
1111111111111111 IIIIII IIIII 1111111111 11111 11111 111111111111111 IIIII IIIII 1111111111 11111111
US 20180046565Al

c19) United States
c12) Patent Application Publication

Lu et al.
c10) Pub. No.: US 2018/0046565 Al
(43) Pub. Date: Feb. 15, 2018

(54) AUTOMATICALLY DETECTING
DISTRIBUTED CONCURRENCY ERRORS IN
CLOUD SYSTEMS

(71) Applicants:Futurewei Technologies, Inc., Plano,
TX (US); The University of Chicago,
Chicago, IL (US)

(72) Inventors: Shan Lu, Chicago, IL (US); Haopeng
Liu, Chicago, IL (US); Guangpu Li,
Chicago, IL (US); Haryadi Gunawi,
Chicago, IL (US); Chen Tian, Union
City, CA (US); Feng Ye, Mississauga
(CA)

(21) Appl. No.: 15/668,469

(22) Filed: Aug. 3, 2017

Related U.S. Application Data

(60) Provisional application No. 62/374,449, filed on Aug.
12, 2016.

1002
-~

Publication Classification

(51) Int. Cl.
G06F 11136
H04L 29108
H04L 12124

(52) U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

CPC G06F 1113632 (2013.01); H04L 4110816
(2013.01); G06F 1113636 (2013.01); H04L

67110 (2013.01); H04L 67/34 (2013.01); G06F
9/44505 (2013.01)

(57) ABSTRACT

A method for detecting distributed concurrency errors in a
distributed cloud computing system includes tracing opera­
tions that access objects in functions involving inter-process
messaging, applying a set of happens-before rules to the
traced operations. Analyzing the traced operations to iden­
tify concurrent operations that access a common object to
generate a list of potential distributed concurrency errors
(DCbugs). Pruning the list of DCbugs to remove DCbugs
having only local effect and that do not generate run-time
errors.

TRACE OBJECT ACCESS DURING
EXECUTION TO GENERATE TRACE

RESULTS

F

APPLY HAPPENS-BEFORE RULES ~1004
TO TRACE RESULTS TO IDENTIFY

CANDIDATE OPERATIONS

IDENTIFY CONCURRENT PAIRS OF
CANDIDATE OPERATIONS THAT ACCESS

COMMON OBJECTS TO GENERATE UST OF
,,--1006

POTENTIAL DISTRIBUTEDCONCURRENCY
ERRORS

EXECUTE WITH RUN-TIME ANALYSIS ~100

TOOLS TO IDENTIFY ACTUAL

8

DISTRIBUTED CONCURRENCY
ERRORS

Patent Application Publication Feb. 15, 2018 Sheet 1 of 10 US 2018/0046565 Al

102

0

NETWOR~
MANAGER ~

106

SUBMIT
TASK

GET CANCEL
TASK TASK

FIG. 2A

108

0

APPUCAT!ON
MANAGER

FIG. 1

212

104

0

/ CLIENT

GET
TASK

(REPEAT}

SUBMIT
TASK

FIG. 2B

301 Node 1 302

Thd Thd Thd Thd

332

328

330

Coordinator Node3

326

FIG. 3

Node2

EventThd

412

414

Loe. Dist.

FIG. 4

,400

408

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =
"f'j
('D

?'
~Ul
N
0
QO

rJJ
=­('D
('D
N
0
0

c
rJJ
N
0
QO

---0
0
.i;...
O'I
Ul
O'I
Ul

>

Patent Application Publication Feb. 15, 2018 Sheet 3 of 10 US 2018/0046565 Al

402 408
410

•

08

40
06

40

502
Local Distributed

Custom Standard

FIG. 5

408
602 608

0
c:: ::..,

VJ 402

606
-!::
(.J
C:

404 406 ::,,.,.
ti)
q::

610

Custom Standard Node 1 Node 2

FIG. 6

Patent Application Publication Feb. 15, 2018 Sheet 4 of 10 US 2018/0046565 Al

708

(j RPC
C: 402 ~ 408 706

704

fJ
Recv.

~
(,1

404

~

Node 1 Node2

Customize Standard

FIG. 7

Dist. while-loop

402 802

ti RPG
C:

J5' 408

804 ~ "" "" "" "" ..,. "" "" .., "" ...,. ""' "" "" ""' ...,. ~

: /ffhread1 :
, Flag = True; :

' '

~~-..• ""'' ,...,,., .,.., ,.., "" ""'' ,.., c,.-, "" .,., , s
, //Thread '
: whi!e(!getFlag()){ !
' 1 '

.c:: Socket
(.)
c:: 404 :,,_,
U) 406 ~

8'"'"""" ""'""'.., """"""' """" ... """" ""'""~
, //Thread 2 •
' ' : bool getFlag 0 { :
: return flag; ,

~: ___ } __ ,-_-_-_-·_--_-_-_-____ , ___ _.: 810

806

Customize Standard

FIG. 8

Patent Application Publication Feb. 15, 2018 Sheet 5 of 10 US 2018/0046565 Al

901

Thd Thd

Customize

Dist.
0 While-c::
6:i loop

402

404
Coordination

Service

Thd

Standard

RPC

408

Socket

406

FIG. 9A

Thd

902

EventThd

ASYNC

Coordinator

926 FIG. 9B

Patent Application Publication Feb. 15, 2018 Sheet 6 of 10 US 2018/0046565 Al

1002
~

TRACE OBJECT ACCESS DURING
EXECUTION TO GENERATE TRACE

RESULTS

u

APPLY HAPPENS-BEFORE RULES ~1004
TO TRACE RESULTS TO IDENTIFY

CANDIDATE OPERATIONS

IDENTIFY CONCURRENT PAIRS OF
CANDIDATE OPERATIONS THAT ACCESS

COMMON OBJECTS TO GENERATE UST OF
,,,---1006

POTENTIAL DISTRIBUTEDCONCURRENCY
ERRORS

EXECUTE WITH RUN-TIME ANALYSIS ~100
TOOLS TO IDENTIFY ACTUAL

8

DISTRIBUTED CONCURRENCY
ERRORS

FIG. 10A

Patent Application Publication Feb. 15, 2018 Sheet 7 of 10

1052

TRACE MEMORY ACCESSES OF
LOCK/UNLOCK OPEf=~ATIONS, f=l.PC,
EVENT AND MESSAGE HANDLERS
AND THEIR CALLED FUf\JCTIONS

IDENTIFY POTENTIAL RACE CONDITIONS USING
HAPPENS-BEFORE fv1ODEL BY ANALYZING PAIRS
OF MEMORY ACCESSES THAT TOUCH THE SAME
DATA CONCURREf\JTLY AND l~~CLUDE AT LEAST

ONE WRITE OPERATION

1056

i058

i060

1062

BUILD ORDERED HAPPENS­
BEFORE GRAPH OF

OPERATIONS HAVING
POTENTIAL RACE CONDITIONS

CHECK FOR CONCURRENT
ACCESSES TO IDENTIFY BUG

CANDIDATES

DELETE BUG CANDIDATES
UNLIKELY TO CAUSE SEVERE

FAILURES CHECKING BOTH
LOCAL AND DISTRIBUTED

IMPACTS

INSERT SLEEP STATES AND/OR
_REQUEST AND _CONFIRM APls
AND RUN TO ELIMINATE FALSE

POSITIVES

10fi4

CHANGE ORDER OF OPERATIONS
TO TRIGGER RACE CONDITIONS AND

RESTART DISTRIBUTED SYSTEM

FIG. 10B

US 2018/0046565 Al

1054

1068~
.--~--.

N
EXIT

y

""O
~
('D

=
> "e

"e -.... (')

~
0

=
""O = O" -Node 1 Node2
....

Node3 (')

~
Thread Thread Event Thread Thread

......L...
e1 111 o

Thread
I

0

=
I

"f'j
('D

?'
~Ul
N
0
QO

rJJ
=-('D

1112
('D
QO

0
0

c
FIG. 11

rJJ
N
0
QO

---0
0
.i;...
O'I
Ul
O'I
Ul

>

1201
:) I CONTROLLER

Node 1 Node2

Thread Thread Event Thread Thread

1205

1212

FIG. 12

RPG
CALL

Node3

Thread

1204

1214

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =
"f'j
('D

?'
~Ul
N
0
QO

rJJ
=­('D
('D
1,0

0
0

c
rJJ
N
0
QO

---0
0
.i;...
O'I
Ul
O'I
Ul

>

Patent Application Publication Feb. 15, 2018 Sheet 10 of 10 US 2018/0046565 Al

PROCESSING
UNIT

REMOVABLE
STORAGE

NON-REMOVABLE
STORAGE

l
1312

1300

1303 --"1302

---....
1310

APPLICATIONS

VOLATILE

NON-VOLATILE

MEMORY

131t COMMUNICATION
INTERFACE

INPUT INTERFACE
OUTPUT

INTERFACE

l \
1306 1304

FIG. 13

US 2018/0046565 Al

AUTOMATICALLY DETECTING
DISTRIBUTED CONCURRENCY ERRORS IN

CLOUD SYSTEMS

RELATED APPLICATION

[0001] This application claims priority from U.S. Provi­
sional Application Ser. No. 62/374,449 entitled "AUTO­
MATICALLY DETECTING DISTRIBUTED CONCUR­
RENCY BUGS IN CLOUD SYSTEMS" and filed on Aug.
12, 2016, the disclosure of which is hereby incorporated by
reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure is related to detecting
execution errors in computing systems and, in particular, to
detecting concurrency errors in systems distributed across
multiple computing systems.

BACKGROUND

[0003] Many big data and cloud computing systems are
implemented using distributed cloud systems having mul­
tiple program threads running in parallel across multiple
servers. These systems include data management systems,
multiplayer gaming systems, workforce collaboration sys­
tems (e.g. Sharepoint®, Slack® and HipChat® collabora­
tion software) among others. These systems include soft­
ware infrastructures such as scale-out storage, computing
frameworks, synchronization services and cluster manage­
ment services. The reliability of these distributed cloud
systems is extremely important. Unfortunately these systems
are subject to distributed concurrency errors (bugs), referred
to herein as DCbugs. DCbugs may be difficult to detect due
to the large state space of the distributed cloud systems and
may manifest non-deterministically depending on the timing
of distributed computation and communication.

SUMMARY

[0004] According to one aspect of the present disclosure,
there is provided a method of detecting distributed concur­
rency errors in a distributed computing system including a
plurality of component computers that comprises: tracing
operations that access objects during execution of the dis­
tributed computing system to generate trace results; apply­
ing a set of happens-before rules to the trace results to
identify candidate operations among the traced operations,
each happens-before rule indicating a first type of operation
that happens before a second type of operation; identifying
respective concurrent pairs of the candidate operations that
access respective common objects to generate a list of
potential distributed concurrency errors; executing run-time
analysis tools to identify conflicting memory accesses
among the plurality of component computers that result in
distributed concurrency errors.
[0005] Optionally, in any of the preceding aspects, the
happens-before rules include message rules concerning mes­
sages between two nodes, thread rules threads initiated from
different nodes, event rules concerning events accessed by
different threads, and program ordering rules concerning
execution order of operations in different threads.
[0006] Optionally, in any of the preceding aspects, the
method further comprises identifying, as the candidate
operations, respective pairs of the candidate operations from

1
Feb. 15,2018

respectively different threads that access the respective
common object and include at least one write operation.
[0007] Optionally, in any of the preceding aspects, tracing
the operations that access objects includes exclusively trac­
ing remote procedure call (RPC) functions, functions that
conduct socket operations, and event handler functions.
[0008] Optionally, in any of the preceding aspects, the
method further comprises: building an ordered graph of the
candidate operations, each vertex in the graph representing
one of the candidate operations and each edge between two
vertexes in the graph representing a happens-before rela­
tionship between the operations represented by the two
vertexes; and identifying a first one of the candidate opera­
tions as being concurrent with a second one of the candidate
operations concurrent ones of the candidate operations after
determining that the graph does not include a path from the
first candidate operation to the second candidate operation.
[0009] Optionally, in any of the preceding aspects, the
method further comprises: assigning a bit array to each
vertex, each bit in the bit array representing a respective
vertex in the graph; for each vertex, traversing the graph and
setting one of the bits in the bit array corresponding to a
target vertex upon reaching the target vertex during the
traversal of the graph; and determining that the first and
second candidate operations are concurrent when, for the bit
array of the first candidate operation, the bit corresponding
to the second candidate operation is not set.
[0010] Optionally, in any of the preceding aspects, the
method further comprises analyzing each concurrent pair of
candidate operations used to generate the list of potential
distributed concurrency errors to delete, from the list, con­
current pairs of candidate operations that are unlikely to
cause severe failures.
[0011] Optionally, in any of the preceding aspects, for
each concurrent pair of candidate operations, the respective
common object accessed by the concurrent pair candidate
operations is located in a first node and the method further
comprises analyzing one or more portions of the distributed
computing system in which the concurrent pair of candidate
operations occurs to determine whether a distributed con­
currency error caused by out-of-order execution of the
concurrent operations has an effect in a second node differ­
ent from the first node.
[0012] Optionally, in any of the preceding aspects, the
method further comprises modifying threads of the distrib­
uted computing system to determine a relative timing of
each operation in each of the concurrent pairs of operations
during execution of the distributed computing system to
identify actual dynamic concurrency errors.
[0013] Optionally, in any of the preceding aspects, the
method further comprises modifying threads of the distrib­
uted computing system to adjust relative timing of selected
operations in the concurrent pairs of operations during
execution of the distributed computing system to cause
actual distributed concurrency errors in order to determine a
timing sensitivity of the selected operations.
[0014] According to another aspect of the present disclo­
sure, there is provided a computer readable medium com­
prising instructions, that, when executed by a processor,
configure the processor to: trace operations in a distributed
computing system that access objects during execution of
the distributed computing system to generate trace results;
apply a set of happens-before rules to the trace results to
identify candidate operations among the traced operations,

US 2018/0046565 Al

each happens-before rule indicating a first type of operation
that happens before a second type of operation; identify
respective concurrent pairs of the candidate operations that
access respective common objects to generate a list of
potential distributed concurrency errors; execute run-time
analysis tools to adjust an order of occurrence for selected
candidate operations in the concurrent pairs of candidate
operations corresponding to each respective potential dis­
tributed concurrency error occur to confirm the distributed
concurrency error.
[0015] Optionally, in any of the preceding aspects, the
computer readable medium further comprises instructions
that configure the processor to identify, as the candidate
operations, respective pairs of the candidate operations from
respectively different threads that access the respective
common object and include at least one write operation.
[0016] Optionally, in any of the preceding aspects, the
computer readable medium further comprises instructions
that configure the processor to exclusively trace remote
procedure call (RPC) functions, functions that conduct
socket operations, and event handler functions.
[0017] Optionally, in any of the preceding aspects, the
computer readable medium further comprises instructions
that configure the processor to: build an ordered graph of the
candidate operations, each vertex in the graph representing
one of the candidate operations and each edge between two
vertexes in the graph represents a happens-before relation­
ship between the operations represented by the two vertexes;
and identify a first one of the candidate operations as being
concurrent with a second one of the candidate operations in
response to determining that the first and second candidate
operations are not connected in the graph.
[0018] Optionally, in any of the preceding aspects, the
computer readable medium further comprises instructions
that configure the processor to: assign a bit array to each
vertex, each bit in the bit array representing a respective
vertex in the graph; for each vertex, traverse the graph and
set one of the bits in the bit array corresponding to a target
vertex upon reaching the target vertex during the traversal of
the graph; and determine that the first and second candidate
operations are concurrent when, for the bit array of the first
candidate operation, the bit corresponding to the second
candidate operation is not set.
[0019] Optionally, in any of the preceding aspects, the
computer readable medium further comprises instructions
that configure the processor to analyze the concurrent pairs
of candidate operations used to generate the list of potential
distributed concurrency errors to delete, from the list, con­
current pairs of candidate operations that are unlikely to
cause severe failures.
[0020] Optionally, in any of the preceding aspects, the
computer readable medium further comprises instructions
that configure the processor to, responsive to the respective
common object accessed by the concurrent candidate opera­
tions being located in a first node, analyze one or more
portions of the distributed computing system in which the
concurrent pairs of candidate operations occur to determine
whether a distributed concurrency error caused by out-of­
order execution of the concurrent candidate operations has
an effect in a second node different from the first node.
[0021] According to yet another aspect of the present
disclosure, there is provided a method for processing com­
ponents of a distributed computing system to identify dis­
tributed concurrency errors, the method comprising: gener-

2
Feb. 15,2018

ating a trace distributed computing system by insert trace
commands into the distributed computing system, the trace
commands tracing access to objects in RPC functions,
functions that conduct socket operations and event handler
functions; executing the trace distributed computing system
to collect trace data; analyzing the trace data to build a graph
having vertexes corresponding to operations that access the
objects and edges corresponding to happens-before rules
connecting the operations; analyzing the graph to identify
candidate pairs of operations that potentially cause the
distributed concurrency errors; modifying the distributed
computing system to provide a distributed computing sys­
tem having adjustable timing; and executing the distributed
computing system having adjustable timing multiple times
while adjusting the timing to identify which candidate pairs
of operations produce actual distributed concurrency errors.
[0022] Optionally, in any of the preceding aspects, build­
ing the happens-before graph includes building a directed
acyclic graph.
[0023] Optionally, in any of the preceding aspects, modi­
fying the distributed computing system includes using at
least one of a static bytecode analysis framework or a
dynamic bytecode transformation framework.
[0024] According to yet another aspect of the present
disclosure, there is provided an apparatus comprising: a
processing unit coupled to a distributed computing system,
the processing unit configured to: trace operations in the
distributed computing system that access objects during
execution of the distributed computing system to generate
trace results; apply a set of happens-before rules to the trace
results to identify candidate operations among the traced
operations, each happens-before rule indicating a first type
of operation that happens before a second type of operation;
identify respective concurrent pairs of the candidate opera­
tions that access respective common objects to generate a
list of potential distributed concurrency errors; and adjust an
order of occurrence for selected candidate operations in the
concurrent pairs of candidate operations corresponding to
each respective potential distributed concurrency error occur
to confirm the distributed concurrency error.
[0025] Optionally, in any of the preceding aspects the
processing unit is further configured to identify, as the
candidate operations, respective pairs of the candidate
operations from respectively different threads that access the
respective common object and include at least one write
operation.
[0026] Optionally, in any of the preceding aspects the
processing unit is further configured to exclusively trace
remote procedure call (RPC) functions, functions that con­
duct socket operations, and event handler functions.
[0027] Optionally, in any of the preceding aspects the
processing unit is further configured to: build an ordered
graph of the candidate operations, each vertex in the graph
representing one of the candidate operations and each edge
between two vertexes in the graph represents a happens­
before relationship between the operations represented by
the two vertexes; and identify a first one of the candidate
operations as being concurrent with a second one of the
candidate operations in response to determining that the first
and second candidate operations are not connected in the
graph.
[0028] Optionally, in any of the preceding aspects the
processing unit is further configured to: assign a bit array to
each vertex, each bit in the bit array representing a respec-

US 2018/0046565 Al

tive vertex in the graph; for each vertex, traverse the graph
and set one of the bits in the bit array corresponding to a
target vertex upon reaching the target vertex during the
traversal of the graph; and determine that the first and second
candidate operations are concurrent when, for the bit array
of the first candidate operation, the bit corresponding to the
second candidate operation is not set.

[0029] Optionally, in any of the preceding aspects the
processing unit is further configured to analyze the concur­
rent pairs of candidate operations used to generate the list of
potential distributed concurrency errors to delete, from the
list, concurrent pairs of candidate operations that are
unlikely to cause severe failures.

[0030] Optionally, in any of the preceding aspects the
processing unit is further configured to, responsive to the
respective common object accessed by the concurrent can­
didate operations being located in a first node, analyze one
or more portions of the distributed computing system in
which the concurrent pairs of candidate operations occur to
determine whether a distributed concurrency error caused by
out-of-order execution of the concurrent candidate opera­
tions has an effect in a second node different from the first
node.

[0031] According to yet another aspect of the present
disclosure, there is provided an apparatus for processing
components of a distributed computing system to identify
distributed concurrency errors, the apparatus comprising: a
processing unit configured to: insert trace commands into
the distributed computing system to generate a trace distrib­
uted computing system, the trace commands tracing access
to objects in RPC functions, functions that conduct socket
operations and event handler functions; cause the trace
distributed computing system to execute to collect trace
data; analyze the trace data to build a graph having vertexes
corresponding to operations that access the objects and
edges corresponding to happens-before rules connecting the
operations; analyze the graph to identify candidate pairs of
operations that potentially cause the distributed concurrency
errors; modify the distributed computing system to provide
a distributed computing system having adjustable timing;
and cause the distributed computing system having adjust­
able timing to execute timing multiple times while adjusting
the timing to identify which candidate pairs of operations
produce actual distributed concurrency errors.

[0032] Optionally, in any of the preceding aspects the
apparatus further comprises at least one of a static bytecode
analysis framework or a dynamic bytecode transformation
framework for modifying the distributed computing system.

[0033] Any one of the foregoing examples may be com­
bined with any one or more of the other foregoing examples
to create a new embodiment within the scope of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIG. 1 is a block diagram of a simple distributed
cloud system.

[0035] FIGS. 2A and 2B are timing diagrams that are
useful for illustrating a distributed concurrency error.

[0036] FIG. 3 is a timing diagram of another distributed
cloud system.

[0037] FIGS. 4 and 5 are state space diagrams showing
different classifications of concurrency errors.

3
Feb. 15,2018

[0038] FIG. 6 is a state space diagram and timing diagram
illustrating an asynchronous communication concurrency
rule according to various embodiments.
[0039] FIG. 7 is a state space diagram and timing diagram
illustrating an RPC concurrency rule according to various
embodiments.
[0040] FIG. 8 is a state space diagram and timing diagram
illustrating an inter-process communication concurrency
rule according to various embodiments.
[0041] FIGS. 9A and 9B are a state space diagram and
timing diagram illustrating a concurrency rule for commu­
nication among three systems.
[0042] FIGS. l0A and l0B are flowchart diagrams of
example systems for detecting concurrency errors according
to various embodiments.
[0043] FIGS. 11 and 12 are timing diagrams illustrating
example techniques for triggering run-time concurrency
errors according to various embodiments.
[0044] FIG. 13 is a block diagram of an example server
that may be used as any of the described examples.

DETAILED DESCRIPTION

[0045] In the following description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
which may be practiced. These embodiments are described
in sufficient detail to enable those skilled in the art to
practice the invention, and it is to be understood that other
embodiments may be utilized and that structural, logical and
electrical changes may be made without departing from the
scope of the present invention. The following description of
example embodiments is, therefore, not to be taken in a
limited sense, and the scope of the present invention is
defined by the appended claims.
[0046] The examples below describe a system, DCatch,
for detecting DCbugs. DCatch predicts DCbugs by analyz­
ing and monitoring the execution of distributed cloud sys­
tems. The DCatch system uses a set of "happens-before"
rules that model the wide variety of communication and
concurrency mechanisms used in real-world distributed
cloud systems. Each example happens-before rule constrains
two actions such that one happens before the other. Based on
the set of happens-before rules, the example DCatch system
builds run-time tracing and trace analysis tools to effectively
identify concurrent and conflicting memory accesses in a
distributed cloud system. Once these memory accesses are
identified, the DCatch system employs static and dynamic
tools to help prune false positives and to trigger DCbugs
during testing.
[0047] Due to the importance of the subject matter
handled by distributed systems, users of the systems expect
high reliability, which unfortunately is challenging to guar­
antee due to the complexity of the inter-process communi­
cation software used by the systems.
[0048] Among all types of errors in distributed systems,
distributed concurrency errors, referred to as DCbugs, are
among the most troublesome. These errors are triggered by
untimely interaction among nodes and could propagate
resulting in further errors beyond one node. Previous studies
have shown that DCbugs widely exist in real-world distrib­
uted systems, causing a wide variety of failure symptoms
such as data corruptions, system crashes, and job hangs.
[0049] The materials below describe the DCatch system in
the context of a distributed data management system. It is

US 2018/0046565 Al

contemplated, however, that DCatch may be used in any
distributed computing system including, without limitation,
multiplayer gaming systems, workforce collaboration sys­
tems and systems providing web or cloud-based services.
Furthermore, although the examples described below show
the servers as being separate entities, it is contemplated that
two or more of the servers may be implemented in a single
machine, for example as virtual machines.
[0050] FIG. 1 is a block diagram of a simple distributed
cloud system employing three servers a network manager
102, a client 104 and an application manager 106. The three
servers communicate via a network 108 which may be a
local area network (LAN), a wide area network (WAN), or
a global communication network (e.g. the Internet). The
example network may include both wired and wireless
components.
[0051] FIGS. 2A and 2B are timing diagrams that are
useful for illustrating a distributed concurrency error. FIG.
2A illustrates a real-world example of distributed concur­
rency from Hadoop® MapReduce™. As shown, a thread
running on the client 104 requests a task from the application
manager 106 as shown by the arrow 202. The application
manager 106 then assigns the task to a container in the
network manager 102 as shown by the arrow 204. The
network manager then retrieves the task from the application
manager 106 as shown by the arrow 206. The client 104
cancels the task as shown by the arrow 208 after the network
manager has been allowed access to the task. The example
shown in FIG. 2A does not exhibit concurrency errors
because the thread running on the network manager 102
accesses the task running on application manager 106 before
the thread running on the client 104 cancels the task.
[0052] FIG. 2B shows a similar scenario which includes a
distributed concurrency error (DCbug). In the example
shown in FIG. 2B, the error is triggered by unexpected
timing among node manager 102, application manager 106,
and the client 104. After the application manager 106 assigns
the task to the container in the network manager 102, the
network manager container tries to retrieve the content of
the task from application manager 106. At the time the
retrieval request is delivered to application manager 106,
however, the task has already been canceled upon a request
from the client 104. Not anticipating this timing scenario,
the network manager 102 container hangs, as indicated by
the looping arrow 212, waiting forever for application
manager 106 to return the task.
[0053] DCbugs are non-deterministic and, thus, may be
difficult to find in the large state space of a distributed system
spreading across multiple nodes.
[0054] There are only a few sets of approaches that tackle
DC bugs including: software model checking, verification,
verifiable language, and record and replay debugging.
Although these techniques are powerful, they suffer from
inherent limitations. Distributed system model checkers may
be subject to state-space explosion and may take hours or
even days to complete. Verification approaches require thou­
sands of lines of proof to be written for every protocol; no
verifiable language has yet been deployed, as low-level
imperative languages are still popular for performance rea­
sons. Record and replay techniques cannot help discover
bugs until software fails. Furthermore these techniques are
of limited effectiveness effective for debugging DCbugs
because it is difficult to log all timing-related events across
the distributed systems.

4
Feb. 15,2018

[0055] Local concurrency (LC) may be detected using
dynamic bug-detection. In a nutshell, dynamic bug-detec­
tion techniques monitor and analyze memory accesses and
synchronization operations to identify conflicting and con­
current memory accesses as local concurrency errors
(LCbug) suspects. In this sense, "conflicting" means that
multiple accesses are touching the same memory location
with at least one write access. The term "concurrent" means
that there is no happens-before causality relationship
between accesses, and hence accesses can happen one right
after the other in any order. These dynamic bug-detection
techniques do not guarantee finding all bugs and often report
many false positives. However, the LC techniques can be
applied to large existing real-world systems implemented in
popular languages, with limited annotation or code changes
from the developers.
[0056] The example DCbug detection tools described
below are guided by an understanding of DCbugs. DCbugs
have fundamentally similar root causes to LCbugs: unex­
pected timing among concurrent conflicting memory
accesses to the same memory location inside one machine.
As described above with reference to FIG. 2B, for example,
although the DCbug occurs due to triggering and error
propagation among multiple nodes the fundamental problem
is that an event handler running on the client 104 could
delete the task concurrently with a remote procedure call
(RPC) function reading the same entry. Developers do not
expect this sequence of events.
[0057] The example DC bug detection tool abstracts the
causality relationship in target systems into a few happens­
before (HB) rules. An example of such an HB rule in
multithreaded software is that thread creation "happens
before" thread execution. These rules are followed to build
an HB graph representing the timing relationship among all
memory accesses in a target system; finally, all pairs of
concurrent conflicting memory accesses are identified based
on this HB graph.
[0058] DCbugs and distributed systems differ from
LCbugs and single-machine systems in several aspects,
which raise several challenges to DCbug detection.
[0059] First, DCbugs have a more complex timing rela­
tionship than LCbugs. Although root-cause memory
accesses of DCbugs are in the same machine, reasoning
about their timing relationship is complicated because the
requests for access may come from different machines.
Within each distributed system, concurrent memory
accesses are conducted not only at the thread level but also
at the node level and at the event level, using a diverse set
of communication and synchronization mechanisms such as
RPCs, queues etc. Across different systems, there may be
different choices of communication and synchronization
mechanisms, which are not always standardized as entries in
a portable operating system interface (POSIX) thread library
in multi-threaded software or in an Android event and/or in
an inter-process communication (IPC) library in event­
driven mobile apps. Thus, designing HB rules for real-world
distributed systems is not trivial. Wrong or incomplete HB
modeling may jeopardize both the accuracy and the cover­
age of DCbug detection.
[0060] A second challenge for detecting DCbugs is the
larger scale of the systems and the errors. Distributed
systems typically have a larger scale than single-machine
systems. Distributed systems contain more nodes and col­
lectively more dynamic memory accesses. A DCbug also

US 2018/0046565 Al

operates on a larger scale than an LCbug. For example, the
DCbug shown in FIG. 2B involves three nodes, client,
application manager, and network manager, in its triggering
and error propagation. The larger system scale poses scal­
ability challenges to identifying DCbugs among a large
number of memory accesses. The larger bug scale also
benefits from new techniques to analyze and identify the
DCbugs.
[0061] A third challenge concerns fault-tolerance. Distrib­
uted systems may include redundancy in order to tolerate
component failures. The fault-tolerance design of distributed
systems sometimes cures intermediate errors and sometimes
amplifies errors, making it difficult to judge which errors are
truly harmful.
[0062] Based on the above understanding of opportunities
and challenges, an example DC bug detection tool, DCatch,
is described below. There are two stages in the development
of DCatch: first, generation of the HB model for DC bugs
and second, the design of the components of DCatch.
[0063] The first step builds a HB model on which DCatch
will operate. This model is based on a study of representative
open-source distributed cloud systems. The example HB
model includes a set of HB rules that cover inter-node
communication, intra-node asynchronous event processing,
and intra-node multi-threaded computation and synchroni­
zation.
[0064] After building the HB model, the next step is to
build the DCbug-detection tool DCatch customized to
address the unique challenges in detecting DCbugs. The DC
catch tool includes four components: run-time tracing, off­
line trace analysis, static bug report pruning, and DCbug
testing and triggering.
[0065] The run-time tracer component traces memory
accesses, event-queue operations, inter-node RPCs, socket
communication, and other potentially conflicting memory
accesses as the system runs. This component focuses on
memory accesses related to inter-node communication and
computation and helps the system to address the large-scale
challenge in DCbug detection and allow the scaling of
DCatch to large real-world distributed cloud systems.
[0066] The off-line trace analysis component analyzes the
run-time traces to construct an HB graph for all recorded
memory accesses following the HB model and reports all
pairs of concurrent conflicting accesses (i.e., DCbug candi­
dates). The key contribution in this stage is the construction
of HB graph for the distributed system.
[0067] The static pruning module analyzes the program to
determine the local impact and distributed impact of a
DCbug candidate. This component helps to determine
whether a particular DCbug candidate may be harmful,
avoiding excessive false positives.
[0068] The DCatch bug-triggering module runs a modified
version of the system that monitors and/or manipulates the
timing of distributed execution according to the bug report,
while considering the diverse concurrency and communica­
tion mechanisms in distributed systems. This module helps
trigger true bugs and further prunes false positives.
[0069] As described above, the DCatch Happens-Before
(HB) Model is based on an analysis of multiple distributed
cloud data processing systems. A goal of the HB model is to
abstract a set of happens-before rules that may be applied to
a variety of distributed cloud systems. Every rule R repre­
sents one type of causality relationship between a pair of

R

operations, o, in these systems, a rule is denoted as ol ⇒ o2.

5
Feb. 15,2018

These rules are based on the timing relationship between any
two operations ol and o2. Specifically, a set ofHB rules may

be identified to chain ol and o2 together (e.g. ol ::S ool

b 002 ... ook-1 ::S o2) when it is known that ol must
happen before o2, denoted as ol ⇒ o2. If neither ol ⇒ o2 nor
o2 ⇒ o 1 is true, o 1 and o2 are concurrent and hence can
execute side by side in any order. The set of HB rules is
desirably comprehensive and precise to allow DCatch to
accommodate the complicated timing relationship in distrib­
uted systems such as the one shown in FIG. 3 and achieve
good bug detection accuracy and coverage.
[0070] FIG. 3 is a timing diagram of a distributed cloud
system including multiple threads running on multiple
nodes. In node 1, 301, a method running on thread 306
performs a write operation 304 to a system variable. At 308,
the method creates a new thread 310, which executes a
remote procedure call to start a method 314 in thread 318
running on node 2, 302. At block 316, the method 314 adds
an event to an event handler 320 running on thread 324. The
coordinator pulls the event 322 from thread 324 and pushes
a notification to method 328 running in thread 332 of node
1. Method 328 executes a read operation 330 on the variable
that operation 304 wrote. Because of the number of different
threads and communication modes, it may be difficult to
determine whether performing operation 330 before opera­
tion 304 will cause a distributed concurrency error (DCbug).
[0071] The examples below are derived from concurrency
and communication mechanisms that encompasses repre­
sentative real-world cloud systems, from which the HB rules
were extracted.

[0072] As described above, the HB concurrency rules may
include rules for local concurrency errors (LCbugs) and
distributed concurrency errors (DCbugs). Each of the
LCbugs and DCbugs may be further divided into errors
generated from synchronous and asynchronous operations
and into errors generated from customized and standard
operations. FIGS. 4 and 5 are state space diagrams showing
different classifications of concurrency errors. FIG. 4 illus­
trates the partitioning cube where the shaded block 402
represents DCbugs caused by synchronized standard opera­
tions, block 404 represents DCbugs caused by asynchronous
custom operations, block 406 represents DCbugs caused by
asynchronous standard operations, and block 408 represents
DCbugs caused by synchronous standard operations. For
local concurrency errors (LCbugs), block 412 represents
LCbugs caused by synchronized standard operations, block
414 represents LCbugs caused by asynchronous custom
operations, and block 410 represents LCbugs caused by
synchronous standard operations. Another block (not shown
in FIG. 4) represents LCbugs caused by asynchronous
standard operations. This partitioning of concurrency errors
is further illustrated in FIG. 5 which uses the same num­
bering as FIG. 4 and shows block 502 representing LCbugs
caused by asynchronous standard operations. The example
DCatch tool focuses on the shaded blocks, 402, 404, 406 and
408 shown in FIG. 5 (i.e. distributed, synchronous and
asynchronous, custom and standard operations).

[0073] Every distributed system involves multiple paral­
lel-executing nodes that communicate with each other
through messages, as exemplified in FIGS. 6 and 7. An
analysis of inter-process messaging produces multiple mes­
sage-related HB rules, referred to herein as Rule-M, based
on different communication patterns.

US 2018/0046565 Al

[0074] FIG. 6 is a state space diagram and timing diagram
illustrating an asynchronous communication concurrency
rule. FIG. 6 illustrates a remote procedure call (RPC) which
is a synchronized standard operation as shown by the shaded
block 408. A thread 602 running on machine A calls an RPC
function r (606) implemented in a thread 608 on machine B.
Thread 602 waits (612) until thread 608 sends back the RPC
execution result 610.
[0075] This communication pattern indicates the follow­
ing HB rules. Making an RPC call r on node 1, denoted as
Create (r, n 1), happens before the beginning of the RPC
function execution in node 2, denoted as Begin (r, n2).

Furthermore, the end of the RPC function execution on node
2, denoted as End (r, n2), happens before the return from the
RPC call r in the RPC-calling node 1, denoted as Join(r, n 1).

M-

Ru)e-MPc:Create(r,nl) ⇒ Begin(r,n2);End(r,n2)

[0076] FIG. 7 is a state space diagram and timing diagram
illustrating an RPC concurrency rule. FIG. 7 shows an
asynchronous socket communication as illustrated by the
block 406. A thread 702 in node 1 (704) sends a message m
to a thread 706 in node 2 (708) through network sockets.
Unlike RPC, the sender does not block itself. Instead, it can
choose to block itself from listening to a socket for an
incoming message. Clearly, the sending of message m
happens before the receiving of m, resulting in the rule
Msoc_

M-
Ru)e-M50C,send(m,n1) ⇒ Recv(m,n2)

[0077] In addition to the above two types of basic com­
munication mechanisms the examples below address two
other types of high-level synchronization protocols among
nodes. Each of these types of communication is imple­
mented using a combination of RPC/socket communication
and intra-node computation. Consequently, each communi­
cation type is assigned its own HB rules.

[0078] The first type of communication is push-based
notification protocol, which is a customized asynchronous
communication as shown by the shaded block in FIG. 9A.
This communication is illustrated in FIG. 9B, which is
described below in greater detail. For the push-based noti­
fication, a thread 924 in a node n 1 (902) updates an object,
s, with a write operation, w, to a thread 932 in a dedicated
coordination node ne (926) and ne notifies all related nodes,
such as n2 (901), about this update. Clearly, the update of s
by ni, denoted as Update (s, n 1), happens before the noti­
fication about the update is delivered at n2 (901), denoted as
Pushed (s, n2). For example, HBase® nodes sometimes
communicate through ZooKeeper™. ZooKeeper is a cen­
tralized service for maintaining configuration information,
naming, providing distributed synchronization, and provid­
ing group services. In coordination systems similar to Zoo­
Keeper, other programs register keys with the system and are
notified of any changes associated with the key. HBase is a
non-relational distributed database that may be used with the
Hadoop distributed file system (HDFS). Hbase provides a
mechanism for storing large amounts of sparse data.

[0079] In the first type of communication, a node registers
a zknode with a specific path on ZooKeeper; ZooKeeper
then notifies this node of all changes to the zknode from
other nodes.

Rule-M"u'h:Update(s,n1) ⇒ Pushed(s,n2)

6
Feb. 15,2018

[0080] Note that, this rule is not redundant given Rule­
Mrpe and Rule-Msoe_ Rule Mpush can be decomposed into
three chains of causality relationship:

Send(s,nc) ⇒ Pushed(s,n2)

(2)

(3)

where ne is the node 926 which includes the ZooKeeper
coordinator.
[0081] Chain (2) may be difficult to figure out, as it
involves complicated intra-node computation and synchro­
nization in ne, which guarantees that every node interested
ins gets a notification. Even for chains (1) and (3), there is
no guarantee that Rule-Mrpe and Rule-Msoe can figure them
out, because the communication among nodes n1 (902), n2

(901) and ne (926) often contains more than just one RPC/
socket message.
[0082] The second type of notification is a pull-based
notification protocol. FIG. 8 is a state space diagram and
timing diagram illustrating an inter-process communication
concurrency rule. A thread 806 in node n2 (808) keeps
polling node n 1 (802) about a status object s (e.g. the state
of the variable Flag) in n1 . Node n2 does not proceed until
it learns that s has been updated to a specific value by n 1 .

This HB rule may be abstracted as the definition of a status
sin n1 happening before the use of this status on n2 (e.g. in
thread 810). This type of synchronization occurs in Hadoop
MapReduce and HBase.

M"""

Rule-M"u11:Update(s,n 1) => Pulled(s,n2)

[0083] Again, this rule is not redundant given other HB
rules, because of the complicated intra-node semantics in n1 .

Traditional HB rules cannot establish the causality between
s being set and s being read by an RPC function in another
thread or being serialized into a socket message. This rule is
similar to a distributed version of the while-loop custom
synchronization in single-machine systems.
[0084] In addition to the messaging rules, it is useful to
define rules for Intra-node concurrency and communication.
Within each node, there may be multiple threads. FIGS. 9A
and 9B are a state space diagram and timing diagram
illustrating a concurrency rule for communication among
three systems. As shown in FIG. 9B, some of these threads
(e.g. 918) are dedicated for running RPC function imple­
mentations; some (e.g. 924) are event handling threads; and
some (e.g. 906 and 932) are regular threads for example,
threads in single-machine multi-threaded software. These
DCbugs are generated by asynchronous custom operations
as illustrated by shaded block 404.
[0085] The creation of a thread tin the parent thread,
denoted as Create(t), happens before the beginning of t,
denoted as Begin(t). The end of a thread t, denoted as End(t),
happens before the join of tin another thread Join(t).

Rule- Jfork:Create(t) S Begin(/)

,,.
Rule-P0

;
0 :End(t)~ Join(/)

[0086] Theoretically, there is another valid thread-related
HB rule: condition-variable-notify happens before the exit
of the corresponding condition-variable-wait. Condition­
variable-notify and condition-variable-wait, however, are
almost never used in the code regions that are related to
inter-node communication and computation. As described

US 2018/0046565 Al

above, the example systems detect DCbugs by analyzing
inter-node communication and computation.
[0087] Finally, as described below, while the example
DCatch system traces lock/unlock operations, DCatch does
not address lock synchronization because locks are used to
provide mutual exclusions, not strict ordering. However, as
described below, DCatch may use lock/unlock operations to
trigger some DCbug candidates. Knowledge of lock/unlock
operations may be beneficial to avoid hangs when DCatch
tries to manipulate the timing and trigger a DCbug candi­
date. Therefore, DCatch traces lock and unlock operations,
including both implicit lock operations (i.e., synchronized
methods and synchronized statements) and explicit lock
operations.
[0088] Many distributed systems conduct asynchronous
event-driven processing, essentially creating concurrency
inside a thread. Events may be put into a queue by any
thread. A dispatcher thread is typically responsible for taking
out events from a queue, and assigning them to event­
handling thread(s), where pre-defined event handlers are
executed. Clearly, the enqueue of an event e, denoted as
Create(e), happens before the beginning of the handler­
function of e, denoted as Begin(e).

Rule-Eenq:Create(e)S Begin(e)

[0089] For two events e1 and e2 from the same queue, the
timing between their handling may depend on several prop­
erties of the queue: is the queue a FIFO queue? how many
dispatching threads are there? how many handling threads
are there? For many systems, all of the queues are FIFO and
every queue has only one dispatching thread. Consequently,
the handling of e1 and e2 is serialized when the queue
containing e1 and e2 is equipped with only one handling
thread, and is concurrent otherwise. The former type of
queues are referred to as single-consumer queues. All the
queues in Zookeeper and some queues in MapReduce are
single-consumer queues. The handling of their events fol­
lows the following HB rule.

E~'"'

Rule-E'er;aZ,End(e 1) => Begin(e2),if Create(e 1)

⇒create(e2)

where e1 EQ, e2EQ, and Q is a single-consumer FIFO queue.
[0090] The described examples also employ rules for
sequential program ordering. According to the classical
happens-before model, if operation o1 occurs before opera­
tion oz during the execution of one thread, o1 happens before
o2 . That is, the execution order within one thread is deter­
ministic.

,-·
Rule-_preg:o 1 => o2

if o1 occurs before o2 during the execution of a regular
thread.
[0091] This happens-before rule holds only for threads
that do not contain any intra-thread concurrency. In distrib­
uted systems, this rule does not hold for event handling
threads and RPC threads. In these two types of threads, the
above rule holds only when o1 and o2 are inside the same
event handler function or RPC function.

,-
Rule-.P1reg:01 => 02

if o1 occurs before o2 during the execution of one event
handler or one RPC function.
[0092] The above message, task, event and program
(MTEP) rules constitute the DCatch HB model. By its
formalism of different levels of concurrency, DCatch HB

7
Feb. 15,2018

model allows the precise modeling of the timing relationship
among two operations in real-world distributed cloud sys­
tems.
[0093] For example, for the real example demonstrated in
FIG. 9B, it can be inferred that the write operation, w (904),
occurs before the read operation, r (930), (i.e. w ⇒ r),
because of the following chain of happens-before relation­
ship:

P"' T"" P~'

w =>Create(/)=> Begin(/)=> Create(OpenRegion,
M"" P"""

HMaster) ⇒ Begin(OpenRegion,HRS) => Cre-

ate(e) S Begin(e) S Update(RS ...
M"'

OPENED,HRS) ~ Pushed(RS ... OPENED,
,-·

HMaster) => r

With reference to FIG. 9B, this HB relationship translates to
the write operation w (904 in thread 906) occurs before the
create operation 908 that creates thread 910. The RPC call
at 912 in thread 910, initiates procedure OpenRegion 914 in
thread 918. OpenRegion 914, at 916 places event e into the
event queue 922 in event handler 920 of thread 924. Event
e is updated by coordinator 926 and then pushed to RS ...
Opened 928 which performs the read operation r (930). The
operation of the coordinator 926 informs the method 928 in
thread 932 of the event 922 in the event handler 920, as
illustrated by the dashed arrow 923.
[0094] It is noted that, the example DCatch system inten­
tionally ignores certain causality relationships in the distrib­
uted computing system that do not affect the overall goal of
detecting DCbugs. For example, incoming RPC calls are
actually first put into queue(s) before they are assigned to
RPC threads. The Rule-Rrpc, however, abstracts away these
queues that belong to RPC-library implementations. Also,
an event dispatching process exists between the enqueuing
of an event and the beginning of the event handling there
exists an event dispatching process. This event dispatching
process is also abstracted away in our Rule-Eenq_ Further­
more, as described above, the example model does not
consider condition-variable notify-and-wait causality rela­
tionship, because it is almost never used in the inter-node
communication and computation part of distributed systems.
[0095] The materials below describe examples of the four
components ofDCatch based on the model and rules defined
above. The four components include tracing, applying HB
rules, triage to identify significant potential DCbugs, and
triggering of the significant DCbugs. The example DCatch
system is described with reference to FIGS. l0A and 10B.
FIG. lOA is a flowchart diagram of an example system for
detecting concurrency errors that shows the sequence of the
basic operations. At block 1002, the DCatch system traces
access to objects during execution of the distributed system
and generates trace results. Block 1004 applies happens­
before rules to the trace results to identify candidate opera­
tions. Block 1006 identifies concurrent pairs of the candidate
operations, each pair accessing a respective common object
and having at least one write operation. These candidate
pairs represent potential DCbugs. At block 1008, the DCatch
system uses run-time analysis tools to identify to determine
which potential DCbugs are actual DCbugs.
[0096] In the tracing component, 1002, DCatch inserts
commands into the distributed computing system to produce
a trace file for every relevant thread of the targeted distrib­
uted systems at run time. The traces in this file allow a trace
analyzer, 1004, to apply HB rules and identify significant

US 2018/0046565 Al

potential DCbugs, as described below. In one example
system, the tracing component is implemented using
WALA™, a static Java® bytecode analysis framework,
and/or Javassist™, a dynamic Java bytecode transformation
framework. It is contemplated that other bytecode analysis
software could be used in place of WALA, for example, the
Soot™ Java bytecode analysis framework. Similarly, other
dynamic Java bytecode transformation frameworks, such as
the ASM™ framework may be used instead of Javaassist.
Details of this example implementation are described below
with reference to FIG. lOB.
[0097] The first example trace component 1052 deter­
mines which operations to trace. In one example, DCatch
collects information about two basic components of
DCbugs: memory accesses and RB-related operations. As
described below, the example DCatch also traces lock/
unlock operations.
[0098] Memory access tracing may be performed, naively,
by recording (e.g. logging) all accesses to program variables
that could potentially be shared among threads or event
handlers. This exhaustive approach, however, may lead to
very large logging and trace analysis cost. Fortunately, such
excessive logging is unnecessary for DCbug detection
because not all of the software needs to be analyzed. In
particular, DCbugs are triggered by inter-node interaction,
with the root-cause memory accesses mainly in code regions
related to inter-node communication and computation.
[0099] Following this design principle, the DCatch trace
1052 traces all accesses to heap objects and static variables
in the following three types of functions and their callee
functions: (1) RPC functions; (2) functions that conduct
socket operations; and (3) event-handler functions. The first
two are directly related to inter-node communication and
corresponding computation. The third type is considered
because many pre- or post-processing of RPC calls and
socket sending and receiving operations are conducted
through event queues and event handlers.
[0100] Once the trace operation has traced these opera­
tions, DCatch, at block 1054, analyzes the trace and applies
RB rules. Following the MTEP happens-before rules
described above, the example DCatch system traces opera­
tions that allow the trace analyzer to infer happens-before
relationships, as shown in TABLE 1.

TABLE 1

Operation T-Rule E-Rule M-Rule P-Rule

Create (t), Join(t) ✓
Begin (t), End (t) ✓
Begin (e) ✓ ✓
End (e) ✓
Create (e) ✓
Begin (r, n) End (r, n) ✓
Create (r, n) Join (r, n) ✓
Send (m, n 1) Recv (m, n2) ✓
Update (s, n1) Pushed (s, n2) ✓

[0101] The example DCatch system may identify these
operations based on corresponding library interfaces at run
time using the Javassist infrastructure. An example imple­
mentation of this example system is described in more detail
below.
[0102] Each trace record contains three pieces of infor­
mation: (1) the type of the recorded operation; (2) the
callstack of the recorded operation; and (3) an identifier

8
Feb. 15,2018

(ID). The first two pieces of information are straightforward.
The ID, however, has different meanings for different types
of records. In the example DCatch system, the ID helps
DCatch trace analyzer to find related trace records.
[0103] For a memory access, the ID may uniquely identify
the variable or object touched by this memory access. In one
example system, the ID of an object field is represented by
the field-offset inside the object and the object hashcode.
The ID of a static variable is represented by the variable
name and its corresponding namespace.
[0104] For lock/unlock operations, the IDs uniquely iden­
tify the lock objects, allowing DCatch's triggering module
to identify all lock critical sections and perturb the timing at
appropriate places.
[0105] For RB-related operations, the IDs allow DCatch
trace analysis to correctly apply RB rules. For every thread­
related and event-related operation, the ID may be an object
hashcode of the corresponding thread object and event
object, respectively. Each RPC-related and socket-related
operation may have a unique ID for each RPC-call instance
and each socket-message. These RPC and socket related IDs
may be generated by tagging each RPC call and each socket
message with a random number at run time. An example
implementation of this example system is described in more
detail below.
[0106] The example DCatch trace analyzer identifies
every pair of heap/static-variable accesses, with at least one
write operation, that touch the same variable or object and
that occur concurrently. In one implementation, operations
not linked by an RB relationship, either directly or indirectly
are considered to be concurrent. Concurrency may be deter­
mined, as described below, using a happens-before graph of
the target distributed system. The identified pairs of accesses
are considers to be DCbug candidates.
[0107] The example DCatch trace analysis includes two
steps: happens-before graph construction, block 1056, and
DCbug candidate identification, block 1058.
[0108] A happens-before graph is a directed acyclic graph
(DAG). In this graph, every vertex v represents an operation
o(v) recorded in the example DCatch trace, including both
memory accesses and RB-related operations. The edges in
the graph are arranged in a way that v 1 can reach v 2 if and
only if o(v1) happens before o(v2).

[0109] To build such a graph, the example DCatch system,
at block 1056, first analyzes all trace files collected from all
traced threads of all traced processes in all nodes, and makes
every record a vertex in the graph. The amount of data to be
analyzed is reduced since the only functions traced are RPC
functions, functions that conduct socket operations, event­
handler functions and their called functions.
[0110] Next, DCatch adds edges according to the MTEP
happens-before rules, described above and shown in TABLE
1. The materials below describe only the application of the
fferiaZ and M1'u11 rules. The application of the other rules are
mostly straightforward because the ID inside each trace
record allows the trace analysis to easily group related
operations together.
[0111] To apply the single-consumer event-queue rule
(ffenaz), the DCatch RB graph builder 1056 waits until all
other RB rules have been applied, which is the only ordering
requirement in applying the MTEP RB rules. For every
thread that handles a single-consumer event queue, the
DCatch graph builder 1056 checks every pair of End (e,)
operation and Begin (e) operation recorded in its trace, and

US 2018/0046565 Al

adds an edge from the former to the latter after the DCatch
graph builder 1056 finds that Create (e,) to happen before
Create (e) based on those HB edges added so far. DCatch
repeats this step until reaching a fixed point.

[0112] Applying Rule M1'u11 uses program analysis. The
algorithm here is similar to how loop-based custom syn­
chronization is handled in LCbug detection. For every pair
of conflicting concurrent read and write { r, w} operations, r
is considered to be potentially part of a pull-based synchro­
nization protocol if (1) r is executed inside an RPC function;
(2) the return value of this RPC function depends on r; (3)
in another node that requests this RPC, the return value of
this RPC is part of the exit condition of a loop I. The targeted
software is then run again, tracing only such read operations
(rs) and all write operations (ws) that touch the same object
based on the original trace. The new trace indicates which
write operation w* provides value for the last instance of the
read operation r before the loop 1 exits. If the w* and r
operations are from different threads, the w* operation in
one node happens before the exit of the remote loop 1 in
another node. This part of the analysis is done together with
intra-node while-loop synchronization analysis. Although
the algorithm runs the software for a second time, the
algorithm incurs little tracing or trace analysis overhead,
because it focuses on loop-related memory accesses.

[0113] After the happens-before graph is built, the DCatch
time stamp and concurrency block 1058 can compute a
vector time stamp for every vertex in graph and check every
pair of memory-access vertices to identify conflicting con­
current accesses to the same memory object. Even with the
reduced tracing, this approach may be complex: the number
of vertices may be very large, and each vector time-stamp
may have a large number of dimensions, with each dimen­
sion corresponding to an event handler and/or a RPC func­
tion.

[0114] To speed up this analysis, DCatch uses an algo­
rithm for asynchronous race detection for non-distributed
systems. Briefly, the algorithm first constructs a list contain­
ing all the accesses to an object for every memory object that
appears in trace files. Then, the algorithm enumerates pairs
of accesses in each list where at least one operation in the
pair is a write operation. For each such pair, the block 1058
queries the happens-before graph to see if the operations in
the pair are concurrent. The basic idea is to compute a
reachable set for every vertex in the happens-before graph.
Next, the query looks through the reachable set of one vertex
to see if the other vertex appears in the resulting set. To save
memory space, a bit array may be assigned to each vertex i
to represent the reachable set, where the j th bit is set if the
vertex i can reach vertex j. The algorithm may then traverse
the graph from each vertex i and set a bit for each vertex j
encountered during the traversal. After these arrays are
constructed, the query can get results in constant time. In
other words, concurrence between first and second opera­
tions can be determined without adding time stamps to the
graph. The algorithm identifies first and second operations as
concurrent when the bit representing the vertex of the
second operation is not set in the bit array of the vertex
corresponding to the first operation.

[0115] Block 1058 reports pairs of concurrent conflicting
accesses as DCbug candidates. A candidate pair of accesses
is conflicting if it accesses the same object with at least one

9

Feb. 15,2018

of the accesses being a write operation and it is concurrent
if there is no happens-before relationship between the two
accesses, as indicated by the vertex bit array. The materials
below refer to s and tor (s, t) as the concurrent conflicting
operations (accesses) identified in the trace analysis. Not all
of the candidates, however, can lead to execution failures.
This is particularly true in distributed systems which inher­
ently contain more redundancy and failure tolerance than
single-machine systems.

[0116] To avoid excessive false positives, given a bug
candidate (s, t), the DCatch system, at block 1060, statically
analyzes the related Java bytecode of the target system to
estimate the potential local (i.e., within one node) and
distributed (i.e., beyond one node) impact of this bug
candidate, and prunes the ones that are unlikely to cause
severe failures.

[0117] DCatch pruning block 1060 of the example DCatch
system conducts inter-procedural and inter-node impact
analysis to better suit the failure-propagation nature of
DCbugs in distributed systems. Block 1060 includes a data
structure that classifies the failures to identify the failures
that are to be considered severe failures. The data structure
also identifies what types of instructions are considered
failure instructions. Block 1060 can check whether the
execution of any failure instructions depends on the bug
candidate (s, t).

[0118] There may be different definitions of severe fail­
ures. In one example DCatch system analyzes the following
types of failures and failure instructions: (1) system aborts
and exits, the corresponding failure instructions of which are
invocations of abort and exit functions (e.g., System.exit and
System.abort); (2) severe errors that are printed out or
otherwise output, whose corresponding failure instructions
are invocations ofLog::fatal and Log::error functions in the
studied systems; (3) throwing uncatchable exceptions (using
the Java Throw statement), such as RuntimeException; (4)
infinite loops, where every loop-exit instruction is consid­
ered as a potential failure instruction. Finally, if any iden­
tified failure instructions is inside a catch block, block 1060
consider the corresponding exception throw instruction, if
available, as a failure instruction.

[0119] The above list is configurable, which allows the
example DCatch pruning block 1060 to be configured to
detect DCbugs with different types of impact.

[0120] To determine whether an identified DCbug is a
severe failure, the DCatch pruning block 1060, DCatch
analyzes the program bytecode for every bug report (s, t) to
see whether either sort may have local (i.e., intra-node) or
distributed (i.e., inter-node) impact towards the occurrence
of any failure instructions.

[0121] Pruning block 1060 conducts both intra-procedural
and inter-procedural analysis for local impact analysis.
Given a memory-access statement s located in method M,
block 1060 first checks whether any failure instruction in M
has control- or data-dependence on s. Block 1060 applies
similar checking fort. If block 1060 finds such a depending
failure instruction for either s or t, DCatch keeps the
corresponding bug candidate in its bug-report list.

[0122] Block 1060 then checks whether s could affect
failure instructions inside the callers of M through either the
return value of M or heap/global objects accessed by M.
Note that, from the DCatch tracer and trace analysis report

US 2018/0046565 Al

call-stack information, the inter-procedural analysis per­
formed in block 1060 may follow the reported call-stack of
s.

[0123] To determine the impact through return values,
Block 1060 checks whether the return value of M has control
or data dependence on s. If so, Block 1060 continues to
check whether any failure instructions in the function that
called M depend on the return value of M. Block 1060
follows the call-stack of s to perform similar analysis along
the call chain.

[0124] Checking the impact through heap/global variables
may be more complicated. Block 1060 first checks whether
there exists any heap write w that has data dependency or
control dependency on s inside the method M. For every
such w that writes to object o, DCatch checks the caller of
M, denoted as M', to see if there exists any read, r, of o that
satisfies all the following conditions: (1) the read, r, exists
along a path from the callsite of M to a failure instruction;
(2) that failure instruction has control-dependency or data­
dependency upon the read r. Given the complexity and
in-accuracy concerns (due to alias and others), DCatch only
applies this analysis to one-level caller of M, not further up
the call chain.

[0125] Finally, block 1060 checks whether s could affect
failure sites in the called functions of M (also known as
"callee functions") through either function-call parameters
or heap/global variables. This analysis is also only applied to
the one-level callee functions of M.

[0126] In addition to intra-node analysis, block 1060 also
performs inter-node analysis. As shown in FIG. 2B, an
access in one node may lead to a failure in a different node.
Therefore, DCatch also analyzes RPC functions to under­
stand the remote impact of a memory access.

[0127] Specifically, after block 1060 finds an RPC func­
tion R along the call-stack of the memory access s, it checks
whether the return value of R depends on s. If so, block 1060
then locates the function Mr on a different node that invokes
the RPC call R. Inside Mr. Block 1060 also checks whether
any failure instruction depends on the return value of R.
Note that locating Mr is straightforward given the DCatch
run-time trace.

[0128] Theoretically, block 1060 can also analyze inter­
node impact through sockets. However, socket communica­
tion may not be as structured as RPC invocations, and, thus,
it may be more difficult to identify the corresponding fine­
granularity dependency information without developers
annotation.

[0129] Finally, for a DCbug candidate (s, t), if block 1060
fails to find any failure impact for sand t, block 1060 prunes
the DCbug candidate from the DCatch bug list. In one
example system, the above implementation is done in
WALA code analysis framework, leveraging WALA APis
that build program dependency graphs.

[0130] The DCbug candidates reported so far still may not
be truly harmful for two reasons. First, some reported access
pairs may not be truly concurrent with each other-their
execution order may be fixed by custom synchronization
that was not identified by DCatch. Second, some truly
concurrent conflicting access pairs may be benign---execut­
ing the two accesses in different order may not lead to any
failure. Note that, the failure impact analysis described
above is only a static estimation, and, hence, may be wrong.

10
Feb. 15,2018

Furthermore, even for those truly harmful DCbug candi­
dates, triggering them could be very challenging in distrib­
uted systems.
[0131] To help prune false positives and reliably expose
truly harmful DCbugs, the last component of DCatch, the
testing and triggering blocks 1062 and 1064, provides sup­
port for testing distributed systems and triggering DCbugs.
It includes two parts: (1) an infrastructure that enables easy
timing manipulation in distributed systems; and (2) an
analysis tool that suggests how to use the infrastructure to
trigger a DCbug candidate.
[0132] The DCatch system could perturb the timing of
execution by inserting sleep intervals into the program as
shown in FIG. 11. FIG. 11 is a timing diagram showing
example techniques for triggering run-time concurrency
errors. As shown in FIG. 11, sleep states 1102 are selectively
introduced right before any one or both of the RPC call 1104
in node 1, and the enqueuing operations 1106 for the event
1108 in node 2. Each of the inserted sleep states is long
enough to flip the execution order between 1108 and 1112 in
node 2 if the flipping is possible and to trigger an error if one
exists. If the order between events 1108 and 1112 cannot be
flipped or if it can be flipped and yet no error is detected,
then these two operations 1108 and 1112 may be pruned
from the list of DCbug candidates. This approach, however
may not be an effective way to detect complicated bugs in
complicated systems, because it is hard to know how long
the sleep intervals need to be. A more sophisticated approach
may run the entire program in one processor core and control
the timing through a thread scheduler. Neither of these
approaches works well for DCbugs, however, which may
require manipulating the timing among operations from
different nodes. It may be impractical to run real-world large
distributed systems on one processor core.
[0133] One example DCatch infrastructure includes two
components: client-side APis for sending coordination-re­
quest messages and a message-controller server. In the
materials below, the distributed system under testing is
referred to as the client.
[0134] Consider analyzing a pair of concurrent operations
A and B. the testing and triggering blocks 1062 and 1064,
described above with reference to FIG. 10B, may explore
executing A right before B and also B right before A. One
way in which this may be implemented is for block 1062 to
place a _request API call before A and a _confirm API call
right after A, and to place similar instructions before and
after B. At run time, the _request API may send a message
to the controller server to ask for permission to continue
execution. The controller, at block 1064 waits for the
request-message to arrive from both parties, and then grants
permission to one party, waits for the confirm-message sent
by the respective _confirm API, and then grant the permis­
sion for the remaining party. The controller may keep a
record of what ordering has been explored and may re-start
the system several times (block 1066), until all ordering
permutations among all the request parties Gust two in this
example) are explored. A controller may keep a record of the
permutations that have been tried and restart the system
several times until all permutations have been tested. The
system may then terminate at block 1068. One such example
is shown in FIG. 12.
[0135] FIG. 12 is a timing diagrams showing example
techniques for triggering run-time concurrency errors. In
this example, _request API blocks 1202 are inserted before

US 2018/0046565 Al

the RPC call blocks 1204 and 1214 and _confirmAPI blocks
1204 are inserted after the RPC call blocks 1205 and 1214.
A controller 1201 may cause the RPC calls, and conse­
quently operation 1208 and operation 1212, to be executed
in any order to determine if they result in an error. Alterna­
tively, or in addition, _request blocks 1202 may be inserted
before, and _confirm blocks 1204 may be inserted after the
enqueuing operations 1206 and 1208. The inserted _request
and _confirm API blocks result in the operations 1208 and
1212 being initiated in different order. Ifno error is detected
then the bug candidate pair (1208, 1212) may be pruned
from the list of DCbug candidates. If a serious error mani­
fests during this process, the DCbug candidate may be
retained in the list.
[0136] The examples described below provide two imple­
mentations for this controller server: one is in truly distrib­
uted mode, which communicates with the testing client
running on different machines through sockets; the other is
in single-machine mode, which communicates with the
testing client running in different processes on the same
machine through file operations.
[0137] With the infrastructure described above, the
remaining question is where to put the _request and _con­
firm APis given a DCbug report (s, t). The _confirm APis
can be inserted right after the heap access in the bug report.
Therefore, the materials below focus on the placement of
_request APis.
[0138] One solution, as shown in FIG. 12, may be to put
the _request right before s and t. This approach, however,
sometimes does not work, either because it leads to hangs,
or because it causes too many _request messages to be sent
to the controller server due to the large number of dynamic
instances of s/t. One example DCatch system may be
configured according to the following analysis to help solve
this problem.
[0139] First, the DCatch system may warn about potential
hangs caused by poor placements of the _request APis and
may suggest one or more non-hang placements. Specifically,
when s and t are both inside event handlers and their event
handlers correspond to a single-consumer queue, the DCatch
system may warn the user of hangs and suggest inserting the
_request APis in the corresponding event enqueue functions,
instead. Similarly, ifs and tare both inside RPC handlers and
their RPC functions are executed by the same RPC handling
thread in the same node, DCatch may suggest inserting the
_request APis in corresponding functions that initiate the
RPCs. If s and t are inside critical sections guarded by the
same lock, DCatch may suggest inserting a _request right
before the corresponding critical sections. DCatch may
obtain this critical section information based on lock-related
records in its trace, as described above.
[0140] Second, DCatch may issue a warning after it finds
large number of dynamic instances of s and t and may
suggest better placements. For example, the DCbug report
may contain the call-stacks for s and t and the DCatch
system may check the run-time trace to determine whether
the report contains a large number of dynamic instances of
the corresponding call-stack for s (the analysis fort is the
same). In these instances, DCatch may check its happens­
before graph to find an operation o in a different node that
causes s, and check whether o is a better place for the
_request. This analysis is effective, as many event handlers
and RPC functions may be executed under the same call
stack, and hence could make bug triggering very compli-

11
Feb. 15,2018

cated without this support from the DCatch system. It is
noted that both of the features described above are unique to
triggering DCbugs.
[0141] An example implementation of the DCatch system
is described below. RB-related operation tracing may be
implemented using Javassist, or other dynamic Java byte­
code re-writing tool, which allows analysis and instrumen­
tation of Java bytecode whenever a class is loaded.
[0142] RB-related operations involve functions related to
thread, event-handling, RPCs, sockets, and inter-node noti­
fication protocols, as described above. All thread-related
operations can be easily identified following the java.lang.
Thread interface. Other operations are supported by slightly
different interfaces across different systems.
[0143] In one example, event handling is implemented
using java.beans.EventRandler interface in both Radoop
and RBase. The prototype of an event handler function is
EventRandler::handle (Event e), where the content of the
parameter determines the event handling action. Cassandra
and Zookeeper use their own event-handling interfaces. The
way event handler functions are implemented and invoked
are similar to the implementation and invocation in Radoop
and RBase.
[0144] For RPC, RBase and later versions of Radoop
share the same RPC library interface, VersionedProtocol. All
methods declared under classes instantiated from this inter­
face are RPC functions, and hence can be easily identified by
the DCatch system. Later versions of Radoop use a slightly
different RPC interface, ProtoBase, which identifies RPC
functions in the same way as VersionedProtocol.
[0145] For socket sending and receiving, Cassandra has a
superclass IVerbRandler to handle socket communication
and the sending of is conducted by a function, IVerbRan­
dler: :sendOneWay (Message, EndPoint). Thus, the DCatch
system can easily identify all such socket message sending
function calls, as well as the corresponding message objects.
Zookeeper uses a super-class Record for all socket mes­
sages. Every socket sending is preceded by a new instance
of a Record object, and is conducted through socket::write
(Record). Thus, socket messages can also be easily identi­
fied.
[0146] One example DCatch system first uses WALA, a
static Java bytecode analysis framework, to statically ana­
lyze the target software, identify all RPC/socket/event
related functions, and store the analysis result in a file
DFunctionList for later run-time analysis use. The example
DCatch system then uses Javassist to insert tracing functions
before every heap or static variable access as described
above. Specifically, the DCatch system may use a Javassist
plugin that conducts the following operations whenever a
class C is loaded into JVM: (1) identify all methods in C that
are part of DFunctionList; (2) for each such method func­
tion, identify all getfield/putfield instructions (e.g., heap
accesses) and getstatic/putstatic instructions (e.g., static­
variable accesses); (3) for each such instruction, insert a
tracing function before the instruction, where the tracing
function produces a trace record.
[0147] The example DCatch system records a unique ID
for each package sent/received through a socket communi­
cation and via each RPC call. To achieve this the system, at
the socket sending or RPC calling side, generates a random
number and sends the random number together with the
socket message or RPC call. At the receiving side, the
system parses the random number and puts it into the

US 2018/0046565 Al

corresponding trace record. Specifically, the DCatch system
statically transforms the target software, adding one extra
parameter for every RPC/socket-sending function and
inserting the code to generate a random value for each such
parameter at RPC/socket-sending invocation.
[0148] As described above, the DCatch system may be
adapted to any distributed processing system with knowl­
edge of the following: (1) what is the RPC interface; (2)
what APis are used for socket messaging; (3) what APis are
used for the event enqueue/dequeue/handler; (4) whether the
event queues are FIFO and whether they have one or
multiple handler threads. Providing the above specifications
should be straightforward and reasonably easy, because only
a relatively small number of (RPC/event/socket) interfaces
or prototypes are identified, instead of a relatively large
number of instance functions. The above specifications are
desirable for accurate DCbug detection in existing distrib­
uted systems.
[0149] The DCatch rules are easily adapted to the distrib­
uted processing system once these items are known. To
implement DCatch on a distributed processing system, the
components of the processing system are first modified
using a static and/or dynamic bytecode transformation/
analysis framework, such as WALA and/or Javassist, to
insert commands used to trace access to objects in RPC
functions, functions that conduct socket operations and
event handler functions. The modified system is then run on
a multi-node system to trace the functions accessing the
objects. The DCatch system then analyzes the trace to build
the graph and identify candidate pairs of operations that
potentially cause DCbugs. The components of the process­
ing system are then analyzed again to prune potential
DCbugs that do not extend across multiple nodes. The
system is again modified to insert delays (e.g. sleep states)
and/or _request and _confirm APis to adjust system timing.
The modified system is executed multiple times to try
different permutations of the candidate pairs of operations to
determine which potential DCbugs can actually occur.
[0150] The functions or algorithms described herein may
be implemented using software in one embodiment. The
software may consist of computer executable instructions
stored on computer readable media or computer readable
storage device such as one or more non-transitory memories
or other type of hardware based storage devices, either local
or networked. Further, such functions correspond to mod­
ules, which may be software, hardware, firmware or any
combination thereof. Multiple functions may be performed
in one or more modules as desired, and the embodiments
described are merely examples. The software may be
executed on a computing system such as a digital signal
processor, ASIC, microprocessor, mainframe processor or
other type of processor operating on a computer system,
such as a personal computer, server or other computing
system, turning such computing system into a specifically
programmed machine.
[0151] FIG. 13 is a block diagram illustrating computing
circuitry for clients, servers, and cloud based computing
system resources for implementing algorithms and perform­
ing methods according to example embodiments. The dis­
tributed computing system may include multiple instances
of the circuitry shown in FIG. 13 and include the DCatch
system, described above. All components need not be used
in various embodiments. For example, each of the clients,
servers, and network resources of the distributed computing

12
Feb. 15,2018

system may each use a different set of components, or in the
case of servers or mainframes, for example, larger storage
devices.
[0152] One example computing system in the form of a
computer 1300 may include a processing unit 1302, memory
1303, removable storage 1310, and non-removable storage
1312. The processing unit 1302 may be a single core or
multi-core device. Although the example computing system
is illustrated and described as computer 1300, the computing
system may be in different forms in different embodiments.
For example, the computing system may instead be a
smartphone, a tablet, smartwatch, or other computing device
including the same or similar elements as illustrated and
described with regard to FIG. 13. Devices, such as smart­
phones, tablets, and smartwatches, are generally collectively
referred to as mobile devices or user equipment. Further,
although the various data storage elements are illustrated as
part of the computing system 1300, the storage may also or
alternatively include cloud-based storage accessible via a
network, such as a local area network (LAN), a personal area
network, (PAN) a wide area network (WAN) such as the
Internet, or local server based storage.
[0153] Memory 1303 may include volatile memory 1314
and non-volatile memory 1308. Computer 1300 may
include-or have access to a computing environment that
includes-a variety of computer-readable media, such as
volatile memory 1314 and non-volatile memory 1308,
removable storage 1310 and non-removable storage 1312.
Computer storage includes random access memory (RAM),
read only memory (ROM), erasable programmable read­
only memory (EPROM) and electrically erasable program­
mable read-only memory (EEPROM), flash memory or
other memory technologies, compact disc read-only
memory (CD ROM), Digital Versatile Disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium capable of storing computer-readable
instructions.
[0154] Computer 1300 may include or have access to a
computing environment that includes input interface 1306,
output interface 1304, and a communication connection or
interface 1316. Output 1304 may include a display device,
such as a touchscreen, that also may serve as an input device.
The input 1306 may include one or more of a touchscreen,
touchpad, mouse, keyboard, camera, one or more device­
specific buttons, one or more sensors integrated within or
coupled via wired or wireless data connections to the
computing system 1300, and other input devices. The com­
puter may operate in a networked environment using a
communication connection to connect to one or more remote
computers, such as mainframes and/or database servers. The
remote computer may include a personal computer (PC),
server, router, network PC, a peer device or other common
network node, or the like. The communication connection
may include a Local Area Network (LAN), a Wide Area
Network (WAN), cellular, Wi-Fi, Bluetooth, or other net­
works.
[0155] Computer-readable instructions stored on a com­
puter-readable medium are executable by the processing unit
1302 of the computer 1300. A hard drive, CD-ROM, and
RAM are some examples of articles including a non-tran­
sitory computer-readable medium such as a storage device.
The terms computer-readable medium and storage device do
not include carrier waves to the extent carrier waves are

US 2018/0046565 Al

deemed too transitory. For example, a computer program
1318 may be used to cause processing unit 1302 to perform
one or more methods or algorithms described herein.

What is claimed is:
1. A method of detecting distributed concurrency errors in

a distributed computing system including a plurality of
component computers, the method comprising:

tracing operations that access objects during execution of
the distributed computing system to generate trace
results;

applying a set of happens-before rules to the trace results
to identify candidate operations among the traced
operations, each happens-before rule indicating a first
type of operation that happens before a second type of
operation;

identifying respective concurrent pairs of the candidate
operations that access respective common objects to
generate a list of potential distributed concurrency
errors; and

using the identified concurrent pairs of candidate opera­
tions, identifying conflicting memory accesses among
the plurality of component computers that result in
distributed concurrency errors.

2. The method of claim 1, wherein the happens-before
rules comprise message rules concerning messages between
two nodes, thread rules threads initiated from different
nodes, event rules concerning events accessed by different
threads, and program ordering rules concerning execution
order of operations in different threads.

3. The method of claim 1, further comprising:
identifying, as the candidate operations, respective pairs

of the candidate operations from respectively different
threads that access the respective common object and
include at least one write operation.

4. The method of claim 1, wherein tracing the operations
that access objects includes exclusively tracing remote pro­
cedure call (RPC) functions, functions that conduct socket
operations, and event handler functions.

5. The method of claim 1, further comprising:
building an ordered graph of the candidate operations,

each vertex in the graph representing one of the can­
didate operations and each edge between two vertexes
in the graph representing a happens-before relationship
between the operations represented by the two ver­
texes; and

identifying a first one of the candidate operations as being
concurrent with a second one of the candidate opera­
tions concurrent ones of the candidate operations after
determining that the graph does not include a path from
the first candidate operation to the second candidate
operation.

6. The method of claim 5 further comprising:
assigning a bit array to each vertex, each bit in the bit

array representing a respective vertex in the graph;
for each vertex, traversing the graph and setting one of the

bits in the bit array corresponding to a target vertex
upon reaching the target vertex during the traversal of
the graph; and

determining that the first and second candidate operations
are concurrent when, for the bit array of the first
candidate operation, the bit corresponding to the sec­
ond candidate operation is not set.

7. The method of claim 1, further comprising analyzing
each concurrent pair of candidate operations used to gener-

13
Feb. 15,2018

ate the list of potential distributed concurrency errors to
delete, from the list, concurrent pairs of candidate operations
that are unlikely to cause severe failures.

8. The method of claim 7, wherein, for each concurrent
pair of candidate operations, the respective common object
accessed by the concurrent pair candidate operations is
located in a first node and the method further comprises
analyzing one or more portions of the distributed computing
system in which the concurrent pair of candidate operations
occurs to determine whether a distributed concurrency error
caused by out-of-order execution of the concurrent opera­
tions has an effect in a second node different from the first
node.

9. The method of claim 1, further comprising modifying
threads of the distributed computing system to determine a
relative timing of each operation in each of the concurrent
pairs of operations during execution of the distributed com­
puting system to identify actual dynamic concurrency errors.

10. The method of claim 1, further comprising modifying
threads of the distributed computing system to adjust rela­
tive timing of selected operations in the concurrent pairs of
operations during execution of the distributed computing
system to cause actual distributed concurrency errors in
order to determine a timing sensitivity of the selected
operations.

11. Anon-transitory computer readable medium compris­
ing instructions, that, when executed by a processor, con­
figure the processor to:

trace operations in a distributed computing system that
access objects during execution of the distributed com­
puting system to generate trace results;

apply a set of happens-before rules to the trace results to
identify candidate operations among the traced opera­
tions, each happens-before rule indicating a first type of
operation that happens before a second type of opera­
tion;

identify respective concurrent pairs of the candidate
operations that access respective common objects to
generate a list of potential distributed concurrency
errors; and

adjust an order of occurrence for selected candidate
operations in the concurrent pairs of candidate opera­
tions corresponding to each respective potential dis­
tributed concurrency error occur to confirm the distrib­
uted concurrency error.

12. The non-transitory computer readable medium of
claim 11, further comprising instructions that configure the
processor to identify, as the candidate operations, respective
pairs of the candidate operations from respectively different
threads that access the respective common object and
include at least one write operation.

13. The non-transitory computer readable medium of
claim 11, further comprising instructions that configure the
processor to exclusively trace remote procedure call (RPC)
functions, functions that conduct socket operations, and
event handler functions.

14. The non-transitory computer readable medium of
claim 11, further comprising instructions that configure the
processor to:

build an ordered graph of the candidate operations, each
vertex in the graph representing one of the candidate
operations and each edge between two vertexes in the
graph represents a happens-before relationship between
the operations represented by the two vertexes; and

US 2018/0046565 Al

identify a first one of the candidate operations as being
concurrent with a second one of the candidate opera­
tions in response to determining that the first and
second candidate operations are not connected in the
graph.

15. The non-transitory computer readable medium of
claim 14, further comprising instructions that configure the
processor to:

assign a bit array to each vertex, each bit in the bit array
representing a respective vertex in the graph;

for each vertex, traverse the graph and set one of the bits
in the bit array corresponding to a target vertex upon
reaching the target vertex during the traversal of the
graph; and

determine that the first and second candidate operations
are concurrent when, for the bit array of the first
candidate operation, the bit corresponding to the sec­
ond candidate operation is not set.

16. The non-transitory computer readable medium of
claim 11, further comprising instructions that configure the
processor to analyze the concurrent pairs of candidate opera­
tions used to generate the list of potential distributed con­
currency errors to delete, from the list, concurrent pairs of
candidate operations that are unlikely to cause severe fail­
ures.

17. The non-transitory computer readable medium of
claim 16, further comprising instructions that configure the
processor to, responsive to the respective common object
accessed by the concurrent candidate operations being
located in a first node, analyze one or more portions of the
distributed computing system in which the concurrent pairs
of candidate operations occur to determine whether a dis­
tributed concurrency error caused by out-of-order execution
of the concurrent candidate operations has an effect in a
second node different from the first node.

18. A method for processing components of a distributed
computing system to identify distributed concurrency errors,
the method comprising:

generating a trace distributed computing system by insert
trace commands into the distributed computing system,
the trace commands tracing access to objects in RPC
functions, functions that conduct socket operations and
event handler functions;

executing the trace distributed computing system to col­
lect trace data;

analyzing the trace data to build a graph having vertexes
corresponding to operations that access the objects and
edges corresponding to happens-before rules connect­
ing the operations;

analyzing the graph to identify candidate pairs of opera­
tions that potentially cause the distributed concurrency
errors;

modifying the distributed computing system to provide a
distributed computing system having adjustable timing;
and

executing the distributed computing system having
adjustable timing multiple times while adjusting the
timing to identify which candidate pairs of operations
produce actual distributed concurrency errors.

19. The method of claim 18, wherein building the hap­
pens-before graph includes building a directed acyclic
graph.

14
Feb. 15,2018

20. The method of claim 19, wherein modifying the
distributed computing system includes using at least one of
a static bytecode analysis framework or a dynamic bytecode
transformation framework.

21. Apparatus comprising:
a processing unit coupled to a distributed computing

system, the processing unit configured to:
trace operations in the distributed computing system that

access objects during execution of the distributed com­
puting system to generate trace results;

apply a set of happens-before rules to the trace results to
identify candidate operations among the traced opera­
tions, each happens-before rule indicating a first type of
operation that happens before a second type of opera­
tion;

identify respective concurrent pairs of the candidate
operations that access respective common objects to
generate a list of potential distributed concurrency
errors; and

adjust an order of occurrence for selected candidate
operations in the concurrent pairs of candidate opera­
tions corresponding to each respective potential dis­
tributed concurrency error occur to confirm the distrib­
uted concurrency error.

22. The apparatus of claim 21, wherein the processing unit
is further configured to identify, as the candidate operations,
respective pairs of the candidate operations from respec­
tively different threads that access the respective common
object and include at least one write operation.

23. The apparatus of claim 21, wherein the processing unit
is further configured to exclusively trace remote procedure
call (RPC) functions, functions that conduct socket opera­
tions, and event handler functions.

24. The apparatus of claim 21, wherein the processing unit
is further configured to:

build an ordered graph of the candidate operations, each
vertex in the graph representing one of the candidate
operations and each edge between two vertexes in the
graph represents a happens-before relationship between
the operations represented by the two vertexes; and

identify a first one of the candidate operations as being
concurrent with a second one of the candidate opera­
tions in response to determining that the first and
second candidate operations are not connected in the
graph.

25. The apparatus of claim 24, wherein the processing unit
is further configured to:

assign a bit array to each vertex, each bit in the bit array
representing a respective vertex in the graph;

for each vertex, traverse the graph and set one of the bits
in the bit array corresponding to a target vertex upon
reaching the target vertex during the traversal of the
graph; and

determine that the first and second candidate operations
are concurrent when, for the bit array of the first
candidate operation, the bit corresponding to the sec­
ond candidate operation is not set.

26. The apparatus of claim 21, wherein the processing unit
is further configured to:

analyze the concurrent pairs of candidate operations used
to generate the list of potential distributed concurrency
errors to delete, from the list, concurrent pairs of
candidate operations that are unlikely to cause severe
failures.

US 2018/0046565 Al

27. The apparatus of claim 26, wherein the processing unit
is further configured to:

responsive to the respective common object accessed by
the concurrent candidate operations being located in a
first node, analyze one or more portions of the distrib­
uted computing system in which the concurrent pairs of
candidate operations occur to determine whether a
distributed concurrency error caused by out-of-order
execution of the concurrent candidate operations has an
effect in a second node different from the first node.

28. Apparatus for processing components of a distributed
computing system to identify distributed concurrency errors,
the apparatus comprising:

a processing unit configured to:
insert trace commands into the distributed computing

system to generate a trace distributed computing sys­
tem, the trace commands tracing access to objects in
RPC functions, functions that conduct socket opera­
tions and event handler functions;

cause the trace distributed computing system to execute to
collect trace data;

15
Feb. 15,2018

analyze the trace data to build a graph having vertexes
corresponding to operations that access the objects and
edges corresponding to happens-before rules connect­
ing the operations;

analyze the graph to identify candidate pairs of operations
that potentially cause the distributed concurrency
errors;

modify the distributed computing system to provide a
distributed computing system having adjustable timing;
and

cause the distributed computing system having adjustable
timing to execute timing multiple times while adjusting
the timing to identify which candidate pairs of opera­
tions produce actual distributed concurrency errors.

29. The apparatus of claim 29 further comprising:

at least one of a static bytecode analysis framework or a
dynamic bytecode transformation framework for modi­
fying the distributed computing system.

* * * * *

