs
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values larger than or equal to the observed sn value in the real

network. The value of k is chosen heuristically: low values of k

(close to 1) capture local fluctuations in the relative connectivity,

whereas very large values of k capture gradual increases in the

relative connectivity. In practice, we find that an intermediate

value (k = 5) appears to delineate well the rapid increase in relative

connectivity that characterizes the addition of non-hubs to a

subgraph of hubs.

Jensen-Shannon Divergence between distributions of
essential gene composition

In order to assess the difference in composition of essential genes

among hubs and non-hubs (see Results), a useful statistic is the

value of the Jensen-Shannon divergence [37,38,39,40] between

two distributions p1 and p2. This divergence is given by

D p1,p2ð Þ~H P1p1zP2p2ð Þ{P1H p1ð Þ{P2H p2ð Þ, ð1Þ

where H(p) = 2Sx p(x) log2 p(x) is the entropy of distribution p, and

the weights P1 and P2 for the individual distributions are

constrained to lie between 0 and 1 and to satisfy P1+P2 = 1. Here,

we choose each weight to be proportional to the number of genes/

proteins in the corresponding set, i.e., P1 = n/N and P2 = (N2n)/

N, where n is the number of hubs, and N is the total number of

nodes in the network.

Results

Hub definition based on relative connectivity of degree-
ordered subgraphs

Relative subgraph connectivity profiles. The relative

connectivity (Methods) for successive subgraphs Gn was

computed as a function of n for the four yeast protein

interaction networks used in this paper. As shown in Figure 2,

the relative subgraph connectivities in the HCh and FYI networks

reach a minimum around n<200–300 nodes before beginning to

increase and eventually approach the relative connectivity of the

entire network. From the connectivity point of view, we may

therefore identify roughly the first 200–300 nodes in these

networks as hubs, since by themselves they form a highly

fragmented subgraph. It is interesting to note that, for the FYI

network, this hub definition agrees well with the ad hoc hub

definition in [17] (see Table 1). In a similar way, the relative

subgraph connectivity plots for HC and LC networks in Figure 2

show that roughly only the first 40 nodes in the HC network and

the first 10 nodes in the LC network may be identified as hubs by

the connectivity criterion.

Figure 1. A cartoon illustrating relative connectivity of subgraphs. Successive subgraphs are generated from a ranked degree list, and the
relative connectivity f is computed from them. Each node is represented by a black center with a gray ‘halo’ whose size is proportional to the degree
of the node. Note that newer nodes have smaller halos (lower degrees). Interactions involving newly added nodes are shown as dotted edges, while
previously established interactions are shown as dark edges. Note that all subgraphs upto G4 are completely disconnected in this example.
doi:10.1371/journal.pone.0005344.g001

Figure 2. Relative subgraph connectivity as a function of number of nodes. The four yeast protein interaction networks studied are HC and
LC (panel (a), first 100 nodes), HCh and FYI (panel (b), first 500 nodes), showing regions of interest where the relative subgraph connectivity increases
from a minimum.
doi:10.1371/journal.pone.0005344.g002
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Statistical significance of sharp increases in the subgraph

connectivity. Next, the statistical significance of sharp increases

within subgraph connectivity profiles was assessed, as described in

Methods. The corresponding P-values were then plotted as a

function of n for the four networks studied, with k = 5 (Figure 3).

We indeed found that the regions of transition between low and

high subgraph connectivity identified earlier are statistically

significant (P-value,1024), although other statistically significant

regions corresponding to local fluctuations in subgraph

connectivity were also identified (Figure 3). We find (data not

shown) that the statistical significance of the transition regions

persists for a broad range of values of k and therefore these regions

correspond to robust features of the relative connectivity profiles.

On the other hand, local fluctuations in the relative connectivity

do not turn out to be as robust. Note that the presence of

statistically significant sharp increases in relative subgraph

connectivity shows that such sharp increases are not found in

random scale-free networks, because in each case the real protein

interaction network is compared to random scale-free networks

with the same degree sequence.

We note that, although it has been reported that hub-hub

interactions are not suppressed in the HC network [19], Figures 2 and

3 show that roughly the first 40 high degree nodes of this network

form a statistically significant maximally fragmented subgraph (in the

sense of relative connectivity), and therefore, hubs identified by the

relative connectivity criterion by definition are sparsely connected

among themselves. The overall qualitative nature of the relative

connectivity profiles is also in agreement with the idea that hub

proteins tend to have more interactions with non-hubs [27].

Hub definition based on co-expression relationships
between interacting proteins

Hub proteins have been reported to have special properties with

respect to their level of co-expression with neighboring proteins in

a protein interaction network. Han et al. [17] found, in the case of

the FYI network, that the set of hubs could be further sub-divided

into ‘‘date’’ and ‘‘party’’ hubs, where party hubs exhibit

significantly higher coexpression with their protein interaction

neighbors than date hubs. Party hubs were further found to lie

within protein interaction modules, while date hubs connect

modules. It is important to note, as later pointed out by Batada et

al. [19], that the subdivision into date and party hubs is only

possible if the distribution of correlation between the expression

profiles of hubs and their interaction partners is significantly

bimodal in nature, thus admitting two separate interpretations

for the two peaks in the coexpression distribution. However, using

Table 1. Comparison between degree cutoffs for defining hubs by our relative connectivity based method and definitions used in
the literature.

Dataset Reference Nodes Edges Results based on relative connectivity Hub definitions used in the literature

Degree cutoff Number of hubs Degree cutoff Number of hubs

HC [19] 2998 9258 33 40 16–21 150–300

LC [19,20] 3307 14169 85 11 82, 17 12; 294

HCh [19] 1787 3004 17 20 7–10 90–180

FYI [17] 1379 2493 5 300 5 320

doi:10.1371/journal.pone.0005344.t001

Figure 3. Statistical significance of relative subgraph connectivity. Empirical P-values (dashed lines) for significance of the relative
connectivity measure (solid lines) for all the four networks were computed using 10,000 random networks corresponding to each real network. P-
values that are less than 1024 can be identified by the circles on the x-axis in each panel.
doi:10.1371/journal.pone.0005344.g003
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a hub definition similar to that used in [17], as well as other hub

definitions, Batada et al. [19] find that the coexpression

distribution between hubs and their partners is not significantly

bimodal, thus casting doubt upon the date and party hub

distinction. This issue has been the topic of some recent

controversy [41,42], including attempts to resolve it by taking

into consideration the network motifs of which the date and party

hubs are part [23].

Bimodality of coexpression distribution when hubs are

identified using the relative connectivity criterion. In

contrast to the approaches mentioned above, by following the

connectivity profile analysis carried out in the previous subsection, if

we identify only the top 40 or so high degree proteins as hubs in the

HC network, it is apparent that they do exhibit a bimodal

coexpression distribution with their protein interaction neighbors

under several expression conditions (Figure 4, (a) to (f)).

Furthermore, the reason why this bimodal distribution was not

observed in the same network by Batada et al. [19] is because, in the

absence of any objective criterion to define hubs, these authors

included many more high degree nodes in the hub set than are

suggested, for example, by the relative connectivity criterion.

Inclusion of as many high degree nodes in the hub set as Batada et

al. used leads to breakdown of bimodality in the coexpression

distribution (Figure 5). It is remarkable that a hub set definition

based on topology of the protein interaction network leads to a clear

coexpression-based separation between party and date hubs. We

may therefore explore the implications of defining a set of hubs

based solely on the propensity of this set to significantly separate into

date and party hubs. On the other hand, while the choice of hubs

with the relative connectivity criterion does indicate significant

bimodality in the coexpression distribution for HC and FYI

networks, it is much weaker in the HCh network and bimodality

does not occur at all in the LC network. In the case of the LC

network, this is most likely due to the fact that there are few nodes

(according to the relative connectivity criterion) that can be treated

as hubs, resulting in lack of significance due to small sample size.

Figure 4. Expression correlation distributions. The panels display distributions of the average Pearson correlation coefficient (PCC) between
expression profiles of hubs with their interaction partners (solid line) and non-hubs with their interaction partners (dashed line) for HC ((a)–(f)), LC
((g)–(l)), HCh ((m)–(r)) and FYI ((s)–(x)). The set of hubs for each network was determined from the relative subgraph connectivity analysis. Average
PCC values were computed using normalized gene expression profiles over the full yeast compendium that includes expression data under all five
conditions each of which is also analyzed individually.
doi:10.1371/journal.pone.0005344.g004
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Using significance of coexpression bimodality to determine

number of hub nodes. To assess whether a given hub set can be

significantly decomposed into party and date hubs, we make use, as in

earlier work [19], of the dip test [43] for deviations from uni-modality

of the PCC distribution. Rejection of the null hypothesis in this test

will allow us to infer that there are at least two modes in the

distribution, and that these two modes can be interpreted as

corresponding to party and date hubs. It has been shown in [19]

that the null hypothesis of uni-modularity can be rejected with 95%

confidence (P-value#0.05) provided the ‘dip’ statistic is at least as

large as the value given by the formula from [19]

ln dipð Þ~{0:928138{0:443622 ln Nð Þ

{0:0081978 ln Nð Þ{3:85139ð Þ2,
ð2Þ

where N is the size of the dataset from which the empirical

distribution is obtained.

As before, we ordered protein nodes in each of the four

networks studied in decreasing order of degree and successively

included more and more nodes in the hub set. For each

constructed hub set, we computed the Pearson correlation

coefficient (PCC) between hubs and their protein interaction

neighbors, then computed the dip statistic for the PCC

distribution. The result of this analysis is shown in Figure 6. Note

that the HC network displays a statistically significant partitioning

into date and party hubs if between about 15 and 90 of the top

degree nodes are included in the hub set. Similarly, the FYI

network admits such a decomposition if between about 50 and 200

top degree nodes are included in the hub set; the LC network

admits the decomposition only if about the top 50 high degree

nodes are included in the hub set; and finally, the HCh network

does not admit a date and party hub decomposition for any choice

of the hub set.

Note that Han et al. [17] used about 200 hubs for the FYI

network and yet appeared to find a bimodal distribution in PCC

values, while we do not find significant bimodality when 200 or

more hubs are included. This discrepancy could be attributed to

the fact that we use 326 data points in the expression compendium

as opposed to 315 used by Han et al. The additional 11 data points

arise from including all 56 data points in the pheromone treatment

dataset instead of only 45 data points used by Han et al. [17]

(Methods).

Hub definition based on composition of essential genes
It is well known that proteins with high degree in a protein

interaction network are more likely to be essential than proteins of

low degree [14,19]. This observation may be used as yet another

basis for defining a set of hubs: namely, as the set of high degree

proteins that is statistically significantly more enriched for essential

proteins as compared to proteins outside the set. More precisely,

we again order protein nodes in decreasing order of degree,

Figure 5. Bimodality of PCC distribution for the HC network. Inclusion of non-hub nodes into the list of HC hubs leads to reduction in bi-
modality of the average PCC distribution. This can be seen as the number of hubs included increases from 40 to 419 in the HC dataset. The panel on
the left displays smoothed probability density functions corresponding to the average PCC distribution while the panel on the right displays the
cumulative distribution functions. Percentiles refer to the percentages of top high degree nodes included in the hub set, following [19].
doi:10.1371/journal.pone.0005344.g005

Figure 6. Dip statistics as a function of number of included
hubs. Values of the dip statistic for all four networks studied as a
function of the number of top degree nodes included in the hub set.
The straight line marks the boundary between statistically significant
and insignificant dip values (at 95% confidence).
doi:10.1371/journal.pone.0005344.g006
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successively include a larger number of top degree nodes in the

hub set, and examine the difference in composition of essential

proteins between hubs and non-hubs as a function of number of

nodes included in the hub set.

Measures of essential gene composition difference.

There are two natural measures of difference of composition of

nodes of a certain type (here, essential proteins) between two sets of

nodes (here, hubs and non-hubs). One well known measure is the

P-value for the Kolmogorov-Smirnov test for difference in

distributions. If e1 is the fraction of essential proteins in the hub

set and e2 is the fraction of essential proteins among non-hubs,

then the Kolmogorov-Smirnov test is a test for inequality between

distributions p1 ; { e1, 12e1} and p2 ; { e2, 12e2}. Another

measure is the Jensen-Shannon divergence between these

distributions (Methods). Both these measures are plotted in

Figure 7 as a function of number of high degree nodes included

in the hub set. Indeed, we find that the two measures display

qualitatively reciprocal behavior for all four networks of interest:

the Jensen-Shannon divergence is high where the Kolmogorov-

Smirnov P-value is low, and vice versa.

Number of nodes to be included in the hub set for

statistical significance of difference in composition of

essential genes. It is clear that a hub definition based on

statistical significance of the compositional differences of essential

proteins among hubs and non-hubs is far more unconstrained than

the previous two hub definitions we have considered: most choices

of hub sets, that is, choosing between the top 3 and 2973 high

degree nodes for HC (99.01% of nodes); 15 and 3240 for LC

(97.52%); 17 and 1756 for HCh (97.31%); and 138 and 1232

(79.33%) for FYI, as hub nodes leads to statistically significant (P-

value#0.05) compositional differences of essential genes, with

hubs having significantly more essential genes than non-hubs.

Specifically, except for the LC network, relative connectivity based

hub definitions and coexpression based ones are consistent with

statistically significant essential gene compositional differences,

although none of the definitions correspond to a maximally

significant compositional difference (this maximum occurs when

approximately 900 top degree nodes are included in the hub set

for the HC network, 1200 for LC, 550 for HCh, and 550 for FYI).

For the LC network, the connectivity based hub definition and the

essentiality based one do not quite overlap: by the connectivity

criterion, only about the top 10 high degree nodes can be included

in the hub set, whereas by the essentiality criterion, at least 15 of

the top high degree nodes must be identified as hubs for a

statistically significant difference in number of essential genes

among hubs versus non-hubs. However, given errors and

incompleteness in protein interaction network data, these

numbers appear close enough to pronounce weak agreement

between the connectivity-based and essentiality-based criteria for

defining the LC hub set. We address this and related issues in

greater detail in the Discussion.

Robustness of hub definitions
The four yeast protein interaction networks that we examine,

although high confidence, are still subject to some error.

Specifically, it is reasonable to expect that the false negative rates

for these networks could be quite high, although the false positive

rates are low. In such situations, it is useful to work with clean,

simulated data in order to test the applicability of a new concept or

algorithm (for example, reverse engineering algorithms for gene

regulatory networks can be tested using simulated gene expression

data [44]). However, due to the lack of availability of simulated

protein interaction networks where the nodes have a clear

functional meaning, we instead accounted for errors in protein

interaction data by randomly adding and removing edges from the

parent protein interaction networks (this addresses both false

Figure 7. Essential gene enrichment. Enrichment for essential genes among hubs relative to non-hubs, as measured by the Jensen-Shannon
divergence (upper panels) and the P-value for the Kolmogorov-Smirnov test (lower panels).
doi:10.1371/journal.pone.0005344.g007
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positives and false negatives) and examining the resulting change

in hub definitions.

Figure 8 displays the effects of random edge addition and

deletion on the relative subgraph connectivity profiles. For each of

the four networks studied, 10% and 15% of the edges present in

the network were added at random, and the same number of edges

removed at random, respectively. In each case, the overall shape of

the subgraph connectivity profiles remains similar to the one in the

unperturbed case. For HC and LC, we find that the location of the

sharp increase in subgraph connectivity does not appreciably

change upon random addition and removal of up to 15% of edges.

For HCh and FYI, there is similarly no appreciable change to the

subgraph connectivity profiles upon random removal of up to 15%

of edges but the profiles do change upon random addition of

edges. These two networks contain far fewer edges in comparison

to the other two networks: HCh and FYI contain about a third of

the number of edges in HC and about a fifth of the number of

edges in LC. It is therefore expected that HCh and FYI would

have a large false negative rate, and therefore that addition of

edges would reduce the false negative rate and substantially

change the connectivity profiles. It is also expected that addition of

edges would bring the connectivity profiles of these two networks

closer to that of LC and HC, as observed. Furthermore, we find

that change in the location of the sharp rise in relative connectivity

does not substantially affect the degree value at which that rise

occurs, even though it affects the number of nodes classified as

hubs by the connectivity criterion: the degree cutoff value changes

from 17 (unperturbed value) to 16 (15% edges added) for HCh,

and from 5 (unperturbed value) to 7 (15% edges added) for FYI.

We thus find that the connectivity-based criterion for hubs is

reasonably robust with respect to random edge deletion and

addition. Furthermore, we found that the other two criteria are

extremely robust: random addition and deletion of up to 15% of

the edges has no appreciable effect on the statistically significant

ranges of cutoff values for all four networks (data not shown).

Discussion

Our aim in this work was to examine objective criteria that

could be used to define hubs in protein interaction networks. We

presented three such criteria here - one based purely on network

topology and the other two involving gene expression and

function. We applied these criteria to four differently constructed

protein interaction networks in S. cerevisiae. Our results lead to

some observations regarding network topology, the role of hubs,

and gene/protein function.

First, we found that all four networks displayed a characteristic

and relatively sharp statistically significant increase in relative

subgraph connectivity as successive lower degree nodes are added

to the subgraph. This increase identifies a clear ‘‘scale’’ in these

power law networks, and marks a transition between high degree

nodes (hubs) and intermediate degree nodes such that these two

classes have very different topological properties: hubs by

themselves form a highly fragmented subgraph while intermediate

degree nodes play the role of mediating connections among hubs

so that the subgraph formed by hubs plus intermediate degree

nodes has high connectivity.

Second, we found that, for two networks – namely, FYI and

HC, the hub notion as defined by this transition agrees well with

the hub notion defined by the ability to split the hub set into date

Figure 8. Robustness of relative subgraph connectivity. Relative subgraph connectivity profiles for unperturbed versions of all four networks
are shown, along with the corresponding profiles upon random addition and removal of 10% and 15% of the edges in the unperturbed networks.
doi:10.1371/journal.pone.0005344.g008
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and party hubs based on their neighbor coexpression character-

istics. In the process, we also found that the split between date and

party hubs is quite sensitive to how hubs are defined in the first

place, an issue that has largely been ignored in recent controversies

regarding the separation of date and party hubs. We also found no

agreement between the connectivity based hub notion and the

expression based one for the HCh and LC networks. We note that

both FYI and HC networks are constructed by combining

literature-curated and high-throughput data so that the resulting

network is, to a large extent, balanced in terms of both bias and

error. However, HCh is most likely error-prone (although more

unbiased than FYI or HC) and LC is most likely biased (although

more error-free than FYI or LC). It is intriguing that two very

different objective criteria for defining hubs agree well for

networks that have a balance of error-free and unbiased

interactions. Third, we find, in all four networks, that virtually

any characterization of the hub set results in a significant

difference in essential gene composition among hubs versus non-

hubs. This is of course a result of previously reported strong

correlations between degree and essentiality, and it implies that

statistical significance of difference in essential gene composition is

not a very precise way to define hubs in protein interaction

networks.

To summarize, it appears that the hub concept is more

meaningful for ‘‘balanced’’ networks (because of the agreement

between three independent notions of a hub) than it is for networks

that are dominated by error-prone, high-throughput data or

networks that are compendia of error-free but biased literature-

curated interactions. This observation, coupled with the methods

presented here, could therefore be used both to test a protein

interaction network constructed by a combination of methods as

well as to define hub proteins in such a network.

Finally, we remark that our methods can be generalized beyond

the simple notion of degree centrality to other more complicated

centrality measures that also have functional significance. Just as

the sharp rise in connectivity at a certain degree defines a degree

‘‘scale’’ that can be used to differentiate hubs from non-hubs, other

centrality measures could possess characteristic scales in protein

interaction networks.
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