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Abstract

Background and Methodology: Toxoplasma gondii causes substantial morbidity, mortality, and costs for healthcare in the
developed and developing world. Current medicines are not well tolerated and cause hypersensitivity reactions. The
dihydrotriazine JPC-2067-B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(39(2-chloro-, 4-trifluoromethoxyphenoxy)propyloxy)-
1, 3, 5-triazine), which inhibits dihydrofolate reductase (DHFR), is highly effective against Plasmodium falciparum,
Plasmodium vivax, and apicomplexans related to T. gondii. JPC-2067-B is the primary metabolite of the orally active
biguanide JPC-2056 1-(39-(2-chloro-4-trifluoromethoxyphenyloxy)propyl oxy)- 5-isopropylbiguanide, which is being
advanced to clinical trials for malaria. Efficacy of the prodrug JPC-2056 and the active metabolite JPC-2067-B against T.
gondii and T. gondii DHFR as well as toxicity toward mammalian cells were tested.

Principal Findings and Conclusions: Herein, we found that JPC-2067-B is highly effective against T. gondii. We demonstrate
that JPC-2067-B inhibits T. gondii growth in culture (IC50 20 nM), inhibits the purified enzyme (IC50 6.5 nM), is more
efficacious than pyrimethamine, and is cidal in vitro. JPC-2067-B administered parenterally and the orally administered pro-
drug (JPC-2056) are also effective against T. gondii tachyzoites in vivo. A molecular model of T. gondii DHFR-TS complexed
with JPC-2067-B was developed. We found that the three main parasite clonal types and isolates from South and Central
America, the United States, Canada, China, and Sri Lanka have the same amino acid sequences preserving key binding sites
for the triazine.

Significance: JPC-2056/JPC-2067-B have potential to be more effective and possibly less toxic treatments for toxoplasmosis
than currently available medicines.
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Toxoplasmosis is a neglected tropical disease as well as a

significant illness affecting persons throughout the world and new

and improved medicines are greatly needed for this and other

apicomplexan infections [1–40]. In developing tropical countries,

the problems for persons with AIDS can be exacerbated due to

lack of both anti-retroviral treatment and anti-Toxoplasma gondii

treatment. In this setting, this opportunistic pathogen causes

substantial neurologic disease and treatment of this illness can be

especially difficult because current gold standard medicines are

unobtainable and/or unaffordable and, due to their toxicity,

require monitoring which exceeds the capacity of many of the

available health care systems. Toxoplasmic eye disease (chorioret-

initis) is frequent in certain areas of Brazil and Colombia, areas

where the gold standard drugs are particularly problematic, and is

caused by atypical parasites that present major recrudescent and

recurrent clinical problems. T. gondii is highly pathogenic and

lethal in an emerging problem in French Guiana and Suriname

[22,34].

Throughout the world, new T. gondii infection during pregnancy

can lead to devastating disease for the fetus and newborn infant,

later impacting on the child’s health and development and

potentially on his/her later productivity [1–3]. In all areas of the
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world, this infection is life threatening and causes substantial

neurologic damage for those with immune compromise. For some

immunologically normal individuals this infection causes recurrent

ophthalmologic and other organ damage [1–3].

Thus, toxoplasmosis is an important neglected disease in

developing tropical countries, as well as an important cause of

illness in developed countries in tropical and temperate climates

[16–37]. All forms of toxoplasmosis (acute acquired, with or

without symptoms; congenital; ocular; and in immune-compro-

mised persons) occur throughout the world [1–3,16–40]. In

Europe and in the U.S. reports are that there are three

predominant clonal types of T. gondii [22–24]. Clonal genetic

type II T. gondii have been reported to predominate in France,

Poland, and the U.S [24]. Atypical genetic types of T. gondii have

been reported to occur in association with unusually severe eye

disease in the U.S. in a small case series [25] and clonal type I

parasites in some patients with AIDS and toxoplasmic encephalitis

[26], but clonal type II parasites have been predominant among

U.S. and European human isolates reported to date [24].

The presence of atypical T. gondii parasites in South and Central

America have recently been discovered and found to be associated

with significant human disease [27–32]. T. gondii strains in certain

areas of Brazil, Colombia, and Guatemala [33] are atypical (rather

than the European and U.S. predominant three clonal types) and

are often genetically polymorphic [34]. In the Minas Girais area of

Brazil (36), infection with T. gondii is common. In Erechim, Rio

Grande do Sul 17.7% of the population had ocular toxoplasmosis.

In Colombia, where atypical, non clonal type I, II, or III, parasites

are endemic, frequency of retinal lesions of ocular toxoplasmosis in

medical residents was 6% [31]. Severe congenital disease occurs in

0.5% of live births in Colombia [32]. In addition, in sharp contrast

to clonal type II parasites predominating in Europe, in certain

tropical countries with wild felids and a wide variety of wild

mammals, the parasites are genetically more diverse and the many

potential mammalian hosts apparently appear to be associated

with the presence of greater genetic diversity in these atypical

strains [34]. For example, in French Guiana [34], parasites have

many felid hosts and these parasites have been considered to be

representative of those found in the tropical Amazon reservoir

[35]. In Northern Coastal South America they have caused lethal

and severe diseases in humans including French soldiers; these

diseases have included persistent neurologic findings, Guillain

Barre syndrome, severe pneumonia, and death [37].

Substantial waterborne epidemics have occurred in Brazil [38],

in Canada [39], and in U.S. soldiers in Panama [40], considered

to be secondary to feral or wild cats in proximity to drinking water

[38–40]. A cat excretes up to 20 million unsporulated oocysts

during just a few days, these become infections following

sporulation, and even 1 oocyst is infectious [1]. Oocysts excreted

by cats can persist in warm moist soil for up to a year and in

seawater for up to 6 months. Thus infection is readily spread in

nature and is a very common infection throughout the world.

Congenital toxoplasmosis is a significant problem in the

developed and developing world, but it is particularly difficult in

parts of the developing world to obtain the gold standard

medicines, pyrimethamine and sulfadiazine. For example, in

Colombia, it is not possible to obtain pyrimethamine and

sulfadiazine to treat congenitally infected infants. The cost of

compounding, administering and monitoring the safe use of these

medicines also would likely be prohibitive for most residents of

rural Africa or Central and South America.

These issues also are especially problematic for those with AIDS

and toxoplasmosis in the developing world, because the medicines

and the monitoring required for their proper and safe use are often

also both unavailable and unaffordable [17]. In patients with

AIDS, toxoplasmosis is a major, presenting, opportunistic, central

nervous system infection and this is also the case throughout the

entire course of the AIDS infection when HAART is not

obtainable or affordable [17]. Early in the AIDS epidemic in the

U.S. and Europe, approximately half of seropositive, i.e.,

individuals with chronic T. gondii infection, and AIDS infected

individuals developed toxoplasmic encephalitis [16]. An example

of the likely magnitude of this problem can be seen when one

considers sub-Saharan Africa [17]. In sub-Saharan Africa

approximately 25 million people have HIV infection/AIDS [18],

and co-infection with T. gondii frequently remains undetected and

thus untreated [17]. T. gondii seroprevalence ranges from 35% to

84% in different African countries south of Sahara (reviewed in

[19]). Because approximately 30–50% of persons who have been

co-infected with HIV and T. gondii in the U.S. or Europe in the

pre-HAART era ultimately developed toxoplasmosis, the high

seroprevalence in sub-Saharan Africa combined with the HIV-

pandemic indicate that 2.5–10 million people in this region are

likely to be at risk of dying from toxoplasmosis. A recent study of

types of parasites using a SAG2 marker indicated that all three

SAG2-types have been found in chickens in Africa [20].

HIV infection is not the only immunodepressive health

condition that is frequent in the developing world and that

worsens manifestations of toxoplasmosis. In India, adults who were

malnourished but otherwise immunologically normal and who

were without HIV infection had severe, symptomatic toxoplasmic

encephalitis [21].

Ideal medicines to treat toxoplasmosis in developing tropical

countries would be effective, easily obtained and affordable,

without toxicity, including hypersensitivity and neutropenia which

requires co-adminstration of leukovorin and careful monitoring of

neutrophil count. They also would be non teratogenic so the fetus

and pregnant woman could be treated. In addition they would be

rapidly effective, safe, without any toxicity, when available in

pediatric suspensions. Further, they would be available parenter-

ally for those who are acutely ill and unable to take oral medicines.

They would be effective against all isolates of T. gondii (all three

clonal types and atypical parasites). Ideally a medicine would also

be cidal against bradyzoites. An ideal medicine for toxoplasmosis

Author Summary

Toxoplasmosis is a neglected tropical disease, an emerging
disease as well as a significant problem in developed
countries causing a substantial health burden. Better
medicines with less toxicity are greatly needed. Herein,
we found that a novel triazine currently being advanced to
clinical trials for malaria, JPC-2067-B, is highly effective
against T. gondii. We demonstrate that JPC-2067-B inhibits
T. gondii growth in culture (IC50 20 nM), inhibits the
purified enzyme (IC50 6.5 nM), is more efficacious than
pyrimethamine, and is cidal in vitro. JPC-2067-B adminis-
tered parenterally and the orally administered pro-drug
(JPC-2056) are also effective against T. gondii tachyzoites in
vivo. A molecular model of T. gondii DHFR-TS complexed
with JPC-2067-B was developed. We found that the three
main parasite clonal types and isolates from South and
Central America, the United States, Canada, China, and Sri
Lanka have the same amino acid sequences preserving key
binding sites for the triazine. Toxicology data are
presented. JPC-2056/JPC-2067-B have potential to be
more effective and less toxic treatments for toxoplasmosis
than currently available medicines.
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would have superb penetration into the eye and brain. These

would be major advantages for this neglected disease throughout the

world, and especially important in developing countries. JPC-2056/

JPC-2067-B have the potential to address some of these issues (e.g.

cidal for tachyzoites, less toxicity, available for oral and parenteral

use, and potentially available in pediatric suspensions that are stable

without refrigeration). Further testing and development will reveal

whether JPC-2056/JPC-2067-B can address the other characteris-

tics of an ideal anti-toxoplasmosis medicine.

Current treatment of toxoplasmosis includes the combination of

a folic acid antagonist and an inhibitor of dihydropteroic acid

synthesis: The gold standard treatment has been the classic anti-

malarial combination of pyrimethamine and sulfadiazine. In vitro

and in vivo experimental models of toxoplasmosis parallel this

clinical approach [1,3]. Herein, results using those same in vitro and

in vivo toxoplasmosis models with a new anti-malarial candidate,

JPC-2067B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(39-(2-

chloro-4-trifluoromethoxyphenoxy) propyloxy)-1, 3, 5-triazine)

and its pro-drug JPC-2056 are presented [4–10]. This new anti-

malarial class [4–10], without a sulfonamide, has dramatic potency

against multi-drug resistant Plasmodium falciparum strains [4–10].

We have waited a long time for a representative of this series of

compounds to advance to the clinic for the treatment of T. gondii

infection. This is especially important for those with this infection who

are immune compromised and potentially also for those infected in

pregnancy and in utero. New medications are needed because the

classic gold standard medications have substantial toxicity [1,2].

Moreover, pyrimethamine cannot be used in the first trimester of

pregnancy, as folate depletion is detrimental to fetal development [1].

Neutropenia is a common toxicity with pyrimethamine treatment

even when leukovorin is administered in conjunction with this

medicine [3]. Furthermore, pyrimethamine is generally administered

in a synergistic combination with sulfadiazine which has substantial

associated hypersensitivity [2] and toxicity (e.g. kidney stones or

hepatic or renal complications). New medicines are greatly needed for

individuals suffering from toxoplasmosis

The extremely promising candidate, JPC-2067-B, comes from a

pre-clinical anti-malarial series well known in malariology by the

name of the related metabolite WR99210 (4,6-diamino-1,2-

dihydro-2,2-dimethyl-1-[39(2,4, 5-trichlorophenoxy)propyloxy]-1,

3, 5-triazine) [4–10]. In vitro anti-malarial testing of WR99210

against drug-sensitive and drug-resistant strains has shown high

potency and full activity against P. falciparum strains not responsive

to pyrimethamine, proguanil or chloroquine with an ED50 of

0.05 ng/mL in vitro. As yet there is no strain resistant to this class of

compounds. WR99210 is discussed here in order to provide a

common point of cross reference. Like proguanil, the new clinical

candidate JPC-2056 (Figure 1) is a biguanide pro-drug which is

metabolized in vivo to the active dihydrotriazine JPC-2067-B

(Figure 1). For in vitro testing the metabolite must be used; for oral

usage the biguanide must be given. The ongoing work in

development and progression to use in the care of patients of

this very promising anti-malarial clinical candidate (Jacobus et al ,

unpublished) also is useful in development of the same medicine

for treatment of toxoplasmosis.

The previously described triazine WR99210 and its pro-drug,

PS-15, were developed in response to resistance of P. falciparum to

pyrimethamine and cycloguanil [4–11]. WR99210 was found to

be a very tight binding and potent inhibitor of P. falciparum DHFR-

TS [4–11]. WR99210 and PS-15 also were highly active in vivo

against P. falciparum, with activity 2 logs greater than that of

pyrimethamine. These compounds were also highly active against

P. vivax, without cross-resistance to other antifolates (S. Hunt,

personal communication). The therapeutic/toxic ratio is increased

because the high avidity of these compounds for the P. falciparum

DHFR differs from its lower avidity to mammalian DHFR [11].

Unfortunately, toxicity of WR99210 limited its development and

use and it will not be a clinically useful compound.

We previously evaluated the active triazine metabolite of

proguanil (cycloguanil) against T. gondii tachyzoites [12], and

more recently found that WR99210 was also highly active against

T. gondii in vitro and in vivo when administered parenterally [13].

PS15 also was found to be effective in vivo [13].

A major drug discovery effort over the past 6 years has

identified an analog of WR99210, JPC-2067-B, which has superior

pharmacological characteristics. Importantly, pro-drug JPC-2056,

is easily absorbed, bioavailable, and relatively nontoxic. In studies

with P. falciparum, oral administration of JPC-2056 resulted in

conversion to the JPC-2067-B which was cidal for the malaria

parasite. The high potency and selectivity of JPC-2067-B for

inhibition of apicomplexan parasite DHFR relative to mammalian

DHFR reduces the likelihood of neutropenia, thus enhancing the

margin of safety and convenience in monitoring white blood

counts with its use. JPC-2056 was also as active as monotherapy in

vitro as the synergistic combination of pyrimethamine and

sulfadiazine and is currently being advanced to clinical trials,

leading to a new and markedly improved class of anti-folate

medicines for the treatment of malaria.

The effect of JPC-2067-B on T. gondii is of considerable interest

and importance. The lack of toxicity of JPC-2067-B and the

favorable absorption and distribution profile of its prodrug JPC-2056

offers the possibility of overcoming the limitations of pyrimethamine.

The benefit of greater specificity for the parasite rather than host

DHFR could have the dual advantage of reducing host toxicity while

eliminating the need for simultaneous administration of a sulfon-

amide. Whether an IC 50 of 6.5 nM is sufficient to be used as a

single agent for either malaria or toxoplasmosis or would be better

used in conjunction with another anti-microbial in vivo under clinical

conditions remains to be determined.

Structures of JPC-2067-B and its corresponding pro-drug JPC-

2056 (Jacobus Pharmaceutical Company, Princeton, NJ) are

shown in Figure 1. The biguanide pro-drug is converted in vivo

to the biologically active dihydrotriazine through P450 metabolism

in the liver, and so in vitro experiments are always conducted with

the dihydrotriazine (JPC-2067-B). The overall aim of the

experiments was to determine effect of the dihydrotriazine on T.

Figure 1. Structures of triazines JPC-2056 and JPC-2067-B.
doi:10.1371/journal.pntd.0000190.g001
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gondii in vitro and in vivo and inhibitory effect of the dihydrotriazine

on T. gondii that was observed is described herein.

Methods

Parasites and assessment of effect of inhibitors on T.
gondii tachyzoites in tissue culture and cells in tissue
culture

Tachyzoites of the RH strain of T. gondii were passaged in

human foreskin fibroblasts (HFF). They were used to infect

fibroblasts to determine antimicrobial effects of candidate

compounds. Outcome was assessed with microscopy and uracil

uptake after four days in culture as described [8,12,13]. Briefly, for

testing of inhibitors in vitro against T. gondii tachyzoites, four-day

old confluent cultures of human foreskin fibroblasts (HFF) were

infected with 103 tachyzoites and cultured for 1 hour to allow

parasite invasion. Inhibitor was added and cells cultured for

3 days. They were supplemented with 3H uracil and incubation

extended for a further day, whereupon uracil incorporation into

cells and thus parasite growth were assessed by liquid scintillation

counting [8,12,13]. Studies were performed with inhibitors as

described in [8,12,13]. Lack of toxicity for mammalian host cells

was demonstrated first by visual inspection of the monolayer and

by parallel concomittant evaluation of separate 3H thymidine

incorporation assays by non-confluent HFF cell monolayers.

JPC-2067-B for use in in vitro (tissue culture) and in vivo
studies

For in vitro studies, a stock solution of JPC-2067-B was initially

dissolved in 100% dimethyl sulfoxide (DMSO) and then diluted in

complete tissue culture medium (IMDM-C) [IMDM with

NaHCO3 and 25 mM Hepes (Cambrex Bio Science, Walkersville,

MD), 10% fetal bovine serum (Gibco, Grand Island, N.Y.), 16
antibiotic-antimycotic solution (Cellgro, Mediatech), and 2 mM L-

glutamine (Gibco). Working concentrations of JPC-2067-B were

made using IMDM-C. Concentrations measured ranged from 10

to 100 nM. For certain in vivo studies, JPC-2067-B was initially

dissolved in 100% DMSO and then diluted 100 fold in 16 PBS

without calcium or magnesium (Cellgro) and administered intra-

peritoneally (i.p.) 15 minutes following i.p. inoculation of the

parasite. In other in vivo studies, the orally bioavailable pro-drug

JPC-2056 (40 mg/kg/dose, bid) was administered per orally by

gavage beginning one day following i.p. inoculation of the parasite.

DHFR enzyme activity and its inhibition by JPC-2067-B:
Effect against T. gondii DHFR compared to Pneumocystis
carinii, Mycobacterium avium-intracellulare and rat liver
DHFRs

DHFR from Pneumocystis carinii was produced as the recombinant

enzyme expressed in Escherichia coli [41]. The sequence of the protein

was identical to that predicted for the previously reported gene

sequence [4]. DHFR from T. gondii was isolated directly from RH

strain T. gondii grown in culture on Chinese hamster ovary cells

lacking DHFR (CHO/dhfr-, American Type Culture Collection

3952 CL) [42]. Organisms were introduced into a confluent

monolayer and harvested when the mammalian cells were lysed.

The 100,0006g supernate was stored in liquid nitrogen.

Mycobacterium avium-intracellulare used in these studies was a

clinical isolate (serovar 4) from Indiana University School of

Medicine, Department of Pathology. The strain was maintained

on Lowenstein-Jensen slants (Baxter Scientific) grown at room

temperature. To produce enzyme, the organism was grown in

Middlebrook 7H-9 liquid medium at 37uC to an OD660 of 0.5 to

0.7, which took several weeks. At harvest, the bacteria were

centrifuged, sonicated, and the 100,000 Xg supernate was stored

under liquid nitrogen until assay. These supernates contained both

DHFR and dihydroopteroate synthetase activity.

Rat liver DHFR was prepared from livers of female Sprague-

Dawley rats. The 100,0006 g supernate was partially purified by

ammonium sulfate precipitation; the 50–90% precipitate was re-

dissolved and stored in liquid nitrogen.

The spectrophotometric assay for DHFR was optimized for

temperature and concentration of substrate and cofactor for each

enzyme. The standard assay contained Na phosphate buffer pH 7.4

(40.7 mM), 2-mercaptoethanol (8.9 mM), NADPH (0.117 mM),

dihydrofolic acid (0.09 mM), KCL (150 mM), and sufficient enzyme

to produce a change in OD340 of 0.035/minute at 37uC. The

reaction was continuously recorded for 3 minutes. Activity under

these conditions was linear with enzyme concentration over a 4-fold

range. The low background activity in the absence of dihydrofolic

acid was subtracted from all rates.

DHFR was assayed with several concentrations of inhibitor to

produce rates ranging from 1 to 90% of the uninhibited rate. At

least three concentrations were required for calculation; most

curves contained five concentrations. Semi-logarithmic plots of the

data gave sigmoidal curves that were fit by non-linear methods to

determine the concentration yielding 50% inhibition (IC50) [Prism

4.0 (GraphPad)].

Effect against T. gondii DHFR compared with P.
falciparum DHFR and human DHFR

DHFR from T. gondii [43] prepared as above was also directly

compared to purified recombinant P. falciparum DHFR (pfDHFR)

and purified recombinant human DHFR (hDHFR). The hDHFR

was from pDFR plasmid [10]. The enzyme was purified following

ammonium sulfate precipitation, methotrexate:agarose affinity

chromatography, and finally a Superdex 200 size exclusion

column. The pfDHFR isolation methods were those reported

previously [11,44]. Pyrimethamine and JPC-2067-B were tested

for activity against recombinant pfDHFR, recombinant hDHFR

and the T. gondii lysate DHFR. The same buffer as used in the

other assays comparing T. gondii DHFR with DHFRs from rat

liver P. carinii and M. avium intracellulare was used but the maximal

activity, temperature, and length of observation were adjusted for

assays on the specific plate reader. The series of pfDHFR and

hDHFR assays were run twice for hDFHR and three times for

pfDHFR and the representative data are shown (see Results). The

tgDHFR sample was exhausted after one set of assays at a lower

activity than the others (uninhibited change in OD340 of 0.004/

min versus 0.02/min for the recombinant enzymes). The reaction

was setup at 23uC, the plate loaded, and the OD340 recorded at

20 second intervals for 10 minutes. The first 8 minutes were used

to generate linear fit slopes in Excel. Each concentration has been

reported as the mean of 5 replicate reactions with the standard

deviation reported as the error. Results are expressed as the

percent of control activity versus log concentration of inhibitor.

Prism 5.0 was used to generate curves from 12 different

concentrations of inhibitor using a non-linear fit method.

Quantitation of JPC-2067-B
JPC-2067-B levels were quantitated using an HPLC system

comprised of a Spectra System P4000 pump, AS300 autosampler,

UV2000 detector and a ChromJet integrator. The column is a

Phenomenex Synergi 4m MAX-RP 80A 15064.6 mm, s/n

219259. Elution was effected with a gradient of Mobile Phase A

(0.05% aqueous TFA) and Mobile Phase B (0.025% TFA in

acetonitrile). The flow rate was 0.5 ml/min, the injection volume

Novel Triazine JPC-2067-B Inhibits T. gondii
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was 20 ml and the detector was set to 290 nm. Observed retention

times for WR99210, PS-15 and JPC-2067-B were 9.5, 15.7 and

9.1 minutes, respectively.

T. gondii Infection of mice
Tachyzoites also were used to infect mice. Outbred Swiss

Webster mice were bred in our specific pathogen free colony.

When they were approximately 30 g, they received 10,000 RH

strain tachyzoites intra-peritoneally (i.p.); numbers of parasites

present in peritoneal fluid were counted four days later as

described [8,13]. Mice were maintained and utilized in accor-

dance with IACUC and NIH guidelines and approvals.

Studies of effect of peritoneal administration of JPC-
2067-B on murine toxoplasmosis

JPC-2067-B was administered parenterally. In initial studies,

this was given 15 minutes after i.p. infection and then each day for

four days(1.25 mg/kg/day). Peritoneal parasite burden was

quantitated on the fourth day after injection. Control mice

received 1% DMSO in PBS.

Studies of effect of oral administration of JPC-2056 on
murine toxoplasmosis

Beginning one day following infection of outbred SW mice with

tachyzoites of the RH strain of T. gondii mice received JPC-2056 by

gavage at a concentration of 40 mg/kg in 0.5 ml twice daily.

Peritoneal T. gondii burden was determined on day 4 following

infection.

PCR and bioinformatics of DHFR in various clonal and
atypical strains of T. gondii

Sequences of DHFR in each of the conventional parasite clonal

types (RH, type I; Me49 type II; and VEG, type III) from the data

base and by PCR using strains (isolates) from Brazil, Guyana,

Guatemala, Canada, China, and Sri Lanka [45–50] were deter-

mined with PCR using cDNA or g DNA as template. The primers

used were: Forward, 59-AGGGACGGTGAAGTTTCGCTTTA-

39; Reverse, 59-TTTCCGGTCTTCTTCGTCCATCCA-39.

Modeling of DHFR
Modeling of the T. gondii DHFR was based upon the crystal

structure of the closely related P. falciparum DHFR in complex with

WR99210, NADPH and dUMP (pdb id 1j3i), using the structure

based sequence alignment as a guide. Those residues which

displayed sequence variation between P. falciparum and T. gondii

DHFR and were located within 4Å
´

of the ligand binding pocket

were analysed to look for significant differences.

Toxicology studies
A 42-day toxicology study in CD-1 mice at doses up to 98 mg/

kg evaluating well-being, weight gain, and histopathology was

performed. A comparable 42-day toxicology study in Macaca

fascicularis also was performed. 7.5 mg/kg was established as the

NOAEL (No Observed Adverse Effect Level). JPC-2056 and JPC-

2067 were assayed in the Ames Test with and without microsomal

activation with tester strains TA97, TA98, TA100, TA102 and

TA1535.

Statistical analysis
Significance of differences was determined using a Mann Whitney

U test or Student’s T-test. All experiments were performed at least

twice and representative experiments are shown.

Results

Effect of JPC-2067-B on T. gondii tachyzoites in vitro
JPC-2067-B was highly effective against T. gondii tachyzoites in

tissue culture. A representative experiment of two trials is shown in

Figures 2A and B. The IC50 and IC90 for JPC-2067-B were

<20 nM and 50 nM, respectively. Differences between control and

treated groups at these and higher concentrations were statistically

significant (p,0.05). We observed some precipitation of the

compounds in the stock solutions, and so the supernatant was

analyzed by HPLC. We found that the actual concentrations

measured in the supernatants were approximately four-fold less than

the initial amounts. The actual amounts measured are shown in

Figure 2. Data are shown both as uptake of 3H uracil into nucleic

acid of the parasites (Figure 2B) and with micrographs of Giemsa

stained microscopic preparations (Figure 2C), with efficacy con-

firmed by both methods. Direct comparison of WR99210 and JPC-

2067-B and similar IC 50 and 90s for WR99210.

Lack of toxicity of JPC-2067-B for human fibroblasts
tested concomitantly with T. gondii tachyzoites

Human foreskin fibroblasts were tested concomitantly with T.

gondii tachyzoites with increasing concentrations of JPC-2067-B.

Data from a representative experiment are also shown in Figure 2A

and demonstrate no toxicity measured as uptaked of tritiated

thymidine by nonconfluent fibroblasts. The increased uptake of

thymidine in these cultures remains unexplained but also has been

noted with certain other compounds such as triclosan.

JPC-2067-B is cidal for T. gondii
In separate experiments, to determine whether JPC-2067-B would

be cidal for T. gondii, cultures were maintained for 52 days after

removing JPC-2067-B on the 4th day of culture. No plaques or growth

of parasites were detected (Figure 2D). The absence of growth follow-

ing removal of JPC-2067-B from HFF exposed to T. gondii indicates

that this compound is ‘‘cidal’’ and not merely ‘‘static’’ for T. gondii.

In vivo effect of parenteral administration of JPC-2067-B
and oral administration of the pro-drug JPC-2056 on
toxoplasmosis

JPC-2067-B was also highly effective against T. gondii tachy-

zoites in a mouse model. A representative experiment with JPC-

2067-B is shown in Figure 3A. In the experiment in Figure 3A,

mice were infected i.p. with 10,000 tachyzoites of the RH strain of

T. gondii for 15 minutes prior to initial treatment with JPC-2067-B.

For these parenterally treated mice, female mice received a dose of

1.25 mg/kg/day of JPC-2067-B, administered i.p. for the next

3 days. Control mice received an equivalent amount of DMSO (1%)

in 16PBS. In a separate experiment, DMSO at this concentration

was shown not to modify subsequent parasite numbers when

compared with i.p. inoculation of PBS. Mice treated with JPC-2067-

B appeared sleek and active 4 days after infection. In contrast,

infected control mice appeared ill, with ruffled fur and hunched

posture. Intraperitoneal parasite numbers were reduced by two logs

with treatment with JPC-2067-B on the fifth day after injection of

parasites (Figure 3A). These differences between control and treated

mice were statistically significant (p,0.05).

In addition, a similar experiment was performed with oral adminis-

tration of the orally bioavailable pro-drug JPC-2056 (40 mg/kg/

dose, bid) beginning one day following i.p. inoculation of the parasite.

Parasite number in peritoneal fluid was quantitated three days after

that, i.e. the fourth day following infection. For the mice orally treated

with JPC-2056 there were similar significant differences in parasite

peritoneal burden on the third day of treatment (Figure 3B, p,0.03).
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Figure 2. Effect of JPC-2067-B on T. gondii in human foreskin fibroblasts. A. Thymidine uptake assay demonstrates no toxic effect on host
cells. B. Uracil uptake assay demonstrates that JPC-2067-B is effective against T. gondii at low nanomolar concentrations. C. Micrographs showing
marked inhibition of T. gondii by JPC-2067-B. Note absence of plaques and parasites in treated cultures. Concentrations prepared are shown. D.
Micrograph showing absence of destruction of monolayers infected, exposed to JPC-2067-B for 4 days and cultured for prolonged times with T.
gondii. The control monolayer was completely destroyed by 5 days of culture. This contrasts with similarly infected monolayers in the micrograph
exposed to JPC-2067-B for 4 days and then with the JPC-2067-B removed. No plaques or Toxoplasma were seen throughout 52 days of culture,
demonstrating that the JPC-2067-B is cidal and no drug resistant mutants were selected in this experiment. No plaques were present from 4 days
through the subsequent 1 and 1/2 months after in vitro challenge.
doi:10.1371/journal.pntd.0000190.g002
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Effect of JPC-2067-B on T. gondii DHFR enzyme activity
compared with effects on DHFR enzyme activity from
mammalian cells, Pneumocystis carinii, and
Mycobacterium avium-intracellulare

The IC50 values determined for reference compound pyrimeth-

amine (JPC-1090) were in agreement with prior assays of the

compound (S. Queener, unpublished data). Both JPC-1090 and

JPC-2013 (cycloguanil) had IC50 values in the micromolar range

and were not significantly selective for pathogen DHFR (Table 1).

JPC-208 (WR92210) was more potent, with IC50 values in the

nanomolar range, but was not selective. JPC-2067-B had nanomolar

IC50 values for the DHFRs from all three pathogens and higher

IC50 value for the mammalian DHFR, yielding about 3.4 to 5.9 fold

selectivity. The potency for this compound greatly exceeds the

concentration of pyrimethamine used clinically (Figure 4).

Semilogarithmic plots of the data yielded normal sigmoidal

curves for pyrimethamine and cycloguanil (Hill slope of the

Figure 3. Reduction of numbers of parasites in peritoneal fluid. A. Reduction of numbers by i.p. treatment of mice with JPC-2067-B. B.
Reduction of numbers of parasites following treatment of mice with the pro-drug JPC-2056. JPC-2056 was administered by gavage. JPC-2056 is
converted into the active compound, JPC-2067-B.
doi:10.1371/journal.pntd.0000190.g003
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normalized log-concentration-response curve was about 21) but

both WR-99210 and JPC-2067-B yielded very steep curves for the

DHFRs from rat liver, P. carinii, and T. gondii; these compounds

produced normal dose response curves with M. avium DHFR. The

steep Hill slopes for JPC-208 and JPC-2067-B suggests that the

interaction of these compounds with these enzymes is not following a

simple 1:1 interaction expected with a competitive inhibitor.

Effect of JPC-2067-B on T. gondii DHFR enzyme activity
compared with effect on P. falciparum and human DHFR
enzyme activities

In Figure 5 and Table 2, the IC50 for P. falciparum DHFR was

3.9 nM, T. gondii DHFR was 32 nM, and human DHFR was

150 nM. For pyrimethamine, the IC50 for P. falciparum was 42 nM,

for T. gondii DHFR was 280 nM, and for human DHFR was

1,900 nM.

The differences in values between Figures 4 and 5 may be due to

variations in assays. Assays towards the comparison to inhibition of

opportunistic pathogens are run on partially purified lysates at 37uC
for a shorter duration while this set of assays is run in a high-

throughput manner with several recombinant enzymes and a more

drawn out observation time at 23uC. The amount of enzyme used

has been reduced to extend the length of observation and minimize

the effect of data points lost during plate setup. These differences in

methodology likely explain the slight shift in IC50. The ratio of IC50

values measured via high throughput method (hDHFR/tgDHFR) to

the ratio measured from lysates (rat liver DHFR/TgDHFR) under

different conditions are 4.6 versus 3.4, which are comparable.

Overall, JPC-2067-B has considerable potency and some

selectivity relative to mammalian reference enzymes, in two

independent laboratories under slightly different assay conditions

demonstrating the effect of this compound on T. gondii DHFR.

Molecular modeling of T. gondii DHFR [51] and
JPC-2067-B

In order to further investigate the efficacy of the dihydrotria-

zines on P. falciparum versus T. gondii with regard to drug design

and molecular mode of action, we have analyzed structural models

of the DHFR enzyme in the apicomplexan parasites. Of the 9

residues which form interactions with the dihydrotriazine

inhibitor, WR99210 in the structure of P. falciparum DHFR

Ile14, Cys15, Asp54, Met55, Phe58, Ile111, Leu119, Ile164 and

Tyr170 all are either identical or very similar in T. gondii DHFR

(Figure 6A). In particular Asp54 and Tyr170 which make

important H-bonds to the inhibitor are conserved in T. gondii

DHFR. Furthermore, modeling studies suggest that the substitu-

tion of Ile in P. falciparum DHFR for Met and Val at positions 111

and 164, respectively, in T. gondii DHFR results in little change in

the Van der Waals packing interactions made to the inhibitor

(Figure 6B). Modeling of the potent inhibitor JPC-2067-B into T.

gondii DHFR reveals that the additional trifluoromethoxy group is

positioned such that it is exposed to the solvent and as such can

probably be tolerated by the enzyme with respect to inhibitor

Table 1. Comparison of IC50 of JPC-2067-B against DHFRs of T. gondii and other opportunistic pathogens that are harmful to
patients with AIDS.

Compound Rat liver DHFR IC50 (mM) Pc DHFR IC50 (mM) Tg DHFR IC50 (mM) Mav DHFR IC50 (mM)

JPC-1090-A-1 (Pyrimethamine) 1.32 (1.14–1.55) 6.17 (5.45–6.98) 0.14 (0.12–0.16) 1.2 (0.93–1.45)

JPC-2013-B-1 1.73 (1.48–2.03) 8.9 (8.2–9.7) 0.41 (0.38–0.43) 12.1 (11.2–13.1)

JPC-208-B (WR99210) 0.00081 (0.0007–0.00093) 0.000265 (0.00025–0.00029) 0.000602(0.00057–0.00063) 0.00057 (0.00047–0.00071)

JPC-2067-B 0.0222 (0.0206–0.0238) 0.00393 (0.00371–0.00417) 0.0065 (0.00626–0.00674) 0.00375 (0.00291–0.00483)

Values shown are micromolar IC50 values (95% confidence limits).
doi:10.1371/journal.pntd.0000190.t001

Figure 4. Activity of pyrimethamine and JPC-2067-B against T.
gondii and rat liver DHFRs and DHFRs of other opportunistic
pathogens.
doi:10.1371/journal.pntd.0000190.g004
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binding. In addition, Cys50, which when mutated has been shown to

play a role in pyrimethamine resistance [52] in P. falciparum DHFR,

is replaced by His27 in T. gondii DHFR. Given its position close to

the trifluoromethoxy group of JPC-2067-B it may well be that

further modification to this part of the inhibitor could lead to

favorable interactions with the imidazole ring of His27 (Figure 6B).

However, these small changes in the T. gondii JPC-2067-B binding

site, when compared to its homologue in P. falciparum may contribute

to the somewhat lower sensitivity of this enzyme to JPC-2067-B.

DHFR sequences from clonal type I, II and III parasites
and atypical parasites including those found in
developing tropical countries

The deduced amino acid sequences of DHFRs [43] in the data

base for RH(U.S., type I), Me49 (U.S., type II), VEG (U.S., type

III), and Coug (atypical), and identified by PCR of DHFRs from

strains isolated from Brazil, Canada, Guyana, Guatemala, China

and Sri Lanka (Table 3, [45–50]) were identical (data not shown).

Figure 5. Activity of pyrimethamine and JPC-2067-B against T. gondii, P. falciparum, and human DHFRs.
doi:10.1371/journal.pntd.0000190.g005
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Toxicology studies
A 42-day toxicology study in CD-1 mice (Table 4) produced no

histopathology findings at doses up to 98 mg/kg and no gross

pathology with the exception of a reduction in the rate of weight

gain. A comparable 42-day toxicology study in Macaca fascicularis

(Table 4) produced histopathology findings at 15 mg/kg with

sproradic episodes of loose stools/diarrhea that resolved upon

drug withdrawal. No histopathology or gastrointestinal effects

were observed over the 42-day period. 7.5 mg/kg was established

as the NOAEL (No Observed Adverse Effect Level). When JPC-

2056 and JPC-2067 were assayed in the Ames Test, with and

without microsomal activation, no activity was exhibited with

tester strains TA97, TA98, TA100, TA102 and TA1535 (Table 4).

Discussion

Our studies demonstrate that JPC-2067-B is effective against T.

gondii in vitro with an IC50 of 20 nM and in vivo when administered

by i.p. injection and the pro-drug JPC-2056 is effective in vivo when

administered orally. Each of our results described herein with this

novel new class of anti-folate compound, dihydrotriazine, parallels

earlier findings with progenitors of this class which were not as

suitable for use for humans, e.g. proguanil [12] and WR99210

[13]. The major and compelling advantages of JPC-2056, which is

moving into clinical trials, is in the reduction of toxicity and

development of a much more readily bioavailable compound than

WR99210. WR99210 will never be a medicine for humans

because of difficulties in those areas, also reflected in the effect on

the mammalian enzyme, Table 1. The advantages of bioavail-

ability, high potency, specificity, selectivity and potential for

elimination of toxicities that occur with pyrimethamine either used

alone or in conjunction with sulfadiazine and other medicines and

because JPC-2056 will be entering clinical trials for the treatment

of malaria, testing of this new class of anti-folates against the

related apicomplexan T. gondii , was very important. Our results

suggest that the activity against T. gondii is significant and that JPC-

2056 has the potential to replace the combination of pyrimeth-

amine plus sulfadiazine or second line drugs in the treatment of

toxoplasmosis.

The modeling of T. gondii DHFR in complex with this family of

inhibitors gives us understanding at the molecular level of why

compounds of this class are highly active against T. gondii

tachyzoites. JPC-2056 already has been optimized for pharmaco-

kinetics and lack of toxicity and is being progressed to the clinic as

a potentially effective treatment for both P. falciparum and P. vivax

malaria. This ongoing work with malaria treatment provides a

major benefit for the development of JPC-2056 for the treatment

of toxoplasmosis.

It was of importance to determine whether in DHFR the amino

acids that bind this novel, highly active triazine vary in any of the

atypical parasites. Analysis of available DHFR sequences in the

data base for T. gondii isolates called RH, Me 49, VEG and Coug

parasites, i.e., from a clonal types I, II and III and atypical strains,

and analyses of isolates from Brazil, Guyana, Guatemala, Canada,

China, and Sri Lanka [45–50] demonstrates that the key amino

acids for binding the triazine are conserved (data not shown).

There are parasites that are genetically different in different

countries, e.g. in Brazil there are a variety of genetically different

parasites of clonal type I/III background with an association with

a very high prevalence of retinal disease; in Northern Coastal

South America highly virulent parasites that have recently been

lethal or caused severe illness and death in French soldiers in

French Guiana and in a recent epidemic in a village in Suriname

[53]; and atypical parasites in Central America and Mexico. In

Asia there are unique genotypes which differ from the typical I, II,

III genotypes, and in Africa there are all the genetic clonal types of

parasites. In Europe and Poland the predominant type is clonal

type II, and in the U.S. there are other types but a recent abstract

described predomininance of type II parasites. In an epidemic in

Sea Otters in Moro Bay California and on Vancouver Island, the

parasites are also atypical. Each of these parasites might have

different growth rates (new isolates often grow more slowly than

laboratory adapted strains, JP Dubey, personal observations) and

DHFRs with slightly different sequences or significant mutations

are a possibility. To begin to address this issue as it is relevant to

toxoplasmosis in the developing world, we have compared the

sequences of DHFRs in each of the conventional parasite clonal

types (I, II, and III) from the data base, and by PCR of DHFR

from isolates including a Brazilian strain, a strain from Guyana, a

strain from Guatemala, a strain from Canada, a strain from China

and a strain from Sri Lanka (Table 3; [45–50]). There are no

differences in amino acid sequence of the DHFRs.

As shown in the enzyme inhibition and parasite inhibition

assays herein, upon conversion of JPC-2056 to JPC-2067-B by

cytochrome p 450, the product, JPC-2067-B, becomes a highly

effective treatment for apicomplexan infections. Toxicological data

(Table 4) supports the advancement of JPC-2056 to clinical

development. A 42-day toxicology study in CD-1 mice produced

no histopathology finings at does up to 98 mg/kg and no gross

pathology with the exception of a reduction in the rate of weight

gain. A comparable 42-day toxicology study in Macaca fascicularis

produced histopathology findings at 15 mg/kg with sproratic

episodes of loose stools/diarrhea that resolved upon drug

withdrawal. Antimicrobial activities of JPC-2067 suggest that the

gastrointestinal events may be related to disruptions in intestinal

flora. No histopathology or gastrointestinal effects were observed

over the 42-day period. 7.5 mg/kg was established as the NOAEL

(No Observed Adverse Effect Level). JPC-2056 and JPC-2067

were assayed in the Ames Test with and without microsomal

activation. No activity was exhibited with tester strains TA97,

TA98, TA100, TA102 and TA1535. In summary, JPC-2056 has

two advantages over WR99210. Biguanides are better absorbed

and less toxic than their dihydrotriazine metabolites as has been

well established in the case of Proguanil. Cycloguanil, the active

dihydrotriazine metabolite of biguanide prodrug Proguanil is

Table 2. Comparison of IC50 of JPC-2067-B and Pyrimethamine against recombinant PfDHFR and hDHFR and DHFR activity of Tg
lysates.

Compound hDHFR IC50 (mM) PfDHFR IC50 (mM) TgDHFR IC50 (mM)

JPC-1090-A-1 (Pyrimethamine) 1.90 (1.77–2.05) 0.0422 (0.0369–0.0483) 0.275 (0.236–0.321)

JPC-2067-B 0.148 (0.136–0.162) 0.00388 (0.00364–0.00414) 0.0320 (0.0245–0.0417)

Values shown are micromolar IC50 values (95% Confidence Intervals).
doi:10.1371/journal.pntd.0000190.t002
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Figure 6. Structure based sequence alighnment of DHFR-TS and stereo view of DHFR/NADPH/WR99210 complex inhibitor binding
site. A. A structure based sequence alignment of the DHFR-TS enzymes from P. falciparum (P. fal), P. gallinaceum (P. gal), A. thaliana (A. tha),
Medicago truncatula (M. tru), Theileria annulata (T. ann) and T. gondii (T. gon). The sequence numbering for the P. falciparum and T. gondii is given
above and below the alignment, respectively. The secondary structure elements for P. falciparum DHFR-TS are given above the alignment with blue
cylinders and red arrows representing a-helices and b-sheets, respectively. Residues which display sequence conservation across all species are
highlighted by a black box with reverse type. Those residues which are involved in binding NADPH, pyrimethamine and WR99210 are highlighted by
a red, blue and green box below the alignment, respectively, with those residues which bind both inhibitors and/or NADPH displayed with multiple
colored boxes. B. A stereo view of the P. falciparum DHFR/NADPH/WR99210 complex inhibitor binding site with the closely related inhibitor JPC-
2067-B modeled. Those residues which form close interactions with the inhibitor are labeled and shown in a stick format, colored yellow, red, blue
and orange for carbon, oxygen, nitrogen and sulfur, respectively. The modeled JPC-2067-B inhibitor and NADPH cofactor are colored purple, blue,
red, orange, cyan and green for carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, respectively. In addition His27, in T. gondii DHFR, which
replaces Cys50 in P. falciparum DHFR, is also shown in a stick format (colored orange for carbon and blue for nitrogen) to demonstrate its close
proximity to the modeled JPC-2067-B inhibitor.
doi:10.1371/journal.pntd.0000190.g006
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poorly absorbed and is locally toxic. In addition, WR99210 and its

biguanide PS-15 possess a 2,4,5-trichlorophenoxy structural

feature, which is synthesized from 2,4,5-trichloro-phenol. This

phenol has the potential to generate the highly regulated toxin,

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This issue precluded

the development of both WR99210 as well as its prodrug PS-15.

Significantly, JPC-2056 and its active metabolite JPC-2067-B are

devoid of this liability and as such offer a significant advance in this

therapeutic class (Table 4). Finally, the LD50 value for JPC-2056

at high doses in the Thompson Antimalarial Assay provides

sufficient therapeutic index to justify continued clinical develop-

ment.

Improved, simpler to use, less toxic drugs that are easily

affordable, which can be prepared in stable solution, are needed to

treat toxoplasmosis. This new biguanide, moving into clinical

trials, promises to be a major advance for the treatment of those

with all forms of toxoplasmosis throughout the world. The

development of JPC-2056 addresses factors limiting use of current

medicines in the developing world for this neglected tropical

disease including ease of administration, lack of toxicity, ease of

monitoring, the potential for low cost, pediatric and parenteral

formulations of a new and improved medicine. This therapeutic is

likely to be of special benefit for those with this neglected tropical

disease in developing countries.

JPC-2067-B and JPC-2056 have considerable promise as a new

class of anti-folate medicines to provide improved and less toxic

means to treat toxoplasmosis as well as malaria caused by P. falciparum

and P.vivax and thus to become a new standard of care for treating

these diseases. The potential of these compounds to act in the absence

of sulfadiazine or in conjunction with other anti-microbials such as

atovaquone presents the possibility of increasing tolerance and

decreasing detrimental side effects including hypersensitivity.

Acknowledgments

We thank N. Sundar and G. Velmurugan for assistance with isolation and

obtaining DNA from parasites from Brazil, Guyana, Guatemala, Canada,

China, and Sri Lanka. We thank K. Kasza for her assistance with statistical

analysis and L. Kelley and T. Trendler for their assistance in preparing this

manuscript.

WRAIR material has been reviewed by the Walter Reed Army Institute

of Research. There is no objection to its presentation and/or publication.

The opinions or assertions contained herein are the private views of the

authors, and are not to be construed as official, or as reflecting true views of

the Department of the Army or the Department of Defense.

Author Contributions

Conceived and designed the experiments: RM PR CR SM GS WM DR

JD JF SQ. Performed the experiments: SM EM GS HH MK JD JF SQ SL.

Analyzed the data: RM PR CR SM EM GS WM HH DR MK JD JF SQ

SL. Contributed reagents/materials/analysis tools: RM PR GS WM JD

SQ. Wrote the paper: RM PR CR SM EM GS WM HH DR MK JD JF

SQ SL.

Table 3. Parasites from Brazil, Guyana, Guatemala, Canada, China and Sri Lanka that were sources of DHFR analyzed.

Isolate Country Source SAG2 Reference: author(date), Reference number

TgCkGa1 Guatemala Chicken2 III,nd Dubey et al. (2005) [50]

TgCkBr125 Brazil Chicken30 III,nd Dubey et al. (2006) [49]

TgCtPRC7 China Cat21 II,nc Dubey et al. (2007a) [48]

TgCkGy2 Guyana Chicken4 III,nc Dubey et al. (2007b) [46]

TgRcCa2 Canada Raccoon3 II,nc Dubey et al. (2008) [45]

TgDgSl12 SriLanka Dog31 II,nc Dubey et al. (2007c) [47]

nc = non clonal, 10 markers were used and data are in references numbers; the 10 nuclear markers include SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and a
new SAG2, and an apicoplast marker Apico.
nd = only SAGII data.
doi:10.1371/journal.pntd.0000190.t003

Table 4. Structural and Therapeutic Comparisons of JPC-2067, JPC-2056, WR99210 and PS-15.

JPC-2067 JPC-2056 WR99210

Structural Class Dihydrotriazine Biguanide Dihydrotriazine

Manufacturing Liabilities No No Yes

TEST SYSTEM TOXICOLOGICAL FINDINGS

1Ames w/o Activation Not Active* Not Active* Not Active#

1Ames with Activation Not Active* Not Active* Not Active#

1CD-1 Mice Inhibition of Weight Gain at 98 mg/kg for 42 days

1Cynomolgous Monkey Intermittent Loose Stools/Diarrhea 15 mg/kg for 42 days

4Oral LD50 Rat 1,980 mg/kg

4Oral LD50 Mouse 3,510 mg/kg

1Thompson Assay LD50 256 mg/kg @ Day 6 .128 mg/kg @ Day 6

*Tester Strains TA97, TA98, TA100, TA102 and TA1535.
#Tester Strains TA98, TA100, TA1535, TA1537 and TA1538.
doi:10.1371/journal.pntd.0000190.t004
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