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(57) ABSTRACT 

States are identified in a time ordered sequence of data that 
have a temporal component. Data that includes a plurality of 
snapshots is received. Each snapshot of the plurality of snap
shots includes a plurality of sensor measurements captured 
from distinct sensors at a common time point. The plurality of 
snapshots are time ordered. Root mean square error (RMSE) 
values are computed between successive pairs of the plurality 
of snapshots in time order. A peak is identified in the com
puted RMSE values. A valley is identified in the computed 
RMSE values. A stable state is determined as occurring from 
the identified peak to the identified valley. The determined 
stable state is output. 
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STATE IDENTIFICATION IN DATA WITH A 
TEMPORAL DIMENSION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] The present application claims the benefit of 35 
U.S.C. §119(e) to U.S. Provisional Patent Application No. 
62/131,094 filed on Mar. 10, 2015, and to U.S. Provisional 
Patent Application No. 62/213,818 filed on Sep. 3, 2015, the 
entire contents of which are hereby incorporated by refer
ence. 

BACKGROUND 

[0002] The rapid growth of large-scale, high-spatial reso
lution neuroimaging technology has advanced the under
standing of the neural underpinnings of various complex cog
nitive and social processes. For instance, work in cognitive 
and social neuroscience has identified the neural correlates of 
information processing operations, ranging from basic per
ceptual processing ( e.g., checkerboard) to more complex cog
nitive (e.g., object or face recognition, decision making, 
action understanding, embodied cognition) and social pro
cessing ( e.g., pair bonding, love, empathy, cooperation). 

[0003] A key theoretical objective in neuroscience and 
medicine is not only to specify what brain areas are recruited 
during a behavioral task, but also to specify when and in what 
specific combinations they are activated. By providing 
detailed information about the relationship between neuronal 
activity (i.e., post-synaptic dendritic potentials of a consider
able number of neurons that are activated in pattern that yield 
a dipolar field) and the temporal resolution (millisecond by 
millisecond) of each component information processing 
operation required for behavioral performance, high-density 
electroencephalographic (EEG) recordings and averaged 
EEG ( event-related potentials, ERPs) provide a tool in inves
tigations of brain function. EEG/ERP analyses are performed 
in sensor space with high-density sensor recordings produc
ing more detailed information about changes in brain activity 
measured across time and sensor space. 

SUMMARY 

[0004] In an example embodiment, a computer-readable 
medium is provided having stored thereon computer-read
able instructions that, when executed by a computing device, 
cause the computing device to identify states in a time ordered 
sequence of data that have a temporal component. Data that 
includes a plurality of snapshots is received. Each snapshot of 
the plurality of snapshots includes a plurality of sensor mea
surements captured from distinct sensors at a common time 
point. The plurality of snapshots are time ordered and asso
ciated with a subject. Root mean square error (RMSE) values 
are computed between successive pairs of the plurality of 
snapshots in time order. A peak is identified in the computed 
RMSE values. A valley is identified in the computed RMSE 
values. A stable state is determined as occurring from the 
identified peak to the identified valley. The determined stable 
state is output for the subject. 
[0005] In yet another example embodiment, a computing 
device is provided. The system includes, but is not limited to, 
a processor and a computer-readable medium operably 
coupled to the processor. The computer-readable medium has 
instructions stored thereon that, when executed by the com-
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puting device, cause the computing device to identify states in 
a time ordered sequence of data that have a temporal compo
nent. 
[0006] In an example embodiment, a method of identifying 
states in a time ordered sequence of data that have a temporal 
component is provided. 
[0007] Other principal features of the disclosed subject 
matter will become apparent to those skilled in the art upon 
review of the following drawings, the detailed description, 
and the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0008] Illustrative embodiments of the disclosed subject 
matter will hereafter be described referring to the accompa
nying drawings, wherein like numerals denote like elements. 
[0009] FIG. 1 depicts a block diagram of a data processing 
device in accordance with an illustrative embodiment. 
[0010] FIGS. 2A-2D and 3 depict flow diagrams of 
example operations performed by the data processing device 
of FIG. 1 in accordance with an illustrative embodiment. 
[0011] FIG. 4 illustrates an identification of stable states 
and a transition state in accordance with an illustrative 
embodiment. 
[0012] FIG. 5 illustrates a similarity evaluation relative to a 
mean template map in accordance with an illustrative 
embodiment. 
[0013] FIG. 6A shows an event-related potential (ERP) 
recorded over the left occipital region of the brain in accor
dance with an illustrative embodiment. 
[0014] FIG. 6B shows an event-related potential (ERP) 
recorded over the right occipital region of the brain in accor
dance with an illustrative embodiment. 
[0015] FIG. 7 shows the results of an RMSE analysis rou
tine applied to the grand mean of 22 simulated individual's 
ERPs in accordance with an illustrative embodiment. 
[0016] FIG. 8 shows the results of a GFP analysis routine 
applied to the grand mean of22 simulated individual's ERPs 
in accordance with an illustrative embodiment. 
[0017] FIG. 9A shows a summary of the results of 1000 
bootstrap RMSE analyses to identify locations of peaks in 
accordance with an illustrative embodiment. 
[0018] FIG. 9B shows a summary of the results of 1000 
bootstrap RMSE analyses to identify locations of valleys in 
accordance with an illustrative embodiment. 
[0019] FIGS. lOA-lOI show summary statistics of the dis
tribution of peaks/valleys found in bootstrap analysis within 
±5% time windows around the locations of a peak/valley 
identified in the analysis of the overall RMSE in accordance 
with an illustrative embodiment. 
[0020] FIG. llA shows a summary of the results of 1000 
bootstrap GFP analyses to identify locations of peaks in 
accordance with an illustrative embodiment. 
[0021] FIG. 118 shows a summary of the results of 1000 
bootstrap GFP analyses to identify locations of valleys in 
accordance with an illustrative embodiment. 
[0022] FIGS. 12A-12F show summary statistics of the dis
tribution of peaks/valleys found in bootstrap analysis within 
±5% time windows around the locations of a peak/valley 
identified in the analysis of the overall GFP in accordance 
with an illustrative embodiment. 
[0023] FIG. 13 shows tabular results of the RMSE and GFP 
computed based on the curves of FIGS. 7 and 8 in accordance 
with an illustrative embodiment. 
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[0024] FIG. 14 shows tabular results of the GFP computed 
based on the curves of FIG. 8 in accordance with an illustra
tive embodiment. 
[0025] FIG. 15 shows tabular results summarizing a cosine 
distance between template maps for the results shown in 
FIGS. 7, 8, 13, and 14 in accordance with an illustrative 
embodiment. 
[0026] FIG. 16 shows tabular results summarizing a stan
dard deviation and a confidence interval for the cosine dis
tance between template maps for the results shown in FIGS. 
7, 8, 13, and 14 in accordance with an illustrative embodi
ment. 
[0027] FIG. 17 shows tabular results summarizing a tem
plate map membership for the results shown in FIGS. 7, 8, 13, 
and 14 in accordance with an illustrative embodiment. 
[ 0028] FIG. 18 shows a graphical user interface window for 
selecting process options in accordance with an illustrative 
embodiment. 
[0029] FIG.19 shows sample output at seven steps in accor
dance with an illustrative embodiment. 

DETAILED DESCRIPTION 

[0030] Referring to FIG. 1, a block diagram of a data pro
cessing device 100 is shown in accordance with an illustrative 
embodiment. Data processing device 100 may include an 
input interface 102, an output interface 104, a communication 
interface 106, a computer-readable medium 108, a processor 
110, a data analytic application 122, data 124, and state data 
126. Fewer, different, and/or additional components may be 
incorporated into data processing device 100. 
[0031] Input interface 102 provides an interface for receiv
ing information from the user for entry into data processing 
device 100 as understood by those skilled in the art. Input 
interface 102 may interface with various input technologies 
including, but not limited to, a keyboard 112, a camera 113, a 
mouse 114, a microphone 115, a display 116, a track ball, a 
keypad, one or more buttons, etc. to allow the user to enter 
information into data processing device 100 or to make selec
tions presented in a user interface displayed on the display. 
The same interface may support both input interface 102 and 
output interface 104. For example, display 116 comprising a 
touch screen provides user input and presents output to the 
user. Data processing device 100 may have one or more input 
interfaces that use the same or a different input interface 
technology. The input interface technology further may be 
accessible by data processing device 100 through communi
cation interface 106. 
[0032] Output interface 104 provides an interface for out
putting information for review by a user of data processing 
device 100 and/or for use by another application. For 
example, output interface 104 may interface with various 
output technologies including, but not limited to, display 116, 
a speaker 118, a printer 120, etc. Data processing device 100 
may have one or more output interfaces that use the same or 
a different output interface technology. The output interface 
technology further may be accessible by data processing 
device 100 through communication interface 106. 
[0033] Communication interface 106 provides an interface 
for receiving and transmitting data between devices using 
various protocols, transmission technologies, and media as 
understood by those skilled in the art. Communication inter
face 106 may support communication using various transmis
sion media that may be wired and/or wireless. Data process
ing device 100 may have one or more communication 
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interfaces that use the same or a different communication 
interface technology. For example, data processing device 
100 may support communication using an Ethernet port, a 
Bluetooth antenna, a telephone jack, a USB port, etc. Data 
and messages may be transferred between data processing 
device 100 and/or a distributed computing system 128 using 
communication interface 106. 
[0034] Computer-readable medium 108 is an electronic 
holding place or storage for information so the information 
can be accessed by processor 110 as understood by those 
skilled in the art. Computer-readable medium 108 can 
include, but is not limited to, any type of random access 
memory (RAM), any type ofread only memory (ROM), any 
type of flash memory, etc. such as magnetic storage devices 
( e.g., hard disk, floppy disk, magnetic strips, ... ), optical 
disks ( e.g., compact disc (CD), digital versatile disc (DVD), . 
.. ), smart cards, flash memory devices, etc. Data processing 
device 100 may have one or more computer-readable media 
that use the same or a different memory media technology. 
For example, computer-readable medium 108 may include 
different types of computer-readable media that may be orga
nized hierarchically to provide efficient access to the data 
stored therein as understood by a person of skill in the art. As 
an example, a cache may be implemented in a smaller, faster 
memory that stores copies of data from the most frequently/ 
recently accessed main memory locations to reduce an access 
latency. Data processing device 100 also may have one or 
more drives that support the loading of a memory media such 
as a CD, DVD, an external hard drive, etc. One or more 
external hard drives further may be connected to data pro
cessing device 100 using communication interface 106. 
[0035] Processor 110 executes instructions as understood 
by those skilled in the art. The instructions may be carried out 
by a special purpose computer, logic circuits, or hardware 
circuits. Processor 110 may be implemented in hardware 
and/or firmware. Processor 110 executes an instruction, 
meaning it performs/controls the operations called for by that 
instruction. The term "execution" is the process of running an 
application or the carrying out of the operation called for by 
an instruction. The instructions may be written using one or 
more programming language, scripting language, assembly 
language, etc. Processor 110 operably couples with input 
interface 102, with output interface 104, with communication 
interface 106, and with computer-readable medium 108 to 
receive, to send, and to process information. Processor 110 
may retrieve a set of instructions from a permanent memory 
device and copy the instructions in an executable form to a 
temporary memory device that is generally some form of 
RAM. Data processing device 100 may include a plurality of 
processors that use the same or a different processing tech
nology. 

[0036] Data analytic application 122 performs operations 
associated with determining state data 126 from data 124. 
Data 124 may include a time ordered sequence of data snap
shots captured at discrete times. State data 126 may include 
distinct states identified in data 124. Some or all of the opera
tions described herein may be embodied in data analytic 
application 122. The operations may be implemented using 
hardware, firmware, software, or any combination of these 
methods. Referring to the example embodiment of FIG. 1, 
data analytic application 122 is implemented in software 
( comprised of computer-readable and/or computer-execut
able instructions) stored in computer-readable medium 108 
and accessible by processor 110 for execution of the instruc-
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tions that embody the operations of data analytic application 
122. Data analytic application 122 may be written using one 
or more programming languages, assembly languages, script
ing languages, etc. Data analytic application 122 may be a 
plug-in to another application that provides additional func
tionality. 

[0037] Data analytic application 122 may be implemented 
as a Web application. For example, data analytic application 
122 may be configured to receive hypertext transport protocol 
(HTTP) responses and to send HTTP requests. The HTTP 
responses may include web pages such as hypertext markup 
language (HTML) documents and linked objects generated in 
response to the HTTP requests. Each web page may be iden
tified by a uniform resource locator (URL) that includes the 
location or address of the computing device that contains the 
resource to be accessed in addition to the location of the 
resource on that computing device. The type of file or 
resource depends on the Internet application protocol such as 
the file transfer protocol, HTTP, H.323, etc. The file accessed 
may be a simple text file, an image file, an audio file, a video 
file, an executable, a common gateway interface application, 
a Java applet, an extensible markup language (XML) file, or 
any other type of file supported by HTTP. 

[0038] Data 124 includes a plurality of time ordered 
sequences of data snapshots, with each time ordered sequence 
including a plurality of time points. A data snapshot includes, 
but is not limited to, data captured at an approximately com
mon time point. A video clip may be stored in a file and define 
a series of data snapshots. The data stored in data 124 may 
include any type of content represented using any computer
readable format such as binary, alphanumeric, numeric, 
markup language, etc. Data 124 may be stored in computer
readable medium 108 or on computer-readable media on or 
accessible by one or more other computing devices, such as 
distributed computing system 128, and accessed using com
munication interface 106. Data 124 may be stored using vari
ous structures as known to those skilled in the art including a 
file system, a relational database, a system of tables, a struc
tured query language database, etc. For example, data 124 
may be stored in a cube distributed across a grid of computers 
as understood by a person of skill in the art. As another 
example, data 124 may be stored in a multi-node Hadoop® 
cluster or in a cloud of computing devices, as understood by 
a person of skill in the art. 

[0039] Data 124 may include sensor data captured at a 
plurality of times with a measurement for each sensor cap
tured at an approximately common time to create a snapshot 
that includes a plurality of sensor data measurements, one 
measurement for each sensor. Thus, a snapshot may be a 
vector of sensor measurements taken at an approximately 
common time point. Other information such as a capture 
time, a subject identifier, a condition identifier, etc. further 
may be stored in association with the snapshot. For example, 
the sensors may capture data for production output quality 
control, cell processing, medical imaging, satellite imaging, 
security imaging, weather formation imaging, etc. The sen
sors may capture measures in the form of infrared signals, 
radio frequency signals, thermal signals, magnetic field sig
nals, electrical field signals, electromagnetic signals, mag
netic resonance signals, optical signals, electrical current sig
nals, electrical voltage signals, sound wave signals, etc. Data 
124 further may be captured for one or more subjects (people, 
places, or things) and under one or more conditions. 
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[0040] For illustration where data 124 includes EEG/ERP 
data, the EEG data may be captured for a plurality of indi
viduals who are experiencing a common plurality of different 
stimuli. A plurality of EEG time ordered sequences of data 
snapshots may be captured for each subject and condition 
combination for comparison. ERP data may be computed 
from the EEG data and may be computed for each individual, 
averaged across stimuli, averaged across individuals, aver
aged across stimuli and individuals, etc. Each individual fur
ther may be exposed to the common plurality of different 
stimuli a plurality of times and the ERP data averaged across 
the multiple exposures. 

[0041] Referring to FIGS. 2A-2D and 3, example opera
tions associated with data analytic application 122 are 
described. Additional, fewer, or different operations may be 
performed depending on the embodiment. The order of pre
sentation of the operations of FIGS. 2A-2D and 3 is not 
intended to be limiting. Although some of the operational 
flows are presented in sequence, the various operations may 
be performed in various repetitions, concurrently (in parallel, 
for example, using threads), and/or in other orders than those 
that are illustrated. For example, a user may execute data 
analytic application 122, which causes presentation of a first 
user interface window, which may include a plurality of 
menus and selectors such as drop down menus, buttons, text 
boxes, hyperlinks, etc. associated with data analytic applica
tion 122 as understood by a person of skill in the art. The 
plurality of menus and selectors may be accessed in various 
orders. An indicator may indicate one or more user selections 
from a user interface, one or more data entries into a data field 
of the user interface, one or more data items read from com
puter-readable medium 108 or otherwise defined with one or 
more default values, etc. that are received as an input by data 
analytic application 122. 

[0042] Referring to FIG. 2A, in an operation 200, a first 
indicator is received that indicates data 124 to transform to 
state data 126. For example, the first indicator indicates a 
location of data 124. As an example, the first indicator may be 
received by data analytic application 122 after selection from 
a user interface window or after entry by a user into a user 
interface window. In an alternative embodiment, the data to 
transform may not be selectable. For example, a most recently 
created data set may be used automatically. The first indicator 
further may indicate a subset of data 124 to process. For 
example, the subset may be selected based on a specified time 
interval, based on a specified experiment, based on specified 
one or more subjects, based on specified one or more condi
tions, etc. 

[0043] In an operation 202, a second indicator is received 
that indicates a baseline interval. The baseline interval defines 
a time interval within data 124 that is used to estimate noise 
statistics such as a mean and a standard deviation of the noise. 
The second indicator may indicate a start time, a stop time, 
and/or a duration of the baseline interval. A default value for 
the baseline interval may further be stored, for example, in 
computer-readable medium 108. Merely for illustration, a 
baseline interval of 400 milliseconds (ms) may be stored and 
used to define a duration of the baseline interval as 400 ms 
from a time associated with the first snapshot stored in data 
124. Of course, the baseline interval may be labeled or 
selected in a variety of different manners by the user. The 
same or a different baseline interval may be defined for each 
subject. 
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[0044] In an operation 204, a third indicator is received that 
indicates a lag value of a lag parameter. The lag value defines 
a distance between snapshots that are to be compared. For 
illustration where data 124 includes EEG/ERP data, the lag 
value may be defined as a minimum duration of a putative 
microstate. A minimum duration of an exogenous (stimulus 
driven) ERP microstate may be shorter than a minimum dura
tion of an endogenous ERP microstate. For example, a lag 
value of approximately 8 ms may be appropriate for basic 
visual tasks; whereas, a lag value ofapproximately 12 ms may 
be appropriate for a more complex cognitive task. A default 
value for the lag value may further be stored, for example, in 
computer-readable medium 108. Of course, the lag value may 
be labeled or selected in a variety of different manners by the 
user. For illustration where data 124 includes EEG/ERP data, 
the lag value may be selected by identifying the complexity of 
the task performed while the EEG/ERP data was captured, 
where times associated with different complexities of tasks 
are stored, for example, in computer-readable medium 108. 

[0045] In an operation 206, a fourth indicator is received 
that indicates a microstate confidence parameter value. The 
microstate confidence parameter value, Mc, may be defined 
based on a combination of a confidence interval and a type of 
statistical distribution. For illustration, when the microstate 
confidence parameter value is defined, the confidence interval 
and the distribution indicator need not be defined because the 
confidence interval and the distribution indicator are used to 
compute the microstate confidence parameter value. For 
illustration, a microstate confidence parameter value equal to 
1.96 may be input by a user and received in operation 206, or 
a confidence interval equal to 95% and a distribution indicator 
indicating standard normal distribution may be input by a user 
and received in operation 206. The microstate confidence 
parameter value may be computed based on the confidence 
interval and the distribution indicator as understood by a 
person of skill in the art. A default value for the microstate 
confidence parameter value may further be stored, for 
example, in computer-readable medium 108. For example, a 
default value may be 2.575, which is associated with a 99% 
confidence interval and the standard normal distribution. Of 
course, other statistical distributions may be used. 

[0046] In an operation 208, a fifth indicator is received that 
indicates a similarity metric confidence parameter value. The 
similarity metric confidence parameter value, Ms, may be 
defined based on a combination of a confidence interval and a 
type of statistical distribution. For illustration, when the simi
larity metric confidence parameter value is defined, the con
fidence interval and the distribution indicator need not be 
defined because the confidence interval and the distribution 
indicator are used to compute the similarity metric confidence 
parameter value. For example, a microstate confidence 
parameter value equal to 1.96 may be input by a user and 
received in operation 208, or a confidence interval equal to 
95% and a distribution indicator indicating standard normal 
distribution may be input by a user and received in operation 
208. The similarity metric confidence parameter value may 
be computed based on the confidence interval and the distri
bution indicator as understood by a person of skill in the art. 
A default value for the similarity metric confidence parameter 
value may further be stored, for example, in computer-read
able medium 108. For example, adefaultvaluemaybe 2.575, 
which is associated with a 99% confidence interval and the 
standard normal distribution. Of course, other statistical dis
tributions may be used. 
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[0047] For illustration, referring to FIG. 18, a user interface 
window 1800 provides a mechanism by which a user may 
define the second indicator, the third indicator, the fourth 
indicator, and the fifth indicator. For example, the user may 
enter a value for a start time of the baseline interval in a first 
text box 1802 and a value for an end time of the baseline 
interval in a second text box 1803. The user may enter the lag 
value of the lag parameter in a third text box 1804. The user 
may select the microstate confidence parameter value by 
selecting between a first radio button 1806 and a second radio 
button 1808. The user may select the similarity metric confi
dence parameter value by selecting between a third radio 
button 1810 and a fourth radio button 1812. 

[0048] In an operation 210, a sixth indicator is received that 
indicates a number of sensors used to generate each snapshot 
included in data 124. A default value for the number of sen
sors may further be stored, for example, in computer-readable 
medium 108. For example, a default value may be 128. For 
illustration where data 124 includes EEG/ERP data, the num
ber of sensors may be the number of electrodes used to cap
ture the data. 

[0049] In an operation 212, data 124 may be pre-processed. 
For illustration where data 124 includes EEG/ERP data, data 
124 may be inspected for artifacts or bad channels in the 
recordings and EEG epochs containing eye blinks or other 
transient muscular and/or electric noise may be removed. 

[0050] In an operation 214, a mean of a root mean square 
value (RMSE) may be computed for the time ordered 
sequence of data snapshots that occur during the baseline 
interval indicated in operation 202. For example, the RMSE 
maybe 

n 

I (x; -x;i2 
RMSE= 

i=l 

n 

computed using where n is the number of sensors indicated in 
operation 210, x, is a voltage at electrode i in a snapshot 
occurring at a first time during the baseline interval, and x, is 
a voltage at electrode i in a snapshot occurring at a subsequent 
time during the baseline interval. The RMSE computed for 
successive pairs of snapshots during the baseline interval are 
averaged to compute the mean of the RMSE, RMSEM Each 
snapshot is a vector that includes the voltage at each electrode 
captured at the same time. 

[0051] In an operation 216, a standard deviation of the 
RMSE may be computed for the time ordered sequence of 
data snapshots that occur during the baseline interval indi
cated in operation 202 by computing the square root of the 
sum of the square of the difference between each RMSE of a 
snapshot and RMSEMdivided by n. 

[0052] In an operation 218, a first non-baseline snapshot is 
selected from data 124. 

[0053] In an operation 220, a next snapshot is selected from 
data 124. The next snapshot is separated from the first non
baseline snapshot, or previous snapshot, by at least the lag 
value indicated in operation 204. 

[0054] In an operation 222, an RMSE value is computed 
between the first non-baseline snapshot, or previous snap
shot, and the next snapshot using 
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I(x;-x;J2 
RMSE= 

i=l 

n 

where n is the number of sensors indicated in operation 210, 
x, is a voltage at electrode i in the next snapshot, and x, is a 
voltage at electrode i in the first non-baseline snapshot, or 
previous snapshot, when data 124 includes EEG/ERP data. 

[0055] In an operation 224, the computed RMSE value may 
be output, for example, by storing in computer-readable 
medium 108, by displaying in a table or graph on display 116, 
by printing in a table or graph by printer 120, etc. For illus
tration, referring to FIG. 4, values ofRMSE are shown for 16 
time ordered snapshots. 

[0056] In an operation 226, a determination is made con
cerning whether or not data 124 includes another snapshot to 
process. If data 124 includes another snapshot to process, 
processing continues in operation 220 to select a next snap
shot and to compute the RMSE between the newly selected 
next snapshot and the previously selected next snapshot, 
which becomes the previous snapshot. If data 124 does not 
include another snapshot to process, processing continues in 
an operation 228. 

[0057] In operation 228, parameters are initialized. For 
example, a confidence interval parameter value, CI, may be 
defined as the microstate confidence parameter value, Mc, 
determined in operation 206 multiplied by the standard devia
tion determined in operation 216. As another example, a prior 
peak, Pp, and a prior valley, Pr, may be initialized to RMSEM-

[0058] In an operation 230, local maxima and local minima 
are identified in the stored RMSE data. For example, an array 
may be stored in computer-readable medium 108 that 
includes values oflocal maxima and local minima, a capture 
time of the snapshot associated with the local maxima or local 
minima, and an indicator indicating whether or not the value 
is a local maxima or a local minima. 

[0059] In an operation 232, a first local extrema, X 1 , is 
selected from the identified local maxima and local minima. 

[0060] Referring to FIG. 2B, in an operation 234, a deter
mination is made concerning whether or not first local 
extrema X 1 is a local maxima. If first local extrema X 1 is a 
local maxima, processing continues in an operation 236. If 
first local extrema X 1 is not a local maxima, processing con
tinues in an operation 244. 

[0061] In operation 236, a determination is made concern
ing whether or not X 1>P r+CI. IfX1>P r+CI, processing con
tinues in an operation 238. If X 1 sP r+CI, processing contin
ues in an operation 252. 

[0062] In operation 238, a next RMSE value, RMSE2 , is 
selected from the stored RMSE data, for example, using the 
capture time of the snapshot associated with the local 
maxima. Of course, RMSE2 may be stored in the array in 
association with the local maxima. 

[0063] In operation 240, a determination is made concern
ing whether or not X 1-RMSE2>CI. IfX1 -RMSE2 >CI, pro
cessing continues in an operation 242. If X 1 -RMSE2 sCI, 
processing continues in operation 252. 

[0064] In operation 242, X 1 is stored as a maxima or peak in 
the RMSE data. 
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[0065] In operation 244, a determination is made concern
ing whether or not PP-X1>CI. If PP-X1>CI, processing con
tinues in an operation 246. If PP-X1 sCI, processing contin
ues in operation 252. 
[0066] Similar to operation 238, in operation 246, a next 
RMSE value, RMSE2 , is selected from the stored RMSE data. 
[0067] In operation 248, a determination is made concern
ing whether or not RMSE2-X1>CI. IfRMSE2 -X1>CI, pro
cessing continues in an operation 250. If RMSE2 -X1 sCI, 
processing continues in operation 252. 
[0068] In operation 250, X 1 is stored as a minima or valley 
in the RMSE data. 
[0069] In operation 252, a determination is made concern
ing whether or not there is another identified extrema. If there 
is another identified extrema, processing continues in an 
operation 254. If there is not another identified extrema, pro
cessing continues in an operation 256. 
[0070] In operation 254, a next local extrema value is 
selected as X 1 and processing continues in operation 234. 
[0071] Operations 234-254 may be used to remove local 
maxima/minima that represent noise in the RMSE data. 

[0072] Referring to FIG. 2C, in operation 256, states are 
determined from the maxima and minima identified in opera
tions 234-254. For example, a stable state may be defined as 
occurring from a peak (maxima) to a subsequent valley 
(minima), inclusive. Successive peaks to valleys are indicated 
as different stable states. A transition state may be defined as 
from the valley (minima) to the subsequent peak (maxima), 
exclusive. Information describing the determined states may 
be output, for example, by storing in computer-readable 
medium 108, by displaying in a table or graph on display 116, 
by printing in a table or graph by printer 120, etc. The state 
information may include a list of the snapshots included in 
each state based on a start time associated with the peak and 
a stop time associated with the subsequent valley for stable 
states, and based on a start time associated with the valley and 
a stop time associated with the subsequent peak for transition 
states. A state type indicator may indicate whether each state 
is a stable state or a transition state. 

[0073] Referring again to FIG. 4, snapshots 1-6 may define 
a first stable state, snapshots 7-10 may define a first transition 
state, and snapshots 11-16 may define a second stable state 
with a lag value of 5 and a sampling period of 1. Point 400 
reflects an onset of a transition period from a hypothetical 
stable state to a second state. Point 402 (a first peak) defines a 
start of a next state, which extends either to the end of the 
recording epoch or until a valley and another peak occur (not 
shown). The timing of each microstate is peak-to-valley, 
inclusive. 

[0074] Referring to FIG. 7, information describing the 
determined states may be output in a first chart 700 that shows 
the RMSE as a function of time with downward arrows indi
cating a start time of a stable state interval and upward arrows 
indicating an end time of the stable state interval. First chart 
700 may include an RMSE curve 702, a baseline RMSE mean 
curve 704, and an RMSE confidence interval curve 706. 
RMSE curve 702 provides the RMSE value as a function of 
time as computed in operation 222. Baseline RMSE mean 
curve 704 provides the mean RMSE value computed for the 
baseline interval in operation 214. RMSE confidence interval 
curve 706 provides the RMSE value computed for the base
line interval plus a value, such as confidence interval param
eter value, CI, computed in operation 228. 
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[0075] Referring again to FIG. 2C, in an operation 258, a 
global field power may be computed for each non-baseline 
interval snapshot using 

GFP= 

n 2 L (x; -x;) 
i=l 

n 

where n is the number of sensors indicated in operation 210, 
x, is a voltage at electrode i in each non-baseline interval 
snapshot, and xis an average voltage of each electrode i in the 
non-baseline interval snapshot when data 124 includes EEG/ 
ERP data. 
[0076] In an operation 260, the computed GFP values are 
stored, for example, in computer-readable medium 108. 
[0077] Similar to operation 214, in an operation 262, a 
mean of the GFP, GFP M, may be computed for the time 
ordered sequence of data snapshots that occur during the 
baseline interval indicated in operation 202. 
[0078] Similar to operation 216, in an operation 264, a 
standard deviation of the GFP may be computed for the time 
ordered sequence of data snapshots that occur during the 
baseline interval indicated in operation 202. 
[0079] Similar to operation 228, in operation 266, param
eters are initialized. For example, a confidence interval 
parameter value, CIG, may be defined as the microstate con
fidence parameter value determined in operation 206 multi
plied by the standard deviation determined in operation 264. 
Of course, a different value for the microstate confidence 
parameter value may be used for the GFP computations in an 
alternative embodiment. Prior peak, PP' and prior valley, Pr, 
may be initialized to GFP M 

[0080] Similar to operation 230, in an operation 268, local 
maxima and local minima are identified in the stored GFP 
data. 
[0081] Similar to operation 232, in an operation 270, a first 
local extrema, X 1 , is selected from the identified local 
maxima and local minima. 
[0082] Similar to operation 234, in an operation 272, a 
determination is made concerning whether or not first local 
extrema X 1 is a local maxima. If first local extrema X 1 is a 
local maxima, processing continues in an operation 274. If 
first local extrema X 1 is not a local maxima, processing con
tinues in an operation 282. 
[0083] Similar to operation 236, in operation 274, a deter
mination is made concerning whether or not X 1>Pr+CIG. If 
X 1>P r+CIG, processing continues in an operation 276. If 
X 1 sP r+CIG, processing continues in an operation 290. 
[0084] Similar to operation 238, in operation 276, a next 
GFP value, GFP 2 , is selected from the stored GFP data. 
[0085] Similar to operation 240, in operation 278, a deter
mination is made concerning whether or not X 1 -GFP 2>CIG. 
IfX1 -GFP 2>CIG, processing continues in an operation 280. 
IfX1 -GFP 2 sCIG, processing continues in operation 290. 
[0086] Similar to operation 242, in operation 280, X 1 is 
stored as a maxima or peak and processing continues in 
operation 290. 
[0087] Referring to FIG. 2D, similar to operation 244, in 
operation 282, a determination is made concerning whether 
or not P -X1>CIG. If P -X1>CIG, processing continues in an 

p p . . . 
operation 284. If PP-X1 sCIG, processmg contmues m opera-
tion 290. 
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[0088] Similar to operation 238, in operation 284, a next 
GFP value, GFP 2 , is selected from the stored GFP data. 
[0089] Similar to operation 248, in operation 286, a deter
mination is made concerning whether or not GFP 2-X1>CIG. 
IfGFP2-X1>CIG, processing continues in an operation 288. 
If GFP 2-X1 sCIG, processing continues in operation 290. 
[0090] Similar to operation 250, in operation 288, X 1 is 
stored as a minima or valley. 
[0091] Similar to operation 250, in operation 290, a deter
mination is made concerning whether or not there is another 
identified extrema. If there is another identified extrema, pro
cessing continues in an operation 292. If there is not another 
identified extrema, processing continues in an operation 294. 
[0092] Similar to operation 254, in operation 292, a next 
local extrema value is selected as X 1 and processing continues 
in operation 272. Operations 272-292 may be used to remove 
local maxima/minima that represent noise. 
[0093] Similar to operation 256, in operation 294, GFP 
states are determined from the maxima and minima identified 
in operations 272-292. Information describing the deter
mined GFP states may be output, for example, by storing in 
computer-readable medium 108, by displaying in a table or 
graph on display 116, by printing in a table or graph by printer 
120, etc. The information may include locations of peaks and 
valleys. The determined GFP states may differ in number and 
timing relative to the states determined in operation 256. 
[0094] For illustration, referring to FIG. 8, information 
describing the determined GFP states may be output in a 
second chart 800 that shows the GFP as a function of time 
with downward arrows indicating a peak time and upward 
arrows indicating a valley time. Second chart 800 may 
include a GFP curve 802, a baseline GFP mean curve 804, and 
a GFP confidence interval curve 806. GFP curve 802 provides 
the GFP value as a function of time computed in operation 
258. Baseline GFP mean curve 804 provides the mean GFP 
value computed for the baseline interval in operation 262. 
GFP confidence interval curve 806 provides the mean GFP 
value computed for the baseline interval plus a value, such as 
confidence interval parameter value, CIG, computed in opera
tion 266. 
[0095] As another illustrative output of the determined 
states, referring to FIG. 13, a first table 1300 includes a start 
time value ("Start"), an end time value ("End"), a maximum 
GFP value ("Max GFP"), an average GFP value ("Avg GFP"), 
and a standard deviation value ("Stddev GFP") determined 
for the baseline and five additional states graphically depicted 
by RMSE curve 702 of FIG. 7. The start time values corre
spond with the downward arrows and the end time values 
correspond with the upward arrows included on RMSE curve 
702 of FIG. 7. The maximum GFP value, the average GFP 
value, and the standard deviation value are included in first 
table 1300 for each state including the baseline interval. 
[0096] As another illustrative output of the determined 
GFP states, referring to FIG. 14, a second table 1400 includes 
a time value ("Time") and an amplitude value ("Amplitude") 
determined for the GFP states graphically depicted by GFP 
curve 802 of FIG. 8. The valley time values correspond with 
the upward arrows and the peak time values correspond with 
the downward arrows included on GFP curve 802 of FIG. 8 
excluding the start and stop times. The amplitude in the tables 
indicates the GFP value in microvolts (W) determined for 
each valley and each peak in operation 258. 
[0097] Referring to FIG. 3, in an operation 302, a mean 
template map is computed for each stable state determined in 
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operations 234-254. Using the example of FIG. 4, a first mean 
template map is computed for the first stable state as an 
average of each sensor measurement of snapshots 1-6; a sec
ond mean template map is computed for the second stable 
state as an average of each sensor measurement of snapshots 
11-16. The mean template maps may be output by storing in 
computer-readable medium 108, by displaying in a table or 
graph on display 116, by printing in a table or graph by printer 
120, etc. 
[0098] For illustration, referring to FIG. 5, a snapshot 
includes two sensor measurements and the stable state 
includes a first snapshot vector 500, a second snapshot vector 
502, a third snapshot vector 504, and a fourth snapshot vector 
506. A mean template map vector 508 is computed as the 
average of the first sensor measurements and an average of the 
second sensor measurements. 
[0099] Referring again to FIG. 3, in an operation 304, a 
standard deviation is computed for each state as 

SD= 

f sim(t;, T)2 
i=l 

m 

A-B 
where Sim(A, B) = 1 - cos(0J = 1 - IIAIIIIBII' 

T is the mean template map for the stable state, m is the 
number of snapshots includes in the stable state, and t, is the 
snapshot vector. 
[0100] In an operation 306, a similarity metric interval 
parameter value, Cism' may be defined as the similarity metric 
confidence parameter value, M,, determined in operation 208 
multiplied by the standard deviation determined in operation 
304 for each stable state. 
[0101] In an operation 310, a first mean template map is 
selected. 
[0102] In an operation 312, a next mean template map is 
selected. 
[0103] In an operation 314, a similarity is computed 
between the first mean template map and the next mean 
template map as 

A-B 
Sim(A, B) = 1 - cos(0J = 1 - IIAIIIIBII' 

where A is the first, or previous, mean template map vector 
and B is the next mean template map vector. 
[0104] In an operation 316, a determination is made con
cerning whether or not the states have a similar configuration. 
If the states have a similar configuration, processing contin
ues in an operation 318. If the states do not have a similar 
configuration, processing continues in an operation 320. 
[0105] For example, to determine the states have a similar 
configuration, Sim(A,B)<CI,m or Sim(A,B)sCI,m, and to 
determine the states do not have a similar configuration, Sim 
(A,B);;,;Cism or Sim(A,B)>Cism· For illustration, referring 
again to FIG. 5, this comparison has the effect of determining 
ifB is between a maximum vector510 and a minimum vector 
512 computed relative to A or separated by an angle less than 
a maximum angle 514. 
[0106] In operation 318, the first, or previous, mean tem
plate map vector and the next mean template map vector are 
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indicated as having the same configuration. In operation 320, 
the first, or previous, mean template map vector and the next 
mean template map vector are indicated as having different 
configurations. 
[0107] When data 124 includes EEG/ERP data, Cl,m speci
fies a cosine distance (representing the angles around A) 
within which a subsequent configuration of brain activity 
across then-dimensional sensor space is evaluated as equiva
lent or similar to the micro state (stable state) represented by 
A. Specifically, the next mean template map vector for the 
successive event-related microstate is compared to the pre
ceding microstate, A, by calculating the cosine distance 
between B and A. If this value falls outside tC!,m around A, 
microstate B is interpreted, with the specified confidence, as 
representing a significantly different configuration of brain 
activity-that is, a distinct microstate whether or not GFP 
also changed between the two microstates. In this way, the 
n-dimensional cosine distance metric makes it possible to 
determine whether template maps for successive brain 
microstates differ in configuration of brain activity, GFP, or a 
combination of the two. 
[0108] In an operation 322, a determination is made con
cerning whether or not there is another stable state template 
map. If there is another stable state template map, processing 
continues in an operation 324. If there is not another stable 
state template map, processing continues in an operation 326. 
[0109] In operation 324, a next mean template map is 
selected. Processing continues in operation 314 with the 
selected next mean template map and the previously used 
next mean template map as the first, or previous, mean tem
plate map vector. 
[0110] In operation 326, information related to the stable 
states, GFP states, template maps, and/or configurations is 
output. The information may be output, for example, by stor
ing in computer-readable medium 108, by displaying in a 
table or graph on display 116, by printing in a table or graph 
by printer 120, etc. For illustration, referring again to FIG.18, 
user interface window 1800 may also provide a mechanism 
by which a user may indicate whether or not the template 
maps are output by selecting between a fifth radio button 1814 
and a sixth radio button 1816. User interface window 1800 
further may provide a mechanism by which a user may indi
cate whether or not preliminary results are graphed by select
ing between a seventh radio button 1818 and an eighth radio 
button 1820. The preliminary results may reference output 
describing changes in GFP. The preliminary results include 
information about microstates before they are merged using 
the multi-dimensional cosine similarity metric based on the 
cosine distance function that determines whether template 
maps for successive brain microstates differ in configuration 
of brain activity. The final results include results after the 
merging of the brain microstates. 
[0111] For illustration, as already described the informa
tion may be presented in charts such as first chart 700 of FIG. 
7, second chart 800 of FIG. 8, first table 1300 of FIG. 13, 
second table 1400 of FIG. 14, etc. As further illustration, 
FIGS. 15-17 provide quantitative information about the 
cosine distance between template maps, the standard devia
tion of cosine distances of topographic maps (i.e., the average 
evoked potentials at a given recording bin across n-dimen
sional sensor space where n the number of EEG recording 
channels) in each template map, and a membership identifi
cation code for the template maps, respectively. FIG. 15 
shows a third table 1500 that summarizes a cosine distance 
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between template maps for the results shown in FIGS. 7, 8, 
13, and 14 in accordance with an illustrative embodiment; 
FIG.16 shows a fourth table 1600 that summarizes a standard 
deviation and a confidence interval for the cosine distance 
between template maps for the results shown in FIGS. 7, 8, 
13, and 14 in accordance with an illustrative embodiment; and 
FIG. 17 shows a fifth table 1700 that summarizes a template 
map membership for the results shown in FIGS. 7, 8, 13, and 
14 in accordance with an illustrative embodiment. 

[0112] For example, third table 1500 provides a value of the 
cosine metric between each unique pairs of states including 
the baseline interval. Fourth table 1600 provides a value of the 
standard deviation computed for each state in operation 304, 
and a value of the similarity metric interval parameter value, 
Cl,m, computed for each state in operation 306. Fifth table 
170 provides a summary of which values did and did not fall 
outside tC!,m with the specified confidence for each unique 
pair of micro states. A value of" 1" indicates that the pair of 
microstates do not represent a significantly different configu
ration of brain activity, and a value of"*" indicates that the 
pair of micro states do represent a significantly different con
figuration of brain activity. 

[0113] In operation 328, the state determinations are evalu
ated for robustness. For example, when data 124 includes 
EEG/ERP data, the states evoked across conditions or across 
subjects may be evaluated for homogeneity using a bootstrap
ping procedure to identify heterogeneities in the timing or 
number of states as well as their representative template maps 
across analysis trials, runs, or participants. The bootstrapping 
procedure can be performed either within-subjects or across 
groups of subjects (between-subjects). In the case ofwithin
subject bootstrapping, at each iteration a unique ERP is 
"bootstrapped" by a process of random selection from the 
available trials in a given subject's EEG recording for a given 
condition, with the selected trials then averaged to generate an 
ERP for that subject and condition. In between-subjects boot
strapping, a pre-processing step may be performed in which 
each subject's EEG recordings for a given condition are 
reduced to a within-subject ERP by averaging. The remainder 
of the between-subjects bootstrapping procedure is the same 
as the within-subjects procedure, but, instead of performing a 
random selection from the set of one subject's available trials, 
the bootstrapped ERP is generated by selecting from the set of 
all subjects ERPs for the given condition. In either case, a 
random sample of r (without replacement) of the available N 
possibilities is used to generate the bootstrapped ERP. 

[0114] Following each bootstrap ERP generation phase, the 
resulting ERP (either within- or between-subjects) is sub
jected to the state determination described by one or more of 
the operations of FIGS. 2A-2D and 3. The operations may be 
repeated a large number of times. For example, a total number 
of unique bootstrapped ERPs (i.e., unique combinations of 
samples of sizer from a population of size N) is given by (N 
chooser), as 

(
N) N! 
r = r !(N - r) ! · 

[0115] For instance, if N=50 participants in a study and 
r=30 participants in each bootstrapped ERP, the total number 
of unique bootstrapped ERPs that can be calculated across 
these 50 participants is 50!/(30!*20!)=47,129,212,246,893. 
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Bootstrapping can be performed on a subset of perhaps sev
eral thousand of these more than 47 trillion combinations or 
the entire population of bootstrapped ERPs can be generated 
and analyzed. The results from each run may be aggregated to 
determine the distribution of solutions and the robustness of 
the solution derived when performing the analysis on all N 
participants (i.e., the grand average solution). A unimodal, 
leptokurtic distribution of solutions for a given microstate 
centered on the grand average solution increases the confi
dence in the overall solution, whereas a multimodal, platykur
tic distribution of solutions for a microstate signals that the 
microstate lacks robustness (e.g., significant unidentified 
sources of variance or moderator variables are operating). 
The replicability of a microstate and the performance of 
source localization algorithms should be superior for robust 
as opposed to non-robust microstates. 
[0116] An empirical study of the operations of FIGS. 
2A-2D and 3 was conducted using a basic visual paradigm, 
the reversal checkerboard task, in which a pattern reverses 
every 500 ms. The checkerboard task is common because 
there is considerable inter-subject reliability in terms of the 
visual ERP that it elicits. Specifically, a negative peak appears 
at a latency of about 70-95 ms, a larger amplitude positive 
peak appears at about 100-120 ms, a more variable negative 
peak appears around 140-160 ms, and a later, smoother posi
tive peak around 200 ms. 
[0117] Participants were 22 volunteers (8 females) with a 
mean age of23.18 (a=3.92) years.All were right-handed and 
had normal or corrected to-normal visual acuity. None had 
any prior or current neurological or psychiatric impairment as 
ascertained by a detailed ananmesis. The experimental design 
was a 2 (Task instructions: passive viewing versus active 
visual search)x2 (Counterbalanced Order) between-subjects 
factorial design. The data from the passive viewing condition 
was the focus because it replicates the instructional condition 
in the checkerboard reversal task. In this condition, partici
pants were instructed to passively view the center of a revers
ing checkerboard. 
[0118] The checkerboards had a spatial frequency of 1 
cycle/deg, covered 5.4x5.57° of visual angle and were 
reversed every 500 ms. A red cross of 1 ° of visual angle was 
placed in the top center of the monitor, and the participants 
were instructed to fixate this cross throughout visual stimu
lation. Stimuli were displayed in black and white on a monitor 
screen, with a refresh rate of 60 hertz (Hz). Visual stimuli 
were presented on a computer display, which provides control 
of display durations and accurate recordings of reaction 
times. Participants were comfortably seated 100 centimeters 
(cm) away from the screen in which the stimuli were pre
sented centrally. The task consisted of 250 checkerboard 
reversals. 
[0119] Continuous surface electroencephalogram (EEG) 
was recorded from 128 AgAgCl carbon-fiber coated elec
trodes using an Electric Geodesic Sensor Net, where the EEG 
electrodes were arrayed in a regular distribution across the 
head surface and the inter-sensor distance is approximately 3 
cm. The EEG was digitized at 250 Hz ( corresponding to a 
sample period of 4 ms), with a bandwidth of 0.01-200 Hz, 
with the vertex electrode (Cz) serving as an on-line recording 
reference. Impedances were kept below 100 kilo-ohms (kQ). 
Data was collected in two sessions with brief intervening rest 
periods for the participant. The data were band pass filtered 
between 1 and 30 Hz with a roll-off slope of 12 decibels 
( dB)/Octave. 
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[0120] Electrophysiological data were first pre-processed 
at the individual level. All trials were visually inspected for 
oculomotor (saccades and blinks), muscles, and other arti
facts. Channels with corrupted signals were interpolated. Sur
viving epochs of EEG were averaged for each participant to 
calculate the ERP. The ERP is illustrated in FIG. 6A for the 
01 recording sites and in FIG. 6B for the 02 recording sites. 
The ERP morphology observed over the 01 and 02 sensor 
sites was similar to that observed previously, with a negative 
peak around 96 ms, a larger positive peak around 128 ms, a 
second negative peak around 180 ms, and a smoother positive 
peak around 240 ms. 

[0121] The RMSE and the GFP segmentation algorithms of 
FIGS. 2A-2D and 3 were applied to the high-density ERP 
grand average recorded across the scalp. The lag value was 
specified as 8 ms, a 99% confidence interval for the micro state 
confidence parameter value was used to construct thresholds 
for the RMSE and GFP analyses, and a 95% confidence 
interval for the similarity metric confidence parameter value 
was used for the similarity metric analyses. FIG. 7 shows the 
RMSE as a function of time. The RMSEresults identified: (a) 
a stable baseline configuration from the start of the baseline 
(-152 ms) to stimulus onset at 0 ms, (b) a first stable state 
from 92-100 ms, (c) a second stable state from 116-132 ms, 
(d) a third stable state from 144-164 ms, (e) a fourth stable 
state from 180-208 ms, and (f) a fifth stable state from 224-
436 ms as summarized in first table 1300 of FIG. 13. 

[0122] FIG. 8 shows the GFP as a function of time. The 
GFP results identified a first valley at 48 ms, a first peak at 96 
ms, a second valley at 108 ms, a second peak at 128 ms, a third 
valley at 188 ms, and a third peak at 236 ms as summarized in 
second table 1400 of FIG. 14. 

[0123] A 128-dimensional similarity metric analysis was 
performed next to determine whether each successive state 
represented a significant change from the preceding state in 
the overall configuration of electrical activity across the sen
sor space. The cosine distance between each contiguous pair 
of states fell outside the 95% confidence interval for the 
earlier of the two stable states, indicating five distinct stable 
states as summarized in third table 1500 of FIG. 15. Specifi
cally, the cosine distance between stable state 1 and stable 
state 2 was 1.82, which fell well outside the 95% confidence 
interval for stable state 1 of 0.011. Similarly, the 95% confi
dence interval and cosine distance between each of the suc
ceeding stable states was (i.e., stable states 2 and 3, stable 
states 3 and 4, stable states 4 and 5) fell outside the 95% 
confidence interval of the earlier of the two stable states 
(Sim(A,B)=0.114, 1.76, and 1.24, respectively; Cism =0.003, 
0.113, and 0.449, respectively). 

[0124] FIG. 9A shows the between-subjects bootstrapping 
results for the RMSE peak analysis with 1000 bootstrap 
RMSE analyses to identify the onsets and offsets of the states. 
FIG. 9B shows the between-subjects bootstrapping results for 
the RMSE valley analysis with 1000 bootstrap RMSE analy
ses to identify the onsets and offsets of the states. In each 
application of the bootstrap routine, 11 out of the available 22 
individual ERPs were selected at random, averaged together, 
and the resulting ERP subjected to the RMSE state identifi
cation operations 214-256 of FIGS. 2A to 2C. Temporal 
locations of peaks/valleys were accumulated over the 1000 
iterations and normalized by the number ofiterations to com
pute the percentage of bootstrap runs in which a peak/valley 
is identified at a specific sampling bin. 
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[0125] FIGS. l0A-lOI show a summary of the distribution 
of a time of occurrence of peaks/valleys found in bootstrap 
analysis within ±5% time windows around the stable state 
onset ( or offset) identified in the analysis of the overall RMSE 
curve. FIG. l0A shows an onset of stable state 1 at t=92 ms. 
The time-weighted mean of peaks in the ±5% windows is 
91.74 ms. Bootstrap results indicate a peak in 97.9% of the 
runs within the ±5% time windows. 
[0126] FIG. l0B shows an offset of stable state 1 at t=l00 
ms. The time-weighted mean of valleys in the ±5% windows 
is 100.08 ms. Bootstrap results indicate a valley in 98.3% of 
the runs within the ±5% time windows. 
[0127] FIG. l0C shows an onset of stable state 2 at t=l 16 
ms. The time-weighted mean of peaks in the ±5% windows is 
115.9 ms. Bootstrap results indicate a peak in 100% of the 
runs within the ±5% time windows. 
[0128] FIG. l0D shows an offset of stable state 2 at t=132 
ms. The time-weighted mean of valleys in both the ±5% and 
±10% windows is 130.8 ms. Bootstrap results indicate a 
valley in 100% of the runs within the ±5% time windows. 
[0129] FIG. l0E shows an onset of stable state 3 at t=144 
ms. The time-weighted mean of peaks in the ±5% windows is 
142.3 ms. Bootstrap results indicate a peak in 99.9% of the 
runs within the ±5% time windows. 
[0130] FIG. lOF shows an offset of stable state 3 at t=164 
ms. The time-weighted mean of valleys is 164.62 ms in the 
±5% windows. Bootstrap results indicate a valley in 77.6% of 
the runs within the ±5% time windows. 
[0131] FIG. lOG shows an onset of stable state 4 at t=180 
ms. The time-weighted mean of peaks is 179.34 ms in the 
±5% windows. Bootstrap results indicate a peak in 77 .4% of 
the runs within the ±5% time windows. 
[0132] FIG. l0H shows an offset of stable state 4 at t=208 
ms. The time-weighted mean of valleys is 208.23 ms in the 
±5% windows. Bootstrap results indicate a valley in 50.8% of 
the runs within the ±5% time windows. 
[0133] FIG. lOI shows an onset of stable state 5 at t=224 
ms. The time-weighted mean of valleys is 225.0 ms in the 
±5% windows. Bootstrap results indicate a peak in 44.4% of 
the runs within the ±5% time windows. The end of the record
ing interval was uniformly identified as the offset of stable 
state 5. 
[0134] The results indicated more robust state identifica
tion for early than late stable states, as would be expected. 
Specifically, in the first 2 stable states the bootstrapping indi
cated 98-100% homogeneity; whereas, in the last 2 stable 
states, the bootstrapping indicated homogeneity had dropped 
to 50-60%. The bootstrapping also indicated that five stable 
states were identified in only 26.8% of the runs. Although this 
was the modal solution, four stable states were identified in 
20.3% of the runs, six stable states were identifiedin23.1 % of 
the runs, and seven stable states were identified in 14.4% of 
the runs. The remaining 15.4% of the runs identified various 
numbers of stable states ranging from two to ten. Together, 
these results suggest that all participants may not be showing 
the same stable state structure during the reverse checker
board task, and specifically that any such individual differ
ences in the neural responses to this task are especially likely 
to be emerging after the second stable state (i.e., after 132 
ms). 
[0135] Inspection of the GFP function shown in FIG. 8 
indicates three distinct epochs during which time the GFP 
changed. The GFP increased from basal levels beginning at 
48 ms post-stimulus, peaking at 96 ms, falling to a valley at 
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108 ms, increasing to a second peak at 128 ms, falling to a 
valley at 188 ms, rising to a third (but lower) peak at 236 ms 
where it remained fairly stable through the rest of the record
ing period as summarized in second table 1400. 
[0136] Between-subjects bootstrapping was performed to 
investigate how robust these changes in GFP were across 
subjects. The GFP analysis was performed on the same boot
strapped ERPs used in the RMSE analyses. The results are 
presented in FIG. llA for the peaks and in FIG. llB for the 
valleys. 
[0137] Summary statistics of the distribution of peaks/val
leys found in bootstrap analysis within ±5% time windows 
around the locations of a peak/valley identified in the analysis 
of the overall GFP curve are presented in FIGS. 12A-12F. 
FIG. 12A shows the GFP valley at t=48 ms. The time
weightedmean of valleys in the ±5%windows was 49.67 ms. 
Bootstrap results indicate a valley in 30.1 % of the runs within 
the ±5% time windows. 
[0138] FIG. 12B shows the GFP peak at t=96 ms. The 
time-weighted mean of peaks in the ±5% time windows was 
95.69 ms. Bootstrap results indicate a peak in GFP in 99.7% 
of the runs within the ±5% windows. 
[0139] FIG. 12C shows the GFP valley at t=108 ms. The 
time-weighted mean of valleys in the ±5% time windows was 
106.93 ms. Bootstrap results indicate a valley in GFP in 
99.7% of the runs within the ±5% windows. 
[0140] FIG. 12D shows the GFP peak at t=128 ms. The 
time-weighted mean of peaks in the ±5% windows was 127. 
14 ms. Bootstrap results indicate a peak in 100% of the runs 
within the ±5% windows. 
[0141] FIG. 12E shows the GFP valley at t=188 ms. The 
time-weighted mean of valleys in the ±5% time windows was 
186.87 ms. Bootstrap results indicate a valley in GFP in 
54.9% of the runs within the ±5% windows. 
[0142] FIG. 12F shows the GFP peak at t=236 ms. The 
time-weighted mean of peaks in the ±5% time windows was 
235.9 ms. Bootstrap results indicate a peak in GFP in 76.5% 
of the runs within the ±5% windows. The results paralleled 
those for RMSE, with the overall analysis showing reason
ably robust results with increasing variability during the latter 
segments of the post-stimulus period. 
[0143] When data 124 includes EEG/ERP data, micro states 
are conceptualized as a time-limited information processing 
operation in the brain. The determined states identify quasi
stable, non-periodic, event-related microstates of the brain 
based on changes in the pattern of global electrical activity as 
measured by high-density EEG. An RMSE metric is applied 
to high-density ERP data to identify the transition states 
across discrete event-related brain states, and the GFP time 
series is analyzed to identify changes in the overall level of 
activation of the brain. To determine whether the microstates 
identified by the RMSE metric differ in the configuration of 
brain activity, the GFP, or a combination of the two, an n-di
mensional cosine distance similarity metric may be used to 
determine whether the template map for a putative micro state 
differs from the template map from the preceding microstate 
as described previously with reference to operations 302-324 
of FIG. 3. A bootstrapping procedure may be used to assess 
the extent to which the determined states are robust (reliable, 
generalizable). 
[0144] Similar to operation 326, in an operation 330, infor
mation related to the stable states, GFP states, template maps, 
and/or configurations of the bootstrapping results may be 
output. Example output bootstrapping results data includes 
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the results presented in FIGS. 9A, 9B, lOA-lOI, llA, llB, 
and 12A-12I. The information may be output, for example, by 
storing in computer-readable medium 108, by displaying in a 
table or graph on display 116, by printing in a table or graph 
by printer 120, etc. 
[0145] The transition between microstates need not be all 
or none, but rather may be incremental. For this reason, the 
micro-segmentation improves the specification of the con
figuration, number, timing, and duration of event-related 
microstates by distinguishing among microstates, transition 
states, and changes in GFP. The resulting parameters each 
reflect unique information about brain function, and each can 
be subjected to statistical analysis to determine the effects of 
various within-subjects and between-subjects factors to 
investigate information processing in the normal, waking 
human brain. Moreover, hypothesis testing is improved by 
eliminating confirmatory bias that results from an investiga
tor specifying a priori how many event-related microstates 
should be observed, and by increasing the ways in which 
empirical evidence can disconfirm an investigator's a priori 
hypotheses, improve replicability, and promote empirically 
grounded hypothesis generation. 
[0146] The results of the simulation studies confirmed that 
the micro-segmentation process correctly identified stable 
periods and changes in the overall pattern of brain activity 
independent ofGFP. For example, if the location of activation 
across the scalp changed, but the overall activity did not 
change, the micro-segmentation process correctly identified 
this as a new microstate. On the other hand, if the location of 
activation did not change, but the overall activity did, the 
micro-segmentation process correctly identified this as a 
change in activity (power), but not a change in microstate. 
[0147] The transition states may be of considerable interest 
as they putatively represent the transfer of information 
between microstates. The transition states, therefore, may 
provide information about the nature and timing of this infor
mation transfer through the brain. Second, information 
extracted early in the processing of a stimulus is consistent 
with a range of possible responses, and each of these 
responses receives initial activation. As information contin
ues to accumulate, activation continues to accumulate in 
response channels that remain viable. A given response is 
evoked when the activation of its channel exceeds a criterion. 
Importantly, continuous flow models of information process
ing reject the notion that information proceeds in a step-by
step fashion in which the computations performed at any 
given step ( or microstate) are completed before any informa
tion is passed onto the next step (or microstate). Instead, 
information processing is depicted as proceeding through a 
series of computations in a semi-continuous fashion. It is 
conceivable that the transition states provide a means of 
investigating the effects of experimental conditions on this 
information flow. 
[0148] Users can use data analytic application 122 to form, 
test, and interpret a priori statistical contrasts between experi
mental conditions based on orthogonal contrasts comparing 
pairs of event-related ERP waveforms. For a factor with two 
levels, this is simply a contrast between the ERP waveforms 
between the two levels; for a factor with three levels, this 
means specifying a priori two orthogonal contrasts ( e.g., level 
1 vs. level 2; level 3 vs. mean oflevel 1 & level 2; etc.). 
[0149] Considering a two-factor mixed model with A (al, 
a2)xB (bl, b2), in which A serves as a between-subject factor 
and B serves as a within-subject factor, procedures for a 
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one-factor between-subjects design for a main effect for Fac
tor A involves the following steps though the steps need not be 
performed sequentially unless a specific order is indicated 
based on a need for a previous computation: 

[0150] (1) Average albl snapshots (i.e., n-dimensional 
ERP waveform) and al b2 snapshots to create a snapshot 
forMn_al. 

[0151] (2)Average the a2bl and a2b2 snapshots to create 
a snapshot for Mn_a2. 

[0152] (3) Compute a difference snapshot between the 
Mn_al and Mn_a2 snapshots to create a snapshot Dnm 
for the Main Effect for A. 

[0153] (4) Average the Mn_al and Mn_a2 snapshots to 
create a snapshot Gnm for a Grand Mean. 

[0154] (5) Determine the stable and transition states for 
Mn_al. 

[0155] (6) Determine the stable and transition states for 
Mn_a2. 

[0156] (7) Determine the stable and transition states for 
Gnm to determine the periods of time in which the brain 
states did not differ as a function of Factor A. 

[0157] (8) Determine the stable and transition states for 
Dnm to identify the periods of time in which the ERP 
waveform did and did not differ significantly as a func
tion of Factor A. 

[0158] (9) For the time period(s) identified in Step 8 that 
show no significant differences in ERP waveform as a 
function of Factor A, refer to the results from Step 7 to 
characterize the evoked brain microstates across Factor 
A. That is, for the time period(s) that the ERP waveform 
did not differ as a function of Factor A, identify the 
microstate structure based on the results of Step 7 (i.e., 
Grand Mean, Gnm) and perform brain source localiza
tion on each of these microstate(s). 

[0159] (10) Forthetimeperiod(s) identified in Step 8 that 
show significant differences in ERP waveform as a func
tion of Factor A, refer to the results from Step 5 and Step 
6 to characterize the distinct evoked brain microstates 
within each level of Factor A. That is, for the time period 
(s) that the ERP waveform did differ as a function of 
Factor A, identify the micro state structure separately for 
each level of Factor A (i.e., Step 5 and Step 6 above) and 
perform brain source localization on each of these 
microstate(s ). 

[0160] Procedures for a one-factor within-subjects design 
for a main effect for Factor B may involve the following steps 
though the steps need not be performed sequentially unless a 
specific order is indicated based on a need for previous com
putations: 

[0161] (1) Average the albl snapshots (i.e., n-dimen
sional ERP waveform) and a2bl snapshots to create a 
snapshot for Mn_bl. 

[0162] (2)Average the al b2 and a2b2 snapshots to create 
a snapshot for Mn_b2. 

[0163] (3) Compute a difference snapshot between the 
Mn_bl and Mn_b2 snapshots to create a snapshot 
DnmB for the Main Effect for B. 

[0164] (4) Average the Mn_bl and Mn_b2 snapshots to 
create a snapshot GnmB for a Grand Mean. 

[0165] (5) Determine the stable and transition states for 
Mn_bl. 

[0166] (6) Determine the stable and transition states for 
Mn_b2. 
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[0167] (7) Determine the stable and transition states for 
GnmB to identify the periods of time in which the brain 
micro states did not differ as a function of Factor B. 

[0168] (8) Determine the stable and transition states for 
DnmB to identify the periods of time in which the ERP 
waveform did and did not differ significantly as a func
tion of Factor B. 

[0169] (9) For the time period(s) in which Step 8 shows 
no significant differences in ERP waveform as a func
tion of Factor B, refer to the results from Step 7 to 
characterize the evoked brain microstates across Factor 
B. That is, for the time period(s) that the ERP waveform 
did not differ as a function of Factor B, identify the 
microstate structure based on the results of Step 7 (i.e., 
Grand Mean, GnmB) and perform brain source localiza
tion on each of these microstate(s). 

[0170] (10) For the time period(s) in which Step 8 shows 
significant differences in ERP waveform as a function of 
Factor B, refer to the results from Step 5 and Step 6 to 
characterize the distinct evoked brain micro states within 
each level of Factor B. That is, for the time period(s) that 
the ERP waveform did differ as a function of Factor B, 
identify the microstate structure separately for each level 
of Factor B (i.e., Step 5 and Step 6 above) and perform 
brain source localization on each of these microstate(s). 

[0171] In the following example, Factor A is a between
subjects factor and Factor Bis a within-subjects factor, so the 
simple main effect tests may be calculated within each level 
of A. The procedure may involve the following steps though 
the steps need not be performed sequentially unless a specific 
order is indicated based on a need for previous computations: 

[0172] (1) Compute a difference snapshot between the 
alb 1 and al b2 snapshots to create snapshots for the 
simple main effect for al. 

[0173] (2) Compute a difference snapshot between the 
a2bl and a2b2 snapshots to create snapshots for the 
simple main effect for a2. 

[0174] (3) Compute a difference snapshot between the 
simple main effects snapshots for al and for a2 to create 
the snapshots fortheAxB interaction (i.e., the difference 
of the differences). 

[0175] (4) Average the Mn_al and Mn_a2 snapshots to 
create a snapshot GnmB for a Grand Mean. 

[0176] (5) Determine the stable and transition states for 
the simple main effect for al. 

[0177] (6) Determine the stable and transition states for 
the simple main effect for a2. 

[0178] (7) Determine the stable and transition states for 
the simple main effects for al and a2. The output of this 
step specifies the periods of time during which Factors A 
and B interacted significantly (at an alpha-level deter
mined by the confidence interval (CI) used-typically a 
99% CI, producing an alpha-level of0.01) to produce the 
observed brain microstates. 

[0179] (8) Determine the stable and transition states for 
GnmB fortheAxB interaction created in Step 4 to iden
tify the periods of time in which Factors A and B did not 
interact to produce the brain microstates. 

[0180] (9) For the epochs in which the results of Step 7 
show no significant differences, refer to the results of 
Step 8 to characterize the evoked brain microstates. If 
main effects were also absent for this epoch, source 
localization may be performed on the observed 
microstate(s) during this epoch in the Grand Mean. If the 
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main effect for Factor A and/or for Factor Bis significant 
for this epoch, refer to the results above to characterize 
the evoked brain microstate(s) observed during this 
epoch. 

[0181] (10) For the epochs in which the results of Step 7 
show significant differences in the waveforms, refer to 
the results of Step 5 and Step 6 to characterize the dis
tinct evoked brain microstates as a function of Factors A 
and B. For such an epoch, source localization may be 
performed on the observed microstate(s) during this 
epoch separately for the microstates identified and in 
Step 5 and in Step 6. Stable and transition states may be 
determined and source localization within each cell 
( e.g., alb 1, al b2, a2b 1, & a2b2) may also be performed 
as a means of breaking down the interaction to all pos
sible pairwise comparisons. 

[0182] Compared to existing methods (such as those based 
on k-clustering methods), the described micro-segmentation 
approach provides several advantages, including a data
driven (automatic) detection of non-periodic, quasi-stable 
states. Data-driven detection is achieved by using the baseline 
(period of time prior to the occurrence of an event) as a 
measure of an error variance to identify potential stable and 
discrete states that occur after the baseline. The method 
described herein provides a robust, reliable, and generaliz
able assessment for empirically deriving additional hypoth
eses. 
[0183] The identification of the distinct, evoked brain 
microstates elicited by a stimulus makes it possible to inves
tigate robust changes in the configuration of activation in 
electrical neuroimaging data, where a configuration of acti
vation is defined as a topographical map-the average evoked 
potentials at a given recording bin across n-dimensional sen
sor space where n the number of EEG recording channels. 
The goal of the brain micro state approach is to provide infor
mation about the brain activity associated with the sequence 
of discrete information processing operations evoked by the 
presentation ( or anticipation) of a stimulus within the context 
of a particular experimental task, with exogenous ERP com
ponents sensitive to the characteristics of the stimulus and 
endogenous ERP components sensitive to the stimulus in the 
context of the task. This sequence of information processing 
is composed of a series of stable brain activities, called brain 
microstates, each of which is characterized by the perfor
mance of specific cognitive computations and a relatively 
stable spatial distribution of brain activity. 
[0184] The notion underlying the brain microstate 
approach is that each micro state refers to a time-limited infor
mation processing operation. Consistent with this notion, a 
growing body of studies shows that the presence of different 
brain microstates is associated with distinct cognitive opera
tions. This approach suggests that the global pattern of brain 
electrical activity is modeled as being composed of a time 
sequence of decomposable brain microstates. Each brain 
microstate may remain significantly stable for a certain 
amount of time (e.g., for tens to hundreds of milliseconds), 
and then changes into another brain microstate that remains 
stable again. The notion of identifying stable brain 
microstates based on the spatiotemporal information repre
sents an important insight into the understanding of the chro
noarchitecture of brain processes, but the utility and adoption 
of this brain microstate approach were limited in part by 
constraints in the quantitative methods used by investigators 
to identify and interpret brain microstates. 
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[0185] Data analytic application 122 may include instruc
tions to compute a difference waveform configuration 
between two n-dimensional ERPs by subtracting the ERP 
waveform elicited by one condition ( e.g., ERP _A) from the 
ERP waveform elicited by another condition (ERP _B). The 
output of this difference waveform function is computed as 
ERP _A-ERP _B, which results in a Txn matrix with T as the 
number of timeframes and n as the number of electrodes. The 
difference waveform putatively represents physiological pro
cesses that are different between two conditions. The differ
ence waveform function may be used as a first step towards 
the identification of differential stable microstates between 
two conditions that are better understood through the high 
performance microsegmentation of each condition, respec
tively. 
[0186] A typical trial structure is: (i) jittered, variable
length baseline, (ii) stimulus onset, and (iii) post-stimulus 
period during which evoked microstates are identified and 
investigated. If the event-related anticipatory microstates are 
ofinterest, the trial structure could be modified as: (i) jittered, 
variable-length baseline, (ii) a fixed-interval pre-stimulus 
period that makes it possible for the subject to anticipate the 
stimulus onset (and during which evoked anticipatory 
microstates can be identified and investigated), (iii) stimulus 
onset, and (iv) post-stimulus period (during which evoked 
microstates can be identified and investigated). 
[0187] A script may allow users to perform various steps 
with a single button click. In the case of an experimental 
design with two conditions (CONDITION I and CONDI
TION II), the script allows users to perform eight steps at once 
with sample output for steps 1-7 shown in FIG. 19 in accor
dance with an illustrative embodiment: 

[0188] 1) Perform a difference wave function; 
[0189] 2) Perform a high-performance microsegmenta

tion suite CONDITION 1; 
[0190] 3) Perform a high-performance microsegmenta

tion suite of CONDITION 2; 
[0191] 4) Perform a high-performance microsegmenta

tion suite of the grand mean 
[0192] 5) Output the brain microstates specific to CON

DITION 1; 
[0193] 6) Output the brain microstates common to both 

CONDITION 1 & CONDITION 2; 
[0194] 7) Output the brain microstates specific to CON

DITION 2; and 
[0195] 8) Create template map files including results 

from steps 5-7. 
[0196] The processing supported by data analytic applica
tion 122 as described herein may be distributed between one 
or more analytic tools. For example, a first analytic tool may 
use the RMSE to identify stable states and transition states 
across discrete event-related brainmicrostates. A second ana
lytic tool may use the similarity metric based on cosine dis
tance in n dimensional sensor space to determine whether 
template maps for successive brain micro states differ in con
figuration of brain activity. A third analytic tool may use GFP 
metrics to identify changes in the overall level of activation of 
the brain. The one or more analytic tools may be integrated. 
[0197] The RMSE analysis performed by data analytic 
application 122 may identify significant changes in the stable 
event-related pattern of EEG activation across the n-dimen
sional sensor space. However, there are two reasons such a 
change in the RMSE function may occur: (1) a different stable 
event-related microstate was elicited, typically interpreted as 
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meaning that one or more of the cortical sources underlying 
the prior event-related microstate had changed; or (2) the 
same stable event-related microstate was maintained, but 
GFP increased ( or decreased), typically interpreted as mean
ing that the level of activation of the set of cortical sources 
underlying the event-related microstate had increased (or 
decreased). Once the putative stable microstates have been 
identified using the RMSE, each topographical map within a 
microstate can be expressed within an-dimensional (e.g., 
128-dimensional) vector space, the mean template map for 
the microstate can be expressed in this microstate, and a 
confidence interval region can be determined around this 
template map in 128-dimensional space. If the succeeding 
event-related micro state identified by RMSE is the result of a 
change in the location of the underlying neural sources of the 
n-dimensional event-related waveform, the cosine metric 
between the template map for an event-relatedmicrostate and 
the template map for the succeeding micro state should differ. 
This is because different configurations of activity produce 
different vector angles inn-dimensional vector space. How
ever, if the succeeding event-related microstate identified by 
RMSE is the result of a change in the level of neural activation 
(i.e., GFP) rather than a change in source location, then the 
representation of these microstates inn-dimensional vector 
space differ in the length of the vector, but not in the angle of 
the vector. 
[0198] A comparison of these outputs permits identifica
tion of which microstates identified by the RMSE analysis are 
determined by the analysis based on the cosine metric as the 
same microstate, but at a different GFP. Changes in GFP 
levels within the same microstate are provided in the GFP 
outputs for the microstates in the preliminary results that were 
merged in the final results. 
[0199] By analyzing time-varying activity in a multi-di
mensional sensor space ( across the entire scalp) rather than in 
a single vector space (at specific electrode positions), data 
analytic application 122 makes it possible to investigate pos
sible neural organizations underlying baseline states even in 
the absence of a clear morphological peak or trough. Because 
the results differentiate stable brain microstates from transi
tions between states, data analytic application 122 provides a 
better basis for source localization algorithms used to inves
tigate the underlying neural correlates for these microstates. 
This, in turn, may lead to the identification of more defined 
biomarkers for various neuropsychiatric and neurologic dis
eases. 
[0200] The word "illustrative" is used herein to mean serv
ing as an example, instance, or illustration. Any aspect or 
design described herein as "illustrative" is not necessarily to 
be construed as preferred or advantageous over other aspects 
or designs. Further, for the purposes of this disclosure and 
unless otherwise specified, "a" or "an" means "one or more". 
Still further, using "and" or "or" in the detailed description is 
intended to include "and/or" unless specifically indicated 
otherwise. The illustrative embodiments may be imple
mented as a method, apparatus, or article of manufacture 
using standard programming and/or engineering techniques 
to produce software, firmware, hardware, or any combination 
thereof to control a computer to implement the disclosed 
embodiments. 
[0201] The foregoing description of illustrative embodi
ments of the disclosed subject matter has been presented for 
purposes ofillustration and of description. It is not intended to 
be exhaustive or to limit the disclosed subject matter to the 
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precise form disclosed, and modifications and variations are 
possible in light of the above teachings or may be acquired 
from practice of the disclosed subject matter. The embodi
ments were chosen and described in order to explain the 
principles of the disclosed subject matter and as practical 
applications of the disclosed subject matter to enable one 
skilled in the art to utilize the disclosed subject matter in 
various embodiments and with various modifications as 
suited to the particular use contemplated. 

What is claimed is: 
1. A non-transitory computer-readable medium having 

stored thereon computer-readable instructions that when 
executed by a computing device cause the computing device 
to: 

receive data, wherein the data includes a plurality of snap
shots, wherein each snapshot of the plurality of snap
shots includes a plurality of sensor measurements cap
tured from distinct sensors at a common time, wherein 
the plurality of snapshots are time ordered and associ
ated with a subject; 

compute root mean square error (RMSE) values between 
successive pairs of the plurality of snapshots in time 
order; 

identify a peak in the computed RMSE values; 
identify a valley in the computed RMSE values; 
determine a stable state as occurring from the identified 

peak to the identified valley; and 
output the determined stable state for the subject. 
2. The non-transitory computer-readable medium of claim 

1, wherein the successive pairs of the plurality of snapshots in 
time order are separated by a pre-defined lag value. 

3. The non-transitory computer-readable medium of claim 
1, wherein a plurality of peaks are identified in the computed 
RMSE values and a plurality of valleys are identified in the 
computed RMSE values, wherein the peak is included in the 
plurality of peaks and the valley is included in the plurality of 
valleys. 

4. The non-transitory computer-readable medium of claim 
3, wherein a plurality of stable states are determined, wherein 
the determined stable state is included in the plurality of 
stable states, wherein each stable state is determined as occur
ring from a peak of the plurality of peaks to a subsequent 
valley of the plurality of valleys. 

5. The non-transitory computer-readable medium of claim 
4, wherein a plurality of transition states are determined, 
wherein each transition state is determined as occurring from 
a valley of the plurality of valleys to a subsequent peak of the 
plurality of peaks. 

6. The non-transitory computer-readable medium of claim 
4, wherein each stable state is determined as occurring from 
the peak of the plurality of peaks to the subsequent valley of 
the plurality of valleys, inclusive. 

7. The non-transitory computer-readable medium of claim 
4, wherein the computer-readable instructions further cause 
the computing device to: 

compute a mean template map for each stable state of the 
plurality of stable states, wherein the mean template map 
includes the sensor measurements captured from dis
tinct sensors averaged across the snapshots that occur 
between the peak and the subsequent valley for the 
respective stable state; 

compute a standard deviation for each stable state of the 
plurality of stable states using the computed mean tem
plate map and the sensor measurements captured from 
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distinct sensors for the snapshots that occur between the 
peak and the subsequent valley for the respective stable 
state; 

compute a confidence value for each stable state of the 
plurality of stable states using the computed standard 
deviation for the respective stable state and a similarity 
metric confidence value; 

compute a similarity value between successive stable states 
of the plurality of stable states; and 

indicate the successive stable states are similar when the 
computed similarity value is less than the computed 
confidence value for a stable state of the successive 
stable states. 

8. The non-transitory computer-readable medium of claim 
7, wherein the similarity value is computed using 

A-B 
Sim(A, B) = 1 - IIAIIIIBII' 

where A is a first stable state of the successive stable states and 
Bis a second stable state of the successive stable states. 

9. The non-transitory computer-readable medium of claim 
1, wherein the RMSE is computed using 

n 

I (x; -x;i2 
RMSE= 

i=l 

n 

where n is a number of the distinct sensors, x, is a sensor 
measurement value at sensor i in a current snapshot, and x1 is 
a sensor measurement value at sensor i in a previous snapshot. 

10. The non-transitory computer-readable medium of 
claim 9, wherein the current snapshot and the previous snap
shot are separated in time by a pre-defined lag value. 

11. The non-transitory computer-readable medium of 
claim 1, wherein the peak is identified in the computed RMSE 
values after removing local maxima that represent noise. 

12. The non-transitory computer-readable medium of 
claim 1, wherein the valley is identified in the computed 
RMSE values after removing local minima that represent 
n01se. 

13. The non-transitory computer-readable medium of 
claim 1, wherein identifying the peak comprises computer
readable instructions that further cause the computing device 
to: 

identify a local maxima in the computed RMSE values; 
define a confidence interval parameter value; 

define a previous valley value; and 

when a value of the identified local maxima is greater than 
the defined previous valley value plus the defined con
fidence interval parameter value and the value of the 
selected local maxima minus a subsequent RMSE value 
is greater than the defined confidence interval parameter 
value, the identified local maxima is the peak. 

14. The non-transitory computer-readable medium of 
claim 13, wherein the previous valley value is initialized to a 
mean of RMSE values computed during a pre-defined base
line interval. 
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15. The non-transitory computer-readable medium of 
claim 13, wherein identifying the valley comprises computer
readable instructions that further cause the computing device 
to: 

identify a local minima in the computed RMSE values; 
define a previous peak value; and 
when the defined previous peak value minus a value of the 

identified local minima is greater than the defined con
fidence interval parameter value and a subsequent 
RMSE value minus the value of the selected local 
minima is greater than the defined confidence interval 
parameter value, the identified local minima is the val
ley. 

16. The non-transitory computer-readable medium of 
claim 15, wherein the previous peak value is initialized to a 
mean of RMSE values computed during a pre-defined base
line interval. 

17. The non-transitory computer-readable medium of 
claim 15, wherein the defined previous peak value is a value 
of the peak. 

18. The non-transitory computer-readable medium of 
claim 15, wherein the previous valley value is redefined as a 
value of the valley. 

19. A computing device comprising: 
a processor; and 
a non-transitory computer-readable medium operably 

coupled to the processor, the computer-readable 
medium having computer-readable instructions stored 
thereon that, when executed by the processor, cause the 
computing device to 
receive data, wherein the data includes a plurality of 

snapshots, wherein each snapshot of the plurality of 
snapshots includes a plurality of sensor measure
ments captured from distinct sensors at a common 
time, wherein the plurality of snapshots are time 
ordered and associated with a subject; 

compute root mean square error (RMSE) values 
between successive pairs of the plurality of snapshots 
in time order; 

identify a peak in the computed RMSE values; 
identify a valley in the computed RMSE values; 
determine a stable state as occurring from the identified 

peak to the identified valley; and 
output the determined stable state for the subject. 

20. A method of identifying states in a time ordered 
sequence of data that have a temporal component, the method 
comprising: 

receiving data, wherein the data includes a plurality of 
snapshots, wherein each snapshot of the plurality of 
snapshots includes a plurality of sensor measurements 
captured from distinct sensors at a common time, 
wherein the plurality of snapshots are time ordered and 
associated with a subject; 

computing, by a computing device, root mean square error 
(RMSE) values between successive pairs of the plurality 
of snapshots in time order; 

identifying, by the computing device, a peak in the com
puted RMSE values; 

identifying, by the computing device, a valley in the com
puted RMSE values; 

determining, by the computing device, a stable state as 
occurring from the identified peak to the identified val
ley; and 

outputting, by the computing device, the determined stable 
state for the subject. 

* * * * * 


