
1111111111111111 IIIIII IIIII 111111111111111 111111111111111 1111111111 111111111111111 11111111
US 20190171908Al

c19) United States
c12) Patent Application Publication

Salavon
c10) Pub. No.: US 2019/0171908 Al
(43) Pub. Date: Jun. 6, 2019

(54) IMAGE TRANSFORMATION WITH A
HYBRID AUTOENCODER AND
GENERATIVE ADVERSARIAL NETWORK
MACHINE LEARNING ARCHITECTURE

(71) Applicant: The University of Chicago, Chicago,
IL (US)

(72) Inventor: Jason Salavon, Chicago, IL (US)

(21) Appl. No.: 16/206,538

(22) Filed: Nov. 30, 2018

Related U.S. Application Data

(60) Provisional application No. 62/593,354, filed on Dec.
1, 2017, provisional application No. 62/633,851, filed
on Feb. 22, 2018.

Publication Classification

(51) Int. Cl.
G06K 9162
G06F 16155

(2006.01)
(2006.01)

(52)

(57)

G06N 3/04
G06N 3/08
U.S. Cl.

(2006.01)
(2006.01)

CPC G06K 916215 (2013.01); G06K 916232
(2013.01); G06N 3/08 (2013.01); G06N

3/0454 (2013.01); G06F 16155 (2019.01)

ABSTRACT

An encoder artificial neural network (ANN) may be config­
ured to receive an input image patch and produce a feature
vector therefrom. The encoder ANN may have been trained
with a first plurality of domain training images such that an
output image patch visually resembling the input image
patch can be generated from the feature vector. A generator
ANN may be configured to receive the feature vector and
produce a generated image patch from the first feature
vector. The generator ANN may have been trained with
feature vectors derived from a first plurality of domain
training images and a second plurality of generative training
images such that the generated image patch visually
resembles the input image patch but is constructed of a
newly-generated image elements visually resembling one or
more image patches from the second plurality of generative
training images.

input frame

802~

ROA. I) ...

I
output tile

X E(x) z G(z)

input patch

808~ ~806

generated tile
new1mage

Patent Application Publication

c:,
0

C)

(

1

0:::
0
(I)
(I)
w
(.)

r"
0
0::: a.

N
0

Jun. 6, 2019 Sheet 1 of 12 US 2019/0171908 Al

I-z
:::>
I-
:::>
a.
I-
:::>
0 --r" I-
:::>

00 a.
0 ~

•
C) -LL

~w
0::: (.)
o<
s: ~
I- w

r w I-
z~

U)
c:,

Patent Application Publication Jun. 6, 2019 Sheet 2 of 12

208

SERVER CLUSTER
200

~ I
1

SERVER DEVICES I

I 202 I
I L ___________ _

~ I
I DATA STORAGE I
I 204 I

I L ___________ _

,..-------------1
I ROUTERS I
I 206 I

I L ___________ _

210

NETWORK212

FIG. 2

US 2019/0171908 Al

Patent Application Publication Jun. 6, 2019 Sheet 3 of 12

300

I

Generative Mosaic

302

I
pre-trained
renderers

FIG. 3

US 2019/0171908 Al

304

I
Generated outputs

Patent Application Publication Jun. 6, 2019 Sheet 4 of 12 US 2019/0171908 Al

..__~
0

'q"

~-.

..__ :g
'q"

I

GJ GJ GJ

I­
::,
Cl.. U)
I- w
:::, :::,
0 ..J

<i! ~ z
u::

I- et::
:::, LU
Cl.. >­
I- <C 5 ..J

z et:: Ww
C >-
C <C
:i: ..J

z et:: Ww
C >-
C <C
:i: ..J

I- et::
:::, LU
Cl.. >­z <C
- ..J

I­
::,
Cl.. U) zw - :::,
..J ..J
<C <C
j::: >
z

~
•

(!) -LL

""O
~

500
('D

=
J

.....
> "e

"e -.... (')

~
b1=0.35 b2=0.60 0

=
""O = O" -B- --G
....
(')

~
0

=
~ =

B- --G ?
~Cl's

N
0
1,0

t t t t t rJJ
=-

510
('D

502 504 506 508 ('D
Ul
0

INITIAL INPUT INPUT HIDDEN OUTPUT FINAL OUTPUT
....

VALUES LAYER LAYER LAYER VALUES
N

c
rJJ
N
0
1,0

---0
-....J

FIG. SA 1,0
0
QO

>

""O

500
~
('D

J =
> "e

"e -.... (')

~

b1=0.35 b2=0.60
0

=
""O =

B- --EJ O" -.... (')

~
0

=
~

B- --EJ = ?
~Cl's

N
0

t t t t t 1,0

rJJ

502 504 506 508 510 =-('D
('D
Cl's

INITIAL INPUT INPUT HIDDEN OUTPUT FINAL OUTPUT 0
VALUES LAYER LAYER LAYER VALUES

N

c
rJJ
N
0
1,0

---0

FIG. 58
-....J
1,0
0
QO

>

X1, .. Xm 1- - - -

t
602

INITIAL INPUT
VALUES

t
604

INPUT
LAYER

~

~

t
606

CONVOLUTIONAL
LAYER

. ,

600

J

t
608

RELU
LAYER

r

t
610

POOLING
LAYER

L____ J
y

FEATURE EXTRACTION LAYERS

FIG. 6A

.
r - - - .i Y1 ... Yn

t t
612 614

CLASSIFICATION FINAL OUTPUT
LAYER VALUES

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

2'
?

~Cl's

N
0
1,0

rJJ
=­('D
('D
-....J
0
N

c
rJJ
N
0
1,0

---0
-....J
1,0
0
QO

>

Patent Application Publication Jun. 6, 2019 Sheet 8 of 12

-.:t" M -.:t'

M -.:t' M

-.:t' N N

II

..... 0

0 0

..... 0

0 0 0 0

0 0

.....

..... 0 0

..... 0 0 0 0

US 2019/0171908 Al

al
CD

■

(!) -LL

Patent Application Publication

I

Jun. 6, 2019 Sheet 9 of 12

:2
<~
((I 0.
'E
-0 :::l

0.

2-

I
I

♦-

I

--....,,, I

~
:5
Q.

-s
0

US 2019/0171908 Al

'

>.

I

t--
■

C) -LL

Patent Application Publication

)

Jun. 6, 2019 Sheet 10 of 12

N

><

)
00 = 00

US 2019/0171908 Al

00
■

Cl.) (!) = =
-~ -g; LL
=

Patent Application Publication Jun. 6, 2019 Sheet 11 of 12 US 2019/0171908 Al

TRAIN AN AUTOENCODER WITH A FIRST PLURALITY OF DOMAIN TRAINING IMAGES,
WHEREIN THE AUTOENCODER INCLUDES: AN ENCODER ARTIFICIAL NEURAL

NETWORK (ANN) CONFIGURED TO RECEIVE AN INPUT IMAGE PATCH FROM AN
IMAGE OF THE FIRST PLURALITY OF DOMAIN IMAGES AND PRODUCE A FIRST .- 9oo

FEATURE VECTOR THEREFROM, AND A DECODER ANN CONFIGURED TO RECEIVE
THE FIRST FEATURE VECTOR AND PRODUCE AN OUTPUT IMAGE PATCH

THEREFROM, WHEREIN THE AUTOENCODER TRAINING IS BASED ON A FIRST LOSS
FUNCTION THAT CALCULATES A FIRST DIFFERENCE BETWEEN THE INPUT IMAGE

.r

PATCH AND THE OUTPUT IMAGE PATCH

TRAIN A DISCRIMINATOR ANN OF A GENERATIVE ADVERSARIAL NETWORK,
WHEREIN THE GENERATIVE ADVERSARIAL NETWORK INCLUDES A GENERATOR
ANN CONFIGURED TO RECEIVE THE FIRST FEATURE VECTOR AND PRODUCE A

GENERATED IMAGE PATCH FROM THE FIRST FEATURE VECTOR, AND THE
DISCRIMINATOR ANN, WHEREIN THE DISCRIMINATOR ANN IS CONFIGURED TO

.)

RECEIVE THE GENERATED IMAGE PATCH AND A PARTICULAR GENERATIVE .- 902
TRAINING IMAGE OF A SECOND PLURALITY OF GENERATIVE TRAINING IMAGES,

AND PROVIDE CLASSIFICATIONS THEREOF PREDICTING WHETHER THE
GENERATED IMAGE PATCH BELONGS TO THE SECOND PLURALITY OF GENERATIVE

TRAINING IMAGES, WHEREIN THE DISC RI MINA TOR ANN TRAINING IS BASED ON A
SECOND LOSS FUNCTION THAT CALCULATES A SECOND DIFFERENCE BETWEEN

THE CLASSIFICATION OF THE GENERATED IMAGE PATCH AND THE
CLASSIFICATION OF THE PARTICULAR GENERATIVE TRAINING IMAGE

' r

.r ~

TRAIN THE GENERATOR ANN, WHEREIN THE ENCODER ANN IS ALSO CONFIGURED
TO RECEIVE THE GENERATED IMAGE PATCH AND PRODUCE A SECOND FEATURE
VECTOR THEREFROM, AND WHEREIN THE GENERATOR ANN TRAINING IS BASED .- 904

ON A THIRD LOSS FUNCTION THAT CALCULATES A THIRD DIFFERENCE BETWEEN
(I) THE CLASSIFICATION OF THE GENERATED IMAGE PATCH AND (II) A FOURTH

DIFFERENCE BETWEEN THE FIRST FEATURE VECTOR AND THE SECOND FEATURE
VECTOR

FIG. 9

Patent Application Publication Jun. 6, 2019 Sheet 12 of 12 US 2019/0171908 Al

OBTAIN AN INPUT IMAGE PATCH

\.. ./

11' , '\

APPLY AN ENCODER ARTIFICIAL NEURAL NETWORK (ANN) TO THE INPUT IMAGE
PATCH, WHEREIN THE ENCODER ANN IS CONFIGURED TO PRODUCE A FEATURE

VECTOR FROM THE INPUT IMAGE PATCH, WHEREIN THE ENCODER ANN HAS BEEN
TRAINED WITH A FIRST PLURALITY OF DOMAIN TRAINING IMAGES SUCH THAT AN
OUTPUT IMAGE PATCH VISUALLY RESEMBLING THE INPUT IMAGE PATCH CAN BE

GENERATED FROM THE FEATURE VECTOR

, ,

APPLY A GENERATOR ANN TO THE FEATURE VECTOR, WHEREIN THE GENERATOR
ANN IS CONFIGURED TO PRODUCE A GENERATED IMAGE PATCH FROM THE FIRST

FEATURE VECTOR, WHEREIN THE GENERATOR ANN HAS BEEN TRAINED WITH

_.-1000

_.-1002

FEATURE VECTORS DERIVED FROM A FIRST PLURALITY OF DOMAIN TRAINING _.-1004
IMAGES AND A SECOND PLURALITY OF GENERATIVE TRAINING IMAGES SUCH THAT

\..

THE GENERATED IMAGE PATCH VISUALLY RESEMBLES THE INPUT IMAGE PATCH
BUT IS CONSTRUCTED OF A NEWLY-GENERATED IMAGE ELEMENTS VISUALLY

RESEMBLING ONE OR MORE IMAGE PATCHES FROM THE SECOND PLURALITY OF
GENERATIVE TRAINING IMAGES

STORE THE GENERATED IMAGE PATCH

FIG. 10

'\

_.-1006

US 2019/0171908 Al

IMAGE TRANSFORMATION WITH A
HYBRID AUTOENCODER AND

GENERATIVE ADVERSARIAL NETWORK
MACHINE LEARNING ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. provisional
patent application Nos. 62/593,354, filed Dec. 1, 2017, and
62/633,851, filed Feb. 22, 2018, both of which are hereby
incorporated by reference in their entirety.

BACKGROUND

[0002] Image processing has used artificial neural net­
works (ANNs) for some time to produce visual effects.
These effects may involve improving the quality of an input
image, or creating an artistic rendering of the input image.
Most of these techniques, however, use conventional ANN
architectures, such as convolutional neural networks
(CNNs), and achieve their improvements through the use of
deep learning over larger and larger ANNs. Thus, these
improvements are often contingent on access to increasing
amounts of processing power, rather than the structure of the
ANN itself.

SUMMARY

[0003] The embodiments herein introduced a new ANN
architecture, the hybrid autoencoder and generative adver­
sarial network (also referred to as a yGAN). This architec­
ture involves training an encoder ANN and a generator ANN
to produce image patches that resemble the structure of an
input image patch but are composed of synthetic elements
that resemble those of a secondary set of images. The
training involves an autoencoder including the encoder ANN
and a generative adversarial network including the generator
ANN. In addition to these artistic renderings, in certain
embodiments the system is also able to colorize, de-noise,
de-blur, and increase the resolution of images.
[0004] Accordingly, a first example embodiment may
involve training an autoencoder with a first plurality of
domain training images. The autoencoder may include: an
encoder ANN configured to receive an input image patch
from an image of the first plurality of domain training
images and produce a first feature vector therefrom, and a
decoder ANN configured to receive the first feature vector
and produce an output image patch therefrom. The autoen­
coder training may be based on a first loss function that
calculates a first difference between the input image patch
and the output image patch. The first example embodiment
may also involve training a discriminator ANN of a genera­
tive adversarial network. The generative adversarial network
may include a generator ANN configured to receive the first
feature vector and produce a generated image patch from the
first feature vector, and the discriminator ANN. The dis­
criminator ANN may be configured to receive the generated
image patch and a particular generative training image of a
second plurality of generative training images, and provide
classifications thereof predicting whether the generated
image patch belongs to the second plurality of generative
training images. The discriminator ANN training may be
based on a second loss function that calculates a second
difference between the classification of the generated image
patch and the classification of the particular generative

1
Jun.6,2019

trammg image. The first example embodiment may also
involve training the generator ANN. The encoder ANN may
also be configured to receive the generated image patch and
produce a second feature vector therefrom. The generator
ANN training may be based on a third loss function that
calculates a third difference between (i) the classification of
the generated image patch and (ii) a fourth difference
between the first feature vector and the second feature
vector.
[0005] A second example embodiment may involve
obtaining, e.g., from a memory, an input image patch. The
second example embodiment may involve applying an
encoder ANN to the input image patch. The encoder ANN
may be configured to produce a feature vector from the input
image patch. The encoder ANN may have been trained with
a first plurality of domain training images such that an output
image patch visually resembling the input image patch can
be generated from the feature vector. The second example
embodiment may involve applying a generator ANN to the
feature vector. The generator ANN may be configured to
produce a generated image patch from the first feature
vector. The generator ANN may have been trained with
feature vectors derived from a first plurality of domain
training images and a second plurality of generative training
images such that the generated image patch visually
resembles the input image patch but is constructed of a
newly-generated image elements visually resembling one or
more image patches from the second plurality of generative
training images. The second example embodiment may
involve storing, e.g., in the memory, the generated image
patch.
[0006] In a third example embodiment, a method may be
used to perform operations in accordance with the first
and/or second example embodiment.
[0007] In a fourth example embodiment, an article of
manufacture may include a non-transitory computer-read­
able medium, having stored thereon program instructions
that, upon execution by a computing system, cause the
computing system to perform operations in accordance with
the first and/or second example embodiment.
[0008] In a fifth example embodiment, a system may
include various means for carrying out each of the opera­
tions of the first and/or second example embodiment.
[0009] These as well as other embodiments, aspects,
advantages, and alternatives will become apparent to those
of ordinary skill in the art by reading the following detailed
description, with reference where appropriate to the accom­
panying drawings. Further, this summary and other descrip­
tions and figures provided herein are intended to illustrate
embodiments by way of example only and, as such, that
numerous variations are possible. For instance, structural
elements and process steps can be rearranged, combined,
distributed, eliminated, or otherwise changed, while remain­
ing within the scope of the embodiments as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 illustrates a schematic drawing of a com­
puting device, in accordance with example embodiments.
[0011] FIG. 2 illustrates a schematic drawing of a server
device cluster, in accordance with example embodiments.
[0012] FIG. 3 depicts generative mosaics, in accordance
with example embodiments.
[0013] FIG. 4 depict an ANN architecture, in accordance
with example embodiments.

US 2019/0171908 Al

[0014] FIGS. SA and SB depict trmmng an ANN, in
accordance with example embodiments.
[0015] FIG. 6A depicts a CNN architecture, in accordance
with example embodiments.
[0016] FIG. 6B depicts a convolution, in accordance with
example embodiments.
[0017] FIG. 7 depicts training a hybrid autoencoder and
generative adversarial network, in accordance with example
embodiments.
[0018] FIG. 8 depicts elements from a trained hybrid
autoencoder and generative adversarial network in opera­
tion, in accordance with exmnple embodiments.
[0019] FIG. 9 is a flow chart, in accordance with exmnple
embodiments.
[0020] FIG. 10 is a flow chart, in accordance with exmnple
embodiments.

DETAILED DESCRIPTION

[0021] Exmnple methods, devices, and systems are
described herein. It should be understood that the words
"example" and "exemplary" are used herein to mean "serv­
ing as an exmnple, instance, or illustration." Any embodi­
ment or feature described herein as being an "exmnple" or
"exemplary" is not necessarily to be construed as preferred
or advantageous over other embodiments or features unless
stated as such. Thus, other embodiments can be utilized and
other changes can be made without departing from the scope
of the subject matter presented herein.
[0022] Accordingly, the example embodiments described
herein are not meant to be limiting. It will be readily
understood that the aspects of the present disclosure, as
generally described herein, and illustrated in the figures, can
be arranged, substituted, combined, separated, and designed
in a wide variety of different configurations. For example,
the separation of features into "client" and "server" compo­
nents may occur in a number of ways.
[0023] Further, unless context suggests otherwise, the
features illustrated in each of the figures may be used in
combination with one another. Thus, the figures should be
generally viewed as component aspects of one or more
overall embodiments, with the understanding that not all
illustrated features are necessary for each embodiment.
[0024] Additionally, any enumeration of elements, blocks,
or steps in this specification or the claims is for purposes of
clarity. Thus, such enumeration should not be interpreted to
require or imply that these elements, blocks, or steps adhere
to a particular arrangement or are carried out in a particular
order.

I. Example Computing Devices and Cloud-Based
Computing Environments

[0025] The following embodiments describe architectural
and operational aspects of exmnple computing devices and
systems that may employ the disclosed ANN implementa­
tions, as well as the features and advantages thereof.
[0026] FIG. 1 is a simplified block diagram exemplifying
a computing device 100, illustrating some of the compo­
nents that could be included in a computing device arranged
to operate in accordance with the embodiments herein.
Computing device 100 could be a client device (e.g., a
device actively operated by a user), a server device (e.g., a
device that provides computational services to client
devices), or some other type of computational platform.

2
Jun.6,2019

Some server devices may operate as client devices from time
to time in order to perform particular operations, and some
client devices may incorporate server features.
[0027] In this example, computing device 100 includes
processor 102, memory 104, network interface 106, and an
input/output unit 108, all of which may be coupled by a
system bus 110 or a similar mechanism. In some embodi­
ments, computing device 100 may include other components
and/or peripheral devices (e.g., detachable storage, printers,
and so on).
[0028] Processor 102 may be one or more of any type of
computer processing element, such as a central processing
unit (CPU), a co-processor (e.g., a mathematics, graphics, or
encryption co-processor), a digital signal processor (DSP), a
network processor, and/or a form of integrated circuit or
controller that performs processor operations. In some cases,
processor 102 may be one or more single-core processors. In
other cases, processor 102 may be one or more multi-core
processors with multiple independent processing units. Pro­
cessor 102 may also include register memory for temporar­
ily storing instructions being executed and related data, as
well as cache memory for temporarily storing recently-used
instructions and data.
[0029] Memory 104 may be any form of computer-usable
memory, including but not limited to random access memory
(RAM), read-only memory (ROM), and non-volatile
memory. This may include flash memory, hard disk drives,
solid state drives, re-writable compact discs (CDs), re­
writable digital video discs (DVDs), and/or tape storage, as
just a few exmnples. Computing device 100 may include
fixed memory as well as one or more removable memory
units, the latter including but not limited to various types of
secure digital (SD) cards. Thus, memory 104 represents both
main memory units, as well as long-term storage. Other
types of memory may include biological memory.
[0030] Memory 104 may store program instructions and/
or data on which program instructions may operate. By way
of example, memory 104 may store these program instruc­
tions on a non-transitory, computer-readable medium, such
that the instructions are executable by processor 102 to carry
out any of the methods, processes, or operations disclosed in
this specification or the accompanying drawings.
[0031] As shown in FIG. 1, memory 104 may include
firmware 104A, kernel 104B, and/or applications 104C.
Firmware 104A may be progrmn code used to boot or
otherwise initiate some or all of computing device 100.
Kernel 104B may be an operating system, including mod­
ules for memory management, scheduling and management
of processes, input/output, and communication. Kernel
104B may also include device drivers that allow the oper­
ating system to communicate with the hardware modules
(e.g., memory units, networking interfaces, ports, and bus­
ses), of computing device 100. Applications 104C may be
one or more user-space software programs, such as web
browsers or email clients, as well as any software libraries
used by these progrmns. Memory 104 may also store data
used by these and other programs and applications.
[0032] Network interface 106 may take the form of one or
more wireline interfaces, such as Ethernet (e.g., Fast Ether­
net, Gigabit Ethernet, and so on). Network interface 106
may also support communication over one or more non­
Ethernet media, such as coaxial cables or power lines, or
over wide-area media, such as Synchronous Optical Net­
working (SONET) or digital subscriber line (DSL) technolo-

US 2019/0171908 Al

gies. Network interface 106 may additionally take the form
of one or more wireless interfaces, such as IEEE 802.11
(Wifi), BLUETOOTH®, global positioning system (GPS),
or a wide-area wireless interface. However, other forms of
physical layer interfaces and other types of standard or
proprietary communication protocols may be used over
network interface 106. Furthermore, network interface 106
may comprise multiple physical interfaces. For instance,
some embodiments of computing device 100 may include
Ethernet, BLUETOOTH®, and Wifi interfaces.
[0033] Input/output unit 108 may facilitate user and
peripheral device interaction with example computing
device 100. Input/output unit 108 may include one or more
types of input devices, such as a keyboard, a mouse, a touch
screen, and so on. Similarly, input/output unit 108 may
include one or more types of output devices, such as a
screen, monitor, printer, and/or one or more light emitting
diodes (LEDs). Additionally or alternatively, computing
device 100 may communicate with other devices using a
universal serial bus (USB) or high-definition multimedia
interface (HDMI) port interface, for example.
[0034] In some embodiments, one or more instances of
computing device 100 may be deployed to support a clus­
tered architecture. The exact physical location, connectivity,
and configuration of these computing devices may be
unknown and/or unimportant to client devices. Accordingly,
the computing devices may be referred to as "cloud-based"
devices that may be housed at various remote data center
locations.
[0035] FIG. 2 depicts a cloud-based server cluster 200 in
accordance with example embodiments. In FIG. 2, opera­
tions of a computing device (e.g., computing device 100)
may be distributed between server devices 202, data storage
204, and routers 206, all of which may be connected by local
cluster network 208. The number of server devices 202, data
storages 204, and routers 206 in server cluster 200 may
depend on the computing task(s) and/or applications
assigned to server cluster 200.
[0036] For example, server devices 202 can be configured
to perform various computing tasks of computing device
100. Thus, computing tasks can be distributed among one or
more of server devices 202. To the extent that these com­
puting tasks can be performed in parallel, such a distribution
of tasks may reduce the total time to complete these tasks
and return a result. For purpose of simplicity, both server
cluster 200 and individual server devices 202 may be
referred to as a "server device." This nomenclature should
be understood to imply that one or more distinct server
devices, data storage devices, and cluster routers may be
involved in server device operations.
[0037] Data storage 204 may be data storage arrays that
include drive array controllers configured to manage read
and write access to groups of hard disk drives and/or solid
state drives. The drive array controllers, alone or in con­
junction with server devices 202, may also be configured to
manage backup or redundant copies of the data stored in data
storage 204 to protect against drive failures or other types of
failures that prevent one or more of server devices 202 from
accessing units of cluster data storage 204. Other types of
memory aside from drives may be used.
[0038] Routers 206 may include networking equipment
configured to provide internal and external communications
for server cluster 200. For example, routers 206 may include
one or more packet-switching and/or routing devices (in-

3
Jun.6,2019

eluding switches and/or gateways) configured to provide (i)
network communications between server devices 202 and
data storage 204 via cluster network 208, and/or (ii) network
communications between the server cluster 200 and other
devices via communication link 210 to network 212.
[0039] Additionally, the configuration of cluster routers
206 can be based at least in part on the data communication
requirements of server devices 202 and data storage 204, the
latency and throughput of the local cluster network 208, the
latency, throughput, and cost of communication link 210,
and/or other factors that may contribute to the cost, speed,
fault-tolerance, resiliency, efficiency and/or other design
goals of the system architecture.
[0040] As a possible example, data storage 204 may
include any form of database, such as a structured query
language (SQL) database. Various types of data structures
may store the information in such a database, including but
not limited to tables, arrays, lists, trees, and tuples. Further­
more, any databases in data storage 204 may be monolithic
or distributed across multiple physical devices.
[0041] Server devices 202 may be configured to transmit
data to and receive data from cluster data storage 204. This
transmission and retrieval may take the form of SQL queries
or other types of database queries, and the output of such
queries, respectively. Additional text, images, video, and/or
audio may be included as well. Furthermore, server devices
202 may organize the received data into web page repre­
sentations. Such a representation may take the form of a
markup language, such as the hypertext markup language
(HTML), the extensible markup language (XML), or some
other standardized or proprietary format. Moreover, server
devices 202 may have the capability of executing various
types of computerized scripting languages, such as but not
limited to Perl, Python, PHP Hypertext Preprocessor (PHP),
Active Server Pages (ASP), JavaScript, and so on. Computer
program code written in these languages may facilitate the
providing of web pages to client devices, as well as client
device interaction with the web pages.

II. Generative Mosaics

[0042] A generative mosaic encompasses a number of
visual effects that can be used to recreate any input image (or
video frame) by replacing sampled patches in the input
image with automatically generated patches. These replace­
ment patches may be generated according to a pre-deter­
mined generative dataset of images, each dataset exhibiting
a particular visual theme, such as flowers, galaxies, etc.
Particularly, an ANN is trained to generate the patches to
mimic the salient characteristics of the generative dataset
while simultaneously preserving information in the input
image.
[0043] An example of this process is shown in FIG. 3. An
arbitrary image 300 serves as the input image. Five possible
pre-trained generative datasets 302 are available, each
selectable by a user or automatically selected. The themes of
generative datasets 302 include eyes, galaxies, flowers,
skulls, numbers and sunsets. The theme of a generative
dataset may be, for example, any class of man-made or
natural object, drawing or figures. Other possible themes
include, but are not limited to, branded content, churches,
cartoon characters, produce, clouds, animals, insects, anime,
jewelry, balloons, birds, blurry photos, food, butterflies, cats,
cat faces, celebrities, clowns, dogs, drugs, etchings, explo­
sions, first-person footage, fitness, floorplans, furniture,

US 2019/0171908 Al

gems, guns, manuscripts, video game content, television and
movie content, maps, mechanical content, parties, restau­
rants, selfies, spaceships, vegetables, vehicles, weapons, and
so on.
[0044] Output images 304 include patches of input image
300 replaced with replacement patches generated de nova
according to each of generative datasets 302. For example,
in the fourth one of output images 304 from the top of FIG.
3, the features in input image 300 are replaced by skulls of
various sizes and shapes. Notably, these generated skulls do
not necessarily exist in the generative dataset depicting a
skull. Instead, the generated skulls are created from this
generative dataset to fit patches of input image 300.
[0045] Generative mosaics are useful for various artistic
and entertainment applications, such as image filters for
social media, special effects for television, movies, and
videos games, and so on. A technical challenge for produc­
ing generative mosaics is to do so in real time, or near real
time on a device with limiting processing power, such as a
mobile phone. In order to address this challenge, a novel
combination of ANNs can be used to train a generator that
produces the mosaics. Thus, in order to fully appreciate the
embodiments herein, a discussion of ANNs can be helpful.

III. Artificial Neural Networks

[0046] An ANN is a computational model in which a
number of simple units, working individually in parallel and
without central control, combine to solve complex problems.
While this model may resemble an animal's brain in some
respects, analogies betweenANNs and brains are tenuous at
best. Modem ANNs have a fixed structure, a deterministic
mathematical learning process, are trained to solve one
problem at a time, and are much smaller than their biological
counterparts.
[0047] A. Example ANN
[0048] An ANN is represented as a number of nodes that
are arranged into a number of layers, with connections
between the nodes of adjacent layers. An example ANN 400
is shown in FIG. 4. ANN 400 represents a feed-forward
multilayer neural network, but similar structures and prin­
ciples are used in CNN s, recurrent neural networks, and
recursive neural networks, for example.
[0049] Regardless, ANN 400 consists of four layers: input
layer 404, hidden layer 406, hidden layer 408, and output
layer 410. The three nodes of input layer 404 respectively
receive X 1 , X2 , and X3 from initial input values 402. The two
nodes of output layer 410 respectively produce Y 1 and Y2 for
final output values 412. ANN 400 is a fully-connected
network, in that nodes of each layer aside from input layer
404 receive input from all nodes in the previous layer.
[0050] The solid arrows between pairs of nodes represent
connections through which intermediate values flow, and are
each associated with a respective weight that is applied to
the respective intermediate value. Each node performs an
operation on its input values and their associated weights
(e.g., values between O and 1, inclusive) to produce an
output value. In some cases this operation may involve a
dot-product sum of the products of each input value and
associated weight. An activation function may be applied to
the result of the dot-product sum to produce the output
value. Other operations are possible.
[0051] For example, if a node receives input values {x1 ,

x2 , ... , xn} on n connections with respective weights of { w 1 ,

w2 , ... , wn}, the dot-product sum d may be determined as:

4
Jun.6,2019

n

d = ~X;W; +b
i=l

Where b is a node-specific or layer-specific bias.

(1)

[0052] Notably, the fully-connected nature of ANN 400
can be used to effectively represent a partially-connected
ANN by giving one or more weights a value of 0. Similarly,
the bias can also be set to O to eliminate the b term.
[0053] An activation function, such as the logistic func­
tion, may be used to map d to an output value y that is
between O and 1, inclusive:

(2)
y=)+e-d

Functions other than the logistic function, such as the
sigmoid or tan h functions, may be used instead.
[0054] Then, y may be used on each of the node's output
connections, and will be modified by the respective weights
thereof. Particularly, in ANN 400, input values and weights
are applied to the nodes of each layer, from left to right until
final output values 412 are produced. If ANN 400 has been
fully trained, final output values 412 are a proposed solution
to the problem that ANN 400 has been trained to solve. In
order to obtain a meaningful, useful, and reasonably accu­
rate solution, ANN 400 requires at least some extent of
training.
[0055] B. Training
[0056] Training an ANN usually involves providing the
ANN with some form of supervisory training data, namely
sets of input values and desired, or ground truth, output
values. For ANN 400, this training data may include m sets
of input values paired with output values. More formally, the
training data may be represented as:

(3)

Where i=l ... m, and r;:, and r;, are the desired output
values for the input values of X 1 ,,, X2 ,,, and X3 ,,.

[0057] The training process involves applying the input
values from such a set to ANN 400 and producing associated
output values. A loss function is used to evaluate the error
between the produced output values and the ground truth
output values. This loss function may be a sum of differ­
ences, mean squared error, or some other metric. In some
cases, error values are determined for all of the m sets, and
the error function involves calculating an aggregate (e.g., an
average) of these values.
[0058] Once the error is determined, the weights on the
connections are updated in an attempt to reduce the error. In
simple terms, this update process should reward "good"
weights and penalize "bad" weights. Thus, the updating
should distribute the "blame" for the error through ANN 400
in a fashion that results in a lower error for future iterations
of the training data.
[0059] The training process continues applying the train­
ing data to ANN 400 until the weights converge. Conver­
gence occurs when the error is less than a threshold value or
the change in the error is sufficiently small between con­
secutive iterations of training. At this point, ANN 400 is said
to be "trained" and can be applied to new sets of input values
in order to predict output values that are unkuown.

US 2019/0171908 Al

[0060] Most training techniques for ANNs make use of
some form ofbackpropagation. Backpropagation distributes
the error one layer at a time, from right to left, through ANN
400. Thus, the weights of the connections between hidden
layer 408 and output layer 410 are updated first, the weights
of the connections between hidden layer 406 and hidden
layer 408 are updated second, and so on. This updating is
based on the derivative of the activation function.
[0061] In order to further explain error determination and
backpropagation, it is helpful to look at an example of the
process in action. However, backpropagation becomes quite
complex to represent except on the simplest of ANNs.
Therefore, FIG. SA introduces a very simple ANN 500 in
order to provide an illustrative example of backpropagation.

TABLE 1

Weight Nodes Weight Nodes

W1 11, H1 W5 Hl, 01
W2 12, H1 w6 H2,01
W3 11, H2 W7 Hl, 02
W4 12, H2 W3 H2, 02

[0062] ANN 500 consists of three layers, input layer 504,
hidden layer 506, and output layer 508, each having two
nodes. Initial input values 502 are provided to input layer
504, and output layer 508 produces final output values 510.
Weights have been assigned to each of the connections.
Also, bias b1 =0.35 is applied to the net input of each node
in hidden layer 506, and a bias b2 =0.60 is applied to the net
input of each node in output layer 508. For clarity, Table 1
maps weights to pair of nodes with connections to which
these weights apply. As an example, w2 is applied to the
connection between nodes 12 and Hl, w7 is applied to the
connection between nodes Hl and 02, and so on.
[0063] [61] For purposes of demonstration, initial input
values are set to X 1=0.05 and X2 =0.10, and the desired
output values are set to Yi =0.01 and l7; =0.99. Thus, the goal
of training ANN 500 is to update the weights over some
number of feed forward and backpropagation iterations until
the final output values 510 are sufficiently close to Yi =0.01
and l7; =0.99 when X 1=0.05 and X2 =0.10. Note that use of a
single set of training data effectively trains ANN 500 for just
that set. If multiple sets of training data are used, ANN 500
will be trained in accordance with those sets as well.
[0064] 1. Example Feed Forward Pass
[0065] To initiate the feed forward pass, net inputs to each
of the nodes in hidden layer 506 are calculated. From the net
inputs, the outputs of these nodes can be found by applying
the activation function.
[0066] For node Hl, the net input netHI is:

~(0.15) (0. 05)+(0 .20) (0 .10)+0 .35 ~o .3 77 5 (4)

[0067] Applying the activation function (here, the logistic
function) to this input determines that the output of node Hl,
outH1 is:

(5)

= 0.593269992

[0068] Following the same procedure for node H2, the
output outH2 is 0.596884378. The next step in the feed

5
Jun.6,2019

forward iteration is to perform the same calculations for the
nodes of output layer 508. For example, net input to node
01, net01 is:

= (0.40)(0.593269992) + (0.45)(0.596884378) + 0.60

= 1.105905967

[0069] Thus, output for node 01, out01 is:

outa1 = 1 + e-neto1

= 0.75136507

(6)

(7)

[0070] Following the same procedure for node 02, the
output out02 is 0.772928465. At this point, the total error, fl,
can be determined based on a loss function. In this case, the
loss function can be the sum of the squared error for the
nodes in output layer 508. In other words:

(8)

1 1
= ::;:(0.75136507 - 0.01)2 + 2 (0.772928465- 0.99)2

= 0.274811083 + 0.023560026 = 0.298371109

[0071] The multiplicative constant 1/2 in each term is used
to simplify differentiation during backpropagation. Since the
overall result is scaled by a learning rate anyway, this
constant does not negatively impact the training. Regardless,
at this point, the feed forward iteration completes and
backpropagation begins.
[0072] 2. Backpropagation
[0073] As noted above, a goal ofbackpropagation is to use
fl to update the weights so that they contribute less error in
future feed forward iterations. As an example, consider the
weight w5 • The goal involves determining how much the
change in w 5 affects fl. This can be expressed as the partial
derivative

at:.

aw,

Using the chain rule, this term can be expanded as:

at:. at:. aouto1 aneto1
-=--X--X--
aws aouto1 aneto1 aw,

(9)

[007 4] Thus, the effect on fl of change to w 5 is equivalent
to the product of (i) the effect on fl of change to out01 , (ii)
the effect on out01 of change to net0 i, and (iii) the effect on
net01 of change tow 5 . Each of these multiplicative terms can
be determined independently. Intuitively, this process can be

US 2019/0171908 Al

thought of as isolating the impact of w 5 on net01 , the impact
of net01 on out01 , and the impact of out01 on li..

[0075] Starting with

the expression for ti. is:
L\.~l/2(out01-Yi)2+1/2(out0 r 9;)2 (10)

[0076] When taking the partial derivative with respect to
out0 i, the term containing out02 is effectively a constant
because changes to out01 do not affect this term. Therefore:

[0077] For

aouta1

aneta1'

= 0.75136507-0.01 = 0.74136507

the expression for out0 i, from Equation 5, is:

outa1 = 1 + e-neto1

(11)

(12)

[0078] Therefore, taking the derivative of the logistic
function:

aouta1 -- = outo1 (1 - outo1)
aneta1

= 0.75136507(1 -0.75136507) = 0.186815602

[0079] For

the expression for net0 i, from Equation 6, is:

(13)

(14)

[0080] Similar to the expression for ti., taking the deriva­
tive of this expression involves treating the two rightmost
terms as constants, since w5 does not appear in those terms.
Thus:

aneta1
~ = OU(HJ = 0.593269992

(15)

6
Jun.6,2019

[0081] These three partial derivative terms can be put
together to solve Equation 9:

8/\. --
aw, = (outo1 - Y1)outo1 (1 - outo1)outHI

= (0.74136507)(0.186815602)(0.593269992) =

0.082167041

(16)

[0082] Then, this value can be subtracted from w5 • Often
a gain, O<asl, is applied to

to control how aggressively the ANN responds to errors.
Assuming that a=0.5, the full expression is:

8/\. (17)
W5 = W5 -CY 8w5

= 0.4 - (0.5)(0.082167041) = 0.35891648

[0083] This process can be repeated for the other weights
feeding into output layer 508. The results are:

w6~0.408666186

w 7~0.511301270

w8~0.561370121 (18)

[0084] Note that no weights are updated until the updates
to all weights have been determined at the end of back­
propagation. Then, all weights are updated before the next
feed forward iteration.
[0085] Next, updates to the remaining weights, Wi, w2 ,

w3 , and w4 are calculated. This involves continuing the
backpropagation pass to hidden layer 506. Considering w 1

and using a similar derivation as above:

8/\. 8/\. aoutH! anetH!
-=--X--X--
8w1 aoutH! anetH! aw1

(19)

[0086] One difference, however, between the backpropa­
gation techniques for output layer 508 and hidden layer 506
is that each node in hidden layer 506 contributes to the error
of all nodes in output layer 508. Therefore:

8/\. 8/\.01 8/\.02
--=--+-­
aoutH1 8outH1 8outH1

[0087] Beginning with

(20)

US 2019/0171908 Al

at.01 at.01 aneto1
--=--X--
8outH1 8neta1 8outH1

[0088] Regarding

(21)

the impact of change in net01 on li.01 is the same as impact
of change in net01 on li., so the calculations performed above
for Equations 11 and 13 can be reused:

at.01 at. aouto1
--=--X--
8neta1 aouta1 aneta1

= (0.74136507)(0.186815602)

= 0.138498562

[0089] Regarding

aneto1

8outH1'

net01 can be expressed as:

[0090] Thus:

aneta1
aoutH! = W5 = 0.40

[0091] Therefore, Equation 21 can be solved as:

at.01 at.01 aneto1
--=--X--
8outH1 8neto1 8outH1

= (0.138498562)(0.40)

= 0.055399425

[0092] Following a similar procedure for

results in:

at.02 = -0.019049119
8outH1

(22)

(23)

(24)

(25)

(26)

7
Jun.6,2019

[0093] Consequently, Equation 20 can be solved as:

at. at.01 at.02
--=--+-­
aoutH1 8outH1 8outH1

= 0.055399425 - 0.019049119

= 0.036350306

(27)

[0094] This also solves for the first term of Equation 19.
Next, since node Hl uses the logistic function as its activa­
tion function to relate outHI and netHI, the second term of
Equation 19,

can be determined as:

8outH1
anetH! = OUtHJ (1 - OUtHJ)

= 0.59326999(1 - 0.59326999)

= 0.241300709

[0095] Then, as netHI can be expressed as:

[0096] Thus, the third term of Equation 19 is:

(28)

(29)

(30)

[0097] Putting the three terms of Equation 19 together, the
result is:

at. at. aoutH! anetH!
-=--X--X--
aw1 aoutH! anetH! aw1

= (0.036350306)(0.241300709)(0.05)

= 0.000438568

[0098] With this, w 1 can be updated as:

= 0.15 - (0.5)(0.000438568)

= 0.149780716

(31)

(32)

[0099] This process can be repeated for the other weights
feeding into hidden layer 506. The results are:

w2 ~0.19956143

w3~0.24975114

w4 ~0.29950229 (33)

US 2019/0171908 Al

[0100] At this point, the backpropagation iteration is over,
and all weights have been updated. FIG. 5B shows ANN 500
with these updated weights, values of which are rounded to
four decimal places for sake of convenience. ANN 500 may
continue to be trained through subsequent feed forward and
backpropagation iterations. For instance, the iteration car­
ried out above reduces the total error, ti., from 0.298371109
to 0.291027924. While this may seem like a small improve­
ment, over several thousand feed forward and backpropa­
gation iterations the error can be reduced to less than 0.0001.
At that point, the values of Y 1 and Y 2 will be close to the
target values of 0.01 and 0.99, respectively.
[0101] In some cases, an equivalent amount of training
can be accomplished with fewer iterations if the hyperpa­
rameters of the system (e.g., the biases b1 and b2 and the
learning rate a) are adjusted. For instance, the setting the
learning rate closer to 1.0 may result in the error rate being
reduced more rapidly. Additionally, the biases can be
updated as part of the learning process in a similar fashion
to how the weights are updated.
[0102] Regardless, ANN 500 is just a simplified example.
Arbitrarily complex ANNs can be developed with the num­
ber of nodes in each of the input and output layers tuned to
address specific problems or goals. Further, more than one
hidden layer can be used and any number of nodes can be in
each hidden layer.
[0103] C. Convolutional Neural Networks
[0104] CNNs are similar to ANNs, in that they consist of
some number oflayers of nodes, with weighted connections
therebetween and possible per-layer biases. The weights and
biases may be updated by way of feed forward and back­
propagation procedures discussed above. A loss function
may be used to compare output values of feed forward
processing to desired output values.
[0105] On the other hand, CNN s are usually designed with
the explicit assumption that the initial input values are
derived from one or more images. In some embodiments,
each color channel of each pixel in an image patch is a
separate initial input value. Assuming three color channels
per pixel (e.g., red, green, and blue), even a small 32x32
patch of pixels will result in 3072 incoming weights for each
node in the first hidden layer. Clearly, using a na"iveANN for
image processing could lead to a very large and complex
model that would take long to train.
[0106] Instead, CNNs are designed to take advantage of
the inherent structure that is found in almost all images. In
particular, nodes in a CNN are only connected to a small
number of nodes in the previous layer. This CNN architec­
ture can be thought of as three dimensional, with nodes
arranged in a block with a width, a height, and a depth. For
example, the aforementioned 32x32 patch of pixels with 3
color channels may be arranged into an input layer with a
width of 32 nodes, a height of 32 nodes, and a depth of 3
nodes.
[0107] An example CNN 600 is shown in FIG. 6A. Initial
input values 602, represented as pixels X 1 ... Xm, are
provided to input layer 604. As discussed above, input layer
604 may have three dimensions based on the width, height,
and number of color channels of pixels X 1 ... Xm. Input
layer 604 provides values into one or more sets of feature
extraction layers, each set containing an instance of convo­
lutional layer 606, RELU layer 608, and pooling layer 610.
The output of pooling layer 610 is provided to one or more
classification layers 612. Final output values 614 may be

8
Jun.6,2019

arranged in a feature vector representing a concise charac­
terization of initial input values 602.
[0108] Convolutional layer 606 may transform its input
values by sliding one or more filters around the three­
dimensional spatial arrangement of these input values. A
filter is represented by biases applied to the nodes and the
weights of the connections therebetween, and generally has
a width and height less than that of the input values. The
result for each filter may be a two-dimensional block of
output values (referred to as an feature map) in which the
width and height can have the same size as those of the input
values, or one or more of these dimensions may have
different size. The combination of each filter's output results
in layers of feature maps in the depth dimension, in which
each layer represents the output of one of the filters.
[0109] Applying the filter may involve calculating the
dot-product sum between the entries in the filter and a
two-dimensional depth slice of the input values. An example
of this is shown in FIG. 6B. Matrix 620 represents input to
a convolutional layer, and thus could be image data, for
example. The convolution operation overlays filter 622 on
matrix 620 to determine output 624. For instance, when filter
622 is positioned in the top left comer of matrix 620, and the
dot-product sum for each entry is calculated, the result is 4.
This is placed in the top left corner of output 624.
[0110] Turning back to FIG. 6A, a CNN learns filters
during training such that these filters can eventually identify
certain types of features at particular locations in the input
values. As an example, convolutional layer 606 may include
a filter that is eventually capable of detecting edges and/or
colors in the image patch from which initial input values 602
were derived. A hyperparameter called receptive field deter­
mines the number of connections between each node in
convolutional layer 606 and input layer 604. This allows
each node to focus on a subset of the input values.
[0111] RELU layer 608 applies an activation function to
output provided by convolutional layer 606. In practice, it
has been determined that the rectified linear unit (RELU)
function, or a variation thereof, appears to provide the best
results in CNNs. The RELU function is a simple threshold­
ing function defined as f(x)=max(0, x). Thus, the output is
0 when x is negative, and x when x is non-negative. A
smoothed, differentiable approximation to the RELU func­
tion is the softplus function. It is defined as f(x)=log(l+ex).
Nonetheless, other functions may be used in this layer.
[0112] Pooling layer 610 reduces the spatial size of the
data by downsampling each two-dimensional depth slice of
output from RELU layer 608. One possible approach is to
apply a 2x2 filter with a stride of 2 to each 2x2 block of the
depth slices. This will reduce the width and height of each
depth slice by a factor of 2, thus reducing the overall size of
the data by 75%.
[0113] Classification layer 612 computes final output val­
ues 614 in the form of a feature vector. As an example, in a
CNN trained to be an image classifier, each entry in the
feature vector may encode a probability that the image patch
contains a particular class of item (e.g., a human face, a cat,
a beach, a tree, etc.).
[0114] In some embodiments, there are multiple sets of the
feature extraction layers. Thus, an instance of pooling layer
610 may provide output to an instance of convolutional layer
606. Further, there may be multiple instances of convolu­
tional layer 606 and RELU layer 608 for each instance of
pooling layer 610.

US 2019/0171908 Al

[0115] CNN 600 represents a general structure that can be
used in image processing. Convolutional layer 606 and
classification layer 612 apply weights and biases similarly to
layers in ANN 500, and these weights and biases may be
updated during backpropagation so that CNN 600 can learn.
On the other hand, RELU layer 608 and pooling layer 610
generally apply fixed operations and thus might not learn.
[0116] Not unlike an ANN, a CNN can include a different
number of layers than is shown in the examples herein, and
each of these layers may include a different number of
nodes. Thus, CNN 600 is merely for illustrative purposes
and should not be considered to limit the structure of a CNN.

IV. Example Generative Adversarial Network

[0117] The generative mosaic embodiments described
herein may use a new type of generative adversarial network
(GAN) to train an encoder and a generator to produce image
patches that resemble the structure of an input image patch
but are composed of synthetic, generative elements that
mimic those of a particular theme. This new GAN may be
referred to as yGAN 700, and is shown in FIG. 7.
[0118] The generative mosaic process has two stages.
First, a pair of CNNs are trained to transform input image
patches from dataset A (typically natural images such as one
might expect users to photograph or film) into output
patches that resemble dataset B (typically a stylistically
interesting theme, such as flowers, or astronomical phenom­
ena). Second, after the model has been trained, elements of
it are used to render and reconstruct full images and video.
[0119] To give a concrete example, consider two datasets:
dataset A (randomly cropped patches from 200,000 images
of faces), and dataset B (8000 pictures of individual flow­
ers). The CNNs are trained with loss functions such that
when provided any cropped face patch, say a crop of the
nose, it will attempt to recreate that patch while simultane­
ously making it a plausible patch from the flower dataset.
This ideally yields a configuration of flower petals that
follow the contours of the nose.
[0120] Because this model attempts to generate plausible
patches, rather than entire images directly, adjusting the
parameters of the CNNs to achieve the goal is easier. Global
consistency is implicitly maintained by the underlying
image that the CNNs are recreating the patches of, and by
attempting to recreate small patches the generated patches
have more flexibility to match the salient attributes of the
target dataset (dataset B).
[0121] The behaviors of the datasets that can be used in the
present invention are a measure of their set complexity and
variety. Because the current primary application is uncon­
strained on the input side, a broad Flickr-based dataset
(MIRFLICKR-lM) is used as a proxy for all images. In
practice, this gives good results for arbitrary input. For
specific, custom uses with known content and relaxed time
constraints, more exact input datasets can be selected (i.e., if
the application uses specific drone footage, one would train
with that exact footage). The choice of destination dataset
(flowers, galaxies, insects, etc.) depends on the application
and is essentially limitless. Alternately, dataset A can be a
transformation of dataset B with a number of immediate
image processing applications.
[0122] Notably, source patches can be selected arbitrarily,
in any number, position, scale, or rotation. Additionally, any
sequence of patch transformations can be applied to an

9
Jun.6,2019

image or image sequence. That is, patches may animate
freely in time over still or moving images.
[0123] A. Model Definition
[0124] With reference to FIG. 7, let x-1' A denote a patch
sampled from dataset A, and y-1' B denote a patch sampled
from dataset B. E is a function, parameterized by a CNN,
which takes in a patch and transforms it into a latent code z
(e.g., a feature vector). This latent code z can be thought of
as a compressed representation of the input to E. Latent code
z is then used as the input to the functions Dec and G.
[0125] Dec is another CNN that serves as a decoder which
attempts to invert E and reproduce the input of E from z.
Collectively, E and Dec are an autoencoder that is trained to
be able to produce x' from x, where x' is intended to be a
close approximation of x. The loss function for this auto­
encoder is:

f 0 u10 (x) = llx - Dec(E(x))ll2

= llx-x'll2

(34)

[0126] Thus, a goal is to train E and Dec so that £ auto (x)
is minimized, or at least below a reasonably small threshold
value.
[0127] G is a generator which attempts to synthesize a
patch G(z)=i that mimics patches from dataset B, while
maintaining fidelity to x. D is a discriminator that attempts
to differentiate between synthesized patches i and real
patches y from dataset B, assigning a value of O to former,
and 1 to the latter. The fidelity of i to x is defined as
llz-E(i)lb, and the ability to mimic dataset B as -D(i). This
yields the loss function:

£ G(i)~-D(i)+llz-E(i)lb (35)

[0128] Therefore, another goal is to train E and G so that
f: G(i) is minimized, or at least below a further reasonably
small threshold value.
[0129] To find parameters of D that differentiate between
synthesized patches i, and real patches y from dataset B, the
following loss function can be used:

£ n(y, i)~D(i)-D(y) (36)

[0130] Therefore, yet another goal is to train D so that
f: n(Y, i) is minimized, or at least below an additional
reasonably small threshold value. By training these four
CNNs in accordance with the three loss functions above,
yGAN 700 will seek parameters which allow it to efficiently
compress patch x into z, transform z into an output patch i
that is visually indistinguishable (or nearly indistinguish­
able) from a real patch from dataset B, and that maintains the
structural elements of x by encouraging that E(i)ssz=E(x).
[0131] In addition to these loss functions, other loss func­
tions can be used to direct yGAN to perform in a desired
fashion. For example, in addition to the above loss functions,
a bounding box loss function, a face marker loss function,
and a classification confidence loss function may be
employed. During training, an additional classification net­
work (e.g., face recognition or segmentation) compares
input and output images and calculates these additional
losses.
[0132] As a practical example of these additional loss
functions, suppose that the goal is to transform arbitrary
input faces into some class of output faces (e.g. clowns,
zombies, a celebrity). During training, all yGAN operations

US 2019/0171908 Al

are the same, however an additional evaluation is performed
after each step. Both the input patch (a real face) and the
output patch (the generator's current attempt at a clown face,
zombie face, celebrity face, etc.) are evaluated by a face
recognition system. This system returns a bounding box, a
set of face markers, and a confidence score for both "faces."
These scores, in turn, are used as losses (Ll or L2) for the
generator. A segmentation network can be used in the same
way to derive loss from how the input and output images are
classified at the pixel level.
[0133] B. Training
[0134] Training the CNNs to achieve this task currently
takes on the order of hours to weeks and, once completed,
creates model weights that can be reused ad infinitum by the
generative process. The training involves iterating over the
following procedure.
[0135] First, a random patch x of arbitrary size and posi­
tion is chosen from dataset A.
[0136] Second, the encoder CNN E processes the patch x
and encodes a latent embedding z=E(x). This resulting
feature vector is then used in two pathways (this branching
gives yGAN the "y" in its name).
[0137] For branch 1, z is passed to the decoder Dec and it
reconstructs the image patch as closely as it can, producing
x'=Dec(z). The values of x and x' are used to compute
.f auto(x).
[0138] For branch 2, z is also passed to a generator
network G, which decodes z into an RGB image output
patch i=G(z). The discriminator network D either receives
generated patch i or a random cropped patch y from dataset
B. D makes a prediction as to whether its input truly came
from dataset B. This prediction will either take on a value of
0 (the input is not in dataset B) or 1 (the input is in dataset
B), and is used to compute 1: n(Y, i) and the first term of
.f G(i).
[0139] Third, the generated image patch i is also passed
back to the encoder CNN E. The resulting feature vector E(i)
is compared to z, constituting the second half of term of
.f G(i).
[0140] The gradients of all function parameters are com­
puted with respect to their corresponding loss functions, and
updated using a variant of gradient descent. Various activa­
tion functions may be utilized, for instance an algorithm for
first-order gradient-based optimization of stochastic objec­
tive functions, based on adaptive estimates of lower-order
moments.
[0141] This training procedure has a number of uncon­
ventional aspects. By combining an autoencoder and a
GAN, a unique CNN-based architecture has been created.
This architecture is capable of mapping a source image
domain (dataset A) into a destination style (dataset B) while
retaining important visual features from the source domain.
Typically, GAN architectures use a latent z -vector sampled
from the normal distribution as a prior for the generator, G.
In the embodiments herein, the bottleneck from a newly
introduced autoencoder is a latent z prior in order to model
a separate distribution. Rather than being random sample,
this z is a reasonable approximation of an input image while
being well-formed for generator architecture. Additionally,
three specific loss functions are calculated during training.
Notably, -e G(i) is a new loss based on E's ability to recon­
struct z from E(i). This is summed with a weighted
inverse-D loss to combine the generation and reconstruction
tasks.

10
Jun.6,2019

[0142] Furthermore, the embodiments herein can work
with any number of GAN sub-architectures. For instance,
instead of the generator/discriminator sub-architecture vari­
ant shown herein, a stacked/progressively-growing training
method can be used. This allows higher image quality at
higher resolutions. Other variants can be plugged into this
general architecture.
[0143] C. Rendering
[0144] After training is complete, the rendering process
takes a provided video or image, samples patches from it,
recreates those patches using the elements of the above
pre-trained model weights, and assembles these generated
patches in the same or similar configuration as the originals,
yielding a generative mosaic.
[0145] This procedure is illustrated in the example of FIG.
8. A front-facing video is provided. The generative mosaic
software converts sample patches (e.g., patch 802) from one
or more of the video's frames (e.g., frame 800). This
sampling might or might not be in sequence of the frames.
The pre-trained E and G CNN s 804 are used to convert those
patches to new patches (e.g., patch 806) and reassemble
them to match the input and produce a new frame (e.g.,
frame 808), or a new video from the frames (i.e., single
image operations are treated like one frame in a video). The
rendering pipeline allows many options for both aesthetic
and performance control. In detail, the process may include
the following steps.
[0146] Ingest and convert input: Video is simply a sequen­
tial collection of individual image frames. Input video is
sampled at a frame rate appropriate to the application, saving
to disk and/or holding frames in memory. Native frame rate
is an ideal capture rate, but in real-time applications a lower
frame rate offers computational savings. Similarly, indi­
vidual frame pixel dimension can be changed to suite
performance and visual requirements. Input may be down­
sampled for additional computational savings, remain native
for resolution accuracy, or even upsampled for aesthetic
effect.
[0147] Sample patches per frame: Each captured frame is
then converted into a set of patches. Options for selection of
patches are broad and varied based on aesthetic and perfor­
mance requirements. One may sample a non-overlapping
grid of patches or select many overlapping patches. Patches
may be uniform in size and shape or may have random size
and aspect ratio. Patch sets can remain uniform frame-to­
frame or they may change. Ultimately, patch sets are gen­
erated as coordinates according to application-specific needs
or user desire, and are used to disassemble input frames.
These coordinates are stored in memory.
[0148] Inference per frame: After an input frame is
sampled into constituent patches, it is passed through the
pre-trained E and G CNN architecture described above.
Pre-training provides for the choice of dataset B (i.e. flowers
or galaxies, etc.) and is selected by preference. This archi­
tecture replicates a subunit of yGAN s training architecture.
Each sampled patch is passed to the pre-trained E model,
creating a new z vector, which is in turn passed to the G
model to generate a new output patch. The new patch is
likely to, based on specific training, look like a member of
dataset B on which the model was trained while retaining
characteristics of the source patch. This proceeds for each
sampled patch from each sampled frame.
[0149] Reassembly: After the sampled input patches are
processed by the CNN architecture, the resulting patch sets

US 2019/0171908 Al

are reassembled using the stored patch set coordinates.
Various ordering and masking techniques are used to blend
(paste) the stack of patches. Each patch has a mask and paste
order determined by aesthetic and performance require­
ments. Once each patch set is assembled per frame, the
frames are compiled into the new video.
[0150] The embodiments herein sample patches during
both training and inference to generate new output patches
to be reassembled for new content. The essence of the entire
process boils down to two insights: (1) that one could
combine an autoencoder with a GAN to perform cross­
domain transformations, and (2) that both training and
inference with yGAN on patches is possible and would
provide innovative capacities. The rendering pipeline is
custom-built for this task. Each step in the rendering process
was created specifically to confirm the hypothesis of gen­
erative mosaic. Furthermore, the relationship between data­
set A and dataset B need not be only content driven. This
exact process can be applied to image transformations of
dataset B to dataset A for use in image processing applica­
tions. As an example, dataset A could be a grayscale version
of a full color dataset B for colorization applications. Table
2 includes four examples using MIRFLICKR-lM dataset
patches in dataset B for general applications.

Application

Colorization
De-noising
Super-resolution
De-blurring

TABLE 2

Dataset A

Greyscale versions of the images in dataset B
Noisy versions of the images in dataset B
Downsarnpled versions of images in dataset B
Blurred versions of the images in dataset B

[0151] Other beneficial aspects of the embodiments herein
include that the process is generative. Though the patches
generated by the rendering process are derived from both the
source and destination datasets, they are new images, and do
not represent exact samples from either set. This process
generates imagery that simply could not be created other­
wise, allowing for flexibility and variety. Additionally, the
embodiments allow for significant freedom in mosaic patch
size, shape, and position. Patches can be of arbitrary size and
position with only qualitative and performance constraints.
Masking techniques are used to blend patches (in some
modes) and the masking allows for arbitrarily shaped (non­
rectangular) patches. The size variety allows one to explore
reconstruction resolution from very small patches to single
patch full frame reconstruction. Furthermore, the feed for­
ward rendering procedure is fast, especially when compared
to many style transfer and deep image manipulation meth­
ods. Real-time rendering is well within the capacity of
expert engineering.

V. Example Operations

[0152] FIGS. 9 and 10 are flow charts illustrating example
embodiments. The processes illustrated by FIGS. 9 and 10
may be carried out by a computing device, such as comput­
ing device 100, and/or a cluster of computing devices, such
as server cluster 200. However, the processes can be carried
out by other types of devices or device subsystems. For
example, the processes could be carried out by a portable
computer, such as a laptop or a tablet device.
[0153] The embodiments of FIGS. 9 and 10 may be
simplified by the removal of any one or more of the features

11
Jun.6,2019

shown therein. Further, these embodiments may be com­
bined with features, aspects, and/or implementations of any
of the previous figures or otherwise described herein.
[0154] Throughout discussion of FIGS. 9 and 10, an ANN
therein may be implemented as a CNN. Also, the term
"domain training image" may refer to an image of dataset A,
and the term "generative training image" may refer to an
image of dataset B.
[0155] Block 900 of FIG. 9 may involve training an
autoencoder with a first plurality of domain training images.
The autoencoder may include: an encoder ANN configured
to receive an input image patch from an image of the first
plurality of domain training images and produce a first
feature vector therefrom, and a decoder ANN configured to
receive the first feature vector and produce an output image
patch therefrom. The autoencoder training may be based on
a first loss function that calculates a first difference between
the input image patch and the output image patch.
[0156] Block 902 may involve training a discriminator
ANN of a GAN. The GAN may include a generator ANN
configured to receive the first feature vector and produce a
generated image patch from the first feature vector, and the
discriminator ANN. The discriminator ANN may be con­
figured to receive the generated image patch and a particular
generative training image of a second plurality of generative
training images, and provide classifications thereof predict­
ing whether the generated image patch belongs to the second
plurality of generative training images. The discriminator
ANN training may be based on a second loss function that
calculates a second difference between the classification of
the generated image patch and the classification of the
particular generative training image.
[0157] Block 904 may involve training the generator
ANN. The encoder ANN may also be configured to receive
the generated image patch and produce a second feature
vector therefrom. The generator ANN training may be based
on a third loss function that calculates a third difference
between (i) the classification of the generated image patch
and (ii) a fourth difference between the first feature vector
and the second feature vector.
[0158] In some embodiments, visual content of each of the
second plurality of generative training images adhere to a
common theme. The common theme may be one of flowers,
eyes, stars, galaxies, skulls, numbers, cartoons, or sunsets,
for example. In some embodiments, each of the first plural­
ity of domain training images contains a representation of a
human face. In some embodiments, the first plurality of
domain training images consists of photorealistic images. In
some embodiments, the feature vector has between 16 and
2048 elements.
[0159] In some embodiments, the input image patch is one
of a set of input image patches cropped from an image such
that the set of input image patches can be combined to form
80% or more of the image. Alternatively, only particularly
salient areas of the output are generated, which might be less
than 80%. For instance, only faces in a family portrait may
be reconstructed in accordance with the embodiments
herein, leaving the rest of the portrait untouched.
[0160] In some embodiments, size and location within the
image of the input image patch is automatically selected,
though user-based selection may be used in addition to or
instead of automatic selection. Automatic selection may
involve random selection of patches, or selection based on
some determination of one or more areas of interest within

US 2019/0171908 Al

the image. In some embodiments, the input image patch is
from a frame of a multi-frame video. This may result in an
animation effect in which a generative patch appears to
move across at least part of the mosaic video.
[0161] It may be possible to generate a mosaic image
using two or more generator ANNs trained with different
sets of generative training images (e.g., dataset Bl and
database B2). For instance, one generator ANN may be
trained with images of galaxies and another generator ANN
may be trained with images of skulls. These different ANNs
may be applied to different input image patches from the
image. Thus, the generated image patch may be based on
more than one theme. It may also be possible to provide the
output of a generator ANN back through the same or a
different generator ANN.
[0162] Some embodiments may further involve deploying
the trained encoder ANN and the trained generator ANN in
tandem as an interactive image filter.
[0163] Block 1000 of FIG. 10 may involve obtaining, e.g.,
from a memory, an input image patch. Block 1002 may
involve applying an encoder ANN to the input image patch.
The encoder ANN may be configured to produce a feature
vector from the input image patch. The encoder ANN may
have been trained with a first plurality of domain training
images such that an output image patch visually resembling
the input image patch can be generated from the feature
vector.
[0164] Block 1004 may involve applying a generator ANN
to the feature vector. The generator ANN may be configured
to produce a generated image patch from the first feature
vector. The generator ANN may have been trained with
feature vectors derived from a first plurality of domain
training images and a second plurality of generative training
images such that the generated image patch visually
resembles the input image patch but is constructed of a
newly-generated image elements visually resembling one or
more image patches from the second plurality of generative
training images. Block 1006 may involve storing, e.g., in the
memory, the generated image patch.
[0165] In some embodiments, visual content of each of the
second plurality of generative training images adhere to a
common theme. The common theme may be one of flowers,
eyes, stars, galaxies, skulls, numbers, cartoons, or sunsets. In
some embodiments, each of the first plurality of domain
training images contains a representation of a human face. In
some embodiments, the first plurality of domain training
images consists of photorealistic images. In some embodi­
ments, the feature vector has between 16 and 2048 elements.
[0166] In some embodiments, the input image patch is one
of a set of input image patches cropped from an image such
that the set of input image patches can be combined to form
80% or more of the image. In some embodiments, size and
location within the image of the input image patch is
randomly selected. In some embodiments, the input image
patch is from a frame of a multi-frame video.
[0167] In some cases, corresponding input image patches
from a stereoscopic image pair may be used to create
stereoscopic mosaic images.

VI. Conclusion

[0168] The present disclosure is not to be limited in terms
of the particular embodiments described in this application,
which are intended as illustrations of various aspects. Many
modifications and variations can be made without departing

12
Jun.6,2019

from its scope, as will be apparent to those skilled in the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, in addition to those described herein,
will be apparent to those skilled in the art from the foregoing
descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims.
[0169] The above detailed description describes various
features and operations of the disclosed systems, devices,
and methods with reference to the accompanying figures.
The example embodiments described herein and in the
figures are not meant to be limiting. Other embodiments can
be utilized, and other changes can be made, without depart­
ing from the scope of the subject matter presented herein. It
will be readily understood that the aspects of the present
disclosure, as generally described herein, and illustrated in
the figures, can be arranged, substituted, combined, sepa­
rated, and designed in a wide variety of different configu­
rations.
[0170] With respect to any or all of the message flow
diagrams, scenarios, and flow charts in the figures and as
discussed herein, each step, block, and/or communication
can represent a processing of information and/or a transmis­
sion of information in accordance with example embodi­
ments. Alternative embodiments are included within the
scope of these example embodiments. In these alternative
embodiments, for example, operations described as steps,
blocks, transmissions, communications, requests, responses,
and/or messages can be executed out of order from that
shown or discussed, including substantially concurrently or
in reverse order, depending on the functionality involved.
Further, more or fewer blocks and/or operations can be used
with any of the message flow diagrams, scenarios, and flow
charts discussed herein, and these message flow diagrams,
scenarios, and flow charts can be combined with one
another, in part or in whole.
[0171] A step or block that represents a processing of
information can correspond to circuitry that can be config­
ured to perform the specific logical functions of a herein­
described method or technique. Alternatively or addition­
ally, a step or block that represents a processing of
information can correspond to a module, a segment, or a
portion of program code (including related data). The pro­
gram code can include one or more instructions executable
by a processor for implementing specific logical operations
or actions in the method or technique. The program code
and/or related data can be stored on any type of computer
readable medium such as a storage device including RAM,
a disk drive, a solid state drive, or another storage medium.
[0172] The computer readable medium can also include
non-transitory computer readable media such as computer
readable media that store data for short periods of time like
register memory and processor cache. The computer read­
able media can further include non-transitory computer
readable media that store program code and/or data for
longer periods of time. Thus, the computer readable media
may include secondary or persistent long term storage, like
ROM, optical or magnetic disks, solid state drives, compact­
disc read only memory (CD-ROM), for example. The com­
puter readable media can also be any other volatile or
non-volatile storage systems. A computer readable medium
can be considered a computer readable storage medium, for
example, or a tangible storage device.
[0173] Moreover, a step or block that represents one or
more information transmissions can correspond to informa-

US 2019/0171908 Al

tion transmissions between software and/or hardware mod­
ules in the same physical device. However, other informa­
tion transmissions can be between software modules and/or
hardware modules in different physical devices.
[0174] The particular arrangements shown in the figures
should not be viewed as limiting. It should be understood
that other embodiments can include more or less of each
element shown in a given figure. Further, some of the
illustrated elements can be combined or omitted. Yet further,
an example embodiment can include elements that are not
illustrated in the figures.
[0175] While various aspects and embodiments have been
disclosed herein, other aspects and embodiments will be
apparent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purpose of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims.

What is claimed is:
1. A system comprising:
an encoder artificial neural network (ANN) configured to

receive an input image patch and produce a feature
vector therefrom, wherein the encoder ANN has been
trained with a first plurality of domain training images
such that an output image patch visually resembling the
input image patch can be generated from the feature
vector; and

a generator ANN configured to receive the feature vector
and produce a generated image patch from the feature
vector, wherein the generator ANN has been trained
with feature vectors derived from the first plurality of
domain training images and a second plurality of
generative training images such that the generated
image patch visually resembles the input image patch
but is constructed of a newly-generated image elements
visually resembling one or more image patches from
the second plurality of generative training images.

2. The system of claim 1, wherein visual content of each
of the second plurality of generative training images adhere
to a common theme.

3. The system of claim 2, wherein the common theme is
one of flowers, eyes, stars, galaxies, skulls, numbers, car­
toons, or sunsets.

4. The system of claim 1, wherein each of the first
plurality of domain training images contain a representation
of a human face.

5. The system of claim 1, wherein the feature vector has
between 16 and 2048 elements.

6. The system of claim 1, wherein the input image patch
is one of a set of input image patches cropped from an image
such that the set of input image patches can be combined to
form 80% or more of the image.

7. The system of claim 6, wherein size and location within
the image of the input image patch is randomly selected.

8. The system of claim 1, wherein the input image patch
is from a frame of a multi-frame video.

9. The system of claim 1, wherein the first plurality of
domain training images consists of photorealistic images.

10. A computer-implemented method comprising:
obtaining, from a memory, an input image patch;
applying, by a processor, an encoder artificial neural

network (ANN) to the input image patch, wherein the
encoder ANN is configured to produce a feature vector
from the input image patch, wherein the encoder ANN
has been trained with a first plurality of domain training

13
Jun.6,2019

images such that an output image patch visually resem­
bling the input image patch can be generated from the
feature vector;

applying, by the processor, a generator ANN to the feature
vector, wherein the generator ANN is configured to
produce a generated image patch from the feature
vector, wherein the generator ANN has been trained
with feature vectors derived from the first plurality of
domain training images and a second plurality of
generative training images such that the generated
image patch visually resembles the input image patch
but is constructed of a newly-generated image elements
visually resembling one or more image patches from
the second plurality of generative training images; and

storing, in the memory, the generated image patch.
11. The computer-implemented method of claim 10,

wherein visual content of each of the second plurality of
generative training images adhere to a common theme.

12. The computer-implemented method of claim 11,
wherein the common theme is one of flowers, eyes, stars,
galaxies, skulls, numbers, cartoons, or sunsets.

13. The computer-implemented method of claim 10,
wherein each of the first plurality of domain training images
contains a representation of a human face.

14. The computer-implemented method of claim 10,
wherein the feature vector has between 16 and 2048 ele­
ments.

15. The computer-implemented method of claim 10,
wherein the input image patch is one of a set of input image
patches cropped from an image such that the set of input
image patches can be combined to form 80% or more of the
image.

16. The computer-implemented method of claim 15,
wherein size and location within the image of the input
image patch is randomly selected.

17. The computer-implemented method of claim 10,
wherein the input image patch is from a frame of a multi­
frame video.

18. The computer-implemented method of claim 10,
wherein the first plurality of domain training images consists
of photorealistic images.

19. A system comprising:
a first plurality of domain training images;
a second plurality of generative training images;
an autoencoder including: an encoder artificial neural

network (ANN) configured to receive an input image
patch from an image of the first plurality of domain
training images and produce a first feature vector
therefrom, and a decoder ANN configured to receive
the first feature vector and produce an output image
patch therefrom, wherein the encoder ANN and the
decoder ANN are trained based on a first loss function
that calculates a first difference between the input
image patch and the output image patch;

a generative adversarial network including: a generator
ANN configured to receive the first feature vector and
produce a generated image patch from the first feature
vector, and a discriminator ANN configured to receive
the generated image patch and a particular generative
training image of the second plurality of generative
training images, and provide classifications thereof
predicting whether the generated image patch belongs
to the second plurality of generative training images,
wherein the discriminator ANN is trained based on a

US 2019/0171908 Al

second loss function that calculates a second difference
between a classification of the generated image patch
and a classification of the particular generative training
image; and

wherein the encoder ANN is also configured to receive the
generated image patch and produce a second feature
vector therefrom, and wherein the generator ANN is
trained based on a third loss function that calculates a
third difference between (i) the classification of the
generated image patch and (ii) a fourth difference
between the first feature vector and the second feature
vector.

20. The system of claim 19, wherein the input image patch
is one of a set of input image patches cropped from the
image such that the set of input image patches can be
combined to form 80% or more of the image.

* * * * *

Jun.6,2019
14

