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yielded based on the multi-fractal nature of the texture. 
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METHOD AND SYSTEM FOR 
FRACTAL-BASED ANALYSIS OF MEDICAL 

IMAGE TEXTURE 

2 
7. Esgiar AN, Naguib RN, SharifB S, and Bennett MK, 

"Fractal analysis in the detection of colonic cancer 
images," IEEE Trans. Info. Tech. Biomed. 6, pp. 54-58, 
2002. 

BACKGROUND OF THE INVENTION 

Field of the Invention 

5 8. Caldwell C B, Stapleton S J, Holdsworth D W, Jong RA, 
Weiser W J, Cooke G, and Yaffe M J, "Characterization of 
mammographic parenchymal pattern by fractal dimen­
sion," Phys. Med. Biol. 35, pp. 235-247, 1990. 

9. American Cancer Society. Cancer facts and Figures-I 998. The present invention relates to a method, system and 
computer program for computerized assessment of breast 
cancer risk using fractal-based texture analysis. 

10 New York, N.Y. 1998; p. 20. 

The present invention also generally relates to automated 
techniques for the detection of abnormal anatomic regions, 
for example, as disclosed, in particular, in one or more ofU.S. 
Pat. Nos. 4,907,156; 5,133,020; 5,832,103; and6,138,045; all 15 

of which are incorporated herein by reference. 
The present invention also generally relates to computer­

ized techniques for automated analysis of digital images, for 
example, as disclosed in one or more of U.S. Pat. Nos. 4,839, 
807; 4,841,555; 4,851,984; 4,875,165; 4,918,534; 5,072,384; 20 

5,150,292; 5,224,177; 5,289,374; 5,319,549; 5,343,390; 
5,359,513; 5,452,367; 5,463,548; 5,491,627; 5,537,485; 
5,598,481; 5,622,171; 5,638,458; 5,657,362; 5,666,434; 
5,673,332; 5,668,888; 5,732,697; 5,740,268; 5,790,690; 
5,873,824; 5,881,124; 5,931,780; 5,974,165; 5,982,915; 25 

5,984,870; 5,987,345; 6,011,862; 6,058,322; 6,067,373; 
6,075,878; 6,078,680; 6,088,473; 6,112,112; 6,141,437; 
6,185,320; 6,205,348; 6,240,201; 6,282,305; 6,282,307; 
6,317,617 as well as U.S. patent application Ser. Nos. 08/173, 
935; 08/398,307 (PCT Publication WO 96/27846); Ser. Nos. 30 

08/536,149; 08/900,189; 09/027,468; 09/141,535; 09/471, 
088; 09/692,218; 09/716,335; 09/759,333; 09/760,854; 
09/773,636; 09/816,217; 09/830,562; 09/818,831; 09/842, 
860; 09/860,574; 60/160,790; 60/176,304; 60/329,322; 
09/990,311; 09/990,310; 09/990,377; and 60/331, 995; and 35 

PCT patent applications PCT/US98/15165; PCT/US98/ 
24933; PCT/US99/03287; PCT/US00/41299; PCT/USO!/ 
00680; PCT/USOl/01478 andPCT/US0l/01479, all of which 
are incorporated herein by reference. 

The present invention includes the use of various technolo- 40 

gies referenced and described in the above-noted U.S. pat­
ents, as well as described in the references identified in the 
following LIST OF REFERENCES by the author(s) and year 
of publication and cross-referenced throughout the specifica­
tion by reference to the respective number in parentheses, of 45 

the reference: 
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DISCUSSION OF THE BACKGROUND 

Breast cancer risk assessment provides an opportunity to 
devise appropriate surveillance plans that may include 

38. Warner E, Lockwood G, Math M, Tritchler D and Boyd N 
F. The risk ofbreast cancer associated withmannnographic 
parenchymal patterns: a meta-analysis of the published 
literature to examine the effect of method of classification. 
Cancer Detection and Prevention 1992; 16:67-72. 

39. Egan R Land Mosteller RC. Breast cancer mammogra­
phy patterns. Cancer 1997; 40:2087-2090. 

40 enhanced screening for women at increased risk of breast 
cancer. Computerized analysis ofmammographic parenchy­
mal patterns provide an objective and quantitative character­
ization and classification of these patterns, which may be 40. Boyd NF, O'Sullivan Band Fishell E. Mannnographic 

patterns and breast cancer risk: methodological standards 
and contradictory results. J Natl Cancer Inst 1984; 45 

72:1253-1259. 
41. Oza AM and Boyd NF. Mammographic parenchymal 

patterns: a marker ofbreast cancer risk. Epidemiologic Rev 
1993; 15:196-208. 

42. Ma L, Fishell E and Wright B. Case-control study of 50 

factors associated with failure to detect breast cancer by 
mannnography. JNatl Cancer Inst 1992; 84:781-785. 

associated with breast cancer risk. Computerized assessment 
of breast cancer risk based on the analysis of mammograms 
alone or combined with epidemiologic risk factors (for 
example, age) may serve as an alternative to current existing 
clinical methods, which are costly and/or information-depen­
dent, in predicting breast cancer risk. 

Breast cancer is the most frequently diagnosed cancer and 
is the second leading cause of death in women with an esti­
mate that 203,500 new invasive cases will be diagnosed as 
malignant and 39,600 women will die from breast cancer in 
the United States in 2002 [1]. Studies show that mammogra-

43. Whitehead J, Calile T and Kopecky K J. Wolfe mammo­
graphic parenchymal patterns: a study of the masking 
hypothesis of Egan and Mosteller. Cancer 1985; 56:1280-
1286. 

44. Boyd NF, O'Sullivan B 0, Fishell E, Simor I and Cooke 
G. Mammographic patterns and breast cancer risk: meth­
odological standards and contradictory results. J Natl Can­
cer Ints 1984; 72:1253-1259. 

55 phy is the most effective imaging technique for the early 
detection ofbreast cancer [2, 3 ], which has potential to reduce 
the breast cancer mortality by as much as 30% [4]. Annual 
mammography has been recommended for women age 40 
and older by American Cancer Society [ 1]. There is a need to 

45. Magnin IE, Cluzeau F and Odet CL. Mammographic 
texture analysis: an evaluation of risk for developing breast 
cancer. Optical Engineering 1986; 25:780-784. 

60 develop new strategies, methods and systems for identifying 
breasts that are at risk of invasive breast cancer at the earliest 

46. Caldwell CB, Stapleton SJ, Holdsworth D W, Jong RA, 
Weiser W J, Cooke C and Yaffe M J. Characterization of 65 

mannnographic parenchymal pattern by fractal dimension. 
Phys Med Biol 1990; 35:235-247. 

stage in the multi-step carcinogenesis process. 
Pattern recognition based on the concept of traditional 

fractal dimension has been applied in many complex systems. 
Many physical systems in nature are suitable to be described 
by fractal dimensions to show both self similarity and the 
overall roughness at multiple scales [5]. Several studies 



US 7,848,558 B2 
5 

reported that fractal dimension has been useful in character­
izing complex biological systems which are similar to mam­
mographic patterns [ 6-8]. All these suggest that fractal based 
computerized radiographic markers may be a useful descrip­
tor to characterize marmnographic parenchymal patterns. 

The breast is composed primarily of two components, fib­
roglandular tissue and fatty tissue. The average breast con­
sists of 50% fibroglandular tissue and 50% fat. Fibroglandu-
lar tissue is a mixture of fibrous connective tissue and the 
glandular epithelial cells that line the ducts of the breast (the 
parenchyma). The major breast diseases develop from the 
terminal ductal lobular units of the breast, and arise predomi­
nantly from the epithelial cells that line the ducts; however, 
the fibrous or connective tissue can also be involved. It is 
thought by most experts that malignant breast disease devel­
ops through a process that starts with epithelial hyperplasia, 
i.e., an increase in the number of epithelial cells. Epithelial 
hyperplasia can progress to atypical hyperplasia in which the 
epithelial cells not only increase in number, but also change in 
a way that is not normal for these cells. The process, at this 
stage, is believed to be reversible. Once a certain criterion 
level of atypia is reached, the diagnosis of carcinoma-in-situ 
can be made, in which there is no invasion of malignant cells 
outside of the duct. The process of malignant transformation 
is considered irreversible at this stage. In the last phase of 
development, the cancer cells break out of the ductal walls 
and invade the surrounding stromal tissue, and at this point 
the disease is called infiltrating or invasive carcinoma. Most 
(80%-85%) breast carcinomas can be seen on a mammogram 
as a mass, a cluster of tiny calcifications, or a combination of 
both. Other marmnographic abnormalities are oflesser speci­
ficity and prevalence than masses and/or calcifications, and 
include skin or nipple changes, abnormalities in the axilla, 
asymmetric density, and architectural distortion. 

6 
left) for a total of four images. The purpose of these two views 
is to completely image the breasts and, if any lesions are 
present, allow localization and preliminary characterization. 

As the best method for early detection of breast cancer, 
5 annual screening marmnography has been recommended for 

women over 40 years of age [9]. Marmnographic surveillance 
for women under age 40 years who are at very high risk of 
developing breast cancer, however, still remains an issue, 
since the benefit of screening women in this age group has not 

10 been proven. Women at high risk of developing breast cancer 
tend to develop breast cancer at a younger age [10]. Identifi­
cation and close follow-up of these high-risk women may 
provide an opportunity for early breast cancer detection. 
Thus, computerized methods that are capable of assessing 

15 breast cancer risk may allow women and their physicians to 
devise an individualized surveillance plan that may include 
enhanced screening for women at high risk for early detection 
ofbreast cancer. These plans may lead to improvements in the 
overall efficacy of screening mammography for early detec-

20 tion of breast cancer. Further, knowledge of which women are 
at high risk of developing breast cancer has important impli­
cations in the study of breast cancer. 

There are two widely used methods to measure risk: rela­
tive risk and absolute risk [ 11]. Relative risk is defined as the 

25 ratio of age-specific breast cancer incidence rate among 
women with specific risk factors to the incidence rate among 
women without known risk factors. Relative risk estimates 
are useful for measuring the relative magnitude of effect of a 
given risk factor as a population risk. However, relative risk 

30 estimates do not directly approximate the underlying prob­
ability of a diagnosis of breast cancer for an individual over 
time. 

Early detection of breast cancer can improve survival rates. 35 

The overall five-year survival rate for women diagnosed with 
breast cancer is 84%, but when found at a small, localized 
stage, the 5-year survival rate is 97% [9]. Studies show that 
use of screening mammography can reduce lesion size and 
stage at detection, improving the prognosis for survival. Cur- 40 

rently, mammography is a well-established imaging tech­
nique for early detection of breast cancer. Annual screening 
mammography is recommended by the American Cancer 
Society for all women over the age of 40 [9]. 

Absolute risk (or cumulative risk) is defined as the prob­
ability that a woman with given risk factors and given age will 
develop breast cancer over a defined time period. Absolute 
risk estimates give women a realistic and individualized esti-
mate of the chance of developing cancer over various time 
horizons. An assessment of cumulative risk over different 
periods of time can help a woman understand the extent ofher 
risk and therefore, can be useful in helping the woman and her 
doctor define an acceptable surveillance plan for the future. 

For decades, it has been known that all breast cancers are 
genetic, i.e., the development of breast cancer is the result of 
alteration of chromosomal DNA through mutation or damage 
with the resultant loss of normal growth regulation [12]. 
Sporadic breast cancer results from somatic changes that are 

Clinical acquisition of x-ray marmnograms is a rather com- 45 

plicated procedure and requires specific techniques in order 
to obtain high quality images. Attenuation differences 
between various structures within the breast contribute to 
image contrast. Due to the similar composition of breast 
structures and the physical manifestations of breast carci­
noma, screen-film marmnographic imaging must be substan­
tially different from general radiographic imaging. Low-en­
ergy x-rays are required to enhance the ability to differentiate 
between normal tissues and carcinoma. The radiological 
appearance of the breast varies between individuals because 
of variations in the relative amounts of fatty and fibroglandu­
lar tissue. Since fat has a lower effective atomic number than 
that offibroglandular tissue, there is less x-ray attenuation in 
fatty tissue than in fibroglandular tissue. Fat appears dark 
(i.e., higher optical density) on a mammogram, while fibro­
glandulartissue appears light (i.e., lower optical density) on a 
mammogram. Regions of brightness associated with fibro­
glandular tissue are normally referred to as "marmnographic 
density." 

Screening marmnography typically includes two standard 
radiographic projections, medio-lateral oblique (MLO) and 
cranio-caudal (CC), that are taken of each breast (right and 

specific to the tumor cells, i.e., the epithelial cells of the 
breast, which are not found in other cells of the patient. 
Recent molecular studies demonstrate that breast cancer may 

50 be inherited [10, 13, 14]. Using genetic linkage analysis to 
identify a gene named BRCAl (breast cancer 1 ), was found to 
be responsible for the breast cancer diagnosed in women who 
inherited a mutated form of the BRCAl gene in all cells 
(germline mutation) at birth. Since then, four other genes 

55 responsible for breast cancer, including the BRCA2 (breast 
cancer 2) gene, have been identified [15]. In general, heredi­
tary breast cancer appears earlier than purely sporadic breast 
cancer, because among women with inherited susceptibility, 
one of the cancer-causing mutations is present from birth. 

60 Thus, fewer somatic mutations specific to breast cancer cells 
need to occur. 

It is estimated that women who inherit a mutated form of 
the BRCAl gene have as much as a 20% risk of developing 
breast cancer by age 40 years, a 33%-73% risk of developing 

65 breast cancer by age 50 years, and an 56%-87% risk of devel­
oping breast cancer by age 70 years [ 16, 17] which is about up 
to 8 times higher than the lifetime risk for the general popu-
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lation. The recent isolation of BRCAl and BRCA2, and the 
acknowledgment that additional breast cancer susceptibility 
genes may exist, provides a molecular basis for counseling 
some high-risk women. 

5 

10 

Although the evidence of familial aggregation of breast 
cancer suggests that there is an important hereditary compo­
nent, there are many families in which breast cancer (familial 
breast cancer) has appeared more than once purely by chance 
and not as the result of inherited susceptibility. Studies show 
that truly hereditary breast cancers accounts only for 5%-10% 
of all breast cancers [18, 19], and most breast cancers occur 
sporadically and are likely the result of random events on the 
cellular level. In addition to age, many factors have been 

15 
identified to be related to breast cancer risk. Although, the 
basic mechanism underlying the association between breast 
cancer and these risk factors is not well understood. It has 
been recognized for some time that varying levels of endog-
enous and exogenous estrogens have been associated with the 20 

risk of developing breast cancer. Higher levels of endogenous 
hormones, in particular estrogens, are an important factor in 
the etiology of breast cancer [20, 21]. 

8 

TABLE I-continued 

Selected factors for breast cancer risk. 

Approximate 
Factor Comparison group relative risk 

Exposures 

Radiation, 100 rads No special exposure 3 
Alcohol, two drinks/day Non drinker 1.7 

From Gail MH, Benichou J. Assessing the risk of breast cancer in individuals. 

In de Vita VT, Helman S, Rosenberg SA (eds): Cancer Prevention, Philadelphia, JB Lippin­
cott; 1992, pp 1-15. 

Risk factors for breast cancer can be classified broadly as 
being of either personal or environmental origin. Personal 
risk includes aspects of individual biological histories, such 
as family history ofbreast cancer, reproductive history, meno­
pausal status, and breast disease history. Environmental risk 
factors are exogenous influences, such as diet and exposure to 
environmental carcinogens. Table 1 lists selected factors that 
have a strong or well-established association with breast can­
cer. These factors were identified on the basis oflarge epide­
miologic studies [22]. 

TABLE 1 25 
Among these risk factors, age has been identified as the 

single most important risk factor for the development of 
breast cancer in women. The incidence of breast cancer 
increases with age. Studies show that diagnosis of breast 
cancer is rare before age 25 years [23]. The incidence of 
breast cancer increases rapidly between the ages of25 and 44. 
Near the age of menopause, the rate of increase in incidence 
for successive age groups is slower compared with the obser­
vations in premenopausal women. In addition to age, risk 
factors such as family history of breast cancer, personal his­
tory of breast cancer, biopsy-confirmed benign proliferative 
breast disease, and age at first live birth and at menarche have 
been identified and have been used in clinical risk prediction 
models [11, 22, 24] to estimate an individual's risk of devel­
oping breast cancer. 

Selected factors for breast cancer risk. 

Factor Comparison group 

Age 

40-44 Age 25-29 
50-54 
60-64 
70-74 
Western country Japan 
Family history of breast cancer 

One affected first-degree relative No affected first-
degree relative 

Two or more affected first-degree 
relatives 
Early age (30 yrs old) of onset in Age 50 
affected relative 
Reproductive history 

Age at menarche, 11 Age 16 
Age at first live birth 

20-247 <20 
25-29 
~30, nulliparous 
Age at menopause 

After 55 Age 45-55 
Before 45 
Evidence of breast pathology 

Any benign disease No biopsy or 
aspiration 

Proliferative disease 
Atypical hyperplasia 
History of cancer in No history of cancer 
contralateral breast 
Percent dense parenchyma on 
mammography 

5%-24.9% <5% dense regions 
25%-44.9% 
45%-64.9% 
>65% 

Approximate 
relative risk 

16 
28 
44 
56 

5 

1.4-3 

4-6 

2.6 

1.3 

1.3 
1.6 
1.9 

1.5 
0.7 

1.5 

2 
2-4 
5 

1.7 
2.5 
3.8 
4.3 

30 

35 

40 

45 

50 

55 

60 

65 

Increased mammographic density is another factor that has 
been found to be associated with an increased risk of breast 
cancer. It has been shown in several studies that women with 
increased mammographic parenchymal density are at a four­
to six-fold higher risk over women with primarily fatty 
breasts [25-30]. At present, the reason for this increased risk 
is unclear. One possibility is that increased density reflects a 
larger amount of tissue at risk for developing breast cancer. 
Since most breast cancers develop from the epithelial cells 
that line the ducts of the breast, having more of this tissue as 
reflected by increased mammographic density may increase 
the chances of developing breast cancer. 

The Gail and Claus models are used to estimate individual 
risk over a woman's lifetime (up to 79 years old) and during 
the next 10 years of her lifetime, which are referred to as the 
lifetime risk and the 10-year risk of developing breast cancer. 

The Gail model [31] was developed based on case-control 
studies involving 2,852 white women with incident breast 
cancer and 3,146 white controls selected from the Breast 
Cancer Detection Demonstration Project (BCDDP) popula­
tion data. The risk factors used in the Gail model are age, age 
at menarche, age at first live birth, number of previous breast 
biopsies, number of first-degree relatives with breast cancer 
and history of biopsy with hyperplasia [22, 31]. These risk 
factors are broadly consistent with those selected from other 
large population-based studies [22]. Because the Gail model 
was developed from a database which includes only white 
women who tend to return for armual mammographic screen-
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ing [22], it is anticipated that this model would overpredict 
risk in younger, unscreened women since the BCD DP popu­
lation had a higher prevalence of women with adverse risk 
factors than the general population [22, 31]. 

10 
obtained from each of the models differed slightly. It was 
anticipated and confirmed that these models, which use a few 
selected risk factors, only predict risk accurately for the popu­
lations similar to those from which the models were devel-

The Claus model [24] was derived from the Cancer and 
Steroid Hormone (CASH) Study, which was a multicenter, 
population-based, case-control study. The data consists of 
4730 patients with histologically confirmed breast cancer, 
age 20-54 years, and 4688 control subjects. The control sub­
jects were frequency-matched to patients according to geo­
graphic region and 5-year categories of age. The aim of the 
study conducted by Claus et al. differs from that of Gail et al. 

5 oped [22, 24, 31, 32, 33, 36]. Clinicians have been instructed 
to select models carefully since each of these models was 
designed based on a particular population. Further, the risk 
predicted from these models must be justified according to 
clinical observations since information such as a positive 

in that Claus et al. intended to address the issue ofrisk cal­
culation solely for a subset of women who are at potentially 
high risk for breast cancer, i.e., women with a family history 

10 result from a DNA test for the BRCA1/BRCA2-mutation 
supersedes routine projections from a model [34, 36]. Nev­
ertheless, the models provide an epidemiologic basis for risk 
prediction and serve as guidelines for counseling patients 
until more refined predictions based on molecular character-

15 ization or other methods become available. 
of breast cancer. For these women, it appears that the number 
and the type of relatives affected with breast cancer as well as 
the ages at onset of any affected relative may be the most 
important risk factors, more so than risk factors such as age at 
first live birth or age at menopause that are used in the Gail 20 

model. Claus et al. found in their data that risk of individuals 

Over the past twenty years, the association of breast cancer 
risk with mammographic parenchymal patterns has been 
investigated. In 1976, Wolfe first described an association 
between risk for breast cancer and different mammographic 
patterns [37]. He described four patterns of breast paren­
chyma (Nl, Pl, P2, and DY) associated with different risk 
levels of developing breast cancer. An Nl (lowest risk) pattern 
indicates a breast in which the breast is composed entirely of 
fat tissue. Pl (high risk) and P2 (high risk) patterns refer to 

increased as "age at onset" of their affected relatives 
decreased [24]. On the other hand, Gail et al. did not find, in 
their data, that age at onset was helpful in the prediction of 
risk once the number of relatives affected was considered [22, 
31]. 

25 increasing ductal prominence (a Pl pattern consists of ducts 
occupying less than 25% of the breast and a P2 pattern con­
sists of ducts occupying more than 25% of the breast). A DY 
pattern (highest risk) refers to a breast which is largely occu­
pied by diffuse or nodular densities. Many investigators have 

Because the risk factors used in the Gail model are more 
consistent with those selected from other studies, the Gail 
model was able to be validated on other large databases. 
Validation studies [32, 33] have shown that the Gail model 
predicts risk most accurately in women who undergo yearly 
mammographic screening and overpredicts risk for women 
who do not undergo yearly manimographic screening. 
Another validation study, which involved 109,413 women 
from the Nurses' Health Study, showed that the correlation 35 

coefficient between observed risk from the database and pre­
dicted risk from the Gail model was 0.67 [33]. These valida­
tion studies demonstrated that, for accurate estimation, the 
Gail and Claus models should be applied only to a population 
similar to those from which the models were derived. 

30 used Wolfe patterns to classify the manimographic appear­
ance of breast parenchyma for risk prediction [38]. Others 
have used qualitative or quantitative estimates of the propor­
tion of the breast area (percent density) that manimographi-
cally appears dense to assess the associated breast cancer risk. 

Since Wolfe's work, interest in the possible association of 
mammographic parenchymal patterns with breast cancer has 
varied [39-41]. Wolfe's initial reports were landmark studies 
in this field, however, the results provoked various criticisms, 
for example, possible bias in the results due to the "masking" 

With the increasing awareness of breast cancer risk and the 
benefit of screening mammography, more women in all risk 
categories are seeking information regarding their individual 
breast cancer risk. The need exists for primary care clinicians 
to be able to assess an individual's risk of developing breast 
cancer and offer an appropriate surveillance program for each 
individual [34, 35]. Identification and close surveillance of 
women who are at high risk of developing breast cancer may 
provide an opportunity for early cancer detection. 

40 effect. Studies showed that breast cancer was most easily 
detected by mammography in fatty breasts and was most 
difficult to detect in breasts with dense parenchyma, thus 
there were more cancers missed by mammography in women 
with dense breasts [42]. The hypothesis of the "masking 

45 effect" [39] said that the observed greater risk ofbreast cancer 
in women with dense breasts was due to the fact that these 

Breast cancer risk assessment is an emerging service which 50 

includes determination of risk, recommendations for surveil­
lance, and counseling for women at elevated risk. Currently, 
several prediction models based on large epidemiologic stud-
ies [ 11] have been developed to predict risk using known risk 
factors such as a woman's age, her family and personal his- 55 

tories of breast cancer, and gynecological information. 
Among them, the Gail model and the Claus model are the 
most commonly used for prediction of an individual's breast 
cancer risk [34]. These models are used by clinicians for 
counseling women who are seeking information regarding 60 

their individual breast cancer risk. The Gail model was used 
to identify women at high risk for the entry to the Tamoxifen 
Prevention Trial. Recently, Offit and Brown [11] reviewed 
four major models ofrisk prediction and provided a compari­
son of the different models. Since each of these models was 65 

derived with a different study design and used different fac­
tors to calculate risk, risk estimates for a given individual 

missed cancers in the dense breast at the initial classification 
declared themselves on subsequent follow-up. 

Several groups [28, 43] have conducted experiments to 
examine the masking hypothesis. Whitehead et al. [ 43] exam­
ined the masking hypothesis by using data from the Breast 
Cancer Detection and Demonstration Project (BCDDP). 
They found that the masking of cancer did occur in breasts 
with dense parenchyma; however, their results showed that 
the effect of the masking on estimation of breast cancer risk 
was small. They concluded that women with dense breasts 
have two disadvantages: 1) they were at increased risk of 
developing breast cancer, and 2) cancers occurring in dense 
breast parenchyma were more difficult to detect. 

During the time of this controversy, many investigators 
studied the relationship between the manimographic patterns 
and breast cancer risk using the Wolfe method or percent 
density methods. Considerable variations were observed in 
reported results. In 1992, Warner et al. [38] carried out a 
meta-analysis using 35 publications to examine the effect of 
different methods on the assessment of breast cancer risk. 
They grouped the studies according to their designs and meth-
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ods used, and determined the magnitude of the risk of breast 
cancer associated withmammographic density for the studies 

12 
risk groups. However, the conventional methods known do 
not produce an accurate discrimination for the two groups. 

in each group. They found that the estimated relative risk of 
developing breast cancer depended on the methods that were 
used to classify mammographic patterns and ranged from 
0.53 to 5.19. Based on the meta-analysis, they concluded that 
women with dense breasts have an increased risk of breast 
cancer relative to those with fatty breasts. 

Therefore, development of a better and more accurate com­
puterized method to automatically extract features that char-

5 acterize mammographic parenchymal patterns and relate to 
breast cancer risk would benefit women seeking information 
regarding their individual breast cancer risk. 

While visual assessment of mammographic patterns has 
remained controversial due to the subjective nature ofhuman 10 

assessment [44], computer vision methods can yield objec­
tive measures of breast density patterns. Computerized tech­
niques have been investigated to quantitatively evaluate 
mammographic parenchyma and identify women that are at 
risk of developing breast cancer. Computerized density 15 

analysis of manimographic images has been investigated by 
various investigators including Magnin et al. [ 45], Caldwell et 
al. [ 46], Taylor et al. [ 47], Tahoces et al. [ 48], and Byng et al. 
[49, 50]. 

Magnin et al. [ 45] tried to classify mammograms into four 20 

categories (Wolfe patterns) using texture parameters 
extracted from co-occurrence matrices, the spatial gray level 
dependence method (SGLDM), and the gray level difference 
method (GLDM). They claimed that their result was incon­
clusive because a limited number of cases (27 mammograms) 25 

were used and the quality of the images used in the study was 
poor [3 7]. Caldwell et al. [ 46] used fractal dimension analysis 
to classify mammograms into the four patterns described by 
Wolfe, yielding 84% agreement with that of radiologists. 
Tahoces et al. [ 48] investigated the ability oflinear discrimi- 30 

nant analysis to quantify Wolfe patterns by merging texture 
measures obtained from Fourier transform method, local con­
trast analysis, and gray-level distribution. Their results 
showed that agreement (22%-77%) among radiologists and 
the computer classification varied depending on the Wolfe 35 

patterns. Taylor et al. [ 47] used a local skewness measure to 
separate fatty and dense breasts, yielding 85% classification 
accuracy for 106 manimograms. Byng et al. [ 49, 51] investi­
gated a semi-automated interactive thresholding technique 
based on visual assessment and computerized texture analy- 40 

sis ( a local skewness measure and fractal dimension analysis) 
to quantify the percent density of breasts. Their results 
showed that computerized assessment of manimographic 
density using the texture measures (R=-0.60) correlated well 
with the visual assessment (subjective classification) of the 45 

projected area of mammographically dense tissue. Further­
more, they showed that increased manimographic density 
was associated with an increased relative risk by a factor of 2 
to 4. Their results also showed that the relative risk estimates 
obtained using the two computer-extracted texture measures 50 

were not as strong as those from their subjective mammo­
graphic classification method. 

A conventional method for discriminating a high risk 
group of women from a low risk group is illustrated in FIGS. 
1 and 2. FIG. 1 shows an original breast image 1 which is 55 

taken for example with an x-ray device. From this medical 
image, a region ofinterest 3 is selected for a detailed analysis. 
The selected region ofinterest has a size of 25 6 by 25 6 pixels. 
FIG. 2 shows a diagram in which the medical image data is 
acquired in step 1. In step 3, the medical image data is digi- 60 

tized. Further, in step 5, the region of interest is selected for 
analysis. In step 7, the region of interest selected in step 5 is 
computer analyzed and various computer-extracted texture 
features are obtained. In step 9 linear discriminant analysis is 
applied to the computer-extracted features and a marker is 65 

calculated based on these features. Based on this marker, in 
step 11, a group of women are discriminated in high and low 

SUMMARY OF THE INVENTION 

Accordingly, an object of this invention is to provide a 
method and system fora btaining a fractal characteristic based 
on computerized fractal-based analysis of a structure as pre­
sented on a medical image. 

Another object of this invention is to provide a method and 
system for the computerized fractal-based analysis of paren­
chymal structure as presented on a medical image and relate 
the analysis to risk of breast cancer. 

Another object of this invention is to provide a method and 
system for extracting information from fractal-based texture 
analyses. 

These and other objects are achieved according to the 
invention by providing a new and improved method and sys­
tem for the analysis of structure as presented as texture on a 
medical image. Specific applications are given for the analy­
sis of regions within the mammographic breast. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the invention and many of 
the attendant advantages thereof will be readily obtained as 
the same becomes better understood by reference to the fol­
lowing detailed description when considered in connection 
with the accompanying drawings, wherein: 

FIG. 1 is an illustration of a medical image of a breast and 
a region of interest of the medical image; 

FIG. 2 is a schematic diagram illustrating a conventional 
method for analysis of a structure as presented on the medical 
image; 

FIG. 3 is a schematic diagram illustrating a novel method 
for analysis of the structure presented on the medical image 
according with the present invention; 

FIG. 4 is a graph showing a relationship between a log area 
and a log of a relative length from a surface area fractal 
analysis of the region of interest; and 

FIG. 5 is a graph showing a relationship between the nor­
malized volume and a scale from a fractal analysis of the 
region of interest. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Referring now to the drawings, and more particularly to 
FIG. 3 thereof, a schematic diagram of the fractal-based 
analysis of a texture of a region of interest as presented on a 
medical image is shown. In this embodiment, the aim is to 
extract the multi-fractal characteristics of the structure (from 
the parenchymal pattern) using computer analysis of fractal 
data. Step 1 in FIG. 3 shows an initial acquisition ofa medical 
image of a breast from a film or any other means used for 
obtaining radiographic image data of the breast. A digitiza­
tion of the medical image is accomplished in step 3. Further, 
in step 5, a region of interest is selected for a further analysis. 
In step 7, the region of interest selected in step 5 is computer 
analyzed and fractal-based computer-extracted texture fea­
tures are obtained. In step 9 a linear discriminant analysis is 
applied to the fractal-based computer-extracted features and a 
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marker is calculated based on these features. Further, based 
on this marker, in step 11, a group of women are discriminated 
in high and low risk groups. The robustness of the results 
produced by this novel method was tested against a database. 

14 
ta! dimension as shown in FIG. 5. A squared structuring 
element of3x3 pixels was used. 

The database used for running and evaluating the method 5 

of this embodiment contains 30 BRCAl and BRCA2 gene­
mutation carriers and 60 low-risk women which were ran­
domly selected and age-matched at 5-year intervals with 
these gene carriers [52]. Mammograms were digitized in step 

The fourth method used a modified Minkowski dimension 
that is similar to the second method. LDA was applied on 
volume Vg(E) calculated at multiple scales. The output from 
LDA yielded a new class of radiographic markers that are 
similar to the fractal dimension extracted using equation (3). 

For comparing the accuracy of the computerized radio­
graphic markers discussed above as indicators of risk, 
receiver operating characteristics (ROC) analysis [55] was 
used to evaluate the performance of the methods in the task of 

3 at 0.1-mm pixel size and 10-bit gray level. Regions of 10 

interest (ROis ), 256 by 256 pixels in size [52], were manually 
selected in step 1 of FIG. 3 from a central breast region 
immediately behind the nipple [53]. 

distinguishing between the BRCA1/BRCA2 gene-mutation 
carriers and low-risk group. The leave-one-out method 
(round-robin method) [56], was used in the performance Four approaches based on fractal analysis were performed. 

The first method used the conventional box-counting tech­
nique [54], 

(1) 

x.y x.y 

where A( E) is the surface area of the RO I at effective pixel size 
E and ic(x,y) is the gray level at location (x,y) in the digitized 
image data. A( E) is calculated using equation (1) for various 
pixel sizes E. For a two-dimensional mammogram, the fractal 
dimension is defined by equation (2), 

(2) 

15 evaluation for the LDA approaches. 
Note that with both of these fractal based techniques, one is 

required to determine a slope as in FIG. 5 or multiple slopes 
as in FIG. 4, if the texture is multi-fractal in nature. This may 
be difficult due to the number of limited data points used in 

20 determining the slope (see FIGS. 4 and 5). However, the 
method presented in this embodiment incorporates a classi­
fier ( such as linear discriminant analysis or an artificial neural 
network) to determine the fractal nature of the texture and 
relate it to breast cancer risk, which make the results more 

25 accurate and reliable. 
The calculated fractal dimension shown in FIG. 4 is based 

on the box-counting model, which uses the slope of the 
regression line between the logarithm of surface areas, log 

30 
[A(E)], and the logarithm of various pixel sizes, log [El, 
should yield a linear line for a fractal object. Plots of log 
[A(E)] versus log [E] in FIG. 4 show two linear compo­
nents-a high frequency component and a low frequency 
component suggesting a multi-fractal phenomenon for the 

35 
radiographic images. The fractal dimensions, DBo were cal­
culated using all data points, the high frequency components 
only and the low frequency components only. The results are 
shown in Table 2. Likewise, results are shown in Table 2 for 
the global Minkowski dimension and the LDA methods for 

The second method used a modified box-counting tech­
nique. Linear discriminant analysis (LDA) was applied on 
surface areas A(E) calculated at multiple pixel sizes E. The 
output from LDA yielded a new class of radiographic markers 
that are similar to the fractal dimension extracted using equa­
tion (2). 

40 
FIG. 4 shows the points used to calculate the fractal dimen-

both box-counting and Minkowski methods. The 
index 0 _90A r z is used to indicate the performance above 90% 
sensitivity [57]. sion BCLDA and the fractal characteristic based on the second 

method. 

The third method used the global Minkowski dimension, 
D,v(f), calculated using 

(3) 

where for a structuring element g at scale E, Vg(E) is the 
"volume" between two processed versions off obtained using 
morphological operators. The volume Vg(E) is computed by 

64 64 

Vg(.s) = ~ ~ {(f E!l.sg) - (f 0.sg)), 

(4) 

m=O n=O 

where (f EB Eg) and (f xEg) are the dilated version and the 
eroded version, respectively, of the image obtained using the 
structuring element g at scale E. Note that V g( E) is the volume 
arising from the difference between the dilated and eroded 
surfaces. Finding the slope of the least-square fitted line 
between log [V g( E)IE3

] and log(l/E) gives the estimated frac-

45 

TABLE2 

Performance in differentiating between the two groups 
with fractal dimensions extracted using the four 

approaches. ROC results are from the round­
robin method for the LDA approaches. 

Feature Az 0.90ATz 
50 

DBc(All data points) 
DBc (High frequency component) 
DBc (Low frequency component) 
LDABc (All data points) 
LDABc (High frequency component) 

55 LDABc (Low frequency component) 
DM[f] 
LDAM 

0.77 
0.86 
0.58 
0.89 
0.91 
0.55 
0.84 
0.91 

0.05 0.341 0.10 
0.04 0.31 0.15 
0.06 0.14 0.06 
0.04 0.49 0.15 
0.03 0.56 0.14 
0.06 0.10 0.05 
0.05 0.26 0.13 
0.03 0.55 0.14 

A multi-fractal phenomenon in the parenchymal texture 
60 was observed using the method of this embodiment on normal 

digitized screen/film mammograms. These results extend 
prior application of conventional box-counting and 
Minkowski techniques by incorporating linear discriminant 
analysis to assess the multi-fractal characteristics. The use of 

65 fractal analysis to characterize mammographic parenchymal 
patterns yield radiographic markers for assessing breast can­
cer risk in patients. 
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As disclosed in cross-referenced pending patent applica­
tion Ser. No. 09/773,636, FIG. 9 of that patent application is 

16 
preparation of application-specific integrated circuits or by 
interconnecting an appropriate network of conventional com­
ponent circuits. 

The present invention thus also includes a computer-based 
a schematic illustration of a general purpose computer 900 
which can be programmed according to the teachings of the 
present invention. In FIG. 9 of the cross-referenced applica­
tion Ser. No. 09/773,636, the computer 900 can be used to 
implement the processes of the present invention, wherein the 
computer includes, for example, a display device 902 ( e.g., a 
touch screen monitor with a touch-screen interface, etc.), a 
keyboard 904, a pointing device 906, a mouse pad or digitiz­
ing pad 908, a hard disk 910, or other fixed, high density 
media drives, connected using an appropriate device bus ( e.g., 

5 product which may be hosted on a storage medium and 
include instructions which can be used to program a general 
purpose microprocessor or computer to perform processes in 
accordance with the present invention. This storage medium 
can include, but is not limited to, any type of disk including 

10 floppy disks, optical disks, CD-ROMs, magneto-optical 
disks, ROMs, RAMs, EPROMs, EEPROMs, flash memory, 
magnetic or optical cards, or any type of media suitable for 
storing electronic instructions. 

a SCSI bus, an Enhanced IDE bus, an Ultra DMA bus, a PCI 
bus, etc.), a floppy drive 912, a tape or CD ROM drive 914 
with tape or CD media 916, or other removable media 
devices, such as magneto-optical media, etc., and a mother 
board 918. The mother board 918 includes, for example, a 
processor 920, a RAM 922, and a ROM 924 (e.g., DRAM, 
ROM, EPROM, EEPROM, SRAM, SDRAM, and Flash 
RAM, etc.), I/0 ports 926 which may be used to couple to an 
image acquisition device and optional special purpose logic 
devices ( e.g., AS I Cs, etc.) or configurable logic devices ( e.g., 
GAL and re-programmable FPGA) 928 for performing spe­
cialized hardware/software functions, such as sound process- 25 

ing, image processing, signal processing, neural network pro­
cessing, automated classification, etc., a microphone 930, and 

Numerous modifications and variations of the present 
15 invention are possible in light of the above teachings. It is 

therefore to be understood that within the scope of the 
appended claims, the invention may be practiced otherwise 
than as specifically described herein. 

What is claimed as new and desired to be secured by 
20 Letters Patent of the United States is: 

a speaker or speakers 932. 

As stated above, the system of the present invention 
30 

includes at least one computer readable medium. Examples of 
computer readable media are compact discs, hard disks, 
floppy disks, tape, magneto-optical disks, PRO Ms (EPROM, 
EEPROM, Flash EPROM), DRAM, SRAM, SDRAM, etc. 
Stored on any one or on a combination of computer readable 

35 
media, the present invention includes software for controlling 
both the hardware of the computer and for enabling the com­
puter to interact with a human user. Such software may 
include, but is not limited to, device drivers, operating sys­
tems and user applications, such as development tools. Such 

40 
computer readable media further includes the computer pro­
gram product of the present invention for performing any of 
the processes according to the present invention, described 
above. The computer code devices of the present invention 
can be any interpreted or executable code mechanism, includ-

45 
ing but not limited to scripts, interpreters, dynamic link librar­
ies, Java classes, and complete executable programs, etc. 

The programming of general purpose computer 900 ( dis­
closed in cross-referenced pending patent application Ser. 
No. 09/773,636) may include a software module for digitiz- 50 
ing and storing images obtained from film or an image acqui­
sition device. Alternatively, the present invention can also be 
implemented to process digital data derived from images 
obtained by other means, such as a picture archive commu­
nication system (PACS). In other words, the digital images 55 
being processed may be in existence in digital form and need 
not be converted to digital form in practicing the invention. 

Accordingly, the mechanisms and processes set forth in the 
present description may be implemented using a conventional 
general purpose microprocessor or computer programmed 60 

according to the teachings in the present specification, as will 
be appreciated by those skilled in the relevant art(s). Appro­
priate software coding can readily be prepared by skilled 
programmers based on the teachings of the present disclo­
sure, as will also be apparent to those skilled in the relevant 65 

art(s ). However, as will be readily apparent to those skilled in 
the art, the present invention also may be implemented by the 

1. A method implemented by a computer progranimed as 
an image processing device that analyzes a mammogram in 
digital form of a breast of a patient, comprising: 

extracting from a selected region of interest in the mam­
mogram, plural surface area values or plural volume 
values calculated at corresponding plural scales associ­
ated with a texture of a parenchyma of the breast; 

applying, by the image processing device, said plural sur­
face area values or said plural volume values directly as 
inputs to at least one of a linear discriminant classifier 
and an artificial neural network classifier; and 

generating a risk marker indicative of a breast disease risk 
for said patient based on an output of the at least one of 
a linear discriminant classifier and an artificial neural 
network classifier. 

2. The method according to claim 1, wherein the extracting 
step comprises: 

extracting the plural surface area values from an area of the 
region of interest of the mammogram based on a box­
counting method. 

3. The method according to claim 1, wherein the extracting 
step comprises: 

extracting the plural volume values from a volume of the 
region of interest of the mammogram based on a general 
Minkowski model. 

4. The method according to claim 1, wherein the applying 
step comprises: 

applying the plural surface area values or the plural volume 
values to a linear discriminant analysis classifier. 

5. The method according to claim 1, wherein the applying 
step comprises: 

applying the plural surface area values or the plural volume 
values to an artificial neural network classifier. 

6. The method according to claim 1, wherein the extracting 
step comprises: 

extracting from the manimogram a multi-fractal character­
istic associated with the texture oftheparenchyma of the 
breast. 

7. A system for computerized analysis of a mammogram in 
digital form of a breast of a patient, comprising: 

a memory storing the mammogram in digital form; 
a feature extraction mechanism that extracts, from a 

selected region of interest in the mammogram, plural 
surface area values or plural volume values calculated at 
corresponding plural scales associated with a texture of 
a parenchyma of the breast; 
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a classifier mechanism including at least one of a linear 
discriminant classifier and an artificial neural network to 
which the plural surface area values or said plural vol­
ume values are directly applied as inputs; and 

a risk marker generator that generates a risk marker indica- 5 

tive of a breast disease risk for said patient based on an 
output of the classifier mechanism. 

8. The system according to claim 7, wherein the feature 
extraction mechanism extracts the plural surface area values 
from an area of the region of interest of the mammogram 10 

based on a box-counting method. 
9. The system according to claim 7, wherein the feature 

extraction mechanism extracts the plural volume values from 

18 
applying said plural surface area value or said plural vol­

ume values directly as inputs to at least one of a linear 
discriminant classifier and an artificial neural network 
classifier; and 

generating a risk marker indicative of a breast disease risk 
for said patient based on an output of the at least one of 
a linear discriminant classifier and an artificial neural 
network classifier. 

14. The computer readable medium according to claim 13, 
wherein the extracting step comprises: 

extracting the plural surface area values from an area of the 
region of interest of the mammogram based on a box­
counting method. 

a volume of the region of interest of the mammogram based 
on a general Minkowski model. 

10. The system according to claim 7, wherein the classifier 
mechanism comprises a linear discriminant analysis classi­
fier. 

15. The computer readable medium according to claim 13, 
15 wherein the extracting step comprises: 

11. The system according to claim 7, wherein the classifier 
mechanism comprises an artificial neural network classifier. 20 

12. The system according to claim 7, wherein the feature 
extraction mechanism extracts from the mammogram a 
multi-fractal characteristic associated with the texture of the 
parenchyma of the breast. 

13. A non-transitory computer readable medium storing 25 

instructions for execution on a computer system, which when 
executed by the computer system, causes the computer sys­
tem to perform a method for a computerized analysis of a 
mammogram in digital form of a breast of a patient, compris-
ing the steps of: 30 

extracting from a selected region of interest in the mam­
mogram, plural surface area values or plural volume 
values calculated at corresponding plural scales associ­
ated with a texture of a parenchyma of the breast; 

extracting the plural volume values from a volume of the 
region of interest of the mammogram based on a general 
Minkowski model. 

16. The computer readable medium according to claim 13, 
wherein the applying step comprises: 

applying the plural surface area values or the plural volume 
values to a linear discriminant analysis classifier. 

17. The computer readable medium according to claim 13, 
wherein the applying step comprises: 

applying the plural surface area values or the plural volume 
values to an artificial neural network classifier. 

18. The computer readable medium according to claim 13, 
wherein the extracting step comprises: 

extracting from the manimogram a multi-fractal character­
istic associated with the texture oftheparenchyma of the 
breast. 

* * * * * 


