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SUPERVISED MACHINE LEARNING 
TECHNIQUE FOR REDUCTION OF 
RADIATION DOSE IN COMPUTED 

TOMOGRAPHY IMAGING 

2 
higher-dose (HD) like CT images, are provided. The tech­
niques rely upon supervised machine-learning techniques 
trained with input low-dose (LD) CT images and correspond­
ing "teaching" higher-dose (HD) CT images with less noise 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. application Ser. 

5 or fewer artifacts. Through training, the machine-learning 
techniques learn the relationship between the input and teach­
ing images, allowing the conversion oflose-dose CT images 
into HD-like CT images. Once trained, the machine-learning 
technique no longer requires further training, high-dose CT 

No. 61/695,698, filed Aug. 31, 2012, entitled "Supervised 
Machine Leaming Technique For Reduction Of Radiation 
Dose In Computed Tomography Imaging," which is hereby 
incorporated by reference in its entirety. 

1 o images. Rather the system is trained to produce, in an ongoing 
manner, HD-like CT images from low-dose CT images. 

FIELD OF THE INVENTION 15 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a training phase and application phase 
process of a supervised dose reduction technique, in accor­
dance with an example. The invention relates generally to the field of medical 

imaging and more particularly to techniques for converting 
low-dose quality computed tomography images into higher 
quality computed tomography images. 

FIG. 2 is a flow diagram of a process for developing a 
supervised dose reduction technique, in accordance with an 

20 example. 

BACKGROUND 
FIG. 3a is a depiction of an input image of a non-trained 

ultra-ultra low dosage CT image; and FIG. 3b is a depiction of 
an output image of a HD-like CT image produced from the 
image of FIG. 3a, in accordance with an example. 

FIG. 4a is a depiction of an input image of a non-trained 
ultra-ultra low dosage CT image; and FIG. 4b is a depiction of 
an output image of a trained HD-like CT image produced 
from the image of FIG. 3a, using a massive-training artificial 
neural network (MTANN) technique, in accordance with an 

Computed tomography (CT) and various, other medical 
imaging techniques have been used to detect cancer in 25 

patients. CT images, for example, allow medical personnel to 
screen for tissue anomalies, classifying them based on indi­
cators such as abnormal or normal, lesion or non-lesion, and 
malignant or benign. Conventional CT image analysis and 
interpretation and cancer detection and diagnosis techniques 
involve a radiologist assessing volumes of CT image data of 

30 example. 
FIG. Sa is a depiction of an input image of a non-trained 

ultra-ultra low dosage CT image; and FIG. Sb is a depiction of 
an output image of a trained HD-like CT image produced 
from the image of FIG. 3a, using a MTANN technique, in 

a subject tissue. Given the volume of data, however, it can be 
difficult to identify and fully assess CT image data for cancer 
detection. CT image analysis is known to result in mis-diag­
noses in some instances, resulting from false positive deter­
minations that lower overall efficiency of CT image analysis 

35 accordance with another example. 

as a viable detection technique. There are automated tech­
niques for CT image analysis, e.g., automated techniques for 
detecting lung nodules in CT scans. Yet, these automated 
techniques are nonetheless limited and, as with non-auto- 40 

mated techniques, are benefited by using higher dose CT 
imaging for data collection for better image quality. 

For CT image analysis, interpretation, detection and diag­
nosis, there is a tradeoffbetween radiation dosage levels and 
image quality. Generally, higher radiation doses result in 45 

higher signal-to-noise ratio, higher resolution images with 
fewer artifacts, while lower doses lead to increased image 
noise, more artifacts and less-sharp images. The higher radia­
tion may, though, increase the risk of adverse side effects, 
e.g., increasing the risk of radiation-induced cancer. As a 50 

result, low dose radiation CT has been studied oflate, with the 
hope of improving image analysis and detection, without 
increasing the chances of potential adverse side effects. 

Yet, despite recent developments in radiation dose reduc­
tion techniques in CT scanning, e.g., techniques such as adap- 55 

tive exposure and iterative reconstruction, current radiation 
dosing is still very high, especially for screening populations. 
As such, there continues to be public concern about radiation 
risks from current CT testing levels. In response, the tech­
niques of the present invention provide a way of using low- 60 

dose CT imaging with vastly improved, higher-dose like 
image quality. 

SUMMARY OF THE INVENTION 

FIG. 6a is a depiction of an input image of a non-trained 
ultra-ultra low dosage CT image; and FIG. 6b is a depiction of 
a reference HD-like CT image produced at a high dose level 
than that of FIG. 6a, in accordance with another example. 

FIG. 7 is a system for performing supervised dose reduc­
tion techniques, in accordance with an example. 

DETAILED DESCRIPTION 

A schematic diagram of example training and application 
for a supervised dose reduction technique 100 is shown in 
FIG. 1. The supervised dose reduction technique developed 
herein is able to produce high-quality medical images from 
lower-quality medical images through the use of a training 
phase, that once completed can be used repeatedly on follow­
up images for automatically converting lower-quality images 
to high-quality images. As discussed herein, various super­
vised machine learning techniques may be used to form the 
image conversion engines described herein. While the image 
conversion engines may be designed to effect image conver­
sion from a low-quality image to a higher-quality image 
based on any number of image characteristics, as provided 
herein, in some examples, the conversion engine is particu­
larly configured to reduce noise in the lower-quality image 
and preserve and enhance signal (such as edge and lesion) 
pixel depictions in the final, converted image. By altering the 
noise characteristics, for example through dramatic (10-fold 
or more) noise reduction, the conversion engine is able to 
output higher-quality images that allow for such. In some 

Techniques for converting low-dose (LD) CT images to 
higher quality, lower noise images, such as for example 

65 examples described herein, an image conversion engine is 
used to convert images such as low-dose CT images (LDCT) 
to high-dose-like CT images (HDCT), through an initial 
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training phase that need only be performed once, in some 
examples. FIG. 1 shows both a training phase 102, in which 
the supervised dose reduction technique is developed for 
image conversion, and a post-training, application phase 104, 
in which the learned image conversion is used. In all, the 5 

techniques allow for the use oflower, more acceptable radia­
tion dosages for CT imaging. 

The techniques are described herein using CT imaging as 
an example, converting low radiation dosage taken images to 
lower noise, fewer artifact images, resembling those taken 10 

with high radiation dosages. But it will be appreciated that the 
learning techniques herein may be implemented with any 
number of medical imaging techniques amenable to low and 
high quality image taking, for example ultrasound imaging, 
two-dimensional x-ray imaging, nuclear imaging, tomosyn- 15 

thesis imaging and magnetic resonance imaging. 
With respect to FIG. 1, in the training phase, a supervised 

dose reduction technique is trained with different types of 
"input" images/volumes and corresponding "teaching" 
images/volumes. The "input" images, in the illustrated 20 

example, are images that are of a lower quality, such as low 
dose CT images. The "teaching" images are of higher quality 
images, such as high dose CT images. The "input" images and 
the "teaching" images are preferably corresponding images, 
in that they are images of the same tissue region. In some 25 

examples, the correspondence may be exact, e.g., taken at the 
same time or right after one another of the same subject, e.g., 

4 
stages 202 and 204. For example, as shown in FIG. 2, over­
lapping sub-regions/sub-volumes may be extracted from the 
"input" LDCT images, at a block 206, and numerous single 
pixel or sub-regions/sub-volumes may be extracted from the 
corresponding "teaching" HDCT images, as teaching values, 
at a block 208. Example sub-regions/sub-volumes and pixels 
are shown in FIG. 1. The supervised dose reduction technique 
may be trained by use of a large number of input sub-regions/ 
sub-volumes together with each of the corresponding teach­
ing single pixels, where the larger the number of these the 
greater the potential for noise reduction and signal (such as 
edge and lesion) resolution improvement. An image extrac­
tion module 209 may perform these operations, in hardware, 
software, or some combination thereof. For example, the 
image extraction module 209 may be stored in a non-transi­
tory computer readable medium, such as a computer memory, 
for execution by a processor, as shown in FIG. 7. 

As illustrated in FIG. 2, and also as part of the supervised 
machine learning technique, the extracted sub-regions/sub­
volumes and pixels are correlated, after which an error analy­
sis is performed, at a block 210. The correlating of derived 
pixels, voxels, sub-regions, and/or sub-volumes may be per­
formed by an image correlation module 211 that may be 
stored in a non-transitory computer readable medium, such as 
a computer memory, for execution by a processor, as shown in 
FIG. 7. The error to be minimized by training of the super-
vised dose reduction technique can be defined by any error 
measures between output pixel/voxel values and teaching ( or 
desired) pixel/voxel values. Example error measures include 
a root mean square error, a mean square error, a mean absolute 
error, a Mahalanobis distance measure, and similarity mea-
sures such as mutual information. Example pixel/voxel based 
comparisons as may be used for error detection are described 
further below and in Kenji Suzuki, Pixel-Based Machine 
Learning in Medical Imaging, International Journal of Bio­
medical Imaging, Vol. 2012, Article ID 792079, 2012, which 
is expressly incorporated by reference, in its entirety. Various 
pixel/voxel-based machine learning (PML) techniques may 
be applied as described herein, these include neural filters, 

a human patient. In other examples, the images may corre­
spond but be taken at different magnifications or merely par­
tially overlap. In such cases image registration, expansion/ 30 

reduction, and aligmnent may be used to make the "input" 
images and the "teaching" images properly correspond for 
data analysis. While images are discussed, it will be under­
stood that such images may be two dimensional (2D) images, 
three dimensional (3D) images or volumetric data from 35 

which various 2D and 3D images can be formed. In certain 
embodiments, the image data can be four dimensional, vary­
ing, for example, as a function of time. Thus, as used herein 
images ( or the phrase images/volumes) refers to any of these 
data types. 

FIG. 2 illustrates an example flow diagram of a process 200 
for performing a supervised dose reduction technique, and 
showing two initial stages obtaining "input" medical images 
(stage 202) and "teaching" medical images (stage 204), 
respectively. Once the image types are obtained they may be 45 

provided to a supervised machine learning technique, as 
shown in FIG. 1, for converting lower quality images, e.g., 
LDCT images with noise and artifacts, into high quality 
images, e.g., HD-like CT images with less noise or fewer 
artifacts. The number of "input" images may be compara- 50 

tively small, 1, 10 or less, or 100 or less, by way of example. 
The number of"training" images have be small as well, 1, 10 

40 neural edge enhancers, neural networks, shift-invariant neu­
ral networks, artificial neural networks (ANN), including 
massive-training ANN (MTANN), massive-training Gauss­
ian process regression, and massive-training support vector 

or less, 20, or 50 or less. However, a larger number of"train­
ing" images may be used as well, 100-1,000 images, 1,000-
10,000 images, or more than 10,000 images. The number of 55 

training images used may be adjusted from a small number to 

regression (MTSVR), by way of examples. Additional tech­
niques for error analysis and medical image data comparisons 
between an "input" image and a "training" image include 
those provided in U.S. Pat. Nos. 6,754,380, 6,819,790, and 
7,545,965, and U.S. Publication No. 2006/0018524, the 
entire specifications of all of which are hereby incorporated 
by reference, in their respective entireties. 

Once the error analysis is performed, as shown in FIG. 2, 
error correction parameters are determined (via block 212) 
for use in correcting image conversions of errors, whether 
from patient-related characteristics or equipment-related 
characteristics. The error correction parameters are passed to 
a training model engine (via block 214), along with the 
"input" images and "training" images from which a super­
vised dose reduction converter is constructed capable of con­
verting LDCT images to HDCT-quality images, as shown in 
FI GS. 1 and 2. An error correction module 215, which may be 
stored in a non-transitory computer readable medium, such as 
a computer memory, for execution by a processor, as shown in 
FIG. 7, may perform the blocks 212 and 214. 

a high number based on the size of the "input" image, the 
desired reduction in SNR on the converted "input" image, the 
desired resolution of the edge effects on the converted "input" 
image, the number of and variation in the likely edges in the 60 

"input" image, the desired signal contrast on the converted 
"input" image, the radiation dose of the "input" image, the 
number of prior CT scans of a patient ( accumulated radiation 
dose level), and the processing load on the computer system 
performing the comparisons. 

A supervised dose reduction converter is trained, at a block 
65 216, by using a training algorithm for the machine-learning 

model developed at block 214. A training module 217, which 
may be stored in a non-transitory computer readable medium, 

To develop an image converter, a large number of pixel/ 
voxel regions may be obtained over both image types, from 



US 9,332,953 B2 
5 6 

herein, such as neural edge enhancers and ANN (including 
MTANN) edge enhancers. In some such examples, the result­
ing enhanced low-dose CT image will have both a noise level 
characteristic of what is generally considered high-dose CT 
image noise levels and an edge contrast that is also charac­
teristic of what is generally considered high-dost CT image 
edge contrast or resolution. 

In some further examples, the machine-learning module 
may be integrated into existing image processing systems. 
For example, the machine-learning module of the supervised 
dose reduction converter may be integrated with a machine-
learning classification model, such as a multi-layer percep­
tron, a support vector machine, linear discriminant analysis, 
or quadratic discriminant analysis. In some examples, such 
incorporation of a classification model may affect perfor­
mance of the supervised dose reduction technique, because a 
machine learning classification model is not designed to out­
put continuous values, but binary classes ( or nominal catego­
ries). The pixel/voxel values of the input images/volumes 

such as a computer memory, for execution by a processor, as 
shown in FIG. 7, may perform the training of block 216. 
When the machine-learning model is a multi-layer percep­
tron, an error back-propagation (BP) algorithm can be used. 
When the machine-learning module is a linear-output artifi- 5 

cial neural network (ANN) regression (see, for example, 
Suzuki, Pixel-Based Machine Learning in Medical Imaging, 
International Journal of Biomedical Imaging, Vol. 2012, 
Article ID 792079 incorporated by reference herein), a linear­
output BP algorithm can be used. After training, the super- 10 

vised dose reduction converter (block 216) is able to assess 
sub-regions/sub-volumes of incoming non-training input 
images (from block 218) and convert those to output pixel/ 
voxel values and resulting images (at block 220) similar to or 
close to the corresponding values as would appear in an 15 

HDCT image of the same corresponding structures. Thus, the 
supervised dose reduction technique acquires the function of 
converting LDCT images with noise and artifacts into HD­
like CT images with less noise or fewer artifacts, as in the 
illustrated examples. 

FIG. 3a illustrates an example of conversion of a non­
training, input lower quality image, in this case an LDCT 
image. The image taken with a dosage of0.1 mSv is charac­
terized by relatively high noise, e.g., having a signal-to-noise 
ratio (SNR) of 4.2 dB and various spurious artifacts. The same 25 

image after conversion to a higher quality image, in this case 

20 may be normalized from 0 to 1. The input to the supervised 
dose reduction technique consists of pixel/voxel values in a 
subregion/subvolume extracted from an input LDCT image/ 
volume. The output of the supervised dose reduction tech-

an HDCT-like image having a much higher SNR of 9 .7 dB, is 
provided in FIG. 3b. The 4.5 dB improvement in SNR corre­
sponds to a 2.Sx factor improvement in noise reduction. The 
enhanced low-dose image produced by the present tech- 30 

niques may have a SNR that is, or is about, 10, 9, 8, 7, 6, 5, 4, 
3, 2, or 1 dB higher than the original low-dose image, byway 
of example. 

The supervised dose reduction converter shown in FIG. 2 
may include a machine-learning model, such as a linear- 35 

output ANN regression model, a support vector regression 
model, decision trees, supervised nonlinear regression, near-
est neighbor algorithm, association rule learning, inductive 
logic programming, reinforcement learning, representation 
learning, similarity learning, sparse dictionary learning, 40 

manifold learning, dictionary learning, boosting, Bayesian 
networks, case-based reasoning, Kernel machines, subspace 
learning, Naive Bayes classifiers, ensemble learning, statisti-
cal relational learning, a nonlinear Gaussian process regres­
sion model (which is capable of operating on pixel/voxel data 45 

directly), and the like. The linear-output ANN regression 
model, for example, preferably employs a linear function 
instead of a sigmoid function as the activation function of the 
unit in the output layer, because the characteristics of an ANN 
are improved significantly with a linear function when 50 

applied to the continuous mapping of values in image pro­
cessing. Note that the activation functions of the units in the 
hidden layer are a sigmoid function for nonlinear processing, 
and those of the unit in the input layer are an identity function, 

nique is a continuous scalar value, which is associated with 
the center voxel in the subregion/subvolume. The entire out­
put image/volume is obtained by scanning with the input 
subvolume of the supervised dose reduction technique on the 
entire input LDCT image/volume. 

In an example test implementation of the present tech­
niques, instead of using real LDCT images, simulated LDCT 
images were used. For example, simulated LDCT images 
were formed by degrading real HDCT images, and using 
these degraded images as input images to the supervised dose 
reduction technique. The major noise in LDCT images was 
quantum noise. Simulated quantum noise (which can be mod­
eled as signal-dependent noise) is added to high-radiation-
dose sinograms, f0 (1;, cp ), acquired at a high radiation dose 
level, represented by 

where cp is a projection angle, 1; is distance from the center 
along the projection angle, n a(f0 (1;, cp)} is noise with stan­
dard deviation a { f0 (1;, cp )}- f0 ( ,cp ), and kN is a parameter 
determining the amount of noise. Simulated low-radiation­
dose sinograms obtained with this method used for creating 
simulated LDCT images by using a reconstruction algorithm 
such as filtered back projection or an iterative reconstruction 
algorithm. Similarly, HDCT images are reconstructed from 
original HD sinograms. Instead of the above quantum noise 
model alone, a more realistic stochastic noise model can be 
used. In addition to the quantum noise, the stochastic noise 
model may include energy-integrating detectors, tube-cur­
rent modulation, bowtie beam filtering, and electronic system 
noise. Alternatively, simulated LDCT images can be obtained 

as usual. 55 by using a LDCT simulator in a CT system. 
For low-dose CT image conversion, the machine-learning 

models described herein may convert the input image, char­
acterized by a low-dose CT image noise level to a high-dose 
CT image noise level, for example through applying a trained 
noise suppression on identified sub-regions or sub-volumes 60 

of the input image. The machine-learning models may further 
apply a trained edge preservation on the low-dose CT image 
as well. This preservation may use noise reduction as 
described herein, but may also include edge enhancement as 
described in Suzuki, Pixel-Based Machine Learning in Medi- 65 

cal Imaging, International Journal of Biomedical Imaging, 
Vol. 2012, Article ID 792079 incorporated by reference 

Experiment 

To train the supervised dose reduction technique, i.e., final 
image converter in FIG. 2, 6 sets of CT images of a chest 
phantom (Kyoto Kagaku, Kyoto, Japan) were acquired with a 
tube voltage of 120 kVp, tube current of 10, 25, 50, 100, 150, 
and 300 mA, and a collimation of 5 mm. CT images were 
reconstructed with the lung reconstruction kernel. Each 
reconstructed CT image had a matrix size of 512x512 pixels 
with no overlap between slices. A 10 mA (0.1 mSv) ultra­
ultra-LDCT image and the corresponding 300 mA (3 mSv) 
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illustrates an example of a suitable computing system envi­
ronment 10 to interface with a medical professional or other 
user to analyze medical imaging data. It should be noted that 
the computing system environment 10 is only one example of 

HDCT image were used for training the supervised dose 
reduction technique as the input image and teaching image, 
respectively. We evaluated the image quality of CT images 
using signal-to-noise ratio (SNR) in each image with use of 
corresponding 3 mSv HDCT images as the reference stan­
dard. With the trained machine-learning dose reduction tech­
nique, noise and artifacts in ultra-ultra-low-dose CT images 
(0.1 mSv) were reduced substantially, while details of soft­
tissue opacities such as pulmonary vessels and bony struc­
tures were maintained. The SNR of0.1 mSv ultra-ultra-low­
dose CT images was improved from 4.2 to 9.7 dB. The 
processing time is very short. The processing time for each 
image was 0.8 sec on a PC (AMD Athlon, 3 .0 GHz). With the 
supervised machine-learning dose-reduction technique, the 
image quality ofO .1 mSv ultra-ultra-low-dose CT images was 
improved substantially to the quality comparable to 0.5-1.0 
mSv CT images; thus, radiation dose can potentially be 
reduced by 80-90%. 

5 a suitable computing environment and is not intended to 
suggest any limitation as to the scope of use or functionality 
of the method and apparatus of the claims. 

With reference to FIG. 7, an exemplary system for imple­
menting the blocks of the claimed method and apparatus 

10 includes a general-purpose computing device in the form of a 
computer 12. Components of computer 12 may include, but 
are not limited to, a processing unit 14 and a system memory 
16. The computer 12 may operate in a networked environ­
ment using logical connections to one or more remote com-

To evaluate the generalizability of the supervised dose 
reduction technique, we acquired ultra-ultra-LDCT (UL­
DCT) scans of 3 human patients with a tube voltage of 120 
kVp and a tube current ofl O mA. The effective radiation dose 

15 puters, such as remote computer 70-1, via a local area net­
work (LAN) 72 and/or a wide area network (WAN) 73 via a 
modem or other network interface 75. The remote computer 
70-1 may include other computers like computer 12, but in 
some examples, the remote computer 70-1 includes one or 

of an ULDCT study was 0.1 mSv. We evaluated the image 
quality of CT images by using signal-to-noise ratio (SNR) in 
each image. We applied the supervised dose reduction tech­
nique trained with the phantom to the patient cases. With the 
trained supervised dose reduction technique, noise and arti­
facts (e.g., streaks) in ULDCT images (0.1 mSv) were 
reduced substantially, while details of soft tissue such as 
pulmonary vessels and bones were maintained, as illustrated 

20 more of a medical imaging system, such as (i) an MRI imag­
ing system, (ii) a CT imaging system, (iii) a PET imaging 
system, and (iv) a medical records database systems. In such 
examples, computer 12 may be a separate image processing 
computer, or the computer 12 may reflect part of the medical 

25 imaging system. For example, the computing system 10 may 
be part of a CT scanner medical imaging system. In some 
examples, the computing system 10 is a remote computer 
receiving image data from a remote computer 70-1 as a CT 
scanner medical imaging system. In some examples, the com-

30 puter system 10 programs a CT scanner medical imaging 
system, operating as the remote computer 70-1, through net­
work 72 or network 73. 

in FIGS. 4a/4b, Sa/Sb, and 6a/6b. In these example imple­
mentation, the average SNR for the 0.1 mSv ULDCT images 
for patients was improved from 2.3 (±1.8) to 13.0 (±2.5) dB 
(two-tailed t-test; P<0.05). This 10.7 dB average SNR 
improvement was comparable to the 11.5 dB improvement 35 

that we were able to achieve by increasing the effective radia­
tion dose from 0.1 mSv (10 mA) to 1.5 mSv (150 mA) in the 
phantom study, used as a reference, as illustrated by compar­
ing FIGS. Sa/Sb and 6a/6b. That is, in this example imple­
mentation we show that the with the supervised dose reduc- 40 

tion technique, the image quality of 0.1 mSv ULDCT was 
improved substantially to the quality comparable to 1.5 mSv 
HDCT. Thus, radiation dose can potentially be reduced by 
93%, as shown in this example. Radiation dose reductions of 
between 90% to 95% reduction may thus be achieved. In 45 

other examples, and depending on the desired changed in 
SNR for the input images (ULDCT orotherwise ), dose reduc­
tions below 95% may be achieved, including reductions of 
between 80% to 90%, 70% to 80%, 60% to 70%, or below 
may be achieved. This dose reduction, without reduction in 50 

converted image quality, provides a substantial benefit in CT 
imaging, especially when one considers iterative imaging 
exposure and reconstruction for patients and radiologists. 

As illustrated in FIG. 2 the example techniques described 
herein may be implemented in a medical imaging system, 55 

such as a CT scanner, e.g., through an image processing 
portion thereof, or from a separate image processing system. 
An example set of modules are shown in FIG. 2 and include 
an image extraction module, an image correlation module, an 
error correction module, and the supervised dose reduction 60 

image converter, which includes the trained machine-learn­
ing module. 

The techniques herein may be implemented on a computer 
system, such as shown in FIG. 7. The techniques described 
herein (e.g., in FIG. 2) may be coded, in software, hardware, 65 

firmware, or combination thereof, for execution on a comput­
ing device such as that illustrated in FIG. 7. Generally, FIG. 7 

Computer 12 typically includes a variety of computer read­
able media that may be any available media that may be 
accessed by computer 12 and includes both volatile and non­
volatile media, removable and non-removable media. The 
system memory 16 includes computer storage media in the 
form of volatile and/or nonvolatile memory such as read only 
memory (ROM) and random access memory (RAM). The 
ROM may include a basic input/output system (BIOS). RAM 
typically contains data and/or program modules that include 
operating system 20, application programs 22, other program 
modules 24, and program data 26. The computer 12 may also 
include other removable/non-removable, volatile/nonvolatile 
computer storage media such as a hard disk drive, a magnetic 
disk drive that reads from or writes to a magnetic disk, and an 
optical disk drive that reads from or writes to an optical disk. 

A user may enter commands and information into the com­
puter 12 through input devices such as a keyboard 30 and 
pointing device 32, commonly referred to as a mouse, track­
ball or touch pad. Other input devices (not illustrated) may 
include a microphone, joystick, game pad, satellite dish, 
scanner, or the like. These and other input devices are often 
connected to the processing unit 14 through a user input 
interface 35 that is coupled to a system bus, but may be 
connected by other interface and bus structures, such as a 
parallel port, game port or a universal serial bus (USB). A 
monitor 40 or other type of display device may also be con­
nected to the processor 14 via an interface, such as a video 
interface 42. In addition to the monitor, computers may also 
include other peripheral output devices such as speakers 50 
and printer 52, which may be connected through an output 
peripheral interface 55. 

Images may be handled using the Digital Imaging and 
Communications in Medicine (DI COM) format, for example. 
Images may be stored in a picture archiving and communica­
tion system (PACS). 
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Generally, the techniques herein may be coded in any com­
puting language for execution on computer 12. Image data 
may be obtained from the remote computer 70-1 and stored 
loaded on to any of the computer storage devices of computer 
12. Once the image data, including image segments, is 5 

obtained, a user may input or select the condition parameters 
through an input mechanism as described. Although, in other 
examples, the condition parameters may be pre-selected or 
automatically determined, for example, based on a particular 
type of analysis that is to be performed. The output of the 10 

executable program may be displayed on a display (e.g., a 
monitor 40), sent to a printer 52, stored for later use by the 
computer 12, or offloaded to another system, such as one of 
the remote computers 70. The output may be in the form of an 
image or image data from which one or more images may be 15 

created. Operations of the system may be recorded in a log 
database for future reference. This log database, which may 
be accessible through either network 72 or 73 may be 
accessed at subsequent times when a post-RT image is to be 
obtained, for example. 

More generally, the various blocks, operations, and tech­
niques described above may be implemented in hardware, 
firmware, software, or any combination of hardware, firm­
ware, and/or software. When implemented in hardware, some 

20 

or all of the blocks, operations, techniques, etc. may be imp le- 25 

mented in, for example, a custom integrated circuit (IC), an 
application specific integrated circuit (ASIC), a field pro­
grammable logic array (FPGA), a programmable logic array 
(PLA), etc. 

When implemented in software, the software may be 30 

stored in any computer readable memory such as on a mag­
netic disk, an optical disk, or other storage medium, in a RAM 
or ROM or flash memory of a computer, processor, hard disk 
drive, optical disk drive, tape drive, etc. Likewise, the soft­
ware may be delivered to a user or a system via any known or 35 

desired delivery method including, for example, on a com­
puter readable disk or other transportable computer storage 
mechanism or via communication media. Communication 
media typically embodies computer readable instructions, 
data structures, program modules or other data in a modulated 40 

data signal such as a carrier wave or other transport mecha­
nism. The term "modulated data signal" means a signal that 
has one or more of its characteristics set or changed in such a 
manner as to encode information in the signal. By way of 
example, and not limitation, communication media includes 45 

wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, radio frequency, 
infrared and other wireless media. Thus, the software may be 
delivered to a user or a system via a communication channel 
such as a telephone line, a DSL line, a cable television line, a 50 

wireless communication channel, the Internet, etc. (which are 
viewed as being the same as or interchangeable with provid­
ing such software via a transportable storage medium). 

10 
What is claimed: 
1. A method, comprising: 
obtaining, from a scanner, first computed tomography (CT) 

image information for scanning of a first article at a first 
radiation dosage level, 

wherein the first CT image information exhibits one of a 
first noise level or a first image signal contrast; 

applying, in a processor, signal processing to the first CT 
image information, the applied signal processing based 
on a machine-learning model trained using CT training 
images, wherein the CT training images correspond to 
scanning of one or more second articles at each of the 
first radiation dosage level and a second radiation dosage 
level higher than the first radiation dosage level; and 

producing, from the processor as a result of the applied 
signal processing, second CT image information that 
exhibits one of a second noise level lower than the first 
noise level or a second image signal contrast higher than 
the first image signal contrast. 

2. The method of claim 1, further comprising: 
displaying an image derived from the second CT image 

information. 
3. The method of claim 1, wherein the applied signal pro­

cessing comprises at least one of: 
noise suppression applied to portions of the first CT image 

information corresponding to a plurality of one of a 
sub-region or a sub-volume, the noise suppression deter­
mined at least in part based on the one or more CT 
training images corresponding to scanning of second 
articles at the second radiation dosage level; and 

edge enhancement applied to the portions of the first CT 
image information corresponding to the plurality of one 
of a sub-region or a sub-volume, the edge enhancement 
determined at least in part based on the one or more CT 
training images corresponding to scanning of second 
articles at the second radiation dosage level. 

4. The method of claim 1, wherein the machine-learning 
model comprises at least one of a linear-output artificial neu­
ral network (ANN) regression model, a support vector regres­
sion model, or a nonlinear Gaussian process regression 
model. 

5. The method of claim 4, wherein the machine-learning 
model is the linear-output ANN regression model and pro­
duces a linear function as an activation function for continu­
ous mapping of the first CT image information to the second 
CT image information. 

6. The method of claim 1, wherein the applied signal pro­
cessing is based on a machine-learning classification model. 

7. The method of claim 6, wherein the machine-learning 
classification model is at least one of a multilayer perceptron, 
a support vector machine, a linear discriminant analysis 
machine, or a quadratic discriminant analysis machine. 

Moreover, while the present invention has been described 
with reference to specific examples, which are intended to be 
illustrative only and not to be limiting of the invention, it will 
be apparent to those of ordinary skill in the art that changes, 
additions and/or deletions may be made to the disclosed 
embodiments without departing from the spirit and scope of 
the invention. 

8. The method of claim 1, wherein the second CT image 
55 information has a signal-to-noise ratio of at least twice a 

signal-to-noise ratio of the first CT image information. 
9. The method of claim 1, wherein the first radiation dosage 

level is 0.1 milliseverts (mSv) or less. 
10. The method of claim 9, wherein the second radiation 

60 dosage level is 3 mSv. 
Thus, although certain apparatus constructed in accor­

dance with the teachings of the invention have been described 
herein, the scope of coverage of this patent is not limited 
thereto. On the contrary, this patent covers all embodiments 
of the teachings of the invention fairly falling within the scope 65 

of the appended claims either literally or under the doctrine of 
equivalents. 

11. The method of claim 1, wherein the second CT image 
information corresponds to an image quality obtained by 
scanning the first article at a radiation dosage level of between 
0.5 and 1.0 milliseverts (mSv). 

12. The method of claim 1, wherein the first radiation 
dosage level corresponds to a radiation reduction of at least 
90% over the second radiation dosage level. 
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13. The method of claim 1, wherein the second CT image 
information exhibits an average signal-to-noise ratio (SNR) 
improvement of at least 10 decibels (dB) over the first CT 
image information. 

14. The method of claim 1, wherein an estimated effective 5 

dosage range corresponds to a body region scanned to obtain 
the CT image information, and wherein the first radiation 
dosage level is within a lowest quarter of the estimated effec­
tive dosage range. 

15. The method of claim 1, wherein an estimated effective 10 

dosage range corresponds to a body region scanned to obtain 
the CT image information, and wherein the first radiation 
dosage level is within a lowest 10% of the estimated effective 
dosage range. 

16. The method of claim 1, wherein an estimated effective 15 

dosage range corresponds to a body region scanned to obtain 
the CT image information, and wherein the first radiation 
dosage level is within a lowest 5% of the estimated effective 
dosage range. 

17. Themethodofclaiml, whereinanestimatedeffective 20 

dosage range corresponds to a body region scanned to obtain 
the CT image information, and wherein the first radiation 
dosage level is within a lowest 1 % of the estimated effective 
dosage range. 

18. An apparatus, comprising: 25 

a memory configured to store first computed tomography 
(CT) image information obtained by scanning of a first 
article at a first radiation dosage level, wherein the first 
CT image information exhibits one of a first noise level 
or a first image signal contrast; and 30 

a processor coupled to the memory and configured to apply 
signal processing to the first CT image information, the 
applied signal processing based on a machine-learning 
model trained using CT training images, wherein the CT 
training images correspond to scanning of one or more 35 

second articles at each of the first radiation dosage level 
and a second radiation dosage level higher than the first 
radiation dosage level, 

wherein the applied signal processing produces second CT 
image information that exhibits one of a second noise 40 

level lower than the first noise level or a second image 
signal contrast higher than the first image signal con­
trast. 

19. The apparatus of claim 18, further comprising: 
a display configured to display an image derived from the 45 

second CT image information. 
20. The apparatus of claim 18, wherein the applied signal 

processing comprises at least one of: 
noise suppression applied to portions of the first CT image 

information corresponding to a plurality of one of a 50 

sub-region or a sub-volume, the noise suppression deter-

12 
mined at least in part based on the one or more CT 
training images corresponding to scanning of second 
articles at the second radiation dosage level; and 

edge enhancement applied to the portions of the first CT 
image information corresponding to the plurality of one 
of a sub-region or a sub-volume, the edge enhancement 
determined at least in part based on the one or more CT 
training images corresponding to scanning of second 
articles at the second radiation dosage level. 

21. The apparatus of claim 18, wherein the applied signal 
processing is based upon 

a determination of portions of first training CT image infor­
mation corresponding to a plurality of one of a sub­
region or a sub-volume each scanned at a third radiation 
dosage and a determination of one of pixels or voxels 
from counterpart portions of second training CT image 
information scanned at a fourth radiation dosage level 
higher than the third radiation dosage level, and 

a correlation of the determined portions of the first training 
CT image information with the determined portions of 
the second training CT image information and an error 
analysis of the correlated, determined portions of the 
first and second training CT image information. 

22. The apparatus of claim 21, wherein the applied signal 
processing is based upon error correction parameters derived 
from the error analysis. 

23. A method, comprising: 

obtaining, from a scanner, first computed tomography (CT) 
image information for scanning of a first article at a first 
radiation dosage level, wherein the first CT image infor­
mation exhibits one of a first noise level or a first image 
signal contrast; 

applying, in a processor, signal processing to the first CT 
image information, the applied signal processing based 
on a machine-learning model trained using CT training 
images, wherein the CT training images correspond to 
scanning of one or more second articles at each of the 
first radiation dosage level and a second radiation dosage 
level higher than the first radiation dosage level, wherein 
the first radiation dosage level corresponds to a radiation 
reduction of at least 90% over the second radiation dos­
age level; and 

producing, from the processor as a result of the applied 
signal processing, second CT image information that 
exhibits one of a second noise level lower than the first 
noise level or a second image signal contrast higher than 
the first image signal contrast. 

* * * * * 


