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To my father who reminds me to work hard.



You’d surf across the kitchen sink upon a stick of gum.

You couldn’t hug your mama, you’d just have to hug her thumb.

You’d run from people’s feet in fright,

To move a pen would take all night,

(This poem took fourteen years to write−
’Cause I’m just one inch tall).

−Shel Silverstein, Where the Sidewalk Ends
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ABSTRACT

The point-pushing subgroup P (Σg) of the mapping class group Mod(Σg,1) of a surface with

marked point is an embedding of π1(Σg) given by pushing the marked point around loops.

We prove that for g ≥ 3, the subgroup P (Σg) is the unique normal, genus g surface sub-

group of Mod(Σg,1). As a corollary to this uniqueness result, we give a new proof that

Out(Mod±(Σg,1)) = 1, where Out denotes the outer automorphism group; a proof which

does not use automorphisms of complexes of curves. Ingredients in our proof of this charac-

terization theorem include combinatorial group theory, representation theory, the Johnson

theory of the Torelli group, surface topology, and the theory of Lie algebras.
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CHAPTER 1

INTRODUCTION

Let Σg (respectively, Σg,1) be a compact, connected surface of genus g (respectively, with

one marked point). Let Σ be either Σg or Σg,1. The mapping class group Mod(Σ) is the

group of orientation-preserving homeomorphisms of Σ modulo isotopy. The map Σg,1 → Σg

given by “forgetting” the marked point induces an injection

F : Mod(Σg,1) ↪→ Mod(Σg).

For g ≥ 2, the point-pushing subgroup is defined by P (Σg) := ker(F ).

Informally, P (Σg) is the subgroup of Mod(Σg,1) consisting of elements that “push” the

marked point along closed curves in the surface. Birman in [3] (see also [4]) proved that

P (Σg) ∼= π1(Σg). A genus h surface group is any group isomorphic to π1(Σh). In particular,

P (Σg) is an example of a normal, genus g surface subgroup of Mod(Σg,1).

Theorem 1.0.1 (Uniqueness of P (Σg)). Let g ≥ 3. The point-pushing subgroup P (Σg) is

the unique normal, genus g surface subgroup inside Mod(Σg,1).

Remarks (on Theorem 1.0.1).

1. Theorem 1.0.1 has a beautiful free group analogue, proven by Formanek in 1990. Our

proof follows in outline the proof given by Formanek in [11]. Even so, in establishing

the main result we will have to overcome several obstacles to reconcile the differences

between free groups and surface groups. Let {a1, b1, . . . , ag, bg} be a standard set

of generators for π1(Σg). In general, the surface relation (Π
g
i [ai, bi] = 1) pervades

the objects associated to π1(Σg) and muddies the analogy between free and surface

groups. Some key differences between Fn / Aut(Fn) and π1(Σg) / Mod(Σg,1) are

summarized in Table1.1.
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Table 1.1: Key Surface Group Obstacles

Fn / Aut(Fn) π1(Σg) /Mod(Σg,1)

The representation theory of GLn(Q) re-

veals properties of Aut(Fn) from the

canonical surjection

The representation theory of Sp2g(Q)

reveals properties of Mod(Σg,1) from

the standard symplectic representation

Aut(Fn) � Aut(Fn/γ2(Fn)) ∼= GLn(Z). Mod(Σg,1) � Sp2g(Z).

Let I(Fn) be the Torelli subgroup of

Aut(Fn), see Definition 1.1.2. I(Fn) has

torsion-free abelianization. Specifically,

H1(I(Fn);Z) ∼= Λ3Zn.

Let I(Σ) be the Torelli subgroup

of Mod(Σg,1), see Definition 1.1.2.

The abelianization of I(Σ) contains

2-torsion. That is, H1(I(Σ));Z) ∼=
Λ3Z2g ⊕ B/〈α〉 where B/〈α〉 is 2-

torsion, see Proposition 2.2.5. The ex-

istence of this 2-torsion comes from the

Rochlin invariant in 3-manifold theory.

Let I2(Fn) be the second term in the

Andreadakis-Johnson filtration, see Def-

inition 1.1.2. Then, [I(Fn), I(Fn)] =

I2(Fn).

Let I2(Σ) be the second term in

the Andreadakis-Johnson filtration, see

Definition 1.1.2. Then, [I(Σ), I(Σ)] 6=
I2(Σ).

The graded Lie algebra associated to the

lower central series of Fn is free. See Sec-

tion 2.2.1.

The graded Lie algebra associated to

the lower central series of π1(Σg) is a

nontrivial quotient of the free Lie alge-

bra. See Section 2.2.1

2. That P (Σg) is normal in Mod(Σg,1) is necessary for the uniqueness result stated in

Theorem 1.0.1. Clay-Leininger-Mangahas in [8, Cor.1.3] construct infinitely many

nonconjugate genus g surface subgroups in Mod(Σg). See also the work of Leininger-

Reid [26, Cor.5.6]. Specifically for a surface with one marked point, we can find
2



surface subgroups π1(Σh) < Mod(Σg,1) for infinitely many h using the Thurston

norm (see Example 3.3.1 below).

3. Theorem 1.0.1 does not hold for g = 1. Because Mod(Σ1,1) ∼= SL2Z has a finite

index, free subgroup, Mod(Σ1,1) has no surface subgroups. It is not known whether

or not P (Σ2) is the only normal, genus 2 surface subgroup in Mod(Σ2,1).

The extended mapping class group Mod±(Σ) is the group of all homeomorphisms (ori-

entation preserving and reversing) of Σ, modulo isotopy. The Dehn-Nielsen-Baer theorem

establishes an isomorphism

Φ : Mod±(Σg,1)
∼=−→ Aut(π1(Σg)).

Let Inn(π1(Σg)) be the group of inner automorphisms of π1(Σg). As a consequence of the

Dehn-Nielsen-Baer theorem,

Φ(P (Σg)) = Inn(π1(Σg)) / Aut(π1(Σg)).

Burnside in [7, pp. 261] proved that for a centerless group G (which gives G ∼= Inn(G) /

Aut(G)), if every φ ∈ Aut(Aut(G)) satisfies φ(G) = G, then

Aut(Aut(G)) = Inn(Aut(G)) ∼= Aut(G).

See Section 3.4 below for a short proof of this fact of Burnside. Since π1(Σg) is centerless

for g > 1, Burnside’s result together with Theorem 1.0.1 implies:

Corollary 1.0.2 (Ivanov-McCarthy’s Theorem). Let g ≥ 3. Then Out(Mod±(Σg,1)) is

trivial.

Remarks (on Corollary 1.0.2).

1. For g ≥ 3, Ivanov-McCarthy proved that Out(Mod±(Σg,1))=1, from which they

deduced that Out(Mod(Σg)) ∼= Z/2Z, see [16], [15, Th.5] and [29, Th.1]. In fact,

Ivanov-McCarthy proved a much stronger result for injective homeomorphisms of

finite index subgroups of Mod(Σg). Their work uses the deep theorem of Ivanov that
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the automorphism group of the complex of curves is the extended mapping class

group. Our proof does not use this theorem.

2. The result of Ivanov-McCarthy that Out(Mod±(Σg,1))=1 implies that P (Σg) is

characteristic in Mod(Σg,1), since all automorphisms of Mod±(Σg,1) are inner.

In contrast, our characterization theorem (Theorem 1.0.1) implies that P (Σg) is

characteristic, from which we deduce (with Burnside) that Mod(Σg,1) has no outer

automorphisms.

3. McCarthy in [29] proved that Out(Mod)±(Σ2,1) is nontrivial, which implies (with

Burnside) that P (Σ2) is not characteristic in Mod±(Σ2,1). Thus, P (Σ2) is not the

only normal, genus 2 surface subgroup in Mod±(Σ2,1). However, it is unknown

whether or not these additional normal, genus 2 surface subgroups are contained in

Mod(Σ2,1).

1.1 Structure of the proof

Ingredients in our proof of Theorem 1.0.1 include combinatorial group theory, representation

theory, the Johnson theory of the Torelli group, the theory of Lie algebras, and surface

topology. These tools allow us to characterize P (Σg) in terms of two filtrations: the lower

central series of P (Σg) and the Andreadakis-Johnson filtration of Mod(Σg,1). By showing

any arbitrary normal, genus g surface subgroup must also have those same characterizing

properties, we demonstrate that P (Σg) is unique.

To condense notation, let P := P (Σg). Let N / Mod(Σg,1) be a normal subgroup ab-

stractly isomorphic to π1(Σg). We must prove that N = P .

Definition 1.1.1. The lower central series of a group G, denoted as

G = γ1(G) ⊃ γ2(G) ⊃ . . .

is defined inductively as γi+1(G) = [γi(G), G].
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Let Z(G) denote the center of a group G. The lower central series is central, i.e.

γk(G)/γk+1(G) ⊂ Z(G/γk+1(G)) for each k. Further, each γk(π1(Σg)) is characteristic

in π1(Σg), i.e. invariant under automorphisms of π1(Σg). As such, there is a family of

well-defined maps

Ψk : Mod(Σg,1)→ Aut(π1(Σg)/γk+1(π1(Σg))).

Definition 1.1.2. The Johnson filtration of Mod(Σg,1), denoted as

I(Σ) = I1(Σ) ⊃ I2(Σ) ⊃ . . .

is defined as

Ik(Σ) := ker(Ψk).

The first term I(Σ) is referred to as the Torelli group of Mod(Σg,1).

By assumption, N ∼= π1(Σg). As such, for some surface Σ̂g,1, we can define an injection

N ↪→ Mod(Σ̂g,1) so that the image of N is the point-pushing subgroup in Mod(Σ̂g,1). In

this paper, we will consider both the Johnson filtration for Mod(Σ̂g,1) and for Mod(Σg,1).

To distinguish these two filtrations we will use the notation Ik(N) for Mod(Σ̂g,1) and Ik(Σ)

for Mod(Σg,1). We will gradually “push” P and N through the terms of these Johnson

filtrations in order to capture salient properties. Eventually, we will establish the following

chain of containments:

γ2(N) ⊆ γ2(P ) ⊆ I2(Σ) ⊆ I(Σ) ⊆ I(N).

Furthermore, we will give the following useful characterization of P (Σg) in terms of the

linear central filtrations defined above.

Proposition 3.0.2 (Characterization of P ). Let g ≥ 3. Then

P (Σg) = {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P (Σg))}.

By proving Proposition 3.0.2 we will also characterize N as

N = {x ∈ I(N) | [x, I(N)] ⊂ γ2(N)}.
5



Notice that Proposition 3.0.2 together with the two inclusions I(Σ) ⊂ I(N) and γ2(N) ⊂
γ2(P ) implies the following chain of containments:

N = {x ∈ I(N) | [x, I(N)] ⊂ γ2(N)}

⊆ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(N)}

⊆ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}

= P.

That is, N ⊆ P . Applying the index formula [N : P ] · χ(Σ) = χ(Σ̂), we can conclude

that N = P .

In summary, we divide our proof into the following two main parts:

• Chapter 2: Demonstrate the chain of containments

γ2(N) ⊂ γ2(P ) ⊂ I2(Σ) ⊂ I(Σ) ⊂ I(N).

• Chapter 3: Characterize the point-pushing subgroup as

P = {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}.

From these two steps, it follows that N=P.

6



CHAPTER 2

LINEAR DETECTORS

As above, let P be the point-pushing subgroup of Mod(Σg,1). LetN/Mod(Σg,1) be abstractly

isomorphic to π1(Σg). In chapter two, we will use the lower central series of π1(Σg), the

Johnson filtration of the Torelli group, and Sp2g(Q) representations to detect salient feature

of P . In particular, we will show that N must have the same action on homology, and the

image under the Johnson homomorphism as the subgroup P .

2.1 Action on homology: N ⊂ I(Σ).

While N need not act as the point-pushing subgroup on Σg, we can choose N to be the

point-pushing subgroup of Mod(Σ̂g,1) for some surface Σ̂g,1. We will use Ik(Σ) to denote

the Johnson filtration for Mod(Σg,1), and we will use Ik(N) to denote the Johnson filtration

for Mod(Σ̂g,1). For the remainder of the paper, let g ≥ 3.

In this section, we will work toward establishing the chain of containments

γ2(N) ⊂ γ2(P ) ⊂ I2(Σ) ⊂ I(Σ) ⊂ I(N)

by proving that I(Σ) ⊂ I(N) and N ⊂ I(Σ).

Let β be a loop in Σg,1 based at the marked point, x0. This loop defines an isotopy

from the marked point to itself which can be extended to all of Σg,1. (For a more precise

explanation see e.g. [10, Setc.4.2].) Denote this homeomorphism by φβ . The point-pushing

subgroup P /Mod(Σg,1) is exactly the subgroup of isotopy classes of homeomorphisms of the

form φβ for any based loop β. Let [β] ∈ π1(Σg) be the homotopy class of loops containing

β. There is a well-defined map

Push : π1(Σg)→ P

given by

Push([β]) = [φβ ].

7



Birman in [3] proved that the map Push is an isomorphism. Because P is normal, Mod(Σg,1)

acts on P via conjugation. Alternately, the action of Mod(Σg,1) on Σg,1 induces an action

on the fundamental group π1(Σg). The map Push respects the action of Mod(Σg,1). That

is, for ψ ∈ Mod(Σg,1) and [β] ∈ π1(Σg)

Push(ψ∗([β])) = ψPush([β])ψ−1. (†)

For convenience, we will sometimes equate P with π1(Σg). For full details regarding the

isomorphism between P and π1(Σg) see Section 4.2 of [10].

The point-pushing subgroup P acts by free homotopies on the unmarked surface Σg. As

such, P acts trivially on H1(π1(Σg);Z) ∼= π1(Σg)/γ2(π1(Σg)). That is, P ⊂ I(Σ). We want

to show that N also has the property N ⊂ I(Σ).

Given φ ∈ Mod(Σg,1) and n ∈ N , define the map

α : Mod(Σg,1)→ Aut±(N) ∼= Mod±(Σ̂g,1)

by

α(φ)(n) = φnφ−1.

We have the following exact sequences for P and N :

1 I(Σ) Mod(Σg,1) Sp2g(Z) 1

1 I(N) Aut±(N) Sp±2g(Z) 1

α

ΨΣ

ᾱ

ΨN

(‡)

where Sp±2g(Z) is the subgroup of GL2g(Z) generated by Sp2g(Z) and the image of any

orientation-reversing homeomorphism. Because all orientation reversing homeomorphisms

are nontrivial on H1(Σg,1;Z), we have the equality

ker(ΨN ) = I(N) = ker(ΨN |Aut+ : Mod(Σ̂g,1)→ Sp2g(Z)).

8



Section 2.1 is divided into the following steps:

1.A. The map α is injective.

1.B. The Torelli group I(Σ) is contained in the Torelli group I(N).

1.C. The map ᾱ is an isomorphism onto its image.

The containment N ⊂ I(Σ) will follow easily from part 1.C.

1.A. Injectivity of α The map α is defined by the conjugation action of Mod(Σg,1)

on N . Thus, ker(α) centralizes N . Since N ∼= π1(Σg) has trivial center, it follows that

ker(α) ∩N = 1.

Let φ ∈ N/Mod(Σg,1) be nontrivial. There is some x ∈ π1(Σg) such that φ(x) 6= x. That

is, by Equation (†), the element φxφ−1x−1 of Mod(Σg,1) is nontrivial. However, because

both N and P are normal in Mod(Σg,1) it follows that φxφ−1x−1 ∈ N ∩ P . Therefore, the

intersection N ∩ P 6= ∅.
Likewise, if ker(α) 6= 1, then there is a nontrivial element of kerα ∩ P .

The two subgroups ker (α) ∩ P and P ∩ N are commuting subgroups of P . Because

ker(α)∩N = 1, the intersection (ker (α)∩P )∩ (P ∩N) is trivial. However, x1, x2 ∈ π1(Σg)

commute if and only if x1 = ωk and x2 = ωm for some ω ∈ π1(Σg), see e.g. [10, Sect.1.1.3].

For ker (α)∩P and P ∩N to intersect trivially and also commute, it must be that ker (α) = 1.

Therefore α is injective.

1.B. Containment of Torelli groups Let ΨΣ,ΨN , and α be defined as in (‡). The

following theorem of Korkmaz relates the two homomorphisms ΨΣ and ΨN ◦ α.

Theorem 2.1.1 (Korkmaz [23] Thm.1). For g ≥ 3, any group homomorphism φ :

Mod(Σg,1) → Gl2g(C) is either trivial or else conjugate to the standard representation

ΨΣ : Mod(Σg,1)→ Sp2g(Z).

Two homomorphisms φ, ψ : G→ H are conjugate if there exists an element h ∈ H such

that hφh−1 = ψ(g) for all g ∈ G. Note that conjugate homomorphisms have the same kernel.

9



By Theorem 2.1.1, the composition

ΨN ◦ α : Mod(Σg,1)→ Sp±2g(Z) ⊂ GL2g(C)

is either trivial or conjugate to ΨΣ. Thus, the kernel of ΨN ◦ α is either all of Mod(Σg,1)

or exactly I(Σ). In either case, α(I(Σ)) ⊂ ker(ΨN ) = I(N). Using the injectivity of α to

simplify notation, I(Σ) ⊂ I(N).

1.C. The map ᾱ is an isomorphism Using the fact that ker(ΨΣ) ⊂ ker(ΨN ), there

is a well-defined homomorphism ᾱ : Sp2g(Z) → Sp±2g(Z) which makes the diagram (‡)
commute. Note that Mod(Σg,1) contains torsion elements but I(N) is torsion-free (see [13,

Sect.2 pp.101]). Therefore, α(Mod(Σg,1)) 6⊂ I(N), and ΨN ◦ α 6= 1. The commutativity of

(‡) implies ᾱ ◦ΨΣ 6= 1. Again applying Theorem 2.1.1, the image of ᾱ must be conjugate to

Sp2g(Z). Therefore ᾱ is an isomorphism onto its image.

Because N ⊂ ker(ΨN ) and because the diagram (‡) commutes, it follows that N ⊂
ker(ᾱ ◦ΨΣ). However, ker(ᾱ) = 1 implies N ⊂ ker(ΨΣ). That is

N ⊂ I(Σ) ⊂ I(N).

2.2 The second term of the Johnson filtration.

In this section we will “push” P and N deeper into the second term of Johnson filtration.

We will show that N ⊂ P · I2(Σ). To that end, we will prove N · I(Σ)/I(Σ) = P · I(Σ)/I(Σ)

by using the Johnson homomorphism and the representation theory of Sp2g(Q).

2.2.1 Johnson filtration of Mod(Σg,1) and lower central series of P

In this subsection, we will consider the quotient P · I(Σ)/I(Σ) ∼= P/(P ∩ I(Σ)). We will

prove that P ∩ I(Σ) = [P, P ]. Moreover, we will establish the following general fact.

Proposition 2.2.1. P ∩ I(Σ)k = γk(P ) for all k ≥ 1.

10



To condense notation, let γk := γk(π1(Σg)) be the kth term of the lower central series.

Notice that

π1(Σg) ∩ Ik(Σ) = {x ∈ π1(Σg) |xyx−1y−1 ∈ γk+1 for all y ∈ π1(Σg)}. (2.2.1)

That is, x ∈ π1(Σg) ∩ Ik(Σ) if and only if the left coset xγk+1 is contained in the center

Z(γ1/γk+1). Thus, Proposition 2.2.1 is equivalent to showing that:

Z(γ1/γk+1) = γk/γk+1 for all k ≥ 1. (2.2.2)

This equality was first established by Asada and Kaneko in [1, Prop. A]. For the reader, we

provide an alternate proof below. We will demonstrate Equality 2.2.2 by establishing two

containments. The containment Z(γ1/γk+1) ⊃ γk/γk+1 follows from the definition of the

lower central series. The opposite containment relies on an analysis of the center of the Lie

algebra associated to the lower central series of π1(Σg), described below.

Associated to the lower central series of any group is a graded Lie algebra. (For a discus-

sion of this graded Lie algebra, see e.g. work of Lazard in [25], or Labute in [24]. Mal’cev

is credited with first using this nilpotent filtration to study groups in [28].) Specifically, for

G = π1(Σg) define

Λi := γi(π1(Σg))/γi+1(π1(Σg)) for i ≥ 1.

Each Λi is a Z-module. The sum

Λ :=
⊕
i

Λi

can be given the structure of a graded Lie algebra over Z as follows. Let ( , ) be the com-

mutator in π1(Σg). The Lie bracket [ , ] is induced on Λ by the commutator. That is, for

x ∈ Λk, y ∈ Λj , and x̄, ȳ lifts of x, y respectively to π1(Σg), we define

[x, y] := (x̄, ȳ)γk+j+1 ∈ Λk+j .

Despite the fact that π1(Σg) is written as a multiplicative group, we will write Λi additively

as a Z-vector space. In particular, the left coset 1γk+1 is 0 as an element of Λk.

To prove Proposition 2.2.1 it remains to show Z(γ1/γk+1) ⊂ γk/γk+1. We will divide

the proof into two steps as follows:
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2.2.1.A. Λ has trivial center =⇒ Z(π1/γk+1(π1)) ⊂ γk(π1)/γk+1(π1).

2.2.1.B. The universal enveloping algebra U(Λ) ∼= A2g/R where A2g is the free associative

algebra on 2g indeterminates, and R is the ideal generated by
∑g
i=1(ai ⊗ bi −

bi ⊗ ai).

To conclude, we will check that U(Λ) has trivial center. Because all relations in Λ must

hold in its universal enveloping algebra, if U(Λ) has trivial center, then so does Λ. Proposition

2.2.1 follows.

Proof of Proposition 2.2.1.A. Let x ∈ Z(γ1/γk+1). Suppose for the sake of contradiction

x /∈ Λk. We will show that x ∈ Z(Λ).

There is some smallest i ≥ 1 such that x ∈ γk−i/γk+1. Let y ∈ Λj . In order to show

that x is central, because the Lie bracket is bilinear, it suffices to check that [x, y] = 0 for

any y and any j. That is, the commutator (x̄, ȳ) ∈ γk−i+j+1.

First, let 1 ≤ j ≤ i. Notice, for any ȳ ∈ π1(Σg), the commutator (x̄, ȳ) ∈ γk+1 because

x ∈ Z(γ1/γk+1). Since j ≤ i, it follows that γk+1 ⊂ γk−i+j+1. Thus,

(x̄, ȳ) ∈ γk+1 ⊂ γk−i+j+1.

Therefore, if y ∈ Λj for j ≤ i then

[x, y] = 1γk−i+j+1 = 0 ∈ Λk−i+j .

Otherwise, let 1 ≤ i < j. We will prove (x̄, ȳ) ∈ γk−i+j+1 by induction on j. Suppose first

j = 2 (forcing i = 1). Without loss of generality we may assume ȳ = (ā, b̄). The Jacobi

identity provides

[x, y] = [x, [a, b]] = −[b, [x, a]]− [a, [b, x]].

However, (x̄, ā), (b̄, x̄) ∈ γk+1 because x ∈ Z(γ1/γk+1). This implies

−(b, (x, a))− (a, (b, x)) ∈ γk+2 = γk−1+2+1 = γk−i+j+1.
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Therefore, [x, y] = 0.

To complete the induction, let M < k. Assume if i ≤ j ≤ M , then (x̄, ȳ) ∈ γk−i+j+1

for all y ∈ Λj . Suppose y ∈ ΛM+1. Without loss of generality, we may assume that y is an

(M +1)-fold commutator, i.e. y = (ā, b̄)γM+2 for some a ∈ Λ1 and b ∈ ΛM . By assumption,

(x̄, ā) ∈ γk+1, which implies

(b̄, (x̄, ā)) ∈ γk+1+M+1 ⊂ γk−i+M+1.

By the inductive hypothesis, (b̄, x̄) ∈ γk−i+M+1. Therefore,

(x̄, (ā, b̄)) = −(b̄, (x̄, ā))− (ā, (b̄, x̄)) ∈ γk−1+M+1 ⊂ γk−i+M+1

implying that [x, y] = 0 for all y ∈ Λ.

Therefore, x 6= 0 is central in Λ. This proves the implication

Z(Λ) = 0⇒ Z(γ1/γk+1) ⊂ γk/γk+1. (2.2.3)

Proof of Proposition 2.2.1.B. The following theorem of Labute shows that the graded Lie

algebra Λ is a quotient of the free Lie algebra on 2g generators by a principal ideal.

Theorem 2.2.2. (Labute [24]). Let L2g be the free Lie algebra on 2g generators (denoted

a1, b1, . . . , ag, bg). Let R be the ideal generated by
∑
i[ai, bi]. Then Λ ∼= L2g/R.

Let T (Λ) be the tensor algebra on the vector space underlying Λ. Let U(Λ) be the

universal enveloping algebra. Define U(Λ) as

U(Λ) := T (Λ)/〈a⊗ b− b⊗ a− [a, b]〉.

Let A2g be the free associative algebra on 2g indeterminates. Let R be the ideal in A2g

generated by
∑g
i=1(ai ⊗ bi − bi ⊗ ai). We will prove below that the universal enveloping

algebra U(Λ) is isomorphic to A/R.
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The analogous fact for free groups, U(Ln) ∼= An, was established by Magnus-Karrass-

Solitar, see [27, pp.347 ex.5]. Let U : L→ A be the functor from the category of Lie algebras

to the category of associative algebras that takes a Lie algebra to its universal enveloping

algebra. Let G : A → L be the functor from the category of associative algebras to the

category of Lie algebras, that induces the Lie bracket by the commutator in the associative

algebra. U is left-adjoint to G.

Define an injection

φ : L1 → L2g

via

φ(1) :=
∑
i

[ai, bi].

Notice that

U(L1
φ−→ L2g) = A1

U(φ)
−→ A2g.

The map U(φ) is the injective map defined by U(φ)(1) :=
∑

(ai ⊗ bi − bi ⊗ ai). Note,

coker(φ) ∼= Λ and coker(U(φ)) ∼= A2g/R. Since U is left-adjoint to G it preserves cokernels,

meaning U(coker(φ)) ∼= coker(U(φ)). Therefore U(Λ) ∼= A2g/R.

In order to show that Λ is centerless, it suffices to show that the universal enveloping

algebra, U(Λ) is centerless. A computation of Crawley-Boevey-Etingof-Ginzburg in [9,

Thm.8.4.1(ii)] shows that the Hochschild cohomology HH0(A2g/R) ∼= Z. For an associative

algebra A, the center Z(A) = HH0(A) (see e.g. [35, Sect.9.1.1]). That is, only Z is central

in the associative Z-algebra A/R = U(Λ). All relations in Λ must be preserved in U(Λ).

Thus, Z(Λ) = 0.

Because Z(Λ) = 0, it follows from Equation (2.2.3) that Z(γ1/γk) ⊂ γk/γk+1. Thus,

Z(γ1/γk) = γk/γk+1. Then, by Equation (2.2.1), it follows that P ∩ Ik = γk(P ).

In particular, we have shown that P ∩ I2(Σ) = γ2(P ), and equivalently N ∩ I2(N) =

γ2(N).
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2.2.2 Abelizanization of I(Σ)

We have already established that:

N ∩ [N,N ] ⊆ N ∩ [I(Σ), I(Σ)]

⊆ N ∩ [I(N), I(N)]

⊆ N ∩ I2(N)

= [N,N ].

The first containment follows from N ⊂ I(Σ) (Section 2). The second containment follows

from I(Σ) ⊂ I(N) (Section 2). Johnson’s work showing that I(N)/I2(N) is abelian

implies the third containment (see [21, 18] or e.g. [10, Sect.6.6.3]). The final equality is

a consequence of Proposition 2.2.1. To conclude that N ∩ I2(Σ) = [N,N ] it suffices to

check that I2(Σ) ⊂ I2(N). To establish this containment, we need to study the Johnson

homomorphism and Johnson filtration.

Let Σ1
g be a compact surface of genus g with one boundary component. Let Mod(Σ1

g)

be the group of isotopy classes of orientation preserving homeomorphisms of Σ1
g fixing the

boundary pointwise. Define the Torelli group for a surface with boundary as

I1
g := ker(Ψ : Mod(Σ1

g)→ Sp2g(Z))

where Ψ is the standard symplectic representation. For emphasis, we will sometimes distin-

guish as Ig,1 the Torelli group for a once marked surface. Unless otherwise specified I = Ig,1.

Let x ∈ H1(Σ1
g;Z), let x̄ ∈ π1(Σ1

g)/γ3(π1(Σ1
g)) be a representative of x. Let φ ∈ I1

g. The

Johnson homomorphism for I1
g is

τ1
g : I1

g → Hom(H1(Σ1
g;Z), γ2(π1(Σ1

g))/γ3(π1(Σ1
g))

given by

τ1
g(φ)(x) = φ(x̄)x̄−1.

Many properties of Ig,1 follow directly from the properties of I1
g. In a series of papers,

Johnson established several important results summarized in the following theorem.
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Theorem 2.2.3 (Johnson). Let the notation be as above. For g ≥ 3, the following hold:

A. Im(τ1
g)
∼= Λ3H1(Σ1

g;Z) [21].

B. H1(I1
g;Q) ∼= Λ3H1(Σ1

g;Q) [20, 22, 21].

C. ker(τ1
g) = (I1

g)2 see, e.g. [10, Th.6.18].

D. τ1
g : I1

g/(I
1
g)2 → Λ3H1(Σ1

g;Z) is an Sp2g(Z)-equivariant isomorphism, see, e.g. [10,

Eq.6.1].

E. The quotient I1
g/(I

1
g)2 is the universal torsion-free abelian quotient of I1

g see [21, 18]

or e.g. [10, Sect.6.6.3]).

To condense notation, let

HZ := H1(Σ1
g;Z),

HQ := H1(Σ1
g;Q),

π1 := π1(Σg).

We can define the Johnson homomorphism for Ig,1 as follows. Let x ∈ HZ, let x̄ a represen-

tative of x in π1, and φ ∈ I. Define

τ : Ig,1 → Hom(HZ, γ2(π1)/γ3(π1))

by

τ(φ)(x) = φ(x̄)x̄−1.

The map τ is well-defined by Proposition 2.2.1. Let T∂ be the Dehn twist about the

boundary curve of Σ1
g. The fact that T∂ ∈ ker(τ1

g) implies that τ1
g : I1

g → Λ3HZ factors

through Ig,1 (see [21]). As such, Theorem 2.2.3 A-E holds for Ig,1 and τ.

By showing that I2(Σ) ⊂ I2(N), we will conclude that

[N,N ] = N ∩ [I(Σ), I(Σ)] = N ∩ I2(Σ) = N ∩ I2(N) = [N,N ].
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Remark 2.2.4. The quotient I(Σ)/I2(Σ) differs from the universal abelian quotient of I(Σ)

only in torsion. That is,

I(Σ)/I2(Σ)⊗Q ∼= H1(I(Σ);Q)

∼= I(Σ)/[I(Σ), I(Σ)]⊗Q.

Therefore, [I(Σ), I(Σ)] ⊂ I2(Σ) and the quotient I2(Σ)/[I(Σ), I(Σ)] is isomorphic to the

torsion subgroup of I(Σ)/[I(Σ), I(Σ)].

To see that I2(Σ) ⊂ I2(N), we will consider the difference between H1(I;Z) and

H1(I,Q). The abelianization, H1(Ig,1;Z), can be computed using techniques employed by

Johnson in [22] to compute H1(I1
g;Z). We could not find this exact computation in the

literature, so we give it below.

Proposition 2.2.5. H1(Ig,1;Z) ∼= Λ3HZ ⊕ B2/〈a〉 where B2/〈a〉 is 2-torsion (defined ex-

plicitly below).

A boolean polynomial is a polynomial with coefficients in Z/2Z. Define Bi to be the

group of boolean polynomials p on 2g indeterminates with deg(p) ≤ i. Building on the work

of Birman-Craggs in [5], Johnson constructed in [19, Th.6] (see also e.g. [10, Th.6.19]) a

surjective homomorphism

σ : H1(I1
g;Z)→ B3

such that the torsion of H1(I1
g;Z) is captured by B2. In addition, Johnson constructed the

surjective Sp2g(Z)-equivariant homomorphism

q : B3 → Λ3HZ ⊗ Z/2Z;

for details see [22][Prop.4]. Explicitly, Johnson computed H1(I1
g;Z) ∼= Λ3H⊕B2 using these

two homomorphisms and pullback diagrams of groups. A pullback diagram for the group
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homomorphisms ψ1 : A→ C and ψ2 : B → C is

D

A B

C

φ1φ2

ψ1 ψ2

(2.2.4)

a commutative square (2.2.4) that is terminal among all such squares. That is, the pullback

(D,φ1, φ2) is universal with respect to Diagram (2.2.4). For a diagram of groups, the pullback

is

D ∼= {(a, b) ∈ A×B |ψ1(a) = ψ2(b)}.

D is unique up to canonical isomorphism.

Diagram (2.2.5) (below) is a pullback diagram, from which Johnson in [22] concludes

that H1(I1
g;Z) ∼= Λ3H ⊕B2.

H1(I1
g,Z)

B3 Λ3HZ

Λ3HZ ⊗ Z/2Z

τσ

q ⊗Z/2Z

(2.2.5)

Let T∂ be the Dehn-twist about the boundary component in I1
g. In order to compute

H1(Ig,1;Z) note that Ig,1
∼= I1

g/〈T∂〉. Define a ∈ B2 as

a :=
∑
i

aibi.

In [22], Johnson computes σ(T∂) = a.
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Proof of Proposition 2.2.5. We will use two additional pullback diagrams to compute

H1(Ig,1;Z) ∼= Λ3HZ ⊕B2/〈a〉. Define the quotient map

f : I1
g → I1

g/〈T∂〉 ∼= Ig,1.

The inverse image of the commutator subgroup of Ig,1 is

f−1([Ig,1, Ig,1]) = f−1(([I1
g, I

1
g] · 〈T∂〉)/〈T∂〉) = [I1

g, I
1
g] · 〈T∂〉.

Define the quotient map

g : I1
g →

(I1
g/〈T∂〉)

(([I1
g, I

1
g] · 〈T∂〉)/〈T∂〉)

∼= H1(Ig,1;Z).

The kernel of g is exactly [I1
g, I

1
g] · 〈T∂〉. Thus, there is an isomorphism

g : I1
g/([I

1
g, I

1
g] · 〈T∂〉)→ H1(Ig,1;Z).

Notice that:

H1(I1
g;Z) �

(I1
g/[I

1
g, I

1
g])

([I1
g, I

1
g] · 〈T∂〉/[I1

g, I
1
g])
∼=

I1
g

([I1
g, I

1
g] · 〈T∂〉)

.

Therefore we have a map H1(I1
g;Z) → H1(Ig,1;Z) with kernel [I1

g, I
1
g] · 〈T∂〉/[I1

g, I
1
g]. We

construct the following two pullback diagrams:

(〈T∂〉 · [I1
g, I

1
g])/[I

1
g, I

1
g]

〈a〉 1

1

τσ

(2.2.6)
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Taking a quotient of Diagram (2.2.5) by Diagram (2.2.6) results in the following pullback

diagram:

H1(Ig,1,Z)

B3/〈a〉 Λ3HZ

Λ3HZ ⊗ Z/2Z

τσ

q ⊗Z/2Z

(2.2.7)

Johnson showed that Diagram (2.2.5) is a pullback diagram in [22]. Diagram (2.2.6) is

a pullback diagram because 〈a〉 ∼= (〈T∂〉[I1
g, I

1
g])/[I

1
g, I

1
g]
∼= Z/2Z. Since D3 is a quotient of

two pullback diagrams and one terminal homomorphism of Diagram (2.2.5) is surjective, it

follows that D3 is also a pullback diagram. Therefore, H1(Ig,1;Z) ∼= Λ3H ⊕B2/〈a〉.

2.2.3 Intersection of N with I2(Σ)

The homomorphism α, as defined in Section 2, gives the injection Mod(Σg,1) ↪→ Aut±(N).

From Section 2, the containment I(Σ) ⊂ I(N) implies [I(Σ), I(Σ)] ⊂ [I(N), I(N)]. Define

τ̄P (respectively, τ̄N ) as the quotient map

τ̄P : I(Σ)→ I(Σ)/[I(Σ), I(Σ)] ∼= Λ3HZ ⊕B2/〈a〉.

Since [I(Σ), I(Σ)] ⊆ [I(N), I(N)] it follows that ker(τ̄P ) ⊂ ker(τ̄N ). Thus, we can define a

homomorphism α̃ so that the right hand square of (2.2.8) commutes.

1 [I(Σ), I(Σ)] I(Σ) Λ3HZ ⊕B2/〈a〉 1

1 [I(N), I(N)] I(N) Λ3HZ ⊕B2/〈a〉 1

α

τ̄p

α α̃

τ̄N

(2.2.8)
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The fact that α̃ must map torsion to torsion implies that α̃(B2/〈a〉) ⊂ B2/〈a〉. Thus,

τ̄N (α(I2(Σ))) = α̃(τ̄p(I2(Σ))) ⊂ B2/〈a〉.

This containment implies

α(I2(Σ)) ⊂ τ̄−1
N (B2/〈a〉) = I2(N).

Therefore I2(Σ) ⊂ I2(N).

The containment I2(Σ) ⊂ I2(N) allows us to deduce the following:

[N,N ] ⊆ N ∩ [I(Σ), I(Σ)] ⊆ N ∩ I2(Σ) ⊆ N ∩ I2(N) = [N,N ].

Therefore, N ∩ I2(Σ) = γ2(N).

2.2.4 Sp2g(Q) representation

In this subsection, we will use Sp2g(Q) representations to show that N · I2(Σ) = P · I2(Σ).

Mod(Σg,1) acts on I(Σ) via conjugation. The kernel of τ is exactly the set of elements

that act trivially on π1/γ3(π1), i.e. ker(τ) = I2(Σ). The quotient I(Σ)/I2(Σ) is the universal

torsion-free abelian quotient of I(Σ). Thus, the conjugation action of I(Σ) on I(Σ)/I2(Σ)

is trivial. Therefore, we have a well-defined action of Mod(Σg,1)/I ∼= Sp2g(Z) on I/I2.

Similarly, Sp2g(Z) has a canonical action on Λ3HZ. The isomorphism

τ : I(Σ)/I2(Σ)→ Λ3HZ

is Sp2g(Z)-equivariant.

To prove that N · I2(Σ)/I2(Σ) = P · I2(Σ)/I2(Σ) we will establish the following bijective

correspondence:

{
Sp2g(Q)-irreps in Λ3HQ

}
←→

{ Sp2g(Z)-invariant Z-module

direct summands in I/I2

}
.
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We will check that there is exactly one Sp2g(Q)-invariant, dimension 2g subspace of Λ3HQ.

To conclude, we will show that both NI2(Σ)/I2(Σ) and P I2(Σ)/I2(Σ) are rank 2g direct

summands of I(Σ)/I2(Σ) invariant under the action of Sp2g(Z).

Lemma 2.2.6 ((Bijective correspondence)). There is a bijective correspondence between

Sp2g(Q)-invariant dimension m Q-vector subspaces of Λ3HQ and Sp2g(Z)-invariant rank m

Z-module direct summands of Λ3HZ.

Proof of Lemma 2.2.6. Define the map

f : {Sp2g(Z)-invariant direct summands of Λ3HZ} → {subspaces of Λ3HQ}

via

f(V ) = V ⊗Q .

To establish the bijective correspondence, we need to check that the image of f lies in

Sp2g(Q)-invariant subspaces of Λ3HQ.

Fix a basis of Q2g so that Sp2g(Q) < GL2g(Z) is the subgroup that fixes the symplectic

form

 0 Ig×g

−Ig×g 0

. The group Sp2g(Q) is generated by matrices of the following forms,

where λ varies in Q, and eij is the g× g matrix with 1 in the i, j entry and 0 elsewhere (see

e.g. [30, Sect.2.2]): Ig×g λeii

Ig×g

 ,

 Ig×g

λeii Ig×g

 ,

 Ig×g

λ(eij + eji) Ig×g

 , (2.2.9)

 Ig×g λ(eij + eji)

Ig×g

 ,

 Ig×g + λeij

Ig×g − λeji

 .

Let V be an Sp2g(Z)-invariant direct summand of Λ3HZ, and let v ∈ V . Let A be any

of the generators of Sp2g(Q) given in (2.2.9) and let AZ be the matrix A with λ = 1. Notice

that AZ ∈ Sp2g(Z) and A = λAZ − (λ− 1)I2g×2g. Therefore, for any q ∈ Q

Aqv = qAv = q((λ)(AZv)− λv + v) .
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Since V is an Sp2g(Z)-invariant direct summand, q((λ)(AZv)− λv + v) ∈ V ⊗Q. Therefore

V ⊗Q is an Sp2g(Q)-invariant subspace.

Let W be an Sp2g(Q)-invariant subspace of Λ3HQ. Let WZ be the Z-module consisting

of all integral points of W . Define the map

g:{Sp2g(Q)-invariant subspaces of Λ3HQ}→{Sp2g(Z)-invariant direct summands of Λ3HZ}

via

g(W ) = WZ.

The composition f ◦ g is the identity because WZ ⊗Q = W .

On the other hand, consider v ∈ g ◦ f(V ) = (V ⊗Q)Z. Decompose Λ3HZ = V ⊕ V ⊥. If

v /∈ V then the projection of v onto V ⊥ 6= 0. Let p⊥(v) be the projection onto V ⊥. Because

v ∈ V ⊗ Q, it follows that nv ∈ V for some large enough n ∈ Z. However, that implies

p⊥(nv) = 0, or equivalently n(p⊥(v)) = 0, a contradiction.

Therefore, g is a bijection and the correspondence is established.

The representation Λ3HQ decomposes as an Sp2g(Q)-representation in the following way

(see, e.g. [6, Sect.3]):

Λ3HQ ∼= HQ ⊕ Λ3HQ/HQ.

Note that dimQ(HQ) = 2g and dimQ(Λ3HQ/HQ) =
(2g

3

)
− 2g. Thus, for genus g ≥ 3, there

is exactly one Sp2g(Q)-invariant, dimension 2g subspace of Λ3HQ.

From Section 2.2.3 we have N ∩ I2(Σ) = [N,N ]. Thus,

NI2(Σ)/I2(Σ) ∼= N/(N ∩ I2(Σ)) ∼= N/[N,N ] ∼= Z2g.

Therefore, NI2(Σ)/I2(Σ) is a Z-module of rank 2g. Likewise, P I2(Σ)/I2(Σ) is a Z-module

of rank 2g.
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To see that the submodule P I2(Σ)/I2(Σ) is a direct summand of I(Σ)/I2(Σ), it suffices

to check that the generators of P surject onto a partial basis of Λ3HZ under the Johnson

homomorphism. A partial basis is any set of linearly independent vectors that can be

completed to a Z-basis.

Consider a fixed generating set for P and a corresponding basis for HZ, given by

{a1, b1, . . . , ag, bg}. Then, τ(ai) = θ ∧ ai where θ =
∑
i ai ∧ bi. For details of this

computation, see Johnson’s work in [18]. The image of the standard generators of P gives a

partial basis of Λ3HZ. Therefore the image of P is a direct summand in Λ3HZ.

It remains to be seen that N · I2(Σ)/I2(Σ) is a direct summand. Because [N,N ] ⊂
[I(Σ), I(Σ)] ⊂ [I(N), I(N)], the following diagram given by restrictions of quotient maps

commutes:

N/[N,N ] I(Σ)/I2(Σ)

I(N)/I2(N)

k

j
(2.2.10)

The image j(N/[N,N ]) = NI2(N)/I2(N) ∼= Z2g is a direct summand in I(N)/I2(N).

Further, k(N/[N,N ]) = NI2(Σ)/I2(Σ) ∼= Z2g.

Lemma 2.2.7. Suppose that the diagram below commutes

Z2g Z2g ⊕ Zn−2g

Z2g ⊕ Zn−2g

L2

L1

L3

and the maps Li are linear. If L2(Z2g) ∼= Z2g is a direct summand in Z2g ⊕Zn−2g, then so

is L1(Z2g).

Proof of Lemma 2.2.7. Because L2(Z2g) is a direct summand in Zn, there exists a retract

R : ZN → Z2g of L2 with R ◦ L2 = IdZ2g . Further, since L2 = L3 ◦ L1, the homomorphism

R ◦ L3 : ZN → Z2g is a retract of L1. That is R ◦ L3 ◦ L1 = IdZ2g . Consider L1 ◦ R ◦ L3 :

ZN → Z2g. Note that

(L1 ◦R ◦ L3)2 = L1 ◦ (R ◦ L3 ◦ L1) ◦R ◦ L3 = L1 ◦ (IdZ2g) ◦R ◦ L3 = L1 ◦R ◦ L3.
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It follows that L1 ◦ R ◦ L3 is a projection with image L1(Z2g). Thus, L1(Z2g) is a direct

summand.

Applying Lemma 2.2.7 to commutative diagram (2.2.10), it follows that

k(N/[N,N ]) = NI2(Σ)/I2(Σ) ∼= Z2g is a direct summand in I(Σ)/I2(Σ).

Because N,P, and I2(Σ) are normal in Mod(Σg,1), both of the above Z-module direct

summands are invariant under the action of Sp2g(Z). There is exactly one rank 2g direct

summand Z-submodule of I(Σ)/I2(Σ). Thus, NI2(Σ)/I2(Σ) = P I2(Σ)/I2(Σ). Equivalently,

NI2(Σ) = P I2(Σ).

2.3 Commutator containment: [N,N ] ⊂ [P, P ].

From Section 3, we have the containment N ⊂ P I2(Σ). Furthermore, since [N,N ] ⊂ I2(Σ),

it is also true that [N,N ] ⊂ P I2(Σ). In this section, we will use an inductive argument to

confirm that [N,N ] ⊂ P Ik(Σ) for all k. Grossman’s Property A Lemma (see Lemma 2.3.1)

implies that for any surface group π1(Σg), if q ∈ Aut(π1(Σg)) preserves conjugacy classes

in π1(Σg), then q ∈ π1(Σg). Using Grossman together with the conjugacy p-separability

of surface groups, we will show that ∩kP Ik = P . This will prove [N,N ] ⊂ P∩I2(Σ) = [P, P ].

We have already established the following facts:

i. The Johnson filtration is a central series [2].

ii. N ⊂ I(Σ) (Sect. 2).

iii. N ⊂ P I2(Σ) (from Sect. 3).

iv. N ∩ Ik(N) = γk(N) (Prop 2.2.1).

v. I2(Σ) ⊂ I2(N) (from Sect. 3).

vi. [I2(Σ), N ] ⊂ N (because N is normal in Mod(Σg,1)).

vii. [I2(N), N ] ⊂ I3(N) (because N ⊂ I and the Johnson filtration is a central series).
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We will establish an eighth fact:

viii. [PG,N ] ⊂ P [G,N ] for any G /Mod(Σg,1) (below).

To prove (viii), let G /Mod(Σg,1). Let g ∈ G, p ∈ P, and n ∈ N be given. Then

[pg, n] = pgng−1p−1n−1 = pgnp−1n−1pg−1p−1(pgp−1n(pgp−1)−1n−1).

However, P normal in Mod(Σg,1) implies that

pgnp−1n−1pg−1p−1 ∈ P.

Furthermore, because G is normal in Mod(Σg,1) it follows that

((pgp−1)n(pgp−1)−1n−1) ∈ [G,N ].

Therefore [PG,N ] ⊂ P [G,N ] for any G / Mod(Σg,1). In particular, [P I2(Σ), N ] ⊂
P [I2(Σ), N ].

With reference to the above list of facts,

[N,N ]
(iii.)
⊂ [P I2(Σ), N ]

(viii.)
⊂ P [I2(Σ), N ]

(v.)
⊂ P [I2(N), N ]

(i.), (ii.)
⊂ P (I3(N)∩N)

(iv.)
⊂ Pγ3(N).

Therefore, [N,N ] = γ2(N) ⊂ Pγ3(N).

We will induct on m to check that γ2(N) ⊂ Pγm(N) for all m > 0. Let M ∈ N with

M ≥ 3. Suppose for all m ≤M we have γ2(N) ⊂ Pγm(N). It follows that

[N,N ] = γ2(N) ⊂ Pγ3(N) = P [γ2(N), N ] ⊂ P [PγM (N), N ] ⊂ P 2[γM (N), N ] ⊂ PγM+1(N).

Therefore, [N,N ] ⊂ Pγm(N) for all m ≥ 1.

We will use a second inductive argument to show that γk(N) ⊂ Ik(Σ) for all k ≥ 2. For

the base case, note that

[N,N ] ⊂ [I(Σ), I(Σ)] ⊂ I2(Σ).
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Assume as inductive hypothesis that γk(N) ⊂ I(Σ)k for all k < K. Then

γK(N) = [γK−1(N), N ] ⊆ [IK−1(Σ), I(Σ)] ⊆ IK(Σ).

The above containment implies that

[N,N ] = γ2(N) ⊆ ∩kPγk(N) ⊆ ∩kP I(Σ)k.

In order to confirm that [N,N ] ⊂ P , it remains to be shown that ∩kP I(Σ)k = P . We

will use the following Lemma due to Grossman:

Lemma 2.3.1 ((Grossman’s Property A [12])). Let P be a surface group of genus g ≥ 1.

Let q ∈ Aut(P ). If q preserves conjugacy classes in P , then q ∈ P .

To apply Lemma 2.3.1, choose q ∈ ∩P Ik and x ∈ P . Since q ∈ P Ik for all k ≥ 1, we can

find uk ∈ P and ik ∈ Ik(Σ) such that q = ukik. However, because ik ∈ Ik it follows that

ikxi
−1
k x−1 ∈ γk+1(P ). This can be rewritten in terms of left cosets as

ikxi
−1
k γk+1(P ) = xγk+1(P ).

Conjugating by uk gives

ukikxi
−1
k u−1

k γk+1(P ) = ukxu
−1
k γk+1(P ).

That is, qxq−1 is conjugate to x in P/γk+1(P ) for all k ≥ 1.

Finite p-groups are nilpotent. Furthermore, any homomorphism φ : P → H where H is

i-step nilpotent factors through P/γi+1(P ). Thus, any homomorphism φ : P → H where H

is a p-group factors through P/γk(P ) for some k.

Suppose φ : P → H gives a homomorphism to some p-group H. Because qxq−1 is conjugate

to x in P/γk(P ) for all k ≥ 1, it must be that φ(qxq−1) is conjugate to φ(x) in H. Because

P is conjugacy p-separable (see [31]), qxq−1 is conjugate to x in P . Applying Lemma 2.3.1,

it follows that q ∈ P . Therefore, ∩kP Ik(Σ) = P .
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We have established for all k ≥ 1,

γ2(N) ⊂ Pγk(N) ⊂ P Ik(Σ).

That is, γ2(N) ⊂ ∩kP Ik(Σ) = P . From Section 3, we have the containment γ2(N) ⊂ I2(Σ).

Thus, γ2(N) ⊂ P ∩ I2(Σ) = γ2(P ). This concludes the first main goal in the proof of

Theorem 1.0.1:

γ2(N) ⊆ γ2(P ) ⊆ I2(Σ) ⊆ I(Σ) ⊆ I(N).
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CHAPTER 3

CHARACTERIZING P

In this chapter we will characterize P in terms of I(Σ) and γ2(P ). We will provide two

distinct proofs. In each case, we will show that any φ ∈ I(Σ) satisfying certain conditions

must fix a filling set of curves up to conjugation. Then, we will apply the Alexander method

to show that φ must be isotopic to the identity in Mod(Σg).

Proposition 3.0.2 ((Characterization of P )). For g ≥ 3,

P (Σg) = {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P (Σg))}.

3.1 Proof of proposition 3.0.2 by bounding pair maps

The proof of Proposition 3.0.2 was greatly simplified by Chen Lei.

Proof. Because P /Mod(Σg,1) and P ⊂ I(Σ) it follows that for any p ∈ P

[p, I(Σ)] ⊂ (I2(Σ) ∩ P ) = γ2(P ).

Therefore,

P ⊆ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}.

For the opposite containment, let φ ∈ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}.
Our goal is to apply the Alexander method by demonstrating that φxiφ

−1 is isotopic to

each xi in some filling set {x1, . . . , xk} of simple closed curves. This would force φ to be

isotopic to the identity in Mod(Σg). That is, φ ∈ P .

Take any bounding pair map, TaT
−1
b where a and b are disjoint, homologous, non-isotopic

simple closed curves. Because a and b are homologous, it follows that TaT
−1
b acts trivially on

H1(Σg,1). That is, TaT
−1
b ∈ I(Σ). By assumption, φTaT

−1
b φ−1(TaT

−1
b )−1 ∈ P . Mapping

into Mod(Σg) via the forgetful map, we obtain, F (φTaT
−1
b φ−1(TaT

−1
b )−1) = 1. That is

φTaT
−1
b φ−1(TaT

−1
b )−1 = 1 in Mod(Σg).
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Therefore

φTaT
−1
b φ−1(TaT

−1
b )−1 = 1

φT(a)φ
−1φT−1

(b)
φ−1(TaT

−1
b )−1 = 1

Tφ(a)T
−1
φ(b)

(TaT
−1
b )−1 = 1

Tφ(a)T
−1
φ(b)

= TaT
−1
b .

Bounding pair maps commute if and only if they have the same canonical reduction system.

Thus, Tφ(a)T
−1
φ(b)

and TaT
−1
b have the same canonical reduction system, namely {a, b}. As

such, the curves φ(a) and φ(b) are isotopic to a and b, respectively in Mod(Σg).

For any non-separating simple closed curve c there is a bounding pair map TcTc′ where c

and c are homologous, disjoint, and non-isotopic. It follows that φc is isotopic in Mod(Σg)

to c for any non-separating simple closed curve c.

In particular, for a filling set of simple closed curves, {x1, . . . , xk}, we have φxiφ
−1 is

isotopic to xi for each i. By the Alexander method, the map φ must be trivial in Out(π1(Σg)).

That is, φ ∈ P . Proposition 3.0.2 follows.

3.2 Proof of Proposition 3.0.2 using amalgamated product

normal form

As above, we wish to demonstrate the containment

P ⊇ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}.

Suppose that

β ∈ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}.

Let {a1, b1, . . . , ag, bg} be a standard set of generators for π1(Σg). If we can show that

βa1β
−1 is conjugate in π1(Σg) to a1, then it follows that βφ(a1)β−1 is conjugate in π1(Σg)

to φ(a1) for any φ ∈ Mod(Σg,1). By the Alexander method, if βxiβ
−1 is conjugate to xi for
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Figure 3.1: The Dehn twist Tc

a1

b1

∗ · · ·c

The simple closed curve c separates Σg into a surface of genus 1 and a surface of genus g−1.
The Dehn twist Tc acts by conjugation on a1 and b1. We can always choose c to separate
the marked point from the curves a1 and b1.

a filling set {xi} of simple closed curves, then β is isotopic in Mod(Σg) to the identity. That

is, β ∈ P . Thus, it is sufficient to demonstrate that βa1β
−1 is conjugate in π1(Σg) to a1.

Let c be the separating simple closed curve given by a representative of the homotopy

class [a1, b1] as shown in Figure 3.1. Let Tc be the Dehn twist about the curve c.

We break the proof of Proposition 3.0.2 into the following two steps:

3.0.2.A. Let x be a simple closed curve in Σg. If Tc(x) is conjugate to x in π1(Σg), then x

is freely homotopic to a curve representing an element of the subgroup generated

by {a1, b1} or to a curve representing an element of the subgroup generated by

{a2, b2 . . . , ag, bg}.

3.0.2.B. βxβ−1 is conjugate to x in π1(Σg) for every simple closed curve x.

3.2.1 Cyclic reduction of normal form in amalgamated products

Let δ = [a1, b1] = (
∏
i>1

[ai, bi])
−1. The homeomorphism Tc acts on π1(Σg) as follows (see e.g.

[10, Sect 6.6.2]):

Tc(a1) = δa1δ
−1

Tc(b1) = δb1δ
−1

Tc(x) = x for any x ∈ 〈a2, b2, . . . , ag, bg〉.
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Let A = 〈a1, b1〉, B = 〈a2, b2 . . . , ag, bg〉, and C = 〈[a1, b1]〉 = 〈δ〉. We can write π1(Σg) as

an amalgamated product:

π1(Σg) ∼= A ∗C B.

There is a unique normal form for elements of an amalgamated product (see [33]) defined as

follows. For each left coset in A/C (respectively, in B/C) choose a representative xi (respec-

tively, yi) subject to the constraint that the identity coset be represented by 1. Then, any

element of π1(Σg) can be written uniquely as a reduced word in the form xi1yi1 . . . xikyikδ
µ

where xi1 and yik may be the identity coset, but all other coset representatives are noniden-

tity elements. Intuitively, elements of Z can be “pushed to the right.”

Definition 3.2.1. Let w ∈ π1(Σg) ∼= A∗CB be given in normal form as w = x1y1 . . . xkykδ
µ,

where xi ∈ A with xi 6= 1 for i ≥ 2 and yi ∈ B with yi 6= 1 for i ≤ k − 1. The normal form

length l(w) is the number of A-B pairs of coset representatives in the reduced word. That

is, l(w) = l(x1y1 . . . xkykδ
µ) = k.

We will establish the following lemma concerning normal form length of concatenated

words:

Lemma 3.2.2. Let π1(Σg) ∼= A ∗C B as above. Let q, q′ ∈ π1(Σg) be given in normal form

as q = x1y1 . . . xkykδ
µ and q′ = z1w1 . . . zlwlδ

ν where xi, zi ∈ A and yi, wi ∈ B. Let a ∈ A
and b ∈ B.

i. l(w) = l(δwδ−1) for all w ∈ π1(Σg).

ii. l(aq) = l(q).

iii. l(qb) = l(q).

iv. l(q)− 1 ≤ l(qa) ≤ l(q) + 1.

v. l(q)− 1 ≤ l(bq) ≤ l(q) + 1.

vi. If z1, yk 6= 1 then

l(qq′) = l(q) + l(q′).

vii. If z1 = yk = 1 then

l(qq′) = l(q) + l(q′)− 1.
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Proof of Lemma 3.2.2.

i. Consider q ∈ π1(Σg) as above. Take the conjugate by δ:

δqδ−1 = δx1y1 . . . xkykδ
µδ−1.

This conjugate can be put in normal form by moving δ to the right and relabeling

cosets. That is

l(δpδ−1) = l(x′1y
′
1 . . . x

′
ky
′
kδ
µ′)

for relabeled coests x′i, y
′
i and some power µ′. We need to show x′i = 1 (respec-

tively, y′i = 1) if and only if xi = 1 (respectively, yi = 1) for all i.

If xi = 1 then δrxi = δr ∈ 〈δ〉 which implies x′i = 1.

Conversely, if x′i = 1 then δrxi = δs for some integers r and s. This implies

that xi = δr−s. Because the identity coset must be represented by 1, it follows

that xi = 1. An identical argument holds to show yi = 1 if and only if y′i = 1.

Therefore, l(q) = l(δqδ−1).

ii. & iii. Take the product:

aq = ax1y1 . . . xkykδ
µ.

In this product, either ax1 /∈ C or ax1 ∈ C. If ax1 /∈ C then l(aq) = l(q).

Otherwise, if ax1 ∈ C, it still follows that l(q) = l(aq) because y1 6= 1.

A similar argument shows l(qb) = l(q).

iv. & v. Consider the product:

qa = x1y1 . . . xkykδ
µa.
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We can restrict attention to the last 3 coests:

xkykδ
µa = xkyka

′δµ
′

where a′ is the relabeled coset representative. Assume a′ 6= 1 (otherwise length

is unchanged). If yk 6= 1, then because yk ∈ B and a′ ∈ A it follows that:

l(xkyka
′δµ
′
) = l(xkyk) + 1.

In this case, l(qa) = l(q) + 1.

On the other hand, if yk = 1 then

l(xkyka
′δµ
′
) = l(xka

′δµ
′
).

Either xka
′ ∈ C or xka

′ /∈ C. If xka
′ ∈ C, then l(qa) = l(q) − 1. Otherwise, if

xka
′ /∈ C, then l(qa) = l(q).

A similar argument shows len(q)− 1 ≤ len(yq) ≤ len(q) + 1.

vi. Consider the product qq′ where yk 6= 1 and z1 6= 1. We have

qq′ = x1y1 . . . xkykδ
µz1w1 . . . zlwlδ

ν .

This is not necessarily in normal form. The normal form length of qq′ depends

on whether or not there is cancellation between adjacent cosets. Because yk ∈ B
and z1 ∈ A, if yk 6= 1 and z1 6= 1, then there is no cancellation between cosets

and l(qq′) = l(q) + l(q′).

vii. Let yk = z1 = 1. Then

qq′ = x1y1 . . . xkδ
µw1z2 . . . zlwlδ

ν .
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Because xk ∈ A and w1 ∈ B, there is no cancellation between adjacent cosets

in A and B. The number of A-B coset pairs is k + l − 1. That is len(qq′) =

len(q) + len(q′)− 1.

Definition 3.2.3. A word w ∈ π1(Σg) = A ∗C B is cyclically reduced if l(w) ≤ l(pwp−1) for

all p ∈ π1(Σg).

As in a free group, any word w ∈ π1(Σg) is conjugate to a cyclically reduced word. The

process of cyclic reduction terminates in one of the following states, see [32]:

1. w′ = x1y1 . . . xkykδ
µ where x1, yk 6= 1.

2. w′ = δν for some ν.

3. w′ = xδν or w′ = yδν for some x ∈ A, respectively, y ∈ B and some power ν.

Assume Tc(w) = pwp−1 for some p. Then for any q ∈ π1(Σg) we have the following:

Tc(q
−1wq) = (Tc(q

−1)pq) q−1wy1 (q−1p−1Tc(q) = p′(q−1wq)p′−1

where p′ = Tc(q
−1)pq. That is, if Tc(w) is conjugate to w then Tc(q

−1wq) is conjugate to

q−1wq. Thus, w may be considered cyclically reduced. If w cyclically reduces to either

state 2 or state 3, then w is conjugate to either an element of A or an element of B, as desired.

It remains to show that if Tc(w) = pwp−1 for some p in π1(Σg) then w does not cyclically

reduce to state 1. We will argue by contradiction, first showing that length preserving

conjugates of w have a particular form (cyclic permutations up to conjugation by δ). Then,

we will demonstrate that Tc(w) does not take such a form.

Let w ∈ π1(Σg) ∼= A ∗C B be written in normal form as w = x1y1 . . . xkykδ
µ. Make the
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following definition:

σ0(w) := w = x1y1 . . . xkykδ
µ.

σl(w) := xl+1yl+1 . . . xkykδ
µx1y1 . . . xlyl for l < k.

σk(w) := x1y1 . . . xkykδ
µ = σ0(w).

σnk+i(w) := σi(w) for n ≥ 0 and i < k.

Lemma 3.2.4. Let w ∈ π1(Σg) ∼= A ∗C B be cyclically reduced to state 1. Let p ∈ π1(Σg).

If l(pwp−1) = l(w), then pwp−1 = δνσi(w)δ−ν for some i and some power ν.

Proof of Lemma 3.2.4. We will induct on the length of p.

Base case: Let p ∈ π1(Σg), and assume l(p) = 1. Either

p ∈ A (analogously p ∈ B)

or p = xyδr for some x ∈ A, y ∈ B, and x, y 6= 1

If p ∈ A and p /∈ C, then Lemma 3.2.2. ii. and iv. implies

l(pwp−1) = l(wp−1) = l(w) + 1.

Therefore if l(pwp−1) = l(w), then p ∈ C. Thus, pwp−1 = δrσ0(w)δ−r for some power r.

The same holds for p ∈ B.

Otherwise, if p = xyδr for some x ∈ A, y ∈ B, and x, y 6= 1, then

l(pwp−1) = l((xyδr)x1y1 . . . xkykδ
µ(δ−ry−1x−1)).

Consider first pw = xyδrx1y1 . . . xkykδ
µ. Since y ∈ B but x1 ∈ A, by Lemma 3.2.2. vii. it

follows that:

l(pw) = l(w) + 1.

Restricting attention to pwδ−ry−1, notice that you can combine the rightmost two cosets,

because yk ∈ B and y ∈ B. Lemma 3.2.2. iii. implies

l(pwy−1) = l(pw).
36



It is possible that xkykδ
µ−ry−1x−1 ∈ C as in Lemma 3.2.2. iv. and it follows that:

l(pwp−1) = l(pwδ−ry−1x−1)

= l(wδ−ry−1x−1) + 1

≥ l(w)− 1 + 1

= l(w).

Equality holds exactly when xkykδ
µ−ry−1x−1 ∈ C. That is,

xkykδ
µδ−ry−1x−1 = δν

for some power ν. Therefore, equality implies

p = xyδr = δ−νxkykδ
µ.

Thus,

pwp−1 = δ−νxkykδ
µx1y1 . . . xk−1yk−1δ

ν

= δ−νσk−1(w)δν .

Our base case is established.

Let p ∈ π1(Σg) with l(p) = n > 1. Assume as inductive hypothesis that if l(p) < n and

l(pwp−1) = l(w) then pwp−1 = δνσi(w)δ−ν for some i and some power ν. Let p be given in

normal form as

p = z1w1 . . . znwnδ
r.

We can divide p into two pieces:

p1 := z1w1p2 := z2w2 . . . znwnδ
r. (3.2.1)

In order to apply the inductive hypothesis, we need to check that l(p2wp
−1
2 ) = l(w). Suppose

for the sake of contradiction that l(p2wp
−1
2 ) > l(w). Applying Lemma 3.2.2. vi. it follows
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that:

l(p1(p2wp
−1
2 )) = l(p1) + l(p2wp

−1
2 )

> l(p1) + l(w)

= 1 + l(w).

Then, by Lemma 3.2.2 vii. it follows that:

l(p1(p2wp
−1
2 )p−1

1 ) ≥ l(p1(p2wp
−1
2 ))− 1

> l(w) + 1− 1

= l(w).

Therefore, if l(pwp−1) = l(w) then l(p2wp
−1
2 ) = l(w).

By inductive hypothesis, p2wp
−1
2 = δνσiδ

−ν for some i and some power ν.

Thus, we can rewrite

pwp−1 = p1δ
νσi(w)δ−νp−1

1

= (z1w1)δνxi+1yi+1 . . . xkykδ
µx1y1 . . . xiyiδ

−ν(w−1
1 z−1

1 ).

If z1 = 1, the base case implies that p1 ∈ C. That is, if z = 1 then w1 = 1, but this

contradicts the definition of normal form.

On the other hand, suppose z1 6= 1. Write σi(w) in normal form as

σi(w) = xi+1yi+1 . . . xkykδ
µx1y1 . . . xiyi

= xi+1yi+1 . . . xkykx
′
1y
′
1 . . . x

′
iy
′
iδ
µi .

By the base case, p1δ
ν = δsx′iy

′
iδ
µi for some power s. Thus,

p1δ
νσi(w)δ−νp−1

1 = δsx′jy
′
jδ
µixj+1yj+1 . . . xkykx

′
1y
′
1 . . . x

′
j−1y

′
j−1δ

−s.
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However by substitution,

p1δ
νσi(w)δ−νp−1

1 = δs+µj−1xjyj . . . xkykδ
µx1y1 . . . xj−1yj−1δ

−s−µj−1

= δs
′
σj−1(w)δ−s

′

as desired.

To prove Proposition 3.0.2.A. we need to show that l(Tc(w)) = l(w) and that Tc(w) 6=
δνσi(w)δ−ν for all i and all ν.

3.2.2 Dividing the surface with a separating curve

As above, let c be the separating curve in Figure 3.1 that divides the generators a1, b1 from

the rest of the surface.

Proof of Proposition 3.0.2.A. By definition of Tc and by Lemma 3.2.2. i. it follows that:

l(Tc(w)) = l(δx1δ
−1y1 . . . δxkδ

−1ykδ
µ) = l(w).

Assume for the sake of contradiction that Tc(w) = pwp−1 for some p ∈ π1(Σg). Then

Tc(w) = pwp−1 = δνσi(w)δ−ν for some ν and some i. Notice that:

Tc(pwp
−1) = Tc(p)Tc(w)Tc(p

−1) = p′w(p′)−1.

Thus (Tc)
s(w) = δνsσis(w)δ−νs for any s ∈ Z.

Because w has finite length, there exist 0 < s < t such that T sc (w) = δmσi(w)δ−m and

T tc = δnσi(w)δ−n. That is for some power ν,

T sc (w) = δνT tc (w)δ−ν .

Therefore,

T sc (w) = δsx1δ
−sy1δ

sx2 . . . ykδ
µ = δν+tx1δ

−ty1δ
tx2 . . . δ

µ−ν .

Equivalently,

x1δ
−sy1δ

sx2 . . . δ
µ = δν+t−sx1δ

−ty1δ
tx2 . . . δ

µ−ν .
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By uniqueness of normal form, δν+t−sx1 = x1δ
ρ for some ρ. That is

δν+t−sx1 = x1δ
ρ

x−1
1 δν+t−sx1 = δρ

x−1
1 δν+t−sx1δ

s−t−ν = δρ+(s−t−ν).

Because δ ∈ γ2(A), it follows that x−1
1 δν+t−sx1δ

s−t−ν ∈ γ3(A). That is, δρ+(s−t−ν) ∈
γ3(A). However since γ2(A)/γ3(A) is torsion-free, (see e.g. [11] pp.426), it follows that

δρ+(s−t−ν) = 1. Therefore,

x−1
1 δν+t−sx1δ

s−t−ν = 1.

That is, x1 commutes with δν+t−s. However if a, b ∈ π1(Σg) commute, then a and b are

powers of some common element. Because A/γ2(A) is torsion-free, if x /∈ 〈δ〉 then xζ 6= δ

for any power ζ. Therefore, either x1 = δξ for some ξ ∈ Z, or ν + t− s = 0. Since x1 does

not represent the identity coset, this forces ν + t− s = 0. Thus,

y1δ
sx2 . . . δ

µ = δ−t+sy1δ
tx2 . . . δ

µ−ν .

By the same argument, it follows that s − t = 0. But this contradicts the assumption

that s 6= t. Therefore, if Tc(w) is conjugate to w, then w does not cyclically reduce to state 1.

Therefore, if Tc(w) is conjugate to w in π1(Σg) then w is conjugate in π1(Σg) to an

element of A or an element of B.

In order to prove Proposition 3.0.2.B. we want to isolate the generating curve a1. In

light of this, the argument above can be repeated for a slightly different set of generators

{a1, b
′
1, a2, b2, . . . , ag, bg}, where b′1 is homologous to b1 but is not freely homotopic, as shown

in Figure 3.2.

The curve c′ separates a1, b
′
1 from the rest of the surface. By the argument above, if w

is conjugate to Tc′(w), then either w ∈ 〈a1, b
′
1〉 or w ∈ 〈a2, b2, . . . , ag, bg〉. Let A′ := 〈a1, b

′
1〉.

If a simple closed x curve is freely homotopic to both a curve representing an element of A

and a curve representing an element of A′, then x is freely homotopic to a curve representing

an element of 〈a1〉. That is, if w is conjugate in π1(Σg) to both an element of A and an
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Figure 3.2: Curve b′1

a1

b′1
∗ · · ·c′

The curve b′1 is homologous to b1 but the two curves are not homotopic.

element of A′, then w is conjugate to an element of 〈a1〉.

Proof of Proposition 3.0.2.B. Let β ∈ π1(Σg) be given. Assume [β, I(Σ)] ⊂ γ2(π1(Σg)). Let

z = [β, Tc]. By assumption, z ∈ γ2(π1(Σg)). Let w = Tcβδβ
−1T−1

c ∈ π1(Σg). Then

wzβa1β
−1z−1w−1 = Tcβa1β

−1T−1
c .

Notice that because wz ∈ π1(Σg), it follows that Tc(βa1β
−1) is conjugate to βa1β

−1 in

π1(Σg). In the quotient π1(Σg)/γ2(π1(Σg)), we have the following equality of left cosets:

βa1β
−1γ2(π1(Σg)) = a1γ2(π1(Σg)).

Proposition 3.0.2.A. implies that βa1β
−1 must be conjugate to an element generated by

{a1, b1}.

Similarly, replacing Tc with Tc′ , the above argument demonstrates that Tc′(βa1β
−1) is

conjugate to βa1β
−1 in π1(Σg). Thus, βa1β

−1 is conjugate to an element generated by

{a1, b
′
1} and an element generated by {a1, b1}.

Therefore βa1β
−1 is conjugate in π1(Σg) to ak1 for some k. Since βa1β

−1 ≡ a1

mod γ2(π1(Σg)), it follows that βa1β
−1 is homotopic to a1.
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For any φ ∈ Mod(Σg,1), because {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )} is normal in Mod(Σg,1),

it follows that:

φβφ−1 ∈ {x ∈ I(Σ) | [x, I(Σ)] ⊂ γ2(P )}.

Thus, φβφ−1a1φβ
−1φ−1 is conjugate to a1 in π1(Σg). This means for some ρ ∈ π1(Σg),

βφa1φ
−1β−1 = φρa1ρ

−1φ−1.

Because [φ, ρ] ∈ π1(Σg), it follows that φρa1ρ
−1φ−1 is conjugate in π1(Σg) to

[ρ, φ]φρa1ρ
−1φ−1[φ, ρ] = ρφa1φ

−1ρ−1.

That is, βφ(a1)β−1 is conjugate in π1(Σg) to φ(a1). Therefore, βxβ−1 is conjugate in

π1(Σg) to x for any simple closed curve x.

In particular, for a filling set of simple closed curves, {x1, . . . , xk}, we have βxiβ
−1 is

conjugate to xi in π1(Σg) for each i. By the Alexander method, the map β must be trivial

in Out(π1(Σg)). That is, β ∈ P . Proposition 3.0.2 follows.

3.3 Conclusion: N = P

To conclude the proof of Theorem 1.0.1, write both P and N in the form given by Proposition

3.0.2:

P = {x ∈ I(Σ) | [x, I(Σ)] ⊆ γ2(P )}.

N = {x ∈ I(N) | [x, I(N)] ⊆ γ2(N)}.

From section 2.3, [N,N ] ⊂ [P, P ] implies that:

N ⊂ {x ∈ I(N) | [x, I(N)] ⊆ γ2(P )}.

From Section 2, I(Σ) ⊂ I(N) implies that:

N ⊂ {x ∈ I(N) | [x, I(Σ)] ⊆ γ2(P )}.
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From Section 2, N ⊂ I(Σ) implies that:

N ⊂ {x ∈ I(Σ) | [x, I(Σ)] ⊆ γ2(P )}.

Thus

N ⊆ P.

Since N is a subgroup of P and is not free, the index of N in P is finite (see e.g. [17,

Th.1]).

We can determine the index of N via the following formula (see e.g. [14, Sect.2.2 Ex.22]):

[N : P ] · χ(Σ) = χ(Γ)

where χ is Euler characteristic. Therefore [N : P ] = 1 and N = P . We have established

Theorem 1.0.1.

The following example demonstrates that N need not equal P if we remove the condition

of normality.

Example 3.3.1. Let ϕ ∈ Mod(Σg). Construct the mapping torus Mϕ
∼= (I × Σg)/(1, x) ∼

(0, ϕ(x)). Note that π1(Mϕ) ∼= π1(Σg) o Z. Consider the exact sequence

1 −→ π1(Σg) −→ Mod(Σg,1)
F−→ Mod(Σg) −→ 1.

The preimage F−1(ϕ) ∼= π1(Σg) o Z < Mod(Σg,1). This induces an injection

g : π1(Mϕ) ↪→ Mod(Σg,1).

Mϕ fibers over S1 with fiber Σg. As long as H2(Mϕ;Z) ≥ 2, the theory of the Thurston

norm [34] implies that Mϕ fibers over S1 with fiber Σh for infinitely many h. (These h

correspond to integer points in the cone over a fibered face of the unit ball in the Thurston
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norm.) Fiberings of the form

Σh Mϕ

S1

give injections ih : π1(Σh)→ π1(Mϕ). The image of the composition

g ◦ ih : Σh ↪→ Mod(Σg,1)

is a surface subgroup of Mod(Σg,1). This subgroup is not necessarily normal in Mod(Σg,1).

Using the fibered faces of the unit ball in the Thurston norm, we can find multiple

(non-normal) copies of π1(Σg) in Mod(Σg,1).

3.4 A new proof that Out(Mod±(Σg,1)) is trivial

Corollary 1.0.2 (Ivanov-McCarthy’s Theorem). Let g ≥ 3. Then Out(Mod±(Σg,1)) is

trivial.

Theorem 1.0.1 together with the following classical theorem of Burnside implies Corollary

1.0.2. A groupG is complete if it is centerless and every automorphism is inner, i.e. Aut(G) ∼=
Inn(G) ∼= G. A subgroup H < G is characteristic if H is invariant under all automorphisms

of G.

Theorem 3.4.1 (Burnside [7]). A centerless group G is characteristic in its automorphism

group if and only if Aut(G) is complete.

Proof of (⇒) for Theorem 3.4.1. Suppose that G is centerless and characteristic in Aut(G).

Let φ ∈ Aut(Aut(G)) and let g ∈ G. There is a homomorphism

i : G→ Inn(G)

given by

i(g)(h) = ghg−1
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for any h ∈ G. The homomorphism i is an isomorphism because G is centerless. Additionally,

because G is characteristic, φ restricts to an automorphism of Inn(G) ∼= G. Define

φ̄ : G→ G

by

i(φ̄(g)) := φ(i(g)).

To show that Aut(Aut(G)) = Aut(G), it suffices to show that

φ(ψ) = φ̄ ◦ ψ ◦ φ̄−1

for any ψ ∈ Aut(G). Notice that:

φ(i(ψ(g))) = i(φ̄(ψ(g))).

On the other hand

φ(i(ψ(g))) = φ(ψ ◦ i(g) ◦ ψ−1)

= φ(ψ) ◦ i(φ̄(g)) ◦ φ(ψ)−1

= i(φ(ψ)(φ̄(g)).

Because i is an isomorphism we can equate

φ(ψ)(φ̄(g)) = φ̄(ψ(g))

for any g ∈ G. Therefore,

φ(ψ) ◦ φ̄ = φ̄ ◦ ψ.

As such,

φ(ψ) = φ̄ ◦ ψ ◦ φ̄−1.
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Proof of corollary 1.0.2. By Theorem 1.0.1, P is characteristic in Mod(Σg,1). By the Dehn-

Nielsen-Baer theorem (see e.g. [10] Th. 8.1) it follows that Aut(P ) ∼= Mod±(Σg,1). To prove

the corollary, it suffices to show that Mod(Σg,1) is characteristic in Mod±(Σg,1). Notice that:

Z/2Z ∼=
Mod±(Σg,1)

[Mod±(Σg,1),Mod±(Σg,1)]
∼= H1(Mod±(Σg,1);Z) and

Z/2Z ∼=
Mod±(Σg,1)

Mod(Σg,1)
.

For further details on these quotients see [10, Th. 5.2 and Ch. 8]. Because the quo-

tient Mod±(Σg,1)/Mod(Σg,1) is abelian, [Mod±(Σg,1),Mod±(Σg,1)] ⊂ Mod(Σg,1). Fur-

ther, because the quotients are isomorphic and finite, it follows that Mod(Σg,1) is equal

to the commutator subgroup of Mod±(Σg,1). Therefore Mod(Σg,1) is characteristic, and

Out(Mod±(Σg,1)) ∼= 1.
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