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(57) ABSTRACT 

The present invention relates to a method for indexing nucleic 
acid sequences to aid computer based searching of nucleic 
acid sequences by indexing a nucleotide sequence by the 
presence of unique Kmers in the sequence. The method of the 
present invention comprises utilizing an algorithm to auto
matically index a nucleic acid sequence. 
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MICA File Structure and Data Storage Requirements 

Generic Storage Storage Requirement for 

File Element Requirement (bytes) Chromosome I (bytes) 

Sequence Segment 

A. Segment Format 1 1 

B. Segment Size 4 4 

C. Sequence Properties 1 1 

D. DNA Sequence L 245,522,847 (234 MB) 

SEGMENT TOTAL 6+L 245,522,853 (234 MB) 

Index Segment 

E. Segment Format I 1 

F. Segment Size 4 4 

G. Index Properties 1 1 

H. Chunk Counts Summary 4K+I K=4: 1,024 (1 KB) 

K= 6: 16,384 (16 KB) 

I. Degenerate K-mer Count 4 4 

J. N-Stretch Count (S) 4 4 

K. Chunk Data Array (4K * C + number of K=4: 447,573,936 

nondegenerate K-mers) * 2 (427 MB) 

K= 6: 476,350,748 

(454 MB) 

L. Degenerate Data Array (number of partially degenerate K= 4: 1,752 (1.7 KB) 

K-mers) * (4 + K) K = 6: 3,650 (3.6 KB) 

M. N-Stretch Data Array 8S 296 

SEGMENT TOTAL Typically about 2L bytes. K= 4: 447,577,022 

(427 MB) 

K= 6: 476,371,092 

(454 MB) 

FIG.1 
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Representative Sizes, Creation Times, and Loading Times for MICA Indexes 

Index Index Creation Index Loading 

K Size (GB) Time (sec) Time (sec) 

Chromosome 1 (2.46 x 1 ois 4 0.42 19.3 0.023 

bases) 6 0.44 27.1 0.024 

Random Sequence (2.46 x 4 0.46 23.5 0.020 

108 bases) 6 0.49 32.0 0.025 

Human Genome (3.08 x 109 4 5.33 262 0.49 

bases) 6 5.67 345 0.44 

FIG. 2 
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Representative Search Times for K = 4 

Chromosome 1 Human Genome 

Query Time (sec) Hits Time (sec) Hits 

Nondegenerate 3-mers 0.82 [0.51] 6.96 X 106 11.5 8.90 X 107 

Nondegenerate 4-mers 0.13 [0.028] 1.69 X 10° 2.5 2.17x10' 

Nondegenerate 6-mers 0.35 [0.11] 160,702 5.8 2.05 X 10° 

Nondegenerate 8-mers 0.38 [0.11] 16,631 6.2 213,099 

Nondegenerate 15-mers 0.56 [0.11] 1.39 9.0 5.81 

Nondegenerate 30-mers 0.54 [0.10] 1.03 8.3 1.24 

N ondegenerate 100-mers 0.41 [0.069] 1.01 6.1 1.02 

Nondegenerate 1000-mers 0.14 [0.019] 1.00 2.3 1.00 

Alu 30-mer fragment 0.77 [0.095] 1,130 13.6 14,041 

GDGCHC (Bspl 2861) 0.43 [0.11] 398,999 6.9 4,776,086 

GCCNNNNNGGC (Bgn) 0.37 [0.12] 44,761 6.1 520,776 

ACNNNNGT A YC (Bael) 1.55 [0.34] 20,243 23.2 259,837 

FIG. 3 
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Representative Search Times for K = 6 

Chromosome 1 Human Genome 

Query Time (sec) Hits Time (sec) Hits 

Nondegenerate 3-mers 1.1 [0.80] 6.96 X 106 14.8 8.90 X 10 1 

Nondegenerate 4-mers 0.28 [0.16] 1.69 X 106 4.2 2.17 X 107 

Nondegenerate 6-mers 0.043 160,702 0.96 2.05 X 10° 

[0.0032] 

Nondegenerate 8-mers 0.079 [0.011] 16,631 1.6 213,099 

Nondegenerate 15-mers 0.088 1.39 1.8 5.81 

[0.0074] 

Nondegenerate 30-mers 0.13 1.03 1.8 1.24 

[0.0076] 

N ondegenerate 100-mers 0.12 1.01 1.7 1.02 

[0.0050] 

N ondegenerate 0.094 1.00 1.3 1.00 

1000-mers [0.0023] 

Alu 30-mer fragment 0.12 1,130 2.5 14,041 

[0.0055] 

GDGCHC (Bspl 2861) 0.13 [0.031] 398,999 2.5 4,776,086 

GCCNNNNNGGC (Bgll) 0.44 [0.15] 44,761 6.2 520,776 

ACNNNNGTAYC 1.40 [0.37] 20,243 21.1 259,837 

(Bael) 

FIG. 4 
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METHOD FOR INDEXING NUCLEIC ACID 
SEQUENCES FOR COMPUTER BASED 

SEARCHING 

BACKGROUND OF THE INVENTION 

[0001] Researchers in the Biotechnology industry are 
increasingly working with very large DNA databases. For 
example, the human genome is approximately 3 gigabases. 
Searching these databases has traditionally been done with 
dedicated servers because the search algorithms require sub
stantial computer resources. As an alternative analysis tool, 
desktop computers are often more versatile and convenient, 
and they are now routinely equipped with hundreds of 
gigabytes (GB) of hard disk space and several GB of RAM 
(random access memory). The challenge is to harness this 
capacity by creating DNA analysis software that works effi
ciently in a multipurpose desktop environment. 
[0002] A basic requirement for DNA analysis software is 
rapid searching of a DNA database to find all exact matches 
for a query sequence. The desired search speeds can only be 
achieved by indexing the database. One well-characterized 
indexing strategy is to generate a suffix tree (Gusfield, D., 
Algorithms on Strings, Trees, and Sequences: Computer Sci
ence and Computational Biology. Cambridge University 
Press, Cambridge, 1997, incorporated herein by reference). 
Although suffix trees have been used productively for some 
molecular biology applications, such as aligning whole 
genomes (Kurtz, S.,A. Philippy,A. L. Delcher, M. Smoot, M. 
Shumway, C. Antonescu, and S. L. Salzberg, Versatile and 
open software for comparing large genomes. Genome Biol. 5: 
Rl 2, 2004, incorporated herein by reference), they consume 
large amounts of memory, up to 15 bytes or more per base. 
More compact than suffix trees are suffix arrays, which can 
provide similar search capabilities while requiring only 4-8 
bytes per base (Abouelhoda, M. I., S. Kurtz, and E. Ohle
busch, Replacing suffix trees with enhanced suffix arrays. J. 
DiscreteAlgorithms 2: 53-862004, 2004, incorporated herein 
by reference). 
[0003] Non-suffix-based indexing strategies are currently 
in more widespread use for DNA databases. The SSAHA 
algorithm divides a DNA sequence into nonoverlapping 
K-mers ofK consecutive bases ( a K-mer is an oligonucleotide 
oflength K), and stores the position of these K-mers in a hash 
table (Ning, A., A. J. Cox, and J.C. Mullikin, SSAHA: a fast 
search method for large DNA databases. Genome Res. 11: 
1725-1729, 2001, incorporated by reference). A similar 
indexing method is used by the BLAT algorithm (Kent, W. J, 
BLAT-The BLAST-like alignment tool. Genome Res. 12: 
656-664, 2002, incorporated by reference). Both SSAHA and 
BLAT generate small indexes, on the order of 1 byte or less 
per base, and they can be orders of magnitude faster than 
BLAST or PASTA, which index the query sequence rather 
than the database (Pearson, W. R. and D. J. Lipman, 1988, 
Improved tools for biological sequence comparison. Proc. 
Natl. Acad. Sci. USA 85: 2444-2448; Altschul, S. F., W. Gish, 
W. Miller, E.W. Myers, and D. J. Lipman, 1990, Basic local 
alignment search tool. J. Mo!. Biol. 215: 403-410; Altschul, 
S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. 
Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI
BLAST: a new generation of protein database search pro
grams. Nucleic Acids Res. 25: 3389-3402, each reference 
incorporated by reference). SSAHA and BLAT have proven 
to be powerful for applications such as mapping sequence 
reads to a genome, or aligning mRNA sequences with the 
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corresponding genomic DNA sequences. However, SSAHA 
and BLAT have limitations. Unlike suffix-based algorithms, 
which can identify all matches to any query sequence, 
SSAHA cannot detect a match of fewer than K bases, and 
requires 2K-1 consecutive matching bases to guarantee that a 
match will be registered. Because SSAHA sorts the search 
results, efficient searching is achieved by ignoring the K-mers 
that occur most frequently in the database. Similarly, BLAT 
sacrifices completeness for speed. 
[0004] These various algorithms have generally been 
designed with the assumption that the complete index of a 
DNA database will be stored in main memory. Such algo
rithms are inconvenient for desktop applications, because an 
index might occupy much or all of the memory of a typical 
personal computer. 

SUMMARY OF THE INVENTION 

[0005] Molecular biologists work with databases repre
senting DNA molecules that range in size from plasmids to 
chromosomes. A common requirement is to search a DNA 
database to find exact matches for a nondegenerate or par
tially degenerate query. The software programs available for 
such purposes normally run on remote servers, but because 
desktop computers are increasing in power, an appealing 
alternative is to work with DNA databases stored on local 
computers. The present invention provides a method for rap
idly indexing a DNA database. The method makes use of a 
data structure algorithm called MICA (K-Mer Indexing with 
Compact Arrays). The indexes occupy only -2 bytes per base 
and can be generated quickly. Unlike most other algorithms, 
MICA indexes not only the standard nucleotide base charac
ters A, C, G, and T, but also the degenerate base characters B, 
D, H, K, M, R, S, V, W, Y, and N. Efficient search procedures 
identify all matches for a nondegenerate or partially degen
erate query of any length. When a file is being searched, only 
a fraction of the index is present in memory at any given time, 
so desktop computers with modest amounts of RAM can 
search large databases efficiently. 
[0006] MICA rapidly indexes a DNA database. On a 
Macintosh GS computer, the complete human genome could 
be indexed in about 5 minutes. The indexing algorithm rec
ognizes all 15 base characters: A (which represents adenine), 
C (which represents cytosine), G (which represents guanine), 
and T (which represents thymine), but also the degenerate 
base characters B (which represents C, G or T), D (which 
represents A, G or T), H (which represents A, C or T), K 
(which represents G or T), M (which represents A or C), R 
(which represents A or G), S (which represents C or G), V 
(which represents A, C or G), W (which represents A or T), Y 
(which represents C or T), and N (which represents A, C, G or 
T). For a typical sequence oflength L, the index occupies only 
about 2 L bytes. The index can be searched to return a com
plete list of exact matches for a nondegenerate or partially 
degenerate query of any length. A typical search of a long 
DNA sequence involves reading only a small fraction of the 
index into memory. As a result, searches are fast even when 
the available RAM is limited. 
[0007] In one embodiment, the present invention provides a 
method of indexing and recording a nucleotide sequence with 
a computer to create a file. The method comprises selecting a 
nucleotide sequence to index and having a computer scan the 
nucleotide sequence, identifying each occurrence of a base 
sequence of a selected base width K. The computer then 
determines all of the unique base sequences of width Kin the 
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nucleotide sequence, each unique base sequence of width K 
being a K-mer. A K-mer can either be a non-degenerate 
sequence comprised solely of the bases A, C, G, and T, or a 
partially degenerate sequence comprised of the non-degener
ate DNA bases A, C, G, and T plus the degenerate bases R, Y, 
M, K, S, W, H, B, V, D and N. A partially degenerate sequence 
contains fewer than K instances of the completely degenerate 
base N. 
[0008] In one embodiment, the computer divides the nucle
otide sequence into C separate chunk sections, where C is an 
integer. In one embodiment, each chunk section consists ofX 
bases, where C is an integer less than 65,536 and C is an 
integer equal to L/X or the next integer greater than L/X, 
where Lis the length of the nucleotide sequence. In another 
embodiment, C is an integer equal to L/65,535 or the next 
integer greater than L/65,535. 
[0009] The computer records in the file the position of each 
K-mer in the nucleotide sequence. The position of each non
degenerate K-mer is recorded in a non-degenerate data array 
in the file. In one embodiment, the non-degenerate data array 
is divided into 4K partitions corresponding to all of the pos
sible 4K non-degenerate K-mers. Each partition contains a list 
of integers representing the number of times a particular 
non-degenerate K-mer is present in each of the chunk sec
tions, followed by a list of integers representing intra-chunk 
section positions of the particular K-mer in each of the chunk 
sections. The position of each partially degenerate K-mer is 
recorded in a degenerate data array in the file. Each particular 
partially degenerate K-mer is represented as an integer that 
marks the absolute position of the particular K-mer, followed 
by a string that encodes the sequence of the particular K-mer. 
[0010] The computer also determines the number of times 
each non-degenerate K-mer appears in the nucleotide 
sequence and records this information in a chunk count sum
mary field. The computer also determines the total number of 
partially degenerate K-mers in the nucleotide sequence and 
records this number in a degenerate K-mer count field. The 
computer also determines the number of separate stretches of 
K or more consecutive base N's in the nucleotide sequence 
and records this information an N-stretch count field. 
[0011] In another embodiment, the invention provides a 
data structure for recording information regarding a nucleic 
acid, the information being stored in a computer file. The data 
structure contains information on the K-mer's of the nucle
otide sequence. The data structure comprises a non-degener
ate data array containing the position of each particular non
degenerate K-mer of a nucleotide sequence; a degenerate data 
array containing the position of each particular partially 
degenerate K-mer and a string encoding the sequence of each 
particular partially degenerate K-mer; a sequence segment 
format field that contains an integer identifying this segment 
as the sequence segment; a sequence segment size field con
taining an integer representing the total number of bytes 
occupied by the sequence segment; a sequence properties 
field containing an integer representing the topology and the 
strandedness of the nucleotide sequence; a DNA sequence 
field containing the base sequence of the nucleotide 
sequence; an index segment format field that contains an 
integer identifying this segment as the index segment; an 
index segment size field containing an integer representing 
the total number of bytes occupied by the index segment; an 
index properties field containing an integer representing the 
byte order of the index; a chunk counts summary field con
taining a list ofintegers representing the total number of times 
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a particular non-degenerate K-mer appears in the nucleotide 
sequence; a degenerate K-mer count field containing an inte
ger representing the total number of partially degenerate 
K-mers in the nucleotide sequence; an N-stretch count field 
containing an integer S representing the number of separate 
stretches of K or more consecutive N's in the nucleotide 
sequence; and an N-stretch data array containing S pairs of 
integers that represent the starting positions and lengths of the 
separate stretches of consecutive N's in the nucleotide 
sequence. 
[0012] In another embodiment of the invention, the inven
tion provides a method of searching for a specific base 
sequence in a nucleotide sequence using a computer. In one 
embodiment, the invention comprises using a computer to 
access the data structure of the invention containing informa
tion on a nucleotide sequence and having the computer search 
the information in the data structure for the presence and 
location of the specific base sequence. The computer accesses 
a data structure file of the present invention containing infor
mation on the nucleotide sequence desired. The computer 
then loads the data from the index segment format field, the 
index segment size field, the index properties field, the chunk 
counts summary field, the degenerate K-mer count field and 
the N-stretch Count field into main memory. The computer 
then divides the specific base sequence that is being searched 
for into specific K-mers. The computer accesses the data 
loaded into the main memory and the information in the 
degenerate data array, the non-degenerate data array, and the 
N-stretch data array and uses this information to generate the 
position of the unique K-mers in the nucleotide sequence. The 
computer then uses this K-mer position data to determine the 
location of the specific base sequence in the nucleotide 
sequence if present. 

BRIEF DESCRIPTION OF ATTACHED TABLES 
AND FIGURES 

[0013] FIG. 1 is a table the depicts the index structure and 
data storage requirements of the invention. 
[0014] FIG. 2 is a table that depicts representative index 
sizes, creation times, and loading times of the invention. 
[0015] FIG. 3 is a table that depicts representative search 
times of the invention when K=4. 
[0016] FIG. 4 is a table that depicts representative search 
time of the invention when K=6. 
[0017] FIG. 5 shows the Bae! Site search time in relation to 
available RAM. 
[0018] Before the embodiments of the invention are 
explained in detail, it is to be understood that the invention is 
not limited in its application to the details of construction and 
the arrangements of the components set forth in the following 
description or illustrated in the drawings. The invention is 
capable of other embodiments and ofbeing practiced or being 
carried out in various ways. Also, it is understood that the 
phraseology and terminology used herein are for the purpose 
of description and should not be regarded as limiting. The use 
of "including", "having" and "comprising" and variations 
thereof herein is meant to encompass the items listed there
after and equivalents thereof as well as additional items and 
equivalents thereof. 

DETAILED DESCRIPTION OF THE INVENTION 

[0019] The present invention relates to a method for index
ing nucleic acid sequences to aid computer based searching of 
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nucleic acid sequences. The method of the present invention 
comprises utilizing an algorithm to automatically index a 
nucleic acid sequence. This algorithm is suitably utilized by a 
software program running on a computer. The invention also 
comprises a data structure which comprises an indexed nucle
otide sequence. The data structure can be saved as a computer 
file. 
[0020] The term "computer file", as used herein, refers to a 
stream (sequence) of bits stored as a single unit, typically in a 
file system on electronic storage medium such as a computer 
disk, a computer hard drive, a CD-ROM, a DVD-ROM or a 
magnetic tape. While a file is usually presented as a single 
stream, it can be, and is most often, stored as multiple frag
ments of data at different places on a disk or hard drive ( or 
even multiple disks). The file can be in any format suitable for 
the program accessing the file, and suitable for the operating 
system the program is operating on. 
[0021] The term "computer readable storage medium" and 
"permanent storage", as used herein, refers to any medium 
that can store data that is accessible by a computer. This 
includes, but is not limited to, a computer disk, a computer 
hard drive, a CD-ROM, a DVD-ROM or a magnetic tape. The 
term "main memory" or "resident memory" as used herein 
refers to the RAM memory of a computer. 
[0022] The term "data structure", as used herein, refers to 
an organization structure in which data is stored on either a 
computer readable storage medium, or in the resident 
memory of a computer. The organization structure allows 
different pieces of data to be organized by different identifiers 
such as a field. 
[0023] The term "field", as used herein, refers to a particu
lar area of the data structure or record in which the same type 
of information is regularly recorded. For example, a date has 
three distinct fields: the day, the month, the year. Identifier 
labels have been placed in front of the term "field" in order to 
distinguish a specific field from other fields in the claims. 
These labels do not impart any specific functionality to the 
field, they simply label the field for ease of reference. The 
identifier usually indicates the type of data stored in the field, 
therefore a "Segment Format" field contains information in 
the field that indicates the format of a of a file segment. 
[0024] The term "nucleic acid", as used herein refers to any 
molecule that contains a nucleotide chain. This includes, but 
is not limited to, single or double stranded DNA, RNA, plas
mids, chromosomes and nucleic acid fragments. 
[0025] In the present invention, a nucleic acid sequence is 
indexed by scanning the sequence with a window of a selected 
width K (width being the number of bases). Each sequence of 
width K that has a specific combination of bases is a unique 
K-mer. Each unique K-mer is repeated multiple times in a 
sequence. For example, when K =4, examples of some unique 
K-mers could be ACCT, ACTG, ACTT, TCGA, TTCG, etc., 
with each of these unique K-mers being repeated multiple 
times in a DNA sequence. For a sequence oflength L, sliding 
the window one base at a time yields L-K+l overlapping 
K-mers. A MICA index uses arrays to store all of the positions 
for each K-mer in the subject nucleic acid sequence. Because 
chromosomal DNA molecules can be up to several hundred 
million bases long, the K-merposition values would normally 
be represented as 4-byte integers. The present invention 
reduces this data storage requirement by dividing the 
sequence into "chunks." Suitably a sequence is divided into C 
separate "chunks" of 65,535 (2 16 

- 1) bases, where C=ceiling 
(L/65,535). The number of instances of each K-mer within a 
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given chunk can range from Oto 65,535, so a 2-byte integer 
can be used to record this number. Other choices are possible 
for the bases per chunk as long as this value is less than 216

, 

although reducing this value below 65,535 would increase the 
file size. The intra-chunk positions of each non-degenerate 
K-mer are stored as 2-byte integers. The absolute positions of 
a K-mer within a full DNA sequence can then be calculated 
with the aid of a list specifying the number of instances of the 
K-mer within each chunk. 
[0026] A non-degenerate K-mer consists of a combination 
of the four non-degenerate base characters A, G, C and T. A 
partially degenerate K-mer is comprised of the non-degener
ate bases A, G, C and T plus the degenerate bases B, D, H, K, 
M, R, S, V, W, Y and N where a partially degenerate sequence 
contains fewer than K instances of the completely degenerate 
base N. A fully degenerate K-mer consists only of the base N. 
Partially degenerate K-mers must be recognized if the index 
is to capture all of the information in any nucleic acid 
sequence. It would be wasteful to create an array for all of the 
different partially degenerate K-mers because most of the 
array elements would typically be empty. Instead, for each 
partially degenerate K-mer that is actually present in a subject 
sequence, the present invention uses a 4-byte integer to record 
the absolute position of the K-mer, followed by a K-byte 
string to record the sequence of the K-mer. This approach is 
inefficient with regard to data storage, but most nucleic acid 
sequences contain very few partially degenerate K-mers, and 
the simplicity of the data format facilitates searching. A sepa
rate strategy is used for stretches ofN's, which are commonly 
used to indicate undefined portions of a sequence. Here S 
designates the number of "N-stretches" of K or more con
secutive N's. MICA efficiently indexes N-stretches by 
recording their starting positions and their lengths. 
[0027] Also stored in the index is the topology of the sub
ject nucleic acid molecule (linear or circular). With circular 
nucleic acid molecules, MICA finds matching sequences that 
span the numerically defined origin. 
[0028] FIG.1 summarizes the MICA file structure, together 
with the generic data storage requirements for each part of the 
file. As an example, FIG. 1 lists the specific data storage 
requirements for human chromosome 1, which at -246 mil
lion bases represents one of the longest DNA molecules that 
needs to be indexed. To ensure that memory addresses can be 
represented as 4-byte integers, MICA has been constrained to 
index individual DNA sequences of no more than 1 gigabase. 
[0029] The main body of a MICA index is the Chunk Data 
Array, which stores the positions of the nondegenerate 
K-mers (FIG. 1). The total number of position values is 
largely independent of K. However, there are 4K different 
nondegenerate K-mers, so the Chunk Data Array is divided 
into 4K partitions. Each partition is divided into C sub-parti
tions that contain the intra-chunk position values. The sizes of 
these sub-partitions are recorded in a list at the beginning of 
the partition. As a result, the practical upper limit for K is 7, 
because for K=S there would be 65,536 sub-partitions per 
chunk, and the lists of sub-partition sizes would occupy more 
space than the lists of K-mer position values. The practical 
lower limit for K is 3, because reducing K increases the size 
of the partitions that must be read from disk, thereby slowing 
most searches. 
[0030] To create a MICA index, a subject nucleic acid 
sequence in F ASTA format (FAS TA format description http:// 
www.ncbi.nlm.nih.gov/BLAST/fasta.shtml) is scanned 
using a window of width K. Both uppercase and lowercase 
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characters are recognized. A MICA file consists of a 
Sequence Segment ( containing values for the following 
fields: Segment Format, Segment Size, Sequence Properties, 
and the DNA Sequence (elements A-D of FIG. 1)) followed 
by an Index Segment ( containing values for the following 
fields: Index Segment Format, Index Segment Size, Index 
Properties, Chunk Counts Summary, degenerate K-mer 
Count, N-Stretch Count (S), Chunk Data Array, Degenerate 
Data Array, and N-Stretch Data Array ( elements E-M in FIG. 
1)). 
[0031] With respect to the Sequence Segment, for the Seg
ment Format, a single byte is used to specify the format, 
identifying this segment as the sequence segment. For the 
Segment Size, the size is specified by a 4 byte integer. For the 
Sequence Properties, a single byte is used to record properties 
of the sequence, including its topology (linear or circular) and 
its strandedness (single- or double-stranded). For the DNA 
Sequence, the sequence is stored as a string of uppercase 
ASCII characters. 

[0032] With respect to the Index Segment, for the Index 
Segment Format, a single byte is used to specify the format, 
identifying this segment as the index segment. For the Index 
Segment Size, the size is specified by a 4-byte integer. For the 
index Properties, a single byte is used to record the byte order 
("endianness") of the index. This byte order can be either 
"Big Endian", meaning that the high-order byte of a multi
byte number is stored in memory at the lowest address while 
the low-order byte is stored at the highest address, or "Little 
Endian", meaning that the low-order byte of a multi-byte 
number is stored in memory at the lowest address while the 
high-order byte is stored at the highest address. If the byte 
order is opposite to that of the machine being used to run the 
queries, MICA corrects the byte order when processing the 
index data. The Chunk Counts Summary is a list of 4K 4-byte 
integers representing the total number of times each nonde
generate K-mer appears in the sequence. For the MI CA index, 
the 4-base nondegenerate DNA alphabet is arranged in the 
order G, A, T, C. Thus, the first nondegenerate K-mer listed is 
GGGG (K=4) or GGGGGG (K=6), and the last one listed is 
CCCC (K=4) orCCCCCC (K=6). This lexicographical order 
yields contiguous index reads for K-mers that end in the most 
common partially degenerate bases: R (A or G), Y (C or T), 
and W (A or T). The Degenerate K-mer Count is a 4-byte 
integer representing the total number of partially degenerate 
K-mers in the sequence. The N-Stretch Count S is a 4-byte 
integer representing the number of separate stretches of Kor 
more consecutive N's. The Chunk Data Array is divided into 
4 partitions corresponding to the 4K nondegenerate K-mers. 
Each partition contains a list of 2-byte integers representing 
the number of times the K-mer is present in each of the C 
chunks, followed by a list of 2-byte integers representing the 
intra-chunk positions of the K-mer in each of the C chunks. 
The first partition contains the data for GGGG (K=4) or 
GGGGGG (K=6), and the second partition contains the data 
for GGGA (K =4) or GGGGGA (K =6), and so on. The Degen
erate Data Array is a list of the partially degenerate K-mers. 
Each partially degenerate K-mer is represented as a 4-byte 
integer that marks the absolute position of the K-mer, fol
lowed by a K-byte string that encodes the sequence of the 
K-mer. The N-Stretch Data Array consists ofS pairs of 4-byte 
integers that represent the starting positions and lengths of the 
N-stretches. 

[0033] If a sequence occupies more than a predetermined 
number of chunks, suitably, but not limited to 16 chunks, then 
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loading of a MICA index consists of reading the values of the 
Segment Format, Segment Size, Sequence Properties, skip
ping over the DNA sequence, and reading the values of the 
Index Segment Format, Index Segment Size, Index Proper
ties, Chunk Counts Summary, degenerate K-mer Count, and 
N-Stretch Count (S) of the Index Segment. The parameters 
for human chromosome 1 were: L=245,522,847 bases; C=3, 
747 chunks; S=37 N-stretches (total of22,695,000 N's). 
[0034] An initial scan fills in the data for index elements 
Index Segment Format, Index Segment Size, Index Proper
ties, Chunk Counts Summary, degenerate K-mer Count, and 
N-Stretch Count (S) (See FIG. 1). Then the appropriate 
memory for the data arrays (index elements Chunk Data 
Array, Degenerate Data Array, and N-Stretch Data Array) is 
allocated, and a second scan fills in the positions of the 
K-mers and N-stretches. These operations are fast, partly 
because building the index requires no sorting. If sufficient 
memory is available, indexing speed is maximized by build
ing the entire index in memory and then writing to disk in a 
single step. In the case of human chromosome 1, this process 
requires about 0.67 GB of RAM, an amount that is available 
on many desktop computers. If memory is limiting, only a 
subset of the K-merposition values are stored in memory at a 
given time, and the index is written to disk in multiple steps. 
[0035] MICA can then embed a copy of the DNA sequence 
within the file. This sequence consists of characters in 8-bit 
ASCII format, and therefore occupies L bytes. The original 
sequence file can then be dispensable for searching. In 
another embodiment, MICA can be integrated with software 
that automatically generates a suitably formatted DNA 
sequence. 
[0036] If a DNA sequence occupies more than a predeter
mined number of chunks, suitably, but not limited to 16 
chunks (-1 mega base), only the values from the Segment 
Format, Segment Size, Sequence Properties, Index Segment 
Format, Index Segment Size, Index Properties, Chunk Counts 
Summary, degenerate K-mer Count, and N-Stretch Count (S) 
fields of the MICA file are initially read from disk. These 
reads are very fast because they involve a small amount of 
data, just over 1 KB for K=4 or just over 16 KB for K=6. 
During a search, MICA uses the data from this first portion of 
the index to find the relevant position values. For example, to 
find the positions of a nondegenerate K-mer, an entry in the 
Chunk Counts Summary indicates where the relevant posi
tion values can be read from the Chunk Data Array. Thus, 
MICA selectively reads only the essential data from disk, 
thereby performing efficient I/O operations and minimizing 
RAM usage. 
[0037] The query length Q can range from one base to the 
lengthofthe subject DNA sequence. Both strands of the DNA 
molecule are searched. For a query that is palindromic-i.e., 
identical to its reverse complement-a single search is per
formed. For a query that is nonpalindromic, two successive 
searches are performed, one with the query and another with 
the reverse complement of the query. If the DNA molecule is 
circular, the initial search is followed by a secondary search 
for matches that span the origin. One step in this secondary 
search involves dividing the query in half and then checking 
for one of two possibilities: either the first half-query matches 
within the last Q-1 bases of the DNA sequence, or the second 
half-query matches within the first Q-1 bases of the DNA 
sequence. 
[0038] If a query is shorter than K bases, it is extended to K 
bases by adding N's, and is then treated as being partially 
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degenerate (see below). If a query is exactly K bases, the 
search consists of converting the 2-byte intra-chunk position 
values for that K-mer to 4-byte absolute position values. If a 
query is longer than K bases, it is decomposed into constitu
ent K-mers, which are examined as follows. The list ofintra
chunk position values for the first K-mer is read from the 
index and converted to absolute position values, thereby cre
ating an initial working list. Each value in the working list is 
then compared with the second K-mer list. The result is a new 
working list, which indicates where both the first and second 
K-mers from the query match the subject DNA sequence. 
This new working list is then compared with the next K-mer 
list, and so on. In this manner, MICA progressively trims the 
initial working list to generate a final list of matches. 

[0039] With a query longer than K bases, the constituent 
K-mers are examined in increasing order of their frequency of 
appearance in the subject DNA sequence. For example, a 
search for the 12-mer AAAACCCCGGGG using K=4 might 
involve calculating the positions for CCCC, then comparing 
each CCCC position against the list of positions for GGGG, 
then comparing each CCCCGGGG position against the list of 
positions for AAAA, which in this case would be the most 
common of the three 4-mers. This strategy of starting with the 
rarest K-mer can significantly accelerate searches because 
some K-mers are found less frequently than others and there
fore result in fewer comparisons. In chromosome 1, the most 
common 4-mer (AAAA) appears 56 times more often than 
the rarest 4-mer (CGCG), and the most common 6-mer 
(TTTTTT) appears 929 times more often than the rarest 
6-mer (CGTACG). 

[0040] Each successive K-mer search is limited to the range 
of chunks that generated hits for the current working list. In 
the example above, after the CCCCGGGG hits have been 
identified, the search for AAAA is limited to the chunks 
between the first and last occurrence of CCCCGGGG. If a 
working list contains no hits, the search is terminated. This 
range limitation method can accelerate searches when a query 
has a small number of matches to the subject sequence. 

[0041] A partially degenerate query can be expanded by 
searching for all of the possible matching sequences. For 
example, the restriction enzyme Bsp12861 has the recogni
tion sequence GDGCHC, which can potentially match 9 non
degenerate sequences (when the second base is A, G, orT, and 
the fifth base is A, C, or T) and 40 partially degenerate 
sequences (when the second base is D, R, K, or W, or the fifth 
base is H, M, Y, or W). A search for GDGCHC will therefore 
return matches for all of the 49 possible matching 6-mers. 
Alternatively, searches for a partially degenerate query can be 
restricted to return only literal matches to that character 
string, so a search for "GDGCHC" will return matches only 
for the single 6-mer GDGCHC. 
[0042] MICA scans a partially degenerate query to deter
mine an efficient search strategy that limits the degeneracy of 
the constituent K-mers. For example, the restriction enzyme 
Bae! has the recognition sequenceACNNNNGTAYC, and for 
K=4 the matches are found by searching for GTAY, TAYC, 
andACNN. The MICA index is ordered lexicographically, so 
the K-mer ACNN invokes 16 contiguous disk reads from the 
Chunk Data Array, whereas the equivalent K-mers NNAC 
and NACN would invoke non-contiguous reads. Because 
contiguous reads are faster than non-contiguous reads, MICA 
pushes any degeneracy to the end of a K-mer whenever pos
sible. 
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[0043] With a partially degenerate K-mer, the working list 
must be compared to multiple individual K-mer lists using an 
intersection algorithm. An obvious approach would be to 
adapt the method that is used with a single nondegenerate 
K-mer. In that case, MICA finds the intersection of the work
ing list and the next K-mer list using a standard technique: a 
pointer is assigned to the K-mer list, and for each successive 
element in the working list, the pointer is advanced until the 
value in the K-mer list equals or exceeds the value in the 
working list (See Knuth DE: The Art of Computer Program
ming. Volume 3: Sorting and Searching, 2nd edn: Addison
Wesley; 1998 incorporated herein by reference). When there 
are multiple K-mer lists, a pointer can be assigned to each 
one, and a working list element can be compared to all of the 
K-mer lists. However, this method becomes very inefficient if 
the working list is larger than the individual K-mer lists, 
because most of the comparisons fail to advance the pointers. 
MICA therefore uses an alternative intersection algorithm for 
partially degenerate K-mers. A boolean array of 65,535 ele
ments is used to represent the positions in a chunk. For a given 
chunk, all of the individual K-mer lists are scanned, and the 
2-byte position values are recorded by setting the correspond
ing boolean elements to true, yielding a boolean array that 
indicates which positions in the chunk match one of the 
K-mers. Then the intersection is obtained by checking 
whether each working list element corresponds to a value of 
true in the boolean array. This method is efficient due to the 
relatively small number of operations and the sequential 
nature of the memory accesses. 

[0044] When a K-mer is very degenerate, a substantial 
amount of time may be needed to read and process the index 
data. In such cases, MICA switches to an alternate mode that 
uses the embedded DNA sequence. The entire query is com
pared to DNA sequence fragments that overlap each hit in the 
working list. MICA can be configured to perform this mode 
switch whenever the amount ofindex data that would need to 
be read exceeds a set percentage of a total DNA sequence. 
Such a suitable percentage could be 33% of the total DNA 
sequence data, but could suitably be any other desired per
centage. This condition typically arises with extremely 
degenerate K-mers such as ANNN (K=4) or ANNNNN 
(K =6). Even with a less degenerate K-mer, the alternate mode 
is used if more data would be read by using the index than by 
directly examining the DNA sequence. Thus, at each stage of 
a search, MICA takes advantage of the fastest available 
option. 

[0045] Reading data from disk is slow, so the search speed 
can be maximized by pre-loading the entire file into main 
memory. MICA uses this approach when the sequence occu
pies up to a predeterminednumberof chunks, suitably, but not 
limited to, 16 chunks. The corresponding files usually occupy 
no more than 3 MB of RAM and can be read from disk in a 
fraction of a second. 

[0046] For longer sequences, as described above, MICA 
sacrifices some potential search speed in exchange for rapid 
index loading and low memory usage. The only parts of the 
index that are initially read into memory are the elements that 
describe the structure of the data arrays. During a search, the 
position values for the relevant K-mers are selectively read 
from disk. These read operations are usually the rate-limiting 
step in the search, but they are relatively efficient because of 
the compact 2-byte indexing format and because all of the 
positions for each K-mer are stored contiguously. Only a 
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small portion of the index is used at a given time, so a typical 
search requires very little memory. 
[0047] If a query sequence contains a degenerate or other
wise abundant K-mer, then reading the full list of position 
values for that K-mer might require more RAM than is avail
able. MICA deals with this situation by dividing the subject 
sequence into segments and searching each segment in tum. 
During the search of a given segment, only the corresponding 
K-mer position values are read into memory 

EXAMPLES 

[0048] MICA was coded in C++ and tested on a 2.5-GHz 
GS Macintosh running OS X (10.4, Tiger) with 2.5 GB of 
RAM. As subject data the May 2005 Ensembl release of the 
human genome was used (Ensemble Genome Browser
http://www.ensembl.org/index.html), comprising 3.08 giga
bases in 25 files representing the linear chromosomes 1-22, 
X, and Y, plus the circular mitochondrial chromosome. 
[0049] Indexing Performance 
[0050] For a server application, a large index may be 
acceptable if sufficient memory is available, and slow index
ing is acceptable because the index is created once and then 
used indefinitely. For a desktop application, smaller indexes 
are desirable because they occupy less disk space. Moreover, 
versatility is increased if the index can be created and updated 
rapidly, because this feature facilitates the analysis of new 
sequences and the modification of existing sequences. 
[0051] FIG. 2 shows representative MICA index sizes and 
indexing times. The sequences of chromosome 1 and the 25 
chromosomes comprising the human genome were obtained 
from the Ensembl database. A computer-generated random 
sequence of 246,000,000 bp containing equal proportions of 
G, A, T, and C was also tested. Index size refers to index 
elements Index Segment Format, Index Segment Size, Index 
Properties, Chunk Counts Summary, degenerate K-mer 
Count, N-Stretch Count (S), Chunk Data Array, Degenerate 
Data Array, and N-Stretch Data Array of the MICA file (see 
FIG. 1), and does not include the Sequence Segment. The 
creation time for each index includes the time needed to write 
the index to disk, but does not include the additional time 
needed to embed a copy of the sequence within the file; this 
additional embedding time for chromosome 1 was 16.4 sec 
for K=4 or 19.6 sec for K=6. Index loading refers to the 
reading of elements Segment Format, Segment Size, 
Sequence Properties, Index Segment Format, Index Segment 
Size, Index Properties, Chunk Counts Summary, degenerate 
K-mer Count, and N-Stretch Count (S) of an index from disk 
into memory. For the human genome, the values listed are the 
sums of the values for the individual chromosomes. 
[0052] With human chromosomes, storage requirements 
for the indexes were just under 2 bytes per base, reflecting the 
existence of N-stretches in the current genome assembly. 
With a computer-generated random sequence containing no 
degenerate base characters, the storage requirement was 
slightly over 2 bytes per base. The indexing time for chromo
some 1, which is 246 million bases, was 19 .3 sec for K =4 or 
27.1 sec for K=6. Only 56% of the K=6 indexing time (15.3 
sec) was due to the indexing procedure itself, with most of the 
remaining time being consumed by writing the completed 
index to disk. Indexing the entire human genome required 
262 sec (4.4 min) for K=4 or 345 sec (5.8 min) for K=6. 
[0053] To simulate indexing with limited RAM, MICA 
indexed chromosome 1 using the procedure that would be 
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followed if only 100 MB of RAM were available. The index
ing time for K=6 was 126 sec, which should still be adequate 
for most applications. 

[0054] Searching Performance 

[0055] The subject sequences were chromosome 1 or the 
entire human genome, and both DNA strands were searched. 
With the entire genome, the indexes were loaded individually 
into memory for each search, but the index loading times 
(FIG. 2) accounted for only a small fraction of the total search 
times. A series of searches were performed with nondegen
erate queries of various lengths and with several partially 
degenerate queries. 

[0056] FIG. 3 shows representative search times for K=4. 
Both DNA strands were searched using K=4. Results for the 
3- to 1000-mer searches are average values obtained by 
searching with multiple queries. For 3-mers, all 64 possible 
nondegenerate queries were tested by extending each 3-mer 
to a partially degenerate 4-mer. For 4-mers, all 256 possible 
nondegenerate queries were tested. For 6- and 8-mers, 100 
randomly chosen nondegenerate queries were tested. In the 
case of 15- to 1000-mers, each test involved 100 nondegen
erate queries that were extracted randomly from chromosome 
1 and checked to confirm that a given query had no more than 
10 matches in the genome. The Alu 30-mer fragment GGC
CGGGCGCGGTGGCTCACGCCTGTAATC is a conserved 
sequence found at the 5' ends of Alu repeat elements (See 
Price A L, Eskin E, Pevzner PA: Whole-genome analysis of 
Alu repeat elements reveals complex evolutionary history. 
Genome Res 2004, 14:2245-2252, incorporated herein by 
reference). The three partially degenerate queries are the rec
ognition sequences for the restriction enzymes Bsp12861, 
Bg!I, and Bae!. For chromosome 1, the search times without 
brackets were obtained after pre-loading only file elements 
Segment Format, Segment Size, Sequence Properties, Index 
Segment Format, Index Segment Size, Index Properties, 
Chunk Counts Summary, degenerate K-mer Count, and 
N-Stretch Count (S) into memory, and the faster search times 
with brackets were obtained after pre-loading the entire file. 
For the entire genome, the search times include the time 
needed to load elements Segment Format, Segment Size, 
Sequence Properties, Index Segment Format, Index Segment 
Size, Index Properties, Chunk Counts Summary, degenerate 
K-mer Count, and N-Stretch Count (S) of each file into 
memory. Thus, the data for chromosome 1 reflect the time 
needed to search a file that is already open, whereas the data 
for the entire genome reflect the time needed to search a set of 
unopened files. To ensure that the search times without brack
ets reflect MICA performance for newly opened indexes, 
each search was preceded by a large number of extraneous 
reads, which flushed the main memory of any prior data from 
the relevant index. 

[0057] As expected, searches for 4-mers were the fastest, 
with each search requiring an average of 0.13 sec for chro
mosome 1 or 2.5 sec for the entire genome. Searches for 6- or 
8-mers took about three times as long. For 15-mers, the aver
age search times were 0.56 sec for chromosome 1 or 9.0 sec 
for the entire genome, about 50% longer than for 8-mers. As 
the query length increased further, the search times actually 
decreased as MICA took advantage of rare 4-mers within the 
queries. 

[0058] FIG. 4 shows representative search times for K=6. 
Both DNA strands were searched using K =6. The queries and 
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the procedure were as described for the experiment set forth 
in FIG. 3, except that each 3- or 4-mer was extended to a 
partially degenerate 6-mer. 
[0059] As expected, searches for 6-mers were the fastest. 
For 8-to 100-mers, the K=6 searches were approximately five 
times as fast as the corresponding K=4 searches. The reason 
for this difference is that read operations are the slowest step 
for most searches, and an average 6-mer occupies much less 
index space than an average 4-mer. 
[0060] When the query length is less than K, the search 
times are relatively long because multiple K-mer lists must be 
merged. As an example for K=4, the positions of each 3-mer 
were found by merging four 4-mer lists, so the 3-mer searches 
were much slower than the 4-mer searches (FIG. 3). For K=6, 
the 4-mer searches were much slower than the 6-mer 
searches, and the 3-mer searches were slower still (FIG. 4). 
Multiway merges are naturally suited to parallel processing 
(See Greene WA: k-way merging and k-ary sorts. In: 31st 
Annual ACM Southeast Conference: 1993; Birmingham, 
Ala.; 1993: 127-135, incorporated herein by reference), and 
in one embodiment merges can be accelerated by harnessing 
the enhanced multi threading capacity of newer desktop com
puters. 
[0061] For a given query length, searches are fast if there 
are very few matches to the query, and somewhat slower if 
multiple matches are distributed throughout the subject 
sequence. As a test case of a query with many matches, a 
conserved 30-base fragment of the Alu repeat element was 
used (See Price A L, Eskin E, Pevzner P A: Whole-genome 
analysis of Alu repeat elements reveals complex evolutionary 
history. Genome Res 2004, 14:2245-2252, incorporated 
herein by reference). This Alu fragment was found 1,130 
times in chromosome 1 and 14,041 times in the entire 
genome. The searches for the Alu fragment took only slightly 
longer than the searches for rare 30-mers (FIGS. 3 and 4). 
Thus, MICA delivers strong performance even with repeated 
sequences, which are challenging for some other search algo
rithms (See Ning A, Cox A J, Mullikin J C: SSAHA: a fast 
search method for large DNA databases. Genome Res 2001, 
11 :1725-1729, incorporated herein by reference). 
[0062] To test partially degenerate queries, the recognition 
sequences of the restriction enzymes Bsp12861 (GDGCHC), 
Bg!I (GCCNNNNNGGC), and Bae! (ACNNNNGTAYC) 
were searched. In the case ofBg!I, the search involved gen
erating lists of positions for the 3-mers GCC and GGC, and 
then finding the intersection of those lists. As described 
above, 3-mer searches require a great deal of calculation time 
because of the merges, so MICA defers such merges until 
after the intersection operations. This approach made search
ing for the Bg!I recognition sequence about twice as fast as 
searching for a single 3-mer (FIGS. 3 and 4). The searches for 
the non-palindromic Bae! recognition sequence were rela
tively slow because MICA needed to process the data for the 
2-mers AC and GT. In general, the most time-consuming 
searches are those involving K-mers with substantial degen
eracy, because multiple individual K-mer lists need to be read 
from disk and then examined. 
[0063] Effects ofVarying K 
[0064] Extensive tests with K chosen to be either 4 or 6 
were performed. For K=6 the individual K-mer reads were 
16-fold smaller on average than for K =4, yet the K =6 searches 
for typical nondegenerate queries were faster by only about 
five-fold (FIGS. 3 and 4). The reason for this discrepancy is 
that the K=6 reads are so small that disk seek times become 
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limiting. Thus, increasing K to 7 would only marginally 
accelerate searches for typical nondegenerate queries. More
over, a larger value ofK would be detrimental with very short 
queries and with some partially degenerate queries. For 
example, when searching for the Bg!I recognition sequence, 
MICA expands the 3-mer GCC to the 4-fold degenerate 
GCCN for K=4, but expands the same 3-mer to the 64-fold 
degenerate GCCNNN for K=6 or the 256-fold degenerate 
GCCNNNN for K=7. The best overall compromise for most 
purposes seems to be K=6. 
[0065] In the case of DNA molecules such as plasmids for 
which only a few KB are needed to store the DNA sequence, 
a K =6 index is excessively large because it requires 24 KB to 
record how many times each nondegenerate K-mer is present 
in each chunk. By contrast, a K =4 index requires only 1.5 KB 
to store this information for a molecule ofup to 65,535 bp. 
Therefore, MICA uses K=4 if the DNA sequence fits within 
one chunk, or K=6 if the DNA sequence occupies two or more 
chunks. 
[0066] Effects of Memory Usage 
[0067] For the genome-wide searches listed in FIG. 4, the 
amount of RAM used by MICA ranged from about 1.6 MB 
for a rare 6-mer to 40 MB for Bae! sites. These numbers are 
small because the searches were performed one chromosome 
at a time. To determine how memory limitation affects search 
times, Bae! sites in chromosome 1 were searched under con
ditions that simulated different amounts of available RAM 
(FIG. 5). The memory check algorithm estimated conserva
tively that searching all of chromosome 1 would require a 
maximum of 47.4 MB of RAM. As a result, when the avail
able RAM dropped below this level, chromosome 1 was 
searched in segments. The search speeds decreased accord
ingly, but this decrease was not severe until the available 
RAM dropped below about 10 MB. Thus, even with an exten
sive database containing large chromosomal sequence files, 
searching can be performed efficiently using a computer with 
modest amounts of memory. 
[0068] Because all of the nuclear human chromosomes 
exceed 1 megabase in length, MICA does not load the full 
indexes into memory, but instead loads only the elements that 
describe the structure of the data arrays. The benefits of this 
strategy are rapid index loading and low memory usage. The 
disadvantage is that searches are slower than they would be if 
the full indexes were pre-loaded into memory. To quantify 
this effect, the test searches were repeated after pre-loading 
into memory the full MICA files for chromosome 1. The 
resulting values, listed in brackets in FIGS. 3 and 4, show that 
pre-loading accelerated the searches. This acceleration was 
dramatic with nondegenerate queries oflength Kor more. Yet 
the pre-loading operation took approximately 18 sec, a pro
hibitively long time if the goal is to do one or a few quick 
searches. By avoiding a time-consuming preparatory stage, 
MICA enables users to search large sequences without delay. 
[0069] Immediately after indexing, the entire index is typi
cally available in memory, so this time point is convenient for 
doing any routine searches. As a model for such a routine 
search, chromosome 1 was indexed using K=6, and then 
searched for the recognition sequences of the 236 restriction 
enzymes sold by New England BioLabs. This search was very 
fast at just under 11 sec. 
[0070] MICA is designed to be a core indexing and search 
engine. Because the underlying approach is very simple, the 
program can be optimized extensively to take advantage of 
the properties of modem desktop computers. In its present 
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form, MICA is ideally suited to comprehensive searching for 
exact matches in a DNA database. Such a database might 
represent, e.g., a genome or a collection of plasmid vectors. 
Potential applications include: in silica restriction enzyme 
digestion, which can be used to type organisms by amplified 
fragment length polymorphism (AFLP) analysis or by pulsed 
field gel electrophoresis; "virtual PCR" to predict the speci
ficity of PCR amplification from complex templates; and the 
automated definition of oligonucleotide-flanked sequence
tagged sites (STSs) in genomic sequences. The MICA pro
gram can be incorporated into desktop software that allows 
for versatile browsing and manipulation of DNA sequences. 
For example, a MICA-based PCR simulator allows us to 
specify the human genome as a template, and to simulate a 
PCR amplification from human DNA in 2-3 sec. 
[0071] The MICA program can be extended by adding 
aligrnnent algorithms for identifying sequences that are simi
lar but not identical to the query. Such algorithms have been 
widely studied and implemented (See Gusfield D: Algorithms 
on Strings, Trees, and Sequences: Computer Science and 
Computational Biology. Cambridge: Cambridge University 
Press; 1997; Pearson WR, Lipman DJ: Improved tools for 
biological sequence comparison. Proc Natl Acad Sci USA 
1988, 85:2444-2448;Altschul SF, Gish W, Miller W, Myers E 
W, Lipman DJ: Basic local alignment search tool. J Mal Biol 
1990, 215:403-410;Altschul SF, Madden TL, Schaffer AA, 
Zhang J, Zhang Z, Miller W, Lipman D J: Gapped BLAST 
and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res 1997, 25:3389-3402; Hunt E: 
The suffix sequioa index for approximate string matching. 
DCS Tech Report, Dept of Computing Science, University of 
Glasgow, http://wwwdcsglaacuk/publications/PAPERS/ 
7185/TR-2003-135pdf 2003:1-26; Li M, Ma B, Kisman D, 
Tromp J: Patternhunter II: highly sensitive and fast homology 
search. J Bioinform Comput Biol 2004, 2:417-439; and Noe 
L, Kucherov G: Improved hit criteria for DNA local align
ment. BMC Bioinformatics 2004, 5:149, all incorporated 
herein by reference) and they can benefit greatly from using 
an index to find "seeds" for the aligrnnents (See Kent WJ: 
BLAT-The BLAST-like alignment tool. Genome Res 2002, 
12:656-664; Ning Z, Spooner W, Spargo A, Leonard S, Rae 
M, Cox A: The SSAHA trace server. Proceedings of the 2004 
IEEE Computational Systems Bioinformatics Conference 
(CSB 2004) 2004:544-545; and Wu T D, Watanabe C K: 
GMAP: a genomic mapping and aligrnnent program for 
mRNA and EST sequences. Bioinformatics 2005, 21:1859-
1875, all incorporated herein by reference). In addition, 
MICA can easily be modified to operate in server mode. For 
this purpose, faster searching of large sequences would be 
achieved by loading the complete indexes into memory, as 
illustrated in FIGS. 3 and 4. 

1. A method of indexing and recording a nucleotide 
sequence with a computer to create a file, the method com
prising having the computer: 

a) select a nucleotide sequence to index; 
b) scan the nucleotide sequence, identifying each occur

rence of a base sequence of a selected base width K; 
c) determine all of the unique base sequences ofwidthK in 

the nucleotide sequence, each unique base sequence of 
width K being a K-mer, a K-mer being either a non
degenerate K-mer or a partially degenerate K-mer; 

d) record in the file the position of each K-mer in the 
nucleotide sequence. 
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2. The method of claim 1 wherein the position of each 
non-degenerate K-mer recorded in step d) is recorded in a 
non-degenerate data array in the file. 

3. The method of claim 1 wherein the position of each 
partially degenerate K-mer recorded in step d) is recorded in 
a degenerate data array in the file. 

4. The method of claim 1 further comprising the steps of 
having the computer: 

determine the number of times each non-degenerate K-mer 
appears in the nucleotide sequence; and 

record in the file a list of integers representing the total 
number of times each non-degenerate K-mer appears in 
the nucleotide sequence. 

5. The method of claim 1 further comprising the steps of 
having the computer: 

determine the total number of partially degenerate K-mers 
in the nucleotide sequence; and 

record in the file the total number of partially degenerate 
K-mers in the nucleotide sequence. 

6. The method of claim 1 further comprising the steps of 
having the computer: 

determine a number of separate stretches of K or more 
consecutive base N's in the nucleotide sequence; and 

record in the file an integer representing the number of 
separate stretches ofK or more consecutive base N's in 
the recorded base sequence. 

7. A method of indexing and recording a nucleotide 
sequence of base length L with a computer to create a file, the 
method comprising having the computer: 

a) select a nucleotide sequence to index; 
b) separate the nucleotide sequence into C separate chunk 

sections, where C is an integer; 
c) scan the nucleotide sequence, identifying each occur

rence of a base sequence of a selected base width K; 
d) determine all of the unique base sequences ofwidthK in 

the nucleotide sequence, each unique base sequence of 
width K being a K-mer, a K-mer being either a non
degenerate sequence or partially degenerate sequence; 

e) record in the file the position of each K-mer in the 
nucleotide sequence. 

8. The method of claim 7 wherein C is an integer equal to 
L/65,535 or the next integer greater than L/65,535. 

9. The method of claim 7 wherein each chunk section 
consists ofX bases, where C is an integer less than 65,536 and 
C is an integer equal to L/X or the next integer greater than 
L/X. 

10. The method of claim 7 wherein the position of each 
non-degenerate K-mer recorded in step e) is recorded in a 
non-degenerate data array in the file, the non-degenerate data 
array being divided into 4K partitions corresponding to all of 
the possible 4K non-degenerate K-mers, each partition con
taining a list of integers representing the number of times a 
particular non-degenerate K-mer is present in each of the 
chunk sections, followed by a list of integers representing 
intra-chunk section positions of the particular K-mer in each 
of the chunk sections. 

11. The method of claim 7 wherein each partially degen
erate K-mer recorded in step e) is recorded in a degenerate 
data array in the file, wherein each particular partially degen
erate K-mer is represented as an integer that marks the abso
lute position of the particular K-mer, followed by a string that 
encodes the sequence of the particular K-mer. 

12. The method of claim 7 further comprising the steps of 
having the computer record an integer S representing the 
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number of separate stretches of Kor more consecutive N's in 
the nucleotide sequence and record S pairs of integers that 
represent the starting positions and lengths of the separate 
stretches of consecutive N's in the nucleotide sequence. 

13. The method of claim 7 further comprising the steps of 
having the computer: 

determine the number of times each non-degenerate K-mer 
appears in the nucleotide sequence; and 

record in the file a list of integers representing the total 
number of times each non-degenerate K-mer appears in 
the nucleotide sequence. 

14. The method of claim 7 further comprising the steps of 
having the computer: 

determine the total number of partially degenerate K-mers 
in the nucleotide sequence; and 

record in the file the total number of partially degenerate 
K-mers in the nucleotide sequence. 

15. The method of claim 7 further comprising the steps of 
having the computer: 

record in the file whether the nucleotide sequence is linear 
or circular. 

16. The method of claim 7 further comprising the steps of 
having the computer: 

record in the file whether the nucleotide sequence is single 
or double stranded. 

17. The method of claim 7 further comprising the steps of 
having the computer record in the file the nucleotide sequence 
in ASCII format. 

18-33. (canceled) 
34. A method of searching for a specific base sequence in a 

nucleotide sequence using a computer comprising: 
a) using a computer to access a computer file having: 

(i) a data structure, the data structure containing infor
mation regarding the nucleotide sequence, the nucle
otide sequence having a length L with a selected 
indexing window of K bases wide, the data structure 
containing data on K-mers of the nucleotide 
sequence, a K-mer being either a non-degenerate 
K-mer or a partially degenerate K-mer; 

(ii) a non-degenerate data array containing the position 
of each particular non-degenerate K-mer of a nucle
otide sequence; and 

(iii) a degenerate data array containing the position of 
each particular partially degenerate K-mer and a 
string encoding the sequence of each particular par
tially degenerate K-mer; 
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b) having the computer search the file for the specific base 
sequence and determining the locations of the specific 
base sequence; and 

c) displaying the locations of the specific base sequence. 
35. (canceled) 
3 6. A method of searching for a specific base sequence in a 

nucleotide sequence using a computer having permanent stor
age and main memory, the method comprising; 

a) having the computer access a data structure being stored 
in a computer file, the data structure containing infor
mation regarding the nucleotide sequence, the data 
structure containing data on K-mers of the nucleotide 
sequence, the data structure comprising: a non-degener
ate data array containing the position of each particular 
non-degenerate K-mer of a nucleotide sequence; a 
degenerate data array containing the position of each 
particular partially degenerate K-mer and a string 
encoding the sequence of each particular partially 
degenerate K-mer; an N-stretch count field containing 
an integer S representing the number of separate 
stretches ofK or more consecutive N's in the nucleotide 
sequence; an N-stretch data array containing S pairs of 
integers that represent the starting positions and lengths 
of the separate stretches of consecutive N's in the nucle
otide sequence; an index properties field containing an 
integer representing the byte order of the index; a chunk 
counts summary field containing a list of integers repre
senting the total number of times a particular non-de
generate K-mer appears in the nucleotide sequence; a 
degenerate K-mer count field containing an integer rep
resenting the total number of partially degenerate 
K-mers in the nucleotide sequence; 

b) having the computer load the index properties field, the 
chunk counts summary field, the degenerate K-mer 
count field and the N-stretch Count field into main 
memory; 

c) having the computer divide the specific base sequence 
into unique K-mers; 

d) having the computer locate K-mer position data for the 
unique K-mers by accessing information in the fields 
loaded into main memory in step b) and the information 
in the degenerate data array, the non-degenerate data 
array, and the N-stretch data array; and 

e) having the computer use the K-mer position data to 
determine the location of the specific base sequence in 
the nucleotide sequence if present. 

* * * * * 


