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(57) ABSTRACT 

A method for detecting distributed concurrency errors in a 
distributed cloud computing system includes tracing opera­
tions that access objects in functions involving inter-process 
messaging, applying a set of happens-before rules to the 
traced operations. Analyzing the traced operations to iden­
tify concurrent operations that access a common object to 
generate a list of potential distributed concurrency errors 
(DCbugs). Pruning the list of DCbugs to remove DCbugs 
having only local effect and that do not generate run-time 
errors. 
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AUTOMATICALLY DETECTING 
DISTRIBUTED CONCURRENCY ERRORS IN 

CLOUD SYSTEMS 

RELATED APPLICATION 

[0001] This application claims priority from U.S. Provi­
sional Application Ser. No. 62/374,449 entitled "AUTO­
MATICALLY DETECTING DISTRIBUTED CONCUR­
RENCY BUGS IN CLOUD SYSTEMS" and filed on Aug. 
12, 2016, the disclosure of which is hereby incorporated by 
reference in its entirety. 

TECHNICAL FIELD 

[0002] The present disclosure is related to detecting 
execution errors in computing systems and, in particular, to 
detecting concurrency errors in systems distributed across 
multiple computing systems. 

BACKGROUND 

[0003] Many big data and cloud computing systems are 
implemented using distributed cloud systems having mul­
tiple program threads running in parallel across multiple 
servers. These systems include data management systems, 
multiplayer gaming systems, workforce collaboration sys­
tems (e.g. Sharepoint®, Slack® and HipChat® collabora­
tion software) among others. These systems include soft­
ware infrastructures such as scale-out storage, computing 
frameworks, synchronization services and cluster manage­
ment services. The reliability of these distributed cloud 
systems is extremely important. Unfortunately these systems 
are subject to distributed concurrency errors (bugs), referred 
to herein as DCbugs. DCbugs may be difficult to detect due 
to the large state space of the distributed cloud systems and 
may manifest non-deterministically depending on the timing 
of distributed computation and communication. 

SUMMARY 

[0004] According to one aspect of the present disclosure, 
there is provided a method of detecting distributed concur­
rency errors in a distributed computing system including a 
plurality of component computers that comprises: tracing 
operations that access objects during execution of the dis­
tributed computing system to generate trace results; apply­
ing a set of happens-before rules to the trace results to 
identify candidate operations among the traced operations, 
each happens-before rule indicating a first type of operation 
that happens before a second type of operation; identifying 
respective concurrent pairs of the candidate operations that 
access respective common objects to generate a list of 
potential distributed concurrency errors; executing run-time 
analysis tools to identify conflicting memory accesses 
among the plurality of component computers that result in 
distributed concurrency errors. 
[0005] Optionally, in any of the preceding aspects, the 
happens-before rules include message rules concerning mes­
sages between two nodes, thread rules threads initiated from 
different nodes, event rules concerning events accessed by 
different threads, and program ordering rules concerning 
execution order of operations in different threads. 
[0006] Optionally, in any of the preceding aspects, the 
method further comprises identifying, as the candidate 
operations, respective pairs of the candidate operations from 
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respectively different threads that access the respective 
common object and include at least one write operation. 
[0007] Optionally, in any of the preceding aspects, tracing 
the operations that access objects includes exclusively trac­
ing remote procedure call (RPC) functions, functions that 
conduct socket operations, and event handler functions. 
[0008] Optionally, in any of the preceding aspects, the 
method further comprises: building an ordered graph of the 
candidate operations, each vertex in the graph representing 
one of the candidate operations and each edge between two 
vertexes in the graph representing a happens-before rela­
tionship between the operations represented by the two 
vertexes; and identifying a first one of the candidate opera­
tions as being concurrent with a second one of the candidate 
operations concurrent ones of the candidate operations after 
determining that the graph does not include a path from the 
first candidate operation to the second candidate operation. 
[0009] Optionally, in any of the preceding aspects, the 
method further comprises: assigning a bit array to each 
vertex, each bit in the bit array representing a respective 
vertex in the graph; for each vertex, traversing the graph and 
setting one of the bits in the bit array corresponding to a 
target vertex upon reaching the target vertex during the 
traversal of the graph; and determining that the first and 
second candidate operations are concurrent when, for the bit 
array of the first candidate operation, the bit corresponding 
to the second candidate operation is not set. 
[0010] Optionally, in any of the preceding aspects, the 
method further comprises analyzing each concurrent pair of 
candidate operations used to generate the list of potential 
distributed concurrency errors to delete, from the list, con­
current pairs of candidate operations that are unlikely to 
cause severe failures. 
[0011] Optionally, in any of the preceding aspects, for 
each concurrent pair of candidate operations, the respective 
common object accessed by the concurrent pair candidate 
operations is located in a first node and the method further 
comprises analyzing one or more portions of the distributed 
computing system in which the concurrent pair of candidate 
operations occurs to determine whether a distributed con­
currency error caused by out-of-order execution of the 
concurrent operations has an effect in a second node differ­
ent from the first node. 
[0012] Optionally, in any of the preceding aspects, the 
method further comprises modifying threads of the distrib­
uted computing system to determine a relative timing of 
each operation in each of the concurrent pairs of operations 
during execution of the distributed computing system to 
identify actual dynamic concurrency errors. 
[0013] Optionally, in any of the preceding aspects, the 
method further comprises modifying threads of the distrib­
uted computing system to adjust relative timing of selected 
operations in the concurrent pairs of operations during 
execution of the distributed computing system to cause 
actual distributed concurrency errors in order to determine a 
timing sensitivity of the selected operations. 
[0014] According to another aspect of the present disclo­
sure, there is provided a computer readable medium com­
prising instructions, that, when executed by a processor, 
configure the processor to: trace operations in a distributed 
computing system that access objects during execution of 
the distributed computing system to generate trace results; 
apply a set of happens-before rules to the trace results to 
identify candidate operations among the traced operations, 
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each happens-before rule indicating a first type of operation 
that happens before a second type of operation; identify 
respective concurrent pairs of the candidate operations that 
access respective common objects to generate a list of 
potential distributed concurrency errors; execute run-time 
analysis tools to adjust an order of occurrence for selected 
candidate operations in the concurrent pairs of candidate 
operations corresponding to each respective potential dis­
tributed concurrency error occur to confirm the distributed 
concurrency error. 
[0015] Optionally, in any of the preceding aspects, the 
computer readable medium further comprises instructions 
that configure the processor to identify, as the candidate 
operations, respective pairs of the candidate operations from 
respectively different threads that access the respective 
common object and include at least one write operation. 
[0016] Optionally, in any of the preceding aspects, the 
computer readable medium further comprises instructions 
that configure the processor to exclusively trace remote 
procedure call (RPC) functions, functions that conduct 
socket operations, and event handler functions. 
[0017] Optionally, in any of the preceding aspects, the 
computer readable medium further comprises instructions 
that configure the processor to: build an ordered graph of the 
candidate operations, each vertex in the graph representing 
one of the candidate operations and each edge between two 
vertexes in the graph represents a happens-before relation­
ship between the operations represented by the two vertexes; 
and identify a first one of the candidate operations as being 
concurrent with a second one of the candidate operations in 
response to determining that the first and second candidate 
operations are not connected in the graph. 
[0018] Optionally, in any of the preceding aspects, the 
computer readable medium further comprises instructions 
that configure the processor to: assign a bit array to each 
vertex, each bit in the bit array representing a respective 
vertex in the graph; for each vertex, traverse the graph and 
set one of the bits in the bit array corresponding to a target 
vertex upon reaching the target vertex during the traversal of 
the graph; and determine that the first and second candidate 
operations are concurrent when, for the bit array of the first 
candidate operation, the bit corresponding to the second 
candidate operation is not set. 
[0019] Optionally, in any of the preceding aspects, the 
computer readable medium further comprises instructions 
that configure the processor to analyze the concurrent pairs 
of candidate operations used to generate the list of potential 
distributed concurrency errors to delete, from the list, con­
current pairs of candidate operations that are unlikely to 
cause severe failures. 
[0020] Optionally, in any of the preceding aspects, the 
computer readable medium further comprises instructions 
that configure the processor to, responsive to the respective 
common object accessed by the concurrent candidate opera­
tions being located in a first node, analyze one or more 
portions of the distributed computing system in which the 
concurrent pairs of candidate operations occur to determine 
whether a distributed concurrency error caused by out-of­
order execution of the concurrent candidate operations has 
an effect in a second node different from the first node. 
[0021] According to yet another aspect of the present 
disclosure, there is provided a method for processing com­
ponents of a distributed computing system to identify dis­
tributed concurrency errors, the method comprising: gener-
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ating a trace distributed computing system by insert trace 
commands into the distributed computing system, the trace 
commands tracing access to objects in RPC functions, 
functions that conduct socket operations and event handler 
functions; executing the trace distributed computing system 
to collect trace data; analyzing the trace data to build a graph 
having vertexes corresponding to operations that access the 
objects and edges corresponding to happens-before rules 
connecting the operations; analyzing the graph to identify 
candidate pairs of operations that potentially cause the 
distributed concurrency errors; modifying the distributed 
computing system to provide a distributed computing sys­
tem having adjustable timing; and executing the distributed 
computing system having adjustable timing multiple times 
while adjusting the timing to identify which candidate pairs 
of operations produce actual distributed concurrency errors. 
[0022] Optionally, in any of the preceding aspects, build­
ing the happens-before graph includes building a directed 
acyclic graph. 
[0023] Optionally, in any of the preceding aspects, modi­
fying the distributed computing system includes using at 
least one of a static bytecode analysis framework or a 
dynamic bytecode transformation framework. 
[0024] According to yet another aspect of the present 
disclosure, there is provided an apparatus comprising: a 
processing unit coupled to a distributed computing system, 
the processing unit configured to: trace operations in the 
distributed computing system that access objects during 
execution of the distributed computing system to generate 
trace results; apply a set of happens-before rules to the trace 
results to identify candidate operations among the traced 
operations, each happens-before rule indicating a first type 
of operation that happens before a second type of operation; 
identify respective concurrent pairs of the candidate opera­
tions that access respective common objects to generate a 
list of potential distributed concurrency errors; and adjust an 
order of occurrence for selected candidate operations in the 
concurrent pairs of candidate operations corresponding to 
each respective potential distributed concurrency error occur 
to confirm the distributed concurrency error. 
[0025] Optionally, in any of the preceding aspects the 
processing unit is further configured to identify, as the 
candidate operations, respective pairs of the candidate 
operations from respectively different threads that access the 
respective common object and include at least one write 
operation. 
[0026] Optionally, in any of the preceding aspects the 
processing unit is further configured to exclusively trace 
remote procedure call (RPC) functions, functions that con­
duct socket operations, and event handler functions. 
[0027] Optionally, in any of the preceding aspects the 
processing unit is further configured to: build an ordered 
graph of the candidate operations, each vertex in the graph 
representing one of the candidate operations and each edge 
between two vertexes in the graph represents a happens­
before relationship between the operations represented by 
the two vertexes; and identify a first one of the candidate 
operations as being concurrent with a second one of the 
candidate operations in response to determining that the first 
and second candidate operations are not connected in the 
graph. 
[0028] Optionally, in any of the preceding aspects the 
processing unit is further configured to: assign a bit array to 
each vertex, each bit in the bit array representing a respec-
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tive vertex in the graph; for each vertex, traverse the graph 
and set one of the bits in the bit array corresponding to a 
target vertex upon reaching the target vertex during the 
traversal of the graph; and determine that the first and second 
candidate operations are concurrent when, for the bit array 
of the first candidate operation, the bit corresponding to the 
second candidate operation is not set. 

[0029] Optionally, in any of the preceding aspects the 
processing unit is further configured to analyze the concur­
rent pairs of candidate operations used to generate the list of 
potential distributed concurrency errors to delete, from the 
list, concurrent pairs of candidate operations that are 
unlikely to cause severe failures. 

[0030] Optionally, in any of the preceding aspects the 
processing unit is further configured to, responsive to the 
respective common object accessed by the concurrent can­
didate operations being located in a first node, analyze one 
or more portions of the distributed computing system in 
which the concurrent pairs of candidate operations occur to 
determine whether a distributed concurrency error caused by 
out-of-order execution of the concurrent candidate opera­
tions has an effect in a second node different from the first 
node. 

[0031] According to yet another aspect of the present 
disclosure, there is provided an apparatus for processing 
components of a distributed computing system to identify 
distributed concurrency errors, the apparatus comprising: a 
processing unit configured to: insert trace commands into 
the distributed computing system to generate a trace distrib­
uted computing system, the trace commands tracing access 
to objects in RPC functions, functions that conduct socket 
operations and event handler functions; cause the trace 
distributed computing system to execute to collect trace 
data; analyze the trace data to build a graph having vertexes 
corresponding to operations that access the objects and 
edges corresponding to happens-before rules connecting the 
operations; analyze the graph to identify candidate pairs of 
operations that potentially cause the distributed concurrency 
errors; modify the distributed computing system to provide 
a distributed computing system having adjustable timing; 
and cause the distributed computing system having adjust­
able timing to execute timing multiple times while adjusting 
the timing to identify which candidate pairs of operations 
produce actual distributed concurrency errors. 

[0032] Optionally, in any of the preceding aspects the 
apparatus further comprises at least one of a static bytecode 
analysis framework or a dynamic bytecode transformation 
framework for modifying the distributed computing system. 

[0033] Any one of the foregoing examples may be com­
bined with any one or more of the other foregoing examples 
to create a new embodiment within the scope of the present 
disclosure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0034] FIG. 1 is a block diagram of a simple distributed 
cloud system. 

[0035] FIGS. 2A and 2B are timing diagrams that are 
useful for illustrating a distributed concurrency error. 

[0036] FIG. 3 is a timing diagram of another distributed 
cloud system. 

[0037] FIGS. 4 and 5 are state space diagrams showing 
different classifications of concurrency errors. 
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[0038] FIG. 6 is a state space diagram and timing diagram 
illustrating an asynchronous communication concurrency 
rule according to various embodiments. 
[0039] FIG. 7 is a state space diagram and timing diagram 
illustrating an RPC concurrency rule according to various 
embodiments. 
[0040] FIG. 8 is a state space diagram and timing diagram 
illustrating an inter-process communication concurrency 
rule according to various embodiments. 
[0041] FIGS. 9A and 9B are a state space diagram and 
timing diagram illustrating a concurrency rule for commu­
nication among three systems. 
[0042] FIGS. l0A and l0B are flowchart diagrams of 
example systems for detecting concurrency errors according 
to various embodiments. 
[0043] FIGS. 11 and 12 are timing diagrams illustrating 
example techniques for triggering run-time concurrency 
errors according to various embodiments. 
[0044] FIG. 13 is a block diagram of an example server 
that may be used as any of the described examples. 

DETAILED DESCRIPTION 

[0045] In the following description, reference is made to 
the accompanying drawings that form a part hereof, and in 
which is shown by way of illustration specific embodiments 
which may be practiced. These embodiments are described 
in sufficient detail to enable those skilled in the art to 
practice the invention, and it is to be understood that other 
embodiments may be utilized and that structural, logical and 
electrical changes may be made without departing from the 
scope of the present invention. The following description of 
example embodiments is, therefore, not to be taken in a 
limited sense, and the scope of the present invention is 
defined by the appended claims. 
[0046] The examples below describe a system, DCatch, 
for detecting DCbugs. DCatch predicts DCbugs by analyz­
ing and monitoring the execution of distributed cloud sys­
tems. The DCatch system uses a set of "happens-before" 
rules that model the wide variety of communication and 
concurrency mechanisms used in real-world distributed 
cloud systems. Each example happens-before rule constrains 
two actions such that one happens before the other. Based on 
the set of happens-before rules, the example DCatch system 
builds run-time tracing and trace analysis tools to effectively 
identify concurrent and conflicting memory accesses in a 
distributed cloud system. Once these memory accesses are 
identified, the DCatch system employs static and dynamic 
tools to help prune false positives and to trigger DCbugs 
during testing. 
[0047] Due to the importance of the subject matter 
handled by distributed systems, users of the systems expect 
high reliability, which unfortunately is challenging to guar­
antee due to the complexity of the inter-process communi­
cation software used by the systems. 
[0048] Among all types of errors in distributed systems, 
distributed concurrency errors, referred to as DCbugs, are 
among the most troublesome. These errors are triggered by 
untimely interaction among nodes and could propagate 
resulting in further errors beyond one node. Previous studies 
have shown that DCbugs widely exist in real-world distrib­
uted systems, causing a wide variety of failure symptoms 
such as data corruptions, system crashes, and job hangs. 
[0049] The materials below describe the DCatch system in 
the context of a distributed data management system. It is 
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contemplated, however, that DCatch may be used in any 
distributed computing system including, without limitation, 
multiplayer gaming systems, workforce collaboration sys­
tems and systems providing web or cloud-based services. 
Furthermore, although the examples described below show 
the servers as being separate entities, it is contemplated that 
two or more of the servers may be implemented in a single 
machine, for example as virtual machines. 
[0050] FIG. 1 is a block diagram of a simple distributed 
cloud system employing three servers a network manager 
102, a client 104 and an application manager 106. The three 
servers communicate via a network 108 which may be a 
local area network (LAN), a wide area network (WAN), or 
a global communication network (e.g. the Internet). The 
example network may include both wired and wireless 
components. 
[0051] FIGS. 2A and 2B are timing diagrams that are 
useful for illustrating a distributed concurrency error. FIG. 
2A illustrates a real-world example of distributed concur­
rency from Hadoop® MapReduce™. As shown, a thread 
running on the client 104 requests a task from the application 
manager 106 as shown by the arrow 202. The application 
manager 106 then assigns the task to a container in the 
network manager 102 as shown by the arrow 204. The 
network manager then retrieves the task from the application 
manager 106 as shown by the arrow 206. The client 104 
cancels the task as shown by the arrow 208 after the network 
manager has been allowed access to the task. The example 
shown in FIG. 2A does not exhibit concurrency errors 
because the thread running on the network manager 102 
accesses the task running on application manager 106 before 
the thread running on the client 104 cancels the task. 
[0052] FIG. 2B shows a similar scenario which includes a 
distributed concurrency error (DCbug). In the example 
shown in FIG. 2B, the error is triggered by unexpected 
timing among node manager 102, application manager 106, 
and the client 104. After the application manager 106 assigns 
the task to the container in the network manager 102, the 
network manager container tries to retrieve the content of 
the task from application manager 106. At the time the 
retrieval request is delivered to application manager 106, 
however, the task has already been canceled upon a request 
from the client 104. Not anticipating this timing scenario, 
the network manager 102 container hangs, as indicated by 
the looping arrow 212, waiting forever for application 
manager 106 to return the task. 
[0053] DCbugs are non-deterministic and, thus, may be 
difficult to find in the large state space of a distributed system 
spreading across multiple nodes. 
[0054] There are only a few sets of approaches that tackle 
DC bugs including: software model checking, verification, 
verifiable language, and record and replay debugging. 
Although these techniques are powerful, they suffer from 
inherent limitations. Distributed system model checkers may 
be subject to state-space explosion and may take hours or 
even days to complete. Verification approaches require thou­
sands of lines of proof to be written for every protocol; no 
verifiable language has yet been deployed, as low-level 
imperative languages are still popular for performance rea­
sons. Record and replay techniques cannot help discover 
bugs until software fails. Furthermore these techniques are 
of limited effectiveness effective for debugging DCbugs 
because it is difficult to log all timing-related events across 
the distributed systems. 
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[0055] Local concurrency (LC) may be detected using 
dynamic bug-detection. In a nutshell, dynamic bug-detec­
tion techniques monitor and analyze memory accesses and 
synchronization operations to identify conflicting and con­
current memory accesses as local concurrency errors 
(LCbug) suspects. In this sense, "conflicting" means that 
multiple accesses are touching the same memory location 
with at least one write access. The term "concurrent" means 
that there is no happens-before causality relationship 
between accesses, and hence accesses can happen one right 
after the other in any order. These dynamic bug-detection 
techniques do not guarantee finding all bugs and often report 
many false positives. However, the LC techniques can be 
applied to large existing real-world systems implemented in 
popular languages, with limited annotation or code changes 
from the developers. 
[0056] The example DCbug detection tools described 
below are guided by an understanding of DCbugs. DCbugs 
have fundamentally similar root causes to LCbugs: unex­
pected timing among concurrent conflicting memory 
accesses to the same memory location inside one machine. 
As described above with reference to FIG. 2B, for example, 
although the DCbug occurs due to triggering and error 
propagation among multiple nodes the fundamental problem 
is that an event handler running on the client 104 could 
delete the task concurrently with a remote procedure call 
(RPC) function reading the same entry. Developers do not 
expect this sequence of events. 
[0057] The example DC bug detection tool abstracts the 
causality relationship in target systems into a few happens­
before (HB) rules. An example of such an HB rule in 
multithreaded software is that thread creation "happens 
before" thread execution. These rules are followed to build 
an HB graph representing the timing relationship among all 
memory accesses in a target system; finally, all pairs of 
concurrent conflicting memory accesses are identified based 
on this HB graph. 
[0058] DCbugs and distributed systems differ from 
LCbugs and single-machine systems in several aspects, 
which raise several challenges to DCbug detection. 
[0059] First, DCbugs have a more complex timing rela­
tionship than LCbugs. Although root-cause memory 
accesses of DCbugs are in the same machine, reasoning 
about their timing relationship is complicated because the 
requests for access may come from different machines. 
Within each distributed system, concurrent memory 
accesses are conducted not only at the thread level but also 
at the node level and at the event level, using a diverse set 
of communication and synchronization mechanisms such as 
RPCs, queues etc. Across different systems, there may be 
different choices of communication and synchronization 
mechanisms, which are not always standardized as entries in 
a portable operating system interface (POSIX) thread library 
in multi-threaded software or in an Android event and/or in 
an inter-process communication (IPC) library in event­
driven mobile apps. Thus, designing HB rules for real-world 
distributed systems is not trivial. Wrong or incomplete HB 
modeling may jeopardize both the accuracy and the cover­
age of DCbug detection. 
[0060] A second challenge for detecting DCbugs is the 
larger scale of the systems and the errors. Distributed 
systems typically have a larger scale than single-machine 
systems. Distributed systems contain more nodes and col­
lectively more dynamic memory accesses. A DCbug also 
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operates on a larger scale than an LCbug. For example, the 
DCbug shown in FIG. 2B involves three nodes, client, 
application manager, and network manager, in its triggering 
and error propagation. The larger system scale poses scal­
ability challenges to identifying DCbugs among a large 
number of memory accesses. The larger bug scale also 
benefits from new techniques to analyze and identify the 
DCbugs. 
[0061] A third challenge concerns fault-tolerance. Distrib­
uted systems may include redundancy in order to tolerate 
component failures. The fault-tolerance design of distributed 
systems sometimes cures intermediate errors and sometimes 
amplifies errors, making it difficult to judge which errors are 
truly harmful. 
[0062] Based on the above understanding of opportunities 
and challenges, an example DC bug detection tool, DCatch, 
is described below. There are two stages in the development 
of DCatch: first, generation of the HB model for DC bugs 
and second, the design of the components of DCatch. 
[0063] The first step builds a HB model on which DCatch 
will operate. This model is based on a study of representative 
open-source distributed cloud systems. The example HB 
model includes a set of HB rules that cover inter-node 
communication, intra-node asynchronous event processing, 
and intra-node multi-threaded computation and synchroni­
zation. 
[0064] After building the HB model, the next step is to 
build the DCbug-detection tool DCatch customized to 
address the unique challenges in detecting DCbugs. The DC 
catch tool includes four components: run-time tracing, off­
line trace analysis, static bug report pruning, and DCbug 
testing and triggering. 
[0065] The run-time tracer component traces memory 
accesses, event-queue operations, inter-node RPCs, socket 
communication, and other potentially conflicting memory 
accesses as the system runs. This component focuses on 
memory accesses related to inter-node communication and 
computation and helps the system to address the large-scale 
challenge in DCbug detection and allow the scaling of 
DCatch to large real-world distributed cloud systems. 
[0066] The off-line trace analysis component analyzes the 
run-time traces to construct an HB graph for all recorded 
memory accesses following the HB model and reports all 
pairs of concurrent conflicting accesses (i.e., DCbug candi­
dates). The key contribution in this stage is the construction 
of HB graph for the distributed system. 
[0067] The static pruning module analyzes the program to 
determine the local impact and distributed impact of a 
DCbug candidate. This component helps to determine 
whether a particular DCbug candidate may be harmful, 
avoiding excessive false positives. 
[0068] The DCatch bug-triggering module runs a modified 
version of the system that monitors and/or manipulates the 
timing of distributed execution according to the bug report, 
while considering the diverse concurrency and communica­
tion mechanisms in distributed systems. This module helps 
trigger true bugs and further prunes false positives. 
[0069] As described above, the DCatch Happens-Before 
(HB) Model is based on an analysis of multiple distributed 
cloud data processing systems. A goal of the HB model is to 
abstract a set of happens-before rules that may be applied to 
a variety of distributed cloud systems. Every rule R repre­
sents one type of causality relationship between a pair of 

R 

operations, o, in these systems, a rule is denoted as ol ⇒ o2. 
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These rules are based on the timing relationship between any 
two operations ol and o2. Specifically, a set ofHB rules may 

be identified to chain ol and o2 together (e.g. ol ::S ool 

b 002 ... ook-1 ::S o2) when it is known that ol must 
happen before o2, denoted as ol ⇒ o2. If neither ol ⇒ o2 nor 
o2 ⇒ o 1 is true, o 1 and o2 are concurrent and hence can 
execute side by side in any order. The set of HB rules is 
desirably comprehensive and precise to allow DCatch to 
accommodate the complicated timing relationship in distrib­
uted systems such as the one shown in FIG. 3 and achieve 
good bug detection accuracy and coverage. 
[0070] FIG. 3 is a timing diagram of a distributed cloud 
system including multiple threads running on multiple 
nodes. In node 1, 301, a method running on thread 306 
performs a write operation 304 to a system variable. At 308, 
the method creates a new thread 310, which executes a 
remote procedure call to start a method 314 in thread 318 
running on node 2, 302. At block 316, the method 314 adds 
an event to an event handler 320 running on thread 324. The 
coordinator pulls the event 322 from thread 324 and pushes 
a notification to method 328 running in thread 332 of node 
1. Method 328 executes a read operation 330 on the variable 
that operation 304 wrote. Because of the number of different 
threads and communication modes, it may be difficult to 
determine whether performing operation 330 before opera­
tion 304 will cause a distributed concurrency error (DCbug). 
[0071] The examples below are derived from concurrency 
and communication mechanisms that encompasses repre­
sentative real-world cloud systems, from which the HB rules 
were extracted. 

[0072] As described above, the HB concurrency rules may 
include rules for local concurrency errors (LCbugs) and 
distributed concurrency errors (DCbugs ). Each of the 
LCbugs and DCbugs may be further divided into errors 
generated from synchronous and asynchronous operations 
and into errors generated from customized and standard 
operations. FIGS. 4 and 5 are state space diagrams showing 
different classifications of concurrency errors. FIG. 4 illus­
trates the partitioning cube where the shaded block 402 
represents DCbugs caused by synchronized standard opera­
tions, block 404 represents DCbugs caused by asynchronous 
custom operations, block 406 represents DCbugs caused by 
asynchronous standard operations, and block 408 represents 
DCbugs caused by synchronous standard operations. For 
local concurrency errors (LCbugs), block 412 represents 
LCbugs caused by synchronized standard operations, block 
414 represents LCbugs caused by asynchronous custom 
operations, and block 410 represents LCbugs caused by 
synchronous standard operations. Another block (not shown 
in FIG. 4) represents LCbugs caused by asynchronous 
standard operations. This partitioning of concurrency errors 
is further illustrated in FIG. 5 which uses the same num­
bering as FIG. 4 and shows block 502 representing LCbugs 
caused by asynchronous standard operations. The example 
DCatch tool focuses on the shaded blocks, 402, 404, 406 and 
408 shown in FIG. 5 (i.e. distributed, synchronous and 
asynchronous, custom and standard operations). 

[0073] Every distributed system involves multiple paral­
lel-executing nodes that communicate with each other 
through messages, as exemplified in FIGS. 6 and 7. An 
analysis of inter-process messaging produces multiple mes­
sage-related HB rules, referred to herein as Rule-M, based 
on different communication patterns. 
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[0074] FIG. 6 is a state space diagram and timing diagram 
illustrating an asynchronous communication concurrency 
rule. FIG. 6 illustrates a remote procedure call (RPC) which 
is a synchronized standard operation as shown by the shaded 
block 408. A thread 602 running on machine A calls an RPC 
function r (606) implemented in a thread 608 on machine B. 
Thread 602 waits (612) until thread 608 sends back the RPC 
execution result 610. 
[0075] This communication pattern indicates the follow­
ing HB rules. Making an RPC call r on node 1, denoted as 
Create (r, n 1), happens before the beginning of the RPC 
function execution in node 2, denoted as Begin (r, n2). 

Furthermore, the end of the RPC function execution on node 
2, denoted as End (r, n2 ), happens before the return from the 
RPC call r in the RPC-calling node 1, denoted as Join(r, n 1). 

M-

Ru)e-MPc:Create(r,nl) ⇒ Begin(r,n2 );End(r,n2) 

[0076] FIG. 7 is a state space diagram and timing diagram 
illustrating an RPC concurrency rule. FIG. 7 shows an 
asynchronous socket communication as illustrated by the 
block 406. A thread 702 in node 1 (704) sends a message m 
to a thread 706 in node 2 (708) through network sockets. 
Unlike RPC, the sender does not block itself. Instead, it can 
choose to block itself from listening to a socket for an 
incoming message. Clearly, the sending of message m 
happens before the receiving of m, resulting in the rule 
Msoc_ 

M-
Ru)e-M50C,send(m,n1) ⇒ Recv(m,n2 ) 

[0077] In addition to the above two types of basic com­
munication mechanisms the examples below address two 
other types of high-level synchronization protocols among 
nodes. Each of these types of communication is imple­
mented using a combination of RPC/socket communication 
and intra-node computation. Consequently, each communi­
cation type is assigned its own HB rules. 

[0078] The first type of communication is push-based 
notification protocol, which is a customized asynchronous 
communication as shown by the shaded block in FIG. 9A. 
This communication is illustrated in FIG. 9B, which is 
described below in greater detail. For the push-based noti­
fication, a thread 924 in a node n 1 (902) updates an object, 
s, with a write operation, w, to a thread 932 in a dedicated 
coordination node ne (926) and ne notifies all related nodes, 
such as n2 (901), about this update. Clearly, the update of s 
by ni, denoted as Update (s, n 1), happens before the noti­
fication about the update is delivered at n2 (901), denoted as 
Pushed (s, n2). For example, HBase® nodes sometimes 
communicate through ZooKeeper™. ZooKeeper is a cen­
tralized service for maintaining configuration information, 
naming, providing distributed synchronization, and provid­
ing group services. In coordination systems similar to Zoo­
Keeper, other programs register keys with the system and are 
notified of any changes associated with the key. HBase is a 
non-relational distributed database that may be used with the 
Hadoop distributed file system (HDFS). Hbase provides a 
mechanism for storing large amounts of sparse data. 

[0079] In the first type of communication, a node registers 
a zknode with a specific path on ZooKeeper; ZooKeeper 
then notifies this node of all changes to the zknode from 
other nodes. 

Rule-M"u'h:Update(s,n1) ⇒ Pushed(s,n2) 
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[0080] Note that, this rule is not redundant given Rule­
Mrpe and Rule-Msoe_ Rule Mpush can be decomposed into 
three chains of causality relationship: 

Send(s,nc) ⇒ Pushed(s,n2) 

(2) 

(3) 

where ne is the node 926 which includes the ZooKeeper 
coordinator. 
[0081] Chain (2) may be difficult to figure out, as it 
involves complicated intra-node computation and synchro­
nization in ne, which guarantees that every node interested 
ins gets a notification. Even for chains (1) and (3), there is 
no guarantee that Rule-Mrpe and Rule-Msoe can figure them 
out, because the communication among nodes n1 (902), n2 

(901) and ne (926) often contains more than just one RPC/ 
socket message. 
[0082] The second type of notification is a pull-based 
notification protocol. FIG. 8 is a state space diagram and 
timing diagram illustrating an inter-process communication 
concurrency rule. A thread 806 in node n2 (808) keeps 
polling node n 1 (802) about a status object s ( e.g. the state 
of the variable Flag) in n1 . Node n2 does not proceed until 
it learns that s has been updated to a specific value by n 1 . 

This HB rule may be abstracted as the definition of a status 
sin n1 happening before the use of this status on n2 (e.g. in 
thread 810). This type of synchronization occurs in Hadoop 
MapReduce and HBase. 

M""" 

Rule-M"u11:Update(s,n 1) => Pulled(s,n2 ) 

[0083] Again, this rule is not redundant given other HB 
rules, because of the complicated intra-node semantics in n1 . 

Traditional HB rules cannot establish the causality between 
s being set and s being read by an RPC function in another 
thread or being serialized into a socket message. This rule is 
similar to a distributed version of the while-loop custom 
synchronization in single-machine systems. 
[0084] In addition to the messaging rules, it is useful to 
define rules for Intra-node concurrency and communication. 
Within each node, there may be multiple threads. FIGS. 9A 
and 9B are a state space diagram and timing diagram 
illustrating a concurrency rule for communication among 
three systems. As shown in FIG. 9B, some of these threads 
( e.g. 918) are dedicated for running RPC function imple­
mentations; some (e.g. 924) are event handling threads; and 
some (e.g. 906 and 932) are regular threads for example, 
threads in single-machine multi-threaded software. These 
DCbugs are generated by asynchronous custom operations 
as illustrated by shaded block 404. 
[0085] The creation of a thread tin the parent thread, 
denoted as Create(t), happens before the beginning of t, 
denoted as Begin(t). The end of a thread t, denoted as End(t), 
happens before the join of tin another thread Join(t). 

Rule- Jfork:Create(t) S Begin(/) 

,,. 
Rule-P0

;
0 :End(t)~ Join(/) 

[0086] Theoretically, there is another valid thread-related 
HB rule: condition-variable-notify happens before the exit 
of the corresponding condition-variable-wait. Condition­
variable-notify and condition-variable-wait, however, are 
almost never used in the code regions that are related to 
inter-node communication and computation. As described 
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above, the example systems detect DCbugs by analyzing 
inter-node communication and computation. 
[0087] Finally, as described below, while the example 
DCatch system traces lock/unlock operations, DCatch does 
not address lock synchronization because locks are used to 
provide mutual exclusions, not strict ordering. However, as 
described below, DCatch may use lock/unlock operations to 
trigger some DCbug candidates. Knowledge of lock/unlock 
operations may be beneficial to avoid hangs when DCatch 
tries to manipulate the timing and trigger a DCbug candi­
date. Therefore, DCatch traces lock and unlock operations, 
including both implicit lock operations (i.e., synchronized 
methods and synchronized statements) and explicit lock 
operations. 
[0088] Many distributed systems conduct asynchronous 
event-driven processing, essentially creating concurrency 
inside a thread. Events may be put into a queue by any 
thread. A dispatcher thread is typically responsible for taking 
out events from a queue, and assigning them to event­
handling thread(s), where pre-defined event handlers are 
executed. Clearly, the enqueue of an event e, denoted as 
Create( e ), happens before the beginning of the handler­
function of e, denoted as Begin(e). 

Rule-Eenq:Create(e)S Begin(e) 

[0089] For two events e1 and e2 from the same queue, the 
timing between their handling may depend on several prop­
erties of the queue: is the queue a FIFO queue? how many 
dispatching threads are there? how many handling threads 
are there? For many systems, all of the queues are FIFO and 
every queue has only one dispatching thread. Consequently, 
the handling of e1 and e2 is serialized when the queue 
containing e1 and e2 is equipped with only one handling 
thread, and is concurrent otherwise. The former type of 
queues are referred to as single-consumer queues. All the 
queues in Zookeeper and some queues in MapReduce are 
single-consumer queues. The handling of their events fol­
lows the following HB rule. 

E~'"' 

Rule-E'er;aZ,End(e 1) => Begin(e2),if Create(e 1) 

⇒create(e2) 

where e1 EQ, e2EQ, and Q is a single-consumer FIFO queue. 
[0090] The described examples also employ rules for 
sequential program ordering. According to the classical 
happens-before model, if operation o1 occurs before opera­
tion oz during the execution of one thread, o1 happens before 
o2 . That is, the execution order within one thread is deter­
ministic. 

,-· 
Rule-_preg:o 1 => o2 

if o1 occurs before o2 during the execution of a regular 
thread. 
[0091] This happens-before rule holds only for threads 
that do not contain any intra-thread concurrency. In distrib­
uted systems, this rule does not hold for event handling 
threads and RPC threads. In these two types of threads, the 
above rule holds only when o1 and o2 are inside the same 
event handler function or RPC function. 

,-
Rule-.P1reg:01 => 02 

if o1 occurs before o2 during the execution of one event 
handler or one RPC function. 
[0092] The above message, task, event and program 
(MTEP) rules constitute the DCatch HB model. By its 
formalism of different levels of concurrency, DCatch HB 
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model allows the precise modeling of the timing relationship 
among two operations in real-world distributed cloud sys­
tems. 
[0093] For example, for the real example demonstrated in 
FIG. 9B, it can be inferred that the write operation, w (904), 
occurs before the read operation, r (930), (i.e. w ⇒ r), 
because of the following chain of happens-before relation­
ship: 

P"' T"" P~' 

w =>Create(/)=> Begin(/)=> Create(OpenRegion, 
M"" P""" 

HMaster) ⇒ Begin(OpenRegion,HRS) => Cre-

ate( e) S Begin( e) S Update(RS ... 
M"' 

OPENED,HRS) ~ Pushed(RS ... OPENED, 
,-· 

HMaster) => r 

With reference to FIG. 9B, this HB relationship translates to 
the write operation w (904 in thread 906) occurs before the 
create operation 908 that creates thread 910. The RPC call 
at 912 in thread 910, initiates procedure OpenRegion 914 in 
thread 918. OpenRegion 914, at 916 places event e into the 
event queue 922 in event handler 920 of thread 924. Event 
e is updated by coordinator 926 and then pushed to RS ... 
Opened 928 which performs the read operation r (930). The 
operation of the coordinator 926 informs the method 928 in 
thread 932 of the event 922 in the event handler 920, as 
illustrated by the dashed arrow 923. 
[0094] It is noted that, the example DCatch system inten­
tionally ignores certain causality relationships in the distrib­
uted computing system that do not affect the overall goal of 
detecting DCbugs. For example, incoming RPC calls are 
actually first put into queue(s) before they are assigned to 
RPC threads. The Rule-Rrpc, however, abstracts away these 
queues that belong to RPC-library implementations. Also, 
an event dispatching process exists between the enqueuing 
of an event and the beginning of the event handling there 
exists an event dispatching process. This event dispatching 
process is also abstracted away in our Rule-Eenq_ Further­
more, as described above, the example model does not 
consider condition-variable notify-and-wait causality rela­
tionship, because it is almost never used in the inter-node 
communication and computation part of distributed systems. 
[0095] The materials below describe examples of the four 
components ofDCatch based on the model and rules defined 
above. The four components include tracing, applying HB 
rules, triage to identify significant potential DCbugs, and 
triggering of the significant DCbugs. The example DCatch 
system is described with reference to FIGS. l0A and 10B. 
FIG. lOA is a flowchart diagram of an example system for 
detecting concurrency errors that shows the sequence of the 
basic operations. At block 1002, the DCatch system traces 
access to objects during execution of the distributed system 
and generates trace results. Block 1004 applies happens­
before rules to the trace results to identify candidate opera­
tions. Block 1006 identifies concurrent pairs of the candidate 
operations, each pair accessing a respective common object 
and having at least one write operation. These candidate 
pairs represent potential DCbugs. At block 1008, the DCatch 
system uses run-time analysis tools to identify to determine 
which potential DCbugs are actual DCbugs. 
[0096] In the tracing component, 1002, DCatch inserts 
commands into the distributed computing system to produce 
a trace file for every relevant thread of the targeted distrib­
uted systems at run time. The traces in this file allow a trace 
analyzer, 1004, to apply HB rules and identify significant 
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potential DCbugs, as described below. In one example 
system, the tracing component is implemented using 
WALA™, a static Java® bytecode analysis framework, 
and/or Javassist™, a dynamic Java bytecode transformation 
framework. It is contemplated that other bytecode analysis 
software could be used in place of WALA, for example, the 
Soot™ Java bytecode analysis framework. Similarly, other 
dynamic Java bytecode transformation frameworks, such as 
the ASM™ framework may be used instead of Javaassist. 
Details of this example implementation are described below 
with reference to FIG. lOB. 
[0097] The first example trace component 1052 deter­
mines which operations to trace. In one example, DCatch 
collects information about two basic components of 
DCbugs: memory accesses and RB-related operations. As 
described below, the example DCatch also traces lock/ 
unlock operations. 
[0098] Memory access tracing may be performed, naively, 
by recording (e.g. logging) all accesses to program variables 
that could potentially be shared among threads or event 
handlers. This exhaustive approach, however, may lead to 
very large logging and trace analysis cost. Fortunately, such 
excessive logging is unnecessary for DCbug detection 
because not all of the software needs to be analyzed. In 
particular, DCbugs are triggered by inter-node interaction, 
with the root-cause memory accesses mainly in code regions 
related to inter-node communication and computation. 
[0099] Following this design principle, the DCatch trace 
1052 traces all accesses to heap objects and static variables 
in the following three types of functions and their callee 
functions: (1) RPC functions; (2) functions that conduct 
socket operations; and (3) event-handler functions. The first 
two are directly related to inter-node communication and 
corresponding computation. The third type is considered 
because many pre- or post-processing of RPC calls and 
socket sending and receiving operations are conducted 
through event queues and event handlers. 
[0100] Once the trace operation has traced these opera­
tions, DCatch, at block 1054, analyzes the trace and applies 
RB rules. Following the MTEP happens-before rules 
described above, the example DCatch system traces opera­
tions that allow the trace analyzer to infer happens-before 
relationships, as shown in TABLE 1. 

TABLE 1 

Operation T-Rule E-Rule M-Rule P-Rule 

Create (t), Join(t) ✓ 
Begin (t), End (t) ✓ 
Begin (e) ✓ ✓ 
End (e) ✓ 
Create (e) ✓ 
Begin (r, n) End (r, n) ✓ 
Create (r, n) Join (r, n) ✓ 
Send (m, n 1) Recv (m, n2 ) ✓ 
Update (s, n1) Pushed (s, n2 ) ✓ 

[0101] The example DCatch system may identify these 
operations based on corresponding library interfaces at run 
time using the Javassist infrastructure. An example imple­
mentation of this example system is described in more detail 
below. 
[0102] Each trace record contains three pieces of infor­
mation: (1) the type of the recorded operation; (2) the 
callstack of the recorded operation; and (3) an identifier 
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(ID). The first two pieces of information are straightforward. 
The ID, however, has different meanings for different types 
of records. In the example DCatch system, the ID helps 
DCatch trace analyzer to find related trace records. 
[0103] For a memory access, the ID may uniquely identify 
the variable or object touched by this memory access. In one 
example system, the ID of an object field is represented by 
the field-offset inside the object and the object hashcode. 
The ID of a static variable is represented by the variable 
name and its corresponding namespace. 
[0104] For lock/unlock operations, the IDs uniquely iden­
tify the lock objects, allowing DCatch's triggering module 
to identify all lock critical sections and perturb the timing at 
appropriate places. 
[0105] For RB-related operations, the IDs allow DCatch 
trace analysis to correctly apply RB rules. For every thread­
related and event-related operation, the ID may be an object 
hashcode of the corresponding thread object and event 
object, respectively. Each RPC-related and socket-related 
operation may have a unique ID for each RPC-call instance 
and each socket-message. These RPC and socket related IDs 
may be generated by tagging each RPC call and each socket 
message with a random number at run time. An example 
implementation of this example system is described in more 
detail below. 
[0106] The example DCatch trace analyzer identifies 
every pair of heap/static-variable accesses, with at least one 
write operation, that touch the same variable or object and 
that occur concurrently. In one implementation, operations 
not linked by an RB relationship, either directly or indirectly 
are considered to be concurrent. Concurrency may be deter­
mined, as described below, using a happens-before graph of 
the target distributed system. The identified pairs of accesses 
are considers to be DCbug candidates. 
[0107] The example DCatch trace analysis includes two 
steps: happens-before graph construction, block 1056, and 
DCbug candidate identification, block 1058. 
[0108] A happens-before graph is a directed acyclic graph 
(DAG). In this graph, every vertex v represents an operation 
o(v) recorded in the example DCatch trace, including both 
memory accesses and RB-related operations. The edges in 
the graph are arranged in a way that v 1 can reach v 2 if and 
only if o(v1 ) happens before o(v2). 

[0109] To build such a graph, the example DCatch system, 
at block 1056, first analyzes all trace files collected from all 
traced threads of all traced processes in all nodes, and makes 
every record a vertex in the graph. The amount of data to be 
analyzed is reduced since the only functions traced are RPC 
functions, functions that conduct socket operations, event­
handler functions and their called functions. 
[0110] Next, DCatch adds edges according to the MTEP 
happens-before rules, described above and shown in TABLE 
1. The materials below describe only the application of the 
fferiaZ and M1'u11 rules. The application of the other rules are 
mostly straightforward because the ID inside each trace 
record allows the trace analysis to easily group related 
operations together. 
[0111] To apply the single-consumer event-queue rule 
(ffenaz), the DCatch RB graph builder 1056 waits until all 
other RB rules have been applied, which is the only ordering 
requirement in applying the MTEP RB rules. For every 
thread that handles a single-consumer event queue, the 
DCatch graph builder 1056 checks every pair of End (e,) 
operation and Begin ( e) operation recorded in its trace, and 
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adds an edge from the former to the latter after the DCatch 
graph builder 1056 finds that Create ( e,) to happen before 
Create ( e) based on those HB edges added so far. DCatch 
repeats this step until reaching a fixed point. 

[0112] Applying Rule M1'u11 uses program analysis. The 
algorithm here is similar to how loop-based custom syn­
chronization is handled in LCbug detection. For every pair 
of conflicting concurrent read and write { r, w} operations, r 
is considered to be potentially part of a pull-based synchro­
nization protocol if (1) r is executed inside an RPC function; 
(2) the return value of this RPC function depends on r; (3) 
in another node that requests this RPC, the return value of 
this RPC is part of the exit condition of a loop I. The targeted 
software is then run again, tracing only such read operations 
(rs) and all write operations (ws) that touch the same object 
based on the original trace. The new trace indicates which 
write operation w* provides value for the last instance of the 
read operation r before the loop 1 exits. If the w* and r 
operations are from different threads, the w* operation in 
one node happens before the exit of the remote loop 1 in 
another node. This part of the analysis is done together with 
intra-node while-loop synchronization analysis. Although 
the algorithm runs the software for a second time, the 
algorithm incurs little tracing or trace analysis overhead, 
because it focuses on loop-related memory accesses. 

[0113] After the happens-before graph is built, the DCatch 
time stamp and concurrency block 1058 can compute a 
vector time stamp for every vertex in graph and check every 
pair of memory-access vertices to identify conflicting con­
current accesses to the same memory object. Even with the 
reduced tracing, this approach may be complex: the number 
of vertices may be very large, and each vector time-stamp 
may have a large number of dimensions, with each dimen­
sion corresponding to an event handler and/or a RPC func­
tion. 

[0114] To speed up this analysis, DCatch uses an algo­
rithm for asynchronous race detection for non-distributed 
systems. Briefly, the algorithm first constructs a list contain­
ing all the accesses to an object for every memory object that 
appears in trace files. Then, the algorithm enumerates pairs 
of accesses in each list where at least one operation in the 
pair is a write operation. For each such pair, the block 1058 
queries the happens-before graph to see if the operations in 
the pair are concurrent. The basic idea is to compute a 
reachable set for every vertex in the happens-before graph. 
Next, the query looks through the reachable set of one vertex 
to see if the other vertex appears in the resulting set. To save 
memory space, a bit array may be assigned to each vertex i 
to represent the reachable set, where the j th bit is set if the 
vertex i can reach vertex j. The algorithm may then traverse 
the graph from each vertex i and set a bit for each vertex j 
encountered during the traversal. After these arrays are 
constructed, the query can get results in constant time. In 
other words, concurrence between first and second opera­
tions can be determined without adding time stamps to the 
graph. The algorithm identifies first and second operations as 
concurrent when the bit representing the vertex of the 
second operation is not set in the bit array of the vertex 
corresponding to the first operation. 

[0115] Block 1058 reports pairs of concurrent conflicting 
accesses as DCbug candidates. A candidate pair of accesses 
is conflicting if it accesses the same object with at least one 
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of the accesses being a write operation and it is concurrent 
if there is no happens-before relationship between the two 
accesses, as indicated by the vertex bit array. The materials 
below refer to s and tor (s, t) as the concurrent conflicting 
operations (accesses) identified in the trace analysis. Not all 
of the candidates, however, can lead to execution failures. 
This is particularly true in distributed systems which inher­
ently contain more redundancy and failure tolerance than 
single-machine systems. 

[0116] To avoid excessive false positives, given a bug 
candidate (s, t), the DCatch system, at block 1060, statically 
analyzes the related Java bytecode of the target system to 
estimate the potential local (i.e., within one node) and 
distributed (i.e., beyond one node) impact of this bug 
candidate, and prunes the ones that are unlikely to cause 
severe failures. 

[0117] DCatch pruning block 1060 of the example DCatch 
system conducts inter-procedural and inter-node impact 
analysis to better suit the failure-propagation nature of 
DCbugs in distributed systems. Block 1060 includes a data 
structure that classifies the failures to identify the failures 
that are to be considered severe failures. The data structure 
also identifies what types of instructions are considered 
failure instructions. Block 1060 can check whether the 
execution of any failure instructions depends on the bug 
candidate (s, t). 

[0118] There may be different definitions of severe fail­
ures. In one example DCatch system analyzes the following 
types of failures and failure instructions: (1) system aborts 
and exits, the corresponding failure instructions of which are 
invocations of abort and exit functions ( e.g., System.exit and 
System.abort); (2) severe errors that are printed out or 
otherwise output, whose corresponding failure instructions 
are invocations ofLog::fatal and Log::error functions in the 
studied systems; (3) throwing uncatchable exceptions (using 
the Java Throw statement), such as RuntimeException; (4) 
infinite loops, where every loop-exit instruction is consid­
ered as a potential failure instruction. Finally, if any iden­
tified failure instructions is inside a catch block, block 1060 
consider the corresponding exception throw instruction, if 
available, as a failure instruction. 

[0119] The above list is configurable, which allows the 
example DCatch pruning block 1060 to be configured to 
detect DCbugs with different types of impact. 

[0120] To determine whether an identified DCbug is a 
severe failure, the DCatch pruning block 1060, DCatch 
analyzes the program bytecode for every bug report (s, t) to 
see whether either sort may have local (i.e., intra-node) or 
distributed (i.e., inter-node) impact towards the occurrence 
of any failure instructions. 

[0121] Pruning block 1060 conducts both intra-procedural 
and inter-procedural analysis for local impact analysis. 
Given a memory-access statement s located in method M, 
block 1060 first checks whether any failure instruction in M 
has control- or data-dependence on s. Block 1060 applies 
similar checking fort. If block 1060 finds such a depending 
failure instruction for either s or t, DCatch keeps the 
corresponding bug candidate in its bug-report list. 

[0122] Block 1060 then checks whether s could affect 
failure instructions inside the callers of M through either the 
return value of M or heap/global objects accessed by M. 
Note that, from the DCatch tracer and trace analysis report 
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call-stack information, the inter-procedural analysis per­
formed in block 1060 may follow the reported call-stack of 
s. 

[0123] To determine the impact through return values, 
Block 1060 checks whether the return value of M has control 
or data dependence on s. If so, Block 1060 continues to 
check whether any failure instructions in the function that 
called M depend on the return value of M. Block 1060 
follows the call-stack of s to perform similar analysis along 
the call chain. 

[0124] Checking the impact through heap/global variables 
may be more complicated. Block 1060 first checks whether 
there exists any heap write w that has data dependency or 
control dependency on s inside the method M. For every 
such w that writes to object o, DCatch checks the caller of 
M, denoted as M', to see if there exists any read, r, of o that 
satisfies all the following conditions: (1) the read, r, exists 
along a path from the callsite of M to a failure instruction; 
(2) that failure instruction has control-dependency or data­
dependency upon the read r. Given the complexity and 
in-accuracy concerns (due to alias and others), DCatch only 
applies this analysis to one-level caller of M, not further up 
the call chain. 

[0125] Finally, block 1060 checks whether s could affect 
failure sites in the called functions of M (also known as 
"callee functions") through either function-call parameters 
or heap/global variables. This analysis is also only applied to 
the one-level callee functions of M. 

[0126] In addition to intra-node analysis, block 1060 also 
performs inter-node analysis. As shown in FIG. 2B, an 
access in one node may lead to a failure in a different node. 
Therefore, DCatch also analyzes RPC functions to under­
stand the remote impact of a memory access. 

[0127] Specifically, after block 1060 finds an RPC func­
tion R along the call-stack of the memory access s, it checks 
whether the return value of R depends on s. If so, block 1060 
then locates the function Mr on a different node that invokes 
the RPC call R. Inside Mr. Block 1060 also checks whether 
any failure instruction depends on the return value of R. 
Note that locating Mr is straightforward given the DCatch 
run-time trace. 

[0128] Theoretically, block 1060 can also analyze inter­
node impact through sockets. However, socket communica­
tion may not be as structured as RPC invocations, and, thus, 
it may be more difficult to identify the corresponding fine­
granularity dependency information without developers 
annotation. 

[0129] Finally, for a DCbug candidate (s, t), if block 1060 
fails to find any failure impact for sand t, block 1060 prunes 
the DCbug candidate from the DCatch bug list. In one 
example system, the above implementation is done in 
WALA code analysis framework, leveraging WALA APis 
that build program dependency graphs. 

[0130] The DCbug candidates reported so far still may not 
be truly harmful for two reasons. First, some reported access 
pairs may not be truly concurrent with each other-their 
execution order may be fixed by custom synchronization 
that was not identified by DCatch. Second, some truly 
concurrent conflicting access pairs may be benign---execut­
ing the two accesses in different order may not lead to any 
failure. Note that, the failure impact analysis described 
above is only a static estimation, and, hence, may be wrong. 
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Furthermore, even for those truly harmful DCbug candi­
dates, triggering them could be very challenging in distrib­
uted systems. 
[0131] To help prune false positives and reliably expose 
truly harmful DCbugs, the last component of DCatch, the 
testing and triggering blocks 1062 and 1064, provides sup­
port for testing distributed systems and triggering DCbugs. 
It includes two parts: (1) an infrastructure that enables easy 
timing manipulation in distributed systems; and (2) an 
analysis tool that suggests how to use the infrastructure to 
trigger a DCbug candidate. 
[0132] The DCatch system could perturb the timing of 
execution by inserting sleep intervals into the program as 
shown in FIG. 11. FIG. 11 is a timing diagram showing 
example techniques for triggering run-time concurrency 
errors. As shown in FIG. 11, sleep states 1102 are selectively 
introduced right before any one or both of the RPC call 1104 
in node 1, and the enqueuing operations 1106 for the event 
1108 in node 2. Each of the inserted sleep states is long 
enough to flip the execution order between 1108 and 1112 in 
node 2 if the flipping is possible and to trigger an error if one 
exists. If the order between events 1108 and 1112 cannot be 
flipped or if it can be flipped and yet no error is detected, 
then these two operations 1108 and 1112 may be pruned 
from the list of DCbug candidates. This approach, however 
may not be an effective way to detect complicated bugs in 
complicated systems, because it is hard to know how long 
the sleep intervals need to be. A more sophisticated approach 
may run the entire program in one processor core and control 
the timing through a thread scheduler. Neither of these 
approaches works well for DCbugs, however, which may 
require manipulating the timing among operations from 
different nodes. It may be impractical to run real-world large 
distributed systems on one processor core. 
[0133] One example DCatch infrastructure includes two 
components: client-side APis for sending coordination-re­
quest messages and a message-controller server. In the 
materials below, the distributed system under testing is 
referred to as the client. 
[0134] Consider analyzing a pair of concurrent operations 
A and B. the testing and triggering blocks 1062 and 1064, 
described above with reference to FIG. 10B, may explore 
executing A right before B and also B right before A. One 
way in which this may be implemented is for block 1062 to 
place a _request API call before A and a _confirm API call 
right after A, and to place similar instructions before and 
after B. At run time, the _request API may send a message 
to the controller server to ask for permission to continue 
execution. The controller, at block 1064 waits for the 
request-message to arrive from both parties, and then grants 
permission to one party, waits for the confirm-message sent 
by the respective _confirm API, and then grant the permis­
sion for the remaining party. The controller may keep a 
record of what ordering has been explored and may re-start 
the system several times (block 1066), until all ordering 
permutations among all the request parties Gust two in this 
example) are explored. A controller may keep a record of the 
permutations that have been tried and restart the system 
several times until all permutations have been tested. The 
system may then terminate at block 1068. One such example 
is shown in FIG. 12. 
[0135] FIG. 12 is a timing diagrams showing example 
techniques for triggering run-time concurrency errors. In 
this example, _request API blocks 1202 are inserted before 



US 2018/0046565 Al 

the RPC call blocks 1204 and 1214 and _confirmAPI blocks 
1204 are inserted after the RPC call blocks 1205 and 1214. 
A controller 1201 may cause the RPC calls, and conse­
quently operation 1208 and operation 1212, to be executed 
in any order to determine if they result in an error. Alterna­
tively, or in addition, _request blocks 1202 may be inserted 
before, and _confirm blocks 1204 may be inserted after the 
enqueuing operations 1206 and 1208. The inserted _request 
and _confirm API blocks result in the operations 1208 and 
1212 being initiated in different order. Ifno error is detected 
then the bug candidate pair (1208, 1212) may be pruned 
from the list of DCbug candidates. If a serious error mani­
fests during this process, the DCbug candidate may be 
retained in the list. 
[0136] The examples described below provide two imple­
mentations for this controller server: one is in truly distrib­
uted mode, which communicates with the testing client 
running on different machines through sockets; the other is 
in single-machine mode, which communicates with the 
testing client running in different processes on the same 
machine through file operations. 
[0137] With the infrastructure described above, the 
remaining question is where to put the _request and _con­
firm APis given a DCbug report (s, t). The _confirm APis 
can be inserted right after the heap access in the bug report. 
Therefore, the materials below focus on the placement of 
_request APis. 
[0138] One solution, as shown in FIG. 12, may be to put 
the _request right before s and t. This approach, however, 
sometimes does not work, either because it leads to hangs, 
or because it causes too many _request messages to be sent 
to the controller server due to the large number of dynamic 
instances of s/t. One example DCatch system may be 
configured according to the following analysis to help solve 
this problem. 
[0139] First, the DCatch system may warn about potential 
hangs caused by poor placements of the _request APis and 
may suggest one or more non-hang placements. Specifically, 
when s and t are both inside event handlers and their event 
handlers correspond to a single-consumer queue, the DCatch 
system may warn the user of hangs and suggest inserting the 
_request APis in the corresponding event enqueue functions, 
instead. Similarly, ifs and tare both inside RPC handlers and 
their RPC functions are executed by the same RPC handling 
thread in the same node, DCatch may suggest inserting the 
_request APis in corresponding functions that initiate the 
RPCs. If s and t are inside critical sections guarded by the 
same lock, DCatch may suggest inserting a _request right 
before the corresponding critical sections. DCatch may 
obtain this critical section information based on lock-related 
records in its trace, as described above. 
[0140] Second, DCatch may issue a warning after it finds 
large number of dynamic instances of s and t and may 
suggest better placements. For example, the DCbug report 
may contain the call-stacks for s and t and the DCatch 
system may check the run-time trace to determine whether 
the report contains a large number of dynamic instances of 
the corresponding call-stack for s (the analysis fort is the 
same). In these instances, DCatch may check its happens­
before graph to find an operation o in a different node that 
causes s, and check whether o is a better place for the 
_request. This analysis is effective, as many event handlers 
and RPC functions may be executed under the same call 
stack, and hence could make bug triggering very compli-
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cated without this support from the DCatch system. It is 
noted that both of the features described above are unique to 
triggering DCbugs. 
[0141] An example implementation of the DCatch system 
is described below. RB-related operation tracing may be 
implemented using Javassist, or other dynamic Java byte­
code re-writing tool, which allows analysis and instrumen­
tation of Java bytecode whenever a class is loaded. 
[0142] RB-related operations involve functions related to 
thread, event-handling, RPCs, sockets, and inter-node noti­
fication protocols, as described above. All thread-related 
operations can be easily identified following the java.lang. 
Thread interface. Other operations are supported by slightly 
different interfaces across different systems. 
[0143] In one example, event handling is implemented 
using java.beans.EventRandler interface in both Radoop 
and RBase. The prototype of an event handler function is 
EventRandler::handle (Event e), where the content of the 
parameter determines the event handling action. Cassandra 
and Zookeeper use their own event-handling interfaces. The 
way event handler functions are implemented and invoked 
are similar to the implementation and invocation in Radoop 
and RBase. 
[0144] For RPC, RBase and later versions of Radoop 
share the same RPC library interface, VersionedProtocol. All 
methods declared under classes instantiated from this inter­
face are RPC functions, and hence can be easily identified by 
the DCatch system. Later versions of Radoop use a slightly 
different RPC interface, ProtoBase, which identifies RPC 
functions in the same way as VersionedProtocol. 
[0145] For socket sending and receiving, Cassandra has a 
superclass IVerbRandler to handle socket communication 
and the sending of is conducted by a function, IVerbRan­
dler: :sendOneWay (Message, EndPoint). Thus, the DCatch 
system can easily identify all such socket message sending 
function calls, as well as the corresponding message objects. 
Zookeeper uses a super-class Record for all socket mes­
sages. Every socket sending is preceded by a new instance 
of a Record object, and is conducted through socket::write 
(Record). Thus, socket messages can also be easily identi­
fied. 
[0146] One example DCatch system first uses WALA, a 
static Java bytecode analysis framework, to statically ana­
lyze the target software, identify all RPC/socket/event 
related functions, and store the analysis result in a file 
DFunctionList for later run-time analysis use. The example 
DCatch system then uses Javassist to insert tracing functions 
before every heap or static variable access as described 
above. Specifically, the DCatch system may use a Javassist 
plugin that conducts the following operations whenever a 
class C is loaded into JVM: (1) identify all methods in C that 
are part of DFunctionList; (2) for each such method func­
tion, identify all getfield/putfield instructions ( e.g., heap 
accesses) and getstatic/putstatic instructions ( e.g., static­
variable accesses); (3) for each such instruction, insert a 
tracing function before the instruction, where the tracing 
function produces a trace record. 
[0147] The example DCatch system records a unique ID 
for each package sent/received through a socket communi­
cation and via each RPC call. To achieve this the system, at 
the socket sending or RPC calling side, generates a random 
number and sends the random number together with the 
socket message or RPC call. At the receiving side, the 
system parses the random number and puts it into the 
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corresponding trace record. Specifically, the DCatch system 
statically transforms the target software, adding one extra 
parameter for every RPC/socket-sending function and 
inserting the code to generate a random value for each such 
parameter at RPC/socket-sending invocation. 
[0148] As described above, the DCatch system may be 
adapted to any distributed processing system with knowl­
edge of the following: (1) what is the RPC interface; (2) 
what APis are used for socket messaging; (3) what APis are 
used for the event enqueue/dequeue/handler; ( 4) whether the 
event queues are FIFO and whether they have one or 
multiple handler threads. Providing the above specifications 
should be straightforward and reasonably easy, because only 
a relatively small number of (RPC/event/socket) interfaces 
or prototypes are identified, instead of a relatively large 
number of instance functions. The above specifications are 
desirable for accurate DCbug detection in existing distrib­
uted systems. 
[0149] The DCatch rules are easily adapted to the distrib­
uted processing system once these items are known. To 
implement DCatch on a distributed processing system, the 
components of the processing system are first modified 
using a static and/or dynamic bytecode transformation/ 
analysis framework, such as WALA and/or Javassist, to 
insert commands used to trace access to objects in RPC 
functions, functions that conduct socket operations and 
event handler functions. The modified system is then run on 
a multi-node system to trace the functions accessing the 
objects. The DCatch system then analyzes the trace to build 
the graph and identify candidate pairs of operations that 
potentially cause DCbugs. The components of the process­
ing system are then analyzed again to prune potential 
DCbugs that do not extend across multiple nodes. The 
system is again modified to insert delays (e.g. sleep states) 
and/or _request and _confirm APis to adjust system timing. 
The modified system is executed multiple times to try 
different permutations of the candidate pairs of operations to 
determine which potential DCbugs can actually occur. 
[0150] The functions or algorithms described herein may 
be implemented using software in one embodiment. The 
software may consist of computer executable instructions 
stored on computer readable media or computer readable 
storage device such as one or more non-transitory memories 
or other type of hardware based storage devices, either local 
or networked. Further, such functions correspond to mod­
ules, which may be software, hardware, firmware or any 
combination thereof. Multiple functions may be performed 
in one or more modules as desired, and the embodiments 
described are merely examples. The software may be 
executed on a computing system such as a digital signal 
processor, ASIC, microprocessor, mainframe processor or 
other type of processor operating on a computer system, 
such as a personal computer, server or other computing 
system, turning such computing system into a specifically 
programmed machine. 
[0151] FIG. 13 is a block diagram illustrating computing 
circuitry for clients, servers, and cloud based computing 
system resources for implementing algorithms and perform­
ing methods according to example embodiments. The dis­
tributed computing system may include multiple instances 
of the circuitry shown in FIG. 13 and include the DCatch 
system, described above. All components need not be used 
in various embodiments. For example, each of the clients, 
servers, and network resources of the distributed computing 
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system may each use a different set of components, or in the 
case of servers or mainframes, for example, larger storage 
devices. 
[0152] One example computing system in the form of a 
computer 1300 may include a processing unit 1302, memory 
1303, removable storage 1310, and non-removable storage 
1312. The processing unit 1302 may be a single core or 
multi-core device. Although the example computing system 
is illustrated and described as computer 1300, the computing 
system may be in different forms in different embodiments. 
For example, the computing system may instead be a 
smartphone, a tablet, smartwatch, or other computing device 
including the same or similar elements as illustrated and 
described with regard to FIG. 13. Devices, such as smart­
phones, tablets, and smartwatches, are generally collectively 
referred to as mobile devices or user equipment. Further, 
although the various data storage elements are illustrated as 
part of the computing system 1300, the storage may also or 
alternatively include cloud-based storage accessible via a 
network, such as a local area network (LAN), a personal area 
network, (PAN) a wide area network (WAN) such as the 
Internet, or local server based storage. 
[0153] Memory 1303 may include volatile memory 1314 
and non-volatile memory 1308. Computer 1300 may 
include-or have access to a computing environment that 
includes-a variety of computer-readable media, such as 
volatile memory 1314 and non-volatile memory 1308, 
removable storage 1310 and non-removable storage 1312. 
Computer storage includes random access memory (RAM), 
read only memory (ROM), erasable programmable read­
only memory (EPROM) and electrically erasable program­
mable read-only memory (EEPROM), flash memory or 
other memory technologies, compact disc read-only 
memory (CD ROM), Digital Versatile Disks (DVD) or other 
optical disk storage, magnetic cassettes, magnetic tape, 
magnetic disk storage or other magnetic storage devices, or 
any other medium capable of storing computer-readable 
instructions. 
[0154] Computer 1300 may include or have access to a 
computing environment that includes input interface 1306, 
output interface 1304, and a communication connection or 
interface 1316. Output 1304 may include a display device, 
such as a touchscreen, that also may serve as an input device. 
The input 1306 may include one or more of a touchscreen, 
touchpad, mouse, keyboard, camera, one or more device­
specific buttons, one or more sensors integrated within or 
coupled via wired or wireless data connections to the 
computing system 1300, and other input devices. The com­
puter may operate in a networked environment using a 
communication connection to connect to one or more remote 
computers, such as mainframes and/or database servers. The 
remote computer may include a personal computer (PC), 
server, router, network PC, a peer device or other common 
network node, or the like. The communication connection 
may include a Local Area Network (LAN), a Wide Area 
Network (WAN), cellular, Wi-Fi, Bluetooth, or other net­
works. 
[0155] Computer-readable instructions stored on a com­
puter-readable medium are executable by the processing unit 
1302 of the computer 1300. A hard drive, CD-ROM, and 
RAM are some examples of articles including a non-tran­
sitory computer-readable medium such as a storage device. 
The terms computer-readable medium and storage device do 
not include carrier waves to the extent carrier waves are 
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deemed too transitory. For example, a computer program 
1318 may be used to cause processing unit 1302 to perform 
one or more methods or algorithms described herein. 

What is claimed is: 
1. A method of detecting distributed concurrency errors in 

a distributed computing system including a plurality of 
component computers, the method comprising: 

tracing operations that access objects during execution of 
the distributed computing system to generate trace 
results; 

applying a set of happens-before rules to the trace results 
to identify candidate operations among the traced 
operations, each happens-before rule indicating a first 
type of operation that happens before a second type of 
operation; 

identifying respective concurrent pairs of the candidate 
operations that access respective common objects to 
generate a list of potential distributed concurrency 
errors; and 

using the identified concurrent pairs of candidate opera­
tions, identifying conflicting memory accesses among 
the plurality of component computers that result in 
distributed concurrency errors. 

2. The method of claim 1, wherein the happens-before 
rules comprise message rules concerning messages between 
two nodes, thread rules threads initiated from different 
nodes, event rules concerning events accessed by different 
threads, and program ordering rules concerning execution 
order of operations in different threads. 

3. The method of claim 1, further comprising: 
identifying, as the candidate operations, respective pairs 

of the candidate operations from respectively different 
threads that access the respective common object and 
include at least one write operation. 

4. The method of claim 1, wherein tracing the operations 
that access objects includes exclusively tracing remote pro­
cedure call (RPC) functions, functions that conduct socket 
operations, and event handler functions. 

5. The method of claim 1, further comprising: 
building an ordered graph of the candidate operations, 

each vertex in the graph representing one of the can­
didate operations and each edge between two vertexes 
in the graph representing a happens-before relationship 
between the operations represented by the two ver­
texes; and 

identifying a first one of the candidate operations as being 
concurrent with a second one of the candidate opera­
tions concurrent ones of the candidate operations after 
determining that the graph does not include a path from 
the first candidate operation to the second candidate 
operation. 

6. The method of claim 5 further comprising: 
assigning a bit array to each vertex, each bit in the bit 

array representing a respective vertex in the graph; 
for each vertex, traversing the graph and setting one of the 

bits in the bit array corresponding to a target vertex 
upon reaching the target vertex during the traversal of 
the graph; and 

determining that the first and second candidate operations 
are concurrent when, for the bit array of the first 
candidate operation, the bit corresponding to the sec­
ond candidate operation is not set. 

7. The method of claim 1, further comprising analyzing 
each concurrent pair of candidate operations used to gener-
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ate the list of potential distributed concurrency errors to 
delete, from the list, concurrent pairs of candidate operations 
that are unlikely to cause severe failures. 

8. The method of claim 7, wherein, for each concurrent 
pair of candidate operations, the respective common object 
accessed by the concurrent pair candidate operations is 
located in a first node and the method further comprises 
analyzing one or more portions of the distributed computing 
system in which the concurrent pair of candidate operations 
occurs to determine whether a distributed concurrency error 
caused by out-of-order execution of the concurrent opera­
tions has an effect in a second node different from the first 
node. 

9. The method of claim 1, further comprising modifying 
threads of the distributed computing system to determine a 
relative timing of each operation in each of the concurrent 
pairs of operations during execution of the distributed com­
puting system to identify actual dynamic concurrency errors. 

10. The method of claim 1, further comprising modifying 
threads of the distributed computing system to adjust rela­
tive timing of selected operations in the concurrent pairs of 
operations during execution of the distributed computing 
system to cause actual distributed concurrency errors in 
order to determine a timing sensitivity of the selected 
operations. 

11. Anon-transitory computer readable medium compris­
ing instructions, that, when executed by a processor, con­
figure the processor to: 

trace operations in a distributed computing system that 
access objects during execution of the distributed com­
puting system to generate trace results; 

apply a set of happens-before rules to the trace results to 
identify candidate operations among the traced opera­
tions, each happens-before rule indicating a first type of 
operation that happens before a second type of opera­
tion; 

identify respective concurrent pairs of the candidate 
operations that access respective common objects to 
generate a list of potential distributed concurrency 
errors; and 

adjust an order of occurrence for selected candidate 
operations in the concurrent pairs of candidate opera­
tions corresponding to each respective potential dis­
tributed concurrency error occur to confirm the distrib­
uted concurrency error. 

12. The non-transitory computer readable medium of 
claim 11, further comprising instructions that configure the 
processor to identify, as the candidate operations, respective 
pairs of the candidate operations from respectively different 
threads that access the respective common object and 
include at least one write operation. 

13. The non-transitory computer readable medium of 
claim 11, further comprising instructions that configure the 
processor to exclusively trace remote procedure call (RPC) 
functions, functions that conduct socket operations, and 
event handler functions. 

14. The non-transitory computer readable medium of 
claim 11, further comprising instructions that configure the 
processor to: 

build an ordered graph of the candidate operations, each 
vertex in the graph representing one of the candidate 
operations and each edge between two vertexes in the 
graph represents a happens-before relationship between 
the operations represented by the two vertexes; and 
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identify a first one of the candidate operations as being 
concurrent with a second one of the candidate opera­
tions in response to determining that the first and 
second candidate operations are not connected in the 
graph. 

15. The non-transitory computer readable medium of 
claim 14, further comprising instructions that configure the 
processor to: 

assign a bit array to each vertex, each bit in the bit array 
representing a respective vertex in the graph; 

for each vertex, traverse the graph and set one of the bits 
in the bit array corresponding to a target vertex upon 
reaching the target vertex during the traversal of the 
graph; and 

determine that the first and second candidate operations 
are concurrent when, for the bit array of the first 
candidate operation, the bit corresponding to the sec­
ond candidate operation is not set. 

16. The non-transitory computer readable medium of 
claim 11, further comprising instructions that configure the 
processor to analyze the concurrent pairs of candidate opera­
tions used to generate the list of potential distributed con­
currency errors to delete, from the list, concurrent pairs of 
candidate operations that are unlikely to cause severe fail­
ures. 

17. The non-transitory computer readable medium of 
claim 16, further comprising instructions that configure the 
processor to, responsive to the respective common object 
accessed by the concurrent candidate operations being 
located in a first node, analyze one or more portions of the 
distributed computing system in which the concurrent pairs 
of candidate operations occur to determine whether a dis­
tributed concurrency error caused by out-of-order execution 
of the concurrent candidate operations has an effect in a 
second node different from the first node. 

18. A method for processing components of a distributed 
computing system to identify distributed concurrency errors, 
the method comprising: 

generating a trace distributed computing system by insert 
trace commands into the distributed computing system, 
the trace commands tracing access to objects in RPC 
functions, functions that conduct socket operations and 
event handler functions; 

executing the trace distributed computing system to col­
lect trace data; 

analyzing the trace data to build a graph having vertexes 
corresponding to operations that access the objects and 
edges corresponding to happens-before rules connect­
ing the operations; 

analyzing the graph to identify candidate pairs of opera­
tions that potentially cause the distributed concurrency 
errors; 

modifying the distributed computing system to provide a 
distributed computing system having adjustable timing; 
and 

executing the distributed computing system having 
adjustable timing multiple times while adjusting the 
timing to identify which candidate pairs of operations 
produce actual distributed concurrency errors. 

19. The method of claim 18, wherein building the hap­
pens-before graph includes building a directed acyclic 
graph. 
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20. The method of claim 19, wherein modifying the 
distributed computing system includes using at least one of 
a static bytecode analysis framework or a dynamic bytecode 
transformation framework. 

21. Apparatus comprising: 
a processing unit coupled to a distributed computing 

system, the processing unit configured to: 
trace operations in the distributed computing system that 

access objects during execution of the distributed com­
puting system to generate trace results; 

apply a set of happens-before rules to the trace results to 
identify candidate operations among the traced opera­
tions, each happens-before rule indicating a first type of 
operation that happens before a second type of opera­
tion; 

identify respective concurrent pairs of the candidate 
operations that access respective common objects to 
generate a list of potential distributed concurrency 
errors; and 

adjust an order of occurrence for selected candidate 
operations in the concurrent pairs of candidate opera­
tions corresponding to each respective potential dis­
tributed concurrency error occur to confirm the distrib­
uted concurrency error. 

22. The apparatus of claim 21, wherein the processing unit 
is further configured to identify, as the candidate operations, 
respective pairs of the candidate operations from respec­
tively different threads that access the respective common 
object and include at least one write operation. 

23. The apparatus of claim 21, wherein the processing unit 
is further configured to exclusively trace remote procedure 
call (RPC) functions, functions that conduct socket opera­
tions, and event handler functions. 

24. The apparatus of claim 21, wherein the processing unit 
is further configured to: 

build an ordered graph of the candidate operations, each 
vertex in the graph representing one of the candidate 
operations and each edge between two vertexes in the 
graph represents a happens-before relationship between 
the operations represented by the two vertexes; and 

identify a first one of the candidate operations as being 
concurrent with a second one of the candidate opera­
tions in response to determining that the first and 
second candidate operations are not connected in the 
graph. 

25. The apparatus of claim 24, wherein the processing unit 
is further configured to: 

assign a bit array to each vertex, each bit in the bit array 
representing a respective vertex in the graph; 

for each vertex, traverse the graph and set one of the bits 
in the bit array corresponding to a target vertex upon 
reaching the target vertex during the traversal of the 
graph; and 

determine that the first and second candidate operations 
are concurrent when, for the bit array of the first 
candidate operation, the bit corresponding to the sec­
ond candidate operation is not set. 

26. The apparatus of claim 21, wherein the processing unit 
is further configured to: 

analyze the concurrent pairs of candidate operations used 
to generate the list of potential distributed concurrency 
errors to delete, from the list, concurrent pairs of 
candidate operations that are unlikely to cause severe 
failures. 
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27. The apparatus of claim 26, wherein the processing unit 
is further configured to: 

responsive to the respective common object accessed by 
the concurrent candidate operations being located in a 
first node, analyze one or more portions of the distrib­
uted computing system in which the concurrent pairs of 
candidate operations occur to determine whether a 
distributed concurrency error caused by out-of-order 
execution of the concurrent candidate operations has an 
effect in a second node different from the first node. 

28. Apparatus for processing components of a distributed 
computing system to identify distributed concurrency errors, 
the apparatus comprising: 

a processing unit configured to: 
insert trace commands into the distributed computing 

system to generate a trace distributed computing sys­
tem, the trace commands tracing access to objects in 
RPC functions, functions that conduct socket opera­
tions and event handler functions; 

cause the trace distributed computing system to execute to 
collect trace data; 
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analyze the trace data to build a graph having vertexes 
corresponding to operations that access the objects and 
edges corresponding to happens-before rules connect­
ing the operations; 

analyze the graph to identify candidate pairs of operations 
that potentially cause the distributed concurrency 
errors; 

modify the distributed computing system to provide a 
distributed computing system having adjustable timing; 
and 

cause the distributed computing system having adjustable 
timing to execute timing multiple times while adjusting 
the timing to identify which candidate pairs of opera­
tions produce actual distributed concurrency errors. 

29. The apparatus of claim 29 further comprising: 

at least one of a static bytecode analysis framework or a 
dynamic bytecode transformation framework for modi­
fying the distributed computing system. 

* * * * * 


