
1111111111111111 IIIIII IIIII 1111111111 11111 111111111111111 IIIII lllll 111111111111111 11111111
US 20210334081Al

c19) United States
c12) Patent Application Publication

Chong et al.
c10) Pub. No.: US 2021/0334081 Al
(43) Pub. Date: Oct. 28, 2021

(54) SYSTEM AND METHOD OF OPTIMIZING
INSTRUCTIONS FOR QUANTUM
COMPUTERS

(71) Applicant: University of Chicago, Chicago, IL
(US)

(72) Inventors: Frederic T. Chong, Chicago, IL (US);
Yunong Shi, I, Chicago, IL (US);
Nelson Leung, Chicago, IL (US);
Pranav Gokhale, Chicago, IL (US);
Henry Hoffmann, Chicago, IL (US);
David Schuster, Chicago, IL (US)

(21) Appl. No.: 17/273,938

(22) PCT Filed: Sep. 12, 2019

(86) PCT No.: PCT /US2019/050870

§ 371 (c)(l),
(2) Date: Mar. 5, 2021

Related U.S. Application Data

(60) Provisional application No. 62/730,813, filed on Sep.
13, 2018, provisional application No. 62/773,581,
filed on Nov. 30, 2018.

QUANTUM PROGRAM
(SOURCE)

112

316

Publication Classification

(51) Int. Cl.
G06F 8/41
G06N 10100
G06F 9/48

(52) U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

CPC G06F 8/443 (2013.01); G06F 9/48
(2013.01); G06N 10100 (2019.01)

(57) ABSTRACT
A quantum computing system includes a quantum processor
having a plurality of qubits, a classical memory, and a
classical processor. The classical processor is configured to
compile a quantum program into logical assembly instruc
tions in an intermediate language, aggregate the logical
assembly instructions together into a plurality of logical
blocks of instructions, generate a logical schedule for the
quantum program based on commutativity between the
plurality of logical blocks, generate a tentative physical
schedule based on the logical schedule, the tentative physi
cal schedule includes a mapping of the logical assembly
instructions in the logical schedule onto the plurality of
qubits of the quantum processor, aggregate instructions
together within the tentative physical schedule that do not
reduce parallelism, thereby generating an updated physical
schedule; generate optimized control pulses for the aggre
gated instructions, and execute the quantum program on the
quantum processor with the optimized control pulses and the
updated physical schedule.

LOOP UNROLLING ,r'"300

310

MODULE FLATTENING

312

COMPILATION

314 ----------------
LOGICAL LOGICAL BLOCKING

ASSEMBLY 320

COMMUTATIVITY
DETECTION

322
COMMUTATIVITY-AWARE

I SCHEDULING
324 I

~---------------J
LOGICAL

SCHEDULE 330

QUBIT MAPPING

332
TOPOLOGY CONSTRAINT

334
RESOLVING

TENTATIVE
PHYSICAL
SCHEDULE

I PHYSICAL
: BLOCKING

I 344 342 I 340
I CANDIDATE

INSTRUCTION 120 UNITARIES

Patent Application Publication Oct. 28, 2021 Sheet 1 of 8 US 2021/0334081 Al

120

132

CONTROL COMPUTING DEVICE
112

116

QUANTUM PROGRAM
(SOURCE)

COMPILATION ENGINE

OPTIMIZED
PHYSICAL
SCHEDULE

SIGNAL GENERATOR

114

118

OPTIMIZED
CONTROL
PULSES

EXECUTION
RESULT

~100

110

140 130
QUANTUM COMPUTING

DEVICE
QUANTUM PROCESSOR

□□□□
~ □□□□ ...

134 □ □ □ □
□□□□

FIG. 1

Patent Application Publication Oct. 28, 2021 Sheet 2 of 8 US 2021/0334081 Al

114

COMPILATION ENGINE

r 210

PROGRAM-LEVEL ANALYSIS

212,
SUBSYSTEM 214 r

LOOP UNROLLING - - MODULE FLATTENING
MODULE - - MODULE

/220
LOGICAL-LEVEL ANALYSIS

222, SUBSYSTEM 224 r
COMMUTATIVITY - - COMMUTATIVITY-AWARE

DETECTION MODULE - - SCHEDULING MODULE

/230

MAPPING-LEVEL ANALYSIS

232, SUBSYSTEM /234
QUBIT MAPPING

~ - TOPOLOGY CONSTRAINT
MODULE -- ,....

RESOLVING MODULE

1 240

CROSS-LAYER ANALYSIS
SUBSYSTEM 242

244,
r

- OPTIMAL CONTROL UNIT - MODULE
PHYSICAL BLOCKING

~

MODULE -- /246

- CANDIDATE INSTRUCTION
,....

UNITARIES MODULE

FIG. 2

Patent Application Publication

QUANTUM PROGRAM
(SOURCE)

112

316

324

334

LOGICAL
ASSEMBLY

LOGICAL
SCHEDULE

TENTATIVE
PHYSICAL
SCHEDULE

I PHYSICAL
: BLOCKING

I
I 340
I

120

FIG. 3

Oct. 28, 2021 Sheet 3 of 8 US 2021/0334081 Al

LOOP UNROLLING ~300

310 ~---'------
MODULE FLATTENING

COMPILATION

LOGICAL BLOCKING

COMMUTATIVITY
DETECTION

COMMUTATIVITY-AWARE
SCHEDULING

312

314

320

322

L----------------

330

QUBIT MAPPING

332
TOPOLOGY CONSTRAINT

RESOLVING

AGGREGATED
INSTRUCTION
SCHEDULING

OPTIMIZED
CONTROL
PULSES

344

PULSE
OPTIMIZATION

CANDIDATE
INSTRUCTION

UNITARIES

342

Patent Application Publication Oct. 28, 2021 Sheet 4 of 8 US 2021/0334081 Al

ID
~400

~
410

n ,, ,,
Hql - Hq2 Hq3

, '
- CNOTqlq2 -

,,
RZq2

, ' 1J

CNOTqlq2
,,

CNOTq2q3

, '
CNOTqlq3 ._ Rzq3

,,
Rzq3 - CNOTq2q3

,,
CNOTqlq3

, ' ,,
RXq1 RXq2 Rxq3

FIG. 4A

Patent Application Publication Oct. 28, 2021 Sheet 5 of 8 US 2021/0334081 Al

~420

ID

CNOTqlq2 CNOTq2q3 CNOTqlq3

CNOTqlq2 CNOTq2q3 CNOTqlq3

FIG. 4B

Patent Application Publication Oct. 28, 2021 Sheet 6 of 8

ID

CNOTqlq2

CNOTqlq2

---------1

CNOTqlq2

CNOTqlq2

I

I
I
I
I
I
I
I
I
I
I

____ I

FIG. 4C

CNOTq2q3

CNOTq2q3

SWAPq2q3

US 2021/0334081 Al

~440

~
442

Patent Application Publication Oct. 28, 2021 Sheet 7 of 8

ID

, ' , '
r-------------

Hql -- Hq2

, '
- CNOTqlq2 ~

1 '

RZq2

1 ' ,,
CNOTqlq2

L ____________ l ___ _
------------- -----,

CNOTqlq2
I
I
I
I

CNOTq2q3

~ '
Rzq3

1 '

CNOTq2q3

1 '

SWAPq2q3

♦
RZq2

o-
t 1J

CNOTqlq2

, ' 1 '

Rxq1 RXq2

L-----------------

FIG. 4D

US 2021/0334081 Al

~460

1J

Patent Application Publication Oct. 28, 2021 Sheet 8 of 8 US 2021/0334081 Al

~500 ~500

CD

FIG. SA FIG. SB

~500 ~500

CD--®
0

0

FIG. SC FIG. SD

US 2021/0334081 Al

SYSTEM AND METHOD OF OPTIMIZING
INSTRUCTIONS FOR QUANTUM

COMPUTERS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to and the benefit
of U.S. Provisional Patent Application Ser. No. 62/730,813,
entitled SYSTEM AND METHOD FOR COMPILATION
OF AGGREGATED INSTRUCTIONS FOR QUANTUM
COMPUTERS filed Sep. 13, 2018, and U.S. Provisional
Patent Application Ser. No. 62/773,581, entitled SYSTEM
AND METHOD OF OPTIMIZING INSTRUCTIONS FOR
QUANTUM COMPUTERS filed Nov. 30, 2018, the con
tents of which are incorporated herein in their entireties.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH & DEVELOPMENT

[0002] This invention was made with govermnent support
under grant numbers CCF1730449, and PHY1660686
awarded by The National Science Foundation. The govern
ment has certain rights in the invention.

TECHNICAL FIELD

[0003] This disclosure relates generally to quantum com
puting and, more specifically, to systems and methods for
compiling aggregated instructions for quantum computers.

BACKGROUND

[0004] Recent developments in quantum computing have
pushed quantum computers closer to solving classically
intractable problems. Existing quantum programming lan
guages and compilers use a quantum assembly language
composed of 1- and 2-quantum bit ("qubit") gates to prepare
and execute primitive operations on quantum computers.
Recent advancements in hardware and software include
devices such as IBM's 50-qubit quantum machine and
Google's 72-qubit machine, as well as classical-quantum
hybrid algorithms tailored for such Noisy Intermediate
Scale Quantum ("NISQ") machines, such as Quantum
Approximate Optimization Algorithm ("QAOA") and Varia
tional Quantum Eigensolver ("VQE").
[0005] Computation latency is a major challenge for near
term quantum computing. While conventional computing
systems may generally benefit from reduced latency (e.g.,
for modest performance improvements provided by faster
processing), latency presents an existential threat to quan
tum computing. In a quantum system, output fidelity decays
at least exponentially with latency. Thus, in near-term quan
tum computers, reducing latency is not just a minor conve
nience. Rather, latency reduction actually enables new com
putations on near-term machines by ensuring that the
computation finishes before the qubits decohere and produce
a useless result.
[0006] Unfortunately, ex1stmg quantum computing
abstractions that mirror classical computer system stacks
introduce inefficiencies that greatly impact latency. In those
conventional gate-based approaches, programs are compiled
into quantum assembly instructions (e.g., gates) that utilize
1- and 2-qubit operations. Such a quantum assembly repre
sents a virtual instruction set architecture ("ISA") which
provides a limited but universal set of operations into which
decomposition algorithms exist. These gates must then be

1
Oct. 28, 2021

translated into control pulses, the electrical signals that
implement the specified operations on the underlying physi
cal hardware. However, the underlying hardware typically
implements a different set of operations that admit efficient
physical implementation regarding the specific architecture.
As such, there is a mismatch between the expressive logical
gates and the set of instructions that can be efficiently
implemented on the underlying quantum computing system.
[0007] What is needed is a quantum compilation technique
that optimizes across existing abstraction barriers to reduce
latency while still being practical for large numbers of
qubits.

BRIEF DESCRIPTION

[0008] In one aspect, a quantum computing system for
compiling and executing instructions on a quantum com
puter is provided. The quantum computing system includes
the quantum processor including a plurality of qubits. The
quantum computing system also includes a classical
memory including a quantum program. The quantum pro
gram defines a plurality of instructions in a source language.
The quantum computing system further includes a classical
processor communicatively coupled to the classical
memory. The classical memory includes computer-execut
able instructions that, when executed by the classical pro
cessor, cause the classical processor to compile the quantum
program into logical assembly instructions in an intermedi
ate language. The instructions also cause the classical pro
cessor to aggregate the logical assembly instructions
together into a plurality of logical block of instructions. The
instructions further cause the classical processor to generate
a logical schedule for the quantum program based on
commutativity between the plurality of logical blocks. The
instructions also cause the classical processor to generate a
tentative physical schedule based on the logical schedule.
The tentative physical schedule includes a mapping of the
logical assembly instructions in the logical schedule onto the
plurality of qubits of the quantum processor. The instruc
tions further cause the classical processor to aggregate
instructions together within the tentative physical schedule
that do not reduce parallelism, thereby generating an
updated physical schedule. The instructions also cause the
classical processor to generate optimized control pulses for
the aggregated instructions of the quantum program. The
instructions further cause the classical processor to execute
the quantum program on the quantum processor with the
optimized control pulses and the updated physical schedule.
[0009] In another embodiment, a computer-implemented
method for compiling instructions for a quantum computer
is provided. The method is implemented using a classical
processor in communication with a classical memory. The
method includes receiving a quantum program from a user.
The quantum program defines a plurality of instructions in
a source language. The method also includes compiling the
quantum program into logical assembly instructions in an
intermediate language. The method further includes aggre
gating the logical assembly instructions together into a
plurality of logical block of instructions. The method also
includes generating a logical schedule for the quantum
program based on commutativity between the plurality of
logical blocks. The method further includes generating a
tentative physical schedule based on the logical schedule.
The tentative physical schedule includes a mapping of the
logical assembly instructions in the logical schedule onto a

US 2021/0334081 Al

plurality of qubits of a quantum processor. The method also
includes aggregating instructions together in the tentative
physical schedule that do not reduce parallelism, thereby
generating an updated physical schedule. The method fur
ther includes generating optimized control pulses for the
aggregated instructions of the quantum program. The
method also includes executing the quantum program on the
quantum processor with the optimized control pulses and the
updated physical schedule.
[0010] In yet another embodiment, a non-transitory com
puter-readable storage media having computer-executable
instructions embodied thereon. When executed by at least
one classical processor, the computer-executable instruc
tions cause the classical processor to receive a quantum
program from a user. The quantum program defines a
plurality of instructions in a source language. The computer
executable instructions also cause the classical processor to
compile the quantum program into logical assembly instruc
tions in an intermediate language. The computer-executable
instructions further cause the classical processor to aggre
gate the logical assembly instructions together into a plu
rality oflogical block of instructions. The computer-execut
able instructions also cause the classical processor to
generate a logical schedule for the quantum program based
on commutativity between the plurality of logical blocks.
The computer-executable instructions further cause the clas
sical processor to generate a tentative physical schedule
based on the logical schedule. The tentative physical sched
ule includes a mapping of the logical assembly instructions
in the logical schedule onto a plurality of qubits of a
quantum processor. The computer-executable instructions
also cause the classical processor to aggregate instructions
together in the tentative physical schedule that do not reduce
parallelism, thereby generating an updated physical sched
ule. The computer-executable instructions further cause the
classical processor to generate optimized control pulses for
the aggregated instructions of the quantum program. The
computer-executable instructions also cause the classical
processor to execute the quantum program on the quantum
processor with the optimized control pulses and the updated
physical schedule.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIGS. 1-SD show exemplary embodiments of the
methods and systems described herein.
[0012] FIG. 1 is a diagram of exemplary quantum com
puting system for optimizing instructions for execution on a
quantum computing device.
[0013] FIG. 2 is a component diagram of the compilation
engine shown in FIG. 1.
[0014] FIG. 3 is a flow chart illustrating an example
method for optimizing the compilation of the quantum
program for execution on the quantum computing device
shown in FIG. 1.
[0015] FIG. 4A-4D illustrate example gate dependency
graphs generated by the compilation engine of FIG. 1.
[0016] FIGS. SA-SD illustrate stages of an example com
putational graph used by the compilation engine to schedule
conflicting instructions.

DETAILED DESCRIPTION OF THE
DISCLOSURE

[0017] The following detailed description illustrates
embodiments of the disclosure by way of example and not

2
Oct. 28, 2021

by way of limitation. It is contemplated that the disclosure
has general application to quantum computing.
[0018] Existing quantum programming languages and
compilers use a quantum assembly language composed of l
and 2-qubit gates. Quantum compiler frameworks translate
this quantum assembly into control pulses, typically electric
signals that implement the specified computation on a spe
cific quantum computing device. However, there are numer
ous inefficiencies and drawbacks to using classical compi
lation techniques in the context of quantum computing, as
well as new problems not experienced in typical classical
computing settings.
[0019] A quantum computing system and associated meth
ods are described herein for addressing these problems. The
quantum computing system described herein includes a
compilation engine (e.g., executed on a classical computing
device) that is configured to prepare and optimize a quantum
program for execution on a quantum processor. In some
instances, the quantum processor may include tens or hun
dreds of qubits for use in execution, and larger quantum
computers are anticipated in the near future. However,
optimizing control pulses simultaneously for so many qubits
is a computationally complex operation that grows expo
nentially relative to the number of qubits. Conventional
algorithms may not adequate solutions in reasonably
bounded pre-processing time, even on the best supercom
puters currently available.
[0020] As such, the compilation engine provides a com
pilation framework that both segments the larger problem of
scheduling operations on so many qubits into multiple
smaller problems (e.g., groupings of qubits and subsets of
the program instructions) as well as optimizes those group
ings to foster parallelism and to address certain mismatches
between the logical instructions of the compilation and the
physical constraints of various types of quantum processors.
More specifically, the compilation engine performs logical
blocking on the logical instructions of the quantum program,
grouping the 1- and 2-qubit operations into groups of qubits
(e.g., subsets of the entire set of qubits provided by the
quantum processor). The size of these groupings may be
determined based on a performance threshold of pulse
optimization, limiting the group size such that the pulse
optimization is able to be sufficiently optimized within a
reasonable processing time. For example, it may be deter
mined that the underlying pulse optimization algorithm
performs adequately up to approximately ten qubits. As
such, for a 50-qubit quantum processor, the compilation
engine may break up logical instructions into five 10-qubit
blocks, which achieves a reduced order of complexity for
pulse optimization, allowing the pulse optimization to be
performed on each block within a reasonable processing
time.
[0021] However, breaking up the logical instructions into
multiple blocks can cause problems. For example, if
grouped poorly, the grouping can introduce serialization
where parallelism may be possible. Further, due to the nature
of the underlying quantum hardware, grouping certain kinds
of operations together can yield efficiencies (e.g., less num
ber of pulse sequences needed). As such, the compilation
engine strategically groups the instructions with these fea
tures in mind.
[0022] The term "classical," as used herein, refers to
conventional transistor-based computing technology. This
term, where necessary, is used to distinguish conventional

US 2021/0334081 Al

computing devices or associated hardware, software, algo
rithms, and such, from "quantum" computing. Quantum
computing devices or associated hardware, software, algo
rithms, and such, are typically distinguished from classical
computing devices based on their reliance on quantum
phenomena of quantum mechanics to perform processing
operations. Example classical computing devices include
conventional personal computers, servers, tablets, smart
phones, x86-based processors, random access memory
("RAM") modules, and so forth. Example quantum com
puting devices include "IBM Q" devices from International
Business Machines (IBM), "Bristlecone" quantum comput
ing device from Google, "Tangle Lake" quantum computing
device from Intel, and "2000Q" from D-Wave. The term
"classical bit" or "cbit" may be used herein to refer to a bit
within classical computing. The term "qubit" may be used
herein to refer to a quantum bit in quantum computing.

[0023] FIG. 1 is a diagram of exemplary quantum com
puting system 100 for optimizing instructions for execution
on a quantum computing device 130. The quantum comput
ing system 100 includes a control computing device 110 that
is configured to prepare (e.g., compile and optimize) a
quantum program 112 for execution on the quantum com
puting device 130. The quantum computing device 130
includes multiple qubits 134 that represent a quantum pro
cessor 132 upon which the quantum program 112 is
executed. In the example embodiment, the quantum proces
sor 132 includes 50 or 100 qubits, but it should be under
stood that the present disclosure is envisioned to be operable
and beneficial for quantum processors with many tens,
hundreds, or more qubits 134.

[0024] The qubit 134 is the basic element of a quantum
computing device such as the quantum computing device
130 shown in FIG. 1. In contrast to classical bits ("cbits"),
qubits are capable of existing in a superposition of logical
states, notated herein as IO) and 11) . The general quantum
state of a qubit may be represented as:

11jli) ~a10) +1311),

where a,~ are complex coefficients with lal 2 +1~1 2 =1. When
measured in the 0/1 basis, the quantum state collapses to 10
) or 11) with a probability of lal 2 and I ~1 2

, respectively. The
qubit 134 can be visualized as a point on a 3D sphere called
the Bloch sphere. Qubits 134 can be realized on different
Quantum Information Processing (QIP) platforms, including
ion traps, quantum dot systems, and, in the example embodi
ment, superconducting circuits. The number of quantum
logical states grows exponentially with the number of qubits
134 in the quantum processor 132. For example, a system
with three qubits 134 can live in the superposition of eight
logical states: 1000), 1001), 1010), 1011), ... , 1111). This
property sets the foundation of potential quantum speedup
over classical computation. In other words, an exponential
number of correlated logical states can be stored and pro
cessed simultaneously by the quantum system 100 with a
linear number of qubits 134.

[0025] During quantum compilation, the quantum pro
gram 112 is first decomposed into a set of 1- and 2-qubit
discrete quantum operations called logical quantum gates.
These quantum gates are represented in matrix form as
unitary matrices. 1-qubit gates correspond to rotations along
a particular axis on the Bloch sphere. In an example quan
tum ISA, the 1-qubit gate set may include rotations along the
x-, y-, and z-axes of the Block sphere. Such gates are notated

3
Oct. 28, 2021

herein as Rx, Ry, and R
2

gates, respectively. Further, the
quantum ISA may also include a Hadamard gate, which
corresponds to a rotation about the diagonal x+z axis. An
example of a 2-qubit logical gate in the quantum ISA is a
Controlled-NOT ("CNOT') gate, which flips the state of the
target qubit if the control qubit is 11) or leaves the state
unchanged if the control qubit is 10). For example, the
CNOT gate sends 110) to 111), sends 111) to 110), and
preserves the other logical states.

[0026] Further, it should be understood that the general
logical assembly instructions typically used during compi
lation of the quantum program 112 were designed without
direct consideration for the variations in the types of physi
cal hardware that may be used. As such, there is often a
mismatch between the logical instructions and the capabili
ties of the particular QIP platform. For example, on some
QIP platforms, it may not be obvious how to implement the
CNOT gate directly on that particular physical platform. As
such, a CNOT gate may be further decomposed into physical
gates in a standard gate-based compilation. Other example
physical quantum gates for various architectures include, for
example, in platforms with Heisenberg interaction Hamil
tonian, such as quantum dots, the directly implementable
2-qubit physical gate is the ySWAP gate (which implements
a SWAP when applied twice). In platforms with ZZ inter
action Hamiltonian, such as superconducting systems of
Josephson flux qubits and NMR quantum systems, the
physical gate is the CPhase gate, which is identical to the
CNOT gate up to single qubit rotations. In platforms with
XY interaction Hamiltonian, such as capacitively coupled
Josephson charge qubits (e.g., transmon qubits), the 2-qubit
physical gate is iSWAP gate. For trapped ion platforms with
dipole-chain interaction, two popular physical 2-qubit gates
are the geometric phase gate and the XX gate.

[0027] The quantum processor 132 can be continuously
driven by external physical operations to any state in the
space sparmed by the logical states. The physical operations,
called control fields, are specific to the underlying system,
with control fields and system characteristics controlling a
unique and time-dependent quantity called the Hamiltonian.
The Hamiltonian determines the evolution path of the quan
tum states. For example, in superconducting systems such as
the example quantum computing device 130, the qubits 134
can be driven to rotate continuously on the Bloch sphere by
applying microwave electrical signals. By varying the inten
sity of the microwave signal, the speed of rotation of the
qubit 134 can be manipulated. The ability to engineer the
system Hamiltonian in real time allows the quantum com
puting system 100 to direct the qubits 134 to the quantum
state of interest through precise control of related control
fields. Thus, quantum computing may be achieved by con
structing a quantum system in which the Hamiltonian
evolves in a way that aligns with high probability upon final
measurement of the qubits 134. In the context of quantum
control, quantum gates can be regarded as a set of pre
programmed control fields performed on the quantum pro
cessor 132.
[0028] In the example embodiment, the control computing
device 110 includes a compilation engine 114 that, during
operation, is configured to compile the quantum program
112 (e.g., from source code) into an optimized physical
schedule 116. The optimized physical schedule 116 repre
sents a set of control instructions and associated schedule
that, when sent to the quantum computing device 130 as

US 2021/0334081 Al

optimized control pulses 120 (e.g., the pre-programmed
control fields) by a signal generator 118, cause the quantum
computing device 130 to execute the quantum program 112,
thereby generating an execution result 140. In the example
embodiment, the quantum computing device 130 is a super
conducting device and the signal generator 118 is an arbi
trary wave generator ("A WG") configured to perform the
optimized control pulses 120 on the quantum processor 132
(e.g., via microwave pulses sent to the qubits 134, where the
axis of rotation is determined by the quadrature amplitude
modulation of the signal and where the angle of rotation is
determined by the pulse length of the signal). It should be
understood that other quantum computing architectures may
have different supporting hardware.

[0029] In other words, the compilation engine 114, in the
example embodiment, takes the quantum program 112 as
input, applying a series of transformations to produce con
trol pulses (e.g., the optimized physical schedule 116) that
implement the computation on the quantum computing
device 130. Several operational objectives of the compila
tion engine 114, in the example embodiment, include: (A)
breaking up the logical operations of the quantum program
112 into subsets, or blocks of qubits 134 (and their associ
ated operations) such that an internal optimal control unit
module (not shown in FIG. 1) is able to generate adequate
optimization solutions for the subset of instructions; (B)
addressing parallelism problems inherent in breaking up the
logical operations into blocks; and (C) optimizing the logical
operations based on the strengths and weaknesses of the
underlying physical hardware.

[0030] FIG. 2 is a component diagram of the compilation
engine 114 shown in FIG. 1. The modules shown in FIG. 2
are organized into subsystems based on their types of
processing operations and the level at which the modules
perform their operations as the compilation engine 114
compiles the quantum program 112 and prepares the opti
mized physical schedule 116 for execution. In the example
embodiment, the compilation engine 114 includes a pro
gram-level analysis subsystem 210 that includes a loop
unrolling module 212 and a module flattening module 214.
The program-level analysis subsystem 210 compiles the
quantum program 112, lowering the high-level descriptions
of quantum algorithms to a logical assembly that retains gate
dependence relations. In the example embodiment, the logi
cal assembly instructions are Open Quantum Assembly
Language (QASM) instructions. Further, the modules of the
program-level analysis subsystem perform program-level
analysis. More specifically, the loop unrolling module 212
performs loop unrolling on the quantum program 112,
expanding loops into serial instructions. With quantum
programs, inputs are generally known in advance. As such,
the loop unrolling module 212 determines how many times
a loop is going to be executed and unpacks those instructions
for each iteration. This type of optimization allows better
optimization, as more is known about the nature of the
instructions earlier in the process than with conventional
classical programs. The module flattening module 214
expands a function called by the quantum program, replac
ing the function name with its contents (e.g., the instructions
that perform the function). In the example embodiment, the
program-level analysis subsystem 210 uses ScaffCC com
piler for various compilation operations, including module
flattening.

4
Oct. 28, 2021

[0031] The program-level analysis module 210 produces
logical assembly instructions in an intermediate representa
tion that is passed to a logical-level analysis subsystem 220
for optimization processing at the logical level (e.g., when
there is not yet a physical mapping onto actual qubits 134).
In the example embodiment, the logical-level analysis sub
system 220 includes a commutativity detection module 222
and a commutativity-aware scheduling module 224. The
logical-level analysis subsystem 220 explores commutativ
ity by aggregating highly commutative instructions together
into logical instruction blocks (referred to herein as "logical
blocking"). Unlike traditional logical scheduling, the logi
cal-level analysis subsystem generates a much more efficient
logical schedule by rearranging the highly commutative
instructions at the logical level. Some known optimization
systems perform commutativity optimization, but at the
physical level. However, in near-term quantum applications,
it is common for instructions within an instruction block to
not commute, but for the full instruction blocks to commute
with each other. As such, the commutativity detection mod
ule 222 performs commutativity detection at the logical
level, forming a highly commutative instruction set for the
input quantum circuit. The commutativity-aware scheduling
module 224 utilizes commutativity to enable additional
logical level optimization with parallelism. More specifi
cally, the commutativity-aware scheduling module 224 finds
blocks of instructions that maximize parallelism without
concern for cost of swaps (e.g., in quantum architectures
where the cost of communication is cheap, such as with
superconducting architectures).

[0032] From the processing performed by the commuta
tivity detection module 222 and the commutativity-aware
scheduling module 224, the logical-level analysis subsystem
220 provides an optimized logical schedule to a mapping
level analysis subsystem 230. In the example embodiment,
the mapping-level analysis subsystem assigns the qubits of
the logical instructions to particular real qubits 134 of the
processor 132 while also performing mapping-level optimi
zations and constraint resolutions during the process. More
specifically, the mapping-level analysis subsystem 230
includes a qubit mapping module 232 and a topology
constraint resolving module 234. The logically-scheduled
instructions provided by the logical-level analysis subsys
tem 220 do not account for any topological connectivity
constraints of the underlying hardware. In the example
embodiment, the quantum processor 132 is a rectangular
grid qubit topology with two-qubit operations only permit
ted between direct neighbors. The qubit mapping module
232 assigns instructions to particular qubits 134. The qubit
mapping module 232 places frequently interacting qubits
near each other by bisecting the qubit interaction graph
along a cut with few crossing edges. In the example embodi
ment, the qubit mapping module 232 uses the METIS graph
partitioning library, applying this approach recursively on
the partitions, yielding a heuristic mapping that reduces the
distances of CNOT operations, effectively minimizing dis
tance between things that talk to each other. Once distance
has been minimized by the qubit mapping module 232,
physical constraints of the underlying hardware are consid
ered with respect to the qubit mapping. For those two-qubit
operations in which qubits need to be adjacent but are not
(e.g., based on the current schedule and mapping), SWAP
operations are introduced to move the control and target
qubits to be adjacent.

US 2021/0334081 Al

[0033] From the processing performed by the qubit map
ping module 232 and the topology constraint resolving
module 234, the mapping-level analysis subsystem 230
provides a tentative physical schedule to a cross-layer analy
sis subsystem 240. In the example embodiment, the cross
layer analysis subsystem 240 is configured to further opti
mize the tentative physical schedule and generate the
optimized control pulses 120 for execution. The cross-layer
analysis subsystem 240 includes a physical blocking module
244, a candidate instruction unitaries module 246, and an
optimal control unit module 242 that, together, refine the
tentative physical schedule into the optimized control pulses
120 with physical blocking and optimal control.

[0034] More specifically, the cross-layer analysis subsys
tem 240 iterates with the optimal control unit module 242
and the physical blocking module 244 to generate the
circuit's final aggregated instructions (referred to herein as
"physical blocking"). The optimal control unit module 242
optimizes control pulses for each aggregated instruction.
More specifically, the optimal control unit module 242
numerically finds the optimal Hamiltonian path from a
starting quantum state to a final quantum state. Consider a
quantum system with a set of external control fields u1 , ...

, uM that can be tuned in real time. Optimal control mini
mizes deviations from a target state by adjusting each
control field u. In the example embodiment, the optimal
control unit module 242 utilizes gradient ascent pulse engi
neering ("GRAPE") algorithm. In GRAPE, at every itera
tion, the gradient of the target loss function (e.g., usually
fidelity) with respect to a control field uk at time step j in the
evolution can be explicitly calculated by solving Schriiding
er's equation. A control field ukG) will be updated in the
direction of the gradient with adaptive step size E. With
enough iterations, the converged control pulses are expected
to drive the system from the initial state to the final state
along an optimized path. Gradient methods running time and
memory use grow exponentially with the size of the quan
tum system. The computational resources (e.g., time, com
puter memory, processing operations) required for optimiz
ing circuits grows exponentially. The numerical stability
also drops as the number of qubits in the quantum system
grows. As such, the present quantum system 100 optimizes
quantum processors 132 in groups of up to ten qubits, as
optimal control tends to be able to optimize systems of ten
qubits efficiently with a practical allocation of computational
resources. The optimal control unit module 242 is based on
automatic differentiation and a Tensorflow framework.
Automatic differentiation allows users to specify advanced
optimization criteria and easily incorporate those criteria
into pulse generation at this stage (e.g., suppressing
unwanted qubit levels, avoiding large voltage fluctuations,
and pulse latency).

[0035] One challenge of aggregating multi-qubit instruc
tions is a conflict between parallelism and the need for larger
instruction size for additional speedup. Aggregating new
instructions may potentially compromise parallelism. To
protect parallelism, the cross-layer analysis subsystem 240
treats larger aggregated instructions as having more opti
mized control pulses. Further, the cross-layer analysis sub
system 240 also identifies monotonic actions as actions that
will not delay critical paths even if the pulses in the new
instruction are not optimized because, in these actions, the
reward of reducing circuit latency from aggregating a col
lection of instructions is strictly higher than aggregating a

5
Oct. 28, 2021

subset of the collection, as parallelism is not compromised.
As such, monotonic actions can be checked by explicitly
calculating the original circuit depth with the depth upon
executing the action. During physical blocking, the physical
blocking module 244 traverses a gate dependence graph
("GDG") used to represent the instructions for the program
112. For each instruction in the GDG, the monotonic action
set is searched and the best action is identified and kept in
a global table. After traversal of the GDG, the global best
action is performed, and the GDG is action table are
updated. This is repeated until no more actions can be made.
Then the latency of each aggregated instruction is updated
by querying the optimal control unit module 242. This
updated instruction latency could change the circuit struc
ture and potentially create more monotonic actions. As such,
the cross-layer analysis subsystem 240 iteratively performs
physical aggregation and updating with the optimal control
unit module 240 until the GDG converges.

[0036] FIG. 3 is a flow chart illustrating an example
method 300 for optimizing the compilation of the quantum
program 112 for execution on the quantum computing
device 130 shown in FIG. 1. In the example embodiment,
the method 300 is performed on the control computing
device 110 (e.g., by the subsystems and modules of compi
lation engine 114). The compilation engine 114 starts with
the source code of the quantum program 112. The compi
lation engine 114 performs loop unrolling on the quantum
program 112 (see operation 310), as described with respect
to the loop unrolling module 212 of FIG. 2, as well as
module flattening (see operation 312), as described with
respect to the module flattening module 214 of FIG. 2. The
compilation engine 114 then compiles the quantum program
112 into logical assembly 316 (operation 314). In the
example embodiment, this compilation is performed with
the StaffCC compiler. The logical assembly 316 can be in
any quantum assembly such as, for example, QASM,
OpenQASM, XACC intermediate representation (IR), or
LLVM.

[0037] In the example embodiment, the compilation
engine 114 performs logical blocking on logical assembly
316 generated from the previous operations. The logical
assembly 316 can be abstracted as a gate dependence graph.
FIG. 4Aillustrates an example gate dependency graph, GDG
400. The example GDG 400 is constructed from a quantum
circuit representing the quantum approximate optimization
algorithm ("QAOA") that solves the MAX_CUT problem
for a triangle. The circuit is decomposed into a standard gate
set. An identity instruction 410 is inserted as a virtual root
for every GDG to connect instructions at depth 0. Because
this virtual root is the identity instruction 410, it does not
interfere with the computational result or latency. Further,
each path is labelled by a corresponding qubit name. In the
example shown here, the GDG 400 represents the quantum
program after the module flattening of operation 312 (e.g.,
logical assembly 316, a "flattened" quantum program).

[0038] The main difference between a quantum GDG and
a classical program dependence graph ("PDG") is that
quantum commutation rules apply in a quantum GDG. In a
quantum GDG, consecutive commuting gates do not have
parent-child relations and can be scheduled in any order.
GDG provides a flexible and systematic way to search a
quantum circuit, which serves as a visualization tool. The
instructions that can be merged are direct predecessors to
each other, or commutative siblings. The GDG may be

US 2021/0334081 Al

traversed to look for instructions that can be merged. The
search is efficient because the product of two 4x4 (2-qubit)
non-diagonal unitaries that only share one qubit cannot be
diagonal. As such, for each instruction, the 2-qubit chain
after it is searched. More specifically, and referring now to
FIGS. 3 and 4A, the compilation engine 114 relies on several
commutation relations when performing logical blocking.
Important commutation relations include: two quantum
gates applied on different qubits commute; the control bit of
a CNOT gate commutes with Z rotations; two CNOT gates
commute if the control of one is not the target of the other;
and two gates representing diagonal unitary operators com
mute (e.g., Z rotations are diagonal unitaries). Other com
mutation rules may also be applied by the compilation
engine 114. In the example embodiment, commutation rules
between two gates A, and B are resolved by explicitly
checking the equality of unitary operators AB and BA.

[0039] In the example shown in FIG. 4A, the CNOT-Rz
CNOT structures shown here commute with each other, but
each CNOT and Rz in these structures does not commute. As
such, the compilation engine 114 identifies each of the three
CNOT-Rz-CNOT sets of instructions as blocks of instruc
tions that are available for commutation. FIG. 4B illustrates
an updated GDG 420 from this example. In the example
embodiment, the GDG 420 represents the state of the GDG
400 after the commutativity detection of operation 320 is
performed by the compilation engine 114. By detecting
commutativity of the CNOT-Rz-CNOT instructions, the
compilation engine 114 transforms the GDG 400 of FIG. 4A
into the GDG 420 shown here. This configuration allows
more flexibility in scheduling. After contracting the con
secutive CNOT-Rz-CNOT instructions in GDG 420, the
compiler is able to schedule new commuting CNOT-Rz
CNOT instructions in any order. In contrast, with the GDG
400 shown in FIG. 4A, scheduling options are limited.

[0040] Referring again to FIG. 3, the compilation engine
114 then performs commutativity-aware scheduling (see
operation 322). To perform this scheduling, in the example
embodiment, the compilation engine 114 first assigns a
non-positive priority value to each instruction. The priority
value of an instruction is the negative of its execution
starting time. For the priority value for an instruction, G, the
scheduler finds all of G's parents in the GDG 420 and, for
each parent, the scheduler subtracts its latency from its
priority value as a potential priority value for G. G is then
assigned the minimal potential priority value of all its
parents. For the identity instruction 410 at the virtual root of
the GDG 420, a priority value of zero and a latency value of
zero are assigned. It is possible that commuting instructions
conflict with each other (e.g., the three CNOT-Rz-CNOT
instructions of FIG. 4B have the same priority value but
cannot be scheduled at the same time).
[0041] To schedule those conflicting instructions, the com
pilation engine 114 forms a computational graph, Ge, with
qubits as vertices and gates as edges (e.g., 1-qubit gates
being self-loops on a single vertex). If the computational
graph, Ge, is a matching of itself, then no scheduling is
needed since all gates can be executed at the same time. For
cases where Ge is not a matching, the compilation engine
114 performs a conflict resolution procedure for scheduling.
More specifically, the compilation engine 114 finds the
maximal cardinality matching of Ge, assigns those edges
higher priority value, and proceeds to the rest of the graph.
FIGS. SA-SD illustrate stages of an example computational

6
Oct. 28, 2021

graph 500 used by the compilation engine 114 to schedule
conflicting instructions. In the example embodiment, the
underlying quantum system is a 6-qubit device, and all
instructions have the same latency. The compilation engine
114 performs one or more rounds of graph analysis, each
round finding a maximal matching of non-adjacent edges
and then schedules those edges. The process repeats for the
remaining edges, each time finding a maximal matching of
non-adjacent remaining edges and then scheduling those
edges. In FIG. SA, all conflicting operations are included. In
FIG. SB, the conflict resolution has identified four edges,
three of which are 1-qubit self-loops (e.g., for qubits 2, 5,
and 6), as well as a 2-qubit operation involving qubits 3 and
4. As such, these four operations do not conflict with each
other and are scheduled first. In FIG. SC, the conflict
resolution process next identifies three remaining edges, 1
and 2, 3 and 6, and 4 and 5. These three operations do not
conflict with each other and are scheduled next. In a third
round represented by FIG. SD, the conflict resolution pro
cess identifies only one remaining operation and this opera
tion is scheduled last. The compilation engine 114 performs
the conflict resolution procedure for every group of con
flicting instructions encountered. After all instructions are
assigned a priority value, the compilation engine 114 sched
ules greedily with priority value from high to low.

[0042] In the example embodiment, the compilation
engine 114 is operating to maximize parallelism and not to
minimize the number of SWAP gates in the backend. In
certain quantum computing environments such as the
example superconducting architecture, SWAP gates are gen
erally high cost, but without optimal control, and can, in
some situations, be beneficial in reducing latency.

[0043] Returning again to FIG. 3, after commutativity
aware scheduling of operation 322, the compilation engine
114 has a logical schedule 324 that has been optimized for
commutativity. The compilation engine 114 performs qubit
mapping and topology constraint resolution (see operations
330, 332), as described above. Qubit mapping and topology
constraint resolution may lead to changes in the GDG 420,
including possible introduction of one or more SWAP gates.
FIG. 4C illustrates an updated GDG 440 from this example.
In the example embodiment, the GDG 440 represents the
state of the GDG 400 after the commutativity-aware sched
uling of operation 322, the qubit mapping of operation 330,
and the topology constraint resolution of operation 332 are
performed by the compilation engine 114. In the example
embodiment, a SWAP gate 442 has been added to the GDG
440.

[0044] Referring again to FIG. 3, the qubit mapping and
topology constraint resolution of operations 330, 332 have
generated a tentative physical schedule 334 for the opera
tions of the quantum program 112. At this stage, the com
pilation engine 114 enters another round of physical block
ing with aggregated instruction scheduling 340 and pulse
optimization 344. In the example embodiment, the compi
lation engine 114 aggregates two consecutive instructions in
this stage of instruction aggregation if (A) the two instruc
tions overlap (e.g., share some common qubits) and (B) one
is the parent of the other on every qubit path they share or
they are siblings. In addition, the number of qubits in an
aggregated instruction may be limited in light of the per
formance limitations of the optimal control unit module 242.
The compilation engine 114 performs physical blocking
with aggregated instruction scheduling (see operation 340)

US 2021/0334081 Al

and pulse optimization (see operation 344), as described
above with respect to FIG. 2, looping until the compilation
engine 114 identifies no further aggregations to perform.
[0045] Further, the compilation engine 114 also performs
additional commutativity detection at this stage. One
example commutation of instructions that may be performed
is aggregated instructions representing diagonal unitaries.
Diagonal unitaries are widely used in decomposition meth
ods of quantum chemistry applications and near-term opti
mization algorithms. As such, the compilation engine 114
traverses the GDG 460 searching for 2-qubit instructions
representing diagonal unitaries greedily in the action space
described above are aggregated to extract more commuta
tivity, merging those whose product is diagonal.
[0046] FIG. 4D illustrates an updated GDG 460 from this
example. In the example embodiment, the GDG 460 repre
sents the state of the GDG 400 after the physical blocking
and pulse optimization of operations 340, 344 are performed
by the compilation engine 114, where bold arrows indicate
the critical paths. In the example embodiment, after custom
izing the final aggregated instruction set, the updated GDG
460 is optimized for both parallelism and for pulse genera
tion. At this stage, the compilation engine 114 computes the
unitary transformation of which the aggregated instructions
represent, which is then sent to the optimal control unit
module 242 for pulse optimization 344. The optimal control
unit module 242 optimizes control pulses for the underlying
quantum hardware (e.g., the quantum processor 134). The
optimized control pulses 120 can generate the desired uni
tary operation using stochastic gradient descending. The
optimal control unit module 242 returns the control pulses
above the fidelity threshold that also minimize circuit
latency.
[0047] Referring again to FIG. 3, upon completion, the
compilation engine 114 produces the optimized control
pulses 120 for transmission to the signal generator 118,
which may then execute the control pulses on the quantum
processor 132.
[0048] In some embodiments, a quantum computing sys
tem for compiling and executing instructions on a quantum
processor comprises the quantum processor including a
plurality of qubits, a classical memory including a quantum
program, the quantum program defines a plurality of instruc
tions in a source language, and a classical processor com
municatively coupled to the classical memory. The memory
includes computer-executable instructions that, when
executed by the classical processor, cause the classical
processor to: (i) compile the quantum program into logical
assembly instructions in an intermediate language; (ii)
aggregate the logical assembly instructions together into a
plurality of logical blocks of instructions; (iii) generate a
logical schedule for the quantum program based on com
mutativity between the plurality of logical blocks; (iv)
generate a tentative physical schedule based on the logical
schedule, the tentative physical schedule includes a mapping
of the logical assembly instructions in the logical schedule
onto the plurality of qubits of the quantum processor; (v)
aggregate instructions together within the tentative physical
schedule that do not reduce parallelism, thereby generating
an updated physical schedule; (vi) generate optimized con
trol pulses for the aggregated instructions of the quantum
program; and (vii) execute the quantum program on the
quantum processor with the optimized control pulses and the
updated physical schedule.

7
Oct. 28, 2021

[0049] In some embodiments, the instructions further
cause the processor to generate a gate dependence graph for
the quantum program from the logical assembly instruc
tions, wherein aggregating sets of logical assembly instruc
tions together further includes determining commutativity in
the gate dependency graph, and wherein the aggregating is
based on aggregation rules defined on the gate dependence
graph. In some embodiments, determining commutativity in
the gate dependency graph includes forming one or more
intermediate aggregated instructions within the gate depen
dency graph. In some embodiments, the instructions further
cause the processor to determine priority values for each
instruction in the quantum program by: (a) identifying, for
a particular instruction, each parent of the particular instruc
tion from the gate dependency graph; (b) for each identified
parent of the particular instruction, subtracting a latency of
the parent from a priority value of the parent, thereby
identifying a potential priority value for the particular
instruction; (c) assigning a minimal potential priority value
to the particular instruction from the identified potential
priority values of the identified parents; and (d) schedule
each instruction in the quantum program based on the
assigned priority value. In some embodiments, aggregating
instructions together in the tentative physical schedule com
prises: (a) identifying a monotonic action involving aggre
gation of two or more instructions within the gate depen
dence graph that does not delay critical paths within the gate
dependence graph; (b) aggregating the two or more instruc
tions within the gate dependence graph; and (c) updating the
latency of each aggregated instruction; and scheduling a
circuit of aggregated instructions based on the gate depen
dence graph. In some embodiments, executing the quantum
program further includes transmitting control pulse
sequences to the quantum processor based on the circuit of
aggregated instructions. In some embodiments, aggregating
the logical assembly instructions further includes aggregat
ing a first set of logical assembly instructions the product of
which are diagonal unitaries.

[0050] In some embodiments, a computer-implemented
method for compiling instructions for a quantum computer
is provided. The method is implemented using a classical
processor in communication with a classical memory. The
method comprises (i) receiving a quantum program from a
user, the quantum program defining a plurality of instruc
tions in a source language; (ii) compiling the quantum
program into logical assembly instructions in an intermedi
ate language; (iii) aggregating the logical assembly instruc
tions together into a plurality of logical blocks of instruc
tions; (iv) generating a logical schedule for the quantum
program based on commutativity between the plurality of
logical blocks; (v) generating a tentative physical schedule
based on the logical schedule, the tentative physical sched
ule including a mapping of the logical assembly instructions
in the logical schedule onto a plurality of qubits of a
quantum processor; (vi) aggregating instructions together in
the tentative physical schedule that do not reduce parallel
ism, thereby generating an updated physical schedule; (vii)
generating optimized control pulses for the aggregated
instructions of the quantum program; and (viii) executing
the quantum program on the quantum processor with the
optimized control pulses and the updated physical schedule.

[0051] In some embodiments, the method further includes
generating a gate dependence graph for the quantum pro
gram from the logical assembly instructions, wherein aggre-

US 2021/0334081 Al

gating sets of logical assembly instructions together further
includes determining commutativity in the gate dependency
graph, wherein the aggregating is based on aggregation rules
defined on the gate dependency graph. In some embodi
ments, determining commutativity in the gate dependency
graph includes forming one or more intermediate aggregated
instructions within the gate dependency graph. In some
embodiments, the method further includes determining pri
ority values for each instruction in the quantum program by:
(a) identifying, for a particular instruction, each parent of the
particular instruction from the gate dependency graph; (b)
for each identified parent of the particular instruction, sub
tracting a latency of the parent from a priority value of the
parent, thereby identifying a potential priority value for the
particular instruction; and (c) assigning a minimal potential
priority value to the particular instruction from the identified
potential priority values of the identified parents; and sched
uling each instruction in the quantum program based on the
assigned priority value. In some embodiments, aggregating
instructions together in the tentative physical schedule com
prises: (a) identifying a monotonic action involving aggre
gation of two or more instructions within the gate depen
dence graph that does not delay critical paths within the gate
dependence graph; (b) aggregating the two or more instruc
tions within the gate dependence graph; (c) updating the
latency of each aggregated instruction; and (d) scheduling a
circuit of aggregated instructions based on the gate depen
dence graph. In some embodiments, executing the quantum
program further includes transm1ttmg control pulse
sequences to the quantum processor based on the circuit of
aggregated instructions. In some embodiments, aggregating
the logical assembly instructions further includes aggregat
ing a first set of logical assembly instructions the product of
which are diagonal unitaries.

[0052] In some embodiments, a non-transitory computer
readable storage media having computer-executable instruc
tions embodied thereon is provided. When executed by at
least one classical processor, the computer-executable
instructions cause the classical processor to: (i) receive a
quantum program from a user, the quantum program defin
ing a plurality of instructions in a source language; (ii)
compile the quantum program into logical assembly instruc
tions in an intermediate language; (iii) aggregate the logical
assembly instructions together into a plurality of logical
blocks of instructions; (iv) generate a logical schedule for
the quantum program based on commutativity between the
plurality of logical blocks; (v) generate a tentative physical
schedule based on the logical schedule, the tentative physi
cal schedule including a mapping of the logical assembly
instructions in the logical schedule onto a plurality of qubits
of a quantum processor; (vi) aggregate instructions together
in the tentative physical schedule that do not reduce paral
lelism, thereby generating an updated physical schedule;
(vii) generate optimized control pulses for the aggregated
instructions of the quantum program; and (viii) execute the
quantum program on the quantum processor with the opti
mized control pulses and the updated physical schedule.

[0053] In some embodiments, the computer-executable
instructions further cause the classical processor to: generate
a gate dependence graph for the quantum program from the
logical assembly instructions, wherein aggregating sets of
logical assembly instructions together further includes deter
mining commutativity in the gate dependency graph,
wherein the aggregating is based on aggregation rules

8
Oct. 28, 2021

defined on the gate dependency graph. In some embodi
ments, determining commutativity in the gate dependency
graph includes forming one or more intermediate aggregated
instructions within the gate dependency graph. In some
embodiments, the computer-executable instructions further
cause the classical processor to: determine priority values
for each instruction in the quantum program by: (a) identi
fying, for a particular instruction, each parent of the par
ticular instruction from the gate dependency graph; (b) for
each identified parent of the particular instruction, subtract
ing a latency of the parent from a priority value of the parent,
thereby identifying a potential priority value for the particu
lar instruction; and (c) assigning a minimal potential priority
value to the particular instruction from the identified poten
tial priority values of the identified parents; and schedule
each instruction in the quantum program based on the
assigned priority value. In some embodiments, aggregating
instructions together in the tentative physical schedule com
prises: (a) identifying a monotonic action involving aggre
gation of two or more instructions within the gate depen
dence graph that does not delay critical paths within the gate
dependence graph; (b) aggregating the two or more instruc
tions within the gate dependence graph; (c) updating the
latency of each aggregated instruction; and (d) scheduling a
circuit of aggregated instructions based on the gate depen
dence graph. In some embodiments, aggregating the logical
assembly instructions further includes aggregating a first set
of logical assembly instructions the product of which are
diagonal unitaries.

[0054] A quantum compilation engine for compiling a
quantum program to be executed on quantum processor that
includes a plurality of qubits is provided. The quantum
compilation engine comprises: a classical memory including
the quantum program, the quantum program defines a plu
rality of instructions in a source language; and a classical
processor communicatively coupled to the memory. The
memory includes computer-executable instructions that,
when executed by the classical processor, cause the classical
processor to: (i) compile the quantum program into logical
assembly instructions in an intermediate language; (ii)
aggregate the logical assembly instructions together into a
plurality of logical blocks of instructions; (iii) generate a
logical schedule for the quantum program based on com
mutativity between the plurality of logical blocks; (iv)
generate a tentative physical schedule based on the logical
schedule, the tentative physical schedule includes a mapping
of the logical assembly instructions in the logical schedule
onto the plurality of qubits of the quantum processor; (v)
aggregate instructions together within the tentative physical
schedule that do not reduce parallelism, thereby generating
an updated physical schedule; and (vi) generate a pulse
specification based on the updated physical schedule.

[0055] As will be appreciated based on the foregoing
specification, the above-described embodiments of the dis
closure may be implemented using computer programming
or engineering techniques including computer software,
firmware, hardware or any combination or subset thereof,
wherein the technical effect is to compile and optimize a
quantum program for a quantum processor. Any such result
ing program, having computer-readable code means, may be
embodied or provided within one or more computer-read
able media, thereby making a computer program product,
(i.e., an article of manufacture), according to the discussed
embodiments of the disclosure. The computer-readable

US 2021/0334081 Al

media may be, for example, but is not limited to, a fixed
(hard) drive, diskette, optical disk, magnetic tape, semicon
ductor memory such as read-only memory (ROM), and/or
any transmitting/receiving medium such as the Internet or
other communication network or link. The article of manu
facture containing the computer code may be made and/or
used by executing the code directly from one medium, by
copying the code from one medium to another medium, or
by transmitting the code over a network.
[0056] These conventional computer programs (also
known as programs, software, software applications, "apps",
or code) include machine instructions for a conventional
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the terms "machine-readable medium" "computer
readable medium" refers to any computer program product,
apparatus and/or device (e.g., magnetic discs, optical disks,
memory, Programmable Logic Devices (PLDs)) used to
provide machine instructions and/or data to a programmable
processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The "machine-readable medium" and "computer-readable
medium," however, do not include transitory signals. The
term "machine-readable signal" refers to any signal used to
provide machine instructions and/or data to a programmable
processor.
[0057] This written description uses examples to disclose
the disclosure, including the best mode, and also to enable
any person skilled in the art to practice the disclosure,
including making and using any devices or systems and
performing any incorporated methods. The patentable scope
of the disclosure is defined by the claims, and may include
other examples that occur to those skilled in the art. Such
other examples are intended to be within the scope of the
claims if they have structural elements that do not differ
from the literal language of the claims, or if they include
equivalent structural elements with insubstantial differences
from the literal languages of the claims.

What is claimed is:
1. A quantum computing system for compiling and

executing instructions on a quantum processor, the system
comprising:

the quantum processor including a plurality of qubits;
a classical memory including a quantum program, the

quantum program defines a plurality of instructions in
a source language; and

a classical processor communicatively coupled to the
classical memory, the memory including computer
executable instructions that, when executed by the
classical processor, cause the classical processor to:
compile the quantum program into logical assembly

instructions in an intermediate language;
aggregate the logical assembly instructions together

into a plurality of logical blocks of instructions;
generate a logical schedule for the quantum program

based on commutativity between the plurality of
logical blocks;

generate a tentative physical schedule based on the
logical schedule, the tentative physical schedule
includes a mapping of the logical assembly instruc
tions in the logical schedule onto the plurality of
qubits of the quantum processor;

9
Oct. 28, 2021

aggregate instructions together within the tentative
physical schedule that do not reduce parallelism,
thereby generating an updated physical schedule;

generate optimized control pulses for the aggregated
instructions of the quantum program; and

execute the quantum program on the quantum proces
sor with the optimized control pulses and the updated
physical schedule.

2. The quantum computing system of claim 1, wherein the
instructions further cause the processor to:

generate a gate dependence graph for the quantum pro
gram from the logical assembly instructions,

wherein aggregating sets of logical assembly instructions
together further includes determining commutativity in
the gate dependency graph, wherein the aggregating is
based on aggregation rules defined on the gate depen
dence graph.

3. The quantum computing system of claim 2, wherein
determining commutativity in the gate dependency graph
includes forming one or more intermediate aggregated
instructions within the gate dependency graph.

4. The quantum computing system of claim 2, wherein the
instructions further cause the processor to:

determine priority values for each instruction in the
quantum program by:
identifying, for a particular instruction, each parent of

the particular instruction from the gate dependency
graph;

for each identified parent of the particular instruction,
subtracting a latency of the parent from a priority
value of the parent, thereby identifying a potential
priority value for the particular instruction; and

assigning a minimal potential priority value to the
particular instruction from the identified potential
priority values of the identified parents; and

schedule each instruction in the quantum program
based on the assigned priority value.

5. The quantum computing system of claim 2, wherein
aggregating instructions together in the tentative physical
schedule comprises:

identifying a monotonic action involving aggregation of
two or more instructions within the gate dependence
graph that does not delay critical paths within the gate
dependence graph;

aggregating the two or more instructions within the gate
dependence graph;

updating the latency of each aggregated instruction; and
scheduling a circuit of aggregated instructions based on

the gate dependence graph.
6. The quantum computing system of claim 5, wherein

executing the quantum program further includes transmit
ting control pulse sequences to the quantum processor based
on the circuit of aggregated instructions.

7. The quantum computing system of claim 1, wherein
aggregating the logical assembly instructions further
includes aggregating a first set of logical assembly instruc
tions the product of which are diagonal unitaries.

8. A computer-implemented method for compiling
instructions for a quantum computer, the method is imple
mented using a classical processor in communication with a
classical memory, the method comprising:

receiving a quantum program from a user, the quantum
program defining a plurality of instructions in a source
language;

US 2021/0334081 Al

compiling the quantum program into logical assembly
instructions in an intermediate language;

aggregating the logical assembly instructions together
into a plurality of logical blocks of instructions;

generating a logical schedule for the quantum program
based on commutativity between the plurality oflogical
blocks;

generating a tentative physical schedule based on the
logical schedule, the tentative physical schedule includ
ing a mapping of the logical assembly instructions in
the logical schedule onto a plurality of qubits of a
quantum processor;

aggregating instructions together in the tentative physical
schedule that do not reduce parallelism, thereby gen
erating an updated physical schedule;

generating optimized control pulses for the aggregated
instructions of the quantum program; and

executing the quantum program on the quantum processor
with the optimized control pulses and the updated
physical schedule.

9. The method of claim 8, further comprising:
generating a gate dependence graph for the quantum

program from the logical assembly instructions,
wherein aggregating sets of logical assembly instructions

together further includes determining commutativity in
the gate dependency graph, wherein the aggregating is
based on aggregation rules defined on the gate depen
dency graph.

10. The method of claim 9, wherein determining com
mutativity in the gate dependency graph includes forming
one or more intermediate aggregated instructions within the
gate dependency graph.

11. The method of claim 9, further comprising:
determining priority values for each instruction in the

quantum program by:
identifying, for a particular instruction, each parent of

the particular instruction from the gate dependency
graph;

for each identified parent of the particular instruction,
subtracting a latency of the parent from a priority
value of the parent, thereby identifying a potential
priority value for the particular instruction; and

assigning a minimal potential priority value to the
particular instruction from the identified potential
priority values of the identified parents; and

scheduling each instruction in the quantum program
based on the assigned priority value.

12. The method of claim 9, wherein aggregating instruc
tions together in the tentative physical schedule comprises:

identifying a monotonic action involving aggregation of
two or more instructions within the gate dependence
graph that does not delay critical paths within the gate
dependence graph;

aggregating the two or more instructions within the gate
dependence graph;

updating the latency of each aggregated instruction; and
scheduling a circuit of aggregated instructions based on

the gate dependence graph.
13. The method of claim 12, wherein executing the

quantum program further includes transmitting control pulse
sequences to the quantum processor based on the circuit of
aggregated instructions.

10
Oct. 28, 2021

14. The method of claim 8, wherein aggregating the
logical assembly instructions further includes aggregating a
first set oflogical assembly instructions the product of which
are diagonal unitaries.

15. A non-transitory computer-readable storage media
having computer-executable instructions embodied thereon,
wherein when executed by at least one classical processor,
the computer-executable instructions cause the classical
processor to:

receive a quantum program from a user, the quantum
program defining a plurality of instructions in a source
language;

compile the quantum program into logical assembly
instructions in an intermediate language;

aggregate the logical assembly instructions together into
a plurality of logical blocks of instructions;

generate a logical schedule for the quantum program
based on commutativity between the plurality oflogical
blocks;

generate a tentative physical schedule based on the logical
schedule, the tentative physical schedule including a
mapping of the logical assembly instructions in the
logical schedule onto a plurality of qubits of a quantum
processor;

aggregate instructions together in the tentative physical
schedule that do not reduce parallelism, thereby gen
erating an updated physical schedule;

generate optimized control pulses for the aggregated
instructions of the quantum program; and

execute the quantum program on the quantum processor
with the optimized control pulses and the updated
physical schedule.

16. The non-transitory computer-readable storage media
of claim 15, wherein the computer-executable instructions
further cause the classical processor to:

generate a gate dependence graph for the quantum pro
gram from the logical assembly instructions,

wherein aggregating sets of logical assembly instructions
together further includes determining commutativity in
the gate dependency graph, wherein the aggregating is
based on aggregation rules defined on the gate depen
dency graph.

17. The non-transitory computer-readable storage media
of claim 16, wherein determining commutativity in the gate
dependency graph includes forming one or more interme
diate aggregated instructions within the gate dependency
graph.

18. The non-transitory computer-readable storage media
of claim 16, wherein the computer-executable instructions
further cause the classical processor to:

determine priority values for each instruction in the
quantum program by:

identifying, for a particular instruction, each parent of the
particular instruction from the gate dependency graph;

for each identified parent of the particular instruction,
subtracting a latency of the parent from a priority value
of the parent, thereby identifying a potential priority
value for the particular instruction; and

assigning a minimal potential priority value to the par
ticular instruction from the identified potential priority
values of the identified parents; and

schedule each instruction in the quantum program based
on the assigned priority value.

US 2021/0334081 Al

19. The non-transitory computer-readable storage media
of claim 16, wherein aggregating instructions together in the
tentative physical schedule comprises:

identifying a monotonic action involving aggregation of
two or more instructions within the gate dependence
graph that does not delay critical paths within the gate
dependence graph;

aggregating the two or more instructions within the gate
dependence graph;

updating the latency of each aggregated instruction; and
scheduling a circuit of aggregated instructions based on

the gate dependence graph.
20. The non-transitory computer-readable storage media

of claim 15, wherein aggregating the logical assembly
instructions further includes aggregating a first set of logical
assembly instructions the product of which are diagonal
unitaries.

21. A quantum compilation engine for compiling a quan
tum program to be executed on quantum processor that
includes a plurality of qubits, the quantum compilation
engine comprising:

a classical memory including the quantum program, the
quantum program defines a plurality of instructions in
a source language; and

11
Oct. 28, 2021

a classical processor communicatively coupled to the
memory, the memory including computer-executable
instructions that, when executed by the classical pro
cessor, cause the classical processor to:
compile the quantum program into logical assembly

instructions in an intermediate language;
aggregate the logical assembly instructions together

into a plurality of logical blocks of instructions;
generate a logical schedule for the quantum program

based on commutativity between the plurality of
logical blocks;

generate a tentative physical schedule based on the
logical schedule, the tentative physical schedule
includes a mapping of the logical assembly instruc
tions in the logical schedule onto the plurality of
qubits of the quantum processor;

aggregate instructions together within the tentative
physical schedule that do not reduce parallelism,
thereby generating an updated physical schedule;
and

generate a pulse specification based on the updated
physical schedule.

* * * * *

