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ABSTRACT

The magnetic environment of spin qubits plays a key role in their applications in quantum

information. For example, while the nuclear spin bath of material acts as a noise source for

an electronic spin defect as qubit platforms, the spin-possessing nuclei can also be used as

auxiliary quantum memories. They provide an excellent platform for long-term quantum

information storage due to their low coupling to the magnetic environment.

This thesis aims to investigate the properties of the environmental spin bath in spin de-

fects using first-principles simulations. We first build an efficient computational framework

based on the cluster-correlation expansion (CCE) method to model the spin qubit interact-

ing with the spin bath. We then combine theoretical predictions and detailed experimental

validations to characterize the noisy environment of spin qubits in materials at the funda-

mental level. The spin qubits studied here exist in a wide variety of systems - defects in

silicon carbide, diamond, oxides, and even in molecular crystals.

Over the last fifty years, computing evolved into a third pillar of science, alongside the-

ory and experiment. As such, the first-principles simulations of spin qubits provide a rare

opportunity to completely shift the paradigm of how we approach the characterization and

interpretation of the experiments on spin qubits from the individual investigation towards

the automation and an industrial scale.
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CHAPTER 1

INTRODUCTION

"Nature never lets you win."

— Christopher P. Anderson

Quantum technologies are bound to fail. Even the most advanced quantum devices lose

their quantum properties in mere seconds, as any interaction between a quantum system and

its environment causes rapid deterioration of the delicate quantum state. Yet the quantum

technologies’ prompt breakdown is entirely by design; according to the principles of quantum

mechanics, we cannot learn the state of a quantum system without affecting it. Both the

quantum state’s deterioration and its measurement come from the entanglement between

the system and its surroundings. Thus, one needs to strike a delicate balance — make the

system responsive just enough to control it in a timely manner while minimizing the effect

of the environment.

In this thesis, I investigate a particular quantum platform of spin qubits in semiconduc-

tors. Many advantages make solid-state spins appealing for quantum pioneers: as a few-level

quantum system, spin is a natural implementation of the quantum bit in quantum comput-

ing; a strong coupling but only to the magnetic environment allows one to use the spins as

nanoscale quantum sensors to detect minuscule fluctuations in a microscopic magnetic field.

And the optical addressability of a particular qubit type, color centers in semiconductors,

makes them invaluable as the sources and receivers of quantum information encoded in single

photons in quantum networks.

Using the first principles simulations as my main tool, I aim to find the balance be-

tween responsiveness and fallibility of the spin qubits by exploring the ways to shield the

qubit from unwanted interactions and to leverage qubit’s intrinsic environment for quantum

applications.
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This thesis is structured as follows. We begin by laying the theoretical groundwork

to help understand the study presented here. As this work aims to bridge some distance

between hardcore theorists, experimentalists, and my fellow computational connoisseurs, I

will start with some very basic concepts of the open quantum systems. We begin with

Chapter 2, where I provide the standard derivations of how one controls the a quantum

two-level system, commonly referred to as qubit. One characterizes the detrimental effect of

the environment by measuring the lifetimes, after which the quantum state ceases to exist.

In Chapter 3, I introduce the theoretical framework of open quantum systems, interacting

with the environment, and how one can predict the environment-limited characteristic decay

(and thus lifetime) of the quantum states. Chapter 4 concludes the first part of this thesis

with the discussion on physical implementations of the spin qubits, what constitutes their

environment, and how we can infer the coupling between the spin qubit and its environment.

Starting from Chapter 5, the major thrust of this thesis begins. In this chapter, I

discuss in detail the theoretical framework I used in my research in the context of PyCCE —

an open-sourced software to simulate central spin dynamics in a spin bath. Chapters 6

and 7 discuss the first scientific advance — the investigation of the spin qubits’ properties

at optimal working points at which avoided crossings in the energy levels emerge and how

we can use these avoided crossings to design spin qubits in rather unusual materials, such as

molecules or oxides. Chapter 8 presents the results of using spin dynamics simulations for

the validation of the ab initio calculations of spin coupling parameters.

Next, in Chapter 9 I discuss the utility of first principles simulations in designing the

sensing experiments, and in Chapter 10 I present the computational approach to guide the

material synthesis. Finally, in Chapters 11 and 12 I showcase the study of nuclear spins

near electron spin defects from the first principles.
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CHAPTER 2

QUANTUM 101

2.1 Density matrix formalism

"In the beginning the Universe was created. This has made a lot of people very

angry and been widely regarded as a bad move."

— Douglas Adams

Let’s start with simple things. Consider the evolution of the Universe over time. Assum-

ing that the Universe is an isolated thermodynamic system, its evolution in a non-relativistic

limit can be characterized with the Schrödinger equation (in the units of frequency, setting

ℏ = 1):

i
d

dt
|Ψ(t)⟩ = Ĥu |Ψ(t)⟩ (2.1)

Where I’m using the Dirac bracket notation, |Ψ(t)⟩ is a state vector of the Universe at a

time t, and Ĥu is the Hamiltonian operator, which contains the interactions of everything.

Note that Ĥu is time-independent.

In principle, as long as we know all interactions present in the Ĥu, we can write a formal

solution for the Schrödinger equation as:

|Ψ(t)⟩ = e−iĤut |Ψ(0)⟩ (2.2)

And thus, knowing the state of the Universe at the beginning of time, we can predict the

probability of anything happening in the world at any point in history (in the non-relativistic

limit). However, the Universe is a tad too large to be tackled by a mere mortal me, so it

is convenient to separate the Universe into two parts: the object we’re interested in (the

"System") and everything else (the "Environment"). The system exists in the Hilbert space
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HS and the environment in HE . The Hilbert space of the Universe then is given by the

tensor product HS ⊗HE , and the total Hamiltonian Ĥu can be written as:

Ĥu = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤSE (2.3)

where ĤS is the system Hamiltonian in a Hilbert space HS , ĤE determines the interactions

inside the environment in a Hilbert space HE , and ĤSE corresponds to the coupling between

the system and the environment inseparable into corresponding Hilbert spaces. In the future,

I will omit the identity operators ÎS and ÎE , but they are always implied.

First, we want to answer how one defines the state of the system, assuming the total

state of the Universe is known. We can deduce it from the measurement of the properties in

the Hilbert space HE , given by some projectors Π̂m. The probability of an outcome m for

the state of the Universe |Ψ⟩ is given by:

pm = ⟨Ψ| Π̂m ⊗ ÎE |Ψ⟩ (2.4)

where ÎE is the identity operator in the Hilbert space HE . using the fact that the inner

product of the vector and the operator is equal to the trace, ⟨ψ| Â |ψ⟩ = Tr
[
Â |ψ⟩ ⟨ψ|

]
, (see

[6], p.76) and expanding Ψ in the product of basis states HS and HE as Ψ =
∑

i

∑
j aij |si⟩⊗∣∣ej〉 we obtain:

pm = Tr
[
Π̂mTrS |Ψ⟩ ⟨Ψ|

]
= Tr

[
Π̂mρ̂S

]
(2.5)

Where we define the density matrix of a system ρ̂S as a partial trace over the environment:

ρ̂S = TrS |Ψ⟩ ⟨Ψ| =
∑
j

(ÎS ⊗
〈
ej
∣∣) |ψ⟩ ⟨ψ| (ÎS ⊗

∣∣ej〉). (2.6)

The density matrix thus tells us all possible measurement probabilities that we can perform

on a system but tells nothing about the measurements concerning the combined properties of
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the system and the environment. Note that ρ̂S will correspond to a density matrix of a pure

state only if |Ψ⟩ is a product state. The product state is the state which can be represented

as a tensor product of the system and the environment |Ψ⟩ = |ψS⟩ ⊗ |ψE⟩). Then, and only

then ρ̂S = |ψS⟩ ⟨ψS |. Otherwise, ρ̂S will be a sum of pure states with some probabilities

ρ̂S =
∑

i pi |ψi⟩ ⟨ψi| and represent a mixed state.

We can rewrite the Schrodinger equation (Eq. (2.1)) in the density matrix formalism:

i
d

dt
ρ̂u = [Ĥu, ρ̂u], (2.7)

which is the so-called von Neumann equation, and ρu = |Ψ⟩ ⟨Ψ| is the density matrix of the

Universe. However, writing a similar equation for the reduced density matrix of the system

ρ̂S is significantly more challenging. In a trivial case, when ĤSE = 0 we can write:

i
d

dt
ρ̂S = [ĤS , ρ̂S ]. (2.8)

The study of the system evolution in a general case ĤSE ̸= 0 defines the whole field of the

open quantum systems, a small subset of which I will present in Chapter 3.
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2.2 What is a qubit, and how to control one

"In fact, the mere act of opening the box will determine the state of the cat,

although in this case, there were three determinate states the cat could be in:

these being Alive, Dead, and Bloody Furious."

— Terry Pratchett, Lords and Ladies

2.2.1 Qubit: a two-level quantum system

The system whose environment we are interested in is the qubit. Qubit is the most elementary

quantum system with only two states, conventionally labeled as |0⟩ and |1⟩, separated by

some energy difference ω. The Hamiltonian of any qubit can be then reduced to:

Ĥq =
ω

2
σ̂z, (2.9)

where σ̂z is one of the three Pauli matrices, defined as:

σ̂x = |1⟩ ⟨0|+ |0⟩ ⟨1| , (2.10)

σ̂y = i |1⟩ ⟨0| − i |0⟩ ⟨1| , (2.11)

σ̂z = |1⟩ ⟨1| − |0⟩ ⟨0| , (2.12)

which form a basis set for the space of 2 × 2 Hermitian matrices. Here |i⟩ ⟨j| defines the

outer product of two vectors in the two-level Hilbert space (see [6], p. 67).

Similarly to the rather irritated feline, the predominant underlying physical systems used

as a qubit contain more than two energy levels (such as superconducting qubits, Rydberg

atoms, and even most of the spin qubits I focus on in this work), which might introduce a

whole set of additional problems and/or opportunities. However, as long as the transition

frequencies between the two energy levels and all other levels are well separated, one can
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x
y

|0

|1

Figure 2.1: Representation of the quantum state |ψ⟩ on a Bloch sphere. Cartesian axes
match the directions in Eq. (2.13).

effectively isolate two energy levels and use them as a qubit. The population transfer to

the remaining levels (so-called "leakage") is an important issue in superconducting qubit

platforms, namely transmon qubits (See, for example, work by Google Quantum [7]), but

thankfully the spin qubits are significantly less prone to this leakage.

Because the qubit has only two energy levels, we can uniquely map the state of the qubit

on a 3D vector (in fancy words, this is explained by the equivalence between special unitary

SU(2) and special orthogonal SO(3) Liu groups). The convenient way of visualizing quantum

state is to represent the qubit as a vector on the so-called Bloch sphere, where the qubit

with the density matrix ρ̂ corresponds to a vector a⃗ = (ax, ay, az) in 3D space as:

ρ̂ =
1

2
1̂+

1

2
a⃗ · σ⃗, (2.13)

where σ⃗ = (σ̂x, σ̂y, σ̂z) is a vector of Pauli matrices operators, and a⃗ is called Bloch vector.

Figure (2.1) shows an example of such representation.

This representation has several interesting properties: the length of the vector a⃗ is equal

to one for pure states of the qubit and is less than one for mixed states, and the expectation
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values of the Pauli operators are connected to the Bloch vector components as ⟨σ̂i⟩ = ai.

Overall, any two quantum levels we can efficiently initialize, control, and measure can

act as a qubit. In general, one uses the coupling between the qubit energy level and the

oscillating electromagnetic fields to control the qubit state, as we discuss in the next section.

2.2.2 Rabi oscillations and Rotating Wave Approximation

To described the interactions between the qubit and the time-dependent oscillating field, it

is convenient to use so-called rotating wave approximation (RWA), which allows one to treat

the system as time-independent in some specific frame of reference. During the early days

of my Ph.D. studies, I found it incredibly hard to follow the RWA derivation, so here I’m

providing my own justification for this core concept in qubit control.

Consider a qubit interacting with an oscillating field, coupled to a qubit in xy plane:

Ĥ(t) =
ω

2
σ̂z + Ωcos (ωdt)σ̂x, (2.14)

where Ω is a drive strength, ωd is drive frequency. Think of it as an electric (magnetic)

field oscillating in the xy plane, interacting with the electric (magnetic) dipole of a physical

realization of a qubit.

For the next step, we apply unitary transformation Û0 = eiσ̂z
ωd
2 t to the Hamiltonian,

going into the so-called "rotating frame," defined by the frequency of the drive ωd. The

Hamiltonian changes as follows:

ĤI = Û0ĤÛ
†
0 + i

dÛ0
dt

Û
†
0 , (2.15)

with dÛ0
dt Û

† = iωd2 σ̂z. Then the Hamiltonian in the interaction picture is:

ĤI =
ω − ωd

2
σz +

Ω

2
(eiωdt + e−iωdt)eiσ̂z

ωd
2 tσ̂xe

−iσ̂z
ωd
2 t (2.16)
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It is convenient to write:

σ̂x = |0⟩ ⟨1|+ |1⟩ ⟨0| . (2.17)

Then, using the fact that e−iσ̂z
ωd
2 t |0⟩ = ei

ωd
2 t |0⟩ and e−iσ̂z

ωd
2 t |1⟩ = e−i

ωd
2 t |1⟩:

eiσ̂z
ωd
2 tσ̂xe

−iσ̂z
ωd
2 t = e−iωdt |0⟩ ⟨1|+ eiωdt |1⟩ ⟨0| = e−iωdtσ̂− + eiωdtσ̂+, (2.18)

and plugging this result back into Eq. (2.16) we obtain:

ĤI =
δ

2
σ̂z +

Ω

2
(1 + ei2ωdt)σ̂+ +

Ω

2
(1 + e−i2ωdt)σ̂−, (2.19)

where δ = ω − ωd is called detuning. So far, we haven’t made any approximations – the

Hamiltonian in Eq. (2.19) is still exact. Here is where the magic happens. As long as

ωd >> Ω, δ the time-dependent terms in the Eq. (2.19) oscillate significantly faster than

the timescale of interest, then the effect of these time-dependent terms averages out, that is,

1 + e±i2ωdt ≈ 1. Neglecting the fast-oscillating terms in the Hamiltonian is the core idea of

RWA. Then the interaction Hamiltonian becomes:

ĤI =
δ

2
σ̂z +

Ω

2
σ̂x. (2.20)

Now, one can wonder how we get the correct frame in more complicated systems and

know which terms to neglect. Overall, the process is based on the researcher’s intuition,

which is rather disappointing. Quoting Daniel Sank’s answer on Physics Stack Exchange,

"The rotating wave approximation does not seem to be well-motivated in any book or paper

that I know of." [8] Indeed, the exact boundaries where the rotating wave approximation

stops being a good approximation are hard to pinpoint. However, when the energy scale of

ωd, ω is several orders of magnitudes higher than Ω, and the drive is near resonance, ωd ≈ ω,

the RWA well reproduces the full numerical solution of the time-dependent Schrodinger
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Figure 2.2: Example of Rabi oscillations, computed with (orange) and without (blue) rotat-
ing wave approximation. Time is in arbitrary units, δ/2π = 0.1, Ω/2π = 2, ω/2π = 10.

equation.

The evolution of the state in the rotating frame then can easily be computed as:

|ψI(t)⟩ = ÛI(t) |ψI(0)⟩ , (2.21)

where the RWA propagator ÛI(t) is given as follows:

ÛI(t) = exp
[
−iĤI t

]
= exp

[
−i(δ

2
σ̂z +

Ω

2
σ̂x)t

]
. (2.22)

This propagator acts as a rotation of the state about an axis, defined by δ and Ω relative

amplitudes. If Ω >> δ, the rotation effectively happens about the x-axis. In this case,

the qubit cycles between |0⟩ and |1⟩ states over time. This behavior is known as Rabi

oscillations, named after an American physicist Isidor Isaac Rabi. The Rabi cycle is one of

the most critical concepts in qubit control, as almost all single qubit gates are realized using

these oscillations.

Figure 2.2 shows an example of Rabi oscillations. Even when ω is only five times larger

than Ω, the RWA still agrees well with the exact calculation.

If necessary, one can easily recover the state in the lab frame by reversing the unitary
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transformation Û0:

|ψ(t)⟩ = Û
†
0(t) |ψI(t)⟩ = Û

†
0(t)ÛI(t) |ψ(0)⟩ (2.23)

For many purposes, it is more convenient to consider the dynamics in the rotating frame

(which is just a point of reference and not necessarily RWA itself), and we will primarily

work in the rotating frame.

2.2.3 Control pulses

Assume that the Rabi oscillations happen significantly faster than the timescale of inter-

actions between the qubit and the environment but significantly slower than the qubit

frequency for RWA to hold. Then one can neglect the interactions during the time the

oscillating field is turned on, and the qubit propagator in the rotating frame is equal to Eq.

(2.22), or just a rotation about an axis by an angle ϕ =
√
δ2+Ω2

2 t. We call this rotation

a pulse, specifying the angle and axis of rotation. For example, if δ = 0 and the rotation

happens about x axis (Eq. (2.20)) by the angle ϕ = π (180◦), we will refer to such pulse as

a πx-pulse. Usually, if the axis is omitted, either the x or y axis is implied. For example,

the effect of the πx pulse on |1⟩ qubit state is shown in Figure 2.3 on a Bloch sphere.

Here, however, one needs to take caution. The axes x or y are not defined by the

geometrical considerations but by the relative phase of the oscillating field. For example,

one can write the same Hamiltonian as in Eq. (2.14) but with an oscillating field shifted in

phase by π/2:

Ĥ(t) =
ω

2
σ̂z + Ωsin (ωdt)σ̂x =

ω

2
σ̂z + i

Ω

2
(e−iωdt − eiωdt)σ̂x, (2.24)

which in the rotating frame (and under RWA) becomes:

ĤI =
ω − ωd

2
σ̂z − i

Ω

2
(1− e−i2ωdt)σ̂− + i

Ω

2
(1− ei2ωdt)σ̂+ ≈ ω − ωd

2
σ̂z −

Ω

2
σ̂y. (2.25)
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|0⟩

|1⟩
Figure 2.3: πx-pulse acting on a |1⟩ state. Orange lines represent the initial and final states
of the qubit. Red points show the path of the qubit during the πx-pulse.

Here we used the fact that:

σ̂y = i(|0⟩ ⟨1| − |1⟩ ⟨0|) = iσ̂− − iσ̂+ (2.26)

So by merely adding a phase shift in the x drive, we changed the effective axis of rotation!

Therefore, in any pulse sequence, the first drive applied to the qubit "defines" the phase

(locks the rotating frame), and every other pulse should be coherent with the first drive.

That is, if the first drive, in general, is cos(ωdt+ α), all other drives to apply rotations

about the same axis should have the phase offset cos(ωdt+ α) as well.
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CHAPTER 3

A STORY OF A (QUBIT) LIFETIME

In this section, we discuss how we can treat the effect of the environment around the qubit.

We aim to describe the environment as a source of the noise that leads to the eventual

destruction of the precious quantum state.

3.1 Lindbladian Master Equation

If one wishes to write down a general equation of an open quantum system interacting with

the environment contained only in the Hilbert space of the system, one is on quite a journey.

Let’s step back and return to the Universe, described with the Hamiltonian (2.3). Moving

to the frame defined by ei(ĤE+ĤS)t we can rewrite the von Neumann equation (2.7) as:

d

dt
ρ̂I(t) = −i[ĤSE(t), ρ̂I(t)], (3.1)

where ρ̂I(t) = ei(ĤS+ĤE)ρ̂u(t)e
−i(ĤS+ĤE) and ĤSE(t) = ei(ĤS+ĤE)ĤSEe

−i(ĤS+ĤE). We

can formally integrate eq. (3.1), plug it into itself, and trace out the environment to arrive

at the following monstrosity:

d

dt
ρ̂S,I(t) = −iTrE

{[
ĤSE(t), ρ̂I(0)

]}
− TrE

{∫ t

0
dt′
[
ĤSE(t), [ĤSE(t

′), ρ̂I(t
′)]
]}

(3.2)

Now we have a closed equation that connects the state of the system at time 0 to a state

at time t. It seems a bit pointless, as solving Eq. (3.2) still requires us to know the full

quantum evolution of the environment, but now we have a clear order of the perturbation

expansion. And under specific conditions, this form allows for a general treatment of the

open quantum system in the way of master equations.

I will not give a complete derivation of the Lindbladian master equation in this work; for
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a good description, see, for example, [9]. Here I will list the main approximations one needs

to make to arrive at the final result:

• No initial correlations between the system and the environment, or the Universe is in

the product state at the beginning of time, ρ̂I(0) = ρ̂u(0) = ρ̂S(0)⊗ ρ̂E(0).

• Relaxation of the environment happens significantly faster than the timescale of the

interaction between the system and the environment — so-called Born approximation

(for my fellow chemists, this is similar as to when we assume that electronic structure

instantaneously relaxes when nuclei move). Therefore we can write ρ̂I(t) = ρ̂S,I(t) ⊗

ρ̂E(0)

• Bath correlations decay significantly faster than a change in the system’s state. There-

fore, one can substitute ρ̂I(t′) with ρ̂I(t) in the R.H.S. of the eq. (3.2) and change the

limits of integration from (0, t) to (0,+∞). This assumption is the so-called Markovian

approximation — the state of the system doesn’t depend on the state of the system at

earlier times.

• Rotating wave approximation (secular approximation) for the interactions between the

system and the environment is used.

Under these assumptions, we can write the equation for the system dynamics, contained in

the Hilbert space of the system as:

d

dt
ρ̂S = L[ρ̂S ] = −i[ĤS , ρ̂S ] +

∑
i

γi

(
L̂iρ̂SL̂

†
i −

1

2
{L̂iL̂

†
i , ρ̂S}

)
, (3.3)

where L is a Lindbladian superoperator, L̂i are jump operators, and γi are the correspond-

ing rates of the dissipation channels. In the following sections, we will use the Lindbladian

description to connect different dissipative processes due to the interactions with the envi-

ronment to the corresponding jump operators.
14



3.2 Types of dissipative processes in qubit

The master equations are a powerful tool to simulate the full dynamics of the system inter-

acting with the Markovian environment. The number of approximations we need to account

for, however, makes such an approach not applicable to many systems under study.

Instead of looking at the general case, I will separately focus on the possible dissipative

processes relevant to the qubit system in this section.

Following [10], we consider a qubit weakly coupled to some environment:

Ĥ =
1

2
ωσ̂z +

1

2
ν̂∥σ̂z +

1

2
ν̂⊥σ̂x + ĤB , (3.4)

where ν̂∥ and ν̂⊥ are environmental operators living in the Hilbert space of the environment,

and ĤB describes interactions inside the environment, not necessarily known. The important

part is that ĤB does not include interactions with the qubit. We can move into the frame,

defined by ĤB by applying unitary transformation Ûint = eiĤBt (Eq. (2.15). As ĤB

commutes with σ̂i, the Hamiltonian in this frame becomes:

ĤI(t) =
1

2
ωσ̂z +

1

2
ν̂∥(t)σ̂z +

1

2
ν̂⊥(t)σ̂x, (3.5)

where we define effective time-dependent noise operators ν̂∥(t) = eiĤBtν̂∥e
−iĤBt for the

longitudinal noise and ν̂⊥(t) = eiĤBtν̂⊥e
−iĤBt for the transverse noise.

We can then write a formal solution to the von Neumann equation (Eq. (2.7)) as:

ρ̂I(t) = T
{
e−i

∫ t
0 dt

′ĤI(t)
}
ρ̂0T̃

{
ei
∫ t
0 dt

′ĤI(t)
}
, (3.6)

where T (T̃ ) is an (anti) time-ordering operator, which ensures that the expression inside

the curly brackets has only the products of operators (anti) ordered by the time coordinate.

To gain a heuristic understanding of relaxation and decoherence, in the following, we strip
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ν∥ and ν⊥ of their hats and treat the environment as classical. This is what we refer to as a

classical bath approximation when we treat the effect of the environment as some stochastic

classical field and use the statistical properties of this field to uncover the limiting regimes

of the qubit, losing its initial quantum state. Classical noise is not always a good description

of the environment around the qubit, but as the most intuitive of the representations, many

concepts (and corresponding measurements) in the field use classical picture as the starting

point.

3.2.1 Dephasing

Let’s assume that our qubit is initially in the pure |ψ⟩ state. Then the total density matrix

can be written as ρ̂I(0) = |ψ⟩ ⟨ψ| ⊗ ρ̂E . For simplicity, we assume that the noise is only

longitudinal (ν̂⊥ = 0). In this section, we will write ν̂ ≡ ν̂∥ for clarity.

Without the transverse noise, the interactions with the environment cannot induce the

transfer of the population between qubit energy levels. Therefore, all environment-induced

dynamics will be reflected in the changes of the off-diagonal element of the density matrix

ρ10(t). In general, the off-diagonal elements of any density matrix are often referred to as

coherences, as they are equal to the relative phases between two states in the superposition.

Analogous to the classical wave sources, the states can be considered coherent if that phase

is well defined. If the average phase is zero, the two states are incoherent, and the density

matrix represents a classical mixture of the states instead of the quantum superposition. The

process in which qubit loses the well-defined phase between its levels is called decoherence

or dephasing.

Using the definition of the partial trace (Eq. (2.6)), we can write ρ10(t) as:

ρ10(t) =
∑
j

⟨1| ⊗
〈
ej
∣∣ T {e−i

∫ t
0 dt

′ĤI(t)
}
|ψ⟩ ⟨ψ| ⊗ ρ̂E T̃

{
ei
∫ t
0 dt

′ĤI(t)
}
|0⟩ ⊗

∣∣ej〉 . (3.7)
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We can use the fact that qubit states are eigenstates of the σ̂z to simplify the exponentials:

eσ̂z⊗Â |1/0⟩ = e±1⊗Â |1/0⟩ , (3.8)

and insert in the Hamiltonian (3.5) into the exponential to write:

exp

[
−i
∫ t

0
dt′ĤI(t)

]
= exp

[
−i
(
1

2
ωσ̂zt+

1

2
σ̂z ⊗

∫ t

0
ν̂(t)dt

)]
. (3.9)

Plugging it into Eq. (3.7) we obtain:

ρ10(t) = ρ10(0) · e−iωt · L(t), (3.10)

where we define coherence function L(t) as:

L(t) =
∑
j

〈
ej
∣∣ T {e−i12

∫ t
0 ν̂(t)dt

}
ρ̂E T̃

{
e−i12

∫ t
0 ν̂(t)dt

} ∣∣ej〉 . (3.11)

Formula (3.11) is still exact. Whatever environment we have, as long as the coupling be-

tween the qubit and the environment is purely longitudinal, we can recover the full dynamics

of the qubit interacting with the environment from the coherence function L(t). Quite pro-

found, really, but still mostly useless. The operator ν̂(t) exists in the Hilbert space of the

bath and requires us to know the full dynamics of the environment.

This brings us to the hat stripping part. Assuming the noise is classical, the equation

(3.11) is just an average of the random phase picked up by the qubit during the evolution:

L(t) = ⟨e−i
∫ t
0 ν(t)dt⟩ = ⟨e−iϕ(t)⟩, (3.12)

with ϕ(t) =
∫ t
0 ν(t)dt. The neat approximation we make is we assume that the noise is

Gaussian with mean ⟨ν⟩ = 0 and probability density function P (ν) = 1
σ
√
2π
e
− ν2

2σ2 with some
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standard deviation σ. The Gaussian approximation means that probability of the value ν

follows the normal distribution, but it doesn’t tell us how it changes over time. It is still an

instrumental observation as then we can do the following transformation:

L(t) = ⟨eiϕ(t)⟩ = e−
1
2 ⟨ϕ(t)

2⟩ = exp

[
−1

2

∫ t

0
dt1

∫ t

0
dt2⟨ν(t1)ν(t2)⟩

]
(3.13)

Heuristically, equation (3.13) can be motivated because the Fourier transform of the Gaussian

is still a Gaussian. More complete treatment depends on Wick’s theorem, but the reader

should look elsewhere for a rigorous derivation.

Then Equation (3.13) tells that if the noise is Gaussian, the decoherence of the qubit is

determined solely by the noise correlation function ⟨ν(t1)ν(t2)⟩. Further, assuming that the

noise is induced by a stationary process, i.e., the correlation function doesn’t change with

the shift in time, we can rewrite it as ⟨ν(t1)ν(t2)⟩ = ⟨ν(t1 − t2)ν(0)⟩.

It is useful to introduce the spectral density of the noise S[ω] = ⟨|ν[ω]|2⟩ (sometimes also

known as noise spectrum), defined as a mean of a square of a windowed Fourier transform

of the noise ν[ω]:

ν[ω] = lim
T→∞

1√
T

∫ T

0
ν(t)eiωtdt, (3.14)

where normalization is chosen as 1√
T

because at large T the integral is expected to grow

as a
√
T (see appendices of [11] for further reading). The Wiener-Khinchin Theorem ([11],

appendix A) tells us that spectral density is directly related to the correlation function of

the noise:

S[ω] = ⟨|ν[ω]|2⟩ =
∫ ∞

−∞
⟨ν(τ)ν(0)⟩eiωτdτ. (3.15)

Using the definition of the spectral density of the noise, we can rewrite the equation (3.13)
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in a familiar way:

L(t) = exp

[
−1

2

∫ t

0
dt1

∫ t

0
dt2

1

2π

∫ ∞

−∞
S[ω]e−iω(t1−t2)dω

]
= exp

[
− 1

4π

∫ ∞

−∞
S[ω]

4 sin2 ωt
2

ω2
dω

]
= exp

[
− 1

4π

∫ ∞

−∞
S[ω]FFID(ω, t)

]
, (3.16)

where FFID(ω, t) =
4 sin2 ωt

2
ω2 is the so-called filter function of the free induction decay (FID).

The filter function determines which part of the noise spectrum S[ω] affects the decoherence

of the qubit in a given experiment and will be discussed more in the dynamical decoupling

part below (Sec. 3.2.1).

Inhomogeneous dephasing

The loss of coherence due to the noise that is constant throughout a single measurement, but

varies between different measurements, is often called inhomogeneous dephasing or broad-

ening. One can now exemplify the inhomogeneous broadening with both single qubit and

ensemble experiments. In the ensemble measurement, every qubit might have a slightly dif-

ferent transition frequency due to static noise. But also, in the repeated measurement of

a single qubit, its frequency might vary from measurement to measurement, leading to the

same type of inhomogeneous broadening.

Consider the following toy model, where the spin governed by the Hamiltonian Ĥq inter-

acts with the static longitudinal noise ν:

Ĥ = Ĥq + νσ̂z, (3.17)

where ν is constant for each sample (measurement) but varies between different ones accord-

ing to the Gaussian distribution Pinh(ν) = 1
σ
√
2π
e
− ν2

2σ2 with standard deviation σ.

The autocorrelation of such noise is trivial, ⟨ν(τ)ν(0)⟩ = ⟨ν(0)ν(0)⟩ = ⟨ν2⟩ = σ2, and
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the spectral density is a delta function centered at zero, S[ω] = 2πσ2δ(ω). Plugging in this

autocorrelation function into the Eq. (3.13), we obtain the equation for the decay:

Lstatic(t) = e−
σ2

2 t2 . (3.18)

We can define the characteristic coherence time T ∗
2 =

√
2
σ , after which the coherence decays

to 1/e of the initial value in free induction decay. T ∗
2 is often called inhomogeneous dephasing

time because it is mostly limited by the slow, static noise induced by the inhomogeneity of

the qubit frequency in the ensemble.

It is useful to consider the opposite limit when the noise is so fast that the correlation

decay much faster than the timescale of the experiment (Markovian noise). We write the

autocorrelation function as exponential decay ⟨ν(τ)ν(0)⟩ = σ2e−
|t|
τc with correlation time

τc << t. Such an autocorrelation function can correspond to a variety of physical mechanisms

behind the noise, but for the purpose of the current discussion, such details are omitted. This

autocorrelation function corresponds to the Lorenzian spectral density S[ω] = 1
π

τ−1
C

ω2+τ−2
C

.

Then the decay is computed as:

L(t) = exp

[
−1

2

∫ t

0

∫ t

0
σ2e−

1
τc
|t1−t2|dt1dt2

]
= exp

[
−σ2τct+ σ2τ2c (1− e−

t
τc )
]
. (3.19)

In the τc << t limit, we find the coherence function to be equal to L(t) = e−σ2τct with

characteristic time T ∗
2 = σ2τc and strictly exponential decay. The exponential decay matches

the predictions of the dephasing in the Lindbladian master equations (Eq. (3.3)). We can

recover the same behavior by setting the jump operator to be equal to L̂i = σ̂z and the

corresponding rate to γi = 1
2S[0] =

1
σ2τc

.

In the opposite limit of τc >> t, we recover static noise decay (Eq. (3.17)). Equation

(3.19), however, is more general and describes the free induction decay in the presence of

any noise with the autocorrelation function that decays exponentially. It also brings up an
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interesting point about the relative decay rates. The smaller the τc, the slower the decay is.

This effect is called motional narrowing — the fast noise (i.e. autocorrelation of the noise

decays rapidly) leads to the increase in coherence time.

Dephasing under dynamical decoupling

Under the dynamical decoupling train of pulses, a series of π pulses are applied to the qubit

to mitigate the error introduced by the slow noise.

Consider the most basic dynamical decoupling sequence when a single π-pulse is applied

at the middle point between the beginning of the experiment and the coherence readout. Such

an experiment is known as Hahn echo [12], and the π pulses in the dynamical decoupling

sequences are sometimes called "refocusing" pulses.

It is convenient to move to the frame defined by the π-pulse applied in the middle of the

experiment:

Û(t) = e−iθ(t−τ)σ̂x
π
2 , (3.20)

where θ(t−τ) is a Heaviside step function, and τ is the delay before the pulse. The coherence

is read out at t = 2τ . It’s easy to see that Û(t)σ̂zÛ†(t) = y(t)σ̂z with y(t) defined as[13]:

y(t) =


1 if t < τ

−1 if t ≥ τ

(3.21)

For more π-pulses in the dynamical decoupling sequence, the y(t) will change the sign more

times.

Then the Hamiltonian (Eq. (3.5)) in this toggled frame becomes:

ĤI = y(t)σ̂z(ω + ν̂(t)). (3.22)
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Figure 3.1: Filter functions for various types of experiments. N corresponds to the number
of decoupling π-pulses in the given sequence.

Once again, we assume the absence of the transverse noise. We can rewrite the equation

(3.13) as:

L(t) = exp

[
−1

2

∫ t

0
dt1

∫ t

0
dt2⟨ν(t1)ν(t2)⟩y(t1)y(t2)

]
, (3.23)

or in terms of the spectral density (Eq. (3.16)), the presence of the refocusing pulses modifies

the filter function:

L(t) = exp

[
− 1

4π

∫ ∞

−∞
S[ω]FDD(ω, t)

]
, (3.24)

where FDD(ω, t) =
∫ t
0 dt1

∫ t
0 dt2e

−iω(t1−t2)y(t1)y(t2) is a filter function for a specific dynam-

ical decoupling pulse sequence. In the Hahn-echo experiment, FDD(ω, t) =
8 sin4(ωt4 )

ω2 . For the

filter functions at a higher number of decoupling pulses, I refer the reader to look elsewhere,

for example, [14].

Let’s analyze how the change in the filter function affects what part of the noise spectrum

qubit "sees." Figure 3.1 shows filter functions for different numbers of dynamical decoupling

pulses and FID. We find that near zero frequency ω → 0 the filter function under dynamical

decoupling protocol approaches 0, FDD(ω, t) → 0, while the FID filter function approaches

unity, FFID(ω, t) → 1. So any low-frequency noise will be removed by the dynamical decou-

pling sequence!
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The removal of the low-frequency noise is easy to see by considering only the static noise

with ⟨ν(t1)ν(t2)⟩ = σ2. Then equation (3.23) becomes (the coherence is read out at t = 2τ):

L(t) = exp

[
−1

2
σ2
∫ t

0
y(t1)dt1

∫ t

0
y(t2)dt2

]
= exp

[
−1

2
σ2(1 · (2τ − τ)− 1 · τ)2

]
= 1,

(3.25)

where the coherence function is now equal unity at all times.

In general, the noise is not static, and some coherence degradation will still occur. We

characterize such decoherence phenomenologically by fitting the decay of the coherence into

the general form L(t) = exp[−(t/T2)
n] where T2 is the Hahn-echo coherence time (if it’s

measured in the Hahn-echo dynamical decoupling sequence), and n is stretched, exponent.

There is confusion in the literature about the definition of T2. The measured coherence

time increases with the number of refocusing pulses in the dynamical decoupling sequence. If

one then wants to compare coherence properties of two different systems one needs to define

a single sequence as a reference. We use T2 to refer only to Hahn-echo coherence time, and

the coherence time measured in more sophisticated dynamical decoupling sequences will be

correspondingly denoted.

3.2.2 Relaxation

In this section, we’re interested in how the population of the qubit changes due to the

interactions with the environment. Consider the case of the qubit interacting with classical

transverse noise (3.5):

Ĥ(t) =
1

2
ωσ̂z +

1

2
ν⊥(t)σ̂x. (3.26)

We can move into another rotating frame by applying the transformation ÛI = ei
ω
2 σ̂zt to

obtain:

ĤI(t) =
1

2
ν⊥(t)(e

iωtσ̂+ + e−iωtσ̂−). (3.27)
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The Schrodinger equation in the interaction picture (rotating frame) for this system reads:

d

dt
|ψI(t)⟩ = −iĤI(t) |ψI(t)⟩ , (3.28)

where |ψI(t)⟩ is the state of the qubit at time t in the interaction picture, with simple trans-

formation back to the Schrodinger picture (laboratory frame) as |ψ(t)⟩ = e−iω2 σ̂zt |ψI(t)⟩.

We next formally integrate the Schrodinger equation as a perturbative series:

|ψI(t)⟩ = |ψ(0)⟩ − i

∫ t

0
dt′ĤI(t

′) |ψ(0)⟩+
∫ t

0

∫ t

0
dt′dt′′ĤI(t

′)ĤI(t
′′) |ψ(0)⟩+ ... (3.29)

We will stop at the first order of perturbation theory and write the state of the qubit at time

t as:

|ψI(t)⟩ ≈ |ψ(0)⟩ − i

∫ t

0
dt
1

2
ν⊥(t

′)(eiωt
′
σ̂+ + e−iωt′σ̂−) |ψ(0)⟩ (3.30)

Now assume the qubit is initially in the |1⟩ state, and we’re tracking the population of

the |0⟩ state. The probability of finding the qubit in |ψ(0)⟩ = |0⟩ state can be computed as

a square of the overlap of the wavefunction at time t with the |0⟩ state p0(t) = | ⟨0|ψI(t)⟩ |2

with:

⟨0|ψI(t)⟩ = 0− i

∫ t

0
dt
1

2
ν⊥(t

′) ⟨0| (eiωt
′
σ̂+ + e−iωt′σ̂−) |ψ(0)⟩ (3.31)

The average probability ⟨p0(t)⟩ up to the first order of perturbation theory is equal to:

⟨p0(t)⟩ =
1

4
⟨
∫ t

0
dt1ν⊥(t1)e

−iωt1

∫ t

0
dt2ν⊥(t2)e

iωt2⟩ =

=
1

4

∫ t

0
dt1

∫ t

0
dt2⟨ν⊥(t1)ν⊥(t2)⟩e−iω(t1−t2)

(3.32)

which is very reminiscent of the Eq. (3.13).
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From the definition of the spectral density of the noise (Eq. (3.15), we can write:

S[ω] = ⟨|ν⊥[ω]|2⟩ =
1

T
lim

T→∞

∫ T

0
dt1

∫ T

0
dt2⟨ν⊥(t1)ν⊥(t2)⟩eiω(t1−t2))dτ. (3.33)

From equation (3.33), it is obvious that at "sufficiently large" time (t→ ∞), the probability

of the transition to the |0⟩ state is directly proportional to the spectral density at the qubit

frequency:

⟨p0(t)⟩ =
1

4
S[ω] · t = Γ10 · t, (3.34)

where we define the rate of transition as Γ10 = 1
4S[ω] and find the probability to grow

linearly in time. This result is the direct equivalent of the Fermi Golden Rule (FGR) for the

noise spectrum save for normalization. However, applying the same logic to the probability

of staying in |1⟩ state, we find that it has constant amplitude, ⟨1|ψI(t)⟩ = 1 which does not

match the reality.

To obtain the correct dynamics, we derive the dependency in the Markovian limit — the

assumption that the qubit’s state doesn’t depend on all its previous states.

To achieve that, we rewrite the perturbative series, centered around |ψ(t)⟩ instead:

|ψI(t)⟩ = |ψ(0)⟩ − i

∫ t

0
dt′ĤI(t

′) |ψ(t)⟩+
∫ t

0
dt′
∫ t′

t
dt′′ĤI(t

′)ĤI(t
′′) |ψ(t)⟩+ ... (3.35)

We use this definition to write the Schrodinger equation as follows:

d

dt
|ψI(t)⟩ = −iĤI(t) |ψI(0)⟩ − ĤI(t)

∫ t

0
ĤI(t

′) |ψI(t)⟩ . (3.36)

We then find the amplitude c1(t) = ⟨1|ψI(t)⟩ from the following equation:

d

dt
c1(t) = −1

2
ν⊥(t)

∫ t

0
dt′

1

2
ν⊥(t

′)e−iω(t′−t)c1(t). (3.37)
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To get mean amplitude change, we get an average of the left-hand side and right-hand side:

d

dt
⟨c1(t)⟩ = −1

4

∫ t

0
dt′⟨ν⊥(t)ν⊥(t′)⟩e−iω(t′−t)⟨c1(t)⟩, (3.38)

where we imply that the amplitudes of the qubit are not correlated with the noise ν⊥(t).

By assuming a long-term limit t → ∞ and by changing the variables τ = t − t′, we

can connect the emerging noise autocorrelation function in equation (3.38) with the spectral

density:

∫ t

0
dt′⟨ν⊥(t)ν⊥(t′)⟩e−iω(t′−t) =

∫ t

0
dτ⟨ν⊥(t)ν⊥(t− τ)⟩eiωτ =

=

∫ t

0
dτ⟨ν⊥(t)ν⊥(t− τ)⟩eiωτ =

1

2

∫ t

−t
dτ⟨ν⊥(τ)ν⊥(0)⟩eiωτ =

1

2
S[ω].

(3.39)

We then recover the change of the amplitude with time to be proportional to the amplitude

itself:
d

dt
⟨c1(t)⟩ = −1

8
S[ω]⟨c1(t)⟩ = −1

2
Γ10⟨c1(t)⟩, (3.40)

which has a simple solution in the form of the exponential decay:

⟨c1(t)⟩ = c1(0)e
−1

2Γ10t, (3.41)

and we can finally write the probability as (assuming c1(0) = 1):

⟨p1(t)⟩ = ⟨c1(t)⟩2 = e−Γ10t, (3.42)

with Γ10 given by the Fermi golden rule (Eq. (3.34)). We define the characteristic decay

time T1 = 1/Γ10 as a time after which the system will decay to the 1/e population from the

initial state.

As the population change is induced by the high-frequency noise, the Markovian approx-
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imation usually works well for the relaxation (or T1) processes, and Fermi golden rule is

widely used in simulations to predict the relaxation rate.

The same behavior is recovered in the Lindbladian master equation with L̂i = σ̂− and

the rate γi = Γ10. Notice, however, that we derived the decay of only one of the states;

doing the same procedure for the lower state (and assuming a large temperature limit of

S[ω] = S[−ω]), we find that the system should equilibrate to the equal populations in both

states. In the limit of low temperature, the system will equilibrate into the lowest state

instead.

The other question, then, is how does the coherence decay when there is a transverse

source of the noise? This is easier to explain using the Lindbladian equation (Eq. (3.3) with

jump operator σ̂− and the rate γi:

d

dt
⟨0| ρ̂I(t) |1⟩ = γi ⟨0| σ̂−ρ̂I(t)σ̂+ − 1

2
{σ̂−σ̂+, ρ̂I(t)} |1⟩ = −γi

2
⟨0| ρ̂I(t) |1⟩ , (3.43)

where the rate of decoherence (1/T2) is one-half of the rate of the relaxation (1/T1). Thus,

the famous relation between the two characteristic times emerges T2 ≤ 2T1. Note that by

T2 here we mean any dephasing coherence time, as no dynamical decoupling sequence can

recover the loss of population.

However, in most systems of interest of this work the relaxation is significantly slower

than dephasing, T1 ≫ T2. Thus, for simplicity we assume the limit of the T1 → ∞ and do

not consider the relaxation in considerable detail here.

3.2.3 Relevant experimental measurements of the qubit dissipation

Finally, I briefly summarize how one measures the previously described dissipative processes

affecting qubits.

The inhomogeneous broadening of the qubit (T ∗
2 coherence time) is measured in the free
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Figure 3.2: The pulse sequences are used to measure characteristic qubit coherence times.
Init. stands for initialization of the qubit in the |0⟩ state, and Readout means measurement
of the population in |0⟩ state. (a) Ramsey pulse sequence (b) Hahn-echo pulse sequence (c)
Relaxometry.

induction decay (FID). In this measurement, one prepares qubit in |+X⟩ = 1
2(|0⟩+|1⟩) state,

waits for time t, and measures the final magnetization along x (⟨σ̂x⟩) or y-axes (⟨σ̂y⟩).

Experimentally, however, the magnetization in xy-plane is measurable in only a small

number of physical realization of qubits. Thus, the inhomogeneous broadening experimen-

tally is usually recovered in the Ramsey experiment (Fig. 3.2a). In this experiment, one

prepares qubit in |0⟩ state, applies πx/2 pulse, lets the qubit evolve for a time t, applies

−πx/2 (or −πy/2) pulse, and measures population in the |0⟩ state. Depending on the axis

of the final π/2-pulse, one can recover either (⟨σ̂x⟩) or (⟨σ̂y⟩) in this way. The coherence is

recovered from the compressed exponential decay of the envelope, p0 = e
−( t

T∗
2
)n

.

Compared to the FID, where the magnetization is measured in the laboratory frame, the

Ramsey experiment locks the frame determined by the detuning in the drive, used to apply

π/2 pulses.

Finally, the Fourier transform of the Ramsey measurement gives us the frequency spec-

trum, with the broadening around central frequency (centered at the detuning between the

drive and the qubit frequency) proportional to 1/T ∗
2 . This is the reason why T ∗

2 corresponds

to broadening.

Next, the Hahn-echo coherence time T2 is measured in, well, the Hahn-echo experiment.
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To perform Hahn echo, one prepares a qubit in |0⟩ state, applies πx/2 pulse, lets the qubit

evolve for a time t/2, applies πx(y) pulse, lets the qubit evolve for a time t/2 again, applies

another −πx/2 pulse, and measures population in the |0⟩ state (Fig. 3.2b). In the dynamical-

decoupling sequences (CPMG, UDD, you name it), the number of the pi-pulses is larger than

one. The coherence time T2 is obtained by fitting the population of |0⟩ to the compressed

exponent p0 = e
−( t

T2
)n .

The relaxation time T1 is measured in the relaxometry by initializing qubit in the |0⟩

state, waiting time t, and measuring population in the |1⟩ state, and vise versa (Fig 3.2c).

The T1 is recovered from the exponential decay p(1) = e
− t

T1 .
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3.3 Quantum bath approach to qubit decoherence

"That is not only not right; it is not even wrong." — Wolfgang Pauli

As one can notice, the approximations in 3.2 are relatively strong and require some ad hoc

assumptions about the nature of the environment. The primary violation of the classicality of

the bath can be introduced when the state of the qubit significantly impacts the state of the

environment — so-called "backaction" of the qubit [15]. This happens when the interactions

between the qubit and the environment are much stronger than the interactions within the

environment itself.

I adopt a conceptually different approach to the finite-size bath approximation in my

work. Here, we assume that only a small part of the environment (bath) is sufficiently

strongly coupled to the system, and the coupling between the bath and the rest of the envi-

ronment can be neglected. This approximation already reduces the size of the environment

from the rest of the Universe to a few hundred particles, which is nice. The goal is then

to compute the coherence function (Eq. (3.11)) directly from the quantum evolution of this

finite-sized bath.

However, the number of particles in such a finite-sized bath can still routinely exceed

hundreds in realistic systems, especially in the problems concerning the Hahn-echo signal.

The full Hilbert space then includes at least 2100 degrees of freedom, and a naive approach

to evolving the bath will not cut it in the problems of our interest.

The approximation I utilize the most is so-called cluster correlation expansion (CCE).

The core idea of the CCE method is to factorize the bath-induced decoherence into a product

of cluster contributions. Each cluster is defined in real space, and their contribution to the

decoherence is computed by evolving the separate clusters in time. The cluster expansion

approach is discussed in detail in a separate chapter (Chapter 5) in the context of the

software I developed to target the central spin qubit in a spin bath problem. But first, we

will introduce the physical implementations of the spin-based qubits.
30



CHAPTER 4

SPIN QUBITS AND WHERE TO FIND THEM

"This will be great!" — David D. Awschalom

It’s time to finally define what the physical systems we investigate are. Specifically, we

discuss how one can map the qubit onto spin levels of the particles in the solid state and

what constitutes the environment of such qubits.

Note that here I describe only spin-based qubits, but there are a lot more quantum

systems widely used as qubits. For example, there are superconducting qubits, neutral

atoms, trapped ions, and others. The reader should look elsewhere to seek information

about those (e.g., book [6] is a good start).

4.1 Spin in the solid state

There are a plethora of physical realizations of spin-based qubit platforms. In this section,

I briefly summarize existing solid-state hosts of electron and nuclear spins for quantum

information applications and my own (completely unbiased) opinion about the feasibility of

describing each of the systems from the first principles.

4.1.1 Quantum dots

To manufacture quantum dots in semiconductors, one uses the static electric field bias to

confine a single or a few electronic spins to 0D (hence the name, quantum dots) [17]. Such

electrostatic engineering is achieved by restricting the electron density to the interfaces and

controlling the electric field with metallic gates. The device based on spin qubit quantum

dots is schematically shown in Figure 4.1c. The exemplary structure of the device is adapted

from the recent work on a three-qubit array in silicon (ref. [16]).
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Figure 4.1: The semiconductor spin qubits. (c) An array of three quantum dots spins qubits
in silicon (schematically represented as red circles). The structure of the quantum dot device
is adapted from [16].

The Quantum dot-based technologies are operated at millikelvin temperatures to control

thermal excitations.

The first quantum dots in semiconductors were created at the interface of GaAs/AlGaAs,

but the field has thankfully moved towards mostly Si-based quantum dots. The readout is

usually achieved via the spin-to-charge conversion. There are many various implementations

of quantum dots-based spin qubits (single spin qubits, exchange qubits, singlet-triplet qubits,

etc.), and for a more extensive overview, see the works [18] and [17].

The first-principles characterization of such systems is virtually impossible, as the size

of the confined electron gas lies within tens of nanometers (Fig. 4.1c). The theoretical

description usually relies on simplified semi-empirical models.

4.1.2 Shallow donors

Shallow donors are created by adding an atom of a group-V element, such as phosphorus

or arsenic, to a group-IV crystal, usually silicon. The donor atom replaces a host atom in

the crystal, and its extra electron is loosely bound to the donor nucleus in a hydrogen-like

orbital. The most widely used system is 31P donor in Si. [19]. The 31P-dopants in silicon

have an energy level of only 45 meV below the conduction band; thus, all applications require
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Figure 4.2: Energy levels of the NV– center in diamond. The rates of transition are taken
from [23].

cryogenic temperatures.

In quantum technologies, both the nuclear spin-1⁄2 of 31P and bounded electron spin-

1⁄2 play an important role. The control and readout of the nuclear spin are achieved only

through the bound electron spin. See the work by [20] for a good overview of the donor-based

qubits.

The electronic structure of the shallow defects is significantly delocalized in space, and

the electron wavefunction spans several nanometers in size (Fig. 4.1b). Usually, one would

adopt the Kohn-Luttinger model to estimate dopant wavefunction by treating the donor

potential as a perturbation to the band structure of the pristine silicon (see, for example,

[21]). However, recently there has been an effort to characterize the shallow donor electronic

structure completely from the first principles [22].
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4.1.3 Spin defects

Point defects are elementary substitutions in the crystal lattice of the material. A small

subset of such defects can possess an attached electron spin in wide bandgap semiconductors,

such as diamond or silicon carbide (SiC). Another subset of these defects will have both

ground energy level and excited energy level inside the band gap of the material. Such

defects are known as color centers as they absorb light at a frequency smaller than the band

gap, commonly in the visible region. We’re interested in the overlap of these two subsets

of defects, commonly referred to as optically active spin defects. The qubit is mapped on

different spin states of the ground electronic state.

The ground state optical properties are spin-dependent in these defects, i.e., the amount

of light the defect emits depends on the magnetic state of the electron spin. Therefore, we

can detect the spin states of the defects using their fluorescence in the method called optical

detected magnetic resonance, providing a convenient way to readout (and initialize, as will

be discussed below) the qubit. The spin-depended optical cycle between excited and ground

states allows for optical readout and state preparation even at room temperature.

Consider the most well-studied point defect system, the negatively charged Nitrogen-

Vacancy center in a diamond (Fig. 4.1a). It consists of the nitrogen substitution of the

carbon atom located next to a vacant lattice site. The energy structure of the negatively

charged NV– center is shown in Figure 4.2. NV has a ground triplet state (3A2), an excited

triplet state ((3E)) and two intermediate singlet states (1A1 and 1E1). The triplet states have

three sublevels, different by a projection of the spin ms. Two of these sublevels are used as

qubit states. The intersystem crossing from triplet to singlet state is spin-dependent, with

the states ms = ±1 preferred. Thus, optically exciting the NV center, one can effectively

reset the qubit into |ms = 0⟩ state within microseconds. Such unique properties allow one

to use the NV– center even at room temperature.

For further reading, see a great review by G. Wolfowics et al. [24] or an outstanding
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doctoral thesis by C. P. Anderson [25].

The localization in the band gap leads to another important property of the spin de-

fects. The spatial extent of such systems is also confined within only a few unit cells of

the material. The highly localized nature of the point defects allows one to treat them as

small molecules encapsulated in a solid state. Such behavior opens up many opportuni-

ties for first-principles studies, as the size of the computational system necessary to obtain

converged results is tractable with existing hardware. For example, the quantum defect

embedding theory (QDET) treats the defects using a high level of theory while accounting

for the semiconductor environment around them using simpler DFT functionals [26]. The

theoretical investigation of spin defects remains an active area of research to this day.

4.2 Spin environment around the qubit

Independent of the physical system type, quantum spin as a magnetic moment will strongly

interact with other magnetic moments around it. Of course, that’s not the only kind of in-

teraction (for example, the interactions with electric field charges can induce both relaxation

and dephasing in the spin defect systems: see recent work by Denis R. Candido and Michael

E. Flatté [27]), and understanding the effect of all other factors is an area of research in itself.

Here, however, we focus primarily on the magnetic noise as the most dominating effect on

the quantum evolution of the spin qubits.

The magnetic environment consists mainly of nuclear spins (nuclear spin bath) and other

paramagnetic impurities (electron spin bath). Figure 4.3 gives the general overview of the

spin baths.

A nuclear spin bath is inherent to the host material of the defect and is usually determined

by the natural concentration of spinful isotopes of the elements constituting the crystal

lattice. For example, the diamond contains 98.9% of the 12C isotope with spin zero, and

1.1% of the 13C nuclei with spin-1/2. Therefore, the nuclear spin bath of the diamond is by
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far dominated by 13C nuclei. However, because carbon possesses naturally abundant spinless

12C isotope as well, one can isotopically purify the diamond host to obtain a virtually nuclear

spin-free environment.

But not every material is that lucky. For example, hexagonal boron nitride (hBN), a

promising 2D platform for quantum technologies, contains a near 100% concentration of

spinful isotopes of both nitrogen and boron, making the nuclear spin bath a dominating

source of decoherence in any regime.

The electron spin bath consists of the electron spin-possessing defects in the host mate-

rial or on its surface. These defects include defects of the same type as a central spin and

other defects. Usually, these defects are introduced during the growth of the material and

can be almost unavoidable as their presence is required to create the desired spin qubit. For

example, consider the negatively charged NV center of a diamond. To grow NV centers, one

needs to have a high enough concentration of nitrogen in the diamond, as well as introduce

some vacancies into the lattice structure. The vacancies migrate during the high-temperature

annealing and for NV centers upon meeting the nitrogen. But both vacancies and substitu-

tional nitrogen possess electron magnetic moment. The substitutional nitrogen is known as

the P1 center, and we will discuss this type of electron spin bath in more detail in Chapter

10.

The interactions between central qubit spin and the spin bath can be represented with

effective Hamiltonian, discussed in detail in the next section.

4.2.1 Effective Hamiltonian

The non relativistic electronic Hamiltonian of the system in the Born-Oppenheimer approx-

imation doesn’t include terms which depend on the spin degree of freedom. Yet precisely

these interactions give rise to all various and unique phenomena responsible for energy split-

ting of non-zero spin levels and spin dynamics. Interactions among spins can be inferred from
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Figure 4.3: Spin environment around the qubit. The picture shows the relative spatial scale
of the electron and nuclear spin baths on the example of the diamond with the electronic
defect concentration of a few parts per million.

the relativistic Dirac equation, and involve an infinite series of terms (see, for example[28]).

Unfortunately, for any realistic system it is impossible to diagonalize exactly the Hamil-

tonian, even if we limit the number of spin terms. It is easier to use an effective Hamiltonian,

which contains only spin-variables of a "fictious" electron spins Se and the nuclear spins In.

It describes a model system in a Hilbert space of electron and nuclear spins, while keeping

the correct energy splitting of the true Hamiltonian of the system.

Phenomenologically, the leading terms of spin interactions, mentioned above, can be

expressed as products of spin operators with external field and coupling constants (parame-

ters). All reference to the "true" many electron wavefunction, geometry, and other structural

parameters are implicitly contained in these coupling parameters.

As an example, we consider electron with spin-1 in an external magnetic field and in the

presence of the bath spins. In this system the spin Hamiltonian is given by:

Ĥ = µBBgS+ SDS+
∑
n

SAnIn +
∑
n

γn[1 + σn] BIn +
∑
i<j

IiJijIj +
∑
n

InPnIn, (4.1)
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Wwere S = (Ŝx, Ŝy, Ŝz) and I = (Îx, Îy, Îz) are central spin and bath spins operators re-

spectively, B = (Bx, By, Bz) is an external magnetic field, and all other terms are coupling

parameters. In the following discussion we will discuss how one can compute each parameter

of the spin Hamiltonian, focusing on the most relevant terms for this research.

Zeeman tensor

The magnetic field-electron interaction can be expressed as one term:

ĤZ = µBBgS, (4.2)

where µB is Bohr magneton, equal to a magnetic moment of an electron, and g is the

dimensionless tensor, describing the interactions between central spin and magnetic field,

The g tensor contains contribution from the spin-field interactions, and orbital momentum-

field interactions. The terms of g tensor can be written as:

grs = geδrs +∆gRMCδrs +∆gGC
rs +∆g

OZ/SOC
rs , (4.3)

where ge ≈ 2.002318 is the free electron value (dominating contribution), ∆gRMC is due to

the relativistic mass correction, the term ∆gGC
rs is a diamagnetic correction, and the fourth

term arises from orbital Zeeman and spin orbital interactions [29].

In the presence of only axial magnetic field Bz, the product ωe = µBgzzBz defines the

Larmor frequency ωi of the electron spin. The gyromagnetic ratio of the electron is equal to

µBgzz.
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Zero field splitting

We can express the electron-electron (for spin-1) interactions as one term, known as zero

field splitting, given by the product:

ĤZFS = SDS, (4.4)

where S is the effective electronic spin of the system. The tensor D completely describes

interactions between the electron spins. To the first order of perturbation theory, D is given

by spin dipole-dipole interactions, and at the second order spin-orbit coupling arises [30].

For higher electron spins one might need higher order operators, usually represented as a set

of Stevens operators (see for example [31]).

Hyperfine interaction

Interactions between effective electron spin and n-th bath spin can be expressed phenomeno-

logically as:

ĤHFI = SAnIn. (4.5)

In the case of electron bath spins, A tensor corresponds to only dipole-dipole interaction

(Eq. (4.8)). For the nuclear bath spins, A is known as hyperfine coupling. Let’s consider the

hyperfine tensor in more detail, which should be calculated for each nuclear spin. It consists

of three different components: isotropic (contact), anisotropic (dipolar), and spin-orbital

coupling parts:

A = Aiso +Adip +ASO, (4.6)

where first two parts are given by:

Aiso
ab = −δab

1

3S
µ0γeγnℏ2ns(Rn) (4.7)
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A
dipole
ab =

1

2S

µ0
4π
γeγnℏ2

∫
|r−Rn|δab − 3(r−Rn)a(r−Rn)b

|r−Rn|5
ns(r)dr (4.8)

where γe and γn are gyromagnetic ratios of the central spin and bath spin respectively, ns

is the spin density [32]. The third term arises from spin-orbital interactions.

Zeeman interaction

Similar to the electron spin, each of the bath spins interacts with the external magnetic field

as follows:

Ĥnz = γn[1 + σn]BIn (4.9)

where σN is a chemical shift tensor, which shows the local change in the magnetic field due to

the electronic structure [33]. We adopt the notation for nuclear spins; for electron spins the

same information is usually represented using the effective g-tensor (Eq. (4.2)). Chemical

shift is usually very small relative to the total Zeeman interaction, of the order of few parts

per million (ppm). Thus, for the purposes of this study it can be safely ignored.

J-coupling and dipolar coupling

The interaction between two bath spins i and j can be expressed by the following term:

Ĥnn = IiJijIj , (4.10)

where Jij will have two main components: dipolar coupling (for both electron and nuclear

spin baths) and J-coupling (nuclear spin bath only).

The direct dipolar coupling represents interactions of two bath spins as point dipoles and

can be computed as:

Ĥdd =
µ0
4π
γiγjℏ2

(
IiIj

r3ij
−

3(Ii · rij)(Ij · rij)
r5ij

)
. (4.11)
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J-coupling represents indirect interactions of nuclei through the electron cloud. These inter-

actions require two nuclei to be connected through a small number of chemical bonds and

thus decay rapidly with distance [34].

Quadrupole interaction

The nuclear spin Hamiltonian contains terms that describe the orientation dependence of

the electronic interactions of nuclei. Nuclei do not possess an electric dipole moment [34],

and electric multipoles of the nuclei are equal to zero starting from 2I (C(n) = 0 for n > 2I).

Therefore, for I = 1/2 no additional electronic interactions appear between nuclei and the

electronic field. But for any higher spins there are interactions of the quadrupoles order or

higher.

The quadrupole interactions with the electronic field are given by:

ĤQ = InPnIn =
eQ

6I(2I − 1)

∑
a,b∈x,y,z

Vab

[
3

2
(IaIb + IbIa)− δabI(I + 1)

]
, (4.12)

where Vab is the second derivative of the electrostatic potential at the nucleus, e is the

electronic charge and Q is the nuclear quadrupole moment.

4.2.2 Note on secular approximation and its correspondence to RWA

In the NMR community, one can often encounter the so-called "secular approximation": in

the presence of large magnetic fields along the z-axis, we can neglect all terms in the effective

spin-spin Hamiltonian except for the ones that commute with the Zeeman term (Ŝz,1Ŝz,2

type of interactions, where two operators correspond to different spins) or conserve the total

magnetization of the system (Ŝ+,1Ŝ−,2 + h.c. ). It turns out we have already encountered

this approximation and denoted it as the rotating wave approximation (RWA, see Section

2.2.2). To see that the two approximations are the same, consider the two spins interacting
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with a full dipole-dipole tensor:

Ĥ = ω1Ŝz,1 + ω2Ŝz,2 + S1AS2, (4.13)

where S1AS2 =
∑

i=x,y,z

∑
j=x,y,z Ŝi,1AijŜj,2 is a sum over all possible interactions.

Let’s move into the rotating frame, defined by the Zeeman term in the Hamiltonian:

Û = ei(ω1Ŝz,1+ω2Ŝz,2)t. The Hamiltonian in the interaction picture becomes:

ĤI(t) =
∑

i=x,y,z

∑
j=x,y,z

eiω1Ŝz,1Ŝi,1e
−iω1Ŝz,1Aije

iω2Ŝz,2Ŝj,2e
−iω2Ŝz,2 . (4.14)

Now we need to find which terms are slowly oscillating in this summation. Assuming ω1 ≈ ω2

we find that following terms survive:

S̃z,1(t)S̃z,2(t) = Ŝz,1Ŝz,2, (4.15)

S̃+,1(t)S̃−,2(t) = ei(ω1−ω2)tŜ+,1Ŝ−,2, (4.16)

S̃−,1(t)S̃+,2(t) = e−i(ω1−ω2)tŜ−,1Ŝ+,2. (4.17)

Here for clarity we define S̃a,i(t) = ei[ωiŜz,it]Ŝa,ie
−i[ωiŜz,it]. Every other term will oscillate

at the Larmor frequency of one of the spins or faster. For example:

S̃z,1(t)S̃+,2(t) = eiω2tŜz,1Ŝ+,2, (4.18)

S̃−,1(t)S̃z,2(t) = e−iω1tŜ−,1Ŝz,2, (4.19)

S̃+,1(t)S̃+,2(t) = ei(ω1+ω2)tŜ+,1Ŝ+,2, (4.20)

and so on. Using the RWA, we can neglect the fast oscillating terms, keeping only the terms

defined in the equations (4.15, 4.16, 4.17). If two spins have sufficiently different Larmor

frequencies, the terms in the equations (4.16) and (4.17) can be discarded as well.
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However, note that some nonsecular interactions cannot be discarded in the case of the

electron spin and nuclear spin in the intermediate magnetic field regimes. Specifically, if

hyperfine coupling A is of the same order of magnitude as the nuclear Larmor frequency

ωn, the S̃z(t)Ĩ+(t) = eiωntŜz Î+ and S̃z(t)Ĩ−(t) = e−iωntŜz Î− interactions will oscillate at a

comparable frequency as the strength of the hyperfine interaction; thus they cannot be safely

ignored. Indeed, the A⊥ =
√
A2
zx + A2

zy hyperfine interaction, also known as perpendicular

hyperfine interaction, is of particular interest as it allows the control of a nuclear spin state

with electron spin at ambient magnetic fields (see Section 11 for more details).

Overall, this note concludes the theoretical background necessary to understand the

following chapters of this thesis, describing the application of the first principles simulations

in probing the magnetic environment of spin qubits.
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CHAPTER 5

LET ME FIND MY HAMMER... PYCCE

"If the only tool you have is a hammer, it is tempting to treat everything as if it

were a nail." — Abraham Maslow

This chapter is adapted from the published work [4].

In this chapter we present PyCCE, an open-source Python library for simulating the dy-

namics of spin qubits in a spin bath, using the cluster-correlation expansion (CCE) method.

PyCCE includes modules to generate realistic spin baths, employing coupling parameters

computed from first principles with electronic structure codes, and enables the user to run

simulations with either the conventional or generalized CCE method. We illustrate three use

cases of the Python library: the calculation of the Hahn-echo coherence time of the nitrogen-

vacancy in diamond; the calculation of the coherence time of the basal divacancy in silicon

carbide at avoided crossings; and the calculation for magnetic field orientation-dependent

dynamics of a shallow donor in silicon.

The complete documentation, downloadable tutorials, and installation instructions are

available at https://pycce.readthedocs.io/en/latest/.

5.1 Introduction

In solid-state systems, the spin of electrons is one of the leading platforms for quantum

information applications [20, 24, 35]. Examples include but are not limited to quantum dot

spin qubits [36–39], shallow donors in Si [40–42], and localized spin defects in semiconductors

[4, 43, 44].

These systems share an important attribute: the time evolution of the spin qubit, at

least in part, is controlled by its magnetic environment, consisting of nuclear and other
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Figure 5.1: We present PyCCE - an open source Python library to simulate the dynamics
of a spin qubit interacting with a spin bath using the cluster-correlation expansion (CCE)
method.

electronic spins. This environment can hinder the applications of spin-based technologies by

imposing limits on the spin qubits’ coherence times [15] but can also advance applications

where nuclear spins may act as memory units in quantum networks [45, 46]. First principles

predictions of the spin bath dynamics in materials are critical to the design and realization

of solid-state spin technologies.

The cluster correlation expansion (CCE) method [47, 48] is one of the most widely used

approaches to simulate the quantum decoherence dynamics of spin qubits in a finite spin bath

[15]. The approach reproduces the correct dynamics for a variety of physical realizations

of spin qubits. For example, results of the CCE method show excellent agreement with

experiments for bismuth [49, 50] and phosphorous [51] donors in Si, the nitrogen-vacancy

(NV) center in diamond [52], and divacancies in 4H-SiC, both axial [3, 5] and basal [53].

The CCE method has also been used to predict properties of novel materials, such as 2D

platforms for spin qubits [54, 55], and to conduct a general screening of potential qubit

hosts over a wide range of materials [56]. However, software implementations of the CCE

method are not readily accessible and hinge on in-house developments, which lack openness

and transferability.

To overcome these challenges, we developed PyCCE - an open-source python-based library
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for carrying out CCE calculations. This module is the first public implementation of the CCE

code, available as an open-source package with high integration within the existing scientific

Python ecosystem. Here we describe the theoretical framework of the CCE method and its

implementation in the PyCCE library. We then highlight the application of the PyCCE module

to several physical systems and verify and validate our implementation with theoretical and

experimental data.

5.2 Theoretical framework

We begin by discussing the theoretical background of the model used in the CCE.

5.2.1 Hamiltonian of system

The Hamiltonian for the central spin in a spin bath includes the following terms:

Ĥ = ĤS + ĤSB + ĤB (5.1)

where ĤS is the Hamiltonian of the free central spin, ĤSB denotes interactions between

the central spin and a spin belonging to the bath, and ĤB describes intrinsic bath spin

interactions. These terms are written as:

ĤS = SDS+BγSS (5.2)

ĤSB =
∑
i

SAiIi (5.3)

ĤB =
∑
i

IiPiIi +BγiIi +
∑
i>j

IiJijIj (5.4)

where S = (Ŝx, Ŝy, Ŝz) are the components of spin operators of the central spin, and I =

(Îx, Îy, Îz) are the components of the bath spin operators. The following tensors describe
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the interactions:

• D (P) is the self-interaction tensor of the central spin (bath spin). For the electron

spin, the tensor corresponds to the zero-field splitting (ZFS) tensor. For nuclear spins,

the tensor corresponds to the quadrupole interactions tensor.

• γi is the magnetic field interaction tensor of the i-th spin describing the interaction

between the spin and the external magnetic field B. We assume that for the bath

spins, it is isotropic. This assumption is justified for both the nuclear spin bath and

the electron spin bath, which consists of light elements (s- and p-elements).

• A is the interaction tensor between central and bath spins. In the case of the nuclear

spin bath, it corresponds to the hyperfine couplings.

• J is the interaction tensor between bath spins.

5.2.2 Qubit coherence

Two coherence times are commonly measured to characterize the loss of a qubit’s coherence

- T1 and T2. T1 defines the timescale over which the qubit population is thermalized; T2

describes a purely quantum phenomenon - the loss of the phase of the qubit’s superposition

state.

In the pure dephasing regime (T1 >> T2), the decoherence of the central spin is com-

pletely determined by the decay of the off-diagonal element of the qubit’s density matrix.

Namely, if the qubit is initially prepared in the |ψ⟩ = 1√
2
(|0⟩ + eiϕ |1⟩) state, the coherence

function L(t) characterizes the loss of the relative phase of the |0⟩ and |1⟩ levels:

L(t) = ⟨1| ρ̂S(t) |0⟩
⟨1| ρ̂S(0) |0⟩

=
⟨σ̂−(t)⟩
⟨σ̂−(0)⟩

(5.5)

where ρ̂S(t) is the density matrix of the central spin, and |0⟩ and |1⟩ are qubit levels.
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In general, one could potentially obtain the qubit’s coherence function by directly solving

the Schrodinger equation of the total system and tracing out the bath degrees of freedom.

However, the complexity of such computations grows exponentially with the bath size, and

for any meaningful system (bath of several hundred spins), the problem is impossible to solve

computationally.

The core idea of the CCE approach is that the spin bath-induced decoherence can be

factorized into a set of irreducible contributions from the bath spin clusters. We can rewrite

the factorized coherence function as:

L(t) =
∏
C

L̃C(t) =
∏
i

L̃{i}(t)
∏
i,j

L̃{ij}(t)... (5.6)

where L̃{i}(t) is the contribution of the single bath spin i and L̃{ij}(t) is the irreducible

contribution of the spin pair i, j. The maximum size of the cluster included in the expansion

determines the order of the CCE approximation. For example, in the CCE2 approximation

only contributions up to spin pairs are included, in CCE3 only cluster contributions up to

triplets of bath spins are included, and so on. Each cluster contribution is defined recursively

as:

L̃C =
LC∏

C ′ L̃C ′⊂C

, (5.7)

where time dependence is implied; LC is the coherence function of the qubit, including only

interactions with the bath spins in a given cluster C, and L̃C ′ are contributions of subcluster

C ′ of C.

The first element of the cluster expansion L̃{0} = L{0} is the phase factor of the free

evolution of the central spin. The contribution of each single bath spin i is computed as:

L̃{i} =
L{i}
L̃{0}

. (5.8)
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Figure 5.2: CCE Formulations. (a) Conventional CCE, where the cluster Hamiltonian is
reduced to the sum of two effective Hamiltonians Ĥ(0) and Ĥ(1). (b) Generalized CCE,
where each cluster Hamiltonian includes all central spin levels.

Next, the contribution of spin pairs is computed as:

L̃{ij} =
L{ij}

L̃{0}L̃{i}L̃{j}
(5.9)

and so on.

The workload of this iterative evaluation of correlation functions grows polynomially

instead of exponentially as a function of the number of bath spins, hence computations for

thousands of bath spins are trivial.

Within the CCE formalism, one assumes that the bath-induced relaxation is significantly

slower than the dephasing, thus such relaxation is ignored. This approximation is justified

when the central spin energy splitting and the spin-bath interaction energies are substantially

different, which is usually the case for nuclear spin baths. However, several studies have

shown that the CCE method is also applicable to cases where the central electron spin

interacts with the electron spin bath [3], or even the resonant bath, where central spin flips

can occur [57].
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5.2.3 Conventional CCE

In the original formulation of the CCE method (Fig. 5.2a), the total Hamiltonian of the

system (Eq. 5.1) is reduced to the sum of two effective Hamiltonians, conditioned on the

qubit levels of the central spin:

Ĥ = |0⟩ ⟨0| ⊗ Ĥ(0) + |1⟩ ⟨1| ⊗ Ĥ(1) (5.10)

where Ĥ(α) is an effective Hamiltonian acting on the bath when the central qubit is in the

|α⟩ state (|α⟩ = |0⟩ , |1⟩ is one of the two eigenstates of the ĤS that are chosen as qubit

levels):

Ĥ(α) = Eα + ⟨α| ĤSB |α⟩+ ĤB + Ĥ
(α)
PT (5.11)

and Ĥ(α)
PT are higher order perturbations to the effective Hamiltonian Ĥ(α). Up to the second

order, we can write:

Ĥ
(α)
PT =

∑
i,j

∑
β ̸=α

(⟨α|S |β⟩AiIi)
(
⟨β|S |α⟩AjIj

)
Eα − Eβ

=
∑
i,j

IiTijIj . (5.12)

Here the summation is over all |β⟩ eigenstates of the central spin Hamiltonian ĤS .

For each cluster C, the Hamiltonian Ĥ
(α)
C is obtained by tracing out the degrees of

freedom of the bath spins, not included in the cluster:

Ĥ
(α)
C =

∑
i∈C

⟨α|S |α⟩AiIi +
∑
i∈C

IiPiIi +BγiIi+

∑
i,j∈C

Ii(Jij +Tij)Ij +
∑

i∈C, a/∈C
Ii(Jia +Tia)⟨Ia⟩

(5.13)

where ⟨Ia⟩ = Tr{ρ̂aIa} is an average value of each bath spin outside of a given cluster, and

ρa is the initial density matrix of the bath spin.

In most systems of interest, it is justified to assume that the state of each bath spin i with
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spin s,is purely random (ρ̂i = 1
2s+11 , where 1 is the identity). As a result, the spin operator

expectation values in Eq. (5.13) are nullified, ⟨Ia⟩ = 0. However, this approximation is not

always valid and may lead to incorrect results, as we discuss below.

Given an initial qubit state |ψ⟩ = 1√
2
(|0⟩ + eiϕ |1⟩) and an initial state of the bath

spin cluster C characterized by the density matrix ρ̂C , the coherence function of the qubit

interacting with the cluster C can be computed as:

LC(t) = Tr[Û
(0)
C (t)ρ̂C Û

(1)†
C (t)] (5.14)

where Û (α)
C (t) is the time propagator defined in terms of the effective Hamiltonian Ĥ(α)

C and

the number of decoupling pulses. For free induction decay (FID) the time propagators are

trivial:

Û
(0)
C = e−

i
ℏĤ

(0)
C t; Û

(1)
C = e−

i
ℏĤ

(1)
C t. (5.15)

Each applied π-pulse flips the state of the central spin and therefore changes the evolution

of the bath. For the Hahn-echo sequence (where a single π-pulse is applied halfway between

the initialization and the measurement of the qubit) we can write the propagators as:

Û (0) = e−
i
ℏĤ

(1)
C

t
2 e−

i
ℏĤ

(0)
C

t
2 (5.16)

Û (1) = e−
i
ℏĤ

(0)
C

t
2 e−

i
ℏĤ

(1)
C

t
2 (5.17)

For the generic decoupling sequence with N (even) decoupling pulses applied at t1, t2...tN ,

we write:

Û (α)(t) = e−
i
ℏĤ

(α)
C ∆tN e−

i
ℏĤ

(β)
C ∆tN−1 ...e−

i
ℏĤ

(α)
C ∆t1 (5.18)

Where |α⟩ = |0⟩ , |1⟩ and |β⟩ = |1⟩ , |0⟩, respectively, ∆tn = tn − tn−1 is the time difference

between consecutive pulses and t =
∑

i ti is the total evolution time. In sequences with odd

number of pulses N , the leftmost propagator is the exponent of Ĥ(β)
C . For further details,
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we refer the readers to the seminal papers on CCE [47, 48].

5.2.4 Generalized CCE (gCCE)

Instead of projecting the total Hamiltonian on the qubit levels, one may directly include the

central spin degrees of freedom to each clusters. This approach is particularly well-suited to

study the coherence of spin qubits at clock transitions [50, 53]. We refer to such formulation

as gCCE (Fig. 5.2b). In this case, we write the cluster Hamiltonian as:

ĤC = SDS+BγSS+
∑
i∈C

SAiIi +
∑
i∈C

IiPiIi +BγiIi+

∑
i<j∈C

IiJijIj +
∑
a/∈C

SAa⟨Ia⟩+
∑

i∈C, a/∈C
IiJia⟨Ia⟩.

(5.19)

The coherence function of the cluster LC(t) is computed as:

LC(t) = ⟨0| ÛC(t)ρ̂C+SÛ
†
C(t) |1⟩ , (5.20)

where ρ̂C+S = ρ̂C ⊗ ρ̂S is the combined initial density matrix of the bath spins’ cluster and

central spin.

Similar to the conventional CCE, we define the time propagator in terms of the number

of decoupling π-pulses and the cluster Hamiltonian (Eq. 5.19). The FID propagator is given

as:

ÛC(t) = e−
i
ℏĤCt. (5.21)

For an arbitrary set of decoupling pulses, we can write the propagator as follows:

ÛC(t) = T
[
e−

i
ℏĤCτe−

i
ℏ σ̂{x,y,z}

ϕ
2 e−

i
ℏĤCτ

]N
(5.22)

where σ̂{x,y,z} are the Pauli matrices of the qubit, τ is the delay between pulses, ϕ is the
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rotational angle, and N is the number of pulses. For Hahn-echo experiments with a π

rotation about the x axis, the propagator is given by:

ÛHE
C (t) = e−

i
ℏĤC

t
2 e−

i
ℏ σ̂x

π
2 e−

i
ℏĤC

t
2 . (5.23)

For further details, see Chapter 6 of this thesis or the reference [53].

5.2.5 Monte Carlo bath state sampling

To improve the convergence of the cluster expansion for some particularly challenging sys-

tems, we can directly sample the pure states of the bath to predict the random state of the

bath. Then, the coherence can be computed as:

L(t) =
∑
i

piLi(t) (5.24)

where Li(t) is the coherence function, computed for the pure bath state i, and pi is the

probability of such state (for the completely mixed bath state, all pi are equal).

5.2.6 Correlation Function

A cluster expansion similar to the one described above may be applied to the autocorrelation

of the Overhauser field upon the central spin. The autocorrelation in secular approximation

is given by:

CAA(t) =

〈∑
{I}

Azz Îz(t)
∑
{I}

Azz Îz(0)

〉
(5.25)

where the Îz(t) is the spin operator in the Heisenberg picture Îz(t) = Û†(t)ÎzÛ(t). Under

the CCE approximation, we can write the autocorrelation function as a sum of the spin
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cluster contributions:

CAA(t) =
∑
C

C̃AA, C (5.26)

where cluster contributions are defined recursively, in a fashion similar to coherence function

contributions:

C̃AA, C = CAA, C −
∑
C ′

C̃AA, C ′⊂C . (5.27)

The noise autocorrelation function for each cluster is computed using Eq. 5.25 for the bath

spins within the cluster. Further details are available in ref. [58, 59].

5.3 Code implementation

In the PyCCE library, we provide a convenient way to simulate the dynamics of the central

spin interacting with a realistic spin bath.

The general workflow of running simulations with PyCCE includes the following steps (Fig.

5.3):

• Generate the spin bath as an instance of BathArray class.

• Input the properties of the central spin to the instance of the Simulator class - a

central object used for CCE simulations.

• Calculate the desired properties using the Simulator object.

Generation of the spin bath. The BathCell class enables one to initialize the struc-

ture of the material, populate it with spins, and generate a large supercell. The procedure

assumes a random distribution of spins over the lattice positions of a given type (e.g., 13C

nuclear spins are distributed randomly over the lattice sites occupied by Carbon atoms),

which can be fixed by setting the seed of the random number generator. The supercell with

bath spins is stored in the BathArray format. The same object stores the properties of
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Figure 5.3: General workflow of the PyCCE module. Top to bottom: generate the spin bath;
determine the properties of the central and cluster composition; run CCE simulations.
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the bath spins (hyperfine couplings, quadrupole interactions, gyromagnetic ratios). Most

of the properties of the nuclear spins (e.g., gyromagnetic ratio, concentrations) are already

available in the PyCCE library using the EasySpin [31] database.

The BathCell supports an interface with the Atomic Simulations Environment (ASE)

package [60], a well-developed tool to initialize the structure of many solid-state materials.

Setting up the Simulator object. In this step, a user should provide properties of

the central spin, including zero-field splitting, magnetic field interaction tensor, and the

amplitude of the external magnetic field.

Next, one chooses the size of the "active" bath spins by imposing a cutoff radius, r_bath

(Fig. 5.4), defined as the maximum distance from the central spin to the bath spin to be

considered in the calculation.

The hyperfine couplings entering Eq. (5.1) are either:

• Approximated using the point dipole-dipole approximation as:

A = −γSγi
µ0ℏ2

4π|r⃗|5
[
3 · r⃗ ⊗ r⃗ − 1 · |r⃗|2

]
(5.28)

Where 1 is 3× 3 identity matrix, and the γi tensors are assumed to be isotropic.

• Computed using the spin density distribution of the central spin. The PyCCE package

supports input of the spin density of the central spin in the Gaussian cube format [61]

and can integrate it to obtain dipolar hyperfine couplings.

• Obtained from first-principles calculations using quantum chemistry or solid-state sim-

ulation packages. As of now, an interface with ORCA [62] and Quantum Espresso [63]

packages is provided in the PyCCE implementation.

• Set manually by user.

The hyperfine couplings are required for each bath spin within the "active" region.
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r_bath

r_dipole

Figure 5.4: Illustration of the parameters r_bath and r_dipole. r_bath defines maximum
allowed distance from the central spin to the bath spin, and r_dipole sets the maximum
distance at which two bath spins form an "edge".

The interaction tensors between two bath spins Jij are assumed from the point dipole-

dipole interaction or can be set by the user.

Finally, the clusters entering the cluster expansion are determined. We followed the

procedure of Ref. [5, 15] to obtain the clusters entering Eq. (5.6). We define a cutoff radius,

r_dipole, that sets the maximum distance at which two bath spins form an "edge" (Fig.

5.4). Bath spins i and j form a cluster of two if there is an edge between them (distance

dij < r_dipole). Bath spins i, j, and k form a cluster of three if enough edges are found

connecting them (e.g., there are two edges ij and jk) and so on. In general, we assume

that spins {i..n} form clusters if they form a connected graph. Imposing a spatial cutoff on

the cluster connectivity reduces the scaling from polynomial to almost linear, in the case of

sparse baths. Only clusters up to the size imposed by the order parameter (equal to the

CCE order) are included.

Running CCE simulations. Once all parameters of the Hamiltonian are set, the

Simulator object can be used to compute the coherence function of the central spin and the

autocorrelation function of the bath spin noise using both the conventional CCE and gCCE.

Full documentation is available online at [64].
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Figure 5.5: Convergence of the Hahn-echo coherence curve for NV– Center in diamond. (a)
Convergence with respect to the CCE order. Inset shows CCE1 (blue) and CCE2 (orange)
curves against the exact solution for the isolated nuclear spins. (b) Convergence with respect
to the size of the bath in nm. (c) Convergence with respect to the connectivity distance in
nm.

5.4 Showcasing capabilities

All scripts used to generate the data below, along with the reference data, are available at

the Qresp repository of this paper at https://paperstack.uchicago.edu/paperdetails

/613244e96381b275e8ec9928?server=https%3A%2F%2Fpaperstack.uchicago.edu.

5.4.1 NV Center in diamond

First, we use PyCCE to highlight the application of the CCE method to a well-known physical

system, the negatively charged nitrogen-vacancy (NV–) center in diamond. For this example,
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we compute hyperfine couplings using the point dipole approximation. In Figure 5.5 we

present the convergence of the ensemble-averaged decay of the Hahn-echo coherence function,

computed using the conventional CCE method. We averaged the coherence function over 100

different spatial realizations of nuclear spins to obtain an ensemble average. The calculations

take several seconds on one processor core for each spatial realization.

The coherence function has two distinct elements: the fast electron spin echo envelope

modulations (ESEEM) and the slow decay of the envelope. The calculations at the CCE1

level already reproduce the ESEEMs for short timescales and exactly follow the analytical

solutions for the bath of the isolated nuclear spins [5, 65] (inset of Fig. 5.5a, black):

Lexact(t) =
∏
i

1− 2ki sin
2 (w

(0)
i

t

4
) sin2 (w

(+1)
i

t

4
) (5.29)

where w(0)
i = wL and w(1) =

√
(wL + A||)

2 + A2
⊥ are conditioned Larmor frequencies and

ki =
A2
⊥

(wL+A||)2+A2
⊥

. Perpendicular and parallel hyperfine couplings are given as A2
⊥ =

A2
zx + A2

zy and A|| = Azz, and the free Larmor frequency is wL = γiBz for nuclear spin

i. The decay of the coherence function can be seen at the CCE2 level and higher orders of

CCE.

We find that the coherence time T2, obtained from the fit of the coherence function

envelope to the compressed exponent exp[−(t/T2)
n], is about 0.92 ms, in line with previously

reported theoretical predictions [52, 66]. Finally, we confirm that CCE calculations converge

at second order, size of the bath of ≈ 4 nm, and connectivity distance in the clusters of ≈ 0.6

nm, consistent with the supplementary information of ref. [5].

5.4.2 Basal VV in SiC

Next, we highlight the importance of the bath state sampling to converge the dynamics

of the localized spin defects at avoided crossings. As an example, we consider the basal
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Figure 5.6: Coherence function of the basal kh-divacancy in 4H-SiC at avoided crossing of
energy levels, computed with (LMC) or without (Lwithout MC) bath state sampling for free
induction decay ((a), (c)) and Hahn echo ((b), (d)) experiments at different CCE orders.

kh-divacancy in 4H-SiC. In this system, both nonzero axial D and transverse E zero-field

splitting are non-zero, leading to an anisotropic D tensor in Eq. (5.1). The presence of the

anisotropy in the D tensor allows for avoided crossing to emerge at zero applied magnetic

field. When operating the qubit at this avoided crossing, one may significantly prolong the

spin coherence.

We consider one random nuclear spin configuration and compute the coherence function

corresponding to the free induction decay (FID), and Hahn echo experiments, using the

gCCE method with and without Monte Carlo state sampling (Fig. 5.6a-d). We use ab initio

hyperfine couplings for the inner shell (at distances ≤ 1 nm from the defect), computed

with the GIPAW [67] module of the Quantum Espresso package [63]. We used a plane-wave

basis with a kinetic energy cutoff of 40 Ry and the Perdew-Burke-Ernzerhof (PBE) in DFT

calculations. We employed a point dipole approximation for the outer shell (distances ≥ 1

nm).

We find that the bath state sampling is crucial for the convergence of the coherence
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Figure 5.7: Coherence of the P donor in Si as a function of the magnetic field orientation,
where 0B ∥ [001], 55B ∥ [111] and 90B ∥ [110]. (a) The coherence at three representative
angles. Solid lines show the coherence computed with PyCCE, and points show experimental
data. (b) Computed coherence time T2 as a function of the magnetic field rotation about
[11̄1] axis for P shallow donor (blue) and for the hypothetical localized electron spin with
the same nuclear spin bath (orange) against experimental results (black). Experimental data
are taken from [68].

function for both free induction and Hahn-echo experiments. The coherence function is

well-converged at the second order for both cases. The decay of the coherence function is

highly dependent on the specific nuclear spin configuration, as discussed in Ref.[53]. The

calculations with the bath state sampling becomes ∼ m times more expensive, where m is

the number of states sampled.

5.4.3 Shallow P donor in Si

Finally, we use PyCCE to compute the coherence decay of a shallow donor in Si induced

by the nuclear spin bath. In this system, the contact Fermi terms dominate the hyperfine
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interactions. The contact hyperfine couplings for 29Si nuclear spins can be approximated

using the Kohn-Luttinger wave function as:

AF =
16π

9
γSγ29Siη[F1(r⃗) cos k0x+ F3(r⃗) cos k0y+

F5(r⃗) cos k0z]
2

(5.30)

where the envelope functions Fj are given as:

F1 =

exp

{[√
x2

(nb)2
+ y2+z2

(na)2

]}
√
π(na)2(nb)

. (5.31)

Here r⃗ = x⃗i + yj⃗ + zk⃗ is the position of the nuclear spin, k0 = 0.85 2π
aSi

, aSi = 0.543 nm

is the lattice parameter, n = 0.81 for a phosphorus impurity, η = 186 is the charge density

at Si lattice site, and a = 2.509 nm, b = 1.443 nm are characteristic lengths for hydrogenic

impurities in Si [69].

The dipolar interaction is assumed to be equal to the one of point dipole at distances

≥ na ≈ 2 nm and zero otherwise [51].

The computed coherence for different alignments of the applied magnetic field is shown

in Figure 5.7 along with the experimental results of Eisuke Abe et al. [68].

We find excellent agreement with the reported experiments as a function of the angle

of the magnetic field. It is interesting to note that for a localized electron spin, such as a

T-center [70], we predict the coherence time for naturally abundant Si to be more than twice

as that of the shallow donor (Fig. 5.7b).

5.5 Conclusion

In this work, we presented an open-source python library to perform CCE calculations of a

central spin interacting with a multitude of bath spins, including localized spin defects and
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shallow donors, as well as to perform CCE calculations for novel emerging platforms, such

as molecular spin qubits [71, 72].

We verified the implementation of the method using theoretical data from previous studies

and validated several of our results with experiments. In the future, we will extend the

framework to include an arbitrary number of central spins. Implementation of the so-called

"hybrid CCE" [15, 57] formulation, which allows one to study systems with the same type

of bath spins as central spin, is also underway.

The open-source nature of our module allows for broad collaborations within the scientific

community and will facilitate rapid advances in first principle predictions of the coherence

dynamics of the spin qubits.
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CHAPTER 6

SPIN QUBIT COHERENCE AT AVOIDED CROSSINGS

This chapter is adapted from the published work [2].

Optically addressable paramagnetic defects in wide-band-gap semiconductors are promis-

ing platforms for quantum communications and sensing. The presence of avoided crossings

between the electronic levels of these defects can substantially alter their quantum dynamics

and be both detrimental and beneficial for quantum information applications.

Here we present a joint theoretical and experimental study of the quantum dynamics of

paramagnetic defects interacting with a nuclear spin bath at avoided crossings. We find that

we can condition the clock transition of the divacancies in SiC on multiple adjacent nuclear

spins states. We suppress the effects of fluctuating charge impurities and demonstrate an

increased coherence time at clock transition, which is limited purely by magnetic noise.

Our results pave the way to designing single defect quantum devices operating at avoided

crossings.

6.1 Introduction

In search of solid-state qubits, electron spin defects in wide-band-gap semiconductors have

been extensively explored as robust quantum systems offering both long coherence times

[73] and optical read-out [74] capabilities for quantum information [75] and quantum sensing

[10] applications. In order to design optimal qubits, it is critical to understand and control

the interaction between the central electronic spin and the nuclear spin bath. The latter

determines, at least in part, the coherence time of qubits, as observed in many solid-state

color centers [5, 41, 76, 77], but it also offers a platform for robust multiqubit registers for

the development of quantum networks [3, 78–80].
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The description of the interaction between a central spin and the nuclear bath can be

particularly challenging when avoided crossings between energy levels of the central spin

occur. Avoided crossings give rise to regimes that can be both beneficial and deleterious to the

qubit’s coherence. For example, operating at the minimum of the spin transition frequency

can significantly increase the coherence time when clock transitions arise [40, 81, 82]. On

the other hand, spin ground state level anticrossings may lead to an undesired increase in

longitudinal relaxation rates [83, 84] of spin defects.

Here we investigate the adiabatic dynamics of a qubit interacting with nuclear baths at

clock transitions and near ground state level anti-crossings (GSLAC) both theoretically and

experimentally. Further, we suggest ways to design and optimize the electron-nuclear spin

interactions in clock-transition-based quantum devices.

We focus on neutral divacancies (VCVSi) in silicon carbide (SiC), which are promising

spin qubit candidates [4, 85–87]. In particular, the axial divacancy (Fig. 6.1b) is one of the

most commonly studied defect qubits in SiC [88, 89], with purely axial zero field splitting.

The basal divacancy (Fig. 6.1c), on the other hand, exhibits both an axial and transverse

crystal field splitting component, giving rise to clock transitions at zero magnetic field [82, 90].

We validate our predictions, obtained using cluster-correlation expansion (CCE) technique,

by carrying out Ramsey and Hahn-echo experiments on the basal divacancy, as well as by

comparing our theoretical results to previous measurements [5]. Using theory and experiment

we show that in the presence of strongly coupled nuclear spins, multiple clock transition

conditioned on the nuclear spin state may occur. Importantly, we identify the dominant

causes of decoherence at avoided crossings and clock transitions, and we discuss the nature

of the noise as a function of the magnetic field. Finally, we show experimentally that the

impact of the nuclear bath on the qubit dynamics can be isolated by employing a charge

depletion technique, which leads to an increase of spin coherence time of clock transition

qubits by suppressing electric noise.
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6.2 Spin defect Hamiltonian

We investigate the dynamics of a spin qubit by studying the evolution of the central spin

interacting with the nuclear spin bath. The Hamiltonian of a given system in an external

magnetic field can be written as a sum of the central spin Hamiltonian Ĥe, and nuclear

Zeeman splitting, hyperfine coupling, and nuclear dipolar coupling terms:

Ĥ = Ĥe −
∑
i

γn,iBz Îz,i +
∑
i

SAIi +
∑
i̸=j

IiPIj (6.1)

Here Bz is the magnetic field oriented along the z axis, γn,i is the gyromagnetic ratio of

the i-th nuclear spin, S = (Ŝx, Ŝy, Ŝz) and Ii = (Îx,i, Îy,i, Îz,i) denote electron and the i-th

nuclear spin operators respectively, Ai is the hyperfine coupling tensor of the i-th nuclear

spin, and Pij is the dipole-dipole coupling between spins i and j.

The electron Hamiltonian Ĥe includes the Zeeman interaction with the external mag-

netic field and a zero field splitting (ZFS) term with longitudinal (D) and transverse (E)

components:

Ĥe = −γeBzŜz +D

(
Ŝ2z − 1

3
S(S + 1)

)
+ E(Ŝ2x − Ŝ2y) (6.2)

6.2.1 Calculations of hyperfine coupling of nuclear spins

The inhomogeneous coherence time T ∗
2 is directly related to the hyperfine couplings. Under

weak magnetic fields, the nuclear spin flips can be induced by both the hyperfine coupling

and dipolar-dipolar interactions between nuclear spins [52]; hence accurate predictions of the

hyperfine parameters are necessary to correctly compute the Hahn-echo coherence time as

well.

We performed ab initio Density Functional Theory (DFT) calculations to predict hyper-

fine coupling constants for nuclear spins at distances up to 1 nm from the defect and we
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Figure 6.1: (a) Schematic representation of the Cluster-Correlation Expansion method used
in this work (denoted as gCCE). Each cluster includes the central spin levels (denoted as
|+⟩, |−⟩, and |0⟩ for spin-1 with nonzero longitudinal D and transverse E zero field splitting
(ZFS)). The interactions between clusters are treated at the mean field level (Ĥmf), using
Monte-Carlo sampling of bath states. (b) Schematic representation of the axial kk -divacancy.
(c) Schematic representation of the basal kh-divacancy.
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used the point dipole approximation for spins at larger distances. DFT calculations using

the PBE functional were carried out with the GIPAW code [67] using single-particle wave-

functions obtained with the Quantum Espresso code [63]. Wavefunctions are represented

on a plane-wave basis with a kinetic energy cutoff of 40 Ry. GIPAW pseudopotentials [91]

are used to model electron-ion interactions. Divancancies are modeled with 9 × 5 × 2 or-

thorhombic supercells containing 1438 atoms and the Brillouin zone is sampled with the Γ

point only.

We define a weakly coupled bath as a bath in which the nuclear spins do not change the

energy splitting of the defect. We impose a cutoff of the hyperfine couplings of Azz < 1

MHz present in the weakly coupled bath, which is of typical order of magnitude compared

to strongly coupled nuclear spins in NV center [92, 93]. The ensemble dynamics throughout

the text is shown for the weakly coupled bath.

6.3 Cluster-correlation expansion method for avoided crossings

The CCE method is one of the leading approaches for the simulation of quantum dynam-

ics of spin-qubits interacting with a multitude of bath spins [5, 15, 47, 55]. The method

approximates the off-diagonal elements of the qubit density matrix as a product of contribu-

tions from independent nuclear spin clusters. Recently, the CCE technique was successfully

applied to study clock transitions of bismuth spin qubits in silicon (Si:Bi) with an explicit

diagonalization of central spin energy levels within each cluster [49, 50].

In a similar fashion, in this work we adopt the generalized CCE formulation [94] to

compute both the population change and coherence of the central spin at avoided cross-

ings (gCCE, Fig. 6.1a). The generalized CCE is distinct from the "pseudospin" model

conventionally used in CCE calculations [5, 51, 55, 59] as it includes the full central spin

Hamiltonian in each cluster. In particular, here we compute elements of the density matrix

of the central spin ρab = ⟨a| ρ̂ |b⟩ as the product of cluster contributions, where a, b denote
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different spin states (e.g. ms = 1, 0,−1 states for spin 1 systems):

ρab = ρ̃
{0}
ab

∏
i

ρ̃
{i}
ab

∏
i,j

ρ̃
{ij}
ab ... (6.3)

Where {0} denotes a cluster consisting of a free central spin, {i} a cluster including the

central spin and nuclear spin i, and so on. The maximum size of the cluster in Eq. (6.3)

defines the order of the approximation. For example, at first order (gCCE1), only isolated

nuclear spins (ρ{i}) are included in the expansion. At second order (gCCE2), contributions

from pairs of nuclear spins (ρ{i,j}) are added, etc.

We note that at clock transitions previously studied in the Si:Bi system [50], the large

splitting at avoided crossings induced by the interaction between electron spin and Bi nuclear

spin leads to a pure dephasing regime of the qubit decoherence. S. J. Balian et al established

that in such systems the inhomogeneous magnetic noise can be treated macroscopically.

Instead, for qubits with small energy splittings at zero applied magnetic field, we found that

a careful microscopic treatment of Overhauser fields is required for each spatial configuration

of nuclear spins, consistent with the conclusion of recent work by G.-L. Zhang, et al [95] (see

Section 6.5.2).

Therefore, we performed calculations with randomly sampled pure states of the spin bath,

and for each pure state we include the mean-field effect of all the nuclear spins outside a

chosen cluster Ĥmf (Fig. 6.1a). Such treatment also allows for different energy splittings of

spins within a cluster, improving the numerical convergence of cluster dynamic simulations

[57].

6.3.1 Calculation of cluster contributions in the gCCE

The cluster contributions are defined recursively:
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ρ̃
{C}
ab =

⟨a| ρ̂C(t) |b⟩∏
C ′ ρ̃

{C ′⊂C}
ab

(6.4)

Where ρC(t) is the density matrix of the cluster C, the superscript {C ′} indicates all

sub-clusters of C, including the free central spin sub-cluster {0}. The density matrix ρC(t)

is computed using the time ordered propagator:

ÛC(t) = T
[
e−i

∫ t
0 Ĥ(τ)dτ

]
(6.5)

where the T is the time ordering operator, and Ĥ(τ) is the time dependent Hamiltonian,

which includes only the interactions within a given cluster.

In order to evaluate the density matrix ρC(t) in equation (6.4) we compute the evolution

of the initial density matrix of a given cluster as:

ρ̂C(t) = ÛC ρ̂C(0)Û
†
C (6.6)

Using time ordered propagator ÛC (6.5). The Hamiltonian used to model Ramsey ex-

periments does not depend on time Ĥ(τ) = ĤC , and the propagator is trivial:
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ÛC(t) = e−iĤCt (6.7)

The Hamiltonian ĤC is equal to the system Hamiltonian (6.1), which contains only the

central spin and a given cluster of nuclear spins:

ĤC = Ĥe +
∑
i⊂C

SAIi −
∑
i⊂C

γnBz Îz,i +
∑

i ̸=j⊂C

IiPIj (6.8)

Under the dynamical decoupling to the qubit, by assuming ideal instantaneous control

pulses, we can write the propagator as follows:

ÛC(t) = T
[
e−iĤCτe−iσ{x,y,z}

ϕ
2 e−iĤCτ

]N
(6.9)

where σ{x,y,z} is one of the Pauli matrices (depending on the type of the pulse), spanned

by two qubit levels, τ is the delay between pulses, ϕ is the angle of rotation (equal to π

for CPMG, XY4 sequences [96]; it may be varied to represent more complicated schemes

[97]) and N is number of pulses. For example, the propagator used to model Hahn-echo

experiments with a π rotation about the x axis is defined as follows:

ÛHE
C (t) = e−iĤCτe−iσx

π
2 e−iĤCτ (6.10)

The Pauli matricies for qubit levels |0⟩ and |1⟩ are defined as:

σx = ( |0⟩ ⟨1|+ |1⟩ ⟨0|) (6.11)

σy = i( |1⟩ ⟨0| − |0⟩ ⟨1|) (6.12)

σz = ( |0⟩ ⟨0| − |1⟩ ⟨1|) (6.13)
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When using Monte-Carlo sampling of the bath states, we perform the CCE calculations

for each pure bath state separately. In the pure bath state, each nucleus is initialized in

the spin up or spin down state, and in the mixed state each nuclear spin has a classical

probability of being in one of the two states. We define the density matrix elements of the

central spin as follows:

ρ̂ab(t) =
∑
B

pJ ρ̂
J
ab(t) (6.14)

where the elements of the density matrix ρ̂ab are written as a summation over pure bath

states J , with elements ρ̂Jab and probability pJ . In the case of a completely randomized bath

(the density matrix of each nuclear spin is equal to I/2), the probability pJ is the same for

all pure bath states. At the typical temperatures of the experiment (≥ 4 K) the nuclear

bath can be considered completely randomized.

The procedure used to evaluate the density matrix elements is the following. First, we

generate a set of random pure bath states. For each bath state we perform CCE calculations

to obtain the electron spin density matrix. Finally, we compute the density matrix elements

for the mixed bath state from equation (6.14), and verify the convergence of density matrix

elements ρab(t) with respect to the number of generated bath states (see Supplementary

Information).

We add the mean field effect of the bath spins outside a given cluster, by adding the Ĥmf

term into the cluster Hamiltonian (6.8). The mean field term is defined as:

Ĥmf =
∑
i ̸⊂C

Azz⟨Iz,i⟩Ŝz +
∑
j⊂C

Pzz⟨Iz,i⟩Îz,j

 (6.15)

where ⟨Iz,i⟩ = ±1/2, is the projection of the nuclear spin in the z direction. The sign

depends on the initial state of the nuclei i in the given random bath state.

For a specific bath state at the given time step the contribution of some clusters can be
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Figure 6.3: The convergence of the off-diagonal element ρ+0 of the density matrix in Hahn-
echo measurement of kh-VCVSi as a function of the number of random bath states (NBstates).

very close to 0, leading to the numerically unstable value of the density matrix elements.

We identify such points when the elements of the density matrix are higher than one, and

remove them from computing the average density matrix at the given time.

The off-diagonal element of density matrix of the basal divacancy converges quickly with

the number of random bath states (Fig. 6.3).

At the same time, the diagonal elements are predicted with significant amount of noise

(Fig. 6.4). The noise in computed diagonal elements due to the random states is more

significant than the effect of other parameters. Therefore, we consider the changes in the

population on the qualitative level, while we use off-diagonal elements for quantitative pre-

dictions of the entanglement with nuclear bath.

In the presence of the strongly coupled nuclear spins at the nonzero magnetic field, the

results converge only when the exact averaging over the states of the strongly coupled spin is

followed. In such systems, the modified sampling procedure can be implemented. For each

state of the strongly coupled nuclear spins, we sample the same number of random bath

states to obtain a density matrix element. The resulting matrix element for the randomized
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Figure 6.4: The convergence of diagonal elements ρ−1−1 and ρ11 of the density matrix of
kh-VCVSi in Hahn-echo measurement as a function of the number of random bath states
(NBstates). Calculations are performed for 5 random nuclear spin configurations at zero
magnetic field. Grey dashed lines correspond to the ±10% range. ρ00 = 0 for all calculations.

bath is an average of the elements, computed for each pure state of strongly coupled nuclear

spins.

Computing the diagonal elements of the density matrix we renormalize the changing

diagonal elements of the density matrix for each time step, to ensure that the total population

is equal to 1.

6.4 Decoherence at ground state level anticrossings

We start by investigating the dynamics of the axial kk -VCVSi defect in 4H-SiC near its

GSLAC. The measured ensemble-averaged Hahn-echo coherence times (T2) of this defect

reaches 1.3 ms in samples with natural isotopic concentration [5]. Due to its C3v symmetry,

the ZFS entering (6.2) has only a longitudinal component D = 1.305 GHz [98], and the qubit

levels may be chosen as the |−1z⟩ and |0z⟩ eigenstates of Sz, where z is the spin quantization

axis.

The coherence time of the kk -VCVSi divacancy was successfully predicted with the con-
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ventional CCE for a wide range of magnetic fields, and the homo-nuclear pair-wise spin flips

were found to be the main source of decoherence at strong fields [5]. However, a signifi-

cant decrease in the coherence time was observed in experiments when the magnetic field

approaches ∼ 45 mT; such a decrease is not captured by conventional CCE calculations

with a "pseudospin" model (Fig. 6.5a), suggesting a decoherence mechanism beyond pure

dephasing.

We performed gCCE calculations with Monte Carlo sampling of bath states (Fig. 6.5d)

and we correctly obtained a local minimum in T2(B) for Bz = 46.6 mT, while reproducing the

results of conventional CCE calculations for other values of Bz. We note that while previous

CCE results [5] were obtained using a point dipole approximation, here we used accurate

hyperfine couplings predicted by ab initio calculations (see Section 6.2.1). This difference

in hyperfine couplings accounts for the small discrepancy between CCE and gCCE results

observed at small fields.

The origin of the minimum in T2(B) can be understood by analyzing the populations of

different spin levels (Fig. 6.5c). For most values of B, the population of the electron spin

levels is constant. However, there are values of B for which the energy difference between the

|1⟩ and |0⟩ levels is of the same order of magnitude as the hyperfine interaction with nuclear

spins. We note that when the energy splitting falls below ∼ 100 MHz, significant deviations

from pure dephasing occur (Fig. 6.5b). In this case, the electron spin experiences large pop-

ulation fluctuations which lead to a significant decrease in coherence time near the GSLAC.

Therefore, we conclude that at a GSLAC, the longitudinal relaxation process substantially

contributes to decreasing the Hahn-echo coherence time, as observed experimentally.

6.5 Decoherence at clock transitions

As mentioned earlier, the basal divacancy kh-VCVSi exhibits a clock transition at zero mag-

netic field, which arises from ZFS interactions, unlike the one in the Bi:Si donor qubits
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Figure 6.5: Ensemble Hahn-echo coherence of the axial kk -divacancy in 4H-SiC.(a) Coherence
time T2 (blue dots) as a function of the magnetic field Bz. The experimental results (red dots)
and conventional CCE predictions (black dots) are from [5]. Grey shading denotes the range
of T2 shown in (b). (b) Experimental (red dots) and predicted (blue dots) coherence time
T2 as a function of energy splitting between qubit levels. Black line shows pure dephasing
results. (c) The oscillations in the ratio of the diagonal elements of the density matrix of
the divacancy as a function of time for various values of the magnetic field. The dashed
lines show the ±2% range. (d) The off-diagonal elements of the density matrix for different
magnetic fields computed using the gCCE method with Monte-Carlo sampling of the bath
states (color) and using the conventional CCE (black).
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studied in Ref.[49, 59]. kh-VCVSi defect has C1h symmetry, leading to a nonzero transverse

component of the ZFS: E = 18.4 MHz [90]. Combined with a strong longitudinal splitting

(D = 1.334 GHz), the ZFS tensor leads to an avoided crossing of electron spin levels at zero

magnetic field from which a clock transition emerges. The qubit levels at the clock transition

correspond to |+⟩ = 1√
2
(|1z⟩ + |−1z⟩) and |0⟩ = |0z⟩. The frequency of clock transitions is

insensitive to magnetic fields to first order, thus increasing protection from the nuclear bath

induced decoherence [81].

6.5.1 Experimental Measurements of the kh-VCVSi coherence properties

Our 4H-SiC sample consists of a 20 µm high-purity i-type SiC layer epitaxially grown on

a 4◦ off-axis miscut of the Si face of a high-purity semi-insulating SiC substrate (serial

number A3177-14, Norstel AB). Neutral divacancies are uniformly produced throughout the

epitaxial i-type 4H-SiC by electron irradiation with 2-MeV electrons at a dose of 3 × 1012

e/cm2 followed by annealing at 850 ◦C for 30 min in Ar. A coplanar capacitor structure with

a 10 µm gap width and a wire with 10 µm width made of Ti/Au are then patterned on the

sample surface using electron beam lithography. Samples are cooled to 5 K in a closed-cycle

cryostat (Cryostation s100, Montana Instruments).

The confocal microscope consists of a 905 nm excitation laser (QFLD-905-200S, QPho-

tonics) for off-resonant spin initialization, as well as a narrow-line tunable laser (DL pro,

TOPTICA Photonics) for resonant spin readout. We focus these excitation beams through

a microscope objective (LCPLN100XIR, Olympus). We detect the filtered optical signal

with >80% quantum efficiency using a low-jitter, low-dark count superconducting nanowire

single-photon detector (SNSPD; Opus One, Quantum Opus). Electrical pulses from the

SNSPD are counted using a data acquisition module (PCI-6259, National Instruments).

We drive the spin transition |0⟩ ↔ |+⟩ using signal generators (SG396, Stanford Research

Systems) modulated by an arbitrary waveform generator (HDAWG8, Zurich Instruments).

77



−50 −25 0 25 50
B μz ( T)

0

200

400

600

T
μ

2*
 (

s)

gCCE Exp.

−50 0 50
B μz ( T)

0

50

100

150

200

T
im

e
 (

s)
μ

−50 0 50
B μz ( T)

−0.2 0.2

Re ρ[ ]+0

−50 0 50
B μz ( T)

0

50

100

150

Fr
e
q
u
e
n
cy

 (
kH

z)

−50 0 50
B μz ( T)

0.0 0.7

Intensity

0.0 0.4

Intensity

−40 0 40
B μz ( T)

0

100

200

300

T
im

e
 (

s)
μ

−40 0 40
B μz ( T)

−0.3 0.3

Re ρ[ ]+0

−40 0 40
B μz ( T)

0

50

100

150

Fr
e
q
u
e
n
cy

 (
kH

z)

−40 0 40
B μz ( T)

0.0 0.5

Intensity

0.0 0.3

Intensity

0 100 200 300
Time ( s)μ

−0.5

0.0

0.5

R
e
ρ[

]
+

0

gCCE Exp.

−50 −25 0 25 50
B μz ( T)

0

50

100

150
T

μ
2*

 (
s)

gCCE Exp.

0 200 400 600
Time ( s)μ

−0.5

0.0

0.5

R
e
ρ[

]
+

0

gCCE 0 V 13 V

−40 0 40
B μz ( T)

0

200

400

T
im

e
 (

s)
μ

−40 0 40
B μz ( T)

−0.4 0.4

Re ρ[ ]+0

Experiment gCCE

VVA

VVB

VVC

−40 0 40
B μz ( T)

0

50

100

150

Fr
e
q
u
e
n
cy

 (
kH

z)
−40 0 40

B μz ( T)

0.0 0.5

Intensity

0.0 0.3

Intensity

Experiment gCCE(a) (b)

(c) (d)

(e) (f)

(g)

(h)

(i)

(j)

VVA

VVA

VVB

VVB

Figure 6.6: Ramsey interferometry for three experimental kh-VCVSi systems. (a-f) Ramsey
precession and frequency spectrum for a defect with only weakly coupled nuclear spins (VVA,
a, b), with one (VVB, c, d), and with three strongly coupled nuclear spins (VVC, e, f). For
each defect we show theoretical predictions and experimental results. White dashed lines
show the positions of the hyperbolae (see Eq. 6.16). (g) Measured Ramsey precession of
VVA at zero field with (black) or without (red) charge depletion (see text), compared to
the theoretical prediction (blue). The shaded area corresponds to the theoretically predicted
decay. (h, j) Distribution of T ∗

2 for VVA (h) and VVB (j) as a function of the magnetic
field (Bz). Shaded area in (j) shows the error of the fit. (i) Measured Ramsey precession
of VVB at weak applied magnetic field compared to the theoretical prediction. Error bars
correspond to 2SD.
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The output of the signal generator is routed to the on-chip wire, which produces ac magnetic

fields. Vector control of the magnetic field is obtained using a three-axis electromagnet

outside the cryostat.

6.5.2 Convergence of the gCCE calculations at avoided crossings with respect

to cluster size

We applied the gCCE method with and without Monte Carlo bath state sampling to reveal

the qubit dynamics at clock transition of the basal divacancy, observed in the Ramsey and

Hahn-echo experiments. Figure 6.7 shows the time evolution of the off-diagonal element of

the density matrix of the qubit for one random spatial configuration of nuclear spins.

We emphasize that considering mean-field effects of nuclear interactions is crucial in order

to obtain the correct dynamics of the coherent state in the system studied here. The results

without mean-field corrections (Fig. 6.7 on the left) may significantly underestimate the

coherence on longer timescales, and high order corrections may lead to divergence of the

results.

We found that the decay of the observed central spin Ramsey envelope can be accu-

rately described by performing calculations at the gCCE1 level with Monte Carlo bath state

sampling (Fig. 6.7a). Since gCCE1 simulations do not explicitly include nuclear-nuclear

interactions, our results suggest that in the Ramsey experiment the dominant decoherence

mechanism is the static Overhauser field generated by nuclear spins, in agreement with Ref.

[95].

On the other hand, we found that for most configurations, gCCE2 is necessary and

sufficient to converge the value of the Hahn-echo coherence (Fig. 6.7b) time, confirming

the significant contribution of nuclear-nuclear interactions. This result differs from that of

calculations for Si:Bi [50] where convergence is achieved only with the inclusion of 3-spin

clusters. These differences suggest that accounting for the Overhauser field at microscopic
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level, as proposed in our work, may effectively decreases the order necessary to converge the

calculations presented in Ref. [50]; however further in-depth study is necessary to reach a

definitive conclusion.

Finally, we note that we observed the convergence of coherence times at avoided crossings

at the gCCE2 level even for more complicated CPMG sequences (Fig. 6.8), with number of

decoupling pulses 2 ≤ N ≥ 8. Higher number of pulses requires the inclusion of higher order

cluster contributions. The coherence time TDD
2 (Fig, 6.2) scales sublinearly in the range of

considered number of pulses.

6.5.3 Impact of nuclear spin coupling

In order to understand how the coupling strength between the central spin and the nuclear

spins affects clock transitions, we experimentally investigated three different single kh-VCVSi

divacancy qubits (see Section 6.5.1 for the experimental procedure). They are labeled VVA,

VVB, and VVC, and they represent configurations with weakly (VVA) and strongly in-

teracting (VVB and VVC) nuclear spins. We obtained theoretical configurations directly

comparable with the experimental ones by generating a set of random nuclear spin config-

urations in the SiC lattice with the same number of strongly interacting nuclear spins as

observed in the measured Ramsey fringes. Out of this set, we then selected the configura-

tions with a computed value of T ∗
2 at Bz = 50 µT similar to the measured one (see Section
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6.8 for details).

We first analyze the VVA configuration, which contains only weakly coupled nuclear

spins. Its frequency spectrum, obtained as a Fourier transform of Ramsey fringe oscillations,

can be simply represented by one hyperbola (Fig. 6.6a, b). In the absence of a nuclear bath,

the frequency of the clock transition is given by:

ω − ω0 =
√
γ2eB

2
z + E2 (6.16)

We obtain good agreement between theoretical predictions and the measured Ramsey

fringes at small fields, but in the zero field regime the experimentally observed decoherence

is significantly faster (Fig. 6.6h). We found that this apparent discrepancy is due to the

electric noise affecting the qubit state, as we explain below.

When operated near a clock transition, the basal divacancy spin becomes first-order insen-

sitive to magnetic fluctuations. However, a first-order sensitivity to electric field fluctuations

emerges, due to the linear dependence of the ZFS tensor components on the local electric

field [99]. Therefore, the electron spin dephasing time becomes limited by the electric field

noise [3, 82, 99]. In SiC divacancies, the electric noise is primarily caused by charge state

fluctuations of photoactive impurities, which may undergo charge state transitions under

optical excitation [100, 101], leading to a variation of local electric fields.

In our experiments, we used charge depletion [90, 100] to deactivate photoactive im-

purities within the optical excitation region, thus substantially reducing the electric field

contributions to the ground-state spin dephasing. We applied 13 V across a lithographically

patterned capacitor with a 10 µm gap width. The applied electric field acting on a divacancy

located between the capacitor plates ionizes the undesired charge carriers and removes them

from photoactive impurities in the proximity of the divacancy. This technique allowed us to

isolate the contributions of the magnetic field noise near the clock transition (Fig. 6.6g) and

to perform a meaningful comparison with our theoretical model.
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We found that under charge depleted conditions, the measured coherence time is sub-

stantially increased and the experimentally observed Ramsey precession at zero field agrees

well with the theoretical prediction of the gCCE. Interestingly, in the presence of a weak

magnetic field, an agreement between theory and experiment is obtained without applying

any charge depletion, indicating that the decoherence rate in this case is not limited by

electric noise.

We now turn to lattice configurations with strongly coupled nuclear spins. We first con-

sider the defect labeled VVB, for which we observe a splitting in the frequency spectrum

due to the presence of one strongly coupled nuclear spin (Fig. 6.6c, d). Each of the hy-

perbolae shown in the figure corresponds to the oscillation frequency of Ramsey fringes of

the divacancy, coupled to either the spin-up or spin-down nuclear state. The minimum of

each hyperbola occurs when the magnetic field is equal to the hyperfine field of the strongly

coupled nuclear spin,
∣∣∣Aiz
2γe

∣∣∣ = |Bz| where Aiz =
√
A2
xz + A2

yz + A2
zz [90]. By solving this

equation, we obtain the hyperfine parameter of the strongly coupled nuclear spin in VVB:

Aiz ≈ 0.6 MHz.

In Fig. 6.6c, d we compare with experiments our theoretical results for a nuclear configu-

ration for which the computed Aiz is 0.75 MHz. We find an excellent agreement for the time

evolution and the frequency spectrum. We note that due to the presence of the strongly

coupled spin, the Ramsey precession exhibits a fast and a slow decay mode (Fig. 6.6i),

and the full dynamics of the decoherence process may not be described by a single T ∗
2 (Fig.

6.6j). However, by initializing the strongly coupled nuclear spin so that it is antiparallel to

the external magnetic field, one can eliminate the fast decay mode, and, together with the

charge depletion strategy outlined above, one may achieve a substantial increase (by a factor

of 5) in the coherence time (see Section 6.8).

In the presence of several strongly coupled nuclear spins, further splitting of the frequency
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spectrum may occur. In this case, the minimum of each hyperbola is located at:

Bz =
∑

strong
±Aiz

2γe
(6.17)

The measured frequency spectrum of the defect labeled VVC contains six separate hyperbo-

lae, suggesting the presence of three strongly coupled nuclear spins with two of them having

similar hyperfine parameters (Fig. 6.6e, f). We identify one nuclear spin with Aiz ≈ 1.7

MHz and two nuclear spins with Aiz ≈ 0.6 MHz.

Hence, we compare theory and experiment using calculations for a nuclear configuration

which contains 3 strongly coupled nuclear spins with similar values of the hyperfine constants:

Aiz = 1.92, 0.65, 0.49 MHz. We obtain a good agreement in both the time and frequency

domains. However, due to the complexity of the dynamics, a simple exponential decay cannot

reliably characterize the decoherence time of VVC; nevertheless the decoherence occurs on

a timescale of 200-300 µs, both in theory and experiment.

Furthermore, we carried out a study of the Hahn-echo decoherence time for the VVA

and VVB defects (Fig. 6.9a, b) and again found excellent agreement between experimental

values and theoretical predictions. In VVB, the presence of the strongly coupled nuclear

spin leads to a broadening of the coherence time peak compared to VVA, and to a decrease

in the maximum of T2 (0.930(14) ms for VVB vs. 1.17(4) ms for VVA). We note that the

measured and computed zero-field Hahn-echo coherence times agree even without applying

any charge depletion to the sample, suggesting that the electric noise has a minor impact on

T2.

6.6 Nature of nuclear noise in solid-state qubits

Having validated the predictions of the gCCE with several experiments, we can now analyze

the nature of the nuclear noise in the decoherence processes of the kh-VCVSi.
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We computed the coherence time of the kh-VCVSi at zero field (0 T), where a clock

transition occurs, and at Bz = 0.1 T where we expect the basal and axial divacancies to

exhibit similar coherence properties. We considered eigenstates of Ŝz as qubit levels at 0.1

T. We find that at both zero and strong magnetic fields, the Ramsey decay is limited by

static thermal noise arising from the entanglement of the qubit with pure states of the bath,

which remain unchanged in time [15]:

ρ̂(0)⊗
∑
B

pB |B⟩ ⟨B| →
∑
B

pB ρ̂B(t)⊗ |B⟩ ⟨B| (6.18)

Indeed our calculations of T ∗
2 for the kh-VCVSi in the weakly-coupled bath (Fig. 6.10a,

b) show that the inhomogeneous coherence time depends on the hyperfine parameters only

through the average bath coupling (
√∑

iA
2
iz), as expected in the case of static thermal

noise. [102].

The nature of noise is different in Hahn-echo experiments, where the π-pulse removes the

static part of the noise dominating the Ramsey decay, and T2 depends only on the dynamical

fluctuations of the magnetic field due to nuclear spins flips [15]. If the flips are completely

random, the decay rates originate primarily from the accumulation of random phases due

to dynamical fluctuations; in this case the noise is by definition classical and the variance of

the noise distribution is given by
∑

iA
2
iz [103]. Therefore we expect the coherence time to

vary linearly as a function of
√∑

iA
2
iz in systems where the noise is classical[104]. On the

other hand, when the back action of the central spin is dominant (i.e. the dynamics of the

nuclear bath is strongly influenced by the electron spin state [15]), the coherence dynamics

deviates from that predicted using classical approximations [105]. Fig. 6.10c shows T2 of

kk -VCVSi as a function of
√∑

iA
2
iz in the zero and strong field regimes. At zero field, T2

varies as
√∑

iA
2
iz, with more than an order of magnitude difference in

√∑
iA

2
iz between

the different configurations. This dependence suggests a stochastic nature of the noise at

clock transitions and is consistent with the results reported for bismuth qubits in silicon [59].
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Figure 6.10: Single defect coherence times T ∗
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At strong fields, T2 is instead independent on the average coupling to the bath, consistent

with the quantum nature of the noise, expected in this regime. These results show that the

noise affecting Hahn-echo experiments is different at clock transitions and in the strong field

regime, and the transition from classical to quantum noise may be tuned by simply varying

the applied magnetic field.

We note that the differences in the nature of the noise is not sufficient to explain why

the average value of T2 at the clock transition of the basal divacancy is similar to the one at

strong field (1.15 ms vs 1.4 ms). This similarity arises from the combination of two competing

effects: strong electron spin back-action, leading in principle to a reduction in coherence

time, and the Zeeman splitting of nuclear spins, having instead the opposite effect. We can

isolate the effect of the electron spin’s strong back-action on coherence time, by considering

a hypothetical kh-VCVSi with E = 0 MHz at zero magnetic field (Fig. 6.10c, 0 T, no E). We

found that the T2 of this system is independent from
√∑

iA
2
iz, and the ensemble average

T2 is 0.2 ms, significantly smaller than the one obtained for the clock transition, confirming

that the electron back-action is indeed responsible for an increase in the decoherence rate.

At strong magnetic field, the Zeeman splitting of the nuclear spins is instead responsible

for a decrease in decoherence rates. The splitting can be larger than both the interaction

strength between nuclear spins and the hyperfine coupling, leading to the suppression of spin

non-conserving flips [52]. Only the secular pairwise flip-flops of nuclear spins with the same

gyromagnetic ratio (↑↓↔↓↑) are possible in this regime [5, 106], thus greatly reducing the

number of possible spin flips and decreasing the decoherence rate. (Fig. 6.5b).

6.7 Engineering qubit protection at a clock transition

It is interesting to analyze in detail the effect of the magnitude of the transverse component

of the ZFS on coherence protection. In order to do so, we investigated how coherence times

vary as a function of a hypothetical change in E for the kh-VCVSi, within a weakly coupled
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nuclear bath (Fig. 6.11(a)). We find that the ensemble averaged coherence time scales

sublinearly as a function of the transverse ZFS (T2 ≈ 0.34E0.43, T ∗
2 ≈ 0.03E0.61; see Section

6.8 for the distribution of single defect coherence times). Our calculations show that defects

with large transverse ZFS will exhibit substantially higher protection from magnetic noise.

In particular, we predict the coherence time of the hk -VCVSi basal divacancy. hk -VCVSi

has significantly higher transverse ZFS than kh-VCVSi (E = 82.0 MHz), and similar longi-

tudinal ZFS (D = 1.222 GHz) [98]. The total distribution of the T2 and T ∗
2 as a function

of the magnetic field for different spatial configurations of the weakly coupled nuclear bath

is shown in Fig. 6.11(b, c) for both basal defects. We can see that there is a significant

variability in the value of the coherence time at B = 0. The increase in the transverse ZFS

leads both to a significant increase in the maximum value of the coherence time and to an

increased robustness towards the external magnetic field. The ensemble average zero field

T ∗
2 = 380 µs of hk -VCVSi is predicted to be 2.3 times higher than the one of kh-VCVSi,

and the T2 = 2.12 ms is found to be increased by a factor of 1.8, in a good agreement with

Fig. 6.11a. In the presence of a strong field (0.1 T) the ensemble average coherence time

for both basal divacancies is the same: T ∗
2 = 0.7 µs, T2 = 1.4 ms, which confirms that the

large transverse ZFS is the main driving force for an increased coherence protection in the

hk -VCVSi.

Our results for the different basal divacancies show that by engineering high zero field

splitting either by selecting different defects, or applying the strain to the system [107], one

can achieve substantial increase in the coherence time.
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6.8 Additional properties of basal divacancies in the presence of

nuclear spins

6.8.1 Impact of the magnetic field on initial qubit state of basal divacancy

For the nonzero magnetic field the general qubit states are defined as |+⟩ = a |1z⟩+ b |−1z⟩

and |0⟩ = |0z⟩. Amplitudes a and b are different for varied magnetic field. E.g., at the

Bz = 0 mT the amplitudes are equal |a| = |b| = 1√
2
, and at Bz = 0.5 mT the ratio between

amplitudes is |a| : |b| ≈ 2 : 1. In the presence of nuclear spins, when the qubit is prepared

in the |ψ⟩ state, the transition occurs for all possible bath states. For the weakly coupled

nuclear bath the Overhauser field for each bath state is compensated by randomization of the

bath (
∑

nAizIn ≈ 0, In = ±1/2). Then, the interactions between central qubit and nuclei do

not impose significant changes in the qubit level structures compared to the isolated defect

in the external magnetic field. This can be seen by detecting the evolution of the diagonal
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Figure 6.13: Density matrix elements of kh-VCVSi for nuclear configuration containing
strongly coupled nuclear spin with Aiz = 8.93 MHz at low magnetic fields. The color
indicates ratio of |a| and |b| in the initial |+⟩ = a |−1z⟩ + b |+1z⟩ state of the qubit. In
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2
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brighter color correspond to the exact solution with the same initial state for smaller bath
(9 nuclear spins). The dotted grey line corresponds to the initial value of the density matrix
diagonal element. ρ00 = 0 for all calculations.

elements of the density matrix of the qubit (Fig. 6.12). Therefore, for the weakly coupled

bath we consider initial qubit states as eigenstates of Ĥe.

In the presence of the strongly coupled nuclear spins, the Overhauser field from these

nuclear spins cannot be compensated by other nuclei (Astrong
iz ≫

∑
weakA

weak
iz ), and can

shift the qubit levels substantially.

As an example we consider the most extreme case, when Hyperfine coupling Aiz = 50.96

MHz is higher than the transverse ZFS (Fig. 6.13). The initial nuclear spins states are com-

pletely randomized. The initial adiabatic change in the qubit |+⟩ state occurs significantly

faster than the following decoherence, and the rate of decoherence is mostly independent of

the initial qubit state.

For the given nuclear spin bath, in both initial states of the qubit, the off-diagonal

elements of the density matrix decay an order of magnitude slower at 0.87 mT compared

92



0

200

400

600

T
* 2
 (

s)
0

50

100

150

50 0 50
Bz ( T)

0.5
1.0
1.5

T 2
 (m

s)

50 0 50
Bz ( T)

0.5

1.0

Figure 6.14: The distribution of coherence time T ∗
2 (top) and T2 (bottom) for theoretical

nuclear configurations obtained for VVA (red) and VVB (orange). Blue line correspond to
configurations shown in the main text.

to 0.4 mT. This allows us to use the initial qubit state |ψ⟩ with |+⟩ = 1√
2
(|−1⟩+ |+1⟩)

for systems with strongly coupled nuclear spins, and allow it to evolve adiabatically even at

relatively high magnetic fields to correctly predict FID decoherence.

6.8.2 Determining the experimental configurations

To find the theoretical nuclear configurations which correspond to the experimentally mea-

sured basal divacancies, we applied the following procedure.

First, we generated a large set of random nuclear spin configurations. Out of this set, we

identified the ones with or without strongly coupled nuclear spins. For each experimental

divacancy, we determined the subsets of configurations with the same number of identifiable

strongly coupled nuclear spins. For VVA we determined a subset of random nuclear spin

configurations with no identifiable strongly coupled nuclear spins, for VVB - configurations

containing one strongly coupled nuclear spin with Aiz ∼ 0.6 MHz, for VVC - configurations

containing three strongly coupled nuclear spins with
∑
Aiz ∼ 3 MHz.
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For VVC we identify the configurations, containing 6 minima in the frequency spectrum.

For VVA and VVB we identify the nuclear configurations that have a similar value of T ∗
2 at

the applied magnetic field of 50 µT to the corresponding experimental system. This value is

instrumental to find the configurations with a similar total coupling of the bath and allows

us to choose the configurations with the coupling of the nuclear bath to the electron spin

closest to the experimental system. One such configuration for each divacancy is shown in

the main text. All of the configurations for VVA and VVB are shown in Fig. 6.14.

6.8.3 Initialization of strongly coupled nuclear spins

We show the theoretical nuclear configuration with the strongly coupled nucleus of Aiz = 0.75

MHz present, compared in the main text to VVB (Fig. 6.15) and study the effect of its initial

state. If the strongly coupled nuclear spin is initially in the thermalized state, the decay of

the off-diagonal element contains two components: the fast initial decay due to the fast

entanglement with the bath states, containing the strongly coupled nuclear spin parallel to

the magnetic field, and the slow decay due to the entanglement with the bath states with
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Table 6.1: Highest five hyperfine coupling Aiz of the configurations, shown in Fig. 6.16. The
nuclear couplings giving rise to the peak splitting are highlighted in bold.

No, Aiz, MHz
1 1.97 0.46 0.17 0.12 0.11
2 2.09 1.34 0.48 0.06 0.04
3 2.04 1.97 1.01 0.12 0.12
4 4.19 0.09 0.04 0.04 0.04
5 8.93 0.13 0.09 0.05 0.05
6 2.04 1.97 1.93 1.21 0.72
7 10.39 0.53 0.12 0.04 0.03
8 10.39 0.46 0.13 0.09 0.09
9 10.39 0.15 0.12 0.07 0.05
10 10.39 4.83 0.15 0.11 0.07
11 8.93 8.23 2.09 0.19 0.17
12 50.95 0.09 0.07 0.04 0.03

strongly coupled spin down. When we initialize the strongly coupled nuclei in one specific

state, only one mode of the decay is observed. The initialization of strongly coupled nuclear

spin antiparallel to the magnetic field (Fig. 6.15 left, blue) significantly prolongs coherence,

while the antiparallel orientation shortens coherence time.

6.8.4 Nuclear bath with strongly coupled nuclear spins

Here, we theoretically study the coherence time of several additional configurations with

strongly coupled nuclear spins. The coherence time of the basal divacancy can have several

resonances as a function of the magnetic field if strongly coupled nuclei are present. The

main reason for the appearance of the maxima is due to completely negated interactions

with the strongly coupled nuclear spins in spin up or spin down states.

When hyperfine couplings for several nuclei is significantly higher than the coupling to

the remaining bath, the number of peaks can be higher than two (Fig. 6.16 and table 6.1).

For each pure bath state the resonance occurs at the magnetic field Bz =
∑

strong ±
Aiz
2γe

.

The resulting coherence time dependence for the thermalized bath will show peaks either

aligned with the peaks of pure bath states (Fig. 6.16(9)), or at the overlap of two peaks
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Figure 6.16: Coherence time against the magnetic field for the theoretical configurations,
containing strongly coupled nuclear spins.

(Fig. 6.16(3)). In the presence of many strongly coupled nuclear spins the peaks can become

indistinguishable (Fig. 6.16(6)).

6.8.5 Single defect coherence time at different transverse ZFS

In figure 6.17 we show the coherence time of basal divacancy as a function of the transverse

ZFS E. We can see that a single defect T2 scales sublinearly with E, while T ∗
2 scales linearly.

We note significant variability in values of the single defect coherence times at zero magnetic

field.

6.9 Conclusions

Understanding the relation between the electronic structure of spin defects and their co-

herence properties is pivotal to optimizing the conditions for solid-state qubit applications.

In this work, we carried out a series of calculations to investigate the effect of the nuclear

spin bath at avoided crossings on the quantum dynamics of divacancies in SiC. We validated

our results with measurements of Ramsey fringes and Hahn-echo coherence times and found
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Figure 6.17: Coherence time of kh-VCVSi for FID (top) and Hahn-echo (bottom) as a func-
tion of transverse ZFS E for five random nuclear spin configurations without strongly coupled
nuclear spins.

excellent agreement between theory and experiments. Our work provides a robust strategy

to uncover the effect of the interaction of nuclear spins on solid-state qubits’ decoherence

over a wide range of applied magnetic fields.

Applying charge depletion [100] to electrically improve coherence, we were able to exper-

imentally isolate and elucidate the duality of the nuclear bath impact on clock transitions’

dynamics. We discovered that in the presence of strongly coupled nuclear spins, multiple

clock transitions in the frequency spectrum of the spin qubit can emerge. We identified and

characterized the nuclei with high hyperfine coupling in these systems; the initialization of

these nuclear spins should allow one to achieve significantly higher coherence times under

applied magnetic fields, while the nuclear-spin dependent spectral features provides guidance

for the development of a new class of electron-nuclear two-qubit gates. We found that the ef-

fect of weakly coupled nuclear spins can be treated as a stochastic classical noise at the clock

transition, and that the total amplitude of the coupling is a good descriptor of the coherence

time. We further probed the classical-to-quantum transition of the noise and showed how a

tunable back action of the electronic spin emerges with applied magnetic fields.

In sum, the joint computational and experimental study allowed us to probe the nuclear

environment around divacancies in SiC at avoided crossings down to the single nuclear spin
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level. The experimental validation of the predictions made here paves the way to optimize

and eventually design the coherence properties of spin qubits yet to be explored experimen-

tally.
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CHAPTER 7

DESIGNING ATOMIC CLOCKS IN EXOTIC SYSTEMS

This chapter is adapted from the published works [8, 11].

7.1 Enhancing Spin Coherence in Optically Addressable

Molecular Qubits through Host-Matrix Control

Optically addressable spins are a promising platform for quantum information science due to

their combination of a long-lived qubit with a spin-optical interface for external qubit con-

trol and read out. The ability to chemically synthesize such systems — to generate optically

addressable molecular spins — offers a modular qubit architecture which can be transported

across different environments, and atomistically tailored for targeted applications through

bottom-up design and synthesis. In this section, we demonstrate how the spin coherence in

such optically addressable molecular qubits can be controlled through engineering their host

environment. By inserting chromium (IV)-based molecular qubits into a non-isostructural

host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field

splitting, that are not present when using an isostructural host. This host-matrix engineer-

ing leads to spin-coherence times of more than 10 µs for optically addressable molecular spin

qubits in a nuclear and electron-spin rich environment. We model the dependence of spin

coherence on transverse zero-field splitting from first principles and experimentally verify

the theoretical predictions with four distinct molecular systems. Finally, we explore how

to further enhance optical-spin interfaces in molecular qubits by investigating the key pa-

rameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the

ability to test qubit structure-function relationships through a tunable molecular platform

and highlight opportunities for using molecular qubits for nanoscale quantum sensing in

noisy environments.
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Figure 7.1: Host-matrix engineering of optically addressable molecular qubits. (a) Molecu-
lar structure of 1-Cr (determined from single crystal X-ray diffraction) with laser excitation
and emission outlined. Hydrogen atoms are omitted for clarity. (b) Single crystal packing
diagram of 1-Cr in its isostructural host, 1-Sn (red, left), and non-isostructural host, 2-Sn
(blue, right), showing only positions of metal centers. The cell volumes for the represen-
tations of 1-Sn and 2-Sn are 9 and 10 nm3, respectively. Below each cell, we show the
molecular structures of the tin host, with hydrogen atoms are omitted for clarity. The re-
sulting ground-state spin structures (bottom) show the clock transition (E > 0) induced in
2. (c) Energy level diagram of chromium molecular color centers, highlighting resonant exci-
tation to, and photoluminescence (PL) from, the S=0 excited state, and zero-field splitting
of the ground-state spin sublevels. (d) PL and photoluminescence excitation (PLE) spectra
of 2 at 4 K.
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7.1.1 Host-matrix enhanced spin coherence

We create clock transitions in optically addressable molecular spin qubits through host-

matrix induced symmetry control. We use the chromium-based molecular color center —

Cr(IV)(o-tolyl)4, 1-Cr [Fig. 7.1(a)] — to demonstrate the impact of the host environment

on the ground state spin structure. The crystallographic symmetry of 1-Cr and its isostruc-

tural, diamagnetic host, Sn(IV)(o-tolyl)4, 1-Sn, yields ground-state spin transitions that

are first-order sensitive to magnetic-field fluctuations [72]. In contrast, and as we outline

below, inserting 1-Cr into a non-isostructural, lower symmetry host matrix — Sn(IV)(4-

fluoro-2-methylphenyl)4, 2-Sn [Fig. 7.1(b)] — induces clock transitions as a result of the

creation of a significant transverse zero-field splitting. These host-induced clock transitions

significantly enhance the spin coherence of 1-Cr in 2-Sn (which we refer to as 2) compared

to 1-Cr in the isostructural 1-Sn host (which we refer to as 1). We model this behavior

from first principles using generalized cluster-correlation expansion methods, and further

experimentally demonstrate enhanced optical contrast and spin-lattice relaxation times for

these host-matrix engineered molecular color centers. Remarkably, the host modification to

achieve this coherence enhancement comprises interchange of just one hydrogen atom on

the host ligands with a fluorine atom. In fact, the nuclear spin densities of 1-Sn and 2-Sn

are 51.7 and 46.9 N/nm3, where N is the number of nuclear spin-bearing atoms. Thus, the

coherence enhancement arises primarily from symmetry control by the host—without requir-

ing control of the nuclear spin bath—offering a pathway for coherence-protected quantum

sensing (e.g., of electric fields and strain) in intrinsically noisy environments (e.g., biological

systems), all within a versatile molecular platform.

We now illustrate how this behavior significantly enhances the spin coherence (T2) in

2 compared to 1. At zero magnetic field, we measure a ground state spin coherence time

T2 = 10.6 ± 0.2mus, despite the nuclear spin rich environment, and the relatively high Cr

concentration (∼ 1%, ≃ 1 − 2 × 1019 Cr4+/cm3). In contrast, we measure a significantly
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Figure 7.2: Host and chemical tuning of transverse zero-field splitting to enhance coherence.
(a) Molecular structures of the host matrix for 1, 2, and 3 with their simulated spin energy
levels as a function of magnetic field. (b) Hahn echo traces for single crystals of 1, 2, and
3 at zero magnetic field. (c) Zero-field spin coherence as a function of transverse zero-field
splitting along with theoretical dependence calculated from first-principles gCCE methods
(using large D limit, see Supplemental Material). (d) Experimental and calculated T2 as a
function of magnetic field.

shorter T2 = 2.0± 0.1µs for 1 at zero-magnetic field, indicating the effectiveness of the clock

transition in 2 for enhancing spin coherence.

To further understand the dependence of zero-field spin coherence on the transverse zero-

field splitting, we investigated two other molecular systems: Cr(IV)(2,3-dimethylphenyl)4

diluted in Sn(2,3-dimethylphenyl)4 (3), and Cr(IV)(2,4-dimethylphenyl)4 diluted in Sn(2,4-

dimethylphenyl)4 (4). The additional methyl group on the ligands of these compounds

induces lower symmetry crystal packing than 1, and consequently, E ≃ 0.5 GHz in both

cases [72], providing additional testbeds of the role of the transverse zero-field splitting in

enhancing spin coherence, here from tuning the qubit rather than the host matrix. Fig.

7.2(c) plots the zero-field coherence time for 1, 2, and 3 showing that T2 increases with

increasing E. 4 shows a similar T2 as 3 due to its very similar E value. Generally, these

four systems highlight paths to engineer even longer coherence times through independently

optimizing both the host matrix and the chemical composition of the qubit.

To investigate the spin coherence of these molecular color centers interacting with their

nuclear spin bath we used first principles generalized cluster correlation expansion (gCCE)
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calculations with Monte Carlo bath state sampling using the PyCCE package [108]. Starting

from the crystal structure for these compounds, we calculated the electron-nuclear hyperfine

couplings of the Cr-containing molecule using density functional theory (DFT) with SCAN

functional. Using DFT-computed spin densities, we calculate the interactions between the

Cr center and nuclear spins in the host matrix and use point dipole-dipole interactions

between nuclear spins. The calculated zero-field T2 as a function of transverse zero-field

splitting E shows good agreement with the experimental values [Fig. 7.2(c)]. Since the

calculations only consider the nuclear spin bath, they highlight that Cr electronic spins

or electric-field/strain-induced noise are not a major limitation on the coherence in our

experiments. Interestingly, the calculations also allow us to determine the distance at which

nuclear spins play a significant role in determining the coherence. By varying the number

of nearest-neighbor molecules included in the calculations, we found T2 converges when 3-4

nearest neighbors are included, corresponding to a radius of approximately 1.5 nm around

the Cr center.

To the best of our knowledge, the behavior of ground-state electronic spin coherence

in the low magnetic field regime (from 0 to ∼ 100 mT) has largely been unexplored in

molecular systems, but, as demonstrated in solid-state color centers, is an important domain

for applications in quantum information science [44, 109]. To explore this regime in molecular

color centers, we measured T2 as a function of magnetic field for 1, 2, and 3. In each case,

T2 decreases with increasing magnetic field between 0 and 30 mT [Fig. 7.2(d)]. The good

agreement between the experimental data and the gCCE calculations indicates this behavior

arises from the magnetic-field dependent dynamics of the nuclear spin bath, combined with

moving away from the clock transitions of 2 and 3. A similar drop in T2 with field due to

nuclear spin bath dynamics—albeit at a lower field scale—has been studied in the nitrogen-

vacancy center in diamond (which has E = 0) [52]. In this case, T2 drops with magnetic field

to a minimum at ∼ 0.1 mT due to nuclear spin bath dynamics, before recovering at ∼ 10
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mT, when the nuclear Zeeman splitting dominates over the electron-nuclear and nuclear-

nuclear spin interactions [52]. Our observations in molecular color centers can be assigned

to a similar mechanism—albeit with a larger characteristic field scale due to the stronger

spin interactions [110] — combined with the increased noise sensitivity for 2 and 3 as they

shift from their zero-field clock transitions. Due to the higher field scale involved for these

molecular color centers, we only see a reduction in T2 in the measured field range. We note,

however, that electron spin resonance measurements performed on 1 at higher magnetic

fields (≃ 400 mT) yield T2 ≃ 2.5µs [111], consistent with the theoretical prediction of a

high-field recovery in T2 [52].
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7.2 Discovery of atomic clock-like spin defects in simple oxides

from first principles

Virtually noiseless due to the scarcity of spinful nuclei in the lattice, simple oxides hold

promise as hosts of solid-state spin qubits. However, no suitable spin defect has yet been

found in these systems. Using high-throughput first-principles calculations, we predict spin

defects in calcium oxide with electronic properties remarkably similar to those of the NV

center in diamond. These defects are charged complexes where a dopant atom — Sb, Bi,

or I — occupies the volume vacated by adjacent cation and anion vacancies. The predicted

zero phonon line shows that the Bi complex emits in the telecommunication range, and

the computed many-body energy levels suggest a viable optical cycle required for qubit

initialization. Notably, the high-spin nucleus of each dopant strongly couples to the electron

spin, leading to many controllable quantum levels and the emergence of atomic clock-like

transitions that are well protected from environmental noise. Specifically, the Hanh-echo

coherence time increases beyond seconds at the clock-like transition in the defect with 209Bi.

Our results pave the way to designing quantum states with long coherence times in simple

oxides, making them attractive platforms for quantum technologies.

7.2.1 Structure of the defects

The geometrical configuration of the NV-like defects identified here has C4v symmetry (see

Figure 7.3) and gives rise to four states within the band gap in both spin channels. One is

close to the valence band maximum; the other three are mid-gap states. For example, for

X from group 15, the mid-gap states originate from the single substitutional X−
O that has

Oh symmetry and a threefold degenerate state (T1u). As mentioned above, the most stable

position of the X dopant in XCaVO, in the absence of the adjacent Ca, is between the Ca and

O vacancy sites (Figure 7.3a). This geometrical configuration lowers the Oh symmetry of the
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Figure 7.3: (a) Atomic configuration of the XCaVO defects identified in our search, where X
= Sb, Bi, I is located between the missing cation and anion sites. For X=Sb or Bi, the defect
is negatively charged; for X = I, it is positively charged. All defects have C4v symmetry.
Red, blue and brown spheres denote oxygen, calcium and dopant atoms, respectively. (b)
Electronic structure of the XCaVO complexes, where we have indicated the zero-phonon line
excitation between the a1 and e states. States are labeled following the representation of
the C4v group. c) and d) show the iso-surfaces of the sum of ex and ey defect orbitals, and
of the a1 defect orbital, respectively, both with a value of 10−4Å3/2.

complex to C4v, leading to a split of the T1u into a1 and e states; as shown in Figure 7.3c),

these states are highly localized.

7.2.2 Coherence properties of the defects

CaO is an almost noiseless host of spin-defects, removing the need for any isotopic engineer-

ing. Natural-abundant CaO contains only about 0.13% of magnetic nuclei 43Ca with spin-7⁄2

and about 0.04% of spin-5⁄2 17O. As a result, the nuclear-spin limited Hahn-echo T2 of the

localized electron spin in CaO is 34 ms, an order of magnitude higher than of naturally

abundant diamond (0.89 ms) [56]. A significant additional advantage of the defect centers

discovered here is that each of them contains a single nuclear spin that strongly couples to

the electron spin of the defect. For example, 209Bi is a spin-9⁄2 particle with nearly 100% nat-

ural abundance. The parallel component of the hyperfine coupling between the electron and

Bi nuclear spins, 1.27 GHz, is similar to Bi donors in Si [40]. Hence, the combined electron-

nuclear system exhibits 30 energy levels (see Fig 7.4a) that are separately addressable in
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Figure 7.4: (a) Spin energy levels of the BiCaV
–
O defect. Levels chosen as qubit levels are

marked with red and blue. Grey shaded area represents the range of magnetic fields shown
in (b). (b) Nuclear spin-limited T2 of the electron spin near a clock transition (CT), as
computed using the CCE method. The inset shows actual computed coherence signal near
a clock transition.

experiments, providing a broad space of spin states accessible for the design of quantum

technologies.

The strong electron-nuclear spin coupling in BiCaV
–
O leads to a set of avoided crossings

between energy levels as a function of the magnetic field. The spin transitions between

these levels, known as "clock transitions" (CT) [40], are remarkably robust to external per-

turbations, and thus the coherence time of qubits operating at a CT can be substantially

increased [49, 53]. Using the cluster-correlation expansion method (CCE), implemented in

the PyCCE code [108], we computed the coherence of the spin qubit BiCaV
–
O near CTs (see

Fig. 7.4b). We find that at the magnetic field of 22.18 mT (2 µT from a clock transition),

the T2 is already increased by two orders of magnitude (4.7 seconds) compared to that of a

qubit operating away from CTs (34 ms).
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In summary, several simple oxides, particularly CaO, have been predicted to be promising

hosts of spin defects with long coherence times. Using a high-throughput search based on

first principles calculations, we predicted a class of spin defects in CaO with properties

remarkably similar to those of the NV center in diamond. Such NV-like defects (XCaVO)

consist of a missing Ca-O pair and a dopant X=Sb, Bi, and I; they are stable, with a triplet

ground state, in their negatively charged (Sb, Bi) and positively charged (I) states. They

also exhibit two singlet excited states between the ground and first triplet excited states, as

explicitly verified in the case of Bi, suggesting the possibility of an optical cycle similar to

that of the NV center. Importantly, the XCaVO complexes have a detectable zero phonon

line close to the telecommunication range and exhibit a zero-field splitting similar to the NV

center in diamond. In particular, we predict that the BiCaV
−
O complex has a bright emission

in the L-band. In addition, the presence of a high spin nucleus, strongly coupled to the

electron spin, leads to many spin levels addressable in experiments and to the emergence

of avoided crossings in the spin energy spectrum. We showed that when operating at these

avoided crossings, the spin coherence of the BiCaV
−
O complex is increased by at least two

orders of magnitude, exceeding seconds.

Experimental verification of our results should be relatively straightforward, given the

ease of growth of CaO and our estimate of the propensity of the defects identified here to be

implanted in the material. Overall, our results show that CaO, and other simple oxides, are

promising emerging materials for quantum applications.
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CHAPTER 8

ACCURATE PREDICTION OF SPIN HAMILTONIAN

PARAMETERS

This chapter is adapted from the published works [5, 6].

In this section, we use coherence calculations to benchmark the results of the ab initio

DFT calculations of spin Hamiltonian parameters and test the sensitivity of the dynamical

spin properties on the accuracy of the DFT predictions.

8.1 Theoretical and experimental study of the nitrogen-vacancy

center in 4H-SiC

Using first principles calculations and magnetic resonance experiments, we investigated the

physical properties of the negatively charged NV center in 4H-SiC, a promising spin qubit.

Our predictive theoretical model in conjunction with experimental measurements reveal a

large sensitivity to strain and symmetry. The measured and computed zero phonon lines

(ZPLs) are in agreement and show a consistent trend as a function of the defect location in

the crystal. The computed ZPLs are extremely sensitive to the geometrical configurations of

the ground and excited states, and large supercells with more than 2000 atoms are required to

obtain accurate numerical results. We find that the computed decoherence time of the basal

NV centers at zero magnetic field is substantially larger than that of the axial configurations.

Furthermore, at natural nuclear spin abundance and zero field, the Hahn-echo coherence

time of one of the basal configurations is similar to that of the axial divacancy in isotopically

purified SiC.
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Table 8.1: Value (MHz) of the components of the zero field splitting tensor (D;E) obtained
in this and previous works. The values reported in Ref.[1, 2] are the same.

Config. Exp. [1, 2] Exp. [this work] Th. [2] Th. [this work]
hh 1331; 0 1339; 0 1427; 0 1513;∼0
kk 1282; 0 1288; 0 1377; 0 1454; 0
hk 1193;104 1232;111 1331;110 1409;110
kh 1328; 15 1355; 15 1404; 44 1489; 45

8.1.1 Spin Hamiltonian parameters and coherence times

We now turn to discussing coherence times of the NV in 4H-SiC. One of the advantages

of SiC based qubits compared to diamond spin qubits is the presence of the binary lattice,

which leads to a significant enhancement of the coherence time of divacancies in SiC even

at the natural isotopic concentration of nuclear spins [5] [3]. We show below that axial

NV centers in SiC exhibits the same coherence properties as the VV in SiC and that the

theoretical limit of T2 is similar to that of the axial divacancy (Table 8.2).

Compared to axial NV centers, basal configurations exhibit a lower symmetry and hence a

substantial transverse zero-field splitting E. The lower symmetry allows for clock transitions

to emerge at zero applied magnetic field. The frequency of clock transitions is insensitive to

the magnetic field fluctuations up to first order [90], thus significantly improving protection

from the nuclear spin noise.

Our calculations predict a substantially larger T ∗
2 for the basal NV centers at zero mag-

netic field compared to that of the axial ones. We note the importance of the amplitude

of the transverse ZFS in determining the value of T ∗
2 at clock transitions. The coherence

times for the kh NV center at zero magnetic field, computed using the theoretical value of

the ZFS is larger than the one obtained with the experimental E value by a factor of two.

This significant difference points at the necessity (Table 8.1) of accurate predictions of spin

Hamiltonian parameters [112].

Finally, we investigated the dependence of the Hahn-echo coherence time T2 on the

magnetic field (Bz), shown in Fig.8.1 computed using measured E values[1, 2]. At low
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Figure 8.1: Computed coherence time T2 as a function of the strength of the applied magnetic
field (Bz) for four configurations of the NV center in 4H-SiC. Note that the T2 of the hh and
kk configurations is similar, especially in the the lower Bz range.

magnetic fields the hyperfine couplings are stronger or on par with the energy splitting

arising from the external magnetic field. The increase of the magnetic field leads to an

increase in the speed of precession of single nuclear spins, which in turn leads to faster

fluctuations of the magnetic noise and to a decrease in coherence time in this regime. For

the basal defects with clock transition, the decrease in coherence time is further exacerbated

by the removal of the qubit energy levels from the avoided crossing, at which the additional

protection from the magnetic noise is achieved [52]. We note that the clock transition in

basal configurations leads to a substantial increase in T2 at Bz = 0, relative to that of axial

configurations. At strong magnetic fields all configurations exhibit the same coherence time

of ∼ 1.3 ms as the Zeeman splitting plays a major role in this regime, leading to only secular

pairwise nuclear spin flips being allowed and thus to an increase of T2 in this regime. For the

hk case at natural abundance of nuclear spins, the predicted Hahn-echo coherence time at

zero field is similar to those of the divacancies in isotopically purified SiC [3]. Furthermore,

the high amplitude of the transverse ZFS affects the coherence time also for intermediate

values of the magnetic fields (Bz = 10− 50 G): interestingly, we found that the T2 of the hk

NV center is higher than those of other NV and divacancy configurations.

In sum, we have predicted coherence times of the NV in basal and axial configurations
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Table 8.2: Nuclear spin bath-limited coherence time. For the kh configuration, we show
coherence times computed using both the experimental ([1, 2]) and our theoretical value of
the E component of the zero field splitting tensor (see Table 8.1). The experimental data
for the kk divacancy (kk-VV) are from [3],[4], and[5].

For the axial NV centers the coherence time is computed at magnetic field of 200 G and for
the basal centers at zero applied magnetic field.

Config. T ∗
2 (µs) T2 (ms)

hh 0.64 (1.01) 1.32 (0.0171)
kk 0.85 (0.42) 1.31
hk 520 2.2
kh (exp. E) 150 0.99
kh (th. E) 340 1.68
kk-VV 1.1 1.2

and found a substantially larger T ∗
2 of the basal NV centers at zero magnetic field, compared

to that of the axial configurations. Interestingly our calculations show that at natural nuclear

spin abundance the Hahn-echo coherence time at zero field of one of the basal configurations

is similar that of the divacancies in isotopically purified SiC. Given the readily accessible

14N nuclear registers and the availability of universal dressing schemes at clock transitions

[82] to protect qubit states, we expect the basal NV centers to provide robust platforms for

the next generation of defect qubits in SiC.
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8.2 Spin-spin interactions in defects in solids from mixed

all-electron and pseudopotential first- principles calculations.

Understanding the quantum dynamics of spin defects and their coherence properties re-

quires an accurate modeling of spin-spin interaction in solids and molecules, for example

by using spin Hamiltonians with parameters obtained from first-principles calculations. We

present a real-space approach based on density functional theory for the calculation of spin-

Hamiltonian parameters, where only selected atoms are treated at the all-electron level,

while the rest of the system is described with the pseudopotential approximation. Our ap-

proach permits calculations for systems containing more than 1000 atoms, as demonstrated

for defects in diamond and silicon carbide. We show that only a small number of atoms sur-

rounding the defect needs to be treated at the all-electron level, in order to obtain an overall

all-electron accuracy for hyperfine and zero-field splitting tensors. We also present results

for coherence times, computed with the cluster correlation expansion method, highlighting

the importance of accurate spin-Hamiltonian parameters for quantitative predictions of spin

dynamics.

8.2.1 Finite Element DFT Predictions of the Spin Hamiltonian parameters

The spin Hamiltonian parameters can be determined from first-principles electronic struc-

ture calculations [115–127], the majority of which are based on plane-wave pseudopotential

(PW-PP) approaches. DFT calculations of SH parameters using basis sets different from

PW have been proposed (e.g. numerical atomic orbitals [128], linearized augmented plane-

wave [129], linear muffin-tin orbitals [117, 130], and Gaussian orbitals [131]), but they are

often limited to smaller systems than those accessible to PW calculations. In the PW-PP

method, pseudopotentials (PP) are used to describe the interaction between valence and core

electrons, and single-particle wavefunctions of core electrons in the solid are not explicitly

113



evaluated. All-electron wavefunctions may be reconstructed, for example using the projected

augmented wave (PAW) procedure [132], and then used to compute the parameters of the

SH. Recently, we proposed and benchmarked a real-space all-electron DFT framework [133]

using a finite-element (FE) basis sets [134] for accurate predictions of SH parameters in

molecules and solids, which does not require any reconstruction of core-wavefunctions. This

framework allows one to systematically convergence the results of SH parameters with re-

spect to the basis set size and hence to establish robust results to compare with experiments

for a chosen level of first-principles theory. However, the method is computationally rather

demanding and it only permitted the investigation of systems with tens of atoms.

Here we propose a computational scheme where only selected atoms are treated at the all-

electron (AE) level, while the rest of the system is described within the PP approximation.

We show that in order to obtain accurate SH parameters for spin-defects, only a small number

of atoms surrounding the defect (of the order of 10) needs to be treated at the AE level.

Our approach permits calculations for cells with hundreds of atoms, as shown for the NV

center in diamond and the VV in 4H-SiC, for which we used cells with up to 1022 atoms.

In addition, using the cluster correlation expansion (CCE) [47] method, we demonstrate

the importance of accurate SH parameters for precise predictions of coherence times of spin

defects in semiconductors.

8.2.2 Coherence time in weakly coupled nuclear spin baths: the need for

all-electron descriptions

In general, there are two ways to control nuclear spins in defect systems. The strongly

coupled nuclear spins (with hyperfine coupling of order ∼ 1 MHz) can be directly accessed

via radio frequency radiation. Here we define nuclear spins as strongly coupled when their

hyperfine parameter is larger than the linewidth of the optically detected magnetic resonance

(ODMR) [87] and separate oscillations in the Ramsey sequence due to the nuclear spin are
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observed [3]. These nuclear spins can be controlled with short gate times but they are highly

susceptible to electron spin induced noise.

The second type of nuclear spins, weakly coupled to the electron spin (A≪ 1 MHz) are

controlled by dynamical decoupling schemes [135]. Applying refocusing pulses to the central

spin may be used to not only increase the coherence time of the defect but also to isolate

and control weakly coupled nuclear spins. These spins provide significantly longer coherence

times than strongly coupled spins, and the number of weakly coupled nuclear spins is not

limited by the short distance to the central spin which is required for strong coupling.

The strength of the nuclear-spin induced dephasing mechanism, limiting coherence time

T ∗
2 in spin defects is directly related to the A-tensor [136], which therefore requires accurate

calculations. Here, we first estimate the sensitivity of the inhomogeneous dephasing time

T ∗
2 and the Hahn-echo coherence time T2 on the values of the A-tensor by carrying out

CCE calculations (Fig. 8.2); T2 determines the stability of the qubit under dynamical

decoupling schemes. We used two sets of hyperfine coupling computed for 4×4×4 supercell

of the NV center in diamond: one set for which the A-tensor is calculated using the PAW

reconstructed spin densities, and a second one based on the A-tensor calculated using FE-AE

calculations. Fig. 8.2 b shows a histogram of the calculated A|| (Azz in the defect reference

frame) obtained using the two methods. We found that for large hyperfine coupling values,

the relative difference is rather minor compared to the one for the smaller coupling terms.

In order to see the impact of these differences on the dephasing of the electron spin, first

we compute the ensemble-averaged dephasing time, T ∗
2 , by considering the decay of the

coherence function averaged over a set of nuclear spin configurations. The difference in the

ensemble averages dephasing time was found not to be significant (1.35 (FE-AE) µs vs 1.37

(PAW) µs). We note that the predicted value is close to the generally accepted value of

nuclear-spin-limited T ∗
2 in diamond of ∼ 1 µs [137]. The dynamical decoupling changes

the sensitivity of the qubit to the static noise, and the resulting Hahn-echo coherence time
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T2 is found to be insensitive to the choice of hyperfine couplings and equal to 0.89 ms, in

agreement with previously reported CCE predictions [5].

Next, we focus on the single-defect dephasing time in the weakly coupled nuclear spin

bath considering the example to NV center in diamond (Fig. 8.2(a)). We select nuclear

configurations whose Fourier transform of the free induction decay (FID) contains only one

peak. This procedure ensures that the coherence function of the defects in the chosen subset

of nuclear configurations does not contain any oscillations due to the nuclear spins with high

hyperfine coupling. Hence the procedure guarantees that the nuclear baths contain only

weakly coupled nuclear spins and we can thus use an exponential decay fit to obtain the

value of T ∗
2 . Fig. 8.2(c) shows the T ∗

2 for the chosen subset of nuclear configurations. In

these systems, the difference between PAW and FE-AE results is significant as the dephasing

time differs by a factor of 2 for certain nuclear configurations. We note that in general for

weakly coupled spins, the hyperfine coupling computed with PAW are higher (as can be

seen in Fig. 8.2(b) compared to their FE-AE counterpart, leading to significant differences

in the predictions of the dephasing time. At the same time the Hahn-echo coherence time

(Fig. 8.2(c), right pane) does not depend on the choice of hyperfine couplings, as the main

dephasing mechanism under dynamical decoupling is pairwise spin flip of distant spin pairs

[5].

However, in the emerging qubit systems based on the clock transitions at avoided crossings

of spin levels [40, 82, 138], the sensitivity of the coherence time to the magnetic noise from the

nearby nuclear spins is different. As an example, we consider the basal kh divacancy in 4H-

SiC (Fig. 8.2(d)). Compared to kk -VV, the basal divacancy has a lower symmetry and ZFS

tensor contains both axial splitting D3 and basal splitting E = D2 −D1 = 18.4 MHz [90],

leading to emergence of avoided crossing in spin levels at zero magnetic field. Using hyperfine

couplings computed with PAW and FE-AE in 6 × 3 × 2 orthorhombic supercell containing

574 atoms (Fig. 8.2(e)) we predict the ensemble average T ∗
2 PAW = 0.13 ms, T ∗

2 FE = 0.14
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Figure 8.2: (a) Structure of the NV center in diamond (b) Histogram of A|| (see text) for
carbon atoms in a 4×4×4 NV-diamond supercell calculated using PAW and FE-AE methods.
(c) Comparison of coherence times T ∗

2 and T2 induced by weakly coupled nuclear spin baths,
predicted with hyperfine values from PAW (T2 PAW) and FE-AE (T2 FE) calculations. (d)
Structure of the basal kh-VV in 4H-SiC. (e) Histogram of A|| (see text) for silicon and carbon
atoms in a 6× 3× 2 4H-SiC supercell with kh-VV in the middle calculated using PAW and
FE-AE methods. (f) Comparison of coherence times T ∗

2 and T2 of the basal divacancy at
clock transition.

ms and T2 PAW = 1.04 ms, T ∗
2 FE = 1.11 ms using generalization of CCE method [53]. The

PW-PAW results consistently overestimate the hyperfine couplings of the weakly coupled

nuclear spins, which leads to notable differences even in the ensemble averaged coherence

times of this system. Both values are smaller than the ones, reported in the previous work

(T ∗
2 = 0.16 ms, T2 = 1.15 ms)[53] where we used larger 9 × 5 × 2 orthorhombic supercell

containing 1438 atoms to compute hyperfines with PW-PAW approach, which confirms the

importance of larger supercell for precise calculations of hyperfine couplings. Finally, we

analyze the coherence times of basal divacancy at clock transition in the single nuclear spin

spatial configurations (Fig. 8.2(f)). We find that both T ∗
2 and T2 depend significantly on

the approximation used to obtain hyperfine couplings of the nearby nuclear spins, leading to
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significant differences in predicted coherence times.

Overall, we computed hyperfine constants for both strongly and weakly coupled nuclei

spins from AE calculations in two systems, NV in diamond and kh-VV in SiC, followed by

coherence times estimation in those two systems. This shows that the relative difference

between AE and PP predictions of hyperfine tensors for strongly coupled nuclear spins

(those for which A ≥ 1 MHz) is small. However, absolute differences in hyperfine tensors

predicted with PW-PP and AE methods for weakly coupled spins (A≪ 1 MHz), even when

similar in magnitude to those found for strongly coupled spins, may dramatically impact the

prediction of T ∗
2 of the NV center, with differences up to a factor of 2 for certain nuclear spin

configurations. In the case of the clock transitions of the basal kh-VV in SiC, the variance

in the predictions is even more drastic, with relative difference up to a factor of 4. In this

case, the choice of the approximation affects both T2 and T ∗
2 coherence times. We note that,

in addition to coherence time calculations, accurate predictions of zero-field splitting and

hyperfine tensors for strongly-coupled nuclear spins are important to identify the atomistic

structure of spin-defects [139]; furthermore, accurate predictions of hyperfine tensors for

weakly coupled nuclear spins are key for the spatial mapping of experimental multinuclear

registers [140] and the prediction of plausible memory units in spin centers [3].
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CHAPTER 9

FIRST PRINCIPLES SIMULATIONS IN QUANTUM SENSING

9.1 Sensing dynamics of spin qubits in low dimensional van der

Waals materials.

This section is adapted from the published work [3].

We report a theoretical study of the coherence dynamics of spin qubits in two-dimensional

materials (2DMs) and van-der-Waals heterostructures, as a function of the host thickness and

the composition of the surrounding environment. We focus on MoS2 and WS2, two promising

systems for quantum technology applications, and we consider the decoherence arising from

the interaction of the spin qubit with nuclear spins. We show that the Hahn-echo coherence

time is determined by a complex interplay between the source of decoherence in the qubit

host and in the environment, which in turn determines whether the noise evolution is in a

classical or quantum mechanical regime. We suggest that the composition and thickness of

van-der-Waals heterostructures encapsulating a qubit host can be engineered to maximize

coherence times. Finally, we discuss how quantum sensors may be able to probe the dynamics

of the nuclear bath in 2DMs.

9.1.1 Introduction

In the last few years, two-dimensional materials (2DMs) have attracted widespread attention

in the field of quantum technologies[141], with potential applications as spin quantum dot

qubits [142, 143] and single-photon emitters [144–146]. Recently, the coherent control of

atomic defects in a 2DM has been reported for a boron vacancy in hexagonal boron nitride

(h-BN) [147, 148], with the room temperature coherence time (T2) of 2 µs [149]. More-

over, theoretical studies have predicted a significant increase in T2 of defect-based qubits in
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monolayers compared to their bulk counterparts [55].

However, the presence of the environment may change the properties of the 2D host and

hence those of the qubit; therefore environmental effects are expected to play an important

role in the control and design of spin defects in two dimensions. For example, the nature

of the substrate significantly alters the photoluminescence of WS2 [150], and the band gap

of a MoS2 monolayer, with variations of more than 1 eV (1.23-2.65 eV)[151]. In some cases,

the presence of the environment may be beneficial for 2DM applications: combining several

layers of 2DMs leads to materials with interesting properties for nanoelectronics[152, 153],

including atomic-scale transistors [154] and memory units [155].

In this work, we present a theoretical investigation of the impact of the environment on

the quantum dynamics of defect-based qubits in 2DMs and van-der-Waals heterostructures.

We consider spin defects in wide-band-gap transition metal dichalcogenides WS2 and MoS2,

which are promising platforms for optoelectronic applications[156] and quantum emitters

[157]. We focus on a single source of decoherence, the interaction of the spin-defect with

the surrounding nuclear spin bath, known to be the limiting factor for the coherence time of

many solid-state qubits[15, 158].

Assuming a pure dephasing regime, we model the spin dynamics of the qubit using the

cluster correlation expansion (CCE) method[47, 48], which has been shown to yield accurate

results for numerous systems [5, 49, 51, 53]. We model Hahn-echo experiments, and the

coherence time is obtained from the decay of the coherence function L(t), defined as a

normalized off-diagonal element of the density matrix ρ̂ of the qubit:

L(t) =

∣∣∣∣ ⟨0| ρ̂(t) |1⟩⟨0| ρ̂(0) |1⟩

∣∣∣∣ (9.1)

The structure of suitable spin defects in WS2 and MoS2 is still an open question[159]. Hence

we simply consider a model defect with spin-1 and |0⟩ and |−1⟩ as qubit levels, similar

to those of optically addressable qubits in 3D materials, e.g. the NV– center in diamond
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Figure 9.1: Left: Computed Hahn-echo coherence time (T2) of 2DMs as a function of different
substrates listed on the right. Distance between 2DM and the surface is ∼ 0.3 nm [162–164].
Applied magnetic field is perpendicular to the surface. Right: Representation of the model
system.

[160] or the divacancy in SiC [3]. Furthermore, we assume that the electronic energy levels

associated with the defect are localized within one unit cell, and the spin defect interacts

with the nuclear bath as a magnetic point dipole. We compute the quadrupole tensors for

the nuclei with spin ≥ 1 using density functional theory with the PBE functional [161], and

the GIPAW module [67] of the Quantum Espresso code [63]. We assume that for sparse

baths the quadrupole interactions between nuclear spins and the electric field gradient are

the same as those in the pristine material.

9.1.2 Substrate effect on the Qubit Coherence in 2D Materials

We start by discussing our results for the MoS2 and WS2 2DMs. Both materials contain

a significantly lower concentration of nuclear spins than h-BN – the only experimentally

characterized 2D host so far – thus allowing for significantly longer coherence times. For

isolated 2D systems in vacuum, Ye et al. [55] predicted that the T2 of a spin qubit in MoS2
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increases by a factor of ≃ 2 (Tmono
2 = 2.2, Tbulk

2 = 1.2 ms) when the nuclear bath of the host

is reduced from 3D to 2D. The calculations of Ref.[55] neglected the quadrupole term in the

spin Hamiltonian. When including such term, we find that T2 further increases (Tmono
2 = 4.1

ms), while the ratio between T2 in 2D and 3D remains the same as previously reported. In

natural WS2, the nuclear bath contains a smaller number of nuclear spins than in MoS2, with

a relatively small gyromagnetic ratio. Hence the nuclear spin-induced decoherence in WS2 is

an order of magnitude slower than in MoS2, and the increase in coherence time with reduced

dimensionality becomes more significant: Tmono
2 = 38 ms, 3 times higher than Tbulk

2 = 13.6

ms.

Next, we investigate how coherence times vary when MoS2 and WS2 are deposited on a

substrate. We consider Au (111), Si (111) and SiO2 (ideal siloxane-terminated surface) [165–

168]. These substrates have been used in spectroscopic measurements [166], and applications

of 2DMs in catalysis[165, 167] and electronics [168]. We neglect the reconstruction of the

surface of the substrate and we assume that the quadrupole couplings are the same as

those of the pristine material in vacuum. Because the quadrupole splittings are large in the

systems considered here, the interface-induced variations in their amplitude are unlikely to

substantially alter the coherence dynamics at strong magnetic fields.

Under an applied magnetic field, the contributions to coherence times of the different

species of the nuclear bath are decoupled [5]; hence:

L = LSL2DM (9.2)

where LS and L2DM are the contributions of the substrate (S) and of the 2DM host, re-

spectively. We find that the nuclear baths of both the 2DM and the substrate may act as

limiting factors to the qubit coherence. In particular, in WS2 the qubit dynamics is com-

pletely determined by the substrate nuclear bath, and T2 is significantly smaller than the

one of the qubits in bulk WS2 (Fig. 9.1). The coherence time depends on the nature of
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the substrate. The longest and shortest coherence times are obtained for SiO2 and the Si

(111) surface, respectively. These results can be understood by noticing that the Si substrate

has the highest concentrations of 29Si spins, compared to SiO2 and SiC; the latter exhibits

however an additional source of decoherence given by the 13C bath. We also note that while

gold contains the highest concentration of nuclear spins (100% 197Au with s = 3/2), the

small gyromagnetic ratio and large separation of the nuclei lead to a moderate influence of

the substrate on the coherence time of the 2D material, with T2 = 3 ms.

In MoS2, on the other hand, both the substrate and host contribute significantly to the

qubit decoherence. We find that an enhancement of T2 from the reduced dimensionality

persists only for the SiO2 and gold substrates. In the presence of a Si (111) surface, the T2

of a qubit in MoS2 and WS2 is almost identical.

The presence of paramagnetic defects both on the surface of the substrate and in the

2DM itself may significantly impact decoherence rates and limit the value of T2. To decrease

the number of paramagnetic impurities in the 2D host, advanced experimental techniques

are being developed [169]. In general, to eliminate surface charges, it is desirable to reduce

interfacial reconstructions as much as possible, e.g. by using van-der-Waals bonded materials

as substrates. [169, 170].

9.1.3 Qubit Dynamics in van-der-Waals Heterostructures

Hence we turn to consider heterostructures of van-der-Waals bonded materials, which are

emerging as promising platforms for 2D-based photonics. For example, a heterostructure of

layered graphene and WS2 was recently used to realize atomic defect-based photon emitters

[173]. To simulate the qubit dynamics in van-der-Waals bonded integrated systems, we focus

on layered heterostructures with the spin qubit located in an inner layer, as shown in Fig.

9.2a.

We investigated the effect of the decoherence arising from the presence of a substrate
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Figure 9.2: Computed Hahn-echo coherence time (T2) of qubit located in low-dimensional
heterostructure. (a) Schematic representation of the model system used in calculations. The
qubit is located in the middle of the inner layer of thickness ∆ (b), (c) T2 of the C/WS2/C
(C/MoS2/C) heterostructure depicted with solid lines. Dotted lines show the contributions
of the host WS2 (MoS2) and graphite substrate with different numbers of layers. The insets
show the compressed exponential factor n for host contribution in blue (grey), graphene
(bulk graphite) substrate in orange, and the whole system in brown (black) as a function of
∆. Graphite-host distances available from refs. [171, 172].

(outer layer) and from the host (inner layer) of thickness ∆; the coherence time is obtained

by fitting the coherence function contribution (Eq. 9.2) to the compressed exponential

function, LM = exp{[−(t/TM
2 )n]}, where M denotes either the substrate (S) or the host

2DM. We found that as ∆ increases, the rate of the decoherence induced by the host bath

increases (see Fig. 9.2(b) and Fig. 9.2(c) for WS2 and MoS2, respectively). Instead the

decoherence rate originating from the substrate nuclear bath decreases with the distance

of the qubit from the substrate (see Fig. 9.2a and 9.2b, where mC denotes the number

of Carbon layers). The combination of these two factors may result in a non-monotonic

behavior of the total coherence time of the heterostructure as a function of ∆.

Fig. 9.2(b) shows our results for C/WS2/C heterostructures. For ∆ ≤ 3 nm, the effect of

the substrate completely supersedes the effect of the host nuclear bath. With increasing ∆,

TWS2
2 decreases, but TC

2 increases. We find that for ∆ ≥ 5 nm, TC
2 is proportional to ∆α,
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where α depends on the thickness of the outer layer; in particular α = 1.67 for bulk graphite

and 2.5 for graphene. The interplay between the host- and substrate-induced decoherence

leads to a local maximum in the coherence time. When the thicknesses of the host material

exceeds ∼ 15 nm, the decoherence is essentially limited by that of the WS2 bath.

Our results show that depending on the number of graphite layers in the substrate, the

coherence time of monolayer MoS2-based qubits can be either smaller or larger than T2 in

bulk MoS2 (Fig 9.2(c)). The presence of two similar sources of decoherence arising from the

host and the graphite/3C substrates leads to a minimum of the total coherence time around

4 nm.

As the distance from the graphite substrate increases, the nature of the substrate-induced

decoherence process changes. In particular, the graphene-induced decoherence as a function

of ∆ exhibits the most complex behavior: we observe a transition from a Gaussian (n = 2)

to an exponential decay (n = 1) of the coherence function, near the local maximum in TC
2

and in T2 of the C/WS2/C heterostructure. For large ∆, n approaches 3 for both graphene

and bulk graphite environments (insets of Fig. 9.2b and c).

Fig. 9.3 shows the decoherence induced by graphene monolayers in ensemble dynamics

and for individual bath configurations. Our calculations show that the ensemble-averaged

decay induced by the graphene nuclear bath has a smaller compressed exponent n than

the mean of the individual fitted decays (Fig. 9.3(a)), consistent with the predictions of

stochastic noise models[174, 175]. However, we find that n of the ensemble is not reduced

by a factor of two, but only by ∼ 17%. Both ensemble and single spin dynamics show a

non-monotonic variation of the coherence time with increased distance from the graphene

substrate. We analyze below in detail the noise regimes of the Hahn-echo decay depending

on the host thickness.

For ∆ ≥ 10 nm, the dipolar coupling between nuclear spins in graphene is larger than

the coupling of the graphene layer to the central spin. Therefore, the magnetic noise from
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the spin bath can be approximated with a classical stochastic variable. In this framework,

the evolution of the central spin is governed by the Hamiltonian:

Ĥclassical(t) = y(t)η(t)Ŝz (9.3)

where Ŝz is the spin operator of the qubit electron spin, and y(t) = ±1 changes its sign each

time a π pulse is applied [58]. η(t) is a stochastic variable, corresponding to the magnetic

noise. Assuming Gaussian noise, the coherence function can be computed as [13]:

L(t) = exp

[∫ t

0
C(u)Ft(u)du

]
(9.4)

Where C(t) = ⟨η̂eff(t)η̂eff(0)⟩ is the correlation of the Overhauser field of the nuclear
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bath. Ft(u) is a correlation filter function, defined as [13]:

Ft(u) =

∫ 2t−u

u
y

(
v − u

2

)
y

(
v + u

2

)
dv (9.5)

We compute the noise correlation function with the CCE method [58, 59] from the au-

tocorrelation function of the Overhauser field operator η̂eff(t) =
∑

iA||Î
i
z(t) where A|| is the

hyperfine coupling. The correlation function for one random nuclear spin configuration is

shown in Fig. 9.3(b) for different separations of graphene layers from the qubit. The dotted

black lines show the exponential fit ∆C(t) = b2(e−t/τC − 1), where τC is the correlation

time of the bath. We observe that τC increases with thickness from 1.2 ms to 150 ms for

the largest separation considered here. The long correlation time at large ∆ and the coher-

ence decay of LC ≈ exp
[
−(t/T2)3

]
agree well with stochastic model predictions for the slow

evolution of the bath[176, 177].

We further observe the emergence of a classical regime by reconstructing the coherence

function from the noise correlation using Eq. 9.4 (Fig. 9.3(c)). We find that the semiclassical

approach correctly reproduces the complete quantum mechanical evolution of the bath at

separations between graphene layers larger than 10 nm.

For ∆ ≤ 10 nm, however, the hyperfine coupling is on a par or significantly larger than

the average dipolar coupling between nuclear spins. Thus, the evolution of the nuclear spin

bath is conditioned on the electron state, and the decoherence of the central spin cannot

be correctly reproduced with a classical treatment of the noise[15]. In this case, a complex

decay of the coherence function is observed (Fig. 9.3c), which is not captured by Eq. 9.4.

An insight into this complex dynamics can be gained by analyzing the evolution of a

single pair of spins i and j. At sufficiently strong magnetic fields, only pairwise spin flip-

flops are allowed (|↑↓⟩ ↔ |↓↑⟩), and their dynamics can be mapped on a 2-level "pseudospin",
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governed by the Hamiltonian:

Ĥpseudo =
ω(t)

2
σ̂z +

δ

2
σ̂x (9.6)

where the frequency of the pseudospin, ω(t) = ω−1 = ∆A||, is given by the difference in

hyperfine coupling, if the central spin is in the |−1⟩ state, or ω(t) = ω0 = 0 if the central

spin is in the |0⟩ state. σi are Pauli matrices for spin-1⁄2. δ = ℏγiγj
2r3ij

(3 cos2 θ − 1) is obtained

from the dipolar coupling of i, j nuclear spins, where θ is the angle between the vector rij

connecting two nuclear spins and the external magnetic field.

The total coherence function can be obtained analytically [5, 178] as a product of the

contributions of all spin pairs ij:
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L(t) =
∏
ij

[
1− κ · sin2(

√
ω2−1 + δ2

t

4
) sin2(δ

t

4
)

]
(9.7)

where κ =
ω2
−1

ω2
−1+δ2

. Due to the reduced dimensionality of graphene and the sparse concen-

tration of nuclear spins, only a small number of spin pairs exists in close proximity of the

qubit and thus contributes to determining the coherence decay. (Fig. 9.4).

The dependence of ω−1 on the distance from the graphene layer can be computed from

the hyperfine couplings of nuclear spins and is quite complex (Fig. 9.4(a)). As ∆ increases,

the frequency of pseudospins changes its sign and exhibits a local extremum. At ω−1 = 0,

the hyperfine couplings of two nuclear spins are the same, and the contribution of the spin

pair to the coherence function becomes negligible (Fig. 9.4(b)). When the amplitude ω−1

reaches a local maximum, the spin pair’s dynamics again significantly impacts the coherence

function.

This unique behavior of the hyperfine couplings determines the non-monotonic depen-

dence of TC
2 and of the compressed exponent n on the distance between the graphene layers

and the qubit. We note the good agreement between the pseudospin prediction and the exact

solution at small distances. For large values of ∆, the pseudospin model gives an underes-

timation of the coherence time, due to the longer correlation time τC and to higher-order

effects playing a dominant role.

Finally, we note that there are cases in which the choice of the substrate in van-der-Waals

structures can completely suppress the effect of the host at any host thickness of interest.

As an example, we consider h-BN as a substrate, whose nuclear spin bath contains 100%

concentration of spins with a high gyromagnetic ratio. Using CCE calculations up to the

second order, without quadrupole tensors included, we estimated the thickness of the qubit

host at which the coherence time is determined purely by the host spin bath. We found a

lower bound of ≈ 20 nm for MoS2 and ≈ 80 nm for WS2, respectively.
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9.1.4 Conclusions

In sum, we presented a theoretical study of the influence of the environment on the coherence

time of spin qubits in 2D materials. We found that both the nuclear spins of the substrate

and those of the host 2DM can act as sources of decoherence for the qubit. Our results

show that the composition of van-der-Waals heterostructures encapsulating the qubit may

be engineered to obtain longer coherence times.

Our calculations also revealed a complex behavior of the Hahn-echo coherence time as a

function of the thickness of the 2D material hosting the qubit. For thin hosts (∆ ≤ 5 nm) it

is possible to identify specifically which pairs of spins give rise to the oscillations observed in

the Hahn-echo decay time. This result points at the possibility of using the electron spin of

the qubit as a sensor of dipolar couplings within the 2D nuclear bath[140, 179]. For thicker

hosts (∆ ≥ 10 nm), we observed a transition from a quantum to a classical regime of the

induced decoherence, which might be revealed experimentally by using. e.g. a NV center in

diamond as a quantum sensor[180, 181].

Finally we note that for the 2DMs investigated here, other decoherence channels (spin-

orbit, spin-phonon interactions [182–184]) exist, which may play a significant role at nonzero

temperatures. Their contribution to decoherence needs to be carefully assessed in the future.

Although we focused only on the interaction of the spin defect with the nuclear spin bath,

our results point at the importance of the substrate and its composition in the design of

2DMs and van-der-Waals heterostructures for quantum applications.
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9.2 Detecting spin bath polarization with quantum quench phase

shifts of single spins in diamond

This section is adapted from the submitted work [10].

Single-qubit sensing protocols can be used to measure qubit-bath coupling parameters.

However, for sufficiently large coupling, the sensing protocol itself perturbs the bath, which

is predicted to result in a characteristic response in the sensing measurements. Here, we

observe this bath perturbation, also known as a quantum quench, by preparing the nuclear

spin bath of a nitrogen-vacancy (NV) center in polarized initial states and performing phase-

resolved spin echo measurements on the NV electron spin. These measurements reveal a

time-dependent phase determined by the initial state of the bath. We derive the relationship

between sensor phase and Gaussian spin bath polarization, and apply it to reconstruct

both the axial and transverse polarization components. Using this insight, we optimize the

transfer efficiency of our dynamic nuclear polarization sequence. This technique for directly

measuring bath polarization may assist in preparing high-fidelity quantum memory states,

improving nanoscale NMR methods, and investigating non-Gaussian quantum baths.

9.2.1 NV Center Characterization and Polarization

To experimentally investigate the quantum quench-induced phase shift (QPS), we study

single NV centers in natural isotope abundance IIa diamond at room temperature.

In order to study Gaussian bath dynamics, we identify single NV centers with suitably

weak hyperfine couplings. In a perturbative treatment, the Gaussian approximation holds for

τ < |A∥,j |−1, (A⊥,j)
−1 for all spins, and when maxj |A∥(⊥),j | ≪ ωL. Due to the stochastic

distribution of 13C spins around each NV center, some defects have strongly coupled nuclei,

which is unfavorable for these criteria. Ideally, a spin-free volume surrounds the NV center,

as in Fig. 9.5(a). Ref. [185] calculated a minimum spin-free radius of 0.5 nm for the bath
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to appear Gaussian at moderate magnetic fields. We filter candidate NVs based on narrow

optically detected magnetic resonance (ODMR) spectra, as in Fig. 9.5(b), which indicates

relatively weak total bath interactions and an absence of individual couplings larger than

the linewidth.

We select two NV centers with suitable local spin baths, NV A (FWHM linewidth 221(6)

kHz) and NV B (284(14) kHz). To fully characterize the respective nuclear spin environ-

ments, we apply the XY8 pulse sequence to each NV center to map out hyperfine coupling

parameters. Specifically, the XY8-2 sequence with 16 total π pulses isolates resonant features

in the coherence envelope of the NV center corresponding to the hyperfine interaction with

distinct nuclear spins [186, 187]. Fig. 9.5(c) shows the coherence data for NV A, and the

best-fit parameters for both NVs are displayed in Table 9.1. The data show that both NVs

are sufficiently distant from the closest nuclear spins to make the Gaussian approximation

reliable for roughly one nuclear Larmor period TL = 2πω−1
L . Using the fit parameters for

individual hyperfine couplings, we can compute ϵ for each NV based on Eq. (9.18), and find

estimated ϵ̃A = 0.094 and ϵ̃B = 0.77. Using NVs A and B, we investigate the appearance

of phase shifts during spin echo experiments. Since the QPS is only predicted to arise with

nonzero bath polarization, each measurement involves preparing the initial state of the bath.

The nuclear hyperfine parameters were extracted as follows. First, using the PyCCE [108]

package we generated 104 random nuclear spin configurations and computed their expected

XY8 signal. For each of the experimentally available NVs, we found a closest matching

random nuclear spin configuration and used it as an initial guess for the fitting procedure.

We then fit the experimental coherence to the analytical expression [186]:

⟨X⟩ =
∏
i

1−
(
1− n̂

(i)
0 n̂

(i)
−1

)
sin2

Nϕi
2
, (9.8)
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where

cosϕi = cosαi cos βi −m
(i)
z sinαi sin βi, (9.9)

1− n̂
(i)
0 n̂

(i)
−1 =

(
m

(i)
x

)2 (1− cosαi)(1− cos βi)

1 + cosϕi
. (9.10)

Here, m(i)
x =

a
(i)
⊥

w̃(i) and m
(i)
z =

a
(i)
∥ +wL

w̃(i) using w̃(i) =

√
(a

(i)
∥ + wL)

2 + (a
(i)
⊥ )2; angles are

αi = w̃(i)τ , βi = wLτ for each ith nuclear spin.

Starting from one nuclear spin, we increase number of spins by one in the fitting procedure

until the fit deviation from the experimental data stops decreasing. We then check the

robustness of the fit by removing each of the identified nuclear spins in turn, and for all

remaining nuclear spins we check whether the identified parameters have shifted. Only the

nuclear spins which are validated with the leave-one-out procedure are reported.

9.2.2 Origin of the NV Center Quench Phase Shift

First, we describe how a quantum quench phase arises in NV center spin echo experiments.

The NV center has a spin-1 electronic ground state, and an external magnetic field is applied

along its quantization axis. The NV’s 14N nucleus is also spin-1, but is polarized when the

applied field is well-aligned [188], as in this work, and does not affect the electron spin

dynamics. In natural isotopic samples, each NV is also surrounded by a 1.1%-abundant

bath of spin-12
13C nuclear spins. The relevant combined NV-bath spin Hamiltonian can be
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written in terms of NV electron spin Ŝα and nuclear spin Îα,j (α = x, y, z) operators as

Ĥ = ĤNV + Ĥbath + Ĥint, (9.11)

ĤNV = DŜ2z + γeB0Ŝz, (9.12)

Ĥbath = γnB0

∑
j

Îz,j , (9.13)

Ĥint =
∑
j

Ŝ · Aj · Îj , (9.14)

where D = 2π × 2.87GHz is the zero-field splitting, γe and γn are the electron and nuclear

gyromagnetic ratios, and Aj is the hyperfine tensor for the jth nuclear spin. Nuclear-

nuclear interactions are relatively weak (∝ γ2n) and can be neglected on the timescales of

our experiments. In this work, the electron level splitting dominates all energy scales, so the

secular approximation can be applied to recast the hyperfine terms into parallel (axial) and

perpendicular (transverse) terms for each nuclear spin as

Ĥint = Ŝz

∑
j

A∥,j Îz,j + A⊥,j Îx,j

 . (9.15)

From the perspective of bath spins, Ĥint is often described as the NV-state-dependent hy-

perfine field. With Ĥint ∝ Ŝz, the system is well approximated by pure dephasing models.

To simplify the problem further, we focus on nuclear spin environments that can be well

approximated as Gaussian baths. This limit is best satisfied for baths with many spins,

each weakly coupled to the central NV spin. For a given NV center and 13C distribution,

the Gaussian approximation holds for a time τ ≲
(
maxj |A∥(⊥),j |

)−1
. Operating in a pure-

dephasing, Gaussian bath regime enables the application of analytic QPS calculations for

our system.

Eq. (9.15) makes clear that an NV spin echo sequence produces an effective quantum

quench on the nuclear spin environment. At initialization and as long as the NV remains
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in |0⟩, Ĥint vanishes, and the bath evolves purely under Ĥbath. However, when the NV

is rotated to a superposition state, Ĥint once again contributes to bath dynamics. While

the consequences of Eq. (9.15) have been studied and used for nuclear spin sensing and

control, the quench dynamics which follow from the sudden activation of Ĥint have only

recently been explored. As shown in Ref. [189], a quench will occur whenever [ρ̂b,i, Ĥbath +

TrNV (Ĥint)/2] ̸= 0, with initial bath density matrix ρ̂b,i and TrNV denoting partial trace

over the NV degrees of freedom. The principal consequence of this quench for spin echo

measurements is an additional phase on the final state. Conceptually, this phase arises

because the change in bath dynamics conditional on the qubit state creates a net average

field from the bath. Concretely, in the NV-bath system, any bath spins initially oriented

along the z axis are stationary while the NV state is |0⟩. When the NV state changes, the

bath spins begin precessing around a tilted axis due to the A⊥,jŜz Îx,j terms. The precessing

bath spins can then induce phase accumulation on an NV superposition state.

Spin echo spectroscopy experiments typically investigate a system by mapping out its

coherence function. We can rewrite a generic coherence function W (τ) as

W (τ) ≡ ⟨σ̂−(τ)⟩
⟨σ̂−(0)⟩

≡ ⟨X⟩ − i⟨Y ⟩

= e−χ(τ)−iΦ(τ). (9.16)

Here, σ̂− ≡ (σ̂x − iσ̂y)/2 denotes the spin lowering operator, X/Y are Bloch vector com-

ponents, and χ and Φ parameterize qubit coherence and phase evolution, respectively. The

physical processes which determine ⟨X⟩ = e−χ cosΦ have been thoroughly examined in

previous studies, finding χ to be a function of the bath noise spectral density and the filter

function of the echo sequence. In the case where the NV undergoes a single (Hahn) spin echo

in the presence of a Gaussian spin bath described by Eq. (9.11), this has a simple analytic
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formula,

χ(τ) = 2ϵ sin4
(ωLτ

4

)
, (9.17)

where ωL is the Larmor frequency of the bath spins. The strength of the qubit-bath coupling

is parameterized with the dimensionless quantity

ϵ ≡
∑

j A
2
⊥,j

ω2L
. (9.18)

Note that χ is independent of the bath state. The corresponding oscillations in ⟨X⟩ have

been observed in numerous experiments. In contrast, Φ is usually found to vanish, reflected

in an absence of signal when measuring ⟨Y ⟩ = e−χ sinΦ. We show that nonzero Φ can

provide extensive information on the bath state.

We derive two contributions to Φ, one being the QPS, and both attributable to bath spin

polarization. The QPS, denoted Φq, can be derived using a linear response approach to be

Φq(τ) = p̄zϵ sin
2
(ωLτ

4

)
sin
(ωLτ

2

)
. (9.19)

Here, p̄z is the coupling-weighted axial polarization of the bath,

p̄z ≡
∑

j pz,jA
2
⊥,j∑

j A
2
⊥,j

, (9.20)

where pz,j ∈ [−1, 1] is the axial polarization of the jth nuclear spin. If ωL is known or

the τ -dependence is characterized, Φq is determined by only p̄z and ϵ. Since ϵ can be

characterized independently via Eq. (9.17), measuring Φq provides a direct readout of the

axial spin polarization in the local bath.

A second contribution to Φ originates from transverse bath spin polarization. Analogous

to a phase generated by nearby precessing classical magnetic moments, we label this term

Φm. Defining px,j and py,j in accordance with pz,j , Φm enters to first order with hyperfine
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Figure 9.5: (a) The 13C spin bath surrounding a nitrogen-vacancy (NV) center in diamond
can act as a Gaussian bath if no spins are closer than ≈ 0.5 nm to the NV center. By polariz-
ing the bath spins, a polarization-dependent phase appears in NV spin echo measurements,
which we observe and analyze under a Gaussian framework. (b) Optically detected magnetic
resonance of the NV center corresponding to the mI = 1 nitrogen nuclear spin state. The
FWHM is 2π× 221(6) kHz, and the single resonance indicates an absence of strongly coupled
spins. PL: photoluminescence. (c) Coherence revivals for NV A during an XY8-2 sequence
(16 pulses). Fits to the data are used to extract nearby spin coupling parameters, collected
in Table 1, and confirm the environment is sufficiently Gaussian.

couplings:

Φm(τ) =
2 sin2

(ωLτ
4

)
ωL

× (9.21)∑
j

A⊥,j

(
px,j sin

(ωLτ
2

)
+ py,j cos

(ωLτ
2

))
.

Here, we calculate Φm for a single sensor spin coupled to a Gaussian spin bath. A

key step in measuring the QPS is distinguishing Φq from Φm, since Φm features leading-

order hyperfine terms while Φq is second-order in the couplings, and in general experimental

systems exhibit nonzero transverse polarization. As we later show, the distinct physical

sources of phase allow us to separate them and extract information about the bath.
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NV 13C # A∥ (kHz) A⊥ (kHz) θ (deg) r (nm)
1 28.7(3) 81(1) 71 0.77
2 29.0(1) 46.9(9) 77 0.83

A 3 -9.8(2) 27.1(7) 35 1.27
4 0.3(4) 23(1) 55 1.34
5 11.4(4) 20.2(9) 76 1.13
1 -0.1(7) 177(1) 55 0.68
2 -39.4(7) 148(1) 40 0.73
3 87.9(4) 122(1) 102 0.58

B 4 -30.0(2) 80.5(9) 34 0.88
5 -16.0(3) 72(1) 42 0.94
6 51.7(7) 58(2) 100 0.71
7 -0.1(6) 45(1) 55 1.08

Table 9.1: Parallel (A∥) and perpendicular (A⊥) 13C hyperfine parameters obtained from
XY8 measurements as in Fig. 9.5(c). Approximate values of θ (azimuthal angle) and r (NV-
nuclear displacement) are calculated assuming pure dipole-dipole interactions.

9.2.3 Spin Echoes with Polarized Nuclear Baths

We use the Nuclear Orientation Via Electron spin-Locking (NOVEL) sequence [190] to

polarize the nearby nuclear spins. The NV is optically polarized to |0⟩ and rotated to

|±X⟩ = (|0⟩ ± |−1⟩)/2 prior to a spin-locking pulse of duration tSL. When the Rabi fre-

quency of the spin-locking pulse, ΩSL, matches ωL, resonant exchange occurs between the

NV and coupled 13C nuclei. This exchange is shown in Fig. 9.6(b), where the |X⟩ state

is measured after a single NOVEL pulse. The electron-nuclear resonance appears at the

expected γnB0 = 2π× 335 kHz. By repeating the NOVEL subsequence, polarization accu-

mulates in the bath and persists for much longer than the spin echo timescale of tens of

microseconds. The sign of the polarization transfer is determined by the choice of initial NV

center state (|±X⟩), providing a simple means to invert the bath polarization.

With a polarized bath, NV spin echo measurements exhibit additional oscillations. The

basic measurement framework is illustrated in Fig. 9.6(a), and consists of alternating steps

138



a b

c d

Bath polarization
via NOVEL

SLx

N
(π/2)y

tSL

NV-center
spin echo

X&Y projection

τ/2Laser τ/2
(π/2)y (π/2)x,y(π)y

twait

P(
|X
⟩)

 

 

tSL (µs)

Ω
S

L (
kH

z)

10 20 30 40 50

250

300

350

400

450

0.4

0.6

0.8

1
⟨X
⟩

⟨Y
⟩

no NOVEL
|↑⟩n
|↓⟩n

τ (µs)

N = 3 

τ (µs)
0 1 2 3 4 5

0.8

0.9

1

0 1 2 3 4 5

-0.2

0

0.2

⟨Y
⟩

 Ω
S

L (
kH

z)

τ (µs)
2 4 6 8

250

300

350

400

450

-0.1

0

0.1

Figure 9.6: NV center phase shifts appear when the bath is polarized. (a) Initial bath prepa-
ration and measurement sequence. N NOVEL repetitions transfer polarization from the NV
center to nearby nuclear spins, followed by phase-resolved spin echoes (PSE) to measure
both ⟨X⟩ and ⟨Y ⟩ components of the NV electron spin. (b) NV-bath oscillations during a
single NOVEL pulse, after the NV is initialized to |X⟩. Maximal polarization transfer is
observed when ΩSL = ωL = 2π× 335 kHz. (c) On resonance, no discernible difference is
observed in ⟨X⟩ (left), but ⟨Y ⟩ (right) shows bath-polarization-dependent oscillations. (d)
Using tSL = 4µs, N = 3, and preparing the bath into |↑⟩, a phase appears with nuclear
Larmor periodicity, but only near resonance. All data shown is taken on NV A.

that polarize the bath to a steady state and perform spin echo measurements. After N

repetitions of NOVEL re-establish steady-state polarization, we reinitialize the NV to |0⟩ and

initiate the spin echo after a delay of twait. Using different phases for the spin echo readout

pulse, we measure the ±X and ±Y components of the final state to reconstruct the amplitude

and phase – a phase-resolved spin echo (PSE). The combined NOVEL+PSE sequence is then

repeated 106-107 times to record average statistics. Conventionally, only ⟨X⟩ is measured in

an echo experiment, with NV-bath interactions producing coherence oscillations resembling

the blue data of Fig. 9.6(c). With a high-temperature bath, ⟨Y ⟩ provides no additional

information. However, when the bath is polarized (N = 3, green/purple curves), clear

oscillations in ⟨Y ⟩ appear on the timescale of the Larmor period. These phase oscillations
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Figure 9.7: Compensated measurement sequences ensure robust QPS detection. (a) Over
many repetitions, the NV-bath coupling during PSE measurement alters the equilibrium
bath polarization, but this effect can be minimized by following it with a non-measurement,
compensating spin echo (CSE) in the opposite triplet basis. The CSE begins a multiple
of the Larmor period (TL) after the start of the PSE. (b) Without CSE pulses, numerical
simulations of NV A show the equilibrium bath polarization and resulting PSE signal ⟨σ̂y⟩
are strongly affected by tsum = twait + nTL + tCSE , obscuring the quench phase shift
Φq. (c) When CSE is included, the bath polarization is robust against changing sequence
parameters. Deviations only become significant when the Gaussian approximation falters at
longer τ , approximately 3 µs for NV A. (d,e) Without CSE pulses, the PSE may not capture
Φq accurately, even within the valid Gaussian approximation regime. With CSE pulses,
the exact numerical results agree with the Gaussian approximation until the approximation
begins to deviate from analytical expectations. For the measurements in this work, ⟨Y ⟩ =
⟨σ̂y⟩.

follow the sign of the bath polarization (Fig. 9.6(c)) and are correlated with the spin-locking

resonance (Fig. 9.6(d)), clearly linking their origin to the polarized bath spins. Note that

⟨X⟩ shows no difference regardless of bath polarization; for Gaussian baths, polarization has

an imperceptible effect on this projection. Since ϵ is independent of the bath state, we fit

the ⟨X⟩ data for each NV to Eq. (9.17), resulting in measured values ϵA = 0.110(9) and

ϵB = 0.68(5). These values are in good agreement with the estimations ϵ̃A and ϵ̃B from

Sec. 9.2.1, increasing confidence in the extracted hyperfine parameters.
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Before quantifying and further investigating the spin echo dynamics, we refine the mea-

surement protocol to robustly extract the QPS. Since the combined measurement sequence

modifies the spin bath by design, the PSE sequence necessarily alters the bath preparation

entering the next repetition of the experiment. This can produce a confounding effect when

sweeping a spin echo or NOVEL parameter, as we demonstrate through numerical simula-

tions. In Fig. 9.7, we simulate the exact spin dynamics of NV A and its nearby 13C spins,

using the measured hyperfine parameters, while evolving under the preparation and mea-

surement sequence of Fig. 9.7(a). The simulated sequence is repeated until the bath reaches

a steady state. We calculate ⟨σ̂y⟩, which is equal to ⟨Y ⟩ for our measurements. Each trace is

an average over a range of twait to reduce the effects of nuclear precession, which isolates the

Φq component, as will be addressed in more detail in Section 9.2.5. In Fig. 9.7(b), we begin

by incorporating only the NOVEL and PSE elements, followed by a variable wait period.

We define tsum as the interval between the Nth NOVEL pulse and the first NOVEL pulse

of the next repetition. Despite only changing tsum, i.e., varying the wait time between rep-

etitions, we note dramatic changes in the behavior of ⟨σ̂y⟩. This indicates the steady-state

bath polarization can strongly depend on the measurement parameters in addition to the

NOVEL parameters.

To mitigate this effect, we introduce a second, non-measurement spin echo performed on

the {0,+1} basis following the PSE in the {0,−1} basis, which we refer to as a compensating

spin echo (CSE). Because of the symmetry between the |±1⟩ states, the net effect of the CSE

is to reverse the PSE’s perturbation on the bath state to lowest order. Importantly, for the

most effective compensation, the initial pulses of the PSE and CSE are separated by a

multiple of TL, so that the bath spins are close to their state at the beginning of the PSE.

The benefit of compensation is shown in Fig. 9.7(c), where the simulations are repeated

including the CSE. The echo signal is observed to be robust, indicating a bath state which

is not sensitive to parameters in the measurement sequence. At large τ , the computed ⟨σ̂y⟩
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does eventually exhibit noticeable difference for different tsum, but only after the Gaussian

approximation begins to break down. Heuristically, the PSE and CSE can each be viewed

as performing a ‘pulse’ on the surrounding bath. While the effect of the first such pulse

may be complicated in general, the bath can be restored to approximately its initial state

by performing an inverse pulse with appropriate timing.

In addition to establishing the robustness of the augmented measurement protocol, we

confirm that it accurately quantifies the QPS. Figs. 9.7(d) and 9.7(e) show three separate

calculations of ⟨σ̂y⟩ for tsum = 41.25 µs. These calculations each stem from the same simula-

tion of the NV A spin cluster, but incorporate the steady-state bath polarization components

p̄z and p⊥ =
√
p2x + p2y (at the start of the PSE) in different ways, as follows:

(i) The Gaussian curve (dashed orange) plots the QPS signal for a Gaussian bath with

ϵ = ϵA and p̄z only.

(ii) The analytical curve (dotted black) plots the exact dynamics for p̄z only.

(iii) The numerical curve (solid blue) plots the exact dynamics including both p̄z and p⊥.

Without the CSE (Fig. 9.7(d)), the ⟨σ̂y⟩ signal is biased by p⊥ contributions and differs

from Φq by roughly a factor of 2. Including the CSE (Fig. 9.7(e)) eliminates the bias,

indicating that Φq can be extracted by averaging over twait. These simulations also confirm

that the Gaussian approximation is reliable for τ ≲ 3 µs. In ensuing experiments, we use the

full compensated PSE sequence to quantify Φm and Φq.

9.2.4 Simulations details

All simulations were carried out by numerically diagonalizing the time-independent model

Hamiltonian and computing the corresponding propagators for each of the parts of the pulse

sequence. Control pulses on the NV and NV reinitialization via laser pulse were assumed
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Figure 9.8: Simulations comparing the analytics, Gaussian, and numerics for the uncompen-
sated (a,c,e) and compensated pulses (c,d,f) at three different values of tsum
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Figure 9.9: Colormap showing the ⟨σ̂y⟩ differential between analytical and numerical simu-
lations for the uncompensated (a) and compensated (b) sequence.

to be instantaneous, and rotating wave approximation was used for the NOVEL sequence.

Interactions between nuclear spins were neglected.

To recover the steady-state polarization, each simulation included 50 cycles of the full

experiment (5 NOVEL periods, PSE sequence, and CSE sequence when applicable). The

nuclear and electron states, used in Figure 3, are recorded at the last cycle. The simulation

included the following parameters: twait was varied between 5 and 20.6 µs, tSL = 3 µs,

nTL = 6 µs.

Figures 9.8 and 9.9 show additional numerical data for the effect of compensating pulse at

the phase signal of NV A. We observe a great match between numerical predictions using the

whole sequence and analytical equations using the quench phase only when compensating

pulse is applied. In the absence of compensating pulse, the behavior of the numerical curve

deviates from the analytical expressions and thus cannot be used to recover the properties

of the bath.

9.2.5 Phase Shift Measurements

Using the measurement sequence of Fig. 9.7(a), we observe phase shifts on our single NV

centers which correspond to the polarization and precession of the nuclear spin bath. In
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Fig. 9.10(a) (NV A) and 9.10(b) (NV B), we vary twait while holding all other sequence

parameters constant. We choose τ = π/ωL = 1.5 µs, which maintains large signal while

simplifying Eqs. (9.19) and (9.21) to

Φq

(
τ =

π

ωL

)
=
p̄zϵ

2
, (9.22)

Φm

(
τ =

π

ωL

)
=

1

ωL

∑
j

A⊥,j px,j . (9.23)

The resulting oscillations match ωL and arise from the precession of the nuclear spin state

after the final NOVEL pulse. The NOVEL preparation gives rise to p⊥ > 0 through two

mechanisms: appreciable A∥ components relative to ωL, and spin-locking in the asymmetric

{|0⟩ , |−1⟩} basis. The latter is particularly easy to overlook for the NV center, since its

triplet structure is often reduced to a two-level system to simplify calculations. As described

by Eq. (9.21), any transverse polarization produces a ⟨Y ⟩ signal. After the final NOVEL

pulse, the initial transverse polarization will precess during twait between px and py:

px,j = p⊥,j cos
(
ωLtwait + φj

)
,

py,j = p⊥,j sin
(
ωLtwait + φj

)
.

(9.24)

φ is the initial phase of the transverse polarization. Previously, related oscillations have

been detected in ensemble experiments [191, 192], but are observed here at the single-NV

level and quantified in a Gaussian framework. Combining Eq. (9.23) with the parameters

in Table 9.1, and assuming a uniform initial bath polarization via p⊥,j = p̃⊥, φj = φ,

we can estimate the mean transverse polarization p̃⊥. By fitting the oscillations, we find

p̃⊥ = 0.32(1) for NV A using tSL = 3.75 µs, and 0.107(5) for NV B using tSL = 4.5 µs (purple

data sets of Figs. 9.10(a) and 9.10(b)). By tuning tSL, we minimize p̃⊥ (Fig. 9.10(d)),

achieving p̃⊥ = 0.003(15) for NV A and 0.004(4) for NV B. These measurements do not

suffice to uniquely determine the transverse polarization of each nearby nuclear spin, but do
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provide a means of rapidly estimating it with a single quantity – the oscillation amplitude

– to adjust for nonideal behavior in polarization sequences. Even without quantifying the

bath’s hyperfine constants, this metric provides qualitative feedback when optimizing bath

preparation sequence parameters.

Within the same PSE data set, we observe the QPS and use it to quantify p̄z. In

addition to the oscillating Φm component, we detect a constant phase offset as a function

of twait. Φq is independent of twait, since decay of nuclear polarization is negligible on the

timescale of twait. The Φm component of Φ can be canceled by averaging ⟨Y ⟩ over twait or,

equivalently, fitting the ⟨Y ⟩ oscillations to an offset. Thus, both Φm and Φq ∝ p̄zϵ can be fit

simultaneously to ⟨Y ⟩ = e−χ sinΦ, using the previously measured ϵ. For the optimal values

of tSL (green data sets), we measure p̄(z,A) = 1.00(11) and p̄(z,B) = 0.77(2).

The observed Φq exhibits the predicted QPS characteristics. Φq is sensitive to the di-

rection of bath polarization, as in Fig. 9.10a, where the offset inverts along with the bath

state. When transverse polarization is present, sweeping twait is necessary to confirm the

sign of the offset, since |Φm| can exceed |Φq|. Alternatively, with fixed twait, τ can be swept

to map the Φ(τ). Both ⟨X⟩ and ⟨Y ⟩ are needed to correctly calculate |W | ≡ e−χ and Φ.

In Figs. 9.10(e) and 9.10(f), the fits to Φq for both NVs with minimized p̃⊥ show that Φq

closely matches the predicted dynamics of Eqs. (9.17) and (9.19).

As with p̃⊥, we examine the dependence of p̄z on tSL. In Fig. 9.10(c), both NVs exhibit

similar trends: p̄z improves where tSL ∼ TL, and is reduced where p̃⊥ is largest. While pre-

dicting tSL dependence in general requires knowledge of the spin bath, PSE measurements

offer a simple method to investigate parameter sensitivity without exhaustively characteriz-

ing the bath. p̄z exceeding unity is observed for NV A, and can be attributed to uncertainty

in ϵA, which is used as a constant for calculating all p̄z,A values. The confidence intervals

for NV A are larger than NV B since the QPS is smaller for A, leading to larger fractional

uncertainty.
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Figure 9.10: Observation of quench phase shifts and corresponding polarization measure-
ments. (a,b) Phase evolution with τ =1.5 µs on NVs A (a) and B (b) with respect to twait,
and for several tSL. The oscillations correspond to the precession of transverse nuclear po-
larization, manifesting in an oscillating Φm as described in Eqs. (9.21) and (9.24). The
constant offset is Φq ∝ p̄z. NV B, with stronger hyperfine couplings, exhibits both larger
Φm and Φq. (c,d) The bath polarization state is optimized by tuning tSL. Each point is
determined by fitting a sweep of twait, as in (a,b), to the combined Eqs. (9.19), (9.21), and
(9.24). (e,f) The time evolution of the coherence magnitude |W | and Φ, fit to Eq. (9.19),
with p̃⊥ minimized for each NV using tSL =2.75 µs.
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Figure 9.11 shows numerical simulations in comparison with the results from Fig. 9.10.

We observe an excellent agreement for NV A in both the observed signal (⟨Y ⟩) and derived

quantities (p̃⊥ and p̄z.). Still, we note that the parallel polarization seems to be overestimated

in the experiment by about 20%, at all data points. The overestimation stems likely from

the uncertainty in the value of ϵ.

NV B shows worse agreement with the theory in the ⟨Y ⟩ simulations, hinting that not

all relevant nuclear spins were determined with dynamical decoupling spectroscopy, or the

internuclear interactions play non-negligible role.

Overall, we have used single NV centers in diamond to observe a periodic phase shift

which arises in spin echo measurements due to axial polarization of surrounding nuclear
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bath spins. This quantum quench phase shift has been predicted previously through lin-

ear response calculations of Gaussian spin baths, and arises due to the bath Hamiltonian’s

dependence on the qubit state. We have extended the existing theory by calculating the

effects of transverse polarization and multiple spin echo pulses, which are relevant to exper-

imental implementations. A critical step in observing the quench phase was introducing a

pulse sequence to minimize changes to the bath polarization due to many repetitions of the

measurement protocol.
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CHAPTER 10

PREDICTIVE METHODS FOR LOW-DIMENSIONAL

ELECTRON SPIN BATH SYNTHESIS IN DIAMOND.

This chapter is adapted from the early draft of [12].

The nitrogen vacancy (NV) center in diamond, a well-studied, optically active spin de-

fect, is the prototypical system in many state-of-the-art quantum sensing and communication

applications. In addition to the enticing properties intrinsic to the NV center, its diamond

host’s nuclear and electronic spin baths can be leveraged as resources for quantum informa-

tion, rather than allowed to act solely as decoherence sources. However, current synthesis

approaches result in stochastic defect spin positions, reducing the technology’s potential for

deterministic control and yield of NV-spin bath systems, as well as scalability and integration

with other technologies. In this chapter, we demonstrate the use of theoretical calculations of

central spin decoherence as an integral part of an NV-spin bath synthesis workflow, provid-

ing a path forward for the quantitative design of NV center-based quantum sensing systems.

We use computationally generated coherence data to characterize the properties of single

NV qubits across relevant growth parameters to find general trends in coherence time dis-

tributions dependent on spin bath dimensionality and density. We then build a maximum

likelihood estimator with our theoretical model, enabling the characterization of a test sam-

ple through NV T ∗
2 measurements. Finally, we explore the impact of dimensionality on the

yield of strongly coupled electron spin systems. The methods presented herein are general

and applicable to other qubit platforms that can be appropriately simulated.

10.1 Introduction

Defect color centers in diamond [193, 194] have been demonstrated as quantum magne-

tometers [195–203] and nodes in quantum communication networks [46, 204–207]. Quantum
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applications of the nitrogen vacancy (NV) center, with a spin-photon interface and coherent

operation up to and above room temperature [141, 193, 208, 209], will benefit from interfac-

ing the central NV spin qubit with accessible dark spins in the diamond lattice for quantum

memories [210–212] and many-body metrological states [213, 214]. These applications could

enable national-scale quantum networks and quantum sensing beyond the standard quan-

tum limit. Explorations of such multi-spin systems have relied on NV centers that are either

naturally occurring [46, 207, 211, 212, 215, 216], precluding scalability, or that are formed

via nitrogen implantation [217–224], introducing qubit decoherence sources, associated with

crystal damage [225].

Diamond-based quantum applications benefit greatly from the ongoing optimization of

bottom-up color center synthesis via plasma-enhanced chemical vapor deposition (PECVD)

[226–229]. Delta(δ)-doping studies [230, 231] have demonstrated vacancy diffusion-limited

spatially localized NV centers, while avoiding the crystal damage and processing inherent to

aperture mask or focused implantation [232–238]. PECVD of diamond quantum systems has

enabled engineering of NV center spin environments via isotopic purification [230, 239, 240],

dimensionality control [230, 241, 242], and co-doping techniques [73, 243, 244]. However,

the development of these techniques has outpaced computational efforts to model spin bath-

induced decoherence [174, 245], and theoretical approaches have not yet been applied to

investigate diamond qubit synthesis. Cluster Correlation Expansion (CCE) methods provide

an accurate tool to model decoherence in varied and tailored electron and nuclear spin bath

environments [54]. Such approaches have recently been applied to study material systems

relevant for quantum applications [56, 72, 108, 245], indicating that CCE may indeed be a

powerful tool to enable more efficient synthesis procedures, which are crucial for the design

of quantum materials [246].

In this work, we apply CCE methods, as implemented in the open source framework Py-

CCE [108], to predict and characterize bottom-up solid state spin qubit synthesis. We first
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introduce the computation and materials growth techniques. We then explore a common

defect created during NV center synthesis: the neutrally charged substitutional nitrogen

N 0
s with electron spin S = 1/2 (P1 center). Using theoretical predictions, we investigate

the P1 center spin bath-induced decoherence [174, 247] of NV centers in diamond across the

parameter space of our growth regime (P1 density and layer thickness). Obtained depen-

dencies enable us to use the coherence time as descriptors of these systems for determining

the parameters of the growth. For that we develop a maximum likelihood estimation (MLE)

model based on Ramsey T ∗
2 coherence times and apply it to characterize nitrogen incorpo-

ration in a experimental test sample. We then study low-dimensional electron spin baths

as hosts to strongly coupled electron spin systems, demonstrating how our computational

techniques can help improve the yield of future quantum devices and aid in experimental

design.

In Fig. 10.1 we show the strategy adopted in this work to improve upon the current NV

synthesis process. The blue boxes show the commonly adopted process for generating single

NV centers. After identifying a desired sample density and geometry, iterations of growth

and secondary ion mass spectroscopy (SIMS) are necessary to confirm the nitrogen doping

density. In practice, we have observed large variations in SIMS results that reduce the efficacy

of this approach, as discussed in Sec. 10.2.2. Here we show that it is beneficial to incorporate

theoretical spin bath predictions as well as an in-situ density characterization tool into

our workflow (green boxes). The understanding of low-dimensional spin bath decoherence

obtained through theory and computation improves initial experiment design, and the local

density feedback enabled by the MLE model circumvents the need for SIMS characterizations

of doping density.
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Figure 10.1: Growth process workflow. The current process steps (blue) for synthesizing a
diamond NV sample. Iterations of growth and SIMS analysis are required to confirm nitrogen
doping densities. The theoretical predictions and density maximum likelihood estimation
model in this work (green) enable a non-destructive feedback process to circumvent SIMS
and allow for an efficient experimental design.

10.2 Results

10.2.1 Validation of theoretical calculations

Within the CCE approach [47, 48] the coherence function L(t) = ⟨0|ρ̂(t)|1⟩
⟨0|ρ̂(0)|1⟩ , defined as the

normalized off-diagonal element of the density matrix of the qubit ρ̂(t), is approximated as

a product of irreducible contributions of bath spin clusters, where the maximum size of the

cluster n corresponds to the order n of the CCEn approximation (Fig. 10.2(a)). We converge

the calculations with respect to the size of the bath, and the order of CCE approximation.

We find that the Ramsey signal of the electron spin in the electron spin bath is converged

at first order (CCE1), when each P1 is treated as isolated spin. We can thus solve the P1-

limited Ramsey decoherence analytically, and compute T ∗
2 as a sum of the couplings between

the NV and the weakly coupled P1 centers. The Hahn echo signal is instead simulated at

the CCE4 level of theory (see Methods for more details).

We validate our theoretical calculations against a reference dataset of NV ensemble co-

herence times in bulk 14N P1 spin baths. We extract T2 from the coherence curve by fitting

the signal to a stretched exponential function, exp
{
[−( t

T2
)n]
}

, as shown in Fig. 10.2(b).

Computed ensemble T ∗
2 and T2, averaged over a set of random P1 positions, are overlaid in
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Figure 10.2: Computational and diamond growth methods. (a) Schematic representation of
the cluster correlation expansion (CCE) approach. (b) Example of the Hahn-echo coherence
calculated using the PyCCE code [108] for various 14N P1 spin baths. The values of T2
times are extracted from a stretched exponential fit of the form exp

{
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(dashed
line). (c) T2 and T ∗

2 coherence times overlaid with corresponding experimental data [174],
validating our computational methods. (d) Schematic of isotopically pure (12C) PE-CVD
(100) diamond overgrowth with isotopically tagged 15N nitrogen δ-doping. This sample
geometry with varying nitrogen incorporation density and thickness is considered throughout
this paper. (e,f) Carbon (top) and nitrogen (bottom) isotope concentrations measured via
SIMS on characterization sample, demonstrating isotopic purification of host material and
isotopically tagged nitrogen incorporation.
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Fig. 10.2(c) with experimental data, taken from Ref. [174]. We find excellent agreement with

the experimental data, showing that the first-principles calculation with CCE method yields

a quantitative description of the decoherence due to P1 spin baths. The stretched exponent

parameter of the computed Hahn-echo decay is between n = 1.2-1.3, in excellent agreement

with the data of Ref. [174].

10.2.2 Diamond growth and defect synthesis

The sample studied in this paper, shown schematically in Fig. 10.2(d) was grown with a

3min 10 sccm 15N2 flow at a time corresponding to a depth of ≈50 nm. Nitrogen δ-doping is

achieved by introducing 15N2 gas (99.99% chemical purity, 99.9 at% isotopic purity) during

diamond growth. According to the SIMS characterization of a calibration sample, shown in

Fig. 10.2(e-f), this creates a 3.8(2) nm thick (compared to 1.3+2.2
−0 nm predicted from growth

calibrations) 15N-doped layer at a depth of 50.2(1) nm, with a SIMS-quantified [15N] density

of 0.39(2) ppm. These values are obtained from a calibration sample, processed and grown

identically to the sample studied in this paper.

While SIMS is ideal for detecting low concentrations of dopants in semiconducting ma-

terials, sample geometries unique to our application remain difficult to characterize accu-

rately due to experimental trade-offs. Specifically, the trade-off between depth resolution

and overall sensitivity is dictated by the analysis/sputtering energy. Under our characteri-

zation conditions, the ideal detection limits for 15N2 and 14N2 densities are 1 × 1015 cm−3

(≈0.006 ppm) and 5×1015 cm−3 (≈0.028 ppm), respectively. However, the obtained densities

can vary significantly as a function of sample inhomogeneities, the presence of growth defects,

and experimental conditions. While studying samples that were nominally grown under the

same conditions, SIMS quantification of [15N] has been observed to regularly vary by at

least an order of magnitude, requiring rigorous statistics over growth of multiple samples, a

time- and resource-consuming process. A truly local spin-defect materials characterization
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method is necessary, motivating the in-situ maximum likelihood estimation of the density

characterization presented in Sec. 10.2.5, a new capability enabled by our computational

results. A different approach with NV ensemble coherence measurements has also recently

been developed [241, 242].

10.2.3 Single spin coherence in quasi-2D electron bath

We now turn to investigating single spin coherence properties across the density and thickness

parameter space available for the PECVD growth recipe adopted in this work and described

in Methods section.

We compute Ramsey coherence time T ∗
2 (Fig. 10.3(a), left) for 104 spin bath configura-

tions with spin bath thickness of 0.5 nm to 12 nm (0.5 nm steps) and density of 0.5 ppm to

12 ppm (0.5 ppm steps) from the coupling between the central NV spin and weakly coupled

P1 spins (see Methods). We simulate Hahn-echo measurements (Fig. 10.3(a), right) with

spin bath thicknesses of 1 nm to 10 nm (1 nm steps) and densities of 1 ppm to 12 ppm (1 ppm

steps) (See SI Sec. IB for justification of CCE order).

We characterize the distributions of the coherence times with the mean µ = 10⟨log T2/[1ms]⟩

and the variance σ2 = ⟨log2 T2⟩ − ⟨log T2⟩2 of the logarithm of the coherence times at each

density and thickness (Fig. 10.3). Using the logarithm of the coherence we can directly

compare the coherence distributions at different timescales.

Figs. 10.3(b,c) and (d,e) depict µ and σ over the chosen range of parameters for T ∗
2

and T2, respectively. In each case, the computed average coherence time decreases with

increasing spin density and/or increasing thickness, as expected. In the three-dimensional

limit, the average coherence time is independent of bath thickness. Observed decrease in

µ as a function of thickness (Fig. 10.3(b) and (d)) suggests the presence a low-dimensional

spin bath regime in the chosen range of parameters.

We analytically derive the distribution of the interaction strength between the central
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Figure 10.3: Single spin coherence in low-dimensional spin baths. (a) Ramsey (left) and Hahn
echo (right) microwave measurement pulse sequences. (b,c) Mean of log T ∗

2 distributions
µ = 10⟨log T

∗
2 ⟩ (b) and variance σ2 = ⟨log2 T ∗

2 ⟩−⟨log T ∗
2 ⟩

2 (c) as a function of P1 density and
layer thickness. Values are linearly interpolated between datapoints. The black dashed line in
(c) indicates the thickness equal to the average nearest-neighbor bath spin distance ⟨rnn⟩ =
0.554ρ−1/3 for each density ρ (see text, Sec. 10.2.6), demonstrating a boundary between
dimensionalities. At right in (b,c) are line-cuts of µ and σ at densities of 1, 5, and 9 ppm.
Inset in (c) is σ at multiple densities with thickness normalized by ⟨rnn⟩, demonstrating
universal behavior versus dimensionality. (d,e) Same data as (b,c) presented for T2 coherence
times.
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spin and bath spins in low-dimensional baths in Sec. 10.2.6. In the case of T2, we predict

times >1ms, beyond what is generally observed in experiment. This suggests that experi-

mental T2 times in thin, low density spin baths are limited by noise sources not captured in

our model, as suggested previously [174]. However, our calculations predict that, in princi-

ple, low dimensional lightly doped samples can realize T1 limited coherence times at room

temperature.

Bath dimensionality further impacts the relative distribution of coherence times, de-

scribed by the standard deviation σ. Focusing on the inhomogeneous dephasing time T ∗
2

(Fig. 10.3(c), right), σ exhibits unexpected behavior in the region where the thickness equals

the average nearest neighbor distance in three dimensions, ⟨rnn⟩, plotted as a function of

density in the left plot. σ plateaus when the thickness is smaller than ⟨rnn⟩ and decreases

when thicknesses are larger. The inset in Fig. 10.3(c), right, demonstrates universal behavior

of coherence times relative to the bath dimensionality. The x-axis is normalized to ⟨rnn⟩.

This indicates that two-dimensional spin baths naturally have a wider spread of NV coher-

ence times. While thin and less dense samples may optimize coherence times, they typically

also lead to greater fluctuations in single-qubit coherence properties.

We see similar trends in Hahn-echo T2 times (Fig. 10.3(e), right). We find in general that

σT ∗
2
> σT2 . In the SI Sec. IC, we find convergence for T ∗

2 and T2 at twelve and 100 bath

spins, respectively, suggesting heuristically that Ramsey measurements are sensitive to the

variation of a fewer number of spins. In general, one expects a smaller standard deviation

in physical quantities that are sensitive to larger numbers of randomly placed spins due to

the central limit theorem. We thus expect a larger impact of the stochasticity in P1 position

on the T ∗
2 distributions. These results inform solid-state qubit synthesis characterization,

where both T ∗
2 and T2 are standard measurements performed on multiple NV centers.

Our theoretical results constitute a full computational characterization of spin-bath in-

duced coherence times across a range of bath geometries and densities. Our computational
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strategy is not limited to NV centers in diamond and can be applied to other spin defect sys-

tems, as well as other spin bath measurements, as long as the appropriate pulse sequence can

be simulated using the PyCCE code. Additionally, our approach will inform future diamond

growth and NV synthesis. Rather than extrapolating from bulk data [174] or measurements

on single δ-doped NV centers, growth may now be informed by the theoretical predictions

of coherence times distributions.

10.2.4 Sample characterization

We now characterize the coherence of an exemplar sample grown under the conditions out-

lined in Sec. 10.4.2. Fig. 10.4(a) presents frequency-dependent double electron-electron reso-

nance measurements of a single NV center in a P1 center bath. This measurement essentially

performs electron spin resonance (ESR) spectroscopy on target spins by recoupling their

dipolar interactions to the NV probe spin, which are otherwise decoupled by the Hahn-echo

sequence. At the experimental magnetic field of 311G, and given 15N P1 hyperfine cou-

plings, we expect, based on the possible P1 Jahn-Teller axis directions and 15N nuclear spin

states (see Methods), transitions near 935MHz and 954MHz for the three misaligned and

one aligned axes, respectively, and the nitrogen nuclear spin state +1/2 probed here (only

half the bath is probed in this data). We observe resonances at mircowave light frequencies

fP1 of 934.8MHz (fP1,3/8) and 953.1MHz (fP1,1/8). The subscripts indicate the fraction

of the bath probed at that frequency. This confirms the presence of 15N P1 centers in our

sample.

We measure T ∗
2 times for a set of eight single NV centers in the same test sample.

Fig. 10.4(b) shows characteristic Ramsey interferometry data for the one of these NV centers.

Data is fit to an exponential decay with oscillations capturing coupling to single nearby P1

centers, as in the Ramsey analysis in Sec. 10.2. While the 15NV center exhibits a ≈3MHz

splitting from its nitrogen nuclear spin, CCE calculations do not account for the central spin’s
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b

Figure 10.4: NV center measurements. (a) DEER spectroscopy with NV center confirming
the presence of a P1 center electron spin bath. Marked values of fP1 correspond to P1 ESR
transitions corresponding to the static magnetic field and internal P1 hyperfine parameters.
(b) Ramsey interferometry measurement to extract T ∗

2 coherence time. (c) Compiled deco-
herence rates for eight measured NV centers overlaid with the best calculated distribution
fit. The height of each data point indicates the PDF value for that time, and is not extracted
from the measurement.

nuclear spin. We are careful to drive with 909 kHz Rabi rate pulses to avoid mixing nuclear

hyperfine effects into our measurement. This NV exhibits T ∗
2=25(2)µs (see SI Sec. III for

details of NV measurements). This process is followed for the remaining NV centers.

Decoherence rates for the set of measured NV centers are plotted in Fig. 10.4(c) along

with the calculated probability distribution function (PDF) that best fits the measured

distribution as determined via MLE, discussed in the next section. The aim in the following

section will be to determine which calculated distribution best fits this dataset.
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10.2.5 Maximum likelihood estimation

Using the theoretical dependence of the coherence time distributions on thickness and P1

density, in this section we develop the maximum likelihood model (MLE) to recover the

growth parameters of the given sample. Taking interpolated distributions f(T ∗
2 ), recovered

from the numerical data, the likelihood of a given bath configuration is calculated as the

joint probability of the {T ∗
2 } dataset for each pair of bath thickness t and density ρ as [248]

L(t, ρ) =
∏
i

f(t, ρ, T ∗
2,i). (10.1)

The MLE procedure determines what coherence distribution best predicts the measured

distribution in Fig. 10.4(c). In Fig. 10.5(a) we plot L(t, ρ) over the computational phase

space for the coherence times in Fig. 10.4(c). We find a band of potential bath geometries

that satisfy the observed coherence time distribution, rather than uniquely predicting a

single set of values. Based on the CVD growth discussed in Sec. 10.4.2, we estimate the

bath thickness at tSIMS =4nm and plot the linecut of L in Fig. 10.5(b). This provides a

measure of the bath density of 3.6(7) ppm, where the error is found by fitting L(tSIMS , ρ)

to a normal distribution.

We now benchmark the error in the MLE procedure versus the number of coherence

time samples in Fig. 10.5(c). For each number of samples, N , and set of bath parameters,

200 random T ∗
2 datasets of N coherence times are chosen from the numerical datasets used

in Sec. 10.2. Then, the likelihood is calculated for a fixed thickness t0, and the relative

error for one dataset is calculated as ϵ2ρ0 = (ρmle − ρ0)
2/ρ20, where ρmle is the density such

that L(t0, ρmle) = max [L(t0, ρ)]. This is averaged over a range of tested densities, plotted

in Fig. 10.5(c). We calculate the error for eight samples to be 25%, corresponding to an

uncertainty of 0.9 ppm for the density estimate from Fig. 10.5(a). This is similar to the error

from fitting L, and is stable when the thickness is varied. We fit the average error as A ·N−p,

shown over the calculated error in Fig. 10.5(c), finding a N−1.6 trend.
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b c

Figure 10.5: Maximum likelihood estimation. (a) Likelihood of dataset in Fig. 10.4(c) cal-
culated for each set of bath parameters, from theoretical results. (b) Likelihood restricted
to a thickness of tSIMS =4nm (from Fig. 10.2(e)), from which we extract a density of
3.6(7) ppm. (c) Calculated error of density estimation across full density range with fixed
thickness, calculated for 200 random datasets at each density.
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10.2.6 Strong coupling yield

Entangled qubit-based sensors promise to greatly enhance quantum sensing capabilities as

compared to the current state-of-the-art [214]. The applicability of these schemes is enabled

by high-yield synthesis of strongly coupled quantum systems, e.g. NV center spins and

multiple single bath spins. We consider the impact of growth dimensionality on the yield

of such systems analytically, quantifying our results with numerical predictions. In our

calculations we consider central NV spins and P1 bath spins, but our approach is easily

generalized to other spin systems.

Each bath spin couples to the NV with a dipolar coupling strength Ai
z. The NV coherence

in the absence of dynamical protocols and coupled to a bath of many weakly coupled spins

can be described as a product of individual coupling contributions (see Methods).

We aim to describe how likely the coupling to the nearest spin, A0, is to be greater

than the dephasing from the rest of the bath, Abath. The distributions of nearest neighbor

distance rnn in two and three dimensions are

g2D = exp
(
−πr2nnς

)
ς 2πrnn, (10.2)

g3D = exp
(
−4πr3nnρ/3

)
ρ 4πr2nn, (10.3)

where ρ is the 3D density and ς = ρt is the 2D density for bath thickness t nominally less

than the average nearest neighbor distance. Notably, the distributions depend on the bath

dimensionality. The bath decoherence can be estimated as follows

Γbath2D ∝
√∑

2D

|1/r3|2 =
√∫∞

0 dr2πrςr−6, (10.4)

Γbath3D ∝
√∑

3D

|1/r3|2 =
√∫∞

0 dr4πr2ρr−6. (10.5)

We now define the visibility ν of the nearest neighbour spin as a ratio between its coupling
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b

Figure 10.6: Dimensionality dependence of strong coupling. (a) Computed distribution
(using PyCCE) of ratio of nearest-neighbor P1 coupling to background decoherence rate
for 105 3 ppm density P1 bath configurations with varying thickness. Curves are offset for
clarity. Shaded regions right of the dashed line indicate coupling ratio ≥ 2π. (b) Percentage
of NV-P1 bath systems with at least one strongly coupled bath spin for varying bath density
and thickness. Average spin-spin distance is marked atop curves for each density.
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to the central spin A0 and the decoherence rate induced by all other spins Abath

ν =
|A0|√
2Abath

, (10.6)

and evaluate average ν over many bath configurations. Assuming the point dipole ap-

proximation to compute the coupling between central and bath spins, we find the average

visibility at the given dimensionality as ⟨νkD⟩ = ⟨|A0|/
√
2Abath⟩ ≃ ⟨r−3

nn/
√
2ΓkD⟩, where

the distributions ΓkD (k = {2, 3}) are given by Eqs. (10.2) and (10.3). We note here that

averaging ΓkD assumes the dephasing rate due to the rest of the spin bath follows a highly

peaked distribution. We then ask if this average is larger for lower dimensional spin baths

by evaluating
ν2D
ν3D

=
⟨r−3

nn/Γ2D⟩
⟨r−3

nn/Γ3D⟩
=

√
2. (10.7)

We find that the visibility of the nearest neighbour spin is
√
2 larger in the 2D case, point-

ing at the fact that yield of strongly coupled bath spins is significantly higher in the low

dimensional systems.

We confirm these analytical predictions with numerical simulations. Using the PyCCE

code we generate 105 50 nm-thick P1 electron spin baths in a (001)-oriented diamond lat-

tice whose densities range over two orders of magnitude, and divide each bath into slices of

varying thickness. For each density and thickness we compute visibility ν (Eq. (10.6)). Rep-

resentative histograms for 3 ppm spin baths are shown in Fig. 10.6(a). As the bath thickness

decreases, the visibility distribution shifts to higher values, in line with the prediction from

Eq. (10.7). We follow the criterion laid out in the Methods and Eq. (10.11) below to identify

strongly coupled bath spins. We set a threshold for the visibility at ν ≥ 2π. At this value

coherence goes through a full oscillation period when the signal contrast reaches 1/e.

We plot the resulting probability of obtaining strongly coupled spins in Fig. 10.6(b) for

each density. At all densities, the likelihood of finding a NV-spin bath configuration with
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the desired coupling ratio is almost three times as high in the thin bath limit. Furthermore,

there is a crossover transition for each density from three-dimensional to two-dimensional

behavior, which intersects with the average nearest neighbor spacing ⟨rnn⟩ = 0.554ρ−1/3,

obtained from Eq. (10.3). Heuristically, as the thickness reduces below ⟨rnn⟩, there are no

spins proximal to the central spin in the out-of-plane direction, only in the plane of the

central spin. In SI Sec. IV we present a point of comparison between the analytical and

numerical approaches, finding agreement between calculated coupling distributions and the

result in Eq. (10.7).

10.3 Outlook

Point-defects in diamond and other wide-bandgap semiconductors are promising platforms

for qubit-based sensors. Deterministic synthesis of such systems will benefit from feed-

forward techniques that optimize host crystal parameters for specific outcomes and appli-

cations. Additionally, such systems pave the way for entangled qubit-based sensors which

hold great promise to enhance current quantum sensing capabilities. In this paper, we have

demonstrated holistic quantum simulations of NV center coherence (with techniques appli-

cable to other spin defects) as a tool for quantum system coherence characterization driven

synthesis, minimizing the need for large-scale and destructive materials characterization.

Practically, we showed how our approach allows, with basic prior sample knowledge, for the

use of rudimentary T ∗
2 measurements to approximate in-situ doping densities. Specifically,

we have demonstrated a MLE model based on a CCE-generated distribution library as an

aid to process calibration and sample characterization. This method is non-destructive and

operates at the density scales relevant for quantum technologies.

Additionally, the coherence distribution results presented in this paper explore the ex-

pected sample properties in low-dimensional spin baths. By going beyond approximate ana-

lytical treatments and sampling over a wide distribution of random bath configurations with
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a range of central spin-bath couplings, the CCE calculations quantitatively capture the con-

nection between bath geometries and coherence time distributions, providing an invaluable

analytical tool for experimental design.

While in this work we focus on a single dominant spin bath species in low-dimensional

geometries, our MLE method is not limited to this regime. CCE methods can readily be

extended to additional spin bath species in diamond, as well as mixed nuclear and electronic

spin baths. By calculating coherence times in these other situations, dopant densities in

samples with multiple dominant noise sources can be characterized. Furthermore, the strat-

egy presented here can be applied to other solid state hosts where qubit coherence is limited

by spin bath noise.

10.4 Methods

Our work builds on two previously established techniques, CCE calculations and PECVD

synthesis of NV centers in diamond as described below and in Fig. 10.2. We focus on the 15N

isotope of nitrogen for the majority of the calculations as this allows us to experimentally

distinguish intentionally doped defects from background occurring defects.

10.4.1 Theory

The dynamics of the systems are simulated using the following Hamiltonian:

Ĥ = −γeBzŜz +DŜ2z +
∑

i a(mi)P̂z,i − γeBzP̂z,i

+
∑

i SAiPi +
∑

i̸=j PiJijPj ,

(10.8)

where γe is the electron spin gyromagnetic ratio, Bz is the magnetic field aligned with

the z-axis, S = (Ŝx, Ŝy, Ŝz) are NV spin operators, D is the NV zero field splitting, P =
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(P̂x, P̂y, P̂z) are spin operators of the P1 center, and a(mi) is the hyperfine coupling between

the P1 15N nuclear spin and the P1 electron spin, dependent on the random orientation of

the Jahn-Teller axis along one of four crystal directions and the nuclear spin state for each P1

(mi), where i runs over all the simulated P1 centers [249]. Ai are dipolar couplings between

the NV center and P1 centers, and Jij is the coupling between two P1 electron spins. The

applied 50G is sufficiently past the high field limit and these calculations translate over to

measurements at higher fields as well (see SI Sec. IA).

In the SI (Sec. IB and IC) we show convergence tests for Ramsey and Hahn echo sim-

ulations versus both CCE order and total number of simulated bath spins. We use CCE

methods with bath state sampling [53] to achieve convergence for the electron spin bath.

For each pure electron bath state the state of 15N spin and the P1 orientation is chosen at

random. More details about the method are available in [108].

The CCE approach [47, 48] approximates the coherence function L(t) =
⟨σ−(t)⟩
⟨σ−(0)⟩ =

⟨0|ρ̂(t)|1⟩
⟨0|ρ̂(0)|1⟩ , the normalized off-diagonal element of the density matrix ρm,n of the qubit, where

m and n are either the ground or excited spin states |0⟩ and |1⟩, respectively. L(t) is ap-

proximated as a product of cluster contributions:

L(t) =
∏
i

L̃{i}
∏
i,j

L̃{ij}..., (10.9)

where L̃{i} is the contribution of a single bath spin, L̃{ij} is the contribution of spin pairs,

and so on for higher order clusters (Fig. 10.2(a)). The maximum size of the cluster n included

in the expansion denotes the order of CCEn approximation.

The Ramsey signal is converged at the first order of CCE. As such, we can represent the

high-field Ramsey coherence function in the rotating frame for a bath in a fully mixed state
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as [52]:

L(t) ≈
∏N

j cos Aj
zt
2 ≈ exp

[
−A2

bath
2 t2

]∏n
i cos

Ai
zt
2

= exp
[
−( t

T ∗
2
)2
]∏n

i cos
Ai
zt
2

(10.10)

where A2
bath =

∑
j(A

j
z)

2

4 , T ∗
2 =

√
2

Abath
index i goes over only n the strongly coupled P1

centers, and index j goes over all other P1s. We define strongly coupled bath spins as

those distinguishable from the background decoherence, setting threshold for its visibility

(Eq. (10.6)) as:

νi =

∣∣Ai
z

∣∣
2

≥ 2π · Abath√
2
, (10.11)

so that at least one full period of oscillation of the coherence function is visible when the

signal contrast reaches 1/e. For each random bath configuration we order the P1 spins

by strength of the coupling, and one-by-one select out the strongly coupled spins until the

condition (10.11) is violated. T ∗
2 is then recovered from the coupling to the remaining bath

spins.

Ref. [245] shows that CCE at second order can be used to qualitatively recover the

behaviour of T2 coherence times in the P1 bath. We further extend this approach, and

converge CCE Hahn echo calculations at 4th order with bath-state sampling (see SI Sec. IB

and Fig. S1(c)).

10.4.2 Materials growth

All defects studied in this work are doped in-situ during diamond PECVD with subsequent

electron irradiation and annealing for NV– activation. This recipe constitutes our stan-

dard PECVD process for growing isotopically pure diamond with isotopically tagged NV

centers, as shown in Fig. 10.2(d). High purity electronic grade (≤10 ppb) diamond sub-

strates 2mm by 2mm by 0.5mm, with ⟨001⟩ growth face and ⟨110⟩ sides (Element Six) were
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used as starting substrates. The as-received substrates were Chemical-Mechanical Polished

(CMP) to a surface roughness of Rq≤0.4 pm by Syntek, LLC. Subsequently, these substrates

were inductively coupled plasma reactive ion etched (ICP-RIE) down to remove ≈2.5 µm of

damaged diamond surface using a composite, cycled Ar/Cl2 and O2 plasma etching recipe.

Pre-growth, the samples were annealed at 1200 ◦C and tri-acid cleaned to mobilize/annihi-

late vacancy clusters and remove any amorphous/sp2 carbon, respectively. See SI Sec. II for

a more detailed description of sample processing.

Homoepitaxial growth of diamond was performed in a custom-configured PECVD re-

actor [250] (Seki Diamond). The growth chamber was pumped down to 8 × 10−8Torr to

minimize background contamination. Thereafter, high purity H2 (99.999 99%) was intro-

duced into the chamber, with the process microwave power of 11.5Wmm−2 and pressure of

25Torr maintained throughout. The substrate temperature was maintained in the range of

800(27) ◦C as tracked by an IR pyrometer. Before introduction of the diamond growth pre-

cursor, the sample was submitted to a H2 & O2 etch (4% of O2) for 5min and a subsequent

20min etch using H2 only, to etch away any residual surface contaminants and defects, and

expose the growth surface atomic step edges [227, 251]. Thereafter, 12CH4 (99.9999% chemi-

cal purity, 99.99 at% isotopic purity) is introduced as the carbon precursor. Isotopic growth,

demonstrated in Fig. 10.2(e), enables the study of electron spins in the absence of the nat-

ural 13C nuclear spin bath. The methane-to-hydrogen ratio is maintained constant at 0.1%

(H2:
12CH4 = 400 sccm : 0.4 sccm) as to ensure step-flow growth [227, 250]. Growth rates

for the obtained films were determined to be 38(10) nmh−1 via ex-situ secondary ion mass

spectroscopy (SIMS) analysis averaged over six calibration substrates (e.g., 12C overgrowth

shown in Fig. 10.2(e)).

Post-growth and nitrogen incorporation, bulk electron irradiation with a 2 × 1014 cm−2

dose at 2MeV and a 2 h anneal at 850 ◦C under an Ar atmosphere converts a fraction of

doped nitrogen into NV centers with [15NV] ≈ 0.01 ppb to 0.1 ppb, with the remaining
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nitrogen sites remaining as Ns (P1 centers). NV activation is intentionally performed in a

vacancy diffusion-limited regime [234] in order to reliably obtain optically resolvable single

NV centers. As the nitrogen doping is buried 50 nm below the diamond surface, we do not

expect band-bending effects on the defect charge states [252, 253].
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CHAPTER 11

ENTANGLEMENT AND CONTROL OF SINGLE NUCLEAR

SPINS IN ISOTOPICALLY ENGINEERED SILICON CARBIDE

This chapter is adapted from the publication [1].

Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for

spin qubits [254]. In this work, we demonstrate control of isolated 29Si nuclear spins in silicon

carbide (SiC) to create an entangled state between an optically active divacancy spin and

a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks

control of single weakly coupled nuclear spins and present an ab initio method to predict

the optimal isotopic fraction which maximizes the number of usable nuclear memories. We

bolster these results by reporting high-fidelity electron spin control (F=99.984(1)%), along-

side extended coherence times (T2 = 2.3 ms, TDD
2 > 14.5 ms), and a > 40 fold increase in

dephasing time (T ∗
2 ) from isotopic purification. Overall, this work underlines the importance

of controlling the nuclear environment in solid-state systems and provides milestone demon-

strations that link single photon emitters with nuclear registers in an industrially scalable

material.

11.1 Introduction

Nuclear spins are one of the most robust quantum systems, displaying relaxation times

that can exceed hours or days[255–257]. This makes them exciting candidates for quan-

tum technologies requiring long memory times. In particular, nuclear spins are attrac-

tive quantum registers for optically active spin defects in the solid-state [211]. For ex-

ample, nuclear registers can be used for repetitive quantum non-demolition (QND) optical

readout[258], to enhance the signal-to-noise in quantum sensing[259], to implement quan-

tum error correction schemes[135], or as vital components of quantum repeater [80] and
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quantum communications[204] nodes. Additionally, electron-nuclear hybrid systems provide

a platform for studying measurement back-action[260] and the emergence of classicality in

quantum mechanics [261].

Recently, commercial SiC has been shown to provide a technologically mature semicon-

ductor host for multiple defect spin qubits [4, 85, 86, 262–264]. In particular, this material

allows the integration of isolated color centers into classical electronic devices which can be

used to engineer and tune the spin-photon interface[100]. Combining such a tunable near-

infrared emitter[88, 265] with a long-lived quantum memory is a promising basis for quantum

network nodes fabricated at wafer scale by the semiconductor industry. To realize these quan-

tum memories, SiC provides both carbon and silicon isotopes with non-zero nuclear spin.

These isotopes have been shown to couple to various electronic spin defects[85, 266]; however,

the control of single nuclear spins[186] in SiC has remained an outstanding challenge.

In this work, we report coherent control and entanglement of nuclear spin quantum

registers strongly coupled to a single neutral divacancy spin (VV0) in naturally abundant

SiC. We then extend this control to weakly coupled nuclear spins, where isotopic purification

enables the selective control of these registers with high fidelity. Using isotopic engineering,

we also report both record coherence times and record single qubit gate fidelities[267] for

electronic spins in SiC. Throughout this work, we present both experiment and ab initio

theory that explores the inherent tradeoffs between spin coherence and nuclear memory

availability which are involved when isotopically engineering materials. These results develop

a full suite of nuclear spin controls in SiC and provide a guide for future materials design of

spin-based quantum technologies.

11.2 Strongly coupled nuclear registers

In natural SiC, 1.1% of the carbon atoms and 4.7% of silicon atoms possess an I = 1/2 nuclear

spin. Thus, about a third of all single c-axis oriented (hh and kk) divacancies will have a 29Si
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Figure 11.1: Initializing, controlling and entangling strongly coupled nuclear spins. (a)
Schematic of a single divacancy with surrounding nuclear spins. (b) Optically detected
magnetic resonance of a single (kk) VV0 after initialization of both the electron and either 1
(top) or 2 (bottom) strongly coupled nuclear spins. Top: initialization in either the |↑⟩ (red)
or |↓⟩ (blue) nuclear spin states. Detuning is from 1.139 GHz. Bottom: dashed line (black)
represents the expected results from an uninitialized state, blue line is the experimental
initialized state. Detuning is from 2.153 GHz. (c) Nuclear Rabi oscillations (between |−1 ↑⟩
and |−1 ↓⟩) obtained by driving an RF tone implementing a CeROTn. (d) level structure
schematic of a divacancy spin coupled to a single nuclear register. The |+1⟩ electron spin
state is not shown. (left) CnROTe transitions correspond to the peaks seen in b. (right)
CeROTn RF transition corresponds to the oscillations in c. (e) (top) Quantum circuit used
to generate a bipartite entangled state between an electron and nuclear spin. (bottom)
Resulting density matrix (|ρ|). The third initialized qubit is omitted. All data are taken at
T = 5 K
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register on one of the nearest-neighbor lattice sites (denoted SiI, SiIIa or SiIIb)[268]. When

the hyperfine coupling exceeds the linewidth (order 1//T ∗
2 ) of the electronic state (Fig. 11.1a),

oscillations due to these nuclear spins are observable in Ramsey experiments. We refer to

such nuclear spins as strongly coupled. This strong coupling splits the ms = ±1 electronic

ground state levels, which results in pairs of resolved transitions that enables direct selective

control of this two-qubit state using external radio frequency (RF) magnetic fields.

Here, we demonstrate such a strongly coupled system by isolating a single c-axis (kk)

VV0 with a nearby 29Si at theSiIIa site (parallel hyperfine A∥ = 2π · 13.2 MHz) in natural

4H-SiC. In this case, because the electron spin linewidth ( 1 MHz) is much lower than the

hyperfine splitting A∥, we observe two individually addressable transitions corresponding to

the two nuclear spin states (Fig. 11.1b). To polarize this nuclear register, we make use of two

iterations of algorithmic cooling in which we optically polarize the electron spin and then

swap this polarized state to the nuclear spin[269]. Using this method, we can achieve a high

initialization fidelity ( 93%) as measured by the peak asymmetry in the optically detected

magnetic resonance spectrum shown in Fig. 11.1b.

After nuclear initialization, we prepare the electron spin in the ms = −1 state and use

a 13.2 MHz RF magnetic field to drive nuclear Rabi oscillations (Fig. 11.1c), which we

read out by projecting onto the electron spin. Since these oscillations are only driven in

the ms = ±1 states, this allows us to demonstrate a C±1NOTn gate[85, 270] which can be

performed in 12.7 µs. Throughout these measurements, we also make use of fast (limited

only by the hyperfine splitting of the lines) CnNOTe gates by applying microwave pulses at

one of the two frequencies shown in Fig. 11.1d.

Having demonstrated control over a single nuclear spin, we then increase the number

of registers by finding a (kk) divacancy which is strongly coupled to two 29Si spins (with

6% probability for naturally abundant SiC). For this defect, we show that by using both

algorithmic cooling and dynamical nuclear polarization[85, 271] (DNP), we can polarize

175



the full three-qubit system (Fig. 11.1b). We then demonstrate individual control of these

registers and calibrate gates operating on either register.

In this three-qubit spin system, we apply the quantum circuit in Fig. 11.1e on the electron

and one of the two coupled nuclear spins to create an electron-nuclear entangled state, and

measure its full density matrix using quantum state tomography[85] (QST). We evaluate

this density matrix using the positive partial transpose test, confirming unambiguously the

entanglement in this system with an estimated entangled state fidelity of 81%.

These results demonstrate that single, strongly coupled nuclear spins can be used as

quantum registers in SiC with relatively fast gate times. This type of register is useful

for QND measurement of the nuclear spin and more generally for any applications that

require fast operations[272] on ancilla qubits [273, 274]. However, the number of available

nearby nuclear sites which can be controlled in this way is limited. Additionally, the high

coupling strength makes these nuclear registers more sensitive to stochastic noise from the

electron spin and limit applications where repeated electron initialization and control is

necessary[80, 275], such as in long-distance quantum communications[276] or entanglement

distillation[204].

11.3 Weakly coupled nuclear memories

To complement these strongly coupled registers, we therefore investigate nuclear spins which

are weakly coupled to divacancy electron spins. In order to access these memories and

go beyond the 1/T ∗
2 limit, we use an XY8-based dynamical decoupling sequence to perform

nanoscale NMR[140, 186, 277, 278] of the nuclear environment of a (kk) divacancy (Fig.

11.2a). This sequence (Fig. 11.2b) not only protects the electron spin from decoherence, but

also allows for selective control of nuclear spins even when their hyperfine coupling is lower

than the electron spin linewidth. In this measurement, each nuclear spin produces a series of

dips in the coherence function at a pulse spacings[186] τk ≈ (2k+1)π
2ωL+A||

at integer order k and
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Figure 11.2: Spectroscopy and control of weakly coupled nuclear spins. (a) CPMG based
NMR spectroscopy of the nuclear environment of an example kk divacancy in a natural
(top) and isotopically purified (bottom) sample. The data is shown as a black solid line.
The background gradient represents the calculated average coherence function obtained
over many nuclear configurations M, which represents the expected density of coherence
dips. (b) Schematic of the XY8 pulse sequence. (c) Coherence dips (8th order (k=8),
τ0 = 6.125µs) using either the |−1⟩ (red) or |+1⟩ (blue) electron spin state, providing a
measure of A∥ ≈ 2π · 650 Hz. (d) A CeROTx,n(±Θ) oscillation demonstrated on the 6th
order (k = 6) of the isolated nuclear spin and achieved by varying the number of XY8 subse-
quence repetitions. After seven XY8 repetitions (total pulse numberN = 56), a conditional
π/2 rotation is achieved with a fidelity of F = 97(1)%. All data are taken at T = 5 K and
B = 584 G.
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Larmor frequency ωL, corresponding to its specific nuclear precession frequency. With this

spectroscopy, we observe that natural SiC has a crowded nuclear resonance spectrum due

to the relatively abundant 29Si, making it difficult to isolate single spins with low hyperfine

coupling[204] (defined here to be < 2π ·60 kHz). This spectrum, along with ab initio cluster-

correlation-expansion[5] (CCE) simulations of various possible nuclear spin configurations

(Fig. 11.2a), demonstrates that natural SiC is not well suited for isolating single weakly

coupled nuclear spins with low hyperfine values.

To address this issue, we use isotopically purified gases to grow 4H-SiC with 99.85% 28Si

and 99.98% 12C. In this sample, we once again measure the nuclear environment of a few

(kk) divacancies and identify one with a single isolated dip in the coherence function (Fig.

11.2a). We find that the dip positions very closely match the different orders (k) of the

Larmor frequency of a 29Si (differing only through the hyperfine value[186]). We further

confirm the gyromagnetic ratio for this nuclear spin species by repeating the experiment at

a different magnetic field.

Having confirmed that the dips correspond to a 29Si nuclear spin, we perform spectroscopy

in both the {ms = 0,ms = +1} and the {ms = 0,ms = −1} basis (Fig. 11.2c), and measure

a small A∥ ≈ 2π · 650 Hz[186], which would not be resolvable in a Ramsey experiment. Low

A∥ nuclear spins are especially useful as robust quantum memories because the dephasing of

the nuclear spin caused by stochastic noise from the electron is particularly sensitive to the

parallel component of the hyperfine tensor (A∥)[80].

Fixing the pulse spacing (2τ) to a specific coherence dip (k = 6), we then vary the number

of pulses (N) to coherently control this weakly coupled single nuclear spin[135, 186]. The

corresponding CeROTx,n(±Θ) oscillations observed (Fig. 11.2d) allow us to measure the

perpendicular hyperfine component A⊥ ≈ 2π · 11.45 kHz (where θ ≈ A⊥·N
ωL

) and confirm the

successful application of a maximally entangling two-qubit gate [135]. If no other nuclear

spins were present, one could choose any resonance order (k) to perform the two-qubit gate.
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In practice however, as k increases, the resonance of the isolated nuclear spin separates from

the rest of the bath which drastically increases the two-qubit gate fidelity. Here, even in the

isotopically purified sample where the nuclear spectrum is sparse, the electron-nuclear gate

fidelity increases greatly at higher orders (k) as the resonance separates from the bath (up

to 97(1)% at k = 6). These results demonstrate the importance of reducing the nuclear spin

bath for high fidelity control of isolated nuclear registers with weak hyperfine interactions.

11.4 Isotopic engineering of weakly coupled nuclear memories

With these results in mind, we now turn our attention to estimating the optimal isotopic

fraction required to maximize the number of isolated and controllable nuclear memories.

Here, we need to strike a balance between too much purification which removes most usable

nuclear spins and too little which results in a crowded and unresolvable spectrum. Limiting

the gate time to a regime where nuclear-nuclear interactions are negligible, we developed

a method to predict the average number of resolvable nuclear memories as a function of

isotopic concentration. This is achieved by considering both the intrinsic gate fidelity from

the electron-nuclear interaction and the average effect of unwanted rotations from all other

nuclear species.

11.4.1 Theoretical system

We consider a system consisting of a central electron with spin-1 and impurities with spin ½

in an external magnetic field; the Hamiltonian is given by:

Ĥ = D

(
Ŝ2z − 1

3
S (S + 1)

)
− γeBz Ŝz −

∑
i

γnBz Îiz +
∑
i

SA Ii +
∑
i ̸=j

IiPIj (11.1)

where S is the central spin, S is the total spin quantum number of the central spin, and Ii
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are the bath (nuclear or electron) spins. The A tensor denotes the hyperfine interaction (spin

dipole-dipole interaction) between the central spin and the nuclear (or electronic) baths. The

P tensor denotes the spin dipole-dipole interaction between the spins belonging to the bath.

We assume that the diagonal elements of the density matrix of the central electron do not

change in time; hence the terms in the Hamiltonian containing Ŝx and Ŝy are negligible

(secular approximation). Under this approximation, we can rewrite Eq.(11.1) for the spin

bath driven by the ms = 0 (|0⟩ qubit state) (Ĥ0) or ms = −1 (|1⟩ qubit state) (Ĥ1) levels

of the central electron spin[47]:

Ĥ0 = −γnBz Îz +
∑
i,j

IiPIj (11.2)

Ĥ1 = −
∑
i

γnBz Îiz −
∑
i

[
AzzŜz Î + AzxŜz Îx + AzyŜz Îy

]
+
∑
i,j

IiPIj (11.3)

The hyperfine tensors of the nuclear spins were predicted using two levels of approxima-

tion, depending on the proximity of the spin to the central defect. For those nuclei located

within a distance of up to 10-15 Åof the central defect, the hyperfine tensors were computed

using Density Functional Theory (DFT) and the PBE functional[161] with the GIPAW code.

We used a supercell with 1438 atoms with Γ-point sampling of the Brilloun zone. Electronic

structure calculations were carried out with the Quantum Espresso code[63], and with a

kinetic energy cutoff of 40 Ry. GIPAW pseudopotentials were used to model electron-ion

interactions. For those nuclei located at a distance larger than 10-15 Å, hyperfine tensors

were estimated using the dipolar approximation.

For a given delay between pulses (τ) and number of pulses (N), the total time of the
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experiment is t = N2τ , and the coherence function of the qubit is given by:

L (t) =
Tr
[
ρ̂ (t) Ŝ+

]
Tr
[
ρ̂ (0) Ŝ+

] (11.4)

Where ρ̂ is the density matrix of the qubit. If the qubit is prepared in a state |+x⟩ =

1√
2
(|0⟩+ |1⟩), the coherence function at time t is given by:

L (t) = Tr
[
Û0Û

†
1

]
(11.5)

The conditional propagators Û0 and Û1 are defined differently depending on the experi-

ment. For free induction decay (FID, N = 0, t = τ):

Û0 = exp
{[

−iĤ0τ
]}

(11.6)

Û1 = exp
{[

−iĤ1τ
]}

(11.7)

For the Hahn-echo experiment (N = 1):

Û0 = exp
{[

−iĤ0τ
]}

exp
{[

−iĤ1τ
]}

(11.8)

Û1 = exp
{[

−iĤ1τ
]}

exp
{[

−iĤ0τ
]}

(11.9)

In experiments with number of pulses ≥ 2, the propagators are given by Û0 = V̂
N/2
0 and

Û1 = V̂
N/2
1 , where:

V̂0 = exp
{[

−iĤ0τ
]}

exp
{[

−iĤ12τ
]}

exp
{[

−iĤ0τ
]}

(11.10)

V̂1 = exp
{[

−iĤ1τ
]}

exp
{[

−iĤ02τ
]}

exp
{[

−iĤ1τ
]}

(11.11)

For a system of one electron and one nuclear spin, we can write the Hamiltonian (11.1)
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as follows:

Ĥ = D

(
Ŝ2z − 1

3
S (S + 1)

)
− γeBzŜz − γnBz Îz +AzzŜz Îz +AzxŜz Îx +AzyŜz Îy (11.12)

Using the notation for coupling parameters adopted previously, we then rewrite Hamil-

tonian (11.12) as:

Ĥ = D

(
Ŝ2z − 1

3
S (S + 1)

)
− γeBzŜz − γnBz Îz + A||Ŝz Îz + A⊥Ŝz Îx (11.13)

With A|| = Azz, being the parallel hyperfine coupling, and A⊥ =
√
A2
zx + A2

zy the

perpendicular hyperfine coupling. The magnetization of the qubit along the x-axis can be

computed as the real part of the coherence function L:

M = Re L (t) = Re Tr
[
Û0Û

†
1

]
(11.14)

11.4.2 Average fidelity of weakly coupled nuclear memory

In order to understand how many nuclei on average can be used as memory units at a given

nuclear spin concentration, we proceed as follows. A given nuclear spin i can be used as a

memory unit if the state of the electron spin can be preserved, following a rotation induced

by the nuclear spin. For an electron qubit initially prepared in the |+x⟩ state, the fidelity

function F measures how well its state is preserved:

F (|−x⟩ , ρ̂) = ⟨−x|ρ̂|−x⟩ (11.15)

where ρ̂ is the density matrix of the qubit. If the fidelity of the qubit rotation induced

by nucleus i is higher than a chosen threshold value, then the nucleus is considered a usable

memory unit. The threshold value is chosen depending on the purpose of the memory unit,
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and typical values are in the range 0.9− 0.99. The fidelity of the electron spin is related to

the electron magnetization M at given N, τ :

FNτ (| − x |,⟩ ρ) =

√
1

2
− M

2
(11.16)

At short time scales (compared to the decay of the coherence function), the interaction

between different nuclei can be neglected. Then the electron spin magnetization can be

written as a product of conditional magnetizations[186] given by the magnetization of the

electron interacting with a single isolated nuclear spin. As a function of delay between pulses

(2τ) and number of pulses (N) the magnetization is given by:

M (N, τ) =
∏
i

Mi (N, τ) (11.17)

To determine if a given nucleus i in the lattice is available as a memory unit, we consider

the magnetization of the electron when the given nucleus is present. The expectation value

of the magnetization when the nucleus i is present is:

M̃i = E (M |Mi ∈M) =Mi

∏
j ̸=i

E(Mj) (11.18)

Where j runs over all other possible nuclear positions. Then Mj is given as:

Mj =


Mj if j is present

1 otherwise
(11.19)

At a given nuclear spin concentration cj , the expectation value E(Mj) is:

E(Mj) = 1 · (1− cj) + Mj · cj (11.20)
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Figure 11.3: Difference in coherence function predicted using the CCE2 and CCE1 approxi-
mations. Blue dots show the difference between the coherence functions obtained from CCE1
and CCE2 calculations, and the orange line shows the total gate time (equal to N2τ) of 1.5
ms for six different nuclear configurations at a natural concentration of nuclear spins.

A given nucleus is considered usable as a memory unit if the fidelity of the electron spin

after rotation at M̃i is higher than a certain threshold Fmin. The average number of nuclei

i present at this lattice site is equal to the concentration of the isotope ci. Therefore, the

total number of usable memory units can be computed as the sum of ci for all i that meet

the fidelity criterion for at least one set of N, τ :

Nmem =

F
(
M̃i

)
≥Fmin∑
i

ci (11.21)

11.4.3 Limitations of the approach

The method adopted here assumes that the nuclei-nuclei interactions are negligible in deter-

mining the electron magnetization. The assumption can be verified by comparing coherence

functions obtained at different orders of cluster-correlation expansion (CCE) for random nu-

clear configurations. A significant difference between the spectra obtained with the CCE1
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Figure 11.4: Convergence tests for the calculation of usable memory units. Left to right, top
to bottom: computed number of usable memory units as a function of nuclear concentrations
at a maximum gate time of 2 ms for different bath sizes, maximum τ , number of pulses, and
timestep. For each plot, the parameters that are not varied have the following values: bath
size = 30 Å, maximum τ = 25µs, number of pulses = 512, and timestep = 1 ns.

and CCE2 approximations would indicate nonnegligible nuclei-nuclei interactions. Figure

11.3 shows the difference between the results of CCE2 and CCE1 for 6 different nuclear spin

configurations at natural concentration (c(29Si) = 4.7%, c(13C) = 1.1%) for the magnetic

field of 500 G. We can see that at long delay times there are significant differences between

coherence functions obtained with CCE2 and CCE1. The delay at which the deviations

occur is inversely proportional to the number of pulses. Therefore, the maximum available

gate time (equal to N2τ) can be found from the value of the delay for a given number of

pulses at which significant deviations occur. From the analysis of the CCE spectra for nat-

ural isotopic concentrations, the maximum gate time was established to be between 1 − 2

ms before significant deviations occur. This theoretical limit determines the maximum gate

time, after which the fidelity of the rotation becomes limited by nuclear-nuclear interactions.

Having established the theoretical maximum gate time, we checked the convergence of the
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Figure 11.5: Number of usable memory units as a function of the gate time. The different
color of the lines denotes different isotopic concentrations, indicated in the inset. Dotted
lines show the number of memory units with parallel hyperfine terms below 2π ·60 kHz. The
minimum fidelity is equal to 0.95.

number of memory units with respect to the size of the bath, timestep resolution, number of

pulses, and the range of the delays between pulses. The convergence is shown in Figure 11.4.

It was found that the number of memory units at the magnetic field of 500 G is converged

at bath size 30 Å, maximum τ of 25 µs, timestep of 0.5 ns, number of pulses of 512.

11.4.4 Nuclear memory units as a function of isotopic concentration

Figure 11.5 shows the increase of an average number of memory units as a function of the

maximum gate time. We can see that the total number is proportional to the square root of

the gate time. Furthermore, the purification of Si leads to two-fold increase in the number

of available memory units at long gate times, while the isotopic purification of carbon does

not lead to any significant improvement. It is interesting to note that the initial part of the

curve corresponds to the nuclei with strong hyperfine coupling, and further increase in the

number of usable nuclei include those with weak hyperfine coupling. The number of available

memory units with weak hyperfine varies linearly with the maximum gate time within the
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Figure 11.6: Number of usable memory units as a function of the gate time. The different
color of the lines denotes different isotopic concentrations, indicated in the in set. Dotted
lines show the number of memory units with parallel hyperfine terms below 2π ·60 kHz. The
minimum fidelity is equal to 0.95.

chosen timescale.

Hyperfine distribution Figure 11.6 shows the distribution of hyperfine couplings for mem-

ory units, available at different isotopic concentration / gate time. The gate time dependence

further proves a point outlined above: usage of most of the nuclei with strong hyperfine cou-

pling occurs at small timescales, and extended gate time allows one to access weakly coupled

nuclei. Figure 11.7 shows the distribution for different minimum fidelities. Interestingly, the

shape of the distribution is the same, albeit shifted towards higher concentrations at lower

Fmin.

Our analysis demonstrates several important aspects of nuclear availability in SiC. First,

there exists an optimal nuclear spin concentration (Fig. 11.8a) that maximizes the average

number of available nuclear memories which can be controlled within a maximum gate time

and at a given minimum gate fidelity. Here, we find that naturally abundant SiC has a pro-
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Figure 11.7: Most plausible hyperfine values for memory units at different fidelities. Color
corresponds to the probability that memory units in the sample with given nuclear concen-
tration will have the corresponding hyperfine term. The maximum gate time N2τ 1.5 ms,
On the left the minimum fidelity of 0.95 is shown, on the right Fmin = 0.90. Blue circles
show the median of hyperfine values at the given concentration.

hibitively high concentration of 29Si, which prevents the isolation of nuclear memories with

low hyperfine coupling (≤ 2π ·60 kHz). This reinforces the importance of isotopic engineering

for nuclear memories in SiC and explains the spectrum observed in Fig. 11.2a. Second, the

hyperfine values of the resulting controllable memories vary with isotopic concentration (Fig.

11.8b). At high concentration, nuclei with moderate hyperfine (> 2π · 60 kHz) contribute to

most of the available memories, while low hyperfine nuclear spins are unresolvable. On the

other hand, a lower isotopic concentration results in a less crowded spectrum and allows for

the isolation of nuclei with lower hyperfine. The choice of nuclear concentration thus not

only determines the total number of available quantum memories, but also the distribution

of hyperfine values for these controllable nuclei.

Furthermore, we note that there is a tradeoff between the maximum allowable gate time
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and the number of available nuclear memories. While longer gate times allow for the res-

olution of more distant nuclei, this increase is shown to be only sublinear. Additionally,

when both nuclear species are utilized, the SiC binary lattice may provide roughly double

the number of resolvable nuclear registers compared to a monoatomic crystal.

While the range of desired hyperfine values may differ depending on the particular ap-

plication, a careful selection of the isotopic fraction is critical to maximizing the number

of nuclear spins available in this range. This careful selection also determines the result-

ing average gate speeds and fidelities, allowing further optimization for the application at

hand. These results therefore constitute not only a proof-of-principle demonstration of sin-

gle weakly coupled nuclear spin control in SiC, but also provide guidance for future isotopic

growth of materials for a variety of spin-based quantum technologies.

11.5 High-fidelity qubit control and extended coherences

Broadly, these experiments are all predicated on the divacancy electronic spin being a con-

trollable and long-lived qubit. In this section, we discuss in detail the main factors that

limit the coherence of divacancies in SiC and quantify our ability to perform single-qubit

manipulation.

We begin by measuring both T ∗
2 (Ramsey spin dephasing time) and T2 (Hahn-echo co-

herence time) of both c-axis (kk) and basally (kh) oriented defects in isotopically purified

material. We measure the c-axis defects at B = 48.8 G and the basal defects at B = 0 G

(to benefit from the magnetic insensitivity arising from a clock-like transition[82, 90]).

We report (Fig. 11.9a and 11.9b) T ∗
2 times of 48.4(7) µs and 375(12) µs for the c-axis

(kk) and basal (kh) defects in isotopically purified SiC, compared to 1.1 µs[87] and 70-160

µs [82, 90] in naturally abundant material. These numbers correspond to record dephasing

times for spin qubits in SiC[266]. Additionally, despite only moderate isotopic purity, these

results are very competitive with NV centers in diamond with much lower nuclear spin
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Figure 11.8: Isotopic optimization of nuclear memories. (a) Calculated average number of
memory units as a function of isotopic concentration where [13C] = [29Si]. A memory unit
is defined as a nuclear spin that can be isolated and controlled above a given gate fidelity
(Fmin) within the maximum gate time. Solid lines correspond to all memory units whereas
the dotted lines with shaded areas correspond to only memories with A∥ ≤ 2π · 60 kHz.
Three different maximum allowable gate times are represented (lightest to darkest: 1 ms,
1.5 ms and 2 ms). (b) Distribution of the hyperfine values for usable memory units as a
function of isotopic concentration. Darker colors correspond to a higher probability (P ) that
memory units, if present and usable, will have the corresponding hyperfine value (maximum
gate time = 1.5 ms, Fmin = 0.9). Blue circles show the median of the distribution at the
given concentration. The green dotted line corresponds to A∥ = 2π · 60. The values are
computed at the magnetic field of 500 G.
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concentration[279–281]. This favorable scaling most likely arises from the SiC binary lattice

and longer bond length, which results in reduced nuclear flip-flops[5]. These improvements

in T ∗
2 are vital for DC quantum sensing schemes and for achieving strong coupling in hybrid

systems[89, 282].

The significant increase in dephasing times arising from the isotopic purification for the

c-axis defects shows that magnetic field noise from the nuclear environment is by far the main

limiting factor to T ∗
2 for these defects. We provide further evidence of this by investigating

the dephasing in isotopically purified SiC with ab initio cluster-correlation-expansion (CCE)

simulations. Taking into account the remaining nuclear spin bath, these calculations predict

average T ∗
2 values which are consistent with our experimental observations (Fig. 11.9a).

On the other hand, while basal divacancies benefit from first-order insensitivity to mag-

netic field noise at B = 0 G, this magnetic noise protection comes at the cost of increased

sensitivity to electrical fields[99]. Since charge fluctuations can cause significant electric field

noise[100], this may explain why the increase in T 2
∗ obtained from isotopic purification (Fig.

11.9b) is less pronounced than that of the c-axis divacancies. Furthermore, this magnetic

protection also makes nuclear control difficult in the basal (kh) divacancies. This underlines

the tradeoffs involved when choosing a defect species to work with.

Next, we perform Hahn-echo experiments to measure T2 in isotopically purified SiC (Fig.

4c). Although we find a factor of 2 improvement in the coherence time for (kk) defects

in this material (2.32(3) ms versus 1.1 ms[87]), we remark that this is a more modest im-

provement than that of T ∗
2 . Nevertheless, this T2 is comparable to the longest observed

Hahn-echo coherence time in isotopically purified diamond samples with much greater iso-

topic purity[73, 240]. Interestingly, the measured T2 deviates from the predictions of nuclear

spin induced decoherence obtained with CCE calculations, which yield an average coherence

time of 37 ms. To understand these results, we carried out second order CCE simulations to

study the effect of non-interacting electron spin pairs on the coherence time[57]. At the esti-
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mated paramagnetic density (impurities and radiation induced defects in the 3 ·1014–3 ·1015

cm−3 range, see the next section for details) we find good agreement with experiment (Fig.

11.9d), thus confirming both the accuracy of our theoretical model and the important role of

paramagnetic defects in limiting coherence. Our results are consistent with magnetic noise

from a weak, but quickly fluctuating paramagnetic spin bath combined with noise from a

strong, but slowly fluctuating, nuclear spin bath[283]. As a consequence, T ∗
2 is limited by

nuclear spins, while T2 is limited by paramagnetic impurities for the c-axis defects. On the

other hand, differences in the basal divacancy’s coherence compared to other reports[82, 90]

likely stems not only from the isotopic purification, but also from sample-to-sample variations

in electric field noise, which could be mitigated using charge depletion techniques[100].

11.5.1 Computational details

The coupling tensors of the electron impurity were computed using only dipolar-dipolar

interactions, as exchange interactions between electrons are negligible at average distance

between impurities of 0.1 µm for paramagnetic density of 1015 cm−3, of interest here.

The coherence time is obtained by fitting the coherence function to the form L(t) =

exp
[(

t
Ti

)n]
, where Ti is the coherence time.

Cluster expansion (CCE) calculations for nuclear spins were carried out following Yang

and Liu[47] and convergence with respect to the order of the CCE was carefully checked

in each case. The clusters were chosen according to the procedure described by Seo et

al[5]. In the case of electron spins, the strength of interactions between spins belonging

to the bath is comparable to the coupling of the bath spins to the central spin, and the

perturbative approach on which the cluster expansion is based upon is not justified. The

break-down of the perturbative approach leads to CCE calculations of order 3 or higher

to diverge[57]. We can however use an approximate description by assuming that CCE2

is sufficient to correctly estimate electron-electron interactions. This approximation likely

192



Figure 11.9: Divacancy dephasing and decoherence times in isotopically purified material.
(a) Dephasing of a c-axis (kk) defect in the isotopic sample at B = 48.8 G. The shaded
region represents the predicted average results from CCE (B = 50G and paramagnetic
density of 1015 cm−3). (b) Dephasing of a basal (kh) defect at B = 0 G. (c) Coherence
function under a Hahn echo sequence for kk (blue) and kh (red) single defects. (d) CCE
calculations (including the effects of paramagnetic traps) for a kk defect showing that the
expected average Hahn echo T2 varies greatly based on paramagnetic spin density for both
natural (dark blue) and isotopic (light blue) material (at B = 500 G). (e) Coherence time
for a (kk) defect in the isotopic sample under a varying number of CPMG pulses (N ) shows
that T2 increases roughly linearly (N0.90(3)) with pulse number (B = 48.8 G). (f) Table
summarizing representative numbers for T ∗

2 and T2 (Hahn echo) in kk and kh defects in both
natural and isotopic samples. Natural SiC coherences are taken from literature[82, 85, 90].
Numbers in parentheses are the theoretical numbers obtained by CCE (at B = 50 G) with
both the nuclear spin bath and a paramagnetic spin bath of 1015 cm−3. All data are taken
at T = 5 K.
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Figure 11.10: Convergence of the coherence time, computed for the electron bath only. On
the left panel the coherence time T2 is reported as a function of bath size (Rbath), and on
the right panel as a function of the cutoff distance (Rcutoff ) between electron spins

yields underestimated coherence times at a given concentration of impurity electron spins, as

in real systems the flip rate of electron pairs is reduced due to non-pair-wise interactions with

other electrons. But at small electron spin concentration, high order effects are expected to

be insignificant to determine the qualitative impact of electron spins on coherence times. To

compute the impact of electron spins on coherence times, we randomly placed the electron

spins at a distance between 0–2 µm from the qubit. Following a procedure to choose the

clusters similar to the one used for nuclear spins, in the calculation of coherence functions we

only included the pairs of electron spins with distance smaller than a given cutoff distance,

and we only considered clusters of spins in a finite bath. Both the pair distance cutoff and

the bath size were chosen to be large enough to obtain converge of the coherence function

as shown in Fig. 11.10.

Due to different spatial scales of the nuclear-electron and electron-electron interactions,

the two baths (electron and nuclear) can be considered as decoupled. Therefore, the total

coherence function can be factorized into contributions from electron and nuclear spins,

respectively:

L (t) = LelectronLnuclear (11.22)
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Figure 11.11: Coherence times as a function of magnetic field (B). The coherence time T2
of the natural material is shown on the left-hand side, and that of the isotopically purified
material is on the right-hand side.

Figure 11.12: Theoretical CPMG scaling. The coherence time, limited by paramagnetic
impurities, as a function of number of pulses in a CPMG sequence for three different param-
agnetic densities. The dashed lines correspond to the power law fits with the scaling shown
in picture. Simulation is for a (kk) divacancy.
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The coherence function was obtained by averaging over the results of 200 (1000) calcu-

lations for different configurations of electron or nuclear spins, in the presence of a magnetic

field of 50 G (500 G). In the experimental measurement, the pulse bandwidth used to control

the qubit state allows to simultaneously excite only a small subpopulation of the divacancies

in the SiC sample. In this subpopulation, the energy splitting of the qubit levels does not

deviate significantly from that of isolated divacancies. Hence, when computing the average

coherence time to be compared with experiments, we need to exclude from the calculation

the nuclear configurations whose hyperfine coupling would lead to significant deviation in

energy splitting from that of an isolated divacancy. Therefore, only nuclear configurations

with maximum parallel Hyperfine coupling < 1 MHz were considered. However, we note that

when including all the configurations, irrespective of their hyperfine coupling, we obtained

very similar T2 values and T ∗
2 values within 5-10%, for natural concentration.

The computed values of T2 and T ∗
2 for both isotopically purified and natural materials

(with free electron concentration of 1015 cm−3) as a function of magnetic field are shown in

Figure 11.11. In both cases, the T ∗
2 is not significantly impacted by changes in the magnetic

field, while T2 is impacted: in particular in the natural material we observed a considerable

increase in nuclei-limited coherence time. Instead, in the case of electron-limited decoherence,

the effect of magnetic field in the range studied here (see Fig. 11.11) is negligible.

We also compute the average scaling of the coherence time with increasing pulse number

in a CPMG sequence. The result is shown in Fig. 11.12. A free power fit shows a scaling

exponent between 0.93-0.97 depending on the density of paramagnetic impurities. This is

consistent with our observed scaling of 0.90(3) observed in experiment (Fig. 11.9e).

11.5.2 Randomized benchmarking of gate fidelities

Finally, we characterize our single qubit gate fidelities through randomized benchmarking

experiments and obtain an average gate fidelity of 99.984(1)% (Fig. 11.13). These bare
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Figure 11.13: Average single qubit gate fidelity as measured by randomized benchmarking.
Results obtained by applying N Clifford gates (as represented by the quantum circuit) on
the electronic spin of a kh defect in the isotopically purified material at T = 5 K, B = 0 G.
From this decay, we extract an average gate fidelity of 99.984(1)%.
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fidelities are amongst the highest for single spins in the solid state [267, 284, 285] and exceed

the threshold for error correction codes [286–288]. Furthermore, high-fidelity control of the

electron spin is crucial to prevent reduced coherence in nuclear spin memories[275]. The long

coherence (TDD
2 > 14.5 ms) and high-fidelity control (99.984(1)%), combined with a >99%

initialization and readout fidelity demonstrated in this work establishes the divacancy in SiC

as a promising system for future solid-state quantum devices.

11.6 Conclusions

Defect spins in SiC are exciting candidates for wafer-scale quantum technologies requiring

stationary qubits and a photonic quantum communication channel. In this work, we provide

milestone demonstrations of control for both strongly and weakly coupled nuclear spins in a

technologically mature semiconductor material. This work also examines, both experimen-

tally and theoretically, the tradeoffs that are inherent to isotopic purification and offers a

pathway towards optimizing nuclear spin concentration to maximize the number of usable

nuclear memories.

Our results underline the importance of isotopic engineering in designing materials for

solid-state quantum applications. Such engineering can provide a two-fold benefit for quan-

tum memories: it enables control of more nuclear spins by unlocking access to memories

with low hyperfine coupling, while also drastically increasing the coherence of these nuclear

spins[289]. Moreover, isotopic engineering enables the selection of a hyperfine distribution

that can optimally trade off the effect of the “frozen core”[290] against the electron spin

induced noise inherent in realistic quantum communications protocols[275]. Further opti-

mization may also be achieved by considering differing nuclear control methods[211, 291].

Additionally, the demonstrated proof-of-principle nanoscale NMR detection of a single nu-

clear spin (at a distance of 1.2 nm) in SiC provides a route for a functionalizable, bio-

compatible platform for quantum sensing with polarization and readout in the biological
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near-infrared window[292]. Overall, these results cement defects in SiC as attractive sys-

tems for the development of quantum communication nodes and underline the importance

of isotopic control in material design for future quantum technologies.
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CHAPTER 12

BATH-LIMITED DYNAMICS OF NUCLEAR SPINS IN

SOLID-STATE SPIN PLATFORMS

This chapter is adapted from the submitted work [9].

Nuclear spins in the proximity of electronic spin defects in solids are promising platforms

for quantum information processing due to their ability to preserve quantum states for a

remarkably long time. Here we report a comprehensive ab initio study of the nuclear spin

dynamics in solid-state systems. First, we characterize spin exchange-dependent oscillations

of the Hahn-echo signal of the single nuclear spins in iso-nuclear spin baths as a new sensing

modality of dynamical-decoupling spectroscopy. Using first-principles simulations, we then

quantify the enhancement in the coherence of nuclear spins as a function of distance and state

of the electron spin and validate our results with experimental data for the nitrogen vacancy

in diamond. Finally, we describe how hybridization of the electronic states suppresses the

coherence time of strongly coupled nuclear spins and how dynamical changes of the electron

spin state may deteriorate nuclear coherence. The computational framework developed in

our work is general and can be broadly applied to predict the dynamical properties of nuclear

spins in a wide variety of systems. Overall, our results elucidate many pitfalls that should

be avoided to preserve the nuclear spin state in solid-state systems.

12.1 Introduction

Nuclear spins in solids and molecules can preserve their quantum state for a remarkably

long time, exceeding seconds [258, 293] and even hours [294, 295], compared to the typical

millisecond timescale of electronic spin defects [3, 24], due to their low magnetic moment.

Hence nuclear spins are valuable resources for quantum information processing, including

memory registers in quantum networks [46, 207, 293, 296], nuclei-assisted quantum sensors
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[297, 298] and components of fault-tolerant quantum processors [267, 299]. In particular, in

the presence of electron spin qubits in semiconductors and insulators, the hyperfine inter-

actions between the electron and nuclear spins allow for electron-spin assisted initialization

and read-out [300–302], enabling full quantum control over the nuclear spin states.

Yet it still remains unclear what is limiting the coherence time of nuclear spins. While the

coherence properties of the spin defects have been extensively investigated both experimen-

tally [99, 99, 174, 239, 283, 303–305] and theoretically [52, 245, 306–308], our understanding

of the nuclear spin qubit dynamics is minimal. Acquiring a fundamental understanding of

nuclear spin coherence in the proximity of electron spin qubits is crucial, e.g., to guide the

design of nuclear spin environments for optimal performance of memory registers in quantum

network applications [3, 293, 309].

First principles simulations represent promising techniques to investigate decoherence of

the spin qubits in solids. From predicting bath spin-induced relaxation [83, 310], identify-

ing new host materials [55, 56], and sensing modalities [51, 179, 185, 311] to engineering

spin environments [54, 224, 312], simulations have proved to be crucial in understanding

spin-bath interactions in realistic systems. However to date, no attempt has been made to

quantitatively characterize nuclear spin coherence processes in the presence of a spin defect

using accurate computational methods. Such a characterization is challenging as one needs

to account for weak correlated fluctuations of numerous bath spins, where the dominant

interaction arises from the electron-nuclear spin coupling.

In this work, we use large-scale cluster-correlation expansion (CCE) calculations in con-

junction with density functional theory (DFT) results to perform an ab initio study of nuclear

spin coherence dynamics. We consider nuclear spins in the proximity of a state-of-the-art

spin qubit platform, the negatively charged nitrogen vacancy in diamond (NV) [313, 314].

Our computational results for nuclear spin Hahn-echo and Ramsey coherence times are in

excellent agreement with experimental data, bridging the gap between theory and experi-

201



ment. Our calculations enable the precise mapping of the coherence times to the geometric

positions of the nuclear spins, relative to the spin defect, and the identification of the primary

sources of nuclear spin decoherence in a wide range of conditions. The decoherence channels

identified in our work are general and our conclusions may be applied to any nuclear-electron

spin coupled platforms. Overall, our work provides a robust approach to predict nuclear spin

coherence dynamics for a variety of systems.

12.2 Nuclear spin in a nuclear spin bath

We begin by investigating the coherence properties of a single nuclear spin coupled to an

iso-nuclear spin bath. As an example, we consider a 13C nucleus in diamond with natural

isotopic abundance (Fig. 1a). We adopt two theoretical frameworks - the CCE approach

[47], which assumes that decoherence arises only from dephasing, and the generalized CCE

approach (gCCE) [53], which accounts for both relaxation and dephasing of the central spin

(see Appendix 12.6 for in-depth discussion on the methods).

Figure 12.1b shows the computed coherence time of the nuclear spins corresponding to

Ramsey and Hahn-echo measurements. We find an excellent agreement between theory and

experiment [211]. Ramsey calculations (Fig. 12.1c) converge at the 2nd order of the CCE

(CCE2) and Hahn-echo results (Fig. 12.1d) converge at the 4th order (see Section A). The

difference between Ramsey signals computed at the first and second order is small, indicating

that the single bath spin dynamics dominates the decoherence process, as expected [52].

The order at which the Hahn-echo signal converges is significantly higher than that typically

required to investigate the coherence time of electron spins (CCE2) [5, 315, 316], highlighting

the need to account for higher-order correlations of the bath dynamics to accurately predict

nuclear spin coherence times.

We note that the distributions of the inhomogeneous T ∗
2 and homogeneous spin dephasing

times T2 overlap in Fig. 1b, and the coherence enhancement from the refocusing pulse is on
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average small, a characteristic behavior of a broad noise spectrum [15].

However, the behaviour of the coherence function turns out to be much more complex

than one might expect from classical stochastic noise models, where inter-nuclear interactions

are simply treated as an effective nuclear spin field [317]. Only with a complete quantum-

mechanical treatment can we uncover the complex oscillatory dynamics of the Hahn-echo

signal (Fig 12.1d). The oscillations arise from the direct spin-exchange interactions with

single spins in the environment: if one neglects the spin exchange (CCE framework), the

coherent oscillations are not present in the Hahn-echo signal (Fig. 12.1d). Similar effects

have been observed in the electron spin-echo modulation (ESEEM) of electron-radical pairs

in organic molecules [318, 319]. Contrary to the ESEEM arising from perpendicular hyperfine

couplings [5], these oscillatory features do not disappear with increasing magnetic field.

One can use the spin-echo sequences to extract the spin-exchange couplings between

nuclear spins. Here, we derive an analytical expression for the Hahn-echo coherence function

L(t) = 1
L(0)

(
⟨Îx,0(t)⟩+ i⟨Îy,0(t)⟩

)
of a central spin coupled to a single bath spin. We

consider the following simplified Hamiltonian of the system:

Ĥ = w0Îz,0 + w1Îz,1 +
1

2
σ(Î+,0Î−,1 + h.c.) (12.1)

where Îi,0 and Îi,1 are spin operators for the central spin and the bath spin respectively, w0,

w1 are Larmor frequencies, and σ is the spin-exchange coupling. The presence of Îz,0Îz,1

type of couplings in the Hamiltonian leads to the same expression for the spin magnetization

(see Eq. 12.2 and 12.3 below) and hence they were omitted in Eq. 12.1. Assuming the initial

state of the central spin is |+X⟩ = 1√
2
(|↑⟩ + |↓⟩) and the π-pulse applies a rotation around

the x-axis, we obtain the following expressions for the spin magnetization:

⟨Îx,0(t)⟩ =
1

2
− σ2

4Ω2
(1− cos (

Ωt

2
)− cos (

(w0 + w1)t

2
)

+ cos (
(w0 + w1)t

2
) cos

Ωt

2
)),

(12.2)
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Figure 12.1: (a) Schematic representation of a nuclear spin in a nuclear spin bath. (b)
Distribution of Ramsey (T ∗

2 ) and Hahn-echo (T2) coherence times for nuclear spins computed
with the gCCE approach. Horizontal bars show the range of experimental values[211]. (c (d))
Computed Ramsey (Hahn-echo) signals of the nuclear spins. The top diagram represents
the sequence of pulses for each type of experiment. Each grey trace was obtained for a
single random configuration and computed at the gCCE level of theory. Colored lines show
ensemble-averaged coherence curve computed with the CCE (dashed line) and gCCE (solid
line) methods. The applied magnetic field is 50 mT. (e) Real (red) and imaginary (orange)
part of the Hahn-echo coherence function for a random bath configuration which contains a
bath spin coupled to a central spin with σ = 151 Hz (Eq. 12.1) at a magnetic field of 0.05
mT. Analytical expression for ⟨Îx⟩ of the system with only the central spin and a single bath
spin shown in black (Eq. 12.2).
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and

⟨Îy,0(t)⟩ =
σ2

2Ω2
sin2 (

Ωt

4
) sin ((w0 + w1)

t

2
), (12.3)

where Ω =
√

(w1 − w0)2 + σ2. For a 13C nuclear spin in a 13C spin bath, Larmor frequencies

are equal, w0 = w1 = −γnBz, and the spin-exchange coupling arises from the dipolar

interactions σ = −Pzz (see Appendix 12.6).

Hence, one can observe a strong out-of-phase signal ⟨Îy(t)⟩ (Eq. (12.3) and Fig. 12.1e),

which should be easily detectable in the experiment, providing a new way to directly mea-

sure spin-exchange coupling between spins in solids. In contrast to existing methods that

probe the nuclear spin pair dynamics with the sensor spin [78, 320], the echo oscillations

characterized here require selective π-pulses and readout on one of the spins, but do not

necessitate an auxiliary probing qubit.

In addition, our calculations show that the role of longitudinal relaxation in determin-

ing the decoherence processes is highly dependent on the given nuclear spin configuration.

Relaxation is negligible for some nuclear spins; for others, it completely determines the deco-

herence rate (see Section A). On average, the spin exchange with the environment accounts

for about 40% of the decoherence rate for the ensemble of nuclear spins (gCCE ensemble T2

22.4(2) ms vs. CCE 36.66(9) ms) and 30% for single ones. Thus, for each specific electronic

spin defect present in a solid, one should perform a detailed search within all experimentally

available nuclear spins to identify the ones best suited for quantum memories.

12.3 Nuclear spins in the presence of an electron spin

Now we turn our attention to the properties of nuclear spins in the presence of an electron

spin.

The CCE method up to the second order was previously used to qualitatively investi-

gate the properties of the nuclear spins in proximity of shallow donors in Si [290]. Here
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Figure 12.2: (a) Graphical representation of the experimentally determined positions of 27
13C nuclear spins in proximity of an NV center in diamond from ref. [140]. Orange circles
show nuclear spins with measured coherence times. (b) Coherence signals for the nuclear
spin C5. Solid lines are theoretical predictions; yellow points are experimental data. (c (d))
T2 and T ∗

2 of the nine nuclear spin registers measured by Bradley et al. [211] and represented
by yellow lines when the NV is in the ms = 0 (ms = −1) state. Distributions correspond to
computed coherence times in 50 random nuclear spin configurations around the 27 nuclear
spins, identified in the experiment (see text). The Hahn echo is computed at the 4th (5th)
order of the cluster expansion for the 13C (14N) nuclear spins.
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we apply the fully converged CCE [47] and generalized CCE [53] schemes with so called

"externally aware" cluster corrections [57] (See Appendix 12.6) to quantitatively reproduce

the experimental data.

We consider the NV center in diamond as a prototypical example of an electronic spin

defect. With a total spin of 1, the NV center can be initialized in three eigenstates, which

differ by the projection of the magnetic moment along the [111] axis of diamond (ms =

−1, 0, 1). By preparing the NV in the ms = 0 state, one can, up to first order, eliminate the

electron spin coupling to the spin bath and recover the same coherence time that nuclear

spins exhibit in a pure nuclear spin bath (i.e, free nuclear spins). In the ms = −1, 1 states,

the NV center induces a strong hyperfine field on the nuclear spins, which dominates the

inter-nuclear interactions. The hyperfine field gradient greatly suppresses the polarization

transfer between different nuclei, leading to a significant change in the nuclear spin dynamics

- an effect known as frozen core [290, 321].

12.3.1 Experimental validation of the computational protocol

We validate the predictions of our calculations by comparing our results with the experi-

mental measurements of coherence times reported by T. H. Taminiau and coworkers [140,

211, 302]. The data for NV in ms = 0 presents a new and previously unpublished data set

obtained on the same NV center as used in these studies [322]. To apply π-pulses to the

separate nuclear spins in the experiment, one has to include a short period of time during

which the electron spin is in ms = −1 state (see Section A), which might lead to small

discrepancies between the theoretical predictions and the experimental data.

We prepare a set of random configurations of nuclear spins placed around a cluster of

27 nuclear spins with experimentally identified positions [140] and compute the coherence

of nine selected nuclear spins (C1-C8 and N in Fig. 12.2a). Using ab initio computed

hyperfine parameters for randomly placed nuclear spins (see Appendix 12.6), we obtain both
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Hahn-echo and Ramsey coherence times of all nine nuclear registers.

Our calculations show that the presence of the electronic defect center greatly affects the

nuclear spin qubit dynamics under the dynamical decoupling protocol. For example, in Fig.

12.2b, we show that the Hahn-echo coherence time of the C5 nuclear register is enhanced

by a factor of 18 when the electron spin is in the ms = −1 state. We also find a clear

correlation between distance from the NV and the T2 of the nuclear spins. Maximum T2

values are achieved for the 14N nuclear spin, which is located in the center of the frozen core

and has a lower gyromagnetic ratio than that of 13C.

The electron-nuclear spin interactions dominate the dynamics of the nuclear spin bath;

thus, an accurate description of the nuclear spin’s decoherence processes requires accounting

for numerous weak correlated fluctuations of the bath spins. For the CCE calculations to

converge, it was necessary to include on the order of 106 clusters of three and four nuclear

spins in our Hahn-echo calculations for 13C nuclear spins, and additionally 106 clusters of

five for 14N. In contrast to the results obtained for the free nuclear spin bath (ms = 0),

the Hahn echoes for the NV center in the ms = −1 state are identical with both the CCE

and gCCE methods (see Section A), indicating a complete suppression of the spin relaxation

process.

Unlike the Hahn echo, the Ramsey signal remains mostly unchanged when the electron

is in the ms = −1, compared to that of the free nuclear spins. The T ∗
2 is limited by the

interactions with the small number of nearest bath spins [52]. We note that each experimental

data falls well within the computed distribution (Fig. 12.1b); however the computed T ∗
2

is overestimated for specific nuclear spins, likely due to the exclusion radius around the

experimental cluster used to set up our model (see Appendix 12.6). Our results point at

an amount of nuclear spins in the proximity of each of the registers which is larger than

expected based on the number of experimentally identified positions [140].

Overall we find excellent agreement between experimental and computed values, thus val-
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idating the applicability and accuracy of our computational framework, even in the presence

of the dominating hyperfine field of the electron spin.

12.3.2 Coherence time of nuclear spins as a function of position

Having validated our computational framework, we now turn to investigating the dependence

of the nuclear coherence time on the position and orientation of the nuclear spins inside the

frozen core of the electron spin (Fig. 12.3a).

In Figure 12.3b, we report a complete map of the nuclear spins ensemble averaged T2,

computed as a function of the polar angle Θ and the distance from the electron spin d, for the

NV center in the ms = −1 state. We find that T2 in the limit of high magnetic field ranges

from more than 600 ms for nuclear spins within 0.5 nm of the electron spin to less than 50 ms

for nuclear spins at distances larger than 4 nm. Figure 12.3c reports cuts along several polar

angles, showing a strong dependence of the coherence time on the orientation of the nuclear

spin with respect to the NV center. The coherence time reaches its maximum for equatorial

nuclear spins in the (111) plane, Θ = 90◦. In the vicinity of the NV, the distribution of

computed T2 values matches that of the spin density of the defect (Fig. 12.3a), and the

nuclear spins located where the spin density is the highest exhibit the maximum coherence

time. In contrast, the axial nuclear spins along the [111] axis have longer T2 times at larger

distances. Interestingly, our calculations show that at about 4 to 5 nm from the NV center,

T2 is the same as in the absence of the electronic spin. This distance is smaller than the

one (d ≥ 6 nm) at which the average strength of the inter-nuclear interactions (∼ 60 kHz)

exceeds that of the mean hyperfine coupling.

12.3.3 Frozen core size of the electron spin

To quantify the spatial extent of the frozen core of the electron spin, we propose a simplified

spin pair-only model, where the size of the bath and spin-pair cutoff radii are obtained in the
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absence of the electron spin (See Appendix 12.6). We find that within this approximation,

the computed Hahn echo of the nuclear spins in the vicinity of the electron spin persists

indefinitely. In the opposite limit of large distances between nuclear and electron spins, the

model yields a coherence function decaying to zero, as expected (Fig. 12.4a). The distance

from the electron at which the model coherence function changes its behavior from constant

to decaying determines the boundary of the frozen core. Specifically, we define the frozen

core radius (rfc) as the distance at which the model coherence at an infinite time decreases

to 1/e.

Using this definition, we find that the frozen core of the NV center is asymmetrical and

elongated along the z-axis (Fig. 12.4b). The radius rfc varies from 2.7 nm at Θ = 55◦ to 3.8

nm at Θ = 180◦, matching the coherence time behavior shown in Fig 12.3c: the computed

T2 decays below 100 ms at 3.8 nm for axial and at 2.9 nm for equatorial spins nuclear spins.

In contrast, the rfc dependence on the azimuthal angle is negligible. The total volume of

the frozen core is 165 nm3, which corresponds to about 300 13C nuclear spins on average.

The frozen core size is correlated with the strength of the parallel component of the

hyperfine interaction with the electron spin. Within the point-dipole approximation, this

interaction can be written as [323]:

Azz = − G
r3

(3 cos2Θ− 1) (12.4)

Where G = µ0γeγnℏ
4π = 7.60 Hz nm3 for 13C nuclear spins. We note that for different

systems (such as quantum dots in Si [290]), other terms might dominate the hyperfine in-

teractions, and one can expect different shapes of the frozen core. Interestingly, at the angle

arccos (1/
√
3) ≈ 55◦ where the dipolar coupling vanishes, the value of rfc = 2.7 nm is only

slightly smaller than 2.8 nm, obtained for Θ = 90◦.

We find that the isotopic purification of the system leads to an increased size of the frozen

core, where rfc scales as the cubic root of the isotopic concentration in a wide range of spin
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densities (Fig. 12.4c). The ratio between rfc at different polar angles remains constant.

Such scaling means that the average number of nuclear spins inside the frozen core remains

constant for most isotopic concentrations. Only at high concentrations (above two percent of

13C), the scaling deviates from cubic, and then the actual electron spin density distribution

and discrete lattice site positions should be taken into account.

12.3.4 Nuclear spin coherence in a strongly coupled hybrid electron-nuclear

spins system

The results of the Sec. 12.3.2 are valid when electron spin and nuclear spin states are

fully decoupled (i.e., Ŝz and Îz commute with the total Hamiltonian). However, at ambient

magnetic fields, this condition can be violated when nuclear spin is strongly coupled to the

electron, significantly altering the nuclear spin dynamics.

As an example, we consider 13C (Fig. 12.5a) belonging to the first shell of the NV center.

We write the central spins Hamiltonian as:

Ĥen = DŜz
2
+ γeBzŜz + γnBz Îz + AzzŜz Îz+

AxxŜxÎx + AyyŜy Îy + Axz(ŜxÎz + Ŝz Îx)

(12.5)

Where Ŝi, Îi are electron and nuclear spin operators, D = 2.88 GHz is the NV center zero-

field splitting, γe, γn are electron and 13C nuclear spin gyromagnetic ratios respectively (see

Appendix 12.6 for the full description). Axx = 99.8 MHz, Ayy = 176.8 MHz, Azz = 108.0

MHz, Axz = 25.5 MHz are hyperfine couplings obtained from DFT calculations and are in

good agreement with experimental data [324]. The energy levels of the combined electron-

nuclear spins system are shown in Figure 12.5b.

We find that to obtain saturation of the coherence time of the first shell 13C, a much

higher magnetic field is required than in the case of free nuclear spins (Fig. 12.5c). Strikingly,

213



10 −4 10 −2 10 0 10 2 10 4
B (mT)

10 0

10 1

10 2

10 3

T 2  
(m

s)

AC GSLACFree
CCE
gCCE
T 2elim

0 50 100 150
B (mT)

−2

−1

0

1

E 
(G

H
z)

0.9 (36°)
769 ms4.2 (11°)

804 ms

5.5 (10°)
850 ms

110 (13°)
954 ms

6.9 (7°)
950 ms

4.0 (13°)
919 ms

(b)(a)

(c)
∣↑-1⟩∣↓-1⟩

Figure 12.5: (a) Computed first and second shell ensemble-averaged nuclear spin coherence
times. For each nuclear spin, we also report the hyperfine coupling Ãzz =
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in MHz, the angle ΘA between the [111] axis of diamond and the hyperfine quantization
axis, and T2 computed in the limit of a large magnetic field. For the first shell nuclear spin
(highlighted in orange), the coherence time is computed at 10 T, and for all others at 1T. Red
arrows show hyperfine quantization axes. (b) Energy levels of the hybrid electron-nuclear
spins system for NV and first shell nuclear spin as a function of an applied magnetic field
along the [111] direction. Orange and red dots correspond to |0a⟩ and |1a⟩ levels respectively
(see text). (c) Coherence time of the first-shell 13C as a function of the applied magnetic field
along the [111] axis, computed with CCE (solid orange line), gCCE (dashed orange line), and
hybridization-limited T elim

2 (blue line, see text). T2 for the free nuclear spin (black) is shown
as a comparison. The green shaded region denotes avoided crossing (AC) in the electronic
levels due to the hyperfine interactions; the red shaded region denotes ground state level
anticrossing (GSLAC) of the electronic levels.
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at all other applied fields, the nuclear spin T2 is severely affected by the partial hybridization

of the electronic spin levels induced by the hyperfine coupling. To analyze this effect, we

express the two energy levels |0a⟩ and |1a⟩ of the hybrid electron-spin nuclear spin system

as:

|1a⟩ = |−1 ↑⟩+ α1a−1↓ |−1 ↓⟩+ α1a0↑ |0 ↑⟩+ α1a0↓ |0 ↓⟩ (12.6)

|0a⟩ = |−1 ↓⟩+ α0a−1↑ |−1 ↑⟩+ α0a0↑ |0 ↑⟩+ α0a0↓ |0 ↓⟩ (12.7)

In the limit of Bz → ∞, the amplitudes αi vanish. The latter can be computed by

directly diagonalizing the Hamiltonian or from perturbation theory and are expected to be

significantly smaller than one. If the reduced density matrices of the electron spin in states

|0a⟩ and |1a⟩ differ substantially, we expect a significant impact of the mixing of electron

spin levels on the nuclear spin coherence time. To estimate the effect on T2 of the difference

in hybridization between the |0a⟩ and |1a⟩ levels, we use a modified approximate model

first suggested in Ref. [49]. The model was proposed to predict the T2 of two electron-spin

states with similar magnetization in the high-field regime, when slow oscillations of nuclear

spin pairs dominate the decoherence process. Using such a model, the contribution to the

nuclear spin coherence time arising only from the electronic hybridization (which we denote

as electron-limited, (elim)) can be expressed as:

T elim
2 (B) ≈ C ||P0a(B)||+ ||P1a(B)||

||P0a(B)− P1a(B)||
, (12.8)

where P0a(B) = ⟨0a|S |0a⟩, P1a(B) = ⟨1a|S |1a⟩ are the effective magnetization of the

electron spin in the |0a⟩ and |1a⟩ states respectively, C is a magnetic field-independent

constant, specific to a given system. We find C to be equal to 0.31 ms for the parameter

range appropriate for the system under study (see Section A). The electron-limited coherence

obtained from the model agrees well with the predictions of the full quantum mechanical
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treatment over a wide range of magnetic fields, thus confirming the significant impact of the

hybridization of the electron spin levels on the coherence time of nuclear spins.

Using perturbation theory, we obtain an approximate expression for the electron spin-

limited coherence time (see Section A):

T elim
2 (B) ≈ 4C(D + γeB)(Azz + γnB)

Axz(Axx + 2Azz + 2γnB)
(12.9)

We find that T elim
2 is proportional to tan−1(ΘA) at intermediate magnetic fields, where

ΘA is the angle between the hyperfine quantization axis n = Axzi + Ayzj + Azzk and the

[111] direction of the diamond lattice. Hence our results show that the T2 of any nuclear spin

with a substantial perpendicular component of the hyperfine coupling requires a significantly

higher magnetic field to achieve saturation when the electron spin is in ms = −1 state. One

can use Eq. 12.9 to estimate the conditions at which the impact of the hybridization of the

electron spin levels on nuclear spin T2 becomes insignificant.

The effect of the partial hybridization of electron spin levels has the highest impact near

avoided crossings of energy levels. In the case of electron spins, avoided crossings originating

from hyperfine interactions lead to a decoherence-protected subspace [325]. Instead, the

effect of these transitions on the T2 of nuclear spins is extremely detrimental. At each of

the avoided crossings, our calculations show a sharp dip in the coherence time of strongly

coupled nuclear spins, highlighting the important trade-off one faces in utilizing nuclear spins

as memory qubits at avoided crossings [300].

12.4 Effect of electron spin control on nuclear spin coherence

Having analyzed the characteristics of nuclear spin coherence times in the vicinity of an

electron spin as a function of ms, we now investigate how nuclear spin coherence is affected

by changes in the state of the electronic spin. The dynamical change of the state of the

216



1 4 16 64 256
Number of pulses

20

40

80

160

T 2  
(m

s)

1 nm, equal  τ i 5 nm 1 nm, random  τ i

0.0 0.2 0.4 0.6 0.8 1.0
δ

10 1

10 2

10 3
T 2  

(m
s)

d = 5 nm d = 1 nm Ramsey

(b)

(a)

δ 1 − δ

∣↑⟩

∣0⟩

∣↑⟩

∣-1⟩

d

τ1 τ2 τ3 ... τN-1 τN

∣↑⟩ ∣↑⟩

∣0⟩ ∣-1⟩

πe

Figure 12.6: (a) Pulse sequences and the corresponding computed nuclear spin T2 (black
and red) and T ∗

2 (blue) for a single nuclear spin at distances 1 nm and 5 nm from the NV
center when a single πe pulse is applied to the electron spin. The dark blue (orange) arrow
represents an electron (nuclear) spin. T ∗

2 is shown for d = 1 nm.(b) Pulse sequence and the
nuclear spin T2 when many πe pulses are applied to the electron spin. Red color shows T2
of the nuclear spin at 1 nm. Spacing between the pulses (τi) is either random (points inside
shaded area) or constant (solid line). Black line shows T2 of the nuclear spin at 5 nm.
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electron spin has been shown to be a valuable tool for improving nuclear spin coherence. For

example, one can use unbalanced echo [326] by applying control pulses to the electron spin

to enhance the protection of the nuclear spin ensembles against lattice strain noise.

We analyze the effect of the central spin coherent control on nuclear spin coherence by

applying a sequence of πe-pulses (here, the index e denotes electron spin) to the NV center

and we compute the dynamics of nuclear spins at two distances from the electron.

Figure 12.6a shows the nuclear spin coherence when a single πe-pulse is applied to the

electron spin at different fractions of the total time 0 ≤ δ ≤ 1. The electron spin is initialized

in the ms = 0 state; after the πe-pulse is applied, the electron spin rotates into the ms = −1

state. Before the πe pulse, the nuclear spin precesses with frequency w
(0)
L = −γnB; upon

the application of the pulse, the frequency is w(−1)
L = −γnB−Azz, leading to the emergence

of a nonzero phase of the Hahn-echo signal. In our calculations, we obtain the decay of the

coherence time from the absolute value of the coherence function |L|.

We find that the coherence time of the nuclear spins outside the frozen core does not

change significantly with the state of the central spin. However, within the frozen core, the

change is drastic: when δ > 0.5, the nuclear spin coherence time reaches a local minimum

and we observe a 15% drop in T2, compared to that of the spin in the ms = 0 state, indicating

a destructive interference between nuclear and electron control pulses.

Figure 12.6b shows the T2 of the nuclear spin as a function of the number of applied πe

pulses. The electron spin is initialized in the ms = 0 state. In this case, one can achieve a so-

called motional narrowing of the hyperfine field [300]: as the number of πe pulses increases,

the electron-induced field rapidly oscillates and its overall effect can be described by an

average field. The motional narrowing leads to a significant enhancement in coherence time.

We obtain the highest increase in T2 for a constant spacing between πe pulses; however, T2

is still much smaller than the coherence time achieved when the electron spin remains in the

ms = −1 state (620 ms).
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12.5 Discussion and Outlook

In this work, we presented and validated a robust computational protocol to describe the

nuclear spin dynamics in a nuclear spin bath. Using the proposed protocol, we determined

the main noise channels affecting the coherent lifetime of nuclear memories in spin defect

systems. In the absence of electron spins, nuclear spin coherence is limited almost equally

by dephasing and relaxation processes. However, the interplay between these two processes

greatly varies depending on the specific spatial configuration of nuclear spins. This finding

indicates that the geometrical arrangements of the nuclear spin environment of spin defects

should be carefully characterized [140], in order to identify the optimal nuclear spins to store

nuclear quantum states as long as possible.

Our calculations showed that the Hahn echo of single nuclear spins exhibit complex

oscillatory features emerging from the spin exchange interactions with the bath. These

oscillations arise from the direct interactions between a single bath spin and the central spin,

and they can be used to identify and characterize spin exchange interactions with the single

spins in the bath.

In the presence of electron spins, we characterized the shape of the frozen core of nuclear

spins around the defect with a spin-pair model. The core turns out to be oblong and elongated

along the z-axis, matching the dependence of the dipolar hyperfine coupling on the polar

angle. The volume of the frozen core is inversely proportional to the concentration of nuclear

spins; thus, the total number of nuclear spins inside the frozen core is constant and equal to

about 300 13C, irrespective of any isotopic purification. This value sets a precise boundary

on how many 13C nuclear spins it is possible to interact with and, therefore, sense or control

using a single NV center.

We analyzed the frozen core effect on coherence time and found that the Hahn-echo T2

of the nuclear spins can be enhanced by up to 36 times for the closest nuclear spins, when an

electron is in the ms = −1 state. Near an NV center, the highest T2 is attained by equatorial
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nuclear spins, closely matching the spin density distribution of the NV center. Further away

from the electronic spin defect, it is the polar nuclear spins that retain the highest T2.

However, in strongly coupled nuclear-electron spin systems, the hyperfine-induced hy-

bridization of electron spin levels acts as a major source of decoherence at commonly used

range of magnetic fields. This decoherence channel is most prominent near avoided crossings

between energy levels. We find that the prohibitively high magnetic fields would be necessary

to suppress the impact of partial hybridization of electron spin states on coherence time in

the strong coupling regime.

Finally, we uncovered that the coherent control of the electron magnetic states severely

impacts the nuclear spin coherence time inside the frozen core. Even with no noise affecting

the electron spin, we find that the nuclear T2 is dramatically decreased as soon as the state

of the electron is changed.

Overall, the validated computational framework proposed here for the study of nuclear

spin registers is general and applicable to broad classes of systems and problems. For exam-

ple, one can use the proposed platform to study the impact of the total spin of an electron

qubit on the frozen core effect. In particular, one could investigate the difference in co-

herence times in the presence of electron spin-1/2 qubits, exhibiting a hyperfine field in any

state, and NV centers, where one of the magnetic states does not exert a hyperfine field.

Importantly, using our computational platform one may screen materials for optimal nuclear

spin coherence times [56].

Another interesting avenue of research is the exploration of the predicted frozen core

size and shape as an engineering tool for the bottom-up design of spin qubits in molecular

systems [327]. With each frozen core corresponding to a computational domain of a specific

electron spin, one can envision a nanoscale network of spin processors, with electron spins

as processing units and nuclear spins acting as memory qubits.

Finally, our results tell a series of cautionary tales for the applications of nuclear spins
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for quantum technologies. From the applied magnetic field to the electron spin control, we

elucidated the various noise channels that may adversely affect the quantum state of the

nuclear spins.

12.6 Computational framework

The quantum evolution of the combined electron spin-nuclear register is described by the

model Hamiltonian:

Ĥ = Ĥen + Ĥen-b +Hb (12.10)

The central spin Hamiltonian Ĥen includes:

Ĥen = DŜz + γeB · S + γnB · I0 + S · A0 · I0 (12.11)

Here D is the zero field splitting of the electron spin, B = (Bx, By, Bz) is the magnetic

field, γn is the gyromagnetic ratio of the 13C nuclear spin, S = (Ŝx, Ŝy, Ŝz) and Ii =

(Îx,i, Îy,i, Îz,i) denote electron and the i-th nuclear spin operators, respectively. The zero

index denotes a given nuclear spin chosen as a qubit.

The bath-central spins Hamiltonian Ĥen-b and the bath Hamiltonian Ĥb are defined as

follows:

Ĥen-b =
∑
i

S · Ai · Ii + I0 · P0i · Ii, (12.12)

and

Ĥb =
∑
i

−γnB · Ii +
∑
i≥j

Ii · Pij · Ij (12.13)

.

Here Ai is the hyperfine coupling tensor of the i-th nuclear spin, and Pij is the dipole-
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dipole coupling between spins i and j.

We use the cluster-correlation expansion (CCE) to compute the coherence function of

the nuclear spin, defined as:

L(t) = ⟨Î−(t)⟩
⟨Î−(0)⟩

=
⟨↑| ρ̂(t) |↓⟩
⟨↑| ρ̂(0) |↓⟩

(12.14)

where |↑⟩ and |↓⟩ are nuclear spin-up and spin-down states and Î− are nuclear lowering

spin operators, ρ̂(t) is the density matrix of the central spin. In the presence of an NV center

we define off-diagonal elements between eigenstates of Ĥen corresponding to the diabatic

levels |↑ 0⟩, |↓ −1⟩ for ms = 0, and to |↑ −1⟩, |↓ −1⟩ for ms = −1 cases.

Within the CCE scheme, the coherence function L(t) is factorized into the contributions

of bath spin clusters with different size [47]:

L(t) =
∏
i

L̃{i}
∏
i,j

L̃{ij}... (12.15)

The contributions are computed recursively from the coherence function of the central

spin, interacting with only a given cluster C as L̃C = LC∏
C′ L̃C′⊂C

, where the subscript C ′

indicates all sub-clusters of C.

Depending on the framework, the LC are computed as follows. In conventional CCE

[47, 48] (referred throughout the text as CCE), the relaxation processes of the central spin

are discarded, and the coherence function is computed as an overlap in the cluster evolution,

dependent on the central spins state:

LC = ⟨C| Û (0)
C (t)Û

(1)†
C (t) |C⟩ (12.16)

Where |C⟩ is the initial state of the cluster C. Û (α)
C (t) is the time propagator defined in

terms of the effective Hamiltonian Ĥ
(α)
C conditioned on the qubit levels. Up to the second
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order of perturbation theory it can be written as:

Ĥ
(α)
C = ⟨α| ĤC |α⟩+

∑
i̸=α

⟨α| Ĥb |i⟩ ⟨i| Ĥb |α⟩
Eα − Ei

(12.17)

Where |α⟩, |i⟩ are eigenstates of the central spins Hamiltonian Ĥen, ĤC is the Hamilto-

nian in Eq. (12.11) including only the bath spins in the cluster C:

ĤC = Ĥen + Ĥ
(i∈C)
en-b + Ĥ

(i,j∈C)
b (12.18)

In contrast, in the generalized CCE (gCCE) we compute the cluster contributions from

the respective elements of the reduced density matrix of the central spin as [53]:

LC = ⟨a|TrC [ρ̂en⊗C(t)] |b⟩ , (12.19)

where ρen⊗C(t) is the density matrix of the system, which includes bath spins in the cluster

C and all central spins. The evolution is computed using the full cluster Hamiltonian ĤC .

All π-pulses are assumed to be ideal, instantaneous, and selective to the spin chosen as

a central one.

The strength of interactions between central nuclear spin and bath spins is very similar

in the system under study, making the convergence of the expansion order particularly

challenging. Here, we use Monte Carlo sampling of bath states [53], and for each pure bath

state, we use "externally aware" cluster expansion by adding Izing-type coupling with the

bath spins outside of the given cluster in a mean-field way. This approach has been shown

to improve the convergence of the CCE method in the all-dipolar spin systems [57].

We use the PyCCE module [108] to carry out all CCE simulations. To approximate the

dipolar coupling parameters, we use the actual spin density of the NV center in diamond,

computed with density functional theory at the PBE [161] level in a 1000 atoms supercell
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using the Quantum Espresso package [63]. The dipolar coupling is then computed as [32]:

Aab =
1

2

µ0
4π
γeγnℏ2

∫
|r|2δab − 3rarb

|r|5
ρs(r)dr (12.20)

Where r is the position relative to a given nuclear spin, ρs is the electron spin density.

The contact terms of the nuclear spins at distances under 1 nm were computed using the

GIPAW module of Quantum Espresso. For every other nuclear spin we assumed the contact

terms to be vanishing.

To approximate the experimental nuclear spin bath we generated 50 random bath con-

figurations around the experimental cluster. Assuming that all closest nuclear spins were

identified in the experiment, we imposed a cutoff of 0.56 nm around each of the identified

nuclear spins. This cutoff is chosen so that the exclusion volume on average contains 27

nuclear spins.

To characterize the extent of the frozen core, we used the CCE2 (spin-pair approximation)

with the number of pairs converged in the absence of the electron spin. Using the same

number of pairs, we computed the hypothetical coherence signal at various distances from

the NV center.
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CHAPTER 13

CONCLUSIONS AND OUTLOOK

"It is a dream" — David D. Awschalom

Starting as a simple mathematical model, the cluster correlation expansion method became

a powerful tool for quantitatively predicting the spin qubits’ dynamics in realistic media.

In this thesis, I presented a unified computational framework to conduct such simulations.

Within this framework, we’ve made several improvements to the CCE method to relax some

constraints. The method improvements enabled a successful series of papers estimating the

coherence enhancement of the spin qubits at avoided crossings. We studied several types

of the spin defects in wide-band-gap semiconductors as well as molecular hosts. What we

found here is quite insightful: irrespectively of the type of the solid state host, the guiding

principles of spin qubit coherence protection at clock transitions stay the same.

I further expanded the boundaries of applicability of the proposed framework as a tool

to aid in the experimental characterization of spin qubits. We showed how the qualitative

predictions of the model allow one to use it to characterize the material growth on the

example of nitrogen doping in diamond. We next used the first principle simulations to guide

the experiments in sensing the polarization of the bath around spin qubits, and characterized

the difference in bath-induced decoherence in the vicinity of low dimensional materials.

Finally, we used the ab initio predictions to flip the script and look at the properties of

the bath spins themselves. We investigated how we can improve the applicability of nuclear

spins in the vicinity of electron spins and found that there is an optimal concentration of

nuclear spins (conveniently located at about 0.5-1%), and that there exists a lot of pitfalls

one needs to avoid to preserve the coherence of nuclear spins.

But the good work never stops. There are quite a few avenues one would want to explore

with first principles to ensure the practical applicability of spin defects as solid-state qubit

platforms.
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Understanding the surface spins noise from the first principles

In chapter 10, I have shown that the CCE method can efficiently predict the properties of

the electron spin qubit in the electron spin bath in the bulk materials. However, the defects

must be placed near the surface for sensing applications. In this regime, a dominating effect

comes from the surface noise. And it is well known that the surface spins have very short T1

lifetimes, dominated by the other noise sources, usually Markovian in nature. Accounting

for the classical noise environment of the bath spins would require substantial theoretical

developments in addition to the computational effort. Here I envision a thrust to derive the

cluster expansion, starting with the master equation instead of the von Neumann equation.

Nuclear spin memories

Using CCE, one can obtain excellent agreement with the experimental data for the nuclear

spin dynamics in the most basic spin coherence experiments, as shown in chapter 12. How-

ever, all experiments in this chapter are assumed to be completely coherent, and no noise is

introduced when one changes the state with the electron spin. The natural next question to

ask is how the incoherent reset of the electron spin (for example, in the entangling attempts

for quantum networking applications) will affect the memory properties of the nuclear spin.

I expect the effect to be severe for strongly coupled nuclear spins.

The other thing left to address is to look at the instantaneous diffusion on the weakly

coupled nuclear spins. The decoupling pulses on the nuclear spins are not ideal and can

recouple spins with similar hyperfine couplings, inducing the decoherence channel known

as instantaneous diffusion. This channel should be straightforward to address with CCE

simulations and is worth exploring.
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Material growth characterization

Another avenue I want to see expanded is a continued effort to use the simulations in the

material synthesis presented in chapter 10. Building an automated framework in collabora-

tion with the experiment to characterize single spin defects would help solve the scaling of

spin defect-based technologies.

227



APPENDIX A

BATH-LIMITED DYNAMICS OF NUCLEAR SPINS IN

SOLID-STATE SPIN PLATFORMS: ADDITIONAL

INFORMATION

A.1 Note on experimental Hahn-echo measurements of single

nuclear spins

In the experiment, to make the π-pulses selective to a specific nuclear spin, one has to rotate

NV into ms = −1 state for a short period of time, regardless of the NV state of interest.

This means that even the data for ms = 0 state includes a small fraction of time during

which the NV is in ms = −1 state. Depending on the nuclear spin, this time is between

0.3-1.6 ms (See ref. [211] Table S3 for specific gate times), which can lead to the nuclear spin

acquiring an additional phase, not present in the simulations.
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Figure A.1: Coherence function convergence with CCE order for the free nuclear spin in
a single random bath configuration. Left: Ramsey signal, right: Hahn-echo signal.The
black dash line represents CCE predictions, and all other lines show the results of gCCE
calculations. Error bars show 1 SE.
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nuclear spin in two random bath configurations. Colored lines correspond to the coherence
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predictions for the high field limit (10 mT).
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Figure A.4: Histogram of the ratio between T2 computed at gCCE and CCE level for a free
nuclear spin in 100 random bath configurations.

A.2 Convergence of the coherence function calculations

Convergence of the coherence function calculations of the free nuclear spin is achieved with

≈ 1000 bath nuclear spins at distances up to 5 nm. Cluster expansion includes approximately

2 · 104 pairs, 8 · 104 clusters of three, and 8 · 104 clusters of 4.

Figure A.1 shows the convergence of the coherence curve with CCE order for Ramsey

(left) and Hahn-echo (right) signals for a random nuclear spin bath configuration. The

dashed line shows CCE predictions, and the solid lines show gCCE ones.

The convergence of the nuclear spin coherence time in the presence of an NV center is

particularly challenging. Due to the gradient of the hyperfine couplings, the flip-flop inter-

actions between nuclear spins are almost completely suppressed, and a significant number

of the nuclear spin clusters contributes to the decoherence rate. The converged calculations

at CCE4 order for the Hahn echo of nuclear spins in the vicinity of an NV includes about

1000 bath spins (the same size of the bath as for the free nuclear spins), 2 · 105 pairs, 2 · 106

clusters of three and 2 ·106 clusters of four. The calculations at CCE5 order for the nitrogen

nuclear spin include additionally 106 clusters of five.

Figure A.2 shows the convergence of the coherence curve with CCE order for Hahn

echo of the C5 memory register from the main text in a single random nuclear spin bath
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Figure A.5: Left: Ensemble-averaged coherence time T2 for the free nuclear spin as a function
of isotopic 13C concentration in diamond. The coherence is computed with gCCE4. The
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function of applied pulses n in Carr-Purcell-Meiboom-Gill (CPMG) sequence. Solid lines
show a fit to the points.

configuration. The gCCE predictions at third order exactly match the CCE3 curve.

In the bath state sampling method, a small subset of computed coherence values is

prone to numerical instabilities due to some cluster contributions being very close to zero.

Therefore, a number of divisions by a very small number occurs, which may lead to a

significant numerical error. The nonphysical computed coherence function values where

|L| > 1 were renormalized as L̃ = L
|L| .

A.3 Additional data for the free nuclear spin

Figure A.3 shows the coherence function of the nuclear spin in two random bath configu-

rations. The left configuration is the same one as shown in the main text, Figure 1d. In

the gCCE results, we observe rapid oscillations that persist throughout the full range of

the magnetic fields studied here. The oscillations frequency scales linearly with the applied

magnetic field. The coherence time is converged at a magnetic field of about 0.1 mT.

Figure A.4 shows the distribution of the ratio between T2, obtained with gCCE and CCE

methods. We observe a broad distribution, with the most probable value of the ratio T gCCE
2 :

231



101 102 103

Magnetic field (mT)

100

101

102

103

T 2
 (m

s)

Telim
2

TPT
2

CCE4
CCE2
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TCCE
2 = 0.72 : 1. For a few bath configurations, the direct spin exchange completely

dominates the decoherence such that T2 obtained with gCCE is five times smaller than the

one computed with the CCE method.

Figure A.5 shows the scaling of the free nuclear spin T2 as a function of isotopic pu-

rification computed with gCCE. We find the T2 inversely proportional to the nuclear spin

concentration, T2 = 0.245c−1. This dependence is the same as the scaling of the electron

spin coherence time.

Figure A.5 shows the computed scaling of the coherence time with the number of dynam-

ical decoupling pulses in the CPMG sequence. The coherence was computed at the fourth

order of the expansion. We find a significant difference between CCE and gCCE scaling

and between the magnitudes of coherence time. However, with an increase in the number of

pulses, we expect higher-order correlations to play an even more significant role; thus, the

scaling obtained with gCCE4 might be unreliable.
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Figure A.7: Electron-limited coherence time T elim
2 when electron is in the ms = −1 state

for 16 strongly coupled nuclear spins.
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A.4 Electron-limited coherence

To recover the value of the C constant, we run a set of CCE simulations of an electron

coupled to the first-shell 13C in the spin bath, setting all interactions between the first-shell

13C and nuclear spin bath to zero. We thus recover the decoherence induced only by the

electron spin levels. We then fit the T2 obtained in this way to Eq. (12.8). We find that for

B between 1-500 mT the constant is C = 0.31 ms (Fig. A.6).

The electron spin magnetization for |0a⟩ and |1a⟩ can be written in terms of the ampli-

tudes of the spin levels, following the notation in the main text:

P1a = (
1√
2
(α1a0↑ + α1a∗0↑ + α1a∗0↓ α1a−1↓ + α1a0↓α

1a∗
−1↓), 0,−1) (A.1)

P0a = (
1√
2
(α0a0↓ + α0a∗0↓ + α0a∗0↑ α0a−1↑ + α0a0↑α

0a∗
−1↑), 0,−1) (A.2)

Using first-order perturbation theory, we can approximate the amplitudes of the hy-

bridized states |0a⟩ and |1a⟩ as:

α1a0↑ = − Axz√
2(Azz − 2(D + γeBz)

(A.3)

α1a0↓ = −
Axx + Ayy√

2(Azz − 2(D + (γe − γn)Bz)
(A.4)

α1a−1↓ =
Axz

(2Azz + 2γnBz)
(A.5)
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and

α0a0↑ =
Axx − Ayy√

2(Azz + 2(D + (γe + γn)Bz)
(A.6)

α0a0↓ = − Axz√
2(Azz + 2(D + γeBz)

(A.7)

α0a−1↑ = − Axz

(2Azz + 2γnBz)
(A.8)

Leading to the final expression in the main text. In a similar fashion, we can derive the

equation when both Axz and Ayz are non-zero and obtain the following expression:

TPT
2 (B) ≈ 4C(D + γeB)(Azz + γnB)√

A2
xza

2
x + A2

yza
2
y

(A.9)

Where ax = Axx + 2Azz + 2γnB, and ay = Ayy + 2Azz + 2γnB

We also find that we can empirically correct the perturbation theory-based equation to

obtain a significantly better agreement with the T elim
2 from magnetic projections, computed

numerically, by adding a factor of two in front of Axx and Ayy (Fig. A.7):

Tfit
2 (B) ≈ 4C(D + γeB)(Azz + γnB)√

A2
xz ã

2
x + A2

yz ã
2
y

(A.10)

With ãx = 2Axx + 2Azz + 2γnB, and ãy = 2Ayy + 2Azz + 2γnB. The physical meaning

of such a factor remains, however, unclear.

A.5 Shape of the frozen core

Figure A.8 shows the dependence of the frozen core radius as a function of radial Θ and

azimuthal ϕ angles for the natural isotopic concentration in diamond. The minimum of the

frozen core radius is located at arccos(1/
√
3) ≈ 54.7◦, where the dipolar hyperfine coupling

Azz vanishes.
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Figure A.8: Spin-pair coherence at an infinite time (see main text) as a function of distance
r from the NV center, radial Θ, and azimuthal ϕ angles. The yellow line shows the frozen
core radius, and the red line shows the dipolar hyperfine coupling in the arbitrary units.
Darker colors correspond to zero values of the model coherence.
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APPENDIX B

DESIGN DOCUMENT OF PYCCE

PyCCE has been rather successful, with the number of downloads exceeding 600 as of May

2023 (see Fig. B.1). However, currently, I am the only developer actively supporting it; thus,

below are the general guidelines I follow in the development process.

Specifically, I discuss the design philosophy behind the core decisions I made during the

PyCCE development. This section is aimed at the people who want to modify and tailor

PyCCE to their own needs or, simply put, developers. It is not intended as a usage guide;

see the section 5 and online documentation at https://pycce.readthedocs.io/ for the

user documentation.

The properties of the spin bath are stored in the objects of the BathArray class. BathArray

is a subclass of the numpy.array with a fixed datatype. Such a choice was made to ensure

fast and reliable access for the user to the properties of hundreds or even thousands of bath

spins. Properties of the spins are stored either as a property of an individual spin (and stored

inside the underlying numpy.array) or properties of the spin type.

The assumption is the following: it is very much guaranteed that all bath spins will have

different positions and different coupling parameters with the central spin. Hence, we need

to ensure easy generation and storage of a large number of these values. The coupling to the

magnetic field or the total spin of the particles, for the most part, will be the same for the

significant portion of the bath, so storing it as a single value makes sense. A shortcoming is

that if one needs to have a bath with a magnetic field gradient, the code might significantly

underperform compared to a unified magnetic field.

The spin type of a particular bath spin is determined by its name, stored in the BathArray.N

attribute. The properties of the spin type are stored in the SpinType object, invisible to the

user. All spin types of the given bath array are stored in the SpinDict object, available as a

BathArray.types attribute. Most of the SpinType attributes are directly accessible as the
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Figure B.1: Distribution of the PyCCE downloads per country. Courtesy of Google Big-
Query.

attributes of BathArray, so usually, one doesn’t need to work with it directly.

Adding properties of the spin type is way easier for a developer than trying to change

the fixed datatype of the class; thus, it should be the first option to add new terms to the

bath spin Hamiltonian. If there is a need to create a bath with each spin having a unique

parameter stored in its type, it is recommended to name the bath spins with different indexes

(e.g., "e1"..."en" for a set of n electron spins), and create a unique SpinType object for each.

In comparison, the CenterArray class is intended to store a few (up to 3-4) spins, each

with its own completely unique parameters. Therefore, the CenterArray class significantly

differs from the bath - it does not directly inherit from numpy.array and is written from

scratch. Each element of the CenterArray is an instance of the Center class, which con-

tains all the properties of the bath spins and the center-specific ones. It is still in active

development, and the backend of the Center class might significantly change in the future.

The main interface between the user and the calculation of interest is done via the objects

of the Simulator class. On the backend, when the Simulator objects are initialized, they

do the following steps:
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• Prepare a spin bath by choosing a subset of the BathArray according to the r_bath

parameter and generating the hyperfine couplings from the hyperfine keywords.

• Generate a set of clusters to be used in the cluster expansion calculation.

The CCE calculations themselves are carried out by the objects of various subclasses of

BaseRunner class, called during the Simulator.compute call. Each of the BaseRunner has

the following attributes, by overriding which the developer can easily create a new type of

CCE simulation:

• .kerner defines the subroutine, which is run to compute the result for each cluster. If

not defined, it calls .generate_hamiltonian and .compute_result methods.

• .preprocess defines the code block which will run before the given CCE runs or before

each of the bath states calculations.

• .postprocess defines the code block which will be run after given CCE run or after

each of the bath states calculations.

These attributes are used by the cluster_expansion_decorator to do a CCE calcula-

tion.
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