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ABSTRACT

This thesis studies the average area ratio and minimal surface entropy of hyperbolic

manifolds.

On closed hyperbolic manifolds of dimension n ≥ 3, we review the definition of the

average area ratio of a metric h whose scalar curvature is bounded below by −n(n− 1)

in comparison to the hyperbolic metric h0. We prove that it reaches its local minimum

value of one at h0, which solves a localized version of Gromov’s conjecture.

Furthermore, in the case of odd n, assuming h is a metric with sectional curvature

no greater than −1, we introduce the concept of minimal surface entropy of h, which

quantifies the number of surface subgroups. It achieves its minimum value if and only if

the metric is hyperbolic.

Additionally, we explore the relationship between the average area ratio and the nor-

malized total scalar curvature for hyperbolic n-manifolds. We also discuss its connection

to the minimal surface entropy when n is odd.
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CHAPTER 1

INTRODUCTION

One of the fundamental problems in geometry is to construct minimal surfaces in

Riemannian manifolds. Fortunately, we have seen many significant developments in

recent years. The Almgren-Pitts min-max theory [2], [52], established in the 1980s, aims

to find a smooth closed embedded minimal hypersurface in every closed manifold Mn+1

of dimension 3 ≤ n + 1 ≤ 6 (Schoen-Simon [56] improved this to 3 ≤ n + 1 ≤ 7).

This theory has proven to be a powerful tool in the past few years. Marques-Neves [47]

and Song [63] solved Yau’s conjecture [70] regarding the existence of infinitely many

closed embedded minimal hypersurfaces in a closed manifold Mn+1 of dimension 3 ≤

n + 1 ≤ 7. Li [40] investigated the higher dimensional case for generic metrics, where

the minimal hypersurfaces exhibit optimal regularity. Furthermore, using the Weyl law

for the volume spectrum (Liokumovich-Marques-Neves [41]), Irie-Marques-Neves [29],

and Marques-Neves-Song [49] discussed the density and equidistribution properties of

these hypersurfaces, respectively, when Mn+1 admits a generic metric. On the other

hand, Zhou [71] proved the Multiplicity One Conjecture raised by Marques-Neves [46].

Combined with [48], it implies the existence of minimal hypersurfaces with any Morse

index for generic metrics.

Meanwhile, the ambient metric affects the minimal surfaces in various ways, including

their existence, distribution, and asymptotic behavior. In particular, our motivation for

exploring manifolds with strictly negative curvature stems from the fact that it enables

the study of minimal surfaces from both a variational and dynamical standpoint.

On a closed negatively curved manifold M , a helpful dynamical fact is that the unit

tangent bundle admits a one-dimensional foliation whose leaves are orbits of the geodesic

flow. Let h and h0 be a pair of Riemannian metrics on M . The comparisons of the

geometric objects associated with h and h0 have been studied extensively. For instance,
1



the geodesic stretch Iµ(h/h0) measures the stretching of the metric h relative to the

reference metric h0 and the measure µ. Comparisons related to Iµ(h/h0) were discussed

by Knieper [36]. Another example is the volume entropy, which can be expressed using

the following form as shown by Manning [44] and Margulis [45].

Evol(h) = lim
L→∞

ln#{lengthh(γ) ≤ L : γ is a closed geodesic in (M,h)}
L

.

Besson-Courtois-Gallot [7] showed that the locally symmetric metric, which refers to

metrics on closed hyperbolic manifolds, complex hyperbolic manifolds, quaternionic hy-

perbolic manifolds, and the Cayley plane, achieves the minimum value among all metrics

on M with the same volume. It is natural to explore the extent to which one-dimensional

objects (geodesics) can be expanded and applied to two-dimensional scenarios (minimal

surfaces).

1.1 Definitions

1.1.1 Average Area Ratio

Gromov discussed an attractive two-dimensional analogue in his work [19]. A two-

dimensional foliation of Gr2M is formed by a family of stable minimal surfaces of M .

In particular, let h0 denote the hyperbolic metric. In this case, there exists a canonical

foliation of Gr2M whose leaves are totally geodesic planes. Gromov introduced the av-

erage area ratio AreaF (h/h0), which, similar in essence to the geodesic stretch, measures

the “stretching” of the area of leaves on Gr2M of the metric h relative to the hyperbolic

metric h0 under the map F .

Let (M,h0) be a closed hyperbolic manifold of dimension n ≥ 3, and let (N, g) be a

closed Riemannian manifold of the same dimension. Suppose that F : (N, g) → (M,h0)

2



is a smooth map with degree d > 0. The average area ratio of F is as follows.

AreaF (g/h0) =
ˆ
(y,P )∈Gr2(M)

∑
x∈F−1(y)

lim
δ→0

areag((dFx)−1(Dδ))

δ
dµh0 ,

where Dδ is a subset of the totally geodesic disc of Hn which is tangential to P at x,

Dδ has an area equal to δ, and µh0 stands for the unit volume measure on Gr2(M) with

respect to the metric induced by h0. We refer to Chapter 2 for a more detailed definition.

When n = 3 and the scalar curvature of N satisfies Rg ≥ −6, Gromov proved the

following inequality using stability [19].

AreaF (g/h0) ≥
d

3
.

The proof indicates that if equality holds, then (N, g) should be hyperbolic. However,

it means the inequality is not sharp, and therefore, Gromov conjectured that the lower

bound could be replaced by d. Moreover, the higher dimensional case might share the

same property.

Conjecture 1.1.1 (Gromov, [19]). Let (M,h0) be a closed hyperbolic manifold of di-

mension n ≥ 3, and let N be a closed n-manifold with Riemannian metric g, and its

scalar curvature satisfies Rg ≥ −n(n − 1). F : N → M is a smooth map with degree

d > 0. We have

AreaF (g/h0) ≥ d.

The equality holds if and only if F is a local isometry.

Most recently, Lowe-Neves [43] verified the special case where n = 3 and F is a local

diffeomorphism.

3



1.1.2 Minimal Surface Entropy

Calegari-Marques-Neves [11] introduced the concept of the minimal surface entropy,

denoted as E(h), which is based on the construction of surface subgroups by Kahn-

Markovic [33]. This concept is further supported by the equidistribution property of

PSL(2,R)-action on the space of minimal laminations, which was initially proposed by

Ratner [53] and Shah [59], and recently formalized by Labourie [38]. The value of E(h)

serves as a measurement for the number of essential minimal surfaces of M with respect

to h, thus shifting attention from a one-dimensional entity (volume entropy) to an object

of dimension two.

Let Hn denote the hyperbolic n-space, where n ≥ 3. In the Poincaré ball model, the

asymptotic boundary ∂∞Hn can be considered as the (n − 1)-unit sphere Sn−1
∞ . Let

M = Hn/π1(M) be a closed orientable n-manifold (n ≥ 3) that admits a hyperbolic

metric h0, A closed surface immersed in M with genus at least 2 is said to be essential

if the immersion is π1-injective, and the image of its fundamental group in π1(M) is

called a surface subgroup. Let S(M, g) denote the set of surface subgroups of genus at

most g up to conjugacy, and let the subset S(M, g, ϵ) ⊂ S(M, g) consist of the conjugacy

classes whose limit sets are (1+ϵ)-quasicircles (i.e., images of round circles under (1+ϵ)-

quasiconformal maps on Sn−1
∞ ). Moreover, Sϵ(M) = ∪

g≥2
S(M, g, ϵ). Suppose h is an

arbitrary Riemannian metric on M . For any Π ∈ S(M, g), we set

areah(Π) = inf{areah(Σ) : Σ ∈ Π}.

Then the minimal surface entropy with respect to h is defined as follows.

E(h) = lim
ϵ→0

lim inf
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ Sϵ(M)}
L lnL

. (1.1.1)

According to Calegari-Marques-Neves [11], when n = 3, and among metrics with sec-
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tional curvature less than or equal to −1, E(h) attains its minimum value at the hyper-

bolic metric h0, and E(h0) = 2. On the other hand, Lowe-Neves [43] showed that when

n = 3, E(h) is maximized at h0 among all metrics with scalar curvature greater than or

equal to −6.

1.2 Results and Ideas

In this section, we state the main results and provide a brief introduction to the ideas.

The detailed proofs are presented in subsequent sections. Additionally, the organization

of the thesis is outlined in this section.

1.2.1 Average Area Ratio

In this thesis, we investigate Gromov’s conjecture from two perspectives in Theorem

1.2.1 and Theorem 1.2.3. First, if n ≥ 3 and F : N → M is a diffeomorphism, it

simplifies to the following scenario.

Theorem 1.2.1 (Jiang, [31]). Let (M,h0) be a closed hyperbolic manifold of dimension

n ≥ 3. There exists a small neighborhood U of h0 in the metric space of M , such that

for any Riemannian metric h ∈ U on M with Rh ≥ −n(n− 1), we have

AreaId(h/h0) ≥ 1.

The equality holds if and only if h = h0.

Such a neighborhood is “cylindrical”, that is, if h ∈ U , then any metric h′ in the

conformal class of h with Rh′ ≥ −n(n− 1) also belongs to U . This theorem provides a

solution to a local version of Gromov’s conjecture concerning diffeomorphisms.

We now brief present the idea of the proof, which can be divided into two parts.

Suppose h is an arbitrary metric conformal to a metric h̄ with constant scalar curvature.
5



In that case, the assumption Rh ≥ −n(n−1) provides estimates of the conformal factor,

and thus the area of any surface attains the minimum at h̄ in the conformal class.

The second part considers the metrics set onM with constant scalar curvature −n(n−

1). We define a functional A from the space of Riemannian metrics on M to R as follows.

A(h) =

ˆ
(x,P )∈Gr2M

Rh(x) |Λ2Id|−1
h (x, P ) dµh0 .

The theorem is equivalent to show that A attains a local maximum at h0. It is not hard

to check that h0 is a critical point of A. Next, in order to evaluate A′′(h0), we compare

it with the second variation of the normalized total scalar curvature (or normalized

Einstein-Hilbert functional)

E(h) = (volh(M))
2
n−1

ˆ
M
Rh dVh,

and apply the estimates in [7].

Notice that unlike E , the functional A is not invariant under diffeomorphisms; there-

fore, we need to use the decomposition of space of symmetric tensors [6] and discuss the

signs of A′′(h0) on the conformal deformation, diffeomorphism part, and the transverse-

traceless part, respectively.

Besides, let (N, g0) be another closed hyperbolic manifold of the same dimension n,

the theorem leads to the following corollary.

Corollary 1.2.2. There exists a small neighborhood U of g0 in the metric space of N ,

such that for any metric g ∈ U with Rg ≥ −n(n− 1), and for any local diffeomorphism

F : (N, g) → (M,h0) with degree d > 0, we have

AreaF (g/h0) ≥ d.

6



The equality holds if and only if F is a local isometry between g and h0, i.e., g = F ∗(h0).

Proof. Since F is a local diffeomorphism,

AreaF (g/h0) = dAreaId(g/F
∗(h0)).

F ∗(h0) is a hyperbolic metric on N , so it’s isometric to g0 due to Mostow rigidity. Thus

we obtain from the previous theorem the following inequality.

AreaF (g/h0) = dAreaId(g/g0) ≥ d.

On the other hand, when the dimension n = 3, we establish a more general result

applicable to any smooth maps near the diffeomorphisms between homeomorphic 3-

manifolds, regardless of whether it is a diffeomorphism or not.

Theorem 1.2.3 (Jiang, [31]). Let (M,h0) and (N, g0) be closed hyperbolic 3-manifolds.

If π1(M) ∼= π1(N), then there exists a small neighborhood U of g0 in the C2-topology,

such that for any metric g ∈ U with Rg ≥ −6, and for any smooth map F : (N, g) →

(M,h0) with positive degree, we have

degF = 1 and AreaF (g/h0) ≥ 1.

In this case, the inverse of a closed surface S ⊂M via F is not necessarily homotopic

to S. So we need to compare the areas of surfaces with respect to the induced metric of

g in different homotopic classes, this is hard in general. Fortunately, if there is a minimal

surface with suitable curvature conditions, we can find a global area-minimizing surface.

To see this, we prove a key lemma adapting Uhlenbeck’s method in [66], and when

combined with Lemma 5.1.2 in Section 5.1.1, it generalizes to all dimensions n ≥ 3.
7



Lemma 1.2.4 (Uniqueness of minimal surface). Let (M,h) be a closed n-manifold with

strictly negative sectional curvature, and let Σ be a minimal surface in (M,h) whose

fundamental group injectively includes in π1(M), the norm squared of the second funda-

mental form of Σ with respect to h, denoted by |A|2, and the sectional curvature K of

(M,h) satisfy that

|A|2L∞(Σ) < −2 supK.

Let M̃ be the cover of M with π1(M̃) ∼= π1(Σ). Then Σ is the unique closed minimal

surface in M̃ of any type.

The rest of the proof follows from the comparison of areah(π1(Σ)) and areah0(π1(Σ))

in [43].

In a different situation, suppose that π1(N) is isomorphic to an index d subgroup

G < π1(M). Let M̃ denote the covering space of M with π1(M̃) = G and let p : M̃ →M

denote the covering map, the hyperbolic metric on M̃ is still represented by h0. We have

the following corollary.

Corollary 1.2.5. There exists a small neighborhood U of g0 in the C2-topology, such

that for any metric g ∈ U with Rg ≥ −6, and for any smooth map F : (N, g) → (M,h0)

satisfying F∗π1(N) < p∗π1(M̃) with positive degree, we have

degF = d and AreaF (g/h0) ≥ d.

Proof. Since F∗π1(N) < p∗π1(M̃), F can be lifted to a smooth map F̃ : N → M̃ , so

that p ◦ F̃ = F . Applying Theorem 1.2.3 to F̃ , we have

deg F̃ = 1 and Area
F̃
(g/h0) ≥ 1.

8



Thus,

degF = d and AreaF (g/h0) = dArea
F̃
(g/h0) ≥ d.

1.2.2 Minimal Surface Entropy

When the dimension of M is an odd number, Hamenstädt [22] verified the existence

of surface subgroups and constructed an essential surface Σϵ which is sufficiently well-

distributed and (1 + ϵ)-quasigeodesic (in other words, the geodesics on the surface with

respect to intrinsic distance are (1 + ϵ, ϵ)-quasigeodesics in M). Based on this result,

we expand the definition of minimal surface entropy to encompass a broader range of

scenarios.

Theorem 1.2.6 (Jiang, [30]). Let (M,h0) be a closed hyperbolic manifold whose dimen-

sion n ≥ 3 is odd, and let h be another metric on M with sectional curvature less than

or equal to −1, then

E(h) ≥ E(h0) = 2.

The equality holds if and only if h is isometric to h0.

The strategy of the proof is summarized as follows. The lower and upper bounds

of the cardinality of S(M, g, ϵ) (ϵ > 0) follow easily from Hamenstädt [22] and Kahn-

Markovic [33], respectively. The challenge of showing E(h0) = 2 is the following. The

argument by Schoen-Yau [57] and Sacks-Uhlenbeck [55] says for any surface subgroup

Πi ∈ S(M, gi,
1
i ), there exists an immersed minimal surface Si in M with finitely many

branch points, such that it minimizes the area in the corresponding homotopy class up

to conjugacy. The appearance of branch points is the primary distinction from the case

of dimension three. The strategy to rule out branch points is to consider a sequence of

area-minimizing surfaces mod 2 in Hn, denoted by Di, such that ∂∞Di = ∂∞S̃i, where
9



S̃i is the lift of Si to Hn. Di is free of branch points by Almgren [3], and some arguments

in geometric measure theory indicate that Di converges smoothly to a totally geodesic

disc in Hn. Thus |A|2
L∞(Di)

→ 0, and Lemma 1.2.4 (a universal cover version) implies

that Di is identical to S̃i. As a result, |A|2
L∞(Si)

→ 0 (when n = 3, this was prove by

Seppi [58]), which leads to E(h0) = 2.

For metric h with Kh ≤ −1, now we briefly describe the main obstacle to proving

the rigidity. Due to Ratner [53] or Shah [59], the closure of the projection of a totally

geodesic disc of Hn to M is either the whole manifold M or a finite union of closed totally

geodesic proper submanifolds of M . When n > 3, it is impossible to find a dense orbit

using the “dense or isolated” argument in [11]. To deal with this issue, we can use the

observation by Mozes-Shah [50] or Lee-Oh [39], which says that any infinite sequence of

properly immersed totally geodesic submanifolds either becomes dense in M , or it has a

subsequence contained in a higher dimensional proper totally geodesic submanifold, and

our result follows by induction.

Furthermore, using the equidistribution property formalized by Labourie [38], we

extend Theorem 1.2 of [43] to encompass odd dimensions greater than or equal to 3.

This theorem establishes a link between minimal surface entropy and the average area

ratio.

Theorem 1.2.7 (Jiang, [31]). Let (M,h0) be a closed hyperbolic manifold of an odd

dimension n ≥ 3. For any Riemannian metric h on M ,

AreaId(h/h0)E(h) ≥ E(h0) = 2,

the equality holds if and only if h = ch0 for some constant c > 0.

10



1.3 Organization

The thesis is organized as follows:

First, in Chapter 2, we introduce the notations and definitions that are used through-

out the thesis.

In Chapter 3, we establish the equidistribution property for closed hyperbolic mani-

folds with odd dimensions. We also derive the formula for the average area ratio, which

will be used in Section 4.2 and Chapters 5 and 6.

Chapter 4 discusses the average area ratio from a dimensional perspective. Specifi-

cally, in Section 4.1, we restrict the maps to diffeomorphisms and consider all dimensions

greater than or equal to three. We provide the proof for Theorem 1.2.1 in this context.

Then, in Section 4.2, we analyze a broader scenario of the maps but only focus on three-

dimensional manifolds. We prove Theorem 1.2.3 in this specific case. In Section 4.3,

we expand the definition of average area ratio (where k = 2) to average k-volume ratio,

where 2 ≤ k ≤ n−1. We also explore the negatively curved Einstein manifolds to which

we can extend the result.

Chapter 5 contains a discussion of the minimal surface entropy for different types

of manifolds. In Section 5.1, we focus on the case where the dimension of a closed

hyperbolic manifold is an odd number. We compute the minimal surface entropy of

the hyperbolic metric and provide the proof for Theorem 1.2.6. Additionally, we explore

certain findings in other locally symmetric manifolds in Section 5.2 and cusped hyperbolic

three-manifolds in Section 5.3.

Finally, Chapter 6 examines the relationship between average area ratio and minimal

surface entropy. We present the proof of Theorem 1.2.7.

11



CHAPTER 2

PRELIMINARIES

This chapter contains the notations and definitions that are utilized in the subsequent

chapters.

2.1 Gromov’s Average Area Ratio

In this section, we provide a more detailed explanation of the definition of the average

area ratio.

Let (M,h0) be a closed hyperbolic manifold of dimension n ≥ 3, and let (N, g)

be another closed Riemannian manifold of the same dimension. Suppose that F :

(N, g) → (M,h0) is a smooth map. For any (x, L) in the Grassmannian bundle Gr2(N),

|Λ2F (x, L)|g denotes the Jacobian of dFx at plane L. Take an arbitrary regular value

y ∈M of F , for (y, P ) ∈ Gr2(M), we let

|Λ2F |−1
g (y, P ) =

∑
x∈F−1(y)

1

|Λ2F (x, (dFx)−1(P )|g
. (2.1.1)

This definition ( [43]) is equivalent to Gromov’s definition ( [19]):

|Λ2F |−1
g (y, P ) =

∑
x∈F−1(y)

lim
δ→0

areag((dFx)−1(Dδ))

δ
,

where Dδ is a subset of the totally geodesic disc D ⊂ Hn which is tangential to P at x,

and Dδ has area equal to δ.

The average area ratio of F is defined in [19] by

AreaF (g/h0) =
ˆ
(y,P )∈Gr2(M)

|Λ2F |−1
g (y, P ) dµh0 , (2.1.2)

12



where µh0 stands for the unit volume measure on Gr2(M) with respect to the metric

induced by h0.

2.2 Normalized Total Scalar Curvature

In this section, we introduce the normalized total scalar curvature and calculate its

second variation. The second variation is an important tool in proving Theorem 1.2.1.

We refer to Section 4.1 for more details.

Let (M,h0) be a closed hyperbolic manifold of dimension n ≥ 3, and let M be

the space of Riemannian metrics on M . The total scalar curvature (or Einstein-Hilbert

functional) Ẽ : M → R is

Ẽ(h) =
ˆ
M
Rh dVh.

It is a Riemannian functional in the sense that it’s invariant under diffeomorphisms, but

it’s not scale-invariant. To resolve this issue, we consider

E(h) = (volh(M))
2
n−1

ˆ
M
Rh dVh.

This is called the normalized total scalar curvature (or normalized Einstein-Hilbert func-

tional) of M . Under conformal deformations, the first variation of E is

E ′(h) · l = n− 2

2n
volh(M)

2
n−1

ˆ
M
⟨Rh −

 
M
Rh dVh, l⟩h dVh.

It equals zero provided that (M,h) has constant scalar curvature. Assuming Rh is

constant, we can simplify the full variation to

E ′(h) · l = volh(M)
2
n−1

ˆ
M
⟨ 1
n
Rh −Rich, l⟩h dVh.

13



Thus, a metric h is critical if and only if (M,h) is Einstein. In particular, the hyperbolic

metric h0 is a critical point for E . Furthermore, since E is scale-invariant, from now on

we may assume that for ht = h0 + tl,

ˆ
M

d

dt
|t=0(

√
deth0(ht)) dVh0 =

1

2

ˆ
M

trh0l dVh0 = 0.

Taking this into account, we obtain the second variation of E at h0 as follows.

E ′′(h0)(l, l) =volh0(M)
2
n−1

ˆ
M

d2

dt2
|t=0Rht − 2(n− 1)

d2

dt2
|t=0(

√
deth0(ht)) (2.2.1)

+ 2
d

dt
|t=0Rht

d

dt
|t=0(

√
deth0(ht)) dVh0 ,

Substituting the formulas

d2

dt2

√
deth0(ht) =

(1
4
(trhtl)

2 − 1

2
trht(l

2)
)√

deth0(ht),

d

dt
Rht = −∆ht(trhtl) + δ2htl − ⟨Richt , l⟩ht ,

d

dt
Richt = −1

2
∆htl +

1

2
Richt(l) +

1

2
l(Richt)−Rmht ∗ l − δ∗ht(δhtl)−

1

2
∇2
ht
(trhtl),

where (Rmht ∗ l)ij = Rikjml
km, we obtain that

E ′′(h0)(l, l) =volh0(M)
2
n−1

ˆ
M
⟨1
2
∆h0l +Rmh0 ∗ l + δ∗h0(δh0l)

+
n− 1

2
(trh0l)h0 −

1

2
(∆h0(trh0l))h0 + (δ2h0l)h0 , l⟩h0 dVh0 .

According to Ebin’s Slice Theorem (see [15]), for any h ∈ M lying in a small neighbor-

hood of h0, there exist ϕ ∈ Diff(M), f ∈ C∞(M), and a transverse-traceless tensor lTT ,

i.e., δh0(lTT ) = 0 and trh0(lTT ) = 0, such that ϕ∗h = h0 + fh0 + lTT . Then we can

14



simplify the second variation.

E ′′(h0)(fh0, fh0) = −(n− 1)(n− 2)

2
volh0(M)

2
n−1

ˆ
M
⟨∆h0f − nf, f⟩h0 dVh0 . (2.2.2)

And we also get

E ′′(h0)(lTT , lTT ) = volh0(M)
2
n−1

ˆ
M
⟨1
2
∆h0lTT +Rmh0 ∗ lTT , lTT ⟩h0 dVh0 . (2.2.3)

Thus,

E(h) = E(ϕ∗h) = E(h0 + fh0 + lTT )

= E(h0) + E ′′(h0)(fh0, fh0) + E ′′(h0)(lTT , lTT ) + higher order variations.

Taking the estimates of (2.2.2) and (2.2.3) into consideration, we can use this expansion

to discuss the local behavior of E . In particular, as discussed in [7], E reaches a local

maximum at h0, and there exists C > 0, so that for any metric h in a small neighborhood

of h0 in M,

E(h0)− E(h) ≥ C d(h, h0)
2, where d(h, h0) = inf

ϕ∈Diff(M)
|ϕ∗h− h0|H1(M,h0)

.

The inequality is sharp unless h and h0 are isometric via some ϕ ∈ Diff(M).

2.3 Equidistribution

Suppose that the hyperbolic manifold M has an odd dimension n ≥ 3. According to

the construction by Hamenstädt [22], for any small number ϵ > 0, there is an essential

surface Σϵ in M which is sufficiently well-distributed and (1 + ϵ)-quasigeodesic (i.e. the

geodesics on the surface with respect to intrinsic distance are (1 + ϵ, ϵ)-quasigeodesics
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in M). Additionally, as discussed later in Section 5.1.2, Σϵ determines an (1 + O(ϵ))-

quasiconformal map on Sn−1
∞ , and thus associated with an element in Sϵ(M).

Furthermore, let G(M, g, ϵ) denote the subset of S(M, g, ϵ) consisting of homotopy

classes of finite covers of Σϵ that have genus at most g. It has cardinality comparable

to g2g. Moreover, let Si denote the minimal representative of an element in G(M, gi,
1
i ),

then it is homotopic to an (1+ 1
i )-quasigeodesic surface Σi. From Lemma 4.3 of [11], for

any continuous function f on M , the unit Radon measure induced by integration over

Si satisfies

lim
i→∞

1

areah0(Si)

ˆ
Si

f dAh0 = ν(f),

where the limiting measure ν is positive on any non-empty open set of M .

Notice that the measure ν is not necessarily identified with the unit Radon measure

on M induced by integration over M , the latter measure is denoted by µ. However, in

order to prove Theorem 1.2.3 and Theorem 1.2.7, we need to find a sequence of minimal

surfaces whose Radon measures defined above converge to µ. To solve this problem, we

introduce Labourie’s construction [38] in Chapter 3. And we stress that both methods

of Hamenstädt and Labourie require that M has an odd dimension.
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CHAPTER 3

EQUIDISTRIBUTION PROPERTY

In this chapter, we extend the notations of laminations and associated properties

for hyperbolic 3-manifolds (see Labourie [38] and Lowe-Neves [43]) to the higher, odd-

dimensional case. The purpose of this section is to deduce the average area ratio formula

in Lemma 3.3.1, as an important tool in the proofs of Theorem 1.2.3 and Theorem 1.2.7.

3.1 Laminations and Laminar Measures

Let M = Hn/π1(M) be a closed hyperbolic manifold of dimension n ≥ 3. And

let F(Hn, ϵ) be the space of conformal minimal immersions Φ : H2 → Hn, such that

Φ(∂∞H2) is an (1 + ϵ)-quasicircle. As discussed in Section 5.1.1, when ϵ is sufficiently

small, Φ(H2) is a stable embedded disc in Hn. The space F(Hn, ϵ) equips with the

topology of uniform convergence on compact sets, and we take

F(M, ϵ) := F(Hn, ϵ)/π1(M)

with the quotient topology. The space F(M, ϵ) together with the action of PSL(2,R) by

pre-composition

Rγ : F(M, ϵ) → F(M, ϵ), Rγ(ϕ) = ϕ ◦ γ−1, ∀γ ∈ PSL(2,R) (3.1.1)

is called the conformal minimal lamination of M . A laminar measure on F(M, ϵ) stands

for a probability measure which is invariant under the PSL(2,R)-action defined as above.

The space F(M, ϵ) is sequentially compact, but the space of laminar measures is not

necessarily weakly compact. In light of that, we consider a continuous map from F(M, ϵ)

to the frame bundle F (M) of M , the latter space is compact, so the space of probability
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measures on F (M) is compact in weak-∗ topology.

Firstly we define a map from F(M, ϵ) to the 2-vector bundle F2(M) on M consisting

of (x, v1, v2) ∈ M × SxM × SxM , where SxM denotes the unit sphere in the tangent

space to M at x. Let {e1, e2} be an orthonormal basis of H2, and for any ϕ ∈ F(M, ϵ),

let ϕ∗(h0) = C2
ϕhH2 , where C2

ϕ > 0 denotes the conformal factor between the hyperbolic

metric on H2 and the pull-back metric of h0 by ϕ. Let e1(ϕ) =
dϕ(e1)

Cϕ
and e2(ϕ) =

dϕ(e2)

Cϕ
. We define the following continuous map.

Ω : F(M, ϵ) → F2(M), Ω(ϕ) = (ϕ(i), e1(ϕ), e2(ϕ)).

Furthermore, it induces a map from F(M, ϵ) to the frame bundle F (M) by parallel

transport:

Ω : F(M, ϵ) → F (M), Ω(ϕ) = (ϕ(i), e1(ϕ), e2(ϕ), · · · , en(ϕ)).

And define the projection

P : F (M) → F2(M), P (x, e1, e2, · · · , en) = (x, e1, e2).

We consider the subspace F(Hn, 0) ⊂ F(Hn, ϵ), it contains isometric immersions

ϕ0 : H2 → Hn whose images are totally geodesic discs in Hn. Conversely, each totally

geodesic disc is uniquely determined by ϕ(i), and tangent vectors e1(ϕ), e2(ϕ). Let

Ω0 : F(M, 0) → F2(M) be the restriction of Ω to F(M, 0), it’s therefore a bijection.

Using (3.1.1), We can define the PSL(2,R)-action on F (M) as follows.

Rγ : F (M) → F (M), Rγ(x) = Ω ◦ Rγ ◦ Ω−1
0 ◦ P (x), ∀γ ∈ PSL(2,R).
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This definition coincides with the homogeneous action of PSL(2,R) on F (M). Following

the discussion of Lemma 3.2 of [43], we conclude the following result.

Proposition 3.1.1. Given any sequence of laminar measures µi on F(M, 1i ), the se-

quence of induced measures Ω∗µi on F (M) converges weakly to a probability measure ν,

then ν is invariant under the homogeneous action of PSL(2,R).

Let G < PSL(2,R) be a Fuchsian subgroup, then H2/G is a closed hyperbolic surface

with genus ≥ 2 whose fundamental domain is represented by U . And let ϕ ∈ F(M, ϵ)

equivariant with respect to a representation Π of G in π1(M) < SO(n, 1). The image of

ϕ(H2) in M is a closed minimal surface in M whose fundamental group is Π. We define

a laminar measure associated with ϕ as follows.

δϕ(f) =
1

vol(U)

ˆ
U
f(ϕ ◦ γ)dν0(γ), ∀f ∈ C0(F(M, ϵ)), (3.1.2)

where ν0 denotes the bi-invariant measure on PSL(2,R).

3.2 Equidistribution

In this section, we assume the dimension of M is odd. Adapting the methods of

Proposition 6.1 of [43] and Theorem 5.7 in [38], we prove the following result.

Proposition 3.2.1. For any i ∈ N, there is a lamination ϕi in F(M, 1i ) equivariant

with respect to a representation of a Fuchsian group Gi < PSL(2,R) in π1(M), such

that Ω∗δϕi converges to the Lebesgue measure µLeb on F (M) as i→ ∞.

Sketch of the proof. Let T̃ be the space of tripods X̃ = (x1, x2, x3), where x1, x2, x3 ∈

∂∞Hn. Each element X̃ determines an ideal triangle ∆(X̃) in Hn. Let b(X̃) be the

barycenter of ∆(X̃). Denote by (e1(X̃), e2(X̃)) the orthonormal basis of ∆(X̃), and

denote by (e3(X̃, · · · , en(X̃)) the orthonormal basis of the normal bundle of ∆(X̃) in
19



Hn. Thus, each tripod X̃ determines a point (b(X̃), e1(X̃), · · · , en(X̃)) in F (Hn), which

represents the frame bundle of Hn.

Consider the closed manifold M = Hn/π1(M). Let X be the corresponding point of

X̃ in T := T̃ /π1(M), and let F (X) be the point in the frame bundle F (M) corresponding

to (b(X̃), e1(X̃), · · · , en(X̃)) in F (Hn).

A quintuple (X, Y, l1, l2, l3) is called a triconnected pair of tripods (Definition 10.1.1

of [32]) if X, Y ∈ T and l1, l2, l3 are three distinct homotopy classes of paths connecting

X to Y . The space of triconnected pair of tripods is denoted by T T . Let π1 and π2 be

the forgetting maps from T T to T

π1 : (X, Y, l1, l2, l3) 7→ X, π2 : (X, Y, l1, l2, l3) 7→ Y.

Moreover, let π1 and π2 be the corresponding maps from T T to F (M)

π1 : (X, Y, l1, l2, l3) 7→ F (X), π2 : (X, Y, l1, l2, l3) 7→ F (Y ).

In addition, there is a weighted measure µϵ,R on T T as defined in Definition 11.2.3

of [32]. If (X, Y, l1, l2, l3) is in the support of µϵ,R, then the ideal triangles determined

by X and Y can be glued to an (ϵ, R)-almost closing pair of pants (see Definition 9.1.1

of [32]). Moreover, it follows from the mixing property that for fixed ϵ, as R → ∞,

π1∗µϵ,R and π2∗µϵ,R both converge to the Lebesgue measure µLeb on F (M).

Arguing like Theorem 5.7 of [38], we can choose a sequence Rj → ∞ as j → ∞, and

a sequence of measures µ1
j ,Rj

. Then we approximate each µ1
j ,Rj

by another weighted

measure νj supported in finitely many pleated pair of pants P 1
j , · · · , P

Nj

j , which can

be glued together to get essential surfaces Σ1
j , · · · ,Σ

Mj

j in M . When j is sufficiently

large and for each 1 ≤ k ≤ Mj , Σk
j is (1 + 1

j )-quasigeodesic, and the projection from

Σk
j to the unique minimal surface Skj homotopic to Σk

j is (1 + 1
j )-bi-Lipschitz and it has
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distance uniformly bounded by O(1j ). For this reason, we can further approximate νj

by a weighted measure supported in S1j ∪ · · · ∪ S
Mj

j . Skj is obtained by a lamination

ϕkj ∈ F(M, 1j ), in fact, it’s the image of ϕkj (H
2) in M , and thus associated with the

laminar measure δϕkj
, we have the following lemma.

Lemma 3.2.2. For any j ∈ N, there exist a finite sequence of laminations ϕ1j , · · · , ϕ
Mj

j

in F(M, 1j ), and θ1j , · · · , θ
Mj

j ∈ (0, 1) with θ1j + · · · + θ
Mj

j = 1, such that each ϕkj

is equivariant with respect to a representation of a Fuchsian group in π1(M), and the

laminar measure

µj =

Mj∑
k=1

θkj δϕkj

satisfies that Ω∗µj converges to the Lebesgue measure µLeb on F (M) as j → ∞.

Next, for 2 ≤ l ≤ n− 1, we define

Pl := {F (P ) ⊂ F (M), where P is a l-dimensional closed totally geodesic

submanifold of M}.

Then P :
n−1
∪
l=2

Pl contains at most countably many candidates. Therefore, we can find

a decreasing sequence of tubular neighborhoods {Bk} ⊂ F (M), so that for any k ∈ N,

Bk covers P and it satisfies µLeb(Bk) < 2−2k−1 and µLeb(∂Bk) = 0. In consequence of

previous lemma, after passing to a subsequence, we have Ω∗µj(Bk) < 2−2k. Additionally,

as argued in Lemma 6.2 of [43], we can find a subsequence {ji}, and ϕi ∈ {ϕ1ji , · · · , ϕ
Mji
ji

},

such that Ω∗(δϕi)(Bk) < 2−k.

As a result of Proposition 3.1.1, as i → ∞, Ω∗δϕi converges weakly to a probability

measure ν on F (M). ν is invariant under the homogeneous action of PSL(2,R), and it

satisfies that

ν(Bk) < 2−k. (3.2.1)
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To finish the proof, we need the following lemma.

Lemma 3.2.3. ν = µLeb.

Proof. According to the ergodic decomposition theorem ( [26]), ν can be expressed by

a linear combination of the ergodic measures for PSL(2,R)-action on F (M). Moreover,

Ratner’s measure classification theorem (see [53] or [59]) says that any ergodic PSL(2,R)-

invariant measure on F (M) is either an invariant probability measure supported on a

finite union of {Pk} ⊂ P , or it is identical to µLeb. Thus, we can write ν as

ν = a1µLeb + a2µP2
+ · · ·+ an−1µPn−1

,

where a1+ a2+ · · ·+ an−1 = 1 and µPl
represents an ergodic measure supported on Pl,

2 ≤ l ≤ n− 1. By (3.2.1), for all k ∈ N,

a2 + · · ·+ an−1 = a2µP2
(Bk) + · · ·+ an−1µPn−1

(Bk) ≤ ν(Bk) < 2−k.

So

a1 = 1− a2 − · · · − an−1 > 1− 2−k, ∀k ∈ N.

We must have a1 = 1, and therefore ν = µLeb.

Proposition 3.2.1 follows immediately from the lemma.

3.3 Average Area Ratio Formula

Lemma 3.3.1 (average area ratio formula). Let (N, g) be a closed Riemannian manifold

that also has odd dimension n, and let F be a smooth map that takes (N, g) to (M,h0).

For i ∈ N, we pick a lamination ϕi ∈ F(M, 1i ) equivariant with respect to a representation

of Gi < PSL(2,R) in π1(M), and it satisfies Proposition 3.2.1. Let Si be the image of
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ϕi(H2) in M . Then we have

AreaF (g/h0) = lim
i→∞

areag(F−1(Si))

4π(gi − 1)
.

Proof. Recall that |Λ2F |−1
g is a function defined almost everywhere on Gr2(M). Since

|Λ2F |g can be regarded as a smooth function on F (M) by

|Λ2F |g : F (M) → R, (x, e1, e2 · · · , en) 7→ |Λ2F |g(x, span(e1, e2)),

based on the definition (2.1.1), |Λ2F |−1
g is also seen as a function defined almost every-

where on F (M). Thus, Proposition 3.2.1 implies that

AreaF (g/h0) = µLeb(|Λ2F |−1
g ) = lim

i→∞
Ω∗δϕi(|Λ

2F |−1
g ).

In light of the definition of laminar measure δϕi in (3.1.2), we have

Ω∗δϕi(|Λ
2F |−1

g ) =
1

vol(Ui)

ˆ
Ui

|Λ2F |−1
g ◦ Ω(ϕi ◦ γ)dν0(γ),

where Ui is the fundamental domain of PSL(2,R)/Gi. Set x = γ(i). Since the hyperbolic

surface H2/Gi has area equal to 4π(gi − 1), where gi ≥ 2 denotes the genus. The above

expression also can be written as

Ω∗δϕi(|Λ
2F |−1

g ) =
1

4π(gi − 1)

ˆ
H2/Gi

|Λ2F |−1
g (ϕi(x), (dϕi)xTxH2)dAhH2/Gi

(x)

=
1

4π(gi − 1)

ˆ
Si

|Λ2F |−1
g (y, TySi)

C2
i (ϕ

−1
i (y))

dAh0(y),

where C2
i > 0 denotes the conformal factor between the hyperbolic metric on H2/Gi

and the pull-back metric of h0 by ϕi, namely ϕ∗i (h0) = C2
i hH2/Gi

. Since the Gaussian
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curvature on Si has the form −1− 1
2 |A|

2(x), we have

1 ≤ 1

C2
i

≤ 1 +
1

2
|A|2L∞(Si)

.

On the other hand, the co-area formula yields that

ˆ
Si

|Λ2F |−1
g (y, TySi)dAh0(y) = areag(F−1(Si)).

Combining these formulas, we have

areag(F−1(Si))

4π(gi − 1)
≤ Ω∗δϕi(|Λ

2F |−1
g ) ≤ (1 +

1

2
|A|2L∞(Si)

)
areag(F−1(Si))

4π(gi − 1)
.

Since |A|2
L∞(Si)

→ 0 as i→ ∞ (see Section 5.1.1), the lemma follows immediately from

the squeeze theorem.
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CHAPTER 4

AVERAGE AREA RATIO

In this chapter, we assess the average area ratio of closed hyperbolic manifolds. First,

we begin by considering the general case, including manifolds with any dimension greater

than or equal to three.

4.1 General Dimensions

Throughout this section, we can choose the dimension of M to be any integer n ≥ 3.

The proof of Theorem 1.2.1 separates into two parts. If h is an arbitrary metric conformal

to a metric h̄ with constant scalar curvature, we compare their average area ratios in

Theorem 4.1.1. And if h is a metric with constant scalar curvature different from h0, we

make use of the evaluations of normalized Einstein-Hilbert functional in [7].

4.1.1 Conformal Deformations

Firstly, given a metric h on M , we look at the conformal class of h. Since M admits a

hyperbolic metric, every conformal class [h] must be scalar negative, i.e., it has a metric

with negative scalar curvature. And according to the Yamabe problem, after rescaling,

there exists a unique metric h̄ ∈ [h] with constant scalar curvature c < 0. In Theorem

1.2.1, we assume that c ≥ −n(n− 1). Set h̄′ = c
−n(n−1)

h̄, so Rh̄′ ≡ −n(n− 1), and for

any surface or 2-dimensional subset S in M , we have

areah̄′(S) =
c

−n(n− 1)
areah̄(S) ≤ areah̄(S).

Therefore, to prove the theorem, we may assume that Rh̄ ≡ −n(n− 1).
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Theorem 4.1.1. Suppose the scalar curvature Rh ≥ −n(n− 1), then we have

AreaId(h/h0) ≥ AreaId(h̄/h0). (4.1.1)

Furthermore, for any surface subgroup Π ∈ Sϵ(M),

areah(Π) ≥ areah̄(Π), (4.1.2)

and as an immediate result,

E(h) ≤ E(h̄). (4.1.3)

Each of the above equalities holds if and only if h = h̄.

Proof. Set h = e2ϕh̄. The conformal factor ϕ satisfies that

e2ϕRh = Rh̄ − 2(n− 1)∆h̄ϕ− (n− 2)(n− 1)|dϕ|2
h̄

= −n(n− 1)− 2(n− 1)∆h̄ϕ− (n− 2)(n− 1)|dϕ|2
h̄
.

Let ϕmin := min
x∈M

ϕ(x), we obtain ∆h̄ϕmin ≥ 0, and it yields that

−n(n− 1)e2ϕmin ≤ e2ϕminRh ≤ −n(n− 1). (4.1.4)

Thus, for any subset Dδ of a totally geodesic disc in Hn with hyperbolic area equal to

δ, we have

e2ϕmin ≥ 1 =⇒ areah(Dδ) =

ˆ
Dδ

e2ϕ dAh̄ ≥ areah̄(Dδ).

The inequality (4.1.1) follows from the definition of the average area ratio (2.1.2).
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In addition, it also shows that for any surface S ∈M ,

areah(S) =
ˆ
S
e2ϕ dAh̄ ≥ areah̄(S).

Thus we conclude (4.1.2), and the comparison of entropy (4.1.3) is a direct corollary of

the definition (1.1.1).

Moreover, if any equality in the theorem holds, the inequality 4.1.4 implies that

Rh ≡ −n(n− 1), due to the uniqueness of the solution to Yamabe problem, h must be

identical to h̄.

4.1.2 Definition of Functional A

Let M be the space of all Riemannian metrics on M , and let MR be the subset

consisting of metrics with constant scalar curvature −n(n − 1). From the previous

section, it remains to consider metrics in MR.

Define a functional A from the space of Riemannian metrics on M to R as follows.

A(h) =

ˆ
(x,P )∈Gr2M

Rh(x) |Λ2Id|−1
h (x, P ) dµh0

= lim
δ→0

ˆ
(x,P )∈Gr2M

Rh(x)
areah(Dδ(P ))

δ
dµh0

= lim
δ→0

ˆ
(x,P )∈Gr2M

Rh(x)

 
Dδ(P )

√
deth0(h|Dδ(P )) dAh0 dµh0 ,

where Dδ(P ) is a subset of the totally geodesic disc in Hn that is tangential to P at x,

and Dδ(P ) has hyperbolic area equal to δ, µh0 is the unit volume measure on Gr2M
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with respect to the metric induced by h0. Notice that the metric h ∈ MR satisfies

A(h) = −n(n− 1)

ˆ
(x,P )∈Gr2M

|Λ2Id|−1
h (x, P ) dµh0

= A(h0)

ˆ
(x,P )∈Gr2M

|Λ2Id|−1
h (x, P ) dµh0 .

Therefore, from the definition of the average area ratio (2.1.2), to deduce that if h is in

a small neighborhood of h0 in MR, then

AreaId(h/h0) =

ˆ
(x,P )∈Gr2M

|Λ2Id|−1
h (x, P ) dµh0 ≥ 1,

we only need to show that A attains a local maximum at h0.

4.1.3 Proof of Theorem 1.2.1

To see this, we’ll discuss the first and second variations of A in detail. Before start,

we notice that the functional A is scale-invariant, so it suffices to assume volh0(M) = 1,

and the symmetric tensor l = h − h0 satisfies
´
M trh0l dVh0 = 0. Let ht = h0 + tl, we

rewrite A(ht) as

A(ht) =

ˆ
x∈M

Rht(x) aht(x) dVh0 ,

where

aht(x) = lim
δ→0

 
P∈Gr2Mx

 
Dδ(P )

√
deth0(ht|Dδ(P )) dVh0dνh0 .

Then we have
d

dt
A(ht) =

ˆ
M

d

dt
Rht aht +Rht

d

dt
aht dVh0 . (4.1.5)

In addition,
d

dt
Rht = −∆ht(trhtl) + δ2htl − ⟨Richt , l⟩ht , (4.1.6)

28



where ∆ht is the rough Laplacian with negative eigenvalues, and δ2ht is the double diver-

gence operator. In particular, when t = 0, applying the Stokes’ theorem, we have

ˆ
M

d

dt
|t=0Rht ah0 dVh0 =

ˆ
M

−⟨Rich0 , l⟩h0 dVh0 = (n− 1)

ˆ
M

trh0l dVh0 .

On the other hand, since

d

dt

√
deth0(ht|Dδ(P )) =

1

2
trhtl|Dδ(P )

√
deth0(ht|Dδ(P )),

let λ1, · · · , λn be the eigenvalues of the matrix l at point x ∈M with respect to h0, we

obtain by computation that

d

dt
|t=0 aht = lim

δ→0

1

2

 
P∈Gr2Mx

 
Dδ(P )

trh0l|Dδ(P ) dAh0dνh0

=
1

2

∑
i<j λi + λj(n

2

) =
1

2

(n− 1)
∑n

i=1 λi(n
2

)
=

1

n
trh0l.

It follows that for any symmetric 2-tensor l,

A′(h0) · l = (n− 1)

ˆ
M

trh0l dVh0 − n(n− 1)
1

n

ˆ
M

trh0l dVh0 = 0,

thus h0 is a critical point of A.

Now we proceed to compute the second variation at t = 0. Note that A is an analogue

of the normalized total scalar curvature E , it’s easier to compare their second variations
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using the computation in Section 2.2. Based on (4.1.5) and (2.2.1),

A′′(h0)(l, l)− E ′′(h0)(l, l) (4.1.7)

=

ˆ
M

−n(n− 1)
d2

dt2
|t=0 aht + 2(n− 1)

d2

dt2
|t=0(

√
deth0(ht)) dVh0

+

ˆ
M

2
d

dt
|t=0Rht(

d

dt
|t=0(aht −

√
deth0(ht)) dVh0

=

ˆ
M

−n(n− 1)
d2

dt2
|t=0 aht + 2(n− 1)

(1
4
(trh0l)

2 − 1

2
trh0(l

2)
)
dVh0

+ 2

ˆ
M

(
−∆h0(trh0l) + δ2h0l + (n− 1)trh0l

)
(
1

n
− 1

2
)trh0l dVh0 .

Next, using

d2

dt2

√
deth0(ht|Dδ(P )) =

(1
4
(trhtl|Dδ(P ))

2 − 1

2
trht(l|

2
Dδ(P ))

)√
deth0(ht|Dδ(P )),

we estimate the first term on the right-hand side of (4.1.7).

− n(n− 1)

ˆ
M

d2

dt2
|t=0 aht dVh0 (4.1.8)

=− n(n− 1) lim
δ→0

ˆ
x∈M

 
P∈Gr2Mx

 
Dδ(P )

1

4
(trh0l|Dδ(P ))

2

− 1

2
trh0(l|

2
Dδ(P )) dAh0dνh0dVh0

=− n(n− 1)

ˆ
M

∑
i<j

1
4(λi + λj)

2 − 1
2(λ

2
i + λ2j )(n

2

) dVh0

=− n(n− 1)

ˆ
M

1
4(
∑n

i=1 λi)
2 − n

4

∑n
i=1 λ

2
i(n

2

) dVh0

=

ˆ
M

−1

2
(trh0l)

2 +
n

2
trh0(l

2) dVh0 .
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Combining (4.1.7) and (4.1.8), we have

A′′(h0)(l, l) =E ′′(h0)(l, l)−
ˆ
M

n− 2

2
trh0(l

2) dVh0 (4.1.9)

−
ˆ
M

(n− 2)2

2n
(trh0l)

2 +
n− 2

n
|∇h0(trh0l)|

2 +
n− 2

n
δ2h0l trh0l dVh0 .

To simplify this quadratic form, we decompose l into three parts. Applying the

decomposition of space of symmetric tensors for a compact Einstein manifold other than

the standard sphere (Theorem 4.60 of [6]), we have

Th0M = C∞(M) · h0 ⊕ Th0(Diff(M)(h0))⊕ TTh0 ,

where C∞(M)·h0 represents the conformal deformations of h0, Diff(M)(h0) is the action

of the diffeomorphism group on h0, and TTh0 = ker trh0 ∩ ker δh0 stands for the set of

transverse-traceless tensors. Let h ∈ MR, and let l = h − h0, it decomposes into

l = fh0+ lD + lTT , where fh0 ∈ C∞(M) · h0, lD ∈ Th0(Diff(M)(h0)), and lTT ∈ TTh0 .

The second variation of A has the form

A′′(h0)(l, l)

=A′′(h0)(lD + lTT , lD + lTT ) +A′′(h0)(fh0, lD) +A′′(h0)(lD, fh0)

+A′′(h0)(fh0, lTT ) +A′′(h0)(lTT , fh0) +A′′(h0)(fh0, fh0)

≤A′′(h0)(lD + lTT , lD + lTT ) + C0|fh0|H1(M,h0)
|l|H1(M,h0)

.

By Theorem 4.1.1, to check that A reaches a local maximum at h0 on MR, it remains

to analyze the sign of A′′(h0)(lD + lTT , lD + lTT ) and estimate |fh0|H1(M,h0)
. To see

these, we prove the following lemmas.

Lemma 4.1.2. There exists a constant C > 0, such that in the decomposition of l,
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lD ∈ Th0(Diff(M)(h0)) and lTT ∈ TTh0 satisfy

A′′(h0)((lD + lTT , lD + lTT ) ≤ −C(|lTT |2H1(M,h0)
+ |X|2

L2(M,h0)
),

where LXh0 = lD.

Lemma 4.1.3. There exists a constant c > 0, such that the following statement is true.

For any ϵ > 0, we can find a C2-neighborhood Uϵ,R of h0 on MR, so that for any

h ∈ Uϵ,R, fh0 ∈ C∞(M) · h0 in the decomposition of l = h− h0 satisfies

|fh0|H1(M,h0)
≤ c ϵ|l|H1(M,h0)

.

Proof of Lemma 4.1.2.

A′′(h0)((lD + lTT , lD + lTT ) (4.1.10)

=A′′(h0)(lTT , lTT ) +A′′(h0)((lD, lD) +A′′(h0)(lD, lTT ) +A′′(h0)(lTT , lD).

To find an upper bound of the first term, we use the estimate in Lemma 2.9 of [7]. There

exists a constant C1 > 0, such that

E ′′(h0)(lTT , lTT ) =
ˆ
M
⟨1
2
∆h0lTT +Rmh0 ∗ lTT , lTT ⟩h0 dVh0 ≤ −C1|lTT |2H1(M,h0)

.

And thus, substituting the above inequality and trh0lTT = δh0lTT = 0 into (4.1.9), we

obtain

A′′(h0)(lTT , lTT ) = E ′′(h0)(lTT , lTT )−
n− 2

2

ˆ
M

trh0(l
2
TT ) dVh0 (4.1.11)

≤ −C1|lTT |2H1(M,h0)
.
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To deal with the remaining terms of (4.1.10), we apply the diffeomorphism invariance

property of E , which says

E ′′(h0)(lD, ·) = E ′′(h0)(·, lD) = 0. (4.1.12)

Moreover, for any ϕ ∈ Diff(M),

Rϕ∗h0 ≡ Rh0 ≡ −n(n− 1) =⇒ R′
h0

· lD = 0. (4.1.13)

Therefore, the second variations comparison (4.1.7), in company with (4.1.8), says that

A′′(h0)((lD, lD) =
n− 2

2

ˆ
M
(trh0lD)2 − trh0(l

2
D) dVh0 . (4.1.14)

Since lD ∈ Th0(Diff(M)(h0)), it can be expressed by the Lie derivative of the metric h0

in the direction X. And using Helmholtz-Hodge decomposition, X decomposes further

into X = ∇h0r+Y , where r is a scalar function, and Y is a vector field with divh0Y = 0.

By computation,

trh0lD = 2∆h0r + 2divh0Y = 2∆h0r. (4.1.15)

In addition,

|lD|2
L2(M,h0)

=|2∇2
h0
r +

∑
i,j

(∇iYj +∇jYi)|2L2(M,h0)
(4.1.16)

=4|∇2
h0
r|2
L2(M,h0)

+ |
∑
i,j

(∇iYj +∇jYi)|2L2(M,h0)

+ 4⟨∇2
h0
r,
∑
i,j

(∇iYj +∇jYi)⟩L2(M,h0)
.
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where the second term is in the form

|
∑
i,j

(∇iYj +∇jYi)|2L2(M,h0)
(4.1.17)

=

ˆ
M

4
∑
i

(∇iYi)
2 +

∑
i ̸=j

(∇iYj)
2 + (∇jYi)

2 + 2∇iYj∇jYi dVh0

=

ˆ
M

4(divh0Y )2 +
∑
i̸=j

−2∇iYi∇jYj + (∇iYj)
2 + (∇jYi)

2

− 2∇iYi∇jYj + 2∇iYj∇jYi dVh0

=

ˆ
M

∑
i̸=j

Yj∇j∇iYi + Yi∇i∇jYj + (∇iYj)
2 + (∇jYi)

2

+ Yi∇i∇jYj − Yi∇j∇iYj + Yj∇j∇iYi − Yj∇i∇jYi dVh0

=

ˆ
M

∑
i̸=j

Yj(∇i∇jYi −Ri
ijjYj) + Yi(∇j∇iYj −R

j
jiiYi) + (∇iYj)

2 + (∇jYi)
2

+ Yi∇i∇jYj − Yi(∇i∇jYj +R
j
jiiYi) + Yj∇j∇iYi − Yj(∇j∇iYi +Ri

ijjYj) dVh0

=

ˆ
M

∑
i̸=j

Y 2
i + Y 2

j − 2∇jYi∇iYj + (∇iYj)
2 + (∇jYi)

2 + Y 2
i + Y 2

j dVh0

=4(n− 1)|Y |2
L2(M,h0)

+ |
∑
i,j

(∇iYj −∇jYi)|2L2(M,h0)
,
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and the last term of (4.1.16) vanishes, since

4⟨∇2
h0
r,
∑
i,j

(∇iYj +∇jYi)⟩L2(M,h0)
(4.1.18)

=4

ˆ
M

2
∑
i

∇i∇ir∇iYi +
∑
i̸=j

∇i∇jr(∇iYj +∇jYi) dVh0

=4

ˆ
M

2
∑
i

∇i∇ir∇iYi −
∑
i̸=j

(∇ir∇j∇iYj +∇jr∇i∇jYi) dVh0

=4

ˆ
M

2
∑
i

∇i∇ir∇iYi −
∑
i̸=j

(
∇ir(∇i∇jYj +R

j
jiiYi) +∇jr(∇j∇iYi +Ri

ijjYj)
)
dVh0

=4

ˆ
M

2∆h0r divh0Y −
∑
i̸=j

(∇i∇ir∇jYj +∇j∇jr∇iYi)

+
∑
i̸=j

(∇i∇ir∇jYj +∇j∇jr∇iYi) +
∑
i̸=j

∇irYi +∇jrYj dVh0

=8(n− 1)⟨∇h0r, Y ⟩L2(M,h0)
= 0.

Substituting (4.1.15)-(4.1.18) into (4.1.14), then applying Bochner’s formula, we obtain

A′′(h0)(lD, lD) (4.1.19)

=
n− 2

2

( ˆ
M

4(∆h0r)
2 − 4|∇2

h0
r|2 dVh0

− 4(n− 1)|Y |2
L2(M,h0)

− |
∑
i,j

(∇iYj −∇jYi)|2L2(M,h0)

)
=
n− 2

2

( ˆ
M

4Ric(∇h0r,∇h0r) dVh0 − 4(n− 1)|Y |2
L2(M,h0)

− |
∑
i,j

(∇iYj −∇jYi)|2L2(M,h0)

)
≤− 2(n− 1)(n− 2)|X|2

L2(M,h0)
.

Furthermore, after eliminating some terms using (4.1.12), (4.1.13) and trh0lTT = 0, we

35



get

A′′(h0)(lD, lTT ) = −n− 2

2

ˆ
M
⟨lD, lTT ⟩h0 dVh0 = 0, (4.1.20)

it vanishes because of the L2-orthogonality between Th0(Diff(M)(h0)) and TTh0 . Simi-

larly, the traceless-transverse property of lTT simplifies (4.1.9 to

A′′(h0)(lTT , lD) = −n− 2

2

ˆ
M
⟨lTT , lD⟩h0 dVh0 = 0. (4.1.21)

Substituting (4.1.11), (4.1.19), (4.1.20) and (4.1.21) into (4.1.10), we complete the

proof.

Proof of Lemma 4.1.3. Since h ∈ MR, we have

0 = Rh −Rh0 =

ˆ 1

0
R′
h0+tl · l dt,

it leads to

⟨R′
h0

· l, trh0(fh0)⟩L2(M,h0)
= −

ˆ 1

0
⟨(R′

h0+tl −R′
h0
) · l, trh0(fh0)⟩L2(M,h0)

dt. (4.1.22)

On the left-hand side, we have R′
h0

· l = R′
h0

· (fh0) as analyzed earlier, and it follows

from (4.1.6) that

⟨R′
h0

· l, trh0(fh0)⟩h0 (4.1.23)

=

ˆ
M
⟨−∆h0(trh0(fh0)) + δ2h0(fh0) + (n− 1)trh0(fh0), trh0(fh0)⟩h0 dVh0

=

ˆ
M
n(n− 1)|∇h0f |

2 + n2(n− 1)|f |2 dVh0

≥(n− 1)|fh0|2H1(M,h0)
.
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On the other hand, the right-hand side of (4.1.22) can be estimated using the continuity

of h → trhl, h → ⟨·, ·⟩L2(M,h), h → ∇hl, and h → δhl. For any ϵ > 0, after shrinking

the neighborhood of h0 in MR, we have

−
ˆ 1

0
⟨(R′

h0+tl −R′
h0
) · l, trh0(fh0)⟩L2(M,h0)

dt ≤ ϵ|h− h0|C2|l|H1(M,h0)
|fh0|H1(M,h0)

.

(4.1.24)

Therefore, taken (4.1.23) and (4.1.24) into account, (4.1.22) leads to the result.

To end this section, we discuss the equality condition of Theorem 1.2.1. There exists

t ∈ (0, 1), such that

A(h) = A(h0) +
A(h0)

′′(l, l)
2

+
A′′′(h0 + tl)(l, l, l)

6
.

Following the same procedure to compute A′′′(h0) and discuss the continuity near h0,

we can see that A′′′(h0 + tl)(l, l, l) = O(|l|3
H1(M,h0)

). Thus, from the above lemmas,

there exists C ′ > 0,

A(h) ≤ A(h0)− C ′(|fh0 + lTT |2H1(M,h0)
+ |X|2

L2(M,h0)
) +O(|h− h0|3H1(M,h0)

).

From the computation of (4.1.19) and its derivative, we can see that as h → h0,

|X|L2(M,h0)
and |lD|H1(M,h0)

decay at the same rate, so the norm |fh0+ lTT |2H1(M,h0)
+

|X|2
L2(M,h0)

∼ C ′′|h−h0|2H1(M,h0)
. Consequently, the following expansion holds for met-

ric h in a small neighborhood of h0 with Rh ≥ −n(n− 1).

AreaId(h/h0) ≥ 1 + C ′′′(|fh0 + lTT |2H1(M,h0)
+ |X|2

L2(M,h0)
) +O(|h− h0|3H1(M,h0)

).

where C ′′′ > 0. Note that AreaId(h/h0) = 1 requires that fh0 = lTT = X = 0, and thus
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h = h0.

4.2 Dimension Three

In this section, we discuss the proof of Theorem 1.2.3. First of all, the fact that

degF = 1 follows from Corollary 0.3 of [67] and the geometrization theorem for 3-

manifolds. Next, it’s easy to see, the induced map F∗ : π1(N) → π1(M) is surjective,

since otherwise, it factors through a d-fold covering space of M with d > 1, and thus

degF ≥ d > 1, violating the degree one observation. In addition, π1(M) is a Hopfian

group (for example, see 15.13 of [27]), so the surjectivity of F∗ can be upgraded to be

an isomorphism, which makes F a homotopy equivalence between N and M due to

Whitehead’s theorem. Furthermore, the Mostow rigidity theorem indicates that F is

homotopic to an isometry. For this reason, we can simplify the conditions of Theorem

1.2.3 as follows.

4.2.1 A Simpler Version of Theorem 1.2.3

Theorem 1.4’. Let (M,h0) be a closed hyperbolic 3-manifold. There exists a small

neighborhood U of h0 in the C2-topology, such that for all Riemannian metric h ∈ U

with Rh ≥ −6, and for any smooth map F : (M,h) → (M,h0) with positive degree, it

has degF = 1 and it is homotopic to the identity, we have

AreaF (h/h0) ≥ 1.

Moreover, the equality holds if and only if F is an isometry between h and h0.

Let Si be the minimal surface in M with respect to h0 defined in Lemma 3.3.1. The

inverse F−1(Si) is also a closed surface in M , but note that F−1(Si) is not necessarily

homotopic to Si. In fact, we can only find the following relation of their genus. The
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Gromov norms of Si and F−1(Si) satisfies that

| degF |||Si|| ≤ ||F−1(Si)||.

Here degF = 1. And for any closed surface S with genus g(S), ||S|| = 4π(g(S)−1)
v2

, where

v2 is a fixed number representing the supreme area of geodesic 2-simplices in H2. As an

immediate result, we have g(F−1(Si)) ≥ g(Si).

To compare the areas of surfaces with respect to the induced metric of h in different

homotopic classes, we hope to find a global area-minimizing surface. In general, the

existence and the topology of such a surface are complicated. But if there is a minimal

surface with suitable curvature conditions, then adapting Uhlenbeck’s method in [66],

we can check the uniqueness of a closed minimal surface of any type, which is the key

point of the proof.

4.2.2 Proof of Theorem 1.4’

For each i ∈ N, let M̃i be the covering space of M such that π1(M̃i) ∼= π1(Si). Let

F̃i be the corresponding lift of F that maps F̃−1
i (M̃i) ≃ M̃i to M̃i. The lift of Si in

M̃i still has fundamental group π1(Si), so we denote it by Si as well. By assumption,

F is homotopic to identity, thus there is a continuous map H : M × [0, 1] → M with

H(x, 0) = x and H(x, 1) = F (x) for any x ∈ M . Since M is compact, the length of

the path of H between x and F (x) is uniformly bounded by a constant C > 0. Now

let H̃i be the lift of H that connects F̃i to the identity map on M̃i. For all y ∈ M̃i,

the length of the path between y and F̃i(y) is therefore uniformly bounded by the same

constant C. So F̃i is proper, meaning F̃−1
i (Si) is a closed set, and therefore it is a

k-fold cover of F−1(Si) for some finite number k. If k > 1, the image of F̃−1
i (Si) under

F̃i is either a closed surface with Euler characteristic equal to kχ(Si), and therefore
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having genus kg(Si)− k + 1 > g(Si), or it is a union of at least two surfaces with genus

≥ g(Si). However, both cases are impossible because the image cannot be identified

with Si ⊂ M̃i. We must have k = 1. Consequently, the covering map from F̃−1
i (Si) to

F−1(Si) is one-to-one.

On the other hand, the classical result [57] verifies the existence of area-minimizing

surface Σi ⊂ (M,h) in the homotopy class of Si. And based on Theorem 4.3 of [42],

there exist a C2-neighborhood U0 of h0 and N0 ∈ N, so that when h ∈ U0 and i ≥ N0,

Σi is the unique minimal surface in (M,h) homotopic to Si. Furthermore, let Di (Ωi) be

the lifts of Si (Σi, respectively) in B3. These discs Di and Ωi are asymptotic and at a

uniformly bounded Hausdorff distance to each other, as h→ h0, Ωi converges uniformly

on compact sets to Di in C2,α. Therefore, replacing U0 by a smaller subset or replacing

N0 by a larger integer if necessary, we can assume that if h ∈ U0 and i ≥ N0, then there

exists a smooth map fi on Di with |fi|C2,α < 1, such that Ωi can be represented by a

graph of fi over Di. More precisely, Let ni be the unit normal vector field of Di, then

we have the following diffeomorphism.

Fi : Di → Ωi, Fi(x) = cosh(fi(x))x+ sinh(fi(x))ni(x).

Notice that the minimal disc Ωi has mean curvature equal to zero with respect to h,

so the mean curvature Hh0(Ωi) with respect to h0 has a uniform bound determined by

the perturbation of h and ∇h. Since h is C2-close to h0, we have

|Hh0(Ωi)|C0,α = O(|h− h0|C2), ∀i ≥ N0. (4.2.1)

According to the Schauder estimates for elliptic PDE, there exists a constant c0 > 0,
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such that for any i ≥ N0,

|fi|C2,α ≤ c0
(
|fi|L∞ + |Hh0(Ωi)|C0,α

)
. (4.2.2)

Besides, for i ≥ N0, suppose the principle curvature of Di with respect to h0 satisfies

that sup
i≥N0

|λ(Di)|L∞ < 1. Uhlenbeck ( [66]) shows that H3 is foliated by a sequence of

equidistant discs relative to Di. We denote by Dr
i the disc with a fix distance r to Di,

it has mean curvature

Hh0(D
r
i ) =

2(1− λ(Di)
2) tanh r

1− λ(Di)2 tanh
2 r

.

Let R+
i and R−

i be the supremum and infimum of r such that Ωi meets Dr
i , and the

intersections points are x+i , x−i , respectively. Since R+
i , R

−
i → 0 as h → h0, we may

assume

min{ d
dr

(tanh r)|r=R+
i
,
d

dr
(tanh r)|r=R−

i
} = min{ 1

cosh2R+
i

,
1

cosh2R−
i

} ≥ 1

2
,

then we have

|Hh0(Ωi)|L∞ ≥ max{|Hh0(D
R+
i

i (x+i )|, |Hh0(D
R−
i

i (x−i )|}

≥ 2(1− |λ(Di)|2L∞)max{| tanhR+
i |, | tanhR

−
i |}

≥ (1− |λ(Di)|2L∞)max{|R+
i |, |R

−
i |}.

Since Ωi, described by the graph fi, is bounded between D
R+
i

i and D
R−
i

i , the above result

indicates the existence of a uniform constant c1 > 0, such that

|fi|L∞ ≤ c1|Hh0(Ωi)|L∞ , ∀i ≥ N0. (4.2.3)
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Combining (4.2.1)-(4.2.3), we obtain

|fi|C2,α = O(|h− h0|C2), ∀i ≥ N0.

And therefore, the principal curvatures of Σi with respect to h0 and h satisfy that

|λh0(Σi)|2L∞ = O(|h− h0|2C2), ∀i ≥ N0,

=⇒|λh(Σi)|2L∞ = |λh0(Σi)|2L∞ +O(|h− h0|2C2) = O(|h− h0|2C2), ∀i ≥ N0.

Clearly, the sectional curvature of (M,h) has the property

|Kh|L∞ = −1 +O(|h− h0|C2), ∀i ≥ N0.

Thus, we can find U ⊂ U0 and N ≥ N0, such that if h ∈ U and i ≥ N , then the principal

curvatures of Σi with respect to h and the sectional curvature of (M,h) satisfy that

|λh(Σi)|2L∞ < − supKh.

In the lemma below, we apply Uhlenbeck’s method [66], as well as the comparison result

associated with Riccati equations, to prove that Σi is the unique closed minimal surface

in (M̃i, h), thus minimizing the area among all closed surfaces.

Lemma 4.2.1. Let Σ be a minimal surface in (M,h) whose fundamental group injectively

includes in π1(M), the principal curvatures of Σ with respect to h, denoted by ±λ, and

the sectional curvature K of (M,h) satisfy that

|λ(Σ)|2L∞ < − supK. (4.2.4)

Let M̃ be the cover of M with π1(M̃) ∼= π1(Σ). Then Σ is the unique closed minimal
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surface in M̃ .

Proof. Denote the supreme of the sectional curvature on (M,h) by −k2, where k > 0.

Let f(x) be the distance function from a fixed point in M̃ \ Σ to x ∈ Σ. By (4.2.4), for

any X ∈ TxΣ,

D2f(X,X) = Hess f(X,X)− A(X,X)(f) ≥ k

tanh(kf(x))
− k > 0. (4.2.5)

It turns out that f is a convex function, thus, there’s only one critical point that attains

the minimum. As a result, exp |NΣ maps injectively from the normal bundle NΣ to M̃ .

Furthermore, we show that exp |NΣ is a diffeomorphism, and thus M̃ is foliated by

a family of surfaces {Σr}r∈R, where Σr is the surface at the fixed distance r to Σ.

To see this, we introduce some notations beforehand. For x ∈ Σ, choose an oriented,

orthonormal basis {e1, e2} for TxΣ, and a unit vector e3 for NxΣ. Then we obtain an

orthonormal frame by applying parallel transport along exp |NΣ. Since Σ is a minimal

surface, the principal curvatures satisfy that λ1 = −λ2 := λ, we assume λ ≥ 0 in the

following computation. Let Vi(r) = vi(r)ei(r) be the Jacobi field along exp(re3), where

i = 1, 2, it satisfies that vi(0) = 1, (vi)′(0) = λi = ±λ.

On the other hand, let Σ be a minimal surface in M̃ with respect to an ambient metric

h of constant sectional curvature −k2, and its principal curvature satisfies that λ = λ.

We do not require the existence of Σ, it’s only used for comparison in the computation.

Similar to the notations defined above, let e1, · · · , e3 be the corresponding frame on M̃

with respect to h, and let V i(r) = vi(r)ei(r) be the Jacobi field along exp(re3) which

shares the same initial data with Vi(r). Since λ < k, we have

vi(r) = cosh kr ± λ sinh kr

k
> 0, i = 1, 2.
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From

(vi)′′ = −R(e3, ei, ei, e3)vi ≥ k2 vi = (vi)′′

and the initial data, the graph of vi lies above that of vi, thus above the horizontal

axis. The non-vanishing Jacobi fields ensure that the induced metric on Σr in (M̃, h) is

nonsingular for all r ∈ R. In addition, we’ve seen that exp |NΣ : NΣ → M̃ is injective,

and therefore also bijective, so it is a diffeomorphism and M̃ admits a foliation structure.

Next, let λi(r) (i = 1, 2) be the principal curvatures on Σr, and denote by λi(r) (i =

1, 2) the principal curvatures of the r-equidistant surface to Σ with respect to h. Notice

that each λi(r) satisfies the Riccati equation

λ′i(r) = λ2i (r) +R(e3, ei, ei, e3)(r).

Then it follows from the comparison theorem associated with Riccati equations (for

instance, see Theorem 3.1 of [68]) that

λ1(r) ≥ λ1(r) = k
k tanh(kr) + λ

k + λ tanh(kr)
> 0,

λ2(r) ≥ λ2(r) = k
k tanh(kr)− λ

k − λ tanh(kr)
.

It follows from λ2 ≤ k2 that

λ1(r) + λ2(r) ≥ 2k
(k2 − λ2) tanh(kr)

k2 − λ2 tanh2(kr)
> 0.

Therefore, for any r ∈ R, Σr is strictly mean convex with respect to the metric induced

by h.

Finally, we prove the uniqueness. Assume that Σ′ is another closed minimal surface in

(M̃, h), and let R+ and R− be the supremum and infimum of r such that Σ′ intersects Σr,
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respectively, then R+ and R− are both finite. However, due to the maximum principle,

Σ′ cannot be tangential to any strictly mean convex slice Σr with r ̸= 0. Therefore, we

must have Σ′ ⊂ Σ0 = Σ.

Now we finish the proof of Theorem 1.2.3. From the previous lemma, when i ∈ N is

sufficiently large, Σi is the area-minimizer among all closed surfaces in M̃i with respect

to the induced metric of h, it yields that

areah(F
−1(Si)) = areah(F̃

−1
i (Si)) ≥ areah(Σi).

Combining it with the area comparison in Theorem 5.1 of [43], we have

AreaF (h/h0) = lim
i→∞

areah(F−1(Si))

4π(gi − 1)
≥ lim

i→∞
areah(Σi)

4π(gi − 1)
≥ 1.

Moreover, when the equality holds, it follows from the equality of Theorem 5.1 of [43]

that h = F ∗(h0), F is an isometry between h and h0.

4.3 Generalization of Average K-volume Ratio on Einstein

Manifolds

In this section, we explore other Einstein manifolds and attempt to extend Theorem

1.2.1 not only to a wider variety of manifolds but also to include the average k-volume

ratio where 2 ≤ k ≤ n− 1.

4.3.1 Einstein Manifolds of Negative Curvature

Let (M,h0) be a closed Einstein manifold of dimension n ≥ 3 satisfying

Rich0 = −λh0,
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where the λ > 0 is a constant. The average area ratio of the map Id : (M,h) → (M,h0)

is defined as follows.

VolkId(h/h0) =
ˆ
(x,P )∈Grk(M)

lim
δ→0

volh((Dδ(P ))

δ
dµh0 , (4.3.1)

where Dδ(P ) is a subset of the totally geodesic k-dimensional subspace in the universal

cover of (M,h0), and it is tangential to P at x, and Dδ(P ) has volume equal to δ with

respect to h0. Additionally, µh0 is the unit volume measure on GrkM with respect to

the metric induced by h0.

Likewise, we aim to find a neighborhood U of h0 in the metric space of M . In this

neighborhood, for any Riemannian metric h ∈ U defined on M where Rh ≥ −nλ, we

expect the inequality

VolkId(h/h0) ≥ 1 (4.3.2)

to hold. The proof for the conformal deformations follows directly from Section 4.1.1.

In this section, it suffices to consider the metrics with constant scalar curvature equal to

−nλ. To accomplish this, we define the functional Ak as follows.

Ak(h) =(−1)1−
k
2 lim
δ→0

ˆ
(x,P )∈GrkM

Rh(x)
k
2

volh(Dδ(P ))

δ
dµh0

=(−1)1−
k
2 lim
δ→0

ˆ
(x,P )∈GrkM

Rh(x)
k
2

 
Dδ(P )

√
deth0(h|Dδ(P )) dVh0 dµh0 .

In particular, the metric h with constant scalar curvature equal to −nλ satisfies

Ak(h) = −(nλ)
k
2 lim

δ→0

ˆ
(x,P )∈GrkM

volh(Dδ(P ))

δ
dµh0

= Ak(h0) lim
δ→0

ˆ
(x,P )∈GrkM

volh(Dδ(P ))

δ
dµh0 .

Therefore, to deduce (4.3.2), we only need to show that Ak attains a local maximum at
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h0.

Assume volh0(M) = 1, and the symmetric tensor l = h−h0 satisfies
´
M trh0l dVh0 =

0. Let ht = h0 + tl, we rewrite Ak(ht) as

Ak(ht) = (−1)1−
k
2

ˆ
x∈M

Rht(x)
k
2 akht(x) dVh0 ,

where

akht(x) = lim
δ→0

 
P∈GrkMx

 
Dδ(P )

√
deth0(ht|Dδ(P )) dVh0dνh0 .

Then we have

d

dt
Ak(ht) = (−1)1−

k
2

ˆ
M

k

2
(
d

dt
Rht)R

k
2−1
ht

akht +R
k
2
ht

d

dt
akht dVh0 . (4.3.3)

By (4.1.6), when t = 0, applying the Stokes’ theorem, we rewrite the first term as follows.

ˆ
M

k

2
(
d

dt
|t=0Rht)R

k
2−1
h0

akh0 dVh0 =
k

2
(−nλ)

k
2−1

ˆ
M

−⟨Rich0 , l⟩h0 dVh0

=
k

2
(−nλ)

k
2−1λ

ˆ
M

trh0l dVh0 .

Furthermore, let λ1, · · · , λn be the eigenvalues of the matrix l at point x ∈ M with

respect to h0, we obtain by computation that

d

dt
|t=0 a

k
ht

= lim
δ→0

1

2

 
P∈Gr2Mx

 
Dδ(P )

trh0l|Dδ(P ) dVh0dνh0

=
1

2

∑
i1<···<ik

(λi1 + · · ·+ λik)(n
k

) =
1

2

(n−1
k−1

)∑n
i=1 λi(n

k

)
=

k

2n
trh0l.
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It follows that for any symmetric 2-tensor l,

(Ak)′(h0) · l = (−1)1−
k
2 (−nλ)

k
2−1(k

2
λ

ˆ
M

trh0l dVh0 − nλ
k

2n

ˆ
M

trh0l dVh0
)
= 0,

thus h0 is a critical point of Ak.

Then, to estimate the second variation, we specifically focus on the case where the

2-tensor lTT is traceless-transverse. As discussed previously, we compare the second

variation of Ak with that of the normalized total scalar curvature. To simplify the

calculation, we write the normalized total scalar curvature as the following form.

E(h) = (−1)1−
k
2 volh(M)

k
n−1

ˆ
M
R

k
2
h dVh.

By computation, we have

(Ak)′′(h0)(lTT , lTT )− E ′′(h0)(lTT , lTT )

=(−1)1−
k
2 (−nλ)

k
2

ˆ
M

d2

dt2
|t=0 a

k
ht

− k

n

d2

dt2
|t=0

√
det(ht) dVh0 .

48



For the first term on the right-hand side,

ˆ
M

d2

dt2
|t=0 a

k
ht
dVh0

= lim
δ→0

ˆ
x∈M

 
P∈GrkMx

 
Dδ(P )

1

4
(trh0l|Dδ(P ))

2 − 1

2
trh0(l|

2
Dδ(P )) dVh0dνh0dVh0

=

ˆ
M

∑
i1<···<ik

1
4(λi1 + · · ·+ λik)

2 − 1
2(λ

2
i1
+ · · ·+ λ2ik

)(n
k

) dVh0

=

ˆ
M

(n−2
k−2)
4 (

∑n
i=1 λi)

2 −
(n−1
k−1

)
+
(n−2
k−2

)
4

∑n
i=1 λ

2
i(n

k

) dVh0

=

ˆ
M

k(k − 1)

4n(n− 1)
(trh0lTT )

2 − k(n+ k − 2)

4n(n− 1)
trh0(l

2
TT ) dVh0

=−
ˆ
M

k(n+ k − 2)

4n(n− 1)
trh0(l

2
TT ) dVh0 .

Combining the two inequalities above, we obtain

(Ak)′′(h0)(lTT , lTT ) = E ′′(h0)(lTT , lTT )− (nλ)
k
2
k(n− k)

4n(n− 1)

ˆ
M

trh0(l
2
TT ) dVh0 . (4.3.4)

Notice that when k = 2 and λ = n− 1, the formula coincides with (4.1.11).

If the closed Einstein manifold M satisfies E ′′(h0)(lTT , lTT ) ≤ 0 for any traceless-

transverse tensor lTT , then it is said to be stable with respect to the normalized total scalar

curvature. In this case, based on the aforementioned inequality, (Ak)′′(h0)(lTT , lTT ) is

negative for non-zero lTT .

Concerning the second variation of Ak with respect to the other components of the

symmetric 2-tensor l (specifically, fh0 ∈ C∞(M) · h0 and lD ∈ Th0(Diff(M)(h0))), we

expect it to be constrained by a small value, which, in turn, ensures that Ak attains a

local maximum.

However, (4.3.4) only provides a negative upper bound of (Ak)′′(h0)(lTT , lTT ) by the

L2-norm of lTT . In order to replicate the proof of Lemma 4.1.3, we need a negative upper
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bound in terms of the H1-norm of lTT . Fortunately, if the sectional curvature of M is

negative everywhere, then according to the proof of Lemma 2.15 in [7], E ′′(h0)(lTT , lTT )

is bounded from above by −C|lTT |2H1(M,h0)
. As a result, the theorem remains valid. In

particular, this condition is satisfied by locally symmetric spaces of rank one, and we

provide a detailed discussion of this case in the following section.

4.3.2 Locally Symmetric Manifolds of Negative Curvature

In the section, we prove that the result is valid for closed locally symmetric manifolds

of negative curvature, whose universal covers are symmetric spaces of rank one. These

manifolds include hyperbolic manifolds, complex hyperbolic manifolds, quaternionic hy-

perbolic manifolds, and the Cayley plane. For the convenience of the readers, we present

the theorem in the following restated form.

Theorem 4.3.1. Let (M,h0) be a closed locally symmetric space of rank one. There

exists a small neighborhood U of h0 in the metric space of M , such that for any Rie-

mannian metric h ∈ U on M with Rh ≥ Rh0 and for any 2 ≤ k ≤ n − 1, the average

k-volume ratio defined in (4.3.1) satisfies the inequality

Vol kId(h/h0) ≥ 1.

The equality holds if and only if h = h0.

Let’s consider the complex hyperbolic case as an example. Suppose we have a closed

manifold (M,h0) with a complex hyperbolic structure, where the dimension is denoted

by n = 2m and m ≥ 2. Denote by J the complex structure. In Hm
C , for each v ∈ T 1Hm

C ,

the plane spanned by v and Jv has constant curvature −4, and the set of all planes with

constant curvature −1 containing v has dimension equal to 2m − 2 = n − 2. Thus, in

this case, the Einstein constant λ = n+ 2, and Rh0 = −n(n+ 2).
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Notice that the result of [7] is also applicable to the other locally symmetric spaces

of rank one. Consequently, there exists a constant C > 0, such that

E ′′(h0)(lTT , lTT ) ≤ −C|lTT |2H1(M,h0)
.

Thus, according to (4.3.4), and using trh0lTT = δh0lTT = 0, we obtain

(Ak)′′(h0)(lTT , lTT ) = E ′′(h0)(lTT , lTT )− (n(n+ 2))
k
2
k(n− k)

4n(n− 1)

ˆ
M

trh0(l
2
TT ) dVh0

< −C|lTT |2H1(M,h0)
.

Finally, we can continue the discussion by considering the other components of the

symmetric 2-tensor l, namely fh0 ∈ C∞(M) · h0 and lD ∈ Th0(Diff(M)(h0)), using the

same argument as before. Consequently, the result can be derived.
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CHAPTER 5

MINIMAL SURFACE ENTROPY

In this chapter, we shift our focus to the second concept, namely the minimal surface

entropy. Our first objective is to expand upon the findings in the three-dimensional

study in [11] and apply them to all odd dimensions equal to or greater than three.

5.1 Odd-dimensional Hyperbolic Manifolds

Suppose that (M,h0) is a closed hyperbolic manifold with an odd dimension n ≥ 3.

The goal of this section is to prove Theorem 1.2.6. First, we present an outline of the

proof.

Suppose that Π ∈ Sϵ(M), and let S be the essential minimal surface of M in the

homotopy class Π so that area(S) = area(Π). In Section 5.1.1, we show that when ϵ is

sufficiently small, S is free of branch points. Furthermore, the second fundamental form

satisfies the following condition:

|A|2L∞(S) = oϵ(1). (5.1.1)

Next, in Section 5.1.2, we calculate the minimal surface entropy E(h0). Finally, the

inequality and rigidity are proven in a subsequent section, Section 5.1.3.

5.1.1 Estimates of Second Fundamental Form

In this Section, we prove the equation (5.1.1). More specifically, Let M = Hn/Γ be a

closed hyperbolic manifold with dimension n ≥ 4. Since n is odd, the smallest dimension

is 5. From the argument by Schoen-Yau [57] and Sacks-Uhlenbeck [55], for any surface

subgroup Π < Γ, there exists an immersed minimal surface S in M with finitely many
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branch points, such that it minimizes the area in the corresponding homotopy class up

to conjugacy. The appearance of branch points is the primary distinction from the case

of dimension three. So the key point of (5.1.1) is to rule out branch points.

Trap of Convex Hull

First of all, we need to argue that the convex hull of Π lies in a bounded region. In [58],

Seppi proved that for any minimal disc D ⊂ H3 asymptotic to a (1 + ϵ)-quasicircle γ,

every point x in D lies on a geodesic segment α that is orthogonal at the endpoints

to planes P+ and P−, such that the convex hull of γ is bounded between P+ and P−.

Additionally, the length of α goes to zero uniformly in x as ϵ approaches zero. In the

following lemma, we construct the bound of the convex hull of Π while the ambient

manifold has dimension at least 4.

Lemma 5.1.1. Given Π ∈ Sϵ(M) and let γ be the limit set of Π. Then the convex hull

of γ is contained in a tube, which converges in Hausdorff distance as ϵ goes to zero, the

limit is either empty, or it is contained in a totally geodesic disc.

Proof. Since γ is an (1+ϵ)-quasicircle, we can find ϵ′ = oϵ(1) and a round circle c ⊂ Sn−1
∞ ,

such that the ϵ′-neighborhood of c in Sn−1
∞ , denoted by N , contains γ. Any round circle

in ∂N bounds a unique totally geodesic disc in Hn, and thus there is a tube T ⊂ Hn

homeomorphic to D2×Sn−3 asymptotic to ∂N . Notice that as ϵ goes to zero, the limit

of T is either empty, or it is contained in a totally geodesic disc. In addition, T is convex,

so the convex hull of γ is bounded in T .

Uniqueness of Minimal Surfaces

Lemma 5.1.2. Let D be a minimal surface in Hn asymptotic to γ ⊂ Sn−1
∞ , where γ is

the limit set of a surface subgroup of M . If the norm squared of the second fundamental
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form of D satisfies that |A|2
L∞(D)

< 2, then

(a) D is an embedded disc,

(b) If D is the lift of a closed surface in M , then γ = ∂∞D is a quasicircle,

(c) Assume that γ is a quasicircle, then D is the unique minimal surface with ∂∞D = γ

of all types.

The proof is similar to that of Uhlenbeck’s argument [66], but we need to be careful

about the noncompactness of D, so it’s worth providing the proof here.

Proof. First, (a) can be shown by finding a horosphere S that touches D at a single

point, and suppose ∂∞S = y, namely S is centered at y. Notice that Hn is foliated

by horospheres centered at y, and since the principal curvatures of D restricted to any

normal direction are less than that of the horospheres, the distance from a fixed point in

Hn \D to the points on D is a convex function, so there’s only one critical point which

attains the minimum. This is impossible when the intersection of D with an extrinsic

ball is an annulus or it has self-intersections, so it forces D to be an embedded disc.

Furthermore, we can also prove that exp |ND is a diffeomorphism from ND to Hn,

and therefore Hn \ D is foliated by a family of hypersurfaces {Hr}r>0, where Hr is

the hypersurface at the fixed distance r to D. To see this, we need some notations

beforehand. For x ∈ D, choose an oriented, orthonormal basis {e1, e2} for TxD, and

an orthonormal basis {e3, · · · , en} for NxD. Then we obtain an orthonormal frame by

applying the parallel transport along exp |ND. Since D is a minimal surface, for any

3 ≤ j ≤ n, let λijk := ⟨A(ej , ek), ej⟩, then we have λj11 = −λj22 := λj . We assume

λj ≥ 0 in the following computation. Moreover, for any 3 ≤ j ≤ n and i ̸= j, let

Vji(r) = vij(r)ei(r) be the Jacobi field along exp(rej). When 1 ≤ i ≤ 2, it satisfies that

vij(0) = 1, (vij)
′(0) = λjii(x) = ±λj(x). And when 3 ≤ i ≤ n, i ̸= j, we take vij(0) = 0,
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(vij)
′(0) = 1. Then

Vji(r) =


(cosh r ± λj sinh r)ei(r) if 1 ≤ i ≤ 2

sinh rei(r) if 3 ≤ i ≤ n and i ̸= j

So the induced metric on Hr is

gj(x, r) =



(cosh r + λj(x) sinh r)
2

(cosh r − λj(x) sinh r)
2

sinh2 r

. . .

sinh2 r


It is nonsingular for any r > 0 since λj(x) < 1. In addition, we’ve seen that exp |ND :

ND → Hn is a bijection because of the convexity of the distance function, thus it is a

diffeomorphism and Hn admits a foliation structure.

Additionally, assume that D is the lift of a closed surface S ⊂M . Since the induced

metric on S is conformally equivalent to a hyperbolic metric ghyp, the induced metric on

D ⊂ Hn is also conformally equivalent to a hyperbolic metric, we still denote it by ghyp.

Because λj < 1, by [66], the induced metric on Hr is quasi-isometrically equivalent to

the metric cosh2 r ghyp
sinh2 r I(n−3)×(n−3)


The quasi-isometry F : Hn → Hn extends to a quasiconformal map f : Sn−1

∞ → Sn−1
∞ .

It means that γ is the image of a round circle mapped by f , so equivalently, it is a

quasicircle. This proves (b).
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Next, to prove (c), we denote by λji(x, r) the principal curvature of Hr. Then

λj1(x, r) =
tanh r + λj(x)

1 + λj(x) tanh r
> 0,

λj2(x, r) =
tanh r − λj(x)

1− λj(x) tanh r
,

λji(x, r) =
1

tanh r
> 0, ∀ 3 ≤ i ≤ n and i ̸= j.

λj2(x, r) is the only one that is possibly non-positive. The assumption λj(x) < 1 yields

that

λj1(x, r) + λj2(x, r) =
2(1− λ2j (x)) tanh r

1− λ2j (x) tanh
2 r

> 0,

λj2(x, r) + λji(x, r) =
tanh2 r − 2λj(x) tanh r + 1

(1− λj(x) tanh r) tanh r
>

1− λj(x) tanh r

tanh r
> 0,

where 3 ≤ i ≤ n and i ̸= j. Therefore, for any r > 0, Hr is strictly two-convex.

Furthermore, when r > tanh−1
|A|2L∞(D)

2 , we have r > tanh−1 |λj |L∞(D) for all 3 ≤ j ≤

n, then all the principal curvatures of Hr are positive, thus Hr is strictly convex and it

bounds inside the convex hull of γ.

Now let D′ be any other minimal surface with ∂∞D′ = γ, and let R > 0 be the

supremum of r such that D′ intersects Hr. From [4], D′ lies in the convex hull of γ, then

R cannot exceed the finite number tanh−1
|A|2L∞(D)

2 . If the supremum is attained on D′,

then D′ is tangent to the two-convex hypersurface HR, which contradicts the maximum

principle.

Otherwise, if the supremum R is not attained. We can take a sequence x′i ∈ D′ ∩

Hr(x′i), such that r(x′i) → R as i → ∞. For each x′i, there exists an isometry Ti

of Hn sending x′i to the origin. In the meantime, since γ is a quasicircle, there is a

quasiconformal map ϕi on Sn−1
∞ that maps a round circle to Ti(γ). And since the convex
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hull of Ti(γ) contains the origin, there exist three distinct points x, y, z on the round

circle, so that ϕi(x), ϕi(y), ϕi(z) are at a uniformly positive distance from one another,

it then follows from the compactness theorem of quasiconformal maps that after passing

to a subsequence, ϕi converges uniformly to a quasiconformal map, and Ti(γ) converges

to a quasicircle γ∞ in Hausdorff topology (see, for instance, page 25 in [35]). Moreover,

after passing to a subsequence, Ti(D′) converges as varifolds to D′
∞ with ∂∞D′

∞ = γ∞.

We can further assume that Ti(D) converges to D∞ with ∂∞D∞ = γ∞ (since the points

xi, which are the normal projections of x′i to D, are mapped into a compact region

by Ti, we can take further isometries sending Ti(xi) to the origin and repeat the same

procedure). Standard compactness theorem implies that Ti(D) converges graphically,

thus the limit D∞ is still an embedded minimal surface with |A|2∞ < 2. Denote by

Hr
∞ the hypersurface at the fixed distance r to D∞, then {Hr

∞}r>0 foliates Hn \D∞.

Moreover, D′
∞ is tangent to the two-convex hypersurface HR

∞, but this violates the

maximum principle.

Absence of Branch Points

From now on, we consider a sequence Πi ∈ S(M, gi,
1
i ), and let Si be a minimal

surface in the homotopy class Πi such that area(Si) = area(Πi). We denote by γi the

limit set of Πi.

Let Di ⊂ Hn be the area-minimizing surface mod 2 with ∂∞Di = γi. Then due to

Theorem 3 of [3], Di is free of branch points. Moreover, after applying an isometry in

Isom(Hn) and passing to a subsequence, γi converges to a round circle γ in Hausdorff

topology. From Corollary 2.5 in [5], for any R > 0, there exists a constant CR depending
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only on n and R, such that

area(Di ∩BR(0)) ≤ CR ∀i ≥ 1. (5.1.2)

It follows that Di converges as varifolds to V , which is also area-minimizing mod 2 (see

34.5 and 42.7 in [61]). By Lemma 5.1.1, V is either empty or contained in the totally

geodesic disc D with ∂∞D = γ.

Furthermore, Alexander duality indicates that there exists a (n − 2)-dimensional

submanifold K ⊂ Hn, such that the boundary ∂K lies in the complement of a tubular

neighborhood of γ in Sn−1
∞ , and it is linked with every γi for large enough i. So every

Di intersects K. Additionally, according to Lemma 5.1.1, there exists a radius R0 > 0,

such that

C(γi) ∩K ⊂ BR0
(0), ∀i >> 1, (5.1.3)

where C(γi) represents the convex hull of γi. For any R > R0 and any point xi ∈

Di∩BR0
(0), we have BR−R0

(xi) ⊂ BR(0). Then (5.1.3), together with the monotonicity

formula in [5], produces a uniform constant cR−R0
> 0, such that

area(Di ∩BR(0)) ≥ cR−R0
. (5.1.4)

It implies that V is non-empty. Thus by constancy theorem (41.1 in [61]), V is a positive

multiple of D. And since V is area-minimizing mod 2, the multiplicity has to be one.

Moreover, Allard regularity theorem (see [1], or Theorem 1.1 in [69] for an easy

version) indicates that the convergence is smooth on compact sets, and we obtain that

|A|2
L∞
loc(Di)

→ 0. Finally, from Lemma 5.1.2, whenever i is sufficiently large, the lift of

Si must coincide with Di, so we finish the proof of (5.1.1).
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5.1.2 Entropy of Hyperbolic Metrics

Let s(M, g) denote the cardinality of S(M, g), and s(M, g, ϵ) denote the cardinality

of the subset S(M, g, ϵ) ⊂ S(M, g). We prove the following inequality in this section.

(c1g)
2g ≤ s(M, g, ϵ) ≤ s(M, g) ≤ (c2g)

2g. (5.1.5)

Upper Bound of (5.1.5)

When n = 3, Kahn-Markovic [33] found an upper bound of s(M, g). Their method

also applies to the case of n > 3. We only need the following fact.

Let M be a closed hyperbolic manifold of dimension n ≥ 3, and let Sg denote a

closed surface of genus g. For any π1-injective immersion f : Sg → M , there exist a

hyperbolic structure on Sg and a homotopy of f that is pleated with respect to this

structure, we still denote it by f (see 8.10 in [64] for Thurston’s original proof for n = 3,

and Lemma 3.6 in [10] for the generalization of all dimensions). Furthermore, s(M, g)

can be estimated by counting the number of homotopy classes of the pleated immersions.

As shown in [33], there exists a constant c2 depending only on the injectivity radius of

M , so that

s(M, g) ≤ (c2g)
2g.

Lower Bound of (5.1.5)

Suppose thatM has an odd dimension n ≥ 3. According to [22], for any small number

ϵ′ > 0, there is an essential surface in M which is sufficiently well-distributed and (1+ϵ′)-

quasigeodesic, namely, the geodesics on the surface with respect to intrinsic distance are

(1 + ϵ′, ϵ′)-quasigeodesics in M . This determines a quasi-isometry that embeds H2 into

Hn, whose boundary extends to a quasisymmetry f1 : S1∞ → Sn−1
∞ . Pick two discs
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D1, D2 ⊂ Sn−1
∞ with ∂D1 = ∂D2 = S1∞ and D1 ∪ D2 = S2∞. By [65], f1 extends

to quasiconformal maps from Di into Sn−1
∞ , i = 1, 2, so there exists a quasiconformal

extension f2 : S2∞ → Sn−1
∞ . Repeating this process, we can find a quasiconformal

extension fn−1 : Sn−1
∞ → Sn−1

∞ . Moreover, it has dilatation 1+ ϵ, where ϵ depends on n

and ϵ′, and ϵ → 0 as ϵ′ → 0. For this reason, we denote this essential surface by Σϵ. So

for any ϵ > 0, we can choose a sufficiently small ϵ′ to build an essential surface Σϵ ⊂M

associated with an element in Sϵ(M). Let G(M, g, ϵ) denote the subset of S(M, g, ϵ)

consisting of homotopy classes of finite covers of Σϵ that have genus at most g. Counting

the commensurability classes in G(M, g, ϵ) and using Müller-Puchta’s formula (see [33]),

we obtain the following lower bound when g is large.

s(M, g, ϵ) ≥ #G(M, g, ϵ) ≥ (c1g)
2g,

where c1 is a constant that depends only on M and ϵ.

Moreover, let Si denote the minimal representative in the homotopy class Πi ∈

G(M, gi,
1
i ), then it is homotopic to a (1 + 1

i )-quasigeodesic surface Σi. Assume that

µi, νi represent the Radon measures induced by integration over Si and Σi, respectively.

From Lemma 4.3 of [11], we have

lim
i→∞

µi = lim
i→∞

νi =: ν, (5.1.6)

Furthermore, following the argument on page 16 in [11], we conclude that the measure

ν is positive on any non-empty open set of M . The proof makes use of the property

that Σi is nearly equidistributed in M (see Section 7 of [22]), and the estimates hold for

all odd ambient dimensions. This measure ν plays an important role in the proof of the

rigidity in Section 5.1.3.

60



Computation of Entropy

We prove E(h0) = 2 first. Given η > 0, for all sufficiently small ϵ, and sufficiently

large L which only depend on η, we conclude from (5.1.1) that for Π ∈ Sϵ(M), if it

has area(Π) ≤ 4π(L − 1), then Π ∈ S(M, ⌊(1 + η)L⌋, ϵ). On the other hand, Π ∈

S(M, ⌊(1− η)L⌋, ϵ) implies that area(Π) ≤ 4π(L− 1). Then consequently,

2(1− η) ≤ lim inf
L→∞

ln s(M, ⌊(1− η)L⌋, ϵ)
L lnL

≤ lim inf
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ Sϵ(M)}
L lnL

≤ lim inf
L→∞

ln s(M, ⌊(1 + η)L⌋, ϵ)
L lnL

≤ 2(1 + η).

It follows directly that E(h0) = 2.

5.1.3 Inequality and Rigidity

The key fact to show the rigidity is the following, which is an extension of Theorem

5.1 in [11] to higher dimensional ambient manifolds.

Theorem 5.1.3. Assume M is defined as above. Let Si be the essential surface immersed

in M that minimizes the area of a surface subgroup Πi < Γ in G(M, gi,
1
i ) with respect

to the hyperbolic metric h0. And let Σi be the essential surface (possibly with branch

points) homotopic to Si that minimizes area with respect to the metric h. Then

lim sup
i→∞

areah(Σi)

area(Si)
≤ 1. (5.1.7)

If the equality holds, then h is hyperbolic and isometric to h0.
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Proof of Theorem 5.1.3

Let’s prove the inequality first. Σi may have isolated branch points when n ≥ 4,

we denote by Pi the locus of branch points, and by dij the order of each branch point

pij ∈ Pi. Then a generalized Gauss-Bonnet theorem in [18] states that

areah(Σi) = 4π(gi − 1) +

ˆ
Σi\Pi

(K12 + 1)dAh − 1

2

ˆ
Σi\Pi

|A|2dAh − 2π
∑
j

dij . (5.1.8)

On the other hand, we have shown in Section 5.1.1 that Si has no branch points and

satisfies that |A|2
L∞(Si)

→ 0 as i → ∞, so for sufficiently large i, area(Si) ≃ 4π(gi − 1),

and thus inequality (5.1.7) follows.

Now suppose the equality (5.1.7) holds, it yields that

lim
i→∞

1

areah(Σi)

ˆ
Σi

(
− (K12 + 1) +

1

2
|A|2 + 2π

∑
j

dijδpij

)
dAh = 0,

where δpij (x) = δ(x− pij ) and δ(x) is the Dirac delta function.

Let C be the set of all round circles in Sn−1
∞ , and define

L ={γ ∈ C : ∃ϕi ∈ Fi(ϵi, Ri), ϵi → 0, Ri → ∞, such that

after passing to subsequence, Λ(ϕiΠiϕ
−1
i ) converges to γ},

in which

Fi(ϵ, R) = {ϕ ∈ Γ :

ˆ
ϕ(Σ̃i)∩BR(0)

(
−(K12+1)+

1

2
|A|2+2π

∑
j

dijδqij

)
dAh ≤ ϵ}, (5.1.9)

where qij is a branch point with order dij , the locus of branch points in Σ̃i is denoted by

Qi, and δ represents the Dirac delta function. It’s not hard to see that L is closed and

Γ-invariant. Due to Lemma 5.2 in [60], almost every element in C has a dense Γ-orbit.
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And for the elements in the subset L ⊂ C , we prove the following lemma.

Lemma 5.1.4. There is a round circle γ ∈ L , such that Γγ is dense in C . Additionally,

it deduces a stronger result that L = C . Therefore, by [60], almost every round circle

in L has a dense Γ-orbit.

Proof. Theorem 6.1 of [11] proved the following fact using the measure ν defined in

(5.1.6).

For any n-dimensional compact subset K of Hn, there exists γ ∈ L , such that (⋆)

the unique totally geodesic disc D(γ) in Hn bounded by γ intersects K.

Now suppose by contradiction that L has no element with a dense Γ-orbit in C .

According to Shah’s result [59], for each γ ∈ C , the projection of the Γ-orbit of D(γ) is

either dense in M , or it is dense in a finite union of closed totally geodesic submanifolds

in M of codimensions 1 ≤ k ≤ n − 2. So for γ ∈ L , such submanifolds are proper. If

the number of elements γ ∈ L so that the corresponding D(γ) intersects ∆ were finite,

where ∆ denotes the fundamental domain of M , then the union of D(γ) for all γ ∈ L

would meet ∆ in a finite subset. Therefore, there should have been a compact subset

K ⊂ ∆ never intersecting any D(γ), but this case can be excluded by (⋆).

It turns out that ∆ meets infinitely many D(γ) for γ ∈ L . By assumption, none

of such elements γ have dense Γ-orbits in C , and thus the closures of the projections

of these D(γ)’s in M are infinitely many proper totally geodesic submanifolds, the set

of such manifolds is denoted by P. For any 1 ≤ k ≤ n − 2, let the subset Pk ⊂ P

consist of all totally geodesic submanifolds of codimensions k, and let Lk represent the

collection of all γ ∈ L whose corresponding projection of D(γ) in M is dense in at least

one of the submanifolds in Pk.
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Lemma 5.1.5. All the elements in P are contained in a finite union of proper subman-

ifolds of M .

Let’s consider an example first.

Example 5.1.6. When n = 5, since P = P1∪P2∪P3 has infinitely many candidates,

we have the following cases.

(1) If P1 were infinite, then these totally geodesic submanifolds of codimension 1 would

be obviously maximal. By Corollary 1.5 of [50] (or Theorem 1.7(1) of [39]), any infi-

nite sequence of maximal properly immersed totally geodesic submanifolds becomes

dense in M . Thus, we could pick an infinite sequence {γi} in L1, and then the limit

of Γγi should have been dense in C . Since L is closed and Γ-invariant, we conclude

that L = C , violating our assumption. It yields that P1 must be finite.

(2) Suppose further that P2 is infinite. If P2 contained infinitely many maximal sub-

manifolds of M , then the argument in (1) could apply. So we only need to consider

the situation where all but finitely many elements in P2 are non-maximal, denoted

by P1, P2, · · · . By Corollary 1.5 of [50] (or Theorem 14.1(3) of [39]), since the limit

of Pi doesn’t become dense in M , any infinite subsequence of {Pi} must have a

further infinite subsequence {Pj,i} contained in a proper totally geodesic submani-

fold P j ⊂ M of higher dimension, so P j must have codimension 1. All elements of

{Pj,i} are maximal submanifolds of P j , thus the limit of the sequence is dense in

P j . Accordingly, there is a sequence {γj,i} in L2, such that the closure of lim
i→∞

Γγj,i

contains all circles in C that lie in ∂∞P̃ j ≈ S3, where P̃ j is a lift of P j in H5.

It’s worth noting that almost every element among these circles has a dense orbit

in ∂∞P̃ j (Lemma 5.2, [60]). Then because of the closedness and Γ-invariance of L ,

there exists γj ∈ L , so that the projection of D(γj) in M is dense in P j . In other

words, we have γj ∈ L1 and P j ∈ P1.
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Notice that P1 is a finite set, we can only extract finitely many subsequences

{P1,i}, · · · , {Pl,i} ⊂ {Pi} to build P 1, · · · , P l ∈ P1, the number of the remain-

ing elements in P2 is finite. We see that P1 ∪ P2 is contained in a finite union of

proper submanifolds.

(3) If P1,P2 are both finite, then P3 must be infinite. It suffices to assume that all

but finitely many candidates in P3 are non-maximal, and they are denoted by {Pi}.

According to [50] or [39], any infinite subsequence has a further subsequence which

is contained in a totally geodesic submanifold of codimension 1 or 2.

Pick a subsequence {P1,i} of {Pi}, so that the elements are contained in a sub-

manifold P 1 of the maximal codimension 1 ≤ m1 ≤ 2. Then as i → ∞, P1,i

becomes dense in P 1, because otherwise, the argument in [50] or [39] yields a further

infinite subsequence lying in a proper submanifold of P 1, but it violates the assump-

tion that P 1 attains the maximal codimension. Similarly, the density ensures that

P 1 ∈ Pm1 ⊂ P1 ∪ P2.

Furthermore, if the number of candidates in {Pi} intersecting (M \ P 1) is finite, we

deduce that P can be represented by a finite union of submanifolds. Otherwise, we

continue to extract an infinite subsequence {P2,i} of {Pi} meeting M \P 1, which is

contained in a proper submanifold P 2 ⊂ M of the maximal codimension 1 ≤ m2 ≤

m1 ≤ 2. Similarly, the maximality makes the limit of P2,i dense in P 2, and therefore

P 2 ∈ Pm2 ⊂ P1 ∪ P2.

Finally, since P1 ∪ P2 is finite, we can only find finitely many closures P 1, P 2,

· · · , P l, and the number of elements in {Pi} intersecting M \(
l
∪
j=1

P j) is finite. Thus,

P is contained in a finite union of proper submanifolds.

The same method applies to any ambient dimensions, so similarly, we prove by in-

duction that for each 1 ≤ k ≤ n − 2, ∪
j≤k

Pj is contained in a finite union of proper
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submanifolds of M , this implies Lemma 5.1.5.

Now we complete the proof of Lemma 5.1.4. By Lemma 5.1.5, all elements in P lie

in a finite union of proper submanifolds of M . So there must be a non-empty compact

set K in ∆ ⊂ Hn away from the fundamental domain of this union, it means that K is

disjoint from all D(γ) with γ ∈ L , but this contradicts (⋆). Therefore, L contains an

element with a dense Γ-orbit, and L = C follows from the closedness and Γ-invariance

of L .

Fix a round circle γ ∈ L that has a dense Γ-orbit, γ can be represented by

lim
i→∞

Λ(ϕiΠiϕ
−1
i ), where ϕi ∈ Fi(ϵi, Ri), as i → ∞, we have ϵi → 0 and Ri → ∞.

Let Di,Ωi be the lifts of Si,Σi to Bn preserved by ϕiΠiϕ
−1
i . We have proved in Sec-

tion 5.1.1 that after passing to a subsequence, Di converges to the totally geodesic disc

D = D(γ). Moreover, it follows from (5.1.9) that

lim
i→∞

ˆ
Ωi∩BRi

(0)

(
− (K12 + 1) +

1

2
|A|2 + 2π

∑
j

dijδqij

)
dAh = 0.

Since K12 ≤ −1, we obtain that

lim
i→∞

ˆ
Ωi∩BRi

(0)

(
− (K12 + 1) +

1

2
|A|2

)
dAh = 0, (5.1.10)

and

lim
i→∞

ˆ
Ωi∩BRi

(0)

∑
j

dijδqij
dAh = 0.

Recall that Qi represents the set of branch points in Ωi, the latter equation implies that

#{Qi ∩BRi
(0)} → 0 as i→ ∞. (5.1.11)
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So for large enough i, Ωi has no branch points inside BRi
(0).

Lemma 5.1.7. There exists a connected component Ω0
i ⊂ Ωi, so that Ω0

i is a disc and

it converges smoothly to a totally geodesic hyperbolic disc Ω with ∂∞Ω = γ.

Proof. We can explore the convex hulls in the same way as in Section 3 of [11], then

Proposition 2.5.4 in [8] and the Morse lemma give rise to a uniform constant R0 > 0, so

that

dH(Ch(Λ(ϕiΠiϕ
−1
i ), Ch0(Λ(ϕiΠiϕ

−1
i )) ≤ R0,

where Ch and Ch0 represent the convex hull with respect to metrics h and h0, respec-

tively. Moreover, [11] also proves that

Ωi ⊂ Ch(Λ(ϕiΠiϕ
−1
i ). (5.1.12)

Let Hr
i be the hypersurface in Hn with the fixed distance r to Di. By the proof of

Lemma 5.1.2, when r > tanh−1
|A|2L∞(Di)

2 , Hr
i is strictly convex and it bounds inside the

convex hull of Λ(ϕiΠiϕ
−1
i ), so

dH(Ch0(Λ(ϕiΠiϕ
−1
i ), Di) ≤ tanh−1

|A|2
L∞(Di)

2
.

Combining these estimates, we conclude that the Hausdorff distance between Di and Ωi

is uniformly bounded. So there exists R > 0, for i >> 1 and generic r ≥ R, Ωi intersects

Br(0) by a union of circles. Then we can slightly perturb Ri so that Ωi ∩ BRi
(0) is a

union of circles.

Let Ω0
i be a component of Ωi ∩ BRi

(0) that intersects BR(0), by (5.1.11), for suf-

ficiently large i, Ω0
i is free of branch points, so it is embedded in Bn. We claim that

it is a disc. Otherwise, if Ω0
i were an annulus, then we could find a larger ball BR′

i
(0)

with some R′
i > Ri whose boundary met tangentially with Ω0

i at some point. However,
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the convexity of ∂BR′
i
(0) and the minimality of Ω0

i contradict the maximum principle.

Therefore, Ω0
i is a disc provided that i is large enough. Furthermore, The small total

curvature estimates based on (5.1.10) imply that

lim sup
i→∞

{|K12(x) + 1|+ 1

2
|A(x)|2 : x ∈ Ω0

i } = 0. (5.1.13)

From the standard compactness theorem for minimal surfaces with a uniform bound on

the second fundamental form, after passing to a subsequence, Ω0
i converges smoothly

to a minimal disc Ω in (Bn, h). Moreover, Ω is totally geodesic and it has sectional

curvature equal to −1.

It remains to show that ∂∞Ω = γ. Take a sequence xi ∈ Ω0
i that converges to x ∈ Ω,

and take yi ∈ Λ(ϕiΠiϕ
−1
i ). Let αi be the geodesic arc in (Bn, h) connecting xi to yi,

and let βi be the geodesic arc in Ωi connecting xi to yi. Due to (5.1.12) and Proposition

2.5.4 in [8], we can find a uniform number r > 0, such that βi is contained in the r-

neighborhood of αi. Additionally, since Ω is totally geodesic, both αi and βi converge

to the same geodesic arc in Ω that connects x to some y ∈ ∂∞Ω. Then yi converges to

y on Sn−1
∞ . As a consequence, ∂∞Ω ⊂ γ, since ∂∞Ω is a circle, it coincides with γ.

As defined in Section 5 of [11], T 1
D(M) and T 1

Ω(M) denote the projections of the

circle bundles of D and Ω to the unit tangent bundles of M with respect to h0 and

h, respectively. Since T 1
D(M) is dense in the unit tangent bundle T 1M(h0), then via

the homeomorphism from T 1M(h0) to T 1M(h) that maps geodesics to geodesics [20],

we obtain that T 1
Ω(M) is dense in T 1M(h). Thus for any (x, v) ∈ T 1M(h), there is a

sequence {ψi(Ω)}i, ψi ∈ Γ, converging to a totally geodesic hyperbolic disc Ω(x,v) in

(Bn, h), whose projection in M contains a geodesic passing through x with direction v.

According to the ergodicity of the 2-frame flows on the negatively curved manifolds of
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arbitrary odd dimensions (Section 4 in [9]), the set of totally geodesic hyperbolic discs

is dense in Gr2(M).

Therefore, if the equality (5.1.7) holds, then (M,h) is hyperbolic, and it is isometric

to (M,h0) due to the Mostow rigidity theorem.

Proof of Rigidity

First of all, if the metric h has sectional curvature less than or equal to −1, then

Π ∈ S(M, ⌊L⌋, ϵ) implies that areah(Π) ≤ 4π(L − 1) because of the generalized Gauss

equation (5.1.8), thus, E(h) ≥ 2 = E(h0).

Next, suppose E(h) = 2. Assume that there exists η > 0, such that for all L > 0 and

all increasing sequence {ki} ⊂ N, the condition Π ∈ G(M, ⌊(1 + η)L⌋, 1
ki
) must produce

that areah(Π) ≤ 4π(L− 1). As a result,

E(h) ≥ lim inf
L→∞

ln#G(M, ⌊(1 + η)L⌋, 1
ki
)

L lnL
≥ 2(1 + η),

which violates the assumption. Therefore, there exists an increasing sequence {ki} ⊂ N,

a sequence of integers {gi} and Πi ∈ G(M, gi,
1
ki
), so that

areah(Πi) > 4π((1− 1

i
)gi − 1).

Let Σi and Si be the minimal surfaces that minimize the area in the homotopy class

Πi with respect to metrics h and h0, respectively. Then from the inequality above and

Theorem 5.1.3,

1 ≥ lim sup
i→∞

areah(Σi)

area(Si)
≥ lim inf

i→∞
areah(Σi)

area(Si)
≥ lim inf

i→∞

4π((1− 1
i )gi − 1)

4π(gi − 1)
= 1.

The equality holds if and only if h is hyperbolic, and thus it is isometric to h0.
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5.2 Locally Symmetric Manifolds of Negative Curvature

In this section, we extend Theorem 1.2.6 to locally symmetric spaces of rank one

apart from real hyperbolic manifolds.

5.2.1 Definition of Entropy

Let M be a closed 2n (4n, 16)-dimensional complex hyperbolic manifold (quater-

nionic hyperbolic manifold, Cayley plane, respectively), where n ≥ 2. Then its sectional

curvature is between −4 and −1. In the Siegel domain model of Hn
C (Hn

H,H
2
Ca), its

boundary is identified with the one point compactification of the Heisenberg group. A

totally geodesic disc in Hn
C (Hn

H,H
2
Ca) with constant sectional curvature −1 is called

totally real and is isometric to H2
R, whose boundary is a real circle.

A K-quasiconformal map on ∂Hn
C = S2n−1

∞ (∂Hn
H = S4n−1

∞ , ∂H2
Ca = S15∞) is defined

as in Section 1.1.1 with respect to Carnot-Carathéodory metric (see [37]). In particular,

for quaternionic hyperbolic spaces and the Cayley plane, [51] points out that any quasi-

conformal maps are actually conformal. Then the quasi-real circles are real circles, and

each of them determines a unique totally geodesic totally real disc. Therefore, if the man-

ifold M admits quaternionic hyperbolic or Cayley metric, then S(M, g) = S(M, g, 0),

and let S(M) = ∪
g≥2

S(M, g). For any metric h on M , the corresponding minimal surface

entropy is redefined as

E(h) = lim inf
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ S(M)}
L lnL

.

Besides, if M admits a complex hyperbolic metric, we still adopt the definition in (1.1.1).

Then the main theorem related to the locally symmetric spaces is stated as follows.

Theorem 5.2.1. Let (M,h0) be a closed locally symmetric space of rank one. And let

h be another metric on M . If the sectional curvature of h is pointwise less than or equal
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to that of the locally symmetric metric, then

E(h) ≥ E(h0) = 2,

If the equality holds, then h is isometric to h0.

5.2.2 Entropy of Locally Symmetric Metric

Hamenstädt [22] proved the existence of the surface subgroup of cocompact lattice

in any simple rank one Lie group of noncompact type distinct from SO(2m, 1). From

the perspective of geometry, let M be any closed locally symmetric space except an

even-dimensional real hyperbolic manifold, then for sufficiently small ϵ, there exists an

essential surface Σϵ ⊂M , which is (1+ oϵ(1))-quasigeodesic. As argued in Section 5.1.2,

it is associated with a surface subgroup in S(M, g, ϵ) for the complex hyperbolic case,

or S(M, g) for the quaternionic hyperbolic and Cayley case. Moreover, s(M, g, ϵ) (or

s(M, g)) is also bounded below by (c1g)
2g. On the other hand, since the power of the

upper bound of s(M, g) in Section 5.1.2 only depends on the topology of closed surfaces,

the upper bound (c2g)
2g also holds after modifying the coefficient c2.

Firstly, if (M,h0) is quaternionic hyperbolic or Cayley hyperbolic, it’s not hard to

show E(h0) = 2 based on the above estimates.

If (M,h0) is complex hyperbolic, however, it requires more discussion on the second

fundamental form as in Section 5.1.1. Lemma 5.1.1 is still true because of the following

fact. Let γ be the image of a real circle by an (1 + ϵ)-quasiconformal map on S2n−1
∞ .

Then there exist ϵ′ = oϵ(1) and a real circle c ⊂ S2n−1
∞ , such that the ϵ′-neighborhood

of c in S2n−1
∞ , denoted by N , contains γ. Any real circle in ∂N bounds a totally

geodesic totally real disc in Hn
C, then there is a hypersurface T ⊂ Hn

C homeomorphic to

D2 × S2n−3 asymptotic to ∂N , the diameter of T converges to zero on compact sets as
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ϵ goes to zero. Moreover, two of the principal curvatures of T are zero, the others are

at least
1

tanh 2r(x)
> 0, where r(x) is the Euclidean radius of T centered at x, therefore

the convex hull of γ lies in T . Regarding the proof of Lemma 5.1.2, since all principal

curvatures of the equidistant hypersurfaces satisfy the Riccati equations, the comparison

theorem associated with Riccati equations (see [17]) ensures the two-convexity of each

hypersurface. Moreover, the compactness theorem of the quasiconformal maps on the

Heisenberg group can be found in [37]. So Lemma 5.1.2 extends easily to the complex

hyperbolic case. Likewise, since the manifold has pinched sectional curvature between

−4 and −1, there are analogues of the inequalities (5.1.2) and (5.1.4) (see [5]). Let

S ⊂ M be a surface that minimizes the area in its homotopy class contained in Sϵ(M).

Then the convergence of area-minimizing surfaces mod 2 and the uniqueness indicate

the absence of branch points on S, as well as the property that |A|2
L∞(S)

→ 0 as ϵ→ 0.

Following the computation in Section 5.1.2, we deduce that E(h0) = 2 for the complex

hyperbolic case.

5.2.3 Proof of Rigidity

Let h be a metric on M with sectional curvature less than or equal to that of the

symmetric metric, then it follows from the generalized Gauss equation that E(h) ≥ 2.

To deduce the rigidity of Theorem 5.2.1, the key idea is to apply the hyperbolic

rank rigidity theorem established by Hamenstädt in [21]. Suppose that N is a closed

manifold whose sectional curvature is less than or equal to −1. The hyperbolic rank

at v ∈ T 1N is the dimension of the space generated by all parallel transports J along

geodesic γv = exp(tv) such that J(t) ⊥ γ′v(t) and J(t), γ′v(t) span a plane of sectional

curvature −1. The hyperbolic rank of N is the minimum of hyperbolic rank at all

v ∈ T 1N . Hamenstädt’s theorem states that if such manifold N has hyperbolic rank at

least 1, then it must be locally symmetric, namely a compact quotient of Hn
R,H

n
C,H

n
H
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or H2
Ca.

Therefore, It suffices to check that the hyperbolic rank of M is positive. Since the

technic in [11] proving (⋆), Shah’s density lemma in [60], as well as the equidistribution

theorem by Mozes and Shah [50] all apply to locally symmetric spaces, an analogue of

Lemma 5.1.4 can be deduced in the same way. Furthermore, repeating the same proof

of Lemma 5.1.7, we obtain a totally geodesic disc Ω in (Bm, h) of section curvature −1,

whose limit set has a dense Γ-orbit on the set of all real circles in Sm−1
∞ , where m is the

dimension of M . This result in tandem with Gromov’s geodesic rigidity theorem [20]

implies that every geodesic along v ∈ T 1M is contained in a closed totally geodesic

submanifold of dimension 2 ≤ k ≤ n and with sectional curvature −1. Therefore (M,h)

has a positive hyperbolic rank, and finally the rigidity result of Theorem 5.2.1 follows

from Hamenstädt’s hyperbolic rank rigidity theorem mentioned above.

5.3 Hyperbolic Three-manifolds of Finite Volume

In this section, we compute the minimal surface entropy corresponding to the non-

compact hyperbolic 3-manifolds of finite volume that have a finite number of cusps.

Suppose (M,h0) is a hyperbolic 3-manifold with k cusps, where k ≥ 1, then M can

be realized by the interior of a compact hyperbolic manifold whose boundary consists

of k flat tori, we also denote the compact manifold with boundary by M . As before,

a closed surface immersed in M is essential if the immersion is π1-injective. Addition-

ally, a noncompact surface (or a compact surface with boundary) is said to be essential

if the immersion is π1-injective and π1-injective relative to the boundary. By Lemma

2.1 in [24], any π1 injective noncomapct surface with genus at least 2 is also essential.

When S ⊂ M is an essential surface, the image of π1(S) in π1(M) is called a surface

subgroup. Let Sj(M, g) denote the set of surface subgroups up to conjugacy so that the

corresponding surfaces have genus at most g and at most j simple closed curves on the
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boundary counting multiplicity, and let Sj(M, g, ϵ) ⊂ Sj(M, g) consist of the conjugacy

classes whose limit sets are (1 + ϵ)-quasicircles. Moreover,

Sj(M, ϵ) = ∪
g≥2

Sj(M, g, ϵ).

Given an arbitrary Riemannian metric h on M , we define the minimal surface entropy

of h on M .

Ej(h) = lim
ϵ→0

lim inf
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ Sj(M, ϵ)}
L lnL

. (5.3.1)

The statement of the theorem is the following.

Theorem 5.3.1. Let M be a hyperbolic 3-manifolds with k cusps, then for any j ∈ N≥0,

we have

Ej(h0) = 2.

Remark 5.3.2. To evaluate the entropy of M with respect to other metrics, we need

further evidence concerning the existence of surfaces with the least area. However, this

remains an open problem.

Nevertheless, when the metric is asymptotically cusped, we can ensure the existence of

such surfaces. Currently, in collaboration with Franco Vargas Pallete, we are working on

the minimal surface entropy in this scenario, and comparing it to that of the hyperbolic

metric.

5.3.1 Existence of Minimal Surfaces

We’ve seen that for closed hyperbolic manifolds, the works of Schoen-Yau [57] and

Sacks-Uhlenbeck [55] indicate that every surface subgroup produces a least-area surface

in the homotopy class. However, the argument fails to hold for some noncompact am-
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bient 3-manifolds (see Example 6.1 in [25]). In this section, we only list the existence

results for hyperbolic 3-manifolds with finitely many cusps. First, it was stated by Hass-

Rubinstein-Wang [24] and Ruberman [54] that in a cusped hyperbolic 3-manifold, any

noncompact essential surface with genus at least 2 can be homotoped to a least-area sur-

face. Then in [13] and [14], Collin-Hauswirth-Mazet-Rosenberg proved the existence of

closed essential minimal surfaces embedded in such manifolds. Later on, Huang-Wang

addressed the question for immersed essential surfaces in [28], they showed that any

immersed essential surface in a cusped hyperbolic 3-manifold with genus at least 2 can

be homotoped into an area-minimizer. Therefore, the minimal surface entropy (5.3.1)

of cusped hyperbolic 3-manifolds (M,h0) can be approximated by counting the least-

area surfaces up to homotopy, and we’ll estimate the upper bound and lower bound of

#Sj(M, g, ϵ) associated with h0 and prove the theorem.

5.3.2 Upper Bound

Counting Closed Minimal Surfaces

For any closed surface S̄ with genus g and π1-injective immersion f : S̄ → M that

determines a surface subgroup in S0(M, g, ϵ), there exist a hyperbolic structure on S̄

and a homotopy of f that is pleated with respect to this structure, we still denote it by

f (see 8.10 in [64] or Lemma 3.6 in [10]). Additionally, let S = f(S̄). When ϵ is small

enough, S has no accidental parabolics, hence the systole length of S, denoted by sl(S),

is simply twice the injectivity radius I(S) of S. Let s be the systole of M , since f does

not increase the length of closed geodesics, we have

2I(S) = sl(S) ≥ sl(M) = s > 0.
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Then we say that S is s
2 -thick, thus from Lemma 2.1 of [33], there exists k = k(s) > 0

and a triangulation τ on S, such that

(1) each edge of τ is a geodesic arc of length at most s
8 ,

(2) τ has at most kg vertices and edges,

(3) the degree of each vertex is at most k.

The set of all triangulations on S with genus g satisfying (2) and (3) is denoted by

T (k, g). As shown in [33], there exists a constant c depending only on k, so that

#T (k, g) ≤ (cg)2g. (5.3.2)

Furthermore, We claim that #S0(M, g, ϵ) can be estimated by counting the number of

homotopy classes of the pleated immersions. Let f1 and f2 be two pleated maps of genus

g surfaces S1 and S2, respectively. Suppose that the triangulations τ(S1) and τ(S2) are

equivalent, i.e., there is a homeomorphism h : S1 → S2, such that h(τ(S1)) = τ(S2). We

say that f1 and f2 are homotopic if f1 is homotopic to f2 ◦ h in M . Moreover, since M

has finite volume, it is covered by finitely many balls of radius s
16 , say B1, · · · , Bm. We

assume that for any vertex v ⊂ τ(S1), the points f1(v) and f2(h(v)) of M are contained

in the same ball Bi. Then the distance between f1(v) and f2(h(v)) is at most s
8 . Given

another vertex v′ ∈ τ(S1). Let e1, e2 be the edges connecting f1(v) and f1(v′), f2(h(v))

and f2(h(v
′)), respectively, the lengths are at most s

8 . And let sv, sv′ be the segments

connecting f1(v) and f2(h(v)), f1(v′) and f2(h(v′)), respectively, the lengths are at most

s
8 . So we get a closed curve

γ := e1 ∪ sv ∪ e2 ∪ sv′ with length(γ) ≤ s

2
< sl(M).

We notice that γ cannot shrink homotopically to a closed geodesic γ′, since otherwise,
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it gives rise to a smaller systole length of M . As a result, γ must bound a disc, in other

words, any two segments of M with the same endpoints with length less than sl(M)
2 must

be homotopic. And therefore, repeating this argument for any pair of vertices of τ(S1),

We conclude that f1 and f2 are homotopic.

Let S̃0(M, g) be the subset of S0(M, g) that includes surfaces of fixed genus g. For

any τ ∈ T (k, g) satisfying (1)-(3), any vertex v1 ∈ τ is mapped to a ball Bi with m

possibilities. For v2 ̸= v1 that bounds an edge e with v1. By (1), the length of e is at

most s
8 . And since the balls covering M have radius s

16 , there is a finite number M > 0,

such that v2 can be mapped to at most N options of the balls. Therefore, it follows from

(2) that

#S̃0(M, g) ≤ mNkg−1#T (k, g). (5.3.3)

Finally, combining (5.3.2) and (5.3.3), we can find c2 > 0, such that

#S0(M, g) ≤
g∑

i=2

#S̃0(M, i) ≤ (c2g)
2g. (5.3.4)

Counting noncompact minimal surfaces

Next, we estimate #Sj(M, g, ϵ) for j ≥ 1. For sufficiently small ϵ, let S be a minimal

surface corresponding to an element in Sj(M, g, ϵ) \ S0(M, g, ϵ), where g ≥ 2 and j ≥ 1,

then S can be seen as a compact surface with j boundary curves counting multiplicity,

each of which is a simple closed curve C in one of the tori Ti, the homotopy class of

C can be identified with a slope in Q ∪ {∞}. Due to [24], for each g, there is a finite

number N(g) > 0, such that for each boundary torus, the number of slopes that can be

realized by boundary curves of immersed essential surfaces in M with genus at most g is

bounded from above by N(g). Moreover, N(g) grows at most quadratically in g. Cutting

off each boundary curve of S and filling it with a disc, we obtain a closed surface in M

associated with an element in S0(M, g, ϵ) up to homotopy. As a result, #Sj(M, g, ϵ) is
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bounded by a constant depending on k, j and ϵ. More precisely,

#Sj(M, g, ϵ) ≤
j∑

i=0

(kN(g))i#S0(M, g, ϵ) ≤ (c′2g)
2g+2j+2,

where c′2 > 0 depends only on M and ϵ, and the last inequality follows from (5.3.4).

5.3.3 Lower Bound

Recently, Kahn-Wright [34] proved that when M = H3/Γ is noncompact with finite

volume, for any sufficiently small ϵ > 0, there exists (1 + ϵ)-quasi-Fuchsian surface

subgroups of Γ. And the construction gives rise to an essential surface Σϵ, which is also

sufficiently well-distributed and (1+ ϵ)-quasigeodesic. So as defined in the compact case,

we let G(M, g, ϵ) be the subset of S0(M, g, ϵ) consisting of homotopy classes of finite

covers of Σϵ with genus at most g, then we also have

#Sj(M, g, ϵ) ≥ #S0(M, g, ϵ) ≥ #G(M, g, ϵ) ≥ (c1g)
2g, ∀j ∈ N

where c1 > 0 depends only on M and ϵ.

5.3.4 Proof of Theorem

If a surface subgroup Π < Γ has i ≤ j cusps, then from [18],

area(Π) = 4π(g − 1) + 2πi− 1

2

ˆ
|A|2dA.

Since it is proved in Section 5.1.1 that |A|2 = oϵ(1), and i ≤ j is uniformly bounded,

then for any η > 0, the following conclusions still hold for sufficiently large L and

sufficiently small ϵ. For Π ∈ Sj(M, ϵ), if it satisfies area(Π) ≤ 4π(L − 1), then we

have Π ∈ Sj(M, ⌊(1 + η)L⌋, ϵ). On the other hand, if Π ∈ Sj(M, ⌊(1− η)L⌋, ϵ), then
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area(Π) ≤ 4π(⌊(1− η)L⌋−1)+2πj ≤ 4π(L−1). Therefore, using the previous estimates,

we have

2(1− η) ≤ lim inf
L→∞

ln s(M, ⌊(1− η)L⌋, ϵ)
L lnL

≤ lim inf
L→∞

ln#{areah(Π) ≤ 4π(L− 1) : Π ∈ Sϵ(M)}
L lnL

≤ lim inf
L→∞

ln s(M, ⌊(1 + η)L⌋, ϵ)
L lnL

≤ lim inf
L→∞

2⌊(1 + η)L⌋+ 2j + 2

L
= 2(1 + η),

the last inequality uses the fact that j is a fixed integer. It follows that Ej(h0) = 2.
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CHAPTER 6

RELATIONSHIP BETWEEN AVERAGE AREA RATIO AND

MINIMAL SURFACE ENTROPY

In this last chapter, we examine the relationship between average area ratio and

minimal surface entropy and prove Theorem 1.2.7. Furthermore, we note that all the

proofs below also work for the other closed locally symmetric spaces.

6.1 Proof of Inequality

The proof follows directly from [43], but for readers’ convenience, it is stated as

follows.

We let

α := lim
i→∞

areah(Πi)

4π(gi − 1)
.

For any δ > 0, we can take i sufficiently large, such that

lim
i→∞

areah(Πi)

4π(gi − 1)
< α+ δ.

Let Πk
i be the k-cover of Πi. Since Πi has genus gi ≥ 2,

4π(gki − 1) ≥ k 4π(gi − 1),

then the least area surface in the homotopy class of Πk
i with respect to h satisfies that

lim
i→∞

areah(Πk
i )

4π(gki − 1)
≤ lim

i→∞
k areah(Πi)

k 4π(gi − 1)
= lim

i→∞
areah(Πi)

4π(gi − 1)
< α+ δ. (6.1.1)

According to Müller-Puchta’s formula (see [33]), there exists a constant ci that depends
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only on M and i, such that the following is true when gi is large.

s(M, gki ,
1

i
) ≥ (cig

k
i )

2gki . (6.1.2)

Define Lki in the following way

4π(Lki − 1) = (α + δ)4π(gki − 1) =⇒ lim
k→∞

gki
Lki

=
1

α + δ
. (6.1.3)

Combining (6.1.2) with (6.1.1), we have that

#{areah(Π) ≤ 4π(Lki − 1) : Π ∈ S1
i
(M)} ≥ (cig

k
i )

2gki ,

Therefore, by (6.1.3),

E(h) = lim
i→∞

lim inf
k→∞

ln#{areah(Π) ≤ 4π(Lki − 1) : Π ∈ S1
i
(M)}

Lki lnL
k
i

≥ lim
i→∞

lim inf
k→∞

(cig
k
i )

2gki

Lki lnL
k
i

=
2

α + δ
.

Since δ is an arbitrarily small positive number, we conclude that

AreaId(h/h0)E(h) = lim
i→∞

areah(Si)
4π(gi − 1)

E(h) ≥ lim
i→∞

areah(Πi)

4π(gi − 1)
E(h) ≥ 2. (6.1.4)

6.2 Proof of Rigidity

If AreaId(h/h0)E(h) = 2, then (6.1.4) yields that

lim
i→∞

areah(Πi)

areah(Si)
= 1. (6.2.1)
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To make use of this equality, we run the mean curvature flow in (Bn, h) with initial

condition Di, which is the lift of Si in Hn, then we estimate the decay rate of the

area. First of all, we need to review and establish some tools for complete, noncompact

surfaces moving by mean curvature. The classical short-time existence theorem for

compact manifolds moving by mean curvature is well-known [23]. However, the general

theory for complete, noncompact manifolds has not been established in the literature.

There are only several essential contributions in some special cases: Ecker-Huisken [16]

proved the codimension one case in which only a local Lipschitz condition on the initial

hypersurface was required. For higher codimensions, Chau-Chen-He [12] discussed the

case of nonparametric mean curvature flow for flat metrics. The result related to our

case is listed as follows.

Lemma 6.2.1. There exist T > 0 and C > 0 depending only on M , so that for suffi-

ciently large i ∈ N, we can find a solution Di(t) to the mean curvature flow in (M,h)

with initial condition Di(0) = Di, where 0 ≤ t ≤ T . Additionally, the mean curvature

of Di(t) and its derivative are both bounded uniformly by C.

Proof. Notice that after passing to a subsequence, Di converges smoothly on compact

sets to a disc D, and each of them is a cover of a compact surface in M . Take x ∈ D, the

standard theory indicates that there is a number T0 > 0, such that for any k ∈ N, we

can find a solution Dk
i (t) to the mean curvature flow with initial condition B(x, k)∩Di,

where 0 ≤ t ≤ T0. Since T0 depends only on the second fundamental form of D, in

particular, it’s independent of i and k.

Next, in order to apply the Arzela-Ascoli theorem and estimate the mean curvature of

Di(t) and its derivative for any small time t, we need the following preparation. Claim

that for any δ > 0, and any spacetime Xk
i = (xki , t) of Dk

i (t), there exists an open
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neighborhood Uk
i of Xk

i , so that the Guassian density ratio

Θ(Dk
i (t), X

k
i , r) :=

ˆ
y∈Dk

i (t−r2)

1

4πr2
exp

(
−

|y − xki |
2

4r2
)
dH2(y)

satisfies that

Θ(Dk
i (t), X

k
i , r) ≤ 1 + δ, ∀ 0 < r < d(Xk

i , U
k
i ). (6.2.2)

If this wasn’t true for some integers i and k, then we could pick a sequence λj → ∞ as

j → ∞, and

Θ(Dλj (D
k
i (t)−Xk

i ), 0, λjr) > 1 + δ,

where Dλ denotes the parabolic dilation Dλ(y, t) = (λy, λ2t). Since the second funda-

mental form satisfies |A|2
L∞(Dλj

(Dk
i (t))−Xk

i )
→ 0 as j → ∞, Dλj (D

k
i (t)−Xk

i ) converges

smoothly to a disc D̄k
i whose second fundamental form vanishes. However, the inequality

above implies that

lim
j→∞

Θ(D̄k
i , 0, λjr) > 1,

which contradicts the topology of D̄k
i .

We’ve seen that (6.2.2) holds, so due to the local regularity theorem in [69], there

is a uniform constant C0 that is independent of i and k, so that at any spacetime

Xk
i = (xki , t),

|A|2(Xk
i )d(X

k
i , U

k
i ) ≤ C0. (6.2.3)

Therefore, Arzela-Ascoli theorem (see page 1494 of [69]) implies the short-time existence

of the mean curvature flow with noncompact initial conditionDi(0) = Di on time interval

[0, T0]. Moreover, the interior estimate (6.2.3) validates the condition of the maximum

principle ( [16], Theorem 4.3). Arguing like Theorem 4.4 of [16], we can find T > 0 and

C > 0 that make the lemma hold.
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Next, following the method of Lemma 6.5 in [43], we prove a similar result for the

case of the higher codimensions.

Lemma 6.2.2.

lim
i→∞

1

areah(Di)

ˆ
Di

|Hh|2dAh = 0,

where Hh denotes the mean curvature of each disc Di in (M,h).

Proof. Suppose by contradiction that there exists ϵ > 0, such that after passing to a

subsequence, and for i ∈ N large enough,

1

areah(Di)

ˆ
Di

|Hh|2dAh > 2ϵ. (6.2.4)

Under the mean curvature flow, the mean curvature satisfies the following evolution

equation on the time interval t ∈ [0, T ] (see [62]).

∇ d
dt
|Hh(t)|2 =∆|Hh(t)|2 − 2|∇Hh(t)|2 + 4⟨Ajk

h (t), Hh(t)⟩ht⟨(Ah)jk(t), Hh(t)⟩ht

+ 2(Rh)jklm(t)H
j
h(t)(Fi)

k
p(t)H

l
h(t)F

mp
i (t),

where Hh(t), Ah(t) and Fi(t) represent the mean curvature, second fundamental form,

and the immersion Fi(t) : Di(t) →M , respectively.

Using the result of Lemma 6.2.1, we can pick a uniform constant C1 > 0, such that

for all sufficiently large i ∈ N, and for any t ∈ [0, T ],

d

dt

ˆ
Di(t)

|Hh(t)|2dAh ≥ −C1areah(Di(t)) ≥ −C1areah(Di),

the latter inequality follows from the fact

d

dt
areah(Di(t)) =

1

2

ˆ
Di(t)

tr⟨ d
dt
hjk, h

jk⟩ dAh = −
ˆ
Di(t)

|Hh(t)|2dAh ≤ 0.
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We can choose T1 < min{ ϵ
C1
, T}, by assumption (6.2.4), for any i ∈ N and t ∈ [0, T1],

ˆ
Di(t)

|Hh(t)|2dAh ≥ ϵ areah(Di) ≥ ϵ areah(Di(t)).

Then we obtain

d

dt
areah(Di(t)) = −

ˆ
Di(t)

|Hh(t)|2dAh ≤ −ϵ areah(Di(t)).

Thus, for any sufficiently large i ∈ N,

areah(Πi)

areah(Di)
≤ areah(Di(t))

areah(Di)
≤ e−ϵT1areah(Di)

areah(Di)
= e−ϵT1 < 1,

which violates (6.2.1).

Furthermore, arguing like Lemma 5.1.4 of Section 5.1.3, we deduce the following

result from Lemma 6.2.2. For any round circle c ⊂ ∂∞Hn, it has a dense π1(M)-orbit in

∂∞Hn. In addition, c can be represented by lim
i→∞

Λ(ϕiΠiϕ
−1
i ), where ϕi ∈ π1(M), and

Λ(ϕiΠiϕ
−1
i ) represents the limit set of ϕiΠiϕ

−1
i . Redefine Di by the lifts of Si to Hn

preserved by ϕiΠiϕ
−1
i . It has the property that

lim
i→∞

ˆ
Di∩BRi

(0)
|Hh|2dAh = 0, Ri → ∞.

Note that after passing to a subsequence, Di converges to the totally geodesic disc

D(c) ⊂ Hn that is asymptotic to c. Therefore, the mean curvature Hh vanishes on D(c),

namely, D(c) is a minimal disc of Bn with respect to the metric h. And since c is chosen

arbitrarily, every totally geodesic disc of Hn must be minimal for h.

We apply the result below for surfaces in 3-manifolds, the proof can be found in [43].

Lemma 6.2.3. Every totally geodesic disc in H3 is minimal with respect to another
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metric h if and only if for any geodesic γ ⊂ H3, the following function is a constant

t 7→ |h|−
1
2

h0
h (γ′(t), γ′(t)).

Because of the ergodicity of the geodesic flow in (M,h0), we can choose a geodesic

γ of M whose orbit is dense in the unit tangent bundle. Let γ̃ be the lift of γ to Hn. γ̃

must be contained in a hyperbolic 3-ball B ≈ H3. Applying the previous lemma to the

geodesic γ̃ and ambient manifold B, we conclude that

t 7→ |h|B |
−1

2
h0
h|B (γ̃′(t), γ̃′(t))

is constant. So the projection γ in M also satisfies that

t 7→ |h|−
1
2

h0
h (γ′(t), γ′(t))

is constant. Thus due to the density, there is a constant c > 0, such that for any vector

field X of the unit tangent bundle of M ,

|h|−
1
2

h0
h(X,X) = c h0(X,X) =⇒ |h|−

1
2

h0
h = c h0.

As a result, h coincides with a multiple of h0.
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