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ABSTRACT 

A system and method are provided for reconstructing images 
from limited or incomplete data, such as few view data or 
limited angle data or truncated data generated from divergent 
beams. The method and apparatus may iteratively constrain 
the variation of an estimated image in order to reconstruct the 
image. To reconstruct an image, a first estimated image may 
be generated. Estimated data may be generated from the first 
estimated image, and compared with the actual data. The 
comparison of the estimated data with the actual data may 
include determining a difference between the estimated and 
actual data. The comparison may then be used to generate a 
new estimated image. For example, the first estimated image 
may be combined with an image generated from the differ
ence data to generate a new estimated image. To generate the 
image for the next iteration, the variation of the new estimated 
image may be constrained. 
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IMAGE RECONSTRUCTION FROM LIMITED 
OR INCOMPLETE DATA 

REFERENCE TO RELATED APPLICATIONS 

[0001] This application a continuation of U.S. application 
Ser. No. 14/095,562 (now U.S. Pat. No. 8,923,587), which is 
a continuation of U.S. application Ser. No. 12/223,946 (now 
U.S. Pat. No. 8,605,975), which is a national stage application 
under 35 U.S.C. §371 of PCT application No. PCT/US2007/ 
003956 (filed on Feb. 12, 2007 and published as WO 2007/ 
095312 A2), which claims the benefit of priority from U.S. 
Provisional Application No. 60/773,181, filed Feb. 13, 2006, 
all of which are incorporated by reference herein in their 
entirety. 

GOVERNMENT LICENSE RIGHTS 

[0002] The U.S. Govermnent has a paid-up license in this 
invention and the right in limited circumstances to require the 
patent owner to license others on reasonable terms as pro
vided for by the terms of grants KOi EB003913, ROI 
EB00225, and ROI EB02765 awarded by the National Insti
tutes of Health. 

FIELD OF THE INVENTION 

[0003] The present invention relates to a method and appa
ratus for imaging an object. More particularly, the present 
invention relates to a method and apparatus for imaging an 
interior of a part, or all, of a living or non-living object with 
limited or incomplete data such as few view data or limited 
angle data or truncated data (including exterior and interior 
truncation data). 

BACKGROUND 

[0004] Imaging techniques typically comprise detecting a 
signal from an object and constructing an image based on the 
detected signal. The detected signal may include any detect
able datum from the sample, such as an electromagnetic 
signal from any frequency range, a magnetic signal, an ion
ization signal, heat, particles ( electron, proton, neutron, etc.), 
or the like. 
[0005] The imaged object may comprise any portion of a 
living organism ( e.g., human or animal) or a nonliving object. 
For example, the portion may comprise an internal or an 
external portion, or may comprise the entire internal or exter
nal portion of the object. There are a wide variety of tech
niques for imaging of the object. Examples of imaging tech
niques include, but are not limited to: computed tomography 
(CT), positron emission tomography (PET), single-photon 
emission computed tomography (SPECT), magnetic reso
nance imaging (MRI), electron paramagnetic resonance 
imaging (EPRI), wave imaging (such as phase contrast imag
ing, thermacoustic imaging, and thermooptical imaging), and 
particle imaging. Further, various imaging techniques may be 
combined. For example, CT imaging and PET imaging may 
be combined to generate an image. 
[0006] CT is an X-ray procedure in which the X-ray beam 
may move around the object, taking pictures from different 
angles. These images may be combined by a computer to 
produce a cross-sectional picture of the inside of the object. 
PET is a diagnostic imaging procedure that may assess the 
level of metabolic activity and perfusion in various organ 
systems of an object, such as a human body. A positron 
camera (tomograph) may be used to produce cross-sectional 
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tomographic images, which may be obtained from positron 
emitting radioactive tracer substances (radiopharmaceuti
cals ), such as 2-[F-18] Fluoro-D-Glucose (FDG), that may be 
administered intravenously to the object. SPECT scans and 
PET scans are part of the nuclear imaging family. The SPECT 
scan is capable of revealing information about the object, 
such as blood flow to tissue. For example, radionuclide may 
be given intravenously, with the tissues absorbing the radio
nuclides ( diseased tissue absorbs at a different rate), and the 
rotating camera picking up images of these particles, which 
may then be transferred to a computer. The images may be 
translated onto film as cross sections and can be viewed in a 
3-D format. Moreover, MRI and EPRI are imaging tech
niques that use a magnetic field and radiofrequency radiation 
to generate information, such as anatomical information. 

[0007] In certain instances, the images may be generated 
using the exemplary imaging techniques discussed above 
from full knowledge of their linear transforms. However, in 
many practical situations, one may have access only to frac
tions of such measurements and thus have limited (instead of 
full) knowledge of the linear transforms. Thus, in various 
forms of imaging, including tomography, one of the main 
issues for image reconstruction centers on data sufficiency 
and on how to estimate an image (such as a tomographic 
image) when the projection data are not theoretically suffi
cient for exact image reconstruction. Insufficient data prob
lems occur quite frequently because of practical constraints 
due to the imaging hardware, scanning geometry, or ionizing 
radiation exposure. The insufficient data problem may take 
many forms. For example, one type of the insufficient data 
problem derives from sparse samples, such as attempting to 
reconstruct an image from projection data at few views. 
Another example of an imperfect scanning data situation 
comprises limited angular range of the object to be imaged. 
Still another example comprises gaps in the projection data 
caused by bad detector bins, metal within the object, etc. In 
each of these three examples, the projection data are not 
sufficient for exact reconstruction of tomographic images and 
application of standard analytic algorithms, such as filtered 
back-projection (FBP), may lead to conspicuous artifacts in 
reconstructed images. 

[0008] Methodologies have been proposed attempting to 
overcome data insufficiency in tomographic imaging. The 
methodologies follow one of two approaches. The first 
approach includes interpolating or extrapolating the missing 
data regions from the measured data set, followed by analytic 
reconstruction. Such an approach may be useful for a specific 
scanning configuration, imaging a particular object. How
ever, this approach is, very limited, and is not applicable 
generally to the data insufficiency problem. The second 
approach employs an iterative methodology to solve the data 
model for images from the available measurements. Iterative 
methodologies have been used for tomographic image recon
struction. These methodologies differ in the constraints that 
they impose on the image function, the cost function that they 
seek to minimize, and the actual implementation of the itera
tive scheme. 

[0009] Two iterative methodologies used for tomographic 
imaging include: (1) the algebraic reconstruction technique 
(ART); and (2) the expectation-maximization (EM) method
ology. For the case where the data are consistent yet are not 
sufficient to determine a unique solution to the imaging 
model, the ART methodology finds the image that is consis
tent with the data and minimizes the sum-of-squares of the 
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image pixel values. The EM methodology applies to positive 
integral equations, which is appropriate for the CT-imaging 
model, and seeks to minimize the Kullback-Liebler distance 
between the measured data and the projection of the esti
mated image. The EM methodology has the positivity con
straint built into the algorithm, so that it is relatively unaf
fected by data inconsistencies introduced by signal noise. 
However, the EM methodology is limited in its ability to solve 
the data insufficiency problem. 
[0010] For specific imaging problems, an accurate iterative 
scheme may be derived for the imperfect sampling problem 
by making a strong assumption on the image function. For 
example, in the specific example of reconstruction of blood 
vessels from few-view projections, one can assume that the 
3D blood-vessel structure is sparse. It is possible to design an 
effective iterative algorithm that seeks a solution from sparse 
projection data. This can be accomplished by minimizing the 
11 -norm of the image constrained by the fact that the image 
yields the measured projection data. The 11 -norm of the image 
is simply the sum of the absolute values of the image pixel 
values, and its minimization subject to linear constraints leads 
to sparse solutions. Again, this solution to the sparse data 
problem only addresses a very specific type of imaging. 
[0011] Still another methodology uses total variation (TV) 
for recovering an image from sparse samples of its Fourier 
transform (FT). TV has been utilized in image processing for 
denoising of images while preserving edges. In this method
ology, the optimization program of minimizing the image TV 
was investigated under the constraint that the FT of the image 
matches the known FT samples. This optimization program 
may satisfy an "exact reconstruction principle" (ERP) for 
sparse data. Specifically, if the number of FT samples is twice 
the number of non-zero pixels in the gradient image, then this 
optimization program can yield a unique solution, which is in 
fact the true image for almost every image function. The 
algorithm for FT inversion from sparse samples was applied 
to image reconstruction from 2D parallel-beam data at few
views. The use of the FT-domain TV algorithm (FT-TV) to 
address the 2D parallel-beam problem is only possible 
because of the central slice theorem, which links the problem 
to FT inversion. However, the FT-TV methodology is limited 
to imaging using a parallel-beam and cannot be applied to 
image reconstruction for divergent-beams, such as fan-beam 
and cone-beam CT. This is because the FT-TV relies on the 
central slice theorem to bring the projection data into the 
image's Fourier space. Therefore, there is a need to recon
struct images from few view or limited angle data generated 
from divergent beams. 

SUMMARY 

[0012] The invention comprises a method and apparatus for 
reconstructing images from limited or incomplete data, such 
as few view or limited angle data and data containing exterior 
and/or interior truncations. The data can be interpreted as a 
linear transform of the object, such as projections generated 
from parallel or divergent beams. In one aspect of the inven
tion, the method and apparatus iteratively constrains the 
variation of an estimated image in order to reconstruct the 
image. As one example, a divergent beam may be used to 
generate data ("actual data"). As discussed above, the actual 
data may be less than sufficient to exactly reconstruct the 
image by conventional techniques, such as FBP. In order to 
reconstruct an image, a first estimated image may be gener
ated. Estimated data may be generated from the first esti-
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mated image, and compared with the actual data. The com
parison of the estimated data with the actual data may include 
determining a difference between the estimated and actual 
data. The comparison may then be used to generate a new 
estimated image. For example, the first estimated image may 
be combined with an image generated from the difference 
data to generate a new estimated image. 
[0013] In order to generate the image for the next iteration, 
the variation of the new estimated image may be constrained. 
For example, the variation of the new estimated image may be 
at least partly constrained in order to lessen or reducing the 
total variation of the image. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0014] FIG. la depicts a Shepp-Logan phantom shown in a 
gray scale window of[0.87, 1.15]. 
[0015] FIG. lb depicts a magnitude of the gradient image of 
the Shepp-Logan phantom shown if FIG. la. 
[0016] FIG. 2 depicts an example of a fan-beam CT con
figuration. 
[0017] FIG. 3 depicts a block diagram of an exemplary 
imaging system. 
[0018] FIG. 4 illustrates an individual row vector of the 
system matrix. 
[0019] FIG. 5 depicts a flow chart 500 of one example of the 
TV methodology. 
[0020] FIG. 6a shows the true image and images recon
structed by use of the TV, EM, and ART methodologies, 
respectively, from 20-view projection data. 
[0021] FIG. 6b depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images shown in FIG. 6a. 
[0022] FIG. 6c depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM and ART reconstructed images shown in FIG. 6a. 
[0023] FIG. 7a depicts images for random ellipses, the 
gradients of the random ellipses and the reconstruction of the 
image using TV. 
[0024] FIG. 7b depicts images for random spots, the gradi
ents of the random spots and the reconstruction of the image 
using TV. 
[0025] FIG. 7c depicts images for lines phantoms, the gra
dients of the lines phantoms and the reconstruction of the 
image using TV. 
[0026] FIG. Sa shows the true image and images recon
structed by use of the TV, EM, and ART methodologies, 
respectively, from data over 180°. 
[0027] FIG. Sb depicts image profiles shown in FIG. Sa 
along the centers of the images in the horizontal and vertical 
directions obtained with the TV algorithm (thick line) for the 
TV methodology reconstructed images shown in FIG. Sa. 
[0028] FIG. Sc depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM and ART reconstructed images shown in FIG. Sa. 
[0029] FIG. 9a shows the true image and images recon
structed by use of the TV, EM, and ART algorithms from data 
over 90°. 
[0030] FIG. 9b depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images shown in FIG. 9a. 
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[0031] FIG. 9c depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM and ART reconstructed images shown in FIG. 9a. 
[0032] FIG. 10 depicts an intensity plot of the "bad bins" 
projection data function. 
[0033] FIG. lla shows the true image and images recon
structed by use of the TV, EM, and ART methodologies, 
respectively, from data containing bad detector bins. 
[0034] FIG. llb depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images shown in FIG. lla. 
[0035] FIG. llc depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM andART reconstructed images shown in FIG. lla. 
[0036] FIG. 12a shows the true image and images recon
structed by use of the TV, EM, and ART methodologies, 
respectively, from 20-view data containing bad detector bins. 
[0037] FIG. 12b depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images in FIG. 12a. 
[0038] FIG. 12c depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM and ART reconstructed images in FIG. 12a. 
[0039] FIG. 13a shows the true image with a wavy back
ground and images reconstructed by use of the TV, EM, and 
ART methodologies, respectively, from 20-view data. 
[0040] FIG. 13b depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the TV algorithm (thick line) for the TV methodology 
reconstructed images in FIG. 13a. 
[0041] FIG. 13c depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM and ART reconstructed images in FIG. 13a. 
[0042] FIG. 14a shows the true image with a wavy back
ground and images reconstructed by use of the TV, EM, and 
ART methodologies, respectively, from bad detector bin data. 
[0043] FIG.14b. depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the TV methodology (thick line) for the TV methodol
ogy reconstructed images in FIG. 14a. 
[0044] FIG. 14c depicts image profiles along the centers of 
the images in the horizontal and vertical directions obtained 
with the EM ( dashed lines) and ART ( dotted lines) algorithms 
for the EM and ART reconstructed images in FIG. 14a. 
[0045] FIG. 15 shows images reconstructed from 20-view 
noisy data by use of the TV algorithm after the gradient 
descent phase (TV!) and after the projection phase (TV2) and 
by use of the EM and ART algorithms. 
[0046] FIG. 16 shows images reconstructed from bad-bin 
noisy data by use of the TV algorithm after the gradient 
descent phase (TV!) and after the projection phase (TV2) and 
by use of the EM and ART algorithms. 
[0047] FIG. 17a shows an example of a Shepp-Logan 
image. 
[0048] FIG. 17b shows partial data for the object depicted 
in FIG. 17a if only exterior data may be obtained. 
[0049] FIG. 17c shows an image reconstruction using Fil
tration-backprojection using the data from FIG. 17b. 
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[0050] FIG. 17d shows an image reconstruction using the 
TV methodology using the data from FIG. 17b. 
[0051] FIG. 18a shows an example of a Shepp-Logan 
image. 
[0052] FIG. 18b shows partial data for the object depicted 
in FIG. 18a if interior data is obtained but at least some of the 
exterior data is excluded. 
[0053] FIG. 18c shows an image reconstruction using Fil
tration-backprojection using the data from FIG. 18b. 
[0054] FIG. 18d shows an image reconstruction using the 
TV methodology using the data from FIG. 18b. 
[0055] FIG. 19a shows an example of a Shepp-Logan 
image depicting spots. 
[0056] FIG. 19b shows partial data for the object depicted 
in FIG. 19a if few views (e.g., 5 views) are obtained. 
[0057] FIG. 19c shows an image reconstruction using Fil
tration-backprojection using the data from FIG. 19b. 
[0058] FIG. 19d shows an image reconstruction using the 
TV methodology using the data from FIG. 19b. 
[0059] FIG. 20a shows an example of a Shepp-Logan 
image. 
[0060] FIG. 20b shows partial data for the object depicted 
in FIG. 20a if few views and interior data (but not exterior 
data) are obtained. 
[0061] FIG. 20c shows an image reconstruction using Fil
tration-backprojection using the data from FIG. 20b. 
[0062] FIG. 20d shows an image reconstruction using the 
TV methodology using the data from FIG. 20b. 
[0063] FIG. 21a shows an example of a Shepp-Logan 
image. 
[0064] FIG. 21b shows partial data for the object depicted 
in FIG. 21a if data with metal is removed. 
[0065] FIG. 21c shows an image reconstruction using Fil
tration-backprojection using the data from FIG. 21b. 
[0066] FIG. 21d shows an image reconstruction using the 
TV methodology using the data from FIG. 21b. 
[0067] FIGS. 22a-e show images reconstructed by TV from 
noisy projection data taken at only 25 views. 
[0068] FIG. 23 shows a schematic of the part of Radon 
space sampled by the circular x-ray source trajectory. 
[0069] FIG. 24a shows a schematic of the simulated circu
lar cone-beam CT configuration. 
[0070] FIG. 24b shows a vertical slice, gray scale window 
[0.3, 1.7], of the disk phantom for the configuration in FIG. 
24a, and FIG. 24c shows its projection from a single view. 
[0071] FIGS. 25a-b show vertical slices of volumes recon
structed by TV-minimization (FIG. 25a) and POCS (FIG. 
25b) for the case of ideal, consistent projection data. The gray 
scale window is [ 0 .3, 1. 7]. 
[0072] FIGS. 25c-d show the profiles for the reconstructed 
images in FIGS. 25a-b and the phantom along the z-axis. 
[0073] FIGS. 26a-b show vertical slices of volumes recon
structed by TV-minimization (FIG. 26a) and POCS (FIG. 
26b) for projection data from the discrete disk phantom with 
0.1 % Gaussian noise. The gray scale window is [0.3, 1.7]. 
[0074] FIGS. 26c-d show the profiles for the reconstructed 
images in FIGS. 26a-b and the phantom along the z-axis. 
[0075] FIG. 27a shows the difference between projection 
of the discrete and continuous disk phantom from a single 
view, with the maximum value of the difference being 2.0% 
of the projection data itself. 
[0076] FIG. 27b shows vertical slices of the volume recon
structed by TV-minimization for projection data from the 
continuous disk phantom. The gray scale window is [ 0.3, 1. 7]. 



US 2015/0146949 Al 

[0077] FIG. 27c shows the profiles are shown for the recon
structed images and the phantom from FIG. 27b along the 
z-ax1s. 
[ 0078] FIG. 28a shows an example ofa Shepp-Logan phan
tom. FIG. 28b shows the Cartesian grid, with the strips dem
onstrating which regions of the Cartesian grid used in the 
image reconstruction process. 
[0079] FIG. 29a shows the reconstructed image from con
sistent (noiseless) data. FIG. 29b shows the image obtained 
from a single inverse Fourier transform, before applying the 
TV algorithm. FI GS. 29c-d show the reconstructed horizontal 
and vertical profiles, respectively, overlaid on the original 
profiles. 
[0080] FIG. 30a shows the inverse Fourier transformed 
image after addition of Gaussian noise in Fourier space. FIG. 
30b shows the image reconstructed from these data. FIGS. 
30c-d show the reconstructed horizontal and vertical profiles 
(solid line) overlaid on the original noisy image (dotted line). 
[0081] FIGS. 3la-d are the same as FIGS. 30a-d, but the 
Gaussian noise has been tapered in Fourier space to empha
size noise on larger scales as seen in FIG. 31a. FIGS. 31b-c 
illustrate the results. 
[0082] FIGS. 32a-b show a comparison of reconstruction 
performance with (FIG. 32a) and without (FIG. 32b) includ
ing TV minimization in the reconstruction algorithm. 
[0083] FIGS. 33a-b are the same as FIGS. 32a-b, but for the 
tapered Gaussian noise model. 

DETAILED DESCRIPTION OF THE PRESENTLY 
PREFERRED EMBODIMENTS 

[0084] In order to address the deficiencies of the prior art, a 
method and apparatus is described below for imaging an 
object using data which is limited or incomplete, such as 
few-views or limited angle data. The limited data may be due 
to a variety of reasons, such as few views, limited angle data, 
orother missing data problems ( such as a bad detector). These 
reasons are provided as merely illustrative. For example, one 
may wish to reduce the dosage, the radiation exposure (such 
as in the instance of and X-ray source), the acquisition time, 
and/or data artifacts. In those instances, an image may still be 
generated, even though a limited amount of data is collected. 
As another example, the system and/or the object may result 
in a missing data problem. Specifically, the system may 
include a defect in it, such as a bad detector. Or, the object may 
include some aspect that limits the amount of data. As merely 
one example of this, the presence of any region of an object 
that effectively prevents transmission of radiation through a 
portion of the object may result in missing data problems. 
Specific examples may include artifacts caused by hip 
implants in CT imaging, metal dental implants in dental CT 
imaging, or x-ray absorbing implants used in brachytherapy. 
These examples are merely for illustrative purposes. The 
methodology presented herein may still allow generating an 
image from the data gathered, whether the data comprises 
partial data of the ROI or complete data of the ROI. 
[0085] As discussed in the background, if the data was 
limited, reconstruction of the image from conventional tech
niques, such as FBP, was unacceptable. The following is an 
approach to overcoming the deficiencies of the prior art by 
recovering images accurately from limited (instead of full) 
knowledge of their transform (such as linear transform). An 
image with sparse structures may be accurately recovered 
from limited knowledge of its linear transform through the 
minimization of the 11 -norm of the estimate of the image 
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provided the constraint that the measurements are consistent 
with the corresponding portion of the linear transform of the 
estimate of the image. However, this 11 -norm-based strategy 
may not work adequately for images encountered in most 
practically important applications such as medical imaging, 
because images in these situations have extended, instead of 
sparse, structures. One aspect of the invention extends the 
11 -norm based strategy based on examining a specific char
acteristic (such as variation) of the estimated image. 

[0086] Although an image with an extended distribution 
does not have sparse structures, the distribution of its gradient 
magnitude, which may also be referred to as the total variation 
(TV), may have sparse structures. Furthermore, if the struc
tures of the TV of an image are not sparse, its second-order 
TV, which is the square root of the summation of the squares 
of its second order partial derivatives, is likely to have sparse 
structures. Similarly, one can define high-order TVs of the 
image, and these TVs are likely to have sparse structures. 

[0087] The present approach may achieve the recovery of 
the image from limited knowledge of its linear transform 
through the minimization of the linear combination of the 
11 -norm and the TVs of the image under the constraint that the 
linear transform of the estimated image is consistent with the 
measured data. In essence, the (n+ !)th-order TV may be inter
preted as the 11 -norm of the nth-order partial derivative dis
tribution of the image. Therefore, the linear combination of 
these generalized TVs can in effect be understood as a 
11 -norm problem. 

[0088] The methodology may be modified and imple
mented as a constraint optimization procedure. It can also be 
implemented in other ways. Further, the methodology may be 
applied to a wide variety of imaging problems. Examples of 
areas of application include, but are not limited to: medicine, 
animal imaging, industrial non-destructive detection, secu
rity scanning, and other applications. The following are some 
examples of the imaging problems that may be addressed by 
use of the methodology: (1) Fourier-based MRI and EPRI 
(sparse Cartesian samples, spiral samples); (2) Projection
based few-view and limited-view EPRI; (3) Metal and other 
artifacts in fan-beam and cone-beam CT and in MRI; (4) 
Interior problems in CT, MRI, and other imaging modalities; 
(5) Exterior problems in CT and other imaging modalities; ( 6) 
Few-view CT, SPECT, reflectivity tomography, and other 
imaging modalities; (7) Limited-view CT, SPECT, reflectiv
ity tomography, and other imaging modalities; (8) Few-view 
(and limited-view) diffraction tomography; (9) Circular 
cone-beam CT problem; (10) Few-view and limited-view 
circular cone-beam CT problem; (11) C-arm imaging prob
lem (i.e., few view and limited view); (12) On-board imager 
problem in radiation therapy; (13) Few-view and limited view 
phase contrast CT; (14) Limited view problem in PET with 
panel detectors; (15) Tomosynthesis (few view and limited 
view); (16) CT- and C-arm-based angiography; (17) Security 
scans ofluggage, container, and other objects with few views 
on a trajectory (line or other curve forms) of finite path length; 
(18) Microscopic scans; and (19) Oil and mine exploration 
scans. These examples are merely illustrative. 

[0089] In order to overcome the limited data problem, an 
11 -based methodology is used. The 11 -based methodology 
ordinarily cannot be used in many imaging applications, 
including medical and other tomographic imaging applica
tions, since the 11-based methodology requires sparse data 
and the images are generally extended distributions. 
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[0090] Rather than merely looking at the individual :'alues 
of the image, one may examine different aspects of the image 
that have a sparse data quality. For example, one may examine 
the variation across an image. Often times in medical and 
other applications, tomographic images are relatively con
stant over extended volumes, for example within an organ, 
changing rapidly only at the boundaries of internal structures. 
Thus, an image itself might not be sparse, but the image 
formed by taking the magnitude of its gradient could be 
approximately sparse. 
[0091] An example of this is shown in FIGS. la-lb. In the 
drawings where like reference numerals refer to like ~le
ments, FIG. la depicts a Shepp-Logan phantom shown ma 
gray scale window of[0.87, 1.15]. Referring to FIG. lb, there 
is shown a magnitude of the gradient image of the Shepp
Logan phantom. As shown in FIG. lb, there is a sparseness of 
the gradient image. If the pixel values are labeled by f s.,, the 
image gradient magnitude is: 

IV f,,,1~y (f,,,-f,.1,,)2+(f,,,-f,,,.1)2. (1) 

[0092] This quantity in Eq. (1) may be referred to as the 
gradient image. As merely one example,_the n1;1111ber of no~
zero pixels in the 256x256 image depicted m FIG. la 1s 
32,668. By contrast, the number of non-zero pixels in its 
gradient image depicted in FIG. lb is only 2,183. 
[0093] To develop an iterative methodology that takes 
advantage of this sparseness, the objective function to be 
minimized is the 11-norm of the gradient image, otherwise 
known as the total variation (TV) of the image: 

11!,,,IIJV = ~ IV J;,,I = ~ ✓ (!,,, - l,-1,,J2 + (!,,, - f,,,_iJ2 . (2) 

s,t s,t 

[0094] The use of the image TV in the present application is 
different from previous applications in that the methodology 
is an implementation of an optimization program, which may 
possibly yield the exact image for sparse data problems under 
the condition of exact data consistency. 
[0095] The present TV methodology may be used for 
image reconstruction from divergent-beam projections, such 
as image reconstruction for both fan-beam and cone-beam 
CT imaging. Other types of divergent beams may be used. An 
iterative TV methodology may be used that can reconstruct 
accurate images from sparse or insufficient data problems that 
may occur due to practical issues of CT scanning. In the 
examples discussed below, the sparse data problem may 
include reconstruction from few-view projections. Similarly, 
the iterative TV methodology may be used for any sparse data 
problem, such as insufficient data problems from data 
acquired over a limited angular range or with a detector 
containing gaps due to bad detector bins. Further, the numeri
cal results below relate to fan-beam CT. However, the itera
tive TV methodology may be applied to different diverging 
beams (such as cone-beam CT) and different types of imag
ing. 
[0096] As discussed above, the iterative TV methodology 
may be used for image reconstruction with divergent-beams. 
The image function may be represented in its discrete form as 

a vector f of length N,mage with individual elem~nts f.z, j= 1, 
2, ... , N,mage· When it is preferable to r~fer to pixels m the 
context of a 2D image, the double subscnpt form f s.t may be 
used where 
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j~(s-l)W+t; Fl,2 ... ,H; t~l,2, ... ,W; (3) 

[0097] and integers W and H are, respectively, the width 
and height of the 2D image array, which has a total number of 

Pixels N =WxH. The projection-data vector g may have zmage 

length Ndata with individual measurements referred to as g,, 
i=], 2, • • •, Ndata· 

[0098] The general theoretical setting for the TV algorithm 
discussed here involves inversion of a discrete-to-discrete 
linear transform: 

(4) 

[0099] where the system matrix M may be composed of 

Nd row vectors M. that yield each data point, g,=M,-f. The ata z • 

individual elements of the system matrix are Mi/. The image 

may be represented by the finite vector f from knowledge of 

the data vector g and the system matrix M. Mathematically, 
the problems may involve insufficient data; for example, the 
number of data samples Ndata may not be enough to uniquely 

determine the N. values of the image vector f by directly zmage 

inverting Eq. ( 4). Some assumptions may be made on the 

image function f to arrive at a solution from knowledge of 

the data g. 
[0100] To solve the linear system represented in Eq. (4), a 
TV methodology may be used that at least partly constrains 
the variation. For example, the TV methodology may be used 
to constrain the variation with the following optimization 

program: Find f that 

minllfllrvsuch thatMf ~ g, fp,O. (5) 

[0101] In the methodology, the minimization of the image 
TV may be performed by the gradient descent method, and 
the constraints imposed by the known projection data may be 
incorporated by projection on convex sets (POCS). PO~S 
may be used for enforcing the projection data constramt, 
because even in the case of sparse sampling, the size of the 
projecti;n data sets may be large, and POCS may efficient)y 
handle large data sets. In the following, the system matnx 
used for modeling the divergent-beam projections is defined, 
and the TV methodology for implementing the program in 
Eq. (5) is defined. The linear system matrices corresponding 
to the various scarming configurations discussed below may 
support an exact reconstruction principle for insufficient data, 
as demonstrated by the numerical examples discussed below. 
[0102] One example of a divergent-beam is shown in FIG. 
2 which depicts a fan-beam CT configuration. As shown in 
FIG. 2, the source may be an x-ray source of a single spot for 
each projection view, with the beams emanating from the 
single spot. The projection data may be captured on a ID or 
2D detector array for the fan-beam or cone-beam system. The 
examples discussed below focus on the fan-beam confi?ur~
tion shown in FIG. 2. However, the fan-beam configurat10n 1s 
show for illustrative purposes only. Other types of divergent 
beams may be used. Further, the beam may be used for 
imaging of a region of interest (ROI), such as a 2-dimen
sional, 3-dimensional, or n-dimensional ROI. Further, the 
source may follow any trajectory, such as a line scan, a cir
cular scan, or a helical scan. Line, circular and helical scans 
are merely exemplary and other scans may be used. 
[0103] The divergent beam may be part of an imaging sys
tem. One example of an imaging system 300 is shown in FIG. 
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3. The system 300 may include any type of imaging system. 
Examples of types of imaging systems include, but are not 
limited to: computed tomography (CT), positron emission 
tomography (PET), single-photon emission computed 
tomography (SPECT), magnetic resonance imaging (MRI), 
electron paramagnetic resonance imaging (EPRI), tomosyn
thesis (such as if a trajectory is used which creates chords 
which pass through the portion to be imaged, as discussed 
below), and wave imaging (such as phase contrast imaging, 
thermacoutic imaging, and thermooptical imaging). More
over, the imaging system may include a single type of imag
ing, or multiple types of imaging. For example, the imaging 
system may comprise CT imaging. Alternatively, the imaging 
system may comprise multiple modality imaging, such as CT 
and PET imaging in combination. Further, the imaging sys
tem may be used in combination with another system. For 
example, the imaging system may be integrated with a thera
peutic system, such as a radiation therapy delivery system. 
The two systems may work in combination with the imaging 
system providing imaging for guidance ( such as CT imaging) 
and radiation therapy for treatment. 

[0104] With reference to FIG. 3, an exemplary imaging 
system 300 for implementing the invention includes a general 
purpose computing device in the form of a computing envi
ronment 302, including a processing unit 304, a system 
memory 306, and display 308.A system bus, 310, may couple 
various system components of the computing environment 
302, including the processing unit, 304, the system memory 
306, and the display 308. The processing unit 304 may per
form arithmetic, logic and/or control operations by accessing 
system memory 306. For example, the processing unit 304 
may control the various system components to acquire data 
for imaging and may process the acquired data to generate an 
image. Alternatively, different system processors, or different 
devices may control the various system components to 
acquire data for imaging and may process the acquired data to 
generate an image. 
[ 0105] The system memory 3 06 may store information and/ 
or instructions for use in combination with processing unit 
304. For example, the system memory 306 may store com
puter readable instructions, data structures, program modules 
or the like for operation of the imaging system 300, including, 
for example, control of movement of any of the source, 
object, and detector and control of the functionality of the 
source and the detector, as discussed below. Further, the sys
tem memory 306 may store data obtained from detector 320 
and may process the data for display on the display 308, as 
discussed in more detail below. The system memory 306 may 
include volatile and non-volatile memory, such as random 
access memory (RAM) and read only memory (ROM). It 
should be appreciated by those skilled in the art that other 
types of computer readable media which can store data that is 
accessible by a computer, such as magnetic cassettes, flash 
memory cards, random access memories, read only memo
ries, and the like, may also be used in the exemplary computer 
environment. A user may enter commands and/or informa
tion, as discussed below, into the computing environment 302 
through input devices such as a mouse and keyboard, not 
shown. The commands and/or information may be used to 
control operation of the imaging system, including acquisi
tion of data and processing of data. 

[0106] FIG. 3 further shows source 312 communicating 
with computing environment 302 via line 314. Source 312 
may be stationary or may move relative to any one, or both, of 

6 
May 28, 2015 

object316 and detector 320. Line314 may also control move
ment of source 312, such as by sending commands to a motor 
(not shown) to move all or a part of source 312. For example, 
if the source 312 is an X-ray tube, the motor may move the 
entire X-ray tube relative to one, or both of, object 316 and 
detector 320. Alternatively, the X-ray tube may remain sta
tionary with a reflector revolving using the motor. In this 
manner, the beam emanating from the X-ray tube may be 
moved by bouncing the beam off the revolving reflector. 

[0107] The source 312 may comprise any device which 
generates any signal that may be received from detector 320. 
The source 312 selected for imaging system 300 may depend 
on the type ofimagingperformed by imaging system 300. For 
example, source 312 may generate electromagnetic radiation 
in any frequency range, such as gamma rays, x-rays, visible 
light, microwaves, and radio/tv waves. Specifically, source 
312 may comprise an X-ray source and generate X-rays or 
may comprise a radio frequency (RF) source and generate 
radio waves. Source 312 may also generate other types of 
signals such as magnetic fields, mechanical waves (e.g., 
sound waves), heat, particle (e.g., electron, proton, neutron), 
or the like. Though depicted in imaging system 300, certain 
types of imaging systems do not require a source (such as 
source 312). For example, PET scanning does not require an 
external source. 

[0108] FIG. 3 also shows object 316. Object 316 may com
prise anything that is capable of being scanned, such as a 
living organism ( e.g., human or animal) or a non-living object 
( e.g., a piece of luggage, a cargo container, food, an ocean, 
underground the earth, etc.). The position of the object may be 
stationary or may move relative to any one, or both, of source 
312 and detector 320. Line 318 may control movement of 
object 316, such as by sending commands to a motor (not 
shown)to move object316.Anypart, or all, ofobject 316 may 
be imaged using imaging system 300. Further, the object may 
ingest or be injected with a substance, such as a contrast 
agent, which may assist in imaging a part or all ofobject 316. 
As shown in FIG. 3, source 312 is external to object 316. 
Alternatively, source 312 may be internal to object 316. 

[0109] FIG. 3 further shows detector 320 communicating 
with computing environment 302 via lines 324 and 326. Line 
324 may comprise a control line whereby the processing unit 
may control at least one characteristic of detector 320. Line 
326 may comprise a data line whereby data sensed from the 
detectors may be sent to computing environment 302 for 
processing by processing unit 304, as discussed below. Detec
tor 320 may comprise any type of detector which senses any 
datum, such as electromagnetic radiation from any frequency 
range (such as X-rays), magnetic fields, sound waves, heat, or 
the like. For example, for a 2-dimensional detector (flat-panel 
imager), detector 320 may comprise one row of detectors for 
fan beam geometry, four rows of detectors for quasi-fan-beam 
geometry, or more than four rows of detectors for cone-beam 
geometry. Detector 320 may be stationary or may move rela
tive to any one, or both, of source 312 and object 316. Line 
324 may control movement of detector 320, such as by send
ing commands to a motor (not shown) to move all or a part of 
detector 320. As shown in FIG. 3, detector 320 is external to 
object 316. Alternatively, detector 320 may be internal to 
object 316. Thus, both source 312 and detector 320 may be 
internal or external to the object. Moreover, source 312 may 
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be internal and detector 320 may be external to object 316, or 
source 312 may be external and detector 320 may be internal 
to object 316. For example a dental image of a patient may be 
acquired with an external source and a detector held in the 
mouth of a patient. 

[0110] In an additional embodiment of the invention, the 
system may comprises a first component for reconstructing 
an image of an object from acquired data using data that are 
sufficient to reconstruct a substantially exact image of the 
object; a second component for reconstructing an image of an 
object from acquired data using data that are less than that 
sufficient to reconstruct an exact image of the object; a third 
component for determining whether the acquired data are 
sufficient to reconstruct a substantially exact image of the 
object; and a fourth component for selecting which of the first 
and second components are used, based on the output of the 
third component. The first component may implement any 
one of a number of image reconstruction algorithms that are 
known in the art. The second component may use the algo
rithms described herein. The third component of determining 
whether the acquired data are sufficient to reconstruct a sub
stantially exact image of the object may be performed in a 
variety of ways. For example, the determining may be imple
mented by assessing image quality, such as those described in 
U.S. Pat. No. 6,535,636, U.S. Pat. No. 5,739,924 or "Image 
Quality Assessment: From Error Measurement to Structural 
Similarity", Wang, et al., IEEE Transactions on Image Pro
cessing, Vol. 13, No. 1, 2004, each of which are incorporated 
by reference herein in their entirety. Alternatively, the third 
component may examine the acquired data directly, for 
example to detect bad detector cells, such as is described in 
US Patent Application 20050063513Al, incorporated by 
herein in its entirety. Or, the third component may analyze the 
configuration of the system (such as the amount of views 
scheduled to be obtained or have been obtained). 

[0111] Alternatively, the system may comprise a first com
ponent for reconstructing an image of an object from acquired 
data using data that are sufficient to reconstruct a substantially 
exact image of the object; a second component for recon
structing an image of an object from acquired data using data 
that are less than that sufficient to reconstruct an exact image 
of the object; and a third input component providing a means 
for a user to select which of the first and second components 
are used. The user may make this selection before image 
acquisition based on factors such as the size, shape or location 
of the region to be imaged, or knowledge of a metal implant 
in a patient. Alternatively, the user may make this selection 
after image acquisition, based on an assessment of the image 
quality made using one of the first and second components. 
Thus, the determining may be based on an analysis prior to 
acquisition of the data, during acquisition of the data, or after 
acquisition of the data. 

[0112] In one example, the detector may be modeled as a 
straight-line array of 512 detector bins, which may be large 
enough so that the field-of-view is the circle inscribed in the 
256x256 imaging array. The CT measurements may be 
related to the path integral of the x-ray attenuation coefficient 
along the rays defined by the source spot and individual 
detector bins. In the discrete setting, these ray integrals may 
be written as weighted sums over the pixels traversed by the 
source-bin ray as 
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(6) 

[0113] To model the fan-beam projection of the discrete 
image array, one may use the ray-driven projection model 
where the system matrix weights Mi/ are computed by calcu
lating the intersection length of the i th ray through the j th 
pixel. An example of the ray-driven system matrix is illus
trated for a 5x5 image array in FIG. 4. Specifically, FIG. 4 

illustrates an individual row vector of the system matrix M,. 
In this case, the data point d, is calculated as d,=~1~ 1

25 Miff1, 

where Mi/ is the length of the i th ray traversing the j th pixel. 
The system matrix illustrated in FIG. 4 has non-zero entries 
only on image pixels f 1 , f 6 , f 7 , f s, f 9, f 14, and f 1s· 

[0114] The ray-driven projection model is merely for illus
trative purposes. There are other ways to model the discrete 
projection, such as pixel-driven and distance-driven models, 
which provide alternative definitions of pixel weights. More
over, even though the system matrix discussed herein is for 
the fan-beam configuration, the model may also be applied to 
other divergent beams. For example, the model may be 
applied to cone-beam 3D imaging. 
[0115] The TV methodology discussed herein is different 
from the FT-TV methodology discussed in the background. 
As merely one example, the system matrix used is different. 
The 2D parallel-beam data are processed in the FT-TV meth
odology by taking a 1 D FT along the detector coordinate, and 
the system matrix is the discrete 2D FT. In contrast, the 
system matrix described herein may represent directly the 
discrete ray integration of the image, and there is no transfor
mation of the projection data. Thus, even in the limit that the 
focal length of the fan-beam tends to infinity, the TV meth
odology discussed herein does not yield the FT-TV algorithm 
discussed in the background. 
[0116] The TV methodology may constrain, such as mini
mize, the TV of the image estimate. This may be accom
plished by using a gradient descent method and/or other opti
mization methods. Performing the gradient descent may 
include the expression for the gradient of the image TV. This 
gradient may also be thought of as an image, where each pixel 
value is the partial derivative of the image TV with respect to 

----;, 

that pixel. Taking the derivative ofll f llrvwithrespectto each 
pixel value results is a singular expression. The following is 
an approximate derivative: 

2(fHI.t - f,.1) 

✓ E: + (JH!.t - f,.,)2 + (f,+)
0

/ - !HI.H)2 

2(!,_,+1 - !,.,) 

(7) 

[0117] where E is a small positive number; for the results 
below E=l0- 8 is used. This expression may be valid for non
borderpixels. The resulting gradient vector may be referred to 

----;, 

as v , and similar to the image vector, its individual elements 
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may be denoted by either a single inde~ v1 or pixel indexes vs,,. 
Further, the normalized TV gradient v may be used. 

[0118] As shown in Eq. (7), the minimization for the total 
variation may be a first order derivative. Alternatively, the 
minimization for the total variation may be a higher order 
derivative. For example, the minimization of the total varia
tion may comprise a second order derivative. Further, the 
minimization may comprise single and higher orders. Thus, 
any order of the total variation (such as first order, second 
order, etc.) of the estimated image or combinations of orders 
of total variation (such as first and second order, etc.) may be 
examined. 

[0119] The POCS method may be used to realize the linear 
system constraints in Eq. (5). Each measured point g, of the 
data vector may specify a hyperplane in the N,mage-dimen-

sional space of all possible solutions f. The basic POCS 

method may project the current estimate off onto the hyper
planes, which are convex sets, corresponding to each data 
point in sequential order. By repeating this process the image 
estimate may move toward the intersection of all of these 
hyperplanes, which is the sub-space of valid sol_utions to t~e 
linear system. In the present POCS implementat10n, the posi
tivity constraint may also be included. 

[0120] Having specified the system matrix, TV grad~ent, 
and data constraints, the iterative steps of the TV algonthm 
may be described. The iterative steps may implement the 
optimization program described in Eq. (5) for image recon
struction from divergent-beam data. Each iteration within the 
reconstruction procedure may comprise three steps: the 
DATA-step, which enforces consistency with the projection 
data; the POS-step, which ensures a non-negative image; and 
the GRAD-step, which reduces the TV of the image estimate. 
The iteration performed in the algorithm may have two levels: 
the overall iteration number is labeled by n, and the sub
iterations in the DATA- and GRAD-steps are labeled by m. 
The image vector during the iterations of the DATA-step is 

1 (TV-DATA)[ n,m], indicating the in th DATA-step sub iteration 

within then th iteration, f (TV-POS)[ n] may be used to denote 
the image estimate after projection onto the non-negative 

half-plane. Finally, f CTV-GRAD)[n,m] may represent the mth 
gradient descent step within the nth iteration. 

[0121] Referring to FIG. 5, there is show a flow chart 500 of 
one example of the methodology. As shown at block 502, an 
initial estimate of the image to be recovered may be selected 
or generated. The initial estimate may be part of an initializa
tion procedure. For example, the initial estimate may com
prise: 

(8) 

[0122] As shown at block 504, using the initial estimate, 
estimated measurements may be determined. One example of 
determining the estimated measurements may include using 
the linear transform operator to determine the linear trans
form of the initial estimate image. For example, for data 
projection iteration, for m=2, ... , Ndata: 

-->(JV-DATA) 
f [n,m] = (9) 
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-continued 
____, ->(TV-DATA) 

-iJll-DATA) ~g,-M,·f [n,m-1] 
f [n,m-1]-M, ~ ~ 

Mi-Mi 

[0123] An intermediate image may be determined based on 
the estimated measurements. For example, the intermediate 
image may be determined based on a comparison of the 
estimated data with the actual data. As shown at blocks 506 
and 508, the intermediate image is determined. As shown at 
block 506, the estimated data is compared with the actual 
data. One example of comparing the estimated data with the 
actual data comprises determining the difference. As shown 
at block 508, the intermediate estimate may be generated 
based on the comparison of the estimated data with the actual 
data. For example, the intermediate estimate may be gener
ated using the adjoint, the approximate adjoint, the exact 
inverse, and/or the approximate inverse of the linear trans
form operator. Further, the intermediate estimate may be 
derived from the image or by reducing (in one step or itera
tively) the differences between the estimated and actual mea
surements. 

[0124] A new estimated image may be determined by ana
lyzing at least one aspect (such as variatio_n)_oft~e int~rme
diate estimate image. Specifically, the vanat10n m the mter
mediate estimate image may be constrained to generate the 
new estimated image, as shown at block 510. For example, the 
generalized TVs of the intermediate estimated image may be 
minimized to generate the new estimated image. The new 
estimated image may be used as the initial estimate for block 
504 and blocks 504 through 512 may be repeated until the 
intermediate estimated image and new estimated image con
verge ( such as be less than a predetermined amount, as shown 
at block 512) or until the estimated data is less than a prede
termined amount than the actual data. One example of a 
predetermined amount may comprise E, which is discussed in 
more detail below. See Table 1. One may use either interme
diate estimated image or the new estimated image as the final 
estimate of the image. The intermediate image may generally 
be less smooth than the new estimated image. 

[0125] The new estimated image may be determined by the 
following positivity constraint: 

[0126] Further, TV gradient descent initialization may be 
as follows: 

(11) 

[0127] TV gradient descent, for: m=2, ... , Ngrad 

- [ l] 811fllrv I . 
Vs,t n, m- = ~ fsr=/~V-GRAD)[n,m-1]' 

Js,t , s, 
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-continued 

v[n,m-1] 
v[n, m - l] = ----; 

[v[n, m -1]1 

1<TV-GRAD)[n,mj= 

f(TV-GRAD)[n,m-l]-adA(n)v[n,m-1]; (12) 

[0128] And, the following may be the initialization for the 
next iteration: 

1<TV-DATA)[n+l,l]~ 1<TV-GRAD)[n,Ngradl (13) 

[0129] In the present description, when referring to the 
iteration number of the TV algorithm, it is meant the iteration 
number of the outer loop indicated by the index n. As dis
cussed above, the iteration may be stopped when there is no 
appreciable change in the intermediate images after the 

POCS steps; namely the difference between Jcrv-PoS)[n] 

and Jcrv-PoS)[n-1] is "small" or a predetermined amount. 

[0130] The distance dA (n) may provide a measure for the 
difference between the image estimate before the DATA-step 
and the estimate after the enforcement of positivity. The gra
dient descent procedure may be controlled by specifying the 
parameter a, the fraction of the distance dA (n) along which the 
image is incremented, and N grad the total number of gradient 
descent steps that are performed. The methodology may rely 
on the balance between the POCS steps (DATA- and POS
steps) and the gradient descent. By scaling the size of the 
gradient descent step with dA(n), the relative importance of 
the POCS and gradient descent stages of the methodology 
remains balanced. As long as the total change in the image due 
to the gradient descent does not exceed the change in the 
image due to POCS, the overall iteration steps may steer the 
image estimates closer to the solution space of the imaging 
linear system. 
[0131] If the step size of the gradient descent is too strong 
the image may become uniform and inconsistent with the 
projection data. On the other hand, if the step size of the 
gradient descent is too small, the methodology may reduce to 
standard ART with a positivity constraint included. For the 
results shown below, a=0.2, and Ngrad=20 were selected. 
These values appear to strike a good balance between the 
POCS steps and the TV-gradient descent, and seem to work 
well for the wide range of reconstruction problems, including 
those addressed below. The methodology appears to be robust 
in that changes to the parameters only appear to alter the 
convergence rate and not the final image. Further, other meth
odology parameters may be used to improve the convergence 
speed. 
[0132] The following are results using the TV methodology 
under "ideal" conditions. The results are merely for illustra
tive purposes. The true image solution may be taken to be the 
Shepp-Logan image shown in FIG. la discretized on a 256x 
256 pixel grid. This phantom is often used in evaluating 
tomographic reconstruction algorithms. As also shown in 
FIG. lb, its gradient image is sparse with only 2,183 non-zero 
pixels. This number is roughly only 6.7% of the 32,668 non
zero pixels of the Shepp-Logan image itself. Taking the result 
for Fourier inversion as a rule of thumb for the current prob
lem, one might expect that a minimum of twice as many 
non-zero, independent projection measurements are needed 
for obtaining the image. Thus a minimum of 4,366 measure-

9 

May 28, 2015 

ments appears to be required for the ERP methodology. 
Shown below is the image recovery from sparse data with the 
"few-view" example. Subsequently shown below are the util
ity of the TV algorithm for other insufficient data problems 
where there are plenty of projection ray measurements, but 
the angular or projection\ coverage is less than the minimum 
for analytic reconstruction in the corresponding continuous 
image function case. The insufficient data problems demon
strated below are merely for illustrative purposes. The insuf
ficient data problems are the limited scanning angle problem 
and the "bad bins" problem where there is a gap on the 
detector for all available projection views. 
[0133] For the numerical experiments described, the simu
lated fan-beam configuration are variations on the configura
tion shown in FIG. 2. In the first set of experiments, the data 
used are ideal in the sense that they are the exact line integrals, 
up to round-off error in the computer, of the discrete 256x256 
Shepp-Logan image. They are, however, severely under-de
termined so that there would be no chance of directly solving 
the linear equation in Eq. (4). The detector modeled has 512 
bins, and the total number of measured rays is 512 multiplied 
by the number of view angles. The significant number is 
actually the total number of non-zero measurements, and this 
is stated with each example discussed below. 
[0134] In order to illustrate the degree of ill-posedness for 
each numerical example, the present TV methodology is 
compared with standard EM and ART methodologies, which 
have been widely applied in an attempt to solve the under
determined or unstable linear systems in tomographic imag
ing. In EM, the positivity constraint is built into the method
ology, and for CT imaging applications the object function is 
positive. The EM implementation used here is basic, specified 
by the following update equation: 

(14) 

[0135] No regularization during the iterations. 
[0136] The ART methodology fails to include the minimi
zation of the image TV discussed above. The steps for the 
ART methodology include: 
[0137] Initialization: 

(15) 

[0138] Data-Projection Iteration, m=2, ... , Ndata: 

_,(ART-DATA) 

f [n,m] = (16) 

____, -----,(ART-DATA) 

tART-DATA)[n m- l]-M·-g,_· -_M_;_· f ____ [n_,_m_-_l] 

' I Mi . Mi 

[0139] Positivity Constraint: 

(ART-POS) ) , data 

{ 

(f )(ART-DATA)[n N ] (fJ·)(ART-DATA)[n, Ndata] ;a, Q 

(fJ) [n] = 0 (fJJiART-DATA)[n, Ndata] < 0 
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[0140] Initialization Next Loop: 

1<ART-DATA)[n+l; 1]~ 1<ART-POS)[n] (18) 

[0141] n is incremented and the methodology returns to the 
Data Projection iteration. Again, no explicit regularization is 
performed during the ART iterations. For both the EM and 
ART methodologies, the iteration is stopped when there was 
no appreciable change in the image. 

[0142] No explicit regularization for the EM and ART algo
rithms was used for two reasons. First, only the degree of 
ill-posedness of the linear systems corresponding to the vari
ous scanning configurations is investigated below. And, this is 
effectively demonstrated by using the known methodologies 
of EM and ART. Second, the TV methodology is compared 
with the EM and ART methodologies on how well they solve 
the linear system corresponding to sparse sampling or insuf
ficient projection data. The data used for the bulk of the 
examples are ideal (up to machine precision), and any explicit 
regularization during the EM or ART iterations may intro
duce inconsistency between the reconstructed image and the 
projection data. 

[0143] The first case is a reconstruction problem from few
view projections in fan-beam CT. Referring to FIG. 6a, there 
is shown the true image and images reconstructed by use of 
the TV, EM, and ART methodologies, respectively, from 
20-view projection data. The display gray scale is [0.85, 1.15]. 
FIG. 6b depicts image profiles along the centers of the images 
in the horizontal and vertical directions obtained with the TV 
algorithm (thick line). FIG. 6c depicts image profiles along 
the centers of the images in the horizontal and vertical direc
tions obtained with the EM ( dashed lines) and ART ( dotted 
lines) algorithms. The corresponding true profiles are plotted 
in FIGS. 6b-c as the thin lines. 

[0144] Using the Shepp-Logan phantom shown in FIG. 6a, 
projection data is generated at the 20 view angles specified 
by: 

{ 
lS'*(i-1) l:;;i:;;10 

e; lS'*(i-0.5) lO<i:;;20 

(19) 

[0145] From the projection data generated at the 20 views, 
the images were reconstructed, as shown in FIG. 6a, by use of 
the TV, EM, and ART algorithms. The number of iterations 
for each algorithm was 200. More or fewer iterations may be 
used. For a quantitative comparison, the image profiles were 
also compared along the central lines of the images in the 
horizontal and vertical directions. The results depicted in 
FIG. 6b indicate that the TV reconstruction is visually indis
tinguishable from the true image, suggesting that the system 
matrix corresponding to sparse fan-beam data may have the 
ERP even though the colunm vectors of the system matrix do 
not form an ortho-normal basis. The EM and ART results 
show considerable artifacts, as shown in FIG. 6c. 

[0146] FIGS. 7a-c demonstrate the wide applicability of 
the TV algorithm. FIG. 7a depicts images for random 
ellipses, FIG. 7b depicts images for random spots, and FIG. 
7c depicts images for lines phantoms. The true and gradient 
images of these phantoms are displayed in left and middle 
colunms, respectively, for FIGS. 7a-c. Images reconstructed 
from 20-view projections by use of the TV algorithm are 
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displayed in the right colunm in FIGS. 7a-c. The gray scales 
for the images are [0.95, 1.15] for FIG. 7a and [0.9, 1.1] for 
FIGS. 7b-c. 

[0147] The methodology is therefore applied, without 
changing any parameters in the methodology, to the three 
additional phantoms shown in the left images of FIGS. 7a-c. 
These phantoms have sparse gradient images, as shown in the 
middle images ofFIG. 7 a-c. The properties of these phantoms 
are as follows. The "random ellipse" phantom consists of 10 
randomly selected ellipses on a uniform circular background 
with a value of 1.0. The values of each of the ellipses was 
randomly selected in the range of [1.01, 1.10]. The "random 
spots" phantom depicted in FIG. 7b is similar in that 30 
randomly selected small ellipses within the value range of 
[0.9, 1.1] are placed in an air cavity. The background ellipse 
has a value of 1.0 and additional ellipse with a value of 1.05 is 
placed on the left of the phantom. The spots and the air gap are 
meant to resemble, roughly, the lung. The "lines" phantom 
depicted in FIG. 7 c consists of 2 groups of 10 lines at values 
of0.9 and 1.1 on a background ellipse of value 1.0. As with 
the other phantoms, the gradient image of the lines phantom 
has sparse structures. But, the lines phantom is designed in 
such a way as to provide a challenge for the TV algorithm. It 
is known for the FT-inversion problem that certain regular 
structures in the image may be difficult to reconstruct by use 
of the FT-TV algorithm because of the small support of such 
images in Fourier space. Such images may also pose a chal
lenge for the present TV methodology. 

[0148] Using these phantoms, we generated fan-beam pro
jection data at 20 views (uniformly distributed over 2it, speci
fied by Eq. (18)). The right colunm of FIGS. 7a-c shows that 
the TV reconstructions for the random ellipses (upper row), 
the random spots (middle row), and lines (lower row) phan
toms. The gray scales are [0.95, 1.15] for row FIG. 7a and 
[0.9, 1.1] for FIGS. 7b-c. It can be observed that the recon
structions for the random ellipses and random spots phantoms 
are visually indistinguishable from their corresponding truth. 
As expected the lines phantom proves to be challenging. 
Although the reconstruction for the lines phantom does show 
some artifacts, it reconstructs the image well. A glance at EM 
and ART results in FIGS. 6a-c shows how unstable image 
reconstruction is for this few-view scanning configuration. 

[0149] Another application of the TV algorithm may be for 
reconstruction problems where there are insufficient data in 
the corresponding continuous case. For example, the scan
ning angle may be less than 180° plus the fan angle in fan
beam CT, or there may be gaps on the detector for each 
projection when the data are known to be bad for certain 
detector bins. For continuous functions of compact support, 
data in a scanning range of 180° plus the fan-angle may be 
sufficient for stable image reconstruction in fan-beam CT. For 
the fan-beam configuration described above, 180° plus the 
fan angle is 209°. For scanning angular ranges less than 209°, 
the corresponding discrete linear system should also gener
ally be ill-posed. 

[0150] Referring to FIG. Sa, there is shown the true image 
and images reconstructed by use of the TV, EM, and ART 
methodologies, respectively, from data over 180°. The dis
play gray scale is [0.85, 1.15]. FIG. Sb depicts image profiles 
along the centers of the images in the horizontal and vertical 
directions obtained with the TV algorithm (thick line). FIG. 
Sc depicts image profiles along the centers of the images in 
the horizontal and vertical directions obtained with the EM 
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(dashed lines) and ART (dotted lines) algoritlnns. The corre
sponding true profiles are plotted in FIGS. Sb-c as the thin 
lines. 
[0151] In the limited-angle problem depicted in FIGS. 
Sa-c, the scanning angular range is reduced from 209° to 180° 
and projection data is generated at 128 views uniformly dis
tributed over 209° from the Shepp-Logan phantom. Again, 
the detector at each view has 512 bins. For this scan, the 
number of non-zero data points is 52,730, which is more than 
the number of non-zero pixels in the Shepp-Logan phantom 
itself. 
[0152] FIG. Sa depicts images reconstructed from this set 
of data by use of the TV, EM, and ART algoritlnns. The 
profiles of these images along the central horizontal and ver
tical rows are displayed in the FIGS. Sb-c. The number of 
iterations for each of the TV, EM, and ART reconstructions is 
1000. Fewer or greater number of iterations may be per
formed. The images in FIG. Sa show the TV reconstruction is 
virtually indistinguishable from the true phantom and that the 
images obtained by use of the EM and ART methodologies 
are also reasonably accurate with only small distortion near 
the bottom of the images. This distortion of the EM and ART 
images is understandable because the 180° scan covered the 
top half of the phantom. The high iteration numbers were used 
for achieving convergence in the bottom half of the image. 
Additionally, the EM image shows a high frequency artifact 
not seen in the TV or ART images, because the back-projector 
in each case is ray-driven, which is known to yield such Moire 
patterns in the EM images. However, as explained above, the 
reconstruction methodologies are compared on their ability to 
solve the linear system corresponding to the imaging model; 
therefore, the ray-driven backprojection is used because it 
represents exactly the system-matrix adjoint. 
[0153] Further reductions in the scanning angle are shown 
by taking 64 angular samples uniformly distributed over an 
angular range of only 90°, as shown in FIGS. 9a-c. FIG. 9a 
depicts the true image and images reconstructed by use of the 
TV, EM, and ART algoritlnns from data over 90°. The display 
gray scale is [0.85, 1.15]. FIG. 9bdepicts image profiles along 
the centers of the images in the horizontal and vertical direc
tions obtained with the TV algoritlnn (thick line). FIG. 9c 
depicts image profiles along the centers of the images in the 
horizontal and vertical directions obtained with the EM 
(dashed lines) and ART (dotted lines) algoritlnns. The corre
sponding true profiles are plotted as the thin lines in FIGS. 
9b-c. 

[0154] FIG. 9a depicts images reconstructed by use of the 
TV, EM, and ART methodologies, respectively. The number 
of iterations for the TV, EM, and ART reconstructions is 
10,000. Fewer or greater numbers of iterations may be per
formed. In this case, there were 26,420 non-zero projection 
measurements, which would seem to be sufficient for the TV 
algoritlnn considering the sparseness of the phantom's image 
gradient. However, the instability of the corresponding linear 
system appears to be too strong for accurate image recon
struction as can be seen in the reconstructions shown in FIG. 
9a. In FIG. 9b, the profiles along central lines are shown in the 
horizontal and vertical directions of the TV image. The cor
responding true profiles are also displayed as the thin lines. 
The TV image contains a deviation from the true phantom on 
the left-hand edge, which is evident in the shown horizontal 
profile. On the other hand, the EM and ART reconstructions 
are highly distorted. We have studied in FIG. 9c the profiles 
along central lines in the horizontal and vertical directions of 
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the EM and ART images. Distortions in these images are 
clearly shown in these profile plots. The image error is also 
plotted as a function of iteration number, in an effort to 
determine whether or not the TV algoritlnn will converge to 
the true image. For the previous cases, the image error was 
tending to zero, but for this 90° scan, the image error appears 
to converge to a small but finite positive number. The system 
matrix corresponding to the 90° scan appears to violate some
what the ERP. 
[0155] Still another reconstruction problem of practical 
interest is how to handle the situation where data from a set of 
bins on the detector are corrupted. Such a problem may occur 
if there is a partial hardware failure or if the photon count is 
very low so that signal noise dominates. For example, for 
fan-beam CT, if a full scan is performed over 360°, one may 
fill the gaps in the detector bins by using redundant data at 
conjugate views. For a short-scan, however, this approach 
may not be possible. Specifically, consider projection data 
displayed in FIG. 10, which depicts an intensity plot of the 
"bad bins" projection data function. The angular range covers 
209°, which is the short-scan angle for the current fan-beam 
configuration. However, data at 30 of the 512 detector bins are 
missing. The amount of missing data may be greater or less 
than that depicted in FIG. 10 
[0156] The angular range scanned is the minimum for exact 
reconstruction, namely, 180° plus the fan angle, which in this 
case is a total of 209°. The projection data at each view, 
however, has a gap. Because the scanning angle is over the 
minimum range, there may not be redundant information to 
fill in the gap left by the "bad" detector bins. Direct applica
tion of analytic algoritlnns such as fan-beam FBP may yield 
conspicuous artifacts, as the implicit assumption is that the 
missing values are zero, which is highly inconsistent with the 
rest of the data function. 
[0157] The TV methodology is applied to reconstructing 
images from data shown in FIG. 10, which are generated at 
150 views uniformly distributed over 209° from the true 
Shepp-Logan image shown in FIG. lla. The detector at each 
view contains 512 bins, of which the data of30 bins have been 
discarded as shown in FIG. 10. Again, in this instance, there 
may be enough data to determine the image, because the 
number of non-zero projection measurements is 58,430. The 
question is whether or not the linear system may be stable 
enough that the unique solution can be found. 
[0158] Referring to FIG. lla, there is depicted the true 
image and images reconstructed by use of the TV, EM, and 
ART methodologies, respectively, from data containing bad 
detector bins. The display gray scale is [0.85, 1.15]. FIG. llb 
depicts image profiles along the centers of the images in the 
horizontal and vertical directions obtained with the TV algo
ritlnn (thick line). FIG. llc depicts image profiles along the 
centers of the images in the horizontal and vertical directions 
obtained with the EM ( dashed lines) and ART ( dotted lines) 
algoritlnns. The corresponding true profiles are plotted as the 
thin lines in FIGS. 11 b-c. 

[0159] As shown in FIG. lla, the TV image is visually 
indistinguishable from the true image, and both EM and ART 
algoritlnns yield in this case quite accurate images. In this 
analysis, the TV algoritlnn appears to be more robust than the 
EM and ART algoritlnns, because the TV image is obtained 
with only 100 iterations while both the EM and ART algo
ritlnns required 10000 iterations to achieve the image accu
racy shown in FIG. lla. The FT-TV algoritlnn discussed in 
the background cannot address the bad bins problem directly 
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even in the parallel-beam case, because it is not possible to 
perform the FT of the detector data at each view when there is 
a gap. 
[0160] The previously discussed insufficient data problems 
(limited angle and bad detector) may be combined. For 
example, the few-view problem may be analyzed with pro
jection views containing bad bins. For this analysis, projec
tions are taken at 20 views uniformly covering the short-scan 
angular range with the same detector gap as showninFIG.10. 
Fewer or greater numbers of view may be taken. The differ
ence between this analysis and the previous analysis is that 
the angular spacing between projections here is roughly 10° 
instead of the 1.4° spacing previously. The few-view-projec
tion data are sparse, and only 7735 measured data points are 
nonzero. 
[0161] Referring to FIG. 12a, there is depicted the true 
image and images reconstructed by use of the TV, EM, and 
ART methodologies, respectively, from 20-view data con
taining bad detector bins. The display gray scale is [0.85, 
1.15]. FIG. 12b depicts image profiles along the centers of the 
images in the horizontal and vertical directions obtained with 
the TV algorithm (thick line). FIG. 12c depicts image profiles 
along the centers of the images in the horizontal and vertical 
directions obtained with the EM (dashed lines) and ART 
( dotted lines) algorithms. The corresponding true profiles are 
plotted as the thin lines in FIGS. 12b-c. 
[0162] As shown in FIG. 12a, the TV image is once again 
visually indistinguishable from the true phantom. Thus, it 
appears that the system matrix corresponding to this scanning 
configuration suggests the ERP. The EM and ART reconstruc
tions show similar artifacts as were seen in the few-view 
results shown in FIG. 6a. In addition, there appears to be 
additional artifacts from the missing detector bins. 
[0163] The TV methodology may address a variety of other 
sparse data problems. Applicability of the TV methodology, 
under the ideal conditions described above, may be based on 
support of the data function being at least twice the support of 
the gradient of the true image and that the corresponding 
linear system is not too ill-conditioned as was seen for the 
90°-scan case. 
[0164] The results described above assume the ideal situa
tion of perfect consistency among the measured projection 
rays and a sufficiently sparse gradient image. The following 
discussion shows how the TV, EM, and ART methodologies 
compare when these conditions are not strictly held by adding 
a varying background, to violate gradient sparseness, or by 
adding signal noise, to violate data consistency. 
[0165] In many applications, the gradient images may be 
sparse only in an approximate sense. Even though it is a good 
approximation to assume that images will be constant over 
many regions, there may also be situations in which the 
images will have some level of variation within the regions. 
One inquiry is whether or not a low amplitude violation of 
gradient sparseness leads to only small deviations in images 
reconstructed by use of the TV algorithm. This is addressed 
by repeating the few-view and bad-bin experiments described 
with respect to FIGS. 6a-c and lla-c, but adding a wavy 
background to the Shepp-Logan phantom. 
[0166] Referring to FIG. 13a, there is shown the true image 
with a wavy background and images reconstructed by use of 
the TV, EM, and ART methodologies, respectively, from 
20-view data. The display gray scale is [0.85, 1.15]. FIG. 13b 
depicts image profiles along the centers of the images in the 
horizontal and vertical directions obtained with the TV alga-
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rithm (thick line). FIG. 13c depicts image profiles along the 
centers of the images in the horizontal and vertical directions 
obtained with the EM ( dashed lines) and ART ( dotted lines) 
algorithms. The corresponding true profiles are plotted as the 
thin lines in FIGS. 13b-c. 

[0167] Using the Shepp-Logan phantom with a wavy back
ground in FIG. 13a, the projection data is generated at 20 
views specified by Eq. (18). The amplitude of the wavy back
ground is 1 % of the gray matter attenuation coefficient. Any 
negative values in the phantom are thresholded to zero, so as 
to allow the applicability of the EM algorithm. With the wavy 
background the number of non-zero pixels in the gradient 
image jumps to 51,958, but the majority of these non-zero 
values are small compared to the gradients at the boundaries 
of the different tissues. As was the case with the previous 
few-view analysis, the number of measurements is 10,240, 
which is less than twice the number of non-zero pixels in the 
gradient image, violating the gradient-sparse condition. The 
iteration numbers for obtaining the results in FIG. 13a were 
200, 1000, and 500 for the TV, EM, and ART algorithms, 
respectively. The images in FIG. 13a indicate that the TV 
reconstruction is visually almost indistinguishable from the 
true image and that the EM and ART algorithms have diffi
culty with this data set. Upon further inspection of the image 
profiles, it can be seen that the TV algorithm does not yield an 
exact reconstruction. The small violation, however, of the 
gradient image sparseness does not appear to lead to large 
errors in the reconstructed image. This example does not 
constitute a mathematical proof, but is suggestive that small 
violations in the gradient sparseness yields only small errors 
in the reconstructed image. 

[0168] Image reconstruction was also examined from data 
containing bad-bins (see FIG. lla-c) with the 1 % low ampli
tude wavy background added to the original image. In this 
example, the number of projection data is 58,430, which is 
not twice the number of non-zero pixels in the image but it is 
a comparable number. Referring to FIG. 14a, there is shown 
the true image with a wavy background and images recon
structed by use of the TV, EM, and ART methodologies, 
respectively, from bad detector bin data. The display gray 
scale is [0.85, 1.15]. FIG. 14b depicts image profiles along the 
centers of the images in the horizontal and vertical directions 
obtained with the TV algorithm (thick line). FIG. 14c depicts 
image profiles along the centers of the images in the horizon
tal and vertical directions obtained with the EM ( dashed lines) 
and ART ( dotted lines) algorithms. The corresponding true 
profiles are plotted as the thin lines in FIGS. 14b-c. 

[0169] It may be observed that the TV image is visually 
indistinguishable from the true image. As shown before, the 
ART and EM reconstructions are close to the original image 
in this case. The number of iterations for the TV algorithm is 
100, which is much less than the 10,000 iterations used for 
both EM and ART algorithms. 

[0170] Still another physical factor that contributes to data 
inconsistency is signal noise in the projection measurements. 
It is of practical significance to evaluate the performance of 
the TV methodology in the presence of data noise. The TV 
algorithm may appear to be effective on sparse data problems 
even when the data contain inconsistencies due to signal 
noise. For the noise studies, the few-view and bad-bin cases 
discussed above are examined. In each case, Gaussian noise 
may be introduced in the projection data at the level of0.1 % 
of the ideal measurement values. 
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[0171] Referring to FIG.15, there are shown images recon
structed from 20-view noisy data by use of the TV algorithm 
after the gradient descent phase (TV!) and after the projec
tion phase (TV2) and by use of the EM and ART algorithms. 
The iteration numbers for the TV, EM and ART images 
depicted in FIG. 15 are 200, 200, and 100, respectively. In 
particular, for the TV algorithm, two "final" images are dis
played in FIG. 15, (TV!) corresponding to fcrv-GRAD)[n, 
N grad] the image after the completion of the gradient descent 
phase (i.e., given by Eq. (3)), and (TV2) corresponding to 
fcrv-PoS)[n], the image one after the completion of the data 
projection phase (i.e., given by Eq. (10)). In the examples 
with consistent data above, the differences between the two 
images were numerically negligible. With inconsistencies 
resulting from data noise, however, there may be a marked 
difference. The image fCTV-GRAD)[n, Ngradl after the gradient 
descent phase is clearly a regularized version of the image 
fcrv-PoS)[ n], obtained after the data projection and positivity 
constraint. Depending on the tasks, either image may prove 
useful for a particular imaging application. For the few-view 
study, both images f(TV-GRAD)[n, Ngradl and f(TV-POS)[n], 
obtained with the TV algorithm appear to have less artifacts 
than the EM and ART reconstructions in FIG. 15. No explicit 
regularization is performed with the EM or ART in the present 
examples aside from truncation of the iteration numbers at 
200 and 100 in the EM and ART algorithms, respectively. 

[0172] For the bad bin case, noisy data maybe generated by 
adding Gaussian noise, for example at the level of0.1 % of the 
individual true data values, to the noiseless data described in 
FIG. lla-c. Referring to FIG. 16, there is shown images 
reconstructed from bad-bin noisy data by use of the TV algo
rithm after the gradient descent phase (TV 1) and after the 
projection phase (TV2) and by use of the EM and ART algo
rithms. The iteration numbers for the TV, EM, and ART 
images depicted in FIG. 16 are 200, 200, and 100, respec
tively. Again, two TV images are shown in FIG. 16: (TV!) 
corresponding to jCTV-GRAD)[n, Ngradl the image after the 
completion of the gradient descent phase, and (TV2) corre
sponding to fcrv-PoS)[ n], the image after the completion the 
data projection phase. The results suggests that the TV and 
EM algorithms may still effectively correct for the effect of 
the missing detector bins. The ART algorithm, which showed 
very mild streaking in FIG. lla under the ideal condition, 
displays significant streaking due to the combination of signal 
noise and bad detector bins. 

[0173] Referring to FIGS. l7a-d, there is shown, respec
tively, an example of a Shepp-Logan image, partial data for 
the object depicted in FIG. 17 a if only exterior data may be 
obtained, an image reconstruction using Filtration-back
projection using the data from FIG.17b, and an image recon
struction using the TV methodology using the data from FIG. 
17b. As shown in FIG. 17b, an interior section of the data is 
missing. This results using an image reconstruction of the 
prior art are shown in FIG. 17c, and may not be acceptable. 
However, the image in 17 d may be acceptable if the region of 
interest (ROI) may comprise the exterior ring of the object. As 
shown, the exterior portion of the image is comparable to the 
Shepp-Logan image. 

[0174] Referring to FIGS. l8a-d, there is shown, respec
tively, an example of a Shepp-Logan image, partial data for 
object depicted in FIG. 18a if interior data is obtained but at 
least some of the exterior data is excluded, an image recon
struction using Filtration-backprojection using the data from 
FIG. 18b, and an image reconstruction using the TV method-
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ology using the data from FIG. 18b. This results using an 
imagereconstructionoftheprior art is shown in FIG. 18c, and 
may not be acceptable. However, the image in 18d may be 
acceptable if the region of interest (ROI) may comprise an 
interior portion the object. As shown, the interior portion of 
the image is comparable to the Shepp-Logan image. 
[0175] Referring to FIGS. l9a-d, there is shown, respec
tively, another example of a Shepp-Logan image depicting 
spots, partial data forobject depicted in FIG.19a if few views 
( e.g., 5 views) are obtained, an image reconstruction using 
Filtration-backprojection using the data from FIG. 19b, and 
an image reconstruction using the TV methodology using the 
data from FIG. 19b. FIG. 19c may be an unacceptable image. 
However, the image reconstruction shown in FIG. 19d is 
comparable to FIG. 19a and may be acceptable. 
[0176] Referring to FIGS. 20a-d, there is shown, respec
tively, an example of a Shepp-Logan image, partial data for an 
object depicted in FIG. 20a if few views and interior data (but 
not exterior data) are obtained, an image reconstruction using 
Filtration-backprojection using the data from FIG. 20b, and 
an image reconstruction using the TV methodology using the 
data from FIG. 20b. Comparing FIGS. 20c and 20d, it is 
shown that the total variation methodology may generate a 
superior image for an interior even with few views. 
[0177] Referring to FIGS. 2la-d, there is shown, respec
tively, shows still another example of a Shepp-Logan image, 
partial data for the object depicted in FIG. 21a if data with 
metal is removed, an image reconstruction using Filtration
backprojection using the data from FIG. 21b, and an image 
reconstruction using the TV methodology using the data from 
FIG. 21b. Comparing FIGS. 21c and 21d, it is shown that the 
total variation methodology may generate a superior image 
even with a missing data problem, such as if data from metal 
is removed. 
[0178] Based on the foregoing, a TV methodology may be 
used for accurate image reconstruction. One example of 
image reconstruction may be for divergent-beam CT under a 
number of imperfect sampling situations. The TV methodol
ogy may addressing a number of challenging reconstruction 
problems, including the few-view, limited-angle, and bad-bin 
problems. As the results in the numerical studies indicate, the 
TV methodology may yield accurate reconstructions in these 
difficult cases, which are of practical significance. The effec
tiveness of the TV methodology may rely on the fact that the 
object being imaged may have a relatively sparse gradient 
image. Based on the numerical examples, it appears that the 
ERP conjecture may apply to many insufficient data prob
lems, such as in divergent-beam CT. The TV algorithm 
described above applies equally to many other situations, 
such as cone-beam CT, even though the examples were 
directed to fan-beam CT. The TV methodology may also 
prove useful for many other tomographic imaging modalities. 
[0179] There are numerous aspects of the TV methodology 
that may make it relevant and useful for many imaging appli
cations, such as medical and industrial CT imaging. The 
assumption of a sparse gradient image may be reasonable for 
many object functions in medical and industrial applications, 
because often sought-after quantities such as x-ray attenua
tion coefficient are relatively constant over extended areas or 
volumes. Example reconstructions were shown from data 
containing one imperfection and two imperfections. Recon
structions with the TV methodology may be for more than 
two imperfections. Further, with regard to the imperfections 
addressed, one may expect that the sparseness of the image 
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gradient will hold only approximately, and that there may be 
some level of inconsistency among the projection data due to 
signal noise. The numerical studies with respect to these 
complicating factors may show that the TV methodology may 
effectively reconstruct quantitatively accurate images from 
imperfectly sampled data. The TV methodology may also be 
applied to other applications, such as to 3D cone-beam CT 
where there are a host of imperfect sampling situations that 
have practical significance. Moreover, refinements may be 
made to the TV algorithm that may optimize its performance. 
[0180] The above examples of few-view fan-beam CT pri
marily focus on the ideal situation where there is no noise on 
the data. In order to accommodate data inconsistency, where 

there may be no solution to M f = g, one may solve a modi
fied optimization problem: 

f *~argmin llfllrvsuch that IMf-gl,;e (20) 

[0181] The data constraint on the image may be an ellip
soidal whose scale is E. For inconsistent data, Em,n may have a 
minimum value Em,n that is in general greater than zero. In 
practice, Em,n may be found approximately by running POCS 
without TV gradient descent. The following discusses how 
varying e may affect image reconstruction when the data are 
corrupted by noise, such as uncorrelated Gaussian noise. 
[0182] The TV minimization algorithm discussed above 
may apply to inversion of discrete-to-discrete linear systems, 
so the actual phantom used here may be the pixellated Shepp
Logan phantom. For the few-view reconstruction, the image 
array is, for example, 256x256 covering 20x20 cm2

. The 
simulated data are for fan-beam CT configuration with source 
to rotation center distance of 40 cm and a source to detector 
distance of 80 cm. Only 25 views were taken covering a full 
360° scan. The simulated detector may have 512 bins. The 
linear system matrix for this configuration models ray-driven 
projection through the image matrix. With only 25 views, the 
available data undersamples the image array by a factor of 
5.12. 
[0183] In this study, inconsistency is introduced into the 
projection data set using uncorrelated Gaussian distributed 
noise. The standard deviation of the probability density func
tion is set to 0.2% of each of the data values. Image recon
struction is performed on a single realization of this data 
model. The TV-minimization algorithm follows from Eq. 
(20) with the aim of obtaining a qualitative understanding of 
the effect of E. The TV-minimization reconstruction is shown 
for E=l.026, 0.382, 0.269, 0.248, and 0.115 (these e's are 
provided for illustrative purposes only and are not round 
numbers because they were determined by the data residual at 
fixed iteration numbers. Other E's may be chosen). Along 
with the image reconstructions, root-mean-square-error 
(RMSE) are shown in Table 1 below to quantify the accuracy 
of the various reconstructions. 

TABLE I 

DATA RESIDUAL PER DETECTOR BIN AND IMAGE RMSE AS A 
FUNCTION OF E. 

E data RMSE ( xl0-5) image RMSE ( xl0-4) 

1.026 8.0 3.4 
0.382 3.0 1.2 
0.269 2.1 0.85 
0.248 1.9 0.86 
0.115 0.9 0.75 
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[0184] For TV-minimization, the impact of noise may have 
a large effect because the noiseless case may give a highly 
accurate image. For the various values of E, each of the result
ing reconstructed images appear to be more accurate than the 
POCS images, visually and also in terms of RMSE values. 
The gain in accuracy reflects the applicability of the assump
tion on the underlying image function of minimal TV gradi
ent. The data RMSE tends to increase as E increases, while the 
image TV decreases. As E increases the space of possible 

images satisfying IIM f -gllsE grows and it is likely that an 
image within this constraint may be found with lower TV. The 
relation of E and image RMSE is less apparent. The trend of 
increasing RMSE in the image with increasing E is reason
able, but the details of this dependence may be strongly image 
function dependent. 
[0185] Visually, the variation in the reconstructed images 
may be large as a function of E. The larger values of E tend to 
yield a highly smoothed image; intermediate values may 
show low frequency "splotchy" noise; and low values may 
yield high frequency "salt and pepper" noise. FIGS. 22a-e 
illustrate examples images reconstructed by TV, using differ
ent values of E in Eq. (20), from noisy projection data taken at 
only 25 views, gray scale window is [0.9,1.1]. From these 
results, it may be difficult to identify the "best" value of E. The 
larger values of E obviously result in lower resolution, but the 
features of the reconstructed images may all be present in the 
phantom. Intermediate values of E may yield better resolu
tion, but the artifacts from the noise may be near the same 
spatial frequencies as the phantom features. This situation 
may be confusing to the observer of the images. Smaller E 
may give higher frequency noise, which may be less easily 
confused with features of underlying image function. 
[0186] Though the role of the data tolerance parameter E for 
few-view fan-beam CT image reconstruction using the TV
minimizationmethodology has been examined, other types of 
image reconstruction may be used as well. Further, the intro
duction of inconsistency into the projection data may reduce 
the accuracy of the methodology, but the resulting reconstruc
tions may appear to reveal the structures in the underlying 
image function. The form of the noise in the reconstructed 
images may vary dramatically as E varies. The below discus
sion indicates the possible range of artifacts in the recon
structed images; however, the range is provided for illustra
tion purposes only. Other choices of methodology 
parameters, such as E, may be determined in a task-based 
fashion. Because the texture of the noise may change dramati
cally, the ability to perform a detection or estimation task 
based on the reconstructed images may depend strongly on 
the image features pertinent to that task. 
[0187] As discussed above, the TV minimization image 
reconstruction methodology for inverting the divergent-beam 
x-ray transform may be applied to image reconstruction in 
circular cone-beam computed tomography (CT). In analyz
ing the TV minimization image reconstruction, reconstruc
tions for the disk phantom may be compared with that of 
projection onto convex sets (POCS). It appears that the TV 
minimization image reconstruction may yield accurate image 
reconstructions that are robust against data inconsistencies 
due to noise or mismatch in the system matrix. 
[0188] As discussed above, a methodology may be used for 
inversion of the Fourier Transform (FT) with sparse FT 
samples. A sparse representation of the underlying image 
function may be found, and minimize the norm of this repre
sentation while requiring that the image's FT match the 
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known samples. The methodology presents two ideas of note: 
(1) generalized image representations, and (2) the exact 
reconstruction principle (ERP). In particular, the representa
tion of an image by path integrals of its image gradient is of 
interest in medical imaging, because oftentimes images 
themselves are not sparse but their gradient may be. Medical 
images may vary rapidly only at the boundaries of internal 
organs. Such an image representation calls for minimization 
of the image's total variation (TV), which is the 11 norm of the 
image gradient magnitude. 

[0189] The ERP may be useful in that it overrides the 
Nyquist sampling theorem for particular image functions. For 
the discrete FT (DFT), if there is no prior knowledge on the 
underlying image function, it may be necessary to have com
plete knowledge of the DFT to obtain the true image. If the 
image function, however, is known to be composed of N 
pixels of unknown location and amplitude, it may only be 
necessary to have 2N samples of the image DFT to recon
struct the image exactly. If N is much less than the total 
number of pixels in the image array then the ERP allows for 
substantial reduction in the necessary number of DFT 
samples. Because the inverse FT is related to parallel beam 
CT through the central slice theorem, the FT TV-minimiza
tion algorithm can be directly applied to image reconstruction 
in the parallel beam case. 

[0190] For the divergent-beam transform in fan-beam or 
cone-beam CT, the conversion of the data to Fourier space 
may not be straightforward, so a TV-minimization method
ology is used that applies directly to this case. The method
ology finds the approximate solution to the following optimi
zation problem: 

f o~argmin llfllrvsuch thatXf ~ g; (21) 

----;, 

[0191] where f generically represents an image vector, 
whose length is the numberof pixels/voxels; g is a data vector, 
whose components represent the measured ray integrals 
through the imaging volume; Xis the discrete linear operator 

that performs the x-ray transform of f yielding the line 
integrals at the samples g; and II ... llrv represents the TV 
norm. As discussed above, the algorithm that finds an 
approximate solution to this optimization problem combines 
projection onto convex sets (POCS), which narrows the solu-

tion space to images that satisfy X f =g, with gradient 

descent, which minimizes the TV norm of f. This ideal 
formulation though is only useful for perfectly consistent 
data. While in the FT inversion problem there is always at 
least one image that is consistent the available data, in the 
divergent-beam transform there may be no solutions to X 
----;, 

f =g if the data contain inconsistencies, say, due to noise. In 
order to accommodate data inconsistency, it may be neces
sary to modify Eq. (21) to: 

f o~argmin llfllrvsuch that l~f-gll,;e (22) 

[0192] The difference here is that the data constraint on the 
image is an ellipsoidal whose scale is E. For inconsistent data, 
E may have a minimum value Em,n that is in general greater 
than zero. In practice, Em,n can be found approximately by 
running POCS without TV gradient descent. 
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[0193] The below discussion applies the TV-minimization 
algorithm to circular cone-beam CT image reconstruction. 
Both cases of consistent and inconsistent projection data are 
considered. 
[0194] The discussion above focused on few-view and lim
ited-angle image reconstruction in fan-beam CT. The present 
discussion focuses on applying the TV-minimization meth
odology to 3D cone-beam CT image reconstruction. Further
more, the form of the imperfect sampling is very different 
from the above few-view and limited-angle studies. The 
appropriate frame to understand the sampling of the imaging 
volume in circular cone-beam CT is in a space that represents 
the Radon transform of the image function. Each point r in the 
3D Radon space represents the planar integral of the image 

function over a plane whose nearest point to the origin is 7 in 
the 3D image space. 
[0195] In order to have sufficient data to reconstruct the 
image, the Radon space within the sphere, indicated in FIG. 
23 must be sampled. The transparent sphere shown in FIG. 23 
represents the sufficient volume in Radon space needed to 
reconstruct the 3 D image. The circular x-ray source trajectory 
may sample only the Radon planes that intersect the trajec
tory. In the Radon space, the indicated torus represents the 
Radon sampling of this trajectory (a circular source orbit) 
whose dimensions are the size of the torus's outer diameter. 
As can be seen, there is a large gap at the polar regions of the 
Radon sphere. As the TV minimization algorithm has been 
successful in performing data interpolation for both 2D few
view and limited-angle fan-beam CT, TV minimization may 
be able to interpolate the polar regions of the Radon sphere. 
[0196] In order to analyze the TV minimization methodol
ogy, one may use the disk phantom because on the one hand 
it has a sparse image gradient, so TV minimization should be 
effective, but on the other hand it is a challenging phantom 
due to the strong variations in z, which gives rise to a lot of 
structure in the polar regions in Radon space. In order to speed 
up the calculations, reconstruction is only considered in the 
z2:0 half-space. The disk phantom and detector are chopped in 
half. The geometric parameters of the simulation are shown in 
FIGS. 24a-c. 
[0197] Below are three simulations. The first simulation 
considers perfectly consistent data. Because the TV-minimi
zation algorithm inverts discrete-to-discrete linear systems, 
the simulated data are generated from a voxellated disk phan
tom. This way the operator X that generates the data is the 
same as the operator used in the POCS part of the TV mini
mization algorithm. The second simulation perturbs the data 
by introducing a small amount of Gaussian-distributed noise. 
The third simulation generates the simulated data from the 
analytic line integrals of the disk phantom; such data may no 
longer be completely consistent with the discrete x-ray trans
form used in the TV-minimization algorithm. 
[0198] For the consistent and noisy data studies, the image 
array is relatively small at 1003 voxels. The projection data 
may comprise 128 views covering 360° with the detector 
dimension of 200 bins across and 100 bins high. FIGS. 2Sa-b 
shows the resulting reconstruction from the TV algorithm 
compared with image reconstruction by POCS alone. The 
image reconstructed by TV-minimization is nearly identical 
to the original phantom (as shown in FIG. 25a). The POCS 
result is also close to the true discretized disk phantom, but it 
is clearly less accurate than that of the TV algorithm (as 
shown in FIG. 25b). In previous analyses, the difference 
betweenPOCS and TV image reconstruction was larger when 
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considering the few-view and limited-angle problems. The 
reason for this is that the latter problems were testing the 
limits of the ERP; namely, the amount of available data was 
near twice the number of non-zero pixels in the gradient 
image. Here, the ERP is not being tested at all. Because the 
number of projection views is higher in this study than either 
of the previous two fan-beam studies, the number of mea
sured line integrals is much larger than twice the number of 
non-zero voxels in the image gradient. For the circular cone
beam CT scan, it is the ill-conditionedness of the discrete 
x-ray transform under the assumption of positivity, for POCS, 
or positivity and minimal image TV norm, for TV minimiza
tion, that is being tested. It appears that the TV-minimization 
algorithm is effective at circular cone-beam CT image recon
struction for this disk phantom. 

[0199] One may extend the above results by investigating 
the stability of image reconstruction from circular cone-beam 
CT data. As a preliminary test of stability, one realization may 
be generated of Gaussian distributed noise with a standard 
deviation of0.1 % of the true detector bin value. The resulting 
reconstructions for TV-minimization and POCS are shown in 
FIGS. 26a-d. As can be seen, the quality of the reconstruc
tions is degraded. In the profiles shown in FIGS. 26c-d, the 
deviations from the true image increases with z. This indi
cates that the image reconstruction may be less stable for 
points further away from the plane of the circular orbit. Of 
note, the assumption of minimal TV norm appears to help 
reduce the level of artifacts in the reconstructed images. 

[0200] For the third simulation, the impact of data incon
sistency introduced by modeling the data with continuous 
line integrals of the actual disk phantom is investigated. For 
the first and second simulations, the imaging volume is only 
1003

, and the data derived from the discretized disk phantom 
deviates substantially from the continuous disk phantom. In 
order to reduce this difference, the number of voxels is 
increased to 4003

, and the number of detector bins is also 
increased proportionally. So that the calculation time does not 
grow too much, the number of projection views is reduced to 
32. For this study, only results of the TV-minimization algo
rithm are shown, because the reduction to few-views does not 
affect the TV algorithm while for POCS this reduction may 
introduce significant artifacts. Even though the voxelization 
is much finer, there are still relatively large differences 
between projection of the discrete and continuous disk phan
toms as seen in FIG. 27a. Particularly, at the edges of the disks 
and background cylinder the projection difference can be 
quite large. This difference, however, may not. represent 
inconsistency in the data alone, because the discretized disk 
phantom used here may not be the one that generates projec
tion data closest to the continuous case. It is apparent, how
ever, that there is some level of inconsistency introduced, 
because the reconstructed images are forced to be constant 
within the individual voxels. The resulting reconstruction is 
shown in FIG. 27b. The results show increasing levels of 
artifacts as the voxels go away from the source trajectory 
plane. Artifacts due to this type of inconsistency may be 
controlled much better by using previous methods for repre
senting image functions such as blobs or splines. 

[0201] The above discussion analyzes circular cone-beam 
CT image reconstruction by the TV-minimization algorithm. 
This type of problem may represent a different type of imper
fect sampling than what has previously been investigated by 
TV-minimization. Image reconstruction algorithms necessar
ily perform interpolation over a wide gap in the polar regions 
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of the image's 3D Radon sphere. TV-minimization may per
form well for this scan, as shown here with the challenging 
disk phantom. For the case of consistent data, the TV algo
rithm appears to provide very accurate image reconstruction 
for this phantom. And TV-minimization appears to be rela
tively robust against signal noise. The image reconstruction 
from the continuous data model appears to be affected more 
by the resulting data inconsistency, but this is primarily due to 
the choice ofrepresenting the image by cubic voxels. Addi
tional analysis for circular cone-beam CT image reconstruc
tion by TV-minimization may be performed with other 
expansion functions that are known to more closely match 
continuous line integrals. 
[0202] An important component of the TV algorithm is the 
ability to take many small total variation gradient descent 
(TVGD) steps, which computationally can be extremely 
time-consuming. The TVGD step may, however, be very well 
suited to a new field of computing-general purpose comput
ing on a graphics processing unit (GPGPU). The TV of the 3D 
image may depend on the variation of the image over neigh
boring voxels, and to formulate the image TV a three index 
notation for the image voxels is required. The value of the 

image fat voxel i,j, kis denoted as f(i,j, k) where iE[l,nJ, 
jE[l,nY], and kE[l,n

2
] where nx,ny, and n

2 
are the numbers of 

voxels along each of the image axes. The image TV is: 

llxf = f(i, j, k) - f(i - 1, j, k), 

llyf = f(i, j, k) - f(i, j - !, k), 

ll,f = f(i, j, k) - f(i, j, k - !). 

[0203] One way of reducing the TV of an image is to 

subtract from fa small constant times the TV gradient image 

T which is defined as: 

T ={ oil f llr,)of (ij,k) :ie[l ,nxJ Je[l ,n,J,ke[l ,nz]} (24) 

[0204] The exact form ofT is straightforward to derive, but 
due to the length of this formula it will not be written here. Of 

note about computing Tare that structurally the computation 
is a non-linear filtering operation involving each voxel and 12 

neighboring voxels. Calculating the TV gradient T once is 
not as time consuming as a POCS iteration, but our TV 
methodology may require multiple TVGD steps per POCS 

iteration. Therefore, acceleration of the computation of T 
may have a large impact on the execution time of the whole 

algorithm. Due to the non-linearity in calculating T, the 
Fourier Transform cannot be exploited as with linear filters. 
The non-linear filtering operation, however, is very well 
suited to implementation on a graphics processing unit 
(GPU). 
[0205] The GPU may implement a number of graphics 
primitive operations in a way that makes running them much 
faster than drawing directly to the screen with the host CPU. 
The GPU may exploit massive parallelism to perform math
ematical operations needed for 3D rendering. Objects in a 3D 
graphics scene are represented as a set of3D vertices, and to 
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give 3D objects a realistic appearance, the faces formed by 
neighboring vertices can have a 2D image, or texture, affixed. 
In the rendering process, geometric transforms are perform 
on the vertices in a first pass, and pixel-by-pixel image pro
cessing operations are performed in a second pass called 
fragment shading. Oversimplifying, the first pass is generally 
used to orient the 3D scene to a particular camera view angle, 
and the fragment shader is used to incorporate the visual 
properties of each face including any textures used. In modern 
graphics hardware, both of these rendering stages are now 
programmable, and in particular the fragment processing 
operates in a highly parallel fashion with up to 24 channels 
operating together to process a scene. Due to the flexibility of 
the new graphics hardware, the GPU can be coerced into 
performing and significantly accelerating numerical compu
tations previously performed on standard CPUs. In fact, 
sophisticated GPU algorithms have been developed for per
forming forward- and back-projection in iterative tomo
graphic image reconstruction yielding impressive accelera
tion by a factor of 10 or more. The present application, 
exploiting the GPU for TVGD, is particularly effective. 

[0206] The TVG-GPU methodology may be derived from 
two on-line tutorials on GPGPU: the helloGPGPU tutorial 
shows how to program a fragment shader to perform a Lapla
cian filter on a real-time dynamic scene, and the "basic math 
tutorial" illustrates how to perform numerical computation on 
the GPU with a recursive vector addition problem. The 
former tutorial is a good guide on generating the fragment 
shader needed for our non-linear filter, and the latter tutorial 
provides an orientation on how to map numerical computa
tion onto the GPU. In the basic math tutorial, the data for the 
calculation is converted to a 2D texture and attached to a 
simple rectangle. The fragment shader, containing the data 
processing steps, is loaded into the GPU, and the computation 
is performed by issuing a command to render the rectangle 
orthogonally to a parallel plane. The texture flows through the 
fragment shader and the rendered quadrilateral contains the 
processed array. 

[0207] For the present application, a 3D array is needed for 
processing; however, GPGPU may be best suited for 2D 
arrays. Accordingly, the 3D image array may be reformatted 
by stacking consecutive z-slices side-by-side in the x-direc
tion of the texture, and stacking these rows in they-direction 
so as to fit as much of the 3D array as possible into the 
4096x4096 size limit for textures on our NVIDIA 7800 GTX 
graphics board. When the 3D array does not fit into a single 
texture, the calculation may be broken up into smaller parts 
that do fit. The offset for obtaining neighboring values in the 
x- and y-direction is straightforward, just as in the 3D array, 
and to reference the neighboring z-slice an offset of nx is 
added or subtracted to the current pixel position. The compu
tation may be performed in 3 2-bit floating point, provided by 
the GL_FLOAT_R32_NV texture data format. The applica
tion of the non-linear filter is uniform across the array, and as 
a result the values at the edges may be spurious. To take care 
of these edge values, the TV gradient array is zeroed at the 
edges two voxels deep after the data is restored to the 3D 
format. The TVG-GPU program achieves roughly a factor of 
ten acceleration over the CPU version of this subroutine. 
Acceleration of the TVGD step on commodity graphics hard
ware may thus prove important to the practicability of the 
TV-algorithm, as the accelerated algorithm may take many 
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more gradient descent steps with a smaller step-size, thereby 
improving the accuracy and the speed of the TV gradient 
descent. 
[0208] Still another type ofimaging is echo-planar imaging 
(EPI). During the past 15 years, EPI has emerged as one of the 
fastest of the common magnetic resonance imaging (MRI) 
methods. Reducing scan times by factors ofup to 104 in some 
circumstances, EPI is becoming an increasingly important 
part of cardiac imaging, functional MRI, and other applica
tions that require rapid imaging. EPI takes advantage oflarge 
gradient magnitudes and rapid switching of the read-out (fre
quency encoding) gradient. Each application of the read-out 
gradient advances the scan trajectory rapidly along the kx 
direction in the Fourier plane. A brief phase-encode gradient 
is applied following the read-out gradient, advancing the 
trajectory a short distance along the kY direction. The read-out 
gradient is then again applied with opposite sign, moving the 
trajectory back along kx. This repeated switching of the read
out gradient coupled with phase encoding gradient pulses 
leads to mapping of Fourier space along horizontal lines in a 
Cartesian grid, and for sufficient gradient strengths EPI 
acquires multiple lines of data in Fourier space using a single 
radio frequency excitation. This allows an entire image to be 
constructed from one free induction decay using either spin
echo or gradient-echo acquisition methods, resulting in a 
dramatic improvement in imaging time relative to other meth
ods. 
[0209] However, there remains a need to further reduce 
scan times in EPI. For efficient imaging, the total path through 
Fourier space may be covered within the spin-spin relaxation 
time T* 2 . Typically, this corresponds to covering all of Fou
rier space in 100 ms or less, which can be a challenge for 
standard MRI systems. The reduction of EPI scan time may 
be achieved through reduction of the number of horizontal 
data lines required for accurate image reconstruction. While 
methods have been investigated for obtaining accurate MRI 
images from a reduced number oflines, they have not allowed 
sufficient reduction in line number to significantly reduce EPI 
scan time. 
[0210] The discussion below includes a methodology for 
obtaining accurate images from highly sparse horizontal data 
lines in EPI. This may allow a substantial shortening of imag
ing time, and may also improve image resolution and signal
to-noise ratio for scans of a given duration. The methodology 
may iteratively minimize the total variation (TV) of the esti
mated image using gradient descent, subject to the condition 
that the estimated data remain consistent with the sample 
data. This approach may be effective for images that are 
nearly constant over most regions and vary rapidly only in 
confined regions, a condition applicable to many medical 
images. Using this method, images are reconstructed from 
samples in Fourier space obtained along as few as 20% of the 
horizontal lines used in a typical full EPI scan. The present 
discussion focuses on the method and results in the context of 
two-dimensional (2D) MRI. However, they are directly appli
cable and generalizable to higher dimensional MRI, as well as 
other scan configurations such as radial or spiral scanning. 
[0211] The measured signal in EPI is simply related to the 
Fourier transform of the object function f(x, y): 

S(kvk) ocff f (x,y)exp{ -2nj(k;x+kyy) }dxdy (25) 

[0212] where kx and Is, are proportional to the x and y 
gradients of the magnetic field, as well as the read-out time 
and phase encoding pulse duration, respectively. Our data 
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model comprises measurements of S(kx,ky) from computer 
generated data along horizontal lines in a 128x128 square 
grid, for example. Specifically, the Fourier transform of the 
Shepp-Logan phantom is taken, shown in FIG. 28a. Only data 
along the horizontal lines shown in the indicator function in 
FIG. 28b are used in the image reconstruction. This indicator 
function consists of a central band comprising 10% of the 
total amount of data. This ensures that information about the 
DC and low frequency, components of the object function are 
retained. Horizontal lines comprising an additional 10% of 
the total dataset are randomly selected from a normal distri
bution with standard deviation equal to the vertical image 
dimension. This standard deviation is found to give a suffi
cient sampling of both low and high frequency components, 
resulting in the best reconstruction performance for this phan
tom. Although the same indicator function is used throughout 
for consistency, other indicator functions satisfying these 
conditions are found to give similar results. 

[0213] The TV of an image is the 11 -norm of its gradient 
image, and may be expressed as: 

11!,.,IIJV = ~ ✓ (!,., - f,-1.,J2 + (!,., - f,.,-il2 (26) 

,., 

[0214] wheres and t denote row and colunm indices. Mini
mizing the image TV provides the foundation of an iterative 
method for image reconstruction from sparse samples. As 
discussed above, this method may be effective for images 
with sparse gradients, and may be applied successfully in CT. 
The image of object function f(x, y) is constructed such that 
llfs)lrv is minimized while the S(kx,ky) from the recon
structed image match the measured object data. 

[0215] Implementation of the methodology may comprise 
three main steps: initialization, projection, and TV gradient 
descent. For the first iteration of the algorithm, initialization 
may comprise setting the estimated image to zero. The ini
tialization step for subsequent iterations is discussed below. 

[0216] Projection comprises the following substeps: the 
estimated image is first transformed to Fourier space, which is 
the data domain, using an FFT. The methodology is particu
larly conducive to EPI data, since these data are acquired on 
a Cartesian grid. Therefore no interpolation is required to 
perform the FFT. After FFT, the known data measured along 
the trajectories in the indicator function (FIG. 28b) may be 
copied into their appropriate positions in the Fourier domain. 
This enforces consistency with the data. An inverse FFT is 
performed on the Fourier image to return to the image 
domain. Finally, the positivity in the image is enforced by 
setting pixels with negative values to zero. The scalar distance 
is also measured between the pre-projection and post-projec
tion images, the so-called projection distance, for use in the 
next step. 

[0217] To perform the TV gradient descent step, the gradi
ent of the image TV expressed in Eq. (26) is determined. This 
should not be confused with the gradient of the image itself, 
from which the image TV was determined. The gradient in 

----;, 

question is also an image which is denoted v , with each pixel 
equal to the partial derivative of the image TV with respect to 
that pixel, 
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----;, 

The gradient image v is normalized, then a small fraction of 
----;, 

v is iteratively subtracted from the post-projection image. 
This is the gradient descent, which may act to reduce the TV 

----;, 

of the post-projection image. The fraction of v subtracted is 
proportional to the projection distance so that the gradient 
descent step may not overwhelm the projection step. This 
allows that the estimated image moves in the net direction of 
data consistency. After the gradient descent step, the resulting 
image becomes the initial image, and the process may be 
repeated beginning with projection. 
[0218] Numerical studies were performed to validate and 
demonstrate the methodology's performance in reconstruct
ing accurate images from highly sparse Fourier data. Results 
for consistent data, in which no noise is added to the com
puter-generated S(kx,ky), are shown in FIG. 29a, c-d. FIG. 
29a shows the image reconstructed with the TV minimization 
algorithm using only data along the horizontal lines in the 
indicator function, comprising just 20% of the total dataset. 
This corresponds to a scan roughly 5 times faster than one 
which explores the entire Fourier space. The reconstructed 
image is indistinguishable from the Shepp-Logan phantom in 
FIG. 28a. For reference, FIG. 29b shows the image resulting 
from a single inverse Fourier transform of the data, prior to 
iteratively applying the TV minimization algorithm. This 
illustrates the algorithm's ability to recover the image from a 
dataset that is too limited to permit recovery through simple 
inverse Fourier transform. FIGS. 29c-d are in fact an overlay 
of the original and reconstructed horizontal and vertical 
image profiles, respectively. However, because the image 
reconstruction is exact, the profiles are indistinguishable from 
one another. 
[0219] Real world applications rarely deal with consistent 
data; therefore, the performance of the algorithm is analyzed 
in the presence of noise. FIGS. 30a-d show one example. 
Here, independent Gaussian noise is added to the Fourier data 
on a pixel by pixel basis, with a equal to 0.1 % of the ampli
tude of the zero frequency component. FIG. 30a shows the 
model image after inverse Fourier transform. FIG. 3 Ob shows 
the reconstructed image, again created using only data along 
the horizontal lines in the indicator function. Major features 
of the object are recovered, as are most smaller scale features. 
This is further illustrated by the profiles in FIGS. 30c-d. As 
these profiles demonstrate, the TV algorithm has the added 
benefit of regularizing the image, as the recovered image is 
less noisy than the original. 
[0220] The methodology is also tested with a modified 
noise model. Here, a Gaussian taper is imposed on the noise 
added in Fourier space. The noise model described above is 
applied pixel by pixel to the data as before, but the Fourier 
image is then multiplied by a Gaussian with unit peak and full 
width at half maximum equal to 25% of the image diameter. 
This process tapers the noise in the high-frequency compo
nents to emphasize noise features on larger scales. FIGS. 
3la-d illustrate this method and the results. FIG. 31a shows 
the model image after inverse Fourier transform. The noise 
primarily affects larger scales, and may be more difficult to 
smooth out. FIG. 31 b shows the image reconstructed using 
the TV algorithm. As with the previous noise model, all major 
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features are recovered, as are most small scale features. The 
profiles in FIGS. 31c-d further demonstrate this. The TV 
algorithm is capable of reconstructing an accurate likeness of 
the original image using just 20% of the available data, and is 
shown to be very robust to image noise. 
[0221] TV minimization is an important part of the meth
odology, not simply a tool to regularize the image. To dem
onstrate the importance of performing the TV minimization 
via gradient descent, a comparison is presented of image 
reconstructions from inconsistent data, both with and without 
the TV minimization step. The results are shown in FIGS. 
32a-b and 33a-b. FIG. 32a shows the image reconstructed 
using the TV minimization algorithm as detailed above. Inde
pendent Gaussian noise with a equal to 0.1 % of the amplitude 
of the zero frequency component was added to the Fourier 
data. FIG. 32b shows the reconstructed image after the same 
number of iterations when TV minimization via gradient 
descent is not performed. In this case the reconstruction algo
rithm consists solely of initialization and projection (includ
ing positivity). Little useful information can be obtained from 
this image, and in fact the method offers little improvement 
over the single inverse IFFT shown in FIG. 29b for. this 
particular phantom and scan configuration. In the absence of 
TV minimization, little useful information is obtained. 
[0222] Thus, an iterative reconstruction algorithm may be 
applied based on minimization of the image TV to perform 
accurate image reconstruction with less data, such as little as 
20% of the data, used in a typical EPI scan. When applied to 
consistent data, the methodology may provide a virtually 
exact reconstruction of the original image. When applied to 
inconsistent data, with independent Gaussian noise added in 
the Fourier domain, the algorithm may recover some or most 
features of the Shepp-Logan phantom used here. The TV 
minimization methodology has the added advantage of regu
larizing the reconstructed image, making it highly effective 
for noisy data. However, the TV minimization step may be 
important to accurate image recovery, and not just a tool to 
regularize noisy images. When the TV minimization step is 
not included in the algorithm, the image reconstruction may 
be of lesser quality. 
[0223] In practice, this methodology may be able to both 
reduce EPI scan time or increase scan efficiency by allowing 
for greatly improved image resolution and signal to noise 
ratio in scans of a given time. The TV algorithm may be 
readily applied to reconstructing images from sparse samples 
on other non-uniform grids in Fourier space and can also be 
generalized to higher dimensional Fourier space and MRI 
scan configurations. The methodology may be applied to 
more complex phantoms. 
[0224] EPI may commonly be used to measure volumes 
instead ofindividual slices. In multi-slice EPI, a three-dimen
sional volume may be reconstructed by stacking together 
multiple 2D slices, each of which may be obtained indepen
dently. A drawback to this method arises when sparse sam
pling is desired, for instance to reduce scan time. The 2D 
stacking method may not accommodate sparse sampling 
along the slice direction, as this creates gaps in the recon
structed image volume. An alternative may be achieved by 
performing a standard 2D EPI sequence while spatially 
encoding the third dimension of the excited slab with a pre
determined number of phase-encoding steps, corresponding 
to the number of slices desired. An image of the entire 3D 
volume may then be constructed by means of a 3D Fourier 
transform. A new image reconstruction methodology may be 
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applied where sparse sampling in Fourier space along the 
slice direction does not cause gaps in the reconstructed image. 
This methodology takes advantage of the fact that the Fourier 
transform is a non-local mapping into image space. As shown 
below, this means that accurate 3D image reconstruction may 
be achieved from EPI data with highly sparse sampling in two 
of the three spatial dimensions. By contrast, the 2D slice 
approach only allows sparse sampling in one dimension. The 
full 3D approach presented here may also allow greater sig
nal-to-noise ratio in the reconstructed images relative to 2D 
slice stacking because a greater number of independent mea
surements are used to reconstruct each image pixel. This can 
also be used to measure thinner slices or smaller pixels with
out sacrificing signal-to-noise. 
[0225] While EPI may be fast relative to other MRI meth
ods, 3D image acquisition can still be very time-consuming, 
depending on how many slices are needed. The image recon
struction methodology presented in this study may reduce 3D 
EPI scan times by a factor of six or more. Repeated switching 
of the frequency encoding gradient coupled with phase 
encoding gradient pulses may lead to mapping of Fourier 
space along horizontal lines in a Cartesian grid which, for 
historical reasons associated with our choice of phantom, we 
take to be the x-z plane. Reduced scan time may be achieved 
through reduction of the number of these horizontal data 
lines. In 3D EPI, a phase encoding gradient may also be 
applied along the slice direction, which is taken to be the 
y-axis. EPI scan time may be further reduced by sampling 
fewer slices within the full 3D volume. 
[0226] Here, the two-dimensional treatment of image 
reconstruction is extended from sparse EPI data to three spa
tial dimensions. The method allows a substantial shortening 
of imaging time, and may also improve image resolution and 
signal-to-noise ratio for scans of a given duration. This 
method iteratively minimizes the total variation (TV) of the 
estimated image using gradient descent, subject to the condi
tion that the estimated data remain consistent with the sample 
data. This approach may be effective for images that are 
nearly constant over most regions and vary rapidly only in 
confined regions, a condition applicable to many medical 
images. Using this method, images from sparse samples are 
reconstructed in Fourier space, using as little as 15% of the 
data used in a typical full 3D EPI scan. 
[0227] The measured signal in EPI is simply related to the 
Fourier transform of the object function f(x, y, z): 

(27) 

[0228] where~' ky, and k
2 

are proportional to the x, y, and 
z gradients of the magnetic field, as well as the read-out time 
along x and the phase encoding pulse durations along y and z. 
The data model comprises measurements ofS(kx, ky, ~) from 
computer generated data in a Cartesian volume. 
[0229] The image reconstruction methodology may be 
thought of as an optimization problem where the data con
straint to be minimized is the total variation. Such a problem 
may be written as: 

f*~argrnin llfllrvsuch that IMf-gl,;e (28) 

----;, 

[0230] where f represents a discrete image, g is the avail
able Fourier data, Mis the Fourier transform operation, and 
f * is the solution to the optimization problem. The inequality 
is used to account for noisy data, and the value of E depends on 
both the amount of available data and the level of noise within 
the data. 



US 2015/0146949 Al 

[0231] A solution to Eq. (28) may be found by alternating 
two processes: data projection followed by TV minimization 
via gradient descent. The projection step is straightforward 
for MRI; since the data are measured in the Fourier domain, 
this step may comprise fast Fourier transforming the trial 
image volume (which initially consists of all zeros), copying 
in the known Fourier data samples, taking a fast inverse 
Fourier transform, and enforcing positivity by setting nega
tive pixels to zero. This process is referred to as the Fourier 
transform step. Since EPI measures Fourier data in a Carte
sian grid, no interpolation is needed to perform the fast Fou
rier transforms in this step. 
[0232] The Fourier transform step may enforce data con
sistency, and the gradient descent step may follow to mini
mize the image TV. The image TV is the 11 -norm of the 
gradient image. It may be reduced by subtracting a small 
fraction of the gradient of the image TV from the image itself. 
The best results may be obtained if this process is performed 
in a series of small steps. In extending the algorithm from two 
dimensions to three the Fourier transform scales only as n2 

due to the weakness of the log n term, while the gradient 
descent step scales fully as n3

, where n represents the side of 
a cube in which the algorithm is performed. The gradient 
descent step is therefore time consuming, requiring roughly 
an order of magnitude more CPU time than the Fourier trans
form step under the conditions studied here. To improve the 
computational efficiency of the algorithm, the gradient 
descent step may be performed on a GPU, as discussed above. 
The GPU ordinarily uses parallel processing for rapid render
ing of 3D graphics, and is therefore well-suited to rapid 
calculation of the TV gradient in a 3D environment. Perform
ing gradient descent on the GPU is an order of magnitude 
faster than doing so on the CPU, making it roughly equal to 
the time required for the Fourier transform step under existing 
conditions. 
[0233] The methodology may be iterative, alternating the 
Fourier transform step with gradient descent to move toward 
a solution of Eq. (28). Iteration may be terminated when the 
data residual first dropped below E. However, under some 
circumstances, the resulting f * may still be far from the 
solution of Eq. (28). The methodology may therefore be 
accordingly to adaptively change the Fourier transform and 
gradient descent step sizes even after the E threshold is 
crossed, thereby continuing to move the solution toward 
lower TV. 
[0234] Numerical studies were performed to validate and 
demonstrate the algorithm's performance in reconstructing 
accurate images from highly sparse Fourier data. The studies 
were performed using a 3D Shepp-Logan phantom. In the 
case of noiseless data, the reconstructed images are indistin
guishable from the original slices. In the presence of data 
noise, the TV algorithm may adequately reconstruct images 
from noisy data similar to the two dimensional case. These 
results indicate that use of the TV minimization algorithm for 
image reconstruction can substantially reduce 3D EPI scan 
times ( e.g., by a factor of six in examples studied), facilitating 
more rapid imaging as well as greater image resolution and 
signal-to-noise ratio for a given scan time. 
[0235] An iterative reconstruction algorithm based on 
minimization of the image TV may be applied to perform 
accurate 3D image reconstruction with less data ( e.g., as little 
as 15% of the data) used in a full 3D EPI scan. The TV 
minimization algorithm may have the added advantage of 
regularizing the recovered image, making the method very 
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effective for noisy data. This approach may be effective for 
fully 3D EPI as described here, since the 3D Fourier trans
form used in our analysis maps the sparse Fourier samples 
into the entire image space. Such a reduction in scan time with 
multi-slice 2D EPI may be unlikely, as this approach does not 
allow for sparse sampling of slices within the volume. In 
practice, this methodology may be able to both reduce EPI 
scan time and increase scan efficiency by allowing for greatly 
improved image resolution and signal-to-noise ratio in a scan 
of a given time. The TV algorithm may be readily applied to 
reconstructing images from sparse samples on other non
uniform grids in Fourier space. 
[0236] It is intended that the foregoing detailed description 
be regarded as illustrative, rather than limiting, and that it be 
understood that the following claims, including all equiva
lents, are intended to define the scope of this invention. 

1. A method of obtaining an image of at least a part of a 
region of interest (ROI) using a divergent beam comprising: 

generating ROI data using the divergent beam; and 
in order to obtain the image of the at least a part of the ROI, 

iteratively generating an estimated image using the ROI 
data and constraining variation of the estimated image. 

2. The method of claim 1, wherein generating ROI data 
using the divergent beam comprises collecting partial ROI 
data. 

3. The method of claim 2, wherein the partial ROI data 
comprises partial knowledge of a linear transform of the 
image. 

4. The method of claim 3, wherein partial knowledge of a 
linear transform comprises divergent projections. 

5. The method of claim 2, wherein generating an estimated 
image using the ROI data comprises: 

accessing a first estimated image; 
determining a first estimated data based on the first esti

mated image; 
comparing the first estimated data with the ROI data; and 
generating the estimated image based, at least in part, on 

comparing the first estimated data with the ROI data. 
6. The method of claim 5, wherein comparing the first 

estimated data with the ROI data comprises determining a 
difference between the first estimated data and the ROI data. 

7. The method of claim 6, wherein generating the estimated 
image comprises: 

generating an intermediate image based on the difference 
between the first estimated data and the ROI data; and 

combining the intermediate image with the first estimated 
image to generate the estimated image. 

8. Themethodofclaiml, whereinconstrainingvariationof 
the estimated image comprises constraining total variation of 
the estimated image. 

9. The method of claim 8, wherein constraining total varia
tion of the estimated image comprises constraining first order 
total variation of the estimated image. 

10. The method of claim 8, wherein constraining total 
variation of the estimated image comprises constraining mul
tiple order total variation of the estimated image. 

11. The method of claim 8, wherein constraining total 
variation of the estimated image comprises constraining first 
order and multiple order total variation of the estimated 
image. 

12. The method of claim 8, wherein constraining total 
variation of the estimated image generates a new estimated 
image, and 
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wherein iteratively generating an estimated image using 
the ROI data and constraining variation of the estimated 
image comprises: 

generating new estimated data from the new estimated 
image; comparing the new estimated data with the ROI 
data; 

generating a second iteration estimated image based on 
comparing the new estimated data with the ROI data; 
and 

constraining variation of the second iteration estimated 
image. 

13. The method of claim 12, wherein comparing the new 
estimated data with the ROI data comprises determining a 
difference between the new estimated data and the ROI data; 
and 

wherein the iteration is performed until the difference 
between the new estimated data and the ROI data is less 
than a predetermined amount. 

14. The method of claim 1, wherein the imaging comprises 
computed tomography. 

15. The method of claim 14, wherein the divergent beam 
comprises a fan beam. 
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16. A method of obtaining an image of an object using 
divergent x-ray beam computed tomography comprising: 

collecting data less than that sufficient to reconstruct an 
exact image of the object; and 

reconstructing the image of the object via an 11 minimiza
tion of a sparse representation of the object. 

17. The method of claim 16, wherein the data comprises 
less than that sufficient to reconstruct a mathematically exact 
image of the object. 

18. A system for obtaining an image of at least a part of a 
region of interest (ROI) using a divergent beam, the system 
comprising logic for: 

generating ROI data using the divergent beam; and 
in order to obtain the image of the at least a part of the ROI, 

iteratively generating an estimated image using the ROI 
data and constraining variation of the estimated image. 

19. The system of claim 18, wherein the logic for generat-
ing ROI data using the divergent beam comprises collecting 
partial ROI data. 

20. The system of claim 19, wherein the partial ROI data 
comprises partial knowledge of a linear transform of the 
image. 

* * * * * 


