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ABSTRACT 

An encoder artificial neural network (ANN) may be config­
ured to receive an input image patch and produce a feature 
vector therefrom. The encoder ANN may have been trained 
with a first plurality of domain training images such that an 
output image patch visually resembling the input image 
patch can be generated from the feature vector. A generator 
ANN may be configured to receive the feature vector and 
produce a generated image patch from the first feature 
vector. The generator ANN may have been trained with 
feature vectors derived from a first plurality of domain 
training images and a second plurality of generative training 
images such that the generated image patch visually 
resembles the input image patch but is constructed of a 
newly-generated image elements visually resembling one or 
more image patches from the second plurality of generative 
training images. 
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TRAIN AN AUTOENCODER WITH A FIRST PLURALITY OF DOMAIN TRAINING IMAGES, 
WHEREIN THE AUTOENCODER INCLUDES: AN ENCODER ARTIFICIAL NEURAL 

NETWORK (ANN) CONFIGURED TO RECEIVE AN INPUT IMAGE PATCH FROM AN 
IMAGE OF THE FIRST PLURALITY OF DOMAIN IMAGES AND PRODUCE A FIRST .- 9oo 

FEATURE VECTOR THEREFROM, AND A DECODER ANN CONFIGURED TO RECEIVE 
THE FIRST FEATURE VECTOR AND PRODUCE AN OUTPUT IMAGE PATCH 

THEREFROM, WHEREIN THE AUTOENCODER TRAINING IS BASED ON A FIRST LOSS 
FUNCTION THAT CALCULATES A FIRST DIFFERENCE BETWEEN THE INPUT IMAGE 

.r 

PATCH AND THE OUTPUT IMAGE PATCH 

TRAIN A DISCRIMINATOR ANN OF A GENERATIVE ADVERSARIAL NETWORK, 
WHEREIN THE GENERATIVE ADVERSARIAL NETWORK INCLUDES A GENERATOR 
ANN CONFIGURED TO RECEIVE THE FIRST FEATURE VECTOR AND PRODUCE A 

GENERATED IMAGE PATCH FROM THE FIRST FEATURE VECTOR, AND THE 
DISCRIMINATOR ANN, WHEREIN THE DISCRIMINATOR ANN IS CONFIGURED TO 

.) 

RECEIVE THE GENERATED IMAGE PATCH AND A PARTICULAR GENERATIVE .- 902 
TRAINING IMAGE OF A SECOND PLURALITY OF GENERATIVE TRAINING IMAGES, 

AND PROVIDE CLASSIFICATIONS THEREOF PREDICTING WHETHER THE 
GENERATED IMAGE PATCH BELONGS TO THE SECOND PLURALITY OF GENERATIVE 

TRAINING IMAGES, WHEREIN THE DISC RI MINA TOR ANN TRAINING IS BASED ON A 
SECOND LOSS FUNCTION THAT CALCULATES A SECOND DIFFERENCE BETWEEN 

THE CLASSIFICATION OF THE GENERATED IMAGE PATCH AND THE 
CLASSIFICATION OF THE PARTICULAR GENERATIVE TRAINING IMAGE 

' r 

.r ~ 

TRAIN THE GENERATOR ANN, WHEREIN THE ENCODER ANN IS ALSO CONFIGURED 
TO RECEIVE THE GENERATED IMAGE PATCH AND PRODUCE A SECOND FEATURE 
VECTOR THEREFROM, AND WHEREIN THE GENERATOR ANN TRAINING IS BASED .- 904 

ON A THIRD LOSS FUNCTION THAT CALCULATES A THIRD DIFFERENCE BETWEEN 
(I) THE CLASSIFICATION OF THE GENERATED IMAGE PATCH AND (II) A FOURTH 

DIFFERENCE BETWEEN THE FIRST FEATURE VECTOR AND THE SECOND FEATURE 
VECTOR 

FIG. 9 
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OBTAIN AN INPUT IMAGE PATCH 
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APPLY AN ENCODER ARTIFICIAL NEURAL NETWORK (ANN) TO THE INPUT IMAGE 
PATCH, WHEREIN THE ENCODER ANN IS CONFIGURED TO PRODUCE A FEATURE 

VECTOR FROM THE INPUT IMAGE PATCH, WHEREIN THE ENCODER ANN HAS BEEN 
TRAINED WITH A FIRST PLURALITY OF DOMAIN TRAINING IMAGES SUCH THAT AN 
OUTPUT IMAGE PATCH VISUALLY RESEMBLING THE INPUT IMAGE PATCH CAN BE 

GENERATED FROM THE FEATURE VECTOR 

, , 

APPLY A GENERATOR ANN TO THE FEATURE VECTOR, WHEREIN THE GENERATOR 
ANN IS CONFIGURED TO PRODUCE A GENERATED IMAGE PATCH FROM THE FIRST 

FEATURE VECTOR, WHEREIN THE GENERATOR ANN HAS BEEN TRAINED WITH 

_.-1000 

_.-1002 

FEATURE VECTORS DERIVED FROM A FIRST PLURALITY OF DOMAIN TRAINING _.-1004 
IMAGES AND A SECOND PLURALITY OF GENERATIVE TRAINING IMAGES SUCH THAT 

\.. 

THE GENERATED IMAGE PATCH VISUALLY RESEMBLES THE INPUT IMAGE PATCH 
BUT IS CONSTRUCTED OF A NEWLY-GENERATED IMAGE ELEMENTS VISUALLY 

RESEMBLING ONE OR MORE IMAGE PATCHES FROM THE SECOND PLURALITY OF 
GENERATIVE TRAINING IMAGES 

STORE THE GENERATED IMAGE PATCH 

FIG. 10 
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IMAGE TRANSFORMATION WITH A 
HYBRID AUTOENCODER AND 

GENERATIVE ADVERSARIAL NETWORK 
MACHINE LEARNING ARCHITECTURE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application claims priority to U.S. provisional 
patent application Nos. 62/593,354, filed Dec. 1, 2017, and 
62/633,851, filed Feb. 22, 2018, both of which are hereby 
incorporated by reference in their entirety. 

BACKGROUND 

[0002] Image processing has used artificial neural net­
works (ANNs) for some time to produce visual effects. 
These effects may involve improving the quality of an input 
image, or creating an artistic rendering of the input image. 
Most of these techniques, however, use conventional ANN 
architectures, such as convolutional neural networks 
(CNNs), and achieve their improvements through the use of 
deep learning over larger and larger ANNs. Thus, these 
improvements are often contingent on access to increasing 
amounts of processing power, rather than the structure of the 
ANN itself. 

SUMMARY 

[0003] The embodiments herein introduced a new ANN 
architecture, the hybrid autoencoder and generative adver­
sarial network (also referred to as a yGAN). This architec­
ture involves training an encoder ANN and a generator ANN 
to produce image patches that resemble the structure of an 
input image patch but are composed of synthetic elements 
that resemble those of a secondary set of images. The 
training involves an autoencoder including the encoder ANN 
and a generative adversarial network including the generator 
ANN. In addition to these artistic renderings, in certain 
embodiments the system is also able to colorize, de-noise, 
de-blur, and increase the resolution of images. 
[0004] Accordingly, a first example embodiment may 
involve training an autoencoder with a first plurality of 
domain training images. The autoencoder may include: an 
encoder ANN configured to receive an input image patch 
from an image of the first plurality of domain training 
images and produce a first feature vector therefrom, and a 
decoder ANN configured to receive the first feature vector 
and produce an output image patch therefrom. The autoen­
coder training may be based on a first loss function that 
calculates a first difference between the input image patch 
and the output image patch. The first example embodiment 
may also involve training a discriminator ANN of a genera­
tive adversarial network. The generative adversarial network 
may include a generator ANN configured to receive the first 
feature vector and produce a generated image patch from the 
first feature vector, and the discriminator ANN. The dis­
criminator ANN may be configured to receive the generated 
image patch and a particular generative training image of a 
second plurality of generative training images, and provide 
classifications thereof predicting whether the generated 
image patch belongs to the second plurality of generative 
training images. The discriminator ANN training may be 
based on a second loss function that calculates a second 
difference between the classification of the generated image 
patch and the classification of the particular generative 
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trammg image. The first example embodiment may also 
involve training the generator ANN. The encoder ANN may 
also be configured to receive the generated image patch and 
produce a second feature vector therefrom. The generator 
ANN training may be based on a third loss function that 
calculates a third difference between (i) the classification of 
the generated image patch and (ii) a fourth difference 
between the first feature vector and the second feature 
vector. 
[0005] A second example embodiment may involve 
obtaining, e.g., from a memory, an input image patch. The 
second example embodiment may involve applying an 
encoder ANN to the input image patch. The encoder ANN 
may be configured to produce a feature vector from the input 
image patch. The encoder ANN may have been trained with 
a first plurality of domain training images such that an output 
image patch visually resembling the input image patch can 
be generated from the feature vector. The second example 
embodiment may involve applying a generator ANN to the 
feature vector. The generator ANN may be configured to 
produce a generated image patch from the first feature 
vector. The generator ANN may have been trained with 
feature vectors derived from a first plurality of domain 
training images and a second plurality of generative training 
images such that the generated image patch visually 
resembles the input image patch but is constructed of a 
newly-generated image elements visually resembling one or 
more image patches from the second plurality of generative 
training images. The second example embodiment may 
involve storing, e.g., in the memory, the generated image 
patch. 
[0006] In a third example embodiment, a method may be 
used to perform operations in accordance with the first 
and/or second example embodiment. 
[0007] In a fourth example embodiment, an article of 
manufacture may include a non-transitory computer-read­
able medium, having stored thereon program instructions 
that, upon execution by a computing system, cause the 
computing system to perform operations in accordance with 
the first and/or second example embodiment. 
[0008] In a fifth example embodiment, a system may 
include various means for carrying out each of the opera­
tions of the first and/or second example embodiment. 
[0009] These as well as other embodiments, aspects, 
advantages, and alternatives will become apparent to those 
of ordinary skill in the art by reading the following detailed 
description, with reference where appropriate to the accom­
panying drawings. Further, this summary and other descrip­
tions and figures provided herein are intended to illustrate 
embodiments by way of example only and, as such, that 
numerous variations are possible. For instance, structural 
elements and process steps can be rearranged, combined, 
distributed, eliminated, or otherwise changed, while remain­
ing within the scope of the embodiments as claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0010] FIG. 1 illustrates a schematic drawing of a com­
puting device, in accordance with example embodiments. 
[0011] FIG. 2 illustrates a schematic drawing of a server 
device cluster, in accordance with example embodiments. 
[0012] FIG. 3 depicts generative mosaics, in accordance 
with example embodiments. 
[0013] FIG. 4 depict an ANN architecture, in accordance 
with example embodiments. 
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[0014] FIGS. SA and SB depict trmmng an ANN, in 
accordance with example embodiments. 
[0015] FIG. 6A depicts a CNN architecture, in accordance 
with example embodiments. 
[0016] FIG. 6B depicts a convolution, in accordance with 
example embodiments. 
[0017] FIG. 7 depicts training a hybrid autoencoder and 
generative adversarial network, in accordance with example 
embodiments. 
[0018] FIG. 8 depicts elements from a trained hybrid 
autoencoder and generative adversarial network in opera­
tion, in accordance with exmnple embodiments. 
[0019] FIG. 9 is a flow chart, in accordance with exmnple 
embodiments. 
[0020] FIG. 10 is a flow chart, in accordance with exmnple 
embodiments. 

DETAILED DESCRIPTION 

[0021] Exmnple methods, devices, and systems are 
described herein. It should be understood that the words 
"example" and "exemplary" are used herein to mean "serv­
ing as an exmnple, instance, or illustration." Any embodi­
ment or feature described herein as being an "exmnple" or 
"exemplary" is not necessarily to be construed as preferred 
or advantageous over other embodiments or features unless 
stated as such. Thus, other embodiments can be utilized and 
other changes can be made without departing from the scope 
of the subject matter presented herein. 
[0022] Accordingly, the example embodiments described 
herein are not meant to be limiting. It will be readily 
understood that the aspects of the present disclosure, as 
generally described herein, and illustrated in the figures, can 
be arranged, substituted, combined, separated, and designed 
in a wide variety of different configurations. For example, 
the separation of features into "client" and "server" compo­
nents may occur in a number of ways. 
[0023] Further, unless context suggests otherwise, the 
features illustrated in each of the figures may be used in 
combination with one another. Thus, the figures should be 
generally viewed as component aspects of one or more 
overall embodiments, with the understanding that not all 
illustrated features are necessary for each embodiment. 
[0024] Additionally, any enumeration of elements, blocks, 
or steps in this specification or the claims is for purposes of 
clarity. Thus, such enumeration should not be interpreted to 
require or imply that these elements, blocks, or steps adhere 
to a particular arrangement or are carried out in a particular 
order. 

I. Example Computing Devices and Cloud-Based 
Computing Environments 

[0025] The following embodiments describe architectural 
and operational aspects of exmnple computing devices and 
systems that may employ the disclosed ANN implementa­
tions, as well as the features and advantages thereof. 
[0026] FIG. 1 is a simplified block diagram exemplifying 
a computing device 100, illustrating some of the compo­
nents that could be included in a computing device arranged 
to operate in accordance with the embodiments herein. 
Computing device 100 could be a client device (e.g., a 
device actively operated by a user), a server device (e.g., a 
device that provides computational services to client 
devices), or some other type of computational platform. 
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Some server devices may operate as client devices from time 
to time in order to perform particular operations, and some 
client devices may incorporate server features. 
[0027] In this example, computing device 100 includes 
processor 102, memory 104, network interface 106, and an 
input/output unit 108, all of which may be coupled by a 
system bus 110 or a similar mechanism. In some embodi­
ments, computing device 100 may include other components 
and/or peripheral devices (e.g., detachable storage, printers, 
and so on). 
[0028] Processor 102 may be one or more of any type of 
computer processing element, such as a central processing 
unit (CPU), a co-processor ( e.g., a mathematics, graphics, or 
encryption co-processor), a digital signal processor (DSP), a 
network processor, and/or a form of integrated circuit or 
controller that performs processor operations. In some cases, 
processor 102 may be one or more single-core processors. In 
other cases, processor 102 may be one or more multi-core 
processors with multiple independent processing units. Pro­
cessor 102 may also include register memory for temporar­
ily storing instructions being executed and related data, as 
well as cache memory for temporarily storing recently-used 
instructions and data. 
[0029] Memory 104 may be any form of computer-usable 
memory, including but not limited to random access memory 
(RAM), read-only memory (ROM), and non-volatile 
memory. This may include flash memory, hard disk drives, 
solid state drives, re-writable compact discs (CDs), re­
writable digital video discs (DVDs), and/or tape storage, as 
just a few exmnples. Computing device 100 may include 
fixed memory as well as one or more removable memory 
units, the latter including but not limited to various types of 
secure digital (SD) cards. Thus, memory 104 represents both 
main memory units, as well as long-term storage. Other 
types of memory may include biological memory. 
[0030] Memory 104 may store program instructions and/ 
or data on which program instructions may operate. By way 
of example, memory 104 may store these program instruc­
tions on a non-transitory, computer-readable medium, such 
that the instructions are executable by processor 102 to carry 
out any of the methods, processes, or operations disclosed in 
this specification or the accompanying drawings. 
[0031] As shown in FIG. 1, memory 104 may include 
firmware 104A, kernel 104B, and/or applications 104C. 
Firmware 104A may be progrmn code used to boot or 
otherwise initiate some or all of computing device 100. 
Kernel 104B may be an operating system, including mod­
ules for memory management, scheduling and management 
of processes, input/output, and communication. Kernel 
104B may also include device drivers that allow the oper­
ating system to communicate with the hardware modules 
( e.g., memory units, networking interfaces, ports, and bus­
ses ), of computing device 100. Applications 104C may be 
one or more user-space software programs, such as web 
browsers or email clients, as well as any software libraries 
used by these progrmns. Memory 104 may also store data 
used by these and other programs and applications. 
[0032] Network interface 106 may take the form of one or 
more wireline interfaces, such as Ethernet (e.g., Fast Ether­
net, Gigabit Ethernet, and so on). Network interface 106 
may also support communication over one or more non­
Ethernet media, such as coaxial cables or power lines, or 
over wide-area media, such as Synchronous Optical Net­
working (SONET) or digital subscriber line (DSL) technolo-
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gies. Network interface 106 may additionally take the form 
of one or more wireless interfaces, such as IEEE 802.11 
(Wifi), BLUETOOTH®, global positioning system (GPS), 
or a wide-area wireless interface. However, other forms of 
physical layer interfaces and other types of standard or 
proprietary communication protocols may be used over 
network interface 106. Furthermore, network interface 106 
may comprise multiple physical interfaces. For instance, 
some embodiments of computing device 100 may include 
Ethernet, BLUETOOTH®, and Wifi interfaces. 
[0033] Input/output unit 108 may facilitate user and 
peripheral device interaction with example computing 
device 100. Input/output unit 108 may include one or more 
types of input devices, such as a keyboard, a mouse, a touch 
screen, and so on. Similarly, input/output unit 108 may 
include one or more types of output devices, such as a 
screen, monitor, printer, and/or one or more light emitting 
diodes (LEDs). Additionally or alternatively, computing 
device 100 may communicate with other devices using a 
universal serial bus (USB) or high-definition multimedia 
interface (HDMI) port interface, for example. 
[0034] In some embodiments, one or more instances of 
computing device 100 may be deployed to support a clus­
tered architecture. The exact physical location, connectivity, 
and configuration of these computing devices may be 
unknown and/or unimportant to client devices. Accordingly, 
the computing devices may be referred to as "cloud-based" 
devices that may be housed at various remote data center 
locations. 
[0035] FIG. 2 depicts a cloud-based server cluster 200 in 
accordance with example embodiments. In FIG. 2, opera­
tions of a computing device (e.g., computing device 100) 
may be distributed between server devices 202, data storage 
204, and routers 206, all of which may be connected by local 
cluster network 208. The number of server devices 202, data 
storages 204, and routers 206 in server cluster 200 may 
depend on the computing task(s) and/or applications 
assigned to server cluster 200. 
[0036] For example, server devices 202 can be configured 
to perform various computing tasks of computing device 
100. Thus, computing tasks can be distributed among one or 
more of server devices 202. To the extent that these com­
puting tasks can be performed in parallel, such a distribution 
of tasks may reduce the total time to complete these tasks 
and return a result. For purpose of simplicity, both server 
cluster 200 and individual server devices 202 may be 
referred to as a "server device." This nomenclature should 
be understood to imply that one or more distinct server 
devices, data storage devices, and cluster routers may be 
involved in server device operations. 
[0037] Data storage 204 may be data storage arrays that 
include drive array controllers configured to manage read 
and write access to groups of hard disk drives and/or solid 
state drives. The drive array controllers, alone or in con­
junction with server devices 202, may also be configured to 
manage backup or redundant copies of the data stored in data 
storage 204 to protect against drive failures or other types of 
failures that prevent one or more of server devices 202 from 
accessing units of cluster data storage 204. Other types of 
memory aside from drives may be used. 
[0038] Routers 206 may include networking equipment 
configured to provide internal and external communications 
for server cluster 200. For example, routers 206 may include 
one or more packet-switching and/or routing devices (in-
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eluding switches and/or gateways) configured to provide (i) 
network communications between server devices 202 and 
data storage 204 via cluster network 208, and/or (ii) network 
communications between the server cluster 200 and other 
devices via communication link 210 to network 212. 
[0039] Additionally, the configuration of cluster routers 
206 can be based at least in part on the data communication 
requirements of server devices 202 and data storage 204, the 
latency and throughput of the local cluster network 208, the 
latency, throughput, and cost of communication link 210, 
and/or other factors that may contribute to the cost, speed, 
fault-tolerance, resiliency, efficiency and/or other design 
goals of the system architecture. 
[0040] As a possible example, data storage 204 may 
include any form of database, such as a structured query 
language (SQL) database. Various types of data structures 
may store the information in such a database, including but 
not limited to tables, arrays, lists, trees, and tuples. Further­
more, any databases in data storage 204 may be monolithic 
or distributed across multiple physical devices. 
[0041] Server devices 202 may be configured to transmit 
data to and receive data from cluster data storage 204. This 
transmission and retrieval may take the form of SQL queries 
or other types of database queries, and the output of such 
queries, respectively. Additional text, images, video, and/or 
audio may be included as well. Furthermore, server devices 
202 may organize the received data into web page repre­
sentations. Such a representation may take the form of a 
markup language, such as the hypertext markup language 
(HTML), the extensible markup language (XML), or some 
other standardized or proprietary format. Moreover, server 
devices 202 may have the capability of executing various 
types of computerized scripting languages, such as but not 
limited to Perl, Python, PHP Hypertext Preprocessor (PHP), 
Active Server Pages (ASP), JavaScript, and so on. Computer 
program code written in these languages may facilitate the 
providing of web pages to client devices, as well as client 
device interaction with the web pages. 

II. Generative Mosaics 

[0042] A generative mosaic encompasses a number of 
visual effects that can be used to recreate any input image ( or 
video frame) by replacing sampled patches in the input 
image with automatically generated patches. These replace­
ment patches may be generated according to a pre-deter­
mined generative dataset of images, each dataset exhibiting 
a particular visual theme, such as flowers, galaxies, etc. 
Particularly, an ANN is trained to generate the patches to 
mimic the salient characteristics of the generative dataset 
while simultaneously preserving information in the input 
image. 
[0043] An example of this process is shown in FIG. 3. An 
arbitrary image 300 serves as the input image. Five possible 
pre-trained generative datasets 302 are available, each 
selectable by a user or automatically selected. The themes of 
generative datasets 302 include eyes, galaxies, flowers, 
skulls, numbers and sunsets. The theme of a generative 
dataset may be, for example, any class of man-made or 
natural object, drawing or figures. Other possible themes 
include, but are not limited to, branded content, churches, 
cartoon characters, produce, clouds, animals, insects, anime, 
jewelry, balloons, birds, blurry photos, food, butterflies, cats, 
cat faces, celebrities, clowns, dogs, drugs, etchings, explo­
sions, first-person footage, fitness, floorplans, furniture, 
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gems, guns, manuscripts, video game content, television and 
movie content, maps, mechanical content, parties, restau­
rants, selfies, spaceships, vegetables, vehicles, weapons, and 
so on. 
[0044] Output images 304 include patches of input image 
300 replaced with replacement patches generated de nova 
according to each of generative datasets 302. For example, 
in the fourth one of output images 304 from the top of FIG. 
3, the features in input image 300 are replaced by skulls of 
various sizes and shapes. Notably, these generated skulls do 
not necessarily exist in the generative dataset depicting a 
skull. Instead, the generated skulls are created from this 
generative dataset to fit patches of input image 300. 
[0045] Generative mosaics are useful for various artistic 
and entertainment applications, such as image filters for 
social media, special effects for television, movies, and 
videos games, and so on. A technical challenge for produc­
ing generative mosaics is to do so in real time, or near real 
time on a device with limiting processing power, such as a 
mobile phone. In order to address this challenge, a novel 
combination of ANNs can be used to train a generator that 
produces the mosaics. Thus, in order to fully appreciate the 
embodiments herein, a discussion of ANNs can be helpful. 

III. Artificial Neural Networks 

[0046] An ANN is a computational model in which a 
number of simple units, working individually in parallel and 
without central control, combine to solve complex problems. 
While this model may resemble an animal's brain in some 
respects, analogies betweenANNs and brains are tenuous at 
best. Modem ANNs have a fixed structure, a deterministic 
mathematical learning process, are trained to solve one 
problem at a time, and are much smaller than their biological 
counterparts. 
[0047] A. Example ANN 
[0048] An ANN is represented as a number of nodes that 
are arranged into a number of layers, with connections 
between the nodes of adjacent layers. An example ANN 400 
is shown in FIG. 4. ANN 400 represents a feed-forward 
multilayer neural network, but similar structures and prin­
ciples are used in CNN s, recurrent neural networks, and 
recursive neural networks, for example. 
[0049] Regardless, ANN 400 consists of four layers: input 
layer 404, hidden layer 406, hidden layer 408, and output 
layer 410. The three nodes of input layer 404 respectively 
receive X 1 , X2 , and X3 from initial input values 402. The two 
nodes of output layer 410 respectively produce Y 1 and Y2 for 
final output values 412. ANN 400 is a fully-connected 
network, in that nodes of each layer aside from input layer 
404 receive input from all nodes in the previous layer. 
[0050] The solid arrows between pairs of nodes represent 
connections through which intermediate values flow, and are 
each associated with a respective weight that is applied to 
the respective intermediate value. Each node performs an 
operation on its input values and their associated weights 
(e.g., values between O and 1, inclusive) to produce an 
output value. In some cases this operation may involve a 
dot-product sum of the products of each input value and 
associated weight. An activation function may be applied to 
the result of the dot-product sum to produce the output 
value. Other operations are possible. 
[0051] For example, if a node receives input values {x1 , 

x2 , ... , xn} on n connections with respective weights of { w 1 , 

w2 , ... , wn}, the dot-product sum d may be determined as: 
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n 

d = ~X;W; +b 
i=l 

Where b is a node-specific or layer-specific bias. 

(1) 

[0052] Notably, the fully-connected nature of ANN 400 
can be used to effectively represent a partially-connected 
ANN by giving one or more weights a value of 0. Similarly, 
the bias can also be set to O to eliminate the b term. 
[0053] An activation function, such as the logistic func­
tion, may be used to map d to an output value y that is 
between O and 1, inclusive: 

(2) 
y=)+e-d 

Functions other than the logistic function, such as the 
sigmoid or tan h functions, may be used instead. 
[0054] Then, y may be used on each of the node's output 
connections, and will be modified by the respective weights 
thereof. Particularly, in ANN 400, input values and weights 
are applied to the nodes of each layer, from left to right until 
final output values 412 are produced. If ANN 400 has been 
fully trained, final output values 412 are a proposed solution 
to the problem that ANN 400 has been trained to solve. In 
order to obtain a meaningful, useful, and reasonably accu­
rate solution, ANN 400 requires at least some extent of 
training. 
[0055] B. Training 
[0056] Training an ANN usually involves providing the 
ANN with some form of supervisory training data, namely 
sets of input values and desired, or ground truth, output 
values. For ANN 400, this training data may include m sets 
of input values paired with output values. More formally, the 
training data may be represented as: 

(3) 

Where i=l ... m, and r;:, and r;, are the desired output 
values for the input values of X 1 ,,, X2 ,,, and X3 ,,. 

[0057] The training process involves applying the input 
values from such a set to ANN 400 and producing associated 
output values. A loss function is used to evaluate the error 
between the produced output values and the ground truth 
output values. This loss function may be a sum of differ­
ences, mean squared error, or some other metric. In some 
cases, error values are determined for all of the m sets, and 
the error function involves calculating an aggregate ( e.g., an 
average) of these values. 
[0058] Once the error is determined, the weights on the 
connections are updated in an attempt to reduce the error. In 
simple terms, this update process should reward "good" 
weights and penalize "bad" weights. Thus, the updating 
should distribute the "blame" for the error through ANN 400 
in a fashion that results in a lower error for future iterations 
of the training data. 
[0059] The training process continues applying the train­
ing data to ANN 400 until the weights converge. Conver­
gence occurs when the error is less than a threshold value or 
the change in the error is sufficiently small between con­
secutive iterations of training. At this point, ANN 400 is said 
to be "trained" and can be applied to new sets of input values 
in order to predict output values that are unkuown. 
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[0060] Most training techniques for ANNs make use of 
some form ofbackpropagation. Backpropagation distributes 
the error one layer at a time, from right to left, through ANN 
400. Thus, the weights of the connections between hidden 
layer 408 and output layer 410 are updated first, the weights 
of the connections between hidden layer 406 and hidden 
layer 408 are updated second, and so on. This updating is 
based on the derivative of the activation function. 
[0061] In order to further explain error determination and 
backpropagation, it is helpful to look at an example of the 
process in action. However, backpropagation becomes quite 
complex to represent except on the simplest of ANNs. 
Therefore, FIG. SA introduces a very simple ANN 500 in 
order to provide an illustrative example of backpropagation. 

TABLE 1 

Weight Nodes Weight Nodes 

W1 11, H1 W5 Hl, 01 
W2 12, H1 w6 H2,01 
W3 11, H2 W7 Hl, 02 
W4 12, H2 W3 H2, 02 

[0062] ANN 500 consists of three layers, input layer 504, 
hidden layer 506, and output layer 508, each having two 
nodes. Initial input values 502 are provided to input layer 
504, and output layer 508 produces final output values 510. 
Weights have been assigned to each of the connections. 
Also, bias b1 =0.35 is applied to the net input of each node 
in hidden layer 506, and a bias b2 =0.60 is applied to the net 
input of each node in output layer 508. For clarity, Table 1 
maps weights to pair of nodes with connections to which 
these weights apply. As an example, w2 is applied to the 
connection between nodes 12 and Hl, w7 is applied to the 
connection between nodes Hl and 02, and so on. 
[0063] [61] For purposes of demonstration, initial input 
values are set to X 1=0.05 and X2 =0.10, and the desired 
output values are set to Yi =0.01 and l7; =0.99. Thus, the goal 
of training ANN 500 is to update the weights over some 
number of feed forward and backpropagation iterations until 
the final output values 510 are sufficiently close to Yi =0.01 
and l7; =0.99 when X 1=0.05 and X2 =0.10. Note that use of a 
single set of training data effectively trains ANN 500 for just 
that set. If multiple sets of training data are used, ANN 500 
will be trained in accordance with those sets as well. 
[0064] 1. Example Feed Forward Pass 
[0065] To initiate the feed forward pass, net inputs to each 
of the nodes in hidden layer 506 are calculated. From the net 
inputs, the outputs of these nodes can be found by applying 
the activation function. 
[0066] For node Hl, the net input netHI is: 

~( 0.15) ( 0. 05 )+( 0 .20) (0 .10 )+0 .35 ~o .3 77 5 (4) 

[0067] Applying the activation function (here, the logistic 
function) to this input determines that the output of node Hl, 
outH1 is: 

(5) 

= 0.593269992 

[0068] Following the same procedure for node H2, the 
output outH2 is 0.596884378. The next step in the feed 
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forward iteration is to perform the same calculations for the 
nodes of output layer 508. For example, net input to node 
01, net01 is: 

= (0.40)(0.593269992) + (0.45)(0.596884378) + 0.60 

= 1.105905967 

[0069] Thus, output for node 01, out01 is: 

outa1 = 1 + e-neto1 

= 0.75136507 

(6) 

(7) 

[0070] Following the same procedure for node 02, the 
output out02 is 0.772928465. At this point, the total error, fl, 
can be determined based on a loss function. In this case, the 
loss function can be the sum of the squared error for the 
nodes in output layer 508. In other words: 

(8) 

1 1 
= ::;:(0.75136507 - 0.01)2 + 2 (0.772928465- 0.99)2 

= 0.274811083 + 0.023560026 = 0.298371109 

[0071] The multiplicative constant 1/2 in each term is used 
to simplify differentiation during backpropagation. Since the 
overall result is scaled by a learning rate anyway, this 
constant does not negatively impact the training. Regardless, 
at this point, the feed forward iteration completes and 
backpropagation begins. 
[0072] 2. Backpropagation 
[0073] As noted above, a goal ofbackpropagation is to use 
fl to update the weights so that they contribute less error in 
future feed forward iterations. As an example, consider the 
weight w5 • The goal involves determining how much the 
change in w 5 affects fl. This can be expressed as the partial 
derivative 

at:. 

aw, 

Using the chain rule, this term can be expanded as: 

at:. at:. aouto1 aneto1 
-=--X--X--
aws aouto1 aneto1 aw, 

(9) 

[007 4] Thus, the effect on fl of change to w 5 is equivalent 
to the product of (i) the effect on fl of change to out01 , (ii) 
the effect on out01 of change to net0 i, and (iii) the effect on 
net01 of change tow 5 . Each of these multiplicative terms can 
be determined independently. Intuitively, this process can be 
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thought of as isolating the impact of w 5 on net01 , the impact 
of net01 on out01 , and the impact of out01 on li.. 

[0075] Starting with 

the expression for ti. is: 
L\.~l/2(out01-Yi )2+1/2(out0 r 9;)2 (10) 

[0076] When taking the partial derivative with respect to 
out0 i, the term containing out02 is effectively a constant 
because changes to out01 do not affect this term. Therefore: 

[0077] For 

aouta1 

aneta1' 

= 0.75136507-0.01 = 0.74136507 

the expression for out0 i, from Equation 5, is: 

outa1 = 1 + e-neto1 

(11) 

(12) 

[0078] Therefore, taking the derivative of the logistic 
function: 

aouta1 -- = outo1 (1 - outo1) 
aneta1 

= 0.75136507(1 -0.75136507) = 0.186815602 

[0079] For 

the expression for net0 i, from Equation 6, is: 

(13) 

(14) 

[0080] Similar to the expression for ti., taking the deriva­
tive of this expression involves treating the two rightmost 
terms as constants, since w5 does not appear in those terms. 
Thus: 

aneta1 
~ = OU(HJ = 0.593269992 

(15) 
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[0081] These three partial derivative terms can be put 
together to solve Equation 9: 

8/\. --
aw, = (outo1 - Y1)outo1 (1 - outo1)outHI 

= (0.74136507)(0.186815602)(0.593269992) = 

0.082167041 

(16) 

[0082] Then, this value can be subtracted from w5 • Often 
a gain, O<asl, is applied to 

to control how aggressively the ANN responds to errors. 
Assuming that a=0.5, the full expression is: 

8/\. (17) 
W5 = W5 -CY 8w5 

= 0.4 - (0.5)(0.082167041) = 0.35891648 

[0083] This process can be repeated for the other weights 
feeding into output layer 508. The results are: 

w6~0.408666186 

w 7~0.511301270 

w8~0.561370121 (18) 

[0084] Note that no weights are updated until the updates 
to all weights have been determined at the end of back­
propagation. Then, all weights are updated before the next 
feed forward iteration. 
[0085] Next, updates to the remaining weights, Wi, w2 , 

w3 , and w4 are calculated. This involves continuing the 
backpropagation pass to hidden layer 506. Considering w 1 

and using a similar derivation as above: 

8/\. 8/\. aoutH! anetH! 
-=--X--X--
8w1 aoutH! anetH! aw1 

(19) 

[0086] One difference, however, between the backpropa­
gation techniques for output layer 508 and hidden layer 506 
is that each node in hidden layer 506 contributes to the error 
of all nodes in output layer 508. Therefore: 

8/\. 8/\.01 8/\.02 
--=--+-­
aoutH1 8outH1 8outH1 

[0087] Beginning with 

(20) 
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at.01 at.01 aneto1 
--=--X--
8outH1 8neta1 8outH1 

[0088] Regarding 

(21) 

the impact of change in net01 on li.01 is the same as impact 
of change in net01 on li., so the calculations performed above 
for Equations 11 and 13 can be reused: 

at.01 at. aouto1 
--=--X--
8neta1 aouta1 aneta1 

= (0.74136507)(0.186815602) 

= 0.138498562 

[0089] Regarding 

aneto1 

8outH1' 

net01 can be expressed as: 

[0090] Thus: 

aneta1 
aoutH! = W5 = 0.40 

[0091] Therefore, Equation 21 can be solved as: 

at.01 at.01 aneto1 
--=--X--
8outH1 8neto1 8outH1 

= (0.138498562)(0.40) 

= 0.055399425 

[0092] Following a similar procedure for 

results in: 

at.02 = -0.019049119 
8outH1 

(22) 

(23) 

(24) 

(25) 

(26) 
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[0093] Consequently, Equation 20 can be solved as: 

at. at.01 at.02 
--=--+-­
aoutH1 8outH1 8outH1 

= 0.055399425 - 0.019049119 

= 0.036350306 

(27) 

[0094] This also solves for the first term of Equation 19. 
Next, since node Hl uses the logistic function as its activa­
tion function to relate outHI and netHI, the second term of 
Equation 19, 

can be determined as: 

8outH1 
anetH! = OUtHJ (1 - OUtHJ) 

= 0.59326999(1 - 0.59326999) 

= 0.241300709 

[0095] Then, as netHI can be expressed as: 

[0096] Thus, the third term of Equation 19 is: 

(28) 

(29) 

(30) 

[0097] Putting the three terms of Equation 19 together, the 
result is: 

at. at. aoutH! anetH! 
-=--X--X--
aw1 aoutH! anetH! aw1 

= (0.036350306)(0.241300709)(0.05) 

= 0.000438568 

[0098] With this, w 1 can be updated as: 

= 0.15 - (0.5)(0.000438568) 

= 0.149780716 

(31) 

(32) 

[0099] This process can be repeated for the other weights 
feeding into hidden layer 506. The results are: 

w2 ~0.19956143 

w3~0.24975114 

w4 ~0.29950229 (33) 
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[0100] At this point, the backpropagation iteration is over, 
and all weights have been updated. FIG. 5B shows ANN 500 
with these updated weights, values of which are rounded to 
four decimal places for sake of convenience. ANN 500 may 
continue to be trained through subsequent feed forward and 
backpropagation iterations. For instance, the iteration car­
ried out above reduces the total error, ti., from 0.298371109 
to 0.291027924. While this may seem like a small improve­
ment, over several thousand feed forward and backpropa­
gation iterations the error can be reduced to less than 0.0001. 
At that point, the values of Y 1 and Y 2 will be close to the 
target values of 0.01 and 0.99, respectively. 
[0101] In some cases, an equivalent amount of training 
can be accomplished with fewer iterations if the hyperpa­
rameters of the system (e.g., the biases b1 and b2 and the 
learning rate a) are adjusted. For instance, the setting the 
learning rate closer to 1.0 may result in the error rate being 
reduced more rapidly. Additionally, the biases can be 
updated as part of the learning process in a similar fashion 
to how the weights are updated. 
[0102] Regardless, ANN 500 is just a simplified example. 
Arbitrarily complex ANNs can be developed with the num­
ber of nodes in each of the input and output layers tuned to 
address specific problems or goals. Further, more than one 
hidden layer can be used and any number of nodes can be in 
each hidden layer. 
[0103] C. Convolutional Neural Networks 
[0104] CNNs are similar to ANNs, in that they consist of 
some number oflayers of nodes, with weighted connections 
therebetween and possible per-layer biases. The weights and 
biases may be updated by way of feed forward and back­
propagation procedures discussed above. A loss function 
may be used to compare output values of feed forward 
processing to desired output values. 
[ 0105] On the other hand, CNN s are usually designed with 
the explicit assumption that the initial input values are 
derived from one or more images. In some embodiments, 
each color channel of each pixel in an image patch is a 
separate initial input value. Assuming three color channels 
per pixel (e.g., red, green, and blue), even a small 32x32 
patch of pixels will result in 3072 incoming weights for each 
node in the first hidden layer. Clearly, using a na"iveANN for 
image processing could lead to a very large and complex 
model that would take long to train. 
[0106] Instead, CNNs are designed to take advantage of 
the inherent structure that is found in almost all images. In 
particular, nodes in a CNN are only connected to a small 
number of nodes in the previous layer. This CNN architec­
ture can be thought of as three dimensional, with nodes 
arranged in a block with a width, a height, and a depth. For 
example, the aforementioned 32x32 patch of pixels with 3 
color channels may be arranged into an input layer with a 
width of 32 nodes, a height of 32 nodes, and a depth of 3 
nodes. 
[0107] An example CNN 600 is shown in FIG. 6A. Initial 
input values 602, represented as pixels X 1 ... Xm, are 
provided to input layer 604. As discussed above, input layer 
604 may have three dimensions based on the width, height, 
and number of color channels of pixels X 1 ... Xm. Input 
layer 604 provides values into one or more sets of feature 
extraction layers, each set containing an instance of convo­
lutional layer 606, RELU layer 608, and pooling layer 610. 
The output of pooling layer 610 is provided to one or more 
classification layers 612. Final output values 614 may be 
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arranged in a feature vector representing a concise charac­
terization of initial input values 602. 
[0108] Convolutional layer 606 may transform its input 
values by sliding one or more filters around the three­
dimensional spatial arrangement of these input values. A 
filter is represented by biases applied to the nodes and the 
weights of the connections therebetween, and generally has 
a width and height less than that of the input values. The 
result for each filter may be a two-dimensional block of 
output values (referred to as an feature map) in which the 
width and height can have the same size as those of the input 
values, or one or more of these dimensions may have 
different size. The combination of each filter's output results 
in layers of feature maps in the depth dimension, in which 
each layer represents the output of one of the filters. 
[0109] Applying the filter may involve calculating the 
dot-product sum between the entries in the filter and a 
two-dimensional depth slice of the input values. An example 
of this is shown in FIG. 6B. Matrix 620 represents input to 
a convolutional layer, and thus could be image data, for 
example. The convolution operation overlays filter 622 on 
matrix 620 to determine output 624. For instance, when filter 
622 is positioned in the top left comer of matrix 620, and the 
dot-product sum for each entry is calculated, the result is 4. 
This is placed in the top left corner of output 624. 
[0110] Turning back to FIG. 6A, a CNN learns filters 
during training such that these filters can eventually identify 
certain types of features at particular locations in the input 
values. As an example, convolutional layer 606 may include 
a filter that is eventually capable of detecting edges and/or 
colors in the image patch from which initial input values 602 
were derived. A hyperparameter called receptive field deter­
mines the number of connections between each node in 
convolutional layer 606 and input layer 604. This allows 
each node to focus on a subset of the input values. 
[0111] RELU layer 608 applies an activation function to 
output provided by convolutional layer 606. In practice, it 
has been determined that the rectified linear unit (RELU) 
function, or a variation thereof, appears to provide the best 
results in CNNs. The RELU function is a simple threshold­
ing function defined as f(x)=max(0, x). Thus, the output is 
0 when x is negative, and x when x is non-negative. A 
smoothed, differentiable approximation to the RELU func­
tion is the softplus function. It is defined as f(x)=log(l+ex). 
Nonetheless, other functions may be used in this layer. 
[0112] Pooling layer 610 reduces the spatial size of the 
data by downsampling each two-dimensional depth slice of 
output from RELU layer 608. One possible approach is to 
apply a 2x2 filter with a stride of 2 to each 2x2 block of the 
depth slices. This will reduce the width and height of each 
depth slice by a factor of 2, thus reducing the overall size of 
the data by 75%. 
[0113] Classification layer 612 computes final output val­
ues 614 in the form of a feature vector. As an example, in a 
CNN trained to be an image classifier, each entry in the 
feature vector may encode a probability that the image patch 
contains a particular class of item ( e.g., a human face, a cat, 
a beach, a tree, etc.). 
[0114] In some embodiments, there are multiple sets of the 
feature extraction layers. Thus, an instance of pooling layer 
610 may provide output to an instance of convolutional layer 
606. Further, there may be multiple instances of convolu­
tional layer 606 and RELU layer 608 for each instance of 
pooling layer 610. 
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[0115] CNN 600 represents a general structure that can be 
used in image processing. Convolutional layer 606 and 
classification layer 612 apply weights and biases similarly to 
layers in ANN 500, and these weights and biases may be 
updated during backpropagation so that CNN 600 can learn. 
On the other hand, RELU layer 608 and pooling layer 610 
generally apply fixed operations and thus might not learn. 
[0116] Not unlike an ANN, a CNN can include a different 
number of layers than is shown in the examples herein, and 
each of these layers may include a different number of 
nodes. Thus, CNN 600 is merely for illustrative purposes 
and should not be considered to limit the structure of a CNN. 

IV. Example Generative Adversarial Network 

[0117] The generative mosaic embodiments described 
herein may use a new type of generative adversarial network 
(GAN) to train an encoder and a generator to produce image 
patches that resemble the structure of an input image patch 
but are composed of synthetic, generative elements that 
mimic those of a particular theme. This new GAN may be 
referred to as yGAN 700, and is shown in FIG. 7. 
[0118] The generative mosaic process has two stages. 
First, a pair of CNNs are trained to transform input image 
patches from dataset A (typically natural images such as one 
might expect users to photograph or film) into output 
patches that resemble dataset B (typically a stylistically 
interesting theme, such as flowers, or astronomical phenom­
ena). Second, after the model has been trained, elements of 
it are used to render and reconstruct full images and video. 
[0119] To give a concrete example, consider two datasets: 
dataset A (randomly cropped patches from 200,000 images 
of faces), and dataset B (8000 pictures of individual flow­
ers). The CNNs are trained with loss functions such that 
when provided any cropped face patch, say a crop of the 
nose, it will attempt to recreate that patch while simultane­
ously making it a plausible patch from the flower dataset. 
This ideally yields a configuration of flower petals that 
follow the contours of the nose. 
[0120] Because this model attempts to generate plausible 
patches, rather than entire images directly, adjusting the 
parameters of the CNNs to achieve the goal is easier. Global 
consistency is implicitly maintained by the underlying 
image that the CNNs are recreating the patches of, and by 
attempting to recreate small patches the generated patches 
have more flexibility to match the salient attributes of the 
target dataset ( dataset B). 
[0121] The behaviors of the datasets that can be used in the 
present invention are a measure of their set complexity and 
variety. Because the current primary application is uncon­
strained on the input side, a broad Flickr-based dataset 
(MIRFLICKR-lM) is used as a proxy for all images. In 
practice, this gives good results for arbitrary input. For 
specific, custom uses with known content and relaxed time 
constraints, more exact input datasets can be selected (i.e., if 
the application uses specific drone footage, one would train 
with that exact footage). The choice of destination dataset 
(flowers, galaxies, insects, etc.) depends on the application 
and is essentially limitless. Alternately, dataset A can be a 
transformation of dataset B with a number of immediate 
image processing applications. 
[0122] Notably, source patches can be selected arbitrarily, 
in any number, position, scale, or rotation. Additionally, any 
sequence of patch transformations can be applied to an 
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image or image sequence. That is, patches may animate 
freely in time over still or moving images. 
[0123] A. Model Definition 
[0124] With reference to FIG. 7, let x-1' A denote a patch 
sampled from dataset A, and y-1' B denote a patch sampled 
from dataset B. E is a function, parameterized by a CNN, 
which takes in a patch and transforms it into a latent code z 
(e.g., a feature vector). This latent code z can be thought of 
as a compressed representation of the input to E. Latent code 
z is then used as the input to the functions Dec and G. 
[0125] Dec is another CNN that serves as a decoder which 
attempts to invert E and reproduce the input of E from z. 
Collectively, E and Dec are an autoencoder that is trained to 
be able to produce x' from x, where x' is intended to be a 
close approximation of x. The loss function for this auto­
encoder is: 

f 0 u10 (x) = llx - Dec(E(x))ll2 

= llx-x'll2 

(34) 

[0126] Thus, a goal is to train E and Dec so that £ auto (x) 
is minimized, or at least below a reasonably small threshold 
value. 
[0127] G is a generator which attempts to synthesize a 
patch G(z)=i that mimics patches from dataset B, while 
maintaining fidelity to x. D is a discriminator that attempts 
to differentiate between synthesized patches i and real 
patches y from dataset B, assigning a value of O to former, 
and 1 to the latter. The fidelity of i to x is defined as 
llz-E(i)lb, and the ability to mimic dataset B as -D(i). This 
yields the loss function: 

£ G(i)~-D(i)+llz-E(i)lb (35) 

[0128] Therefore, another goal is to train E and G so that 
f: G(i) is minimized, or at least below a further reasonably 
small threshold value. 
[0129] To find parameters of D that differentiate between 
synthesized patches i, and real patches y from dataset B, the 
following loss function can be used: 

£ n(y, i)~D(i)-D(y) (36) 

[0130] Therefore, yet another goal is to train D so that 
f: n(Y, i) is minimized, or at least below an additional 
reasonably small threshold value. By training these four 
CNNs in accordance with the three loss functions above, 
yGAN 700 will seek parameters which allow it to efficiently 
compress patch x into z, transform z into an output patch i 
that is visually indistinguishable (or nearly indistinguish­
able) from a real patch from dataset B, and that maintains the 
structural elements of x by encouraging that E(i)ssz=E(x). 
[0131] In addition to these loss functions, other loss func­
tions can be used to direct yGAN to perform in a desired 
fashion. For example, in addition to the above loss functions, 
a bounding box loss function, a face marker loss function, 
and a classification confidence loss function may be 
employed. During training, an additional classification net­
work ( e.g., face recognition or segmentation) compares 
input and output images and calculates these additional 
losses. 
[0132] As a practical example of these additional loss 
functions, suppose that the goal is to transform arbitrary 
input faces into some class of output faces ( e.g. clowns, 
zombies, a celebrity). During training, all yGAN operations 
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are the same, however an additional evaluation is performed 
after each step. Both the input patch (a real face) and the 
output patch (the generator's current attempt at a clown face, 
zombie face, celebrity face, etc.) are evaluated by a face 
recognition system. This system returns a bounding box, a 
set of face markers, and a confidence score for both "faces." 
These scores, in turn, are used as losses (Ll or L2) for the 
generator. A segmentation network can be used in the same 
way to derive loss from how the input and output images are 
classified at the pixel level. 
[0133] B. Training 
[0134] Training the CNNs to achieve this task currently 
takes on the order of hours to weeks and, once completed, 
creates model weights that can be reused ad infinitum by the 
generative process. The training involves iterating over the 
following procedure. 
[0135] First, a random patch x of arbitrary size and posi­
tion is chosen from dataset A. 
[0136] Second, the encoder CNN E processes the patch x 
and encodes a latent embedding z=E(x). This resulting 
feature vector is then used in two pathways (this branching 
gives yGAN the "y" in its name). 
[0137] For branch 1, z is passed to the decoder Dec and it 
reconstructs the image patch as closely as it can, producing 
x'=Dec(z). The values of x and x' are used to compute 
.f auto(x). 
[0138] For branch 2, z is also passed to a generator 
network G, which decodes z into an RGB image output 
patch i=G(z). The discriminator network D either receives 
generated patch i or a random cropped patch y from dataset 
B. D makes a prediction as to whether its input truly came 
from dataset B. This prediction will either take on a value of 
0 (the input is not in dataset B) or 1 (the input is in dataset 
B), and is used to compute 1: n(Y, i) and the first term of 
.f G(i). 
[0139] Third, the generated image patch i is also passed 
back to the encoder CNN E. The resulting feature vector E(i) 
is compared to z, constituting the second half of term of 
.f G(i). 
[0140] The gradients of all function parameters are com­
puted with respect to their corresponding loss functions, and 
updated using a variant of gradient descent. Various activa­
tion functions may be utilized, for instance an algorithm for 
first-order gradient-based optimization of stochastic objec­
tive functions, based on adaptive estimates of lower-order 
moments. 
[0141] This training procedure has a number of uncon­
ventional aspects. By combining an autoencoder and a 
GAN, a unique CNN-based architecture has been created. 
This architecture is capable of mapping a source image 
domain (dataset A) into a destination style (dataset B) while 
retaining important visual features from the source domain. 
Typically, GAN architectures use a latent z -vector sampled 
from the normal distribution as a prior for the generator, G. 
In the embodiments herein, the bottleneck from a newly 
introduced autoencoder is a latent z prior in order to model 
a separate distribution. Rather than being random sample, 
this z is a reasonable approximation of an input image while 
being well-formed for generator architecture. Additionally, 
three specific loss functions are calculated during training. 
Notably, -e G(i) is a new loss based on E's ability to recon­
struct z from E(i). This is summed with a weighted 
inverse-D loss to combine the generation and reconstruction 
tasks. 
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[0142] Furthermore, the embodiments herein can work 
with any number of GAN sub-architectures. For instance, 
instead of the generator/discriminator sub-architecture vari­
ant shown herein, a stacked/progressively-growing training 
method can be used. This allows higher image quality at 
higher resolutions. Other variants can be plugged into this 
general architecture. 
[0143] C. Rendering 
[0144] After training is complete, the rendering process 
takes a provided video or image, samples patches from it, 
recreates those patches using the elements of the above 
pre-trained model weights, and assembles these generated 
patches in the same or similar configuration as the originals, 
yielding a generative mosaic. 
[0145] This procedure is illustrated in the example of FIG. 
8. A front-facing video is provided. The generative mosaic 
software converts sample patches (e.g., patch 802) from one 
or more of the video's frames (e.g., frame 800). This 
sampling might or might not be in sequence of the frames. 
The pre-trained E and G CNN s 804 are used to convert those 
patches to new patches (e.g., patch 806) and reassemble 
them to match the input and produce a new frame (e.g., 
frame 808), or a new video from the frames (i.e., single 
image operations are treated like one frame in a video). The 
rendering pipeline allows many options for both aesthetic 
and performance control. In detail, the process may include 
the following steps. 
[0146] Ingest and convert input: Video is simply a sequen­
tial collection of individual image frames. Input video is 
sampled at a frame rate appropriate to the application, saving 
to disk and/or holding frames in memory. Native frame rate 
is an ideal capture rate, but in real-time applications a lower 
frame rate offers computational savings. Similarly, indi­
vidual frame pixel dimension can be changed to suite 
performance and visual requirements. Input may be down­
sampled for additional computational savings, remain native 
for resolution accuracy, or even upsampled for aesthetic 
effect. 
[0147] Sample patches per frame: Each captured frame is 
then converted into a set of patches. Options for selection of 
patches are broad and varied based on aesthetic and perfor­
mance requirements. One may sample a non-overlapping 
grid of patches or select many overlapping patches. Patches 
may be uniform in size and shape or may have random size 
and aspect ratio. Patch sets can remain uniform frame-to­
frame or they may change. Ultimately, patch sets are gen­
erated as coordinates according to application-specific needs 
or user desire, and are used to disassemble input frames. 
These coordinates are stored in memory. 
[0148] Inference per frame: After an input frame is 
sampled into constituent patches, it is passed through the 
pre-trained E and G CNN architecture described above. 
Pre-training provides for the choice of dataset B (i.e. flowers 
or galaxies, etc.) and is selected by preference. This archi­
tecture replicates a subunit of yGAN s training architecture. 
Each sampled patch is passed to the pre-trained E model, 
creating a new z vector, which is in turn passed to the G 
model to generate a new output patch. The new patch is 
likely to, based on specific training, look like a member of 
dataset B on which the model was trained while retaining 
characteristics of the source patch. This proceeds for each 
sampled patch from each sampled frame. 
[0149] Reassembly: After the sampled input patches are 
processed by the CNN architecture, the resulting patch sets 
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are reassembled using the stored patch set coordinates. 
Various ordering and masking techniques are used to blend 
(paste) the stack of patches. Each patch has a mask and paste 
order determined by aesthetic and performance require­
ments. Once each patch set is assembled per frame, the 
frames are compiled into the new video. 
[0150] The embodiments herein sample patches during 
both training and inference to generate new output patches 
to be reassembled for new content. The essence of the entire 
process boils down to two insights: (1) that one could 
combine an autoencoder with a GAN to perform cross­
domain transformations, and (2) that both training and 
inference with yGAN on patches is possible and would 
provide innovative capacities. The rendering pipeline is 
custom-built for this task. Each step in the rendering process 
was created specifically to confirm the hypothesis of gen­
erative mosaic. Furthermore, the relationship between data­
set A and dataset B need not be only content driven. This 
exact process can be applied to image transformations of 
dataset B to dataset A for use in image processing applica­
tions. As an example, dataset A could be a grayscale version 
of a full color dataset B for colorization applications. Table 
2 includes four examples using MIRFLICKR-lM dataset 
patches in dataset B for general applications. 

Application 

Colorization 
De-noising 
Super-resolution 
De-blurring 

TABLE 2 

Dataset A 

Greyscale versions of the images in dataset B 
Noisy versions of the images in dataset B 
Downsarnpled versions of images in dataset B 
Blurred versions of the images in dataset B 

[0151] Other beneficial aspects of the embodiments herein 
include that the process is generative. Though the patches 
generated by the rendering process are derived from both the 
source and destination datasets, they are new images, and do 
not represent exact samples from either set. This process 
generates imagery that simply could not be created other­
wise, allowing for flexibility and variety. Additionally, the 
embodiments allow for significant freedom in mosaic patch 
size, shape, and position. Patches can be of arbitrary size and 
position with only qualitative and performance constraints. 
Masking techniques are used to blend patches (in some 
modes) and the masking allows for arbitrarily shaped (non­
rectangular) patches. The size variety allows one to explore 
reconstruction resolution from very small patches to single 
patch full frame reconstruction. Furthermore, the feed for­
ward rendering procedure is fast, especially when compared 
to many style transfer and deep image manipulation meth­
ods. Real-time rendering is well within the capacity of 
expert engineering. 

V. Example Operations 

[0152] FIGS. 9 and 10 are flow charts illustrating example 
embodiments. The processes illustrated by FIGS. 9 and 10 
may be carried out by a computing device, such as comput­
ing device 100, and/or a cluster of computing devices, such 
as server cluster 200. However, the processes can be carried 
out by other types of devices or device subsystems. For 
example, the processes could be carried out by a portable 
computer, such as a laptop or a tablet device. 
[0153] The embodiments of FIGS. 9 and 10 may be 
simplified by the removal of any one or more of the features 
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shown therein. Further, these embodiments may be com­
bined with features, aspects, and/or implementations of any 
of the previous figures or otherwise described herein. 
[0154] Throughout discussion of FIGS. 9 and 10, an ANN 
therein may be implemented as a CNN. Also, the term 
"domain training image" may refer to an image of dataset A, 
and the term "generative training image" may refer to an 
image of dataset B. 
[0155] Block 900 of FIG. 9 may involve training an 
autoencoder with a first plurality of domain training images. 
The autoencoder may include: an encoder ANN configured 
to receive an input image patch from an image of the first 
plurality of domain training images and produce a first 
feature vector therefrom, and a decoder ANN configured to 
receive the first feature vector and produce an output image 
patch therefrom. The autoencoder training may be based on 
a first loss function that calculates a first difference between 
the input image patch and the output image patch. 
[0156] Block 902 may involve training a discriminator 
ANN of a GAN. The GAN may include a generator ANN 
configured to receive the first feature vector and produce a 
generated image patch from the first feature vector, and the 
discriminator ANN. The discriminator ANN may be con­
figured to receive the generated image patch and a particular 
generative training image of a second plurality of generative 
training images, and provide classifications thereof predict­
ing whether the generated image patch belongs to the second 
plurality of generative training images. The discriminator 
ANN training may be based on a second loss function that 
calculates a second difference between the classification of 
the generated image patch and the classification of the 
particular generative training image. 
[0157] Block 904 may involve training the generator 
ANN. The encoder ANN may also be configured to receive 
the generated image patch and produce a second feature 
vector therefrom. The generator ANN training may be based 
on a third loss function that calculates a third difference 
between (i) the classification of the generated image patch 
and (ii) a fourth difference between the first feature vector 
and the second feature vector. 
[0158] In some embodiments, visual content of each of the 
second plurality of generative training images adhere to a 
common theme. The common theme may be one of flowers, 
eyes, stars, galaxies, skulls, numbers, cartoons, or sunsets, 
for example. In some embodiments, each of the first plural­
ity of domain training images contains a representation of a 
human face. In some embodiments, the first plurality of 
domain training images consists of photorealistic images. In 
some embodiments, the feature vector has between 16 and 
2048 elements. 
[0159] In some embodiments, the input image patch is one 
of a set of input image patches cropped from an image such 
that the set of input image patches can be combined to form 
80% or more of the image. Alternatively, only particularly 
salient areas of the output are generated, which might be less 
than 80%. For instance, only faces in a family portrait may 
be reconstructed in accordance with the embodiments 
herein, leaving the rest of the portrait untouched. 
[0160] In some embodiments, size and location within the 
image of the input image patch is automatically selected, 
though user-based selection may be used in addition to or 
instead of automatic selection. Automatic selection may 
involve random selection of patches, or selection based on 
some determination of one or more areas of interest within 
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the image. In some embodiments, the input image patch is 
from a frame of a multi-frame video. This may result in an 
animation effect in which a generative patch appears to 
move across at least part of the mosaic video. 
[0161] It may be possible to generate a mosaic image 
using two or more generator ANNs trained with different 
sets of generative training images (e.g., dataset Bl and 
database B2). For instance, one generator ANN may be 
trained with images of galaxies and another generator ANN 
may be trained with images of skulls. These different ANNs 
may be applied to different input image patches from the 
image. Thus, the generated image patch may be based on 
more than one theme. It may also be possible to provide the 
output of a generator ANN back through the same or a 
different generator ANN. 
[0162] Some embodiments may further involve deploying 
the trained encoder ANN and the trained generator ANN in 
tandem as an interactive image filter. 
[0163] Block 1000 of FIG. 10 may involve obtaining, e.g., 
from a memory, an input image patch. Block 1002 may 
involve applying an encoder ANN to the input image patch. 
The encoder ANN may be configured to produce a feature 
vector from the input image patch. The encoder ANN may 
have been trained with a first plurality of domain training 
images such that an output image patch visually resembling 
the input image patch can be generated from the feature 
vector. 
[0164] Block 1004 may involve applying a generator ANN 
to the feature vector. The generator ANN may be configured 
to produce a generated image patch from the first feature 
vector. The generator ANN may have been trained with 
feature vectors derived from a first plurality of domain 
training images and a second plurality of generative training 
images such that the generated image patch visually 
resembles the input image patch but is constructed of a 
newly-generated image elements visually resembling one or 
more image patches from the second plurality of generative 
training images. Block 1006 may involve storing, e.g., in the 
memory, the generated image patch. 
[0165] In some embodiments, visual content of each of the 
second plurality of generative training images adhere to a 
common theme. The common theme may be one of flowers, 
eyes, stars, galaxies, skulls, numbers, cartoons, or sunsets. In 
some embodiments, each of the first plurality of domain 
training images contains a representation of a human face. In 
some embodiments, the first plurality of domain training 
images consists of photorealistic images. In some embodi­
ments, the feature vector has between 16 and 2048 elements. 
[0166] In some embodiments, the input image patch is one 
of a set of input image patches cropped from an image such 
that the set of input image patches can be combined to form 
80% or more of the image. In some embodiments, size and 
location within the image of the input image patch is 
randomly selected. In some embodiments, the input image 
patch is from a frame of a multi-frame video. 
[0167] In some cases, corresponding input image patches 
from a stereoscopic image pair may be used to create 
stereoscopic mosaic images. 

VI. Conclusion 

[0168] The present disclosure is not to be limited in terms 
of the particular embodiments described in this application, 
which are intended as illustrations of various aspects. Many 
modifications and variations can be made without departing 
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from its scope, as will be apparent to those skilled in the art. 
Functionally equivalent methods and apparatuses within the 
scope of the disclosure, in addition to those described herein, 
will be apparent to those skilled in the art from the foregoing 
descriptions. Such modifications and variations are intended 
to fall within the scope of the appended claims. 
[0169] The above detailed description describes various 
features and operations of the disclosed systems, devices, 
and methods with reference to the accompanying figures. 
The example embodiments described herein and in the 
figures are not meant to be limiting. Other embodiments can 
be utilized, and other changes can be made, without depart­
ing from the scope of the subject matter presented herein. It 
will be readily understood that the aspects of the present 
disclosure, as generally described herein, and illustrated in 
the figures, can be arranged, substituted, combined, sepa­
rated, and designed in a wide variety of different configu­
rations. 
[0170] With respect to any or all of the message flow 
diagrams, scenarios, and flow charts in the figures and as 
discussed herein, each step, block, and/or communication 
can represent a processing of information and/or a transmis­
sion of information in accordance with example embodi­
ments. Alternative embodiments are included within the 
scope of these example embodiments. In these alternative 
embodiments, for example, operations described as steps, 
blocks, transmissions, communications, requests, responses, 
and/or messages can be executed out of order from that 
shown or discussed, including substantially concurrently or 
in reverse order, depending on the functionality involved. 
Further, more or fewer blocks and/or operations can be used 
with any of the message flow diagrams, scenarios, and flow 
charts discussed herein, and these message flow diagrams, 
scenarios, and flow charts can be combined with one 
another, in part or in whole. 
[0171] A step or block that represents a processing of 
information can correspond to circuitry that can be config­
ured to perform the specific logical functions of a herein­
described method or technique. Alternatively or addition­
ally, a step or block that represents a processing of 
information can correspond to a module, a segment, or a 
portion of program code (including related data). The pro­
gram code can include one or more instructions executable 
by a processor for implementing specific logical operations 
or actions in the method or technique. The program code 
and/or related data can be stored on any type of computer 
readable medium such as a storage device including RAM, 
a disk drive, a solid state drive, or another storage medium. 
[0172] The computer readable medium can also include 
non-transitory computer readable media such as computer 
readable media that store data for short periods of time like 
register memory and processor cache. The computer read­
able media can further include non-transitory computer 
readable media that store program code and/or data for 
longer periods of time. Thus, the computer readable media 
may include secondary or persistent long term storage, like 
ROM, optical or magnetic disks, solid state drives, compact­
disc read only memory (CD-ROM), for example. The com­
puter readable media can also be any other volatile or 
non-volatile storage systems. A computer readable medium 
can be considered a computer readable storage medium, for 
example, or a tangible storage device. 
[0173] Moreover, a step or block that represents one or 
more information transmissions can correspond to informa-
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tion transmissions between software and/or hardware mod­
ules in the same physical device. However, other informa­
tion transmissions can be between software modules and/or 
hardware modules in different physical devices. 
[0174] The particular arrangements shown in the figures 
should not be viewed as limiting. It should be understood 
that other embodiments can include more or less of each 
element shown in a given figure. Further, some of the 
illustrated elements can be combined or omitted. Yet further, 
an example embodiment can include elements that are not 
illustrated in the figures. 
[0175] While various aspects and embodiments have been 
disclosed herein, other aspects and embodiments will be 
apparent to those skilled in the art. The various aspects and 
embodiments disclosed herein are for purpose of illustration 
and are not intended to be limiting, with the true scope being 
indicated by the following claims. 

What is claimed is: 
1. A system comprising: 
an encoder artificial neural network (ANN) configured to 

receive an input image patch and produce a feature 
vector therefrom, wherein the encoder ANN has been 
trained with a first plurality of domain training images 
such that an output image patch visually resembling the 
input image patch can be generated from the feature 
vector; and 

a generator ANN configured to receive the feature vector 
and produce a generated image patch from the feature 
vector, wherein the generator ANN has been trained 
with feature vectors derived from the first plurality of 
domain training images and a second plurality of 
generative training images such that the generated 
image patch visually resembles the input image patch 
but is constructed of a newly-generated image elements 
visually resembling one or more image patches from 
the second plurality of generative training images. 

2. The system of claim 1, wherein visual content of each 
of the second plurality of generative training images adhere 
to a common theme. 

3. The system of claim 2, wherein the common theme is 
one of flowers, eyes, stars, galaxies, skulls, numbers, car­
toons, or sunsets. 

4. The system of claim 1, wherein each of the first 
plurality of domain training images contain a representation 
of a human face. 

5. The system of claim 1, wherein the feature vector has 
between 16 and 2048 elements. 

6. The system of claim 1, wherein the input image patch 
is one of a set of input image patches cropped from an image 
such that the set of input image patches can be combined to 
form 80% or more of the image. 

7. The system of claim 6, wherein size and location within 
the image of the input image patch is randomly selected. 

8. The system of claim 1, wherein the input image patch 
is from a frame of a multi-frame video. 

9. The system of claim 1, wherein the first plurality of 
domain training images consists of photorealistic images. 

10. A computer-implemented method comprising: 
obtaining, from a memory, an input image patch; 
applying, by a processor, an encoder artificial neural 

network (ANN) to the input image patch, wherein the 
encoder ANN is configured to produce a feature vector 
from the input image patch, wherein the encoder ANN 
has been trained with a first plurality of domain training 
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images such that an output image patch visually resem­
bling the input image patch can be generated from the 
feature vector; 

applying, by the processor, a generator ANN to the feature 
vector, wherein the generator ANN is configured to 
produce a generated image patch from the feature 
vector, wherein the generator ANN has been trained 
with feature vectors derived from the first plurality of 
domain training images and a second plurality of 
generative training images such that the generated 
image patch visually resembles the input image patch 
but is constructed of a newly-generated image elements 
visually resembling one or more image patches from 
the second plurality of generative training images; and 

storing, in the memory, the generated image patch. 
11. The computer-implemented method of claim 10, 

wherein visual content of each of the second plurality of 
generative training images adhere to a common theme. 

12. The computer-implemented method of claim 11, 
wherein the common theme is one of flowers, eyes, stars, 
galaxies, skulls, numbers, cartoons, or sunsets. 

13. The computer-implemented method of claim 10, 
wherein each of the first plurality of domain training images 
contains a representation of a human face. 

14. The computer-implemented method of claim 10, 
wherein the feature vector has between 16 and 2048 ele­
ments. 

15. The computer-implemented method of claim 10, 
wherein the input image patch is one of a set of input image 
patches cropped from an image such that the set of input 
image patches can be combined to form 80% or more of the 
image. 

16. The computer-implemented method of claim 15, 
wherein size and location within the image of the input 
image patch is randomly selected. 

17. The computer-implemented method of claim 10, 
wherein the input image patch is from a frame of a multi­
frame video. 

18. The computer-implemented method of claim 10, 
wherein the first plurality of domain training images consists 
of photorealistic images. 

19. A system comprising: 
a first plurality of domain training images; 
a second plurality of generative training images; 
an autoencoder including: an encoder artificial neural 

network (ANN) configured to receive an input image 
patch from an image of the first plurality of domain 
training images and produce a first feature vector 
therefrom, and a decoder ANN configured to receive 
the first feature vector and produce an output image 
patch therefrom, wherein the encoder ANN and the 
decoder ANN are trained based on a first loss function 
that calculates a first difference between the input 
image patch and the output image patch; 

a generative adversarial network including: a generator 
ANN configured to receive the first feature vector and 
produce a generated image patch from the first feature 
vector, and a discriminator ANN configured to receive 
the generated image patch and a particular generative 
training image of the second plurality of generative 
training images, and provide classifications thereof 
predicting whether the generated image patch belongs 
to the second plurality of generative training images, 
wherein the discriminator ANN is trained based on a 
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second loss function that calculates a second difference 
between a classification of the generated image patch 
and a classification of the particular generative training 
image; and 

wherein the encoder ANN is also configured to receive the 
generated image patch and produce a second feature 
vector therefrom, and wherein the generator ANN is 
trained based on a third loss function that calculates a 
third difference between (i) the classification of the 
generated image patch and (ii) a fourth difference 
between the first feature vector and the second feature 
vector. 

20. The system of claim 19, wherein the input image patch 
is one of a set of input image patches cropped from the 
image such that the set of input image patches can be 
combined to form 80% or more of the image. 

* * * * * 
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