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To my father who reminds me to work hard.



You’d surf across the kitchen sink upon a stick of gum.

You couldn’t hug your mama, you’d just have to hug her thumb.
You’d run from people’s feet in fright,

To move a pen would take all night,

(This poem took fourteen years to write—

"Cause I'm just one inch tall).

—Shel Silverstein, Where the Sidewalk Ends
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ABSTRACT

The point-pushing subgroup P(¥4) of the mapping class group Mod(X, 1) of a surface with
marked point is an embedding of 71 (34) given by pushing the marked point around loops.
We prove that for g > 3, the subgroup P(¥,) is the unique normal, genus g surface sub-
group of Mod(X,1). As a corollary to this uniqueness result, we give a new proof that
Out(Modi(ZgJ)) = 1, where Out denotes the outer automorphism group; a proof which
does not use automorphisms of complexes of curves. Ingredients in our proof of this charac-
terization theorem include combinatorial group theory, representation theory, the Johnson

theory of the Torelli group, surface topology, and the theory of Lie algebras.
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CHAPTER 1
INTRODUCTION

Let ¥4 (respectively, 34 1) be a compact, connected surface of genus g (respectively, with
one marked point). Let ¥ be either ¥4 or X, 1. The mapping class group Mod(X) is the
group of orientation-preserving homeomorphisms of 3 modulo isotopy. The map X 1 — 34

given by “forgetting” the marked point induces an injection
F:Mod(X41) < Mod(%g).

For g > 2, the point-pushing subgroup is defined by P(34) := ker(F).

Informally, P(X4) is the subgroup of Mod(¥, 1) consisting of elements that “push” the
marked point along closed curves in the surface. Birman in [3] (see also [4]) proved that
P(Xy) = m(Xg). A genus h surface group is any group isomorphic to 71 (). In particular,

P(Xg) is an example of a normal, genus g surface subgroup of Mod(%, 1).

Theorem 1.0.1 (Uniqueness of P(X,)). Let g > 3. The point-pushing subgroup P(3g) is

the unique normal, genus g surface subgroup inside Mod(% 1).

Remarks (on Theorem 1.0.1).

1. Theorem 1.0.1 has a beautiful free group analogue, proven by Formanek in 1990. Our
proof follows in outline the proof given by Formanek in [11]. Even so, in establishing
the main result we will have to overcome several obstacles to reconcile the differences
between free groups and surface groups. Let {a1,b1,...,a4,bq} be a standard set
of generators for m1(Xy). In general, the surface relation (H‘g la;, bj] = 1) pervades
the objects associated to m1(2y) and muddies the analogy between free and surface
groups. Some key differences between Fj, < Aut(Fy,) and m(¥g) < Mod(X, 1) are

summarized in Tablel.1.



Table 1.1: Key Surface Group Obstacles

Fy < Aut(Fy)

Wl(zg) < MOd(ZgJ)

The representation theory of GL,(Q) re-
veals properties of Aut(F,) from the
canonical surjection

Aut(Fn) - Aut(Fpn/v2(Fn)) = GLn(Z).

Let J(Fy) be the Torelli subgroup of
Aut(F},), see Definition 1.1.2. J(F},) has

torsion-free abelianization. Specifically,
Hi(I(Fn); Z) = A37™.

Let Jo(Fp) be the second term in the
Andreadakis-Johnson filtration, see Def-
inition 1.1.2.  Then, [J(Fy),I(F,)] =
32<Fn)'

The graded Lie algebra associated to the
lower central series of [, is free. See Sec-

tion 2.2.1.

The representation theory of Spy,(Q)
reveals properties of Mod(¥, 1) from
the standard symplectic representation

Mod(%g,1) — Spay(Z).

Let IJ(X) be the Torelli subgroup
of Mod(X, 1), see Definition 1.1.2.
The abelianization of J(X) contains
2-torsion. That is, H{(I(X));Z) =
A3Z29 @ B/(a) where B/(a) is 2-
torsion, see Proposition 2.2.5. The ex-
istence of this 2-torsion comes from the

Rochlin invariant in 3-manifold theory.

Let J2(¥) be the second term in
the Andreadakis-Johnson filtration, see
Definition 1.1.2. Then, [J(X),I(X)] #
J2(%).

The graded Lie algebra associated to
the lower central series of m1(¥y) is a
nontrivial quotient of the free Lie alge-

bra. See Section 2.2.1

2. That P(Xg) is normal in Mod (3 1) is necessary for the uniqueness result stated in

Theorem 1.0.1. Clay-Leininger-Mangahas in [8, Cor.1.3] construct infinitely many

nonconjugate genus g surface subgroups in Mod(Xy). See also the work of Leininger-

Reid [26, Cor.5.6]. Specifically for a surface with one marked point, we can find



surface subgroups 71(¥;,) < Mod(X, 1) for infinitely many A using the Thurston

norm (see Example 3.3.1 below).

3. Theorem 1.0.1 does not hold for g = 1. Because Mod(¥q 1) = SLoZ has a finite
index, free subgroup, Mod(¥1 1) has no surface subgroups. It is not known whether

or not P(¥2) is the only normal, genus 2 surface subgroup in Mod(Xg 1).

The extended mapping class group Mod™ () is the group of all homeomorphisms (ori-
entation preserving and reversing) of ¥, modulo isotopy. The Dehn-Nielsen-Baer theorem

establishes an isomorphism
® : Mod™(S,1) — Aut(r (5g)).

Let Inn(m1(X4)) be the group of inner automorphisms of 71(X,). As a consequence of the

Dehn-Nielsen-Baer theorem,
(P(S,)) = Inn(my (£g)) < Aut(m (Z,)).

Burnside in [7, pp. 261] proved that for a centerless group G (which gives G = Inn(G) <
Aut(Q@)), if every ¢ € Aut(Aut(G)) satisfies ¢(G) = G, then

Aut(Aut(G)) = Inn(Aut(G)) = Aut(G).

See Section 3.4 below for a short proof of this fact of Burnside. Since 71(X4) is centerless

for g > 1, Burnside’s result together with Theorem 1.0.1 implies:

Corollary 1.0.2 (Ivanov-McCarthy’s Theorem). Let g > 3. Then Out(Modi(Egjl)) is

trivial.

Remarks (on Corollary 1.0.2).

1. For ¢ > 3, Ivanov-McCarthy proved that Out(Modi(Eg’l))zl, from which they
deduced that Out(Mod(Xy)) = Z/2Z, see [16], [15, Th.5] and [29, Th.1]. In fact,
Ivanov-McCarthy proved a much stronger result for injective homeomorphisms of

finite index subgroups of Mod(34). Their work uses the deep theorem of Ivanov that
3



the automorphism group of the complex of curves is the extended mapping class

group. Our proof does not use this theorem.

2. The result of Ivanov-McCarthy that Out(Modi(Eg’l))zl implies that P(¥,) is
characteristic in Mod(X, 1), since all automorphisms of Modi(Eg’l) are inner.
In contrast, our characterization theorem (Theorem 1.0.1) implies that P(¥,) is
characteristic, from which we deduce (with Burnside) that Mod (X, 1) has no outer

automorphisms.

3. McCarthy in [29] proved that Out(Mod)i(ZZl) is nontrivial, which implies (with
Burnside) that P(39) is not characteristic in Modi(Eg’l). Thus, P(X9) is not the
only normal, genus 2 surface subgroup in Modi(Zgjl). However, it is unknown

whether or not these additional normal, genus 2 surface subgroups are contained in
Mod(X9 1).

1.1 Structure of the proof

Ingredients in our proof of Theorem 1.0.1 include combinatorial group theory, representation
theory, the Johnson theory of the Torelli group, the theory of Lie algebras, and surface
topology. These tools allow us to characterize P(34) in terms of two filtrations: the lower
central series of P(Xy) and the Andreadakis-Johnson filtration of Mod(¥, 1). By showing
any arbitrary normal, genus g surface subgroup must also have those same characterizing
properties, we demonstrate that P(¥,) is unique.

To condense notation, let P := P(X4). Let N <Mod(X, 1) be a normal subgroup ab-
stractly isomorphic to m1(X4). We must prove that N = P.

Definition 1.1.1. The lower central series of a group G, denoted as
G =7(G) D 7(G) > ...

is defined inductively as v;+1(G) = [;(G), GJ.
4



Let Z(G) denote the center of a group GG. The lower central series is central, i.e.
Y6 (G)/V+1(G) C Z(G/vg+1(G)) for each k. Further, each 74 (m1(Xg)) is characteristic
in 7 (Xg), i.e. invariant under automorphisms of m1(X4). As such, there is a family of

well-defined maps

Uy, : Mod(Xg1) = Aut(m1(Zg)/vp+1(m1(Zg)))-
Definition 1.1.2. The Johnson filtration of Mod (X, 1), denoted as
IX)=791(2) DI(X) D ...

is defined as
jk(Z) = ker(\lfk).

The first term J(X) is referred to as the Torelli group of Mod (X 1).

By assumption, N = 71(Xg). As such, for some surface 2971, we can define an injection

N < Mod(X, 1) so that the image of IV is the point-pushing subgroup in Mod(X,1). In

this paper, we will consider both the Johnson filtration for Mod(i)g,l) and for Mod(Xg 1).
To distinguish these two filtrations we will use the notation I (V) for Mod(i%l) and I (%)
for Mod(¥y,1). We will gradually “push” P and N through the terms of these Johnson
filtrations in order to capture salient properties. Eventually, we will establish the following

chain of containments:
Y¥2(IN) € 72(P) C Ja(X) CI(X) CI(N).

Furthermore, we will give the following useful characterization of P(X4) in terms of the

linear central filtrations defined above.

Proposition 3.0.2 (Characterization of P). Let g > 3. Then
P(3g) ={z € I(X) | [z, J(X)] C 72(P(3g))}-
By proving Proposition 3.0.2 we will also characterize N as

N ={zeI(N)]| [?j(N)] C72(N)}-



Notice that Proposition 3.0.2 together with the two inclusions J(X) C J(N) and vo(N) C

v2(P) implies the following chain of containments:

N

{z € IN) [z, I(N)] C 72(N)}
{z € I(X) [z, I(X)] C 2(N)}
{z €IX)|[z,I(5)] Cr2(P)}
P.

N 1N

That is, N C P. Applying the index formula [N : P]- x(¥) = x(%), we can conclude
that N = P.

In summary, we divide our proof into the following two main parts:

e Chapter 2: Demonstrate the chain of containments
72(N) C72(P) CJ2(%) CI(X) CI(N).
e Chapter 3: Characterize the point-pushing subgroup as

P={zeIX)|[z,I(%)] Cr2(P)}

From these two steps, it follows that N=P.



CHAPTER 2
LINEAR DETECTORS

As above, let P be the point-pushing subgroup of Mod(¥, 1). Let N<Mod(% 1) be abstractly
isomorphic to m1(Xg). In chapter two, we will use the lower central series of m1(Xg), the
Johnson filtration of the Torelli group, and Sp29<(@) representations to detect salient feature
of P. In particular, we will show that N must have the same action on homology, and the

image under the Johnson homomorphism as the subgroup P.

2.1 Action on homology: N C J(X).

While N need not act as the point-pushing subgroup on X4, we can choose N to be the
point-pushing subgroup of Mod(ﬁ)g’l) for some surface 2971. We will use J.(X) to denote
the Johnson filtration for Mod(% 1), and we will use J (V) to denote the Johnson filtration

~

for Mod(¥4,1). For the remainder of the paper, let g > 3.

In this section, we will work toward establishing the chain of containments
72(N) € 72(P) C J2(X) C I(X) C I(N)

by proving that J(X) C J(N) and N C I(X).

Let 3 be a loop in 3,1 based at the marked point, zg. This loop defines an isotopy
from the marked point to itself which can be extended to all of ¥, 1. (For a more precise
explanation see e.g. [10, Setc.4.2].) Denote this homeomorphism by ¢g. The point-pushing
subgroup P<Mod (%, 1) is exactly the subgroup of isotopy classes of homeomorphisms of the
form ¢g for any based loop . Let (8] € m1(X4) be the homotopy class of loops containing
B. There is a well-defined map

Push : m(3g) = P

given by
Push([5]) = [¢5].



Birman in [3] proved that the map Push is an isomorphism. Because P is normal, Mod (3 1)
acts on P via conjugation. Alternately, the action of Mod(¥, 1) on X, 1 induces an action
on the fundamental group 71(¥g). The map Push respects the action of Mod(%, 1). That
is, for ¢ € Mod(X, 1) and [5] € 71(3)

Push(y«([8])) = ¢ Push([8))y . (1)

For convenience, we will sometimes equate P with 71(X4). For full details regarding the

isomorphism between P and m1(Xg) see Section 4.2 of [10].

The point-pushing subgroup P acts by free homotopies on the unmarked surface 4. As
such, P acts trivially on Hy(7m1(2g); Z) = m1(Xg)/72(71(Xg)). That is, P C J(X). We want
to show that NV also has the property N C J(X).

Given ¢ € Mod(X, 1) and n € N, define the map
a: Mod(S,1) — Aut®(N) = Mod™* (2, 1)

by
a(¢)(n) = ¢no .

We have the following exact sequences for P and N:

1 (%) > Mod(2,,1) DI Spoy(Z) — 1
la 07 (i)
| — 9(N) Aut® (N) 2 §p (2) —— 1

where Spétg(Z) is the subgroup of GLgy(Z) generated by Spo,(Z) and the image of any
orientation-reversing homeomorphism. Because all orientation reversing homeomorphisms

are nontrivial on H1(¥y 1;Z), we have the equality

ker(T ) = I(N) = ker(W [, .+ : Mod(3g1) — Spay(Z)).



Section 2.1 is divided into the following steps:

1.A. The map « is injective.
1.B. The Torelli group J(X) is contained in the Torelli group J(N).

1.C. The map & is an isomorphism onto its image.

The containment N C J(X) will follow easily from part 1.C.

1.A. Injectivity of a The map « is defined by the conjugation action of Mod(% 1)
on N. Thus, ker(a) centralizes N. Since N = m1(X4) has trivial center, it follows that
ker(a) NN = 1.

Let ¢ € N<aMod(X,1) be nontrivial. There is some x € 71(24) such that ¢(x) # x. That
is, by Equation (1), the element ¢z¢~lz~1 of Mod(X,1) is nontrivial. However, because
both N and P are normal in Mod(X 1) it follows that pr¢~ 1zl € NN P. Therefore, the
intersection N N P # 0.

Likewise, if ker(a) # 1, then there is a nontrivial element of ker v N P.

The two subgroups ker (&) N P and P N N are commuting subgroups of P. Because
ker(or) NN = 1, the intersection (ker (o) N P)N (PN N) is trivial. However, 21,29 € m1(Xg)
commute if and only if 27 = wF and 9 = W™ for some w € m1(Xg), see e.g. [10, Sect.1.1.3].
For ker (a)N P and PNN to intersect trivially and also commute, it must be that ker (a)) = 1.

Therefore « is injective.

1.B. Containment of Torelli groups Let Uy, Wy, and «a be defined as in (). The

following theorem of Korkmaz relates the two homomorphisms ¥y, and ¥ o a.

Theorem 2.1.1 (Korkmaz [23] Thm.l). For g > 3, any group homomorphism ¢ :
Mod(X41) — Gloy(C) is either trivial or else conjugate to the standard representation
Uy s Mod(3g,1) — Spag(Z).

Two homomorphisms ¢,1 : G — H are conjugate if there exists an element h € H such

that hgoh~! = ¢(g) for all g € G. Note that conjugate homomorphisms have the same kernel.



By Theorem 2.1.1, the composition
Uy oa: Mod(Sg,1) = Spy,(Z) C GLyy(C)

is either trivial or conjugate to Wy,. Thus, the kernel of Wy o « is either all of Mod (X 1)
or exactly J(X). In either case, a(J(X)) C ker(¥y) = IJ(NNV). Using the injectivity of « to
simplify notation, J(¥X) C I(N).

1.C. The map & is an isomorphism Using the fact that ker(Uy,) C ker(¥ ), there
is a well-defined homomorphism & : Spg,(Z) — Spgzg(Z) which makes the diagram ()
commute. Note that Mod(X, 1) contains torsion elements but J(/N) is torsion-free (see [13,
Sect.2 pp.101]). Therefore, a(Mod(2, 1)) ¢ J(N), and ¥ o a # 1. The commutativity of
(1) implies @ o Uy, # 1. Again applying Theorem 2.1.1, the image of @ must be conjugate to
Spag(Z). Therefore & is an isomorphism onto its image.

Because N C ker(¥ ) and because the diagram (i) commutes, it follows that N C
ker(a o Uy). However, ker(a) = 1 implies N C ker(¥y,). That is

N C J(2) CI(N).

2.2 The second term of the Johnson filtration.

In this section we will “push” P and N deeper into the second term of Johnson filtration.
We will show that N C P -Jo(X). To that end, we will prove N -J(X)/I(X) = P-I(X)/I(X)
by using the Johnson homomorphism and the representation theory of Spgg((@).

2.2.1 Johnson filtration of Mod(X,) and lower central series of P

In this subsection, we will consider the quotient P - J(X)/I(X) = P/(P NI(X)). We will
prove that P NJ(X) = [P, P]. Moreover, we will establish the following general fact.

Proposition 2.2.1. PNI(X); = y(P) for all k > 1.

10



To condense notation, let v := v (m1(2g)) be the kth term of the lower central series.
Notice that

m(Bg) NTp(D) = {z € 11 (%) |zya ™ty € v for all y € 71 (%)} (2.2.1)

That is, © € m1(34) N Ji(X) if and only if the left coset x7y;1 is contained in the center
Z(v1/7k41). Thus, Proposition 2.2.1 is equivalent to showing that:

Z(M/Yke+1) = W/ V41 forall k> 1. (2.2.2)

This equality was first established by Asada and Kaneko in [1, Prop. A]. For the reader, we
provide an alternate proof below. We will demonstrate Equality 2.2.2 by establishing two
containments. The containment Z(v1/vk+1) O v/Vk+1 follows from the definition of the
lower central series. The opposite containment relies on an analysis of the center of the Lie
algebra associated to the lower central series of 71(Xy), described below.

Associated to the lower central series of any group is a graded Lie algebra. (For a discus-
sion of this graded Lie algebra, see e.g. work of Lazard in [25], or Labute in [24]. Mal’cev
is credited with first using this nilpotent filtration to study groups in [28].) Specifically, for
G = m1(Xg) define

A = i(m1(5g)) [vig1(m1(Eg)) fori > 1.

Each A; is a Z-module. The sum

A:=EPA,
)

can be given the structure of a graded Lie algebra over Z as follows. Let (, ) be the com-
mutator in 71(3g). The Lie bracket [, ] is induced on A by the commutator. That is, for
r € A, y € Aj, and 7,7 lifts of z,y respectively to 71(2g), we define

[, Y] = (T, 9) V1 € Nt

Despite the fact that m1(X24) is written as a multiplicative group, we will write A; additively
as a Z-vector space. In particular, the left coset 151 is 0 as an element of Ag.
To prove Proposition 2.2.1 it remains to show Z(v1/7411) C Vi/Ver1. We will divide

the proof into two steps as follows:
11



2.2.1.A. A has trivial center = Z(m1/vg41(71)) C v (71)/ Vg 1(71)-

2.2.1.B. The universal enveloping algebra U(A) = A, /9 where Ay, is the free associative
algebra on 2¢g indeterminates, and R is the ideal generated by Zlgzl(ai ® b —
bi ® a;).

To conclude, we will check that U(A) has trivial center. Because all relations in A must
hold in its universal enveloping algebra, if U(A) has trivial center, then so does A. Proposition

2.2.1 follows.

Proof of Proposition 2.2.1.A. Let x € Z(v1/v11). Suppose for the sake of contradiction
x ¢ Nj.. We will show that x € Z(A).

There is some smallest i > 1 such that x € v,_;/v;41. Let y € A;. In order to show
that = is central, because the Lie bracket is bilinear, it suffices to check that [x,y] = 0 for

any y and any j. That is, the commutator (Z,¥) € Yg—jj41-

First, let 1 < j <. Notice, for any § € m1(34), the commutator (Z,y) € 7541 because
x € Z(71/Vk+1)- Since j <, it follows that v 11 C vy j41. Thus,

(Z,9) € Vet1 C Vh—itjt1-
Therefore, if y € A; for j < then
[z, 9] = 1g—itjr1 =0 € Agjy ;.

Otherwise, let 1 < i < j. We will prove (z,7) € Yk—itj+1 by induction on j. Suppose first
j = 2 (forcing i = 1). Without loss of generality we may assume § = (a,b). The Jacobi
identity provides

[z,y] = [x,[a,b]] = =[b, [z, a]] — [a, [b, ]].

However, (Z,a), (b, Z) € yp,1 because € Z(y1/v,,1)- This implies
_<b7 ('ra CL)) o (CL, <b7 IE)) € Vk+2 = Vhk—142+1 = Ve—i+j+1-

12



Therefore, [z, y] = 0.

To complete the induction, let M < k. Assume if i < j < M, then (Z,9) € Yp—jyj4+1
for all y € A;. Suppose y € Apr11. Without loss of generality, we may assume that y is an
(M +1)-fold commutator, i.e. y = (@, b)ypsyo for some a € A; and b € Aj;. By assumption,
(Z,a) € Y11, which implies

(b, (Z,@)) € Vet1+M+1 C Vit M+1-

By the inductive hypothesis, (b,Z) € y;_;4ar41- Therefore,

(i'? (L_L, B)) = _(6? (i‘, C_L)) - (L_Z, (67 j)) € Ve—1+M+1 © Vk—i+M+1

implying that [z,y] = 0 for all y € A.

Therefore, x # 0 is central in A. This proves the implication

Z(N) =0= Z(v1/7+1) C W/ Vk+1- (2.2.3)

]

Proof of Proposition 2.2.1.B. The following theorem of Labute shows that the graded Lie

algebra A is a quotient of the free Lie algebra on 2g generators by a principal ideal.

Theorem 2.2.2. (Labute [24]). Let Log4 be the free Lie algebra on 2g generators (denoted
a,b1,...,ag,bg). Let R be the ideal generated by  ;[a;,b;]. Then A= Loy /R,

Let T(A) be the tensor algebra on the vector space underlying A. Let U(A) be the

universal enveloping algebra. Define U(A) as
UAN):=T(A)/{a®b—b®a—a,bl]).

Let Aoy be the free associative algebra on 2g indeterminates. Let %R be the ideal in Ag,
generated by Zzg:1<ai ® b; — bj ® a;). We will prove below that the universal enveloping
algebra U(A) is isomorphic to A/fR.

13



The analogous fact for free groups, U(Ly) = Ay, was established by Magnus-Karrass-
Solitar, see [27, pp.347 ex.5]. Let U : £ — A be the functor from the category of Lie algebras
to the category of associative algebras that takes a Lie algebra to its universal enveloping
algebra. Let G : A — £ be the functor from the category of associative algebras to the
category of Lie algebras, that induces the Lie bracket by the commutator in the associative
algebra. U is left-adjoint to G.

Define an injection

¢: L1 — Loy

via
¢(1) == [a;, b,
1
Notice that

e
ULy -2 £ag) = A1 29 .

The map U(¢) is the injective map defined by U(¢)(1) := > (a; ® b; — b; ® a;). Note,
coker(¢) = A and coker(U(¢)) = Agy/M. Since U is left-adjoint to G it preserves cokernels,
meaning U (coker(¢)) = coker(U(¢)). Therefore U(A) = Aoy /M. O

In order to show that A is centerless, it suffices to show that the universal enveloping
algebra, U(A) is centerless. A computation of Crawley-Boevey-Etingof-Ginzburg in [9,
Thm.8.4.1(ii)] shows that the Hochschild cohomology HH O(Agg /M) = 7Z. For an associative
algebra A, the center Z(A) = HHY(A) (see e.g. [35, Sect.9.1.1]). That is, only Z is central
in the associative Z-algebra A/ = U(A). All relations in A must be preserved in U(A).
Thus, Z(A) = 0.

Because Z(A) = 0, it follows from Equation (2.2.3) that Z(v1/v¢) C v&/7k+1- Thus,
Z(v1/vk) = Vk/Vk+1- Then, by Equation (2.2.1), it follows that P N J = v, (P).
In particular, we have shown that P N Jy(X) = ~9(P), and equivalently N NJ9(N) =

Y2(V).
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2.2.2  Abelizanization of J(X)

We have already established that:

N N[N, N]

N

NN[IE),I(E)]
NNO[IN),I(N)]
N N Jy(N)

— [N,N].

N

N

The first containment follows from N C J(X) (Section 2). The second containment follows
from J(¥) C I(N) (Section 2). Johnson’s work showing that J(N)/Jo(N) is abelian
implies the third containment (see [21, 18] or e.g. [10, Sect.6.6.3]). The final equality is
a consequence of Proposition 2.2.1. To conclude that N N Jy(X) = [N, N] it suffices to
check that Jo(X) C Jo(N). To establish this containment, we need to study the Johnson

homomorphism and Johnson filtration.

Let Eé be a compact surface of genus ¢ with one boundary component. Let Mod(Eé)
be the group of isotopy classes of orientation preserving homeomorphisms of Egl] fixing the

boundary pointwise. Define the Torelli group for a surface with boundary as
1 1
Jg = ker(¥ : Mod (%) — Spay(Z))

where W is the standard symplectic representation. For emphasis, we will sometimes distin-
guish as Jg 1 the Torelli group for a once marked surface. Unless otherwise specified J = 1.
Let = € Hl(Eé;Z), let 7 € Wl(z%)/’yg(ﬂl(z%)) be a representative of z. Let ¢ € Jé. The

Johnson homomorphism for Jél] is

Ty 05 — Hom(Hy(S4; Z), v(m1(55)) /43 (m1(55))

given by

Many properties of J, 1 follow directly from the properties of Jé. In a series of papers,

Johnson established several important results summarized in the following theorem.
15



Theorem 2.2.3 (Johnson). Let the notation be as above. For g > 3, the following hold:
A Im(t}) = N3H\(S):2) [21].
B. H\(73;Q) = A3H (S} Q) [20. 22, 21].
C. ker(’té) = (35)2 see, e.g. [10, Th.6.18].

D. Té : jé/(ﬂé)g — A3H1(Eé;Z) is an Spoy(Z)-equivariant isomorphism, see, e.g. [10,
Eq.6.1].

E. The quotient Jé/(f]}})g is the universal torsion-free abelian quotient of J; see [21, 18]
or e.g. [10, Sect.6.6.3]).

To condense notation, let

Hy = H(SyZ),
Hgy = Hi(33;Q),
T o= m1(8g).

We can define the Johnson homomorphism for J, 1 as follows. Let x € Hyz, let T a represen-

tative of x in 7, and ¢ € J. Define

T: g1 — Hom(Hz, v2(m1)/73(71))

The map T is well-defined by Proposition 2.2.1. Let Ty be the Dehn twist about the
boundary curve of Z}]. The fact that Ty € ker(’t}]) implies that Té ; Jé — A3Hy factors
through J, 1 (see [21]). As such, Theorem 2.2.3 A-E holds for J, 1 and T.

By showing that J9(3) C J9(N), we will conclude that

[N,N] = NN[I(2),I(8)] = NNIa(S) = NNIy(N) = [N, N].

16



Remark 2.2.4. The quotient J(X)/Jo(X) differs from the universal abelian quotient of J(X)

only in torsion. That is,

IX)/1(E)2Q = Hi(J(X)Q)
IE)/PE),IE)] Q.

12

Therefore, [J(X),I(X)] C J2(X) and the quotient J9(X)/[I(X),I(X)] is isomorphic to the
torsion subgroup of J(X)/[J(X), I(X)].

To see that Jo(X) C Jo(N), we will consider the difference between Hi(J;Z) and
H1(3,Q). The abelianization, Hq(Jy 1;7Z), can be computed using techniques employed by
Johnson in [22] to compute Hj (JL}J;Z). We could not find this exact computation in the

literature, so we give it below.

Proposition 2.2.5. H1(J,1;Z) = A3Hy @ Bo/(a) where Bo/{a) is 2-torsion (defined ea-
plicitly below).

A boolean polynomial is a polynomial with coefficients in Z/27Z. Define B; to be the
group of boolean polynomials p on 2¢g indeterminates with deg(p) < i. Building on the work
of Birman-Craggs in [5], Johnson constructed in [19, Th.6] (see also e.g. [10, Th.6.19]) a
surjective homomorphism

o: Hl(J;;Z) — B3

such that the torsion of H 1(5;; Z) is captured by Bo. In addition, Johnson constructed the

surjective Spoy(Z)-equivariant homomorphism
q: B3 — NHy @ 2)22;

for details see [22]|[Prop.4]. Explicitly, Johnson computed H; (J}]; 7)) = A3H @& By using these

two homomorphisms and pullback diagrams of groups. A pullback diagram for the group
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homomorphisms 11 : A — C and 9 : B — C'is

D
2N
A B
N e

C

a commutative square (2.2.4) that is terminal among all such squares. That is, the pullback

(2.2.4)

(D, ¢1, ¢2) is universal with respect to Diagram (2.2.4). For a diagram of groups, the pullback
is

D = {(a,b) € Ax Bli(a) = ¥2(b)}.

D is unique up to canonical isomorphism.

Diagram (2.2.5) (below) is a pullback diagram, from which Johnson in [22] concludes
that H1(J}:Z) = ASH & Bs.

Hy(33,7)
33 A3HZ (2.2.5)
x 27,/2
AHy © 7./27.

Let Ty be the Dehn-twist about the boundary component in J;. In order to compute
H1(Jg4.1;Z) note that J, 1 = jé/<T3>. Define a € By as

a = Z a;b;.
1

In [22], Johnson computes o(Ty) = a.

18



Proof of Proposition 2.2.5. We will use two additional pullback diagrams to compute
H1(Jg1;7) = A3Hy @ Bo/(a). Define the quotient map

fr9y—9/{Tp) =Tg1.
The inverse image of the commutator subgroup of Jy 1 is
F M Ug.05900)) = (9, 9g) - (To)) /(T)) = (95, 9g] - (Tp)-

Define the quotient map

SPTR ¢/7)1))
0 (O3] T (To))

= Hl(jg,UZ)-

The kernel of g is exactly [J;, 351]] -(Ty). Thus, there is an isomorphism

95/ (194,95 - (To)) — H1(Ig1:Z).

Notice that:

(Og/lg: %) g

(195, 98] - (To) /195, 98) ~— (195,931 - (To))’

Hy(95;Z) —

Therefore we have a map Hl(Jé;Z) — Hy(J41;Z) with kernel [3;,3;] . (T@/[ﬂé,ﬂé]. We

construct the following two pullback diagrams:

Jl :Jl 31 :Jl

/\
\/

(2.2.6)



Taking a quotient of Diagram (2.2.5) by Diagram (2.2.6) results in the following pullback

diagram:

Hl (jg,l ) Z)
/ \
)
i

®Z/2.

B3/<a A3HZ (2-2’7>

NHy ® 7/2Z

Johnson showed that Diagram (2.2.5) is a pullback diagram in [22]. Diagram (2.2.6) is
a pullback diagram because (a) = ((Ta)[%,ﬂé])/[ﬂé,%] &~ 7,/27. Since D3 is a quotient of
two pullback diagrams and one terminal homomorphism of Diagram (2.2.5) is surjective, it
follows that D3 is also a pullback diagram. Therefore, Hy(Jy 1;7Z) = A3H & Bo/{a). ]

2.2.3 Intersection of N with Jo(X)

The homomorphism «, as defined in Section 2, gives the injection Mod(¥, 1) — Aut®(N).
From Section 2, the containment J(3) C J(N) implies [J(X),I(2)] C [J(N),I(N)]. Define

Tp (respectively, Tyy) as the quotient map
T (D) - US)/ (D), (D) = A3 & By /(a).

Since [J(X),I(X)] C [I(N),I(N)] it follows that ker(Tp) C ker(Tp). Thus, we can define a

homomorphism & so that the right hand square of (2.2.8) commutes.

| [9(2),9(5)] —— I(%) —2 5 A3H, @ By/(a) —— 1

la l _ ld (2.2.8)

1 — [J(N),J(N)] — I(N) —N s A3BH, @ By/{a) — 1
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The fact that & must map torsion to torsion implies that &(Bo/(a)) C Ba/{a). Thus,

v (a(J2(%))) = a(Tp(J2(2))) C Ba/{a).

This containment implies

a(Ja(%)) € Ty (Ba/(a)) = Ta(N).

Therefore Jo(X) C Jo(N).

The containment Jo(X) C Jo(N) allows us to deduce the following:
VN € N A[I(E),9(9)] € N A 9(S) € N A 9(V) = [N, V]

Therefore, N NJ9(X) = v2(N).

2.2.4  Sp,,(Q) representation

In this subsection, we will use Spy,(Q) representations to show that N - Jo(¥) = P - Ja(%).

Mod(34,1) acts on J(¥) via conjugation. The kernel of T is exactly the set of elements
that act trivially on mq/v3(71), i.e. ker(t) = Jo(X). The quotient J(X)/JI2(X) is the universal
torsion-free abelian quotient of J(X). Thus, the conjugation action of J(X) on I(X)/Ja(X)
is trivial. Therefore, we have a well-defined action of Mod(%g1)/J = Spoy(Z) on I/Ja.

Similarly, Spa,(Z) has a canonical action on A3Hy. The isomorphism
T:9(X)/92(2) — A3Hy,

is Spay(Z)-equivariant.
To prove that N - Jo(X)/J2(X) = P - Jo(X)/I2(X) we will establish the following bijective

Correspondence:

S Z)-invariant Z-module
{ Spog(Q)-irreps in A3Hg }<_>{ P2g(Z) }

direct summands in J/J9
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We will check that there is exactly one Spgg((@)—invariant, dimension 2¢g subspace of A?’HQ.
To conclude, we will show that both NJ9(X)/Jo(X) and PJIg(X)/Jo(X) are rank 2g direct
summands of J(2)/J3(¥) invariant under the action of Spa,(Z).

Lemma 2.2.6 ((Bijective correspondence)). There is a bijective correspondence between
Spag(Q)-invariant dimension m Q-vector subspaces of A3H@ and Spyg(Z)-invariant rank m

Z-module direct summands of A3Hy.

Proof of Lemma 2.2.6. Define the map
[+ {Spay(Z)-invariant direct summands of A3Hyz} — {subspaces of A3H@}

via
fM)=VeaqQ.

To establish the bijective correspondence, we need to check that the image of f lies in
Spay(Q)-invariant subspaces of A3HQ.
Fix a basis of Q% so that Spay(Q) < GLggy(Z) is the subgroup that fixes the symplectic
0 | Iyug
geg| 0
where A varies in Q, and e;; is the g x g matrix with 1 in the 7, j entry and 0 elsewhere (see

e.g. [30, Sect.2.2]):

form

. The group SpQQ(Q) is generated by matrices of the following forms,

Igxg | Aeii Igxg ‘ Igxg ‘ (2.2.9)
ngg ‘ )\(eij + eji) Ing + )\eij ‘
Igxg ‘ Igxg = Aejii

Let V' be an Spy,(Z)-invariant direct summand of A3Hy, and let v € V. Let A be any
of the generators of Spy,(Q) given in (2.2.9) and let Az, be the matrix A with A = 1. Notice
that Az € Spyg(Z) and A = AAz — (A — 1)Izgx24. Therefore, for any ¢ € Q

Aqu = qAv = q((N)(Azv) — Av + ).
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Since V' is an Spy,(Z)-invariant direct summand, ¢((A)(Azv) — v +v) € V @ Q. Therefore
V ®Q is an Spg,(Q)-invariant subspace.

Let W be an Spa,(Q)-invariant subspace of AgHQ. Let Wy be the Z-module consisting
of all integral points of W. Define the map

9:{Sp24(Q)-invariant subspaces of A3H@}—>{Spgg (Z)-invariant direct summands of A>Hy}

via

The composition f o g is the identity because W7z @ Q = W.

On the other hand, consider v € go f(V) = (V ® Q)z. Decompose ASH; =V @ VL. If
v ¢ V then the projection of v onto V- # 0. Let p, (v) be the projection onto V+. Because
v € V®Q, it follows that nv € V for some large enough n € Z. However, that implies

p | (nv) =0, or equivalently n(p (v)) = 0, a contradiction.

Therefore, g is a bijection and the correspondence is established. O]

The representation A3H@ decomposes as an Spy, (Q)-representation in the following way
(see, e.g. [6, Sect.3]):
A3HQ = H@ © ASHQ/H@

Note that dimg(Hg) = 2¢g and dimQ(A3H@/HQ) = (239) —2g. Thus, for genus g > 3, there
is exactly one Spgg((@)—invariant, dimension 2g subspace of A?’HQ.

From Section 2.2.3 we have N NJ9(X) = [N, N]. Thus,
NI3(%)/92(S) = N/(N N () = N/[N, N] = 229,

Therefore, NJo(X)/J2(X) is a Z-module of rank 2¢g. Likewise, PJy(X)/J2(X) is a Z-module
of rank 2g.
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To see that the submodule PJ9(3)/J9(X) is a direct summand of J(X)/J9(X), it suffices
to check that the generators of P surject onto a partial basis of A3HZ under the Johnson
homomorphism. A partial basis is any set of linearly independent vectors that can be
completed to a Z-basis.

Consider a fixed generating set for P and a corresponding basis for Hy, given by
{a1,b1,...,a4,bg}. Then, t(a;) = 0 A a; where § = 3 .a; Ab;. For details of this
computation, see Johnson’s work in [18]. The image of the standard generators of P gives a

partial basis of A3Hy. Therefore the image of P is a direct summand in A3Hy.

It remains to be seen that N - J9(X)/Jo(X) is a direct summand. Because [N, N| C
[9(2),3(2)] C [I(N),I(N)], the following diagram given by restrictions of quotient maps

commutes:

N/[N,N] —£— 3(2) /95(%)

x l (2.2.10)

J(N)/I2(N)

The image j(N/[N, N]) = NJo(N)/Io(N) = Z?9 is a direct summand in I(N)/Jo(N).
Further, k(N/[N, N]) = NJ9(X)/Io(X) = 729,

Lemma 2.2.7. Suppose that the diagram below commutes

720 L1 729 g gn-2g

k |5

729 @ 729

and the maps L; are linear. If Lo (Z29) ~ 729 is a direct summand in Z29 & Z"29, then so
is L1(Z29).

Proof of Lemma 2.2.7. Because Lo(Z29) is a direct summand in Z", there exists a retract
R:7ZN — 729 of Ly with Ro Ly = Idyag. Further, since Ly = Lg o Ly, the homomorphism
RolLs: ZN — 729 is a retract of L. That is R o L3 o Ly = Idysy. Consider Ly o Ro L3 :
ZN — 729, Note that

(LyoRoLg)*=Ljio(RoLgyoLy)oRoLs=Lyo(ldyg)oRoLy=LyjoRoLs.
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It follows that Lq o R o Lg is a projection with image Lq(Z29). Thus, L1(Z%9) is a direct

summand. N
Applying Lemma 2.2.7 to commutative diagram (2.2.10), it follows that

k(N/[N, N]) = NJ5(3)/79(S) = 729 is a direct summand in I(2)/Ta(5).

Because N, P, and Jo(¥) are normal in Mod(%, 1), both of the above Z-module direct
summands are invariant under the action of Spyy(Z). There is exactly one rank 2g direct
summand Z-submodule of J(X)/J2(%). Thus, NJ3(X)/I2(X) = PI(X)/I2(X). Equivalently,
NIp(X) = PIp(%).

2.3 Commutator containment: [N, N| C [P, P|.

From Section 3, we have the containment N C PJ9(3). Furthermore, since [V, N] C Jo(X),
it is also true that [N, N] C PJo(X). In this section, we will use an inductive argument to
confirm that [N, N| C PJ,(X) for all k. Grossman’s Property A Lemma (see Lemma 2.3.1)
implies that for any surface group m1(Xy), if ¢ € Aut(m1(Xy)) preserves conjugacy classes
in 7 (Xg), then ¢ € m1(Xy). Using Grossman together with the conjugacy p-separability
of surface groups, we will show that Nz PJ;. = P. This will prove [V, N] C PNJa(X) = [P, P].
We have already established the following facts:

i. The Johnson filtration is a central series [2].

ii. N CI(X) (Sect. 2).

iii. N C PJo(¥) (from Sect. 3).

iv. NN Jp(N) =~(N) (Prop 2.2.1).

v. J9(X) C Jo(N) (from Sect. 3).

vi. [Jo(X), N] C N (because N is normal in Mod (X 1)).

vii. [Jo(N),N] C I3(N) (because N C J and the Johnson filtration is a central series).
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We will establish an eighth fact:

viil. [PG, N] C P[G, N] for any G <Mod(X,1) (below).

To prove (viii), let G <Mod(X,1). Let g € G, p € P,and n € N be given. Then

1 1 1

-1 —1,_-1 -1, -1 -1 —1 - —1\—1 -1
[pg,n] =pgng™ " p~ " n" " =pgnp_ " pg  p (pgp” n(pgp” ) n ).

However, P normal in Mod(X, 1) implies that

pgnp n"tpgTlpTl e P,

Furthermore, because G is normal in Mod(%, 1) it follows that

((pgp~Hnlpgp~H)In~1) € [G, N].

Therefore [PG,N] C P[G,N] for any G < Mod(X,1). In particular, [PJs(X), N] C
PIa(X), N].

With reference to the above list of facts,

v, N poycm), U Py, N Py, v Py Py,

Therefore, [N, N| = v2(N) C Py3(N).

We will induct on m to check that yo(N) C Py (V) for all m > 0. Let M € N with
M > 3. Suppose for all m < M we have y9(N) C Py (V). It follows that

[N, N] = 19(N) C Py3(N) = Plya(N), N] C P[Pyp(N),N] C P*[yp(N),N] C Pypriq(N).

Therefore, [N, N| C Pvyp(N) for all m > 1.
We will use a second inductive argument to show that 5 (N) C Ji.(X) for all £ > 2. For

the base case, note that

[N,N] C [3(%2),3(2)] C Io(%).
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Assume as inductive hypothesis that v (N) C J(X), for all £ < K. Then
Tk (N) = [yg—1(N), N] € T 1 (%), I(X)] € Ig (%)
The above containment implies that
[N, N] = 72(N) € NPy (N) € N PI(X)-

In order to confirm that [N, N] C P, it remains to be shown that N PI(X); = P. We

will use the following Lemma due to Grossman:

Lemma 2.3.1 ((Grossman’s Property A [12])). Let P be a surface group of genus g > 1.
Let g € Aut(P). If q preserves conjugacy classes in P, then q € P.

To apply Lemma 2.3.1, choose ¢ € NPJ;, and x € P. Since g € PJj, for all £ > 1, we can
find up, € P and i} € Ji(X) such that ¢ = ugij. However, because ij € Jj, it follows that

ikxilglx_l € Yg1(P). This can be rewritten in terms of left cosets as

igziy g1 (P) = 2yp41(P).

Conjugating by wuj. gives

S 1
upigaty, V1 (P) = upzug Y1 (P).

1

That is, grq™" is conjugate to = in P/y;1(P) for all £ > 1.

Finite p-groups are nilpotent. Furthermore, any homomorphism ¢ : P — H where H is
i-step nilpotent factors through P/~;y1(P). Thus, any homomorphism ¢ : P — H where H

is a p-group factors through P/v;.(P) for some k.

1

Suppose ¢ : P — H gives a homomorphism to some p-group H. Because qrq™ " is conjugate

to z in P/~ (P) for all k > 1, it must be that ¢(qzg™!) is conjugate to ¢(z) in H. Because

1

P is conjugacy p-separable (see [31]), grq™" is conjugate to z in P. Applying Lemma 2.3.1,

it follows that ¢ € P. Therefore, N, PIL(X) = P.
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We have established for all £ > 1,

Y2(N) C Pyi(N) C PIL(%).

That is, v2(N) C N, P (X) = P. From Section 3, we have the containment vo(N) C Jo(X).
Thus, 72 (N) € PNJa(X) = v9(P). This concludes the first main goal in the proof of
Theorem 1.0.1:

72(N) € 72(P) CI9(E) CI(X) S IN).
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CHAPTER 3
CHARACTERIZING P

In this chapter we will characterize P in terms of J(X) and ~v2(P). We will provide two
distinct proofs. In each case, we will show that any ¢ € J(X) satisfying certain conditions
must fix a filling set of curves up to conjugation. Then, we will apply the Alexander method

to show that ¢ must be isotopic to the identity in Mod(Xy).

Proposition 3.0.2 ((Characterization of P)). For g > 3,

P(Eg) ={z € IE) [z, I(E)] C72(P(Xg))}-

3.1 Proof of proposition 3.0.2 by bounding pair maps

The proof of Proposition 3.0.2 was greatly simplified by Chen Lei.

Proof. Because P <Mod(3,,1) and P C J(X) it follows that for any p € P
[, J(X)] € (12(X) N P) = 72(P).

Therefore,
P C{z €I(X)[[z,I(X)] C (P)}

For the opposite containment, let ¢ € {x € I(X) | [z,I(2)] C y2(P)}.
Our goal is to apply the Alexander method by demonstrating that ¢a;¢~ 1 is isotopic to
each z; in some filling set {z1,..., 2} of simple closed curves. This would force ¢ to be

isotopic to the identity in Mod(X,). That is, ¢ € P.

Take any bounding pair map, TaTb_1 where a and b are disjoint, homologous, non-isotopic
simple closed curves. Because a and b are homologous, it follows that 7, aTb_l acts trivially on
Hi(S¢1). That is, 7,7, * € 9(). By assumption, ¢7,7; ‘¢~ 1(T,T;, 1)~! € P. Mapping
into Mod(X4) via the forgetful map, we obtain, F(ngaTb_lgb*l(TaTb_l)*l) = 1. That is

¢To Ty o M (T, Ty ™! =1 in Mod(S,).
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Therefore

)= 1
T ()¢~ 0T 0 HTLT )™ = 1
)= 1
T.7, !

Bounding pair maps commute if and only if they have the same canonical reduction system.
Thus, T¢(G)T<ﬁ_(i) and ToT, I have the same canonical reduction system, namely {a,b}. As
such, the curves ¢(a) and ¢(b) are isotopic to a and b, respectively in Mod(2).

For any non-separating simple closed curve c there is a bounding pair map 7.7, where c
and ¢ are homologous, disjoint, and non-isotopic. It follows that ¢c is isotopic in Mod(Xg)

to ¢ for any non-separating simple closed curve c.

In particular, for a filling set of simple closed curves, {z1,...,z}, we have dz;¢~1 is
isotopic to x; for each i. By the Alexander method, the map ¢ must be trivial in Out(m(2g)).
That is, ¢ € P. Proposition 3.0.2 follows. ]

3.2 Proof of Proposition 3.0.2 using amalgamated product

normal form

As above, we wish to demonstrate the containment
P2 {z €I(X)[[z,I(X)] C 2 (P)}.

Suppose that
Be{r eIz, I(X)] C2(P)}

Let {a1,b1,...,aq4,bs} be a standard set of generators for m1(Xy). If we can show that
Ba1 S~ is conjugate in m1(2g) to ag, then it follows that Bo(ar)f~1 is conjugate in 7 (Xg)
to ¢(ap) for any ¢ € Mod(¥, 1). By the Alexander method, if Bx; 31 is conjugate to x; for
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Figure 3.1: The Dehn twist T,

The simple closed curve c separates Y4 into a surface of genus 1 and a surface of genus g — 1.
The Dehn twist T, acts by conjugation on a; and by. We can always choose ¢ to separate
the marked point from the curves ay and by.

a filling set {z;} of simple closed curves, then f is isotopic in Mod(24) to the identity. That
is, 8 € P. Thus, it is sufficient to demonstrate that Sa; 31 is conjugate in m1(2g) to ay.

Let ¢ be the separating simple closed curve given by a representative of the homotopy
class [ag, b1] as shown in Figure 3.1. Let T, be the Dehn twist about the curve c.

We break the proof of Proposition 3.0.2 into the following two steps:

3.0.2.A. Let x be a simple closed curve in ¥4. If T¢.(z) is conjugate to x in m1(Xg), then x
is freely homotopic to a curve representing an element of the subgroup generated

by {a1,b1} or to a curve representing an element of the subgroup generated by

{a2,b2 N ,a/g,bg}

3.0.2.B. BzB~1 is conjugate to x in m (Xg) for every simple closed curve .

3.2.1 Cyclic reduction of normal form in amalgamated products
Let § = [ay,b1] = (H[ai, b)) ~'. The homeomorphism 7T, acts on m1(2g) as follows (see e.g.

1>1
[10, Sect 6.6.2]):

Te(a) = 56115_1
Te(b) = dbio—"

Te(x) = xforany x € (ag, by, ..., ag,bg).
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Let A = (a1,b1), B = (a2,b2...,a4,bg), and C = ([a1,b1]) = (§). We can write 71 () as
an amalgamated product:

m(Xg) = Axo B.

There is a unique normal form for elements of an amalgamated product (see [33]) defined as
follows. For each left coset in A/C' (respectively, in B/C') choose a representative z; (respec-
tively, y;) subject to the constraint that the identity coset be represented by 1. Then, any
element of 71 (3y) can be written uniquely as a reduced word in the form x; y;, ... x;, y;, 6"
where z;, and y; ., may be the identity coset, but all other coset representatives are noniden-

tity elements. Intuitively, elements of Z can be “pushed to the right.”

Definition 3.2.1. Let w € m1(Xy) = Axo B be given in normal form as w = z1yy . .. 2y;6",
where x; € A with x; # 1 for ¢ > 2 and y; € B with y; # 1 for i < k — 1. The normal form
length l(w) is the number of A-B pairs of coset representatives in the reduced word. That

is, l(w) = l(x1y1 ... vpyRdt) = k.

We will establish the following lemma concerning normal form length of concatenated

words:

Lemma 3.2.2. Let 71(3g) = A*¢ B as above. Let q,q' € m1(2Zy) be given in normal form
as ¢ = x1y1 - .- 1pyot and ¢ = 2wy ... zpwdY where x;, z; € A and y;,w; € B. Leta € A
and b € B.

i. l(w) = 1(6ws™Y) for all w € m(Zy).
ii. 1(aq) = 1(q).
iii. 1(qb) = 1(q).
iv. 1(q) — 1 <1(qa) <I(g) +1.

v. 1(g) — 1 <1(bg) < 1I(q) + 1.

vi. If 21,y # 1 then

vit. If z1 =y =1 then



Proof of Lemma 3.2.2.

i. Consider q € m1(Xy) as above. Take the conjugate by 4:
6q6 L = bxyyr .. apypoto Tt

This conjugate can be put in normal form by moving ¢ to the right and relabeling

cosets. That is
1(6ps— 1) = 1(2hyy .. .x%y%é“l)

I / I
for relabeled coests x;,y; and some power p'. We need to show z; = 1 (respec-

tively, yg = 1) if and only if z; = 1 (respectively, y; = 1) for all 1.
If 2; = 1 then 0"x; = 6" € (6) which implies 2} = 1.

Conversely, if #f = 1 then §"z; = 6° for some integers r and s. This implies
that x; = 0" 7%. Because the identity coset must be represented by 1, it follows
that x; = 1. An identical argument holds to show y; = 1 if and only if yg = 1.
Therefore, I(¢) = 1(6g61).

ii. & iii. Take the product:
aq = axiyq - . . Yot
In this product, either azy ¢ C or ax; € C. If axry ¢ C then l(aq) = l(q).

Otherwise, if azy € C, it still follows that I(q) = [(aq) because y; # 1.

A similar argument shows [(¢b) = l(q).

iv. & v. Consider the product:

qa = x1Yy1 - . . YR a.
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We can restrict attention to the last 3 coests:
/
Tryrdta = zpypa’ ot

where a’ is the relabeled coset representative. Assume a’ # 1 (otherwise length

is unchanged). If y;, # 1, then because y;, € B and @’ € A it follows that:

!
Wapypad' 6") = Uzgyg) + 1.

In this case, I(qa) = 1(q) + 1.

On the other hand, if y; = 1 then
l(xkyka/éﬂl) = l(mka/(w/).

Either xp.a’ € C or .’ ¢ C. If x.a" € C, then I(ga) = I(q) — 1. Otherwise, if
za’ ¢ C, then l(qa) = I(q).

A similar argument shows len(q) — 1 < len(yq) < len(q) + 1.

vi. Consider the product q¢’ where y;, # 1 and 21 # 1. We have
qq = 2191 . . 2pyRoF A wy .. Y.

This is not necessarily in normal form. The normal form length of ¢¢’ depends
on whether or not there is cancellation between adjacent cosets. Because y;. € B

and z1 € A, if y.. # 1 and 21 # 1, then there is no cancellation between cosets
and I(qq") = l(q) + U(d).

vii. Let y;. = 21 = 1. Then

/
qq = 1191 - .. 20 w29 .. Zpwpd”.
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Because z;, € A and wy € B, there is no cancellation between adjacent cosets
in A and B. The number of A-B coset pairs is k + [ — 1. That is len(qq') =
len(q) + len(q') — 1.

O

Definition 3.2.3. A word w € (X)) = Ax¢ B is eyclically reduced if {(w) < I(pwp~?) for
all p € m1(Xg).

As in a free group, any word w € m1(24) is conjugate to a cyclically reduced word. The

process of cyclic reduction terminates in one of the following states, see [32]:
1. w' = 21y1 ... 2y0" where xq,y;, # 1.
2. w' = 6V for some v.
3. w' = 26 or w' = yd” for some x € A, respectively, y € B and some power v.

Assume Tp(w) = pwp~! for some p. Then for any ¢ € m1(2g) we have the following:

Te(q twq) = (Telg Hpg) ¢ Lwyr (¢ 1 1 Te(q) = /(¢ twg)p' ™t

where p/ = T.(¢"1)pg. That is, if T.(w) is conjugate to w then Tp(¢ "

1

wq) is conjugate to
¢ "wq. Thus, w may be considered cyclically reduced. If w cyclically reduces to either
state 2 or state 3, then w is conjugate to either an element of A or an element of B, as desired.

It remains to show that if T,.(w) = pwp~! for some p in 71(24) then w does not cyclically
reduce to state 1. We will argue by contradiction, first showing that length preserving
conjugates of w have a particular form (cyclic permutations up to conjugation by §). Then,

we will demonstrate that T.(w) does not take such a form.

Let w € m(Xg) = A xc B be written in normal form as w = z1y; ... x5y, Make the
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following definition:

oo(w) == w = x1Y1 ... cLYR0".
o(w) = xp 1yt - TRyt Tiyr -y for [ < k.
op(w) = ;... Yot = op(w).

opkri(w) = oi(w) forn >0 and i < k.

Lemma 3.2.4. Let w € m1(Xg) =2 Axc B be cyclically reduced to state 1. Let p € m1(Xg).

If lipwp™1) = l(w), then pwp™! = 6Y0;(w)dY for some i and some power v.

Proof of Lemma 3.2.4. We will induct on the length of p.
Base case: Let p € m1(2y), and assume I(p) = 1. Either

p € A (analogously p € B)
or p=xyd" for some z € A,y € B, and z,y # 1

If pe Aand p ¢ C, then Lemma 3.2.2. ii. and iv. implies

(pwp™ ') = l(wp™ ) = I(w) + 1.

Therefore if I[(pwp~!) = I(w), then p € C. Thus, pwp~! = 6"o¢(w)d~" for some power 7.

The same holds for p € B.

Otherwise, if p = xyd” for some © € A, y € B, and z,y # 1, then

lpwp™ ) = I((zyd")x1yy - . 2yt (0 Ty~ ta™ ).

Consider first pw = xyd"z1y1 . .. xyo". Since y € B but 1 € A, by Lemma 3.2.2. vii. it
follows that:
l(pw) = l(w) + 1.

1

Restricting attention to pwd "y~ ", notice that you can combine the rightmost two cosets,

because y;, € B and y € B. Lemma 3.2.2. iii. implies

(pwy™t) = U(pw).
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1

It is possible that xpy.d* "y~ 71 € C as in Lemma 3.2.2. iv. and it follows that:

lpwp™') = I(pws "y Tz

| AVAR
g
|
—_
+
—_

Equality holds exactly when xkyk&“ry*lel € C. That is,
zypdto Ty Tl = 67
for some power v. Therefore, equality implies
p=1xyd =0 "xpy,ot.
Thus,

pwp = 5 Vzpypdteiyr . g qyr-16”
= 571/0']{;_1(11})(51/.

Our base case is established.

Let p € m(X4) with I(p) = n > 1. Assume as inductive hypothesis that if I[(p) < n and
I(pwp™) = l(w) then pwp~! = 6¥0;(w)d~ for some i and some power v. Let p be given in
normal form as

P = z1W1 ... 2pwpo’ .

We can divide p into two pieces:
Pl = 21WP2 1= 29W9 . .. 2pWpd . (3.2.1)

In order to apply the inductive hypothesis, we need to check that I(powpy 1) = l(w). Suppose
for the sake of contradiction that I(powpy 1) > [(w). Applying Lemma 3.2.2. vi. it follows
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that:

l(p1(p2wpy D)) = Up1) + Upowpy )
> IU(p1) + (w)
= 14+ (w).

Then, by Lemma 3.2.2 vii. it follows that:

I(p1(p2wpy Hprh) > Up1(pawpy 1)) — 1
> l(w)+1-1
= l(w).

Therefore, if I(pwp™1) = I(w) then l(pgwpgl) = l(w).
By inductive hypothesis, powpy v 0;0 Y for some i and some power v.
Thus, we can rewrite
—1 . (51/ . 571/ —1
pwp” " = p16”o;(w)d"p]

= (21w1)8"Ti11Yit1 - - DYk 1y . iyd Y (wy e ).

If 21 = 1, the base case implies that p; € C. That is, if z = 1 then w; = 1, but this

contradicts the definition of normal form.
On the other hand, suppose z1 # 1. Write o;(w) in normal form as

oi(w) = Tig1Yit1--- TRy TIYL Ty

o1 1T s
= Tip1Yitl - TRYRTIYL - - TY;00
By the base case, p16¥ = (5%;%5“2' for some power s. Thus,

v 1 ‘ _
p107oi(w)d"Vpy T = 5sx3y§-5“lxj+1yj+1 L TRYRTY) .x;-_ly;-_ld 5.
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However by substitution,

-1 i —8—fhi_
1 = §°TH 1J;jyj...xkyk6“x1y1...xj_lyj_15 STH-1

= (58/03‘_1(11})(575/

p10” o (w)o~Vp

as desired. ]

To prove Proposition 3.0.2.A. we need to show that {(T;.(w)) = l(w) and that T,.(w) #

o (w)d~Y for all i and all v.

3.2.2 Dividing the surface with a separating curve

As above, let ¢ be the separating curve in Figure 3.1 that divides the generators aq, by from

the rest of the surface.

Proof of Proposition 3.0.2.A. By definition of T, and by Lemma 3.2.2. i. it follows that:
WTe(w)) = 16216 Yy .. 0xpd Lypdt) = l(w).

Assume for the sake of contradiction that T,.(w) = pwp~! for some p € m1(2Xg). Then

To(w) = pwp~! = 6”0;(w)d ™ for some v and some 4. Notice that:

TC(pwP_l) = TC(P)TC(U))TC(p_l) = le(p/)_l-

Thus (1¢)%(w) = 6", (w)d~"s for any s € Z.
Because w has finite length, there exist 0 < s < t such that 77 (w) = 0" o;(w)d~"™ and

T! = §"o;(w)6~™. That is for some power v,
T (w) = 6" T H(w)d ™.

Therefore,
T3 (w) = 65210 5y 052y . .. ypot = 0V a6ty 6lay .. 01V,

Equivalently,
2105 y16%mg . 6H = VTS0 y 0l L ST
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5y+t—s

By uniqueness of normal form, x1 = x16P for some p. That is

SVt = 6P
xflél/thfsxl — 5P
xl—ldlﬂrtfsxl(ssftfl/ _ 5p+(sft71/).

Because § € y9(A), it follows that :B1_15”+t*5961557tiy € v3(A). That is, 6°T(—1=v) ¢
73(A). However since y9(A)/v3(A) is torsion-free, (see e.g. [11] pp.426), it follows that
gpt(s—t=v) — 1. Therefore,

xlflé-l/ﬂffsxlésftﬂ/ -1

That is, 1 commutes with §“Tt=%. However if a,b € m1(2Xg) commute, then a and b are
powers of some common element. Because A/v9(A) is torsion-free, if 2 ¢ (5) then ¢ # ¢
for any power (. Therefore, either 1 = &¢ for some ¢Ee€Z,orv+t—s=0. Since x1 does

not represent the identity coset, this forces v +t — s = 0. Thus,
y10%xy .. OM = 5715y 6ty . OH TV,

By the same argument, it follows that s —¢ = 0. But this contradicts the assumption

that s # t. Therefore, if T.(w) is conjugate to w, then w does not cyclically reduce to state 1.

Therefore, if Te(w) is conjugate to w in m1(Xy) then w is conjugate in m1(2y) to an

element of A or an element of B. O]

In order to prove Proposition 3.0.2.B. we want to isolate the generating curve aj. In
light of this, the argument above can be repeated for a slightly different set of generators
{aq, bllv az,ba,...,ag,bg}, where b'1 is homologous to by but is not freely homotopic, as shown
in Figure 3.2.

The curve ¢’ separates a7, b’l from the rest of the surface. By the argument above, if w
is conjugate to T,s(w), then either w € (ay,b]) or w € {ag, by, ..., ag,bg). Let A" := (a1, b}).
If a simple closed x curve is freely homotopic to both a curve representing an element of A
and a curve representing an element of A’, then z is freely homotopic to a curve representing

an element of (a1). That is, if w is conjugate in 71(X4) to both an element of A and an
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Figure 3.2: Curve b’l

The curve b’1 is homologous to b; but the two curves are not homotopic.

element of A’ then w is conjugate to an element of {aq).

Proof of Proposition 3.0.2.B. Let B € m1(X4) be given. Assume [3,J(X)] C y2(m1(3g)). Let
z = [B,T¢]. By assumption, z € y2(m1(Xg)). Let w = Tcﬁéﬂ_ch_l € m1(Xg). Then

wzﬁalﬁflzflwfl = Tcﬁalﬂfngl.

Notice that because wz € m1(Xy), it follows that Tc(ﬂalﬂ_l) is conjugate to Ba;8~ L in
m1(Xg). In the quotient 71(X4)/v2(m1(Xg)), we have the following equality of left cosets:

Bar B~ M2 (m1(Sg)) = arya(mi(Sy)).

Proposition 3.0.2.A. implies that Sa;3~! must be conjugate to an element generated by
{a1,b1}.

Similarly, replacing Ti. with 7./, the above argument demonstrates that 7./(Sa; 871 is
conjugate to Ba;f~1 in m(2,). Thus, Bayf ! is conjugate to an element generated by
jug 9

ay,b’} and an element generated by {aj, b1 }.
1

Therefore Sa;f~! is conjugate in m1(Xg) to alf for some k. Since fa1f7! = a4
mod 72(m1(3g)), it follows that BaiB~! is homotopic to ay.
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For any ¢ € Mod(% 1), because {zx € J(X) |[z,I(X)] C y2(P)} is normal in Mod (X, 1),
it follows that:

0B~ € {x € I(B)| [z, I(Z)] C 1(P)}.
Thus, ¢B¢ La;¢B8 11 is conjugate to ay in 71(3g). This means for some p € m1(3y),

Bparp 17t = pparpteL.

Because [¢, p| € m1(%y), it follows that dpa1p Lo~ is conjugate in m1(Xg) to

[0, Bldparp Lo~ o, p| = poard™tp L.

That is, ﬁgb(al)ﬁfl is conjugate in m1(Xg) to ¢(ay). Therefore, BxB~1 is conjugate in

71(2g) to  for any simple closed curve . O

In particular, for a filling set of simple closed curves, {x1,...,z}}, we have Bz;571 is
conjugate to x; in m1(Xy) for each i. By the Alexander method, the map 3 must be trivial
in Out(m1(Xy)). That is, 8 € P. Proposition 3.0.2 follows.

3.3 Conclusion: N =P

To conclude the proof of Theorem 1.0.1, write both P and N in the form given by Proposition
3.0.2:
P={z€J(X)|[z,I(X)] € (P}

N ={z € J(N)[[z,J(N)] € 72(N)}.

From section 2.3, [N, N| C [P, P] implies that:
N C{z € J(N)[[z,I(N)] € 72(P)}.
From Section 2, J(¥) C J(NV) implies that:

N C{z € I(N) [ [z, I(X)] € 72(P)}-
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From Section 2, N C J(X) implies that:
N C{z €J(X)|[z,I(2)] € (P)}

Thus
N CP.

Since N is a subgroup of P and is not free, the index of N in P is finite (see e.g. [17,
Th.1]).
We can determine the index of N via the following formula (see e.g. [14, Sect.2.2 Ex.22]):

where x is Euler characteristic. Therefore [N : P] = 1 and N = P. We have established
Theorem 1.0.1.

The following example demonstrates that N need not equal P if we remove the condition

of normality.

Example 3.3.1. Let ¢ € Mod(34). Construct the mapping torus M, = (I x Xg)/(1,2) ~
(0, ¢(x)). Note that m1(My) = m1(3g) x Z. Consider the exact sequence

1 — 71 () — Mod(S1) —= Mod(S,) —» 1.
The preimage F~1(p) = m(Xg) X Z < Mod(X4,1). This induces an injection
g:m1(My) — Mod(Xg1).

M, fibers over St with fiber Yg. As long as Ho(My;7Z) > 2, the theory of the Thurston
norm [34] implies that My, fibers over S 1 with fiber ¥, for infinitely many k. (These h

correspond to integer points in the cone over a fibered face of the unit ball in the Thurston
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norm.) Fiberings of the form
Sl

give injections iy, : 1 (Xp) — 71 (My). The image of the composition
goip : 2p — MOd(EgJ)

is a surface subgroup of Mod (X 1). This subgroup is not necessarily normal in Mod (X 1).
Using the fibered faces of the unit ball in the Thurston norm, we can find multiple

(non-normal) copies of 71(3g) in Mod (3 1).

3.4 A new proof that Out(Mod™(%,,)) is trivial

Corollary 1.0.2 (Ivanov-McCarthy’s Theorem). Let g > 3. Then Out(Modi(Eg’l)) is

trivial.

Theorem 1.0.1 together with the following classical theorem of Burnside implies Corollary
1.0.2. A group G is complete if it is centerless and every automorphism is inner, i.e. Aut(G) =
Inn(G) = G. A subgroup H < G is characteristic if H is invariant under all automorphisms

of GG.

Theorem 3.4.1 (Burnside [7]). A centerless group G is characteristic in its automorphism

group if and only if Aut(G) is complete.

Proof of (=) for Theorem 3.4.1. Suppose that G is centerless and characteristic in Aut(G).
Let ¢ € Aut(Aut(G)) and let g € G. There is a homomorphism

i: G — Inn(G)

given by
i(g)(h) = ghg™"
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for any h € GG. The homomorphism i is an isomorphism because G is centerless. Additionally,

because G is characteristic, ¢ restricts to an automorphism of Inn(G) = G. Define
b:G—G

by

On the other hand

for any g € G. Therefore,

As such,
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Proof of corollary 1.0.2. By Theorem 1.0.1, P is characteristic in Mod (X, 1). By the Dehn-
Nielsen-Baer theorem (see e.g. [10] Th. 8.1) it follows that Aut(P) = Modi(Zg’l). To prove
the corollary, it suffices to show that Mod(%, 1) is characteristic in Modi(ZgJ). Notice that:

Mod* (%
7)27 = _° <9’1)i > H(Mod*(5,1);Z)  and
[Mod™(Xg,1), Mod™(Xg,1)] 7
Mod® (2
z/o7 =~ Mo (Zg1)
MOd(Eg’l)

For further details on these quotients see [10, Th. 5.2 and Ch. 8]. Because the quo-
tient Mod™(Z,1)/Mod(Z,1) is abelian, [Mod* (X, 1), Mod*(Z,1)] C Mod(Z,1). Fur-
ther, because the quotients are isomorphic and finite, it follows that Mod(ZgJ) is equal

to the commutator subgroup of Modi(Egyl). Therefore Mod(X, 1) is characteristic, and
Out(Mod*(2,1)) = 1. O
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