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IMAGE RECONSTRUCTION FROM 
LIMITED OR INCOMPLETE DATA 

REFERENCE TO RELATED APPLICATIONS 

This application a continuation of U.S. application Ser. 
No. 14/584,250 (now U.S. Pat. No. 9,189,871), which is a 
continuation of U.S. application Ser. No. 14/095,562 (now 
U.S. Pat. No. 8,923,587), which is a continuation of U.S. 
application Ser. No. 12/223,946 (now U.S. Pat. No. 8,605, 
975), which is a national stage application under 35 U.S.C. 
§371 of PCT application No. PCT/US2007/003956 (filed on 
Feb. 12, 2007 and published as WO 2007/095312 A2), 
which claims the benefit of priority from U.S. Provisional 
Application No. 60,773,181, filed Feb. 13, 2006, all of 
which are incorporated by reference herein in their entirety. 

GOVERNMENT LICENSE RIGHTS 

The U.S. Government has a paid-up license in this inven­
tion and the right in limited circumstances to require the 
patent owner to license others on reasonable terms as 
provided for by the terms of grants KOi EB003913, ROI 
EB00225, and ROI EB02765 awarded by the National 
Institutes of Health. 

FIELD OF THE INVENTION 

The present invention relates to a method and apparatus 
for imaging an object. More particularly, the present inven­
tion relates to a method and apparatus for imaging an interior 
of a part, or all, of a living or non-living object with limited 
or incomplete data such as few view data or limited angle 
data or truncated data (including exterior and interior trun­
cation data). 

BACKGROUND 

Imaging techniques typically comprise detecting a signal 
from an object and constructing an image based on the 
detected signal. The detected signal may include any detect­
able datum from the sample, such as an electromagnetic 
signal from any frequency range, a magnetic signal, an 
ionization signal, heat, particles ( electron, proton, neutron, 
etc.), or the like. 

The imaged object may comprise any portion of a living 
organism (e.g., human or animal) or a nonliving object. For 
example, the portion may comprise an internal or an external 
portion, or may comprise the entire internal or external 
portion of the object. There are a wide variety of techniques 
for imaging of the object. Examples of imaging techniques 
include, but are not limited to: computed tomography (CT), 
positron emission tomography (PET), single-photon emis­
sion computed tomography (SPECT), magnetic resonance 
imaging (MRI), electron paramagnetic resonance imaging 
(EPRI), wave imaging (such as phase contrast imaging, 
thermacoustic imaging, and thermooptical imaging), and 
particle imaging. Further, various imaging techniques may 
be combined. For example, CT imaging and PET imaging 
may be combined to generate an image. 

CT is an X-ray procedure in which the X-ray beam may 
move around the object, taking pictures from different 
angles. These images may be combined by a computer to 
produce a cross-sectional picture of the inside of the object. 
PET is a diagnostic imaging procedure that may assess the 
level of metabolic activity and perfusion in various organ 
systems of an object, such as a human body. A positron 

2 
camera (tomograph) may be used to produce cross-sectional 
tomographic images, which may be obtained from positron 
emitting radioactive tracer substances (radiopharmaceuti­
cals), such as 2-[F-18] Fluoro-D-Glucose (FDG), that may 

5 be administered intravenously to the object. SPECT scans 
and PET scans are part of the nuclear imaging family. The 
SPECT scan is capable of revealing information about the 
object, such as blood flow to tissue. For example, radionu­
clide may be given intravenously, with the tissues absorbing 

10 the radionuclides ( diseased tissue absorbs at a different rate), 
and the rotating camera picking up images of these particles, 
which may then be transferred to a computer. The images 
may be translated onto film as cross sections and can be 
viewed in a 3-D format. Moreover, MRI and EPRl are 

15 imaging techniques that use a magnetic field and radiofre­
quency radiation to generate information, such as anatomi­
cal information. 

In certain instances, the images may be generated using 
the exemplary imaging techniques discussed above from full 

20 knowledge of their linear transforms. However, in many 
practical situations, one may have access only to fractions of 
such measurements and thus have limited (instead of full) 
knowledge of the linear transforms. Thus, in various forms 
of imaging, including tomography, one of the main issues 

25 for image reconstruction centers on data sufficiency and on 
how to estimate an image (such as a tomographic image) 
when the projection data are not theoretically sufficient for 
exact image reconstruction. Insufficient data problems occur 
quite frequently because of practical constraints due to the, 

30 imaging hardware, scanning geometry, or ionizing radiation 
exposure. The insufficient data problem may take many 
forms. For example, one type of the insufficient data prob­
lem derives from sparse samples, such as attempting to 
reconstruct an image from projection data at few views. 

35 Another example of an imperfect scanning data situation 
comprises limited angular range of the object to be imaged. 
Still another example comprises gaps in the projection data 
caused by bad detector bins, metal within the object, etc. In 
each of these three examples, the projection data are not 

40 sufficient for exact reconstruction of tomographic images 
and application of standard analytic algorithms, such as 
filtered back-projection (FBP), may lead to conspicuous 
artifacts in reconstructed images. 

Methodologies have been proposed attempting to over-
45 come data insufficiency in tomographic imaging. The meth­

odologies follow one of two approaches. The first approach 
includes interpolating or extrapolating the missing data 
regions from the measured data set, followed by analytic 
reconstruction. Such an approach may be useful for a 

50 specific scanning configuration, imaging a particular object. 
However, this approach is, very limited, and is not appli­
cable generally to the data insufficiency problem. The sec­
ond approach employs an iterative methodology to solve the 
data model for images from the available measurements. 

55 Iterative methodologies have been used for tomographic 
image reconstruction. These methodologies differ in the 
constraints that they impose on the image function, the cost 
function that they seek to minimize, and the actual imple­
mentation of the iterative scheme. 

60 Two iterative methodologies used for tomographic imag-
ing include: (1) the algebraic reconstruction technique 
(ART); and (2) the expectation-maximization (EM) meth­
odology. For the case where the data are consistent yet are 
not sufficient to determine a unique solution to the imaging 

65 model, the ART methodology finds the image that is con­
sistent with the data and minimizes the sum-of-squares of 
the image pixel values. The EM methodology applies to 
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may include determining a difference between the estimated 
and actual data. The comparison may then be used to 
generate a new estimated image. For example, the first 
estimated image may be combined with an image generated 

positive integral equations, which is appropriate for the 
CT-imaging model, and seeks to minimize the Kullback­
Liebler distance between the measured data and the projec­
tion of the estimated image. The EM methodology has the 
positivity constraint built into the algorithm, so that it is 
relatively unaffected by data inconsistencies introduced by 
signal noise. However, the EM methodology is limited in its 
ability to solve the data insufficiency problem. 

5 from the difference data to generate a new estimated image. 
In order to generate the image for the next iteration, the 

variation of the new estimated image may be constrained. 
For example, the variation of the new estimated image may 
be at least partly constrained in order to lessen or reducing For specific imaging problems, an accurate iterative 

scheme may be derived for the imperfect sampling problem 
by making a strong assumption on the image function. For 
example, in the specific example of reconstruction of blood 
vessels from few-view projections, one can assume that the 
3D blood-vessel structure is sparse. It is possible to design 

10 the total variation of the image. 

an effective iterative algorithm that seeks a solution from 15 

sparse projection data. This can be accomplished by mini­
mizing the 11 -norm of the image constrained by the fact that 
the image yields the measured projection data. The 11 -norm 
of the image is simply the sum of the absolute values of the 
image pixel values, and its minimization subject to linear 20 

constraints leads to sparse solutions. Again, this solution to 
the sparse data problem only addresses a very specific type 
of imaging. 

Still another methodology uses total variation (TV) for 
recovering an image from sparse samples of its Fourier 25 

transform (FT). TV has been utilized in image processing for 
denoising of images while preserving edges. In this meth­
odology, the optimization program of minimizing the image 
TV was investigated under the constraint that the FT of the 
image matches the known FT samples. This optimization 30 

program may satisfy an "exact reconstruction principle" 
(ERP) for sparse data. Specifically, if the number of FT 
samples is twice the number of non-zero pixels in the 
gradient image, then this optimization program can yield a 
unique solution, which is in fact the true image for almost 35 

every image function. The algorithm for FT inversion from 
sparse samples was applied to image reconstruction from 2D 
parallel-beam data at few-views. The use of the FT-domain 
TV algorithm (FT-TV) to address the 2D parallel-beam 
problem is only possible because of the central slice theo- 40 

rem, which links the problem to FT inversion. However, the 
FT-TV methodology is limited to imaging using a parallel­
beam and camiot be applied to image reconstruction for 
divergent-beams, such as fan-beam and cone-beam CT. This 
is because the FT-TV relies on the central slice theorem to 45 

bring the projection data into the image's Fourier space. 
Therefore, there is a need to reconstruct images from few 
view or limited angle data generated from divergent beams. 

SUMMARY 

The invention comprises a method and apparatus for 
reconstructing images from limited or incomplete data, such 

50 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. la depicts a Shepp-Logan phantom shown in a gray 
scale window of [0.87, 1.15]. 

FIG. lb depicts a magnitude of the gradient image of the 
Shepp-Logan phantom shown if FIG. la. 

FIG. 2 depicts an example of a fan-beam CT configura­
tion. 

FIG. 3 depicts a block diagram of an exemplary imaging 
system. 

FIG. 4 illustrates an individual row vector of the system 
matrix. 

FIG. 5 depicts a flow chart 500 of one example of the TV 
methodology. 

FIG. 6a shows the true image and images reconstructed 
by use of the TV, EM, andART methodologies, respectively, 
from 20-view projection data. 

FIG. 6b depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images shown in FIG. 6a. 

FIG. 6c depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the EM (dashed lines) and ART (dotted lines) algo­
rithms for the EM and ART reconstructed images shown in 
FIG. 6a. 

FIG. 7a depicts images for random ellipses, the gradients 
of the random ellipses and the reconstruction of the image 
using TV. 

FIG. 7b depicts images for random spots, the gradients of 
the random spots and the reconstruction of the image using 
TV. 

FIG. 7c depicts images for lines phantoms, the gradients 
of the lines phantoms and the reconstruction of the image 
using TV. 

FIG. Sa shows the true image and images reconstructed 
by use of the TV, EM, andART methodologies, respectively, 
from data over 180°. 

FIG. Sb depicts image profiles shown in FIG. Sa along the 
centers of the images in the horizontal and vertical directions 
obtained with the TV algorithm (thick line) for the TV 
methodology reconstructed images shown in FIG. Sa. 

FIG. Sc depicts image profiles along the centers of the 
55 images in the horizontal and vertical directions obtained 

with the EM (dashed lines) and ART (dotted lines) algo­
rithms for the EM and ART reconstructed images shown in 
FIG. Sa. 

as few view or limited angle data and data containing 
exterior and/or interior truncations. The data can be inter­
preted as a linear transform of the object, such as projections 
generated from parallel or divergent beams. In one aspect of 
the invention, the method and apparatus iteratively con­
strains the variation of an estimated image in order to 
reconstruct the image. As one example, a divergent beam 
may be used to generate data ("actual data"). As discussed 
above, the actual data may be less than sufficient to exactly 
reconstruct the image by conventional techniques, such as 
FBP. In order to reconstruct an image, a first estimated image 
may be generated. Estimated data may be generated from the 65 

first estimated image, and compared with the actual data. 
The comparison of the estimated data with the actual data 

FIG. 9a shows the true image and images reconstructed 
60 by use of the TV, EM, and ART algorithms from data over 

90°. 
FIG. 9b depicts image profiles along the centers of the 

images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images shown in FIG. 9a. 

FIG. 9c depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
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FIG. 17d shows an image reconstruction using the TV 
methodology using the data from FIG. 17b. 

with the EM (dashed lines) and ART (dotted lines) algo­
rithms for the EM and ART reconstructed images shown in 
FIG. 9a. 

FIG. 10 depicts an intensity plot of the "bad bins" 
projection data function. 

FIG. 18a shows an example of a Shepp-Logan image. 
FIG. 18b shows partial data for the object depicted in FIG. 

5 18a if interior data is obtained but at least some of the 

FIG. lla shows the true image and images reconstructed 
by use of the TV, EM, and ART methodologies, respectively, 
from data containing bad detector bins. 

FIG. llb depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 10 

with the TV algorithm (thick line) for the TV methodology 
reconstructed images shown in FIG. lla. 

FIG. llc depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 

15 
with the EM (dashed lines) and ART (dotted lines) algo­
rithms for the EM and ART reconstructed images shown in 
FIG. lla. 

FIG. 12a shows the true image and images reconstructed 
by use of the TV, EM, and ART methodologies, respectively, 20 

from 20-view data containing bad detector bins. 
FIG. 12b depicts image profiles along the centers of the 

images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images in FIG. 12a. 

FIG. 12c depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the EM (dashed lines) and ART (dotted lines) algo­
rithms for the EM and ART reconstructed images in FIG. 
12a. 

FIG. 13a shows the true image with a wavy background 
and images reconstructed by use of the TV, EM, and ART 
methodologies, respectively, from 20-view data. 

25 

30 

exterior data is excluded. 
FIG. 18c shows an image reconstruction using Filtration­

backprojection using the data from FIG. 18b. 
FIG. 18d shows an image reconstruction using the TV 

methodology using the data from FIG. 18b. 
FIG. 19a shows an example of a Shepp-Logan image 

depicting spots. 
FIG. 19b shows partial data for the object depicted in FIG. 

19a if few views (e.g., 5 views) are obtained. 
FIG. 19c shows an image reconstruction using Filtration­

backprojection using the data from FIG. 19b. 
FIG. 19d shows an image reconstruction using the TV 

methodology using the data from FIG. 19b. 
FIG. 20a shows an example of a Shepp-Logan image. 
FIG. 20b shows partial data for the object depicted in FIG. 

20a if few views and interior data (but not exterior data) are 
obtained. 

FIG. 20c shows an image reconstruction using Filtration­
backprojection using the data from FIG. 20b. 

FIG. 20d shows an image reconstruction using the TV 
methodology using the data from FIG. 20b. 

FIG. 21a shows an example of a Shepp-Logan image. 
FIG. 21b shows partial data for the object depicted in FIG. 

21a if data with metal is removed. 
FIG. 21c shows an image reconstruction using Filtration­

backprojection using the data from FIG. 21b. 
FIG. 21d shows an image reconstruction using the TV 

methodology using the data from FIG. 21b. 
FIG. 13b depicts image profiles along the centers of the 

images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images in FIG. 13a. 

FIGS. 22a-e show images reconstructed by TV from 
35 noisy projection data taken at only 25 views. 

FIG. 13c depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the EM (dashed lines) and ART (dotted lines) alga- 40 

rithms for the EM and ART reconstructed images in FIG. 
13a. 

FIG. 23 shows a schematic of the part of Radon space 
sampled by the circular x-ray source trajectory. 

FIG. 24a shows a schematic of the simulated circular 
cone-beam CT configuration. 

FIG. 24b shows a vertical slice, gray scale window [0.3, 
1.7], of the disk phantom for the configuration in FIG. 24a, 
and FIG. 24c shows its projection from a single view. 

FIG. 14a shows the true image with a wavy background 
and images reconstructed by use of the TV, EM, and ART 
methodologies, respectively, from bad detector bin data. 

FIG. 14b. depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the TV methodology (thick line) for the TV method­
ology reconstructed images in FIG. 14a. 

FIGS. 2Sa-b show vertical slices of volumes recon­
structed by TV-minimization (FIG. 25a) and POCS (FIG. 

45 25b) for the case of ideal, consistent projection data. The 
gray scale window is [0.3, 1.7]. 

FIGS. 25c-d show the profiles for the reconstructed 
images in FIGS. 2Sa-b and the phantom along the z-axis. 

FIG. 14c depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the EM (dashed lines) and ART (dotted lines) algo­
rithms for the EM and ART reconstructed images in FIG. 
14a. 

FIGS. 26a-b show vertical slices of volumes recon-
50 structed by TV-minimization (FIG. 26a) and POCS (FIG. 

26b) for projection data from the discrete disk phantom with 
0.1 % Gaussian noise. The gray scale window is [0.3, 1.7]. 

FIG. 15 shows images reconstructed from 20-view noisy 55 

data by use of the TV algorithm after the gradient descent 
phase (TVl) and after the projection phase (TV2) and by use 
of the EM and ART algorithms. 

FIG. 16 shows images reconstructed from bad-bin noisy 
data by use of the TV algorithm after the gradient descent 60 

phase (TVl) and after the projection phase (TV2) and by use 
of the EM and ART algorithms. 

FIG. 17a shows an example of a Shepp-Logan image. 

FIGS. 26c-d show the profiles for the reconstructed 
images in FIGS. 26a-b and the phantom along the z-axis. 

FIG. 27a shows the difference between projection of the 
discrete and continuous disk phantom from a single view, 
with the maximum value of the difference being 2.0% of the 
projection data itself. 

FIG. 27b shows vertical slices of the volume recon­
structed by TV-minimization for projection data from the 
continuous disk phantom. The gray scale window is [0.3, 
1.7]. 

FIG. 27c shows the profiles are shown for the recon­
structed images and the phantom from FIG. 27b along the FIG. 17b shows partial data for the object depicted in FIG. 

17a if only exterior data may be obtained. 65 z-ax1s. 
FIG. 17c shows an image reconstruction using Filtration­

backprojection using the data from FIG. 17b. 
FIG. 28a shows an example of a Shepp-Logan phantom. 

FIG. 28b shows the Cartesian grid, with the strips demon-
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strating which regions of the Cartesian grid used in the 
image reconstruction process. 

FIG. 29a shows the reconstructed image from consistent 
(noiseless) data. FIG. 29b shows the image obtained from a 
single inverse Fourier transform, before applying the TV 
algorithm. FIGS. 29c-d show the reconstructed horizontal 
and vertical profiles, respectively, overlaid on the original 
profiles. 

FIG. 30a shows the inverse Fourier transformed image 
after addition of Gaussian noise in Fourier space. FIG. 30b 
shows the image reconstructed from these data. FIGS. 30c-d 
show the reconstructed horizontal and vertical profiles ( solid 
line) overlaid on the original noisy image (dotted line). 

FIGS. 3la-d are the same as FIGS. 30a-d, but the Gauss­
ian noise has been tapered in Fourier space to emphasize 
noise on larger scales as seen in FIG. 31a. FIGS. 31b-c 
illustrate the results. 

FIGS. 32a-b show a comparison of reconstruction per­
formance with (FIG. 32a) and without (FIG. 32b) including 
TV minimization in the reconstruction algorithm. 

FIGS. 33a-b are the same as FIGS. 32a-b, but for the 
tapered Gaussian noise model. 

DETAILED DESCRIPTION OF THE 
PRESENTLY PREFERRED EMBODIMENTS 

In order to address the deficiencies of the prior art, a 
method and apparatus is described below for imaging an 
object using data which is limited or incomplete, such as 
few-views or limited angle data. The limited data may be 
due to a variety of reasons, such as few views, limited angle 
data, or other missing data problems (such as a bad detector). 
These reasons are provided as merely illustrative. For 
example, one may wish to reduce the dosage, the radiation 
exposure (such as in the instance of and X-ray source), the 
acquisition time, and/or data artifacts. In those instances, an 
image may still be generated, even though a limited amount 
of data is collected. As another example, the system and/or 
the object may result in a missing data problem. Specifically, 
the system may include a defect in it, such as a bad detector. 
Or, the object may include some aspect that limits the 
amount of data. As merely one example of this, the presence 
of any region of an object that effectively prevents trans­
mission of radiation through a portion of the object may 
result in missing data problems. Specific examples may 
include artifacts caused by hip implants in CT imaging, 
metal dental implants in dental CT imaging, or x-ray absorb­
ing implants used in brachytherapy. These examples are 
merely for illustrative purposes. The methodology presented 
herein may still allow generating an image from the data 
gathered, whether the data comprises partial data of the ROI 
or complete data of the ROI. 

8 
sparse, structures. One aspect of the invention extends the 
11 -norm based strategy based on examining a specific char­
acteristic (such as variation) of the estimated image. 

Although an image with an extended distribution does not 
5 have sparse structures, the distribution of its gradient mag­

nitude, which may also be referred to as the total variation 
(TV), may have sparse structures. Furthermore, if the struc­
tures of the TV of an image are not sparse, its second-order 
TV, which is the square root of the summation of the squares 

10 of its second order partial derivatives, is likely to have sparse 
structures. Similarly, one can define high-order TVs of the 
image, and these TVs are likely to have sparse structures. 

The present approach may achieve the recovery of the 

15 
image from limited knowledge of its linear transform 
through the minimization of the linear combination of the 
11 -norm and the TVs of the image under the constraint that 
the linear transform of the estimated image is consistent with 
the measured data. In essence, the (n+ 1 )th-order TV may be 

20 interpreted as the 11-norm of the nth-order partial derivative 
distribution of the image. Therefore, the linear combination 
of these generalized TVs can in effect be understood as a 
11 -norm problem. 

The methodology may be modified and implemented as a 
25 constraint optimization procedure. It can also be imple­

mented in other ways. Further, the methodology may be 
applied to a wide variety of imaging problems. Examples of 
areas of application include, but are not limited to: medicine, 
animal imaging, industrial non-destructive detection, secu-

30 rity scanning, and other applications. The following are 
some examples of the imaging problems that may be 
addressed by use of the methodology: (1) Fourier-based 
MRI and EPRI (sparse Cartesian samples, spiral samples); 

35 
(2) Projection-based few-view and limited-view EPRI; (3) 
Metal and other artifacts in fan-beam and cone-beam CT and 
in MRI; ( 4) Interior problems in CT, MRI, and other imaging 
modalities; (5) Exterior problems in CT and other imaging 
modalities; (6) Few-view CT, SPECT, reflectivity tomogra-

40 phy, and other imaging modalities; (7) Limited-view CT, 
SPECT, reflectivity tomography, and other imaging modali­
ties; (8) Few-view (and limited-view) diffraction tomogra­
phy; (9) Circular cone-beam CT problem; (10) Few-view 
and limited-view circular cone-beam CT problem; (11) 

45 C-arm imaging problem (i.e., few view and limited view); 
(12) On-board imager problem in radiation therapy; (13) 
Few-view and limited view phase contrast CT; (14) Limited 
view problem in PET with panel detectors; (15) Tomosyn­
thesis (few view and limited view); (16) CT- and C-arm-

50 based angiography; (17) Security scans of luggage, con­
tainer, and other objects with few views on a trajectory (line 
or other curve forms) of finite path length; (18) Microscopic 
scans; and (19) Oil and mine exploration scans. These As discussed in the background, if the data was limited, 

reconstruction of the image from conventional techniques, 
such as FBP, was unacceptable. The following is an 55 

approach to overcoming the deficiencies of the prior art by 
recovering images accurately from limited (instead of full) 
knowledge of their transform (such as linear transform). An 
image with sparse structures may be accurately recovered 
from limited knowledge of its linear transform through the 
minimization of the 11 -norm of the estimate of the image 
provided the constraint that the measurements are consistent 
with the corresponding portion of the linear transform of the 
estimate of the image. However, this 11 -norm-based strategy 
may not work adequately for images encountered in most 
practically important applications such as medical imaging, 
because images in these situations have extended, instead of 

examples are merely illustrative. 
In order to overcome the limited data problem, an 11 -based 

methodology is used. The 11-based methodology ordinarily 
cannot be used in many imaging applications, including 
medical and other tomographic imaging applications, since 
the 11 -based methodology requires sparse data and the 

60 images are generally extended distributions. 
Rather than merely looking at the individual values of the 

image, one may examine different aspects of the image that 
have a sparse data quality. For example, one may examine 
the variation across an image. Often times in medical and 

65 other applications, tomographic images are relatively con­
stant over extended volumes, for example within an organ, 
changing rapidly only at the boundaries of internal struc-
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tures. Thus, an image itself might not be sparse, but the 
image formed by taking the magnitude of its gradient could 
be approximately sparse. 

10 
The general theoretical setting for the TV algorithm 

discussed here involves inversion of a discrete-to-discrete 
linear transform: 

An example of this is shown in FIGS. la-lb. In the 
drawings where like reference numerals refer to like ele- 5 

ments, FIG. la depicts a Shepp-Logan phantom shown in a 
gray scale window of [0.87, 1.15]. Referring to FIG. lb, 
there is shown a magnitude of the gradient image of the 
Shepp-Logan phantom. As shown in FIG. lb, there is a 

10 sparseness of the gradient image. If the pixel values are 

(4) 

where the system matrix M may be composed of Ndata 

row vectors M, that yield each data point, g,=M,-f. The 
individual elements of the system matrix are Mi/. The image 

----;, 

labeled by f s.t , the image gradient magnitude is: 
may be represented by the finite vector f from knowledge 

of the data vector g and the system matrix M. Mathemati­
cally, the problems may involve insufficient data; for 

(l) example, the number of data samples Ndata may not be 

15 enough to uniquely determine the N,mage values of the image 
This quantity in Eq. (1) may be referred to as the gradient 

image. As merely one example, the number of non-zero 
pixels in the 256x256 image depicted in FIG. la is 32,668. 
By contrast, the number of non-zero pixels in its gradient 
image depicted in FIG. lb is only 2,183. 

To develop an iterative methodology that takes advantage 
of this sparseness, the objective function to be minimized is 
the 11-norm of the gradient image, otherwise known as the 
total variation (TV) of the image: 

11!,.,IIJV =~IV f,.,I = ~ ✓ (!,., - l,-1.,J2 + (!,., - f,.,-1) 2
. 

(2) 

s,t s,t 

The use of the image TV in the present application is 
different from previous applications in that the methodology 
is an implementation of an optimization program, which 
may possibly yield the exact image for sparse data problems 
under the condition of exact data consistency. 

The present TV methodology may be used for image 
reconstruction from divergent-beam projections, such as 
image reconstruction for both fan-beam and cone-beam CT 
imaging. Other types of divergent beams may be used. An 
iterative TV methodology may be used that can reconstruct 
accurate images from sparse or insufficient data problems 
that may occur due to practical issues of CT scarming. In the 
examples discussed below, the sparse data problem may 
include reconstruction from few-view projections. Similarly, 
the iterative TV methodology may be used for any sparse 
data problem, such as insufficient data problems from data 
acquired over a limited angular range or with a detector 
containing gaps due to bad detector bins. Further, the 
numerical results below relate to fan-beam CT. However, the 
iterative TV methodology may be applied to different 
diverging beams (such as cone-beam CT) and different types 
of imaging. 

As discussed above, the iterative TV methodology may be 
used for image reconstruction with divergent-beams. The 
image function may be represented in its discrete form as a 

vector f of length N,mage with individual elements t, j= 1, 
2, ... , N,mage· When it is preferable to refer to pixels in the 
context of a 2D image, the double subscript form f s.t may be 
used where 

j~(s-l)W+t;Fl,2, . .. ,H;tccl,2, ... ,W,· (3) 

and integers W and H are, respectively, the width and 
height of the 2D image array, which has a total number of 

Pixels N =WxH. The proiection-data vector g may have zmage J 

length Ndata with individual measurements referred to as g,, 
i=], 2, • • • , Ndata· 

20 

vector f by directly inverting Eq. ( 4). Some assumptions 

may be made on the image function f to arrive at a solution 

from knowledge of the data g. 
To solve the linear system represented in Eq. (4), a TV 

methodology may be used that at least partly constrains the 
variation. For example, the TV methodology may be used to 
constrain the variation with the following optimization pro-

25 
gram: Find f that 

min llfllrv such that M f ~ g, f}e0. (5) 

In the methodology, the minimization of the image TV 
may be performed by the gradient descent method, and the 

30 constraints imposed by the known projection data may be 
incorporated by projection on convex sets (POCS). POCS 
may be used for enforcing the projection data constraint, 
because, even in the case of sparse sampling, the size of the 
projection data sets may be large, and POCS may efficiently 

35 handle large data sets. In the following, the system matrix 
used for modeling the divergent-beam projections is defined, 
and the TV methodology for implementing the program in 
Eq. (5) is defined. The linear system matrices corresponding 
to the various scarming configurations discussed below may 

40 support an exact reconstruction principle for insufficient 
data, as demonstrated by the numerical examples discussed 
below. 

One example of a divergent-beam is shown in FIG. 2, 
which depicts a fan-beam CT configuration. As shown in 

45 FIG. 2, the source may be an x-ray source of a single spot 
for each projection view, with the beams emanating from the 
single spot. The projection data may be captured on a ID or 
2D detector array for the fan-beam or cone-beam system. 
The examples discussed below focus on the fan-beam con-

50 figuration shown in FIG. 2. However, the fan-beam con­
figuration is show for illustrative purposes only. Other types 
of divergent beams may be used. Further, the beam may be 
used for imaging of a region of interest (ROI), such as a 
2-dimensional, 3-dimensional, or n-dimensional ROI. Fur-

55 ther, the source may follow any trajectory, such as a line 
scan, a circular scan, or a helical scan. Line, circular and 
helical scans are merely exemplary and other scans may be 
used. 

The divergent beam may be part of an imaging system. 
60 One example of an imaging system 300 is shown in FIG. 3. 

The system 300 may include any type of imaging system. 
Examples of types of imaging systems include, but are not 
limited to: computed tomography (CT), positron emission 
tomography (PET), single-photon emission computed 

65 tomography (SPECT), magnetic resonance imaging (MRI), 
electron paramagnetic resonance imaging (EPRI), tomosyn­
thesis (such as if a trajectory is used which creates chords 
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which pass through the portion to be imaged, as discussed 
below), and wave imaging (such as phase contrast imaging, 
thermacoutic imaging, and thermooptical imaging). More­
over, the imaging system may include a single type of 
imaging, or multiple types of imaging. For example, the 
imaging system may comprise CT imaging. Alternatively, 
the imaging system may comprise multiple modality imag­
ing, such as CT and PET imaging in combination. Further, 
the imaging system may be used in combination with 
another system. For example, the imaging system may be 
integrated with a therapeutic system, such as a radiation 
therapy delivery system. The two systems may work in 
combination with the imaging system providing imaging for 
guidance (such as CT imaging) and radiation therapy for 
treatment. 

With reference to FIG. 3, an exemplary imaging system 
300 for implementing the invention includes a general 
purpose computing device in the form of a computing 
environment 302, including a processing unit 304, a system 
memory 306, and display 308. A system bus, 310, may 
couple various system components of the computing envi­
ronment 302, including the processing unit, 304, the system 
memory 306, and the display 308. The processing unit 304 
may perform arithmetic, logic and/or control operations by 
accessing system memory 306. For example, the processing 
unit 304 may control the various system components to 
acquire data for imaging and may process the acquired data 
to generate an image. Alternatively, different system pro­
cessors, or different devices may control the various system 
components to acquire data for imaging and may process the 
acquired data to generate an image. 

The system memory 306 may store information and/or 
instructions for use in combination with processing unit 304. 
For example, the system memory 306 may store computer 
readable instructions, data structures, program modules or 
the like for operation of the imaging system 300, including, 
for example, control of movement of any of the source, 
object, and detector and control of the functionality of the 
source and the detector, as discussed below. Further, the 
system memory 306 may store data obtained from detector 
320 and may process the data for display on the display 308, 
as discussed in more detail below. The system memory 306 
may include volatile and non-volatile memory, such as 
random access memory (RAM) and read only memory 
(ROM). It should be appreciated by those skilled in the art 
that other types of computer readable media which can store 
data that is accessible by a computer, such as magnetic 
cassettes, flash memory cards, random access memories, 
read only memories, and the like, may also be used in the 
exemplary computer environment. A user may enter com­
mands and/or information, as discussed below, into the 
computing environment 302 through input devices such as a 
mouse and keyboard, not shown. The commands and/or 
information may be used to control operation of the imaging 
system, including acquisition of data and processing of data. 

FIG. 3 further shows source 312 communicating with 
computing environment 302 via line 314. Source 312 may 

12 
The source 312 may comprise any device which generates 

any signal that may be received from detector 320. The 
source 312 selected for imaging system 300 may depend on 
the type of imaging performed by imaging system 300. For 

5 example, source 312 may generate electromagnetic radiation 
in any frequency range, such as gamma rays, x-rays, visible 
light, microwaves, and radio/tv waves. Specifically, source 
312 may comprise an X-ray source and generate X-rays or 
may comprise a radio frequency (RF) source and generate 

10 radio waves. Source 312 may also generate other types of 
signals such as magnetic fields, mechanical waves (e.g., 
sound waves), heat, particle (e.g., electron, proton, neutron), 
or the like. Though depicted in imaging system 300, certain 
types of imaging systems do not require a source (such as 

15 source 312). For example, PET scanning does not require an 
external source. 

FIG. 3 also shows object 316. Object 316 may comprise 
anything that is capable of being scanned, such as a living 
organism (e.g., human or animal) or a non-living object 

20 ( e.g., a piece of luggage, a cargo container, food, an ocean, 
underground the earth, etc.). The position of the object may 
be stationary or may move relative to any one, or both, of 
source 312 and detector 320. Line 318 may control move­
ment of object 316, such as by sending commands to a motor 

25 (not shown) to move object 316. Any part, or all, of object 
316 may be imaged using imaging system 300. Further, the 
object may ingest or be injected with a substance, such as a 
contrast agent, which may assist in imaging a part or all of 
object 316. As shown in FIG. 3, source 312 is external to 

30 object 316. Alternatively, source 312 may be internal to 
object 316. 

FIG. 3 further shows detector 320 communicating with 
computing environment 302 via lines 324 and 326. Line 324 
may comprise a control line whereby the processing unit 

35 may control at least one characteristic of detector 320. Line 
326 may comprise a data line whereby data sensed from the 
detectors may be sent to computing environment 302 for 
processing by processing unit 304, as discussed below. 
Detector 320 may comprise any type of detector which 

40 senses any datum, such as electromagnetic radiation from 
any frequency range (such as X-rays), magnetic fields, 
sound waves, heat, or the like. For example, for a 2-dimen­
sional detector (flat-panel imager), detector 320 may com­
prise one row of detectors for fan beam geometry, four rows 

45 of detectors for quasi-fan-beam geometry, or more than four 
rows of detectors for cone-beam geometry. Detector 320 
may be stationary or may move relative to any one, or both, 
of source 312 and object 316. Line 324 may control move­
ment of detector 320, such as by sending commands to a 

50 motor (not shown) to move all or a part of detector 320. As 
shown in FIG. 3, detector 320 is external to object 316. 
Alternatively, detector 320 may be internal to object 316. 
Thus, both source 312 and detector 320 may be internal or 
external to the object. Moreover, source 312 may be internal 

55 and detector 320 may be external to object 316, or source 
312 may be external and detector 320 may be internal to 
object 316. For example a dental image of a patient may be 
acquired with an external source and a detector held in the be stationary or may move relative to any one, or both, of 

object 316 and detector 320. Line 314 may also control 
movement of source 312, such as by sending commands to 60 

a motor (not shown) to move all or a part of source 312. For 
example, if the source 312 is an X-ray tube, the motor may 
move the entire X-ray tube relative to one, or both of, object 
316 and detector 320. Alternatively, the X-ray tube may 
remain stationary with a reflector revolving using the motor. 

mouth of a patient. 
In an additional embodiment of the invention, the system 

may comprises a first component for reconstructing an 
image of an object from acquired data using data that are 
sufficient to reconstruct a substantially exact image of the 
object; a second component for reconstructing an image of 

65 an object from acquired data using data that are less than that 
sufficient to reconstruct an exact image of the object; a third 
component for determining whether the acquired data are 

In this manner, the beam emanating from the X-ray tube may 
be moved by bouncing the beam off the revolving reflector. 
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sufficient to reconstruct a substantially exact image of the 
object; and a fourth component for selecting which of the 
first and second components are used, based on the output of 
the third component. The first component may implement 
any one of a number of image reconstruction algorithms that 
are known in the art. The second component may use the 
algorithms described herein. The third component of deter­
mining whether the acquired data are sufficient to recon­
struct a substantially exact image of the object may be 
performed in a variety of ways. For example, the determin­
ing may be implemented by assessing image quality, such as 
those described in U.S. Pat. Nos. 6,535,636, 5,739,924 or 
"Image Quality Assessment: From Error Measurement to 
Structural Similarity", Wang, et al., IEEE Transactions on 
Image Processing, Vol, 13, No. 1, 2004, each of which are 
incorporated by reference herein in their entirety. Alterna­
tively, the third component may examine the acquired data 
directly, for example to detect had detector cells, such as is 
described in U.S. Patent Application 20050063513Al, 
incorporated by herein in its entirety. Or, the third compo­
nent may analyze the configuration of the system (such as 
the amount of views scheduled to be obtained or have been 
obtained). 

Alternatively, the system may comprise a first component 
for reconstructing an image of an object from acquired data 
using data that are sufficient to reconstruct a substantially 
exact image of the object; a second component for recon­
structing an image of an object from acquired data using data 
that are less than that sufficient to reconstruct an exact image 

14 
The ray-driven projection model is merely for illustrative 

purposes. There are other ways to model the discrete pro­
jection, such as pixel-driven and distance-driven models, 
which provide alternative definitions of pixel weights. 

5 Moreover, even though the system matrix discussed herein 
is for the fan-beam configuration, the model may also be 
applied to other divergent beams. For example, the model 
may be applied to cone-beam 3D imaging. 

The TV methodology discussed herein is different from 
10 the FT-TV methodology discussed in the background. As 

merely one example, the system matrix used is different. The 
2D parallel-beam data are processed in the FT-TV method­
ology by taking a ID FT along the detector coordinate, and 

15 
the system matrix is the discrete 2D FT. In contrast, the 
system matrix described herein may represent directly the 
discrete ray integration of the image, and there is no trans­
formation of the projection data. Thus, even in the limit that 
the focal length of the fan-beam tends to infinity, the TV 

20 methodology discussed herein does not yield the FT-TV 
algorithm discussed in the background. 

The TV methodology may constrain, such as minimize, 
the TV of the image estimate. This may be accomplished by 
using a gradient descent method and/or other optimization 

25 methods. Performing the gradient descent may include the 
expression for the gradient of the image TV. This gradient 
may also be thought of as an image, where each pixel value 
is the partial derivative of the image TV with respect to that 

of the object; and a third input component providing a means 30 

for a user to select which of the first and second components 
are used. The user may make this selection before image 
acquisition based on factors such as the size, shape or 
location of the region to be imaged, or knowledge of a metal 
implant in a patient. Alternatively, the user may make this 35 

selection after image acquisition, based on an assessment of 
the image quality made using one of the first and second 
components. Thus, the determining may be based on an 
analysis prior to acquisition of the data, during acquisition of 
the data, or after acquisition of the data. 40 

pixel. Taking the derivative of 111 llrv with respect to each 
pixel value results is a singular expression. The following is 
an approximate derivative: 

(7) 

2(f,+J.t - !,.,) 

2(1,_,+ 1 - !,.,) 
In one example, the detector may be modeled as a 

straight-line array of 512 detector bins, which may be large 
enough so that the field-of-view is the circle inscribed in the 
256x256 imaging array. The CT measurements may be 
related to the path integral of the x-ray attenuation coeffi­
cient along the rays defined by the source spot and individual 
detector bins. In the discrete setting, these ray integrals may 
be written as weighted sums over the pixels traversed by the 
source-bin ray as 

(6) 

MufJ, where i = 1, 2, ... , Ndn,a 

To model the fan-beam projection of the discrete image 
array, one may use the ray-driven projection model where 
the system matrix weights Mi/ are computed by calculating 
the intersection length of the i th ray through the j th pixel. 
An example of the ray-driven system matrix is illustrated for 
a 5x5 image array in FIG. 4. Specifically, FIG. 4 illustrates 

an individual row vector of the system matrix M,. In this 
case, the data point cl, is calculated as d,=~1~ 1

25Mift, where 
Mi/ is the length of the i th ray traversing the j th pixel. The 
system matrix illustrated in FIG. 4 has non-zero entries only 
on image pixels f 1 , f 6 , f 7 , f s, f 9, f 14, and f 1s· 

✓ E: + (f,.t+ 1 - !,., )2 + (f,.t+ 1 - l,-1.1+ i)2 , 

45 
where E is a small positive number; for the results below 

E=l0- 8 is used. This expression may be valid for non-border 

pixels. The resulting gradient vector may be referred to as v, 
and similar to the image vector, its individual elements may 
be denoted by either a single v1 index or pixel indexes vs,r 

50 Further, the normalized TV gradient v; may be used. 
As shown in Eq. (7), the minimization for the total 

variation may be a first order derivative. Alternatively, the 
minimization for the total variation may be a higher order 
derivative. For example, the minimization of the total varia-

55 tion may comprise a second order derivative. Further, the 
minimization may comprise single and higher orders. Thus, 
any order of the total variation (such as first order, second 
order, etc.) of the estimated image or combinations of orders 
of total variation (such as first and second order, etc.) may 

60 be examined. 

65 

The POCS method may be used to realize the linear 
system constraints in Eq. (5). Each measured point g, of the 
data vector may specify a hyperplane in the N,mage-dimen-

sional space of all possible solutions 1. The basic POCS 

method may project the current estimate of 1 onto the 
hyperplanes, which are convex sets, corresponding to each 
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ate estimate image may be constrained to generate the new 
estimated image, as shown at block 510. For example, the 
generalized TVs of the intermediate estimated image may be 
minimized to generate the new estimated image. The new 

data point in sequential order. By repeating this process the 
image estimate may move toward the intersection of all of 
these hyperplanes, which is the sub-space of valid solutions 
to the linear system. In the present POCS implementation, 
the positivity constraint may also be included. 

Having specified the system matrix, TV gradient, and data 
constraints, the iterative steps of the TV algorithm may be 
described. The iterative steps may implement the optimiza­
tion program described in Eq. (5) for image reconstruction 
from divergent-beam data. Each iteration within the recon­
struction procedure may comprise three steps: the DATA­
step, which enforces consistency with the projection data; 
the POS-step, which ensures a non-negative image; and the 
GRAD-step, which reduces the TV of the image estimate. 
The iteration performed in the algorithm may have two 
levels: the overall iteration number is labeled by n, and the 
sub-iterations in the DATA- and GRAD-steps are labeled by 
m. The image vector during the iterations of the DATA-step 

5 estimated image may be used as the initial estimate for block 
504 and blocks 504 through 512 may be repeated until the 
intermediate estimated image and new estimated image 
converge (such as be less than a predetermined amount, as 
shown at block 512) or until the estimated data is less than 

10 a predetermined amount than the actual data. One example 
of a predetermined amount may comprise E' which is dis­
cussed in more detail below. See Table 1. One may use either 
intermediate estimated image or the new estimated image as 
the final estimate of the image. The intermediate image may 

15 generally be less smooth than the new estimated image. 

is Jcrv-DATA)[n,m], indicating the m th DATA-step sub-
20 

iteration within then th iteration, Jcrv-PoS)[n] may be used 
to denote the image estimate after projection onto the 

The new estimated image may be determined by the 
following positivity constraint: 

(TV-POS) j ' data 

{ 

(f pv-DATAl[n N ] (f1·JCTV-DATAl[n, Nda1al 2 0 

(fJ) [n] = Q (JJTV-DATA)[n, Nda1a] < Q 

non-negative half-plane. Finally, Jcrv-GRAD)[n,m] may rep­
resent the mth gradient descent step within the nth iteration. 

Referring to FIG. 5, there is show a flow chart 500 of one 
example of the methodology. As shown at block 502, an 
initial estimate of the image to be recovered may be selected 

Further, TV gradient descent initialization may be as 
25 follows: 

or generated. The initial estimate may be part of an initial­
ization procedure. For example, the initial estimate may 

30 
comprise: 

(8) 

As shown at block 504, using the initial estimate, esti­
mated measurements may be determined. One example of 35 

determining the estimated measurements may include using 
the linear transform operator to determine the linear trans­
form of the initial estimate image. For example, for data 
projection iteration, for m=2, ... , Ndata: 

40 

-->(JV-DATA) 
f [n,m] = (9) 

dA(n)~llf (TV-DATA)[n,1]- f<TV-POS)[n]lb 

TV gradient descent, for: m=2, ... , Ngrad 

- 811fllrv I 
Vs,t[n, m - l] = ~, fst=i}fV-GRAD)[n,m-1]; 

Js, , , 

v[n,m-1] 
v[n m - 1] = ----· 

' lv[n,m-lJI' 

1<TV-GRAD)[n,mj~ 

1<TV-GRADl[n,m-1]-adA(n)v[n,m-1]; 

(11) 

(12) 

------, -->(JV-DATA) 

TTV-DATA) [n m _ l] _ M· g_;_-_M_; _· f ____ [n_,_m_-_1] 

' I Mi . Mi 

And, the following may be the initialization for the next 

45 
iteration: 

1<TV-DATA)[nl,1]~ 1<TV-GRAD)[n,Ngradl (13) 

In the present description, when referring to the iteration 
number of the TV algorithm, it is meant the iteration number 

50 of the outer loop indicated by the index n. As discussed 
above, the iteration may be stopped when there is no 
appreciable change in the intermediate images after the 

An intermediate image may be determined based on the 
estimated measurements. For example, the intermediate 
image may be determined based on a comparison of the 
estimated data with the actual data. As shown at blocks 506 
and 508, the intermediate image is determined As shown at 
block 506, the estimated data is compared with the actual 
data. One example of comparing the estimated data with the 
actual data comprises determining the difference. As shown 55 

at block 508, the intermediate estimate may be generated 
based on the comparison of the estimated data with the 
actual data. For example, the intermediate estimate may be 
generated using the adjoint, the approximate adjoint, the 
exact inverse, and/or the approximate inverse of the linear 60 

transform operator. Further, the intermediate estimate may 
be derived from the image or by reducing (in one step or 
iteratively) the differences between the estimated and actual 
measurements. 

A new estimated image may be determined by analyzing 
at least one aspect (such as variation) of the intermediate 
estimate image. Specifically, the variation in the intermedi-

POCS steps; namely the difference between Jcrv-PoS)[n] 

and Jcrv-PoS)[n-1] is "small" or a predetermined amount. 
The distance dA(n) may provide a measure for the differ­

ence between the image estimate before the DATA-step and 
the estimate after the enforcement of positivity. The gradient 
descent procedure may be controlled by specifying the 
parameter a, the fraction of the distance dA(n) along which 
the image is incremented, and Ngrad the total number of 
gradient descent steps that are performed. The methodology 
may rely on the balance between the POCS steps (DATA­
and POS-steps) and the gradient descent. By scaling the size 

65 of the gradient descent step with dA(n) the relative impor­
tance of the POCS and gradient descent stages of the 
methodology remains balanced. As long as the total change 
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in the image due to the gradient descent does not exceed the 
change in the image due to POCS, the overall iteration steps 
may steer the image estimates closer to the solution space of 
the imaging linear system. 

If the step size of the gradient descent is too strong the 5 

image may become uniform and inconsistent with the pro­
jection data. On the other hand, if the step size of the 
gradient descent is too small, the methodology may reduce 
to standard ART with a positivity constraint included. For 

10 the results shown below, a=0.2, and Ngrad=20 were selected. 
These values appear to strike a good balance between the 
POCS steps and the TV-gradient descent, and seem to work 
well for the wide range of reconstruction problems, includ­
ing those addressed below. The methodology appears to be 15 
robust in that changes to the parameters only appear to alter 
the convergence rate and not the final image. Further, other 
methodology parameters may be used to improve the con­
vergence speed. 

The following are results using the TV methodology 20 

under "ideal" conditions. The results are merely for illus­
trative purposes. The true image solution may be taken to be 
the Shepp-Logan image shown in FIG. la discretized on a 
256x256 pixel grid. This phantom is often used in evaluating 
tomographic reconstruction algorithms. As also shown in 25 

FIG. lb, its gradient image is sparse with only 2,183 
non-zero pixels. This number is roughly only 6.7% of the 
32,668 non-zero pixels of the Shepp-Logan image itself. 
Taking the result for Fourier inversion as a rule of thumb for 
the current problem, one might expect that a minimum of 30 

twice as many non-zero, independent projection measure­
ments are needed for obtaining the image. Thus a minimum 
of 4,366 measurements appears to be required for the ERP 
methodology. Shown below is the image recovery from 

35 
sparse data with the "few-view" example. Subsequently 
shown below are the utility of the TV algorithm for other 
insufficient data problems where there are plenty of projec­
tion ray measurements, but the angular or 
projection\coverage is less than the minimum for analytic 40 

reconstruction in the corresponding continuous image func­
tion case. The insufficient data problems demonstrated 
below are merely for illustrative purposes. The insufficient 
data problems are the limited scarming angle problem and 
the "bad bins" problem where there is a gap on the detector 45 

for all available projection views. 
For the numerical experiments described, the simulated 

fan-beam configuration are variations on the configuration 
shown in FIG. 2. In the first set of experiments, the data used 
are ideal in the sense that they are the exact line integrals, up 50 

to round-off error in the computer, of the discrete 256x256 
Shepp-Logan image. They are, however, severely under­
determined so that there would be no chance of directly 
solving the linear equation in Eq. (4). The detector modeled 
has 512 bins, and the total number of measured rays is 512 55 

multiplied by the number of view angles. The significant 
number is actually the total number of non-zero measure­
ments, and this is stated with each example discussed below. 

In order to illustrate the degree of ill-posedness for each 
numerical example, the present TV methodology is com- 60 

pared with standard EM and ART methodologies, which 
have been widely applied in an attempt to solve the under­
determined or unstable linear systems in tomographic imag­
ing. In EM, the positivity constraint is built into the meth­
odology, and for CT imaging applications the object 65 

function is positive. The EM implementation used here is 
basic, specified by the following update equation: 

18 

(14) 

No regularization during the iterations. 
The ART methodology fails to include the minimization 

of the image TV discussed above. The steps for the ART 
methodology include: 

Initialization: 

n~l;f<ART-DATA)[n,l]~O; (15) 

Data-projection iteration, m=2, ... , Ndata: 

--+(ART-DATA) 
f [n,m] = (16) 

Positivity constraint: 

(ART-POS) ) , data 

{ 

(f )(ART-DATA)[n N ] (fJ·)(ART-DATA)[n, Ndata] 2 Q 

(fJ) [n] = 0 (fJiART-DATA)[n, Ndatal < 0 

Initialization next loop: 

1<ART-DATA)[n+l,1 ]~ 1<ART-POS)[n] (18) 

n is incremented and the methodology returns to the Data 
Projection iteration. Again, no explicit regularization is 
performed during the ART iterations. For both the EM and 
ART methodologies, the iteration is stopped when there was 
no appreciable change in the image. 

No explicit regularization for the EM and ART algorithms 
was used for two reasons. First, only the degree of ill­
posedness of the linear systems corresponding to the various 
scanning configurations is investigated below. And, this is 
effectively demonstrated by using the known methodologies 
of EM and ART. Second, the TV methodology is compared 
with the EM and ART methodologies on how well they solve 
the linear system corresponding to sparse sampling or insuf­
ficient projection data. The data used for the bulk of the 
examples are ideal (up to machine precision), and any 
explicit regularization during the EM or ART iterations may 
introduce inconsistency between the reconstructed image 
and the projection data. 

The first case is a reconstruction problem from few-view 
projections in fan-beam CT. Referring to FIG. 6a, there is 
shown the true image and images reconstructed by use of the 
TV, EM, and ART methodologies, respectively, from 
20-view projection data. The display gray scale is [0.85, 
1.15]. FIG. 6b depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line). FIG. 6c depicts image 
profiles along the centers of the images in the horizontal and 
vertical directions obtained with the EM ( dashed lines) and 
ART (dotted lines) algorithms. The corresponding true pro­
files are plotted in FIGS. 6b-c as the thin lines. 

Using the Shepp-Logan phantom shown in FIG. 6a, 
projection data is generated at the 20 view angles specified 
by: 
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{ 
lS'*(i-1) lsislO 

B; lS'*(i-0.5) 10<is20 

(19) 

20 
at EM and ART results in FIGS. 6a-c shows how unstable 
image reconstruction is for this few-view scanning configu­
ration. 

Another application of the TV algorithm may be for 

From the projection data generated at the 20 views, the 
images were reconstructed, as shown in FIG. 6a, by use of 
the TV, EM, and ART algorithms. The number of iterations 
for each algorithm was 200. More or fewer iterations may be 
used. For a quantitative comparison, the image profiles were 
also compared along the central lines of the images in the 
horizontal and vertical directions. The results depicted in 
FIG. 6b indicate that the TV reconstruction is visually 
indistinguishable from the true image, suggesting that the 
system matrix corresponding to sparse fan-beam data may 
have the ERP even though the column vectors of the system 
matrix do not form an ortho-normal basis. The EM and ART 
results show considerable artifacts, as shown in FIG. 6c. 

5 reconstruction problems where there are insufficient data in 
the corresponding continuous case. For example, the scan­
ning angle may be less than 180° plus the fan angle in 
fan-beam CT, or there may be gaps on the detector for each 
projection when the data are known to be bad for certain 

10 detector bins. For continuous functions of compact support, 
data in a scanning range of 180° plus the fan-angle may be 
sufficient for stable image reconstruction in fan-beam CT. 
For the fan-beam configuration described above, 180° plus 
the fan angle is 209°. For scanning angular ranges less than 

15 209°, the corresponding discrete linear system should also 
generally be ill-posed. 

Referring to FIG. Sa, there is shown the true image and 
images reconstructed by use of the TV, EM, and ART 
methodologies, respectively, from data over 180°. The dis-

FIGS. 7a-c demonstrate the wide applicability of the TV 
algorithm. FIG. 7a depicts images for random ellipses, FIG. 
7b depicts images for random spots, and FIG. 7c depicts 
images for lines phantoms. The true and gradient images of 
these phantoms are displayed in left and middle colunms, 
respectively, for FIGS. 7a-c. Images reconstructed from 
20-view projections by use of the TV algorithm are dis­
played in the right colunm in FIGS. 7a-c. The gray scales for 
the images are [0.95, 1.15] for FIG. 7a and [0.9, 1.1] for 
FIGS. 7b-c. 

20 play gray scale is [0.85, 1.15]. FIG. Sb depicts image profiles 
along the centers of the images in the horizontal and vertical 
directions obtained with the TV algorithm (thick line). FIG. 
Sc depicts image profiles along the centers of the images in 
the horizontal and vertical directions obtained with the EM 

25 (dashed lines) and ART (dotted lines) algorithms. The cor­
responding true profiles are plotted in FIGS. Sb-c as the thin 
lines. 

In the limited-angle problem depicted in FIGS. Sa-c, the 
scanning angular range is reduced from 209° to 180° and 

The methodology is therefore applied, without changing 
any parameters in the methodology, to the three additional 
phantoms shown in the left images of FIGS. 7a-c. These 
phantoms have sparse gradient images, as shown in the 
middle images of FIGS. 7a-c. The properties of these 
phantoms are as follows. The "random ellipse" phantom 
consists of 10 randomly selected ellipses on a uniform 
circular background with a value of 1.0. The values of each 

30 projection data is generated at 128 views uniformly distrib­
uted over 209° from the Shepp-Logan phantom. Again, the 
detector at each view has 512 bins. For this scan, the number 
of non-zero data points is 52,730, which is more than the 
number of non-zero pixels in the Shepp-Logan phantom 

35 itself. 
FIG. Sa depicts images reconstructed from this set of data 

by use of the TV, EM, and ART algorithms. The profiles of 
these images along the central horizontal and vertical rows 
are displayed in the FIGS. Sb-c. The number of iterations for 
each of the TV, EM, and ART reconstructions is 1000. Fewer 
or greater number of iterations may be performed. The 
images in FIG. Sa show the TV reconstruction is virtually 
indistinguishable from the true phantom and that the images 
obtained by use of the EM and ART methodologies are also 
reasonably accurate with only small distortion near the 
bottom of the images. This distortion of the EM and ART 
images is understandable because the 180° scan covered the 
top half of the phantom. The high iteration numbers were 
used for achieving convergence in the bottom half of the 
image. Additionally, the EM image shows a high frequency 
artifact not seen in the TV or ART images, because the 
back-projector in each case is ray-driven, which is known to 
yield such Moire patterns in the EM images. However, as 
explained above, the reconstruction methodologies are com-

of the ellipses was randomly selected in the range of [1.01, 
1.10]. The "random spots" phantom depicted in FIG. 7b is 
similar in that 30 randomly selected small ellipses within the 40 

value range of [0.9, 1.1] are placed in an air cavity. The 
background ellipse has a value of 1.0 and additional ellipse 
with a value of 1.05 is placed on the left of the phantom. The 
spots and the air gap are meant to resemble, roughly, the 
lung. The "lines" phantom depicted in FIG. 7c consists of 2 45 

groups of 10 lines at values of 0.9 and 1. 1 on a background 
ellipse of value 1.0. As with the other phantoms, the gradient 
image of the lines phantom has sparse structures. But, the 
lines phantom is designed in such a way as to provide a 
challenge for the TV algorithm. It is known for the FT- 50 

inversion problem that certain regular structures in the 
image may be difficult to reconstruct by use of the FT-TV 
algorithm because of the small support of such images in 
Fourier space. Such images may also pose a challenge for 
the present TV methodology. 

Using these phantoms, we generated fan-beam projection 
data at 20 views (uniformly distributed over 2it, specified by 
Eq. (18)). The right column of FIGS. 7a-c shows that the TV 
reconstructions for the random ellipses (upper row), the 
random spots (middle row), and lines (lower row) phantoms. 60 

The gray scales are [0.95, 1.15] for row FIG. 7a and [0.9, 
1.1] for FIGS. 7b-c. It can be observed that the reconstruc­
tions for the random ellipses and random spots phantoms are 
visually indistinguishable from their corresponding truth. As 
expected the lines phantom proves to be challenging. 65 

Although the reconstruction for the lines phantom does 
show some artifacts, it reconstructs the image well. A glance 

55 pared on their ability to solve the linear system correspond­
ing to the imaging model; therefore, the ray-driven back­
projection is used because it represents exactly the system­
matrix adjoint. 

Further reductions in the scanning angle are shown by 
taking 64 angular samples uniformly distributed over an 
angular range of only 90°, as shown in FIGS. 9a-c. FIG. 9a 
depicts the true image and images reconstructed by use of 
the TV, EM, and ART algorithms from data over 90°. The 
display gray scale is [0.85, 1.15]. FIG. 9b depicts image 
profiles along the centers of the images in the horizontal and 
vertical directions obtained with the TV algorithm (thick 
line). FIG. 9c depicts image profiles along the centers of the 
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images in the horizontal and vertical directions obtained 
with the EM (dashed lines) and ART (dotted lines) algo­
rithms. The corresponding true profiles are plotted as the 
thin lines in FIGS. 9b-c. 

22 
Referring to FIG. lla, there is depicted the true image and 

images reconstructed by use of the TV, EM, and ART 
methodologies, respectively, from data containing bad 
detector bins. The display gray scale is [0.85, 1.15]. FIG. llb 

FIG. 9a depicts images reconstructed by use of the TV, 
EM, and ART methodologies, respectively. The number of 
iterations for the TV, EM, and ART reconstructions is 
10,000. Fewer or greater numbers of iterations may be 
performed. In this case, there were 26,420 non-zero projec­
tion measurements, which would seem to be sufficient for 
the TV algorithm considering the sparseness of the phan­
tom's image gradient. However, the instability of the cor­
responding linear system appears to be too strong for 
accurate image reconstruction as can be seen in the recon­
structions shown in FIG. 9a. In FIG. 9b, the profiles along 
central lines are shown in the horizontal and vertical direc­
tions of the TV image. The corresponding true profiles are 
also displayed as the thin lines. The TV image contains a 
deviation from the true phantom on the left-hand edge, 
which is evident in the shown horizontal profile. On the 
other hand, the EM and ART reconstructions are highly 
distorted. We have studied in FIG. 9c the profiles along 
central lines in the horizontal and vertical directions of the 

5 depicts image profiles along the centers of the images in the 
horizontal and vertical directions obtained with the TV 
algorithm (thick line). FIG. llc depicts image profiles along 
the centers of the images in the horizontal and vertical 
directions obtained with the EM ( dashed lines) and ART 

10 (dotted lines) algorithms. The corresponding true profiles 
are plotted as the thin lines in FIGS. llb-c. 

As shown in FIG. lla, the TV image is visually indistin­
guishable from the true image, and both EM and ART 

15 
algorithms yield in this case quite accurate images. In this 
analysis, the TV algorithm appears to be more robust than 
the EM and ART algorithms, because the TV image is 
obtained with only 100 iterations while both the EM and 
ART algorithms required 10000 iterations to achieve the 

20 image accuracy shown in FIG. lla. The FT-TV algorithm 
discussed in the background cannot address the bad bins 
problem directly even in the parallel-beam case, because it 
is not possible to perform the FT of the detector data at each 

EM and ART images. Distortions in these images are clearly 
shown in these profile plots. The image error is also plotted 25 

as a function of iteration number, in an effort to determine 
whether or not the TV algorithm will converge to the true 
image. For the previous cases, the image error was tending 

view when there is a gap. 
The previously discussed insufficient data problems (lim-

ited angle and bad detector) may be combined. For example, 
the few-view problem may be analyzed with projection 
views containing bad bins. For this analysis, projections are 
taken at 20 views uniformly covering the short-scan angular to zero, but for this 90° scan, the image error appears to 

converge to a small but finite positive number. The system 
matrix corresponding to the 90° scan appears to violate 
somewhat the ERP. 

Still another reconstruction problem of practical interest is 
how to handle the situation where data from a set of bins on 
the detector are corrupted. Such a problem may occur if 
there is a partial hardware failure or if the photon count is 
very low so that signal noise dominates. For example, for 
fan-beam CT, if a full scan is performed over 36020 , one 
may fill the gaps in the detector bins by using redundant data 

30 range with the same detector gap as shown in FIG. 10. Fewer 
or greater numbers of view may be taken. The difference 
between this analysis and the previous analysis is that the 
angular spacing between projections here is roughly 10° 
instead of the 1 .4 ° spacing previously. The few-view-pro-

35 jection data are sparse, and only 7735 measured data points 

at conjugate views. For a short-scan, however, this approach 40 

may not be possible. Specifically, consider projection data 
displayed in FIG. 10, which depicts an intensity plot of the 
"bad bins" projection data function. The angular range 
covers 20920 , which is the short-scan angle for the current 
fan-beam configuration. However, data at 30 of the 512 45 

detector bins are missing. The amount of missing data may 
be greater or less than that depicted in FIG. 10. 

The angular range scanned is the minimum for exact 
reconstruction, namely, 180° plus the fan angle, which in 
this case is a total of 209°. The projection data at each view, 50 

however, has a gap. Because the scanning angle is over the 
minimum range, there may not be redundant information to 
fill in the gap left by the "bad" detector bins. Direct 
application of analytic algorithms such as fan-beam FBP 
may yield conspicuous artifacts, as the implicit assumption 55 

is that the missing values are zero, which is highly incon­
sistent with the rest of the data function. 

The TV methodology is applied to reconstructing images 
from data shown in FIG. 10, which are generated at 150 
views uniformly distributed over 209° from the true Shepp- 60 

Logan image shown in FIG. lla. The detector at each view 
contains 512 bins, of which the data of 30 bins have been 
discarded as shown in FIG. 10. Again, in this instance, there 
may be enough data to determine the image, because the 
number of non-zero projection measurements is 58,430. The 65 

question is whether or not the linear system may be stable 
enough that the unique solution can be found. 

are nonzero. 
Referring to FIG. 12a, there is depicted the true image and 

images reconstructed by use of the TV, EM, and ART 
methodologies, respectively, from 20-view data containing 
bad detector bins. The display gray scale is [0.85, 1.15]. FIG. 
12b depicts image profiles along the centers of the images in 
the horizontal and vertical directions obtained with the TV 
algorithm (thick line). FIG. 12c depicts image profiles along 
the centers of the images in the horizontal and vertical 
directions obtained with the EM ( dashed lines) and ART 
(dotted lines) algorithms. The corresponding true profiles 
are plotted as the thin lines in FIGS. 12b-c. 

As shown in FIG. 12a, the TV image is once again 
visually indistinguishable from the true phantom. Thus, it 
appears that the system matrix corresponding to this scan­
ning configuration suggests the ERP. The EM and ART 
reconstructions show similar artifacts as were seen in the 
few-view results shown in FIG. 6a. In addition, there 
appears to be additional artifacts from the missing detector 
bins. 

The TV methodology may address a variety of other 
sparse data problems. Applicability of the TV methodology, 
under the ideal conditions described above, may be based on 
support of the data function being at least twice the support 
of the gradient of the true image and that the corresponding 
linear system is not too ill-conditioned as was seen for the 
90°-scan case. 

The results described above assume the ideal situation of 
perfect consistency among the measured projection rays and 
a sufficiently sparse gradient image. The following discus­
sion shows how the TV, EM, and ART methodologies 
compare when these conditions are not strictly held by 
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adding a varying background, to violate gradient sparseness, 
or by adding signal noise, to violate data consistency. 

In many applications, the gradient images may be sparse 
only in an approximate sense. Even though it is a good 
approximation to assume that images will be constant over 5 

many regions, there may also be situations in which the 
images will have some level of variation within the regions. 
One inquiry is whether or not a low amplitude violation of 
gradient sparseness leads to only small deviations in images 
reconstructed by use of the TV algorithm. This is addressed 10 

by repeating the few-view and bad-bin experiments 
described with respect to FIGS. 6a-c and lla-c, but adding 
a wavy background to the Shepp-Logan phantom. 

Referring to FIG. 13a, there is shown the true image with 
a wavy background and images reconstructed by use of the 15 

TV, EM, and ART methodologies, respectively, from 
20-view data. The display gray scale is [0.85, 1.15]. FIG. 
13b depicts image profiles along the centers of the images in 
the horizontal and vertical directions obtained with the TV 
algorithm (thick line). FIG. 13c depicts image profiles along 20 

the centers of the images in the horizontal and vertical 
directions obtained with the EM (dashed lines) and ART 
(dotted lines) algorithms. The corresponding true profiles 
are plotted as the thin lines in FIGS. 13b-c. 

Using the Shepp-Logan phantom with a wavy back- 25 

ground in FIG. 13a, the projection data is generated at 20 
views specified by Eq. (18). The amplitude of the wavy 
background is 1 % of the gray matter attenuation coefficient. 
Any negative values in the phantom are thresholded to zero, 

24 
It may be observed that the TV image is visually indis­

tinguishable from the true image. As shown before, the ART 
and EM reconstructions are close to the original image in 
this case. The number of iterations for the TV algorithm is 
100, which is much less than the 10,000 iterations used for 
both EM and ART algorithms. 

Still another physical factor that contributes to data incon-
sistency is signal noise in the projection measurements. It is 
of practical significance to evaluate the performance of the 
TV methodology in the presence of data noise. The TV 
algorithm may appear to be effective on sparse data prob-
lems even when the data contain inconsistencies due to 
signal noise. For the noise studies, the few-view and bad-bin 
cases discussed above are examined. In each case, Gaussian 
noise may be introduced in the projection data at the level of 
0.1 % of the ideal measurement values. 

Referring to FIG. 15, there are shown images recon-
structed from 20-view noisy data by use of the TV algorithm 
after the gradient descent phase (TVl) and after the projec­
tion phase (TV2) and by use of the EM and ART algorithms. 
The iteration numbers for the TV, EM and ART images 
depicted in FIG. 15 are 200, 200, and 100, respectively. In 
particular, for the TV algorithm, two "final" images are 
displayed in FIG. 15, (TVl) corresponding to fcrv-GRAD)[n, 
N grad] the image after the completion of the gradient descent 
phase (i.e., given by Eq. (3)), and (TV2) corresponding to 
fcrv-PoS)[n], the image one after the completion of the data 
projection phase (i.e., given by Eq. (10)). In the examples 
with consistent data above, the differences between the two 
images were numerically negligible. With inconsistencies 
resulting from data noise, however, there may be a marked 
difference. The image f(TV-GRAD)[ n, N grad] after the gradient 
descent phase is clearly a regularized version of the image 
fcrv-PoS)[n] obtained after the data projection and positivity 

35 constraint. Depending on the tasks, either image may prove 
useful for a particular imaging application. For the few-view 
study, both images f(TV-GRAD)[n, Ngradl and f(TV-POS)[n], 

so as to allow the applicability of the EM algorithm. With the 30 

wavy background the number of non-zero pixels in the 
gradient image jumps to 51,958, but the majority of these 
non-zero values are small compared to the gradients at the 
boundaries of the different tissues. As was the case with the 
previous few-view analysis, the number of measurements is 
10,240, which is less than twice the number of non-zero 
pixels in the gradient image, violating the gradient-sparse 
condition. The iteration numbers for obtaining the results in 
FIG. 13a were 200, 1000, and 500 for the TV, EM, and ART 
algorithms, respectively. The images in FIG. 13a indicate 
that the TV reconstruction is visually almost indistinguish­
able from the true image and that the EM and ART algo­
rithms have difficulty with this data set. Upon further 
inspection of the image profiles, it can be seen that the TV 
algorithm does not yield an exact reconstruction. The small 
violation, however, of the gradient image sparseness does 
not appear to lead to large errors in the reconstructed image. 
This example does not constitute a mathematical proof, but 
is suggestive that small violations in the gradient sparseness 
yields only small errors in the reconstructed image. 

Image reconstruction was also examined from data con­
taining bad-bins (see FIGS. lla-c) with the 1% low ampli­
tude wavy background added to the original image. In this 
example, the number of projection data is 58,430, which is 
not twice the number of non-zero pixels in the image but it 
is a comparable number. Referring to FIG. 14a, there is 
shown the true image with a wavy background and images 
reconstructed by use of the TV, EM, and ART methodolo­
gies, respectively, from bad detector bin data. The display 
gray scale is [0.85, 1.15]. FIG. 14b depicts image profiles 
along the centers of the images in the horizontal and vertical 
directions obtained with the TV algorithm (thick line). FIG. 
14c depicts image profiles along the centers of the images in 
the horizontal and vertical directions obtained with the EM 
(dashed lines) and ART (dotted lines) algorithms. The cor­
responding true profiles are plotted as the thin lines in FIGS. 
l4b-c. 

obtained with the TV algorithm appear to have less artifacts 
than the EM and ART reconstructions in FIG. 15. No explicit 

40 regularization is performed with the EM or ART in the 
present examples aside from truncation of the iteration 
numbers at 200 and 100 in the EM and ART algorithms, 
respectively. 

For the bad bin case, noisy data may be generated by 
45 adding Gaussian noise, for example at the level of 0.1 % of 

the individual true data values, to the noiseless data 
described in FIGS. lla-c. Referring to FIG. 16, there is 
shown images reconstructed from bad-bin noisy data by use 
of the TV algorithm after the gradient descent phase (TVl) 

50 and after the projection phase (TV2) and by use of the EM 
and ART algorithms. The iteration numbers for the TV, EM, 
and ART images depicted in FIG. 16 are 200, 200, and 100, 
respectively. Again, two TV images are shown in FIG. 16: 
(TVl) corresponding to fCTV-GRAD)[n, Ngradl grad the image 

55 after the completion of the gradient descent phase, and 
(TV2) corresponding to fcrv-PoS)[n] the image after the 
completion the data projection phase. The results suggests 
that the TV and EM algorithms may still effectively correct 
for the effect of the missing detector bins. The ART algo-

60 rithm, which showed very mild streaking in FIG. lla under 
the ideal condition, displays significant streaking due to the 
combination of signal noise and bad detector bins. 

Referring to FIGS. l 7a-d, there is shown, respectively, an 
example of a Shepp-Logan image, partial data for the object 

65 depicted in FIG. 17a if only exterior data may be obtained, 
an image reconstruction using Filtration-backprojection 
using the data from FIG. 17b, and an image reconstruction 
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There are numerous aspects of the TV methodology that 
may make it relevant and useful for many imaging applica­
tions, such as medical and industrial CT imaging. The 
assumption of a sparse gradient image may be reasonable for 

using the TV methodology using the data from FIG. 17b. As 
shown in FIG. 17b, an interior section of the data is missing. 
This results using an image reconstruction of the prior art are 
shown in FIG.17c, and may not be acceptable. However, the 
image in 17 d may be acceptable if the region of interest 
(ROI) may comprise the exterior ring of the object. As 
shown, the exterior portion of the image is comparable to the 
Shepp-Logan image. 

Referring to FIGS. l8a-d, there is shown, respectively, an 
example of a Shepp-Logan image, partial data for object 
depicted in FIG. 18a if interior data is obtained but at least 
some of the exterior data is excluded, an image reconstruc­
tion using Filtration-backprojection using the data from FIG. 
18b, and an image reconstruction using the TV methodology 
using the data from FIG. 18b. This results using an image 
reconstruction of the prior art is shown in FIG. 18c, and may 
not be acceptable. However, the image in 18d may be 
acceptable if the region of interest (ROI) may comprise an 
interior portion the object. As shown, the interior portion of 
the image is comparable to the Shepp-Logan image. 

5 many object functions in medical and industrial applica­
tions, because often sought-after quantities such as x-ray 
attenuation coefficient are relatively constant over extended 
areas or volumes. Example reconstructions were shown 
from data containing one imperfection and two imperfec-

lO tions. Reconstructions with the TV methodology may be for 
more than two imperfections. Further, with regard to the 
imperfections addressed, one may expect that the sparseness 
of the image gradient will hold only approximately, and that 

15 
there may be some level of inconsistency among the pro­
jection data due to signal noise. The numerical studies with 
respect to these complicating factors may show that the TV 
methodology may effectively reconstruct quantitatively 
accurate images from imperfectly sampled data. The TV 

Referring to FIGS. l9a-d, there is shown, respectively, 
another example of a Shepp-Logan image depicting spots, 
partial data for object depicted in FIG. 19a if few views 
(e.g., 5 views) are obtained, an image reconstruction using 
Filtration-backprojection using the data from FIG. 19b, and 
an image reconstruction using the TV methodology using 
the data from FIG. 19b. FIG. 19c may be an unacceptable 
image. However, the image reconstruction shown in FIG. 
19d is comparable to FIG. 19a and may be acceptable. 

20 
methodology may also be applied to other applications, such 
as to 3D cone-beam CT where there are a host of imperfect 
sampling situations that have practical significance. More­
over, refinements may be made to the TV algorithm that may 
optimize its performance. 

25 
The above examples of few-view fan-beam CT primarily 

focus on the ideal situation where there is no noise on the 

Referring to FIGS. 20a-d, there is shown, respectively, an 30 

example of a Shepp-Logan image, partial data for an object 
depicted in FIG. 20a if few views and interior data (but not 
exterior data) are obtained, an image reconstruction using 
Filtration-backprojection using the data from FIG. 20b, and 
an image reconstruction using the TV methodology using 35 

the data from FIG. 20b. Comparing FIGS. 20c and 20d, it is 
shown that the total variation methodology may generate a 
superior image for an interior even with few views. 

Referring to FIGS. 2la-d, there is shown, respectively, 
shows still another example of a Shepp-Logan image, partial 40 

data for the object depicted in FIG. 21a if data with metal is 
removed, an image reconstruction using Filtration-backpro­
jection using the data from FIG. 21b, and an image recon­
struction using the TV methodology using the data from 
FIG. 21b. Comparing FIGS. 21c and 21d, it is shown that the 45 

total variation methodology may generate a superior image 
even with a missing data problem, such as if data from metal 
is removed. 

Based on the foregoing, a TV methodology may be used 
for accurate image reconstruction. One example of image 50 

reconstruction may be for divergent-beam CT under a num­
ber of imperfect sampling situations. The TV methodology 
may addressing a number of challenging reconstruction 
problems, including the few-view, limited-angle, and bad­
bin problems. As the results in the numerical studies indi- 55 

cate, the TV methodology may yield accurate reconstruc­
tions in these difficult cases, which are of practical 
significance. The effectiveness of the TV methodology may 
rely on the fact that the object being imaged may have a 
relatively sparse gradient image. Based on the numerical 60 

examples, it appears that the ERP conjecture may apply to 
many insufficient data problems, such as in divergent-beam 
CT. The TV algorithm described above applies equally to 
many other situations, such as cone-beam CT, even though 
the examples were directed to fan-beam CT. The TV meth- 65 

odology may also prove useful for many other tomographic 
imaging modalities. 

data. In order to accommodate data inconsistency, where 
----;, ----► 

there may be no solution to M f = g , one may solve a 
modified optimization problem: 

f *~argminllfllrvsuch thatlMf-gl,;e (20) 

The data constraint on the image may be an ellipsoidal 
whose scale is E. For inconsistent data, Em,n may have a 
minimum value Em,n that is in general greater than zero. In 
practice, Em,n may be found approximately by running POCS 
without TV gradient descent. The following discusses how 
varying E may affect image reconstruction when the data are 
corrupted by noise, such as uncorrelated Gaussian noise. 

The TV minimization algorithm discussed above may 
apply to inversion of discrete-to-discrete linear systems, so 
the actual phantom used here may be the pixellated Shepp­
Logan phantom. For the few-view reconstruction, the image 
array is, for example, 256x256 covering 20x20 cm2

. The 
simulated data are for fan-beam CT configuration with 
source to rotation center distance of 40 cm and a source to 
detector distance of 80 cm. Only 25 views were taken 
covering a full 360° scan. The simulated detector may have 
512 bins. The linear system matrix for this configuration 
models ray-driven projection through the image matrix. 
With only 25 views, the available data undersamples the 
image array by a factor of 5.12. 

In this study, inconsistency is introduced into the projec­
tion data set using uncorrelated Gaussian distributed noise. 
The standard deviation of the probability density function is 
set to 0.2% of each of the data values. Image reconstruction 
is performed on a single realization of this data model. The 
TV-minimization algorithm follows from Eq. (20) with the 
aim of obtaining a qualitative understanding of the effect of 
E. The TV-minimization reconstruction is shown for 
E=l.026, 0.382, 0.269, 0.248, and 0.115 (these E's are 
provided for illustrative purposes only and are not round 
numbers because they were determined by the data residual 
at fixed iteration numbers. Other E's may be chosen). Along 
with the image reconstructions, root-mean-square-error 
(RMSE) are shown in Table 1 below to quantify the accu­
racy of the various reconstructions. 
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1.026 
0.382 
0.269 
0.248 
0.115 
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TABLE 1 

DATA RESIDUAL PER DETECTOR BIN AND 
IMAGE RMSE AS A FUNCTION OF E. 

data RMSE ( x 10-5) 

8.0 
3.0 
2.1 
1.9 
0.9 

image RMSE (xl0-4) 

3.4 
1.2 
0.85 
0.86 
0.75 

For TV-minimization, the impact of noise may have a 
large effect because the noiseless case may give a highly 
accurate image. For the various values of E, each of the 
resulting reconstructed images appear to be more accurate 
than the POCS images, visually and also in terms of RMSE 
values. The gain in accuracy reflects the applicability of the 
assumption on the underlying image function of minimal TV 
gradient. The data RMSE tends to increase as E increases, 
while the image TV decreases. As E increases the space of 

possible images satisfying IIM f -gllsE grows and it is likely 
that an image within this constraint may be found with lower 
TV. The relation of E and image RMSE is less apparent. The 
trend of increasing RMSE in the image with increasing s is 
reasonable, but the details of this dependence may be 
strongly image function dependent. 

Visually, the variation in the reconstructed images may be 
large as a function of E. The larger values of E tend to yield 
a highly smoothed image; intermediate values may show 
low frequency "splotchy" noise; and low values may yield 
high frequency "salt and pepper" noise. FIGS. 22a-e illus­
trate examples images reconstructed by TV, using different 
values of E in Eq. (20), from noisy projection data taken at 
only 25 views, gray scale window is [0.9,1.1]. From these 
results, it may be difficult to identify the "best" value of E. 

The larger values of E obviously result in lower resolution, 
but the features of the reconstructed images may all be 
present in the phantom. Intermediate values of E may yield 
better resolution, but the artifacts from the noise may be near 
the same spatial frequencies as the phantom features. This 
situation may be confusing to the observer of the images. 
Smaller E may give higher frequency noise, which may be 
less easily confused with features of underlying image 
function. 

Though the role of the data tolerance parameter E for 
few-view fan-beam CT image reconstruction using the TV­
minimization methodology has been examined, other types 

28 
tions for the disk phantom may be compared with that of 
projection onto convex sets (POCS). It appears that the TV 
minimization image reconstruction may yield accurate 
image reconstructions that are robust against data inconsis-

5 tencies due to noise or mismatch in the system matrix. 
As discussed above, a methodology may be used for 

inversion of the Fourier Transform (FT) with sparse FT 
samples. A sparse representation of the underlying image 
function may be found, and minimize the 11 norm of this 

10 representation while requiring that the image's FT match the 
known samples. The methodology presents two ideas of 
note: (1) generalized image representations, and (2) the 
exact reconstruction principle (ERP). In particular, the rep­
resentation of an image by path integrals of its image 

15 gradient is of interest in medical imaging, because often­
times images themselves are not sparse but their gradient 
may be. Medical images may vary rapidly only at the 
boundaries of internal organs. Such an image representation 
calls for minimization of the image's total variation (TV), 

20 which is the 11 norm of the image gradient magnitude. 
The ERP may be useful in that it overrides the Nyquist 

sampling theorem for particular image functions. For the 
discrete FT (DFT), if there is no prior knowledge on the 
underlying image function, it may be necessary to have 

25 complete knowledge of the DFT to obtain the true image. If 
the image function, however, is known to be composed ofN 
pixels of unknown location and amplitude, it may only be 
necessary to have 2N samples of the image DFT to recon­
struct the image exactly. If N is much less than the total 

30 number of pixels in the image array then the ERP allows for 
substantial reduction in the necessary number of DFT 
samples. Because the inverse FT is related to parallel beam 
CT through the central slice theorem, the FT TV-minimiza­
tion algorithm can be directly applied to image reconstruc-

35 tion in the parallel beam case. 
For the divergent-beam transform in fan-beam or cone­

beam CT, the conversion of the data to Fourier space may 
not be straightforward, so a TV-minimization methodology 
is used that applies directly to this case. The methodology 

40 finds the approximate solution to the following optimization 
problem: 

f o~argminllfllrv such that X f ~g; (21) 

45 
---;, 

where f generically represents an image vector, whose 
length is the number of pixels/voxels; g is a data vector, 
whose components represent the measured ray integrals 
through the imaging volume; Xis the discrete linear opera-

tor that performs the x-ray transform off yielding the line 
integrals at the samples g; and II ... llrv represents the TV 
norm. As discussed above, the algorithm that finds an 
approximate solution to this optimization problem combines 
projection onto convex sets (POCS), which narrows the 

of image reconstruction may be used as well. Further, the 
introduction of inconsistency into the projection data may 50 

reduce the accuracy of the methodology, but the resulting 
reconstructions may appear to reveal the structures in the 
underlying image function. The form of the noise in the 
reconstructed images may vary dramatically as E varies. The 
below discussion indicates the possible range of artifacts in 
the reconstructed images; however, the range is provided for 
illustration purposes only. Other choices of methodology 
parameters, such as E, may be determined in a task-based 
fashion. Because the texture of the noise may change 
dramatically, the ability to perform a detection or estimation 60 

task based on the reconstructed images may depend strongly 

55 solution space to images that satisfy X f =g, with gradient 
---;, 

descent, which minimizes the TV norm of f . This ideal 
formulation though is only useful for perfectly consistent 
data. While in the FT inversion problem there is always at 
least one image that is consistent the available data, in the 
divergent-beam transform there may be no solutions to X 

on the image features pertinent to that task. 
As discussed above, the TV minimization image recon­

struction methodology for inverting the divergent-beam 
x-ray transform may be applied to image reconstruction in 65 

circular cone-beam computed tomography (CT). In analyz­
ing the TV minimization image reconstruction, reconstruc-

---;, 

f =g if the data contain inconsistencies, say, due to noise. In 
order to accommodate data inconsistency, it may be neces­
sary to modify Eq. (21) to: 

f o~argminllfllrvsuch that l~f-gll,;E (22) 
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The difference here is that the data constraint on the image 
is an ellipsoidal whose scale is E. For inconsistent data, E 

may have a minimum value Em,n that is in general greater 
than zero. In practice, Em,n can be found approximately by 
running POCS without TV gradient descent. 

The below discussion applies the TV-minimization algo­
rithm to circular cone-beam CT image reconstruction. Both 
cases of consistent and inconsistent projection data are 
considered. 

The discussion above focused on few-view and limited­
angle image reconstruction in fan-beam CT. The present 
discussion focuses on applying the TV-minimization meth­
odology to 3D cone-beam CT image reconstruction. Fur­
thermore, the form of the imperfect sampling is very dif­
ferent from the above few-view and limited-angle studies. 
The appropriate frame to understand the sampling of the 
imaging volume in circular cone-beam CT is in a space that 
represents the Radon transform of the image function. Each 

30 
to the original phantom (as shown in FIG. 25a). The POCS 
result is also close to the true discretized disk phantom, but 
it is clearly less accurate than that of the TV algorithm (as 
shown in FIG. 25b). In previous analyses, the difference 

5 between POCS and TV image reconstruction was larger 
when considering the few-view and limited-angle problems. 
The reason for this is that the latter problems were testing the 
limits of the ERP; namely, the amount of available data was 
near twice the number of non-zero pixels in the gradient 

10 image. Here, the ERP is not being tested at all. Because the 
number of projection views is higher in this study than either 
of the previous two fan-beam studies, the number of mea­
sured line integrals is much larger than twice the number of 
non-zero voxels in the image gradient. For the circular 

15 cone-beam CT scan, it is the ill-conditionedness of the 
discrete x-ray transform under the assumption of positivity, 
for POCS, or positivity and minimal image TV norm, for TV 
minimization, that is being tested. It appears that the TV-

point 7 in the 3D Radon space represents the planar integral 
20 

of the image function over a plane whose nearest point to the 

minimization algorithm is effective at circular cone-beam 
CT image reconstruction for this disk phantom. 

One may extend the above results by investigating the 
stability of image reconstruction from circular cone-beam 
CT data. As a preliminary test of stability, one realization 
may be generated of Gaussian distributed noise with a 

origin is r in the 3D image space. 
In order to have sufficient data to reconstruct the image, 

the Radon space within the sphere, indicated in FIG. 23 must 
25 standard deviation of 0.1 % of the true detector bin value. be sampled. The transparent sphere shown in FIG. 23 

represents the sufficient volume in Radon space needed to 
reconstruct the 3D image. The circular x-ray source trajec­
tory may sample only the Radon planes that intersect the 
trajectory. In the Radon space, the indicated torus represents 
the Radon sampling of this trajectory (a circular source 30 

orbit) whose dimensions are the size of the torus's outer 
diameter. As can be seen, there is a large gap at the polar 
regions of the Radon sphere. As the TV minimization 
algorithm has been successful in performing data interpo­
lation for both 2D few-view and limited-angle fan-beam CT, 35 

TV minimization may be able to interpolate the polar 
regions of the Radon sphere. 

In order to analyze the TV minimization methodology, 
one may use the disk phantom because on the one hand it has 

The resulting reconstructions for TV-minimization and 
POCS are shown in FIGS. 26a-d. As can be seen, the quality 
of the reconstructions is degraded. In the profiles shown in 
FIGS. 26c-d, the deviations from the true image increases 
with z. This indicates that the image reconstruction may be 
less stable for points further away from the plane of the 
circular orbit. Of note, the assumption of minimal TV norm 
appears to help reduce the level of artifacts in the recon­
structed images. 

a sparse image gradient, so TV minimization should be 40 

effective, but on the other hand it is a challenging phantom 
due to the strong variations in z, which gives rise to a lot of 
structure in the polar regions in Radon space. In order to 
speed up the calculations, reconstruction is only considered 

For the third simulation, the impact of data inconsistency 
introduced by modeling the data with continuous line inte­
grals of the actual disk phantom is investigated. For the first 
and second simulations, the imaging volume is only 1003

, 

and the data derived from the discretized disk phantom 
deviates substantially from the continuous disk phantom. In 
order to reduce this difference, the number of voxels is 
increased to 4003

, and the number of detector bins is also 
increased proportionally. So that the calculation time does 
not grow too much, the number of projection views is 
reduced to 32. For this study, only results of the TV­
minimization algorithm are shown, because the reduction to 

in the z2:0 half-space. The disk phantom and detector are 45 

chopped in half. The geometric parameters of the simulation 
are shown in FIGS. 24a-c. few-views does not affect the TV algorithm while for POCS 

this reduction may introduce significant artifacts. Even 
though the voxelization is much finer, there are still rela-

Below are three simulations. The first simulation consid-
ers perfectly consistent data. Because the TV-minimization 
algorithm inverts discrete-to-discrete linear systems, the 
simulated data are generated from a voxellated disk phan­
tom. This way the operator X that generates the data is the 
same as the operator used in the POCS part of the TV 
minimization algorithm. The second simulation perturbs the 
data by introducing a small amount of Gaussian-distributed 
noise. The third simulation generates the simulated data 
from the analytic line integrals of the disk phantom; such 
data may no longer be completely consistent with the 
discrete x-ray transform used in the TV-minimization algo­
rithm. 

For the consistent and noisy data studies, the image array 
is relatively small at 1003 voxels. The projection data may 
comprise 128 views covering 360° with the detector dimen­
sion of 200 bins across and 100 bins high. FIGS. 2Sa-b 
shows the resulting reconstruction from the TV algorithm 
compared with image reconstruction by POCS alone. The 
image reconstructed by TV-minimization is nearly identical 

50 tively large differences between projection of the discrete 
and continuous disk phantoms as seen in FIG. 27a. Particu­
larly, at the edges of the disks and background cylinder the 
projection difference can be quite large. This difference, 
however, may not represent inconsistency in the data alone, 

55 because the discretized disk phantom used here may not be 
the one that generates projection data closest to the continu­
ous case. It is apparent, however, that there is some level of 
inconsistency introduced, because the reconstructed images 
are forced to be constant within the individual voxels. The 

60 resulting reconstruction is shown in FIG. 27b. The results 
show increasing levels of artifacts as the voxels go away 
from the source trajectory plane. Artifacts due to this type of 
inconsistency may be controlled much better by using 
previous methods for representing image functions such as 

65 blobs or splines. 
The above discussion analyzes circular cone-beam CT 

image reconstruction by the TV-minimization algorithm. 
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This type of problem may represent a different type of 
imperfect sampling than what has previously been investi­
gated by TV-minimization. Image reconstruction algorithms 
necessarily perform interpolation over a wide gap in the 
polar regions of the image's 3D Radon sphere. TV-minimi­
zation may perform well for this scan, as shown here with 
the challenging disk phantom. For the case of consistent 
data, the TV algorithm appears to provide very accurate 
image reconstruction for this phantom. And TV-minimiza­
tion appears to be relatively robust against signal noise. The 
image reconstruction from the continuous data model 
appears to be affected more by the resulting data inconsis­
tency, but this is primarily due to the choice of representing 
the image by cubic voxels. Additional analysis for circular 
cone-beam CT image reconstruction by TV-minimization 
may be performed with other expansion functions that are 
known to more closely match continuous line integrals. 

An important component of the TV algorithm is the 
ability to take many small total variation gradient descent 
(TVGD) steps, which computationally can be extremely 
time-consuming The TVGD step may, however, be very 
well suited to a new field of computing-general purpose 
computing on a graphics processing unit (GPGPU). The TV 
of the 3D image may depend on the variation of the image 
over neighboring voxels, and to formulate the image TV a 
three index notation for the image voxels is required. The 

32 
ematical operations needed for 3D rendering. Objects in a 
3D graphics scene are represented as a set of 3D vertices, 
and to give 3D objects a realistic appearance, the faces 
formed by neighboring vertices can have a 2D image, or 

5 texture, affixed. In the rendering process, geometric trans­
forms are perform on the vertices in a first pass, and 
pixel-by-pixel image processing operations are performed in 
a second pass called fragment shading. Oversimplifying, the 
first pass is generally used to orient the 3D scene to a 

10 particular camera view angle, and the fragment shader is 
used to incorporate the visual properties of each face includ­
ing any textures used. In modem graphics hardware, both of 
these rendering stages are now programmable, and in par-

15 ticular the fragment processing operates in a highly parallel 
fashion with up to 24 channels operating together to process 
a scene. Due to the flexibility of the new graphics hardware, 
the GPU can be coerced into performing and significantly 
accelerating numerical computations previously performed 

20 on standard CPUs. In fact, sophisticated GPU algorithms 
have been developed for performing forward- and back­
projection in iterative tomographic image reconstruction 
yielding impressive acceleration by a factor of 10 or more. 
The present application, exploiting the GPU for TVGD, is 

25 particularly effective. 
The TVG-GPU methodology may be derived from two 

value of the image fat voxel i, j, k is denoted as f (i, j, k) 
where iE[l, nJ, jE[l, ny], and kE[l, ~],where~' ny, and n

2 

are the numbers ofvoxels along each of the image axes. The 
30 

image TV is: 

on-line tutorials on GPGPU: the helloGPGPU tutorial shows 
how to program a fragment shader to perform a Laplacian 
filter on a real-time dynamic scene, and the "basic math 
tutorial" illustrates how to perform numerical computation 

nx-lnj-lnz-1 

IIJIIJV = ~ ~ ~ ✓ (/:,.xf) 2 + (/:,.yf)2 + (/:,.,f) 2 
, 

i=2 )=2 k=2 

t:,.xf = f(i, j, k) - f(i - 1, j, k), 

t:,.yf = f(i, j, k) - f(i, j - 1, k), 

t:,.,f = f(i, j, k) - f(i, j, k - 1). 

(23) 

One way of reducing the TV of an image is to subtract 

from f a small constant times the TV gradient image T 
which is defined as: 

T ={ oil f llr,)of (ij,k) :ie[l ,nxJ,je[l ,ny],ke[l ,nz]} (24) 

The exact form of T is straightforward to derive, but due 
to the length of this formula it will not be written here. Of 

note about computing T are that structurally the computa­
tion is a non-linear filtering operation involving each voxel 

on the GPU with a recursive vector addition problem. The 
former tutorial is a good guide on generating the fragment 
shader needed for our non-linear filter, and the latter tutorial 

35 
provides an orientation on how to map numerical compu­
tation onto the GPU. In the basic math tutorial, the data for 
the calculation is converted to a 2D texture and attached to 
a simple rectangle. The fragment shader, containing the data 
processing steps, is loaded into the GPU, and the computa-

40 tion is performed by issuing a command to render the 
rectangle orthogonally to a parallel plane. The texture flows 
through the fragment shader and the rendered quadrilateral 
contains the processed array. 

For the present application, a 3D array is needed for 
45 processing; however, GPGPU may be best suited for 2D 

arrays. Accordingly, the 3D image array may be reformatted 
by stacking consecutive z-slices side-by-side in the x-direc­
tion of the texture, and stacking these rows in they-direction 
so as to fit as much of the 3D array as possible into the 

50 4096x4096 size limit for textures on our NVIDIA 7800 

and 12 neighboring voxels. Calculating the TV gradient T 
once is not as time consuming as a POCS iteration, but our 
TV methodology may require multiple TVGD steps per 55 

POCS iteration. Therefore, acceleration of the computation 

GTX graphics board. When the 3D array does not fit into a 
single texture, the calculation may be broken up into smaller 
parts that do fit. The offset for obtaining neighboring values 
in the x- and y-direction is straightforward, just as in the 3D 
array, and to reference the neighboring z-slice an offset of~ 
is added or subtracted to the current pixel position. The 
computation may be performed in 32-bit floating point, 
provided by the GL_FLOAT_R32_NV texture data format. 
The application of the non-linear filter is uniform across the 

of T may have a large impact on the execution time of the 

whole algorithm. Due to the non-linearity in calculating T, 
the Fourier Transform cannot be exploited as with linear 
filters. The non-linear filtering operation, however, is very 
well suited to implementation on a graphics processing unit 
(GPU). 

60 array, and as a result the values at the edges may be spurious. 

The GPU may implement a number of graphics primitive 
operations in a way that makes running them much faster 65 

than drawing directly to the screen with the host CPU. The 
GPU may exploit massive parallelism to perform math-

To take care of these edge values, the TV gradient array is 
zeroed at the edges two voxels deep after the data is restored 
to the 3D format. The TVG-GPU program achieves roughly 
a factor of ten acceleration over the CPU version of this 
subroutine. Acceleration of the TVGD step on commodity 
graphics hardware may thus prove important to the practi­
cability of the TV-algorithm, as the accelerated algorithm 
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may take many more gradient descent steps with a smaller 
step-size, thereby improving the accuracy and the speed of 
the TV gradient descent. 

34 
example. Specifically, the Fourier transform of the Shepp­
Logan phantom is taken, shown in FIG. 28a. Only data 
along the horizontal lines shown in the indicator function in 
FIG. 28b are used in the image reconstruction. This indicator Still another type of imaging is echo-planar imaging 

(EPI). During the past 15 years, EPI has emerged as one of 
the fastest of the common magnetic resonance imaging 
(MRI) methods. Reducing scan times by factors ofup to 104 

in some circumstances, EPI is becoming an increasingly 
important part of cardiac imaging, functional MRI, and other 
applications that require rapid imaging. EPI takes advantage 

5 function consists of a central band comprising 10% of the 
total amount of data. This ensures that information about the 
DC and low frequency, components of the object function 
are retained. Horizontal lines comprising an additional 10% 
of the total dataset are randomly selected from a normal 

10 distribution with standard deviation equal to the vertical 
image dimension. This standard deviation is found to give a 
sufficient sampling of both low and high frequency compo­
nents, resulting in the best reconstruction performance for 
this phantom. Although the same indicator function is used 

15 
throughout for consistency, other indicator functions satis­
fying these conditions are found to give similar results. 

of large gradient magnitudes and rapid switching of the 
read-out (frequency encoding) gradient. Each application of 
the read-out gradient advances the scan trajectory rapidly 
along the ~ direction in the Fourier plane. A brief phase­
encode gradient is applied following the read-out gradient, 
advancing the trajectory a short distance along the kY direc­
tion. The read-out gradient is then again applied with 
opposite sign, moving the trajectory back along ~- This 
repeated switching of the read-out gradient coupled with 
phase encoding gradient pulses leads to mapping of Fourier 20 

space along horizontal lines in a Cartesian grid, and for 
sufficient gradient strengths EPI acquires multiple lines of 
data in Fourier space using a single radio frequency exci­
tation. This allows an entire image to be constructed from 
one free induction decay using either spin-echo or gradient- 25 

echo acquisition methods, resulting in a dramatic improve­
ment in imaging time relative to other methods. 

However, there remains a need to further reduce scan 
times in EPI. For efficient imaging, the total path through 
Fourier space may be covered within the spin-spin relax- 30 

ation time T 2 *. Typically, this corresponds to covering all of 
Fourier space in 100 ms or less, which can be a challenge for 
standard MRI systems. The reduction ofEPI scan time may 
be achieved through reduction of the number of horizontal 
data lines required for accurate image reconstruction. While 35 

methods have been investigated for obtaining accurate MRI 
images from a reduced number of lines, they have not 
allowed sufficient reduction in line number to significantly 
reduce EPI scan time. 

The discussion below includes a methodology for obtain- 40 

ing accurate images from highly sparse horizontal data lines 
in EPI. This may allow a substantial shortening of imaging 
time, and may also improve image resolution and signal-to­
noise ratio for scans of a given duration. The methodology 
may iteratively minimize the total variation (TV) of the 45 

estimated image using gradient descent, subject to the con­
dition that the estimated data remain consistent with the 
sample data. This approach may be effective for images that 
are nearly constant over most regions and vary rapidly only 
in confined regions, a condition applicable to many medical 50 

images. Using this method, images are reconstructed from 
samples in Fourier space obtained along as few as 20% of 
the horizontal lines used in a typical full EPI scan. The 
present discussion focuses on the method and results in the 
context of two-dimensional (2D) MRI. However, they are 55 

directly applicable and generalizable to higher dimensional 
MRI, as well as other scan configurations such as radial or 
spiral scanning. 

The TV of an image is the 11 -norm of its gradient image, 
and may be expressed as: 

11!,.,IIJV = ~ ✓ (!,., - f,-1.,J2 + (!,., - J;_t-1)2 
(26) 

,., 

where s and t denote row and colunm indices Minimizing 
the image TV provides the foundation of an iterative method 
for image reconstruction from sparse samples. As discussed 
above, this method may be effective for images with sparse 
gradients, and may be applied successfully in CT. The image 
of object function f(x, y) is constructed such that llfs.,llrv is 
minimized while the S(kx, ky) from the reconstructed image 
match the measured object data. 

Implementation of the methodology may comprise three 
main steps: initialization, projection, and TV gradient 
descent. For the first iteration of the algorithm, initialization 
may comprise setting the estimated image to zero. The 
initialization step for subsequent iterations is discussed 
below. 

Projection comprises the following substeps: the esti-
mated image is first transformed to Fourier space, which is 
the data domain, using an FFT. The methodology is particu­
larly conducive to EPI data, since these data are acquired on 
a Cartesian grid. Therefore no interpolation is required to 
perform the FFT. After FFT, the known data measured along 
the trajectories in the indicator function (FIG. 28b) may be 
copied into their appropriate positions in the Fourier 
domain. This enforces consistency with the data. An inverse 
FFT is performed on the Fourier image to return to the image 
domain. Finally, the positivity in the image is enforced by 
setting pixels with negative values to zero. The scalar 
distance is also measured between the pre-projection and 
post-projection images, the so-called projection distance, for 
use in the next step. 

To perform the TV gradient descent step, the gradient of 
the image TV expressed in Eq. (26) is determined This 
should not be confused with the gradient of the image itself, 
from which the image TV was determined The gradient in 

question is also an image which is denoted --;/, with each The measured signal in EPI is simply related to the 
Fourier transform of the object function f(x, y): 60 

pixel equal to the partial derivative of the image TV with 
respect to that pixel, 

S(kx,k,,JoJJf(x,y)exp{-2nj(k.x+k,,y) }dxdy (25) 

where ~ and Is, are proportional to the x ~d y gradients 
of the magnetic field, as well as the read-out time and phase 
encoding pulse duration, respectively. Our data model com- 65 

prises measurements of S(~, ky) from computer ge°:erated 
data along horizontal lines in a 128x128 square gnd, for 
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The gradient image v is normalized, then a small fraction of 

v is iteratively subtracted from the post-projection image. 
This is the gradient descent, which may act to reduce the TV 

of the post-projection image. The fraction of v subtracted is 
proportional to the projection distance so that the gradient 
descent step may not overwhelm the projection step. This 
allows that the estimated image moves in the net direction of 
data consistency. After the gradient descent step, the result­
ing image becomes the initial image, and the process may be 
repeated beginning with projection. 

36 
importance of performing the TV minimization via gradient 
descent, a comparison is presented of image reconstructions 
from inconsistent data, both with and without the TV 
minimization step. The results are shown in FIGS. 32a-b and 

5 33a-b. FIG. 32a shows the image reconstructed using the TV 
minimization algorithm as detailed above. Independent 
Gaussian noise with a equal to 0.1 % of the amplitude of the 
zero frequency component was added to the Fourier data. 
FIG. 32b shows the reconstructed image after the same 

10 number of iterations when TV minimization via gradient 
descent is not performed. In this case the reconstruction 
algorithm consists solely of initialization and projection 
(including positivity). Little useful information can be 
obtained from this image, and in fact the method offers little 

Numerical studies were performed to validate and dem­
onstrate the methodology's performance in reconstructing 
accurate images from highly sparse Fourier data. Results for 
consistent data, in which no noise is added to the computer­
generated S(kx, Is,), are shown in FIGS. 29a, c-d. FIG. 29a 
shows the image reconstructed with the TV minimization 
algorithm using only data along the horizontal lines in the 
indicator function, comprising just 20% of the total dataset. 20 

This corresponds to a scan roughly 5 times faster than one 
which explores the entire Fourier space. The reconstructed 
image is indistinguishable from the Shepp-Logan phantom 

15 improvement over the single inverse IFFT shown in FIG. 
29b for this particular phantom and scan configuration. In 
the absence of TV minimization, little useful information is 
obtained. 

Thus, an iterative reconstruction algorithm may be 
applied based on minimization of the image TV to perform 
accurate image reconstruction with less data, such as little as 
20% of the data, used in a typical EPI scan. When applied 
to consistent data, the methodology may provide a virtually 
exact reconstruction of the original image. When applied to in FIG. 28a. For reference, FIG. 29b shows the image 

resulting from a single inverse Fourier transform of the data, 25 

prior to iteratively applying the TV minimization algorithm. 
This illustrates the algorithm's ability to recover the image 
from a dataset that is too limited to permit recovery through 
simple inverse Fourier transform. FIGS. 29c-d are in fact an 
overlay of the original and reconstructed horizontal and 30 

vertical image profiles, respectively. However, because the 
image reconstruction is exact, the profiles are indistinguish­
able from one another. 

inconsistent data, with independent Gaussian noise added in 
the Fourier domain, the algorithm may recover some or most 
features of the Shepp-Logan phantom used here. The TV 
minimization methodology has the added advantage of 
regularizing the reconstructed image, making it highly effec­
tive for noisy data. However, the TV minimization step may 
be important to accurate image recovery, and not just a tool 
to regularize noisy images. When the TV minimization step 
is not included in the algorithm, the image reconstruction 
may be of lesser quality. Real world applications rarely deal with consistent data; 

therefore, the performance of the algorithm is analyzed in 35 

the presence of noise. FIGS. 30a-d show one example. Here, 
independent Gaussian noise is added to the Fourier data on 

In practice, this methodology may be able to both reduce 
EPI scan time or increase scan efficiency by allowing for 
greatly improved image resolution and signal to noise ratio 
in scans of a given time. The TV algorithm may be readily 
applied to reconstructing images from sparse samples on 

a pixel by pixel basis, with a equal to 0.1 % of the amplitude 
of the zero frequency component. FIG. 30a shows the model 
image after inverse Fourier transform. FIG. 30b shows the 
reconstructed image, again created using only data along the 
horizontal lines in the indicator function. Major features of 
the object are recovered, as are most smaller scale features. 
This is further illustrated by the profiles in FIGS. 30c-d. As 
these profiles demonstrate, the TV algorithm has the added 
benefit of regularizing the image, as the recovered image is 
less noisy than the original. 

The methodology is also tested with a modified noise 
model. Here, a Gaussian taper is imposed on the noise added 
in Fourier space. The noise model described above is applied 
pixel by pixel to the data as before, but the Fourier image is 
then multiplied by a Gaussian with unit peak and full width 
at half maximum equal to 25% of the image diameter. This 
process tapers the noise in the high-frequency components 
to emphasize noise features on larger scales. FIGS. 3la-d 
illustrate this method and the results. FIG. 31 a shows the 
model image after inverse Fourier transform. The noise 
primarily affects larger scales, and may be more difficult to 
smooth out. FIG. 31b shows the image reconstructed using 
the TV algorithm. As with the previous noise model, all 
major features are recovered, as are most small scale fea­
tures. The profiles in FIGS. 3lc-d further demonstrate this. 
The TV algorithm is capable of reconstructing an accurate 
likeness of the original image using just 20% of the available 
data, and is shown to be very robust to image noise. 

TV minimization is an important part of the methodology, 
not simply a tool to regularize the image. To demonstrate the 

40 other non-uniform grids in Fourier space and can also be 
generalized to higher dimensional Fourier space and MRI 
scan configurations. The methodology may be applied to 
more complex phantoms. 

EPI may commonly be used to measure volumes instead 
45 of individual slices. In multi-slice EPI, a three-dimensional 

volume may be reconstructed by stacking together multiple 
2D slices, each of which may be obtained independently. A 
drawback to this method arises when sparse sampling is 
desired, for instance to reduce scan time. The 2D stacking 

50 method may not accommodate sparse sampling along the 
slice direction, as this creates gaps in the reconstructed 
image volume. An alternative may be achieved by perform­
ing a standard 2D EPI sequence while spatially encoding the 
third dimension of the excited slab with a predetermined 

55 number of phase-encoding steps, corresponding to the num­
ber of slices desired. An image of the entire 3D volume may 
then be constructed by means of a 3D Fourier transform. A 
new image reconstruction methodology may be applied 
where sparse sampling in Fourier space along the slice 

60 direction does not cause gaps in the reconstructed image. 
This methodology takes advantage of the fact that the 
Fourier transform is a non-local mapping into image space. 
As shown below, this means that accurate 3D image recon­
struction may be achieved from EPI data with highly sparse 

65 sampling in two of the three spatial dimensions. By contrast, 
the 2D slice approach only allows sparse sampling in one 
dimension. The full 3D approach presented here may also 
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allow greater signal-to-noise ratio in the reconstructed 
images relative to 2D slice stacking because a greater 
number of independent measurements are used to recon­
struct each image pixel. This can also be used to measure 
thinner slices or smaller pixels without sacrificing signal- 5 

els to zero. This process is referred to as the Fourier 
transform step. Since EPI measures Fourier data in a Car­
tesian grid, no interpolation is needed to perform the fast 
Fourier transforms in this step. 

The Fourier transform step may enforce data consistency, 
and the gradient descent step may follow to minimize the 
image TV. The image TV is the 11 -norm of the gradient 
image. It may be reduced by subtracting a small fraction of 
the gradient of the image TV from the image itself The best 

to-noise. 
While EPI may be fast relative to other MRI methods, 3D 

image acquisition can still be very time-consuming, depend­
ing on how many slices are needed. The image reconstruc­
tion methodology presented in this study may reduce 3D EPI 
scan times by a factor of six or more. Repeated switching of 
the frequency encoding gradient coupled with phase encod­
ing gradient pulses may lead to mapping of Fourier space 
along horizontal lines in a Cartesian grid which, for histori­
cal reasons associated with our choice of phantom, we take 
to be the x-z plane. Reduced scan time may be achieved 
through reduction of the number of these horizontal data 
lines. In 3D EPI, a phase encoding gradient may also be 
applied along the slice direction, which is taken to be the 
y-axis. EPI scan time may be further reduced by sampling 
fewer slices within the full 3D volume. 

Here, the two-dimensional treatment of image reconstruc­
tion is extended from sparse EPI data to three spatial 
dimensions. The method allows a substantial shortening of 
imaging time, and may also improve image resolution and 
signal-to-noise ratio for scans of a given duration. This 
method iteratively minimizes the total variation (TV) of the 
estimated image using gradient descent, subject to the con­
dition that the estimated data remain consistent with the 
sample data. This approach may be effective for images that 
are nearly constant over most regions and vary rapidly only 
in confined regions, a condition applicable to many medical 
images. Using this method, images from sparse samples are 
reconstructed in Fourier space, using as little as 15% of the 
data used in a typical full 3D EPI scan. 

The measured signal in EPI is simply related to the 
Fourier transform of the object function f(x, y, z): 

exp{-2nj(Jscx+k,,y+kzz)}dxdydz (27) 

where kx, ky, and ~ are proportional to the x, y, and z 
gradients of the magnetic field, as well as the read-out time 
along x and the phase encoding pulse durations along y and 
z. The data model comprises measurements of S(~, ky, k

2
) 

from computer generated data in a Cartesian volume. 
The image reconstruction methodology may be thought of 

as an optimization problem where the data constraint to be 
minimized is the total variation. Such a problem may be 
written as: 

f*~argmin llfllrvsuch that IMf-gl,;e (28) 

where f represents a discrete image, g is the available 
Fourier data, Mis the Fourier transform operation, and f* is 
the solution to the optimization problem. The inequality is 
used to account for noisy data, and the value of E depends 
on both the amount of available data and the level of noise 
within the data. 

A solution to Eq. (28) may be found by alternating two 
processes: data projection followed by TV minimization via 
gradient descent. The projection step is straightforward for 
MRI; since the data are measured in the Fourier domain, this 
step may comprise fast Fourier transforming the trial image 
volume (which initially consists of all zeros), copying in the 
known Fourier data samples, taking a fast inverse Fourier 
transform, and enforcing positivity by setting negative pix-

10 results may be obtained if this process is performed in a 
series of small steps. In extending the algorithm from two 
dimensions to three the Fourier transform scales only as n2 

due to the weakness of the log n term, while the gradient 

15 
descent step scales fully as n3

, where n represents the side 
of a cube in which the algorithm is performed. The gradient 
descent step is therefore time consuming, requiring roughly 
an order of magnitude more CPU time than the Fourier 
transform step under the conditions studied here. To improve 

20 the computational efficiency of the algorithm, the gradient 
descent step may be performed on a GPU, as discussed 
above. The GPU ordinarily uses parallel processing for rapid 
rendering of 3D graphics, and is therefore well-suited to 
rapid calculation of the TV gradient in a 3D environment. 

25 Performing gradient descent on the GPU is an order of 
magnitude faster than doing so on the CPU, making it 
roughly equal to the time required for the Fourier transform 
step under existing conditions. 

The methodology may be iterative, alternating the Fourier 
30 transform step with gradient descent to move toward a 

solution of Eq. (28). Iteration may be terminated when the 
data residual first dropped below E. However, under some 
circumstances, the resulting f * may still be far from the 
solution of Eq. (28). The methodology may therefore be 

35 accordingly to adaptively change the Fourier transform and 
gradient descent step sizes even after the E threshold is 
crossed, thereby continuing to move the solution toward 
lower TV. 

Numerical studies were performed to validate and dem-
40 onstrate the algorithm's performance in reconstructing accu­

rate images from highly sparse Fourier data. The studies 
were performed using a 3D Shepp-Logan phantom. In the 
case of noiseless data, the reconstructed images are indis­
tinguishable from the original slices. In the presence of data 

45 noise, the TV algorithm may adequately reconstruct images 
from noisy data similar to the two dimensional case. These 
results indicate that use of the TV minimization algorithm 
for image reconstruction can substantially reduce 3D EPI 
scan times (e.g., by a factor of six in examples studied), 

50 facilitating more rapid imaging as well as greater image 
resolution and signal-to-noise ratio for a given scan time. 

An iterative reconstruction algorithm based on minimi­
zation of the image TV may be applied to perform accurate 
3D image reconstruction with less data (e.g., as little as 15% 

55 of the data) used in a full 3D EPI scan. The TV minimization 
algorithm may have the added advantage of regularizing the 
recovered image, making the method very effective for noisy 
data. This approach may be effective for fully 3D EPI as 
described here, since the 3D Fourier transform used in our 

60 analysis maps the sparse Fourier samples into the entire 
image space. Such a reduction in scan time with multi-slice 
2D EPI may be unlikely, as this approach does not allow for 
sparse sampling of slices within the volume. In practice, this 
methodology may be able to both reduce EPI scan time and 

65 increase scan efficiency by allowing for greatly improved 
image resolution and signal-to-noise ratio in a scan of a 
given time. The TV algorithm may be readily applied to 
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reconstructing images from sparse samples on other non­
uniform grids in Fourier space. 

It is intended that the foregoing detailed description be 
regarded as illustrative, rather than limiting, and that it be 
understood that the following claims, including all equiva- 5 

lents, are intended to define the scope of this invention. 

The invention claimed is: 

40 
iteratively generating the estimated image using the ROI 
data and constraining variation of the estimated image. 

9. The system of claim 1, wherein location and extent of 
the one or more defects is known prior to generating an 
estimated image of the ROI. 

10. The system of claim 1, wherein location and extent of 
the one or more defects is unknown prior to generating an 
estimated image of the ROI. 1. An imaging system configured to generate an image of 

a region of interest (ROI), the imaging system comprising: 
a source configured to generate a beam; 
one or more detectors; and 

11. The system of claim 1, wherein the one or more 
10 defects comprise poor quantum efficiency of at least one of 

the one or more detectors. 

a processor in communication with the source and the one 
or more detectors, the processor configured to: 

12. The system of claim 11, wherein the erroneous data 
comprises low photon count by one or more detectors such 
that the signal noise dominates due to the poor quantum 
efficiency the at least one of the one or more detectors. 

control at least one of the source or the one or more 
detectors in order to generate ROI data correspond- 15 

13. The system of claim 1, where the one or more 
detectors are stationary when the ROI data is generated. 

14. The system of claim 1, where the processor is con­
figured to control the one or more detectors by moving the 

20 one or more detectors relative to any one, or both, of the 
source and ROI. 

ing to the ROI, the ROI data comprising erroneous 
data based on one or more defects in the one or more 
detectors; and 

generate an estimated image of the ROI based on ROI 
data. 

15. The system of claim 1, wherein the ROI includes all 
of or only a part of an object. 

2. The system of claim 1, wherein the one or more defects 
comprise one or more bad detector bins in at least one of the 
one or more detectors. 

3. The system of claim 2, wherein the erroneous data 
comprises one or more gaps in the ROI data due to the one 
or more bad detector bins. 

16. The system of claim 15, wherein the object is a living 

25 object. 

4. The system of claim 3, wherein the one or more gaps 
in the ROI data comprise data indicative of zero intensity. 

5. The system of claim 1, wherein one or more of the 
defects comprises an artifact-producing error in at least one 30 

of the one or more detectors. 
6. The system of claim 1, wherein the erroneous data 

comprises a gap on the one or more detectors for all 
available projection views. 

7. The system of claim 1, wherein the ROI data is less than 35 

that sufficient to reconstruct an exact image of the ROI. 
8. The system of claim 1, wherein the processor is 

configured to generate the estimated image of the ROI by 

17. The system of claim 15, wherein the object is a 
non-living object. 

18. The system of claim 1, wherein the ROI is an entire 
living organism. 

19. The system of claim 1, wherein the ROI is a part of 
a living organism which is less than the entire living 
organism. 

20. The system of claim 1, wherein the ROI is an entire 
inanimate object. 

21. The system of claim 1, wherein the ROI is a part of 
an inanimate object which is less than the entire inanimate 
object. 

* * * * * 


