

US 20090136452A1

(19) United States(12) Patent Application Publication

Zhou et al.

(10) Pub. No.: US 2009/0136452 A1 (43) Pub. Date: May 28, 2009

(54) TARGETING OF HERPES SIMPLEX VIRUS TO SPECIFIC RECEPTORS

(75) Inventors: Guoying Zhou, Chicago, IL (US); Bernard Roizman, Chicago, IL (US)

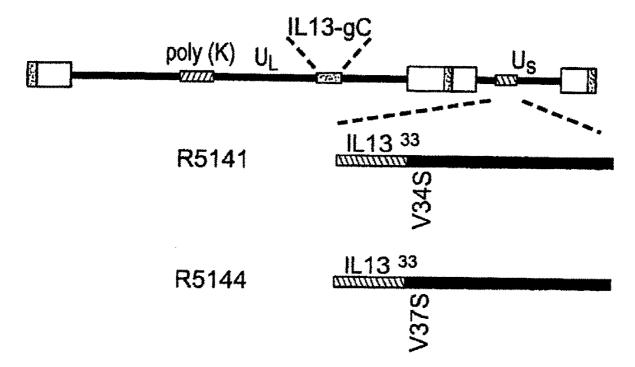
> Correspondence Address: MARSHALL, GERSTEIN & BORUN LLP 233 SOUTH WACKER DRIVE, 6300 SEARS TOWER CHICAGO, IL 60606-6357 (US)

- (73) Assignee: **THE UNIVERSITY OF CHICAGO**, CHICAGO, IL (US)
- (21) Appl. No.: 12/065,455
- (22) PCT Filed: Aug. 30, 2006
- (86) PCT No.: PCT/US06/33865
 § 371 (c)(1),
 - (2), (4) Date: Jul. 10, 2008

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/530,774, filed on Nov. 17, 2005, now Pat. No. 7,501,126, filed as application No. PCT/US03/31598 on Oct. 6, 2003.

- (60) Provisional application No. 60/416,716, filed on Oct. 7, 2002.
- (30) Foreign Application Priority Data


Aug. 30, 2005 (US) 11215636

Publication Classification

- (51) Int. Cl. *A61K 35/76* (2006.01) *C12N 7/00* (2006.01) *C12Q 1/70* (2006.01) *C12N 15/87* (2006.01)
- (52) U.S. Cl. 424/93.2; 435/235.1; 435/5; 435/456

(57) **ABSTRACT**

The invention relates to engineered Herpes simplex virus (HSV) particles that are targeted to one or more specific binding pair members, such as receptors. Also, recombinant vectors for producing such HSV particles are provided. By reducing the affinity of HSV for its natural receptor(s) and increasing the affinity for a selected receptor, the HSV particles of the invention are useful for targeting cells that express the selected receptor, which itself may be a product of genetic engineering. The ability to selectively target cells render the HSV particles. particularly useful in selected binding pair member, such as a receptor. The invention also provides for polynucleotide-based therapy to cells bearing the selected binding pair member such as a receptor.

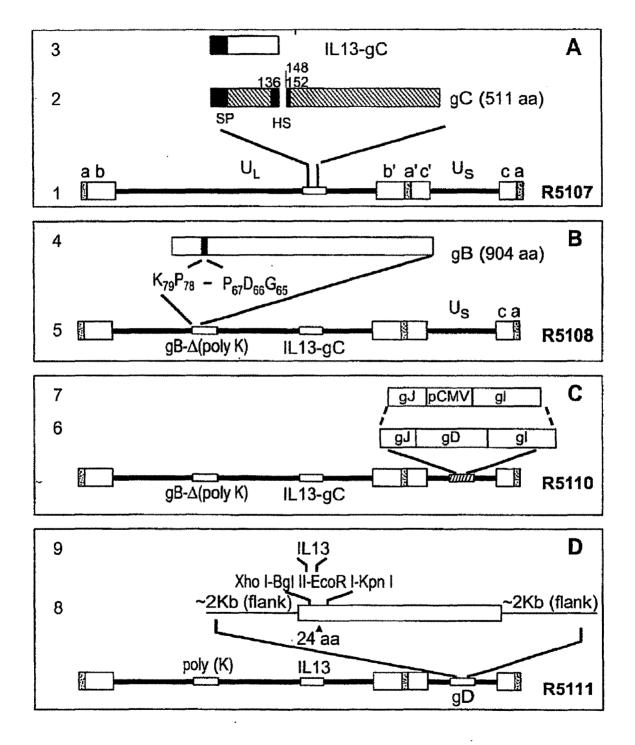


FIG. 1

A. The amino terminal sequence of IL13-gC

B. The sequence of the gB $\Delta poly(K)$ domain

C. The amino terminal sequence of IL13-Gd

CGCTTTCGCCGCAAAGACCTTCCG<u>GTC</u>ctcgag*ATGGCGCTTTTGTTGACCACGGTCATT 24aa XhoI IL13↔

TACCACATCCAGGCGGGCCTACCGGACCCGTTCCAGCCCCCAGCCTCCCGATC

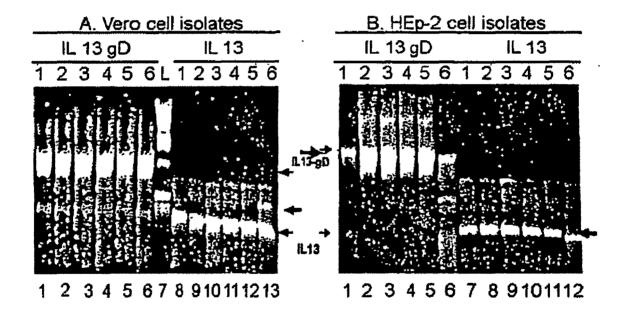


FIG. 3

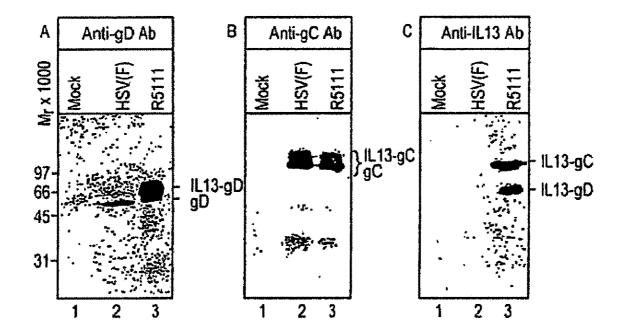


FIG. 4

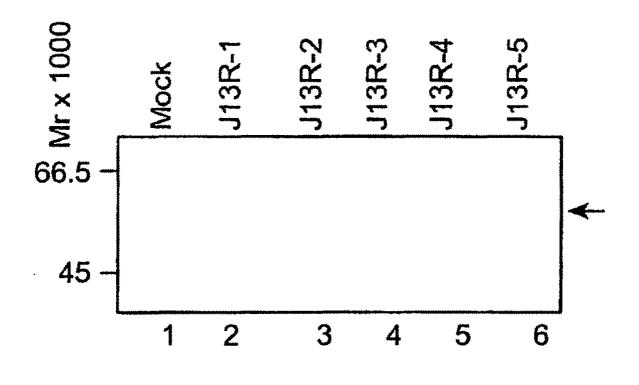
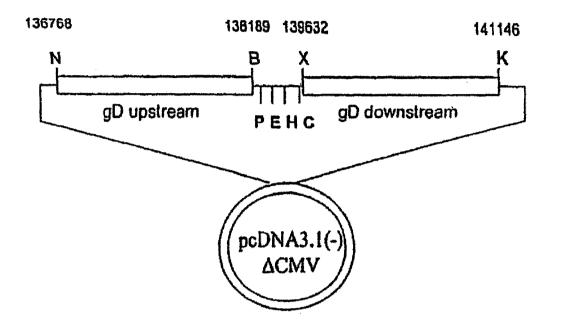



FIG. 5

pgD- in pcDNA3.1(-) with CMV promoter collapsed by Nrul/NheI digestion. The fragment containing gD upstream at Notl/BamHI, and gD downstream at Xhol/KpnI in pBluescript II SK was excised by Notl/KpnIand ligated into pcDNA3.1(-) in which the CMV promoter had been collapsed. N, NotI, B, BamHI, P, PstI, E, EcoRI, H, HindIII, C, ClaI, X, XhoI, and K, KpnI.

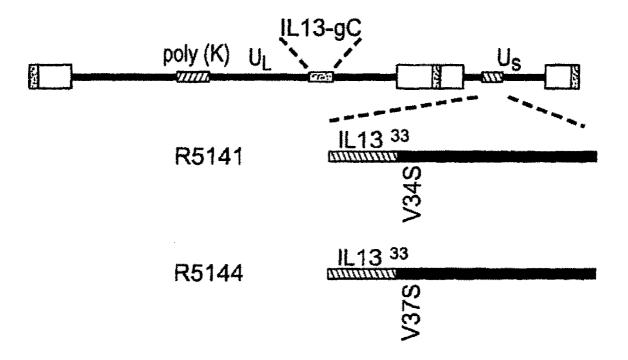


FIG. 7

TARGETING OF HERPES SIMPLEX VIRUS TO SPECIFIC RECEPTORS

[0001] This application is a continuation-in-part application of U.S. Ser. No. 10/530,774, which is the US national phase of PCT/US03/31598 filed Oct. 6, 2003, which claims the priority benefit of U.S. Ser. No. 60/416,716, filed Oct. 7, 2002.

GOVERNMENT INTERESTS

[0002] The U.S. Government owns rights in the invention pursuant to National Cancer Institute grant number 1PO1 CA71933.

BACKGROUND OF THE INVENTION

[0003] A steady rate of healthcare advances has led to continuing improvement in the health and quality of life for humans and animals. Nevertheless, a variety of diseases, disorders, and conditions have largely eluded the best efforts at prevention or treatment. Chief among these maladies is the loss of cell-cycle control that frequently results in the undesirable cell proliferation characteristic of cancer in its many forms, such as malignant glioma. Malignant gliomas are devastating brain tumors that afflict animals such as humans. The average life span after diagnosis is less than one year and few patients have been reported to survive five years. Furthermore, none of the conventional anti-cancer therapies has been successful in significantly prolonging the lifespan of patients with this disease. In recent years there have been numerous attempts to use genetically engineered herpes simplex viruses (HSV) as oncolytic agents to treat malignant gliomas. Because wild-type viruses are highly virulent, the viruses used in preclinical evaluations and in phase-1 clinical studies have been thoroughly attenuated. While several deletion mutants have been tested, the mutants that reached clinical trials lacked the $\gamma_1 34.5$ gene encoding infected cell protein 34.5 (ICP34.5) and optionally, the U_L 39 gene encoding the large subunit of ribonucleotide reductase.

[0004] These attenuated HSV viruses, however, have been imperfectly engineered as oncolytic agents. One advantage of these mutant viruses is that they have a significantly reduced capacity to replicate in normal, non-dividing cells in vivo. Viral ribonucleotide reductase is an essential gene for viral replication in resting cells and, hence, the U_139 mutant virus is dysfunctional in the normal environment of the central nervous system (Simard et al. 1995). The major function of ICP34.5 is to preclude the shutoff of protein synthesis caused by activation of protein kinase R in infected cells. Once activated, this enzyme phosphorylates the α subunit of translation initiation factor 2 (eIF2 α), resulting in complete cessation of translation. Mutants lacking the $\gamma_1 34.5$ genes are highly attenuated because the lytic life cycle is completely blocked in an interferon⁺ cellular background. In contrast, γ_1 34.5 mutants are nearly as virulent as wild-type virus in mice lacking interferon receptor. Although mutants deleted in both $\gamma_1 34.5$ and $U_L 39$ are not significantly more attenuated than those lacking the γ_1 34.5 genes, such mutants do provide added insurance in the form of a reduced risk of reversion.

[0005] A significant disadvantage of these mutant HSV viruses is their poor replication, even in dividing cells. In experimental animal systems, the mutant viruses do not exhibit sustained lytic life cycles, with the loss of a potentially

amplified response to a given therapeutic dose of the virus that would be expected upon re-infection of tumor cells by the multiplied viral progeny. Consequently, maximum killing of tumors cells requires high doses of virus. Given the poor growth of these mutant HSV viruses, even in dividing cells, production of virus pools large enough to yield efficacious inocula of $>10^9$ plaque forming units (PFU) has remained a major obstacle. Moreover, indiscriminate binding of virus to non-tumor cells further diminishes the effectiveness of HSV virus dosages because mis-targeted viral particles do not contribute to the desired beneficial therapeutic effect of tumor cell destruction. One approach to overcoming these obstacles is to achieve a more thorough understanding of the HSV lytic life cycle and thereby facilitate the development of HSV mutants tailored for use as targeted therapeutic agents, such as targeted oncolytic agents.

[0006] HSV enters host cells using a two-step mechanism. The first step of entry is HSV attachment to the cell surface. This step is initiated by glycoproteins B and C (gB and gC), which project from the viral envelope, attaching to heparan sulfate proteoglycans on host cell surfaces. The gB and gC domains interacting with heparan sulfate have been mapped at the sequence level (Laquerre et al. 1998). Following this initial attachment, viral glycoprotein D (gD) interacts with one of several receptors. Of these gD receptors, two are particularly important for entry (Spear et al, 2000). One receptor, designated HveA (formerly, HveM), is a member of the family of receptors for tumor necrosis proteins. A second receptor, designated Nectin-1 (HveC), is a member of the nectin family of proteins, structurally related to the immunoglobulin superfamily, which serve as intercellular connectors (Campadelli-Fiume et al. 2000). The second step of HSV entry into a cell is fusion of the viral envelope with the plasma membrane of the cell. To effect fusion, gD, when bound to its receptor, recruits glycoproteins B, H and L, which results in fusion of the envelope with the plasma membrane.

[0007] Additional understanding of HSV infection has come from recent studies that have lent significance to an old observation that gD interacts with the cation-independent mannose 6 phosphate receptor, contributing to the accumulation of HSV in endosomes. Endocytosis of viral particles results in particle degradation by lysosomal enzymes, but the cells succumb as a consequence of the degradation of cellular DNA by lysosomal DNase. HSV gD blocks this apoptotic pathway to cell death through its interaction with the mannose 6 phosphate receptor. Thus, gD interacts with HveA, nectins, the mannose 6 phosphate receptor, and at least one of the complex of viral glycoproteins involved in the fusion of HSV with the plasma membrane.

[0008] In an attempt to target HSV-1 infection to specific cells, a recombinant HSV having a chimeric protein comprising gC and erythropoietin (EPO) on its surface was constructed. Although the recombinant virus bound to cells expressing EPO receptor and endocytosis of the virus occurred, successful infection of these EPO-receptor expressing cells did not occur.

[0009] Accordingly, a need continues to exist in the art for viral therapeutic agents exhibiting improved targeting capacities while retaining sufficient capacity to infect to be therapeutically useful. Ideally, suitable viruses would be therapeutic agents, such as oncolytic agents, themselves as well as providing a targeting vehicle or vector for the controlled delivery of polynucleotide coding regions useful as therapeu-

tic agents. Another need in the art is for targeted agents useful in diagnostic applications as, e.g., imaging agents or targeted vehicles for imaging agents.

SUMMARY

[0010] The invention satisfies the aforementioned need in the art by providing viral forms suitable for use as therapeutic and diagnostic agents themselves, as well as providing a ready vehicle for the delivery of therapeutic or diagnostic polynucleotide coding regions to cells. These viral forms are modified viruses of the Herpesviridae family of viruses, and are preferably derived from herpes simplex virus type 1 or type 2. The invention provides a method of making virus particles with a novel ligand (or binding pair member), and making said particles totally dependent on a receptor of the ligand (or binding pair member) for entry into targeted cells. [0011] Disclosed herein are methods to modify the surface of, e.g., an HSV virus particle in a manner that targets the virus to a specific receptor present on the surface of a cell of choice, typically a cell in need of therapy or a cell whose presence provides information of diagnostic value. The invention provides viral particles, e.g., HSV particles, having a reduced affinity for their natural cell-surface receptor(s), and methods for producing and using such particles, which minimizes or eliminates the problem of reduced efficiency associated with the mis-targeting of therapeutic and diagnostic viruses. Additionally, the invention provides viral particles, e.g., HSV particles, that exhibit specific affinity for a cell surface component that is not a natural viral receptor and that is present solely or predominantly on a given target cell, as well as methods for producing and using such viruses. Modified viral particles (e.g., HSV) having increased affinity for a cell surface component associated with one or more target cells exhibit improved targeting capabilities relative to known viral particles. The modified HSV particles have reduced indiscriminate binding, thereby minimizing sequestration of viral dosages away from the target cells. The invention further provides modified viral particles, such as modified HSV particles, that have both a reduced affinity for natural viral receptors and an increased affinity for a cell surface component associated with a particular target cell(s), with the modified viral particle effectively recruiting that cell surface component for use as a viral receptor. Other benefits of the modified viruses are described herein and will be apparent to those of skill in the art upon review of this disclosure. [0012] In one aspect, the invention provides a recombinant herpes simplex virus (HSV) particle having at least one protein on its surface, comprising: (a) an altered gD, wherein the alteration reduces binding of gD to one or more of its cellular receptors, said alteration comprising (i) a heterologous peptide ligand on the surface of the recombinant HSV particle forming a fusion protein with the altered gD; and (ii) an amino acid alteration; wherein said recombinant HSV particle preferentially binds to cells expressing a binding partner to said heterologous peptide ligand. In some embodiments, these particles preferentially bind to target cells (cell expressing a binding partner) in whole or part due to the greater frequency of the binding partner on the surface of the cell relative to any natural HSV binding proteins on the surface of that cell. In some embodiments, the recombinant HSV particle further comprises an altered viral surface protein, wherein the alteration reduces binding of the viral surface protein to a sulfated proteoglycan. Such recombinant herpes simplex virus (HSV) particles comprise a virus surface protein altered to reduce the wild-type level of binding of that protein to a sulfated proteoglycan on the surface of a cell and an altered gD. The altered gD exhibits a reduced binding to one or more of the natural cellular receptors for gD; the altered gD is also fused to a heterologous peptide ligand (or binding pair member) having a binding partner, e.g., a peptide ligand receptor, found on the surface of a cell. Stated in the alternative, this aspect of the invention provides a recombinant herpes simplex virus (HSV) particle having at least one protein on its surface, comprising: (a) an altered viral surface protein, wherein the alteration reduces binding of the viral surface protein to a sulfated proteoglycan; and (b) an altered gD, wherein the alteration reduces binding of gD to one or more of its cellular receptors, the alteration comprising (i) a heterologous peptide ligand (or binding pair member) on the surface of the recombinant HSV particle forming a fusion protein with the altered gD; and (ii) an amino acid alteration; wherein the recombinant HSV particle preferentially binds to cells expressing a binding partner to the heterologous peptide ligand (or binding pair member).

[0013] The invention comprehends a recombinant HSV particle wherein the amino acid alteration is selected from the group consisting of an amino acid deletion, an amino acid substitution and an amino acid insertion. A preferred site for the amino acid alteration is amino acid position 34 of gD. Exemplary recombinant HSV particles according to the invention include HSV R5141 and HSV R5161, each described below.

[0014] Contemplated amino acid alterations include insertions or deletions of 1-10 amino acids, such as insertions or deletions of 1-5 amino acids. Exemplary insertions occur immediately upstream (N-terminal) or downstream (C-terminal) to amino acid position 34 of gD. Exemplary deletions include amino acid position 34 of gD. For alterations comprising amino acid substitutions, 1-10 amino acids are substituted, such as substitutions of 1-5 amino acids. Non-contiguous (dispersed) or contiguous amino acid substitutions are contemplated. In some embodiments, conservative amino acid substitutions include single amino acid substitutions for the Serine at position 34 of gD. Preferably, substitutions for Ser34 will be conservative as, for example, an amino acid substitution of V34S in gD.

[0015] The altered gD, moreover, reduces binding of the recombinant HSV particle to at least one HSV entry mediator (Hve) cell-surface protein, such as an Hve selected from the group consisting of HveA (formerly, HveM) and Nectin-1 (HveC). Further, the recombinant HSV particles of the invention include particles wherein the altered viral surface protein is selected from the group consisting of gB and gC. In some embodiments, the altered viral surface protein, preferably selected from the group of gB and gC, forms a fusion protein with a heterologous peptide ligand. In some embodiments, the binding partner is a cell surface receptor for the heterologous peptide ligand.

[0016] The preferential binding of the recombinant HSV particles of the invention results in a detectable variation in effective binding of the particle to the cells being compared. By "effective binding" is meant either sufficiently stable binding to permit detection of binding or binding sufficient to result in productive infection of the cell. In preferred embodiments, the preferential binding is such that the recombinant HSV particles bind only to one of the cell types being compared (e.g., cancer cells compared to healthy cells of the same

type). Suitable cells include any hyperproliferative cell type, such as a cancer cell. A cancer cell, in turn, includes a tumor cell, e.g., a malignant gliomal cell.

[0017] The invention comprehends recombinant HSV particles wherein the heterologous peptide ligand (or binding pair member) is any ligand (or binding pair member) for which a cell surface binding partner exists. Preferably, heterologous peptide ligands have specific cell surface binding partners, e.g., ligand receptors, that are preferentially exhibited on the surface of a target cell. More preferably, the cell surface binding partner is only exhibited on the surface of a target cell, when compared to the cells in an organism containing the target cell. Exemplary heterologous peptide ligands that include cytokines, such as IL13, and fragments, variants and derivatives thereof, provided that the ligand retains the capacity of binding to a cell-surface binding partner. An exemplary binding pair member contemplated as suitable for each aspect of the invention is a single-chain antibody, for which a binding partner would include an antigen thereof, or a fragment, derivative or variant thereof that retains the capacity to bind to the single-chain antibody.

[0018] Another aspect of the invention is drawn to the recombinant HSV particle described above, wherein a polynucleotide encoding the fusion protein is joined to a heterologous coding region for a leader sequence. In this context, "heterologous" means that the leader sequence is not found naturally associated with the upstream or 5' coding region participating in the fusion. Exemplary leader sequences include HSV leader sequences, e.g., an HSV gD leader sequence. In a related aspect, the invention provides the recombinant HSV particle described above, wherein a polynucleotide encoding the fusion protein is joined to a heterologous expression control element, such as a heterologous promoter (a promoter not naturally found in association with the polynucleotide coding region fused upstream or 5' in the fusion), a heterologous enhancer, or expression factor binding site known in the art.

[0019] Another aspect of the invention provides a pharmaceutical composition comprising a recombinant HSV particle described above and a pharmaceutically acceptable carrier, diluent, or excipient. Any pharmaceutical carrier, diluent or excipient known in the art is contemplated. A related aspect of the invention provides a kit comprising the pharmaceutical composition and a set of instructions for administering the composition to a subject in need. In each of these aspects of the invention, i.e., the pharmaceutical compositions and the kits, the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described in the context of describing the recombinant HSV particles are contemplated.

[0020] Yet another aspect of the invention provides a method of targeting a recombinant HSV particle to a cell comprising (a) identifying a binding pair member, such as a ligand for a ligand binding partner, exhibited on the surface of a target cell; and (b) creating an HSV particle as described herein, wherein the ligand or, more generally, the binding pair member, binds to the binding partner exhibited on the surface of the target cell. In some preferred embodiments of this aspect of the invention, the altered viral surface protein is selected from the group consisting of gB and gC. In some embodiments, the alteration to gD reduces binding of gD to at least one cellular receptor for gD selected from the group consisting of HveA and Nectin-1. In preferred embodiments, the altered gD has a conservative substitution at position 34 of

gD, such as a V34S substitution. A second fusion protein, joining the ligand (or binding pair member) and either of gB or gC, is also contemplated in some embodiments. Suitable cells for targeting include any hyperproliferative cell, such as a cancer cell, including tumor cells (e.g., malignant gliomal cells). Any of the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described above in the context of describing the recombinant HSV particles is suitable for use in the method.

[0021] Another aspect of the invention is drawn to a method of imaging a cell comprising: (a) contacting the cell with a recombinant HSV particle as described above, the recombinant HSV particle further comprising a coding region for a marker protein; and (b) detecting the presence of the marker protein. Any type of cell exhibiting a cell-surface binding partner for a ligand (or binding pair member) fusible to HSV gD is suitable for use in this aspect of the invention, such as a cancer cell. Using cancer cells as an example, the method is useful provided that the binding partner is present at a higher number on the cancer cell as compared to a non-cancerous cell of the same type. Any known marker protein is useful in this aspect of the invention, e.g., a marker protein selected from the group consisting of thymidine kinase, green fluorescent protein, and luciferase. In preferred embodiments, the altered gD exhibits an amino acid substitution of V34S. Any of the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described above in the context of describing the recombinant HSV particles is suitable for use in the method.

[0022] Another aspect of the invention provides a method of treating a cell-based disease comprising delivering a therapeutically effective amount of a recombinant HSV particle as described herein to a subject in need. A related aspect is the use of a recombinant HSV particle as described above in the preparation of a medicament for the treatment of a cell-based disease. A therapeutically effective amount of a recombinant HSV particle is that amount that produces the desired therapeutic effect, as would be understood and readily determinable by those of skill in the art. Any cell-based disease known or reasonably suspected to be amenable to treatment with a specifically targeted HSV is contemplated, e.g., a cell hyperproliferation disease such as cancer. Any of the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described above in the context of describing the recombinant HSV particles is suitable for use in the method.

[0023] In a related aspect, the invention provides a method of ameliorating a symptom associated with a disease comprising administering a therapeutically effective amount of a recombinant HSV particle described above to a subject in need. Another aspect is drawn to the use of a recombinant HSV particle as described above in the preparation of a medicament for ameliorating a symptom associated with a disease in a subject in need. Again, any disease known or reasonably suspected to have a symptom amenable to application of a specifically targeted HSV is contemplated, including any disease characterized by hyperproliferative cells, such as cancer. Any of the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described above in the context of describing the recombinant HSV particles is suitable for use in the method.

[0024] Another aspect of the invention is directed to a method of delivering a therapeutically useful peptide to a cell comprising: (a) inserting a therapeutically useful polynucle-

otide, such as an expression control element, an rDNA, or a coding region for a therapeutically useful peptide, into the DNA of a recombinant HSV particle as described above, thereby producing a recombinant HSV clone; and (b) delivering a therapeutically effective amount of the recombinant HSV clone to the cell. In a related aspect, the invention provides for the use of a recombinant HSV clone comprising a recombinant HSV particle according to claim 1 in the preparation of a medicament for delivering a therapeutically useful peptide to a cell comprising inserting a coding region for a therapeutically useful peptide into the DNA of the recombinant HSV particle, thereby producing the recombinant HSV clone. Each of the method and use comprehends delivery of the recombinant HSV clone in vivo, ex vivo, or in vitro. Any of the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described above in the context of describing the recombinant HSV particles is suitable for use in the method or use.

[0025] Another aspect of the invention provides a method of killing a target cell, comprising contacting the target cell with a recombinant HSV particle as described above. A related aspect is the use of a recombinant HSV particle as described above in the preparation of a medicament for killing a target cell by contacting the target cell with the recombinant HSV particle. In preferred embodiments of either the method or the use, the recombinant HSV particle has an altered gD in which the V34S substitution is found. Any of the heterologous peptide ligands (or binding pair members) and cell-surface binding partners described above in the context of describing the recombinant HSV particles is suitable for use in the method or use.

[0026] In each of the above-described aspects of the invention, it is preferred that gD, or a portion thereof, maintains its membrane fusion properties, but has reduced capacity to bind HveA and/or Nectin-1.

[0027] Other features and advantages of the invention will be better understood by reference to the brief description of the drawing and the description of the illustrative embodiments that follow.

BRIEF DESCRIPTION OF THE DRAWING

[0028] FIG. 1. Schematic representation of the HSV-1 (F) genome and gene manipulations in glycoprotein C(gC) (FIG. 1A), glycoprotein B (gB) (FIG. 1B), and glycoprotein D (gD) (FIG. 1C). Line 1, sequence arrangement of the HSV-1 genome. The rectangular boxes represent the inverted repeat sequences ab and b'a' flanking the unique long (U_L) sequence, and inverted repeat c'a' and ca flanking the unique short (U_s) sequence. Line 2, sequence arrangement of domains of the glycoprotein C; the signal peptide (SP) domain and heparan sulfate (HS)-binding domain of gC are highlighted. Line 3, human IL13 with signal peptide that replaced the N-terminal segment of 148 amino acids of gC. Line 4, sequence arrangement of the poly-lysine domain of gB. Line 5, schematic representation of a recombinant HSV-1(F) genome, in which the N-terminal domain of gC was replaced with IL13 and the polylysine domain (from codon 68 to codon 77) of gB was deleted. Line 6, sequence arrangement of glycoprotein J (gJ), glycoprotein D (gD), and glycoprotein I (gI) in U_s. Line 7, replacement of gD with the immediate early promoter of CMV in order to enable the expression of gI. Line 8, schematic representation of recombinant HSV-1(F) genome, in which the N-terminal domain of gC was replaced with IL13, the poly-lysine domain of gB was deleted, and IL13 was inserted after amino acid 24 of gD (FIG. 1D). Line 9, a polylinker XhoI-BgIII-EcoRI-KpnI was inserted after amino acid 24 of gD, with IL13 inserted into the XhoI and KpnI sites of gD.

[0029] FIG. **2**. Amino acid sequence alignment of IL13-gC, IL13-gD junction sequence, and the HS binding domain of gB. FIG. **2**A. The amino-terminal sequence of IL13-gC chimeric protein (SEQ ID NO:22). The sequences upstream and downstream of the HS binding site portion are shown. IL13 was inserted between the two restriction enzyme sites that are underlined. FIG. **2**B. The domain of the gB open reading frame (i.e., ORF) from which the poly lysine [poly(K)] sequence was deleted (SEQ ID NO:23). The underlined sequences (codons 68-77) were not present in gB amplified from R5107. FIG. **2**C. The amino-terminal sequence identifies the gD signal peptide. IL13 (bracketed by arrows) was inserted between residues 24 and 25 (underlined) of gD, between the XhoI and KpnI restriction enzyme sites.

[0030] FIG. **3**. Verification of R5111 viral DNA by PCR. Photographs of electrophoretically separated PCR products amplified directly from the plaques picked from Vero (FIG. **3**A) and HEp-2 (FIG. **3**B) cells. Viral DNAs were extracted as described in Example 1 and subjected to PCR with "IL13" primers from the IL13 ORF and IL 3-gD primers, which bracketed IL13 and the gD ectodomain.

[0031] FIG. **4**. Photograph of electrophoretically separated proteins from lysates of cells infected with R5111 reacted with antibody to gC, gD or IL13. HEp-2 cells grown in 25 cm² flasks were exposed to 10 PFU of HSV-1 or R5111 per cell. The cells were harvested 24 hours after infection, solubilized, subjected to electrophoresis in 10% denaturing polyacryla-mide gels, electrically transferred onto a nitrocellulose sheet, and exposed to a monoclonal antibody against gD (FIG. **4**A), gC (FIG. **4**B) or IL13 (FIG. **4**C), respectively. The protein bands corresponding to the gC, IL13-gC fusion protein, gD and the IL13-gD fusion protein are indicated. IL13-gC was the same size as native gC, as expected.

[0032] FIG. 5. HA-tagged IL13R α 2 expression from individual clones of stable transfectants of the J1.1 cell line. The individual clones were amplified as described in Example 1. Cells were harvested from 25 cm² flasks, solubilized, and subjected to electrophoresis in 12% denaturing polyacrylamide gels, electrically transferred onto a nitrocellulose sheet, and exposed to a polyclonal antibody to HA tag.

[0033] FIG. 6. Diagram of the pgD-vector.

[0034] FIG. 7. Schematic representation of the HSV-1 (F) genome and genetic structure of R5141 and R5144.

DETAILED DESCRIPTION

[0035] The invention provides benefits that will improve the health and well-being of animals such as man by providing a targeted approach to the treatment of a variety of conditions and diseases that currently impair health, resulting in significant economic burdens using conventional treatments. In providing modified viral particles having controllable targeting capacities, the diagnostic and therapeutic benefit of the viruses themselves can be delivered with greater precision to particular cells. Additionally, these viral particles can be used as targeting vehicles for the delivery of a wide variety of therapeutic and diagnostic biomolecules, such as polynucleotides encoding therapeutic or diagnostic peptides.

[0036] Beyond the modified viral particles, the invention provides methods for making such therapeutic and diagnostic

agents as well as methods for using the agents to diagnose or treat a variety of diseases and conditions, such as tumorigenic disease (e.g., gliomas). To facilitate an understanding of the invention and all of its aspects, illustrative embodiments are described below. The descriptions of these illustrative embodiments are not meant to limit the invention to the embodiments disclosed herein. In light of the description, one of skill in the art will understand that many changes and modifications can be made to the illustrative embodiments and still remain within the invention. The illustrative embodiments are disclosed using as an exemplary virus a member of the Herpesviridae family of viruses, herpes simplex virus (HSV).

[0037] As noted above, HSV-1 and HSV-2 are members of the family of viruses known as the Herpesviridae, whose structures are well known in the art. The targeting methods of the invention are applicable to any member of the Herpesviridae and are not limited to the exemplary embodiments described in the examples. Furthermore, a large number of recombinant HSV viruses are known in the art. Such viruses may contain one or more heterologous genes. Also, such viruses may contain one or more mutated HSV genes, for example, mutations that render the virus replication-deficient or affect the virulence of the virus in one or more cell types.

[0038] Examples of recombinant HSV containing a heterologous gene and methods of making and using such viruses are described in U.S. Pat. No. 5,599,691 (incorporated herein by reference in its entirety). Preferred heterologous genes include genes encoding marker proteins. Marker proteins, such as green fluorescent protein, luciferase, and beta-galactosidase, allow detection of cells expressing the protein. In other embodiments, the heterologous gene encodes an enzyme that activates a prodrug thereby killing adjacent uninfected cells. In yet other embodiments, the heterologous gene encodes a protein that affects the immune response, such as interleukin 12 (IL-12). Such proteins that activate the immune response against a tumor are particularly useful.

[0039] In one aspect, the invention relates to altering the surface of an HSV particle to target the virus to a specific receptor. By creating a fusion protein comprising a portion of gD and a ligand (or binding pair member), the virus is targeted to a cell having a cell surface receptor that binds the ligand (or binding pair member). In preferred embodiments, one or more HSV surface proteins, such as gB (SEQ ID NOs:27 and 28), gC (SEQ ID NOs:29 and 30), or gD (SEQ ID NOs:25 and 26), are altered to reduce binding to natural HSV receptors.

[0040] "Alterations" of the surface of an HSV particle or HSV surface protein include insertions, deletions, and/or substitutions of one or more amino acid residues. One type of alteration is an insertion, which involves the incorporation of one or more amino acids into a known peptide, polypeptide or protein structure. For ease of exposition, alterations will be further described using a protein exemplar. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of known proteins, which yield proteins such as fusion proteins and proteins having amino acid tags or labels.

[0041] Another type of alteration is a deletion, wherein one or more amino acid residues in a protein are removed. Deletions can be effected at one or both termini of the protein, or with removal of one or more residues within the amino acid sequence. Deletion alterations, therefore, include all fragments of a protein described herein.

[0042] Yet another type of alteration is a substitution, which includes proteins wherein one or more amino acid residues are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature; however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables A or B, below.

[0043] Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative substitutions are set out in Table A as described in Lehninger, [Biochemistry, 2nd Edition; Worth Publishers, Inc. New York (1975), pp. 71-77] and set out immediately below.

TABLE A	
---------	--

Conservative Substit	utions I
SIDE CHAIN CHARACTERISTIC	AMINO ACID
Non-polar (hydrophobic):	
A. Aliphatic B. Aromatic C. Sulfur-containing D. Borderline Uncharged-polar:	A L I V P F W M G
A. Hydroxyl B. Amides C. Sulfhydryl D. Borderline Positively charged (basic) Negatively charged (acidic)	S T Y N Q C G K R H D E

[0044] Alternative, exemplary conservative substitutions are set out in Table B, immediately below.

TABLE B

Conservative Substitutions II		
ORIGINAL RESIDUE	EXEMPLARY SUBSTITUTION	
Ala (A) Arg (R) Asn (N) Asp (D) Cys (C) Glu (E) His (H) Ile (I) Leu (L) Lys (K) Met (M) Phe (F) Pro (P) Ser (S) Thr (T) Trp (W) Tyr (Y)	Val, Leu, Ile Lys, Gln, Asn Gln, His, Lys, Arg Glu Ser Asn Asp Asn, Gln, Lys, Arg Leu, Val, Met, Ala, Phe, Ile, Val, Met, Ala, Phe Arg, Gln, Asn Leu, Phe, Ile Leu, Val, Ile, Ala Gly Thr Ser Tyr Trp, Phe, Thr, Ser	
Val (V)	Ile, Leu, Met, Phe, Ala	

[0045] The binding site of HveA has been reported to be at the amino terminal domain of gD (Carfi A., et al., 2001) The precise binding sites of gD for Nectin 1 are not known, although it has previously been reported to involve gD amino acids 38 and 221 (Manoj S., et al., 2004; Zago A., et al., 2004; Connolly S A., 2005). Accordingly, in one aspect the inven-

tion relates to amino acid alterations in the N-terminal region of gD such that the ability of gD to bind HveA or Nectin 1 is reduced or eliminated A "natural receptor" as used herein is a cell surface molecule that interacts with wild-type HSV in the absence of human intervention. For example, gB and gC of HSV-1 interact with heparan sulfate proteoglycans in a natural infection. In preferred embodiments, gB and/or gC are altered to reduce or eliminate binding to heparan sulfate proteoglycans. As another example, gD is known to bind to several receptors, including HveA and Nectin-1, in a natural infection. In preferred embodiments, gD is altered to reduce or eliminate binding to HveA and/or Nectin-1.

[0046] Receptor-Ligands

[0047] As used herein, "receptor" and "ligand" refer to two members of a specific binding pair and, hence, are binding partners. A receptor is that member of the pair that is found localized on the surface of the cell; the ligand is the member of the pair that is found on the surface of HSV. Thus, in certain embodiments, the "ligand" may actually be what the art recognizes as a receptor outside the context of the invention and the "receptor" may be its respective ligand. More generally, the invention comprehends an HSV exhibiting a member of a binding pair, or a fragment thereof that retains the capacity to specifically bind the other member of the binding pair, or a fragment thereof that retains the capacity to specifically bind its partner, is present on the surface of a target cell.

[0048] One advantage of the invention is the ability to tailor HSV to target a specific receptor while maintaining infectivity of the virus. In an exemplary embodiment, an HSV particle contains a fusion protein comprising a portion of gD and the cytokine IL-13. Such a virus is able to infect cells expressing the receptor IL-13Ra2. Because IL-13Ra2 is expressed on the surface of cells of malignant gliomas, HSV containing the gD/IL-13 fusion protein are effectively targeted to such cells. Ligands that bind to receptors which are overexpressed or differentially expressed on either tumor cells or cells associated with tumor growth (e.g., neovasculature) are particularly preferred. Examples include the $\alpha_{\nu}\beta_{3}$ - $\alpha_{\nu}\beta_{5}$ integrins, which are overexpressed in tumor neovasculature; epidermal growth factor receptor (EGFR), which is overexpressed in head, neck, lung, colon, breast, and brain cancer cells; HER-2/Neu, which is overexpressed in breast cancer cells; MUC-1, which is overexpressed in breast, lung, and pancreas cancer cells; and prostate-specific membrane antigen, which is overexpressed in prostate cancer cells. In certain embodiments, the ligand is a single-chain antibody that binds to its cognate specific binding pair member, herein referred to as a receptor. Single-chain antibodies have been shown to be effective in targeting applications, as evidenced by their ability to target retroviruses to specific receptors.

[0049] Essentially any two binding pair members or partners may be used as receptor-ligands in the invention. However, it is contemplated that certain factors, such as the distance from the binding site on the receptor to the membrane, or the conformation of the ligand when fused to gD, may affect the efficiency of recombinant HSV fusion to the cell membrane. Therefore, screens for effective receptor-ligand pairs are contemplated, using no more than routine procedures known in the art. Additional screens, conventional in nature, may be used to optimize constructs. One routine method of screening is to follow the protocol provided in the example for candidate receptor/ligand pairs, using IL-13/IL-13 as a control receptor/ligand pair.

[0050] Alternatively, one may use a membrane fusion assay as described in Turner et al., 1998, incorporated herein by reference in its entirety. In the Turner assay, cells transfected with construct(s) encoding gB, gH, gL, and the gD/ligand fusion protein, and cells expressing the receptor, are co-cultured and the cells are examined for membrane fusion. Membrane fusion between gD/ligand-expressing cells and receptor-expressing cells indicates that the candidate receptorligand pair (the ligand being a gD/ligand fusion protein) is functional. Constructs encoding functional gD/ligand proteins can then be used to create recombinant HSV that are targeted to cells expressing the receptor.

[0051] Cell Targeting

[0052] Evident from the preceding discussion, another aspect of the invention is the targeting of a recombinant HSV to a cell having a specific receptor on its surface. In preferred embodiments, a recombinant HSV is designed to comprise a ligand that interacts with a receptor known to be expressed on a cell of interest. The cell of interest is then infected with recombinant HSV. Such targeting methods may be used for a variety of purposes.

[0053] In one aspect, a recombinant HSV is used to introduce a heterologous gene into a cell that expresses the receptor. In preferred embodiments, the cell is not infected by, or is poorly infected by, wild-type HSV. Thus, in certain embodiments, the invention provides a vector for transforming a cell of interest with a heterologous gene.

[0054] Further, a cell can be rendered a target of a recombinant HSV of the invention. The cell can be rendered a target by transforming the cell to express one member of a binding pair, e.g., a receptor capable of specifically binding a ligand expressed on a recombinant HSV. For example, as described in Example 2, the J1.1 cell line, which was resistant to infection by a recombinant HSV expressing an IL-13 ligand, was rendered susceptible to infection by transforming the cell line with a vector encoding IL12R α 2 to produce the cell line J13R.

[0055] Generally, the targeted HSV according to the invention exhibit one member of a binding pair, with the other member of that pair found on the surface of a target cell. In some embodiments of the invention, targeting is achieved with a ligand-receptor binding pair, with the ligand exhibited on the targeted HSV and the cognate receptor found on the surface of the target cell, as described above. Although the invention comprehends embodiments involving binding pairs that do not exhibit a ligand-receptor relationship (e.g., biotinavidin) and embodiments in which the receptor is exhibited by the targeted HSV (the "receptor" defined above as a "ligand" using an alternative definition of "ligand") while the cognate ligand is found on the target cell (the "ligand" defined above as a "receptor" using an alternative definition of "receptor"), embodiments in which the targeted HSV exhibits a ligand and the target cell presents the cognate receptor on its surface is used as an illustrative embodiment to reveal the versatility of the invention and to disclose the full scope thereof. For example, several ligands have been used for receptor-mediated polynucleotide transfer. Some ligands that have been characterized are asialoorosomucoid (ASOR) and transferrin (Wagner et al., Proc. Natl. Acad Sci. USA, 87(9): 3410-3414, 1990). A synthetic neoglycoprotein, which recognizes the same receptor as ASOR, has also been used in a polynucleotide delivery vehicle (Ferkol et al., FASEB J., 7:1081-1091, 1993; Perales et al, Proc. Natl. Acad. Sci., USA 91:4086-4090, 1994) and epidermal growth factor (EGF) has

further been used to deliver polynucleotides to squamous carcinoma cells (Myers, EPO 0273085). Each of these specific approaches, and other approaches known in the art to achieve some selectivity in DNA delivery, or targeting, are amenable to use in the compositions and methods of the invention and are contemplated as embodiments of the invention.

[0056] For embodiments in which a targeted HSV harboring a coding region, e.g., a therapeutic coding region or gene, is delivered to a target cell, the nucleic acid encoding the therapeutic gene product may ultimately be positioned and expressed at different sites. In certain embodiments, the nucleic acid encoding the therapeutic polynucleotide may be stably integrated into the genome of the cell. This integration may place the gene in its native location and orientation via homologous recombination (gene replacement) or it may be integrated in a random, non-specific location (gene augmentation). In yet further embodiments, the nucleic acid may be stably maintained in the cell as a separate, episomal segment of DNA. Such nucleic acid segments or episomes encode functions sufficient to permit maintenance and replication independent of or in synchronization with the host cell cycle. How the expression construct is delivered to a cell and where in the cell the nucleic acid remains is dependent on the type of expression construct employed, as would be understood in the art.

[0057] It is envisioned that promoters subject to cell cycle regulation will be useful in the present invention. For example, in a bicistronic HSV vector designed to treat a disease, disorder or condition by killing a target cell, use of a strong CMV promoter to drive expression of a first gene, such as p16, that arrests a cell in the G1 phase is accompanied by expression of a second gene, such as p53, under the control of a promoter that is active in the G1 phase of the cell cycle, thus providing a dual-gene approach to ensure that the target cell undergoes apoptosis. Other promoters, such as those of various cyclins, PCNA, galectin-3, E2F1, p53, BRCA1, and, indeed, any suitable promoter or expression element known in the art, could be used.

[0058] In embodiments of the invention designed to treat diseases, disorders, or conditions associated with unwanted or excessive cell proliferation, such as cancer or restenosis, HSV is targeted to proliferating cells thereby killing the cells. Because HSV is lethal to infected cells, expression of a heterologous gene is not required. However, in embodiments wherein the lethality of HSV is attenuated, an HSV harboring a gene that is lethal to the infected cell or that prevents proliferation of the infected cell may be used to target a cell. [0059] Alternatively, HSV targeted to specific surface markers can be used to visualize the distribution of tumor cells in tissues. This diagnostic tool had been unavailable because of the indiscriminate binding of HSV to cells. Modification of HSV by eliminating (ablating) or reducing the indiscriminate binding of HSV to heparan sulfate proteoglycans without deleteriously affecting the capacity of such HSV to replicate in both dividing and non-dividing cells makes possible the use of these modified viral forms to visualize the distribution of tumor cells.

[0060] In one preferred method for visualizing the distribution of tumor cells, radioactive visualization is achieved by viral thymidine kinase (TK)-dependent incorporation of a radioactive precursor. Methods of molecular imaging of gene expression are well known in the art. Methods often use highly sensitive detection techniques such as positron emis-

sion tomography (PET) or single-photon emission-computed tomography (SPECT). In one embodiment, TK expression is measured using a gancyclovir analog, such as 9-(3-[¹⁸F] fluoro-1-hydroxy-2-propoxy)methylguanine, as the tracer or marker (Vries et al., 2002). For a review of imaging TK gene expression using PET or SPECT, see Sharma et al., 2002 or Vries et al., 2002.

[0061] A second preferred imaging method is to fuse a non-critical tegument protein (e.g. U_S11 , which is present in nearly 2000 copies per virus particle) to a marker protein, such as green fluorescent protein, which is capable of being visualized in vivo. Alternatively, a non-critical protein can be fused to a luciferase and the presence of the luciferase visualized with a luminescent or chromatic luciferase substrate. Although a marker protein can be fused to essentially any viral structural protein, preferred viral proteins include gC, gE, gI, gG, gJ, gK, gN, U_L11 , U_L13 , U_L14 , U_L21 , U_L41 , U_L35 , U_L45 , U_L46 , U_L47 , U_L51 , U_L55 , U_L56 , U_S10 , and U_S11 . The marker protein also may be fused to thymidine kinase (Soling et al., 2002).

[0062] Library Screening

[0063] As noted above, HSV comprising a gD/ligand fusion protein can bind and infect cells expressing a receptor to the ligand. In one embodiment, a cell line expressing a receptor is used in screening for ligands of the receptor. cDNA from a cDNA library is cloned into a vector encoding a portion of gD to produce a gD/cDNA-encoded fusion protein. The resulting vectors are then screened for membrane fusion using the assay of Turner et al. described above or by creating recombinant HSV expressing the gD/cDNA-encoded fusion protein and screening the viruses for the ability to infect receptor-expressing cells. Such methods may be used, e.g., to identify a ligand to an orphan receptor.

[0064] In other embodiments, mutations in, or variants of, the receptor or ligand are screened to determine whether the mutants or variants maintain the ability to interact with the respective partner. Such methods may be useful in determining the specific residues important in receptor-ligand interaction.

[0065] Therapeutic Methods

[0066] Another aspect of the invention is the use of the targeted HSV in therapeutic methods. By altering the cellbinding and infectivity properties of the virus, many routes and methods of administration become viable. For example, non-targeted HSV will bind indiscriminately to a variety of cells. Because of this property, large virus numbers are used and intravenous administration is generally not effective. However, by targeting the virus, one may lower the viral load (i.e., quantity of virus), yet maintain or increase efficacy. Furthermore, the targeted HSV can be administered intravenously and produce therapeutic effects.

[0067] Therapeutic methods of the invention include those methods wherein an HSV is targeted to a receptor of a cell that contributes to, or is the basis of, a disease or disorder. These targeted HSV can either exploit the therapeutic properties of HSV itself (e.g., the lethality of HSV to infected cells) or the targeted HSV can serve as a vector for the targeted delivery of at least one therapeutic polynucleotide, such as an expressible polynucleotide comprising a coding region. For example, in methods wherein the targeted HSV contains one or more gene products that render the virus toxic to the cell or that prevent or inhibit cell proliferation, a preferred receptor is overexpressed or selectively expressed on harmful or undesirable cells, such as cancer cells. In other embodiments, the targeted

HSV encodes a gene product that provides a desired function or activity in the targeted cell, e.g., when a cell has one or more genetic defects preventing the cell from functioning properly.

[0068] Additionally, it is contemplated that a therapeutic polynucleotide (e.g., gene or coding region) of a targeted HSV may be engineered to be under the expression control of a cell- or tissue-specific expression control element, e.g., a promoter. In such embodiments, the targeted HSV provide a further enhancement to the selective treatment of a suitable disorder, disease or condition. The targeted HSV is specific for a binding partner located on the surface of those cells for which treatment is intended, and expression of the therapeutic coding region or gene borne by the targeted HSV is limited to particular cells or tissues.

[0069] As HSV has been engineered to overcome the barriers to vector-based therapies, the choice of recombinant polynucleotide to be inserted into the vector has widened to the point where a wide variety of diseases, disorders and conditions are amenable to treatment with targeted HSV. A number of diseases are amenable to polynucleotide-based therapy using HSV (see, e.g., Kennedy, et al. Brain. 120, 1245-1259, 1997, incorporated by reference herein in its entirety). Though most attention has focused on cancers, there has been success in treating Parkinson's disease by expressing tyrosine hydroxylase in striatal cells, thus restoring L-dopa-induced nerve repair following axotomy of the superior cervical ganglion. Injection of a vector expressing nerve growth factor resulted in restored levels of tyrosine hydroxylase. More generally, HSV can now be used in polynucleotide-based therapy to replace missing or defective coding regions in the target cells. In the event of an inherited single-gene disorder (such as Lesch-Nyhan syndrome) where the complete DNA sequence, cause, and effect of the disorder are known, a single polynucleotide replacement mediated by targeted HSV is appropriate and contemplated. Another strategy amenable to the use of targeted HSV is the enhancement of endogenous expression levels of a gene product, e.g., a growth factor or enzyme. Yet another strategy for using targeted HSV is HSV-directed enzyme pro-drug therapy. The delivery of a drug-sensitivity gene would be beneficial in the treatment of, e.g., a malignant brain tumor, making the tumor more susceptible to conventional anti-cancer agents.

[0070] In other embodiments, the targeted HSV of the invention provide for vector-mediated delivery of anti-sense oligodeoxyribonucleotides (oligonucleotides). The oligonucleotides, short segments of DNA (e.g., 2-100 nucleotides in length), are delivered to target cells and therein bind to complementary mRNA, thus blocking the expression of specific genes within the target cells. The encoded protein fail to be synthesized, as the MRNA is not be recognized by the translational components of the cell. In preferred embodiments, a deleterious gene is targeted.

[0071] In yet other embodiments, targeted HSV are used to deliver polynucleotides, e.g., DNAs encoding gene products, that can recruit or enhance an immune system response, thereby bringing a subject's or patient's own immune system to bear in the treatment of a disease, disorder or condition known in the art to be amenable to immune system activity. For example, an increase in cellular antigen expression of tumor cells, mediated by delivery of an expressible coding region for the antigen by a targeted HSV, would enhance the immune response and increase the susceptibility of such tumor cells to host cytotoxic immunity.

[0072] In some embodiments, a targeted HSV composition of the invention is delivered to a patient at or around the site of a tumor, which is a very efficient method for counteracting clinical disease. Alternatively, systemic delivery of targeted HSV compositions may be appropriate in other circumstances, for example, where extensive metastasis has occurred, or where inaccessible tumors are encountered.

[0073] It is contemplated that in certain embodiments of the invention a protein that acts as an angiogenesis inhibitor is targeted to a tumor. Also, an angiogenesis inhibitor agent may be administered in combination with a targeted HSV of the invention. These agents include, for example, Marimastat (British Biotech, Annapolis Md.; indicated for non-small cell lung, small cell lung and breast cancers); AG3340 (Agouron, LaJolla, Calif.; for glioblastoma multiforme); COL-3 (Collagenex, Newtown Pa.; for brain tumors); Neovastat (Aeterna, Quebec, Canada; for kidney and non-small cell lung cancer) BMS-275291 (Bristol-Myers Squibb, Wallingford Conn.; for metastatic non-small cell lung cancer); Thalidomide (Celgen; for melanoma, head and neck cancer, ovarian, and metastatic prostate cancers; Kaposi's sarcoma; recurrent or metastatic colorectal cancer (with adjuvants); gynecologic sarcomas, liver cancer; multiple myeloma; CLL, recurrent or progressive brain cancer, multiple myeloma, and non-small cell lung, nonmetastatic prostate, refractory multiple myeloma, and renal cancer); Squalamine (Magainin Pharmaceuticals Plymouth Meeting, Pa.; non-small cell lung cancer and ovarian cancer); Endostatin (EntreMEd, Rockville, Md.; for solid tumors); SU5416 (Sugen, San Francisco, Calif.; recurrent head and neck, advanced solid tumors, stage IIB or IV breast cancer; recurrent or progressive brain (pediatric) cancer; ovarian cancer, AML (acute myeloid leukemia); glioma, advanced malignancies, advanced colorectal cancer, von-Hippel Lindau disease, advanced soft tissue cancer; prostate cancer, colorectal cancer, metastatic melanoma, multiple myeloma, malignant mesothelioma: metastatic renal, advanced or recurrent head and neck cancer, metastatic colorectal cancer); SU6668 (Sugen San Francisco, Calif.; advanced tumors); interferon-a; Anti-VEGF antibody (National Cancer Institute, Bethesda Md.; Genentech San Franscisco, Calif., for refractory solid tumors; metastatic renal cell cancer, in untreated advanced colorectal cancer; EMD121974 (Merck KCgaA, Darmstadt, Germany, for HIVrelated Kaposi's sarcoma, and progressive or recurrent Anaplastic Glioma); Interleukin 12 (Genetics Institute, Cambridge, Mass., for Kaposi's sarcoma) and IM862 (Cytran, Kirkland, Wash., for ovarian cancer, untreated metastatic cancers of colon and rectal origin, and Kaposi's sarcoma). The parenthetical information following the agents indicates the cancers against which the agents are being used in these trials. It is contemplated that any of these disorders may be treated with the targeted HSV compositions of the invention, either alone or in combination with the agents listed.

[0074] In order to prepare a therapeutic composition for clinical use, it will be necessary to prepare the therapeutic composition as a pharmaceutical composition, i.e., in a form appropriate for in vivo applications. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or other vertebrates.

[0075] Generally, appropriate salts and buffers are included to render delivery vectors stable and to allow for uptake by target cells. Aqueous compositions of the invention comprise an effective amount of the targeted HSV, dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium. Such compositions also are referred to as inocula. The phrase "pharmaceutically acceptable" or "pharmacologically acceptable" refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, "pharmaceutically acceptable carriers" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Unless a conventional medium or agent is incompatible with either the vectors of the invention or the intended subject receiving treatment, its use in therapeutic compositions is contemplated. Supplementary active or inert ingredients also can be incorporated into the compositions.

[0076] The active compositions of the invention include standard pharmaceutical preparations. Administration of these compositions according to the invention is by any known route, provided that the target tissue is accessible via that route. The pharmaceutical compositions may be introduced into the subject by any conventional method, e.g., by intravenous, intradermal, intramusclar, intramammary, intraperitoneal, intrathecal, retrobulbar, intravesicular, intrapulmonary (e.g., term release); sublingual, nasal, anal, vaginal, or transdermal delivery, or by surgical implantation at a particular site. The treatment may consist of a single dose or a plurality of doses over a period of time.

[0077] Upon formulation, solutions are administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. Appropriate dosages may be ascertained through the use of established routine assays. As studies are conducted, further information will emerge regarding optimal dosage levels and duration of treatment for specific diseases, disorders, and conditions.

[0078] In preferred embodiments, the unit dose may be calculated in terms of the dose of viral particles being administered. Viral doses are defined as a particular number of virus particles or plaque forming units (pfu). Particular unit doses include 10^3 , 10^4 , 10^5 , 10^6 , 10^7 , 10^8 , 10^9 , 10^{10} , 10^{11} , 10^{12} , 10^{13} or 10^{14} pfu. Particle doses may be somewhat higher (10- to 100-fold) due to the presence of infection-defective particles, which is determinable by routine assays known in the art.

[0079] The pharmaceutical compositions and treatment methods of the invention are useful in the fields of human medicine and veterinary medicine. Thus, the subject to be treated may be a vertebrate, e.g., a mammal, preferably human. For veterinary purposes, subjects include, for example, farm animals such as cows, sheep, pigs, horses and goats, companion animals such as dogs and cats, exotic and/ or zoo animals, laboratory animals including mice, rats, rabbits, guinea pigs and hamsters; and poultry such as chickens, turkey, ducks and geese.

[0080] In some embodiments of the invention, it is contemplated that the targeted HSV is administered in conjunction with chemo- or radiotherapeutic intervention, immuno-therapy, or with any other therapy conventionally employed in the treatment of cancer.

[0081] To kill cells, inhibit cell growth, inhibit metastasis, inhibit angiogenesis or otherwise reverse or reduce malignant phenotypes using the methods and compositions of the invention, one contacts a "target" cell, a tumor, or its vasculature with a targeted HSV composition and at least one other agent. The components of these compositions are provided in a

combined amount effective to kill or inhibit proliferation of cancer cells. This process may involve contacting the cells with the targeted HSV composition and the agent(s) or factor (s) at the same time. This may be achieved by contacting the subject organism, or cell of interest, with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same or different times, wherein one composition includes a targeted HSV composition of the invention and the other composition includes the second agent.

[0082] Another aspect of the invention provides diagnostic methods that involve imaging a tumor or diseased tissue using a targeted HSV. Such methods are useful in diagnosing a patient with a disease, disorder, or condition that is indicated by the presence of a receptor on the surface of a cell. Diagnostic imaging methods are discussed above.

[0083] Kits

[0084] Kits according to the invention may include recombinant viruses of the invention or may include vectors for producing such recombinant viruses. A vector for producing a recombinant virus of the invention may encode the gD/ligand fusion protein or may be designed to facilitate cloning of a ligand to produce a gD/ligand fusion protein (e.g., a vector containing a multiple cloning site within the gD coding region that facilitates in-frame insertions).

[0085] Other components that can be included in a kit of the invention include a receptor-expressing cell line (useful as a control), a nucleic acid molecule for expressing the receptor in a particular cell type, and instructions for using the kit to effect diagnostic analyses or therapeutic treatments. In certain embodiments, a therapeutic kit will further contain a component for bringing about a therapeutic effect, such as a prodrug or a toxic compound. In other embodiments, a diagnostic kit will contain a compound useful in imaging methods, such as a chromophore or fluorophore, or an antibody for detecting infected cells.

[0086] Having provided a general description of the various aspects of the invention, the following disclosure provides examples illustrative of the invention, wherein Example 1 describes construction of a targeted HSV, Example 2 illustrates the construction of a cell line expressing a targeted HSV, and Example 3 describes the controlled infection of a desired cell by a targeted HSV.

EXAMPLE 1

Construction of HSV targeting Vector R5111

[0087] A targeted HSV was constructed to target the recombinant virus to cells of malignant gliomas. The target for entry of the virus into such cells is the IL13R α 2 receptor known to be present in malignant gliomas. Unlike the more prevalent IL13 α R1 receptor, the IL13R α 2 receptor has a shorter cytoplasmic domain and does not interact with IL4, of which IL13 is a close relative. In general, the construction of the targeted HSV involved mutagenizing gB and gC to preclude their interaction with heparan sulfate. Also, IL13 was inserted into gD at amino acid 24 thereby disrupting the gD binding site for HveA. The resulting IL13-gD chimeric virus can use IL13R α 2 for entry into cells carrying that receptor.

[0088] More specifically, the targeted HSV R5111 was constructed in several steps depicted in the four panels of FIG. 1 and detailed below.

(SEO ID NO:3)

[0089] (i) Substitution of Amino Terminal Domain of gC with IL13 Fused to the Signal Sequence of gC.

[0090] FIG. 1A, lines 1-3 schematically depicts a cDNA consisting of the IL13 coding sequence fused at its amino terminus to its signal sequence. The complete cDNA of IL 13, with the N-terminal signal peptide coding region, was amplified using the PCR primer elongation method. The primers were as follows:

(SEQ ID NO:1) CATTGCTCTCACTTGCCTGGCGGCTTTGCCTCCCCAGGCCCTGTGC-

CTCCCTCTAGAGC;

pIL13F2,

(SEQ ID NO:2) GCAGCTAGCCTCATGGCGCTTTTGTTGACCACG-

GTCATTGCTCTCACTTGCCTTGGCGGC;

and

pIL13REcoRI,

GAGCTCGGATCCTGAATTCAACCGTCCCTC.

[0091] First-round PCR used pIL13F1 and pIL13REcoRI as primers, with pRB5830 (containing the IL13 coding region) as the template. The PCR reaction mixture was then diluted 10-fold and 1 μ l of the diluted reaction mixture was used as template for the second round of PCR amplifications with pIL13F2 and pIL13REcoRI as the primer set. The PCR product was gel-purified, digested with NheI/EcoRI, and ligated into pBluescript II KS(+) at XbaI/EcoRI sites to generate pRB5832. To construct the transfer plasmid pRB5835, a 4.8-kbp HindIII/SacI fragment containing the HSV-1 gC coding region was released from cosmid pBC1007 and inserted into pBluescript II KS(+) to generate pRB5833. pRB5833 was cleaved with NheI and EcoRI and the N-terminal 148 residues of gC were replaced with the gC-signal/IL13 chimeric sequence (pRB5834). The insert in pRB5834 was released by XhoI/SacI digestion and ligated into pKO5Y at the same sites to generate pRB5835.

[0092] The recombinant virus R5107 (FIG. 1A, line 1) carrying the IL13-gC chimera was generated with the aid of the BAC-HSV system. RR1 competent cells that harbored bacterial artificial chromosome (BAC)-HSV bacmids were transformed with the transfer plasmid pRB5835 by electroporation. After incubation for 1 hour at 30° C. in LB broth, the transformed bacteria were plated on pre-warned Zeocine (Zeo) plus chloramphenicol (Cm) (20 µg/ml of each) plates and incubated overnight at 43° C. for integration. The next day, six colonies were picked and each was separately diluted in 1 ml LB. Five µl of the diluted bacteria were then plated on Cm/10% sucrose (Suc) plates, and incubated at 30° C. overnight. To further confirm the loss of the replacement vector, 24 Cm/Suc-resistant colonies (four colonies from each plate) were restreaked in duplicate on Cm LB and Zeo LB plates, respectively. The Suc^r/Cm^r/Zeo^r colonies were further screened by PCR (95° C., 4 minutes for cycle 1; then 35 cycles of 94° C., 1 minute; 60° C., 1 minute; and 72° C., 1 minute). The primers were:

pgC-F, GACACGGGCTACCCTCACTATCGAGGGC (SEQ ID NO:4; from nt 96158 to 96185 in HSV-1 strain 17), and -continued

pgC-R, GGTGATGTTCGTCAGGACCTCCTCTAGGTC (SEQ ID NO:5; from nt 96859 to 96830 in HSV-1 strain 17).

[0093] The DNA fragment amplified from PCR-positive clones (FIG. 2B) was sequenced to further confirm the integration of IL13 in the correct open reading frame (ORF) of gC. To verify the viability of the recombinant (R5607), the recombinant BAC-HSV DNA was prepared as described elsewhere (Ye et al., 2000) and transfected into rabbit skin cells by Lipofectamine reagent (Life Technologies, Grand Island, N.Y.). The resultant virus, R5607, was stored at -80° C.

[0094] (ii) Deletion of the polylysine track from gB, FIG. 1 panel B. To make a transfer plasmid for the deletion of the gB heparan sulfate binding domain (polylysine), a 4.76 kbp BstEII fragment (from nt 53164 to 57923 of HSV-1) containing the $U_L 27$ (gB) ORF released from cosmid BC1014 was blunt-ended and cloned into pBluescript II KS (+) at a SmaI site to generate pRB5846. To construct pRB5847, from which the 10-amino-acid polylysine domain of gB was deleted, two fragments flanking the polylysine domain were amplified by PCR from pRB5846. The primer sets were:

pgB1BamHI: GTTCTTCTTCGGTTTCGGATCCCCCG;	(SEQ ID NO:6)
pgB2BspEI: CGGCATTTCCGGAATAACGCCCACTC; and	(SEQ ID NO:7)
pgB3BamHI: CAGAAAACCGGATCCCCCAAAGCCGCC;	(SEQ ID NO:8)
pgB4BsiWI: GCCAACACAAACTCGTCGTACGGGTAC.	(SEQ ID NO:9)

[0095] PCR amplified fragments were then cut with BspEI/ BamHI, or BsiWI/BamHI and ligated into pRB5846, which had the 1.2 kbp BsiWI/BspEI fragment already deleted. To generate the transfer plasmid pRB5848, the 4.76 kbp insert in pRB5847 was released by XbaI/EcoRV digestion and ligated into pKO5Y at the sites of XbaI and ScaI. Recombinant HSV-1 virus R5108 is based on R5107 with the additional deletion of the gB heparan sulfate binding domain. It was made by the same procedure as BAC-R5607, except that the transfer plasmid pRB5848 was used instead of BAC-HSV wild-type and pRB5835. The sequence of the mutant gB was verified by sequencing the entire ORF.

[0096] (iii) Deletion of gD (FIG. **1** panel C, lines 6 and 7). The coding sequence of gD was replaced with the human cytomagolovirus immediate early promoter to enable the expression of glycoprotein I. A 0.65 kbp fragment containing the promoter was released from pRB5836 by ClaI digestion and inserted into pgD⁻ (FIG. **6**), a plasmid obtained from G. Campadelli-Fiume. This plasmid, containing the flanking sequences of gD but lacking the gD ORF, had been cut with ClaI to generate pRB5849. pRB5849 was then cut with NotI and PmeI and ligated into pKO5Y at the NotI and ScaI sites to generate the transfer plasmid pRB5850.

[0097] Recombinant HSV-1 virus R5110 is based on R5608 with the additional deletion of gD. It was made by the same procedure as BAC-R5607 except that transfer plasmid

pRB5850 was used instead of BAC-HSV wild-type and pRB5835. The recombinant BAC-HSV DNA was prepared as described in (Ye et al., 2000). The mutant virus was designated R5110.

[0098] (iv) Construction of the R5111 mutant carrying the IL-13-gD chimeric gene (FIG. **1** panel D). Plasmid pRB123 carries a 6,584 bp BamHI J fragment containing the gD coding region and flanking sequences in the BamHI site of pBR322. To construct the IL 13-gD chimeric plasmid, pRB123 was digested with AfIII and HpaI to release two fragments of 7.6 kb and 3.2 kb. The 3.2 kb fragment was further digested with FspI to release 2.5 kb and 0.7 kb fragments that contain the amino-terminal 661 bp of the gi) ORF. A polylinker sequence containing the restriction sites XhoI-BgIII-EcoRI-KpnI was inserted into the 0.7 kb fragment downstream of the 24th codon of gD by two PCR reactions using a first forward primer,

(SEQ ID NO:10) 5'-CAGTTATCCTTAAGGTCTCTTTTGTGTGGGTG-3',

and a first reverse primer,

(SEQ ID NO:11) 5'-CCGGAATTCCGGAGATCTTCCCTCGAGGACCGGAAGGTCTTTGCCGC

GAAAG-3',

and a second forward primer,

(SEQ ID NO:12) 5'CCGGAATTCCGGGGTACCCTGGACCAGCTGACCGACCTCCGG-3',

and a second reverse primer,

(SEQ ID NO:13) 5'-CGGGGGGATGCGCAGCGGGAGGGCGTACTTAC-3',

[0099] respectively. After digestion of the two PCR products by EcoRI, they were ligated and amplified by PCR again to obtain the desired DNA fragment containing the polylinker insertion.

[0100] IL13 was amplified by PCR with the forward primer,

and the reverse primer,

5'-GGGGTACCGTTGAACCGTCCCTCGCGAAA-3', (SEQ ID NO:15)

[0101] and then inserted into the XhoI and KpnI sites of the 0.7 kb fragment described above. This new fragment with the IL13 insertion was then ligated with the 2.5 kb and 7.6 kb fragments (see above) to generate the IL13-gD chimeric transfer plasmid, pRB13-24.

[0102] R5111 was generated by co-transfection of transfer plasmid pRB13-24 and the R5110 viral DNA into U87 glioma cells. The progeny of the transfection was plated at a high dilution on Vero and HEp-2 cell cultures to yield individual, well-spaced plaques. From each of the infected cell cultures, six single plaques were picked, frozen-thawed, soni-

cated, and then replated on fresh cultures of Vero or HEp-2 cells (depending on the origin of the plaque) for preparation of virus stocks and to prepare viral DNA for sequencing.

[0103] Viral DNA extraction. Infected cells were removed from each of the 25 cm² flasks exposed to individual plaque isolates, rinsed, and resuspended in 500 µl of Lyse-O-Lot (150 mM NaCl, 10 mM Tris, 1.5 mM MgCl₂ in the presence of 0.1% of NP40). Nuclei were removed by low-speed centrifugation. To the supernatant fluid were added sodium dodecyl sulfate (SDS) to 0.2%, EDTA to 5 mM and β -ME to 50 mM. The solution was then extracted twice with phenol/ chloroform. Viral DNA was finally precipitated by ethanol, resuspended, and the IL13 ORF and IL13-gD chimeric reading frame were amplified by PCR with two sets of primers. The first set, designed to amplify IL13, consisted of: a forward primer, 5'-CCGCTCGAGATGGCGCTTTTGTTGAC-CACGG-3' (SEQ ID NO:16), and a reverse primer, 5'-GGGGTACCGTTGAACCGTCCCTCGCGAAA-3' (SEQ ID NO:17), which will amplify the IL13 ORF. The second set, designed to amplify the IL13-gD junction, consisted of a forward junction primer, 5'-CCGCTCGAGATG-GCGCTTTTGTTGACCACGG-3' (SEQ ID NO: 18), and a 5'-AACTGCAGGTTGTreverse junction primer,

TCGGGGTGGCCGGGGG-3' (SEQ ID NO:19). All 12 IL13-gD PCR products were sequenced to determine whether the gD sequence contained deletions or substitutions.

[0104] Verification of the structure of R5111 The construction of the R5111 virus is depicted in FIG. **1**. The design involved replacement of the HveA binding site with the IL13 ligand to enable the recombinant virus to bind the IL13 α 2 receptor on cell surfaces and to delete the sequences reported to bind to heparan sulfate. Verification of the structure of R5111 was done as follows:

[0105] (i) The replacement of the amino-terminal domain of gC with IL13 and the disruption of the heparan sulfate binding site was initially verified by sequencing gC from recombinant R5107 (FIG. **2** A).

[0106] (ii) The deletion of codons 68-77 of gB was verified by sequencing the gB ORF amplified by PCR from recombinant R5108 (FIG. **2** B). The nucleotide and amino acid sequences of gB with the polylysine track deleted are set out in SEQ ID NOs.:35 and 36, respectively.

[0107] (iii) The presence of chimeric IL13-gD in R5111 was verified by PCR, as illustrated in FIG. 3, and by sequencing the entire IL13-gD coding region, amplified by PCR, as shown in FIG. 2. The nucleotide and amino acid sequences of gD with the IL13 integration are set out in SEQ ID NOs.:39 and 40, respectively. The R5111 recombinant was initially isolated from transfected U187 cells and grown in parallel in Vero cells and HEp-2 cells. To determine whether the virus grown in Vero cells or HEp-2 cells differed with respect to amino acid sequence, six plaques each from Vero or HEp-2 cultures containing well-separated plaques were picked. In this series of verification experiments, two sets of primers were used to confirm the presence of the IL13 insert in gD and to verify the presence of a junction between IL13 and gD. In a second round of verifications, the 12 clones of gD were sequenced to determine whether the isolates obtained from the viruses passaged in Vero cells or in HEp-2 cells differed in amino acid sequence. No differences were found. Furthermore, except for the inserted IL13 sequence, no differences were found between the sequence of HSV-1 (F) gD and those of the cloned IL-13-gD chimeric genes (FIG. 2 C).

[0108] (iv) In denaturing polyacrylamide gels, IL13 migrated as a protein with an apparent Mr of 15-17,000. In the recombinant R5111, IL13 replaced 148 amino acids of gC. FIG. 4B shows an immunoblot of electrophoretically separated proteins from a lysate of R5111 mutant-infected cells exposed to an antibody to gC. As illustrated in that figure, the anti-gC antibody reacted with proteins present in lysates of HSV-1(F) and with proteins from R5111 lysates, exhibiting similar electrophoretic mobilities. In contrast, an antibody to IL13 reacted with a band of similar mobility in R5111 lysates (FIG. 4C, lane 3) but not in lysates of HSV-1(F) (FIG. 4 C, lane 2). The IL13-gD fusion protein in the R5111 mutant virus was verified by reacting the cell lysates with gD and IL13 antibody. Comparison of wild-type gD and the chimeric IL13-gD chimeric protein (FIG. 4 A, lane 3), showed that, as expected, IL13-gD migrated more slowly than the wild-type gD (FIG. 4A, lane 2). The faster migrating band of gD did not react with the antibody to IL13 (FIG. 4C, lane 2).

EXAMPLE 2

[0109] Construction of a Cell Line Expressing the IL13 Receptor (IL13R α 2)

[0110] A rigorous test of the ability of R5111 to utilize the IL13Ra2 protein as a receptor for entry required construction of a cell line expressing IL13R α 2 (nucleotides 126-1265 of SEQ ID NO.:33; SEQ ID NO:34) in the absence of other HSV-1 entry receptors. The J1.1 cell line was selected for this construction. In essence, this cell line lacks the receptors necessary for the entry of virus into cells and the cell line is not susceptible to infection by wild-type virus. The construction of a plasmid encoding a $IL13R\alpha2$ protein fused at its carboxyl terminus to a HA tag, transfection of J1.1 cells with the plasmid encoding the tagged IL13Ra2 protein, and selection of the cell line expressing the protein is described below. [0111] To test for the production of IL13R α 2 protein, five clones of the selected cells were harvested, solubilized, subjected to electrophoresis in denaturing polyacrylamide gels and tested for expression of the protein.

[0112] Construction of J13R, a cell line stably expressing IL13R α 2 receptor. The IL13 α 2 coding region was tagged with an HA tag at its 3' end (the carboxyl terminus of the encoded polypeptide) by PCR with forward primer, 5'-AA-GATTTGGGC-TAGCATGGCTTTCGTTTGC-3' (SEQ ID NO:20), and reverse primer, 5'-TCCCTCGAAGCTTCAAG-CATAATCTGGCACATCATATGTATCACAGAA-AAA-3' (SEQ ID NO:21). NheI and HindIII restriction digests were used to create compatible ends. The DNA fragment was then inserted into pcDNA 3.1 (zeo) vector (Invitrogen; Carlsbad, Calif.) to generate transfer plasmid pRB13-R2. All of the constructs were sequenced to insure fidelity.

[0113] J1.1, a derivative of BHK thymidine kinase-cells which lack both HveA and nectin 1 receptors, was obtained from Dr. G. Campadelli-Fiume, University of Bologna, Italy. J10.1 cells, stably transfected with pRB 13-R2 using a Lipofectamine kit (Gibco-BRL), were selected on the basis of their resistance to zeocin (Invitrogen). Zeocin-resistant clones were amplified and screened for IL13R α 2 expression by immunoblotting with anti-HA polyclonal antibody. Lysates of parental and transformed cells formed by solubilized in SDS were each electrophoretically separated in a denaturing gel (50 µg/lane), transferred to a nitrocellulose sheet, and probed with antibody against HA (Santa Cruz Biotechnology). The protein bands were visualized by an enhanced chemiluminescent detection (ECL) system (Pierce,

Rockford, Ill.) according to the instructions of the manufacturer. One (J13R-2) was selected for testing the ability of R5111 to use the IL13R α 2 receptor.

[0114] As shown in FIG. **5**, all clones expressed a protein band reactive with the anti-HA antibody. The apparent size of the protein was consistent with the reported size of IL13R α 2. Of 5 J13R-positive clones, J13R-2 (FIG. **5**, lane 3) was selected and designated J13R.

EXAMPLE 3

Infection by the HSV Targeting Vector R5111

[0115] SK-N-SH, HEp-2, Vero, and U87 cells were obtained from American Type Culture Collection (Rockville, Md.) and maintained in Dulbecco's modification of Eagle's Minimal Essential Medium (DMEM) supplemented with 10% fetal bovine serum. Replicate cultures of SK-N-SH, HEp-2, Vero, U87, J1.1, and J13R were exposed to 0.01 PFU of R5111 virus per cell. After 24 hours of incubation, the cells were harvested and viral yields were titered on Vero cells.

[0116] Immunoblotting electrophoretically separated proteins. The indicated cells were mock-infected or exposed to 10 PFU of recombinant or wild-type HSV-1(F) per cell. The cells were harvested at 24 hours after infection, disrupted in SDS disruption buffer, boiled, cleared by centrifugation and electrophoretically separated on a 10% denaturing polyacrylamide gel. After transfer to a nitrocellulose membrane, the isolated proteins were reacted with antibodies as indicated using known and conventional techniques. Monoclonal antibodies against gD-(clone H170), gC- and HA-specific polyclonal antisera were purchased from the Goodwin Institute, Plantation, Fla. Polyclonal antibodies against IL13 were purchased from Santa Cruz Biotechnology.

[0117] The results shown in Table 1 were as follows: R5111 replicated to within a 10-fold range in HEp-2, Vero, U87, and J13R cells. The titer obtained from J1.1 cells was approximately 10⁵-fold lower than that obtained from all other cell lines. To test whether the J13R cell line had acquired a receptor for wild-type HSV-1 (HSV-1(F)), J1.1 and J13R cells were also exposed to the wild-type virus. The results, also shown in Table 1, indicate that the cells remain resistant to the wildtype virus. It was known that HEp-2 cells express the nectin receptor but not the HveA receptor. The results show that the targeted HSV containing an IL13-gD fusion can target (i.e., bind and infect) cells expressing a particular receptor (IL13R α 2) approximately as well as wild-type HSV targets cells expressing the HveA receptor. The results indicate that R5111 can use IL13R α 2 as a receptor for entry in a cell line lacking all other HSV-1 receptors.

TABLE 1

Replication of R5111 in various cell lines		
Virus	Cell Line*	Yield**
R5111	Vero HEp-2 SK-N-SH U87 J1.1 J13R	$ \begin{array}{c} 11 \times 10^{7} \\ 1.2 \times 10^{7} \\ 17 \times 10^{7} \\ 27 \times 10^{7} \\ 2 \times 10^{2} \\ 11 \times 10^{7} \\ \end{array} $
HSV-1(F)	J1.1 J13R	$ \begin{array}{r} 6 \times 10^3 \\ 4 \times 10^3 \end{array} $

*cell lines derived from human brain tumors.

**The cells were exposed to 0.01 PFU of R5111 or HSV-1(F) per cell and harvested 24 hours after infection. Progeny virus were titered on Vero cells.

[0118] This disclosure contains an exemplary description of the construction and properties of a recombinant HSV virus, R5111. In R5111, the heparan sulfate binding sites on the surface of the viral particle were ablated to preclude or at least reduce the attachment of virus to non-targeted cells. Attachment even in the absence of fusogenic activity may lead to endocytosis, degradation of the virus particle, and to potential damage to the cell by lysosomal enzymes (Zhou et al. 2002; Zhou et al. 2000). At the same time, a copy of IL13 was inserted into gC to enhance binding of virus particles to the IL13R α 2 receptor. The major restructuring of the viral genome consisted of insertion of IL13 at amino acid 24 of gD. Available data indicate that this modification ablates the gD binding site for the HveA receptor (Carfi et al. 2001). The data obtained using R5111 indicate that the virus retains the capacity to interact with the Nectin receptor. Nonetheless, the R5111-targeted HSV was able to infect and replicate in J13R cells but not in the parental, J1.1, cells.

EXAMPLE 4

Construction of HSV Targeting Vector R5141 and R5144

[0119] A therapeutic herpes simplex virus 1 (HSV-1) capable of infecting and replicating solely in cells harboring the IL13R α 2 receptor was constructed using recombinant DNA techniques. As disclosed above, construction of R5111, which expresses IL13 on its surface and lacks the binding sites for heparin sulfate, allowed R5111 to infect J-13R cells as well as cells exhibiting the natural receptors for HSV-1. Thus, the involvement of fusogenic glycoproteins of R5111—a key step in viral entry—is independent of the receptor with which gD interacts.

[0120] The binding site of HveA has been reported to be at the amino terminal domain of gD (Carfi A., et al., 2001). The precise binding sites of gD for Nectin 1 are not known, although it has previously been reported to involve gD amino acids 38 and 221 (Manoj S., et al., 2004; Zago A., et al., 2004; Connolly S A., 2005). The general assumption within the field is that the HveA and Nectin 1 sites do not overlap and that each independently promotes the same structural alteration of gD to enable entry of the virus into cells. However, it is possible that the surface structure of HveA and Nectin 1 at their binding sites may be similar even though the Hve1 and Nectin 1 amino acid sequences are not identical.

[0121] Based in part on the foregoing information, viruses capable of productive replication solely in targeted cells were designed as shown in FIG. 7. Using standard molecular biological cloning techniques known in the art, recombinant virus R5141 was constructed by inserting IL13 in the place of gD residues 1-32. In addition, the valine residue at position 34 was substituted with serine ("V34S") (SEQ ID NOs.:41 and 42, respectively). Similarly, recombinant virus R5144 was constructed by inserting IL13 in the place of gD residues 1-32, and the valine at position 37 was substituted with serine ("V37S) (SEQ ID NOs.:43 and 44, respectively).

[0122] One of skill would appreciate that a variety of retargeted SHV, both HSV-1 and HSV-2, could be constructed and assessed using routine techniques in view of the disclosures herein. In particular, substituting a binding domain of a binding partner for the N-terminal region of gD, e.g., for amino acids 1-32 of gD, would be within the skill in the art. Further alteration of the gD fusion, e.g., by amino acid substitution, whether conservative substitution or not, would also be within the skill in the art. Of course, additions or deletions to gD fusions would also be within the skill in the art and assessing the targeting capacities of such constructs would involve routine experimentation in view of the teachings herein.

EXAMPLE 5

Infection by the HSV Targeting Vectors R5141 and R5144

[0123] The capacities of the recombinant viruses described in Example 4 to productively replicate solely in targeted cells were assessed using the cell lines which express either HveA (J-HveA) alone (relative to the group of HveA, Nectin1, and IL13R α 2), Nectin1 (J-Nectin1) alone, or IL13R α 2 (J-13R) alone. For cell infection, the procedure set forth in Example 3 was repeated using recombinant virus R5141 and recombinant virus R5144.

[0124] The replication of R5141 and R5144 in J-Nectin-, J-HveA-, and J-13R-specific cells are summarized in Table 2. R5141 and R5144 do not productively interact with either native gD receptors, HveA or Nectin1. Significantly, however, R5141 interacts with and replicates in IL13R α 2 for productive entry into cells.

TABLE 2

Replication of R5141 and R5144 in J-Nec 13R cells.			HveA and J-
	HSV-1 (F)	R5141	R5144
J-Nectin J-HveA J-13R	4×10^{8} 3×10^{8} 3×10^{1}	7×10^{1} 4×10^{1} 5×10^{6}	5×10^{1} 3×10^{2} 7×10^{2}

[0125] Thus, recombinant virus R5141 is capable of productive replication solely in targeted cells and this result opens the way for development of therapeutic viruses targeting cells exhibiting the IL13R α 2 receptor, such as malignant gliomas and other human tumors exhibiting IL13R α 2. It is expected that other mutations (i.e., those that abolish binding of Nectin and those that have a similar effect on HveA) will yield viruses that enter solely via non-natural HSV receptors.

EXAMPLE 6

HSV Targeting Vector R5161

[0126] An HSV targeting vector designated HSV R5161 has a structure analogous to the structure of HSV R5141, and HSV R5161 was constructed in the manner described in Example 4, above, with the exception that HSV R5161 contains the sequence encoding the HSV gD leader sequence, whereas HSV R5141 contains the sequence encoding the IL-13 leader sequence. In particular, HSV R5161 encodes an IL-13-gD fusion protein in which IL-13 sequence replaces the sequence encoding gD amino acids 1-32, with a V34S substitution in the gD moiety of the fusion protein, as described above in the context of describing HSV R5141.

[0127] The relative capacities of recombinant viruses HSV R5141 and HSV R5161 to productively replicate in targeted cells were measured in the J-13R cell line, which expresses IL13R α 2, but not HveA or Nectin1. HSV R5161 was expressed at a level 10-fold higher than the expression level of HSV R5141 in J-13R cells.

[0128] It is expected that in the majority of embodiments of the invention, relatively high levels of expression will be advantageous in ensuring that targeted cells are efficiently contacted by the re-targeted HSV. In re-targeting the HSV, the invention provides an approach to controlling the virulence of the virus in a manner that minimizes undesirable pathogenicity, i.e., pathogenicity towards non-targeted cells. In addition, the virulence of any re-targeted HSV can be further attenuated using known approaches to virulence control that do not interfere with the re-targeting, such as by mutating the $\gamma_1 34.5$ gene(s). In those embodiments in which it is desirable to have relatively high expression levels of the re-targeted HSV, it is preferred that the leader sequence of gD be used. Alternative leader sequences, such as leaders from other HSV genes, are contemplated. Moreover, expression control elements (e.g., promoters, enhancers, expression factor binding sites) can be engineered to achieve desired expression levels of the fusion protein using ordinary levels of skill and techniques known in the art.

REFERENCES

- **[0129]** Davis F G, Freels S, Grutsch J, Barlas S, Brem S. (1998) *J. Neurosurg.* 88:1-10.
- [0130] Pyles R B, Warnick R E, Chalk C L, Szanti B E, Parysek L M. (1997) *Hum Gene Ther.* 8(5):533-44.
- [0131] Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J, McKie E, Mabbs R, Brown M. (2000) *Gene Ther.* 7(10):859-66.
- **[0132]** McKie E A, Brown S M, MacLean A R, Graham D I. (1998) *Neuropathol Appl Neurobiol.* 24(5):367-72.
- [0133] Markert J M, Medlock M D, Rabkin S D, Gillespie G Y, Todo T, Hunter W D, Palmer C A, Feigenbaum F, Tomatore C, Tufaro F, Martuza R L. (2000) *Gene Ther*. 7(10):867-74.
- [0134] Mineta T, Rabkin S D, Yazaki T, Hunter W D, Martuza R L. (1995) *Nat Med.* 1(9):938-43.
- [0135] Simard C, Langlois I, Styger D, Vogt B, Vlcek C, Chalifour A, Trudel M, Schwyer M. (1995) *Virology*. 212 (2):734-40.
- [0136] Chou J, Chen J J, Gross M, Roizman B. (1995) *Proc Natl Acad Sci USA*. 92(23): 10516-20.
- [0137] He B, Chou J, Brandimarti R, Mohr I, Gluzman Y, Roizman B. (1997) *J. Virol.* 71(8):6049-54
- [0138] Cassady K A, Gross M, Roizman B. (1998) J. Virol. 72(9):7005-11.
- [0139] Leib, D. A., Harrison, T. E., Laslo, K. M., Machalek, M. A., Moorman N. J. and Virgin, H. A W. (1999) *J. Exp. Med.* 189:663-672.
- [0140] Laquerre S, Argnani R, Anderson D B, Zucchini S, Manservigi R, Glorioso J C. (1998). J. Virol. 72(7):6119-30.
- [0141] Spear, P. G., R. J. Eisenberg, and G. H. Cohen. (2000) *Virology* 275: 1-9.
- [0142] Montgomery, R. I., M. S. Warner, B. J. Lum, and P. G. Spear. (1996) *Cell* 87:427-436.
- [0143] Campadelli-Fiume, G., F. Cocchi, L. Menotti, and M. Lopez. (2000) *Reviews in Medical Virology*. 10:305-319.
- [0144] Zhou G, Roizman B. (2002) J Virol. 76(12):6197-204.
- [0145] Debinski W, Gibo D M, Hulet S W, Connor J R, Gillespie G Y. (1999) *Cancer Res.* 5:985-990.

- [0146] Mintz A, Gibo D M, Slagle-Webb B, Christensen N D, Debinski W. (2002) *Neoplasia* 4:388-399.
- [0147] Debinski W. (1998) Crit. Rev. Oncogen. 9:255-268.
- [0148] Debinski W, Gibo D M. (2000) Mol. Med. 6:440-
- 449. [0149] Zhou G, Roizman B. (2001) *J Virol.* 75(13):6166-72.
- [0150] Arsenakis M, Tomasi L F, Speziali V, Roizman B, Campadelli-Fiume G. (1986) *J. Virol.* 58(2):367-76.
- **[0151]** Ye G J, Roizman B. (2000) *Proc Natl Acad Sci USA*. 97(20):11002-7.
- **[0152]** Zhou G, Galvan V, Campadelli-Fiume G, Roizman B. (2000) *J Virol.* 74(24):11782-91.
- [0153] Carfi A, Willis S H, Whitbeck J C, Krummenacher C, Cohen G H, Eisenberg R J, Wiley D C. (2001) *Mol Cell*. 8(1):169-79.
- [0154] Cocchi, F., Menotti, L., Mirandola, P and Campadelli-OFiume, G. (1998) J. Virol. 72:9992-10002.
- **[0155]** Debinski W, Thompson J P. 1999. *Clin Cancer Res.* 5(10 Suppl):3143s-3147s.
- **[0156]** Brooks, P. C., Clark, R. A. F., and Cheresh, D. A. Requirement of vascular integrin $\alpha_{\nu}\beta_3$ for angiogenesis. Science 264:569-571, 1994.
- **[0157]** Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., HU, T., Kier, G., and Cheresh, D. A. Integrin ($\alpha_{\nu}\beta_{3}$ antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157-1164, 1994.
- [0158] Burger, M. J., Tebay, M. A., Keith, P. A., Samaratunga, H. M., Clements, J., Lavin, M. F., and Gardiner, R. A. Expression analysis of δ-Catenin and prostate-specific membrane antigen: Their potential as diagnostic markers for prostate cancer. Int. J. Cancer 100:228-237, 2002.
- [0159] Ellerman, T. C., Domagala, T., McKern N. T. et al, Identification of the determinant of Epidermal growth factor receptor ligand-binding specificity using truncated, high affinity form of the ectodomain. 2001 Biochemistry 40 8930-8939.
- [0160] Genbitsky, D. S., Bozso, Z., O'Flaharty, M. et al., 2001 A specific binding site for a fragment of the B-loop of epidermal growth factor and related peptides. Peptides 23:97-102 A.
- [0161] Urbanelli, L., Ronchini, C., Fontana, L. et al., Tergeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. *J Mol Biol.* 2001 Nov. 9; 313(5):965-76.
- **[0162]** Hayashi, T., Takahashi, T., Motoya, S., et al. MUC1 Mucin core protein binds to the dfomasin of ICAM-1 2001 Digestion 63:87-92.
- [0163] Fracasso, G., Bellisola, G., Cingarlini, S., Castelletti, D., Prayer-Galletti, T., Pagano, F., Tridente, G., and Colombatti, M. Anti-tumor effects of toxins targeted to the prostate specific membrane antigen. Prostate 53:9-23, 2002.
- [0164] Mabjeesh, N. J., Zhong, H., and Simons, J. W. Gene therapy of prostate cancer: current and future directions. Endo. Related Cancer 9:115-139, 2002.
- [0165] Ross, S., Spencer, S. D., Holcomb, I., Tan, C., Hongo, J., Devaux, B., Rangell, L., Keller, G. A., Schow, P., Steeves, R. M., Lutz, R. J., Frantz, G., Hillan, K., Peale, F., Tobin, P., Eberhard, D., Rubin, M. A., Lasky, L. A., and Koeppen, H. Prostate stem cell antigen as therapy target: Tissue expression and in Vivo efficacy of an immunoconjugate. Cancer Res. 62:2546-2553, 2002.

- [0166] Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12:697-715, 1996.
- [0167] Thomas, J., Gupta, M., Grasso, Y., Reddy, C. A., Heston, W. D., Zippe, C., Dreicer, R., Kupelian, P. A., Brainard, J., Levin, H. S., and Klein, E. A. Preoperative combined nested reverse transcriptase polymerase chain reaction for prostate-specific antigen and prostate-specific membrane antigen does not correlate with pathologic stage or biochemical failure in patients with localized prostate cancer undergoing radical prostatectomy. *J. Clin. Oncol.* 20:3213-3218, 2002.
- **[0168]** Lorimer and Lavictoire, Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe, *J Immunol Methods* 237(1-2):147-57, 2000.
- **[0169]** Turner et al., Glycoproteins gB, gD, and gHgL of Herpes Simplex Virus Type 1 are Necessary and Sufficient t Mediate membrane fusion in a Cos cell transfection system, *J of Virol*, 72(1): 873-75, 1998.

<160> NUMBER OF SEO ID NOS: 44

<223> OTHER INFORMATION: Synthetic primer

- **[0170]** Brunetti et al., Herpes Simplex Virus gD and Virions Accumulate in Endosomes by Mannose 6-Phosphate-Dependent and -Independent Mechanisms, *J of Virol*, 72(4): 3330-3339, 1998.
- [0171] Sharma et al., Molecular imaging of gene expression and protein function in vivo with PET and SPECT, *J Magn Reson Imaging*, 16(4):336-51, 2002.
- **[0172]** Vries et al., Scintgraphic Imaging of HSVtk Gene Therapy, *Curr Pharm Des*, 8(16):1435-50, 2002.
- [0173] Vries et al., Positron emission tomography: measurement of transgene expression, *Methods*, 27(3):234, 2002.
- **[0174]** Soling et al., Intracellular localization of Herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag, *FEBS Lett*, 527(1-3): 153, 2002.
- [0175] Zhou G., and Roizman B., J Virol, 9:5272-5277 (2005)
- [0176] Manoj S., et al., *Proc. Natl. Acad. Sci. USA.*, 101: 12414-12421 (2004);
- [0177] Zago A., et al., Proc. Natl. Acad. Sci. USA., 101: 17498-17503 (2004);
- [0178] Connolly S A., J. Virol., 79:1282-1295 (2005)

SEQUENCE LISTING

<210> SEO TD NO 1 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 1 cattgetete acttgeettg geggetttge etceeeagge eetgtgeete eetetaeage 60 <210> SEQ ID NO 2 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 2 gcagctagcc tcatggcgct tttgttgacc acggtcattg ctctcacttg ccttggcggc 60 <210> SEQ ID NO 3 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 3 gageteggat cetgaattea acegteeete 30 <210> SEQ ID NO 4 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE:

-continued

<400> SEQUENCE: 4	
gacacgggct acceteacta tegaggge	28
<210> SEQ ID NO 5 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 5	
ggtgatgtte gteaggaeet eetetaggte	30
<210> SEQ ID NO 6 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 6	
gttettette ggttteggat eeeeg	26
<210> SEQ ID NO 7 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 7	
cggcatttcc ggaataacgc ccactc	26
<210> SEQ ID NO 8 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 8	
cagaaaaccg gatcccccaa agccgcc	27
<210> SEQ ID NO 9 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 9	
	27
gccaacacaa actogtogta ogggtao	27
<pre><210> SEQ ID NO 10 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer</pre>	
<400> SEQUENCE: 10	
cagttateet taaggtetet tttgtgtggt g	31

-continued

<210> SEO ID NO 11 <211> LENGTH: 52 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 11 ccggaattcc ggagatcttc cctcgaggac cggaaggtct ttgccgcgaa ag 52 <210> SEQ ID NO 12 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 12 ccggaattcc ggggtaccct ggaccagctg accgaccctc cgg 43 <210> SEQ ID NO 13 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 13 32 cgggggggatg cgcagcggga gggcgtactt ac <210> SEQ ID NO 14 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 14 ccgctcgaga tggcgctttt gttgaccacg g 31 <210> SEQ ID NO 15 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 15 ggggtaccgt tgaaccgtcc ctcgcgaaa 29 <210> SEQ ID NO 16 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 16 ccgctcgaga tggcgctttt gttgaccacg g 31 <210> SEQ ID NO 17 <211> LENGTH: 29 <212> TYPE: DNA

17

-continued	
<213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 17	
ggggtaccgt tgaaccgtcc ctcgcgaaa	29
<pre><210> SEQ ID NO 18 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer</pre>	
<400> SEQUENCE: 18	
ccgctcgaga tggcgctttt gttgaccacg g	31
<210> SEQ ID NO 19 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer	
<400> SEQUENCE: 19	
aactgcaggt tgttcgggggt ggccggggg	29
<pre><210> SEQ ID NO 20 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer</pre>	
<400> SEQUENCE: 20	
aagatttggg ctagcatggc tttcgtttgc	30
<pre><210> SEQ ID NO 21 <211> LENGTH: 51 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer</pre>	
<400> SEQUENCE: 21	
teeetegaag etteaageat aatetggeae ateatatgta teacagaaaa a	51
<210> SEQ ID NO 22 <211> LENGTH: 568 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1	
<400> SEQUENCE: 22	
gettggtegg gaggeegeat egaaegeaea eeeceateeg gtggteegtg tggaggtegt	60
ttttcagtgc ccggtctcgc tttgccggga acgctagcct catggcgctt ttgttgacca	120
eggteattge teteacttge ettggegget ttgeeteeee aggeeetgtg eeteeeteta	180
cageceteag gtaceteatt gaggagetgg teaacateae eeagaaeeag aaggeteege	240
tetgeaatgg cageatggta tggageatea acetgaeage tggeatgtae tgtgeageee	300
tggaatccct gatcaacgtg tcaggctgca gtgccatcga gaagacccag aggatgctga	360

18

19

-continued

gcggattetg ceegcacaag gteteagetg ggeagtttte cagettgeat gteegagaea 420 ccaaaatcga ggtggcccag tttgtaaaag atctgctctt acatttaaag aaactttttc 480 gcgagggacg gttgaattcc acccgcatgg agttccgcct ccagatatgg cgttactcca 540 tgggtccgtc cccccaatc gctccggc 568 <210> SEO ID NO 23 <211> LENGTH: 350 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 23 gggtcctggt ggcgtcggcg gctccgagtt cccccggcac gcctggggtc gcggccgcga 60 120 cccaggegge gaacggggga cctgccacte eggegeegee egeeetgge eeegeeeaa cggggggatcc gaaaccgaag aagaacagaa aaccgaaacc cccaaagcgc cgcgccccgc 180 cggcgacaac gcgaccgtcg ccgcgggcca cgccaccctg cgcgagcacc tgcgggacat 240 caaggeggag aacaeegatg caaaetttta egtgtgeeea eeeeegg gegeeaeggt 300 350 ggtgcagttc gagcagccgc gccgctgccc gacccggccc gagggtcaga <210> SEQ ID NO 24 <211> LENGTH: 655 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Amino-terminal sequence of IL13-gD <400> SEQUENCE: 24 atgggggggg ctgccgccag gttggggggc gtgattttgt ttgtcgtcat agtcggcctc 60 120 catggggtcc gcggcaaata tgccttggcg gatgcctctc tcaagctggc cgaccccaat cgctttcgcc gcaaagacct tccggtcctc gagatggcgc ttttgttgac cacggtcatt 180 geteteactt geettggegg etttgeetee ceaggeeetg tgeeteeet etacageeet 240 cagggagete attgaggage tggteaacat caeccagaae cagaaggete egetetgeaa 300 tggcagcatg gtttggagca tcaacctgac agctggcatg tactgtgcag ccctggaatc 360 cctgatcaac gtgtcaggct gcagtgccat cgagaagacc cagaggatgc tgggcggatt 420 ctgcccgcac aaggtctcag ctgggcagtt ttccagcttg catgtccgag acaccaaaat 480 cgaggtggcc cagtttgtaa aggacctgct cttacattta aagaaacttt ttcgcgaggg 540 acggttcaac tgaaacggta ccctggacca gctgaccgac cctccggggg tccggcgcgt 600 gtaccacate caggegggee taceggacee gttecageee eccageetee egate 655 <210> SEQ ID NO 25 <211> LENGTH: 1185 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 25 atgggggggg ctgccgccag gttggggggcc gtgattttgt ttgtcgtcat agtgggcctc 60 catggggtcc gcggcaaata tgccttggcg gatgcctctc tcaagatggc cgaccccaat 120 cgctttcgcg gcaaagacct tccggtcccg gaccggctga ccgaccctcc gggggtccgg 180 cgcgtgtacc acatccaggc gggcctaccg gacccgttcc agccccccag cctcccgatc 240

acggtttact acgeegtgtt ggagegegee tgeegeageg tgeteetaaa egeaeegteg 300
gaggcccccc agattgtccg cggggcctcc gaagacgtcc ggaaacaacc ctacaacctg 360
accatcgctt ggtttcggat gggaggcaac tgtgctatcc ccatcacggt catggagtac 420
accgaatget eetacaacaa gtetetgggg geetgteeea teegaaegea geeeegetgg 480
aactactatg acagetteag egeegteage gaggataaee tggggtteet gatgeaegee 540
cccgcgtttg agaccgccgg cacgtacctg cggctcgtga agataaacga ctggacggag 600
attacacagt ttateetgga geacegagee aagggeteet gtaagtaege eetteegetg 660
cgcatccccc cgtcagcctg cctctccccc caggcctacc agcagggggt gacggtggac 720
agcateggga tgetgeeeeg etteateeee gagaaceage geacegtege egtataeage 780
ttgaagateg eegggtggea egggeeeaag geeeeataea egageaeeet getgeeeeeg 840
gagetgteeg agaeeeecaa egecaegeag eeagaaeteg eeeeggaaga eeeegaggat 900
teggeeetet tggaggaeee egtggggaeg gtggtgeege aaateeeaee aaaetggeae 960
atacegtega tecaggaege egegaegeet taceateeee eggeeaeeee gaacaaeatg 1020
ggeetgateg eeggegeggt gggeggeagt eteetggtag eeetggteat ttgeggaatt 1080
gtgtactgga tgcgccgccg cactcaaaaa gccccaaagc gcatacgcct cccccacatc 1140
rgggaagacg accageegte etegeaceag ecettgtttt actag 1185
<212> TYPE: PRT <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 26
Met Gly Gly Ala Ala Arg Leu Gly Ala Val Ile Leu Phe Val Val 5 10 15
Ile Val Gly Leu His Gly Val Arg Gly Lys Tyr Ala Leu Ala Asp Ala 20 25 30
Ser Leu Lys Met Ala Asp Pro Asn Arg Phe Arg Gly Lys Asp Leu Pro
35 40 45
35 40 45
35 40 45 Val Pro Asp Arg Leu Thr Asp Pro Pro Gly Val Arg Arg Val Tyr His 50 55 60 Ile Gln Ala Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile
35 40 45 Jal Pro Asp Arg Leu Thr Asp Pro Pro Gly Val Arg Arg Val Tyr His 50 50 55 60 Ile Gln Ala Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile 80
354045Val Pro Asp Arg Leu Thr Asp Pro Pro Gly Val Arg Arg Val Tyr His50556011e Gln Ala Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile55707580
35 40 45 Val Pro Asp Arg Leu Thr Asp Pro Pro Gly Val Arg Arg Val Tyr His 55 50 55 55 1e Gln Ala Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile 55 70 70 70 70 70 75 70 75 70 76 70 77 70 70
35 40 45 $7al Pro Asp Arg Leu Thr Asp Pro Pro Gly Val Arg Arg Val Tyr His$ $50 Asp Arg Leu Thr Asp Pro Pro Pro Gly Val Arg Arg Val Tyr His$ $60 Asp Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro$
354045ValProAspArgLeuThrAspProProGlyValArgArgValTyrHis11eGlnAlaGlyLeuProAspProProProProProProProProIleu40AspProProProProGlyValArgArgValTyrHis11eAlaGlyLeuProAspProProProProProProProPro11bValTyrTyrAlaValLeuGluArgAlaProProProProProPro11bProSerGluAlaProGluAlaProProProProProProProProPro11bProSerGluAlaProGluAlaProPr
35 40 45 ValProAspArgLeuThrAspProProGlyValArgArgValTyrHis 50 AspArgFroProSerProProSerLeuProIle 60 AspArgProProProProProProProIlePro 60 AspProProProProProProProProProIle 60 AspProProProProProProProProProProPro 60 AspProProProProProProProProProProPro 61 ProProAspProProProProProProProProProProPro 70 ProProProProProProProProProProProProProPro 70 ProProProProProProProProProProProProProProProPro 70 ProProProProProProProProProProProProProPro 70 ProProProProProProProProProProProProProPro 71 <td< td=""></td<>
354045ValProAspArgLeuThrAspProProGlyValArgArgValTyrHis11eS0AlaGlyLeuProAspProProProProProProProIle65GlnAlaGlyLeuProAspProProProProProProProIle65GlnAlaGlyLeuProAspProProProProProProIle65GlnAlaS1LeuGluArgAlaCysArgSerValLeuProIle65GlyAlaProSerGluAlaProAspArgAlaSerValLeuProIle65GlyAlaProGluAlaProGlnIleValArgGlyAlaSerValLeu70NAspLeuGluAlaProGluAlaProBloSerIleAsp70NNRGluAlaProGluAlaProAlaSerValAsp70NNRGluAlaTrpPheArgMetGluAspSer70NNRNNNNNNNN70N

-continued	
Val Lys Ile Asn Asp Trp Thr Glu Ile Thr Gln Phe Ile Leu Glu His 195 200 205	
Arg Ala Lys Gly Ser Cys Lys Tyr Ala Leu Pro Leu Arg Ile Pro Pro 210 215 220	
Ser Ala Cys Leu Ser Pro Gln Ala Tyr Gln Gln Gly Val Thr Val Asp 225 230 235 240	
Ser Ile Gly Met Leu Pro Arg Phe Ile Pro Glu Asn Gln Arg Thr Val 245 250 255	
Ala Val Tyr Ser Leu Lys Ile Ala Gly Trp His Gly Pro Lys Ala Pro	
Tyr Thr Ser Thr Leu Leu Pro Pro Glu Leu Ser Glu Thr Pro Asn Ala	
275 280 285 Thr Gln Pro Glu Leu Ala Pro Glu Asp Pro Glu Asp Ser Ala Leu Leu	
290 295 300 Glu Asp Pro Val Gly Thr Val Val Pro Gln Ile Pro Pro Asn Trp His	
305 310 315 320	
Ile Pro Ser Ile Gln Asp Ala Ala Thr Pro Tyr His Pro Pro Ala Thr 325 330 335	
Pro Asn Asn Met Gly Leu Ile Ala Gly Ala Val Gly Gly Ser Leu Leu 340 345 350	
Val Ala Leu Val Ile Cys Gly Ile Val Tyr Trp Met Arg Arg Arg Thr 355 360 365	
Gln Lys Ala Pro Lys Arg Ile Arg Leu Pro His Ile Arg Glu Asp Asp 370 375 380	
Gln Pro Ser Ser His Gln Pro Leu Phe Tyr 385 390	
<210> SEQ ID NO 27 <211> LENGTH: 2715 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1	
<400> SEQUENCE: 27	
atgegeeagg gegeeeeege gegggggege eggtggtteg tegtatggge getettgggg	60
ttgacgetgg gggteetggt ggegteggeg geteegagtt eeeeeggeae geetggggte	120
geggeegega eecaggegge gaacggggge eetgecaete eggegeegee egeeeetgge	180
gcccccccaa cgggggaccc gaaaccgaag aagaacagaa aaccgaaacc cccaaagccg	
ccgcgccccg ccgcgacaa cgcgaccgtc gccgcgggcc acgccaccct gcgcgagcac	300
ctgogggaca tcaaggogga gaacaccgat gcaaactttt acgtgtgccc accccccacg	360
ggegeeaegg tggtgeagtt egageageeg egeegetgee egaeeeggee egagggteag	420 480
aactacacgg agggcatcgc ggtggtcttc aaggagaaca tcgccccgta caagttcaag gccaccatgt actacaaaga cgtcaccgtt tcgcaggtgt ggttcggcca ccgctactcc	480
cagtttatgg ggatetttga ggacegegee ceegteeeet tegaggaggt gategacaag	600
atcaacgcca agggggtctg teggtecaeg gecaagtaeg tgegcaacaa eetggagage	660
accgcgtttc accgggacga ccacgagacc gacatggagc tgaaaccggc caacgccgcg	720
accegeacga geeggggetg geacaceace gaeeteaagt acaaceeete gegggtggag	780
gcgttccacc ggtacgggac gacggtaaac tgcatcgtcg aggaggtgga cgcgcgctcg	840
gtgtacccgt acgacgagtt tgtgttggcg actggcgact ttgtgtacat gtccccgttt	900

22

-continued

tacggctacc gggag	ggggtc gcacaccgaa	cacaccaget	acgccgccga	ccgcttcaag	960
caggtcgacg gcttc	ctacgc gcgcgacctc	accaccaagg	cccgggccac	ggcgccgacc	1020
accoggaaco tgoto	cacgac ccccaagttc	accgtggcct	gggactgggt	gccaaagcgc	1080
ccgtcggtct gcaco	catgac caagtggcag	gaggtggacg	agatgctgcg	ctccgagtac	1140
ggeggeteet teega	attete tteegaegee	atatccacca	ccttcaccac	caacctgacc	1200
gagtaccege tetee	gegegt ggaeetgggg	gactgcatcg	gcaaggacgc	ccgcgacgcc	1260
atggaccgca tctto	cgcccg caggtacaac	gcgacgcaca	tcaaggtggg	ccagccgcag	1320
tactacctgg ccaat	tggggg ctttctgatc	gcgtaccagc	cccttctcag	caacacgctc	1380
gcggagctgt acgto	geggga acaceteege	gagcagagcc	gcaagccccc	aaaccccacg	1440
cccccgccgc ccgg	ggccag cgccaacgcg	tccgtggagc	gcatcaagac	cacctcctcc	1500
atcgagttcg ccage	getgea gtttaegtae	aaccacatac	agcgccatgt	caacgatatg	1560
ttgggccgcg ttgcc	catege gtggtgegag	ctgcagaatc	acgagctgac	cctgtggaac	1620
gaggeeegea agete	gaaccc caacgccatc	gcctcggcca	ccgtgggccg	gcgggtgagc	1680
gegeggatge tegge	cgacgt gatggccgtc	tccacgtgcg	tgccggtcgc	cgcggacaac	1740
gtgatcgtcc aaaac	ctcgat gcgcatcagc	tcgcggcccg	gggcctgcta	cagccgcccc	1800
ctggtcagct ttcgg	gtacga agaccagggc	ccgttggtcg	agggggcagct	ggggggagaac	1860
aacgagetge ggete	gacgcg cgatgcgatc	gagccgtgca	ccgtgggaca	ccggcgctac	1920
ttcaccttcg gtggg	gggcta cgtgtacttc	gaggagtacg	cgtactccca	ccagctgagc	1980
cgcgccgaca tcacc	caccgt cagcaccttc	atcgacctca	acatcaccat	gctggaggat	2040
cacgagtttg tcccc	cctgga ggtgtacacc	cgccacgaga	tcaaggacag	cggcctgctg	2100
gactacacgg aggto	ccagcg ccgcaaccag	ctgcacgacc	tgcgcttcgc	cgacatcgac	2160
acggtcatcc acgco	cgacgc caacgccgcc	atgtttgcgg	gcctgggcgc	gttcttcgag	2220
gggatgggcg accto	ggggcg cgcggtcggc	aaggtggtga	tgggcatcgt	gggcggcgtg	2280
gtateggeeg tgteg	gggegt gteeteette	atgtccaacc	cctttggggc	gctggccgtg	2340
ggtctgttgg tcctg	ggeegg eetggeggeg	gccttcttcg	cctttcgcta	cgtcatgcgg	2400
ctgcagagca accco	catgaa ggccctgtac	ccgctaacca	ccaaggagct	caagaacccc	2460
accaacccgg acgc	gteegg ggagggegag	gagggcggcg	actttgacga	ggccaagcta	2520
gccgaggccc gggag	gatgat acggtacatg	gccctggtgt	ctgccatgga	gcgcacggaa	2580
cacaaggcca agaag	gaaggg cacgagcgcg	ctgctcagcg	ccaaggtcac	cgacatggtc	2640
atgcgcaagc gccgc	caacac caactacacc	caagttccca	acaaagacgg	tgacgccgac	2700
gaggacgacc tgtga	a				2715
<210> SEQ ID NO <211> LENGTH: 90 <212> TYPE: PRT <213> ORGANISM:		irus-1			
<400> SEQUENCE:	28				
Met Arg Gln Gly 1	Ala Pro Ala Arg 5	Gly Arg Arg 10	Trp Phe Val	l Val Trp 15	
Ala Leu Leu Gly 20	Leu Thr Leu Gly	Val Leu Val 25	Ala Ser Ala 30	a Ala Pro	

-continued

Ser	Ser	Pro 35	Gly	Thr	Pro	Gly	Val 40	Ala	Ala	Ala	Thr	Gln 45	Ala	Ala	Asn
Gly	Gly 50	Pro	Ala	Thr	Pro	Ala 55	Pro	Pro	Ala	Pro	Gly 60	Ala	Pro	Pro	Thr
Gly 65	Aab	Pro	Lys	Pro	Lys 70	Lys	Asn	Arg	Lys	Pro 75	Lys	Pro	Pro	Lys	Pro 80
Pro	Arg	Pro	Ala	Gly 85	Asp	Asn	Ala	Thr	Val 90	Ala	Ala	Gly	His	Ala 95	Thr
Leu	Arg	Glu	His 100	Leu	Arg	Asp	Ile	Lys 105	Ala	Glu	Asn	Thr	Asp 110	Ala	Asn
Phe	Tyr	Val 115	Сүз	Pro	Pro	Pro	Thr 120	Gly	Ala	Thr	Val	Val 125	Gln	Phe	Glu
Gln	Pro 130	Arg	Arg	Сүз	Pro	Thr 135	Arg	Pro	Glu	Gly	Gln 140	Asn	Tyr	Thr	Glu
Gly 145	Ile	Ala	Val	Val	Phe 150	ГЛа	Glu	Asn	Ile	Ala 155	Pro	Tyr	ГЛЗ	Phe	Lys 160
Ala	Thr	Met	Tyr	Tyr 165	Lys	Asp	Val	Thr	Val 170	Ser	Gln	Val	Trp	Phe 175	Gly
His	Arg	Tyr	Ser 180	Gln	Phe	Met	Gly	Ile 185	Phe	Glu	Asp	Arg	Ala 190	Pro	Val
Pro	Phe	Glu 195	Glu	Val	Ile	Asp	Lys 200	Ile	Asn	Ala	Lys	Gly 205	Val	Суз	Arg
Ser	Thr 210	Ala	Lys	Tyr	Val	Arg 215	Asn	Asn	Leu	Glu	Thr 220	Thr	Ala	Phe	His
225	-	-			230					235			Asn		240
Thr	Arg	Thr	Ser	Arg 245	Gly	Trp	His	Thr	Thr 250	Asp	Leu	Lys	Tyr	Asn 255	Pro
Ser	Arg	Val	Glu 260	Ala	Phe	His	Arg	Tyr 265	Gly	Thr	Thr	Val	Asn 270	Сув	Ile
		275		-		-	280		-		-	285	Glu		
Leu	Ala 290	Thr	Gly	Asp	Phe	Val 295	Tyr	Met	Ser	Pro	Phe 300	Tyr	Gly	Tyr	Arg
305					310					315			Arg		320
Gln	Val	Asp		Phe 325		Ala	Arg		Leu 330		Thr	Lys	Ala	Arg 335	Ala
Thr	Ala	Pro	Thr 340	Thr	Arg	Asn	Leu	Leu 345	Thr	Thr	Pro	Lys	Phe 350	Thr	Val
Ala	Trp	Asp 355	Trp	Val	Pro	ГЛа	Arg 360	Pro	Ser	Val	Суз	Thr 365	Met	Thr	Lys
Trp	Gln 370	Glu	Val	Asp	Glu	Met 375	Leu	Arg	Ser	Glu	Tyr 380	Gly	Gly	Ser	Phe
385					390					395			Asn		400
Glu	Tyr	Pro	Leu	Ser 405	Arg	Val	Asp	Leu	Gly 410	Asp	Сүз	Ile	Gly	Lys 415	Asp
Ala	Arg	Asp	Ala 420	Met	Asp	Arg	Ile	Phe 425	Ala	Arg	Arg	Tyr	Asn 430	Ala	Thr

24

											-	con	tin	ued	
His	Ile	Lys 435	Val	Gly	Gln	Pro	Gln 440	Tyr	Tyr	Leu	Ala	Asn 445	Gly	Gly	Phe
Leu	Ile 450	Ala	Tyr	Gln	Pro	Leu 455	Leu	Ser	Asn	Thr	Leu 460	Ala	Glu	Leu	Tyr
Val 465	Arg	Glu	His	Leu	Arg 470	Glu	Gln	Ser	Arg	Lys 475	Pro	Pro	Asn	Pro	Thr 480
Pro	Pro	Pro	Pro	Gly 485	Ala	Ser	Ala	Asn	Ala 490	Ser	Val	Glu	Arg	Ile 495	Lys
Thr	Thr	Ser	Ser 500	Ile	Glu	Phe	Ala	Arg 505	Leu	Gln	Phe	Thr	Tyr 510	Asn	His
Ile	Gln	Arg 515	His	Val	Asn	Asp	Met 520	Leu	Gly	Arg	Val	Ala 525	Ile	Ala	Trp
Суз	Glu 530	Leu	Gln	Asn	His	Glu 535	Leu	Thr	Leu	Trp	Asn 540	Glu	Ala	Arg	Lys
Leu 545		Pro	Asn	Ala	Ile 550		Ser	Ala	Thr	Val 555		Arg	Arg	Val	Ser 560
	Arg	Met	Leu	Gly 565	Asp	Val	Met	Ala	Val 570		Thr	Суз	Val	Pro 575	
Ala	Ala	Asp	Asn 580		Ile	Val	Gln	Asn 585		Met	Arg	Ile	Ser 590		Arg
Pro	Gly			Tyr	Ser	Arg			Val	Ser	Phe	-		Glu	Asp
Gln			Leu	Val	Glu		600 Gln	Leu	Gly	Glu		605 Asn	Glu	Leu	Arg
	610 Thr		Asp	Ala	Ile	615 Glu	Pro	Суз	Thr		620 Gly	His	Arg	Arg	
625 Phe	Thr	Phe	Gly		630 Gly	Tyr	Val	Tyr		635 Glu	Glu	Tyr	Ala		640 Ser
His	Gln	Leu	Ser	645 Arg	Ala	Asp	Ile	Thr	650 Thr	Val	Ser	Thr	Phe	655 Ile	Asp
Leu	Asn	Ile	660 Thr	Met	Leu	Glu	Asp	665 His	Glu	Phe	Val	Pro	670 Leu	Glu	Val
		675			Ile		680					685			
	690					695					700	-	•		
705		-			Gln 710			-		715					720
				725					730				-	735	-
			740	-	Met	-	-	745	-	-			750	-	
Val	Met	Gly 755	Ile	Val	Gly	Gly	Val 760	Val	Ser	Ala	Val	Ser 765	Gly	Val	Ser
Ser	Phe 770	Met	Ser	Asn	Pro	Phe 775	Gly	Ala	Leu	Ala	Val 780	Gly	Leu	Leu	Val
Leu 785	Ala	Gly	Leu	Ala	Ala 790	Ala	Phe	Phe	Ala	Phe 795	Arg	Tyr	Val	Met	Arg 800
Leu	Gln	Ser	Asn	Pro 805	Met	Lys	Ala	Leu	Tyr 810	Pro	Leu	Thr	Thr	Lys 815	Glu
Leu	Lys	Asn	Pro 820	Thr	Asn	Pro	Asp	Ala 825	Ser	Gly	Glu	Gly	Glu 830	Glu	Gly
Gly	Asp	Phe	Asp	Glu	Ala	ГЛа	Leu	Ala	Glu	Ala	Arg	Glu	Met	Ile	Arg

-continued

835	840	845	
-	Ser Ala Met Glu Arg Thr	r Glu His Lys Ala Lys	
850	855	860	
	Ala Leu Leu Ser Ala Lys 370		
Met Arg Lys Arg Arg A	Asn Thr Asn Tyr Thr Glr	n Val Pro Asn Lys Asp	
885	890	895	
Gly Asp Ala Asp Glu A 900	sp Asp Leu		
<210> SEQ ID NO 29 <211> LENGTH: 1800			
<212> TYPE: DNA <213> ORGANISM: Herpe	s Simplex Virus-1		
<400> SEQUENCE: 29			
agggcgcttg gtcgggaggc	; cgcatcgaac gcacaccccc	c atccggtggt ccgtgtggag	60
gtcgttttca tgcccggtct	; cgctttgtcg ggaacgctac	g ccggtccctc gcgaggggga	120
ggcgtcgggc atggccccgg	ı ggegggtggg eettgeegtg	g gteetgtgga geetgttgtg	180
geteggggeg ggggtggeeg	y ggggetegga aactgeetee	c accgggccca cgatcaccgc	240
gggagcggtg acgaacgcga	u gegaggeeee cacategggg	g teeccegggt cageegeeag	300
cccggaagtc acccccacat	; cgaccccaaa ccccaacaat	gtcacacaaa acaaaaccac	360
ccccaccgag ccggccagcc	: ccccaacaac ccccaagccc	c acctccacgc ccaaaagccc	420
ccccacgtcc acccccgacc	: ccaaacccaa gaacaacacc	c acccccgcca agtcgggccg	480
ccccactaaa ccccccgggc	: ccgtgtggtg cgaccgccgc	c gacccattgg cccggtacgg	540
ctcgtgggtg cagatccgat	geeggttttg gaatteeace	c cgcatggagt teegeeteea	600
gatatggcgt tactccatge	gtccgtcccc cccaatcgct	c ccggctcccg acctagagga	660
ggtcctgacg aacatcacco) ccccacccgg gggactcctg	g gtgtacgaca gcgcccccaa	720
cctgacggac ccccacgtgc	; tetgggegga gggggeegge	c ccgggcgccg accetecgtt	780
gtattetgte acegggeege	: tgccgaccca gcggctgatt	ateggegagg tgaegeeege	840
gacccaggga atgtattact	: tggcctgggg ccggatggac	e ageeegeaeg agtaegggae	900
gtgggtgcgc gtccgcatgt	: teegeceeee gtetetgaee	c ctccagcccc acgcggtgat	960
ggagggtcag ccgttcaagg) cgacgtgcac ggccgccgcc	c tactacccgc gtaaccccgt	1020
ggagtttgtc tggttcgagg	j acgaccgcca ggtgtttaac	c ccgggccaga tcgacacgca	1080
gacgcacgag caccccgacc) ggttcaccac agtctctacc	c gtgacctccg aggctgtcgg	1140
cggccaggtc cccccgcgga	ι ccttcacctg ccagatgacg	g tggcaccgcg actccgtgac	1200
gttctcgcga cgcaatgcca	ı cegggetgge eetggtgete	g ccgcggccaa ccatcaccat	1260
ggaatttggg gtccggcate	j tggtctgcac ggccggctgc	c gteeeegagg gegtgaegtt	1320
tgcctggttc ctggggggacg	J accecteace ggeggetaag	g teggeegtta eggeeeagga	1380
gtcgtgcgac caccccgggc	; tggctacggt ccggtccacc	c ctgcccattt cgtacgacta	1440
cagcgagtac atctgtcggt	; tgaccggata tccggccggg	g attecegtte tagageacea	1500
cggcagtcac cagcccccac	; ccagggaccc caccgagcgg	g caggtgatcg aggcgatcga	1560
gtgggtgggg attggaatco	j gggttetege ggegggggte	c ctggtcgtaa cggcaatcgt	1620

-continued

		_														
gta	cgtcg	gtc (cgca	catca	ac ag	gtcg	cggca	a gcę	gtca	tcgg	cggt	aac	geg a	agaco	ccccc	1680
gtta	acctt	tt t	taat	atcta	at a	tagt	ttggi	c cc(cccci	tcta	tcc	cgcc	cac (cgct	gggcgc	1740
tata	aaago	ccg (ccac	cctci	c ti	tccc	tcag	g tca	atcci	ttgg	tcga	atcc	cga a	acga	cacacg	1800
<21: <21:	0> SE 1> LE 2> TY 3> OR	ENGTH PE :	I: 5: PRT	11	bes S	Simpl	lex \	Virus	3-1							
<400)> SE	QUEN	ICE :	30												
Met 1	Ala	Pro	Gly	Arg 5	Val	Gly	Leu	Ala	Val 10	Val	Leu	Trp	Gly	Leu 15	Leu	
Trp	Leu	Gly	Ala 20	Gly	Val	Ala	Gly	Gly 25	Ser	Glu	Thr	Ala	Ser 30	Thr	Gly	
Pro	Thr	Ile 35	Thr	Ala	Gly	Ala	Val 40	Thr	Asn	Ala	Ser	Glu 45	Ala	Pro	Thr	
Ser	Gly 50	Ser	Pro	Gly	Ser	Ala 55	Ala	Ser	Pro	Glu	Val 60	Thr	Pro	Thr	Ser	
Thr 65	Pro	Asn	Pro	Asn	Asn 70	Val	Thr	Gln	Asn	Lys 75	Thr	Thr	Pro	Thr	Glu 80	
Pro	Ala	Ser	Pro	Pro 85	Thr	Thr	Pro	Lys	Pro 90	Thr	Ser	Thr	Pro	Lys 95	Ser	
Pro	Pro	Thr	Ser 100	Thr	Pro	Asp	Pro	Lys 105	Pro	ГÀа	Asn	Asn	Thr 110	Thr	Pro	
Ala	Lys	Ser 115	Gly	Arg	Pro	Thr	Lys 120	Pro	Pro	Gly	Pro	Val 125	Trp	Суз	Asp	
Arg	Arg 130		Pro	Leu	Ala	Arg 135		Gly	Ser	Arg	Val 140	Gln	Ile	Arg	Суз	
Arg 145	Phe	Arg	Asn	Ser	Thr 150	Arg	Met	Glu	Phe	Arg 155	Leu	Gln	Ile	Trp	Arg 160	
Tyr	Ser	Met	Gly	Pro 165	Ser	Pro	Pro	Ile	Ala 170	Pro	Ala	Pro	Asp	Leu 175	Glu	
Glu	Val	Leu	Thr 180	Asn	Ile	Thr	Ala	Pro 185	Pro	Gly	Gly	Leu	Leu 190	Val	Tyr	
Asp	Ser	Ala 195	Pro	Asn	Leu	Thr	Asp 200	Pro	His	Val	Leu	Trp 205	Ala	Glu	Gly	
Ala	Gly 210	Pro	Gly	Ala	Asp	Pro 215		Leu	Tyr	Ser	Val 220	Thr	Gly	Pro	Leu	
Pro 225	Thr	Gln	Arg	Leu	Ile 230	Ile	Gly	Glu	Val	Thr 235	Pro	Ala	Thr	Gln	Gly 240	
Met	Tyr	Tyr	Leu	Ala 245	Trp	Gly	Arg	Met	Asp 250	Ser	Pro	His	Glu	Tyr 255	Gly	
Thr	Trp	Val	Arg 260	Val	Arg	Met	Phe	Arg 265	Pro	Pro	Ser	Leu	Thr 270	Leu	Gln	
Pro	His	Ala 275	Val	Met	Glu	Gly	Gln 280	Pro	Phe	Lys	Ala	Thr 285	Сүз	Thr	Ala	
Ala	Ala 290	Tyr	Tyr	Pro	Arg	Asn 295		Val	Glu	Phe	Asp 300	Trp	Phe	Glu	Asp	
Asp 305	Arg	Gln	Val	Phe	Asn 310	Pro	Gly	Gln	Ile	Asp 315	Thr	Gln	Thr	His	Glu 320	
	Pro	Aap	Gly	Phe		Thr	Val	Ser	Thr 330		Thr	Ser	Glu	Ala 335		

```
-continued
```

Gly Gly Gln Val Pro Pro Arg Thr Phe Thr Cys Gln Met Thr Trp His Arg Asp Ser Val Thr Phe Ser Arg Arg Asn Ala Thr Gly Leu Ala Leu Val Leu Pro Arg Pro Thr Ile Thr Met Glu Phe Gly Val Arg His Val Val Cys Thr Ala Gly Cys Val Pro Glu Gly Val Thr Phe Ala Trp Phe Leu Gly Asp Asp Pro Ser Pro Ala Ala Lys Ser Ala Val Thr Ala Gln Glu Ser Cys Asp His Pro Gly Leu Ala Thr Val Arg Ser Thr Leu Pro Ile Ser Tyr Asp Tyr Ser Glu Tyr Ile Cys Arg Leu Thr Gly Tyr Pro Ala Gly Ile Pro Val Leu Glu His His Gly Ser His Gln Pro Pro Pro Arg Asp Pro Thr Glu Arg Gln Val Ile Glu Ala Ile Glu Trp Val Gly Ile Gly Ile Gly Val Leu Ala Ala Gly Val Leu Val Val Thr Ala Ile Val Tyr Val Val Arg Thr Ser Gln Ser Arg Gln Arg His Arg Arg <210> SEQ ID NO 31 <211> LENGTH: 1282 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 31 aagecaccea geetatgeat cegeteetea atecteteet gttggeaetg ggeeteatgg cgcttttgtt gaccacggtc attgctctca cttgccttgg cggctttgcc tccccaggcc ctgtgcctcc ctctacagcc ctcagggagc tcattgagga gctggtcaac atcacccaga accagaaggc tccgctctgc aatggcagca tggtatggag catcaacctg acagctggca tgtactgtgc agccctggaa tccctgatca acgtgtcagg ctgcagtgcc atcgagaaga cccagaggat gctgagcgga ttctgcccgc acaaggtctc agctgggcag ttttccagct tgcatgtccg agacaccaaa atcgaggtgg cccagtttgt aaaggacctg ctcttacatt taaagaaact ttttcgcgag ggacagttca actgaaactt cgaaagcatc attatttgca gagacaggac ctgactattg aagttgcaga ttcatttttc tttctgatgt caaaaatgtc gtgctgcccg tcttcagcct agccgacctc agccttcccc ttgcccaggg ctcagcctgg tgggcctcct ctgtccaggg ccctgagctc ggtggaccca gggatgacat gtccctacac ccctcccctg ccctagagca cactgtagca ttacagtggg tgcccccctt gccagacatg tggtgggaca gggacccact tcacacacag gcaactgagg cagacagcag ctcaggcaca cttcttcttg gtcttattta ttattgtgtg ttatttaaat gagtgtgttt gtcaccgttg gggattgggg aagactgtgg ctgctagcac ttggagccaa gggttcagag actcagggcc ccaqcactaa aqcaqtqqac accaqqaqtc cctqqtaata aqtactqtqt acaqaattct

-continued

1080 gctacctcac tggggtcctg gggcctcgga gcctcatccg aggcagggtc aggagagggg cagaacagee geteetgtet gecagecage agecagetet cagecaacga gtaatttatt 1140 gtttttcctt gtatttaaat attaaatatg ttagcaaaga gttaatatat agaagggtac 1200 cttgaacact gggggagggg acattgaaca agttgtttca ttgactatca aactgaagcc 1260 agaaataaag ttggtgacag at 1282 <210> SEQ ID NO 32 <211> LENGTH: 146 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 Met His Pro Leu Leu Asn Pro Leu Leu Leu Ala Leu Gly Leu Met Ala 10 1 5 15 Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly Phe Ala 20 25 30 Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu 35 40 Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly 50 55 Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala 65 70 75 80 Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr 90 85 Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln 100 105 110 Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe 115 120 125 Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Gln 130 135 140 Phe Asn 145 <210> SEQ ID NO 33 <211> LENGTH: 1376 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 33 gtaagaacac tetegtgagt etaaeggtet teeggatgaa ggetatttga agtegeeata 60 acctggtcag aagtgtgcct gtcggcgggg agagaggcaa tatcaaggtt ttaaatctcg 120 gagaaatggc tttcgtttgc ttggctatcg gatgcttata tacctttctg ataagcacaa 180 catttggctg tacttcatct tcagacaccg agataaaagt taaccctcct caggattttg 240 agatagtgga tcccggatac ttaggttatc tctatttgca atggcaaccc ccactgtctc 300 tggatcattt taaggaatgc acagtggaat atgaactaaa ataccgaaac attggtagtg 360 aaacatggaa gaccatcatt actaagaatc tacattacaa agatgggttt gatcttaaca 420 agggcattga agcgaagata cacacgcttt taccatggca atgcacaaat ggatcagaag 480 ttcaaagttc ctgggcagaa actacttatt ggatatcacc acaaggaatt ccagaaacta 540 aagttcagga tatggattgc gtatattaca attggcaata tttactctgt tcttggaaac 600

		-continued	
ctggcatagg tgtacttc	t gataccaatt acaacttgtt tt	actggtat gagggcttgg	660
atcatgcatt acagtgtg	t gattacatca aggctgatgg ac	aaaatata ggatgcagat	720
tteeetattt ggaggeate	a gactataaag atttctatat tt	gtgttaat ggatcatcag	780
agaacaagcc tatcagato	ec agttatttca cttttcaget te	aaaatata gttaaacctt	840
tgccgccagt ctatcttad	t tttactcggg agagttcatg tg	aaattaag ctgaaatgga	900
gcataccttt gggaccta	t ccagcaaggt gttttgatta tg	yaaattgag atcagagaag	960
atgatactac cttggtgad	st gctacagttg aaaatgaaac at	acaccttg aaaacaacaa	1020
atgaaacccg acaattat	yc tttgtagtaa gaagcaaagt ga	atatttat tgctcagatg	1080
acggaatttg gagtgagtg	yg agtgataaac aatgctggga ag	gtgaagac ctatcgaaga	1140
aaactttgct acgtttcto	g ctaccatttg gtttcatctt aa	itattagtt atatttgtaa	1200
ccggtctgct tttgcgtaa	ag ccaaacacct acccaaaaat ga	ittccagaa tttttctgtg	1260
atacatgaag actttcca	a tcaagagaca tggtattgac tc.	aacagttt ccagtcatgg	1320
ccaaatgttc aatatgag	c tcaataaact gaatttttct tg	gcgaatgtt gaaaaa	1376
<pre><211> LENGTH: 380 <212> TYPE: PRT <213> ORGANISM: Home <400> SEQUENCE: 34</pre>	sapiens		
Met Ala Phe Val Cys 1 5	Leu Ala Ile Gly Cys Leu Ty: 10	r Thr Phe Leu Ile 15	
Ser Thr Thr Phe Gly 20	Cys Thr Ser Ser Ser Asp Th 25	nr Glu Ile Lys Val 30	
Asn Pro Pro Gln Asp 35	Phe Glu Ile Val Asp Pro Gl 40	y Tyr Leu Gly Tyr 45	
Leu Tyr Leu Gln Trp 50	Gln Pro Pro Leu Ser Leu Asy 55 60		
Cys Thr Val Glu Tyr 65	Glu Leu Lys Tyr Arg Asn Il 70 75	e Gly Ser Glu Thr 80	
Trp Lys Thr Ile Ile 85	Thr Lys Asn Leu His Tyr Ly 90	rs Asp Gly Phe Asp 95	
Leu Asn Lys Gly Ile 100	Glu Ala Lys Ile His Thr Les 105	eu Leu Pro Trp Gln 110	
Cys Thr Asn Gly Ser 115	Glu Val Gln Ser Ser Trp Al 120	a Glu Thr Thr Tyr 125	
Trp Ile Ser Pro Gln 130	Gly Ile Pro Glu Thr Lys Va 135 14		
	Trp Gln Tyr Leu Leu Cys Se: 150 155	er Trp Lys Pro Gly 160	
Ile Gly Val Leu Leu 165	Asp Thr Asn Tyr Asn Leu Pho 170	ne Tyr Trp Tyr Glu 175	
Gly Leu Asp His Ala 180	Leu Gln Cys Val Asp Tyr Il 185	e Lys Ala Asp Gly. 190	
Gln Asn Ile Gly Cys 195	Arg Phe Pro Tyr Leu Glu Al. 200	a Ser Asp Tyr Lys 205	
Asp Phe Tyr Ile Cys 210	Val Asn Gly Ser Ser Glu Ass 215 22		

-continued	
Ser Ser Tyr Phe Thr Phe Gln Leu Gln Asn Ile Val Lys Pro Leu Pro225230235240	
Pro Val Tyr Leu Thr Phe Thr Arg Glu Ser Ser Cys Glu Ile Lys Leu 245 250 255	
Lys Trp Ser Ile Pro Leu Gly Pro Ile Pro Ala Arg Cys Phe Asp Tyr 260 265 270	
Glu Ile Glu Ile Arg Glu Asp Asp Thr Thr Leu Val Thr Ala Thr Val 275 280 285	
Glu Asn Glu Thr Tyr Thr Leu Lys Thr Thr Asn Glu Thr Arg Gln Leu 290 295 300	
Cys Phe Val Val Arg Ser Lys Val Asn Ile Tyr Cys Ser Asp Asp Gly 305 310 315 320	
Ile Trp Ser Glu Trp Ser Asp Lys Gln Cys Trp Glu Gly Glu Asp Leu 325 330 335	
Ser Lys Lys Thr Leu Leu Arg Phe Trp Leu Pro Phe Gly Phe Ile Leu 340 345 350	
Ile Leu Val Ile Phe Val Thr Gly Leu Leu Arg Lys Pro Asn Thr 355 360 365	
Tyr Pro Lys Met Ile Pro Glu Phe Phe Cys Asp Thr 370 375 380	
<211> LENGTH: 2685 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 35	
atgegeeagg gegeeeeege gegggggege eggtggtteg tegtatggge getettgggg	60
ttgacgetgg gggteetggt ggegteggeg geteegagtt eeeeeggeae geetggggte	120
goggoogoga cocaggoggo gaacggggggo ootgocacto oggogoogoo ogocootggo	180
gececeecaa egggggaeee gecaaageeg eegegeeeeg eeggggaeaa egegaeegte	240
gccgcggggcc acgccaccct gcgcgagcac ctgcgggaca tcaaggcgga gaacaccgat	300
gcaaactttt acgtgtgccc accccccacg ggcgccacgg tggtgcagtt cgagcagccg	360
cgccgctgcc cgacccggcc cgagggtcag aactacacgg agggcatcgc ggtggtcttc	420
aaggagaaca togoocogta caagttoaag gooacoatgt actacaaaga ogtoacogtt	480
togoaggtgt ggttoggooa oogotactoo cagtttatgg ggatotttga ggacogooo	540
cccgtcccct tcgaggaggt gatcgacaag atcaacgcca agggggtctg tcggtccacg	600
gccaagtacg tgcgcaacaa cctggagacc accgcgtttc accgggacga ccacgagacc	660
gacatggage tgaaacegge caacgeegeg accegeaega geeggggetg geacaeeaee	720
gaceteaagt acaaceeete gegggtggag gegtteeace ggtaegggae gaeggtaaae	780
tgcatcgtcg aggaggtgga cgcgcgctcg gtgtacccgt acgacgagtt tgtgttggcg	840
actggcgact ttgtgtacat gtccccgttt tacggctacc gggagggggtc gcacaccgaa	900
cacaccaget acgeegeega eegetteaag caggtegaeg gettetaege gegegaeete	960
accaccaagg cccgggccac ggcgccgacc acccggaacc tgctcacgac ccccaagttc	1020
accgtggcct gggactgggt gccaaagcgc ccgtcggtct gcaccatgac caagtggcag	1080
gaggtggacg agatgctgcg ctccgagtac ggcggctcct tccgattctc ttccgacgcc	1140

31

-continued	
atatecacea cetteaceae caacetgace gagtaceege tetegegegt ggaeetgggg	1200
gactgcatcg gcaaggacgc ccgcgacgcc atggaccgca tcttcgcccg caggtacaac	1260
gegaegeaca teaaggtggg ceageegeag taetaeetgg ceaatggggg etttetgate	1320
gegtaccage ceetteteag caacaegete geggagetgt aegtgeggga acaeeteege	1380
gagcagagee geaageeeee aaaceeeaeg eeeeegeege eeggggeeag egeeaaegeg	1440
cccgtggagc gcatcaagac cacctcctcc atcgagttcg ccaggctgca gtttacgtac	1500
aaccacatac agegeeatgt caaegatatg ttgggeegeg ttgeeatege gtggtgegag	1560
ctgcagaatc acgagctgac cctgtggaac gaggcccgca agctgaaccc caacgccatc	1620
geeteggeea eegtgggeeg gegggtgage gegeggatge teggegaegt gatggeegte	1680
cccacgtgcg tgccggtcgc cgcggacaac gtgatcgtcc aaaactcgat gcgcatcagc	1740
tegeggeeeg gggeetgeta cageegeeee etggteaget tteggtaega agaeeaggge	1800
ccgttggtcg aggggcagct ggggggagaac aacgagctgc ggctgacgcg cgatgcgatc	1860
gageegtgea eegtgggaea eeggegetae tteaeetteg gtgggggeta egtgtaette	1920
gaggagtacg cgtacteeca ceagetgage egegeegaea teaceaeegt eageaeette	1980
atcgacctca acatcaccat gctggaggat cacgagtttg tccccctgga ggtgtacacc	2040
cgccacgaga tcaaggacag cggcctgctg gactacacgg aggtccagcg ccgcaaccag	2100
ctgcacgacc tgcgcttcgc cgacatcgac acggtcatcc acgccgacgc caacgccgcc	2160
atgtttgegg geetgggege gttettegag gggatgggeg acetggggeg egeggtegge	2220
aaggtggtga tgggcatcgt gggcggcgtg gtatcggccg tgtcgggcgt gtcctccttc	2280
atgtecaaee eetttgggge getggeegtg ggtetgttgg teetggeegg eetggeggeg	2340
geettetteg eetttegeta egteatgegg etgeagagea acceeatgaa ggeeetgtae	2400
ccgctaacca ccaaggaget caagaaceee accaaceegg acgegteegg ggagggegag	2460
gagggcggcg actttgacga ggccaagcta gccgaggccc gggagatgat acggtacatg	2520
gccctggtgt ctgccatgga gcgcacggaa cacaaggcca agaagaaggg cacgagcgcg	2580
stgstsageg scaaggtsas sgasatggts atgsgsaags geogsaasas saastasass	2640
caagtteeca acaaagaegg tgaegeegae gaggaegaee tgtga	2685
<210> SEQ ID NO 36 <211> LENGTH: 894 <212> TYPE: PRT <213> ORGANISM: Herpes Simplex Virus-1	
<pre><400> SEQUENCE: 36</pre>	
Met Arg Gln Gly Ala Pro Ala Arg Gly Arg Arg Trp Phe Val Val Trp 1 5 10 15	
Ala Leu Leu Gly Leu Thr Leu Gly Val Leu Val Ala Ser Ala Ala Pro 20 25 30	
Ser Ser Pro Gly Thr Pro Gly Val Ala Ala Ala Thr Gln Ala Ala Asn 35 40 45	
Gly Gly Pro Ala Thr Pro Ala Pro Pro Ala Pro Gly Ala Pro Pro Thr 50 55 60	
Gly Asp Pro Pro Lys Pro Pro Arg Pro Ala Gly Asp Asn Ala Thr Val 65 70 75 80	
Ala Ala Gly His Ala Thr Leu Arg Glu His Leu Arg Asp Ile Lys Ala	

-continued

											-	con	tin	led	
				85					90					95	
Glu	Asn	Thr	Asp 100	Ala	Asn	Phe	Tyr	Val 105	Суз	Pro	Pro	Pro	Thr 110	Gly	Ala
Thr	Val	Val 115	Gln	Phe	Glu	Gln	Pro 120	Arg	Arg	Сув	Pro	Thr 125	Arg	Pro	Glu
Gly	Gln 130	Asn	Tyr	Thr	Glu	Gly 135	Ile	Ala	Val	Val	Phe 140	ГЛа	Glu	Asn	Ile
Ala 145	Pro	Tyr	Lys	Phe	Lys 150	Ala	Thr	Met	Tyr	Tyr 155	LÀa	Asp	Val	Thr	Val 160
Ser	Gln	Val	Trp	Phe 165	Gly	His	Arg	Tyr	Ser 170	Gln	Phe	Met	Gly	Ile 175	Phe
Glu	Aap	Arg	Ala 180	Pro	Val	Pro	Phe	Glu 185	Glu	Val	Ile	Asp	Lys 190	Ile	Asn
Ala	Lys	Gly 195	Val	Суз	Arg	Ser	Thr 200	Ala	Lys	Tyr	Val	Arg 205	Asn	Asn	Leu
Glu	Thr 210	Thr	Ala	Phe	His	Arg 215	Asp	Asp	His	Glu	Thr 220	Asp	Met	Glu	Leu
Lys 225	Pro	Ala	Asn	Ala	Ala 230	Thr	Arg	Thr	Ser	Arg 235	Gly	Trp	His	Thr	Thr 240
Asp	Leu	Lys	Tyr	Asn 245	Pro	Ser	Arg	Val	Glu 250	Ala	Phe	His	Arg	Tyr 255	Gly
Thr	Thr	Val	Asn 260	Суз	Ile	Val	Glu	Glu 265	Val	Asp	Ala	Arg	Ser 270	Val	Tyr
Pro	Tyr	Asp 275	Glu	Phe	Val	Leu	Ala 280	Thr	Gly	Asp	Phe	Val 285	Tyr	Met	Ser
Pro	Phe 290	Tyr	Gly	Tyr	Arg	Glu 295	Gly	Ser	His	Thr	Glu 300	His	Thr	Ser	Tyr
Ala 305	Ala	Aap	Arg	Phe	Lys 310	Gln	Val	Asp	Gly	Phe 315	Tyr	Ala	Arg	Asp	Leu 320
Thr	Thr	Lys	Ala	Arg 325	Ala	Thr	Ala	Pro	Thr 330	Thr	Arg	Asn	Leu	Leu 335	Thr
Thr	Pro	Lys	Phe 340	Thr	Val	Ala	Trp	Asp 345	Trp	Val	Pro	Lys	Arg 350	Pro	Ser
Val	Cys	Thr 355	Met	Thr	Гла	Trp	Gln 360	Glu	Val	Asp	Glu	Met 365	Leu	Arg	Ser
Glu	Tyr 370	Gly	Gly	Ser	Phe	Arg 375	Phe	Ser	Ser	Asp	Ala 380	Ile	Ser	Thr	Thr
Phe 385	Thr	Thr	Asn	Leu	Thr 390	Glu	Tyr	Pro	Leu	Ser 395	Arg	Val	Asp	Leu	Gly 400
Asp	Cys	Ile	Gly	Lys 405	Asp	Ala	Arg	Asp	Ala 410	Met	Asp	Arg	Ile	Phe 415	Ala
Arg	Arg	Tyr	Asn 420		Thr	His	Ile	Lys 425		Gly	Gln	Pro	Gln 430		Tyr
Leu	Ala	Asn 435	Gly	Gly	Phe	Leu	Ile 440	Ala	Tyr	Gln	Pro	Leu 445	Leu	Ser	Asn
Thr	Leu 450	Ala	Glu	Leu	Tyr	Val 455	Arg	Glu	His	Leu	Arg 460		Gln	Ser	Arg
Lys 465		Pro	Asn	Pro	Thr 470		Pro	Pro	Pro	Gly 475		Ser	Ala	Asn	Ala 480
										Ile					

-continued

Gln	Phe	Thr	Tyr 500	Asn	His	Ile	Gln	Arg 505	His	Val	Asn	Asp	Met 510	Leu	Gly
Arg	Val	Ala 515	Ile	Ala	Trp	Сүз	Glu 520	Leu	Gln	Asn	His	Glu 525	Leu	Thr	Leu
Trp	Asn 530	Glu	Ala	Arg	Lys	Leu 535	Asn	Pro	Asn	Ala	Ile 540	Ala	Ser	Ala	Thr
Val 545	Gly	Arg	Arg	Val	Ser 550	Ala	Arg	Met	Leu	Gly 555	Asp	Val	Met	Ala	Val 560
Ser	Thr	Сув	Val	Pro 565	Val	Ala	Ala	Asp	Asn 570	Val	Ile	Val	Gln	Asn 575	Ser
Met	Arg	Ile	Ser 580	Ser	Arg	Pro	Gly	Ala 585	Cys	Tyr	Ser	Arg	Pro 590	Leu	Val
Ser	Phe	Arg 595	Tyr	Glu	Asp	Gln	Gly 600	Pro	Leu	Val	Glu	Gly 605	Gln	Leu	Gly
Glu	Asn 610	Asn	Glu	Leu	Arg	Leu 615	Thr	Arg	Asp	Ala	Ile 620	Glu	Pro	Суз	Thr
Val 625	Gly	His	Arg	Arg	Tyr 630	Phe	Thr	Phe	Gly	Gly 635	Gly	Tyr	Val	Tyr	Phe 640
Glu	Glu	Tyr	Ala	Tyr 645	Ser	His	Gln	Leu	Ser 650	Arg	Ala	Asp	Ile	Thr 655	Thr
Val	Ser	Thr	Phe 660	Ile	Asp	Leu	Asn	Ile 665	Thr	Met	Leu	Glu	Asp 670	His	Glu
Phe	Val	Pro 675	Leu	Glu	Val	Tyr	Thr 680	Arg	His	Glu	Ile	Lys 685	Asb	Ser	Gly
Leu	Leu 690	Asp	Tyr	Thr	Glu	Val 695	Gln	Arg	Arg	Asn	Gln 700	Leu	His	Asp	Leu
Arg 705	Phe	Ala	Asp	Ile	Asp 710	Thr	Val	Ile	His	Ala 715	Asp	Ala	Asn	Ala	Ala 720
Met	Phe	Ala	Gly	Leu 725	Gly	Ala	Phe	Phe	Glu 730	Gly	Met	Gly	Asb	Leu 735	Gly
Arg	Ala	Val	Gly 740	Lys	Val	Val	Met	Gly 745	Ile	Val	Gly	Gly	Val 750	Val	Ser
Ala	Val	Ser 755	Gly	Val	Ser	Ser	Phe 760	Met	Ser	Asn	Pro	Phe 765	Gly	Ala	Leu
Ala	Val 770	Gly	Leu	Leu	Val	Leu 775	Ala	Gly	Leu	Ala	Ala 780	Ala	Phe	Phe	Ala
Phe 785	Arg	Tyr	Val	Met	Arg 790	Leu	Gln	Ser	Asn	Pro 795	Met	ГÀа	Ala	Leu	Tyr 800
Pro	Leu	Thr	Thr	Lys 805	Glu	Leu	Lys	Asn	Pro 810	Thr	Asn	Pro	Asp	Ala 815	Ser
Gly	Glu	Gly	Glu 820	Glu	Gly	Gly	Yab	Phe 825	Aab	Glu	Ala	Lys	Leu 830	Ala	Glu
Ala	Arg	Glu 835	Met	Ile	Arg	Tyr	Met 840	Ala	Leu	Val	Ser	Ala 845	Met	Glu	Arg
Thr	Glu 850	His	ГЛа	Ala	ГЛа	Lys 855	ГЛа	Gly	Thr	Ser	Ala 860	Leu	Leu	Ser	Ala
Lys 865	Val	Thr	Asp	Met	Val 870	Met	Arg	Lys	Arg	Arg 875	Asn	Thr	Asn	Tyr	Thr 880
Gln	Val	Pro	Asn	Lys 885	Asp	Gly	Aab	Ala	890 890	Glu	Asp	Asp	Leu		

34

```
-continued
```

<210> SEO ID NO 37 <211> LENGTH: 1626 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 37 atggcgcttt tgttgaccac ggtcattgct ctcacttgcc ttggcggctt tgcctcccca 60 ggccctgtgc ctccctctac agccctcagg gagctcattg aggagctggt caacatcacc 120 cagaaccaga aggeteeget etgeaatgge ageatggtat ggageateaa eetgacaget 180 ggcatgtact gtgcagccct ggaatccctg atcaacgtgt caggctgcag tgccatcgag 240 aagacccaga ggatgctgag cggattctgc ccgcacaagg tctcagctgg gcagttttcc 300 agettgeatg teegagacae caaaategag gtggeeeagt ttgtaaagga eetgetetta 360 catttaaaga aactttttcg cgagggacag ttcaacgaat tccacccgca tggagttccg 420 cctccagata tggcgttact ccatgggtcc gtcccccca atcgctccgg ctcccgacct 480 agaggaggtc ctgacgaaca tcaccgcccc acccggggga ctcctggtgt acgacagcgc 540 ccccaacctg acggaccccc acgtgctctg ggcggagggg gccggcccgg gcgccgaccc 600 tccgttgtat tctgtcaccg ggccgctgcc gacccagcgg ctgattatcg gcgaggtgac 660 gcccgcgacc cagggaatgt attacttggc ctggggccgg atggacagcc cgcacgagta 720 cgggacgtgg gtgcgcgtcc gcatgttccg cccccgtct ctgaccctcc agccccacgc 780 840 ggtgatggag ggtcagccgt tcaaggcgac gtgcacggcc gccgcctact acccgcgtaa ccccgtggag tttgtctggt tcgaggacga ccgccaggtg tttaacccgg gccagatcga 900 cacgcagacg cacgagcacc ccgacgggtt caccacagtc tctaccgtga cctccgaggc 960 1020 tgtcggcggc caggtccccc cgcggacctt cacctgccag atgacgtggc accgcgactc 1080 cgtgacgtte tegegacgea atgecacegg getggeeetg gtgetgeege ggecaaceat caccatggaa tttggggtcc ggcatgtggt ctgcacggcc ggctgcgtcc ccgagggcgt 1140 gacgtttgcc tggttcctgg gggacgaccc ctcaccggcg gctaagtcgg ccgttacggc 1200 ccaggagtcg tgcgaccacc ccgggctggc tacggtccgg tccaccctgc ccatttcgta 1260 cgactacage gagtacatet gteggttgae eggatateeg geegggatte eegttetaga 1320 gcaccacggc agtcaccagc ccccacccag ggaccccacc gagcggcagg tgatcgaggc 1380 gatcgagtgg gtggggattg gaatcggggt tctcgcggcg ggggtcctgg tcgtaacggc 1440 aatcgtgtac gtcgtccgca catcacagtc gcggcagcgt catcggcggt aacgcgagac 1500 ccccccgtta cctttttaat atctatatag tttggtcccc cctctatccc gcccaccgct 1560 gggcgctata aagccgccac cctctcttcc ctcaggtcat ccttggtcga tcccgaacga 1620 cacacg 1626 <210> SEQ ID NO 38 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 38 Met Ala Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly 5 15 1 10

Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu

continued

35

											-	con	tin	ued	
			20					25					30		
Ile	Glu	Glu 35	Leu	Val	Asn	Ile	Thr 40	Gln	Asn	Gln	Lys	Ala 45	Pro	Leu	Cya
Asn	Gly 50	Ser	Met	Val	Trp	Ser 55	Ile	Asn	Leu	Thr	Ala 60	Gly	Met	Tyr	Суз
Ala 65	Ala	Leu	Glu	Ser	Leu 70	Ile	Asn	Val	Ser	Gly 75	Cya	Ser	Ala	Ile	Glu 80
Lys	Thr	Gln	Arg	Met 85	Leu	Ser	Gly	Phe	Суз 90	Pro	His	Lys	Val	Ser 95	Ala
Gly	Gln	Phe	Ser 100	Ser	Leu	His	Val	Arg 105	Asp	Thr	Lys	Ile	Glu 110	Val	Ala
Gln	Phe	Val 115	Lys	Asp	Leu	Leu	Leu 120	His	Leu	Lys	Lys	Leu 125	Phe	Arg	Glu
Gly	Gln 130	Phe	Asn	Glu	Phe	Ser 135	Thr	Arg	Met	Glu	Phe 140	Arg	Leu	Gln	Ile
Trp 145	Arg	Tyr	Ser	Met	Gly 150	Pro	Ser	Pro	Pro	Ile 155	Ala	Pro	Ala	Pro	Asp 160
Leu	Glu	Glu	Val	Leu 165	Thr	Asn	Ile	Thr	Ala 170	Pro	Pro	Gly	Gly	Leu 175	Leu
Val	Tyr	Asp	Ser 180	Ala	Pro	Asn	Leu	Thr 185	Asp	Pro	His	Val	Leu 190	Trp	Ala
Glu	Gly	Ala 195	Gly	Pro	Gly	Ala	Asp 200	Pro	Pro	Leu	Tyr	Ser 205	Val	Thr	Gly
Pro	Leu 210	Pro	Thr	Gln	Arg	Leu 215	Ile	Ile	Gly	Glu	Val 220	Thr	Pro	Ala	Thr
Gln 225	Gly	Met	Tyr	Tyr	Leu 230	Ala	Trp	Gly	Arg	Met 235	Asp	Ser	Pro	His	Glu 240
Tyr	Gly	Thr	Trp	Val 245	Arg	Val	Arg	Met	Phe 250	Arg	Pro	Pro	Ser	Leu 255	Thr
Leu	Gln	Pro	His 260	Ala	Val	Met	Glu	Gly 265	Gln	Pro	Phe	Lys	Ala 270	Thr	Cys
Thr	Ala	Ala 275	Ala	Tyr	Tyr	Pro	Arg 280	Asn	Pro	Val	Glu	Phe 285	Asp	Trp	Phe
Glu	Asp 290	Asp	Arg	Gln	Val	Phe 295	Asn	Pro	Gly	Gln	Ile 300	Asp	Thr	Gln	Thr
His 305	Glu	His	Pro	Asp	Gly 310	Phe	Thr	Thr	Val	Ser 315	Thr	Val	Thr	Ser	Glu 320
Ala	Val	Gly	Gly	Gln 325	Val	Pro	Pro	Arg	Thr 330	Phe	Thr	Сүз	Gln	Met 335	Thr
Trp	His	Arg	Asp 340	Ser	Val	Thr	Phe	Ser 345	Arg	Arg	Asn	Ala	Thr 350	Gly	Leu
Ala	Leu	Val 355	Leu	Pro	Arg	Pro	Thr 360	Ile	Thr	Met	Glu	Phe 365	Gly	Val	Arg
His	Val 370	Val	Суз	Thr	Ala	Gly 375	-	Val	Pro	Glu	Gly 380	Val	Thr	Phe	Ala
Trp 385	Phe	Leu	Gly	Asp	Asp 390	Pro	Ser	Pro	Ala	Ala 395	ГЛа	Ser	Ala	Val	Thr 400
Ala	Gln	Glu	Ser	Cys 405	Asp	His	Pro	Gly	Leu 410	Ala	Thr	Val	Arg	Ser 415	Thr
Leu	Pro	Ile	Ser 420	Tyr	Asp	Tyr	Ser	Glu 425	Tyr	Ile	Суз	Arg	Leu 430	Thr	Gly

Tyr Pro Ala Gly Ile Pro Val Leu Glu His His Gly Ser His Gln Pro 435 440 445 Pro Pro Arg Asp Pro Thr Glu Arg Gln Val Ile Glu Ala Ile Glu Trp 450 455 460 Val Gly Ile Gly Ile Gly Val Leu Ala Ala Gly Val Leu Val Val Thr 465 470 475 480 Ala Ile Val Tyr Val Val Arg Thr Ser Gln Ser Arg Gln Arg His Arg 485 490 495 Arg <210> SEQ ID NO 39 <211> LENGTH: 1593 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 39 atgggggggg ctgccgccag gttgggggcc gtgattttgt ttgtcgtcat agtgggcctc 60 catggggtcc gcggcaaata tgccttggcg gatgcctctc tcaagatggc cgaccccaat 120 cgctttcgcg gcaaagacct tccggtcctc gagatggcgc ttttgttgac cacggtcatt 180 geteteactt geettggegg etttgeetee ceaggeeetg tgeeteete taeageeete 240 300 aqqqaqctca ttqaqqaqct qqtcaacatc acccaqaacc aqaaqqctcc qctctqcaat ggcagcatgg tatggagcat caacctgaca gctggcatgt actgtgcagc cctggaatcc 360 ctgatcaacg tgtcaggctg cagtgccatc gagaagaccc agaggatgct gagcggattc 420 tgcccgcaca aggtctcagc tgggcagttt tccagcttgc atgtccgaga caccaaaatc 480 qaqqtqqccc aqtttqtaaa qqacctqctc ttacatttaa aqaaactttt tcqcqaqqqa 540 caqttcaacq qtaccctqqa ccqqctqacc qaccctccqq qqqtccqqcq cqtqtaccac 600 atccaggegg gectacegga eccgtteeag ecceecagee teeegateae ggtttaetae 660 720 gccgtgttgg agcgcgcctg ccgcagcgtg ctcctaaacg caccgtcgga ggccccccag attgtccgcg gggcctccga agacgtccgg aaacaaccct acaacctgac catcgcttgg 780 tttcggatgg gaggcaactg tgctatcccc atcacggtca tggagtacac cgaatgctcc 840 tacaacaagt ctctgggggc ctgtcccatc cgaacgcagc cccgctggaa ctactatgac 900 agetteageg eegteagega ggataacetg gggtteetga tgeaegeeee egegtttgag 960 accgccggca cgtacctgcg gctcgtgaag ataaacgact ggacggagat tacacagttt 1020 atcctggagc accgagccaa gggctcctgt aagtacgccc ttccgctgcg catccccccg 1080 tcagcctgcc tctcccccca ggcctaccag caggggggtga cggtggacag catcgggatg 1140 ctgccccgct tcatccccga gaaccagcgc accgtcgccg tatacagctt gaagatcgcc 1200 gggtggcacg ggcccaaggc cccatacacg agcaccctgc tgcccccgga gctgtccgag 1260 acceccaacg ccacgcagec agaactegee ccggaagaee ccgaggatte ggeeetettg 1320 gaggaccccg tggggacggt ggtgccgcaa atcccaccaa actggcacat accgtcgatc 1380 caggacgccg cgacgcotta coatcocccg gocaccocga acaacatggg cotgatogco 1440 ggcgcggtgg gcggcagtct cctggtagcc ctggtcattt gcggaattgt gtactggatg 1500 cgccgccgca ctcaaaaagc cccaaagcgc atacgcctcc cccacatccg ggaagacgac 1560 cageegteet egeaceagee ettgttttae tag 1593

-cont	inued	l

<21		ENGTH) NO 1: 53 PRT												
				-	pes S	Simpl	lex \	/irus	8-1						
			ICE :												
Met 1	Gly	Gly	Ala	Ala 5	Ala	Arg	Leu	Gly	Ala 10	Val	Ile	Leu	Phe	Val 15	Val
Ile	Val	Gly	Leu 20	His	Gly	Val	Arg	Gly 25	Lys	Tyr	Ala	Leu	Ala 30	Asp	Ala
Ser	Leu	Lуя 35	Met	Ala	Asp	Pro	Asn 40	Arg	Phe	Arg	Gly	Lys 45	Asp	Leu	Pro
Val	Leu 50	Glu	Met	Ala	Leu	Leu 55	Leu	Thr	Thr	Val	Ile 60	Ala	Leu	Thr	Суз
Leu 65	Gly	Gly	Phe	Ala	Ser 70	Pro	Gly	Pro	Val	Pro 75	Pro	Ser	Thr	Ala	Leu 80
Arg	Glu	Leu	Ile	Glu 85	Glu	Leu	Val	Asn	Ile 90	Thr	Gln	Asn	Gln	Lys 95	Ala
Pro	Leu	Суз	Asn 100	Gly	Ser	Met	Val	Trp 105	Ser	Ile	Asn	Leu	Thr 110	Ala	Gly
Met	Tyr	Cys 115	Ala	Ala	Leu	Glu	Ser 120	Leu	Ile	Asn	Val	Ser 125	Gly	Суз	Ser
Ala	Ile 130	Glu	Lys	Thr	Gln	Arg 135	Met	Leu	Ser	Gly	Phe 140	Сүз	Pro	His	Lys
Val 145	Ser	Ala	Gly	Gln	Phe 150	Ser	Ser	Leu	His	Val 155	Arg	Asp	Thr	Lys	Ile 160
Glu	Val	Ala	Gln	Phe 165	Val	Lys	Asp	Leu	Leu 170	Leu	His	Leu	Lys	Lys 175	Leu
Phe	Arg	Glu	Gly 180	Gln	Phe	Asn	Gly	Thr 185	Pro	Asp	Arg	Leu	Thr 190	Asp	Pro
Pro	Gly	Val 195	Arg	Arg	Val	Tyr	His 200	Ile	Gln	Ala	Gly	Leu 205	Pro	Asp	Pro
Phe	Gln 210	Pro	Pro	Ser	Leu	Pro 215	Ile	Thr	Val	Tyr	Tyr 220	Ala	Val	Leu	Glu
Arg 225	Ala	Сув	Arg	Ser	Val 230	Leu	Leu	Asn	Ala	Pro 235	Ser	Glu	Ala	Pro	Gln 240
Ile	Val	Arg	Gly	Ala 245	Ser	Glu	Asp	Val	Arg 250	Lys	Gln	Pro	Tyr	Asn 255	Leu
Thr	Ile	Ala	Trp 260	Phe	Arg	Met	Gly	Gly 265	Asn	Суз	Ala	Ile	Pro 270	Ile	Thr
Val	Met	Glu 275	Tyr	Thr	Glu	Суз	Ser 280		Asn	Lys	Ser	Leu 285	Gly	Ala	Суз
Pro	Ile 290	Arg	Thr	Gln	Pro	Arg 295	Trp	Asn	Tyr	Tyr	Asp 300	Ser	Phe	Ser	Ala
Val 305	Ser	Glu	Asp	Asn	Leu 310	Gly	Phe	Leu	Met	His 315	Ala	Pro	Ala	Phe	Glu 320
Thr	Ala	Gly	Thr	Tyr 325	Leu	Arg	Leu	Val	Lys 330	Ile	Asn	Asp	Trp	Thr 335	Glu
Ile	Thr	Gln	Phe 340	Ile	Leu	Glu	His	Arg 345	Ala	Lys	Gly	Ser	Сув 350	Lys	Tyr
Ala	Leu	Pro	Leu	Arg	Ile	Pro	Pro	Ser	Ala	Суз	Leu	Ser	Pro	Gln	Ala

-continued

39

geographing a conjunct a co	concinaca											
<pre>tiggaggac ccgrggggac gtggtgccg caatcocc caastgca catacqtg 1200 atccaggacg ccgrgggacgc ttaccatcoc ccggccacc cgaacacat gggcrtgat 1260 gccggcgcg tgggcgcag ttoctggta gcctggtca ttggcggaat [1320 atgcgccgcg cgactcaaa agcccaaag cgcatacgc tcccccaat ccgggaaga 1380 gaccagcgt cctcgcacca gcccttgtt tactag 1416 210- S80 DD N0 42 211- L80NTH. 471 212- TVFE: 477 213- 500NTH. 471 213- 57FF: 477 213- 500NTH. 471 213- 57FF: 477 213- 500NTH. 471 213- 57FF: 477 213- 500NTH. 471 200 TVFE: 42 Met Ala Leu Leu Eur Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly 1</pre>	gccgggtggc acgggcccaa ggccccatac acgagcaccc tgctgccccc ggagctgtcc 1080											
atcaagacg ocgogacgot tixecateee cegacaacat gggeetqate geoggegeg tgggeggeag tegeogeag tettettactate ceggeaacat tgggaat tggtactgg gaceageoge geatecaaa ageeeeaaa geeataegee teeeeaat tgggaat tggtactgg gaceageoge geatecaaa ageeeeaaag egeataegee teeeeaat tgggaaat gaceageoge geatecaaa ageeeeaaag egeataegee teeeeaat gaceageoge geatecaaa ageeeeaaag egeataegee teeeeaat 2010 SEQ ID NO 42 4011 LEWENT: 11 402 SEQ ID NO 42 4031 LEWENT: 11 403 SEQUENCE: 42 Meet Ala Leu Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly 1 5 10 11 6 Glu Glu Leu Val Am Ile Thr Gln Am Gln Lye Ala Fro Leu Cye 30 12 6 Glu Glu Leu Val Am Ile Thr Gln Am Gln Lye Ala Fro Leu Cye 30 13 6 Glu Glu Leu Val Am Ile Thr Gln Am Gln Lye Ala Fro Leu Cye 35 36 7 36 7 37 7 6 10 Arg Met Leu Ser Gly Phe Cys Pro His Lye Val Ser Ala 40 30 10 10 10 30 30 31 0 Gln Phe Ser Ser Leu His Val Xeg App Thr Lye Ile Glu Val Ala 30 30 31 0 Gln Phe Ser Ser Leu His Val Xeg App Thr Lye Ile Glu Val Ala 30 30 31 0 Gln Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 30 30 31 0 Gln Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 30 30 31 12 0 Leu Pro App Fro Phe Gln Fro Pro Ser Leu Pro 1le Thr Val Tyr 35 36 r Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu App Val Tyr 36 r Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Ala Pro 30 31 12 10 31 12 10 32 10 32 10 32 10 32 10 32 10 33 11 12 12 12 34 12 12 12 35 34 12 10 35 34 12 10	gagaceeeca aegeeaegea geeagaaete geeeeggaag aeeeegagga tteggeeete 1140											
<pre>gccggcgcgg tgggcggcg tctcctggta gcctggta ttgggaat tgggtatgg 1320 atggcggcg gaatcaaa agccctagat gccttggta ttgggaat tgggtatgg 1320 gaccagccg cctcgcacca gccttgtt tactag 1416 clos SEQ ID NO 42 clos SEQ ID NO 4</pre>	ttggaggacc ccgtgggggac ggtggtgccg caaatcccac caaactggca cataccgtcg 1200											
attrogec gestteres ageccessage gestteres 1380 gaccagoegt esteges agecettgtt tartag 1416 *210> SEQ ID NO 42 1121 *211> INNETH 471 1121 *212> TPE: PRT 10 *213> GRANTSH: Harpes Simplex Virus-1 10 *400 SEQUENCE: 42 10 Met Ala Leu Leu Leu Thr Thr Val ILe Ala Leu Thr Cys Leu Gly Gly 1 15 Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu 20 15 311e Glu Glu Leu Val Am 11e Thr Gin Am Gln Lys Ala Pro Leu Cys 45 16 320 Seg Met Val Try Ser Ieu ILe Am Val Ser Gly Cys Ser Ala 11e Glu 61 60 50 55 10 100 Gln Phe Ser Leu His Val Arg Asp Thr Lys ILe Glu Val Ala 116 110 115 100 125 Gly Gln Phe Ser Leu His Val Arg Arg Yal Tyr His 11e Gln Ala 110 115 Gly Gln Phe Aen Gly Thr Gly Ser Arg Arg Val Tyr His 11e Gln Ala 116 1115 Gly Lup Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile Thr Val Tyr 115 110 Gly Gln Phe Aen Gly Thr Gly Arg Gly Ala Ser Glu Ap Val Arg Lys 110 Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile Thr Val Tyr 116 110 Gly Leu Pro Asp Pro Gln Pro Yarg Gry Arg Ser Val Leu Leu Lau Arg 120 125	atccaggacg ccgcgacgcc ttaccatccc ccggccaccc cgaacaacat gggcctgatc 1260											
gaccagcegt cetegeacea gecettgttt tactag 1416 clio SEQ ID B0 42 clio SEQ ID B0 42 clio SEQUENCE: 42 Met Ala Leu Leu Leu Thr Thr Val He Ala Leu Thr Cyc Leu Gly Gly 11 1 5 Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu 20 125 Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu 20 125 Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu 20 125 Phe Ala Ser Met Val Trp Ser He Ann Leu Thr Ala Gly Met Tyr Cys 60 Ala Ala Leu Glu Ser Leu He Ann Val Ser Gly Cys Ser Ala 11e Glu 65 Cly G Thr Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala 105 106 Glu Phe Ser Ser Leu His Val Arg Asp Thr Lys He Glu Val Ala 107 108 109 Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys He Arg Glu 115 116 117 117 118 119 119 119 110 119 110 110 110	gccggcggg tgggcggcag tctcctggta gccctggtca tttgcggaat tgtgtactgg 1320											
<pre>clib SEQ ID NO 42 clib LENDER: 471 clib SEQUENCE: 42 Met Ala Leu Leu Thr Thr Val ILe Ala Leu Thr Cyp Leu Cly Gly 1 1 event for the second second</pre>	atgogoogoo goactoaaaa agooccaaag ogoataogoo tooccoacat oogggaagao 1380											
<pre>clis TENS FIT clis TENS FIT clis TENSE FIT clis ORGANISM: Herpes Simplex Virus-1 close SEQUENCE: 42 Met Ala Leu Leu Leu Thr Thr Val IIe Ala Leu Thr Cys Leu Gly Gly 1 Fit for a for a</pre>	gaccagccgt cctcgcacca gcccttgttt tactag 1416											
Met ha beu beu beu heu heu heu heu heu heu heu heu heu h	<211> LENGTH: 471 <212> TYPE: PRT <213> ORGANISM: Herpes Simplex Virus-1											
1 5 10 15 Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu 30 10 14 11e Glu Glu Leu Val Asn 11e Thr Gln Asn Gln Lye Ala Pro Leu Cys 35 35 16 Ann Glo Ser Net Val Tro Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys 55 Ann Gly Ser Net Val Tro Ser Ile Asn Val Ser Gly Cys Ser Ala Ile Glu 80 10 10 10 10 10y Gln Phe Ser Ser Leu His Val Arg Arg Arg Val 75 10 10 10 10 10 11y Gln Phe Ser Ser Leu His Val 20 105 10 10 10 10 10 10y Gln Phe Ser Ser Leu His Val 20 105 10 105 10 105 10 11y Gln Phe Val Lys Arg Leu Leu Leu His Leu Lys Lys Lys Leu Phe Arg Glu 110 110 110 110 110 11y Gln Phe Asn Gly Thr Gly Arg Arg Arg Val 71 He 11 11e Gln Ala 110 110 110 110 11y Lue Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro 11e Thr Val 71 110 110 115 110 110 110 11y Lue Pro Asp Pro Phe Gln Tro Pro Ser Leu Pro 11e Thr Val 71 110 110 115 110 110 110 110 110 110 11y Ala Val Leu Glu	<400> SEQUENCE: 42											
202530Ile Guu Guu Leu Val Asn Ile Thr Gin Asn Gln Lys Ala Pro Leu Cys 40 Asn Gly Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys 50 Aan Gly Ser Met Val Trp Ser Ile Asn Val Ser Gly Cys Ser Ala Ile Glu 60 Gly Met Tyr CysAla Ala Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu 70 Ser Ala Ser Ala Ser Ala Ser Gly Ret Val Ser 70 Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100 Ser Ala Ser Glu 100 Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100 Glu Glu Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Glu Ala 110 Gly Gln Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Glu Ala 135 Fro Pro Phe Gln Pro Pro Phe Gln Pro Pro Pro Phe Glu Pro Pro Phe Arg Ser Glu Ala Pro 170 Glu Pro Tyr Asn Leu Thr 1le Ala Cys Arg Ser Val Leu Leu Ash Ala Pro 120 Ser Tyr Asn Leu Thr 1le Ala Trp Phe Arg Net Gly Gly Asn Cys 200 Glu Pro Tyr Asn Leu Thr 1le Ala Trp Phe Arg Net Gly Gly Asn Cys 120 Ser Pro Ala Phe Ser Ala Val Ser Glu Asp Asn Tyr Tyr 220 Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Asp Asn Tyr Tyr 220 Ser Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Arg Pro Phe Asn Tyr Tyr 220 Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Glu Phe Tyr Cys Die Arg Asn Lys Die Arg Asn Lys Die Asn Arg Tyr Asn Lys 120 Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Glu Phe Leu Arg Lys 220 Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Glu Phe Leu Yas Lys Die 220 Asp Asp Trp Thr Glu Thr Ala Cly Thr Tyr Leu Arg Lys Die 220 Asp Asp Trp Thr Glu He Thr Glu Phe The Leu Clu His Arg Ala Ly												
35 40 45 Asm Gly Ser Met Val Trp Ser Ile Asm Leu Thr Ala Gly Met Tyr Cys 50 Ala Ala Leu Glu Ser Leu Ile Asm Val Ser Gly Cys Ser Ala Ile Glu 80 Lys Thr Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala 80 Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100 Gly Gln Phe Val Lys Asp Leu Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100 Gly Gln Phe Val Lys Asp Leu Leu His Val Arg Asp Thr Lys Ile Gln Ala 100 Gly Gln Phe Val Lys Asp Leu Leu His Val Arg Asg Val Tyr His Ile Gln Ala 130 Gly Gln Phe Asm Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 160 Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Arg Leu Leu Asm Ala Pro 175 Ser Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Yal Ser Val Leu Lau Asm Ala Pro 175 Ser Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Yal Ser Val Asm Lys 190 110 110 120 Gln Pro Tyr Asm Leu Thr Ile Ala Tyr Phe Arg Met Gly Gly Asm Cys 190 120 120 120 121 124 124 120 120 120 120 121 120 120 1220 120 120 120	· ·											
505560Ala Ala Leu Glu Ser Leu Ile Ann Val Ser Gly Cys Ser Ala Ile Glu 75 Gly Cys Ser Ala Ile Glu 80 Lys Thr Gln Arg Met Leu Ser Gly Phe Cys Pro Hie Lys Val Ser Ala 90 Ser Ala 90 Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100 Ile Val Val Arg Glu 115 Gln Phe Val Lys Asp Leu Leu Lieu His Leu Lys Lys Leu Phe Arg Glu 115 Gln Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 140 Gly Gln Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 140 Gln Phe Val Leu Glu Arg Ala Cys Arg Ser Val Leu Leu Asn Ala Pro 150 Tyr Ala Val Leu Glu Arg Ala Cys Arg Ser Val Leu Leu Asn Ala Pro 165 Tyr Ala Val Leu Glu Arg Gly Ala Ser Glu Asp Val Tyr Asn Lys 190 Gln Pro Tyr Asn Leu Thr Ile Ala Tyr Thr Glu Cys Ser Tyr Asn Lys 210 Tyr Asn Leu Thr Val Met Glu Tyr Thr Glu Cys Ser Tyr Asn Lys 220 Ser Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Asp Thr Jarg Thr Asn Tyr Tyr 225 Asn Cys Tyr Asn Lys 220 Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Asp Asn Tyr Tyr 225 Ala Pro Ala Phe Glu Thr Ala Gly Thr Tyr Leu Arg Leu Val Lys Ile 220 Asp Asp Tyr Thr Glu Thr Ala Gly Thr Tyr Leu Cys Lys Tyr 225												
65 70 75 80 Lys Thr Gln Arg Met S Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala 95 Gly Gln Phe Ser Ser Leu His Val Arg Arg Pro His Lys Lug Leu Cut Arg Arg Glu 110 Gln Phe Val Lys Asp Leu Leu Leu Leu His Leu Uss Lys Lys Leu Phe Arg Glu 115 Gly Gln Phe Arg Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 125 Gly Gln Phe Arg Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 135 Glu Pro												
Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 110Gln Phe Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu 115Gly Gln Phe Asn Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 130Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile Thr Val Tyr 150Tyr Ala Val Leu Glu Arg Ala Cys Arg Ser Val Leu Leu Asn Ala Pro 165Ser Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Val Arg Lys 190Gln Pro Tyr Asn Leu Thr Ile Ala Trp Phe Arg Met Gly Gly Asn Cys 210Ala Ile Pro Ile Thr Val Met Glu Tyr Thr Glu Cys Ser Tyr Asn Lys 220Ser Leu Gly Ala Cys Pro 1le Arg Thr Gln Pro Arg Trp Asn Tyr Tyr 225Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met His 226Ala Pro Ala Phe Glu Thr Ala Gly Thr Tyr Leu Arg Leu Val Lys Ile 260Ala Pro Ala Phe Glu Thr Ala Gly Thr Tyr Leu Glu His Arg Ala Lys												
100105110Gln Phe Val 115Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu 120Glu Yas Asp Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 140Tyr His Ile Gln Ala 140Gly Gln Phe Asp Gly Thr Gly Ser Arg Arg Val Tyr His Ile Gln Ala 130Tyr Ala Val Leu Glu Arg Ala Cys Arg Ser Val Leu Pro Ile Thr Val Tyr 165Thr Val Tyr 160Tyr Ala Val Leu Glu Arg Ala Cys Arg Gly Ala Ser Val Leu Leu Asn Ala Pro 165Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Val Arg Lys 190Ser Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Val Arg Lys 190Gln Pro Tyr Asn Leu Thr Ile Ala Trp Phe Arg Met Gly Gly Asn Cys 220Ser Tyr Asn Lys 220Ser Tyr Asn LysSer Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Arg Trp Asn Tyr Tyr 230Yr Asn Leu Thr Ala Gly Thr Glu Pro Arg Lys 250Tyr Asn Tyr Tyr 240Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met His 260Yr Asn Lys 250Yr Asn Lys 250Tyr Asn Tyr 210Asn Asp Trp Thr Glu Ile Thr Gln Phe Ile Leu Glu His Arg Ala Lys												
115120125Gly Gln Phe Asn Gly Thr Gly Ser Arg Arg Yal Tyr His Ile Gln Ala 130135140Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile Thr Val Tyr 145160Tyr Ala Val Leu Glu Arg Ala Cys Arg Ser Val Leu Leu Asn Ala Pro 165165Tyr Ala Val Leu Glu Arg Ala Cys Arg Ser Val Leu Leu Asn Ala Pro 165Ser Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Val Arg Lys 190Gln Pro Tyr Asn Leu Thr Ile Ala Trp Phe Arg Met Gly Gly Asn Cys 210Ala Ile Pro Ile Thr Val Met Glu Tyr Thr Glu Cys Ser Tyr Asn Lys 220Ser Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Arg Trp Asn Tyr Tyr 230Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met His 260Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met His 260Ala Pro Ala Phe Glu Thr Ala Gly Thr Tyr Leu Arg Leu Val Lys Ile 260Asn Asp Trp Thr Glu Ile Thr Gln Phe Ile Leu Glu His Arg Ala Lys												
130135140GlyLeuProAspProPheGlnProProSerLeuProItThrValTyr145ValLeuGluArgAlaCysArgSerValLeuLeuAsnAlaProTyrAlaValLeuGluArgAlaCysArgSerValLeuLeuAsnAlaProSerGluAlaProGlnIleValArgGlyAlaSerGluAspValArgLysGlnProTyrAsnLeuThrIleAlaTrpPheArgMetGlyGlyAsnCysGlnProTyrAsnLeuThrIleAlaTrpPheArgMetGlyGlyAsnCysGlnProTyrAsnLeuThrGluCysSerTyrAsnLysAlaIleProIleThrValMetGluCysSerTyrAsnTyr225LeuGlyAlaCysProIleArgTyrTyrAsgTyrTyr240AspSerPheSerAlaNaNaNaNaTyrTyr240AspSerPheSerAlaAsgAsgLeuAsgLeuAngLeuAsg<												
145150155160TyrAlaValLeuGluArgAlaCysArgSerValLeuLeuAsnAlaProSerGluAlaProGlnIleValArgGlyAlaSerGluAspValArgLysGlnProTyrAsnLeuThrIleAlaSerGluAspValArgLysGlnProTyrAsnLeuThrIleAlaTrpPheArgMetGlyAspCysAlaIleProIleThrValMetGluTyrThrGluCysSerTyrAsnLysSerLeuGlyAlaCysProIleThrValMetGluTyrThrGluAspYasLysSerLeuGlyAlaCysProIleThrMatGluTyrThrGluSerTyrAsnLysSerLeuGlyAlaCysProIleAspAspTyrAsnTyrZ40SerLeuGlyAlaCysProIleAspAspAspTyrZ40AspSerAlaProAlaProSerAlaAlaGlyAspAspLeuAlgLysIleAspSerFheSerAla <td< td=""><td></td></td<>												
165170175SerGluAlaProGlnIleValArgGlyAlaSerGluAspValArgLysGlnProTyrAsnLeuThrIleAlaTrpPheArgMetGlyAlsCysAlaIleProIleThrValMetGluTyrThrGluCysSerTyrAsnLysSerLeuGlyAlaCysProIleThrValMetGluTyrThrGluCysSerTyrAsnLysSerLeuGlyAlaCysProIleArgProArgTyrThrGluProArgTyrTyr225LeuGlyAlaCysProThrArgProProProProProProProArgProProProArgCysPro												
180 185 190 Gln Yro Tyr As Leu Thr Ala Ala Tyr As Leu And Thr And Ala Thr Fro Thr And And Thr And And Thr Thr And Tyr Thr And Cys Ser Tyr Ason Lys Ser Leu Gly Ala Cys Thr And Tyr Tyr Tyr Tyr Tyr Ason Tyr T												
195200205Ala Ile Pro Ile Thr Val Met Glu TyrThr Glu Cys Ser Tyr Asn Lys210Pro Ile Thr Val Met Glu TyrThr Glu Pro Arg Trp Asn Tyr225Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Arg Trp Asn TyrTyr225Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met HisAsp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met His266Phr Ala Gly Thr TyrAsn Asp Trp Thr Glu Ile Thr Gln Phe Ile Leu Glu His Arg Ala Lys												
AlaIleProIleThrValMetGluTyrThrGluCysSerTyrAsnLysSerLeuGlyAlaCysProIleArgThrAsnTyrTyrZ40AspSerPheSerAlaValSerGluAspAspLeuGlyPheLeuMetHisAlaProAlaPheGluThrAlaGlyThrLeuGluHisZ50AsnAspTrpThrGluIleThrGluThrLeuGluHisZ70ValLeuAsnAspTrpThrGluIleThrGluPheIleLeuGluHisArgAlaLys												
SerLeuGlyAlaCysProIleArgThrGlnProArgTrpAsnTyrTyrAspSerPheSerAlaValSerGluAspAsnLeuGlyPheLeuMetHisAlaProAlaPheGluThrAlaGlyThrSerLeuGluProLeuYalSerAsnAspTrpThrGluIleThrGluThrZasYalYalYalYalAsnAspTrpThrGluIleThrGluPheIleLeuGluHisArgAlaLys	Ala Ile Pro Ile Thr Val Met Glu Tyr Thr Glu Cys Ser Tyr Asn Lys											
AspSerPheSerAlaValSerGluAspAspLeuGlyPheLeuMetHisAlaProAlaPheGluThrAlaGlyThrThrZ50ValLeuValLysIleAsnAspTrpThrGluIleThrGlnPheIleLeuGluHisArgArgAlaLys	Ser Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Arg Trp Asn Tyr Tyr											
245 250 255 Ala Pro Ala Phe Glu Thr Ala Gly Thr Tyr Leu Arg Leu Val Lys Ile 260 260 265 270 Asn Asp Trp Thr Glu Ile Thr Gln Phe Ile Leu Glu His Arg Ala Lys												
260 265 270 Asn Asp Trp Thr Glu Ile Thr Gln Phe Ile Leu Glu His Arg Ala Lys												

40

```
-continued
```

Gly Ser Cys Lys Tyr Ala Leu Pro Leu Arg Ile Pro Pro Ser Ala Cys 290 295 300 Leu Ser Pro Gln Ala Tyr Gln Gln Gly Val Thr Val Asp Ser Ile Gly 305 310 315 320 Met Leu Pro Arg Phe Ile Pro Glu Asn Gln Arg Thr Val Ala Val Tyr 325 330 335 Ser Leu Lys Ile Ala Gly Trp His Gly Pro Lys Ala Pro Tyr Thr Ser 345 340 350 Thr Leu Leu Pro Pro Glu Leu Ser Glu Thr Pro Asn Ala Thr Gln Pro 360 365 355 Glu Leu Ala Pro Glu Asp Pro Glu Asp Ser Ala Leu Leu Glu Asp Pro 375 370 380 Val Gly Thr Val Val Pro Gln Ile Pro Pro Asn Trp His Ile Pro Ser 385 390 395 400 Ile Gln Asp Ala Ala Thr Pro Tyr His Pro Pro Ala Thr Pro Asn Asn 405 410 415 Met Gly Leu Ile Ala Gly Ala Val Gly Gly Ser Leu Leu Val Ala Leu 420 425 430 Val Ile Cys Gly Ile Val Tyr Trp Met Arg Arg Arg Thr Gln Lys Ala 435 440 445 Pro Lys Arg Ile Arg Leu Pro His Ile Arg Glu Asp Asp Gln Pro Ser 450 455 460 Ser His Gln Pro Leu Phe Tyr 465 470 <210> SEO ID NO 43 <211> LENGTH: 1416 <212> TYPE: DNA <213> ORGANISM: Herpes Simplex Virus-1 <400> SEOUENCE: 43 atggcgcttt tgttgaccac ggtcattgct ctcacttgcc ttggcggctt tgcctcccca 60 ggccctgtgc ctccctctac agccctcagg gagctcattg aggagctggt caacatcacc 120 cagaaccaga aggeteeget etgeaatgge ageatggtat ggageateaa eetgacaget 180 ggcatgtact gtgcagccct ggaatccctg atcaacgtgt caggctgcag tgccatcgag 240 aagacccaga ggatgctgag cggattctgc ccgcacaagg tctcagctgg gcagttttcc 300 agettgeatg teegagacae caaaategag gtggeeeagt ttgtaaagga eetgetetta 360 catttaaaga aactttttcg cgagggacag ttcaacggta ccggggtccg gcgctcgtac 420 cacatecagg egggeetace ggaceegtte cageeeecea geeteeegat caeggtttae 480 tacgccgtgt tggagcgcgc ctgccgcagc gtgctcctaa acgcaccgtc ggaggccccc 540 cagattgtcc gcgggggcctc cgaagacgtc cggaaacaac cctacaacct gaccatcgct 600 tggtttcgga tgggaggcaa ctgtgctatc cccatcacgg tcatggagta caccgaatgc 660 tectacaaca agtetetggg ggeetgteee ateegaacge ageeeegetg gaactactat 720 gacagettea gegeegteag egaggataae etggggttee tgatgeaege eeeegettt 780 gagaccgccg gcacgtacct gcggctcgtg aagataaacg actggacgga gattacacag 840 tttatcctqq aqcaccqaqc caaqqqctcc tqtaaqtacq cccttccqct qcqcatcccc 900 ccqtcaqcct qcctctcccc ccaqqcctac caqcaqqqqq tqacqqtqqa caqcatcqqq 960

atgctgcccc gcttcatccc cgagaaccag cgcaccgtcg ccgtatacag cttgaagatc gccqqqtqqc acqqqcccaa qqccccatac acqaqcaccc tqctqccccc qqaqctqtcc gagaceeeca aegecaegea gecagaaete geeeeggaag aeeeegagga tteggeeete ttggaggacc ccgtggggac ggtggtgccg caaatcccac caaactggca cataccgtcg atccaggacg ccgcgacgcc ttaccatccc ccggccaccc cgaacaacat gggcctgatc gccggcgcgg tgggcggcag tctcctggta gccctggtca tttgcggaat tgtgtactgg atgcgccgcc gcactcaaaa agccccaaag cgcatacgcc tcccccacat ccgggaagac gaccagccgt cctcgcacca gcccttgttt tactag <210> SEQ ID NO 44 <211> LENGTH: 471 <212> TYPE: PRT <213> ORGANISM: Herpes Simplex Virus-1 <400> SEQUENCE: 44 Met Ala Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys - 55 Ala Ala Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Gln Phe Asn Gly Thr Gly Val Arg Arg Ser Tyr His Ile Gln Ala Gly Leu Pro Asp Pro Phe Gln Pro Pro Ser Leu Pro Ile Thr Val Tyr Tyr Ala Val Leu Glu Arg Ala Cys Arg Ser Val Leu Leu Asn Ala Pro Ser Glu Ala Pro Gln Ile Val Arg Gly Ala Ser Glu Asp Val Arg Lys Gln Pro Tyr Asn Leu Thr Ile Ala Trp Phe Arg Met Gly Gly Asn Cys Ala Ile Pro Ile Thr Val Met Glu Tyr Thr Glu Cys Ser Tyr Asn Lys Ser Leu Gly Ala Cys Pro Ile Arg Thr Gln Pro Arg Trp Asn Tyr Tyr Asp Ser Phe Ser Ala Val Ser Glu Asp Asn Leu Gly Phe Leu Met His Ala Pro Ala Phe Glu Thr Ala Gly Thr Tyr Leu Arg Leu Val Lys Ile

4	2

-cont	ınue	эd

													C III		
Asn	Asp	Trp 275	Thr	Glu	Ile	Thr	Gln 280	Phe	Ile	Leu	Glu	His 285	Arg	Ala	Lys
Gly	Ser 290	Cys	Lys	Tyr	Ala	Leu 295	Pro	Leu	Arg	Ile	Pro 300	Pro	Ser	Ala	Сүз
Leu 305	Ser	Pro	Gln	Ala	Tyr 310	Gln	Gln	Gly	Val	Thr 315	Val	Asp	Ser	Ile	Gly 320
Met	Leu	Pro	Arg	Phe 325	Ile	Pro	Glu	Asn	Gln 330	Arg	Thr	Val	Ala	Val 335	Tyr
Ser	Leu	Lys	Ile 340	Ala	Gly	Trp	His	Gly 345	Pro	Lys	Ala	Pro	Tyr 350	Thr	Ser
Thr	Leu	Leu 355	Pro	Pro	Glu	Leu	Ser 360	Glu	Thr	Pro	Asn	Ala 365	Thr	Gln	Pro
Glu	Leu 370	Ala	Pro	Glu	Asp	Pro 375	Glu	Asp	Ser	Ala	Leu 380	Leu	Glu	Asp	Pro
Val 385	Gly	Thr	Val	Val	Pro 390	Gln	Ile	Pro	Pro	Asn 395	Trp	His	Ile	Pro	Ser 400
Ile	Gln	Asp	Ala	Ala 405	Thr	Pro	Tyr	His	Pro 410	Pro	Ala	Thr	Pro	Asn 415	Asn
Met	Gly	Leu	Ile 420	Ala	Gly	Ala	Val	Gly 425	Gly	Ser	Leu	Leu	Val 430	Ala	Leu
Val	Ile	Cys 435	Gly	Ile	Val	Tyr	Trp 440	Met	Arg	Arg	Arg	Thr 445	Gln	Lys	Ala
Pro	Lys 450	Arg	Ile	Arg	Leu	Pro 455	His	Ile	Arg	Glu	Asp 460	Asp	Gln	Pro	Ser
Ser 465	His	Gln	Pro	Leu	Phe 470	Tyr									

1. A recombinant herpes simplex virus (HSV) particle having at least one protein on its surface, comprising:

- (a) an altered gD, wherein the alteration reduces binding of gD to one or more of its cellular receptors, said alteration comprising
 - (i) a heterologous peptide ligand on the surface of the recombinant HSV particle forming a fusion protein with the altered gD; and
 - (ii) an amino acid alteration;
- wherein said recombinant HSV particle preferentially binds to cells expressing a binding partner to said heterologous peptide ligand.

2. The recombinant herpes simplex virus (HSV) particle of claim 1 further comprising an altered viral surface protein, wherein the alteration reduces binding of the viral surface protein to a sulfated proteoglycan.

3. The recombinant HSV particle of claim **1**, wherein the alteration is a conservative amino acid substitution.

4. The recombinant HSV particle of claim **1**, wherein the amino acid alteration is selected from the group consisting of an amino acid deletion, an amino acid substitution and an amino acid insertion.

5. The recombinant HSV particle of claim **4** wherein the amino acid alteration is an amino acid substitution.

6. The recombinant HSV particle of claim 5 wherein the amino acid substitution is at position 34.

7. The recombinant HSV particle of claim 6, wherein the amino acid substitution is V34S.

8. The recombinant HSV particle of claim **7**, wherein the particle is selected from the group consisting of HSV R5141 and HSV R5161.

9. The recombinant HSV particle of claim **1**, wherein a polynucleotide encoding the fusion protein is joined to a heterologous coding region for a leader sequence.

10. The recombinant HSV particle of claim **9**, wherein the leader sequence is an HSV leader sequence.

11. The recombinant HSV particle of claim 10, wherein the leader sequence is an HSV gD leader sequence.

12. The recombinant HSV particle of claim **1**, wherein a polynucleotide encoding the fusion protein is joined to a heterologous expression control element.

13. The recombinant HSV particle of claim 12, wherein the expression control element is a promoter.

14. The recombinant HSV particle of claim 1, wherein the viral surface protein is selected from the group consisting of gB and gC.

15. The recombinant HSV particle of claim **1**, wherein the alteration of gD reduces binding to at least one protein selected from the group consisting of HveA and Nectin-1.

16. The recombinant HSV particle of claim **1**, wherein the ligand forms a second fusion protein with a viral surface protein selected from the group consisting of gB and gC.

17. The recombinant HSV particle of claim **1**, wherein the binding partner is a cell surface receptor for said ligand.

18. The recombinant HSV particle of claim 17, wherein the cell is a cancer cell.

19. The recombinant HSV particle of claim **18**, wherein the cancer cell is a malignant gliomal cell.

20. The recombinant HSV particle of claim **1**, wherein the ligand is a cytokine.

21. The recombinant HSV particle of claim **20**, wherein the cytokine is IL13.

22. The recombinant HSV particle of claim **1**, wherein the ligand is a single-chain antibody.

23. A pharmaceutical composition comprising the recombinant HSV particle of claim **1** and a pharmaceutically acceptable carrier, diluent, or excipient.

24. A kit comprising the pharmaceutical composition according to claim 23 and a set of instructions for administering the composition to a subject in need.

25. A method of targeting a recombinant HSV particle to a cell comprising

(a) identifying a ligand for a ligand binding partner exhibited on the surface of a target cell; and

(b) creating an HSV particle according to claim 1, wherein the ligand binds to the binding partner exhibited on the surface of said target cell.

26. The method of claim **25**, wherein said altered viral surface protein is selected from the group consisting of gB and gC.

27. The method of claim **25**, wherein the alteration to gD reduces binding of gD to at least one cellular receptor for gD selected from the group consisting of HveA and Nectin-1.

28. The method of claim **25**, wherein the ligand forms a second fusion protein with gC.

29. The method of claim **25**, wherein the cell is a cancer cell.

30. The method of claim **29**, wherein the cancer cell is a malignant gliomal cell.

31. The method of claim **28**, wherein the ligand is a cytokine.

32. The method of claim 31, wherein the cytokine is IL13.

33. The method of claim **25**, wherein the ligand is a singlechain antibody.

34. The method of claim **25**, wherein the amino acid substitution is V34S.

35. A method of imaging a cell comprising:

(a) contacting the cell with a recombinant HSV particle according to claim 1, said recombinant HSV particle further comprising a coding region for a marker protein; and

(b) detecting the presence of the marker protein.

36. The method of claim **35**, wherein the cell is a cancer cell.

37. The method of claim **35**, wherein the binding partner is present at a higher number on the cancer cell as compared to a non-cancerous cell of the same type.

38. The method of claim **35**, wherein the marker protein is selected from the group consisting of thymidine kinase, green fluorescent protein, and luciferase.

39. The method of claim **35**, wherein the amino acid substitution is V34S.

40. A method of treating a cell-based disease comprising delivering a therapeutically effective amount of a recombinant HSV particle according to claim **1** to a subject in need.

41. Use of a recombinant HSV particle according to claim **1** in the preparation of a medicament for the treatment of a cell-based disease.

42. The method according to claim 40 or the use according to claim 41 wherein the disease is cancer.

43. A method of ameliorating a symptom associated with a disease comprising administering a therapeutically effective amount of a recombinant HSV particle according to claim **1** to a subject in need.

44. Use of a recombinant HSV particle according to claim 1 in the preparation of a medicament for ameliorating a symptom associated with a disease in a subject in need.

45. The method according to claim **43** or the use according to claim **44** wherein the disease is characterized by hyperproliferative cells.

46. A method of delivering a therapeutically useful peptide to a cell comprising:

- (a) inserting a coding region for a therapeutically useful peptide into the DNA of a recombinant HSV particle according to claim 1, thereby producing a recombinant HSV clone; and
- (b) delivering a therapeutically effective amount of said recombinant HSV clone to said cell.

47. Use of a recombinant HSV clone comprising a recombinant HSV particle according to claim **1** in the preparation of a medicament for delivering a therapeutically useful peptide to a cell comprising inserting a coding region for a therapeutically useful peptide into the DNA of the recombinant HSV particle, thereby producing the recombinant HSV clone.

48. The method according to claim **46** or the use according to claim **47** wherein the recombinant HSV clone is delivered in vivo.

49. A method of killing a target cell, comprising contacting the target cell with a recombinant HSV particle according to claim **1**.

50. Use of a recombinant HSV particle according to claim 1 in the preparation of a medicament for killing a target cell by contacting the target cell with the recombinant HSV particle.

* * * * *