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BSTRACT 

usion genes are well-known cancer drivers. How- 
 ver, most kno wn oncogenic fusions are protein- 
oding, and very few involve non-coding sequences 

ue to lack of suitable detection tools. We develop 

FyNCS to detect fusions of both protein-coding 

enes and non-coding sequences from transcrip- 
omic sequencing data. The main advantage of this 

tudy is that we use somatic structural variations 

etected from genomic data to validate fusions de- 
ected from transcriptomic data. This allows us to 

omprehensivel y e v aluate v arious fusion detection 

nd filtering strategies and parameters. We show that 
FyNCS has superior sensitivity and specificity over 
xisting algorithms through extensive benchmarking 

n cancer cell lines and patient samples. We then ap- 
ly SFyNCS to 9565 tumor samples across 33 tumor 
ypes in The Cancer Genome Atlas cohort and de- 
ect a total of 165,139 fusions. Among them, 72% of 
he fusions involve non-coding sequences. We find 

 long non-coding RNA to recurrently fuse with vari- 
us oncogenes in 3% of prostate cancers. In addition, 
e discover fusions involving two non-coding RNAs 

n 32% of dedifferentiated liposarcomas and experi- 
entally validated the oncogenic functions in mouse 

odel. 
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RAPHICAL ABSTRACT 

NTRODUCTION 

usions between protein-coding genes caused by somatic 
tructural variations (SVs) are well-known cancer dri v ers 
 1 , 2 ), including BCR - ABL1 , EWS - FLI1 , PML - RARA ,
MPRSS2 - ERG and FGFR3 - TACC3 . It is estimated that 
6% of cancers are dri v en by fusions ( 3 ). Fusion proteins
 epr esent ideal drug targets since tumor cell proliferation 

epends on them, but they do not exist in normal cells. 
ne of the first targeted-therapy drugs in cancer, imatinib 

Glee v ec), is a small molecule inhibitor targeting the BCR- 
BL1 fusion protein ( 4 ). Many other inhibitors targeting 

ifferent fusion proteins have since been approved for clini- 
al use ( 5 ). To date, more than 1000 cancer-driving protein- 
oding fusions have been discovered ( 6 ). However, only 

e v eral oncogenic non-coding fusions have been reported, 
ncluding HERV-K - ETV1 ( 7 ), GAS5 - BCL6 ( 8 ), USP9Y -
ingyang@uchicago.edu 
go.edu 
 be regarded as Joint First Authors. 
e regarded as Joint Corresponding Authors. 

ids Research. 
s Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
e original work is properly cited. 
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TTTY15 ( 9 ), MALAT1 - GLI1 ( 10 ), TTYH1 - C19MC ( 11 ),
KDM4B - G039927 and EPS15L1 - lncOR7C2-1 ( 12 ). A pre-
vious study on over 9000 tumors from The Cancer Genome
Atlas (T CGA) r eported that only 4% of fusions involve non-
coding sequences ( 3 ). This is because the algorithm used in
tha t stud y, STAR-Fusion ( 3 ), was designed to mainly detect
protein-coding fusions; ther efor e, the proportion of fusions
involving non-coding sequences being 4% was certainly an
underestimation. Fusions involving non-coding sequences
are of clinical significance, as they can be used as biomarkers
( 13 ), and studies are ongoing to target them thera peuticall y
( 14 , 15 ). The discovery and characterization of non-coding
fusions may re v eal ne w disease mechanisms and novel drug
targets. 

It is extremely challenging to dif ferentia te true fu-
sions from artifacts. Chimeric molecules in the sequenc-
ing library, sequencing errors, alignment errors and read-
through fusions further complicate fusion detection. Most
existing fusion callers depend on annotations of protein-
coding genes and non-coding RNAs (ncRNAs), including
DEEPEST ( 16 ) and Arriba ( 17 ). Howe v er, current ncRNA
databases are still far from ideal because many ncRNAs are
expressed at low levels and are highly tissue specific. The low
expression also poses a major challenge to detect fusions in-
volving non-coding sequences. Ther efor e, known oncogenic
non-coding fusions remain rare. Another major roadblock
is that a ground truth fusion set is not available, and most
studies depend on in silico simulation, a small number of
synthetic fusions, and validation on a small set of fusions
to test the performances of the algorithms. Neither of the
af orementioned perf ormance-testing strategies can be ef-
fecti v ely used to comprehensi v ely e v aluate v arious fusion
detection and filtering strategies and parameters. Here, we
report a more sensiti v e computational algorithm ‘ S omatic
F usions i nvolving N on- C oding S equences’ (SFyNCS) to
detect fusions involving non-coding sequences. We used so-
matic SVs detected from whole-genome sequencing data to
validate fusions detected from RNA-Seq data. This allowed
us to find the best-performing fusion detection and filter-
ing strategies. We then describe se v eral r ecurr ent and onco-
genic fusions from 9565 TCGA tumor samples. The onco-
genic function of one of the r ecurr ent fusions involving non-
coding sequences was validated in mouse model. 

MATERIALS AND METHODS 

SFyNCS algorithm 

Identifying r aw fusions . RNA-Seq r eads wer e aligned by
STAR ( 18 ) to the r efer ence genome for detection of dis-
cordant read pairs and split reads. Discordant pairs were
defined by STAR if they satisfied one of three conditions:
pair ed-end r eads aligned to differ ent chromosomes, pair ed-
end reads aligned to the same chromosome but in incom-
pa tible orienta tions, or pair ed-end r eads in compatible ori-
entations but with distances greater than 100 kb. Reads po-
tentially spanning the fusion breakpoints that could not
be aligned consecuti v ely in the genome were split into two
parts. If the two parts satisfied the same conditions above
for discordant pairs, these reads were considered split reads.
The 100 kb cutoff was used because the majority of introns
are shorter than 100 kb (Supplementary Figure S1A), and
100 kb is longer than fiv e folds of standard deviation of dis-
tances between two reads in pairs (Supplementary Figure
S1B). Other algorithms, such as STAR-Fusion and Arriba,
also used the same cutoff. Discordant pairs and split reads
aligned to multiple locations were discarded and duplicated
r eads (r ead pairs with identical mapping) wer e r emoved.
Discordant pairs and split reads were merged into clusters if
they were aligned to the same chromosomes, had the same
orientations and were within 1 Mb of each other. Raw fu-
sions were then called from these clusters. Most genes are
shorter than 1 Mb (Supplementary Figure S1C), so a 1 Mb
cutoff was used to merge reads belonging to the same genes
together. Note that the 1 Mb cutoff was very permissive
and was intended to detect as many raw fusions as possi-
ble. Low quality fusions would be filtered out in later steps.
Pr ecise fusion br eakpoints wer e determined by split r eads.
Split reads with the same orientation and within 5 bp were
considered to support the same fusion. Each candidate fu-
sion must be supported by at least one split read. In the ini-
tial detection phase, discordant read pair support was not
r equir ed. Differ ent numbers of read support (discordant
read pair and split read) were tested in a later section. Note
that one discordant pair may support more than one fusion
(different isoforms) depending on how the transcripts were
spliced (Supplementary Figure S2). Gene annotation was
not used in raw fusion detection, so that fusion breakpoints
in both protein-coding genes and non-coding regions of the
genome could be detected. The process described above was
v ery sensiti v e allo wing a lar ge number of raw fusions would
be detected in each sample. 

Testing filtering str ategies . To detect high quality tumor-
specific fusions, we comprehensi v ely tested the perfor-
mances of the fusion calling and filtering strategies as well
as various cutoffs in two rounds. In the first round, we tested
the following filters: (i) number of total read support (dis-
cordant pair and split read combined, cutoffs tested: ≥2,
≥3, ≥4 and ≥5); (ii) Number of split read support (cutoffs
tested: ≥1, ≥2, ≥3, ≥4, ≥5); (iii) number of discordant pair
support (cutoffs tested: 0 and ≥1); (iv) minimal distance be-
tween discordant pairs and split reads supporting the same
fusion ( ≤100 bp, ≤200 bp, ≤500 bp, ≤1 kb, ≤5 kb, ≤10
kb , ≤20 kb , ≤50 kb , ≤100 kb , ≤200 kb , ≤300 kb , ≤500
kb, ≤1 Mb and NA [filter not applied]); (v) Whether or not
to filter out deletion-like fusions that were within the same
gene annotated by GENCODE; (vi) Whether or not to fil-
ter out duplication-like and inversion-like fusions that were
within the same gene annotated by GENCODE; (vii) Fu-
sion breakpoint distance for deletion-like fusions (produced
by somatic deletions at the DNA le v el, cutoffs tested: ≥100
kb , ≥200 kb , ≥300 kb , ≥500 kb , ≥1 Mb and NA); (viii) Fu-
sion breakpoint distance for duplication-like and inversion-
like fusions (produced by somatic duplications and inver-
sions at the DNA le v el, cutoffs tested: ≥10 kb, ≥20 kb,
≥30 kb, ≥50 kb, ≥100 kb, ≥200 kb, ≥300 kb, ≥500 kb,
≥1 Mb and NA); (ix) breakpoint flanking sequence iden-
tity by aligning 20 bp sequences (10 bp from both sides) of
two breakpoints with Needleman–Wunsch algorithm (cut-
offs tested: ≤0.3, ≤0.5, ≤0.8 and NA); (x) size of break-
point flanking regions for filters (xi) and (xii) (cutoffs tested:
100 bp, 500 bp, 1 kb, 5 kb and 10 kb); (xi) standard de-
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iation (SD) of fusion-supporting read clusters in fusion 

reakpoint flanking regions (described in detail in the next 
ar agr aph, cutoffs tested: ≥0.05, ≥0.1, ≥0.15, ≥0.2, ≥0.25, 
0.3 and NA); (xii) number of fusion-supporting clusters in 

usion breakpoint flanking regions (cutoffs tested: ≤5, ≤10, 
15, ≤20, ≤25, ≤30 and NA); (xiii) Filtering by canoni- 

al splicing motifs (GT in the donor site, AA G / CA G / TA G
n the acceptor site) within 5 bp of fusion breakpoints; 
xi v) confirming discor dant pair and split read alignment 
y TopHat2 (distance between TopHat2 and STAR align- 
ents of split reads ≤5 bp); (xv) confirming split read align- 
ent by BLAT and (xvi) filtering by fusion breakpoints de- 

ected in normal samples (more details below). Note that 
t is not practically feasible to test all combinations of dif- 
er ent cutoffs. Ther efor e, only a selected subset wer e tested.
n the second round, we either removed one filter, added 

ne filter, or changed the cutoff for one filter based on the 
est performing filter combination determined in the first 
 ound. The two r ounds of parameter search were performed 

terati v ely until the best performing filters and cutoffs were 
ound and no further improvement could be made (Supple- 

entary Table S1). 
For each candidate fusion br eakpoint, ther e could be 
ore than one read cluster supporting different fusions in 

ts flanking region. Too many such clusters suggested that 
he read alignments of this region were unreliable. The num- 
er of fusion-supporting clusters was tested as a filtering 

trategy. Standar d de viations (SDs) of the proportions of 
usion-supporting reads in these clusters (equation below) 
as also tested. 

Standar d de viation ( SD ) = 

√ ∑ N 

i= 1 ( n i − μ) 2 

N 

, 

where n i = 

m i ∑ N 

i= 1 m i 

and μ = 

∑ N 

i= 1 n i 

N 

N is the number of clusters, m i is the number of reads in 

luster i , n i is the proportion of reads in cluster i . 
Normal samples from TCGA (Supplementary Table S2) 

ere used to remove germline events and other systematic 
rtifacts. A panel of 140 normal samples was first con- 
tructed by randomly selecting 10 normal samples from 

ach tumor type that had more than 10 matched normal 
amples. Fusions detected in each tumor sample were fil- 
ered by this normal panel as well as all the matched normal 
amples of the corresponding tumor type when available. 
ote that some tumor types, such as lower-grade glioma 

nd ovarian cancer, lacked matched normal samples. These 
umor samples were solely filtered by the 140-sample nor- 
al panel. Fusions detected in tumor samples were dis- 

arded if there were at least two fusion supporting reads 
either discordant read pairs or split reads) within 10 kb for 
oth breakpoints in any normal samples. 
Note that if the fusion breakpoints are located close to 

he end of the transcripts, discordant read pairs may not ex- 
st. Ther efor e, we tested the performance of fusion detection 

ithout the r equir ement of discordant read pair support. 
ince fusion breakpoints were determined by split reads, 
e did not test the performance of fusion detection with- 
ut split read support. 
The process of testing filtering strategies is very complex 

nd time consuming, but it does not need to be done by the 
nd users if they wish to use our recommended default pa- 
ameters. For individual RNA-Seq samples, it would take 
 hours and 30 Gb of memory on average to call fusions us- 
ng SFyNCS. Most of the run time and memory were used 

n aligning reads by STAR. Testing combinations of filters is 
n independent process and only necessary if the users wish 

o use different filters other than what we recommended. 
ince it is impossible to test all parameter combinations, we 
ested 166,178 combinations of filtering strategies and pa- 
ameters. The performances of a subset of filtering strate- 
ies are provided in Supplementary Table S1, so that the 
sers can choose other filters to increase sensitivity or pre- 
ision based on their needs without repeating the entire test- 
ng process. 

enchmarking fusion detection tools 

usions in 338 TCGA samples were identified by Defuse 
v0.8.1), FusionCatcher (v1.33), InFusion (v0.8.1-dev) and 

QUID (v1.5) with default parameters. Note that SQUID 

ailed to analyze TCGA-DX-A2IZ-01A-11R-A21T-07. Fu- 
ions detected by multiple tools needed to have identical 
reakpoint locations and orientations. Fusions were con- 
idered supported by somatic SVs if SV breakpoints could 

e found within 100 kb of fusion breakpoints and the DNA 

ragments produced by the SVs could be spliced into the 
orresponding fusion RNA. Fusions in MCF7 were iden- 
ified by FusionCatcher (v1.33) with default parameters. 
usion-supporting split reads identified by both Fusion- 
atcher (v1.33) and SFyNCS were aligned to the r efer ence 
enome by BLAT to validate split-read alignment. If there 
ere two segments of a split read aligned uniquely within 

 bp of the predicted fusion breakpoints, the split read was 
onsidered validated by BLAT. Split reads not validated by 

LAT mainly belonged to the following three categories: 
i) reads aligning entirely (more than 85 bp of 101 bp-long 

eads) to one location of the genome, (ii) one or both fusion 

reakpoints lacking support (i.e. not aligned within 5 bp of 
he pr edicted br eakpoints) or (iii) r eads aligning to multiple 
ocations. If a fusion did not have any split read validated 

y BLAT, the fusion was considered not validated. 

ell lines 

EK293T cells were obtained from Dr. Alexander Muir 
Uni v ersity of Chicago). MCF7 cells were obtained from 

r. Le v Becker (Uni v ersity of Chicago). HCT116 and 

562 cells were obtained from Dr Chuan He (Uni v er- 
ity of Chicago). A549 cells were purchased from ATCC 

American Type Culture Collection, USA). All cell lines 
er e cultur ed at 37 

◦C / 5% CO 2 . HEK293T cells were cul-
ured in Dulbecco’s Modified Eagle Medium (DMEM) 
Gibco, 21041025) supplemented with 10% fetal bovine 
erum (FBS), 1% penicillin / streptomycin and 2 mM L - 
lutamine. MCF7 cells wer e cultur ed in Eagle’s Minimum 

ssential Medium (Corning, 10-010-CV) with 10% FBS 

Gibco, A4766). HCT116 cells were cultured in McCoy’s 
A Medium Modified (Gibco, 16600-082) with 10% FBS. 
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Medium (Gibco, 12440-053) with 10% FBS. A549 cells were
cultured in F-12K Medium (ATCC, 30-2004) with 10% FBS
and 1% penicillin / streptomycin. All cell lines have been reg-
ularly monitored and tested negati v e for my coplasma using
the mycoplasma detection kit (Lonza, LT07-218). 

RT-PCR and sanger sequencing validation 

Tw enty fusions w ere randomly selected for validation
among the 238 fusions involving non-coding sequences
(FiNCS) in MCF7 RNA-Seq data ( 19 ) detected by
SFyNCS but not detected by FusionCatcher (v1.0), InFu-
sion (v0.8), MapSplic2 (v2.2.1), SOAPfuse (v1.2.7), STAR-
Fusion (v1.5.0) or EasyFuse (v1.3.0). Ten FiNCS detected
in MCF7 RNA-Seq data produced by Cancer Cell Line En-
cy clopedia (CCLE) and Ency clopedia of DNA Elements
(ENCODE) but not detected in the RNA-Seq data pro-
duced by the previous study ( 19 ) were randomly selected.
Six FiNCS were randomly selected from HCT116 and K562
cell lines. Primers (Supplementary Table S3) were designed
by Primer3 and synthesized by Integrated DNA Technolo-
gies. MCF7, HCT116 and K562 cells were plated in 6-
well plates and allowed to reach 80% confluence prior to
RNA extraction. After cells being lysed in 300 �l / well TRY-
zolTM (Invitro gen, 15596026), RN A samples were pre-
pared following the manual of Direct-zol RNA Miniprep
kit (RPI, ZR2052). Re v erse transcription was performed
using Applied Biosystems High-Capacity cDNA Re v erse
Transcription Kit (43-688-14) following manufacturer’s in-
structions. PCR was conducted on SimpliAmpTM Thermo
Cycler (Applied Biosystems, A24811), with HotStarTaq
Plus Master Mix (QIAGEN, 1039620) following the manu-
facturer’s instructions. PCR products were extracted from
2% agarose gel with MinElute Gel Extraction kit (QIA-
GEN, 28604) and purified with MinElute PCR purification
kit (QIAGEN, 28004). Then the DNA samples were sent to
the DNA Sequencing & Genotyping Facility of the Uni v er-
sity of Chicago Comprehensi v e Cancer Center for Sanger
sequencing. 

Synthesis of ZDHHC17-LNCKB.11978.4, mut-
ZDHHC17-LNCKB.11978.4 and RPSAP52-
LNCKB.11978 

The 1870 bp ZDHHC17-LNCKB.11978.4 wildtype and
mutant (start codon mutated) fusion cDNAs and 1260
bp RPSAP52 - LNCKB.11978 fusion cDNA were synthe-
sized by GenScript (New Jersey, USA) and subcloned into
the lentiviral pCDH-CMV-MCS-EF1-Puro plasmid (SBI,
CD510B-1). The cDNA sequences in the plasmid were
verified by Sanger sequencing at Uni v ersity of Chicago
Medicine Comprehensi v e Cancer Center core facility. The
synthesized fusion sequences can be found in Supplemen-
tary Table S4. 

Lentivir al tr ansduction and qPCR 

The fusion sequences were subcloned into pCDH-CMV-
Puro lentiviral vector and then co-transfected with psPAX2
and pMD2.G plasmids into HEK293T cells to generate
lentiviral particles respectively. Empty pCDH-CMV-Puro
lenti viral v ector was also transfected as the control. After
48 hours, the lentivirus was harvested and transduced into
A549 cells with 10 �g / ml polybrene. Puromycin (1 �g / mL)
was added into cells at 48 hours post transduction for 7 days
to establish stable A549 cell lines with fusions. 

Total RNA from cells was isolated using Direct-zol RNA
MiniPrep Kit (Zymo Research) according to the manu-
facturer’s instructions. cDNA was synthesized using Su-
perScript VIL O cDN A synthesis kit (Life Technolo gies).
qPCR was performed using SYBR green qPCR Master Mix
(Sigma) on an Applied Biosystems QuantStudio 3 Real-
Time PCR System. Primer sequences used were as follows: 

• GAPDH forward: 5 

′ -GT CT CCT CTGACTT CAACAGC
3 

′ 
• GAPDH re v erse: 5 

′ -A CCA CCCT GTT GCT GTAGCCAA
3 

′ 
• ACTIN forward: 5 

′ -CACCA TTGGCAA TGAGCGGTTC
3 

′ 
• ACTIN re v erse: 5 

′ -AGGTCTTT GCGGAT GTCCACGT
3 

′ 
• ZDHHC17-Inckb.11978 primer 1 forward: 5 

′ -
GAGT ACGAT ACCGAAGCGGG-3 

′ 
• ZDHHC17-Inckb.11978 primer 1 re v erse: 5 

′ -
ACT GAGGT GAGGAGT GGGTT-3 

′ 
• ZDHHC17-Inckb.11978 primer 2 forward: 5 

′ -
CGGCCCGGA TGAGTACGA TA-3 

′ 
• ZDHHC17-Inckb.11978 primer 2 re v erse: 5 

′ -
TAA CGTTCA CAGCA CTCGGG-3 

′ 
• Mutant- ZDHHC17 - Inckb.11978 primer 1 forward: 5 

′ -
GAGT ACGAT ACCGAAGCGGG-3 

′ 
• Mutant- ZDHHC17 - Inckb.11978 primer 1 re v erse: 5 

′ -
ACT GAGGT GAGGAGT GGGTT-3 

′ 
• Mutant- ZDHHC17 - Inckb.11978 primer 2 forward: 5 

′ -
CGGCCCGGA TGAGTACGA TA-3 

′ 
• Mutant- ZDHHC17 - Inckb.11978 primer 2 re v erse: 5 

′ -
TAA CGTTCA CAGCA CTCGGG-3 

′ 
• RPSAP - Inckb.11978 primer 1 forward: 5 

′ -
CTA GCACCA GTGGGCACATC-3 

′ 
• RPSAP - Inckb.11978 primer 1 re v erse: 5 

′ -
GTTCTGA GCA GGA GCATCGT-3 

′ 
• RPSAP - Inckb.11978 primer 2 forward: 5 

′ -
TGGGCACATCGA GA GCAAAC-3 

′ 
• RPSAP - Inckb.11978 primer 2 re v erse: 5 

′ -
CA GA GGGAA GGGCTGATTCC-3 

′ 

Xenograft models 

NOD.CB17-Prkdc scid / J (NOD-SCID) mice were pur-
chased from The Jackson Laboratory. All animal experi-
ments complied with the standards approved by University
of Chicago. For tumor transplantation, 5 × 10 

5 A549 cells
with control and fusion vectors were resuspended in PBS
and mixed with Matrigel (R&D Cultrex Type 3, Pathclear)
at 1:1 ratio, followed by subcutaneously injection into
NOD-SCID mice. Tumor volume was assessed by calipers
e v ery week. At 7 weeks post tumor grafting, animals were
euthanized and the engrafted tumors w ere w eighed and
photo gra phed. 
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Figure 1. SFyNCS. ( A ) Fusions of different types. Pink and blue shapes denote two fusion partners. Fusions can be in any combination of protein- 
coding genes and non-coding sequences. ( B ) Ov ervie w of SFyNCS. There are two main steps: detect raw fusions and filter fusions. ( C ) A total of 166,178 
combinations of filtering strategies and parameters are tested. Each dot r epr esents one combination. The number of fusions is used to measure sensitivity, 
and the percentage of fusions supported by somatic SVs is used to measure specificity. A portion of the plot is zoomed in in the upper right corner. ( D ) 
Sensitivity and specificity of the final filtering strategy implemented in SFyNCS compared to changing one or a few parameters at a time. In both C and 
D, the sensitivity and specificity for Arriba, DEEPEST and STAR-Fusion are also shown. 
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ESULTS 

FyNCS ov ervie w 

ere, we de v eloped SFyNCS to detect both protein-coding 

nd non-coding fusions from RNA-Seq data (Figure 1 A). 
n this study, protein-coding fusions are defined as both fu- 
ion partners being protein-coding genes, whereas FiNCS 

ave one or both fusion partners being non-coding se- 
uences. We note that FiNCS may still encode proteins since 
he non-coding fusion partners may provide cryptic start 
r stop codons. SFyNCS searches for discordant read pairs 
nd split reads, including those mapped to non-coding re- 
ions, to detect both protein-coding fusions and FiNCS 

Figure 1 B). We use very loose cutoffs to detect raw fu- 
ions –– one split read support required to define fusion 

r eakpoints (Methods). Ther efor e , in the detection phase , 
FyNCS is v ery sensiti v e and a large number of raw fu-
ions will be identified. Although many algorithms, such as 
TAR-Fusion ( 3 ) and Arriba ( 12 ), detect raw fusions simi- 

ar to SFyNCS, the main advantage of SFyNCS lies in our 
earch for the best performing filtering strategies (Meth- 
ds). Since in silico simulations and synthetic fusions can- 
ot fully mimic the artifacts and noise in real tumors, we 
ought to use fusions detected from real tumors to test fu- 
ion detection performances. Because ground truth fusions 
o not exist, to test performances, we took advantage of 338 

umor samples across 22 tumor types (Supplementary Ta- 
le S5) with both RNA-Seq and whole-genome sequencing 

WGS) data from TCGA cohort. Since tumor-specific fu- 
ions detected at the RNA le v el should be supported by so- 
atic SVs detected at the DNA le v el, the 338 tumor sam- 

les allowed us to comprehensi v ely e valua te dif ferent filter-
ng strategies and cutoffs to determine the best performing 

lters. As it was not feasible to test all possible combina- 
ions of filtering strategies and cutoffs, we iterati v ely tested 

66,178 combinations of cutoffs (Methods) until no further 
mprovement could be made (Figure 1 C, D and Supplemen- 
ary Table S1). The final filters we chose to implement in 

FyNCS with reasonable sensitivity and specificity were as 
ollow: (i) at least one discordant read pair support; (ii) at 
east one split read support; (iii) at least three total read sup- 
ort (discordant read pair + split read); (iv) the minimal 
istance between the discordant pairs and the split reads 
o be ≤10 kb; (v) breakpoints for all intra-chromosomal 
usions (deletion-lik e, duplication-lik e and inversion-lik e) 
ot located in the same genes; (vi) fusion breakpoint dis- 
ance for deletion-like fusions to be ≥500 kb; fusion break- 
oint distance for duplication-like and inversion-like fu- 
ions to be ≥20 kb; (vii) standard deviation (SD) of fusion- 
upporting clusters within 100 bp of breakpoints to be ≥0.1; 
viii) canonical splicing motif present within 5 bp of fusion 

reakpoints; (ix) not found in any normal samples. The de- 
ailed description of the filters can be found in Methods. Us- 
ng these filters, SFyNCS detected 12,923 fusions in the 338 

amples (Supplementary Table S6), 8356 (64.7%) of which 

ere supported by somatic SVs (Figure 2 A). 

enchmarking SFyNCS 

e compared SFyNCS with other algorithms in the same 
38 samples from the previous section. Recently, STAR- 
usion ( 3 ), DEEPEST ( 16 ) and Arriba ( 12 ) reported 2109,
668 and 4448 fusions in these samples, respecti v ely (Figure 
 A). In contrast, SFyNCS detected 12,923 fusions which 

ere 6.1, 4.8 and 2.9 folds of the ones detected by STAR- 
usion, DEEPEST and Arriba, respecti v ely. Therefore, the 

ensitivity of SFyNCS was far better than that of STAR- 
usion, DEEPEST and Arriba. The fractions of fusions 

upported by somatic SVs were quite similar across the 
our algorithms, ranging from 59.0% to 64.7% (Figure 2 A). 
usions detected by SFyNCS had the highest SV support 

64.7%). These metrics suggested that the quality of fu- 
ions detected by these four algorithms were quite simi- 
ar, and the specificity of SFyNCS was slightly better than 

hat of STAR-Fusion, DEEPEST and Arriba. Interest- 
ngly, in the 12,923 SFyNCS-detected fusions, 9520 (73.7%) 
ere FiNCS and 64.7% of the FiNCS were supported by 

Vs. This suggested that the quality of FiNCS detected by 

FyNCS was as good as the quality of protein-coding fu- 
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Figure 2. Benchmarking tools in TCGA samples. ( A ) UpSet plot of four fusion-detection algorithms in 338 TCGA samples with both WGS and RNA-Seq 
data. The stacked bars on the bottom right are the total fusions detected by four tools respecti v ely. The stacked bars on the top show the number of fusions 
identified by one or more tools. The black dots under the stacked bars indicate tools used. The numbers on the top and on the right side of the bars are 
numbers of fusions. The percentages in the parentheses indicate percentages of fusions supported by somatic SVs. ( B ) Comparison of SFyNCS with four 
fusion-detection algorithms, FusionCatcher v1.33, InFusion, Defuse and SQUID, in the same 338 TCGA samples. 
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positions of the fusion partners (e.g. on the same chromo-
somes or not on the same chromosomes) and found that
the quality of fusions in all categories was comparable (Sup-
plementary Figure S3). STAR-Fusion and DEEPEST had
limited ability in detecting FiNCS (Figure 2 A). Arriba de-
tected 2993 FiNCS, 2145 of which were also detected by
SFyNCS. SFyNCS detected 8349 fusions that were missed
by other algorithms. The vast majority (7135) of these were
FiNCS. In addition, SFyNCS detected 1214 protein-coding
fusions that were not detected by other algorithms. 63.3%
of SFyNCS-specific fusions were supported by SVs, which
suggested that they were of high quality. We then tested Fu-
sionCatcher ( 20 ), InFusion ( 21 ), Defuse ( 22 ) and SQUID
( 23 ) on the 338 tumors (Supplementary Table S6). These
four algorithms detected many more fusions than SFyNCS,
ranging from 22,470 to 110,105 (Figure 2 B). Howe v er, the
fractions of fusions supported by SVs for these four algo-
rithms ranged from 2.7% to 11.1% (Figure 2 B) indicating
that the majority of these fusions were false calls. This sug-
gested that the specificity of SFyNCS was far better than
FusionCatcher, InFusion, Defuse and SQUID. 

We further tested SFyNCS on the breast cancer cell line
MCF7 and compared it to six algorithms that were pre-
viously tested ( 19 ) on MCF7 (STAR-Fusion, MapSplice2
( 24 ), InFusion, SOAPfuse ( 25 ), FusionCatcher and Easy-
Fuse ( 19 )). SFyNCS detected a total of 377 fusions, includ-
ing 262 (69.5%) FiNCS (Figure 3 A and Supplementary Ta-
ble S7). In SFyNCS-detected fusions, 45.1% of the fusions
were supported by SVs. STAR-Fusion, MapSplice2, InFu-
sion and SOAPfuse detected fewer fusions than SFyNCS
(ranging from 70 to 256) and the fractions of fusions sup-
ported by SVs were lower than SFyNCS (ranging from
7.3% to 35.7%) (Figure 3 A). EasyFuse and FusionCatcher
detected many more fusions (1352 and 1915 respecti v ely).
Howe v er, v ery fe w of them were supported by SVs (5.4%
and 3.1% respecti v ely) (Figure 3 A). In order to validate the
fusions predicted by FusionCatcher, we extracted split reads
provided by FusionCatcher and aligned them to the refer-
ence genome by BLAT. We found that only 16.5% of the
fusions predicted by FusionCatcher were supported by the
split reads, which was in sharp contrast to SFyNCS (80.6%)
(Supplementary Figure S4A–E). This suggested that the
majority of fusions detected by FusionCatcher were likely
false positi v es due to alignment errors. EasyFuse used 5
algorithms to detect fusions: STAR-Fusion, MapSplice2,
InFusion, SOAPfuse and FusionCa tcher. FusionCa tcher
was the only one detected a large number of fusions (Fig-
ur e 3 A). Ther efor e, EasyFuse likely suffer ed from similar
alignment errors. Among all these algorithms, only STAR-
Fusion had comparable specificity to SFyNCS, but it de-
tected fiv e-fold fe wer fusions than SFyNCS. SFyNCS de-
tected 275 fusions that were not detected by any other algo-
rithm in MCF7, including 238 FiNCS. In the 275 SFyNCS-
specific fusions, 49.1% were supported by SVs (Figure 3 A),
which suggested that SFyNCS-specific fusions were of high
quality. We randomly selected 20 FiNCS detected only by
SFyNCS, performed PCR and Sanger sequencing valida-
tion and were able to validate 12 (60%) of them (Figure 3 B,
Supplementary Figure S5 and Supplementary Table S3).
We further detected fusions in the MCF7 cell line using dif-
ferent RNA-Seq data produced by CCLE and ENCODE
and found an additional 237 fusions (Supplementary Fig-
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A

B

Figure 3. Benchmarking tools in MCF7 cell line. ( A ) Comparison of SFyNCS with six fusion detection algorithms in MCF7 cell line: STAR-Fusion, 
MapSplice2, InFusion, SOAPfuse, EasyFuse and FusionCatcher v1.0. Stacked bars on top are grouped into fusions identified by SFyNCS and not iden- 
tified by SFyNCS. The stacked bars on the bottom right are the total fusions detected by se v en tools respecti v ely. The stacked bars on the top show the 
number of fusions identified by one or more tools. The black dots under the stacked bars indicate tools used. The numbers on the top and on the right 
side of the bars are numbers of fusions. The percentages in the parentheses indicate percentages of fusions supported by somatic SVs. ( B ) Percentages of 
FiNCS validated by PCR and Sanger sequencing in three cancer cell lines. The number of FiNCS tested is shown on the right side of bars. 
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re S4F and Supplementary Table S7). We then randomly 

elected 10 FiNCS detected only in CCLE and ENCODE 

ata and were able to validate 8 (80%) of them (Figure 3 B, 
upplementary Figure S6 and Supplementary Table S3). 
oreover, we validated 5 out of 6 (83%) randomly selected 

iNCS in the colorectal cancer cell line HCT116 and the 
eukemia cell line K562 (Figure 3 B, Supplementary Figure 
7, Supplementary Tables S3, S8 and S9). 
Taken together, SFyNCS can detect many more fusions 

ith better specificity than other existing algorithms, and 

he FiNCS detected by SFyNCS are highly accurate. 

usion landscape in TCGA cohort 

e then used SFyNCS to analyze 9565 TCGA tumor sam- 
les from 33 tumor types (Supplementary Table S5). A to- 
al of 165,139 fusions were detected (Supplementary Ta- 
le S10). Intriguingly, 119,191 (72.2%) of the fusions were 
iNCS and were much more abundant than protein-coding 

usions. Each tumor carried a median of 7 fusions rang- 
ng from 0 to 426 per tumor (Supplementary Table S11). 

terine Car cinosar coma (UCS) and sar coma (SARC) wer e 
he most abundant in fusions with medians of 32 and 29, 
especti v el y, w hereas most kidney chromophobe cancers 
KICH) and uveal melanomas (UVM) had less than 3 fu- 
ions (Figure 4 A). The abundance of fusions was consis- 
ent with somatic SV frequencies across tumor types ( 26 ). 
TAR-Fusion, DEEPEST and Arriba detected far fewer 
usions in TCGA samples (25,664, 31,007 and 48,545, re- 
pecti v ely) ( 3 , 12 , 16 ). We further classified fusion partners
etected by SFyNCS into protein-coding genes, long non- 
oding RN As (lncRN As), microRN As (miRN A), pseudo- 
enes, other non-coding genes and unannotated regions. 
ost fusions were protein-coding genes fused to unanno- 

ated r egions (Figur e 4 B). In addition, we classified the fu-
ion breakpoints into annotated splice sites, within exons, 
ithin introns and unannotated regions. Most fusions were 
nnotated splice sites fused to unannotated regions (Figure 
 C). 

SFyNCS detected all known oncogenic fusions reported 

n these samples ( 3 ) (Figure 4 D), such as TMPRSS2 - ERG ,
GFR3 - TACC3 and PML - RARA . To better identify can- 
idate dri v er FiNCS, we r elied on r ecurr ent fusion br eak-
oints at base-pair le v el since the annotation of non-coding 

enes remains incomplete. At the base-pair le v el, ther e wer e 
 total of 1128 r ecurr ent (occurring in at least 3 samples 
ithin the corresponding tumor type) fusion breakpoints 

nvolving non-coding sequences (Figure 4 D, Supplemen- 
ary Table S12). Interestingly, except for prostate cancer 
PRAD), the most r ecurr ent fusion br eakpoints involving 

on-coding sequences were often as frequent as protein- 
oding fusion breakpoints in many tumor types (Figure 
 D). 

ecurrent driver fusions involving non-coding sequences 

n 496 prostate cancers, we identified 27 FiNCS in 

3 samples (2.6%) involving a long non-coding RNA 

lncRN A) NONHSA G108579.1 on chromosome 17. 
ONHSAG108579.1 is expressed in several tissues 

ncluding prostate, stomach, lung and pancreas (Sup- 
lementary Figure S8). The transcription start site of 
ONHSAG108579.1 has strong H3K27ac signals in 

oth a prostate cancer cell line and normal prostate 
land (Supplementary Figure S9). This lncRNA acted 

s the 5 

′ fusion partner (Supplementary Table S13). 
hese FiNCS were m utuall y e xclusi v e with the well- 
nown ETS fusions ( P = 0.039, one-sided Fisher’s exact 
est, Figure 5 A). Two out of the 13 samples had WGS 

ata, and in both samples, somatic translocations at the 
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B C

A

D

Figure 4. The landscape of fusion and r ecurr ent fusion breakpoint in TCGA samples. ( A ) The landscape of fusions in 9565 TCGA samples. Each dot 
r epr esents a tumor sample grouped by tumor type. Tumor types are sorted by median number of fusions per sample which is indicated by the red lines. 
The numbers in the parentheses are the numbers of tumor samples in the corresponding tumor types. ( B and C ) Classifications of fusion partners. The 5 ′ 
and 3 ′ fusion partners are shown as y and x axes. The size of each circle represents the number of fusions in the corresponding category. ( D ) Recurrent 
fusion breakpoints in 9565 TCGA samples. Each orange or green dot r epr esents a r ecurr ent fusion breakpoint detected in at least three samples. The y axis 
indicates the percentage of samples carrying the fusion breakpoints in the corresponding tumor types. The numbers in parentheses represent numbers of 
samples carrying the breakpoints. All breakpoints are at base-pair le v el. For e xample, TMPRSS2 - ERG is the most r ecurr ent fusion in adult solid tumors 
and can be detected in 183 out of 496 prostate cancers. Among them, 168 tumors have more than one TMPRSS2 - ERG isof orm in volving various exons 
of TMPRSS2 . Ther efor e, 3 out of the top 4 r ecurr ent fusion br eakpoints in prostate cancer are in TMPRSS2 gene and these br eakpoints ar e observed in 
186, 131 and 78 samples. 
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DNA le v el supported the FiNCS (Figure 5 B and C). In
sample T CGA-EJ-5518, ther e was a somatic transloca-
tion between chromosomes 8 and 17 (Figure 5 B). The
translocation brought NONHSAG108579.1 and MYC
together to produce a chimeric transcript. Exons 2 and
3 of MYC were fused with NONHSAG108579.1 and
the chimeric transcript could produce an intact MYC
protein (Figure 5 B). In sample T CGA-CH-5771, ther e
were two somatic translocations involving chromosomes
17 and 18 resulting in NONHSAG108579.1 being fused
to ETV4 with an 8.9kb fragment fr om chr omosome 18
inserted in-between (Figure 5 C). At the RNA le v el, the
chromosome 18 fragment was entirely spliced out. On
exon 9 of ETV4 , there was an alternati v e start codon,
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Figure 5. Recurrent FiNCS in prostate cancer. ( A ) Oncoprint plot of 496 prostate cancers showing fusions involving TMPRSS2 and NONHSAG108579.1 . 
( B and C ) Structures of two NONHSAG108579.1 fusions and their expression. The top three rows are gene and fusion structure cartoons of the r efer ence 
genome, tumor DNA and tumor RNA. Pink and blue boxes denote two fusion partners. The NONHSAG108579.1 - ETV4 fusion in sample TCGA-CH- 
5771 is produced by two dif ferent transloca tions. The or ange fr agment fr om chr omosome 18 is entirely spliced out from the fusion transcript. Fi v e tracks 
of RNA-Seq coverage are shown for fiv e samples at the bottom and the r efer ence gene structur es ar e gi v en abov e the fiv e tracks. Exons and introns are 
re-scaled to better illustrate fusion structures. In (B), the tumor samples without fusions (fusion-) are TCGA-HI-7169-01A-11R-2118-07 and TCGA- 
EJ-A7NJ-01A-22R-A352-07, and the normal samples are TCGA-EJ-7327-11A-01R-2118-07 and TCGA-HC-7742-11A-01R-2118-07. In (C), the fusion- 
samples are TCGA-G9-6365-01A-11R-1789-07 and TCGA-HI-7169-01A-11R-2118-07, and the normal samples are TCGA-EJ-7123-11A-01R-1965-07 
and TCGA-EJ-7125-11A-01R-1965-07. 
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nd ther efor e, the NONHSAG108579.1 - ETV4 fusion 

ranscript could produce a short ETV4 protein. In all 
ONHSAG108579.1 fusions, the 3 

′ fusion partners lost 
heir promoters and the fusion transcripts were transcribed 

rom the NONHSAG108579.1 promoter (Figure 5 B, C 

nd Supplementary Figure S10). Therefore, these fusions 
ould be considered cases of promoter swapping. Two 

usions could produce wildtype proteins (Figure 5 B and 

upplementary Figure S10G), whereas most of the fusions 
roduced truncated proteins (Figure 5 C, Supplementary 

igure S10A–F and H). The lncRN A NONHSA G108579.1 

as expressed at low levels in normal prostate tissues and 

usion-negati v e prostate cancers, but highly expressed in 

ost fusion-positi v e tumor samples (Figure 5 B, C and 

upplementary Figure S10). Most of the 3 

′ fusion partners 
ere activated (Figure 5 B and C) and had expression 

atterns consistent with known dri v er fusions ( 27 ), char- 
cterizing by higher read coverage in exons included in 

he fusion transcripts than exons absent from the fusion 

ranscripts. Furthermore, many of the 3 

′ fusion partners 
 ere w ell-known oncogenes including MYC , ETV4 , ETV1 

nd BRAF (Supplementary Table S13). Ther efor e, the 
ONHSAG108579.1 fusions in prostate cancers were 
ighl y likel y to be onco genic. 
We then compared multiple tools for their ability to detect 

ri v er fusions in PRAD. In the 496 tumors, SFyNCS de- 
ected 210 TMPRSS2 fusions and 13 NONHSAG108579.1 

usions (Supplementary Figure S11). Arriba, DEEPEST 

nd STAR-Fusion detected fewer TMPRSS2 fusions and 

ONHSAG108579.1 fusions than SFyNCS (Supplemen- 
ary Figure S11). Both DEEPEST and STAR-Fusion 

ailed to detect any NONHSAG108579.1 fusions. Although 

rriba detected 8 NONHSAG108579.1 fusions, it only 

etected 149 TMPRSS2 fusions which was far fewer 
han SFyNCS, DEEPEST and STAR-Fusion. Ther efor e, 
FyNCS is the most sensiti v e algorithm for both protein- 
oding fusions and FiNCSs. 

In addition, r ecurr ent FiNCS involving two lncRNAs 
 LINC02384 and LNCKB.11978 ) were detected in 259 sar- 
omas (Supplementary Table S14). All of these FiNCS were 
etected in dedif ferentia ted liposarcomas (DDLPS), but 
ot in other subtypes, and they were m utuall y e xclusi v e with
ach other (Figure 6 A). LINC02384 and LNCKB.11978 

usions occurred in 6 (12%) and 10 (20%) DDLPS tu- 
ors, respecti v el y, and both lncRN As were the 3 

′ fu- 
ion partners. The 5 

′ fusion partners were either protein- 
oding genes, lncRNAs or pseudogenes (Supplementary 

able S14). Among the 16 fusion-positive tumors, 6 had 

GS data and somatic SVs at the DNA le v el supported 

he FiNCS in all six samples (Figure 6 B, C, Supplemen- 
ary Figures S12 and S13). In sample TCGA-DX-A1L3, a 

omatic tandem duplication was present in protein-coding 
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Figure 6. Recurrent FiNCS in sarcoma. ( A ) Oncoprint plot of 259 sarcomas sho wing FiNCS inv olving LNCKB.11978 and LINC02384 . DDLPS: ded- 
if ferentia ted liposarcoma, STLMS: Soft Tissue Leiomyosarcoma, UPS: Undif ferentia ted Pleomorphic Sarcoma, ULMS: Gynecologic Leiomyosarcoma, 
MFS: Myxofibrosarcoma, SS: Synovial Sarcoma, MPNST: Malignant Peripheral Nerve Sheath Tumor. ( B and C ) Structures of a LNCKB.11978 fusion 
and a LINC02384 fusion in DDLPS and their expression. The top three rows are gene and fusion structure cartoons of the r efer ence genome, tumor DNA 

and tumor RNA. Pink and blue boxes denote two fusion partners. The tumor samples without fusions (fusion-) are TCGA-IE-A4EI-01A-11R-A24X-07 
and TCGA-IW-A3M4-01A-11R-A21T-07, and the normal samples are SRX636240 and SRX640265, respecti v ely. ( D ) Quantitati v e PCR showing the 
presence of ZDHHC17 - LNCKB.11978 fusion transcript in A549 cells. ( E ) Tumor growth curves after subcutaneous injection from week 1 to week 6. Error 
bars are standar d de viations. P value is calculated by two-sided Student’s t -test. ( F ) Pictures of 10 tumors and tumor weights at week 7 after subcutaneous 
injection. Error bars are standard deviations. P value is calculated by two-sided Student’s t-test. 
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gene ZDHHC17 and upstream of LNCKB.11978 (Fig-
ure 6 B). Exon 1 of LNCKB.11978 was skipped and a
chimeric transcript of exon 1 of ZDHHC17 and exon 2
of LNCKB.11978 was produced. The transcript could be
translated into LNCKB.11978 and produced a chimeric
protein (Figure 6 B). In sample T CGA-DX-A3LY, ther e was
a somatic translocation between chromosomes 5 and 12
(Figure 6 C). Similarly, a transcript of exon 1 of SH3RF2
and exon 2 of LINC02384 was produced and could be
translated into a chimeric protein (Figure 6 C). In most
of these FiNCS involving LNCKB.11978 and LINC02384 ,
the 3 

′ lncRNAs were activated (Figure 6 B, C, Supplemen-
tary Figures S12 and S13). The high r ecurr ence and ex-
pression patterns indicated that these FiNCS were poten-
tial cancer dri v ers. To test the oncogenic functions experi-
mentally, we synthesized the ZDHHC17 - LNCKB.11978 fu-
sion, transduced it into A549 cells (Figure 6 D), and in-
jected the cells into immune deficient mice subcutaneously.
Although the cancer cells did not grow differently in cul-
ture, tumors carrying the fusion grew significantly faster
than controls (Figure 6 E and F) upon grafting on mice,
suggesting that the ZDHHC17 - LNCKB.11978 fusion does
indeed have oncogenic activity. To further test whether
the oncogenic function of the ZDHHC17 - LNCKB.11978
fusion, w hich was ca pable of pr oducing a chimeric pr o-
tein (Figure 6 B), was mediated by protein or RNA,
we synthesized two additional fusion constructs: mut-
ZDHHC17 - LNCKB .11978 and RPSAP52 - LNCKB .11978 .
Mut- ZDHHC17 - LNCKB.11978 had the exact same se-
quence as ZDHHC17 - LNCKB.11978 fusion but its start
codon was mutated so that mut- ZDHHC17 - LNCKB.11978
did not have any open reading frames (ORFs). RP-
SAP52 is a pseudo gene and was fused to LNCKB.11978
in tumor TCGA-DX-AB2S (Supplementary Table S14).
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nloaded from
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ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad705/7252668 by guest on 31 August 2023
he RPSAP52 - LNCKB.11978 fusion did not encode any 

RFs either. Upon engrafting mice, both mut- ZDHHC17 - 
NCKB.11978 and RPSAP52 - LNCKB.11978 promoted in 

ivo tumor growth (Supplementary Figure S14), although 

ot reaching statistical significance due to large varia- 
ions in animal experiments. These results suggested that 
NCKB.11978 fusions are likely oncogenic at the RNA 

e v el. 
Taken together, our results demonstrate that SFyNCS is 

ble to detect oncogenic fusions involving non-coding se- 
uences. 

ISCUSSION 

ere, we describe our fusion detection algorithm SFyNCS 

hich can detect fusions of both protein-coding genes and 

on-coding sequences in transcriptome sequencing data. 
FyNCS is designed for Illumina short-read sequencing 

ata and will suffer from the limitations of short-read se- 
uencing technology, such as the lack of ability to resolve 
epetiti v e regions in the highly repetiti v e human genome. 
usion breakpoints in transposable elements, segmental du- 
lica tions, sa tellite repea ts, simple repea ts and other types of 
 epeats ar e unlikely to be reliably detected. This constraint 
s not specific to SFyNCS. All short-read based fusion de- 
ection algorithms suffer from this limitation. We note that 
usions not supported by somatic SVs may still be true fu- 
ions, since SV breakpoints may not be identified in repet- 
ti v e regions and the corresponding fusion breakpoints are 
n unique mappable regions. In addition, some fusions may 

e subclonal and the supporting SVs may not have enough 

equencing coverage to be detected. 
Another obstacle is the availability of normal samples 

o filter out germline e v ents and systematic artifacts. Sev- 
ral tumor types do not have RNA-Seq data from matched 

ormal samples, such as acute myeloid leukemia (LAML), 
ower grade glioma (LGG), ovarian cancer (OV), testicu- 
ar germ cell tumors (TCGT) and uterine car cinosar coma 

USC). Some tumor types have very few matched nor- 
al samples, such as esophageal cancer (ESCA), glioblas- 

oma (GBM), skin cutaneous melanoma (SKCM) and thy- 
oma (THYM). Ther efor e, many of the highly r ecurr ent 

usions detected from these tumor types are likely not can- 
er dri v ers. 

Although SFyNCS displayed superior performances in 

ur benchmarking tests compared to existing tools, a small 
raction of true fusions were still missed by SFyNCS. Each 

lter we implemented may remove some true fusions; for 
xample, true fusion junctions may not always be canonical 
plice sites ( 27 ). For other types of somatic variants, includ- 
ng single nucleotide variants (SNVs), copy number varia- 
ions (CNVs) and SVs, multiple tools are often integrated 

ogether for variant calling ( 28 ). Ther efor e, we r ecommend
hat users a ppl y m ultiple tools to perform comprehensi v e
usion detection. 

Mutual e xclusi vity has been used to infer dri v er genes al-
ered by somatic SNVs and CNVs ( 29–31 ). A recent study 

n fusions in pediatric cancers applied mutual e xclusi vity 

o infer dri v er fusions ( 32 ). In our study, the FiNCS we de-
ected in both prostate cancers and sarcomas were either 
 utuall y e xclusi v e with known dri v er fusions (Figure 5 A),
r m utuall y e xclusi v e with each other (Figure 6 A). Such mu-
ual e xclusi vities pr ovided str ong evidence that these FiNCS 

re likely dri v er fusions. 

A T A A V AILABILITY 

NA-Seq data for 9565 tumor and 715 normal 
amples from TCGA (Supplementary Table S5) 
ere downloaded from Genomic Data Commons 

 https://portal.gdc.cancer.gov/ ). RNA-Seq data for MCF7, 
CT116 and K562 cell lines were downloaded from 

he National Center for Biotechnology Information 

NCBI) Sequence Read Archi v e (SRA) with accession 

RX5414642 (MCF7, CCLE), SRX159831 (MCF7, EN- 
ODE), SRX6378523 (MCF7 Weber et al.), SRX6378524 

MCF7 Weber et al.), SRX5414471 (HCT116, CCLE) 
nd SRX159835 (HCT116, ENCODE), SRX5414683 

K562, CCLE), SRX1603406 (K562, ENCODE) and 

RX1603407 (K562, ENCODE). RNA-Seq data for two 

ormal adipose tissue samples (SRX636240, SRX640265) 
rom Genotype-Tissue Expression (GTEx) were down- 
oaded from NCBI SRA. The H3K27ac ChIP-Seq signals 
or PC-3 cell line (ENCFF224GSO) and prostate gland 

ENCFF143LGC) were downloaded from ENCODE por- 
al ( https://www.encodeproject.org/ ). The GTEx RNA-Seq 

ead coverage in the region of NONHSAG108579.1 was 
ownloaded from UCSC ( https://genome.ucsc.edu/ ). 
Somatic SVs in TCGA samples were obtained from a 

 ecent P an-cancer Analysis of Whole Genomes (PCAWG) 
tud y ( 26 ). Soma tic SVs in MCF7 were downloaded from 

he Dependency Map (DepMap) portal ( https://depmap. 
rg/portal/ ). Fusions in TCGA samples identified by Ar- 
iba, DEEPEST and STAR-Fusion were downloaded from 

he related publications ( 3 , 12 , 16 ). Fusions in MCF7 identi-
ed by FusionCatcher (v1.0), InFusion (v0.8), MapSplic2 

v2.2.1), SOAPfuse (v1.2.7) and STAR-Fusion (v1.5.0) 
ere downloaded from the previous study ( 19 ). Fusions in 

CF7 identified by EasyFuse (v1.3.0) were provided by Dr. 
gur Sahin. The subtypes of sar comas wer e obtained from 

 previous study ( 33 ). 
All coordinates were based on hg38 reference genome. 
ENCODE v29 was used for gene annotation. NOCODE 

6 and lncRNAKB v7 were used to annotate non-coding 

enes that are not annotated by GENOCDE. 
The SFyNCS package is available at https: 

/github.com/yanglab-computationalgenomics/SFyNCS 

permanent DOI 10.5281 / zenodo.8222797). 
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