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Abstract

Variation in genes underlying host immunity can lead to marked differences in susceptibility to HIV infection among
humans. Despite heavy reliance on non-human primates as models for HIV/AIDS, little is known about which host factors
are shared and which are unique to a given primate lineage. Here, we investigate whether copy number variation (CNV) at
CCL3-like genes (CCL3L), a key genetic host factor for HIV/AIDS susceptibility and cell-mediated immune response in
humans, is also a determinant of time until onset of simian-AIDS in rhesus macaques. Using a retrospective study of 57
rhesus macaques experimentally infected with SIVmac, we find that CCL3L CNV explains approximately 18% of the variance
in time to simian-AIDS (p,0.001) with lower CCL3L copy number associating with more rapid disease course. We also find
that CCL3L copy number varies significantly (p,1026) among rhesus subpopulations, with Indian-origin macaques having,
on average, half as many CCL3L gene copies as Chinese-origin macaques. Lastly, we confirm that CCL3L shows variable copy
number in humans and chimpanzees and report on CCL3L CNV within and among three additional primate species. On the
basis of our findings we suggest that (1) the difference in population level copy number may explain previously reported
observations of longer post-infection survivorship of Chinese-origin rhesus macaques, (2) stratification by CCL3L copy
number in rhesus SIV vaccine trials will increase power and reduce noise due to non-vaccine-related differences in survival,
and (3) CCL3L CNV is an ancestral component of the primate immune response and, therefore, copy number variation has
not been driven by HIV or SIV per se.
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Introduction

Rhesus macaques are the most widely used non-human-primate

model of HIV/AIDS [1]. We and several other research groups

have reported substantial inter-individual variation in progression

rates to simian-AIDS as well as population level differences

between Chinese- and Indian-origin macaques [2–5]. Under-

standing the genetic basis of these individual and population

differences is critical to building reliable animal models of human

HIV infection and AIDS progression.

In humans, an important host factor for HIV susceptibility is

copy number variation at CCL3L1, a paralog of the CCL3 gene [6–

12]. CCL3L1 is thought to have been generated through a

segmental duplication of a genomically unstable region located on

human chromosome 17q11-17q12 [6–12]. We and others have

shown that, in humans, the q arm of chromosome 17 has multiple

regions of genomic instability where gene duplications, chromo-

somal rearrangements and copy number variation are common

[13,14]. As well, this region shows additional areas of duplication

in the rhesus macaque reference genome (see Figure 1B). CCL3

and CCL3L1 encode chemokine ligands of CCR5, the main co-

receptor used by HIV-1 for entry into host cells [10,11].

After the discovery of copy number variation of CCL3-like

genes, there have been a large number of studies in humans,

expanding our understanding of the role of this variation in

differential HIV susceptibility and progression. It has been shown

that CCL3-like gene CNV plays a role in the level of chemokine

production and chemotaxis [9,15], controlling viral load [15,16],

cell-mediated immune response [17], and most recently, HIV-

specific gag response [18]. Several studies have reported findings

showing a significant role of CCL3-like gene CNV in HIV

resistance and disease progression. In particular, findings indicate

PLoS Genetics | www.plosgenetics.org 1 January 2009 | Volume 5 | Issue 1 | e1000346



that reduced CCL3L1 copy number relative to the population

median correlates with increased risk of acquiring HIV [15],

increased progression rate to AIDS [15], and increased risk of

maternal-fetal HIV transmission [15,19,20]. Other studies,

however, have found no, or limited, association between CCL3-

like gene CNV and HIV/AIDS [21–23]. In addition, it is

currently not known whether copy number variation of CCL3-like

genes plays a role in S/HIV immunity in other primates, although

it has been shown that copy number variation exists at these loci in

chimpanzees [15] and that this locus is duplicated in a rhesus

macaque [24].

Results

To investigate whether CCL3-like genes show variable copy

number in rhesus macaque populations and, more specifically, to

study the role of the CCL3-like genes in SIV survivorship among

rhesus macaques, we assayed copy number variation at these genes

in a cohort of 37 Indian-origin and 20 Chinese-origin animals

previously infected with SIVmac at the Tulane National Primate

Research Center. Individual animals were included in our

retrospective study only if the clinical results of a necropsy

confirmed health complications due to simian-AIDS at the time of

euthanasia or if the animal remained AIDS free for at least 18

months post-infection (see Methods and Table S1).

An analysis of the shotgun and BAC reads of the CCL3 and

CCL3-like gene regions of the macaque genome revealed no fixed

differences that would enable us to design a CCL3-like gene-

specific primer or probe in this species (results not shown but see

Methods). Therefore, our assay, as designed, will detect both CCL3

and all CCL3-like gene paralogs in rhesus as well as in chimpanzee

and human cells, and we refer to the combined loci detected as

CCL3L.

In order to estimate CCL3L copy numbers we used real-time

PCR (rtPCR), and determined absolute copy numbers using two

reference samples (see Text S1 and Figure S1 for calibration curve,

and Methods for more details). The first is the human cell line

A431, which has two copies per diploid genome of CCL3 and two

copies of CCL3L1 (by fluorescent in-situ hybridization (FISH);

Figure 1A; Figure S1; see also reference [9]). The second reference

sample is the rhesus macaque genome donor, which whole-

genome shotgun sequencing analysis (WGSA) found to have

between six and eight copies per diploid genome of CCL3L

(Figure 1B and Methods). The use of two independent references

allowed us to cross-validate our copy number estimates. Support

for our CNV estimates also comes from a comparison of the

rtPCR result to interphase FISH of a macaque cell line (MMU2

9133) (see Figure 1C and 1D).

Using the rtPCR assay, we observed extensive variation in copy

number of the CCL3L region among animals in our study, with a

range of 5 to 31 copies per diploid genome (median 10; mean

11.0565.16 [sd]; Figure 2). Tables 1 and 2 summarize the results

of Cox proportional hazard models [25] for the survivorship data

using CCL3L copy number and population-of-origin as potential

covariates (see Methods). Overall, we found strong evidence that

reduced CCL3L copy number correlates with increased rate of

progression to simian AIDS. Specifically, a model that includes

CCL3L as a covariate (m1) provides a significantly better fit to the

data than the model (m0) without CCL3L (LRTm0 v. m1 = 11.6;

p,0.001; Table 1; Figure 3A).

Population substructure is a potential confounding variable for

our analysis as it has previously been shown that Chinese-origin

animals tend to exhibit slower progression rates post-infection than

Indian-origin animals [2–5]. In order to address this issue, we first

validated population assignments of all individuals in our sample

by genotyping 53 unlinked microsatellites and analyzing the data

using the Bayesian clustering algorithm STRUCTURE [26] and

Principle Component Analysis (see Text S1; Figures S2 and S3).

Both analyses clearly suggest two (and only two) sub-populations in

our data with no evidence of admixture. We also calculated

Queller-Goodnight [27,28] estimates of genetic relatedness from

the microsatellite data and found only low levels of cryptic

relatedness within both populations (see Text S1; Figure S4). The

finding that there is some level of relatedness is expected given that

the animals used in our study were sampled from US colonies,

however, genomic control analysis of the microsatellite data

suggests that these low levels of cryptic relatedness do not

markedly affect our p-value estimates (see Text S1; Figure S5).

Once population assignments for all individuals had been

confirmed, we considered several statistical models for the

progression data that included population-of-origin as a potential

covariate. When considered alone, we found that population-of-

origin impacts survivorship with Indian-origin, correlating with

increased rate of progression to simian-AIDS as previously

reported (LRTm0 v. m2 = 8.37; p,0.01; Table 1). However, once

CCL3L is included in the model, population-of-origin makes only a

marginally significant improvement (LRTm1 v. m3 = 3.25; p = 0.071;

Table 1). This analysis suggests that CCL3L is the predominant

factor impacting survivorship differences among individuals, and

predicts that differences in the distribution of CCL3L copy number

among Indian and Chinese populations may explain the

population-level differences in survivorship.

We further tested the impact of population substructure by

repeating our analysis using only Indian-origin rhesus macaques.

(The sample size and proportion of censored data in the Chinese-

origin sample rendered the power of the test too low to detect a

significant result; see Text S1, Figure S6). We found that including

CCL3L CNV in the model explains a significant proportion of the

survival time variation among Indian-origin macaques alone

(R2 = 15.6%; p = 0.0122), confirming that CCL3L CNV is contrib-

uting to the observed effect and that the effect is not likely to be

explained by systematic variation at an additional allele due to

population substructure. Additionally, the estimated effect size of

CCL3L copy-number variation (b) on survivorship is highly

comparable across subsets of the data (see Table 2 and 95%

confidence intervals for exp(b)). This observation suggests that

CCL3L CNV has a similar effect across both populations, whereby

each copy of CCL3L decreases the baseline risk by a constant

factor of approximately exp(b) = 0.907 relative to the mean of 11

Author Summary

Development of vaccines for HIV/AIDS is a pressing global
issue. The rhesus monkey remains the primary model for
testing potential human vaccines; however, little is known
about similarities and differences in host genes involved in
HIV/AIDS response in humans and rhesus monkeys.
Understanding these similarities and/or differences should
allow more efficient testing of vaccines beneficial to
humans. Here we describe the role that variation in the
number of copies of CCL3-like genes (CCL3L) plays in SIV
progression rates in rhesus monkeys. Copy number
variation (CNV) of these genes has previously been shown
to play a role in susceptibility and progression of HIV in
humans. Our results suggest that individual monkeys with
lower CCL3L copy number progress more rapidly. Account-
ing for CCL3L CNV in rhesus vaccine trials will improve
researchers’ abilities to interpret survival data.

CCL3L CNV and SIV progression in M. mulatta
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Figure 1. Calibration and verification of rtPCR copy number. (A) Metaphase FISH image of A431 cell line confirming diploid copy number of
two CCL3L1 genes (Note: Therefore using our assay we consider the A431 cell line to have a diploid copy number of four genes since it also contains
two copies of CCL3). (B) Whole-genome shotgun read depth analysis showing estimation of CCL3L copy number in the rhesus macaque genome

CCL3L CNV and SIV progression in M. mulatta
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Figure 2. Histogram of copy number estimates. Histogram of the rtPCR estimated copy number of CCL3-like genes for the 57 retrospective
samples of rhesus macaque. The histogram shows a large range of copy numbers found in this sample with copy number estimates from 5 to 31
copies per diploid genome.
doi:10.1371/journal.pgen.1000346.g002

Table 1. Likelihood ratio test statistics for analysis of multiple variables contributing to survivorship based on Cox proportional
hazard model.

Population Model Log-likelihood R2 Model Comparison LRT statistic p-value

Combined (n = 57) m0: No covariates 2155.9131 -- -- -- --

m1: CCL3L copy number 2150.1400 18.3% M1 vs. M0 (df = 1) 11.6 ,0.0007

m2: Population of origin 2151.7286 13.7% M2 vs. M0 (df = 1) 8.37 0.0038

m3: CCL3L copy number + Population
of origin

2148.5120 22.9% M3 vs. M0 (df = 2) 14.8 0.0006

M3 vs. M1 (df = 1) 3.25 0.0710

M3 vs . M2 (df = 1) 6.43 0.0110

Indian-only (n = 37) m0: No covariates 296.15256 -- -- -- --

m1: CCL3L copy number 293.01357 15.6% M1 vs. M0 (df = 1) 6.28 0.0122

Chinese-only (n = 20) m0: No covariates 230.55236 -- -- -- --

m1: CCL3L copy number 230.07515 4.7% M1 vs. M0 (df = 1) 0.95 0.3290

The test statistics are asymptotically x2 distributed.
doi:10.1371/journal.pgen.1000346.t001

donor as 6 copies per diploid genome based on rheMac2 assembly. Green and orange lines denote shotgun reads aligned to CCL3L region of the
January 2006 assembly of the rhesus macaque reference genome with orange lines showing those that likely represent regions of duplications based
on the read-depth analysis (See Methods). (C) Interphase FISH image of the MMU2 9133 rhesus macaque cell line, which has an estimated diploid
copy number of 10 copies of CCL3L. (D) Validation of rtPCR estimates of CCL3L copy number. Black dots represent rtPCR copy number estimates for
the A431 human cell line, the rhesus genome donor, and MMU2 9133 rhesus cell line. Red dots represent an independent estimate of copy number
for all three samples based on either FISH or WGS analysis. See supplemental material for additional information regarding the copy number
estimation methods.
doi:10.1371/journal.pgen.1000346.g001

CCL3L CNV and SIV progression in M. mulatta
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copies (e.g., having 16 copies decreases the hazard by a factor of

0.9075 = 0.61, and having 8 copies increases the hazard by a

factor 0.90723 = 1.34).

Further support for the protective effects of increased CCL3-like

gene copy number is provided by Harrington-Fleming tests of

equality for Kaplan-Meier survival curves [29]. Comparisons of

the survival curves across all observed CCL3L copy number levels

clearly reject equality, whether analyzing all individuals together

(X2 = 51.3; p,0.001, df = 17) or stratifying by population of origin

(X2 = 48.1; p,0.001, df = 17). Additionally, we considered dividing

the data into qualitative copy-number categories as identified by

K-means clustering with K = 3 for the observed CCL3L CNV

distribution: ‘‘low’’ having less than 9 CCL3L copies per diploid

genome (pdg), ‘‘intermediate’’ having 9–14 CCL3L copies pdg, and

‘‘high’’ having greater than 14 CCL3L copies pdg. We also

considered a two-class classification that combined the ‘‘interme-

diate’’ and ‘‘high’’ copy number classes into a single class. Overall,

we observe a highly significant difference in survivorship between

CCL3L copy classes in the combined data stratified by origin

(p = 0.0045 for two categories and p = 0.0174 for three categories;

see Figure 3D and 3E). Likewise, if we consider survivorship curves

within each population separately, a significant difference is

observed between animals with low copy number relative to those

with intermediate or high copy number (p = 0.0231 for Indian;

p = 0.0484 for Chinese; see Figure 3F and 3H). The above analysis

is robust to how the copy-number categories are chosen. For

Table 2. Regression coefficient estimates (b), standard errors on the regression coefficient estimates, confidence intervals, and
significance for terms in the Cox proportional hazard models summarized in Table 1.

Variable Data Other factors in model b RH se (b) 95% CI on Exp(b) p-value

Combined 20.119 0.888 0.04 (0.82, 0.96) 0.0038

CCL3L Indian-only 20.149 0.861 0.07 (0.76, 0.98) 0.0260

Combined Origin 20.097 0.907 0.04 (0.84, 0.99) 0.0220

Combined 21.10 0.333 0.32 (0.18, 0.62) 0.0006

log2(CCL3L) Indian-only 21.12 0.327 0.44 (0.14, 0.77) 0.0110

Combined Origin 20.93 0.393 0.34 (0.20, 0.76) 0.0055

Combined 20.92 0.398 0.34 (0.21, 0.77) 0.0064

Origin Indian-only CCL3L 20.61 0.54 0.35 (0.27, 1.08) 0.0830

Combined log2(CCL3L) 20.58 0.56 0.35 (0.20, 0.76) 0.1000

‘‘Variable’’ refers to a particular term in the regression model (i.e., CCL3L copy number, log of CCL3L copy number, or population of origin), ‘‘Data’’ refers to which subset
of the data is considered (i.e., Combined = Indian-+Chinese-origin animals or Indian animals alone), and ‘‘Other factors in the model’’ refer to whether the regression
coefficient is estimated alone or in the presence of other terms.
doi:10.1371/journal.pgen.1000346.t002

Figure 3. Rhesus macaque survival analysis. (A) Scatter plot of post SIV infection survival time (or censor time if animal is alive) by CCL3L copy
number. Blue dots represent Chinese-origin rhesus macaques while green dots represent Indian origin. Filled in dots represent animals still alive at
time of sampling. Fitted regression curve, p-value and relative-hazard (RH) from Cox proportional hazard model (model 1 in text). (B,C) Boxplots of
CCL3L copy-number defining ‘‘low’’ copy number to be fewer than or equal to 8 copies per diploid genome, ‘‘intermediate’’ to be 9 and 14, and
‘‘high’’ to be more than 14 copies or low vs. intermediate+high. D-I) Estimated Kaplan-Meier survival curve for SIV-infected macaques with time
measured from date of infection. The black curve represents ‘‘low’’, the red curve ‘‘intermediate’’ or ‘‘intermediate+high’’, and the blue curve ‘‘high’’
copy number for KM curves based on all animals (D,E), Indian-origin only (F,G), and Chinese-origin only (H,I). The p-values correspond to Harrington-
Fleming tests of equality for survivorship curve using r = 0 which is equivalent to a log-rank or Mantel-Haenszel test. Relative-hazard (RH) for
equivalent Cox proportional hazard model are also presented.
doi:10.1371/journal.pgen.1000346.g003

CCL3L CNV and SIV progression in M. mulatta

PLoS Genetics | www.plosgenetics.org 5 January 2009 | Volume 5 | Issue 1 | e1000346



example, using the population specific or overall first and third

quartiles gives similar results (results not shown). These results,

taken together, suggest that it is low CCL3L copy number, in

particular, that is correlated with increased rate of progression.

Next we investigated whether differences in the distribution of

CCL3L copy number alleles between populations could explain the

previously reported slower simian-AIDS progression rates of

Chinese-origin animals [2–5]. That is, given the association

between higher CCL3L copy number and slower progression, we

would expect Indian-origin macaques to have, on average, lower

CCL3L copy numbers as compared with Chinese-origin macaques.

Within the samples used for the retrospective study, animals

designated as Indian-origin did, in fact, have a significantly lower

mean copy number (median = 9, mean = 9.51, sd = 3.57,

s.e.m = 0.587), than those designated as Chinese-origin (medi-

an = 12.5, mean 13.90, sd = 6.41, s.e.m = 1.43) as measured by a

Mann-Whitney U test using either relative copy number estimates

from rtPCR (p = 0.0088) or binned and rounded CNV calls

(p = 0.0077; see also Figure 4A). We also assayed CCL3L CNV in

an independent panel of SIV-free Indian-origin and Chinese-

origin rhesus macaques to ensure that the relationship between

origin and CCL3L was not a peculiar artifact of the animals we

utilized from the SIV vaccine trials. This independent panel

included 15 wild-caught Chinese-origin macaque samples collect-

ed as part of the Rhesus Macaque Genome project [24] and 16

colony-born Indian-origin macaques provided by Yerkes National

Figure 4. Population and species level copy number variation. (A) Histograms and boxplots of CCL3L copy number distribution among the
n = 57 animals used in the retrospective study as well as for a sample SIV-free Indian-origin (n = 16) and Chinese-origin rhesus macaques (n = 15). Red
and light-red bars indicate Indian origin for the SIV and SIV-free populations, and blue and light-blue bars indicate the analogous for Chinese-origin
animals. B) Box plot of copy number variation for 6 primate species: Human, Chimpanzee (Pan troglodytes), Orangutan (Pongo pygmaeus), Rhesus
macaque (Macaca mulatta), African green monkey (Cercocebus aethiops), and Sooty mangabey (Chlorocebus atys). Whiskers indicate the upper and
lower quartile with dots showing outliers. Estimates of species divergence times are from reference [37].
doi:10.1371/journal.pgen.1000346.g004

CCL3L CNV and SIV progression in M. mulatta
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Primate Center. In this second panel, we found an even higher

difference in CCL3L CNV between the two populations

(p,961027 Mann-Whitney U test; also see Figure 3A). Chinese-

origin animals had, on average, twice as many copies of CCL3L as

Indian-origin animals (Chinese-origin mean = 17.6, s.d. = 3.56,

s.e.m = 0.91; Indian-origin mean = 9.41, s.d = 3.4, s.e.m = 0.91),

consistent with the average slower progression rates of Chinese vs.

Indian-origin animals.

Discussion

Analysis of the retrospective data provides strong support for the

hypothesis that CCL3L CNV affects individual level SIV

progression rates in rhesus macaques. This is particularly evident

in the Indian-origin rhesus macaque where lower copy numbers of

CCL3L are more common, putatively leading to an overall

increase in progression rates in this population. Due to the limited

power in our analysis of the Chinese-only sample, we recommend

further studies to confirm the role of CCL3L in this population. To

our knowledge, the current study provides the first example of an

association between copy number variation and disease in a non-

human primate. These results broaden our understanding of the

role copy number variation in disease susceptibility and point to

the importance of utilizing methods which allow for detecting this

type of variation in genome-wide scans of disease association.

When taken together with the results of the retrospective

progression study, the population level analysis suggests that

differences in the distribution of CCL3L copy number may explain

a large portion of the differences in progression rates between

Indian- and Chinese-origin macaques. This result is in contrast to

that found in humans, where population level differences in

CCL3L1 copy number did not translate into population level

differences in progression [15]. We suggest further studies of both

rhesus and human progression data is necessary to elucidate the

factors contributing to these differences. Using the results of the

Cox proportional hazard model, and the observed CCL3L

distribution between subpopulations, we have generated predic-

tions for expected survivorship at different levels of CCL3L copy-

number variation and population-of-origin designation (provided

in Text S1; Figure S7). These calculations may prove useful in the

efficient design of vaccine trials. For example, we predict less than

15–20% of Indian or Chinese-origin animals with six or fewer

copies of CCL3L will survive past 24 months post-SIV infection. In

contrast, the vast majority of animals with 25 or more copies are

expected to survive well past 36 months, regardless of whether

they are of Indian or Chinese origin.

In this context, it is important to note that the determination of

absolute copy numbers using rtPCR completely depends on the

quality of the reference. Moreover, determination of absolute high

copy numbers is less accurate than low copy number because noise

accumulates during the progression of the amplification reaction.

That said, since our absolute copy number results are based on

two validated references, it is likely that they are accurate. In

addition, importantly, we note that the conclusions of this study

are not contingent on obtaining accurate absolute copy numbers for

each sample. Rather, our conclusions are based on the relative copy

number of CCL3L between samples, a measure that qualitatively is

not sensitive to the specific reference used. Specifically, our results

are robust with respect to how CCL3L copy number is defined. In

other words, if we consider log2 of CCL3L copy number, or relative

estimates of CCL3L copy numbers instead of absolute copy

numbers, our conclusions are unchanged (Table 2).

Our findings, together with previous observations [15–20],

suggest that CCL3L copy number variation is a shared genetic

mechanism impacting disease progression between humans and

macaques. This result is surprising given the long evolutionary

time separating the two species. Population genetic theory suggests

that little genetic variation currently in the human population

should be shared ancestrally with rhesus macaques, so there is no a

priori reason to suspect a shared mechanism due to a common

polymorphism. As a preliminary test to determine if CCL3L CNV

is indeed shared ancestrally, we examined CCL3L copy number in

five other primate species: African green monkey [AGM]

(Chlorocebus atheops, n = 12), sooty mangabey [SM] (Cercocebus atys,

n = 10), orangutan [PP] (Pongo pygmaeus, n = 7), chimpanzee [PT]

(Pan troglodytes, n = 12), and humans [HS] (8 Yoruban, 4 Chinese

and 4 Japanese from the phase I HapMap set). The rtPCR was

conducted using a common primer/probe set designed for the

rhesus macaque. We chose to use this primer/probe set, as

genomic sequence is not available for the sooty mangabey or

African green monkey. Our results confirm a previous observation

[15] and reveal the presence of extensive variability in CCL3L copy

number in all primate species examined (Table 1; Figure 4B),

suggesting that CCL3L CNV has likely been segregating in Old

World monkeys and apes for at least 25 million years through

recurrent duplication, deletion, and gene conversion of the locally

unstable genomic segments containing the CCL3L genes.

We note, however, that due to the use of a common primer/

probe set in all species, the determination of absolute copy number

may be biased by fixed differences between species in these

regions. This is in contrast to the observation that copy number is

variable within each species, which should be robust to such fixed

differences. We also note that our results differ from those of a

recent study of genomic copy number variation in chimpanzees

and humans, which found low CCL3L copy numbers in

chimpanzees [30]. It is important to highlight that there are likely

differences in the subspecies of chimpanzee used between the

studies and in the resolution of the CNV detection methods

utilized. These experimental design differences make it difficult to

draw conclusions regarding the biological significance of the

differing observations. We therefore suggest that more research is

needed to resolve the evolutionary history of this genomic region,

and in particular to estimate the distribution of CCL3L copy

number variation in chimpanzees.

In summary, our findings further support the hypothesis that

CCL3L copy number variation is an important host factor for

explaining variation in HIV/SIV progression rates [15–20]. Our

results also provide an example of a common mechanism of

increased survival time after infection with HIV or SIV in humans

and another primate species respectively. There are two immediate

predictions from our observations. First, stratifying by CCL3-like

gene copy number in macaque vaccine studies will allow researchers

to remove CCL3L as a confounding effect, thereby increasing the

power of vaccine trials. Second, based on our observations, we

suggest that rhesus macaque is a valuable model organism for

further studies of the specific mechanism by which CCL3-like gene

copy number affects rates of HIV progression in humans.

Finally, it is important to note some caveats of our work. First, the

current study is based on a relatively small sample of rhesus

macaques, pooled across several SIV studies. Additional data is

needed to fully understand the role of CCL3L in rhesus macaque

SIV progression. For example, further analysis investigating the role

of CCL3L on viral load and CD4-T cell count levels would be

beneficial. Unfortunately, complete and consistently taken mea-

surements are not available for these data as the samples were

pooled across several experiments. Second, as with all studies using

rtPCR technology, it is possible that polymorphisms in the primer

and probe sites could affect copy number estimation–although our
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sequencing effort of the PCR products from four samples suggests

that the presence of such polymorphisms is unlikely. Additionally,

the presence of pseudogeninzed copies may bias our results.

Unfortunately, without complete knowledge of the presence and

distribution of pseudogenes for each individual, it is difficult to

address how the presence of pseudogenes would impact the power

of the analysis. For example, if for each monkey 1–2 copies of CCL3-

like genes are pseudogenized, this would have little (or no) impact on

the power of the tests. However, if for example, as copy number

increases, the probability of having more pseudogenized copies also

increases, this would adversely impact the power of the test.

Third, we have used a candidate gene approach in our analysis

of the association of genetic variation with simian-AIDS

progression. Therefore, it is possible that genetic variants at other

loci may account for even larger portion of the variance in

survival. One possible example is variation at MHC class I genes,

which has been shown to be associated with SIV progression rate

in Indian-origin rhesus macaques and explains at least 48% of the

variance in that study [31]. We have addressed this to some extent

by conducting replicate association analyses with the 53 genome-

wide, unlinked microsatellite loci (see Text S1; Figure S5). We find

that copy number variation at the CCL3L locus falls in the 1% tail

of this distribution (after accounting for population substructure)

and is therefore, likely a true positive. It is important to remember

that there are many other host factors aside from chemokines and

their receptors known to influence HIV susceptibility and

pathogenesis in humans [32,33]. We believe these other factors

should be characterized in rhesus along with discovery of rhesus-

specific genetic variation before conclusions can be drawn on the

relative importance of shared versus species-specific factors

influencing retroviral susceptibility and disease progression.

Methods

Retrospective Progression Samples
The rhesus macaques used in the retrospective analysis were all

inoculated with SIVmac as part of previous SIV research

programs at the Tulane National Primate Research Center. All

macaques were infected with SIVmac239 or SIVmac251 with SIV

inoculum given under a standard protocol and at similar mid-level

dose. Doses in this range and the strain used have been previously

shown not to affect the outcome of disease course [34].

All animals used in our study were euthanized under the same

set of guidelines if they did not remain healthy after infection.

Specifically, euthanasia was carried out if life threatening clinical

conditions indicated that the life expectancy of the animal was less

than 7 days. Following euthanasia, a necropsy was performed, and

animals were only included in the current study if the necropsy

confirmed SIV as the underlying cause of the clinical state.

Animals were excluded only if they were euthanized and illness

could not be confirmed to be AIDS related. Because the results of

the necropsy were inconclusive with respect to the cause of the

illness in these cases (SIV or not) we chose to exclude them.

Conducting the analyses with these animals included as either

censored data or non-censored data did not change the results of

the analysis. Under these protocols, the time of euthanasia will give

a reasonable approximation to both time to progression to simian-

AIDS and survival time, as the presence of AIDS defining illnesses

met the criterion for euthanasia. (See Table S1 for clinical findings

of necropsy and Text S1).

Additional Primate Samples
DNA extractions from the uninfected Chinese-origin rhesus

samples were obtained from the Rhesus macaque genome

consortium. The chimpanzee, orangutan, sooty mangabey, and

uninfected Indian-origin rhesus macaque DNA samples were

obtained from the Yerkes National Primate Research Center and

the African green monkey DNA samples were obtained from the

University of California Los Angeles.

Real-Time PCR CCL3L Copy Number Estimation
CCL3L gene copy number was determined using real-time

quantitative PCR (rtPCR) on a 7900HT Fast Real-Time PCR

System (Applied Biosystems Inc.) with the JumpStart Taq Ready-

Mix (SIGMA) and TaqMan probes. The PCR included 18 ng total

genomic DNA. Cycling conditions were: initial denaturation at

94uC for 2 min; followed by 40 cycles of 15 sec denaturation at

94uC and 1 minute annealing/extension at 60uC. The Stat6 gene,

found to be present in a single copy, per haploid genome, in rhesus

macaque, chimpanzee and human reference genomes, was used as

the internal control. Oligonucleotide sequences used for CCL3L

were: Forward: 59-CCAGTGCTTAACCTTCCTCC-39, Re-

verse: 59–TCAGGCACTCAGCTCCAGGT-39, Probe: 59-

AGGCCGGCAGGTCTGTGCTGACC-39. For Stat6, sequences

were: Forward: 59-CCAGATGCCTACCATGGTGC-39, Re-

verse: 59-CCATCTGCACAGACCACTCC-39, Probe: 59-

CTGATTCCTCCATGAGCATGCAGCTT-39. This primer set

does not distinguish between CCL3 and the CCL3-like gene

paralogs, as we did not observe sufficient fixed differences between

these paralogs in rhesus macaque references genome to design a

specific assay. It is also unknown whether any pseudogenized

copies of CCL3L genes exist in the rhesus macaque populations. As

such, we here refer to CCL3 and its paralogs as CCL3L. PCR

results were analyzed using SDS v2.2.1 software package (Applied

Biosystems Inc.). We performed rtPCR for each individual in

triplicate and determined the normalized relative copy number by

generating a standard curve and then normalizing across samples

by the results of the Stat6 control gene and dividing the value

obtained by one of the reference individuals.

Analysis of CCL3L Copy Number Based on Reference
Samples

To estimate the absolute CCL3L copy number for each sample

based on the rtPCR results described above, we used two reference

samples: the A431 human cell line and the rhesus genome donor

individual. The A431 cell line was chosen as it has previously been

shown to have two copies of CCL3L1 and two copies of CCL3 pdg

[9], for a total copy number of four CCL3L using the rtPCR assay

described above. To confirm the CCL3L1 copy number of the

particular A431 cell line culture used here, we performed

florescent in situ hybridization (FISH) of metaphase chromosomes

using the human fosmid probes WIBR2-3688L07 (CCL3L1

specific; green spots on Figure 1A) and WI2-653M1 (chr. 17

single copy control; red spots on Figure 1A). Visualization of the

FISH assay clearly shows that this cell line extract had 2 copies of

CCL3L1 pdg.

The second reference sample was the rhesus macaque genome

donor sample. Copy number of the CCL3L locus for this sample

was determined using whole genome shotgun (WGS) read depth

analysis [24,35]. Read depth analysis was performed by aligning

all fragments of minimum 150 bp of non-repeat masked sequence

to the to the macaque CCL3L1 locus with a 95% identity

threshold. We compared the average depth of WGS sequence

coverage for unique (not-duplicated) sequence in 5kb windows

with the depth of coverage to the CCL3L1 locus to estimate copy-

number of the locus (Figure 1B). The experiment was repeated

using the human CCL3L locus as a reference with an 88% identity

threshold (results not shown). From these analyses, we predicted
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the CCL3L copy number for the genome donor macaque to be 6–8

copies of CCL3L pdg depending on whether the rhesus or human

genome is used for alignment. The difference in estimated copy

number between the alignment to the rhesus genome and that of

the human genome is likely due to alignment of non-CCL3L genes.

Due to this, alignment to the rhesus genome is likely a better

predictor of CCL3L copy number for this individual because it is

less likely to include non-CCL3-like gene paralogs.

We determined the absolute CCL3L copy number in each

sample by comparing rtPCR results between samples and the

references. Specifically, the normalized rtPCR values were

averaged across the three replicates for each individual and

divided by the averaged rtPCR results for one of the reference

samples and multiplied by 4 (the diploid copy number of the A431

cell line including CCL3L1 and CCL3) or 7 (the average diploid

copy number of the rhesus macaque donor individual). The

resulting number was then rounded to the nearest integer value to

estimate absolute copy number. In Figure S1, we report the

calibration curves for the A431 reference samples and demarca-

tion of inferred copy number pdg for each sample. All statistical

analyses were conducted using the rounded as well as the raw

values.

Confirmation of rtPCR CCL3L Copy Number Estimate
To confirm that the rtPCR absolute copy number estimates

were accurate we estimated CCL3L copy number for an additional

rhesus macaque cell line using both rtPCR and interphase FISH

(Figure 1C). The rtPCR estimated diploid copy number for this

macaque cell line is 9 using either reference sample. The estimated

CCL3L copy number from the FISH experiment is 10.3463.00

(mean6standard error based on 54 replicate FISH experiments).

The slight discrepancy between the rtPCR and FISH is likely due

to the fact that the FISH probe used contains other, known,

structural variants which show higher copy number in the

macaque reference genome (visible in WGS read depth analysis

see Figure 1C). As well, the proximity of the CCL3L gene copies

renders it difficult to distinguish distinct copies in some of the

FISH images.

Primers in Additional Species
The same rtPCR primers and probe were used in all primate

species. These primers are not specific to the other species and

differences in both the chimpanzee and human reference priming

sequences were observed. We note that at the time of this study no

reference sequences were available for the sooty mangabey or the

African green monkey on which to design species-specific probes.

While this may lead to slight biases in the determination of the

absolute copy number for any particular individual or species, it

does not effect the overall conclusions of the study that all species

surveyed show population level variation in copy numbers.

Statistical Analysis
All statistical analysis was conducted using the R statistics

package. Significance of copy number differences between Indian-

origin and Chinese-origin populations of SIV and non-SIV

infected rhesus macaque was evaluated using a Mann-Whitney

U test. Survival analyses of the SIV infected macaque data were

conducted using the survival package in R.

The Cox proportional hazard model was chosen, as it is a

flexible semi-parametric regression model that accounts censored

data. Let i = 1…n index individuals and j = 1…p index variables of

the regression model. The Cox proportional hazard rate of

individual i at time t has the form:

hi tð Þ~h0 tð Þ exp
Xp

j~1

bjxij

 !

where h0(t) is the base line hazard function, the xij’s for j = 1…p are

the covariates for individual i, and the bj’s are regression

coefficients. An underlying assumption of this model is that the

covariates act additively on the log of the hazard function and that

the log hazard function changes linearly with the b terms. These

are referred to as the proportionality assumptions. We tested this

assumption using the method proposed by Grambsch and

Therneau [36] as implemented in the survival package in R
and found that the assumption holds for these data. It is important

to note that there no assumption is made regarding the functional

form of base line hazard function h0(t). The reason for this is that

our object of analysis is the proportional hazards among individuals

that at time t are independent of h0. For example, considering a

pair of individuals i and i9, the hazard ratios are:

hi tð Þ
hi’ tð Þ~

exp
Pp
j~1

bjxij

 !

exp
Pp
j~1

bjxi’j

 !

The model parameters b1…bp are estimated given the ranked

observed failure times y1,y2,…,yn using the partial likelihood

method proposed by Cox [25] as implemented in the coxph
function in R. Since some data are censored, we introduce n9 to

denote the number of uncensored observations. The partial

likelihood is given by:

L b yi,:::,ynjð Þ~ P
n’

i~1

exp
Pp
j~1

xijbj

 !

Pn
i’wi

exp
Pp
j~1

xi’jbj

 !

Four models are considered; m0, which includes no covariates;

m1, which includes only CCL3L copy number as a potential

covariate; m2, which considers only population-of-origin as a

factor, and m3, which considers both CCL3L copy number and

population of origin. To choose among nested regression models

for the SIV infected macaque survival data, we used twice the

difference in log-likelihood and assessed significance using

standard x2 approximations.

The Harrington and Fleming procedure was used to assess

differences among Kaplan-Meier survival curve. This method was

also implemented in the survdiff function of the R survival
package. All analysis labeled ‘‘stratified’’ were conducted by

including the term strata(origin) in the right hand side of the

regression equation where origin is an indicator variable of

Chinese-origin (i.e., 1 if Chinese, 0 if Indian). The survfit
routine to generate predicted Kaplan-Meir survival curves as a

function of CCL3L copy number and population-of-origin. All R
scripts used for analysis and production of figures are available

from the investigators upon request.

Supporting Information

Figure S1 Calibration curve for rtPCR assay using A431 cell

line as a standard. Since the A431 cell line has four copies of
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CCL3L (see Figure 1A), CCL3L copy number is inferred as the

relative rtPCR level for a sample, multiplied by 4 and rounded to

the nearest integer. Each color represents a transition in copy

number variation call (i.e., the break between 5 copies and 6

copies is denoted by a transition of red to green, and the break

between 6 and 7 copies by a transition from green to dark blue).

Found at: doi:10.1371/journal.pgen.1000346.s001 (0.81 MB TIF)

Figure S2 Structure results of the retrospective individuals from

the 53 microsatellite loci sorted by assumed population. Red are

Indian origin animals and blue are Chinese origin animals.

Found at: doi:10.1371/journal.pgen.1000346.s002 (1.07 MB TIF)

Figure S3 PCA results for the retrospective sample. Red are

Indian origin and blue are Chinese origin. (A) Box-plot of PC1

values. (B) Bi-plot of PC1 vs. PC2 showing distinct clustering of

animals into proper sub-populations.

Found at: doi:10.1371/journal.pgen.1000346.s003 (1.19 MB TIF)

Figure S4 Heat plots summarizing genetic relatedness in the

sample based on 53 unlinked microsattelite loci. (A) Pearson

product-moment correlation of genotypic state for all individuals

in the sample; (B) Queller-Goodnight r distance between pairs of

individuals in the Indian-origin sample; (C) QG distances for

individuals in the Chinese-origin sample.

Found at: doi:10.1371/journal.pgen.1000346.s004 (4.89 MB TIF)

Figure S5 (A) Quantile-Quantile plot of the empirical p-value

distribution from the 53 unlinked microsatellites versus that

expected under a uniform distribution. (B) Histogram of the

2log10 p-values from the microsatellite data with arrow showing

the position of the p-value for the association with log2 CCL3L

copy number and survival.

Found at: doi:10.1371/journal.pgen.1000346.s005 (1.00 MB TIF)

Figure S6 Bootstrap simulations to assess power of Cox

proportional hazard regression of survivorship on CCL3L copy

number applied to each population separately.

Found at: doi:10.1371/journal.pgen.1000346.s006 (0.57 MB TIF)

Figure S7 Predicted Kaplan-Meier survival curves based on

Cox Proportional hazard model of post-SIV survivorship includ-

ing CCL3L copy number and population-of-origin as covariates.

Dashed lines indicate 95% prediction intervals based on

application of the function survfit in the survival R package.

Found at: doi:10.1371/journal.pgen.1000346.s007 (0.88 MB TIF)

Table S1 Results of necropsy results for 57 animals used in the

retrospective study.

Found at: doi:10.1371/journal.pgen.1000346.s008 (0.06 MB PDF)

Table S2 Total number of polymorphic sites found per primer/

probe/individual for CCL3L rtPCR assay. CH1 and CH2 are two

macaque individuals of Chinese origin. IN1 and IN2 are Indian-

origin macaques.

Found at: doi:10.1371/journal.pgen.1000346.s009 (0.04 MB PDF)

Table S3 Summary statistics for CCL3L copy number distribu-

tion among primate species and populations.

Found at: doi:10.1371/journal.pgen.1000346.s010 (0.05 MB PDF)

Table S4 Microsatellite id, number of alleles found in the

retrospective sample, and heterozygosity for the 53 typed

microsatellites.

Found at: doi:10.1371/journal.pgen.1000346.s011 (0.04 MB PDF)

Text S1 Additional methods describing validation of rtPCR

primers and probes, analysis of microsatellite data, and power

analysis.

Found at: doi:10.1371/journal.pgen.1000346.s012 (0.05 MB

DOC)
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