
1111111111111111 IIIIII IIIII 111111111111111 1111111111 111111111111111 111111111111111 11111111 
US 20220104783Al 

c19) United States 
c12) Patent Application Publication 

Pan et al. 
c10) Pub. No.: US 2022/0104783 Al 
(43) Pub. Date: Apr. 7, 2022 

(54) SYSTEM AND METHOD FOR LOW-DOSE 
MULTI-SPECTRAL X-RAY TOMOGRAPHY 

(71) Applicant: The University of Chicago, Chicago, 
IL (US) 

(72) Inventors: Xiaochuan Pan, Chicago, IL (US); 
Buxin Chen, Chicago, IL (US); Zheng 
Zhang, Chicago, IL (US); Emil Sidky, 
Chicago, IL (US); Dan Xia, Chicago, 
IL (US) 

(21) Appl. No.: 17/550,711 

(22) Filed: Dec. 14, 2021 

Related U.S. Application Data 

(62) Division of application No. 16/648,375, filed on Mar. 
18, 2020, filed as application No. PCT/US18/52175 
on Sep. 21, 2018. 

(60) Provisional application No. 62/562,138, filed on Sep. 
22, 2017. 

(51) 

Publication Classification 

Int. Cl. 
A61B 6/00 
A61B 6/08 
A61B 6/03 

(2006.01) 
(2006.01) 
(2006.01) 

(52) U.S. Cl. 
CPC ................ A61B 6/469 (2013.01); A61B 6/08 

(2013.01); A61B 615205 (2013.01); A61B 
6/482 (2013.01); A61B 6/032 (2013.01); A61B 

6/4064 (2013.01) 

(57) ABSTRACT 
A multi-spectral tomography imaging system includes one 
or more source devices configured to direct beams of 
radiation in multiple spectra to a region of interest (ROI), 
and one or more detectors configured to receive the beams 
of radiation. The system includes a processor configured to 
cause movement in at least one of the components such that 
a first beam of radiation with a first spectrum is directed to 
the ROI for less than 360 degrees of movement of the ROI. 
The processor is also configured to process data detected by 
the one or more detectors, where the data results at least in 
part from the first beam of radiation with the first spectrum 
that is directed to the ROI for less than the 360 degrees of 
movement of the ROI. The processor is further configured to 
generate an image of the ROI based on the processed data. 
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SYSTEM AND METHOD FOR LOW-DOSE 
MULTI-SPECTRAL X-RAY TOMOGRAPHY 

CROSS-REFERENCE TO RELATED 
APPLICATION 
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on Sep. 22, 2017, the entire disclosure of which is incorpo
rated by reference herein. 

GOVERNMENT LICENSE RIGHTS 

[0002] This invention was made with govermnent support 
under CA182264, CA158446 and EB018102 awarded by 
the National Institutes of Health. The government has cer
tain rights in the invention. 

BACKGROUND 

[0003] X-ray tomography, including computed tomogra
phy (CT), may be used for a variety of purposes, such as for 
screening, diagnosis, evaluation of diseases, analysis of 
materials, etc. In the screening, diagnosis, and evaluation 
cases, the X-ray tomographic images, including CT images, 
can measure quantities related to X-ray attenuation values at 
different X-ray energies in the imaged subject, such as a 
patient. One way to acquire additional information using 
X-rays is to measure the patient at multiple different ener
gies, since the attenuation of all materials is energy depen
dent. This energy dependence is different for different mate
rials. In dual-energy X-ray tomography, including dual
energy CT imaging, the subject is illuminated with two 
different X-ray spectra corresponding to two different 
energy distributions. In the medical X-ray imaging energy 
range, there are typically two dominant physical effects, i.e., 
the Compton and photoelectric effects. 

SUMMARY 

[0004] An illustrative multi-spectral tomography imaging 
system includes one or more source devices configured to 
direct beams of radiation in multiple spectra to a region of 
interest (ROI). The system also includes one or more detec
tors configured to receive at least a portion of the beams of 
radiation. The system further includes a processor in com
munication with the one or more source devices and the one 
or more detectors. The processor is configured to cause 
movement in at least one of the one or more source devices, 
the one or more detectors, and the ROI such that a first beam 
of radiation with a first spectrum is directed to the ROI for 
less than 360 degrees of movement of the ROI relative to the 
one or more source devices and the one or more detectors. 
The processor is also configured to process data detected by 
the one or more detectors, where the data results at least in 
part from the first beam of radiation with the first spectrum 
that is directed to the ROI for less than the 360 degrees of 
movement of the ROI. The processor is further configured to 
generate an image of the ROI based on the processed data. 
[0005] An illustrative method of performing multi-spec
tral tomography includes directing, by one or more source 
devices, beams of radiation in multiple spectra to a region of 
interest (ROI). The method also includes receiving, by one 
or more detectors, at least a portion of the beams of 
radiation. The method also includes causing, by a processor 
in communication with the one or more source devices and 
the one or more detectors, movement in at least one of the 
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one or more source devices, the one or more detectors, and 
the ROI. The method also includes processing, by the 
processor, data detected by the one or more detectors by 
solving an optimization problem based on the data, wherein 
the data results at least in part from a first beam of radiation 
with a first spectrum that is directed to the ROI. The method 
further includes generating, by the processor, an image of 
the ROI based on the processed data. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0006] The accompanying drawings, which are incorpo
rated in and constitute a part of this specification, illustrate 
various aspects of the subject matter and together with the 
description, serve to explain its principles. Wherever con
venient, the same reference numbers will be used throughout 
the drawings to refer to the same or like elements. 
[0007] FIG. lA depicts a single-kVp switch imaging tech
nique in which there is one rotation for the low kVp and 
another rotation for the high kVp in accordance with an 
illustrative embodiment. 
[0008] FIG. lB is a graph showing multiple normalized 
spectral including 80 kVp (120), 100 kVp (125), 120 kVp 
(130), and 140 kVp (135) in accordance with an illustrative 
embodiment. 
[0009] FIG. 2 illustrates an example of a sparse-view 
configuration in which multi-spectral data are collected at 
multi sets of interlaced sparse views over an angular range 
of any value between 180 degrees and 360 degrees in 
accordance with an illustrative embodiment. 
[0010] FIG. 3 illustrates a limited-angular-range configu
ration in which multi-spectral data are collected at multiple 
sets of limited-angular ranges over an angular range of any 
value between 180 degrees to 360 degrees in accordance 
with an illustrative embodiment. 
[0011] FIG. 4 illustrates a block configuration in which 
multi-spectral data are collected at multiple sets of detector 
blocks over an angular range of any value 2it ( or less in 
accordance with an illustrative embodiment. 
[0012] FIG. 5 is a representation of a sparse-view con
figuration in which low-kVp and high-kVp data are col
lected at two sets of interlaced sparse views uniformly 
distributed over 2it in accordance with an illustrative 
embodiment. 
[0013] FIG. 6 is a representation of a limited-angular
range configuration 600 in which low-kVp and high-kVp 
data (from a source outputting low-kVp 602 and outputting 
high-kVp 604 onto object 306) are collected over the two 
adjacent limited-angular ranges in accordance with an illus
trative embodiment. 
[0014] FIG. 7 is a representation of a split-illumination 
configuration in which low-kVp and high-kVp data are 
collected with two adjacent illumination coverage of low
kVp and high-kVp at each of 640 views uniformly distrib
uted over 2it in accordance with an illustrative embodiment. 
[0015] FIG. 8 is a representation of a block-illumination 
configuration in which low-kVp and high-kVp data are 
collected with multiple adjacent alternating illumination 
coverage of low-kVp and high-kVp at each of 640 views 
uniformly distributed over 2it in accordance with an illus
trative embodiment. 
[0016] FIG. 9 is a table summarizing the materials used in 
the composition of the phantoms of FIG. 10 in accordance 
with an illustrative embodiment. 
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[0017] FIG. lOA depicts a DE-472 phantom with 18 
regions of interest within 16 circular inserts and 2 back
ground areas highlighted by 1 to 18 in accordance with an 
illustrative embodiment. 
[0018] FIG. 10B is a lung phantom in accordance with an 
illustrative embodiment. 
[0019] FIG. lOC is a lung phantom with a muscle region 
of interest in accordance with an illustrative embodiment. 
[0020] FIG. l0D is a lung phantom with a bone region of 
interest in accordance with an illustrative embodiment. 
[0021] FIG. l0E is a lung phantom with a water region of 
interest in accordance with an illustrative embodiment. 
[0022] FIG. 11 illustrates convergence metrics D(b(nl), 
KW(b(nl), and ca(b(nl), and reconstruction-error K6 (b(n)) as 
functions of iterations n in accordance with an illustrative 
embodiment. 
[0023] FIG. 12 illustrates truth and reconstructed water
and bone-basis images in accordance with an illustrative 
embodiment. 
[0024] FIG. 13 illustrates convergence metrics D(b(nl), 
KW(b(nl), and ca(b(nl), and reconstruction-error K)fm (n)) of 
an 80-KeV monochromatic image obtained with E=0.0170, 
as functions of iteration number n in accordacne with an 
illustrative embodiment. 
[0025] FIG. 14 illustrates water- and bone-basis images in 
accordance with an illustrative embodiment. 
[0026] FIG. 15 depicts plots profiles of truth and recon
structed monochromatic images along the horizontal and 
vertical lines indicated in row 2 of FIG. 14 in accordance 
with an illustrative embodiment. 
[0027] FIG. 16 illustrates reconstructions of 120-KeV 
monochromatic image at intermediate iterations for both 
phantoms in accordance with an illustrative embodiment. 
[0028] FIG. 17 illustrates reconstruction results for both 
phantoms from data acquired with the sparse-view configu
ration in accordance with an illustrative embodiment. 
[0029] FIG. 18 illustrates profiles of the reconstructed 
(dashed) and truth (solid) monochromatic images at 40 and 
120 KeV along the horizontal and vertical lines indicated in 
row 2 of FIG. 14 in accordance with an illustrative embodi
ment. 
[0030] FIG. 19 illustrates reconstruction results for both 
phantoms from data acquired with the limited-angular-range 
configurations in accordance with an illustrative embodi
ment. 
[0031] FIG. 20 depicts plots of profiles of the recon
structed and truth monochromatic images along the hori
zontal and vertical lines indicated in FIG. 14 to reveal 
quantitative differences in accordance with an illustrative 
embodiment. 
[0032] FIG. 21 illustrates illumination reconstruction 
results for both phantoms from data acquired with the 
split-illumination configuration in accordance with an illus
trative embodiment. 
[0033] FIG. 22 depicts plots of profiles of the recon
structed and truth monochromatic images along the hori
zontal and vertical lines indicated in row 2 of FIG. 14 in 
accordance with an illustrative embodiment. 
[0034] FIG. 23 illustrates water- and bone-basis images 
(row 1), 40- and 120-KeV monochromatic images (row 2), 
and zoomed-in views of ROI images (row 3) similar to those 
in row 3 of FIG. 14 from block-illumination-scan data of the 
DE-472 and lung phantoms, respectively, in accordance with 
an illustrative embodiment. 

2 
Apr. 7, 2022 

[0035] FIG. 24 illustrates profiles of reconstructed 
(dashed) and truth (solid) monochromatic energy images at 
40 and 120 KeV along the horizontal and vertical lines 
indicated in row 2 of FIG. 14 from block-illumination-scan 
data of the DE-472 and lung phantoms, respectively, in 
accordance with an illustrative embodiment. 
[0036] FIG. 25 depicts pseudo code used to implement 
non-convex-projection onto convex sets (NC-POCS) m 
accordance with an illustrative embodiment. 
[0037] FIG. 26 depicts an MSXT imaging system m 
accordance with an illustrative embodiment. 

DETAILED DESCRIPTION 

[0038] Multi-spectral X-ray tomography (MSXT) is an 
imaging technique that uses multiple different energy spec
tra to conduct tomography. One example of multi-spectral 
X-ray tomography is multi-spectral computed tomography 
(CT), in which various numbers of spectra may be used, 
such as two spectra, three spectra, four spectra, etc. As one 
example, dual-energy X-ray tomography acquisition is a 
technique that utilizes two different spectra to perform the 
imaging. In traditional X-ray imaging, a non-linear data 
model can be used to incorporate the product of an incident 
X-ray spectrum and a detector-energy response, which is 
referred to as the X-ray spectrum. In MSXT, multiple sets of 
data may be collected with different X-ray spectra. When 
seeking to determine basis images, the multiple sets of data 
can be used to form X-ray tomographic images, including 
CT images, at X-ray energies of interest. 
[0039] There are four leading, distinctive methods cur
rently used for dual-energy CT imaging. The first method, 
referred to as the single-kVp-switch method, uses a single 
X-ray source and a single detector array to collect dual
energy data sets by the performance of two full-rotation 
scans in which the source kVp is switched following the first 
full-rotation scan. The second method, referred to as the 
fast-kVp-switch method, also uses a single X-ray source and 
a single detector array for acquisition of dual-energy data 
sets in which the source invokes a fast kVp switch at each 
effective view in a full-rotation scan. The third method, 
referred to as the dual-source/detector method, employs two 
source-detector pairs of different effective X-ray spectra to 
collect dual-energy data sets within a full-rotation scan. The 
fourth method, referred to as the dual-layer-detector method, 
adopts a single X-ray source and a set of two-layer detectors 
with different energy responses for collecting dual-energy 
data sets within a full-rotation scan. 
[0040] The four methods of performing dual-energy CT 
imaging involve the performance of two or one full-rotation 
scans. For example, the single-kVp-switch method, while 
simple to implement without the addition of hardware to a 
regular diagnostic CT system, doubles the imaging time and 
dose of a regular full-rotation scan because it carries out two 
full-rotation scans. As an example, FIG. lA depicts a single
kVp switch imaging technique in which there is one rotation 
for the low kVp and another rotation for the high kVp in 
accordance with an illustrative embodiment. The fast-kVp
switch and dual-source/detector methods, while having half 
of the imaging time of the single-kVp-switch method, in 
essence also perform two scans within a single full rotation, 
and thus may also double imaging dose of a regular full
rotation scan. In addition, the fast-kVp-switch, dual-source/ 
detector, and dual-layer-detector methods involve signifi
cant hardware additions as compared to a regular diagnostic 
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CT. For example, the fast-kVp-switch method involves a 
unique, high performance X-ray source capable of rapid 
switching within a full rotation, the dual-source/detector 
method uses an additional pair of X-ray sources and detector 
arrays, and the dual-layer-detector method uses a highly 
specialized detector technology. This additional hardware 
considerably increases CT-system cost and complexity. The 
hardware cost and complexity of these techniques is one of 
the reasons for their lack of a wide adoption, particularly in 
non-diagnostic CT such as C-arm CT. 

[0041] Described herein are optimization-based algo
rithms for image reconstruction in multispectral ( or photon
counting) computed tomography. A challenge of optimiza
tion-based image reconstruction in MSXT stems from the 
inherently non-linear data model that can lead to a non
convex optimization program for which no mathematically 
exact solver appears to exist for achieving globally optimal 
solutions. As discussed in more detail below, a non-convex 
optimization program based on a non-linear data model is 
disclosed, with its first-order-optimality conditions derived. 
Further, a methodology is disclosed to solve the non-convex 
optimization program for image reconstruction in MSXT. In 
addition to consideration of image reconstruction for a 
standard scan configuration, the disclosed methodology may 
be applied to non-standard scan configurations with no or 
little hardware modification to existing CT systems, which 
can be of potential practical implications for lowered hard
ware cost, enhanced scanning flexibility, and reduced imag
ing dose/time in MSXT. Further, as discussed in more detail 
below, numerical studies are disclosed in support of the 
methodology and its implementation. These studies demon
strate and characterize the methodology in reconstructing 
images and in enabling non-standard configurations with 
variable scanning angular range and/or variable X-ray illu
mination coverage. 

[0042] As discussed in more detail below, the proposed 
methodologies can be applied to a variety of scan configu
rations, and may affect one or more aspects of the systems 
such as hardware used, imaging dose, and scanning time. As 
a general matter, the methodology may be used for any 
multiple spectra X-ray tomography imaging system. More 
specifically, the method may be used in any type of X-ray 
tomography, such as CT. Further, the methodology may be 
used for any multiple numbers of spectra (such as two 
spectra, three spectra, etc.). In the case of the multiple 
spectra being limited to two spectra, the methodology may 
be used for any dual-energy X-ray tomography imaging 
system. Even more specifically, the proposed methodologies 
may be used for scan configurations for fast low-dose 
dual-energy CT imaging. 

[0043] In an illustrative embodiment, a methodology is 
disclosed for a two spectra system that uses the scan 
configurations for reconstructing images from data contain
ing rays that are measured only with one of the two spectra. 
The methodology thus enables the scan configurations dis
closed herein, such as the short- and half-scan configura
tions, for realizing fast, low-dose dual-energy imaging on 
current conventional diagnostic and non-diagnostic CT sys
tems. These enhancements are possible without hardware 
addition or modification to the current conventional diag
nostic and non-diagnostic CT systems. The scan configura
tions, referred to as short-scan, partial-scan, and half-scan 
configurations, are enabled by the disclosed methodology 
developed for image reconstruction directly from dual-
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energy data. In this regard, the proposed methodologies may 
be used to reconstruct basis images from a variety of 
decomposition schemes, and monochromatic images may be 
reconstructed by use of the filtered back-projection algo
rithm from corrected data and used as benchmark references. 
Further, the proposed methodologies may be used in existing 
CT scanners, thus upgrading existing CT scanners to enable 
wide-spread application of dual-energy CT imaging. The 
techniques described herein are not limited to a particular 
type of tomography. For example, any discussion below 
regarding CT may be applied to other types of X-ray 
tomographic imaging known in the art. Likewise, any dis
cussion below regarding X-ray tomographic imaging may 
likewise be applied to CT imaging. 

[0044] In one implementation, the proposed methodolo
gies use a limited data set for imaging. Though the discus
sion below focuses on two spectra, the MSXT imaging may 
be applied to any number of multiple spectra (such as three 
spectra, four spectra, etc.). In this regard, any discussion 
herein directed to two spectra may be applied to any number 
of multiple spectra. As discussed above, typically, the data 
set for each spectrum in the MSXT imaging is a full rotation 
(i.e., at least 2it). In contrast, in a first implementation, the 
proposed methodology uses a data set that is less than 2it 
(for at least one spectrum in the imaging process. Thus, in 
the instance that the MSXT imaging system uses two spectra 
for imaging, a data set for one spectrum is less than 2it (and 
a data set for a second spectrum is 2it ( or greater. In a second 
specific implementation, the methodology uses a data set 
that is less than 2it (for each spectrum used in the MSXT 
imaging. In the instance that the MSXT imaging system uses 
two spectra, a data set for a first spectrum is less that 2it, and 
a data set for a second spectrum is also less than 2it. In 
various embodiments, the data sets for a first spectrum and 
a second spectrum are both less than 360°; the data set for 
the first spectrum is less than 180° and the data set for the 
second spectrum is greater than 180° but less than 360°; the 
data sets for both the first spectrum and the second spectrum 
are less than 180°; the data set for the first spectrum is less 
than 90° and the data set for a second spectrum is greater 
than 90° but less than 180°; the data sets for both the first 
spectrum and the second spectrum are less than 90°; the data 
set for the first spectrum is less than 45° and the data set for 
a second spectrum is greater than 45° but less than 90°; the 
data sets for both the first spectrum and the second spectrum 
are less than 45°, etc. As another example, in the instance 
that the MSXT imaging system uses three spectra, the data 
sets for each of the first, second and third spectra are each 
less than 2it. 

[0045] The proposed MSXT imaging system may obtain 
the limited data set for the one or more spectra in one of 
several ways. In one emboidment, the MSXT imaging 
system may control the source in order for the MSXT 
imaging system to obtain the limited data set. The control of 
the source may include control of relative movement of the 
source and/or control of activation of the source (e.g., 
controlling the timing when the source outputs the different 
spectra). As one example, the MSXT imaging system may 
move the source/detectors relative to the object and during 
movement control the source (e.g., activate the source to 
generate light in the one or more spectra) to generate the 
limited data set. The MSXT imaging system may also move 
the source/detectors relative to the object in one of several 
embodiments. In one embodiment, the source/detectors may 
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move and the object may be stationary in order for the 
source/detectors to move relative to the object. In another 
embodiment, the source/detectors may be stationary and the 
object may move in order for the source/detectors to move 
relative to the object. In still another embodiment, the 
source/detectors and the object may move in order for the 
source/detectors to move relative to the object. As another 
example, the MSXT imaging system may control the acti
vation of the source so that the limited data set is obtained. 

[0046] Thus, regardless of the relative movement, the 
MSXT imaging system can activate the source such that 
during the relative movement, the data generated comprises 
the limited data set. As one example, the MSXT imaging 
system may include a single source, with the MSXT imaging 
system controlling the single source such that light is output 
at the different spectra during the relative movement of less 
than 2it. 

[0047] In a first illustrative embodiment, the MSXT imag
ing system includes a single source with slow kVp switch
ing, with the MSXT imaging system performing the slow 
kVp switching such that at each of the different spectra, the 
movement is less than 2it. The movement can be of the 
source, detector, and/or the patient or other object being 
imaged. For example, the MSXT imaging system may 
activate the source to generate the first spectrum while 
generating relative movement greater than 180° but less than 
360°, use the slow kVp switching to switch the source to the 
second spectrum, and thereafter activate the source to gen
erate the second spectrum while generating relative move
ment greater than 180° but less than 360°. As another 
example, the MSXT imaging system may activate the source 
to generate the first spectrum while generating relative 
movement greater than 90° but less than 180°, use the slow 
kVp switching to switch the source to the second spectrum, 
and thereafter activate the source to generate the second 
spectrum while generating relative movement greater than 
180° but less than 360°. As still another example, the MSXT 
imaging system may activate the source to generate the first 
spectrum while generating relative movement greater than 
90° but less than 180°, use the slow kVp switching to switch 
the source to the second spectrum, and thereafter activate the 
source to generate the second spectrum while generating 
relative movement greater than 90° but less than 180°. As 
yet another example, the MSXT imaging system may acti
vate the source to generate the first spectrum while gener
ating relative movement greater than 45° but less than 90°, 
use the slow kVp switching to switch the source to the 
second spectrum, and thereafter activate the source to gen
erate the second spectrum while generating relative move
ment greater than 45° but less than 180°. As still another 
example, the MSXT imaging system may activate the source 
to generate the first spectrum while generating relative 
movement greater than 45° but less than 90°, use the slow 
kVp switching to switch the source to the second spectrum, 
and thereafter activate the source to generate the second 
spectrum while generating relative movement greater than 
45° but less than 90°. 

[0048] In a second illustrative embodiment, the MSXT 
imaging system may include a single source with fast kVp 
switching, with the MSXT imaging system performing the 
fast kVp switching such that the total movement (e.g., the 
sum of the movement) at each of the different spectra is less 
than 2it. Alternatively, the source of the MSXT imaging 
system may include a single source with fast kVp switching, 
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with the MSXT imaging system performing the fast kVp 
switching such that the total movement (e.g., the sum of the 
movement) at each of the different spectra is less than 2it. 
For example, the MSXT imaging system may perform the 
fast kVp switching (generating the source output at the first 
and second spectra) while generating relative movement 
greater than 180° but less than 360°. As another example, the 
MSXT imaging system may perform the fast kVp switching 
(generating the source output at the first and second spectra) 
while generating relative movement greater than 90° but less 
than 180°. As still another example, the MSXT imaging 
system may perform the fast kVp switching (generating the 
source output at the first and second spectra) while gener
ating relative movement greater than 45° but less than 90°. 
[0049] In a third illustrative embodiment, the source 
includes a filter in order to generate the light at the different 
spectra. The filter may be an active filter ( e.g., controllable 
by a central processor of the MSXT imaging system) or may 
be a passive filter ( e.g., not controllable by a central pro
cessor of the MSXT imaging system). Any type of filter 
known in the art may be used. Regardless of the filter type, 
the source in combination with the filter generates the output 
at the different spectra. Further, the MSXT imaging system 
may activate the source such that during the relative move
ment, the data generated comprises the limited data set, as 
discussed above. 
[0050] As another example, the MSXT imaging system 
may include multiple sources ( e.g., a first source configured 
to output light at the first spectra and a second source 
configured to output light at the second spectra), with the 
MSXT imaging system controlling the multiple sources such 
that light output is at the different spectra during the relative 
movement of less than 2it. Thus, in one implementation, the 
MSXT imaging system may activate the multiple sources at 
least partly simultaneously. Alternatively, the MSXT imag
ing system may activate the multiple sources serially. 
Regardless, the activation of the multiple sources is such that 
the different spectra during the relative movement is each 
less than 2it. 
[0051] As discussed above, in the multiple source imple
mentation, the activation of the source may be less than 2it 
for each spectra. However, the relative movement may be 
less than 2it or may be 2it or greater. In the example of 
relative movement which is less than 2it, the source may 
likewise be activated for less than 2it (e.g., the activation of 
the source may be co-extensive with the relative movement 
or may be less than the relative movement). In the example 
of relative movement that is 2it or greater, the activation of 
the source is such that the data generated is for relative 
movement that is less than 2it. In this regard, the relative 
movement may be more or less than 2it. However, the 
activation of the source during the relative movement is such 
that the data collected is less than 2it of the relative move
ment. Further, various types of sources are contemplated, 
such as sources that generate a fan beam or sources that 
generate a cone beam. Thus, any discussion below directed 
to fan beams may equally be applied to cone beams or other 
source outputs. 
[0052] In one embodiment, the MSXT imaging system 
may control the detectors in order for the MSXT imaging 
system to obtain the limited data set. As one example, 
activation of detectors and/or control of filters associated 
with the detectors may be used in order to obtain the limited 
data set. For example, with a source generating a fan beam, 
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the detectors may be positioned in a curve along the fan 
beam. In this example, the MSXT imaging system may use 
a filter for one part of the output of the fan beam such that 
a first portion ( e.g., a first ½) of the fan beam is at the first 
spectrum, and a second portion (e.g., a second½) of the fan 
beam is at the second spectrum. At the detector, there is a 
detector response. If a change of the system is desired, the 
source may be changed (such as via filters), the detectors 
may be changed ( e.g., change the range of the spectra 
sensed), or both. Alternatively, the MSXT imaging system 
may have multiple sets of detectors, which may be con
trolled in order to obtain the limited data set. The MSXT 
imaging system can also control relative movement of the 
source(s), detector(s), and/or patient in order for the MSXT 
imaging system to obtain the limited data set. Thus, the 
MSXT imaging system controls one or more of the source 
(s), detector(s), and relative movement of system compo
nents to obtain the limited data set. 

[0053] In another implementation, the MSXT imaging 
system may use a methodology in order to generate an image 
with the limited data set. The methodology can include 
accessing a data model of multi-spectral imaging, perform
ing a transformation on the model in order to apply a convex 
optimization program, and using a convex optimization 
program to solve the imaging problem. Various data models 
may be used. In one implementation, a non-linear data 
model is used. Various non-linear data models are contem
plated, such as a continuous-to-discrete (CD)-data model or 
a discrete-to-discrete (DD)-data model. Other data models 
can be used in alternative embodiments. Further, a transfor
mation may be performed. One example transformation 
involves linearization of the data model. In one particular 
implementation, the non-linear data model may be partly 
linear and partly non-linear. The transformation may involve 
linearizing the part of the data model that is non-linear. In 
addition, a correction is optionally applied to compensate for 
the transformation of the model. In the example of linear
ization, a compensation to linearization of the model may be 
applied, with the compensation being iteratively performed. 

[0054] As discussed above, FIG. lA depicts a single-kVp 
switch imaging technique in which there is one rotation for 
the low kVp and another rotation for the high kVp in 
accordance with an illustrative embodiment. The system 
utilized in FIG. lA is a representation of a full-scan con
figuration. In particular, FIG. lA illustrates a standard, 
full-scan configuration in which each data set is collected for 
spectrum s at views uniformly distributed over 2it. As shown 
in FIG. lA, reference numeral 100 indicates the thin line for 
the low-kVp scan and reference numeral 110 indicates the 
thick line for the high-kVp scan. 

[0055] FIG. 1B is a graph showing multiple normalized 
spectral including 80 kVp (120), 100 kVp (125), 120 kVp 
(130), and 140 kVp (135) in accordance with an illustrative 
embodiment. Though 4 spectra are shown, fewer or greater 
numbers of spectra are contemplated, such as 2, 3, 5, 6, etc. 
As discussed below, various low-kVp spectrum (such as 80 
kVp (120)) and high-kVp spectrum (such as 140 kVp (135)) 
may be used in the proposed system. As shown in the FIG. 
1B, spectra 120, 125, 130, 135 are not delta functions. In one 
implementation, the methodology disclosed takes into con
sideration that the spectra are not delta functions, which 
contributes to the non-linearity of the data models, as 
discussed in more detail below. 
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[0056] FIG. 26 depicts an MSXT imaging system 2600 in 
accordance with an illustrative embodiment. In alternative 
embodiments, the MSXT imaging system 2600 may include 
fewer, additional, and/or different components. The MSXT 
imaging system 2600 includes a general purpose computing 
device in the form of a computing environment 2602, 
including a processing unit 2604, a system memory 2606, 
and display 2608. A system bus 2610 couples various system 
components of the computing environment 2602, including 
the processing unit, 2604, the system memory 2606, and the 
display 2608. The processing unit 2604 may perform arith
metic, logic, and/or control operations by accessing system 
memory 2606. For example, the processing unit 2604 may 
control the various system components to acquire data for 
imaging and may process the acquired data to generate an 
image. Specifically, the processing unit 2604 may control 
the source device 2612, the detector device 2620, and/or 
relative movement of the source device 2612, the detector 
device 2620, or the object 2626 through one or more motors 
(not shown). Alternatively, different system processors, or 
different devices may control the various system compo
nents to acquire data for imaging and may process the 
acquired data to generate an image. FIG. 26 illustrates one 
example of an MSXT imaging system. Other types of 
imaging systems are disclosed in: U.S. Pat. Nos. 7,394,923; 
7,444,011; 8,121,245; 8,923,587; and 9,613,442. U.S. Pat. 
Nos. 7,394,923; 7,444,011; 8,121,245; 8,923,587; and 
9,613,442, each of which are incorporated by reference 
herein in their entirety. 

[0057] The system memory 2606 may store information 
and/or instructions for use in combination with processing 
unit 2604. For example, the system memory 2606 may store 
computer readable instructions, data structures, program 
modules or the like for operation of the imaging system 
2600, including, for example, control of movement of any of 
the source, object, and detector and control of the function
ality of the source and the detector. Further, the system 
memory 2606 may store data obtained from detector device 
2620 and may process the data for presentation on the 
display 2608, as discussed in more detail below. The system 
memory 2606 may include volatile and non-volatile 
memory, such as random access memory (RAM) and read 
only memory (ROM). It should be appreciated by those 
skilled in the art that other types of computer readable media 
which can store data that is accessible by a computer, such 
as magnetic cassettes, flash memory cards, random access 
memories, read only memories, and the like, may also be 
used. A user may enter commands and/or information, as 
discussed below, into the computing environment 2602 
through input devices such as a mouse and keyboard (not 
shown) that form a user interface. The commands and/or 
information may be used to control operation of the imaging 
system, including acquisition of data and processing of data. 

[0058] FIG. 26 further depicts source device 2612 in 
communication with computing environment 2602 via line 
2614. As discussed above, source device 2612 may be 
stationary or may move relative to any one, or both, of object 
2616 and detector device 2620. Source device 2612 may 
also be configured to generate one or more spectra as 
discussed above. Further, source device 2612 includes a 
switch 2630. Switch 2630 is configured to perform the slow 
kVp switching or fast kVp switching under control by 
computing environment 2602. Further, source device 2612 
may have associated therewith one or more filters (not 
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shown), as discussed above. Line 2614 may also be used by 
processing unit 2604 to control movement of source device 
2612, such as by sending commands to a motor (not shown) 
to move all or a part of source device 2612. For example, if 
the source device 2612 is an X-ray tube, the motor may 
move the entire X-ray tube relative to one, or both of, object 
2616 and detector device 2620. Alternatively, the X-ray tube 
may remain stationary with a reflector revolving using the 
motor. In this manner, the beam emanating from the X-ray 
tube may be moved by bouncing the beam off the revolving 
reflector and toward object 2616. Although FIG. 26 illus
trates a single source device, the MSXT imaging system 
2600 may include one or more source devices, depending on 
the embodiment. 
[0059] The source device 2612 may be any device which 
generates a signal that can be received by detector device 
2620. The source device 2612 selected for imaging system 
2600 may depend on the type of imaging performed by 
imaging system 2600. For example, source device 2612 may 
generate electromagnetic radiation in any frequency range, 
such as gamma rays, x-rays, visible light, microwaves, and 
radio/tv waves. In an illustrative embodiment, source device 
2612 is an X-ray source that generates X-rays, or a radio 
frequency (RF) source that generates radio waves at one or 
more spectra. Source device 2612 may also generate other 
types of signals such as magnetic fields, mechanical waves 
(e.g., sound waves), heat, particles (e.g., electron, proton, 
neutron), or the like. Though a source device 2612 is 
depicted in imaging system 2600, it is noted that certain 
types of imaging systems do not utilize an external source, 
such as a positron emission tomography (PET) scanner. 
[0060] FIG. 26 also depicts object 2616. Object 2616 may 
be any type of Region of Interest (ROI) or anything that is 
capable of being scanned, such as a living organism ( e.g., 
human or animal) or a non-living object (e.g., a piece of 
luggage, a cargo container, food, an ocean, underground the 
earth, etc.). The position of the object may be stationary or 
may move relative to any one, or both, of source device 2612 
and detector device 2620. Line 2618 can be a control line 
used to control movement of object 2616, such as by sending 
commands to a motor (not shown) to move object 2616. Any 
part, or all, of object 2616 may be imaged using imaging 
system 2600. Further, the object may ingest or be injected 
with a substance, such as a contrast agent, which may assist 
in imaging a part or all of object 2616. As shown in FIG. 26, 
source device 2612 is external to object 2616. Alternatively, 
source device 2612 may be internal to object 2616. 
[0061] FIG. 26 further shows detector device 2620 com
municating with computing environment 2602 via lines 
2624 and 2626. Detector device 2620 may include a line of 
individual detectors 2622. Alternatively, multiple lines of 
detectors may be used to form detector device 2620. In this 
regard, the MSXT imaging system 2600 may include one or 
more detectors. Line 2624 represents a control line whereby 
the processing unit is able to control at least one character
istic of detector device 2620. As one example, line 2624 may 
control the activation of detector device 2620. Additionally, 
line 2624 may control one or more filters (not shown) 
associated with detector device 2620. Line 2626 may also be 
a data transmission line through which data sensed from the 
detectors 2622 is sent to computing environment 2602 for 
processing by processing unit 2604. 
[0062] Detector device 2620 be any type of detector which 
senses any datum, such as electromagnetic radiation from 
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any frequency range (such as X-rays in multiple spectra), 
magnetic fields, sound waves, heat, or the like. For example, 
for a 2-dimensional detector (flat-panel imager), detector 
device 2620 may include one row of detectors for fan beam 
geometry, four rows of detectors for quasi-fan-beam geom
etry, or more than four rows of detectors for cone-beam 
geometry. Detector device 2620 may be stationary or may 
move relative to any one, or both, of source device 2612 and 
object 2616. Line 2624 may also be used to control move
ment of detector device 2620, such as by sending commands 
to a motor (not shown) to move all or a part of detector 
device 2620. As shown in FIG. 26, detector device 2620 is 
external to object 2616. Alternatively, detector device 2620 
may be internal to object 2616. Thus, both source device 
2612 and detector device 2620 may be internal or external 
to the object, depending on the type of object being scanned. 
Moreover, source device 2612 may be internal and detector 
device 2620 may be external to object 2616, or source 
device 2612 may be external and detector device 2620 may 
be internal to object 2616. For example a dental image of a 
patient may be acquired with an external source and a 
detector held in the mouth of a patient. 

[0063] In one example, the detector device 2620 may be 
modeled as a straight-line array of 512 detector bins, which 
may be large enough so that the field-of-view is the circle 
inscribed in a 256x256 imaging array. The MSXT measure
ments may be related to the path integral of the x-ray 
attenuation coefficient along the rays defined by the source 
spot and individual detector bins. 

[0064] In one implementation, the computing environ
ment 2602, such as processing unit 2604, may be in com
munication with the source device 2612, the object 2616 
and/or the detector device 2620. The processing unit 2604 
may be configured to control at least one of the one or more 
source devices, control the one or more detectors or the ROI 
such that the ROI moves relative to the one or more source 
devices and the one or more detectors, control the one or 
more source devices such that the one or more source 
devices output light at the first spectrum or the second 
spectrum for less than 2it (of movement of the ROI relative 
to the one or more source devices and the one or more 
detectors, store ROI data generated from the one or more 
detectors sensing light from the first spectrum and the 
second spectrum (the ROI data being limited to less than 2it 
(of movement of the ROI relative to the one or more source 
devices and the one or more detectors for at least one of the 
first spectrum and the second spectrum), and generate an 
estimated image of the ROI based on ROI data. The pro
cessing unit 2604 can take the form of processing circuitry, 
a microprocessor or processor, and a computer-readable 
medium that stores computer-readable program code (e.g., 
software or firmware) executable by the (micro )processor, 
logic gates, switches, an application specific integrated 
circuit (ASIC), a programmable logic controller, and an 
embedded microcontroller, for example. The processing unit 
2604 can be configured with hardware and/or firmware to 
perform the various functions described below and shown in 
the pseudo code. Also, some of the components described as 
being internal to the processing unit 2604 can also be stored 
external to the processing unit 2604, and other components 
can be used. 

[0065] As an example, the processing unit 2604 may 
control movement of any of the source device 2612, the 
detector device 2620, and/or the object 2616 in order to 
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move the object 2616 relative to the source device 2612 and 
the detector device 2620. Further, the processing unit 2604 
may control the source device 2612 such that the source 
device 2612 outputs light such as in the scan configurations 
illustrated in FIGS. 2-8, which results in light output by the 
source device 2612 at the first spectrum or the second 
spectrum for less than 2it ( of movement of the object 2616 
relative to the source device 2612 and the detector device 
2620. Responsive to the light generated by the source device 
2612, the detector device 2620 may generate data, such as 
ROI data, for storage. Because the light output by the source 
device 2612 is limited ( e.g., being less than 2it of movement 
of the object 2616 relative to the source device 2612 and the 
detector device 2620), the ROI data stored is limited to less 
than 2it of movement of the object 2616 relative to the 
source device 2612 and the detector device 2620 for the first 
spectrum and the second spectrum. Finally, the stored ROI 
data may be used to generate the estimated image of the 
object, as discussed in more detail below. 

[0066] FIGS. 2-8 illustrate representations of different 
limited data scans. As discussed above, the limited data 
scans may be based on control of one or more of the 
source(s), the detector(s), and the relative movement of the 
object. In particular, FIG. 2 illustrates an example of a 
sparse-view configuration 200 in which multi-spectral data 
are collected at multi sets of interlaced sparse views over an 
angular range of any value between 180 degrees and 360 
degrees in accordance with an illustrative embodiment. In 
this regard, FIG. 2 illustrates an example of controlling the 
source in generating the limited data scan. The dashed circle 
212 indicates the FOY of the scanner, in which the imaged 
object (elliptical region 210) is enclosed. As shown in FIG. 
2, there are 4 sets of interlaced sparse views over an angular 
range of 2it (i.e., 360 degrees). For example, the source is 
configured to generate the different spectra for: 80 kVp 
(202); 100 kVp (204); 120 kVp (206); and 140 kVp (208). 
As shown in FIG. 2, the different spectra are generated in a 
sequence, such as 80 kVp (202), 120 kVp (206), 100 kVp 
(204), and 140 kVp (208), with the sequence repeating over 
the entire angular range of 2it. 

[0067] In one implementation, there is no distance (e.g., 
0°) between the different spectra. Alternatively, there may be 
a distance between the different spectra. For example, the 
degree distance may be 0.5°, 0.5°-1 °, 1 °, 1 °-5°; 5°, 5°-10°, 
etc. Further, the distance (i.e., number of degrees) between 
increments of the different spectra may be uniform across all 
of the different spectra. Alternatively, the degree distance 
between the different spectra may be different. Fewer (such 
as 2 or 3) or greater (such as 5, 6 or more) interlaced sparse 
views are also contemplated in the embodiment of FIG. 2. 
Further, the angular range may be 2it, such as illustrated in 
FIG. 2. Alternatively, the angular range may be less than 2it, 
such as between 270° and 2it, such as between 180° and 2it, 
and such as between 180° and 270°. Further, the sequence 
may repeat in the different angular ranges less than 2it, such 
as between 270° and 2it, such as between 180° and 2it, such 
as between 180° and 270°, etc. 

[0068] FIG. 3 illustrates a limited-angular-range configu
ration 300 in which multi-spectral data are collected at 
multiple sets oflimited-angular ranges over an angular range 
of any value between 180 degrees to 360 degrees in accor
dance with an illustrative embodiment. As shown in FIG. 3, 
there are 4 sets of sparse views over an angular range of 2it. 
For example, eachof80 kVp (302), l00kVp (304), 120 kVp 
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(306), and 140 kVp (308) includes an associated continuous 
angular range. Thus, FIG. 3 illustrates another example of 
controlling the source in generating the limited data scan. As 
shown in FIG. 3, the different spectra are equally divided 
across 2it, with 90° for each of the 4 spectra. In this regard, 
in one implementation, the angular range (e.g., 2it) may be 
divided equally across the different spectra. Alternatively, 
the angular range may be divided unequally across the 
different spectra. Fewer (such as 2 or 3) or greater (such as 
5, 6 or more) interlaced sparse views are contemplated in 
other embodiments. Further, the angular range may be 2it, or 
alternatively less than 2it, such as between 270° and 2it, such 
as between 180° and 2it, such as between 180° and 270°, etc. 
As shown in FIG. 3, there are two positions at different 
spectra shown, with 320 at 80 kVp and with 330 at 100 kVp. 

[0069] FIG. 4 illustrates a block configuration in which 
multi-spectral data are collected at multiple sets of detector 
blocks over an angular range of any value 2it or less in 
accordance with an illustrative embodiment. For example, 
the angular range may be 2it, between 180° to 2it, between 
180° to 270°, etc. In this embodiment, a row of detectors 
may detect different spectra, such as at 80 kVp (402), 100 
kVp (404), 120 kVp (406), and 140 kVp (408). FIG. 4 
illustrates this at a point in the 2it ( circumference. In this 
regard, FIG. 4 illustrates an example of controlling the 
detector( s) in generating the limited data scan. As shown, the 
data at the different spectra are collected at least partly 
simultaneously with different detectors detecting the differ
ent spectra (e.g., at 80 kVp (402), 100 kVp (404), 120 kVp 
(406), and 140 kVp (408)). In an alternative implementation, 
all of the detectors may detect at one spectrum, and then 
sequence through the different spectra during the relative 
movement of the source(s)/detector(s) to the object (such as 
over 2it ( or over less than 2it). As one example, the detectors 
may be configured to sense one spectrum. Thereafter, rela
tive movement may occur, with the detectors thereafter 
configured to sense another spectrum. This sequence of 
relative movement and changing of the configuration of the 
detectors may be performed iteratively ( e.g., stepping 
through the different spectra). 

[0070] FIG. 5 is a representation of a sparse-view con
figuration 500 in which low-kVp and high-kVp data are 
collected at two sets of interlaced sparse views uniformly 
distributed over 2it in accordance with an illustrative 
embodiment. In one implementation, the source outputting 
low-kVp 502 and outputting high-kVp 504 may alternate, 
such as over an angular range (e.g., 2it, between 270° and 
2it, between 180° and 2it; between 180° and 270°). In 
particular, a source outputting low-kVp 502 and outputting 
high-kVp 504 onto object 306 is illustrated. As shown in 
FIG. 5, there are gaps between the interlaced sparse views. 
The gaps may be 0.5°, 0.5°-1 °, 1 °, 1 °-5°, 5°, 5°-10°, etc. 
Further, the degree distance between the different spectra 
may be the same between each of the different spectra or 
different as discussed above. Although not shown in FIG. 5, 
in an alternate implementation, there may be no distance 
between the interlaced sparse views. In another implemen
tation, some of the interlaced sparse views may have a gap 
there between and other interlaced sparse views may have no 
gap. Thus, the angular range for each of the low-kVp and 
high-kVp may be added to result in respective total angular 
ranges for each of the low-kVp and high-kVp. 

[0071] FIG. 6 is a representation of a limited-angular
range configuration 600 in which low-kVp and high-kVp 
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data (from a source outputting low-kVp 602 and outputting 
high-kVp 604 onto object 306) are collected over the two 
adjacent limited-angular ranges in accordance with an illus
trative embodiment. The non-standard configurations illus
trated in FIGS. 5-6 involve varying angular coverages, and 
are referred to as the sparse-view and limited-angular-range 
configurations, respectively. In FIG. 5, low- and high-kVp 
data are collected at two sets of interlaced sparse views 
uniformly distributed over 2it. In particular, the light gen
erated by the source outputting low-kVp 502 is interspersed 
between the light generated by the source outputting high
kVp 504. Further, the non-contiguous segments where the 
light generated by the source outputting low-kVp 502 may 
be summed, as discussed above. This sum is less than 2it. 
Likewise, the non-contiguous segments where the light 
generated by the source outputting high-kVp 504 may be 
surmned, with the sum being less than 2it. In FIG. 6, low
and high-kVp data are collected over two adjacent continu
ous limited angular-ranges. As shown, the angular range for 
the low-kVp 602 (i.e., the thin line) is approximately 90°, 
whereas the angular range for the high-kVp 604 (i.e., the 
thick line) is greater than 90°. 

[0072] FIG. 6 further illustrates that the angular range for 
the low-kVp and the angular range for the high-kVp do not 
overlap. Alternatively, the angular range for the low-kVp 
may at least partly overlap with the angular range for the 
high-kVp. For example, the angular range for the low-kVp 
may be 0° to 225°, and the angular range for the high-kVp 
may be 225° to 90°. In an alternative implementation, a 
short+short scan configuration may be used in which each 
short scan is greater than 180° and less than 360° for the 
dual-energy data sets collected using the low-kVp and 
high-kVp X-rays. Specifically, the angular range for the 
low-kVp may be greater than 180°, whereas the angular 
range for the high-kVp may be greater than 180°. In another 
implementation, a half+half scan configuration may be used 
in which each half scan is equal to 90° for the dual-energy 
data sets collected using the low-kVp and high-kVp X-rays. 
As shown, the angular range for the low-kVp is equal to 
180°, and the angular range for the high-kVp is equal to 
180°. In this regard, the short+short scan configuration and 
the half+half scan configuration are further specific 
examples of limited-angular range configurations. 

[0073] As discussed above, the MSXT imaging system 
may use a scan configuration that is a partial-angular-scan 
configuration in which each of the two dual-energy data sets 
is acquired for an object only over an angular range con
siderably less than 2it. Because the reduced angular range is 
less than 2it, a partial-angular-scan configuration can be 
exploited for possibly reducing imaging time and dose of a 
full-scan configuration. Further, a partial-angular-scan con
figuration can readily be realized on standard CT scanners 
without additional hardware simply by use of the standard 
single-kVp-switch technique, which is available on many 
existing CT scanners. 

[0074] As an example, three parameters, a 0 , a 1 , and a 2 

may be used to specify a partial-angular-scan configuration, 
where a 0 and a 2 denote the starting and ending angles of the 
X-ray tube, and a 1 is the angle at which the X-ray tube 
switches its kVp. The system therefore collects two sets of 
dual-energy data over angular ranges a 1 -a0 and a 2 -a 1 . In a 
full-scan configuration, a 1 -a0=a2 -a1 =2Jt, whereas in a par
tial-angular-scan configuration, a 1-a0 <2it and a 2 -a1 <2it. 
Further, two fast partial-angular-scan configurations may be 
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used for dual-energy CT. In addition, the MSXT can control 
the tube such that it rotates a short-scan range in one kVp, 
before switching to another kVp setting to rotate for another 
short-scan range. Thus, two sets of dual-energy data may be 
acquired with a 0=0, a 1=Jt+Ym, and a 2=2it+2ym, where Ym is 
the fan angle of the CT scanner. Alternatively, the MSXT 
may control the tube such that it rotates according to: a 0 =0, 
a 1 =it, and a 2 =2it. The X-ray tube may be switched from one 
kVp to another kVp at a 1=Jt, and the angular range of each 
kVp scan covers one half of a full-rotation scan. As dis
cussed in more detail below, the methodology can use a 
heuristic algorithm for reconstructing basis and monochro
matic images from dual-energy data collected with full-, 
short- and half-scan configurations through numerically 
solving the program. 

[0075] FIG. 7 is a representation of a split-illumination 
configuration 700 in which low-kVp and high-kVp data are 
collected with two adjacent illumination coverage of low
kVp 702 and high-kVp 704 at each of 640 views uniformly 
distributed over 2it in accordance with an illustrative 
embodiment. In particular, a low-kVp illumination (702) 
and a high-kVp illumination (704) are directed onto object 
210, at a plurality of views (such as the 640 views uniformly 
distributed over 2it). FIG. 8 is a representation of a block
illumination configuration 800 in which low-kVp and high
kVp data are collected with multiple adjacent alternating 
illumination coverage of low-kVp 802, 804 and high-kVp 
806, 808 at each of 640 views uniformly distributed over 2it 
in accordance with an illustrative embodiment. For example, 
a first low-kVp illumination (802), a first high-kVp illumi
nation (806), a second low-kVp illumination (804), a second 
high-kVp illumination (808) are directed onto object 210 at 
a plurality of views (such as the 640 views uniformly 
distributed over 2it). Alternatively, a different number of 
views may be used in the implementations of FIGS. 7 and 
8. 
[0076] Two non-standard configurations are shown in 
FIGS. 7-8, which involve varying illumination coverage. 
These configurations are referred to as the split- and block
illumination configurations, respectively. In the configura
tions, low- and high-kVp data are collected, respectively, 
with two adjacent and multiple adjacent alternating illumi
nation coverages at each of 640 views uniformly distributed 
over 2it. Alternatively, low- and high-kVp data are collected, 
respectively, with two adjacent and multiple adjacent alter
nating illumination coverages at views over less than 2it 
(such as uniformly distributed over 90°, between 90° to 
180°, between 180° to 270°, between270° to 360°, etc.). The 
configurations may be achieved through, for example, the 
use of a beam blocker in front of the X-ray source and/or 
detector blocks with different energy responses. Thus, these 
are examples of controlling one or both of the source(s) or 
the detector(s) in order to achieve the different configura
tions. 

[0077] As discussed above, a one-step inversion approach 
may be used to reconstruct basis and monochromatic images 
in MSXT for a variety of scan configurations or systems of 
potential practical significance. In particular, an optimiza
tion-based one-step inversion approach may use a method
ology to reconstruct basis images through solving numeri
cally a non-convex optimization program based upon the 
non-linear data model in MSXT. In particular, the method
ology may be used with non-standard scanning configura
tions (such as disclosed in FIGS. 2-8) involving no or 
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minimum hardware modification. In one implementation, 
the one-step inversion approach may include: accessing one 
or more non-linear data models; accessing a non-convex 
optimization program; using an algorithm for numerically 
for solving the non-convex optimization program; and deter
mining one or more convergence conditions. Discussed 
below are the study design (including spectra, phantoms, 
and configurations), verification and characterization studies 
of one implementation of the methodology, and application 
of the methodology (including applying the methodology to 
non-standard scanning configurations of practical implica
tions). 

[0078] As an initial matter, a data model may be used or 
accessed by the system. In one implementation, one or more 
non-linear data models may be accessed. Several non-linear 
data models are contemplated, with examples of non-linear 
data models including: continuous-to-discrete (CD)-data 
models; and discrete-to-discrete (DD)-data models. 

[0079] In using the CD-data model for MSXT, one seeks 
to determine X-ray linear attenuation coefficient f'(E, r) from 
knowledge of multiple transmission measurements. One 

may decompose f'(E, r\ a function of X-ray photon energy 

E and spatial coordinates 7, into the form: 

Eq. 1: 

[0080] where k EZ +, and µiE) and bi7) are referred to 
as decomposition coefficients and basis images. The 
decomposition can be e.g., material or interaction based 
depending upon how µiE) is selected. Assuming that the 
decomposition coefficients are known, the problem of 
image reconstruction in MSXT may be simplified to the 
determination of the basis images, which are functions 

only of spatial variable 7. A material decomposition may 
be considered in which the mass-attenuation coefficient of 
the kth basis image material is selected as µiE). 

[0081] Letting ~[sl(E) denote the X-ray spectrum for ray 
j with spectrum s, and I}sl and I0}sl the transmission mea
surements for ray j in the presence and absence, respectively, 

of f'(E, 7), one can define a data model as g}5l=-ln 
(I}5l/I0}5l), which can be written further as: 

g}'J~-!nfo00 E q/l(E)exp(-fo00 tf(E, 7,_+t~)) Eq. 2: 

[0082] where 7"" denotes the source position, ~ the direc
tion of ray j, s E {1, ... , S}, S the total number of X-ray 
spectra used, and 

q}'J(E)~Q}'J(E) Cfo00 E Q}'J(E)t1, Eq. 4: 

[0083] with the normalized spectral function satisfying J 
dE 9/[sl(E)=l. Spectrum function 9/[sl(E) can be ray
dependent in cases that a bow-tie filter is placed in front 
of the X-ray source and/or that multiple measurements 
can be made for a given ray, e.g., using multiple energy 
bins in a photon-counting detector. 

[0084] Because 9/[sl(E), µiE), and bi7) are functions of 

continuous variable E or 7, and because g}5l for ray j is 
specified by discrete index j, one may refer to equation 2 as 
a continuous-to-discrete (CD)-data model, which is used for 
obtaining discrete-to-discrete (DD)-data models below. 
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When 9t[sl(E)=o(E-E0), the CD-data model becomes the 
conventional X-ray transform for ray j. 
[0085] In practical CT imaging with spectrum s, measure
ments made at a discrete source position j""[sJ form a two
dimensional (2D) array that includes rows and colunms 
indexed by j}sl and j}5l. By letting N""[sJ denote the total 
number of discrete source positions and N}sl and N}5l the 
total numbers of rows and colunms of the detector-measure
ment array at the source position, one can align all the 
measurements into a one-dimensional (ID) array in a con
catenated form in the order of j}sl, j}5l, and j""[sl, with 
elements indexed by j=j}sl+j}5lxN}sl+j""[slxN}5lxN}sl, J[sJ 
=N""[slxN}slxN}5l, andj E {0, ... , JEsl_]}. 
[0086] In a DD-data model. the energy space can be 
discretized uniformly with E=mllD where m E {1, ... , M}, 
and llE is the energy sampling interval. The discretized form 
of the normalized spectrum function in equation 4 is defined 
as Cl/m [sJ=llE ql51(mllE) satisfying the normalization condi
tion Em Cl/m [s =l. One can also consider a voxel-based 
representation of three-dimensional (3D) image space by 
discretizing evenly its x-, y-, and z-axis, with x=x0+ixllx, 
y=y0 +iylly, and z=z0+i

2
i'l

2
, where ix E {O, ... , Nx-1 }, iy E {O, 

... , Ny-I}, and iz E {O, ... , Nz-1 }. Nx, Ny, and NZ denote 
the total numbers of voxels, llx, fly, ll

2 
the voxel sizes, and 

x0 , Yo, z0 the starting positions along x, y, and z-axis, 
respectively. The voxels can be aligned into a ID array of 
size I=NxxNYxN

2 
in a concatenated form in the order of ix, 

iy, and i
2

, indexed by i=ix+iyxNx+i
2
xNYxN

2
• 

[0087] For spectrum s, using equation 2 and the discrete 
image array, a DD-data model may be represented as: 

Eq. 5: 

[0088] wherej E{O, ... , J[sl_]}, i E {0, ... , I-1}, a)sl 
denotes the intersection length of ray j with voxel i, f',m 
the discrete linear attenuation coefficient at energy m, and 

Eq. 6: 

[0089] where µ1an =µimllE), and bki discrete basis image k 
at voxel i. Subscript i indicates that f',m and bki are in the 
concatenated form described above. 

[0090] When K basis images are considered, a discrete 
form of equation 1 may be: 

Eq. 7: 

[0091] where k E {1, ... , K}, and M,m the difference 
between f',m and f,m· f,m and llf,m, may be referred to as the 
monochromatic image, and the image decomposition 
error within voxel i at energy m. Vector images f' m and fm 
of size I at energy m can be formed with elements f,m and 
f',m, respectively. Similarly, basis-image vector bk of size 
I can be assembled in which entry i is given by bki" 

[0092] Ignoring decomposition error llf,m equation 5, 
another DD-data model may be represented as: 

Eq. 8: 

[0093] where k E {1, ... , K}, and b denotes an aggregate 
basis-image vector formed by concatenating individual 
basis-image vectors bk in the ascending order of k. For 
simplicity, b is referred to as the basis image. 

[0094] The reconstruction algorithm is designed based 
upon the DD-data model in equation 8 in the results 
described herein. When the algorithm is applied to data 
collected in a real experiment or generated by use of a data 
model ( e.g., equation 5) other than equation 8, the data 
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contain inconsistencies such as noise and/or decomposition 
error with the data model in equation 8. 

[0095] Variable bin model data g}5l(b) indicates explicitly 
that the reconstruction task is to determine b from knowl
edge of data measured. Considering all of the measurements 
with spectrum s, vector g[sl(b) is formed of size J[sl, with 
elements g}5l(b ). An aggregate vector g(b) of model data can 
then be assembled by concatenating g[sl(b) in the ascending 
order of s. Additionally, Cl/[sJ of size M is used to denote a 
vector of discretized spectrum in which entry Cl/m [sJ indicates 

rsl 
value of spectrum s at energy m for ray j. Let BMJ denote 
the measured data for ray j with spectrum s, which can be 
used to form aggregate vector 8M (i.e., the counterpart of 
model data g(b) as discussed above). 

[0096] Further, the methodology may use a non-convex 
optimization program. Image reconstruction in MSXT is 
tantamount to the determination of basis image b by invert
ing the DD-data model in equation 8 from knowledge of 
measured data 8M, which can be formulated as a con
strained optimization program in the form of: 

b' = argmin'Jl(b) s.t. <l>(b; gM) s E: b ± 0, 
b 

Eq. 9 

where data constraint parameter E>O, and ±denotes the 
vector-form inequality, which requires all elements of b to 
be non-negative. The objective and data-fidelity functions 
may be designed as: 

'P(b)~Lk llbkllrvand <l>(b; 8M)~D(g(b), 8M), Eq. 10: 

where ll•llrv denotes the image total-variation (TV), defined 
as the 11-norm of the gradient-magnitude image, i.e., 
llbkllrv=ll(IVbkl)llv with V denoting the finite-differencing 
approximation to the gradient and l•I a spatial magnitude 
operator, and D (x, y) the data divergence, often in the form 
of IP-norm or Kullback-Leibler (KL) divergence, between 
vectors x and y. One may consider a normalized 12-norm of 
vector difference between model data g(b) and measured 
data 8M, i.e., 

D(g(b), SM)= 

~,llgl'l(b)-

I,11gr;;111~ 

II~ 
1/2 Eq. 11 

[0097] Further, an algorithm may be used to numerically 
solve the non-convex program. Data divergence D(g(b ), 
8MI) is non-convex (NC) due to the non-linearity of the 
DD-data model, so is the optimization program in equations 
9-11. In the absence of a mathematically exact solver for 
achieving the globally optimal solution of the non-convex 
optimization program, a heuristic algorithm may instead be 
used for numerically solving the program and may demon
strate its potential in enabling MSXT configurations of 
potential application significance. 

[0098] As discussed above, various data models may be 
used. As one example, the DD-data model may be used, with 
the linear and non-linear contributions to the DD-data model 
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analyzed. First, the mass-attenuation coefficient µkm in equa
tion 8 may be split into: 

Eq. 12: 

Eq. 13: 

[0099] While µ)sl is independent of energy as 1t 1s a 
spectrum-weighted average of µkm over energy, li.µ1km [sJ 
remains energy dependent. Substitution of equation 12 into 
equation 8 yields: 

g}'l(bhf}'l(b)+Ll.g}'l(b), Eq. 14: 

[0100] where j E {O, ... , j[sl_l }, 

Eq. 15: 

Eq. 16: 

[0101] denote linear (LI) and non-linear (NL) functions of 
b, respectively, and can be used to form two aggregate 
vectors g(b) and li.g(b) in the same way of forming g(b ). 

[0102] Thus, in one implementation, µmaybe the non
linear component in the data model. Further, equation 14 
includes two elements, with g(b) being linear and li.g(b) 
being non-linear. In one implementation, the non-linear term 
li.g(b) may be represented by equation 16. In particular, 
g(b )=H b and matrix J-{ is given by: 

Eq. 17 

[0103] where matrix JI. [sl, of size J[slxI and with element 
a)sl, denotes the discrete X-ray transform for all mea
surements made with spectrum s, and 'U /sl a diagonal 
matrix of size J[sJ with diagonal elements µ)sl_ 

[0104] The DD-data model in equation 8 for an individual 
ray can then be re-expressed in a matrix form for all of the 
rays considered as: 

g(b)-L\.g(b)~H b. Eq. 18: 

[0105] While equation 18 is only a different form of the 
DD-data model in equation 8, it reveals that it is non-linear 
term li.g(b) that results in the non-convexity of the data 
divergence and thus of the optimization program. Thus, as 
shown above, equation 14 includes three terms: g}sl(b), 
which is the measurement, g(b ), which is a linear of b, and 
li.g(b) which is a non-linear function of b. Equation 18 is a 
rewrite of equation 14 into vector form. Further, from 
equations 14 and 18, g(b) becomes matrix J-{ b. 
[0106] If one assumes that li.g(b) is independent of b 
(though in actuality it is a non-linear term), the left hand side 
of equation 18 is a linear function of b. Because of that 
assumption, one can place this equation into equation 10 or 
11. In that regard, one is faced with a convex problem since 
li.g(b) is assumed to be constant (independent of b ). 
[0107] There are various ways for numerically lowering 
the non-convex data divergence. In one way, it is first 
assumed that non-linear term li.g(b) is known and denoted by 

Kg. Under this condition, the DD-data model in equation 18 

becomes a linear equation, i.e., g(b )-li.g =Hb, and data 

divergence D ( J-{ b, g J-{ - li.g) and the optimization program 
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consequently becomes convex, which can then be solved by 
use of a host of well-established algorithms. 
[0108] The projection-onto-convex-sets (POCS) proce-

dure can be used to lower convex D( J£ b, gM - fig ) with the 
updating step: 

b(n+l) -
k -

where j E {0, ... , J[sJ_l}, Kgj5l is the jth element with 

spectrums of fig, a [sJ a row vector that is the jth row of 
matrix Jl [sl, and a}sir a colunm vector as the transpose of 

a}5l, and 0<yCnl<2. Thus, fig may be transformed into fig }sl, 
with the - representing the approximation. The transforma-

tion into fig}5l is one example of linearizing the non-linear 

model. In a specific implementation, fig}sl may be consid
ered a constant. 
[0109] Using b(n) in equation 16, one can calculate: 

Eq. 20: 

[0110] Thus, equation 20 is one representation of the 

actual difference between the approximation Kgj5l and the 
true non-linear model. As discussed below, one can use 

equation 20 to replace ligj5l. With this, the methodology 
may thus compensate for the transformation (e.g., compen
sate for the linearization) of the non-linear model. In this 
regard, the compensation may be in addition to the linear
ization. In one implementation, the compensation may be 
performed iteratively. Thus, it is then proposed to use 

fig}5l(b(n)) as an estimate of Kgj5l in equation 19, and thus 
obtain an NC-POCS update procedure as: 

b(n+l) -
k -

[
,,[s] A [,](b(n)J] [,] '\' -l'Jb(n) 
c,Mj -u.gj k -aj L.Jkµjk k 

+ (n)-[s] __ ~~-~----- [s]T 
y µ jk '\' (_[,] )2 [,] [,]T a j , 

L.Jk uJk a1 a1 

Eq. 21 

which has a form identical to that of the conventional POCS, 
except for that at iteration n, fig}5l(b(n)) is calculated to 
compensate for the non-linear effect. As shown in equation 
21, the argument of fig1 is bk. bk is the current reconstruction 
at this iteration. In this regard, at each iteration, there is 
knowledge of bk. This knowledge of bk may be used to 
estimate fig1 through equation 20. Thus, in one implemen
tation, the compensation may be iterative. Further, the 
iterations may result in convergence. In other words, an 
iterative procedure is used in which the compensation for the 
approximation of fig(b) is performed. FIG. 25 depicts 
pseudo code used to implement equation 21 and the non
convex-projection onto convex sets (NC-POCS) in accor
dance with an illustrative embodiment. 
[0111] Using this, a projection-onto-convex-sets tailored 
to a non-convex application may be developed. In particular, 
combining this NC-POCS procedure for lowering D(g(b), 
gMI) with the steepest descent (SD) for lowering the total 
variation (TV) objective function, one may obtain an heu-
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ristic ASD-NC-POCS algorithm for numerically solving the 
non-convex program specified by equations 9-11. Similar to 
the conventional ASD-POCS algorithm, the ASD-NC
POCS algorithm adaptively lowers the image TV and data 
divergence by use of the SD and NC-POCS procedures for 
image reconstruction in MSXT, with the pseudo-code as 
illustrated in FIG. 25. In a reconstruction, once the practical 
convergence condition on the data constraint is satisfied, 
gradient descent steps are applied to further lower data 
divergence so that other practical convergence conditions 
can be met rapidly. The ASD-NC-POCS methodology may 
further be used with one or more convergence conditions. 

[0112] One or more types of reconstruction parameters 
may be used in the optimization-based image reconstruction. 
In one implementation, there are two types of parameters 
involved in an optimization-based image reconstruction, 
which are referred to as program and algorithm parameters. 
Program parameters may specify the optimization program 
in equation 9, including image voxel, spectra q}5l, system 
matrices Jl [sJ , and parameter E. Different choices of 
program parameters may lead to different optimization pro
grams and thus different designed solutions. In one imple
mentation, parameter E may be the focus that impacts 
dominantly the reconstruction, while selecting image voxel, 
q,(51, and J/. [sJ similar to those used in practical applications. 
The algorithm parameters such as yCnl, Nrv, and ain) in the 
algorithm illustrated in FIG. 25 may control the algorithm 
path leading to the designed solution. While the algorithm 
parameters have no effect on the designed solutions, they 
can impact the numerical reconstructions especially for a 
non-convex program. Thus, in one implementation, the 
same algorithm parameters may be used as those used in the 
conventional ASD-POCS algorithm. 

[0113] Three mathematical convergence conditions may 
be considered for the ASD-NC-POCS algorithm: 

D(b(n)) = ID(g(b(nl, isM) -.sl/ .S ➔ 0, Eqs. 22 

- l'Jl(b(n+l)) - 'Jl(b(n))I 

Ll.'Jl(b(n)) = l'Jl(b(n+llJ + 'Jl(b(nl)I ➔ 0, and 

Ca(b(n)) = a:,a(b(n))drv(b(n)) ➔ -1, 

[0114] as iteration number n----;,oo, where unit vectors adata 

(b(n)) and drvCb(n)) are defined below. The second condition 
in Eqs. 22 is for the optimality of the objective function, 
whereas the other two are the local optimality conditions, 
i.e., the Karush-Kuhn-Tucker (KKT) conditions, as shown 
below. While the mathematical convergence conditions may 
not be met in practical reconstructions, they may be used to 
devise practical convergence conditions for studies dis
cussed below. 

[0115] With regard to numerical experiment design, one 
may consider scan configuration dimensions. Specifically, 
while the ASD-NC-POCS algorithm developed can recon
struct images from cone-beam data collected over general 
source trajectories, the ASD-NC-POCS algorithm may also 
be applied to other types of beams. In particular, ASD-NC
POCS algorithm may be applied to a fan-beam configura
tion, such as image reconstruction from data collected with 
a fan-beam configuration over a circular trajectory, with 
physical dimensions similar to those used in a standard 
cone-beam CT (CBCT) employed in radiation therapy. In 
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one implementation, the CBCT system may have source
to-detector and source-to-center-of-rotation distances of 
1500 mm and 1000 mm, respectively, and a linear detector 
of 400 mm in length, which form a field-of-view (FOY) of 
265 mm in diameter. Imaged subjects are assumed to be 
completely within the FOY. In alternative embodiments, 
different dimensions may be used. As discussed above, the 
configuration shown in FIG. lA is a standard, full-scan 
configuration in which each data set is collected for spec
trum s at views uniformly distributed over 2it, and which is 
used for verification and benchmark of the algorithm imple
mentation and performance. In addition, other non-standard 
configurations, such as illustrated in FIGS. 2-8, may be 
utilized to demonstrate the application of the methodology. 
[0116] With regard to spectra, the ASD-NC-POCS algo
rithm may be applicable to MSXT with multiple (S;;,;2) 
spectral measurements. Discussed herein are applications 
using only two (i.e., S=2) spectral data sets collected with 
two, i.e., the low (s=l) and high (s=2) spectra at 80 and 140 
kVp. Different specta values may be used in alternative 
implementations. The incident spectra are generated using 
the TASMICS worksheet (vl.0), assuming a tungsten anode 
and 5-mm-Al filter, to simulate spectrum from a X-ray CT 
tube. The detector-energy response is modeled to be a linear 
energy-integrating response. The discrete X-ray spectrum, 
taken as the product of the incident spectrum and detector
energy response with li.E=l (KeV), is normalized and shown 
in FIG. lB. As discussed, the ASD-NC-POCS algorithm 
may also be applied to spectral measurements greater than 2. 
[0117] With regard to basis images, two (i.e., K=2) basis 
images are considered, and are referred to as the water and 
bone images in the reconstruction. It is further assumed that 
the spectra are the same for all rays within one kVp scan, i.e., 
the discretized spectrum can be denoted by qm [sl, without the 
dependence on ray j. 
[0118] With regard to monochromatic images, using basis 
images bk reconstructed, along with knowledge of mass
attenuation coefficients, one can readily obtain monochro
matic image fm by using equation 7. In general, due to the 
presence of decomposition error, monochromatic image fm 

may represent only approximately linear attenuation coef
ficient image f' m· 

[0119] Illustrated in FIGS. l0A-E are two digital phan
toms. The first simulates the standardized dual-energy con
trast phantom with iodine and calcium solution inserts, 
referred to as the DE-472 phantom, and the second mimics 
human thoracic anatomy, referred to as the lung phantom. 
Both phantoms are represented on a 512x512 array of square 
pixels of0.49 mm. Specifically, FIG. l0A depicts a DE-472 
phantom with 18 regions of interest within 16 circular 
inserts and 2 background areas highlighted by 1 to 18 in 
accordance with an illustrative embodiment. FIG. l0B is a 
lung phantom in accordance with an illustrative embodi
ment. FIG. l0C is a lung phantom with a muscle region of 
interest in accordance with an illustrative embodiment. FIG. 
l0D is a lung phantom with a bone region of interest in 
accordance with an illustrative embodiment. FIG. l0E is a 
lung phantom with a water region of interest in accordance 
with an illustrative embodiment. 
[0120] FIG. 9 is a table summarizing the materials used in 
the composition of the phantoms of FIG. 10 in accordance 
with an illustrative embodiment. Not depicted in FIG. 9 is 
water, which has 1.0 g/ml density. For the lung phantom 
simulating various human tissues, the ICRU-44 standard 
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was used for its materials, and the mass-attenuation coeffi
cients are readily available as tabulated data. For the DE-472 
phantom, the mass-attenuation coefficients of the iodine and 
calcium solutions are calculated using the XCOM web 
program, according to the specifications of the physical 
GAMMEX 472 Dual Energy CT phantom. As shown in FIG. 
l0A, 18 regions of interest (ROis) in the DE-472 phantom, 
defined based on the inserts, and 3 ROis of the lung 
phantom, defined based on material masks, are shown for 
computing metrics for parameter determination in the stud
ies below. 

[0121] Further, a verification study was performed to 
verify that under imaging conditions of interest, the ASD
NC-POCS algorithm can numerically solve the non-convex 
optimization program in equation 9 from ideal data gener
ated by use of the DD-data model in equation 8 without 
decomposition error and noise. 

[0122] With regard to the experimental parameters, two 
truth basis images representing water and cortical bone were 
used in equation 8 to generate ideal data from the lung 
phantom by use of the full-scan configuration with the low 
and high kVp spectra described in FIG. lA. For computation 
efficiency, an image array of I=128x128 1.95-mm square 
pixels is considered, and a linear detector of 256 1.56-mm 
bins is used to generate projections at 160 views evenly 
distributed over 2it for each of the low and high kVp spectra. 
As such, the X-ray transform matrices .A [ll=.A [2 l are of 
size JE 1l=J[2 l=256x160 and I=128x128. With parameters, 
spectra, and .A [sJ determined above, parameter E=l0- 8 is 
selected to form a tight solution set, as the study may use 
ideal data. 

[0123] Based upon the mathematical convergence condi
tions in equations 22, practical convergence conditions for 
the verification study are designed as: 

D(b<n>)<l0-4, 

Eqs. 23: 

[0124] Convergent reconstruction is obtained when all of 
the convergence conditions above are satisfied. Because the 
truth basis images are known, a reconstruction-error metric 
Kb(b(n))=llb(n)_btruellillb,ruelb may also be devised, e.g., the 
normalized 12-distance between the truth and reconstructed 
basis images. This metric provides a quantitative indication 
as to whether and how the reconstructed basis images 
approach their truth counterparts. 

[0125] FIG. 11 depicts ideal data and display convergence 
results in accordance with an illustrative embodiment. FIG. 
12 depicts convergent reconstructions in accordance with an 
illustrative embodiment. More specifically, FIG. 11 illus
trates convergence metrics D(b(nl), KW(b(nl), and ca(b(nl), 
and reconstruction-error K6 (b(n)) as functions of iterations n, 
and FIG. 12 illustrates truth and reconstructed water- and 
bone-basis images. With regard to study results, the ASD
NC-POCS algorithm may be applied to reconstructing basis 
images from the ideal data and display convergence results 
in FIG. 11 and convergent reconstructions in FIG. 12. It can 
be observed that the practical convergence conditions in 
equations 23 are satisfied and that convergent reconstruc
tions are visually identical to their truth counterparts. In 
particular, the reconstruction-error metric in FIG. 11 reveals 
quantitatively a small difference of the convergent recon-
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structions than their truth basis images, thus providing a 
numerical verification oftheASD-NC-POCS algorithm and 
its computer implementation. 
[0126] Following the verification study with ideal data 
above, a characterization study may be performed on the 
ASD-NC-POCS algorithm by using data that contain 
decomposition error and statistical noise, which are incon
sistent with the DD-data model in equation 8. 
[0127] For each phantom illustrated in FIGS. l0A-E, 
using its truth monochromatic image f' m and spectra in FIG. 
1B, equation 5 is used to generate low- and high-kVp data 
at 640 overlapping views evenly distributed over 2it, which 
thus contain decomposition error. Furthermore, Poisson 
noise is added to data by scaling the spectra to yield 2xl04 

photons per ray in the air scan. The image array of the same 
dimension and pixel size as the digital phantom is used in the 
reconstruction. At each view, projection samples are col
lected with a 400-mm linear detector that includes 1024 bins 
of 0.39-mm size. Alternatively, a different number of bins 
and/or size may be used. Therefore, the X-ray transform 
matrices .A [IJ and .A [2 l are identical and of dimensions 
J[1l=Jl2l=640x1024 and I=512x512. With the determination 
of program parameters, i.e., image pixel, spectra, and matri
ces .A [sl, the strategy for the selection of parameter E in the 
characterization experiment is discussed below. 
[0128] Because data are generated directly from linear 
attenuation coefficient f' m, there may be no truth basis 
images in the characterization study. Instead, metrics can be 
designed based upon monochromatic images fm for deter
mination of parameter E. R regions of interest (ROis) in a 
monochromatic image may be chosen for calculating the 
"biases" and "standard deviations" within the ROis as: 

where i E Ir, and Ir indicates the number of pixels within ROI 
r. Using 8rm and arm 2 computed at energies m 1 and m2 , two 
metrics are formed for determination of parameter E: 

0 = _2)~1 + e~,J½ /Rand 

r 

[0129] For a given configuration and phantom, monochro
matic images fm are formedatm1=80 KeVandm2 =140 KeV 
from basis images reconstructed for a number of E values, 8 
and ~ is computed from the images, and E is selected that 
yields lowest 8 and ~-
[0130] Practical convergence conditions for the character
ization study may be designed as: 

D( b<n>)<l0-3, 

Eqs. 24: 
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[0131] which may be looser than those in the verification 
study as the decomposition error and data noise are consid
ered. The conventional ASD-POCS algorithm indicates that 
the third condition can often be relaxed to -0.5, instead of 
-0.99, with only imperceptible changes to the images. Using 
reconstructed basis image b/nl in equation 7, one can readily 
obtain monochromatic image fm (n) at iteration n. Also, in the 
simulation study, truth monochromatic image f' m may be 
known, thus leading to the calculation of the reconstruction
error metric K}fm (n))=llfm (n)_f mllillf' mlb, which may be the 
normalized 12-distance between the truth and reconstructed 
monochromatic images at energy m. 
[0132] One focus of the study results is a demonstration of 
reconstruction convergence. In particular, a reconstruction is 
used from data of the full-scan configuration to demonstrate 
that the practical convergence conditions in equations 24 
may be met by theASD-NC-POCS algorithm. Without loss 
of generality, the reconstruction may be carried out with 
E=0.0170. FIG. 13 illustrates convergence metrics D(b(nl), 
KW(b(nl), and ca(b(n)) as functions of iteration number n in 
accordance with an illustrative embodiment. More specifi
cally, FIG. 13 illustrates convergence metrics D(b(nl), 
KW(b(nl), and ca(b(nl), and reconstruction-error K}fm (n)) of 
an 80-KeV monochromatic image obtained with E=0.0170, 
as functions of iteration number n. It can be observed that the 
ASD-NC-POCS algorithm converges to meet the practical 
convergence conditions. 
[0133] With regard to the selection of the parameter E, for 
each of DE-472 and lung phantoms, reconstructions are 
performed from its data by using the ASD-NC-POCS algo
rithm for multiple values of E, metrics 8 and~ are calculated 
from the ROis described with regard to FIGS. l0A-E in 
monochromatic energy reconstructions at 80 and 120 KeV. 
The value of E may be selected that yields the lowest 8 and 
~- Using the strategy, it has been determined that E=0.0170 
and E=0.0111 in the characterization study using the DE-472 
and lung phantoms, respectively. 
[0134] With regard to reconstruction results, using the 
program parameters ( e.g., image pixel, spectra, matrices 
.A [sl, and E) determined, basis and monochromatic images 
of the DE-472 and lung phantoms may be reconstructed. 
FIG. 14 depicts water-basis and bone-basis images (row 1), 
40- and 120-KeV monochromatic images (row 2), and 
zoomed-in views of ROI images (row 3) enclosed by boxes 
in row 2 from full-scan data of the DE-472 and lung 
phantoms, respectively. FIG. 14 includes display windows 
[O, 1.5] (row 1), [-1000, 1000] HU (row 2), and [-500, 500] 
HU (row 3, DE-472 phantom) and [-1000, 200] HU (row 3, 
lung phantom). The dashed lines indicate the location of the 
profile plots in FIG. 15, while the arrows point to the air 
bubbles in the DE-472 phantom.In FIG. 14, reconstructed 
basis images, monochromatic images are displayed at 40 
and 120 KeV, which is used often for contrast enhancement 
and artifact reduction, and their zoomed-in views of ROI 
images are enclosed by the rectangular boxes indicated in 
row 2. 

[0135] The water-basis image retains mostly the water and 
soft-tissue background, while high contrast inserts and bony 
structures appear largely in the bone-basis image. The 
seemingly observable "artifacts" in basis images recon
structed are understandable because data may contain 
decomposition error as they were generated from f' m instead 
of two basis images. However, no significant cupping or 
band artifacts are visible in the monochromatic images, 
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especially for the DE-472 phantom that contains high con
centration iodine and calcium inserts. ROis of the DE-472 
phantom with a narrow display window show air-bubble 
contrast (indicated by the arrows) and discernible contrast 
inserts with the lowest concentration of iodine and calcium 
in the phantom. Meanwhile, ROis of the lung phantom show 
details of the lung nodules in the dark background, with a 
display window to highlight these features. 
[0136] For acquiring a quantitative impression of the 
reconstructions, FIG. 15 depicts plots profiles of truth and 
reconstructed monochromatic images along the horizontal 
and vertical lines indicated in row 2 of FIG. 14 in accordance 
with an illustrative embodiment. Overall, reasonable quan
titative agreement in monochromatic images is observed for 
the lung phantom, while some discrepancy can be observed 
between the DE-472 phantom and its monochromatic 
images due to the decomposition error. The profiles also 
reveal that the 40-KeV monochromatic images are of con
trast higher than that of the 120-KeV counterparts. 
[0137] It is of practical interest to inspect and understand 
how the reconstruction of monochromatic image evolves as 
iterations increase. Without loss of generality, FIG. 16 
illustrates reconstructions of 120-KeV monochromatic 
image at intermediate iterations for both phantoms in accor
dance with an illustrative embodiment. It appears that recon
structions at as early as iteration 50 can resemble the 
respective convergent reconstructions. Similar observations 
can also be made for monochromatic energy images recon
structed at other energies. 
[0138] Discussed below are investigations of image recon
struction for non-standard configurations of potential appli
cation significance enabled by the ASD-NC-POCS algo
rithm. For each of the non-standard configurations 
considered, a verification study was performed. However, 
the verification results are not shown because the results and 
conclusions are similar to those described above. Instead, 
characterization studies similar to that described above are 
the focus in which data may contain decomposition error 
and statistical noise. For each of the configurations and 
spectra in FIG. 1B, data is generated from each of the 
DE-472 and lung phantoms by using equation 5, and Poisson 
noise is added to the data by considering a total count level 
identical to that in the full-scan study discussed above. 
Furthermore, image pixel size and spectra used may also be 
identical to those in the study discussed above, while matri
ces .A [sJ are illustrated in, and parameter Eis determined by, 
use of the strategy described above for each of the non
standard configurations. 
[0139] As discussed above, configurations may have vary
ing angular coverages. For example, FIGS. 5-6 involve 
varying angular coverages. With regard to study parameters, 
in the sparse-view configuration in FIGS. 5-6, each of the 
low- and high-kVp data sets contains 320 views, thus 
forming a total of 640 projection views. Again, at each view, 
a linear detector comprising 1024 bins of 0.39-mm size is 
used for data collection. Therefore, matrices .A [IJ and .A [2l 
are of identical dimensions J[1l=J[2l=320x1024 and I=512x 
512. Furthermore, using the strategy described above, E=0. 
0116 and 0.008, respectively, is selected for the DE-472- and 
lung-phantom studies below. 
[0140] In the limited-angular-range configuration in FIGS. 
5-6, each of the two adjacent angular ranges covers 98°, thus 
forming a total of 196 °-angular range (corresponding to a 
short-scan angular range,) and low- or high-kVp data are 
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generated at 174 views uniformly distributed over each of 
the two angular ranges, respectively, with a linear detector 
identical to that in the sparse-view configuration. Therefore, 
matrices .A [1l and .A [2l are of identical dimensions J[1l=J 
[
2l=174x1024 and I=512x512. Again, using the strategy 

described above, E=0.0085 and 0.0064, respectively, is 
selected for the DE-472- and lung-phantom studies below. 

[0141] FIG. 17 illustrates reconstruction results for both 
phantoms from data acquired with the sparse-view configu
ration in accordance with an illustrative embodiment. Spe
cifically, FIG. 17 illustrates water- and bone-basis images 
(row 1), 40- and 120-KeV monochromatic images (row 2), 
and zoomed-in views of ROI images (row 3) similar to those 
in row 3 of FIG. 14 from sparse-view-scan data of the 
DE-472 and lung phantoms, respectively, with display win
dows [0, 1.5] (row 1), [-1000, 1000] HU (row 2), and [-500, 
500] HU (row 3, DE-472 phantom) and [-1000, 200] HU 
(row 3, lung phantom). Reconstructed monochromatic 
images at 40 and 120 KeV visually resemble their counter
parts obtained from the full-scan data. Both basis images of 
each phantom show clear material separation, and the mono
chromatic images display an uniform background and no 
visible artifacts caused by non-linear spectral effect. In 
addition to reconstruction visualization, FIG. 18 illustrates 
profiles of the reconstructed and truth monochromatic 
images along the horizontal and vertical lines indicated in 
row 2 of FIG. 14 in accordance with an illustrative embodi
ment. It can be observed that for sparse-view-scan configu
ration, the agreement of monochromatic images recon
structed with the truth counterparts is comparable to that for 
the full-scan configuration in FIG. 15. 
[0142] FIG. 19 illustrates reconstruction results for both 
phantoms from data acquired with the limited-angular-range 
configurations in accordance with an illustrative embodi
ment. Specifically, FIG. 19 illustrates water- and bone-basis 
images (row 1), 40- and 120-KeV monochromatic images 
(row 2), and zoomed-in views of ROI images (row 3) similar 
to those in row 3 of FIG. 14 from limited-angular-range-scan 
data of the DE-472 and lung phantoms, respectively, with 
display windows [0, 1.5] (row 1), [-1000, 1000] HU (row 
2), and [-500, 500] HU (row 3, DE-472 phantom) and 
[-1000, 200] HU (row 3, lung phantom). Monochromatic 
image at 40 KeV for the DE-472 phantom shows visible 
artifacts, due to the poor conditioning of the DD-data model 
for the limited-angular-range scan considered and the pres
ence of high-concentration calcium and iodine inserts in the 
phantom, while the monochromatic image at 120 KeV 
reveals less artifacts. On the other hand, monochromatic 
images for the lung phantom appear to be with artifacts 
much less prominent than those for the DE-472 phantom. In 
addition to reconstruction visualization, FIG. 20 depicts 
plots of profiles of the reconstructed and truth monochro
matic images along the horizontal and vertical lines indi
cated in FIG. 14 to reveal quantitative differences in accor
dance with an illustrative embodiment. The lung-phantom 
reconstructions agree reasonably well with their truths for 
both energy levels, whereas some differences between the 
DE-phantom reconstructions and truth counterparts can be 
observed especially for the limited-angular-range configu
ration. 

[0143] With regard to configurations with varying illumi
nation coverages, FIGS. 7-8 illustrate two additional non
standard configurations, which involve varying illumination 
coverage, and are referred to as the split- and block-illumi-
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nation configurations, respectively. As discussed above, in 
the configurations, low- and high-kVp data are collected, 
respectively, with two adjacent and multiple adjacent alter
nating illumination coverages at each of 640 views uni
formly distributed over 2it. The configurations can be 
achieved through, e.g., the use of a beam blocker in front of 
the X-ray source and/or detector blocks with different energy 
responses. 
[0144] In the split-illumination configuration, the linear 
detector with 1024 bins (i.e., 400-mm length) is divided into 
two adjacent segments of equal length with 512 bins (i.e., 
200-mm length), and the low or high kVp beam illuminates 
one of the two segments, respectively. Therefore, matrices 
.A [IJ and .A [2 l are of identical dimensions J[1l=J[2 l=640x 
512 and I=512x512. Using the strategy described herein, 
E=0.0118 and 0.008 are selected, respectively, for the 
DE-472- and lung-phantom studies described herein. 
[0145] In the block-illumination configuration, the linear 
detector is divided into two sets of interlaced, adjacent 
detector blocks of equal length with 32 bins (i.e., 12.5-mm 
length), as shown in FIGS. 7-8, and the low or high kVp 
beam illuminates one of the two sets of detector blocks, 
respectively. Therefore, matrices .A [IJ and .A [2l are of 
identical dimensions J[1l=J[2l=640x512 and I=512x512. 
Using the strategy described herein, E=0.0121 and 0.0089 is 
selected, respectively, for the DE-472- and lung-phantom 
studies. 
[0146] FIG. 21 illustrates illumination reconstruction 
results for both phantoms from data acquired with the 
split-illumination configuration in accordance with an illus
trative embodiment. More specifically, FIG. 21 shows water
and bone-basis images (row 1), 40- and 120-KeV mono
chromatic images (row 2), and zoomed-in views of ROI 
images (row 3) similar to those in row 3 of FIG. 14 from 
split-illumination-scan data of the DE-472 and lung phan
toms, respectively, with display windows [0, 1.5] (row 1), 
[-1000, 1000] HU (row 2), and [-500, 500] HU (row 3, 
DE-472 phantom) and [-1000, 200] HU (row 3, lung 
phantom). The monochromatic image at 40 KeV for the 
DE-472 phantom show some visible artifacts, while the 
monochromatic image at 120 KeV reveals less artifacts. 
Conversely, monochromatic images for the lung phantom 
appear to reveal few artifacts. In addition to reconstruction 
visualization, FIG. 22 depicts plots of profiles of the recon
structed and truth monochromatic images along the hori
zontal and vertical lines indicated in row 2 of FIG. 14 in 
accordance with an illustrative embodiment. More specifi
cally, FIG. 22 illustrates profiles of reconstructed ( dashed) 
and truth (solid) monochromatic images at 40 and 120 KeV 
along the horizontal and vertical lines indicated in row 2 of 
FIG. 14 from split-illumination-scan data of the DE-472 and 
lung phantoms, respectively. It can be seen that while some 
quantitative difference between the reconstructed and truth 
monochromatic images for the DE-472 phantom can be 
observed, the truth and reconstructed monochromatic 
images agree reasonably well quantitatively for the lung 
phantom. 
[0147] FIG. 23 illustrates water- and bone-basis images 
(row 1), 40- and 120-KeV monochromatic images (row 2), 
and zoomed-in views of ROI images (row 3) similar to those 
in row 3 of FIG. 14 from block-illumination-scan data of the 
DE-472 and lung phantoms, respectively, in accordance with 
an illustrative embodiment. FIG. 23 shows display windows 
[0, 1.5] (row 1), [-1000, 1000] HU (row 2), and [-500, 500] 
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HU (row 3, DE-472 phantom) and [-1000, 200] HU (row 3, 
lung phantom). FIG. 24 illustrates profiles of reconstructed 
(dashed) and truth (solid) monochromatic energy images at 
40 and 120 KeV along the horizontal and vertical lines 
indicated in row 2 of FIG. 14 from block-illumination-scan 
data of the DE-472 and lung phantoms, respectively, in 
accordance with an illustrative embodiment. In FIGS. 23-24, 
reconstruction results are displayed for both phantoms from 
data acquired with the block-illumination configurations. 
Based upon the reconstruction results, observations similar 
to those for the split-illumination configuration can be made. 

[0148] Thus, a one-step, optimization-based approach for 
image reconstruction in MSXT has been described, particu
larly demonstrating application to various different scan 
configurations of potential practical significance. The chal
lenge of optimization-based image reconstruction in MSXT 
stems from its non-linear data model that can lead to a 
non-convex optimization program for which no mathemati
cally exact solver is available for achieving its globally 
optimal solution. A non-convex optimization program is 
disclosed, its KKT condition is derived, and a methodology 
is used numerically to solve the program for image recon
struction in MSXT. A property of the methodology disclosed 
is that it may reconstruct images in MSXT without the use 
of multiple spectral measurements for the same ray. Appli
cation of this property of the methodology enables scan 
configurations of practical interest in terms of potentially 
lowered hardware cost, enhanced scanning flexibility, and 
reduced imaging dose/time in MSXT. 

[0149] Further, in addition to the standard, full-scan con
figuration in MSXT, a plurality of non-standard configura
tions are disclosed with different designs of scanning angu
lar range and illumination coverage each of which acquires 
only a portion of data of the full-scan configuration. The 
non-standard configurations may be considered because 
they can readily be implemented on a standard CT scanner 
employing regular X-ray tubes and energy-integrating detec
tors without invoking hardware additions and/or modifica
tions to the scanner. The study results support that the 
configurations considered may be enabled by the method
ology proposed to yield monochromatic images comparable 
to those of the full-scan configuration both visually and 
quantitatively. While scan-configuration have been illus
trated that enable dual-energy CT in the work, the method
ology may accommodate multiple (>2) spectral scans and/or 
a variety of configurations with different designs of source 
trajectory and/or illumination coverage tailored to specific 
applications. 

[0150] The enabling effectiveness of the methodology 
may depend upon one or more factors, such as: sampling 
conditions and their impact on the data-model conditioning 
for a specific configuration, appropriateness of spectra used, 
anatomy complexity of subjects imaged, decomposition 
error, and data noise. In the presence of data inconsistencies 
such as decomposition error and statistical noise, some 
banding artifacts near high contrast structures in DE-472-
phantom images are observed to appear stronger understand
ably for the limited-angular-range configuration than for 
other configurations, suggesting that the effectiveness of the 
methodology in enabling, e.g., a configuration with a con
siderably limited angular-range, decreases relative to that for 
other configurations. Conversely, the results show that 
reconstructions of the lung phantom appear to be robust for 
the configurations considered. 
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[0151] It is known that any optimization-based reconstruc
tion may involve some parameters. In the optimization
based reconstruction disclosed, parameter E plays a role in 
impacting the image reconstruction. Metrics have been 
devised quantitatively to select E specific to the simulation
data study performed. However, other methods through 
which to determine E in realistic, practical applications are 
contemplated. In particular, metrics specific to the actual 
tasks may be designed for the determination of parameter E 

in practical applications. 
[0152] As discussed above, in one implementation, the 
methodology derivation relies upon the linearization of the 
model (such as the non-linear DD-data model). There may 
be multiple ways in which to transform ( e.g., linearize) the 
model. In particular, discussed below is a specific case 
representative of multiple linearization methodologies. In 
this regard, it is contemplated that there are different ways 
than that disclosed for the linearization. Further, a specific 
optimization program is disclosed that includes the data 
divergence in a 12 -norm form. Different optimization pro
grams are contemplated that can lead to different reconstruc
tions, particularly in the presence of data inconsistencies 
such as noise. Thus, optimization programs of different 
forms are contemplated ( e.g., containing the KL or other 
data divergences) that enable scan configurations and obtain 
reconstructions of specific application interest. Additional 
image constraints other than the image-TV constraint may 
also be incorporated into the programs. For example, appro
priate constraints on the basis-image values may be imposed 
for potentially improving image reconstruction in MSXT, 
especially for the limited-angular-range scan configuration. 
[0153] The following is one example of a derivation of the 
local optimality condition. Using equation 1, one can obtain 
monochromatic energy images as fn =~k µknbk at N energies, 
where n=l,2, ... , N. Lower- or upper-bound constraints on 
the images can be written as: 

Eq. 25 

[0154] where Pn is a scalar for specifying the upper or 
lower bound of the nth monochromatic image, and 
µ.kn =±µkn with the negative sign used to impose a lower 
bound of image values, or simply non-negativity, on the 
monochromatic images. 

[0155] Equation 25 can be rewritten in a linear form of b 
as: 

Q nb+pn °0 for n=l,2, ... , N, where Eq. 26: 

Eq. 27: 

Eq. 28: 

[0156] and J denotes the identity matrix of size Ixl. 
[0157] An optimization program may be considered in the 
form of: 

b' = min'Jl(b), 
b 

s. t. <I>2 (b; gM),;e2
, and 

Q nb+pn °0 for n=l,2, ... , N, 

Eq. 29 

Eq. 30: 

Eq. 31: 

[0158] and derive its first-order optimality conditions, e.g., 
the Karush-Kuhn-Tucker (KKT) conditions. It can readily 
be shown that the optimzation programs in equations 2)-31 
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and 9 are equivalent when N=K, pn=0, and µkn=-1 for k=n 
(0 otherwise). Therefore, the derived KKT conditions for the 
former are applicable to the latter. 

[0159] The Lagrangian of the optimization program m 
equation equations 29-31 is given as: 

L(b, V, {),.n})='P(b)+v('P2(b)-E2)+Ln '-nT( Q nb+pn), 
Eq. 32: 

[0160] where scalar v and vectors P-n} are the Lagrangian 
multipliers. The KKT conditions can thus be expressed as: 

<I>2(b*),;e2, 

Q nb*+pn °0, n=l,2, ... , N, 

V J,(b*, v*, {/,,* n} )=V b'P(b*)+v*V b'P2(b*)+Ln 

Q nT'-* n=0, 

v*(<I>2(b*)-e2)=0, and 

/,,* nT( Q nb*+pn)=0, n=l,2, ... , N, 

Eq. 33: 

Eq. 34: 

Eq. 35: 

Eq. 36: 

Eq. 37: 

Eq. 38: 

Eq. 39: 

[0161] where b* and (v*, p,_ * J) are optimal variables and 
Lagrangian multipliers for the optimization problem. 
Given the specific form of Q n in equation 26, the last part 
of the gradient of the Lagrangian in equation 37 can be 
simplified as: 

Ln Q n TA* n ={J:.n /l1n'-* n• Ln /l2n'-* n• · · · , Ln /110,'-* n) 
T Eq. 40: 

[0162] In general, for non-zero µkn, equation 40 has zero 
entries wherever all p,_ * n} have zeros at the same entries. 
Based on this observation, one may tum to the complemen
tary slackness in equation 39, which follows: 

(
¾=0 if(Qnb');+Pn>0, 

¾; > 0 if (Qnb'); + Pn = 0 

Eq. 41 

[0163] Vector ln(b) of size I is used to denote an identity 
function, whose elements are: 

Eq. 42 

[0164] and diag(x) a function that yields a diagonal matrix 
with the elements of vector x placed along the diagonal 
line, as: 

Xo Eq. 43 

diag(x) = X; 

Xf-1 

[0165] Subsequently, considering all N constraints, a 
matrix is constructed as the product ofN diagonal matrices: 

'D (b)=ITn-!N diag(ln(b)). Eq. 44: 
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[0166] As a result, 'D (b) is also diagonal of size I and it 
picks out those image pixels at which location the N linear 
constraints in equation 25 or 26 are strictly satisfied simul
taneously. Finally, K identical 'D (b) is used and placed in a 
diagonal line to form a bigger diagonal matrix 'D '(b) of size 
IxK as: 

[

V(b) 

V'(b) = 
V(b) l 

Eq. 45 

[0167] Given the meaning of 'D (b) as described above, 
left-multiplying 'D '(b*) to both sides of equations 40 yields: 

[0168] This can simplify the first order optimality condi
tion in equation 37 as: 

dr,{b*)~ 'D '(b*)V b'P(b*) and dda,a(b*)~v* 'D '(b*) 

Vb<l>2(b*). 

Eq. 46: 

[0169] Equation 35 states that v* is non-negative (dual 
feasibility), and the complementary slackness in equation 38 
states that v* can only be zero when the data fidelity 
constraint is not active. For practical solutions that are 
non-trivial, e.g., other than non-negative flat images, the 
data fidelity constraint is always active. Therefore, it is 
desired that v*>0 in practical situations, which leads to that 
drvCb*) and dda,aCb*) shall be oppositely co-linear, or 

Eq. 47: 

[0170] where drvCb*)=drvCb*)/ldrvCb*)I and adataCb*) 
=ddataCb*)/ldda,aCb*)I are the normalized vectors. 

[0171] For computing drvCb*), using W(b) in equation 10, 
there is: 

Eq. 48: 

[0172] As the f 1-norm function is non-smooth, TV gra
dients, or V6kllb*kllrv, are computed based on an approxi
mation of a smoothed version. 

[0173] On the other hand, for computing ddataCb*), there 
1s: 

Eq. 49: 

[0174] Taking its gradient yields: 
Vb<l>2(b)~2(gMrgM)- 1J(g(b), b) (g(b)-gM), Eq. 50: 
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[0175] where Jacobian matrix J(y(x), x) is given by: 

a y(x)! a y(x)i (Eq. 51) 

8x1 8x1 

J(y(x), x) = 8y(x)1 8y(x)i 

8x2 8x2 

[0176] where y(x)1 and x, are the j-th and i-th elements of 
vectors y(x) and x, respectively. Given the concatenated 
form of the aggregate basis image vector as b=(b /, b2 r, 
... , bKrl and the dimension of vector g(b) being J' .. ~s 
J[sJ, where J[sJ is the size of data vector g[sJ (b) for spectral 
sets, the Jacobian in equation 50 can be re-expressed as: 

vb! g(b)1, vb! g(b)2, 

vb2g(b)1, vb2g(b)2, 
J(g(b), b) = 

Vb1 g(b)1, 

Vb
2 

g(b)1, 

Eq. 52 

[0177] In equation 8, the element of data vector g(b) may 
depend upon spectral set index s and ray index j. In this 
derivation, instead, a single index j' is used for the aggregate 
data vector g(b), as j'=j+(s-l)xJ[s-lJ and 

Eq. 53: 

[0178] As a result, the gradient of gJ'(b) with respect to 
basis image bk can be written as: 

Eq. 54: 

Eq. 55: 

Eq. 56: 

[0179] Finally, replacing equations 52 and 54 into equa
tion 50 yields: 

" (g., -gM.,)Vb g., L..J)' J J 1 J 

" (g., -gM·')Vb g., L..J)' J J 2 J 

Eq. 57 

Eq. 58 

Eq. 59 

[0180] As an alternative to the basis and monochromatic 
images discussed above, discrete image arrays may be 
considered, with a discrete image being denoted in a vector 
form of size I, where I is the total number of voxels of the 
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image array, and entry i in an image vector is the image 
value within voxel i, where i E { 0, 1, ... , I-1}. Also, one may 
refer to the product of the incident X-ray beam spectrum and 
the detector energy response as the X-ray spectrum, and 
express it as a vector of size M in which each entry denotes 
the spectrum value with energy bin m, where m E {1,2, ... 
, M}. In dual-energy CT imaging, one seeks to determine the 
X-ray linear-attenuation coefficient distribution, which is a 
two-variable function of X-ray energy and spatial coordi
nates. For a given energy m, the linear-attenuation coeffi
cient distribution can be expressed as vector f' m of size I in 
which each entry f',m indicates the value of the linear
attenuation coefficient at voxel i for energy m. In an attempt 
to avoid solving directly for a two-variable function, f' m may 
be re-expressed as: 

Eq. 60: 

Eq. 61: 

[0181] Vectors b1 and b2 denote basis images of size I, µ1m 
and µ2 m the decomposition coefficients, and li.fm the decom
position error. When different sets of decomposition coef
ficients are considered, one obtains different decompositions 
of the linear attenuation coefficients, thus different basis 
images and decomposition errors. The variable fm is referred 
to as the monochromatic image at energy m. The water and 
bone mass-attenuation coefficients may be used as the 
decomposition coefficients, and thus may refer to the decom
position in equation 61 as a material-based decomposition. 
Not considering the decomposition error from insufficient 
bases, the determination off' m is simplified to determinating 
basis images b1 and b2 , which are independent of energy m. 
Once the basis images are determined, one can use equation 
2 to obtain the monochromatic image fm at energy m, which 
is used then as an approximation of the linear-attenuation 
coefficients f' m of interest. 

[0182] Further, the data model for dual-energy imaging 
may be expressed in multiple ways. Specifically, in dual
energy CT imaging, measurement may be made with spec
trum s, for each ray connecting a detector bin and the X-ray 
source at a given source position. The total number of rays 
measured is denoted as J[sl, which is the product of the 
number of rays measured at a source position and the 
number of source positions for a given X-ray spectrum s. 
Considering a two-basis decomposition model in equation 
61, one can readily express the data model for a ray 
measurement with spectrum s as: 

Eq. 62 

[0183] where j E { 0, ... , JEsl_ 1} is a ray index for either 
low (s=l) or high (s=2) kVp scan, g}5l(bi, b2 ) denotes the 
model data for the jth ray in scan s, Cl/m [sJ the ray
dependent, normalized X-ray spectrum, satisfying ~m 

'ltm [sJ=l, at energy m for the jth ray in scans, and a)sl the 
intersection length of the jth ray in scan s with the ith 
voxel. The data model is a non-linear function of basis 
images b1 and b2 . 
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[0184] The data model in equation 62 can be re-written as: 

Eq. 63: 

g}'l(b 1, b2 )<E., a)'l(µ1 tlbli+µ1}'lb2,), and Eq. 64: 

Ll.g}'l(b1, b2)~-ln Lm q1m[,lexp(-L; a)'l(L\.µ11m[,Jb!i+L\.µ12m[,Jb2;)). Eq. 65: 

[0185] The term µ)sl=~m Cl/m [slµkm is an energy-indepen
dent term, taken as the spectrum-weighted average of µkm 

over energy m, li.µ11an[sl=µkm-µ1/sl remains energy depen
dent, and k=l and 2 indexes the basis material. It is noted 
that g}5l(bi, b2 ) is a linear function of basis images b1 and 
b2 , while !i.g}5l(b1 , b2 ) contributes to the non-linearity of the 
data model. 
[0186] For spectrum s, data vector g[sl(bi, b2 ) is formed of 
size J[sl, with elements g}sl(bi, b2), where j E {0,1, ... , 
J[sJ_ 1}. Similarly, one can form additional data vectors 
g[sl(bi, b2 ) and li.g[sl(bi, b2), for s=l and 2, in the same 
fashion as g[sl(b 1 , b2 ), with elements g}5l(bi, b2 ) and !i.g}5l 
(b 1 , b2 ) given in equations 64 and 65, respectively. Also, let 
.A [sJ denote the discrete X-ray transform matrix of dimen
sion JEslxI with a)sl as its element for spectrum s, and 'U /sl 
a diagonal matrix of size J[sJ with µ)sl as its diagonal 
element. Subsequently, the data model in equation 63 for an 
individual ray can be grouped into a matrix form for all of 
the rays from the low (s=l) and high (s=2) kVp scans as: 

Eq. 66 

Eq. 67 

[0187] Similarly, the non-convex opt1m1zation program 
may be expressed in one of several ways. For discussion 
convenience, aggregated vectors g(bi, b2 )=(g[lJT(bi, b2), 

g[2 Jr(bi, b2)f and li.g(bi, b2 )=(li.g[1Jr(bi, b2), li.g[2Jr(b1 , 

b2)f are formed, where symbol T indicates a transpose 

. . g[s] d g[s] f . [l] d operat10n. Lettmg vectors MJ an MJ o sizes J an 
J[2 l denote data actually measured with spectra s=l and 2, a 

[s] [s] 
measured data vector, gM=( BMJ, BMJ f, is formed in an 
aggregate form. Using the aggregated data vectors, one may 
then formulate the basis images as a solution to the con
strained optimization program designed as: 

[0188] where ll•llrvdenotes the image total-variation (TV), 
the 12-norm-data-fidelity function is given by: 

" - [!] g[l] 
(g(bi, b2), gM-L\.g(b1, b2)Hllg (b1, b2)- M +L\.g 

[!](bi, b2)lll+lli2l(b1, b2)- g~ +L\.g[2l(b1, 
b2JII/Ju2, Eq. 68: 

[0189] Here, E>O is the data constraint parameter. In 
addition, a non-negativity constraint is imposed on the 
monochromatic image at energy m. It can be observed that 



US 2022/0104783 Al 

the optlm1zation program in equation 9 is non-convex, 
because D(g(b1 , b2 ), 8M -llg(bi, b2)) is a non-convex func
tion of (bi, b2) and thus the data fidelity constraint forms a 
non-convex set. The non-convexity stems from the non
linear term llg(b 1 , b2 ), as in its absence the data model 
becomes linear and so the data fidelity constraint convex. 

[0190] With regard to the reconstruction methodology, in 
order to solve the optimization program in equation 68, the 
steepest descend (SD) procedure is first used to reduce the 
convex term of the basis-image TV. On the other hand, there 
is no mathematically exact solver for achieving the global 
minimum of the NC-data divergence D(g(b1 , b2 ), 8M -!lg 
(b1 , b2)). Instead, a procedure for lowering the NC-data 
divergence is considered. It can be observed that, if llg(b1 , 

b2) can be estimated, the data divergence becomes convex 
and can thus be lowered by use of a procedure based upon 
the projection-onto-convex-sets (POCS). This observation 
motivates the design of a procedure based upon the POCS 
updates for potentially lowering the non-convex data diver
gence as: 

b(n+l) -
k -

(nJ-[,J g)(t -~g)'\b\nl, b~nlJ - g1/l(b\n1, b~nlJ I,JT 
+y µ I ---~~-~----a· 

J [(P):1i2 + (µ1/Ji2]a1/la)'JT J , 

and 

~gI'I (b(n) b(n)J = -ln '\' qI'I exp(-aI'I (~µ1'1 b(n) + ~µ1'1 b(n)JJ 
J 1 , 2 L...Jm Jm J Jlm 1 J2m 2 , 

Eq. 69 

Eq. 70 

where j E {0,1, ... , J[sJ-l} for spectrums, the SUlllillation 
over mis from 1 to M, and a}sl is the jth row of matrix .A [sJ. 

[0191] Unlike the conventional POCS procedure, the 
update in equation 69 attempts to address the non-convexity 
of the data divergence by including the estimated NC term 
llg}5l(b/nl, b/nl), and is thus referred to as the NC-POCS 
procedure. Subsequently, an algorithm may be devised by 
combining SD and NC-POCS procedures that adaptively 
lower image TV and data divergence, which may be one 
example oftheASD-NC-POCS methodology. Parametery[nJ 
may be identical to that in the conventional ASD-POCS 
algorithm. Using the reconstructed basis image bk(n) in 
equation 61, one can obtain monochromatic image fm (n) at 
iteration n. 

[0192] With regard to necessary convergence conditions, 
whether or not it can be mathematically shown whether the 
ASD-NC-POCS algorithm can globally optimally solve the 
NC program in equation 68, one or more necessary conver
gence conditions, such as two necessary convergence con
ditions, can be obtained for the algorithm, with the metrics 
defined as: 

D(b\nl, b~n)J = ID(g(b\ni, bt1J, gMJ - .sl / .s Eq. 71 

~ (b(n) b(n)J = l(llb\n+llllrv + llbt+llllrv J - (llb\"111rv + llb~n111rv JI 
TV 

1 
' 

2 
l(llb\n+llllrv + llbr+llllrv J + (llb\"111rv + llb~n111rv JI. 

[0193] The mathematical convergence conditions for the 
ASD-NC-POCS algorithm can be obtained as: 

Eq. 72: 
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[0194] The iteration number n---;,oo_ Because the math
ematical convergence conditions may not be met in practical 
reconstructions, they are used for devising the practical 
convergence conditions below: 

D(b/nl, b}n))<!0-3, 

Eq. 73: 

[0195] The practical convergence conditions appear to 
yield reconstructions visually and quantitatively resembling 
those obtained with tighter convergence conditions. 

[0196] Thus, in one implementation, fast, low-dose dual
energy scamiing configurations are disclosed, enabled by an 
optimization-based methodology by using real data col
lected with a clinical diagnostic CT. The scanning configu
rations considered may readily be realized by use of the 
standard single-kVp-switch scheme available on existing 
CT systems without invoking any hardware addition. The 
configurations may be enabled by use oftheASD-NC-POCS 
methodology for image reconstruction through numerically 
solving an NC optimization program. As discussed above, 
two specific scan configurations (i.e., short+short and half+ 
half) of practical implications, in terms of reduced imaging 
time and dose, are disclosed for demonstrating the enabling 
potential of the algorithm. Other scan configurations are 
contemplated. Monochromatic images may be reconstructed 
from data collected with the short- and half-scan configu
rations that may visually and quantitatively resemble those 
reconstructed from the corresponding full-scan data col
lected with current dual-energy imaging techniques. In this 
regard, short- and half-scan configurations (and other scan 
configurations) may be enabled by the disclosed methodol
ogy for achieving dual-energy CT imaging with reduced 
hardware cost and complexity, imaging dose, and/or time, 
thus potentially allowing for wide-spread application of 
dual-energy CT imaging using existing CT scanners. 

[0197] As discussed above, the performance of the ASD
NC-POCS methodology may depend upon a number of 
parameters and performance metrics used. For example, the 
methodology performance may be impacted by the anatomic 
complexity of the imaged subject, data noise and artifacts, 
and reconstruction parameters. The metrics considered in 
the work are visualization and the scatter plots for iodine and 
calcium differentiation. For demonstration purposes, param
eters such as voxel size and data/image dimensions are 
selected as those in typical clinical applications, whereas 
constraint parameter Eis selected through visual comparison 
of reconstructions with the corresponding reference images. 
While the focus is largely on showing the convergent 
reconstructions for avoiding the need to treat the iteration 
number as a parameter, other reconstructions are investi
gated at intermediate iterations (e.g., n=30). One can 
observe that reconstructions at earlier iterations can visually 
and quantitatively resemble the convergent reconstructions. 

[0198] While various scan configurations, including the 
two methodology-enabled short- and half-scan configura
tions are disclosed, additional configurations of scamiing
time/dose efficiency and low-hardware cost are contem
plated, including helical source trajectory and/or off-set 
detector configurations. Furthermore, the approach and 
methodology may be extended to CT scamiing configura
tions involving multiple spectra ( e.g., greater than 2 spectra), 
as discussed above. 
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[0199] The foregoing description of illustrative embodi
ments of the invention has been presented for purposes of 
illustration and of description. It is not intended to be 
exhaustive or to limit the invention to the precise form 
disclosed, and modifications and variations are possible in 
light of the above teachings or may be acquired from 
practice of the invention. The embodiments were chosen and 
described in order to explain the principles of the invention 
and as practical applications of the invention to enable one 
skilled in the art to utilize the invention in various embodi
ments and with various modifications as suited to the 
particular use contemplated. It is intended that the scope of 
the invention be defined by the claims appended hereto and 
their equivalents. 

1. -31. ( canceled) 
32. A method of performing multi-spectral tomography, 

the method comprising: 
directing, by one or more source devices, beams of 

radiation in multiple spectra to a region of interest 
(ROI); 

receiving, by one or more detectors, at least a portion of 
the beams of radiation; 

causing, by a processor in communication with the one or 
more source devices and the one or more detectors, 
movement in at least one of the one or more source 
devices, the one or more detectors, and the ROI; 

processing, by the processor, data detected by the one or 
more detectors by solving an optimization problem 
based on the data, wherein the data results at least in 
part from a first beam of radiation with a first spectrum 
that is directed to the ROI; and 

generating, by the processor, an image of the ROI based 
on the processed data. 
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33. The method of claim 32, wherein the first beam of 
radiation with the first spectrum is directed to the ROI for 
less than 360 degrees of movement of the ROI relative to the 
one or more source devices and the one or more detectors. 

34. The method of claim 32, wherein causing movement 
comprises moving the one or more source devices and the 
one or more detectors while the ROI is stationary. 

35. The method of claim 32, wherein causing movement 
comprises moving the ROI while the one or more source 
devices are stationary. 

36. The method of claim 32, wherein the one or more 
source devices comprise a single source device, and further 
comprising directing, by the single source device, a first 
beam of radiation with a first spectrum at the ROI and a 
second beam of radiation with a second spectrum at the ROI. 

37. The method of claim 36, further comprising directing 
the first beam of radiation through a filter to generate the 
second beam of radiation. 

38. The method of claim 36, further comprising activating 
a switch to change between the first spectrum and the second 
spectrum. 

39. The method of claim 32, wherein processing the data 
includes performing a transformation on a non-linear data 
model associated with the data. 

40. The method of claim 39, wherein the optimization 
problem is solved based at least in part on the transformation 
on the non-linear data model. 

41. The method of claim 39, wherein performing the 
transformation comprises linearizing at least a portion of the 
non-linear data model. 

* * * * * 


