
| www.folio.org1

Architectural Beeprints
WOLFcon 2023

Chicago, USA
Tod Olson & Vince Bareau

| www.folio.org2

Overview

FOLIO has reached a certain level of maturity, and is in
production at a significant number of libraries.
FOLIO is at a plateau but needs to evolve further to support
increasing needs of scale and complexity.
This forum will look at some aspects of FOLIO that need to
mature, building on ideas presented last year and on recent work.

| www.folio.org3

Agenda

Application and Platform Formalization
Microservices Boundaries & Application Refactoring
Record Deletion
Data Import Improvement
Linked Data and Inventory

enables

enables
enables

| www.folio.org4

Application and Platform Formalization

| www.folio.org5

Application and Platform Formalization

At WOLFcon22 several enabler concepts were introduced,
including that of Application Formalization
In the year since, there has been progress.

● Many discussions were had
● The problem space was expanded beyond Applications to

also include Platforms
● Designs have begun to materialize

| www.folio.org6

Application and Platform Formalization

Definitions for Applications and Platforms have been proposed:

A Folio Application is the minimal but complete set of elements
which together are intended to deliver a specific solution to Folio

A Folio Platform is a particular combination of Folio Applications
together with the Folio Core which delivers a specific system
solution

| www.folio.org7

Application and Platform Formalization

Applications are formalized by
an Application Descriptor

● References the necessary
Module Descriptors

● Vertical alignment of related
Front-end and Back-end
modules

Folio

Okapi

Stripes

UI Module

BL
Module

Storage
Module

Edge
API

| www.folio.org8

Application and Platform Formalization

Platforms are many and tiered

Platforms are formalized by a
Platform Descriptor:

● References the necessary
Application Descriptors

Folio Extended

Folio Functional

Folio Core

Fl
ow

er
 R

el
ea

se

Fo
lio

 P
la

tfo
rm

| www.folio.org9

Platform - Application - Module : A Hierarchy

| www.folio.org10

Application and Platform Formalization

Formalizing Applications and Platforms is an enabler to
Microservices Boundaries & Application Refactoring

| www.folio.org11

Microservice Boundaries
&

Application Refactoring

| www.folio.org12

Enabler: Microservice Boundaries (WOLFcon22)

Where we are

● Folio embraces microservices (sorta)
● Each backend module is considered a µservice.
● Each µservice is responsible for their own data layer.
● Only the backend module responsible for data storage is

allowed to directly access it
● All other data access must be through the µservice API

interfaces.
● Some older applications have implemented a separation

between “business logic” and “storage” modules.

Ideas for Discussion

● Folio continues to embrace µservices (more so)
● The Bounded Context is considered a µservice
● A Bounded Context may consist of several backend

modules
● All modules in the Bounded Context may directly access

the shared data storage
● The “storage” vs. “business logic” pattern is eliminated

Benefits

● Dependency Reduction: reduces the number of modules
● Ease of Development
● Reduces latency (reduces http traffic)
● Contributes to Data Integrity
● Allows for extension modules

μSvc

BE
 module

Data

µSvc

BE
module

Data

μSvc

BE
 module

Data

BE
module

| www.folio.org13

Application Refactoring/Microservice Boundaries

Background

• FOLIO has grown considerably
• Current µservice boundaries remain at the

module level
• Number of moules has increased, resulting in

even more API-level dependencies
• Increased complexity in cross-app interactions
• Thinking on Application Formalization has

matured (an enabler)

Pressures

• More deployments, dev & operations overhead
• Need for these benefits is more urgent

Opportunities

• Rethink storage layout for the µservice (cf.
comments on SRS and Data Import)

• Simplify cross-app data flow
• Rethink the single source of truth:

− µservice truth vs centralized truth
• Transactional integrity at the µservice level
• Go beyond mere CRUD APIs: actions vs records
• Streamline communications between

boundaries: cross-app or cross-tenant

| www.folio.org14

Application Refactoring/Microservice Boundaries

Microservices Boundaries/Application Refactoring is enabled by
Formalizing Applications and Platforms.

But it is also an enabler for Data Import Improvement

| www.folio.org15

Record Deletion

| www.folio.org16

Record Deletion Functionality

● Folio is lacking the ability to delete records
● Many workflows cause orphaned records
● Accumulation of orphaned records slows down Folio as a whole

Deletion of records is not a trivial task

● Involves identifying all possible dependencies on a particular resource
● Requires a rules-based workflow to clear a record for deletion.
● Records must be soft-deleted in case of mistakes
● Rules must cross Folio application boundaries
● Now Rules must even cross tenant boundaries

| www.folio.org17

Record Deletion Functionality

A design has been proposed
● Soft delete

○ Archive deleted records
○ Supporting rollback
○ Requires a companion hard delete functionality

■ Customizable at the customer-level

● Proposed pilot for Inventory items/holdings/instances
○ Waiting for capacity planning SIG

● Rule-based dependency checking
● Crosses application boundary!

| www.folio.org18

Record Deletion Functionality

Record Deletion is an enabler for further Data Import functionality.

| www.folio.org19

Data Import Improvements

| www.folio.org20

Data Import Improvements

Important improvements have been made in recent months to
Data Import.
However, even more improvements are possible, if not
necessary, to address the scalability of Data Import

| www.folio.org21

Data Import Improvements - Upload Process

File Chunking
● Support upload to MinIO/S3 storage

○ instead of current local storage on EC2

○ applies to ALL uploads even those going

through the UI

● Automate slicing files into smaller (optimal) parts

○ Happens before import

● Submit as child jobs under an "umbrella" parent job

● UI changes to reflect parent job vs child jobs

Parallel Processing
● Because all jobs go through S3 instead of local

storage, several instances of DI can be run in parallel

FILE 1

file1.1 file1.2 file1.N

import import import

FOLIO

…

…

MinIO/S3

| www.folio.org22

Data Import Improvements - Queue Management

● Store info about jobs in DB

○ Cross-tenant storage which reflects ALL import

activity from ALL tenants

● Prioritization

○ Take into account size and which tenant a job

belongs to when selecting next job to process

■ Pickup smallest jobs first and also

consider the total number of jobs for a

given tenant

■ Check running jobs -> if one tenant has all

jobs running then pick next job from

another

○ Algorithm is optimized differently for

single-tenant vs multi-tenant deployment

● Benefits Single record import

○ Insert between fragments of large jobs (e.g.

quickmarc) - existing functionality
File1.1 (TenantB)

File1.2 (TenantA)

File1.3 (TenantA)

File1.1 (TenantB)

File1.2 (TenantB)

File1 (TenantC)

Next Job

Insert single
record import

File1.4 (TenantA)

File1.5 (TenantA)

Intersperse
Tenant B jobs

| www.folio.org23

Data Import Improvements - Future

Potential Database changes
● Relational DB model for SRS records instead of

current JSONB
○ JSONB currently used in storage: expensive in CPU

and parsing

○ Bottleneck to DI

● CURRENTLY: Side-by-side testing of relational vs JSONB

○ Use simple relational table to store content of

MARC records => SRS

○ Measure SQL queries with JSONB vs same queries

in relational tables via API calls. Same datasets in

each case

● FUTURE: if successful think about change for

mod-inventory too

Other Potential Improvements
● Make SRS storage relational

● Make Inventory storage relational

● Add bulk APIs and operations

● Garbage collection in SRS

○ Record Deletion

○ Errors will leave MARC SRS records orphaned.

○ Find and delete detached MARC records.

● Create better logging and diagnostics.

● Additional prioritization logic for queue management.

○ Maybe slice very small child jobs so less waiting

for other jobs to be picked up

● Integrate with Linked Data and BIBFRAME pipeline from

LoC

| www.folio.org24

Linked Data and Inventory

| www.folio.org25

Linked Data and Inventory

Background

• Since the very start, Folio has sought to
embrace BIBFRAME2 as a data model

• Though not completely tied to MARC, MARC is
currently the only format for which support is
implemented in Folio

• Using the existing data models, each new format
adoption will cause significant (linear) expansion
of large parts of Folio (Inventory, SRS, Data
Import, Data Export, Bulk Edit etc…)

Pressures:

• The Library of Congress is adopting Folio and
promoting BIBFRAME and Linked Data

• Data Import needs to support more formats

Opportunities

• Folio to embrace Linked Data and BIBRAME
• Refactor Inventory

− Adopt data graph
− Simplify support for multiple metadata

formats
• Adopt BIBFRAME editor(s)

Goals:
• FOLIO
• Ease dev & operations
• Reduce dependencies

− No. of services
− interactions

• Cleaner

| www.folio.org26

Wrap up
and

Thank you

| www.folio.org27

Appendix

| www.folio.org28

WOLFcon 2022 Presentation

https://docs.google.com/presentation/d/15_t3W-AQ2SA-kYuLTcI
YUdjR18wY-uJ8lpcT1Rxehg8/edit#slide=id.p

https://docs.google.com/presentation/d/15_t3W-AQ2SA-kYuLTcIYUdjR18wY-uJ8lpcT1Rxehg8/edit#slide=id.p
https://docs.google.com/presentation/d/15_t3W-AQ2SA-kYuLTcIYUdjR18wY-uJ8lpcT1Rxehg8/edit#slide=id.p

