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ABSTRACT

Fusion genes are well-known cancer drivers. How-
ever, most known oncogenic fusions are protein-
coding, and very few involve non-coding sequences
due to lack of suitable detection tools. We develop
SFyYNCS to detect fusions of both protein-coding
genes and non-coding sequences from transcrip-
tomic sequencing data. The main advantage of this
study is that we use somatic structural variations
detected from genomic data to validate fusions de-
tected from transcriptomic data. This allows us to
comprehensively evaluate various fusion detection
and filtering strategies and parameters. We show that
SFyNCS has superior sensitivity and specificity over
existing algorithms through extensive benchmarking
in cancer cell lines and patient samples. We then ap-
ply SFyNCS to 9565 tumor samples across 33 tumor
types in The Cancer Genome Atlas cohort and de-
tect a total of 165,139 fusions. Among them, 72% of
the fusions involve non-coding sequences. We find
a long non-coding RNA to recurrently fuse with vari-
ous oncogenes in 3% of prostate cancers. In addition,
we discover fusions involving two non-coding RNAs
in 32% of dedifferentiated liposarcomas and experi-
mentally validated the oncogenic functions in mouse
model.

GRAPHICAL ABSTRACT

1. Development 3. Fusions in TCGA cohort
33 tumor types
9,565 tumor samples
Protein-coding fusions = A
Non-coding fusions

e
-«

read pair
splitread ——> <

2. Benchmarking
Tool comparisons

SFyNCS Tool 1 Tool2 Tool 3 Tool n

165,139 fusions
]

v

Candidate driver fusions
|

# of fusions

Sanger sequencing validation g
AT COCA G NG -

SN

A part of plot was created with BioRender.com

INTRODUCTION

Fusions between protein-coding genes caused by somatic
structural variations (SVs) are well-known cancer drivers
(1,2), including BCR-ABLI, EWS-FLIl, PML-RARA,
TMPRSS2-ERG and FGFR3-TACC3. It is estimated that
16% of cancers are driven by fusions (3). Fusion proteins
represent ideal drug targets since tumor cell proliferation
depends on them, but they do not exist in normal cells.
One of the first targeted-therapy drugs in cancer, imatinib
(Gleevec), is a small molecule inhibitor targeting the BCR-
ABLI fusion protein (4). Many other inhibitors targeting
different fusion proteins have since been approved for clini-
cal use (5). To date, more than 1000 cancer-driving protein-
coding fusions have been discovered (6). However, only
several oncogenic non-coding fusions have been reported,
including HERV-K-ETV1 (7), GAS5-BCL6 (8), USP9Y-
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TTTY15 (9), MALATI-GLII (10), TTYHI-CI9MC (11),
KDM4B-G039927 and EPSI5L1-IncOR7C2-1 (12). A pre-
vious study on over 9000 tumors from The Cancer Genome
Atlas (TCGA) reported that only 4% of fusions involve non-
coding sequences (3). This is because the algorithm used in
that study, STAR-Fusion (3), was designed to mainly detect
protein-coding fusions; therefore, the proportion of fusions
involving non-coding sequences being 4% was certainly an
underestimation. Fusions involving non-coding sequences
are of clinical significance, as they can be used as biomarkers
(13), and studies are ongoing to target them therapeutically
(14,15). The discovery and characterization of non-coding
fusions may reveal new disease mechanisms and novel drug
targets.

It is extremely challenging to differentiate true fu-
sions from artifacts. Chimeric molecules in the sequenc-
ing library, sequencing errors, alignment errors and read-
through fusions further complicate fusion detection. Most
existing fusion callers depend on annotations of protein-
coding genes and non-coding RNAs (ncRNAs), including
DEEPEST (16) and Arriba (17). However, current ncRNA
databases are still far from ideal because many ncRNAs are
expressed at low levels and are highly tissue specific. The low
expression also poses a major challenge to detect fusions in-
volving non-coding sequences. Therefore, known oncogenic
non-coding fusions remain rare. Another major roadblock
is that a ground truth fusion set is not available, and most
studies depend on in silico simulation, a small number of
synthetic fusions, and validation on a small set of fusions
to test the performances of the algorithms. Neither of the
aforementioned performance-testing strategies can be ef-
fectively used to comprehensively evaluate various fusion
detection and filtering strategies and parameters. Here, we
report a more sensitive computational algorithm ‘Somatic
Fusions involving Non-Coding Sequences’ (SFyNCS) to
detect fusions involving non-coding sequences. We used so-
matic SVs detected from whole-genome sequencing data to
validate fusions detected from RNA-Seq data. This allowed
us to find the best-performing fusion detection and filter-
ing strategies. We then describe several recurrent and onco-
genic fusions from 9565 TCGA tumor samples. The onco-
genic function of one of the recurrent fusions involving non-
coding sequences was validated in mouse model.

MATERIALS AND METHODS
SFyNCS algorithm

Identifying raw fusions. RNA-Seq reads were aligned by
STAR (18) to the reference genome for detection of dis-
cordant read pairs and split reads. Discordant pairs were
defined by STAR if they satisfied one of three conditions:
paired-end reads aligned to different chromosomes, paired-
end reads aligned to the same chromosome but in incom-
patible orientations, or paired-end reads in compatible ori-
entations but with distances greater than 100 kb. Reads po-
tentially spanning the fusion breakpoints that could not
be aligned consecutively in the genome were split into two
parts. If the two parts satisfied the same conditions above
for discordant pairs, these reads were considered split reads.
The 100 kb cutoff was used because the majority of introns
are shorter than 100 kb (Supplementary Figure S1A), and

100 kb is longer than five folds of standard deviation of dis-
tances between two reads in pairs (Supplementary Figure
S1B). Other algorithms, such as STAR-Fusion and Arriba,
also used the same cutoff. Discordant pairs and split reads
aligned to multiple locations were discarded and duplicated
reads (read pairs with identical mapping) were removed.
Discordant pairs and split reads were merged into clusters if
they were aligned to the same chromosomes, had the same
orientations and were within 1 Mb of each other. Raw fu-
sions were then called from these clusters. Most genes are
shorter than 1 Mb (Supplementary Figure S1C), so a 1 Mb
cutoff was used to merge reads belonging to the same genes
together. Note that the 1 Mb cutoff was very permissive
and was intended to detect as many raw fusions as possi-
ble. Low quality fusions would be filtered out in later steps.
Precise fusion breakpoints were determined by split reads.
Split reads with the same orientation and within 5 bp were
considered to support the same fusion. Each candidate fu-
sion must be supported by at least one split read. In the ini-
tial detection phase, discordant read pair support was not
required. Different numbers of read support (discordant
read pair and split read) were tested in a later section. Note
that one discordant pair may support more than one fusion
(different isoforms) depending on how the transcripts were
spliced (Supplementary Figure S2). Gene annotation was
not used in raw fusion detection, so that fusion breakpoints
in both protein-coding genes and non-coding regions of the
genome could be detected. The process described above was
very sensitive allowing a large number of raw fusions would
be detected in each sample.

Testing filtering strategies. To detect high quality tumor-
specific fusions, we comprehensively tested the perfor-
mances of the fusion calling and filtering strategies as well
as various cutoffs in two rounds. In the first round, we tested
the following filters: (i) number of total read support (dis-
cordant pair and split read combined, cutoffs tested: >2,
>3, >4 and >5); (ii) Number of split read support (cutoffs
tested: >1, >2, >3, >4, >95); (iii) number of discordant pair
support (cutoffs tested: 0 and >1); (iv) minimal distance be-
tween discordant pairs and split reads supporting the same
fusion (<100 bp, <200 bp, <500 bp, <1 kb, <5 kb, <10
kb, <20 kb, <50 kb, <100 kb, <200 kb, <300 kb, <500
kb, <1 Mb and NA [filter not applied]); (v) Whether or not
to filter out deletion-like fusions that were within the same
gene annotated by GENCODE; (vi) Whether or not to fil-
ter out duplication-like and inversion-like fusions that were
within the same gene annotated by GENCODE; (vii) Fu-
sion breakpoint distance for deletion-like fusions (produced
by somatic deletions at the DNA level, cutoffs tested: >100
kb, >200 kb, >300 kb, >500 kb, >1 Mb and NA); (viii) Fu-
sion breakpoint distance for duplication-like and inversion-
like fusions (produced by somatic duplications and inver-
sions at the DNA level, cutoffs tested: >10 kb, >20 kb,
>30 kb, >50 kb, >100 kb, >200 kb, >300 kb, >500 kb,
>1 Mb and NA); (ix) breakpoint flanking sequence iden-
tity by aligning 20 bp sequences (10 bp from both sides) of
two breakpoints with Needleman—Wunsch algorithm (cut-
offs tested: <0.3, <0.5, <0.8 and NA); (x) size of break-
point flanking regions for filters (xi) and (xii) (cutoffs tested:
100 bp, 500 bp, 1 kb, 5 kb and 10 kb); (xi) standard de-
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viation (SD) of fusion-supporting read clusters in fusion
breakpoint flanking regions (described in detail in the next
paragraph, cutoffs tested: >0.05, >0.1, >0.15, >0.2, >0.25,
>0.3 and NA); (xii) number of fusion-supporting clusters in
fusion breakpoint flanking regions (cutoffs tested: <5, <10,
<15, <20, <25, <30 and NA); (xiii) Filtering by canoni-
cal splicing motifs (GT in the donor site, AAG/CAG/TAG
in the acceptor site) within 5 bp of fusion breakpoints;
(xiv) confirming discordant pair and split read alignment
by TopHat2 (distance between TopHat2 and STAR align-
ments of split reads <5 bp); (xv) confirming split read align-
ment by BLAT and (xvi) filtering by fusion breakpoints de-
tected in normal samples (more details below). Note that
it is not practically feasible to test all combinations of dif-
ferent cutoffs. Therefore, only a selected subset were tested.
In the second round, we either removed one filter, added
one filter, or changed the cutoff for one filter based on the
best performing filter combination determined in the first
round. The two rounds of parameter search were performed
iteratively until the best performing filters and cutoffs were
found and no further improvement could be made (Supple-
mentary Table S1).

For each candidate fusion breakpoint, there could be
more than one read cluster supporting different fusions in
its flanking region. Too many such clusters suggested that
the read alignments of this region were unreliable. The num-
ber of fusion-supporting clusters was tested as a filtering
strategy. Standard deviations (SDs) of the proportions of
fusion-supporting reads in these clusters (equation below)
was also tested.

N 2
Standard deviation (SD) = MT’“)
N
where n; = ]T—land = 2z M
i=111 N

N is the number of clusters, m; is the number of reads in
cluster i, n; is the proportion of reads in cluster 7.

Normal samples from TCGA (Supplementary Table S2)
were used to remove germline events and other systematic
artifacts. A panel of 140 normal samples was first con-
structed by randomly selecting 10 normal samples from
each tumor type that had more than 10 matched normal
samples. Fusions detected in each tumor sample were fil-
tered by this normal panel as well as all the matched normal
samples of the corresponding tumor type when available.
Note that some tumor types, such as lower-grade glioma
and ovarian cancer, lacked matched normal samples. These
tumor samples were solely filtered by the 140-sample nor-
mal panel. Fusions detected in tumor samples were dis-
carded if there were at least two fusion supporting reads
(either discordant read pairs or split reads) within 10 kb for
both breakpoints in any normal samples.

Note that if the fusion breakpoints are located close to
the end of the transcripts, discordant read pairs may not ex-
ist. Therefore, we tested the performance of fusion detection
without the requirement of discordant read pair support.
Since fusion breakpoints were determined by split reads,
we did not test the performance of fusion detection with-
out split read support.
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The process of testing filtering strategies is very complex
and time consuming, but it does not need to be done by the
end users if they wish to use our recommended default pa-
rameters. For individual RNA-Seq samples, it would take
3 hours and 30 Gb of memory on average to call fusions us-
ing SFyNCS. Most of the run time and memory were used
in aligning reads by STAR. Testing combinations of filters is
an independent process and only necessary if the users wish
to use different filters other than what we recommended.
Since it is impossible to test all parameter combinations, we
tested 166,178 combinations of filtering strategies and pa-
rameters. The performances of a subset of filtering strate-
gies are provided in Supplementary Table S1, so that the
users can choose other filters to increase sensitivity or pre-
cision based on their needs without repeating the entire test-
ing process.

Benchmarking fusion detection tools

Fusions in 338 TCGA samples were identified by Defuse
(v0.8.1), FusionCatcher (v1.33), InFusion (v0.8.1-dev) and
SQUID (vl1.5) with default parameters. Note that SQUID
failed to analyze TCGA-DX-A21Z-01A-11R-A21T-07. Fu-
sions detected by multiple tools needed to have identical
breakpoint locations and orientations. Fusions were con-
sidered supported by somatic SVs if SV breakpoints could
be found within 100 kb of fusion breakpoints and the DNA
fragments produced by the SVs could be spliced into the
corresponding fusion RNA. Fusions in MCF7 were iden-
tified by FusionCatcher (v1.33) with default parameters.
Fusion-supporting split reads identified by both Fusion-
Catcher (v1.33) and SFyNCS were aligned to the reference
genome by BLAT to validate split-read alignment. If there
were two segments of a split read aligned uniquely within
5 bp of the predicted fusion breakpoints, the split read was
considered validated by BLAT. Split reads not validated by
BLAT mainly belonged to the following three categories:
(1) reads aligning entirely (more than 85 bp of 101 bp-long
reads) to one location of the genome, (ii) one or both fusion
breakpoints lacking support (i.e. not aligned within 5 bp of
the predicted breakpoints) or (iii) reads aligning to multiple
locations. If a fusion did not have any split read validated
by BLAT, the fusion was considered not validated.

Cell lines

HEK293T cells were obtained from Dr. Alexander Muir
(University of Chicago). MCF7 cells were obtained from
Dr. Lev Becker (University of Chicago). HCT116 and
K562 cells were obtained from Dr Chuan He (Univer-
sity of Chicago). A549 cells were purchased from ATCC
(American Type Culture Collection, USA). All cell lines
were cultured at 37°C/5% CO,. HEK293T cells were cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM)
(Gibco, 21041025) supplemented with 10% fetal bovine
serum (FBS), 1% penicillin/streptomycin and 2 mM L-
glutamine. MCF7 cells were cultured in Eagle’s Minimum
Essential Medium (Corning, 10-010-CV) with 10% FBS
(Gibco, A4766). HCT116 cells were cultured in McCoy’s
5A Medium Modified (Gibco, 16600-082) with 10% FBS.
K562 cells were cultured in Iscove’s Modified Dulbecco’s
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Medium (Gibco, 12440-053) with 10% FBS. A549 cells were
cultured in F-12K Medium (ATCC, 30-2004) with 10% FBS
and 1% penicillin/streptomycin. All cell lines have been reg-
ularly monitored and tested negative for mycoplasma using
the mycoplasma detection kit (Lonza, LT07-218).

RT-PCR and sanger sequencing validation

Twenty fusions were randomly selected for validation
among the 238 fusions involving non-coding sequences
(FINCS) in MCF7 RNA-Seq data (19) detected by
SFyNCS but not detected by FusionCatcher (v1.0), InFu-
sion (v0.8), MapSplic2 (v2.2.1), SOAPfuse (v1.2.7), STAR-
Fusion (v1.5.0) or EasyFuse (v1.3.0). Ten FINCS detected
in MCF7 RNA-Seq data produced by Cancer Cell Line En-
cyclopedia (CCLE) and Encyclopedia of DNA Elements
(ENCODE) but not detected in the RNA-Seq data pro-
duced by the previous study (19) were randomly selected.
Six FiNCS were randomly selected from HCT116 and K562
cell lines. Primers (Supplementary Table S3) were designed
by Primer3 and synthesized by Integrated DNA Technolo-
gies. MCF7, HCT116 and K562 cells were plated in 6-
well plates and allowed to reach 80% confluence prior to
RNA extraction. After cells being lysed in 300 p.1/well TRY-
zolTM (Invitrogen, 15596026), RNA samples were pre-
pared following the manual of Direct-zol RNA Miniprep
kit (RPI, ZR2052). Reverse transcription was performed
using Applied Biosystems High-Capacity cDNA Reverse
Transcription Kit (43-688-14) following manufacturer’s in-
structions. PCR was conducted on SimpliAmpTM Thermo
Cycler (Applied Biosystems, A24811), with HotStarTaq
Plus Master Mix (QIAGEN, 1039620) following the manu-
facturer’s instructions. PCR products were extracted from
2% agarose gel with MinElute Gel Extraction kit (QIA-
GEN, 28604) and purified with MinElute PCR purification
kit (QTAGEN, 28004). Then the DNA samples were sent to
the DNA Sequencing & Genotyping Facility of the Univer-
sity of Chicago Comprehensive Cancer Center for Sanger
sequencing.

Synthesis of ZDHHCI7-LNCKB.11978.4, mut-
ZDHHC17-LNCKB.11978.4 and RPSAP52-
LNCKB.11978

The 1870 bp ZDHHCI17-LNCKB.11978.4 wildtype and
mutant (start codon mutated) fusion cDNAs and 1260
bp RPSAP52-LNCKB.11978 fusion cDNA were synthe-
sized by GenScript (New Jersey, USA) and subcloned into
the lentiviral pCDH-CMV-MCS-EF1-Puro plasmid (SBI,
CD510B-1). The cDNA sequences in the plasmid were
verified by Sanger sequencing at University of Chicago
Medicine Comprehensive Cancer Center core facility. The
synthesized fusion sequences can be found in Supplemen-
tary Table S4.

Lentiviral transduction and gPCR

The fusion sequences were subcloned into pCDH-CMV-
Puro lentiviral vector and then co-transfected with psPAX2
and pMD2.G plasmids into HEK293T cells to generate
lentiviral particles respectively. Empty pCDH-CMV-Puro

lentiviral vector was also transfected as the control. After
48 hours, the lentivirus was harvested and transduced into
AS549 cells with 10 wg/ml polybrene. Puromycin (1 pg/mL)
was added into cells at 48 hours post transduction for 7 days
to establish stable A549 cell lines with fusions.

Total RNA from cells was isolated using Direct-zol RNA
MiniPrep Kit (Zymo Research) according to the manu-
facturer’s instructions. cDNA was synthesized using Su-
perScript VILO ¢cDNA synthesis kit (Life Technologies).
qPCR was performed using SYBR green qPCR Master Mix
(Sigma) on an Applied Biosystems QuantStudio 3 Real-
Time PCR System. Primer sequences used were as follows:

e GAPDH forward: 5-GTCTCCTCTGACTTCAACAGCG-

3/

o GAPDH reverse: 5-ACCACCCTGTTGCTGTAGCCAA-

3/

o ACTIN forward: 5-CACCATTGGCAATGAGCGGTTC-

3/

e ACTIN reverse: 5Y-AGGTCTTTGCGGATGTCCACGT-
3/

e ZDHHCI7-Inckb.11978  primer 1
GAGTACGATACCGAAGCGGG-3

e ZDHHCI7-Inckb.11978  primer 1
ACTGAGGTGAGGAGTGGGTT-3

e ZDHHCI7-Inckb.11978  primer 2
CGGCCCGGATGAGTACGATA-3

e ZDHHCI7-Inckb.11978  primer 2
TAACGTTCACAGCACTCGGG-¥

e Mutant-ZDHHCI7- Inckb.11978 primer 1 forward: 5'-
GAGTACGATACCGAAGCGGG-3

e Mutant-ZDHHCI7- Inckb.11978 primer 1 reverse: 5'-
ACTGAGGTGAGGAGTGGGTT-3

e Mutant-ZDHHCI7- Inckb.11978 primer 2 forward: 5'-
CGGCCCGGATGAGTACGATA-3

e Mutant-ZDHHCI7- Inckb.11978 primer 2 reverse: 5'-
TAACGTTCACAGCACTCGGG-¥

forward: 5'-
reverse:  5-
forward: 5'-

reverse:  5'-

e RPSAP- Inckb.11978 primer 1 forward: 5'-
CTAGCACCAGTGGGCACATC-3
e RPSAP- Inckb.11978 primer 1 reverse: 5'-

GTTCTGAGCAGGAGCATCGT-%
e RPSAP- Inckb.11978 primer 2
TGGGCACATCGAGAGCAAAC-3
e RPSAP- Inckb.11978  primer 2
CAGAGGGAAGGGCTGATTCC-¥

forward: 5'-

reverse: Y-

Xenograft models

NOD.CB17-Prkdc*4/J (NOD-SCID) mice were pur-
chased from The Jackson Laboratory. All animal experi-
ments complied with the standards approved by University
of Chicago. For tumor transplantation, 5 x 10° A549 cells
with control and fusion vectors were resuspended in PBS
and mixed with Matrigel (R&D Cultrex Type 3, Pathclear)
at 1:1 ratio, followed by subcutaneously injection into
NOD-SCID mice. Tumor volume was assessed by calipers
every week. At 7 weeks post tumor grafting, animals were
euthanized and the engrafted tumors were weighed and
photographed.
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RESULTS
SFyNCS overview

Here, we developed SFyNCS to detect both protein-coding
and non-coding fusions from RNA-Seq data (Figure 1A).
In this study, protein-coding fusions are defined as both fu-
sion partners being protein-coding genes, whereas FINCS
have one or both fusion partners being non-coding se-
quences. We note that FINCS may still encode proteins since
the non-coding fusion partners may provide cryptic start
or stop codons. SFyNCS searches for discordant read pairs
and split reads, including those mapped to non-coding re-
gions, to detect both protein-coding fusions and FiNCS
(Figure 1B). We use very loose cutoffs to detect raw fu-
sions — one split read support required to define fusion
breakpoints (Methods). Therefore, in the detection phase,
SFyNCS is very sensitive and a large number of raw fu-
sions will be identified. Although many algorithms, such as
STAR-Fusion (3) and Arriba (12), detect raw fusions simi-
lar to SFyNCS, the main advantage of SFyNCS lies in our
search for the best performing filtering strategies (Meth-
ods). Since in silico simulations and synthetic fusions can-
not fully mimic the artifacts and noise in real tumors, we
sought to use fusions detected from real tumors to test fu-
sion detection performances. Because ground truth fusions
do not exist, to test performances, we took advantage of 338
tumor samples across 22 tumor types (Supplementary Ta-
ble S5) with both RNA-Seq and whole-genome sequencing
(WGS) data from TCGA cohort. Since tumor-specific fu-
sions detected at the RNA level should be supported by so-
matic SVs detected at the DNA level, the 338 tumor sam-
ples allowed us to comprehensively evaluate different filter-
ing strategies and cutoffs to determine the best performing
filters. As it was not feasible to test all possible combina-
tions of filtering strategies and cutoffs, we iteratively tested
166,178 combinations of cutoffs (Methods) until no further
improvement could be made (Figure 1C, D and Supplemen-
tary Table S1). The final filters we chose to implement in
SFyNCS with reasonable sensitivity and specificity were as
follow: (i) at least one discordant read pair support; (ii) at

least one split read support; (iii) at least three total read sup-
port (discordant read pair + split read); (iv) the minimal
distance between the discordant pairs and the split reads
to be <10 kb; (v) breakpoints for all intra-chromosomal
fusions (deletion-like, duplication-like and inversion-like)
not located in the same genes; (vi) fusion breakpoint dis-
tance for deletion-like fusions to be >500 kb; fusion break-
point distance for duplication-like and inversion-like fu-
sions to be >20 kb; (vii) standard deviation (SD) of fusion-
supporting clusters within 100 bp of breakpoints to be >0.1;
(viii) canonical splicing motif present within 5 bp of fusion
breakpoints; (ix) not found in any normal samples. The de-
tailed description of the filters can be found in Methods. Us-
ing these filters, SFyNCS detected 12,923 fusions in the 338
samples (Supplementary Table S6), 8356 (64.7%) of which
were supported by somatic SVs (Figure 2A).

Benchmarking SFyNCS

We compared SFyNCS with other algorithms in the same
338 samples from the previous section. Recently, STAR-
Fusion (3), DEEPEST (16) and Arriba (12) reported 2109,
2668 and 4448 fusions in these samples, respectively (Figure
2A). In contrast, SFyNCS detected 12,923 fusions which
were 6.1, 4.8 and 2.9 folds of the ones detected by STAR-
Fusion, DEEPEST and Arriba, respectively. Therefore, the
sensitivity of SFyNCS was far better than that of STAR-
Fusion, DEEPEST and Arriba. The fractions of fusions
supported by somatic SVs were quite similar across the
four algorithms, ranging from 59.0% to 64.7% (Figure 2A).
Fusions detected by SFyNCS had the highest SV support
(64.7%). These metrics suggested that the quality of fu-
sions detected by these four algorithms were quite simi-
lar, and the specificity of SFyNCS was slightly better than
that of STAR-Fusion, DEEPEST and Arriba. Interest-
ingly, in the 12,923 SFyNCS-detected fusions, 9520 (73.7%)
were FINCS and 64.7% of the FINCS were supported by
SVs. This suggested that the quality of FINCS detected by
SFyNCS was as good as the quality of protein-coding fu-
sions. We further classified fusions based on the relative
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Figure 2. Benchmarking tools in TCGA samples. (A) UpSet plot of four fusion-detection algorithms in 338 TCGA samples with both WGS and RNA-Seq
data. The stacked bars on the bottom right are the total fusions detected by four tools respectively. The stacked bars on the top show the number of fusions
identified by one or more tools. The black dots under the stacked bars indicate tools used. The numbers on the top and on the right side of the bars are
numbers of fusions. The percentages in the parentheses indicate percentages of fusions supported by somatic SVs. (B) Comparison of SFyNCS with four
fusion-detection algorithms, FusionCatcher v1.33, InFusion, Defuse and SQUID, in the same 338 TCGA samples.

positions of the fusion partners (e.g. on the same chromo-
somes or not on the same chromosomes) and found that
the quality of fusions in all categories was comparable (Sup-
plementary Figure S3). STAR-Fusion and DEEPEST had
limited ability in detecting FINCS (Figure 2A). Arriba de-
tected 2993 FiNCS, 2145 of which were also detected by
SFyNCS. SFyNCS detected 8349 fusions that were missed
by other algorithms. The vast majority (7135) of these were
FiNCS. In addition, SFyNCS detected 1214 protein-coding
fusions that were not detected by other algorithms. 63.3%
of SFyNCS-specific fusions were supported by SVs, which
suggested that they were of high quality. We then tested Fu-
sionCatcher (20), InFusion (21), Defuse (22) and SQUID
(23) on the 338 tumors (Supplementary Table S6). These
four algorithms detected many more fusions than SFyNCS,
ranging from 22,470 to 110,105 (Figure 2B). However, the
fractions of fusions supported by SVs for these four algo-
rithms ranged from 2.7% to 11.1% (Figure 2B) indicating
that the majority of these fusions were false calls. This sug-
gested that the specificity of SFyNCS was far better than
FusionCatcher, InFusion, Defuse and SQUID.

We further tested SFyNCS on the breast cancer cell line
MCF7 and compared it to six algorithms that were pre-
viously tested (19) on MCF7 (STAR-Fusion, MapSplice2
(24), InFusion, SOAPfuse (25), FusionCatcher and Easy-
Fuse (19)). SFyNCS detected a total of 377 fusions, includ-
ing 262 (69.5%) FiNCS (Figure 3A and Supplementary Ta-
ble S7). In SFyNCS-detected fusions, 45.1% of the fusions
were supported by SVs. STAR-Fusion, MapSplice2, InFu-
sion and SOAPfuse detected fewer fusions than SFyNCS
(ranging from 70 to 256) and the fractions of fusions sup-

ported by SVs were lower than SFyNCS (ranging from
7.3% to 35.7%) (Figure 3A). EasyFuse and FusionCatcher
detected many more fusions (1352 and 1915 respectively).
However, very few of them were supported by SVs (5.4%
and 3.1% respectively) (Figure 3A). In order to validate the
fusions predicted by FusionCatcher, we extracted split reads
provided by FusionCatcher and aligned them to the refer-
ence genome by BLAT. We found that only 16.5% of the
fusions predicted by FusionCatcher were supported by the
split reads, which was in sharp contrast to SFyNCS (80.6%)
(Supplementary Figure S4A-E). This suggested that the
majority of fusions detected by FusionCatcher were likely
false positives due to alignment errors. EasyFuse used 5
algorithms to detect fusions: STAR-Fusion, MapSplice2,
InFusion, SOAPfuse and FusionCatcher. FusionCatcher
was the only one detected a large number of fusions (Fig-
ure 3A). Therefore, EasyFuse likely suffered from similar
alignment errors. Among all these algorithms, only STAR-
Fusion had comparable specificity to SFyNCS, but it de-
tected five-fold fewer fusions than SFyNCS. SFyNCS de-
tected 275 fusions that were not detected by any other algo-
rithm in MCF7, including 238 FiNCS. In the 275 SFyNCS-
specific fusions, 49.1% were supported by SVs (Figure 3A),
which suggested that SFyNCS-specific fusions were of high
quality. We randomly selected 20 FINCS detected only by
SFyNCS, performed PCR and Sanger sequencing valida-
tion and were able to validate 12 (60%) of them (Figure 3B,
Supplementary Figure S5 and Supplementary Table S3).
We further detected fusions in the MCF7 cell line using dif-
ferent RNA-Seq data produced by CCLE and ENCODE
and found an additional 237 fusions (Supplementary Fig-
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ure S4F and Supplementary Table S7). We then randomly
selected 10 FiNCS detected only in CCLE and ENCODE
data and were able to validate 8 (80%) of them (Figure 3B,
Supplementary Figure S6 and Supplementary Table S3).
Moreover, we validated 5 out of 6 (83%) randomly selected
FiNCS in the colorectal cancer cell line HCT116 and the
leukemia cell line K562 (Figure 3B, Supplementary Figure
S7, Supplementary Tables S3, S8 and S9).

Taken together, SFyNCS can detect many more fusions
with better specificity than other existing algorithms, and
the FINCS detected by SFyNCS are highly accurate.

Fusion landscape in TCGA cohort

We then used SFyNCS to analyze 9565 TCGA tumor sam-
ples from 33 tumor types (Supplementary Table S5). A to-
tal of 165,139 fusions were detected (Supplementary Ta-
ble S10). Intriguingly, 119,191 (72.2%) of the fusions were
FiNCS and were much more abundant than protein-coding
fusions. Each tumor carried a median of 7 fusions rang-
ing from 0 to 426 per tumor (Supplementary Table S11).
Uterine Carcinosarcoma (UCS) and sarcoma (SARC) were
the most abundant in fusions with medians of 32 and 29,
respectively, whereas most kidney chromophobe cancers
(KICH) and uveal melanomas (UVM) had less than 3 fu-
sions (Figure 4A). The abundance of fusions was consis-
tent with somatic SV frequencies across tumor types (26).
STAR-Fusion, DEEPEST and Arriba detected far fewer
fusions in TCGA samples (25,664, 31,007 and 48,545, re-
spectively) (3,12,16). We further classified fusion partners
detected by SFyNCS into protein-coding genes, long non-
coding RNAs (IncRNAs), microRNAs (miRNA), pseudo-
genes, other non-coding genes and unannotated regions.
Most fusions were protein-coding genes fused to unanno-
tated regions (Figure 4B). In addition, we classified the fu-

sion breakpoints into annotated splice sites, within exons,
within introns and unannotated regions. Most fusions were
annotated splice sites fused to unannotated regions (Figure
4C).

SFyNCS detected all known oncogenic fusions reported
in these samples (3) (Figure 4D), such as TMPRSS2-ERG,
FGFR3-TACC3 and PML-RARA. To better identify can-
didate driver FiINCS, we relied on recurrent fusion break-
points at base-pair level since the annotation of non-coding
genes remains incomplete. At the base-pair level, there were
a total of 1128 recurrent (occurring in at least 3 samples
within the corresponding tumor type) fusion breakpoints
involving non-coding sequences (Figure 4D, Supplemen-
tary Table S12). Interestingly, except for prostate cancer
(PRAD), the most recurrent fusion breakpoints involving
non-coding sequences were often as frequent as protein-
coding fusion breakpoints in many tumor types (Figure
4D).

Recurrent driver fusions involving non-coding sequences

In 496 prostate cancers, we identified 27 FiNCS in
13 samples (2.6%) involving a long non-coding RNA
(IncRNA) NONHSAGI108579.1 on chromosome 17.
NONHSAG108579.1 1is expressed in several tissues
including prostate, stomach, lung and pancreas (Sup-
plementary Figure S8). The transcription start site of
NONHSAGI08579.1 has strong H3K27ac signals in
both a prostate cancer cell line and normal prostate
gland (Supplementary Figure S9). This IncRNA acted
as the 5 fusion partner (Supplementary Table S13).
These FiNCS were mutually exclusive with the well-
known ETS fusions (P = 0.039, one-sided Fisher’s exact
test, Figure 5A). Two out of the 13 samples had WGS
data, and in both samples, somatic translocations at the
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Figure 4. The landscape of fusion and recurrent fusion breakpoint in TCGA samples. (A) The landscape of fusions in 9565 TCGA samples. Each dot
represents a tumor sample grouped by tumor type. Tumor types are sorted by median number of fusions per sample which is indicated by the red lines.
The numbers in the parentheses are the numbers of tumor samples in the corresponding tumor types. (B and C) Classifications of fusion partners. The 5’
and 3’ fusion partners are shown as y and x axes. The size of each circle represents the number of fusions in the corresponding category. (D) Recurrent
fusion breakpoints in 9565 TCGA samples. Each orange or green dot represents a recurrent fusion breakpoint detected in at least three samples. The y axis
indicates the percentage of samples carrying the fusion breakpoints in the corresponding tumor types. The numbers in parentheses represent numbers of
samples carrying the breakpoints. All breakpoints are at base-pair level. For example, TMPRSS2-ERG is the most recurrent fusion in adult solid tumors
and can be detected in 183 out of 496 prostate cancers. Among them, 168 tumors have more than one TMPRSS2-ERG isoform involving various exons
of TMPRSS?2. Therefore, 3 out of the top 4 recurrent fusion breakpoints in prostate cancer are in TMPRSS2 gene and these breakpoints are observed in

186, 131 and 78 samples.

DNA level supported the FINCS (Figure 5B and C). In
sample TCGA-EJ-5518, there was a somatic transloca-
tion between chromosomes 8§ and 17 (Figure 5B). The
translocation brought NONHSAGI108579.1 and MYC
together to produce a chimeric transcript. Exons 2 and
3 of MYC were fused with NONHSAGI08579.1 and
the chimeric transcript could produce an intact MYC

protein (Figure 5B). In sample TCGA-CH-5771, there
were two somatic translocations involving chromosomes
17 and 18 resulting in NONHSAGI108579.1 being fused
to ETV4 with an 8.9kb fragment from chromosome 18
inserted in-between (Figure 5C). At the RNA level, the
chromosome 18 fragment was entirely spliced out. On
exon 9 of ETV4, there was an alternative start codon,

€20z 1snBny ¢ uo 1sanb Aq 89925z //S0.peMdb/Ieu/ea01 "0 L /10p/8o1ue-a0uBApe/Jeu;/woo dno olwapese//:sdiy Woll papeojumo(]



Nucleic Acids Research, 2023 9

. Il Fusion+
P-0_039} [C] Fusion-

TCGA-CH-5771

A PRAD samples =496 [
TMPRSS2 fusions n=210 [
NONHSAG108579.1 fusions n=13 | [ |
B TCGA-EJ-5518 C

Rof ] | o | - et
chr17 NONHSAG108579.1 chr8  MYC

GAGAAAGTGGTTTTGTATTCACGCTGACTC
Tumor DNA ——

GCGGTA

GTGGTCGGCCTTGCGCAGCCTCCCGCGACG

Tumor RNA Tumor RNA

NONHSAG108579.1 MYC

" — Ref

psl
o
I

2800~ 1000 —
5 0 L M & Tumor fusion+ 0— “
S 2500 = o o 1000 —
2 N
3 0_ - Tumor fusion- 0—
3 2500 1000 —
& 0_ _ - Tumor fusion- 0-
< 25007 1000—
@ Normal 0—

1000 —

Normal 0o- -

0-— —

[ B coding regions

| DNA SV breakpoints

= UTR/non-coding regions

ﬂ Structure Variations | RNA fusion breakpoints

chr17 NONHSAG108579.1

GATGCCATTGAACAATAAATATATAAATAT
Tumor DNA ~ — ===

GCGGTA

NONHSAG108579.1

= - - Involved in fusions

v v v
123456 |

h wl
enre chrl7 ETV4

ATTTGTTTTTTATTGGCCCTTTCCCCGGGC

CAGAGC ATG

GTGGTCGGCCTTGCGAGCAACGGAATTTCC — Atternative start codon

ATG
7 [IHIEE- -0 -2 (S —
. I i . ' M‘ Tumor fusion+

Tumor fusion-

ETV4
123456

Tumor fusion-
Normal

Normal

Not involved in fusions

Cryptic splice site ~ Transcription orientations

Figure 5. Recurrent FINCS in prostate cancer. (A) Oncoprint plot of 496 prostate cancers showing fusions involving TMPRSS2 and NONHSAGI108579.1.
(B and C) Structures of two NONHSAG108579.1 fusions and their expression. The top three rows are gene and fusion structure cartoons of the reference
genome, tumor DNA and tumor RNA. Pink and blue boxes denote two fusion partners. The NONHSAG108579.1-ETV4 fusion in sample TCGA-CH-
5771 is produced by two different translocations. The orange fragment from chromosome 18 is entirely spliced out from the fusion transcript. Five tracks
of RNA-Seq coverage are shown for five samples at the bottom and the reference gene structures are given above the five tracks. Exons and introns are
re-scaled to better illustrate fusion structures. In (B), the tumor samples without fusions (fusion-) are TCGA-HI-7169-01A-11R-2118-07 and TCGA-
EJ-A7NJ-01A-22R-A352-07, and the normal samples are TCGA-EJ-7327-11A-01R-2118-07 and TCGA-HC-7742-11A-01R-2118-07. In (C), the fusion-
samples are TCGA-G9-6365-01A-11R-1789-07 and TCGA-HI-7169-01A-11R-2118-07, and the normal samples are TCGA-EJ-7123-11A-01R-1965-07

and TCGA-EJ-7125-11A-01R-1965-07.

and therefore, the NONHSAGI08579.1-ETV4 fusion
transcript could produce a short ETV4 protein. In all
NONHSAGI108579.1 fusions, the 3’ fusion partners lost
their promoters and the fusion transcripts were transcribed
from the NONHSAGI08579.1 promoter (Figure 5B, C
and Supplementary Figure S10). Therefore, these fusions
could be considered cases of promoter swapping. Two
fusions could produce wildtype proteins (Figure 5B and
Supplementary Figure S10G), whereas most of the fusions
produced truncated proteins (Figure 5C, Supplementary
Figure SI0A-F and H). The IncRNA NONHSAG108579.1
was expressed at low levels in normal prostate tissues and
fusion-negative prostate cancers, but highly expressed in
most fusion-positive tumor samples (Figure 5B, C and
Supplementary Figure S10). Most of the 3’ fusion partners
were activated (Figure 5B and C) and had expression
patterns consistent with known driver fusions (27), char-
acterizing by higher read coverage in exons included in
the fusion transcripts than exons absent from the fusion
transcripts. Furthermore, many of the 3’ fusion partners
were well-known oncogenes including MYC, ETV4, ETV1
and BRAF (Supplementary Table S13). Therefore, the
NONHSAGI108579.1 fusions in prostate cancers were
highly likely to be oncogenic.

We then compared multiple tools for their ability to detect
driver fusions in PRAD. In the 496 tumors, SFyNCS de-

tected 210 TMPRSS? fusions and 13 NONHSAG108579.1
fusions (Supplementary Figure S11). Arriba, DEEPEST
and STAR-Fusion detected fewer TMPRSS?2 fusions and
NONHSAGI08579.1 fusions than SFyNCS (Supplemen-
tary Figure S11). Both DEEPEST and STAR-Fusion
failed to detect any NONHSAG108579.1 fusions. Although
Arriba detected 8 NONHSAGI08579.1 fusions, it only
detected 149 TMPRSS2 fusions which was far fewer
than SFyNCS, DEEPEST and STAR-Fusion. Therefore,
SFyNCS is the most sensitive algorithm for both protein-
coding fusions and FiNCSs.

In addition, recurrent FINCS involving two IncRNAs
(LINC02384 and LNCKB.11978) were detected in 259 sar-
comas (Supplementary Table S14). All of these FINCS were
detected in dedifferentiated liposarcomas (DDLPS), but
not in other subtypes, and they were mutually exclusive with
each other (Figure 6A). LINC02384 and LNCKB.11978
fusions occurred in 6 (12%) and 10 (20%) DDLPS tu-
mors, respectively, and both IncRNAs were the 3’ fu-
sion partners. The 5’ fusion partners were either protein-
coding genes, IncRNAs or pseudogenes (Supplementary
Table S14). Among the 16 fusion-positive tumors, 6 had
WGS data and somatic SVs at the DNA level supported
the FINCS in all six samples (Figure 6B, C, Supplemen-
tary Figures S12 and S13). In sample TCGA-DX-A1L3, a
somatic tandem duplication was present in protein-coding
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Figure 6. Recurrent FINCS in sarcoma. (A) Oncoprint plot of 259 sarcomas showing FiNCS involving LNCKB.11978 and LINC02384. DDLPS: ded-
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gene ZDHHCI7 and upstream of LNCKB.11978 (Fig-
ure 6B). Exon 1 of LNCKB.11978 was skipped and a
chimeric transcript of exon 1 of ZDHHCI7 and exon 2
of LNCKB.11978 was produced. The transcript could be
translated into LNCKB.11978 and produced a chimeric
protein (Figure 6B). In sample TCGA-DX-A3LY, there was
a somatic translocation between chromosomes 5 and 12
(Figure 6C). Similarly, a transcript of exon 1 of SH3RF2
and exon 2 of LINC02384 was produced and could be
translated into a chimeric protein (Figure 6C). In most
of these FINCS involving LNCKB.11978 and LINC02384,
the 3’ IncRNAs were activated (Figure 6B, C, Supplemen-
tary Figures S12 and S13). The high recurrence and ex-
pression patterns indicated that these FINCS were poten-
tial cancer drivers. To test the oncogenic functions experi-
mentally, we synthesized the ZDHHC17-LNCKB.11978 fu-
sion, transduced it into A549 cells (Figure 6D), and in-

jected the cells into immune deficient mice subcutaneously.
Although the cancer cells did not grow differently in cul-
ture, tumors carrying the fusion grew significantly faster
than controls (Figure 6E and F) upon grafting on mice,
suggesting that the ZDHHCI7-LNCKB. 11978 fusion does
indeed have oncogenic activity. To further test whether
the oncogenic function of the ZDHHCI7-LNCKB.11978
fusion, which was capable of producing a chimeric pro-
tein (Figure 6B), was mediated by protein or RNA,
we synthesized two additional fusion constructs: mut-
ZDHHCI17-LNCKB.11978 and RPSAP52-LNCKB.11978.
Mut-ZDHHCI7-LNCKB.11978 had the exact same se-
quence as ZDHHCI17-LNCKB.11978 fusion but its start
codon was mutated so that mut-ZDHHCI17-LNCKB.11978
did not have any open reading frames (ORFs). RP-
SAP52 is a pseudo gene and was fused to LNCKB.11978
in tumor TCGA-DX-AB2S (Supplementary Table S14).
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The RPSAP52-LNCKB.11978 fusion did not encode any
ORFs either. Upon engrafting mice, both mut-ZDHHC17-
LNCKB.11978 and RPSAP52-LNCKB. 11978 promoted in
vivo tumor growth (Supplementary Figure S14), although
not reaching statistical significance due to large varia-
tions in animal experiments. These results suggested that
LNCKB.11978 fusions are likely oncogenic at the RNA
level.

Taken together, our results demonstrate that SFyNCS is
able to detect oncogenic fusions involving non-coding se-
quences.

DISCUSSION

Here, we describe our fusion detection algorithm SFyNCS
which can detect fusions of both protein-coding genes and
non-coding sequences in transcriptome sequencing data.
SFyNCS is designed for Illumina short-read sequencing
data and will suffer from the limitations of short-read se-
quencing technology, such as the lack of ability to resolve
repetitive regions in the highly repetitive human genome.
Fusion breakpoints in transposable elements, segmental du-
plications, satellite repeats, simple repeats and other types of
repeats are unlikely to be reliably detected. This constraint
is not specific to SFyNCS. All short-read based fusion de-
tection algorithms suffer from this limitation. We note that
fusions not supported by somatic SVs may still be true fu-
sions, since SV breakpoints may not be identified in repet-
itive regions and the corresponding fusion breakpoints are
in unique mappable regions. In addition, some fusions may
be subclonal and the supporting SVs may not have enough
sequencing coverage to be detected.

Another obstacle is the availability of normal samples
to filter out germline events and systematic artifacts. Sev-
eral tumor types do not have RNA-Seq data from matched
normal samples, such as acute myeloid leukemia (LAML),
lower grade glioma (LGG), ovarian cancer (OV), testicu-
lar germ cell tumors (TCGT) and uterine carcinosarcoma
(USC). Some tumor types have very few matched nor-
mal samples, such as esophageal cancer (ESCA), glioblas-
toma (GBM), skin cutaneous melanoma (SKCM) and thy-
moma (THYM). Therefore, many of the highly recurrent
fusions detected from these tumor types are likely not can-
cer drivers.

Although SFyNCS displayed superior performances in
our benchmarking tests compared to existing tools, a small
fraction of true fusions were still missed by SFyNCS. Each
filter we implemented may remove some true fusions; for
example, true fusion junctions may not always be canonical
splice sites (27). For other types of somatic variants, includ-
ing single nucleotide variants (SNVs), copy number varia-
tions (CNVs) and SVs, multiple tools are often integrated
together for variant calling (28). Therefore, we recommend
that users apply multiple tools to perform comprehensive
fusion detection.

Mutual exclusivity has been used to infer driver genes al-
tered by somatic SNVs and CNVs (29-31). A recent study
on fusions in pediatric cancers applied mutual exclusivity
to infer driver fusions (32). In our study, the FINCS we de-
tected in both prostate cancers and sarcomas were either
mutually exclusive with known driver fusions (Figure 5A),
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or mutually exclusive with each other (Figure 6A). Such mu-
tual exclusivities provided strong evidence that these FiNCS
are likely driver fusions.

DATA AVAILABILITY

RNA-Seq data for 9565 tumor and 715 normal
samples from TCGA (Supplementary Table S9)
were downloaded from Genomic Data Commons
(https://portal.gdc.cancer.gov/). RNA-Seq data for MCF7,
HCT116 and K562 cell lines were downloaded from
the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) with accession
SRX5414642 (MCF7, CCLE), SRX159831 (MCF7, EN-
CODE), SRX6378523 (MCF7 Weber et al.), SRX6378524
(MCF7 Weber et al.), SRX5414471 (HCT116, CCLE)
and SRX159835 (HCTI116, ENCODE), SRX5414683
(K562, CCLE), SRX1603406 (K562, ENCODE) and
SRX1603407 (K562, ENCODE). RNA-Seq data for two
normal adipose tissue samples (SRX636240, SRX640265)
from Genotype-Tissue Expression (GTEx) were down-
loaded from NCBI SRA. The H3K27ac ChIP-Seq signals
for PC-3 cell line (ENCFF224GSO) and prostate gland
(ENCFF143LGC) were downloaded from ENCODE por-
tal (https://www.encodeproject.org/). The GTEx RNA-Seq
read coverage in the region of NONHSAG108579.1 was
downloaded from UCSC (https://genome.ucsc.edu/).

Somatic SVs in TCGA samples were obtained from a
recent Pan-cancer Analysis of Whole Genomes (PCAWG)
study (26). Somatic SVs in MCF7 were downloaded from
the Dependency Map (DepMap) portal (https://depmap.
org/portal/). Fusions in TCGA samples identified by Ar-
riba, DEEPEST and STAR-Fusion were downloaded from
the related publications (3,12,16). Fusions in MCF7 identi-
fied by FusionCatcher (v1.0), InFusion (v0.8), MapSplic2
(v2.2.1), SOAPfuse (v1.2.7) and STAR-Fusion (v1.5.0)
were downloaded from the previous study (19). Fusions in
MCF7 identified by EasyFuse (v1.3.0) were provided by Dr.
Ugur Sahin. The subtypes of sarcomas were obtained from
a previous study (33).

All coordinates were based on hg38 reference genome.
GENCODE v29 was used for gene annotation. NOCODE
v6 and IncRNAKB v7 were used to annotate non-coding
genes that are not annotated by GENOCDE.

The SFyNCS package 1is available at https:
/lgithub.com/yanglab-computationalgenomics/SFyNCS
(permanent DOI 10.5281/zenodo.8222797).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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