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Abstract 

The human hand is a complex and versatile effector that mediates most of our interactions with 

the environment. The objective of my dissertation is to shed light on the neural mechanisms that 

mediate manual behavior in human and non-human primates, focusing on three aspects of 

prehension: postural control, grasp force control, and force feedback. First, we compare neural 

population responses in the motor cortex during grasp to that of reach and find that neural dynamics 

associated with grasp are fundamentally different from those associated with reach. During grasp, 

unlike reach, population responses do not exhibit smooth linear dynamics. Second, we investigate 

how hand kinematics and interaction forces are encoded in the motor cortex of macaques and 

develop decoders that accurately track these behavioral variables. We find that linear models can 

account for the relationship between neural activity in the motor cortex and hand posture but not 

grasp force. Rather, force signals are weak and more dynamic than postural ones. Capturing these 

dynamics requires more complex models that can exploit the force-related dynamics. 

Next, we use insights gleaned from able-bodied animals to develop real-time kinematic and force 

decoders for individuals with tetraplegia. We confirm that, while kinematics can be decoded 

linearly from the motor cortex, grasp force is best decoded by incorporating non-linear dynamics 

in the human motor cortex, consistent with our results in monkeys. Finally, we develop approaches 

to incorporate biomimetic sensory feedback into brain-computer interfaces aimed at restoring 

manual dexterity. To this end, we develop a sensory encoding model – which converts the outputs 

of sensors on the bionic hand into regimes of electrical stimulation applied to the nerve – designed 

to mimic biological responses and demonstrate that the resulting feedback is more natural and 

intuitive. The same algorithm can be seamlessly applied to sensory feedback via interfaces with 
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the somatosensory cortex. These results pave the way toward biologically inspired brain-computer 

interfaces that mimic the functionality of biological hands. 
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Chapter 1 | Introduction: neural mechanisms of hand function and 

its restoration through neural prosthetics 

"The hand is the window on to the mind."  

- Immanuel Kant 

1.1  Anatomy of the hand 

The primate hand is a remarkable structure that has evolved over millions of years to enable 

primates to grasp and manipulate tools with great dexterity (Kivell et al., 2016). The anatomy of 

the primate hand is characterized by a complex arrangement of bones and muscles that allow for 

a wide range of movements and functions (Napier, 1993; Sobinov & Bensmaia, 2021). 

The human hand consists of 27 bones, including carpal bones, metacarpal bones, and phalanges 

(Kivell et al., 2016). At the core of the primate hand is the wrist, which is composed of eight small 

bones called carpals. The carpal bones are connected to the forearm bones, the radius, and the ulna, 

which allow for movements of the hand and wrist. The metacarpal bones extend from the wrist to 

the fingers and are responsible for providing support and structure to the hand. In primates, the 

thumb and fingers have distinct movements and can be moved independently from each other, 

allowing for precision grip and fine object manipulation. The thumb has two phalanges, while the 

other four fingers have three phalanges each, providing greater flexibility and range of motion. 

The bones of the hand are linked together by ligaments and are covered by muscles and tendons. 

The primate hand is characterized by a complex system of muscles that allow for the fine 

movements and precision grip necessary for tool use and other manual activities. These muscles 

are divided into two groups: intrinsic muscles, which originate within the hand itself, and extrinsic 

muscles, which originate in the forearm and extend into the hand. The intrinsic muscles of the 
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hand are responsible for controlling the movements of the fingers and thumb. These muscles are 

divided into three groups: thenar muscles, hypothenar muscles, and interosseous muscles. The 

thenar muscles are responsible for moving the thumb, while the hypothenar muscles are 

responsible for moving the little finger. The extrinsic muscles of the hand are responsible for 

movements of the wrist and forearm. These muscles are divided into three groups: the flexor 

muscles, the extensor muscles, and the abductor muscles. The flexor muscles are responsible for 

bending the fingers and wrist, while the extensor muscles are responsible for straightening them. 

The abductor muscles are responsible for moving the fingers away from the hand, allowing for a 

wider grip. 

The remarkable dexterity of the primate hand is the result of millions of years of evolution. The 

earliest primates had hands that were suited for simple prehensile behaviors, such as climbing, 

however, over time primate hands evolved for more advanced tool use. This evolution was driven 

by the development of the opposable thumb (Figure 1.1), which allowed for precision grip and fine 

object manipulation. While various degrees of opposability exist across primates, only humans 

possess fully opposable thumbs. Full opposability is facilitated by the relatively long length of the 

human thumb, which allows for broad contact between the pads of the thumb and other fingers. 

Although non-primate animals also possess prehensile abilities and opposing digits, none exhibit 

the intricate movements of the primate thumb (Sobinov & Bensmaia, 2021). 

1.2 Neural control of the hand 

1.2.1  Lateral corticospinal tract 

The lateral corticospinal tract, also known as the pyramidal tract, is the primary descending 

pathway responsible for voluntary hand movements (Lemon, 2008; Welniarz et al., 2017). This 

tract originates in the primary motor cortex (M1) and consists of axons of motor neurons that travel 
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through the brainstem down the spinal cord. At the level of the medulla, most of these axons cross 

over to the contralateral side and continue through the lateral funiculus of the spinal cord to synapse 

directly or indirectly through spinal interneurons in the ventral horn to the target muscle fibers. 

The corticospinal tract has evolved in nonhuman primates and humans to have an increased 

number of directly connected motoneurons, which is thought to correlate with manual dexterity 

(Figure 1.1) (Courtine et al., 2007; Heffner & Masterton, 1975; Lemon, 2008; Rathelot & Strick, 

2009; Sobinov & Bensmaia, 2021). Damage to the corticospinal tract results in a permanent loss 

of fine control of the extremities, which can significantly impair an individual's ability to perform 

coordinated movements such as playing an instrument or typing on a keyboard. While other 

descending pathways can recover the function of more coarse movements, they are not able to 

generate fine, skilled movements. 

Figure 1.1 – Relationship between the development of the corticospinal tract and fine motor control abilities. In rodents, cortical 

input is relayed to motor neurons through interneurons, while nonhuman primates and humans also have direct corticospinal 

connections with motoneurons. The size and number of corticospinal fibers and the amplitude of excitatory postsynaptic potential 

(EPSP) elicited by cortical neurons on motoneurons have increased during primate evolution. Additionally, the development of 

the corticospinal tract correlates with improved finger-thumb precision grip abilities. Figure reproduced from Courtine at.al. 

(2007). 



4 
 

1.2.2  Primary motor cortex 

The primary motor cortex (M1, area 4) is organized in a somatotopic manner, in which different 

areas of the brain contribute to the movement of different parts of the body (Baldwin et al., 2018; 

Luppino & Rizzolatti, 2000; Penfield & Boldrey, 1937; Rizzolatti & Luppino, 2001; Schieber, 

2001). The hand, despite only accounting for a small percentage of the body's weight and surface 

area, occupies a disproportionately large amount of the motor homunculus in M1, as evidenced by 

electrical stimulation of M1 (Baldwin et al., 2018; Mayer et al., 2019; Strick et al., 2021). In 

primates, including humans, other areas of the cortex outside of M1 also correlate with hand 

movement, suggesting that there is widespread neural circuitry involved in supporting manual 

control (Baldwin et al., 2018; Sobinov & Bensmaia, 2021). 

The function of M1 has been studied for decades, yet principles that underlie the coding structure 

in the M1 upper limb representation are unclear. Two major (not mutually exclusive) theories 

prevail in the field of limb motor control. One, often referred to as the representational view, states 

that motor neurons encode features of motor behavior, such as limb kinematics, direction of 

movement, or muscle activations. Another popular theory called the dynamical systems 

perspective, attempts to isolate the basic patterns and their dynamics in the population neural 

response from which the final output might be built (Churchland et al., 2012; Shenoy et al., 2013). 

Both theories have been well supported in the studies of the proximal limb movement, the distal 

limb has received comparatively less attention. M1 activity related to the proximal limb shows a 

strong response during movement but a weaker response during the maintained posture, while 

hand-related M1 activity encodes postural changes without a preference for movement (Goodman 

et al., 2019; E. V. Okorokova et al., 2020). Population responses in M1 exhibit smooth linear 

dynamics during reaching movements (Churchland et al., 2012), but not during isolated grasping 
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movements (Suresh et al., 2021). The differences in neuronal activity at the single-cell and 

population levels may reflect fundamentally different control strategies for arms and hands, or 

differences in their biomechanics (Sobinov & Bensmaia, 2021). 

1.3 Somatosensation: touch and proprioception 

Manual dexterity depends not only on sophisticated control of the muscles of the hand that drive 

movement but also on two sensory modalities of the hand: touch and proprioception. The absence 

of tactile or proprioceptive feedback in the hand leads to severe motor impairments (Dürr et al., 

1996; Sainburg et al., 1993, 1995; Sghirlanzoni et al., 2005; Spinazzi et al., 2010; Valdmanis et 

al., 2004; Yahya et al., 2019). 

 

Figure 1.2 – Somatosensory pathways. (A) Afferent fibers originating from the somatosensory periphery bundle in fascicles to 

form nerves. The cell bodies of these afferent fibers are clustered in the dorsal root ganglia (DRG). Upon entering the spinal 

cord through the dorsal root, the afferent axons branch out, with one projection extending to the dorsal horn and another 

projection reaching the dorsal column nuclei (DCN) via the dorsal column. The DCN, in turn, projects contralaterally through 

the medial lemniscus to the ventroposterior complex of the thalamus, which relays the sensory information to the cortex. 

Reproduced from Delhaye et al., 2018. (B) Somatotopic organization of areas 3a, 3b, 1 and 2 in primary somatosensory cortex 

of macaque. Reproduced from Sobinov & Bensmaia, 2021. 
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The human hand is highly sensitive to tactile stimuli and can detect differences in texture and shape 

at the nanometer scale. Such sensitivity is facilitated by about 17000 afferents that enervate the 

skin of the hand (Delhaye et al., 2018; Goodman & Bensmaia, 2018; Sobinov & Bensmaia, 2021). 

Cutaneous afferents can be split into four categories based on their response properties and 

receptive field (RF) size. Mechanoreceptors innervated by type I afferents lie close to the surface 

of the skin and have small and clearly defined RFs, whereas mechanoreceptors innervated by type 

II afferents are deeper in the skin and have large RFs. Slowly adapting afferents produce a 

sustained response to a static indentation of the skin, whereas rapidly adapting afferents respond 

only at the onset and offset of the indentation (Delhaye et al., 2018). The diverse properties of 

tactile receptors allow us to process a wide range of features of objects we interact with, including 

shape, curvature, texture, vibrations, and motion.   

Proprioceptive afferents, also known as "deep" afferents, are responsive to deep palpation of 

muscles and joint movements, but not to light touch (Delhaye et al., 2018). They consist of muscle 

spindle afferents, Golgi tendon organs (GTOs), and joint receptors. Muscle spindles run in parallel 

with muscle fibers and are sensitive to muscle length and the rate of change of muscle length, 

which is relevant for tracking changes in limb position and movements. Golgi tendon organs run 

in series with the muscles and respond to muscle tension, providing information about force and 

preventing excessive force on the tendon. Afferents that innervate joint receptors mostly respond 

when joints are in extreme positions of flexion or extension, preventing damage to the body. 

Integration of information from the three types of afferents allows accurate tracking of limb 

position and applied forces. 

The information gathered by peripheral receptors located in the skin, muscles, and tendons is 

transmitted via the spinal cord to the brainstem, then to the thalamus, and finally to the primary 
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and secondary somatosensory cortices (S1, S2) in the brain (Figure 1.2(A)). The somatotopic 

organization of S1 is highly precise, with a more defined somatotopy compared to the primary 

motor cortex (Kaas, 1983; Pons et al., 1985; Pons & Kaas, 1986) (Figure 1.2 (B)). As we move 

along the somatosensory pathway, the cell properties become less specific, resulting in increased 

complexity of encoded features and receptive field sizes. Such submodality convergence is 

observed as early as the first synapse in the cuneate nucleus of the brainstem (Suresh et al., 2021). 

There is strong evidence of anatomical and functional connectivity between somatosensory and 

motor cortices in both non-human primates and humans (Brochier et al., 1999; Entz et al., 2014; 

Osborn et al., 2021; Pons & Kaas, 1986; Shelchkova et al., 2022; Sobinov & Bensmaia, 2021). 

These connections likely play a role in sensorimotor integration, allowing sensory information to 

guide and refine motor actions (Scott, 2004). 

1.4 Restoring functionality of the hand through Brain-Computer Interfaces 

Hand dexterity is an essential component of daily life that allows individuals to interact with their 

environment. Injuries or diseases, resulting in full of partial loss of hand function have a 

devastating impact on the quality of life that can deprive individuals of the most basic actions of 

daily living. Fortunately, brain-computer interfaces have emerged as a promising technology for 

replacing biological hand functionality with prosthetic devices. 

1.4.1 Peripheral neural prosthetics 

Nearly 2 million people are living with limb loss in the United States and about 30% of that number 

are people with upper limb amputations1. Hand function can be restored in upper-limb amputees 

by equipping them with prostheses controlled with signals from residual muscles. In the past years, 

 
1 https://www.amputee-coalition.org/resources/limb-loss-statistics/#1  

https://www.amputee-coalition.org/resources/limb-loss-statistics/#1
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there has been a significant advancement in the development of anthropomorphic prosthetic hands 

that are now capable of replicating the functionality of human hands to a remarkable extent. One 

of the largest advances in the field has been the development of technologies that are capable of 

stimulating the residual nerves to elicit tactile sensations in the missing limb (George et al., 2019; 

Valle et al., 2018). These include implantable slanted Utah electrode arrays, regenerative 

electrodes, nerve calves, and dorsal root ganglion implants (Figure 1.3(A)) (Saal & Bensmaia, 

2015). 

1.4.2  Cortical neural prosthetics 

Another type of BCIs that can 

restore a level of independence in 

paralyzed individuals is cortical 

neural prosthetics (Figure 1.3(B), 

Pandarinath & Bensmaia, 2022). 

These devices allow the user to 

control an artificial limb by reading 

out signals from cortical areas such 

as M1 (primary motor cortex), 

extracting relevant motor-related 

information, and translating it to an external device. The state-of-the-art upper limb cortical 

prosthesis can currently operate only several degrees of freedom simultaneously. These include 

the robotic arm movement in 3D space, wrist rotation, power grasp, and several discrete types of 

precision grip (Collinger et al., 2013; Hochberg et al., 2012a; Wodlinger et al., 2014). While 

certainly impressive, there still needs to be more work done on increasing the number of degrees 

Figure 1.3 – Peripheral and cortical neural prosthetics. (A) Different 

technologies to restore the sense of touch through a peripheral interface. 1 - 

Regenerative electrodes. 2 - Extra-fascicular electrodes. 3 - Intra-fascicular 

electrodes. 4 - Dorsal root ganglion implant. 5 - Targeted sensory reinnervation. 

Reproduced from Saal & Bensmaia, 2015. (B) Restoring the sense of touch 

through cortical interface. Signals from sensors on the prosthetic hand are 

converted into intracortical microstimulation pulse trains delivered to 

somatosensory cortex. Reproduced from Bensmaia, 2015. 
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of control, such as individuated finger movement, to achieve hand functionality that could 

approximate biological human hands. Providing sensory feedback is also possible through 

electrical stimulation if stimulating arrays are implanted in the somatosensory cortex (Bensmaia 

& Miller, 2014; Flesher et al., 2016; Pandarinath & Bensmaia, 2022).  

1.4.3  Decoding motor commands  

A large body of literature is dedicated to various computational techniques for decoding motor 

commands with neural responses, in both monkeys and humans (Glaser et al., 2020). These 

methods range from simple models (e.g. linear filters and classifiers, Okorokova et al., 2020), to 

extremely complicated non-linear cascade techniques that require significant computational 

resources (Dyer et al., 2017; Pandarinath et al., 2018). The main class of problems that decoders 

are aimed to answer is stability, robustness to noise, and the ability to translate to online control. 

Indeed, decoders that work well offline, often fail to generalize to online applications due to the 

inherent non-stationarily of neural signals and the necessity to operate quickly in the causal regime. 

(Pandarinath & Bensmaia, 2022)  

1.4.4  Towards natural somatosensory feedback  

Somatosensory feedback through electrical stimulation has become a common practice in both 

peripheral and cortical BCI (Bensmaia, 2015; Bensmaia et al., 2023; Bensmaia & Miller, 2014). 

However, the quality of sensations and, as a result, the functional significance of electrical 

stimulation is still very far from those of biological hands. One possible solution to improve 

sensation quality is to increase the spatial specificity of the implantable devices. Alternatively, 

parameters of stimulation need to be tuned in a way that approximates neural population activation 

that would mimic that of natural touch (Saal & Bensmaia, 2015). The so-called biomimetic 

approaches attempt to characterize neural population response during natural hand control and 
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then mimic them in the patterns of electrical stimulation (E. V. Okorokova et al., 2018). Such 

biomimetic approaches have already proved fruitful in both peripheral and cortical BCIs (George 

et al., 2019; Greenspon et al., 2023; Valle et al., 2018). 

As BCIs continue to advance, they hold the promise of transforming the lives of millions of 

individuals worldwide who have lost their hand function. Further research and development are 

necessary to fully realize the potential of these technologies and make them widely available to 

those who need them. 
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Chapter 2 | Decoding hand kinematics from population responses in 

sensorimotor cortex during grasping2 

2.1 Abstract 

Objective. The hand—a complex effector comprising dozens of degrees of freedom of 

movement—endows us with the ability to flexibly, precisely, and effortlessly interact with objects. 

The neural signals associated with dexterous hand movements in primary motor cortex (M1) and 

somatosensory cortex (SC) have received comparatively less attention than have those associated 

with proximal upper limb control. Approach. To fill this gap, we trained two monkeys to grasp 

objects varying in size and shape while tracking their hand postures and recording single-unit 

activity from M1 and SC. We then decoded their hand kinematics across tens of joints from 

population activity in these areas. Main results. We found that we could accurately decode 

kinematics with a small number of neural signals and that different cortical fields carry different 

amounts of information about hand kinematics. In particular, neural signals in rostral M1 led to 

better performance than did signals in caudal M1, whereas Brodmann's area 3a outperformed areas 

1 and 2 in SC. Moreover, decoding performance was higher for joint angles than joint angular 

velocities, in contrast to what has been found with proximal limb decoders. Significance. We 

conclude that cortical signals can be used for dexterous hand control in brain machine interface 

applications and that postural representations in SC may be exploited via intracortical stimulation 

to close the sensorimotor loop. 

 
2 This chapter was published: Okorokova, E. V., Goodman, J. M., Hatsopoulos, N. G., & Bensmaia, S. J. 

(2020). Decoding hand kinematics from population responses in sensorimotor cortex during grasping. 

Journal of Neural Engineering, 17(4), 046035. https://doi.org/10.1088/1741-2552/ab95ea Supplementary 

materials are available online.  

https://doi.org/10.1088/1741-2552/ab95ea
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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2.2 Introduction 

The hand, a complex effector comprising dozens of degrees of freedom (Belić & Faisal, 2015), 

allows us to flexibly, precisely, and effortlessly manipulate objects. The loss of hand function—as 

a consequence of spinal cord injury, for example—can have devastating consequences on quality 

of life (K. D. Anderson, 2004). In patients whose sensorimotor cortex is intact, some measure of 

independence can be restored with brain-machine interfaces (BMIs) that tap into the central neural 

pathways mediating manual dexterity (Bensmaia & Miller, 2014). Translating patterns of neural 

population activity into control signals for external devices is critical to advance such interfaces. 

Reach-to-grasp movements have been traditionally decoded from cortical areas associated with 

the planning and execution of movement. Primary motor, premotor, and posterior parietal cortices 

have been the main targets of previous BMIs, yielding remarkable control of a robotic limb in both 

non-human primates (Lebedev et al., 2005; Mulliken et al., 2008; Velliste et al., 2008; Wessberg 

et al., 2000) and human tetraplegic patients (Hochberg et al., 2012b; S.-P. Kim et al., 2008, 2011; 

Wodlinger et al., 2014). However, the focus of most decoding studies has been on reaching 

movements performed by the proximal limb (elbow and shoulder) (Dyer et al., 2017; Gilja et al., 

2012). The distal limb (wrist and finger joints), critical to object interactions, has received 

comparatively little attention (but see Menz et al., 2015) primarily due to the greater complexity 

of manual behavior (Ingram et al., 2008) and the difficulty of simultaneously tracking tens of hand 

joints (Schaffelhofer & Scherberger, 2012). 

A critical complement to neural signals involved in controlling movements are signals responsible 

for conveying sensory feedback about the consequences of those movements (Scott, 2004). Indeed, 

the motor apparatus receives continuous proprioceptive feedback from joints and muscles that 

signal the position of body in space, the forces it exerts, and mediates error-corrective motor 
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adjustments (Soechting & Flanders, 1989). Proprioceptive impairments lead to major deficits in 

motor behavior, leading to slow, effortful, and imprecise movements (Cole & Sedgwick, 1992; 

Ghez & Sainburg, 1995; Sainburg et al., 1995). Two cortical fields in somatosensory cortex (SC)—

Brodmann's areas 3a and 2 (Krubitzer et al., 2004; Pons & Kaas, 1986) — contain neurons that 

respond to active and passive manipulation of joints and muscles (Gardner & Costanzo, 1981; 

London & Miller, 2013; Prud’homme & Kalaska, 1994), to forces applied by the muscles, and to 

torques applied to the joints (Fromm & Evarts, 1982). However, the vast majority of previous 

studies of proprioceptive representations in SC have focused on the proximal limb, particularly 

during reaching movements. 

Hand-related responses of individual SC neurons have been characterized during passive 

deflections of the hand joints (Costanzo & Gardner, 1981; Gardner & Costanzo, 1981) and during 

active hand movements (Goodman et al., 2019). However, the degree to which hand movements 

and postures are encoded across populations of SC neurons has not been investigated. One way to 

address this question is by assessing our ability to decode hand kinematics from the responses of 

populations of SC neurons. Earlier decoding studies focused on the transport component (i.e. 

reaching), which primarily involves the proximal limb (Farrokhi & Erfanian, 2018; Glaser et al., 

2020; Weber et al., 2011). Those that incorporated distal-limb movements either attempted to 

classify a small set of discrete hand postures (Branco et al., 2017) or to decode (1-dimensional) 

continuous grip aperture or grip force (Carmena et al., 2003). To the extent that somatosensory 

neurons carry detailed information about hand movements, these neural representations might be 

exploited to convey artificial proprioceptive feedback through intracortical microstimulation 

(ICMS) (Armenta Salas et al., 2018; London et al., 2008; Tomlinson & Miller, 2016), paralleling 

efforts to convey artificial tactile feedback through ICMS (Bensmaia, 2015; Flesher et al., 2016). 
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The goal of the present study is to assess the degree to which hand kinematics can be decoded 

from the responses of populations of sensorimotor neurons, the main novelty being the attempt to 

decode hand state from SC. To this end, we trained two monkeys to grasp 35 objects of varying 

sizes, shapes and orientations, while tracking their time-varying hand kinematics using a camera-

based motion tracking system. We simultaneously recorded the responses in the hand 

representations of M1 and SC using chronically implanted electrode arrays. We then inferred 

object identity (referred henceforth as 'classification') as well as continuous joint kinematics 

(referred henceforth as 'decoding') from neural signals while the hand preshaped to grasp an object 

(before contact). First, we show that neural signals in both M1 and SC carry faithful representations 

of the hand by using these signals to classify objects before they are grasped or to reconstruct time-

varying joint trajectories. Second, we show that different cortical fields in M1 and SC carry 

different amounts of information about hand state. Finally, we find that we can better decode 

posture than movement, in contrast to what has been shown for motor representations of the 

proximal limb, suggesting possible differences in cortical encoding for proximal and distal limb. 

Our results underscore the promise of using M1 signals to achieve control of the hand during 

grasping in a BMI setting and demonstrate that SC populations carry a faithful representation of 

time-varying hand configuration that could in principle be exploited to restore proprioception 

through ICMS. 

2.3 Methods 

2.3.1 Animals and surgery 

We took recordings from two male Rhesus macaques ranging in age between 6 and 15 years and 

weighing between 8 and 11 kg. Monkey 2 was implanted twice (monkey 2a and 2b) with an 

interval of 2 years between recording periods and using different recording techniques. All animal 
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procedures were performed in accordance with the rules and regulations of the University of 

Chicago Animal Care and Use Committee. Monkeys received care from a full-time husbandry 

staff, and a full-time veterinary staff monitored animals' health. 

Surgical procedures consisted of implantation of a head-fixing post onto the skull, craniotomy, 

implantation of a sealed recording chamber (monkey 2a), and implantation of Utah electrode 

arrays (UEAs, Blackrock Microsystems, Inc. Salt Lake City, UT, monkeys 1 and 2b) and floating 

microelectrode arrays (FMAs, Microprobes for life science, Gaithersburg, MD; monkey 1) or of 

semi-chronic Microdrive electrode arrays (Gray Matter Research, Bozeman, MT (Dotson et al., 

Figure 2.1 - Behavioral task and experimental set-up. (A) Experimental apparatus. On each trial, a robotic arm presented the 

animal one of 35 objects (inset, supplementary figure 1 and supplementary table 1). (B) Motion tracking. We placed 30 reflective 

markers on the animal's joints and tracked their 3D position with a 14-camera Vicon motion tracking system. For joint names 

and locations, see supplementary figure 2. (C) Trial structure. We focused our analysis on the interval from the start of monkey's 

hand movement until just before contact with the object. Images show hand postures at the start of movement (blue box), at 

maximum aperture (orange box), and during grasp (green box) for three example objects. (D) Array placement: Utah electrode 

arrays (UEA, purple, monkey 1 and 2b), floating microelectrode arrays (FMA, green, monkey 1), and Gray Matter array 

(monkey 2a). For sample sizes, see supplementary table 2. R: rostral, M: medial. 
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2017; Gray et al., 2007); monkey 2a). All procedures were performed under aseptic conditions and 

anesthesia induced with ketamine HCl (20 mg kg–1, IM) and maintained with isoflurane (10–25 

mg kg–1 per hour, inhaled). 

2.3.2 Behavioral task 

We trained monkeys to grasp 35 objects varying in shape, size, and orientation to induce a wide 

range of hand postures (Figure 2.1A, inset and supplementary figure 1). Throughout the session, 

the head-fixed monkey sat in a chair facing a three DoF robotic arm (Figure 2.1A, top). The arm 

of the monkey rested on the cushioned armrest and remained largely immobile during the grasp. 

At the beginning of each trial, an object was attached to the robotic arm using a weak magnet and 

presented to the animal. The monkey's task was to grasp the object and exert enough grip force so 

that, when the robot retracted, the object would be disengaged from its magnetic coupling with the 

robot and remain in the monkey's hand (Figure 2.1C). Animals were trained to keep their elbow 

on the armrest to minimize movements of the proximal limb. Motionlessness of the proximal limb 

was enforced by a photosensor embedded into the armrest that triggered an early, unrewarded end 

to a trial if the arm was lifted to expose it to light. 

2.3.3 Kinematics 

We recorded hand and elbow kinematics using a camera-based motion tracking system (Vantage, 

VICON, Los Angeles, CA). To this end, we placed 30 reflective markers on the joints of the hand, 

wrist, and proximal limb (Figure 2.1B, Online supplementary figure 2). Ten cameras were used to 

capture the kinematics of the first monkey at a rate of 250 Hz, and fourteen cameras were used to 

capture the kinematics of the second monkey at a rate of 100 Hz. We then labeled each marker 

using Nexus software (VICON, Los Angeles, CA) and performed inverse kinematics (OpenSim, 

Delp et al., 2007) from the resulting time-varying marker positions to infer time-varying joint 
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angles of the limb (22 DoFs for monkey 1 and 30 DoFs for monkey 2). Joint angles were smoothed 

with a 50-ms moving average and the angular velocities were computed from these. For each trial, 

we identified the start of movement (finger and wrist), maximum aperture of fingers, and contact 

with an object (finger and palm). For monkey 1, we labeled these events manually for all trials. 

For monkey 2, we only labeled a subset of trials and then used joint angular kinematic trajectories 

spanning 200 ms before and after each frame as features to train a multi-class linear discriminant 

classifier to discriminate among 6 classes: all events of interest and 'no event'. The log likelihood 

ratio was used to determine which of the events was more probable relative to 'no event'. Additional 

constraints were imposed to ensure that start of movement preceded maximum aperture and 

maximum aperture preceded grasp. Among all sessions of monkey 2, the mean and the standard 

error of the model deviation from hand-labeled events were 16 ± 9.5 ms for start of finger 

movement, 21 ± 8.8 ms for start of wrist movement, 11 ± 8.8 ms for maximum aperture, –25 ± 9.7 

ms for palm contact with an object, and –48 ± 12.1 ms for finger contact with an object. 

Across trials and objects, the mean interval ± standard deviation between the start of wrist 

movement and maximum aperture was 524 ± 164 ms, 466 m ± 70 ms and 426 ± 110 ms and that 

between maximum aperture and first contact with fingers was 273 ± 115 ms, 447 ± 24 ms, 114 ± 

43 ms, for monkeys 1, 2a and 2b, respectively. 

2.3.4 Electrophysiology 

We recorded neural signals from monkeys 1 and 2b using UEAs placed in the pre- and post-central 

gyri and, for monkey 1, from FMAs placed in the posterior and anterior banks of the central sulcus 

(Figure 2.1D). For monkey 2a, we recorded neural signals using arrays of depth-adjustable 

electrodes (SC96) positioned over the central sulcus (Figure 2.1D). We used offline spike sorting 
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(Offline Sorter, Plexon, Dallas, TX) to remove non-spike threshold crossings and isolate individual 

units in the high-pass filtered signal. 

Motor units recorded from the crest of the precentral gyrus were classified as rostral M1 (rM1), 

whereas those recorded from the depth of the anterior bank of the central sulcus were classified as 

caudal M1 (cM1) (Rathelot & Strick, 2009). The provenance of somatosensory units was defined 

by anatomical location and manual functional mapping prior to recordings (as previously described 

in (Goodman et al., 2019)). 

2.3.5 Neural data preprocessing 

Time-varying firing rates of all recorded neurons were computed by summing all events in 10-ms 

bins. We then soft-normalized the firing rates (divided by their range plus a small increment) and 

convolved the resulting rates with a Gaussian kernel with a standard deviation of 15 ms. 

2.3.6 Session stitching 

To achieve a sufficient sample size from each cortical field, we pooled data from all sessions for 

each monkey (Online supplementary table 2). To this end, we first aligned the kinematics from 

each condition (object) to maximum hand aperture. Then, we eliminated trials on which the animal 

adopted a grasping strategy for a given object that was different from that used for that same object 

on other trials to ensure that the pooled neuronal responses were associated with similar 

kinematics. Specifically, we discarded trials on which any one time-varying joint angle trajectory 

exhibited a correlation with its time-varying trial-averaged angle that was lower than 0.7. The 

remaining kinematics were consistent enough from trial to trial to warrant averaging across trials. 

We then used the average kinematic traces from 600 ms before maximum aperture to just before 

finger contact with an object, estimated as an average time to finger contact within each monkey 

(273, 447 and 114 ms for monkeys 1, 2a, 2b, respectively). 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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2.3.7 Classification 

To assess the degree to which grasping different objects involved different patterns of kinematics 

and neuronal activity, we attempted to classify the 35 objects using either kinematics or neural 

data. Specifically, we used multiclass linear discriminant analysis, where the independent variables 

were the mean joint position or neuronal activity over an interval spanning 150 ms before finger 

contact with the object, when the hand had nearly reached its final posture before grasp. We trained 

the classifier using all but one randomly selected trial from each class (object) and tested it on the 

left-out trial. We performed the random trial selection 10 times and reported mean performance 

across folds. 

2.3.8 Decoding 

For continuous decoding, we fit the standard Kalman filter to all recorded joints. The Kalman filter 

comprises two estimates of some variable, 𝑥𝑡, which in our case was a joint angle or joint angular 

velocity at some time . These estimates are: 

𝑥̂𝑡
𝑘 = 𝐴𝑥𝑡−1 + 𝑞𝑡 2.1 

𝑥̂𝑡
𝑛 = 𝐵𝑧𝑡 + 𝑤𝑡 2.2 

where 𝑥̂𝑡
𝑘 is the estimate of 𝑥𝑡 based on past kinematics; 𝐴 is a state transition matrix; 𝑞𝑡 is a 

Gaussian process with zero mean and covariance matrix 𝑄; 𝑥̂𝑡
𝑛 is an estimate of 𝑥𝑡 based on 

current neural activity; 𝑧𝑡 is observed spiking activity with accumulated lags/leads over interval 

𝜏 ∈ [−150, 150] ms for acausal filters and 𝜏 ∈ [−150, 0] ms for causal ones, in steps of 30 

ms; 𝐵 is an observation model matrix; and 𝑤𝑡 is a Gaussian process with zero mean and covariance 

matrix 𝑊. We used a fusion algorithm to obtain a single best estimate of 𝑥𝑡 for each time t (see 

details in Faragher, 2012; Okorokova et al., 2015). 
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To obtain filter parameters (A,B,Q,W), we fit the model using 80% of randomly selected trials, 

validated the hyperparameters on half of the remaining trials (10%), and gauged model 

performance on the other half (10%). We used L2-norm regularization, which penalizes the L2-

norm of matrix B by an amount determined by a hyperparameter, λ. Performance was assessed 

using the coefficient of determination (R2). To compare our results to previous ones, we also 

computed Pearson's correlation and the normalized Root Mean Squared Error (rRMSE), prediction 

error expressed as a proportion of the joint's range of motion (see Menz et al., 2015 for details and 

Online supplementary figure 3). 

2.3.9  Optimal single-lag latency 

To find the optimal asynchrony between kinematics and neural responses, we tested the model 

with neural data shifted relative to kinematics to different degrees (at +-250 ms, +-200 ms, +-150 

ms, +-90 ms, +-50 ms, +-3 ms, +-2 ms, +-1 ms, 0 ms) using a single-lag model and a causal filter 

(half Gaussian kernel). We then found the lag or lead at which cross-validated performance was 

highest for each joint. We used this lag/lead across all joints for each single-lag model. 

Asynchronies were optimized separately for posture and movement. 

2.3.10 Controls 

In a Kalman filter, the autocorrelation in the observed process is captured by matrix A in equation 

2.1. To control for the possibility that kinematics were predictable from their past state alone, we 

randomly shifted spikes within each trial (preserving the spike count) and recomputed decoding 

performance. In addition, we compared the standard Kalman filter decoder to other types of linear 

and non-linear decoders, including Wiener Filter, Wiener Cascade Filter, Extreme Gradient 

Boosting, Dense Feedforward Neural Network, Recursive Neural Network, Gated Recurrent Unit, 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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and Long Short Term Memory Network described in detail in Glaser et al., 2020. (Online 

supplementary figure 4). 

2.4 Results 

2.4.1 Complexity of the task and associated neuronal responses 

First, we wished to characterize the complexity of the grasping behavior—to what extent did the 

animal produce different hand movements when grasping different objects? — and of the 

associated neuronal responses in sensorimotor cortex. The large and varied set of objects elicited 

a variety of hand conformations and neural responses in M1 and SC (Figure 2.2A). To characterize 

the complexity of the task, we first performed principal component analysis (PCA) on the hand 

kinematics and found that only 7–8 principal components explain most (95%) of its variance 

(Figure 2.2B). We then assessed whether the remaining components carry any information about 

the task. To that end, we projected kinematics on a subset of PCs, removing PCs in decreasing 

order, and inferred the object identity with projected kinematics. We found that even after 

subtracting the first eight PCs, we were still able to classify objects well above chance (Figure 

2.2C)(c.f. Yan et al., 2020). Classifier performance was tightly linked to how different the 

kinematics were for different objects—more stereotyped grasps led to poorer classification 

performance as expected (Online supplementary figure 5). These results indicate that the monkeys 

produced a variety of hand configurations in an object-dependent way. 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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We then asked whether these object-dependent differences in kinematics were reflected in the 

neuronal responses. We found that in all monkeys as few as 5 neurons in a population were enough 

Figure 2.2 - Grasping objects of different shapes elicits varying kinematics and neural responses. (A) Example hand postures just 

before contact with corresponding mean kinematic trajectories of the 12 joints that move the most along with the evoked spiking 

activity of populations of neurons pooled from all sessions from caudal M1 (dark blue, N = 24), rostral M1 (light blue, N = 32), 

area 3a (orange, N = 25), and cutaneous neurons from areas 1 and 2 (yellow, N = 6) for 5 grasped objects (medium horizontal 

block, point, large outward disk, vertical ring and large sphere, see supplementary figure 1 for details). Trials were aligned to 

maximum aperture of the hand (t = 0). Hand nomenclature is described in supplementary figure 2. (B) Cumulative percentage of 

variance vs. number of principal cmponents of kinematics for the two monkeys. (C) Classification of objects based on kinematics 

projected on a decreasing number of principal components (the abscissa shows the number of removed components, ranked by 

variance) for all monkeys. Dotted horizontal line indicates probability of randomly selecting an object (1/35). Error bars denote 

the standard error of the mean classification performance across sessions. (D) Classification of objects based on neural signals 

(top—M1, bottom—SC) as a function of neuronal sample size. Error bars denote the standard error of the mean. 
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to achieve above chance classification performance. Performance increased steadily with 

population size in both M1 and SC (Figure 2.2D). 

2.4.2 Decoding single-trial kinematics from M1 and SC signals 

Next, we assessed the degree to which the responses of neuronal populations in M1 and SC convey 

information about time-varying hand kinematics. We found that we could accurately decode 

single-trial kinematics of most joints in sessions for which we had enough simultaneously recorded 

neurons (average performance across joints: R2= 0.52 for 44 M1 neurons in monkey 1, R2 = 0.43 

and 0.39 for 36 M1 and 37 SC neurons, respectively, in monkey 2b; Figure 2.3A, Online 

supplementary figure 3). Furthermore, M1 decoders significantly outperformed SC ones (Figure 

2.3B). 

To assess the degree to which performance was decoder dependent, we implemented 8 other linear 

and non-linear decoders (Online supplementary figure 4). We found that performance was very 

Figure 2.3 -  Decoding single-trial kinematics from M1 and SC signals. (A) Six joint angle trajectories produced during one grasp 

of each of five objects (black) along with the same trajectories decoded from the responses of 36 M1 neurons in monkey 2b (purple). 

Hand nomenclature is described in supplementary figure 2. (B) Performance of single-trial kinematics decoder for one session 

each from two monkeys with the same number of neurons in M1 and SC (N = 15 and 36 for monkeys 1 and 2b, respectively). Each 

dot corresponds to the mean decoding performance for one joint averaged over 5 cross-validation folds with randomly selected 

neurons from the recorded population. Stars indicate significance of Wilcoxon Signed Rank Test for matched samples: ***—alpha 

level of 0.001. Only sessions with a sufficient number of simultaneously recorded units were used in this analysis (monkeys 1 and 

2b). 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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similar across decoders and thus only report performance of the Kalman Filter in the main text 

given its simplicity and prevalence. 

As expected, performance was slightly poorer if we constrained the decoder to be causal, as is 

required in online applications (Online supplementary figure 6A). 

2.4.3 Decoding kinematics averaged across trials from M1 and SC signals 

We recorded data over many sessions that individually did not yield enough neural signals to 

decode single-trial kinematics. To expand our data set, we pooled neural responses across all 

sessions from each monkey and used these pooled responses to decode the kinematics trajectory 

for each object, averaged across trials and sessions (see Methods). Importantly, we verified that, 

for sessions with sufficient sample size, decoding performance for single-trial and mean 

kinematics was comparable and yielded similar conclusions about the kinematics representations 

in M1 and SC (Online supplementary figure 6B). We then compared decoding performance of 

trial-averaged kinematics from M1 and SC using these neuronal responses pooled across sessions. 

For monkeys 1 and 2b, like their single-trial counterparts, trial-averaged decoders based on M1 

responses tended to outperform those based on SC responses (Online supplementary figure 6C, 

Wilcoxon Signed Rank Test for matched samples: Z = 4.0 and 4.5 for monkeys 1 and 2b, 

respectively, p < 0.0001. However, for monkey 2a, the reverse was true (Z = –4.4, p < 0.0001). 

The difference between monkeys is likely due to the respective locations of SC recordings (area 

3a vs. area 2; see online supplementary table 2 for sampling of cortical fields). 

2.4.4 Comparing cortical areas 

Next, we performed a more detailed analysis of how information about hand posture is distributed 

within M1 and SC (Figure 2.4). Given the small samples collected from each cortical field in a 

given session, we pooled data from each monkey across sessions and decoded trial-averaged 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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kinematics, having verified that this approach does not introduce systematic biases (Online 

supplementary figure 6B). 

The caudal region of M1 contains more corticomotoneuronal (CM) cells—which make 

monosynaptic connections with motoneurons—than does its rostral counterpart, and these CM 

neurons are thought to be critical for highly skilled movements, particularly of the hand (Rathelot 

& Strick, 2009). When comparing performance between areas (keeping the sample size equal), 

however, we found that decoding based on signals from rostral M1 systematically outperformed 

that from caudal M1 signals (one-sided Mann-Whitney U test: Z = 1.83, p = 0.033) (Figure 2.4A, 

left), thereby violating our expectations. 

While neurons in Brodmann's area 3a exhibit almost exclusively proprioceptive responses, those 

in area 2 exhibit mixed proprioceptive and cutaneous responses (S. S. Kim et al., 2015). Cutaneous 

responses to skin stretch caused by joint movement may interfere with proprioceptive 

representations of the hand or contribute to them. We found that populations of neurons in area 3a 

yielded significantly better performance than did proprioceptive neurons in area 2 and neurons in 

Figure 2.4 - Comparison of cortical fields. (A) Left: cumulative distribution of the accuracy (R2) with which trial-averaged 

kinematics for all joint angles were decoded based on rM1 and cM1 responses. Right: Cumulative distributions of trial-averaged 

decoding accuracy for individual joint angles based on different cortical fields of SC. (B) Performance of an object classifier based 

on neuronal responses for monkey 2 (including both 2a and 2b) with each cortical area assessed separately. Each point indicates 

classification performance for one cross-validation fold. Stars in all plots indicate significance of a one-sided Mann-Whitney U 

test: n.s.—not significant, *—alpha level of 0.05 ***—alpha level of 0.001. Sessions from monkey 2 (a and b) were pooled together 

for this analysis. We discarded monkey 1 since we did not have sufficient number of units from all subfields shown here. 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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areas 1 and 2 that are classified as cutaneous during hand mapping (one-sided Mann-Whitney U 

test: area 3a vs area 2, Z = 2.3, p = 0.0107; area 3a vs cutaneous, Z = 1.95 p = 0.0253; area 2 vs 

cutaneous, Z = 0.329, p = 0.37) (Figure 2.4A, right). 

We also assessed our ability to classify objects based on the responses evoked in different cortical 

populations and found results to be consistent with those of our kinematics decoding analysis: rM1 

was more informative about object identity than was cM1 and area 3a was more informative about 

object identity than were areas 1 and 2 (Figure 2.4B). 

2.4.5 Decoding joint groups 

Next, we investigated whether the sampled subpopulations of M1 and SC preferentially encoded 

movements of different portions of the hand. Indeed, both M1 and SC are somatotopically 

organized (Hudson et al., 2017; Penfield & Boldrey, 1937; Pons et al., 1985; Wong et al., 1978; 

Woolsey et al., 1979), so incidental electrode placement might have led to better decoding for 

some hand regions than others. With this in mind, we divided the joints into 7 groups—distal, 

proximal, interphalangeal, metacarpophalangeal, carpometacarpal hand joints, wrist joints 

(pronation-supination, flexion, extension), and proximal arm joints (elbow)—and assessed the 

average decoding performance for each group (Figure 2.5A). With the exception of a few distal 

hand joints, all joint groups were decoded well, and decoding accuracy improved as the joint's 

range of motion increased (r = 0.5, p = 5.3 × 10-7 for M1 and r = 0.46, p = 5.1 × 10-6 for SC; Figure 

2.5B). Significant positive correlations with motion variance were observed within 

metacarpophalangeal (r = 0.79, p = 2.4 × 10-7 for M1 and r = 0.53, p = 0.0025 for SC), 

carpometacarpal (r = 0.63, p = 0.002 for M1 and r = 0.64, p = 0.002 for SC) and wrist (r = 0.74, p 

= 0.024 for M1 and r = 0.88, p = 0.0016 for SC) joint groups, but not within distal (r = 0.16, p = 

0.62 for M1 and r = –0.07, p = 0.83 for SC) or proximal (r = 0.36, p = 0.25 for M1 and r = 0.15, p 
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= 0.63 for SC) joints. These observations suggest that the arrays impinged upon neural populations 

that spanned the representation of the entire hand in both M1 and SC and that decoding 

performance was partially dependent on the range of joint motion. 

2.4.6 Decoding kinematic synergies 

Joint kinematics of the hand have been shown to exhibit systematic correlational structure, with 

some joints tending to move together. One possibility is that only patterns of highly correlated 

joint movements can be decoded from the neuronal activity in M1 and SC and that more subtle 

aspects of hand movements cannot. To this hypothesis, we performed a principal component 

analysis (PCA), projected kinematics onto a sequentially reduced sets of principal components 

(PCs), removing PCs in decreasing order of eigenvalue (i.e. higher-variance components first). We 

then decoded kinematics in this reduced space from neuronal signals in M1 and SC. Chance 

performance was computed by randomly permuting the spike times within each trial to distort the 

Figure 2.5 - Decoding performance broken down by joint groups. (A) Location of joints color-coded by group: distal (dip, purple), 

proximal (pip, blue), interphalangeal (ip, pink), metacarpophalangeal (mcp, green), carpometacarpal (cmc, yellow), wrist (brown), 

elbow (orange). (B) Single joint decoding performance color-coded according to the scheme in A as a function of kinematic variance 

for all sessions of monkey 2b using M1 (N = 16 in each session) and SC (N = 19) populations. Each point denotes the mean over 

5-fold cross-validation of each DoF. Black lines show best linear fit between kinematic variance and decoder performance of all 

DoFs. Stars indicate significance of correlation coefficient color-coded by joint group: ***—alpha level of 0.001, **—alpha level 

of 0.01, n.s.—not significant. Only sessions with a sufficient number of simultaneously recorded units in both areas were used in 

this analysis (monkey 2b). Monkey 1 was discarded due to incomplete set of recorded joints. 
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temporal structure of the neuronal response, predictably yielding poor performance. We found that 

higher order (low-variance) components could still be decoded above chance (Figure 2.6), despite 

the fact that 95% of the variance in the kinematics can be explained with only 7–8 principal 

components (Figure 2.2B). Note that the trajectories projected onto higher order components of 

kinematics are still object dependent and thus under volitional control (Figure 2.2C) (Yan et al., 

2020). 

2.4.7 Decoding postures vs. movements 

In the above analyses, we showed that time-varying postures could be directly decoded from 

neuronal activity. This approach stands in contrast to that adopted for proximal limb kinematics or 

the application of proximal limb-related M1 activity to cursor control, which typically involve 

decoding joint or endpoint velocities from neuronal responses and then integrating these to obtain 

Figure 2.6 - Decoding synergistic movements. Average performance of decoding kinematics projected on decreasing number of 

principal components (x axis represents the number of removed components, ranked by variance) using populations of M1 

(blue) and SC (red) neurons. Grey bars show decoding performance with randomly shifted spikes. Error bars denote the 

standard error of the mean. Only sessions with a sufficient number of simultaneously recorded units were used in this analysis 

(M1 and SC in monkey 1 and M1 only in monkey 2b). 
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postures (Chase et al., 2009; S.-P. Kim et al., 2011; Koyama et al., 2010; Taylor et al., 2002; 

Velliste et al., 2008). Indeed, even SC decoders for reaching movements appear to perform better 

when decoding limb velocity than limb posture (Weber et al., 2011). With this in mind, we assessed 

whether neuronal responses in M1 and SC preferentially encode postures or movements during 

grasp. To this end, we reconstructed joint angular velocities from sensorimotor responses and 

compared these to our reconstructions of angular positions. For this analysis, we used a single 

latency—determined to yield peak performance (for posture and movement separately within each 

area) (Figure 2.7A)—because multi-lag models allow for integration (from a velocity to a position 

signal) or differentiation (from a position to a velocity signal), thereby obscuring the distinction 

between postural and movement coding (Goodman et al., 2019). Using 20 units from each cortical 

subpopulation, we found that postures could be significantly better reconstructed than could 

movements (Figure 2.7B) (Wilcoxon Signed Rank Test for matched samples: Z = 2.91 and 2.01, 

Figure 2.7 - Posture vs. movement decoding. (A) Optimal neural latencies for each joint of monkey 2b for M1 (blue) and SC (red). 

Error bars indicate mean and standard errors of the mean of latencies for each area. 'Leading' denotes more sensory-like neurons, 

where the kinematics lead the neuronal response. (B) Decoding performance of posture (y-axis) and movement (x-axis) decoding 

for a randomly selected population of 36 M1 (blue) or SC (red) neurons. Each marker indicates performance for one joint averaged 

over 5 folds. Different marker symbols denote different monkeys. Only sessions with a sufficient number of simultaneously recorded 

units were used in this analysis (M1 and SC in monkey 2b and M1 only in monkey 1). 
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p = 0.004 and 0.044, for M1 in monkeys 1 and 2b, respectively; Z = 3.42, p = 0.0006 for SC in 

monkey 2b) in contrast to what has been observed for the proximal limb (S.-P. Kim et al., 2011; 

Wang et al., 2007; Weber et al., 2011). 

2.5 Discussion 

2.5.1 High dimensional decoding 

Most decoding studies to date have focused on continuous movement of a few degrees of freedom, 

usually including shoulder and elbow (Ganguly & Carmena, 2009; Gilja et al., 2012; Lebedev et 

al., 2005; Mulliken et al., 2008; Suminski et al., 2010; Wessberg et al., 2000; Yu et al., 2007) and, 

less frequently, wrist (Hochberg et al., 2012b; Wodlinger et al., 2014) and finger joints (Aggarwal 

et al., 2013; Menz et al., 2015). Because of the complexity of the space of hand kinematics, most 

previous efforts to decode hand postures were either discrete, focusing on classification of a finite 

number of finger-wrist configurations (Branco et al., 2017; Carpaneto et al., 2011; Chestek et al., 

2013; Schaffelhofer et al., 2015) or limited to a few common continuous finger movements, such 

as pinch, scoop, grip, and whole finger flexion/extension, and whole-hand aperture (Acharya et 

al., 2008; Bansal et al., 2012; Hochberg et al., 2012b; Wodlinger et al., 2014). As new hand 

tracking technologies are becoming available (Mathis et al., 2018; Pereira et al., 2019; 

Schaffelhofer & Scherberger, 2012), decoding tens of joints simultaneously is becoming 

increasingly manageable (Menz et al., 2015). Here, we show that up to 30 degrees of freedom can 

be decoded with a relatively small population of sensorimotor neurons even with a simple linear 

decoder. 

2.5.2 Decoding from M1 

Our approach is similar to that described in Menz et al. (2015), in which 27 degrees of freedom of 

grasping kinematics were reconstructed from the responses of neurons in posterior parietal cortex 
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and M1. Decoders built from the one area the two studies have in common, M1, yielded 

comparable performance (Online supplementary figure 3). 

Anatomically, M1 can be divided into two regions: rostral and caudal M1. A large fraction of 

neurons in the caudal part of M1 make direct connections with motoneurons in the spinal cord and 

might be particularly relevant for dexterous hand control whereas neurons in the rostral region 

comprises a larger fraction of neurons that contact mainly spinal interneurons and only indirectly 

drive muscles (Rathelot & Strick, 2009). Counter to predictions derived from the anatomy, we 

found that decoders built with signals from rostral M1 actually outperformed decoders built with 

signals from caudal M1. Because grasp is so habitual and involves highly correlated patterns of 

joint movements, it may not constitute an 'expert' behavior and thus may not require a direct line 

to muscles. Had the animals been performing non-prehensile dexterous hand movements, we 

might have found an advantage of caudal M1 (Bortoff & Strick, 1993). 

2.5.3 Decoding from SC 

Previous attempts to decode kinematics from SC activity focused on proximal limb movements. 

Decoding reaching movements from combined M1 and SC activity yielded better performance 

than that achieved using M1 signals alone (Carmena et al., 2003; Lebedev et al., 2005). Decoding 

limb kinematics using electrocorticographic (ECoG) signals from SC achieved similar 

performance as with ECoG signals from M1 (Branco et al., 2017; Farrokhi & Erfanian, 2018). 

In the present study, we decode, for the first time, hand kinematics from the spiking activity of 

neurons in Brodmann's areas 3a and 2 and find that both areas yield performance well above chance 

for all degrees of freedom. Area 3a showed performance comparable to M1, consistent with earlier 

observations that single-unit responses in areas 3a and 4 are tightly linked to time-varying hand 

postures (Goodman et al., 2019). Area 2, which lies downstream of area 3a but also receives 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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cutaneous input, yielded significantly worse performance than did M1, consistent with the 

hypothesis that the cutaneous input to this area obscures the proprioceptive representations, even 

before contact. While movement has been previously shown to activate cutaneous neurons in the 

absence of contact (S. S. Kim et al., 2015; Rincon-Gonzalez et al., 2011), our results suggest that 

cutaneous signals obscure rather than complement muscle- and tendon-derived signals about hand 

posture. 

2.5.4 Posture and movement decoding 

Neurons in motor cortex and proprioceptive areas of somatosensory cortex have been shown to 

preferentially encode velocity of the proximal limb (movement), rather than its position (posture) 

(Paninski et al., 2004; Wang et al., 2007). Consistent with this finding, decoders of velocities 

generally outperform those of joint positions both online (S.-P. Kim et al., 2008) and offline (Wang 

et al., 2007; Weber et al., 2011). However, this preferential encoding and decoding of movement 

over posture has been tested exclusively for the proximal limb. When we directly compared 

posture and movement decoding of the hand, we found that the former can be more faithfully 

decoded than can the latter. Importantly, for this analysis, we restricted the decoder to a single lag. 

Indeed, multi-lag decoders allow for linear integration of movement signals which converts these 

into postural signals. As might be expected, then, the difference in performance between posture 

and movement decoders is less pronounced for multi-lag models compared to their single-lag 

counterparts (Online supplementary figure 7) and multi-lag decoders sometimes lead to an 

advantage for postural decoding even in the proximal limb (Carmena et al., 2003). Postural 

preference in our analysis implies a difference between proximal and distal limb representations, 

which may be inherited from the different inertial and biomechanical properties of the arm and the 

hand and is well suited to support stereognosis (Goodman et al., 2019). 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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2.5.5 Decoding methods 

The application of machine learning to kinematic/cursor decoding is becoming standard practice 

(Glaser et al., 2020). However, the extent to which recently developed decoding approaches 

robustly improve performance of high dimensional decoders (of hand kinematics, e.g.) has not 

been systematically investigated. Here, we applied a variety of linear and non-linear approaches 

to decoding hand movements (described in detail in (Glaser et al., 2020)) and found that 

performance improved with some, but not all non-linear methods, with the best performance 

increase achieved by Support Vector Regression, Dense Neural Network, and LSTM (Online 

supplementary figure 4). However, the improvement is typically minimal, confined mostly to well-

decoded DoFs, and may not justify the added computational complexity and potential for 

overfitting. Note, however, that an algorithm that performs better offline does not necessarily 

perform better online (Chase et al., 2009; Koyama et al., 2010). 

2.5.6 Closed-loop robotic limb control 

A major application of kinematic decoders is to drive brain machine interfaces aimed at restoring 

movement in patients with sensorimotor impairments (Bensmaia & Miller, 2014). Indeed, intended 

movements can be inferred from neural signals in sensorimotor cortex and converted into control 

commands to an external device, such as a robotic limb. While remarkable control has been 

previously achieved for a robotic arm and hand, with up to 10 degrees of freedom under 

independent control (Wodlinger et al., 2014), the control of the hand itself remains relatively 

primitive, restricted to few of its many potential degrees of freedom. Here, we show that 

information about up to 30 degrees of freedom can be simultaneously reconstructed using a fast 

and simple approach with a relatively small number of neurons. Note, however, that the decoding 

reported here was performed offline and the implications of the present results for online decoding 

https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1741-2552/17/4/046035/revision3/JNE_17_4_046035_Supplementary_information.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1682647297&Signature=y44QLMsKUcjgwZqIxHBC83x3%2BR4%3D
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need to be tested (Chase et al., 2009; Kao et al., 2014; Koyama et al., 2010; Nicolas-Alonso & 

Gomez-Gil, 2012; Weber et al., 2011). 

The dexterity of robotic hands is severely limited by the absence of sensory feedback about hand 

posture. One approach to convey proprioceptive feedback would be to stimulate proprioceptive 

neurons in SC (Armenta Salas et al., 2018; London et al., 2008; Tomlinson & Miller, 2016). Our 

results suggest that SC—particularly area 3 a—carries a faithful representation of hand posture, 

one that could in principle be exploited to convey intuitive sensory feedback about limb state. 

However, the success of tactile feedback through intracortical microstimulation (ICMS) has 

hinged on the somatotopic organization of cutaneous representations in SC. While proprioceptive 

representations exhibit some somatotopic organization (Costanzo & Gardner, 1981; Iwamura et 

al., 1983, 1993; Krubitzer et al., 2004), that organization is generally coarser than that seen in 

tactile representations in cortex and may depend on whether movements are actively generated or 

imposed on the limb (Goodman et al., 2019; Soso & Fetz, 1980). Thus, whether the proprioceptive 

representation exhibits a spatial topography that can be exploited to convey artificial 

proprioceptive feedback remains to be established. 

2.5 Supplementary materials 

Supplementary materials (Figures and Tables) for this chapter are published online.  
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Chapter 3 | Neural population dynamics in motor cortex are 

different for reach and grasp3 

3.1 Abstract 

Low-dimensional linear dynamics are observed in neuronal population activity in primary motor 

cortex (M1) when monkeys make reaching movements. This population-level behavior is 

consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise 

to movement. In the present study, we examine whether similar dynamics are also observed during 

grasping movements, which involve fundamentally different patterns of kinematics and muscle 

activations. Using a variety of analytical approaches, we show that M1 does not exhibit such 

dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are 

similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent 

inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying 

hand control is thus fundamentally different from that underlying arm control. 

3.2 Introduction 

The responses of populations of neurons in primary motor cortex (M1) exhibit rotational dynamics 

– reflecting a neural oscillation at the population level – when animals make arm movements, 

including reaching and cycling (Churchland et al., 2012; Lara et al., 2018; Russo et al., 2018; 

Shenoy et al., 2013). One interpretation of this population-level behavior is that M1 acts as a 

pattern generator that drives muscles to give rise to movement. A major question is whether such 

 
3 This chapter was published: Suresh, A. K., Goodman, J. M., Okorokova, E. V., Kaufman, M., 

Hatsopoulos, N. G., & Bensmaia, S. J. (2020). Neural population dynamics in motor cortex are different 

for reach and grasp. ELife, 9, e58848. https://doi.org/10.7554/eLife.58848 Supplementary materials are 

available online.  

https://doi.org/10.7554/eLife.58848
https://elifesciences.org/articles/58848/figures#content
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population dynamics reflect a general principle of M1 function, or whether they underlie some 

behaviors and effectors but not others. To address this question, we examined the dynamics in the 

neuronal population activity during grasping movements, which involve a plant (the hand) that 

serves a different function, comprises more joints, and is characterized by different mechanical 

properties (Rathelot & Strick, 2009). While the hand is endowed with many degrees of freedom, 

hand kinematics can be largely accounted for within a small subspace (Ingram et al., 2008; 

Overduin et al., 2015; Santello et al., 1998; Tresch & Jarc, 2009) so we might expect to observe 

low-dimensional neural dynamics during hand movements, not unlike those observed during arm 

movements. 

To test this, we recorded the neural activity in M1 using chronically implanted electrode arrays as 

monkeys performed a grasping task, restricting our analyses to responses before object contact 

(Online materials Figure 1—figure supplement 1). Animals were required to hold their arms still 

at the elbow and shoulder joints as a robotic arm presented each object to their contralateral hand. 

This task – which can be likened to catching a tossed object or grasping an offered one – limits 

proximal limb movements and isolates grasping movements. For comparison, we also examined 

the responses of M1 neurons during a center-out reaching task (Hatsopoulos et al., 2007). In 

addition, we compared grasping responses in M1 to their counterparts in somatosensory cortex 

(SCx), which is primarily driven by afferent input and therefore should not exhibit autonomous 

dynamics (Russo et al., 2018).  

3.3 Results 

First, we used jPCA to search for rotational dynamics in a low-dimensional manifold of M1 

population activity (Figure 3.1; Churchland et al., 2012). Replicating previous findings, reaching 

was associated with a variety of different activity patterns at the single-neuron level (Figure 3.1A) 

https://elifesciences.org/articles/58848/figures#content
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that were collectively governed by rotational dynamics at the population level (Figure 3.1C,E). 

During grasp, individual M1 neurons similarly exhibited a variety of different response profiles 

(Figure 3.1B), but rotational dynamics were weak or absent at the population level (Figure 3.1D,E). 

 

Figure 3.1 - M1 rotational dynamics during reaching and grasping. (A) Tangling metric (Q) for population responses in motor 

cortex vs. Q for kinematics during reaching. Kinematic tangling is higher than neural tangling, consistent with motor cortex acting 

as a pattern generation during reach. (B) Q-M1 population vs. Q-kinematics for grasping. Neural tangling is higher than kinematic 

tangling, which argues against pattern generation as the dominant mode during grasp. (C) Q-M1 population vs. Q-SCx population. 

Neural tangling is similar in M1 and SCx. For plots A-C, each point represents the max Q value for a (trial-averaged) neural state 

at a single time point and single task condition for one monkey (Monkey 1, Dataset 1). (D) Log of Q-motor/Q-kinematics of the 

arm during reach (KA), Q-motor/Q-kinematics of the hand during grasp (KH), and Q-motor/Q-sensory during grasp (Ns). Each 

point represents the log-ratio for a single condition and time point (pooled across two monkeys each). Black bars denote the mean 

log-ratio. The differences between reaching-derived and grasping-derived log-ratios are significant and substantial (two-sample 

two-sided equal-variance t-test: KH | t(2978)=-43, p=1.03e-130; Ns |t(2978)=-39 p=1.87e-121). Tangling is insensitive to the 

precise dimensionality, provided it exceeds a minimum dimensionality (Figure 3—figure supplement 1). 
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Given the poor fit of rotational dynamics to neural activity during grasp, we next assessed whether 

activity could be described by a linear dynamical system of any kind. To test for linear dynamics, 

we fit a regression model using the first 10 principal components of the M1 population activity 

(x(t)) to predict their rates of change (dx/dt). We found x(t) to be far less predictive of dx/dt in 

grasp than in reach, suggesting much weaker linear dynamics in M1 during grasp (Figure 3.1F). 

We verified that these results were not an artifact of data alignment, movement epoch, peak firing 

rate, smoothing, population size, or number of behavioral conditions (Online materials Figure 1—

figure supplement 2). 

The possibility remains that dynamics are present in M1 during grasp, but that they are higher-

dimensional or more nonlinear than during reach. Indeed, M1 population activity during a reach-

grasp-manipulate task is higher dimensional than is M1 activity during reach alone (Rouse & 

Schieber, 2018). In light of this, we used Latent Factor Analysis via Dynamical Systems (LFADS) 

to infer and exploit latent dynamics and thereby improve estimation of single-trial firing rates, then 

applied a decoder to evaluate the level of improvement. Naturally, the benefit of LFADS is only 

realized if the neural population acts like a dynamical system. Importantly, such dynamics are 

minimally constrained and can, in principle, be arbitrarily high dimensional and/or highly 

nonlinear. First, as expected, we found that in both datasets, neural reconstruction of single trials 

improved with LFADS (Online materials Figure 2—figure supplement 1A,B). However, LFADS 

yielded a significantly greater improvement in reconstruction accuracy for reach than for grasp 

(t(311) = 7.07, p=5.11e-12; Online materials Figure 2—figure supplement 1Β). Second, a standard 

Kalman filter was used to decode joint angle kinematics from the inferred latent factors (Figure 

3.2). If latent dynamics in M1 play a key role in the generation of temporal sequences of muscle 

activations, which in turn give rise to movement, LFADS should substantially improve kinematic 

https://elifesciences.org/articles/58848/figures#content
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decoding. Replicating previous results, we found decoding accuracy to be substantially improved 

for reaching when processing firing rates using LFADS (Figure 3.2A,C) (R2 = 0.93 and 0.57 with 

and without LFADS, respectively). In contrast, LFADS offered minimal improvement in accuracy 

when decoding grasping kinematics in two monkeys (Figure 3.2B,C) (R2 = 0.46 and 0.37), 

regardless of the latent dimensionality of the model (Online materials Figure 2—figure supplement 

1C) or whether external inputs were included (Online materials Figure 2—figure supplement 1D). 

These decoding results demonstrate that the strong dynamical structure seen in the M1 population 

activity during reach is not observed during grasp, even when dimensionality and linearity 

constraints are relaxed. 

Figure 3.2 - Decoding of kinematics based on population activity pre-processed with Gaussian smoothing or with LFADS. (A) 

End-point coordinates of center-out reaching with actual kinematics (top) or kinematics reconstructed with neural data 

preprocessed with Gaussian smoothing (middle) or LFADS (bottom). Coordinates are color-coded according to the eight directions 

of movement. While conditions are visually separable in both Gaussian and LFADS reconstructions, the later provides a smoother 

and more reliable estimate. (B) Single-trial time-varying angles of five hand joints (black, dashed) from monkey three as it grasped 

five objects along with their decoded counterparts (Gaussian-smoothed in green, LFADS-inferred in red). Both Gaussian-smoothed 

and LFADS-inferred firing rates yield similar decoding errors. Here, ‘4mcp flexion’ refers to flexion/extension of the fourth 

metacarpophalangeal joint; ‘5pip flexion’ - flexion/extension of the fifth proximal interphalangeal joint; and ‘1cmc flexion’ - 

flexion/extension of the first carpo-metacarpal joint. (C) Difference in performance gauged by the coefficient of determination 

between decoders with LFADS and Gaussian smoothing for reach (gray) and grasp (blue). Each point denotes the mean 

performance increase across 10-fold cross-validation of all degrees of freedom pooled across monkeys for reach (2 monkeys with 

2 DoFs each) and grasp (2 monkeys with 22 and 29 DoFs, respectively). All decoders were fit using a population of 37 M1 neurons. 

LFADS leads to significantly larger decoder performance improvement for reach than for grasp. Stars indicate significance of a 

Mann-Whitney-Wilcoxon test for unmatched samples: *** - alpha of 0.001 for one-sided alternative hypothesis. 
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As a separate way to examine the neural dynamics in grasping responses, we computed a neural 

‘tangling’ metric, which assesses the degree to which network dynamics are governed by a smooth 

and consistent flow field (Russo et al., 2018). In a smooth, autonomous dynamical system, neural 

trajectories passing through nearby points in state space should have similar derivatives. The 

Figure 3.3 - Tangling in reach and grasp. (A) Tangling metric (Q) for population responses in motor cortex vs. Q for kinematics 

during reaching. Kinematic tangling is higher than neural tangling, consistent with motor cortex acting as a pattern generation 

during reach. (B) Q-M1 population vs. Q-kinematics for grasping. Neural tangling is higher than kinematic tangling, which argues 

against pattern generation as the dominant mode during grasp. (C) Q-M1 population vs. Q-SCx population. Neural tangling is 

similar in M1 and SCx. For plots A-C, each point represents the max Q value for a (trial-averaged) neural state at a single time 

point and single task condition for one monkey (Monkey 1, Dataset 1). (D) Log of Q-motor/Q-kinematics of the arm during reach 

(KA), Q-motor/Q-kinematics of the hand during grasp (KH), and Q-motor/Q-sensory during grasp (Ns). Each point represents the 

log-ratio for a single condition and time point (pooled across two monkeys each). Black bars denote the mean log-ratio. The 

differences between reaching-derived and grasping-derived log-ratios are significant and substantial (two-sample two-sided equal-

variance t-test: KH | t(2978)=-43, p=1.03e-130; Ns |t(2978)=-39 p=1.87e-121). Tangling is insensitive to the precise 

dimensionality, provided it exceeds a minimum dimensionality (Figure 3—figure supplement 1). 
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tangling metric (Q) assesses the degree to which this is the case over a specified (reduced) number 

of dimensions. During reaching, muscle activity and movement kinematics have been shown to 

exhibit more tangling than does M1 activity, presumably because the cortical circuits act as a 

dynamical pattern generator whereas muscles are input-driven (Russo et al., 2018). We replicated 

these results for reaching: neural activity was much less tangled than the corresponding arm 

kinematics (position, velocity, and acceleration of joint angles) (Figure 3.3A), as long as the 

subspace was large enough (>2D), (Online materials Figure 3—figure supplement 1). For grasp, 

however, M1 activity was as tangled as the corresponding hand kinematics, or even more so 

(Figure 3.3B), over all subspaces (Online materials Figure 3—figure supplement 1). Next, we 

compared tangling in the grasp-related activity in M1 to its counterpart in SCx, which, as a sensory 

area, is expected to exhibit tangled activity (as shown during reaching movements [Russo et al., 

2018]). Surprisingly, population activity patterns in both M1 and SCx were similarly tangled 

during grasp (Figure 3.3C). In summary, M1 responses during grasp do not exhibit the properties 

of an autonomous dynamical system, but rather are tangled to a similar degree as are sensory 

cortical responses (Figure 3.3D). 

3.4 Discussion 

We find that M1 does not exhibit low-dimensional dynamics during grasp as it does during reach 

(Churchland et al., 2012), reach-to-grasp (Rouse and Schieber, 2018), or reach-like center-out 

pointing (Pandarinath et al., 2015). The difference between reach- and grasp-related neuronal 

dynamics seems to stem from the fundamentally different kinematics and functions of these 

movements, rather than from effector-specific differences, since dynamics are observed for reach-

like finger movements. That rotational dynamics are observed in reach-to-grasp likely reflects the 

reaching component of the behavior, consistent with the observation that movement signals are 
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broadcast widely throughout motor cortex (Musall et al., 2019; Stavisky et al., 2019; Willett et al., 

2020). 

Other factors might also explain the different dynamical profiles in M1 between reach and grasp. 

One might conjecture that M1 population dynamics are much higher dimensional and/or more 

nonlinear for grasp than for reach, which might explain our failure to detect dynamics in grasp-

related M1 activity. However, both LFADS (Pandarinath et al., 2018); Online materials Figure 

2—figure supplement 1) and the tangling metric (Online materials Figure 3—figure supplement 

1) can accommodate high-dimensional systems and some degree of nonlinearity in the dynamics. 

We verified that our failure to observe dynamics did not stem from a failure to adequately 

characterize a high-dimensional grasp-related response in M1 commensurate with the 

dimensionality of the movement (See ‘Dimensionality of the neuronal response’ in the 

Materials and methods, Online materials Figure 3—figure supplement 2). We cannot exclude the 

possibility that dynamics may be observed in a much higher dimensional space than we can resolve 

with our sample, one whose dimensionality far exceeds that of the movement itself. To test this 

hypothesis will require large-scale neural recordings obtained during grasping. 

Another possibility is that M1 dynamics are under greater influence from extrinsic inputs for grasp 

than for reach: inputs can push neuronal activity away from the trajectories dictated by the intrinsic 

dynamics, thereby giving rise to tangling. M1 receives input from large swaths of the brain that 

each exhibit their own dynamics, including the supplementary motor area (Lara et al., 2018; Russo 

et al., 2018), premotor and posterior parietal cortices (Michaels et al., 2018), and motor thalamus 

(Sauerbrei et al., 2020), in addition to responding to somatosensory and visual inputs (Suminski et 

al., 2010). Our findings are consistent with the hypothesis that grasp involves more inputs to M1 
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than does reach, or that grasp-related inputs are more disruptive to the intrinsic dynamics in M1 

than are their reach-related counterparts (Online materials Figure 2—figure supplement 1). 

Whatever the case may be, the low-dimensional linear dynamics observed in M1 during reaching 

are not present during grasping, consistent with an emerging view that the cortical circuits that 

track and control the hand differ from those that track and control the proximal limb (Goodman et 

al., 2019; Rathelot & Strick, 2009). 

3.5 Materials and methods 

3.5.1 Behavior and neurophysiological recordings for grasping task 

We recorded single-unit responses in the primary motor and somatosensory cortices (M1 and SCx) 

of two monkeys (Macaca mulatta) (M1: N1 = 58, N2 = 53 | SCx: N1 = 26 N2 = 28) as they grasped 

each of 35 objects an average of 10 times per session. We refer to these recordings as Dataset 1 

and Dataset 2, which were recorded from Monkey 1 and Monkey 2, respectively. Neuronal 

recordings were obtained across 6 and 9 sessions, respectively, and are used in the jPCA and 

tangling analyses. We also recorded simultaneously from populations of neurons in M1 in two 

monkeys (N3 = 44, N4 = 37) during a single session of this same task. These are called, respectively, 

Dataset 3 and Dataset 4. The first of these (N3) was recorded from a third Monkey, Monkey 3; the 

second population of simultaneously recorded neurons (N4) was obtained from the same monkey 

(Monkey 1) as the first set of sequentially recorded neurons (N1). The recordings in Monkey 1 

were achieved with different arrays and separated by 3 years. Simultaneously recorded populations 

were used for the decoding analyses. 

On each trial (Online materials Figure 1 – supplement 1), one of 25 objects was manually placed 

on the end of an industrial robotic arm (MELFA RV-1A, Mitsubishi Electric, Tokyo, Japan). After 

a 1-3 second delay, randomly drawn on a trial-by-trial basis, the robot translated the object toward 
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the animal’s stationary hand. The animal was required to maintain its arms in the primate chair for 

the trial to proceed: if light sensors on the arm rest became unobstructed before the robot began to 

move, the trial was aborted. We also confirmed that the animal produced minimal proximal limb 

movement by inspecting videos of the experiments and from the reconstructed kinematics. The 

object began 12.8 cm from the animal’s hand and followed a linear trajectory toward the hand at 

a constant speed of 16 cm/s for a duration of 800 ms. As the object approached, the animal shaped 

its hand to grasp it. Some of the shapes were presented at different orientations, requiring a 

different grasping strategy, yielding 35 unique “objects”. Each object was presented eight to eleven 

times in a given session.  

The timing of start of movement, maximum aperture, and grasp events were inferred on the basis 

of the recorded kinematics. A subset of trials from each session were manually scored for each of 

these three events. On the basis of these training data, joint angular kinematic trajectories spanning 

200 ms before and after each frame were used as features to train a multi-class linear discriminant 

classifier to discriminate among these four classes: all three events of interest and “no event”. Log 

likelihood ratio was used to determine which “start of movement”, “maximum aperture”, and 

“grasp” times were most probable relative to “no event”. Events were sequentially labeled for each 

trial to enforce the constraint that start of movement precedes maximum aperture, and maximum 

aperture precedes grasp. The median interval between the start of movement and maximum 

aperture was 450 ± 85 ms (median ± interquartile range) for Monkey 1 (across both sets of 

recordings), 240.0 ± 10.0 ms for Monkey 2, and 456 ± 216 ms for Monkey 3. The interval between 

maximum aperture and grasp was 356 ± 230 ms for Monkey 1, 410 ± 160 ms for Monkey 2, and 

274 ± 145 ms for Monkey 3. Total grasp times from start of movement to grasp were 825 ± 280 

ms for Monkey 1, 650 ± 170 ms for Monkey 2, and 755 ± 303 ms for Monkey 3. 
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Neural recordings were obtained from two monkeys (N1 and N2) using semi-chronic electrode 

arrays (SC96 arrays, Gray Matter Research, Bozeman, MT) (Dotson et al., 2017) (Online materials 

Figure 1 – supplement 1). Electrodes, which were individually depth-adjustable, were moved to 

different depths on different sessions to capture new units. Units spanning both M1 and SCx were 

recorded using these arrays, and SCx data comprise populations from both proprioceptive 

subdivisions of SCx, namely, Brodmann’s areas 3a and 2. Simultaneous neural recordings were 

obtained from one monkey (N3) using  a combination of Utah electrode arrays (UEAs, Blackrock 

Microsystems, Inc., Salt Lake City, UT) and floating microelectrode arrays (FMAs, Microprobes 

for Life Science, Gaithersburg, MD) targeting rostral and caudal subdivisions of the hand 

representation of M1, respectively. In the other monkey (N4), simultaneous population recordings 

were obtained using a single 64-channel Utah array targeting the hand representation of (rostral) 

M1. Single units from all sessions (treated as distinct units) were extracted using an Offline Sorter 

(Plexon Inc., Dallas TX). Units were identified based on inter-spike interval distribution and 

waveform shape and size.  

Hand joint kinematics, namely the angles and angular velocities about all motile axes of rotation 

in the joints of the wrist and digits, were tracked at a rate of 100 Hz by means of a 14-camera 

motion tracking system (MX-T series, VICON, Los Angeles, CA). The VICON system tracked 

the three-dimensional positions of the markers, and time-varying joint angles were computed using 

inverse kinematics based on a musculoskeletal model of the human arm 

(https://simtk.org/projects/ulb_project) (F. C. Anderson & Pandy, 1999, 2001; de Leva, 1996; 

Delp et al., 1990; Dempster & Gaughran, 1967; Holzbaur et al., 2005; Yamaguchi & Zajac, 1989) 

implemented in Opensim (https://simtk.org/frs/index.php?group_id=91) (Delp et al., 2007) with 

segments scaled to the sizes of those in a monkey limb using Opensim’s built-in scaling function. 

https://elifesciences.org/articles/58848/figures#content
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Task and kinematic recording methods are reported in an earlier publication (Goodman et al., 

2019). We used a linear discriminant classifier as detailed in this previous publication to determine 

whether objects indeed evoked distinct kinematics (Online materials Figure 1 – supplement 1). 

All surgical, behavioral, and experimental procedures conformed to the guidelines of the National 

Institutes of Health and were approved by the University of Chicago Institutional Animal Care and 

Use Committee. 

3.5.2 Behavior and neurophysiological recordings for reaching task 

To compare grasp to reach, we analyzed previously-published single- and multi-unit responses 

from two additional M1 populations (M1: N5 = 76, N6 = 107) recorded from two additional 

monkeys (Monkeys 4 and 5, respectively) operantly trained to move a cursor in a variable delay 

center out reaching task (Hatsopoulos et al., 2007). These recordings are called, respectively, 

Dataset 5 and Dataset 6. The monkey’s arm rested on cushioned arm troughs secured to links of a 

two-joint exoskeletal robotic arm (KINARM system; BKIN Technologies, Kingston, Ontario, 

Canada) underneath a projection surface. The shoulder and elbow joint angles were sampled at 

500 Hz by the motor encoders of the robotic arm, and the x and y positions of the hand were 

computed using the forward kinematic equations. The center-out task involved movements from a 

center target to one of eight peripherally positioned targets (5 to 7 cm away). Targets were radially 

defined, spanning a full 360 degree rotation about the central target in 45 degree increments. Each 

trial comprised two epochs: first, an instruction period lasting 1 to 1.5 s, during which the monkey 

held its hand over the center target to make the peripheral target appear; second, a “go” period, 

cued by blinking of the peripheral target, which indicated to the monkey that it could begin to 

move toward the target. Following the “go” cue, movement onset was 324 ± 106 ms (median ± 

interquartile range) for Monkey 4 in dataset 5, and 580 ± 482 ms for Monkey 5 in dataset 6. Total 

https://elifesciences.org/articles/58848/figures#content
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movement duration was 516 ± 336 ms for Monkey 4 in dataset 5 and 736 ± 545 ms for Monkey 5 

in dataset 6. Single- and multi-unit activity was recorded from each monkey during the course of 

a single session using a UEA implanted in the upper limb representation of contralateral M1. All 

surgical, behavioral, and experimental procedures conformed to the guidelines of the National 

Institutes of Health and were approved by the University of Chicago Institutional Animal Care and 

Use Committee. 

Information about all grasping and reaching datasets and their associated analyses is provided in 

Table 1 of Online materials. 

3.5.3 Differences between reach and grasp and their potential implications for population 

dynamics 

In this section, we discuss differences between the reach and grasp tasks that might have had an 

impact on the neuronal dynamics.  

First, movements were cued differently in the two tasks. For reaching, targets blinked to cue 

movement. For grasping, there was no explicit movement cue; rather, the animals could begin 

preshaping their hand as soon as the robot began to move, though they had to wait for the object 

to reach the hand to complete their grasp and obtain a reward. Nonetheless, we found that the delay 

between the beginning of the robot’s approach and hand movement onset (median  interquartile 

range: Monkey 1 – 271  100 ms; Monkey 2 – 419  101 ms; numbers not available for Monkey 

3) was similar to the delay in the reaching task between the go cue and start of movement. Note, 

moreover, that the nature of the “delay” period should have little effect on neuronal dynamics. 

Indeed, self-initiated reaches and those that are executed rapidly with little to no preparation are 

nonetheless associated with rotational M1 dynamics (Lara et al., 2018).  

https://elifesciences.org/articles/58848/figures#content
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Second, the kinematics of reaching and grasping are quite different, and differences in the 

respective ranges of motion or speeds could mediate the observed differences in neuronal 

dynamics. However, the ranges of motion and distribution of speeds were similar for reach and 

grasp (Online materials Figure 1 supplement 1C-D,G), suggesting that the observed differences in 

neuronal dynamics are not trivial consequences of differences in the kinematics. On a related note, 

grasping movements with no reach (lasting roughly 700 ms) were generally slower than those 

reported in in the context of reach (lasting roughly 300 ms) (Bonini et al., 2014; Chen et al., 2009; 

Lehmann & Scherberger, 2013; Rouse & Schieber, 2018; Roy et al., 2000; Theverapperuma et al., 

2006), as the animals had to wait for the robot to transport the object to their hand. Note, however, 

that similar constraints on movement duration and speed during reaching do not affect the presence 

or nature of M1 rotational dynamics during those movements (Churchland et al., 2012). As such, 

speed differences should not lead to qualitatively different M1 population dynamics. 

Third, we considered whether grasping without reaching might simply be too “unnatural” to be 

controlled by stereotyped M1 dynamics. However, we observed the presence of two hallmarks of 

grasping behavior: a clearly-defined maximum aperture phase and the presence of hand pre-

shaping (Jeannerod, 1984, 1981; Santello et al., 2002; Santello and Soechting, 1998). The latter is 

evidenced by a gradual improvement in our ability to classify objects based on the kinematics they 

evoke as the trial proceeded (Online materials Figure 1 – supplement 1E): Upon start of movement, 

the hand is in a generic configuration that is independent of the presented object. However, as the 

trial proceeds, hand kinematics become increasingly object-specific, culminating in a high 

classification performance just before object contact. Furthermore, grasping kinematics have been 

previously shown to be robust to different types of reaches (Wang and Stelmach, 1998).  

https://elifesciences.org/articles/58848/figures#content
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3.5.4 Data Analysis  

3.5.4.1 Data pre-processing 

For both reach and grasp, neuronal responses were aligned to the start of movement, resampled at 

100 Hz so that they would be at the same temporal resolution, averaged across trials, then smoothed 

by convolution with a Gaussian (25 ms S.D.). For jPCA, we then followed the data pre-processing 

steps described in Churchland et al. 2012: normalization of individual neuronal firing rates, 

subtraction of the cross-condition mean peri-event time histogram (PETH) from each neuron’s 

response in each condition, and applying principal component analysis (PCA) to reduce the 

dimensionality of the population response. For LFADS and the tangling analyses, only the 

normalization of neurons’ firing rates was performed. Although the condition-invariant response 

varies in a meaningful way (Kaufman et al., 2016), its inclusion obstructs our ability to use jPCA 

to visualize neural trajectories whose initial conditions vary, and thus our ability to use jPCA to 

evaluate claims of dynamical structure. Even when this component is especially large, dynamical 

structure in the remaining condition-dependent neural activity has been observed (Rouse and 

Schieber, 2018), thus subtraction of even a large condition-independent response should permit 

the inference of neural dynamics. We used 10 dimensions instead of six (cf. Churchland et al. 

2012) as a compromise between the lower-dimensional reach data and the higher-dimensional 

grasp data. 

3.5.4.2 jPCA 

We applied to the population data (reduced to 10 dimensions by PCA) a published dimensionality 

reduction method, jPCA (Churchland et al., 2012), which finds orthonormal basis projections that 

capture rotational structure in the data. We used a similar number of dimensions for both reach 

and grasp, as PCA revealed no stark differences in the effective dimensionality of the neural 
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population between the two tasks (Online materials Figure 1 – supplement 1F). With jPCA, the 

neural state is compared with its derivative, and the strictly rotational dynamical system that 

explains the largest fraction of variance in that derivative is identified. The delay periods between 

the presentation/go-cue for each monkey varied, along with the reaction times, so we selected a 

single time interval (averaging 700 ms) that maximized rotational variance across all of them. For 

the reach data, data were aligned to the start of movement and the analysis window was centered 

on this event, whereas for the grasp data, data were aligned to maximum hand aperture, and we 

analyzed the interval centered on this event. In some cases, the center of this 700-ms window was 

shifted between -350 ms to +350 ms relative to the alignment event to obtain an estimate of how 

rotational dynamics change over the course of the trial (e.g., Online materials Figure 1 - 

supplement 2). These events were chosen for alignment as they were associated with both the 

largest peak firing rates and the strongest rotational dynamics. Other alignment events were also 

tested, to test robustness (Online materials Figure 1 – supplement 2B). 

3.5.4.3 Object clustering 

Each of the 35 objects was presented 10 times per session, which yields a smaller number of trials 

per condition than were used to assess jPCA during reaching (at least 40). To permit pooling across 

a larger number of trials when visualizing and quantifying population dynamics with jPCA (Figure 

1), objects in the grasp task were grouped into eight object clusters on the basis of the trial-averaged 

similarity of hand posture across all 30 joint degrees of freedom 10 ms prior to grasp (i.e., object 

contact). Objects were hierarchically clustered into 8 clusters on the basis of the Ward linkage 

function (MATLAB clusterdata). Eight clusters were chosen to match the number of conditions in 

the reaching task. Cluster sizes were not uniform; the smallest comprised 2 and the largest 9 

different objects, with the median cluster comprising 4 objects. 
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As the clustering method just described yielded different cluster sizes, we assessed an alternative 

clustering procedure (Online materials Figure 1 -supplement 2F) that guaranteed objects were 

divided into 7 equally-sized clusters (5 objects per cluster). Rather than determining cluster 

membership on the basis of a linkage threshold, cluster linkages were instead used to sort the 

objects on the basis of their dendrogram placements (MATLAB dendrogram). Clusters were 

obtained by grouping the first five objects in this sorted list into a common cluster, then the next 

five, and so on. This resulted in slightly poorer performance of jPCA (see Quantification). 

For completeness, we also assessed jPCA without clustering (Online materials Figure 1 – 

supplement 2E) which also resulted in slightly poorer performance of jPCA and was considerably 

more difficult to visualize given the large number of conditions.  

3.5.4.4 Quantification 

In a linear dynamical system, the derivative of the state is a linear function of the state. We wished 

to assess whether a linear dynamical system could account for the neural activity. To this end, we 

first produced a de-noised low-dimensional neural state (X) by reducing the dimensionality of the 

neuronal responses to 10 using PCA. Second, we numerically differentiated X to estimate the 

derivative, 𝑋̇. Next, we used regression to fit a linear model, predicting the derivative of the 

neuronal state from the current state: 𝑋̇ = 𝑀𝑋. Finally, we computed the fraction of variance 

explained (FVE) by this model: 

 𝐹𝑉𝐸 = 1 − ‖𝑋̇ − 𝑀𝑋‖
𝑓𝑟𝑜

2
‖𝑋̇ − 〈𝑋̇〉‖

𝑓𝑟𝑜

2
⁄  3.1  

M was constrained to be skew-symmetric (𝑀𝑠𝑘𝑒𝑤) unless otherwise specified; 〈∙〉 indicates the 

mean of a matrix across samples, but not across dimensions; and ‖∙‖𝑓𝑟𝑜 indicates the Frobenius 

https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
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norm of a matrix. Unless otherwise specified, analysis of reaching data from each monkey was 4-

fold cross-validated, whereas analysis of grasp data was 5-fold cross-validated. 

3.5.4.5 Control comparisons between arm and hand data  

We performed several controls comparing arm and hand data to ensure that our results were not 

an artifact of trivial differences in the data or pre-processing steps.  

First, we considered whether alignment of the data to different events might impact results. For 

the arm data, we aligned each trial to target onset and movement onset (Online materials Figure 1 

- supplement 2A). For the hand data, we aligned each trial to presentation of the object, movement 

onset, and the time at which the hand reached maximum aperture during grasp (Online materials 

Figure 1 – supplement 2B). Linear dynamics were strongest (though still very weak) when 

neuronal responses were aligned to maximum aperture, so this alignment is reported throughout 

the main text. 

Second, we assessed whether rotations might be obscured due to differences in firing rates in the 

hand vs. arm responses. To this end, we compared peak firing rates for trial-averaged data from 

the arm and hand after pre-processing (excluding normalization) to directly contrast the inputs to 

the jPCA analysis given the two effectors/tasks (Online materials Figure 1 – supplement 2C). Peak 

firing rates were actually higher for the hand than the arm, eliminating the possibility that our 

failure to observe dynamics during grasp was a consequence of weak responses. We also verified 

that differences in dynamics could not be attributed to differences in the degree to which neurons 

were modulated in the two tasks. To this end, we computed the modulation range (90th percentile 

firing – 10th percentile firing) and found that modulation was similar in reach and grasp (Online 

materials Figure 1 – supplement 2D).  

https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
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Third, we assessed whether differences in the sample size might contribute to differences in 

variance explained (Online materials Figure 1 – supplement 2E). To this end, we took five random 

samples of 55 neurons from the reaching data set – chosen to match the minimum number of 

neurons in the grasping data – and computed the cross-validated fraction of variance explained by 

the rotational dynamics. The smaller samples yielded identical fits as the full sample. 

Fourth, we assessed whether the low variance explained by linear dynamics in the hand might be 

due to poor sampling of the joint motion space (Online materials Figure 1 – supplement 2G). To 

this end, we computed FVE for only rightward reaches, and found that the variance explained for 

all directions versus only rightward reaches were comparable. Therefore, we expect that our 

sampling of hand motions would not affect our ability to observe linear dynamics.  

Fifth, we considered whether our smoothing kernel might impact results (Online materials Figure 

1 – supplement 2H). We compared the FVE for the optimal linear dynamical system across various 

smooth kernels – from 5 to 40 ms – and found that the difference between hand and arm dynamics 

remains substantial regardless of kernel width.  

Finally, since our analyses involve averaging across trials, we assessed whether trial-to-trial 

variability was different for reach and grasp. To this end, we computed for each neuron the 

coefficient of variation (CV) of spike counts over 100-ms bins around movement onset. We found 

the trial-to-trial variability to be stable over the trial and similar for reach and grasp (Online 

materials Figure 1 – supplement 2I).  

3.5.4.6 Decoding 

Preprocessing 

For decoding, we preprocessed the neural data using one of two methods: smoothing with a 

Gaussian kernel (σ = 20 ms) or latent factor analysis via dynamical systems (LFADS) (Pandarinath 

https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
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et al., 2018). LFADS is a generative model that assumes that observed spiking responses arise 

from an underlying dynamical system and estimates that system using deep learning. We used the 

same number of neurons in the reaching and grasping analyses to train the LFADS models and 

fixed the number of factors in all models to 30, at which performance of both reach and grasp 

models had levelled off (Online materials Figure 2 – supplement 1A). We allowed two continuous 

controllers while training the model, which could potentially capture the influence of external 

inputs on dynamics (Pandarinath et al., 2018), since these had significant positive influence on 

decoding performance (Online materials Figure 2 – supplement 1B). Hyper-parameter tuning was 

performed as previously described (Keshtkaran and Pandarinath, 2019).   

Neural reconstruction 

To compare our ability to reconstruct single-trial responses using Gaussian smoothing and 

LFADS, we first computed peri-event time histograms (PETHs) within condition using all training 

trials (excluding one test trial). We then computed the correlation between the firing rates of each 

test trial (smoothed with a Gaussian kernel or reconstructed with LFADS) with the PETH of the 

corresponding condition averaged across the training trails (Online materials Figure 2 – 

Supplement 1A). We repeated this procedure with a different trial left out for each condition. We 

report the difference in correlation coefficient obtained after LFADS processing and Gaussian 

smoothing (Online materials Figure 2 – Supplement 1B). 

Kalman Filter 

To predict hand and arm kinematics, we applied the Kalman filter (Kalman, 1960), commonly 

used for kinematic decoding (Menz et al., 2015; Okorokova et al., 2020; Wu et al., 2004). In this 

approach, kinematic dynamics can be described by a linear relationship between past and future 

states: 

https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
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 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝑣𝑡 3.1 

where 𝑥𝑡 is a vector of joint angles at time 𝑡, 𝐴 is a state transition matrix, and 𝑣𝑡 is a vector of 

random numbers drawn from a Gaussian distribution with zero mean and covariance matrix 𝑉. 

The kinematics 𝑥𝑡 can be also explained in terms of the observed neural activity 𝑧𝑡−∆: 

 𝑥𝑡 = 𝐵𝑧𝑡−∆ + 𝑤𝑡 3.2 

Here, 𝑧𝑡−∆ is a vector of instantaneous firing rates across a population of M1 neurons at time 𝑡 −

∆, preprocessed either with Gaussian kernel or LFADS, 𝐵 is an observation model matrix, and 𝑤𝑡 

is a random vector drawn from a Gaussian distribution with zero mean and covariance matrix 𝑊. 

We tested multiple values of the latency, ∆, and report decoders using the latency that maximized 

decoder accuracy (150 ms). 

We estimated the matrices 𝐴, 𝐵, 𝑉, 𝑊 using linear regression on each training set, and then used 

those estimates in the Kalman filter update algorithm to infer the kinematics of each corresponding 

test set (see 50,51 for details). Briefly, at each time 𝑡, kinematics were first predicted using the state 

transition equation (3.1), then updated with observation information from equation (3.2). Update 

of the kinematic prediction was achieved by a weighted average of the two estimates from (3.1) 

and (3.2): the weight of each estimate was inversely proportional to its uncertainty (determined in 

part by 𝑉 and 𝑊 for the estimates based on xt-1 and zt-Δ, respectively), which changed as a function 

of time and was thus recomputed for every time step.  

To assess decoding performance, we performed 10-fold cross-validation in which we trained the 

parameters of the filter on a randomly selected 90% of the trials and tested the model using the 

remaining 10% of trials. Importantly, we trained separate Kalman filters for the two types of neural 

preprocessing techniques (Gaussian smoothing and LFADS) and then compared their performance 
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on the same trials. Performance was quantified using the coefficient of determination (𝑅2) for the 

held-out trials across test sets.  

3.5.4.7 Tangling 

We computed tangling of the neural population data (reduced to 20 dimensions by PCA) using a 

published method (Russo et al., 2018). In brief, the tangling metric estimates the extent to which 

neural population trajectories are inconsistent with what would be expected if they were governed 

by an autonomous dynamical system, with smaller values indicating consistency with such 

dynamical structure. Specifically, tangling measures the degree to which similar neural states, 

either during different movements or at different times for the same movement, are associated with 

different derivatives. This is done by finding, for each neural state (indexed by 𝑡), the maximum 

value of the tangling metric 𝑄(𝑡) across all other neural states (indexed by 𝑡′): 

𝑄(𝑡) =
max

𝑡′

‖𝑥̇𝑡 − 𝑥̇𝑡′‖2 

‖𝑥𝑡 − 𝑥𝑡′‖2 + 𝜀
 3.3 

Here, 𝑥𝑡 is the neural state at time t (a 20-dimensional vector containing the neural responses at 

that time), 𝑥𝑡̇ is the temporal derivative of the neural state (estimated numerically), and ‖∙‖ is the 

Euclidean norm, while 𝜀 is a small constant added for robustness to noise (Russo et al., 2018). This 

analysis is not constrained to work solely for neural data; indeed, we also apply this same analysis 

to trajectories of joint angular kinematics to compare their tangling to that of neural trajectories. 

The neural data were pre-processed using the same alignment, trial averaging, smoothing, and 

normalization methods described above. Joint angles were collected for both hand and arm data. 

For this analysis, joint angle velocity and acceleration were computed (six total dimensions for 

arm, 90 dimensions for hand). For reaching, we analyzed the epoch from 200 ms before to 100 ms 

after movement onset. For grasping, we analyzed the epoch starting 200 ms before to 100 ms after 
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maximum aperture. Neuronal responses were binned in 10 ms bins to match the sampling rate of 

the kinematics.  

The tangling metric is partially dependent on the dimensionality of the underlying data. To 

eliminate the possibility that our results were a trivial consequence of selecting a particular number 

of principal components, we tested tangling at different dimensionalities and selected the 

dimensionality at which Q had largely leveled off for both the population neural activity and 

kinematics (Online materials Figure 3 – supplement 1). Namely, we report results using 6 principal 

components (the maximum) for reach kinematics and their associated neural responses, and using 

20 for kinematics and neuronal responses during grasp.  

3.5.4.8 Dimensionality of the neuronal response 

One possibility is that our failure to observe autonomous dynamics during grasp stems from a 

failure to properly characterize the neural manifold, which in principle could be much higher 

dimensional for grasp than it is for reach. However, the first D dimensions of a manifold can be 

reliably estimated from fewer than 2*D projections if two conditions hold: the eigenvalue spectrum 

is not flat, and the samples approximate random projections of the underlying manifold (Halko et 

al., 2011). The scree plot shows that the first condition is met (Online materials Figure 1 – 

supplement 1F). To evaluate the second condition and determine whether neurons are random 

projections of the low-dimensional manifold, we applied a Gine-Ajne test (Prentice, 1978) to the 

first 5, 10, and 20 PCs. We found that the null hypothesis of spherical uniformity was not rejected 

(p>0.5 for all dimensionalities and data sets). While we cannot rule out that the possibility that 

there exists a small, unrecorded fraction of neurons that span a disjoint manifold subspace from 

that we measured, the failure to reject spherical uniformity provides evidence that these neurons 

approximate random projections. To further examine the possibility that dynamics occupy a space 

https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
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that we were unable to resolve with our neuronal sample, we implemented LFADS with a different 

number of latent factors. We found that, to the extent that decoding performance improved with 

additional latent factors, it levelled off at ~10 factors (Online materials Figure 2 – supplement 1). 

If the dynamics were distributed over a high-dimensional manifold, we might expect that 

performance would increase slowly with the number of latent factors over the entire range afforded 

by the sample size. This was not the case. 

Yet another possibility we considered is that the neuronal manifold beyond the first few 

dimensions reflects noise, which would preclude the identification of dynamics embedded in 

higher order dimensions. To examine this possibility, we assessed our ability to relate the 

monkeys’ behavior during the grasp task to the neural data over subsets of dimensions. First, we 

found that the ability to classify objects based on the population response projected on 

progressively smaller subspaces – removing high-variance principal components first – remained 

above chance even after dozens of PCs were removed. This suggests that behaviorally relevant 

neuronal activity was distributed over many dimensions, and that this signal clearly rose above the 

noise (Online materials Figure 3 - supplement 2A). For this analysis, we used multiclass linear 

discriminant analysis based on population responses evoked over a 150-ms window before object 

contact. Second, we found that the ability to decode kinematics based on the population response 

projected on progressively smaller subspaces remained above chance after removal of many PCs, 

consistent with the classification analysis (Online materials Figure 3 – supplement 2B). For this 

analysis, we used population responses over an 800-ms window centered on maximum aperture 

for reaching and movement onset for grasping. Thus, high-order PCs do not simply reflect noise 

but rather comprise behaviorally relevant signals.  

https://elifesciences.org/articles/58848/figures#content
https://elifesciences.org/articles/58848/figures#content
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In summary, then, our sample size is sufficient, in principle, to recover dynamics embedded in a 

high-dimensional manifold. The weak dynamics in the grasping response that we did recover 

occupy a low-dimensional manifold, and we were able to resolve the population response for the 

grasping behavior across a large number of dimensions (40+ principal components). 

3.5.4.9 Statistics 

For most of analyses, sample sizes were large and data were distributed approximately normally 

so we used two-sided t-test. However, for some analyses, the data were right-skewed and the 

sample size was small, so we used non-parametric tests, either the Wilcoxon signed rank test or 

the Mann-Whitney-Wilcoxon test depending on whether the samples were matched (for example, 

comparison of same kinematic DoFs reconstructed with either Gaussian smoothing or LFADS) or 

not (for example, comparison of kinematic DoFs reconstruction from different datasets).  

3.6 Data availability 

The data that support the findings of this study have been deposited in Dryad, accessible at 

https://doi.org/10.5061/dryad.xsj3tx9cm . 
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Chapter 4 | Kinematic and kinetic representations in the motor 

cortex of macaques 

4.1 Abstract 

From prehension to pianism, object interactions require precise control of both the movement of 

the hand and the forces it exerts on objects. The time-varying posture of the hand has been shown 

to be encoded in the activity of populations of neurons in the primary motor cortex (M1) before 

contact with an object. Less is known about kinematic representation in M1 post contact, or 

representation of manual forces that inevitably come into play to maintain contact with the object 

and manipulate it. One hypothesis is that force and kinematic representations are independent, 

while an alternative assumes joint coding for force and kinematics by the same neural populations. 

To study this question, we trained non-human primates to grasp sensorized objects with an 

instructed amount of force. We monitored both their time-varying hand movements and manual 

forces, as we recorded neural activity from M1. We then characterized the responses of individual 

units and identified subpopulations that encode kinematics, forces or both. We found that force 

signals in M1 are much weaker than their kinematic counterparts and can only be harnessed using 

decoders that exploit non-linear neural dynamics.  

4.2 Introduction 

The hand is a highly versatile organ, capable of executing a wide range of movements, from the 

mundane – like grasping – to the highly skilled – like playing a musical instrument. Manual 

behavior relies heavily on the primary motor cortex (M1, Broadman’s area 4) (Lemon, 2008; 

Sobinov & Bensmaia, 2021),  as evidenced by the severe deficits that result from lesions to M1 

(Isa, 2019; Rouiller et al., 1998). The majority of studies investigating limb movement 
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representations in M1 have focused on the proximal joints (shoulder and elbow) (Georgopoulos et 

al., 1992; Paninski et al., 2004) while the distal joints (wrist and hand) have received less attention 

due to the challenges of tracking manual behavior (Schaffelhofer & Scherberger, 2012). The few 

studies of hand representations in M1 focused on kinematic representations before contact with 

the object is established. In these studies, M1 neurons were shown to encode time-varying hand 

posture (Goodman et al., 2019; Menz et al., 2015; E. V. Okorokova et al., 2020). A hallmark of 

manual behavior, however, is that it involves interactions with objects and requires the precise 

regulation of forces exerted on them (Sobinov & Bensmaia, 2021). While the presence of a signal 

related to manual force has been identified in M1 (Evarts, 1968; Gardner et al., 2007; 

Georgopoulos et al., 1992; Hendrix et al., 2009; Hepp-Reymond et al., 1999; Intveld et al., 2018; 

Kalaska et al., 1989; Maier et al., 1993; Wannier et al., 1991), the relationship between M1 

responses and force remains to be elucidated due in large part to experimental limitations. Indeed, 

to disentangle the dependence of M1 responses on kinematics and interaction forces requires 

detailed and heretofore unavailable access to all of these behavioral variables.  

To overcome these technical challenges, we constructed an experimental apparatus that allows us 

to track hand kinematics and interaction forces with unprecedented precision while monkeys 

perform a prehensile task. We then recorded neural activity from a population of M1 neurons while 

animals performed this task and assessed the degree to which individual neurons encode hand 

kinematics and forces. We found that M1 activity carries information about both kinematics and 

force but that force signals are much weaker than their kinematic counterparts. We then built 

decoders of kinematics and force to investigate the population-level representation of these 

movement variables. We found that linear decoders of force perform poorly compared to their 

kinematic counterparts. However, decoders that can exploit neural dynamics can reliably extract 
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force information from M1 responses. These results suggest that M1 encodes kinematics and 

forces differently, which has implications for the development of brain-controlled bionic hands 

(Downey et al., 2018; Rastogi et al., 2021). 

4.3 Results 

4.3.1 Grasp force task 

Two rhesus macaques (M and P) each 

performed a grasping task requiring 

them to exert a visually cued amount 

of force on a manipulandum that 

consists of two thin metal plates 

mounted on motorized stages that 

allow to change the distance between 

plates and their rotation (Figure 4.1A). 

These manipulations were designed to 

mimic changes in the size and 

orientation of a grasped object and to 

elicit different hand postures. The 

plate surfaces were equipped with 

high-resolution sensor sheets 

(Tekscan) that enabled real-time monitoring of grasp force (Figure 4.1B). Each trial was initiated 

when the target force level was indicated on an LED display. When the monkey made contact with 

the object, another LED display tracked the total force exerted on the plates (the summed output 

of all the sensors on the object). Monkeys received a juice reward for maintaining the target force 

Figure 4.1 - (A) Task setup. Two monkeys were trained to reach for and grasp 

an object with instructed amount of force. Hand positions were tracked using 

8 cameras. (B) Single trial force profiles color-coded by force  target. (C) 

Five example joint angles inferred from the task, averaged within condition. 

The lines are color-coded according to the object (see top left inset for the 

legend).  
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for a specified duration (0.8-1 second). The object size took on one of three values (ranging from 

5 to 20 mm, tailored to the monkey’s hand), as did its orientation (ranging from -35 to +35⁰). Each 

object was grasped with one of three target forces (ranging from 2 to 10 N), and the animal received 

a water reward if it remained within 10-20% of the target force over the required hold duration. 

The monkeys completed a minimum of eight repetitions of each object-force condition. 

The total contact force was computed from the sum of the output of the sensors on both sides of 

the object. Monkeys exerted a variety of force profiles for each target condition (Figure 4.1B). 

Hand kinematics – including the 28 joint angles – were reconstructed from the output of eight 

cameras placed around the workspace using computer vision (Figure 4.1C). Neural activity was 

Figure 4.2 - Neural tunning. (A) Example PSTHs of recorded units in M1. Leftmost column: two units, tuned to object identity, 

color-coded using the same scheme as in Figure 4.1. (C). Middle column: two units, tuned to grasp force level, color-coded like 

Figure 4.1. (B). Rightmost column: two units tunned to both object and force. Here only three example objects are shown. Color 

intensity is proportional to target force. (B) Classification results as a function of time for object, force and both. Dashed lines 

show chance classification performance. (C) GLM  results for models with only force inputs and only kinematic inputs. Each dot 

is a single neuron pseudo-R squared value. (D) By neuron comparison of GLM  performance with only kinematic inputs vs kinematic 

and force inputs.  
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monitored with Utah electrode arrays (Blackrock Neurotech) in the hand and arm representation 

of M1. 

4.3.2 Motor cortical neurons are tuned to object and force 

First, we investigated the degree to which M1 units were modulated in a task-dependent way. We 

found that some neurons exhibited responses that were strongly dependent on object size and 

orientation (Figure 4.2A, left), suggesting that these were primarily encoding hand kinematics. 

Other neurons were strongly dependent on the target force and relatively insensitive to differences 

in the object (Figure 4.2A, middle). However, most neurons were modulated by both posture and 

force (Figure 4.2, right). To gauge object and force signals in the population response, we built 

classifiers of object identity and force level and found that classification performance was above 

chance, even before contact with the object was initiated (Figure 4.2B). 

Having established that the M1 population response is dependent on task variables, we sought to 

estimate the relative strengths of the object and force signals. To this end, we used demixed 

principal component analysis (dPCA, Kobak, et al., 2016) to compute the amount of variance 

explained by object, force,  and their interaction. We found that most neural variance (~80%) was 

condition independent, reflecting the structure of the reach that was common to all object and force 

conditions (Supplementary Figure 4.1). The object-dependent signal – presumably reflecting the 

object-specific grasp kinematics – was far weaker, accounting for 7.8% of the variance in the 

population response. The force-dependent signal was the weakest, capturing only 3.5% of the 

neural variance. Object-force interaction accounted for 5.8% of the variance which points to mixed 

coding for kinematics and force in the population (Supplementary Figure 4.1B). We conclude that 

M1 neurons are systematically modulated by the task, that most encode both the kinematics and 

forces, and that the force signal is weak at the single neuron and population levels.  
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4.3.3 Single neurons encode kinematics and force 

Having established that M1 responses were modulated by task variables, we next investigated the 

relationship between time-varying kinematics and force and the responses of individual neurons.  

To this end, we trained generalized linear regression models to capture the responses of M1 

neurons based on kinematic or force variables. We found that joint angles could account for neural 

responses better than force (mean R2 = 0.1 vs. 0.25 for kinematics and force, respectively). Note, 

however, that there were 28 joint angles and only 1 force input so the kinematic models benefit 

from many more degrees of freedom. When restricting the dimensionality of the kinematics to one 

principal component (PC), the performance of the kinematic and kinetic models was statistically 

indistinguishable (Supplementary Figure 4.2). Next, we assessed whether the neural predictions 

were improved with both force and kinematics included in the GLM. We found that, for the 

majority of neurons, performance was slightly but significantly improved with the hybrid models 

(kinematics and force) (Figure 4.2D), relative to the kinematics-only models. We conclude that 

most M1 neurons encode a combination of force and kinematic variables.  

Figure 4.3 - Decoding kinematics and force. (A) Comparison of force decoder performance for the three class of models: linear 

(purple), static non-linear (pink) and recurrent non-linear (green). WF – Wiener Filter, KF – Kalman Filter, Tree – ensemble 

regression tree, ANN – feedforward neural network, GRU – gated recurrent unit network, LSTM – long short-term memory 

network. Each point is one session. Sessions are pooled from two monkeys. (B) Same decoding models for kinematics before contact 

(left) and throughout the entire trial (right). Each point is one kinematic degree of freedom. 
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4.3.4 Kinematics and force can be decoded from neural population responses 

Examination of the mean population response and that of individual neurons suggests that the 

kinematics signal is strong in M1, while its force counterpart is weak. With this in mind, we gauged 

the degree to which we could decode the kinematics and force from the population response on 

individual trials using a decoding analysis. To this end, we implemented three classes of decoders 

of increasing complexity. The first was linear models (Wiener Filter or Kalman Filter, Figure 4.3, 

purple), which assume an instantaneous linear relationship between neural response and 

kinematics. The second class was non-linear decoders with static non-linearity (ANN - artificial 

neural network, or ensemble regression tree, Figure 4.3 pink), which assume an instantaneous 

relationship between neural response but can accommodate a non-linearity. The third class was 

non-linear decoders with recurrence (LSTM - long short-term memory model, or GRU – gated 

recurrent unit, Figure 4.3 green) that could exploit non-linear dynamics in the neural response.  

Replicating previous studies, we found that even the simple linear decoder could accurately 

reconstruct kinematics before contact with the object was established and that the more complex 

decoders did not improve the reconstructions Figure 4.3B), consistent with previous findings on 

similar datasets (Glaser et al., 2020; E. V. Okorokova et al., 2020). However, when decoders were 

applied to the entire trial, before and after contact, the non-linear dynamic decoders (LSTM or 

GRU) outperformed all other decoders Figure 4.3B). In other words, while the relationship 

between kinematics and neuronal response is linear before contact, it becomes non-linear and 

dynamic after contact.  

Next, we applied the same decoders to force. We found that linear decoder could capture coarse 

force fluctuations, but often failed to account for force adjustments throughout the hold period 

(Figure 4.3A, purple). Decoder performance did not improve with the addition of static 
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nonlinearity (ANN or Tree, Figure 4.3A, pink), suggesting that static non-linearity is not enough 

to explain force fluctuations. The second hypothesis was that force is linearly encoded in 

dynamical patterns of activity. To test this hypothesis, we implemented a linear decoder with a 

history term (Kalman Filter), which could thus exploit neural dynamics that were linearly related 

to force. We found that the decoding performance of the linear dynamic models was similar to 

static linear or static non-linear decoders. However, the decoders which can accommodate non-

linear dynamics (LSTM, GRU) substantially outperformed all other decoders (Figure 4.3A, green). 

Our results are consistent with the hypothesis that force signals are encoded in non-linear dynamics 

in the motor cortex and can only be harnessed by decoders that can exploit those dynamics.  

4.4 Discussion 

This study aims to investigate the kinematic and force representations in the motor cortex using 

encoding and decoding modes. We find that motor neurons encode both kinematics and force and 

that the force-related signal is weaker than its kinematic counterpart. Furthermore, we observed 

that decoding continuous force requires models that can capture non-linear dynamics in the neural 

signal, such as recurrent neural networks.  

4.4.1 Force representation in M1  

Studies in non-human primates have shown that M1 responses are modulated by force (Evarts, 

1968; Gardner et al., 2007; Georgopoulos et al., 1992; Hendrix et al., 2009; Hepp-Reymond et al., 

1999; Intveld et al., 2018; Kalaska et al., 1989; Maier et al., 1993; Wannier et al., 1991). However, 

in these early studies, the response modulation by force was not systematically quantified nor was 

it disentangled from the modulation by kinematics. Later studies found that force signals in M1 

are generally weak compared to their kinematic counterparts (Intveld et al., 2018; Rastogi et al., 

2021). Consistent with these later studies, we found that force-related signals account for almost 
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three times less variance in the population response than do kinematic ones. The dominance of 

kinematic signals is surprising given that grasp force, which can reach 550 N in humans (Sobinov 

& Bensmaia, 2021), is associated with substantially greater muscle activations than hand 

movements (Zajac, 1989). One possibility is that force control is not mediated by the rostral region 

of M1, the target of the present study. Indeed, force signals are stronger in AIP and F5 than in M1 

in the context of a similar task (Intveld et al., 2018). Another candidate for force control is caudal 

M1, which has a higher proportion of monosynaptic motor units (Rathelot & Strick, 2009) and 

thus more direct access to the muscles (Lemon, 2008). Nonetheless, the force signal in M1 is 

sufficiently robust to allow for decoding the intended force, as described below.  

4.4.2 Force and kinematic interactions in M1  

We found that M1 neurons encode hand posture, as evidenced by the fact that the inclusion of 

kinematic parameters in the Generalized Linear Model improves the neural prediction. In a small 

subset of neurons, the addition of force further improved the neural prediction. Thus, kinematic 

and force signals are intermixed in the responses of individual neurons, as might be expected to 

the extent that M1 neurons drive muscular activity, and muscular activity drives both kinematics 

and forces. At the population level, kinematic and force signals interact in M1, as evidenced by a 

significant object x force interaction term in the demixed principal components analysis 

(Supplementary Figure 4.1). The interaction term accounted for as much variance in the M1 

activity as did the force main effect term, suggesting that the neural signature of force is strongly 

dependent upon posture. This dependence is unsurprising given that both kinematics and forces 

are mediated by muscular activity and the muscular activity to generate a given force is highly 

posture-dependent. The observed interaction between force and posture is consistent with previous 

findings (Hendrix et al., 2009; Intveld et al., 2018). Indeed, while the interaction term in these 



78 
 

previous studies accounted for little variance in the M1 response, so did the force main effect term, 

consistent with our findings (Intveld et al., 2018; Rastogi et al., 2021). We conclude that force and 

kinematic signals are carried by overlapping populations of M1 neurons. The interplay between 

kinematic and kinetic signals in M1 is also evinced by poor post-contact kinematic decoding. 

Indeed, decoders of posture built on data obtained before contact generalized poorly to post-

contact and vice versa, as expected if kinematic and kinetic signals are intermixed.   

4.4.3 The mapping between M1 response and force is dynamic 

While kinematics can be linearly decoded from the M1 response (Carmena et al., 2003; Intveld et 

al., 2018; Rastogi et al., 2021), forces can not. Indeed, force signals in M1 peak around grasp onset, 

and then decay rapidly, with a second burst at grasp offset. The mapping between the M1 response 

and force is thus highly dynamic throughout the grasp and thus cannot be captured with a linear 

model. While non-linear models that assume a static non-linearity can account for the non-linear 

relationship between time-averaged M1 responses and force (Hepp-Reymond et al., 1999), these 

models cannot capture the dynamics in the relationship between response and force. We show that 

RNNs, which are capable of accommodating a dynamical mapping, can be used to accurately infer 

the intended force from the M1 response.  

4.5 Future directions 

Having investigated the neural basis of whole hand force, we will investigate the neural 

mechanisms that mediate individual digit forces. Indeed, we can command graded amounts of 

force for individual digits and combinations of digits. To examine the neural underpinnings of this 

ability, we will apply inverse dynamics to the data we have collected and characterize the 

relationship between M1 activity and the estimated joint torques. We anticipate that encoding 

models that take as input the joint torques, rather than whole hand forces, will provide far better 
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predictions of neuronal activity. To the extent that we can estimate joint torques in the absence of 

object contact (driven entirely by the mass of the joints), this representation of the hand may unify 

kinematics and force into a single, joint-based framework. Joint torques can be used as a proxy for 

muscle activations, which are indirectly driven by M1 activity. Ultimately, however, the objective 

of this line of work is to express hand kinematics and kinetics as patterns of muscular activity, 

which will further unify the different behavioral parameters and express these in terms of the 

effectors to which M1 has access.    

4.6 Methods 

4.6.1 Animals and surgery 

Neural recordings were collected from two male rhesus macaques (ages 11 and 9 years at the time 

of surgery). They were each chronically implanted with a single Utah electrode array in the right 

primary motor cortex (Brodmann area 4, M1). The electrode lengths were 1.5mm, with uniform 

spacing of 400um aligned on a 10 by 10 grid. Arrays were placed in the arm and hand 

representation of the motor cortex, as confirmed by electrically stimulating the cortex during 

surgery with surface electrodes and observing corresponding twitches before array implantation. 

Surgical procedures consisted of the implantation of a head-fixing post onto the skull, craniotomy, 

intraoperative electrical stimulation of the brain surface, and implantation of the array. All 

procedures were performed under aseptic conditions and anesthesia induced with ketamine HCl 

(20 mg kg–1, IM) and maintained with isoflurane (10–25 mg kg–1 per hour, inhaled). Handling 

of animals was performed in accordance with the rules and regulations of the University of 

Chicago Animal Care and Use Committee. Monkeys received care from a full-time husbandry 

staff, and a full-time veterinary staff monitored the animals' health. 
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4.6.2 Experimental apparatus 

We have designed an experimental apparatus that allows us to present to the animal “objects” that 

vary in size and orientation. Specifically, two parallel plates are mounted on motorized stages such 

that the distance between them can be varied systematically, thereby generating objects of varying 

sizes. Furthermore, the plates are mounted on a rotating platform such that the orientation of the 

plates can also be varied. Varying the separation between the plates and their orientation compels 

the animal to adopt different hand postures to grasp the object. Additionally, we instrumented the 

surface of the plates with dense sensor sheets (Tekscan, Boston, MA) that allow us to track the 

forces exerted on the object at each point of contact with high sensitivity (error < 5%) and temporal 

resolution (300 Hz). Two LED displays were mounted just above the object to indicate the target 

and current force levels exerted by the animal.   

4.6.3 Behavioral task 

We trained monkeys to perform a visually guided grasping task, in which they were required to 

grasp an object with a visually cued amount of force to achieve a reward. Each trial was initiated 

when an LED display came on to indicate the target force level to the animal. The animal then 

reached for the plates and, upon contact, another LED display tracked the total forces exerted on 

the plates in real-time. Monkeys received a juice reward when the target force was maintained for 

0.8-1 consecutive seconds. Monkeys grasped up to 9 different objects with apertures ranging from 

5 to 20 mm and rotations ranging from -35 to 35 degrees. Each object was grasped with one of 

three force targets that varied from 2 to 10N. Monkeys performed at least 8 repetitions of each 

object-force condition. 
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4.6.4 Forces 

Grasp force was monitored continuously using two dense sensor sheets mounted on the outer 

surface of the “object”. Each sensor sheet (Tekscan, Sensor 5101, Tekscan, Boston, MA) consists 

of 1,936 ‘sensels’ arranged in a square grid of size (111.8mm)2. We recorded force values from 

each ‘sensel’ on the two sensor sheets at 300Hz. We used total force, computed as a sum of all 

sensel values from both plates for continuous feedback to the monkey throughout the experiment. 

For offline analyses, we first denoised each sensel value by first subtracting its baseline activity 

(no touch condition). We then summed all ‘sensel’ values to get total force. Finally, we low-pass 

filtered the total force with 3rd order Butterworth filter with a cutoff of 10Hz.  

4.6.5 Kinematics 

The grasping behavior of the animals was recorded using 8 synchronized cameras (FLIR BFS-U3-

16S2C-CS) at 50 frames per second. We used a machine vision algorithm (DeepLabCut, (Mathis 

et al., 2018)) to automatically label a set of 34 body landmarks based on a set of manually labeled 

frames. We triangulated the two-dimensional positions of those landmarks to obtain their three-

dimensional locations using the relative postures of the cameras. These 3D body markers together 

with a scaled skeletal model of the animal were used as an input to an inverse kinematics algorithm 

(SimTK OpenSim, Delp, et al., 2007) to obtain time-varying joint angles for 28 anatomical degrees 

of freedom. The code used for processing is available online (Greenspon & Sobinov, 

https://github.com/CMGreenspon/NCams). 

4.6.6 Electrophysiology and neural data preprocessing 

Neural data was collected with CerePlex Direct data acquisition system coupled with CerePlex E 

digital headstage (Blackrock Microsystems). For each channel, we bandpass filtered neural signals 

from 250Hz to 3kHz and extracted threshold crossing events at a -4.5 RMS value. We then used 

https://github.com/CMGreenspon/NCams
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offline spike sorting (Offline Sorter, Plexon, Dallas, TX) to remove non-spike threshold crossings 

and isolate individual units. Spikes were smoothed with a Gaussian filter with a standard deviation 

of 20ms unless otherwise specified.  

4.6.7 Alignment and PSTHs 

Since trial duration varied significantly, we used multiple alignment events when averaging data 

for illustration purposes. We used three alignment events labeled as ‘grasp’, ‘reward’, and 

‘release’. ‘Grasp’ and ‘release’ were defined based on the total force profile as the first and last 

time point when total force exceeded 0.5N, respectively. ‘Reward’ is the time point when the 

monkey received a juice reward for maintaining the force for the instructed amount of time.  

For PSTH, we found trials that belong to the same group (force, object type, or object-force 

combination) and took median-smoothed neural responses around the three alignment events.  

4.6.8 Classification 

To assess whether there is information about object, force, or object-force in the neural responses, 

we used linear discriminant analysis (LDA) to classify object identity (9 conditions), force target 

(3 conditions), or object and force (27 conditions). We used a leave-one-out cross-validation 

procedure, in which for every trial, we trained a classifier on all other trials and tested it on the 

held-out trial. We used a sliding window of 100ms with a step of 20ms to assess classification 

performance (proportion of trials that we classified correctly) in time.  

4.6.9 dPCA 

Standard principal component analysis (PCA) is not very informative when it comes to 

understanding the influence of specific task parameters on neural variance, as individual units can 

exhibit mixed selectivity for different parameters. To separate the influence of each task parameter, 
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we implemented a methodology called demixed principal component analysis (dPCA)(Kobak et 

al., 2016), and found the components that explain the most variance within each task parameter, 

namely object and force target. dPCA also allows to find condition independent components that 

are consistent across all task conditions and an interaction component (force-object) that captures 

the interaction effect of force and object variations. 

4.6.10 Generalized Linear Models 

One of the main goals of the present study was to establish which aspects of prehensile behavior 

(kinematics or force) drove the responses of individual motor neurons. To this end, we used 

Generalized Linear Models (GLMs) with logarithmic non-linearity to predict the neuronal 

responses over the epochs of interest. We used an epoch from 500ms before object contact through 

100ms after object release. Kinematics and forces were aligned with neural responses with a 

latency in the range of +-150ms that was optimized for each neuron. We fit three types of models: 

force, kinematic, and combined. We used a 5-fold cross-validation procedure and assessed the 

performance of our models using adjusted R2 corrected for the number of inputs. 

4.6.11 Decoding models 

We used six models to decode continuous grasp force and kinematics, split into 3 general 

categories: linear, non-linear, and dynamic. We used two example models from each category to 

avoid conclusions based on the idiosyncratic behavior of a specific decoder. For linear methods 

we used Wiener filter and Kalman filter; for non-linear - regression tree ensemble (Tree) and 

Feedforward Artificial Neural Network (ANN); for dynamic - Gated Recurrent Unit (GRU) and 

Long Short-term Memory Network (LSTM).  

Wiener filter was modeled as a linear regression, in which force signal is represented as a weighted 

sum of neural inputs. The coefficients of the model were inferred using Ordinary Least Squares 
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estimation. Kalman filter was fit similarly to that in Chapters 2 and 3 (E. V. Okorokova et al., 

2020). The main difference between Wiener and Kalman filters is that the Kalman filter accounts 

for the dynamics in the modeled system (kinematics or force) by estimating an autoregressive 

model in addition to the neural regression model. 

The regression tree ensemble involved boosting 100 regression trees using Least-squares boosting 

algorithm. ANN, GRU, and LSTM each contained up to 150 units arranged in one layer, followed 

by a dropout layer, and a regression layer. Hyperparameters, including the number of units, were 

optimized for each network to achieve the best cross-validation fit. Prior to fitting the networks, 

inputs and outputs were range normalized. 

We used a 5-fold cross-validation procedure in which we split the observation data pseudo-

randomly (keeping the number of trials in each condition balanced) into five testing sets. For each 

Supplementary Figure 4.1 - Demixed principal component analysis. A. color code for objects and force levels for C. B. Fraction of 

variance explained by object, force and object-force interaction. C. Time varying components for force, object, condition 

independent, and object-force interaction projections, color-coded by object shape. The shading of the lines indicated target force 

level. 
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test set, we trained the model on the remaining data 80% of the data. We used the coefficient of 

determination (R2) and root mean squared error (RMSE) to assess decoder performance. 
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Chapter 5 | Grasp force decoding for brain-computer interfaces 

5.1 Abstract 

Intracortical brain-computer interfaces (iBCIs) have achieved remarkable progress in restoring 

arm and hand movement by inferring motor intent from neural signals in the primary motor cortex 

(M1) and realizing the intended movements in a bionic limb. However, the majority of the work 

has focused on limb kinematics, enabling users to adopt desired limb postures. However, manual 

interactions with objects require the precise application of forces, which implies a different mode 

of limb control that has been largely overlooked. One of the major obstacles to incorporating force 

control is the lack of understanding of how manual forces are encoded in M1. To fill this gap, we 

recorded M1 activity from three individuals with tetraplegia using chronically implanted Utah 

electrode arrays as they attempted to grasp virtual objects with varying force. We found that 

information about force in the motor cortex is weak but significant and most prominent around the 

onset of grasp. With this in mind, we developed real-time continuous decoders that harness force 

signals in M1 to enable the virtual hand to exert force. We demonstrated that recurrent neural 

networks, which can exploit the non-linear dynamics of the M1 response, significantly outperform 

standard linear or non-linear decoders. Our findings pave the way for the development of brain-

controlled bionic hands that can not only precisely shape the hand but also allow for well-

controlled force application. 

5.2 Introduction 

Intracortical brain-computer interfaces (iBCI) show great promise for restoring hand function in 

patients with tetraplegia through the use of bionic hands (Ajiboye et al., 2017; Blabe et al., 2015; 

Collinger et al., 2013; Hochberg et al., 2012b; Wodlinger et al., 2014). However, current 

approaches to restoring hand and arm function are restricted to kinematic control, enabling users 
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to control the position or speed of the arm and hand (Collinger et al., 2013; Hochberg et al., 2012b; 

Wodlinger et al., 2014). However, manual interactions with objects require the ability to modulate 

the forces exerted on them, a capability that kinematic decoders cannot support (Downey et al., 

2018; Rastogi et al., 2021). A major challenge in incorporating force control into brain-controlled 

bionic hands has been that the neural basis of this control mode is poorly understood. Indeed, while 

M1 activity related to force has been identified in studies with non-human primates (Evarts, 1968; 

Gardner et al., 2007; Georgopoulos et al., 1992; Hendrix et al., 2009; Hepp-Reymond et al., 1999; 

Intveld et al., 2018; Kalaska et al., 1989; Maier et al., 1993; Wannier et al., 1991) and humans 

(Branco, de Boer, et al., 2019; Branco, Geukes, et al., 2019; Downey et al., 2018; Rastogi et al., 

2021), the relationship between neuronal activity and force is poorly understood. Accordingly, 

harnessing these signals to decode grasp force in a BCI setting has proven challenging. To date, 

M1 signals were used to decode one or a few discrete force levels (Carmena et al., 2003; Dekleva 

et al., 2021; Downey et al., 2018; Rastogi et al., 2021), excluding the online control of graded 

forces, critical for achieving 

seamless object manipulation. 

To fill this gap, we recorded M1 

activity in 3 individuals with 

tetraplegia while they performed a 

grasp force task in a virtual 

environment. We found that 

signals in M1 carry information 

about the target force level, 

particularly just before the onset 

Figure 5.1 – (A) Array placement in participants C1, P2 and P3. M1 – arrays 

in motor cortex, S1 – arrays in somatosensory cortex. (B) Mujoco virtual 

environment. The participant controlled their avatar limb that grasped a virtual 

cylindrical object. (C) Example of force command sequence with 4 force levels. 

Force target was indicated by a verbal cue and a color of an object. 
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of grasp. We then implemented various continuous decoders of force and found that only those 

that harnessed nonlinear dynamics in the M1 population response could achieve seamless force 

control. These results pave the way for improved intracortical brain-computer interfaces that 

enable users to not only control hand posture but also manual interaction forces. 

5.3 Results 

5.3.1 iBCI grasp force task 

The study involved three human participants (C1, P1, and P2) whose hands were paralyzed as a 

result of a spinal cord injury. Each participant was implanted with two Utah electrode arrays 

(Blackrock Neurotech) in the hand representation of the motor cortex (M1). The participants 

controlled a limb avatar in a physics engine platform (Mujoco, Figure 3A), which they experienced 

through a virtual reality headset (Valve Index). They used the virtual limb to grasp virtual objects 

at different force levels (varying from 2 to 8 depending on the session and participant), cued by 

the color of the object and verbal instruction (Figure 3B). Initially, virtual limb movements and 

force feedback were under computer control and participants observed and attempted to perform 

the actions of the virtual limb. The neural activity during this observation phase was used to 

construct decoders of hand closing velocity and grasp force. The participants then performed the 

task in virtual reality under full brain control. 

5.3.2 Motor cortex contains weak but significant force signal 

First, we assessed the degree to which M1 signals in the human motor cortex were modulated by 

the task. To this end, we compared each neuron’s firing rate before and after cue onset, at which 

time responses often increased. We found that 55, 36, and 35% of recorded channels were 

significantly modulated by the task for subjects C1, P2, and P3, respectively (Wilcoxon sign rank 

test, p<0.01). Most M1 channels exhibited a strong transient at the onset of grasp (Figure 5.1A, 
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left plot) and a weaker transient upon object release. A few channels were also visibly modulated 

by force, exhibiting either increases (Figure 5.1A middle plot) or decreases in response at higher 

forces (Figure 5.1A right plot). Out of all the M1 channels that were modulated by the task, 45, 

33, and 24% produced responses that were significantly modulated by force for participants C1, 

P2, and P3, respectively  (ANOVA, p < 0.01). Thus, force signals are weak in human M1, as is the 

case in monkeys. 

Figure 5.2 - (A) Mean response profiles (peristimulus time histograms) to 4 levels of grasp force on three motor channels from 

participant C1. Different colors denote different force levels. The responses are aligned to contact (of the virtual hand with the 

object).  (B) Classification accuracy as a function of time for 8 levels of grasp force. Inset: confusion matrix for the 8 decoded force 

levels at onset of grasp. (C) Coefficient of determination for three types of decoders of continuous force: linear, non-linear, and 

dynamic. Points represent sessions pooled from all three subjects. Horizontal lines show median performance level across all 

sessions. 
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5.3.3 Most information about force is contained around grasp onset 

Next, we examined the time course over which the force signal evolves in M1. To this end, we 

tested whether we could classify force level, using a linear discriminant analysis, based on 

responses of all recorded channels over a 100-ms window slid over the entire trial. We found 

classification performance improved beyond chance soon after cue onset, then began to decline, 

dropping back to chance shortly after object release (Figure 5.2B, Supplementary Figure 5.1). 

Overall classification performance was relatively poor, even at its peak, reflecting the weakness 

of the force-related signal in M1. More importantly, force information was unstable, exhibiting a 

phasic peak near grasp onset, then decreasing substantially over the hold period.   

5.3.4 Dynamic non-linear decoders can capture continuous force fluctuations 

Having established that the force signal was largely phasic and decreased throughout each trial, 

we gauged the degree to which force could be decoded continuously from M1 responses. We tested 

three types of decoders: standard linear decoder often used for real-time prosthetic control (Wiener 

filter), non-linear decoder with static non-linearity (feedforward artificial neural network), and 

dynamic decoder with built-in non-linear temporal dependence (recurrent neural network with 

long short-term memory layers) (see Methods). We found that for all subjects and sessions, the 

dynamic decoder significantly outperformed both linear and non-linear methods (Figure 5.2D), 

suggesting that there is a non-linear dynamic relationship between target force and neural 

responses in motor cortex, consistent with the observed instability of the force signal observed in 

the classification analysis.  

5.3.5 Dynamic decoder allows accurate force decoding online  

While the dynamic decoder outperforms other decoders offline, good offline performance does not 

always translate into improved online performance (Glaser et al., 2020; Pandarinath & Bensmaia, 
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2022). With this in mind, we 

assessed the participants’ ability 

to perform the force task with our 

dynamic decoder. As in the 

offline case, the participants were 

cued to exert one of several levels 

of force – ranging from 2 to 8, 

depending on the session – on the 

virtual object. Both the hand 

closure and the level of force 

were decoded from M1 signals 

with a dynamic decoder, trained 

on the observation data as 

described above. We found that 

the decoder enabled outstanding performance on the task, yielding a performance of 88, 75, and 

81% correct for participants C1, P2, and P3, respectively. In addition, we trained three decoders – 

linear, non-linear, and dynamic – in a single session and had participant C1 perform the force task 

with each decoder in separate experimental blocks. We found that the dynamic decoder yielded 

consistently better accuracy than the other two decoders, as was found with offline decoding 

(Figure 5.3). We further challenged the decoders with a more complex task, which required 

adjusting the force three times throughout each trial: once upon initial contact, and then twice more 

after that (Supplementary Figure 5.2A). Force levels were, again, cued on a computer monitor. The 

participant performed the online task either with a standard linear decoder or with the dynamic 

Figure 5.3 – (A) Example reconstructed force traces with Linear (top, 

blue) and Dynamic (bottom, red) decoders. Shaded grey areas indicate 

target force interval. Several trials are superimposed and aligned to first 

contact. (B) Proportion of successful trials performed by subject C1 using 

Linear, Non-linear or Dynamic decoders online. (C) Online decoding 

RMSE for the three decoders in subject C1. Each point is a trial. 

Horizontal bar is median RMSE across all trials.  
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decoder (each trained on the standard observation task). We found that the task could not be 

accomplished with the linear decoder (0%), but the dynamic decoder yielded a mean performance 

of 68.8% (Supplementary Figure 5.2B). Thus, a recurrent neural network is well suited to extract 

force signals from the M1 population response, presumably because it can accommodate the 

dynamic representation of force in M1, while the other decoder types cannot.  

5.4 Discussion 

We find that M1 activity carries information about attempted force, in three tetraplegic subjects. 

Accordingly, force cannot be reliably decoded from M1 activity using standard linear and non-

linear decoders. However, decoders that can exploit non-linear dynamics can be used to reconstruct 

forces offline and to continuously infer intended force online. 

5.4.1 Force signals in the human motor cortex are weak 

As mentioned in the previous chapter, studies with non-human primates have demonstrated that 

M1 responses are influenced by force, albeit to a lesser degree than by kinematics (Evarts, 1968; 

Gardner et al., 2007; Georgopoulos et al., 1992; Hendrix et al., 2009; Hepp-Reymond et al., 1999; 

Intveld et al., 2018; Kalaska et al., 1989; Maier et al., 1993; Wannier et al., 1991; Intveld et al., 

2018). The same phenomenon has been observed in previous studies in humans with tetraplegia 

during attempted grasp. In these studies, participants were instructed to attempt to grasp a virtual 

object with different levels of force (Downey et al., 2018; Rastogi et al., 2021). M1 neurons were 

only weakly modulated by force: the strongest force signal occurred around object contact and 

declined rapidly thereafter. The force condition could be inferred from the M1 response using a 

linear classifier but performance was far from perfect (below 80%) despite the small number of 

conditions.  
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Our classification results generally match previous ones with more grasp force levels (up to 8). 

Indeed, the force signal was poor, peaking at the onset of the grasp (Figure 5.2A, B)(cf. Dekleva 

et al., 2021), and supported poor force classification performance using linear classifiers. We 

extended these previous findings by building and testing continuous decoders of grasp force, which 

is challenging (Dekleva et al., 2021; Downey et al., 2018). While the standard linear and non-

linear decoders yielded poor force decoding, a recurrent neural network was able to accurately 

recover the force information despite the underlying instability of the force signals in M1. We 

hypothesize that force information is encoded in dynamical patterns of M1 activity, more so than 

its  kinematics counterpart (Carmena et al., 2003; Glaser et al., 2020; E. V. Okorokova et al., 2020), 

consistent with our results in monkeys (see Chapter 4). In one study, continuous decoder of force 

tracked the time course of the force exertion (Carmena et al., 2003). In this experiment, the 

monkeys were exerting force at regular intervals, and the linear decoder was able to capture this 

periodicity. However, the decoder failed to match the measured force level, as did our linear force 

decoders (Figure 5.3A, blue trace). Our dynamic decoder is thus the first continuous decoder of 

force that can accommodate different levels of force.  

5.4.2 Dynamic non-linearity in neural responses 

Previous studies report non-linearities between M1 responses and grasp force (Hepp-Reymond et 

al., 1999). To investigate this systematically, we implemented non-linear decoders with static or 

dynamic non-linearities. We found that decoders with static non-linearities did not provide a 

reliable mapping between the M1 population response and time-varying force. On the other hand, 

a decoder that incorporated a dynamic non-linearity, which could then accommodate dynamic non-

linearities in the force signal, was able to capture grasp force reliably both offline and online.  
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One potential explanation for the success of the dynamic decoder is that it acted as a classifier, 

extracting information about intended force from the transient at the onset of grasp, when this 

information is most prominent, and then maintaining the level of force until it detected a release 

signal. The smoothness and stability of the reconstructed traces in the grasp and hold task are 

consistent with this hypothesis (Figure 5.3A, red). Two observations argue against this view. First, 

the dynamic decoder achieved equally good performance with an increased number of force targets 

(up to 8), a close approximation to a continuous task. Second, the decoder was able to 

accommodate a modified version of the task, in which the participant (C1) adjusted grasp force 

twice throughout the trial. Indeed, the dynamic decoder enabled these adjustments even when it 

was only trained on the simple grasp task, without adjustments (Supplementary Figure 5.2). 

5.4.3 Limitations  

There is increasing evidence for context-dependent coding in motor cortex, including encoding of 

force (Dekleva et al., 2023; Hepp-Reymond et al., 1999; Shelchkova et al., 2022). While recurrent 

neural networks excel at learning dependencies in the observed data, they often fail to generalize 

to new patterns of activity (Deo et al., 2023). Therefore, our approach might not be suited for more 

complex tasks, for example, grasp and transfer of objects, or force control of individual digits.  

Another aspect of grasp force that has not been investigated in the current study is the contribution 

of tactile feedback associated with producing varying amounts of force on the grasped objects. 

Indeed, without tactile feedback proper object manipulation and grasp force control is challenging. 

Incorporation of tactile feedback in BCI control is currently possible via intracortical 

microstimulation (ICMS) of somatosensory cortex (S1)(Bensmaia & Miller, 2014; Flesher et al., 

2016). While ICMS has shown to be functionally effective in some motor tasks (Flesher et al., 

2021), it was also shown to alter motor cortical activity through intracortical connections between 
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S1 and M1, which could significantly affect decoder performance (Shelchkova et al., 2022). 

Whether our dynamic decoders could work efficiently with perceived tactile sensations and ICMS-

induced perturbations remains to be tested. 

5.5 Methods 

5.5.1 Participants 

The study involved three participants who provided informed consent as part of a multi-site clinical 

trial (NCT01894802). Participant C1 was a 57-year-old male at the time of the implant who had a 

C4-level ASIA D spinal cord injury (SCI) 35 years prior. He had no control over the intrinsic or 

extrinsic muscles of his right hand but could move his arm with some weakness in upper limb 

muscles. Participant P2 was a 28-year-old male with a C5 motor/C6 sensory ASIA B SCI that 

occurred 10 years prior. He had no control over the intrinsic or extrinsic muscles of his right hand 

but had limited control of wrist flexion and extension. Proximal limb control at the shoulder was 

intact, as was elbow flexion, but he could not voluntarily extend his elbow. Participant P3 was also 

a 28-year-old male with a C6 ASIA B SCI that occurred 12 years prior. He had no functional 

control of the intrinsic or extrinsic muscles of his right hand but could move his arm with weakness 

in upper limb muscles.  

5.5.2 Array implantation 

We surgically implanted four Neuroport microelectrode arrays (Blackrock Neurotech, Salt Lake 

City, UT, USA) in the left hemisphere of each participant. In somatosensory cortex (S1), two 

arrays, measuring 2.4 mm x 4 mm, each had sixty 1.5-mm electrode shanks wired in a 

checkerboard pattern, allowing for 32 electrodes to be stimulated. In motor cortex (M1), the other 

two arrays measured 4 mm x 4 mm and had one hundred 1.5-mm electrode shanks, with 96 

(participants C1 and P3) or 88 (participant P2) wired (active), and four inactive shanks located at 
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the corners of all arrays (with an additional 8 for participant P2). In participant P2, the motor cortex 

arrays were metalized with platinum, while the somatosensory arrays were coated in sputtered 

iridium oxide. In participants C1 and P3, all electrodes were coated with sputtered iridium oxide. 

Each participant had two percutaneous connectors placed on their skull, with each connected to 

one sensory and one motor array. We used functional neuroimaging of the participants attempting 

to make movements of the hand and arm, and imagining feeling sensations on their fingertips 

during surgery, to target array placement within the constraints of anatomical features such as 

blood vessels and cortical topography. Array locations, shown in Figure 5.1A on structural MRI 

models of each participant’s brain, were confirmed using intraoperative photographs after 

insertion. 

5.5.3 Neural recordings 

Only data from M1 arrays were analyzed in this study. Neural signals were recorded at 30 kHz 

using the NeuroPort system (Blackrock Neurotech, Salt Lake City, UT, USA). The data were high-

pass filtered with a 3rd order Butterworth filter above 350Hz. Whenever the signal crossed a 

threshold (-4.25 RMS, set at the start of each recording session), a spiking event was recorded, and 

a snippet of the waveform was saved. Spikes were binned in 20-ms bins for offline analyses and 

decoding. Only channels with firing rate above 0.5Hz were used.  

5.5.4 Virtual environment task 

We used a physics engine platform (Mujoco, DeepMind Technologies, London, UK) to simulate 

a virtual environment with an avatar hand and a rigid cylindrical object. The participants observed 

a virtual room through a VR headset (Valve Index). Each trial began with the hand in a neutral 

open position next to a gray-colored cylindrical object. A verbal command was given to the 

participants indicating a number from 1 to K (maximum number of force levels for a particular 
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session), which corresponded to a specific amount of force to be applied when grasping the object. 

The color of the object changed based on the given target force. Participants then attempted to 

grasp the object with the instructed amount of force as they observed the virtual hand closing 

around the object. They were required to maintain contact with the object for a variable amount of 

time, ranging from 0.5 to 2 seconds, before releasing it upon another verbal command. Force 

targets were randomized. The number of target force levels (K) differed for the three participants. 

Subject C1 underwent five sessions with three force levels, four sessions with four levels, and one 

session with eight levels. Subject P2 had one session with two levels and another with four levels, 

while subject P3 had one session with two levels. 

The experiment was conducted in two stages: observation (O) and full brain control (FBC). During 

the observation stage, the physics engine controlled the movement of the hand and the force 

exerted on the object. Participants were required to attempt the task as they watched it being 

performed. In the control stage, an online decoder, trained on data collected during the observation 

stage, was employed to direct the hand's movement and the force applied to the object. In each 

session, participants performed 40-80 trials of observation, followed by 20-60 trials of full-brain 

control. 

5.5.5 Data alignment and neural modulation 

Spikes in each motor channel were binned in 20ms bins and smoothed with a 100ms moving 

average filter. We evaluated task modulation in each channel by computing a paired sample 

Wilcoxon signed rank test on the mean neural responses 2 seconds prior to cue presentation and 4 

seconds after cue presentation. We assumed the channel was task modulated if p-value of the test 

was below 0.01. For all task-modulated channels we also selected force-modulated channels using 
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ANOVA grouped by target force. Channels with a p-value below 0.01 were deemed force-

dependent. 

For peristimulus time histogram (PSTH) plots, the binned spikes from each trial of observation 

dataset were aligned to force target cue and then averaged for each grasp condition, resulting in 

four time-varying signals, representing each force level.  

5.5.6 Classification 

To assess whether there is information about force in the neural responses, we used linear 

discriminant analysis (LDA) to classify force target (2-8 conditions, depending on the subject and 

session). We used a leave-one-out cross-validation procedure, in which for every trial, we trained 

a classifier on all other trials and tested it on the held-out trial. We used a sliding window of 100ms 

with a step of 20ms to assess classification performance (proportion of trials that we classified 

correctly) in time.  

5.5.7 Offline force decoding 

We used three models to decode continuous grasp force offline: linear regression (referred to as 

Linear model), feedforward artificial neural network (Non-linear model), and recurrent neural 

network (Dynamic model). All decoders were restricted to be causal to accommodate the online 

regime, in which we only used neural data no later than 20ms prior to the current time stamp, and 

Gaussian spike filter was replaced with exponential smoothing. 

Linear model assumes that a force signal can be represented as a weighted sum of neural inputs. 

The coefficients of the model were inferred using Ordinary least squares estimation. The non-

linear model was constructed as a feedforward neural network with one fully connected layer of 
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150 units. The dynamic model consisted of a layer of 150 LSTM nodes. Hyperparameters of both 

networks were optimized to achieve the best cross-validation fit. 

We used a 5-fold cross-validation procedure in which we split the observation data pseudo-

randomly (keeping the number of trials in each condition balanced) into five testing sets. For each 

test set, we trained the model on the remaining data 80% of the data. We used the coefficient of 

determination (R2) and root mean squared error (RMSE) to assess decoder performance. 

5.5.8 Online force decoding 

We implemented Linear, Non-linear, and Dynamic decoders online in subject C1 and Dynamic 

decoders only in subjects P2 and P3. For each session, we first collected observation data, then 

trained the decoders. Finally, we applied the trained decoders to infer grasp force with incoming 

neural signals. If multiple decoders were tested, we used the same observation data to train them, 

and tested them online in random order, keeping the subject blinded to the type of decoder he was 

using. The trial was considered successful if the subject could maintain grasp force within the 

target zone for 1 second. No visual, auditory, or tactile feedback was given to the subject. 

A control adjustable force experiment was conducted only in subject C1. For this experiment, the 

subject was required to adjust grasp force twice during the hold period. The sequence of grasp 

targets consisted of 4 possible force levels chosen randomly for each trial. The trial was deemed 

successful if the subject could maintain the force at all three targets for 0.5sec each without 
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dropping the object. Offline training time was under 5 minutes for all decoders. Real-time 

inference was under 10ms. 
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Chapter 6 | Biomimetic encoding model for restoring touch in bionic 

hands through a nerve interface4 

6.1  Abstract 

Background: Hand function can be restored in upper-limb amputees by equipping them with 

anthropomorphic prostheses controlled with signals from residual muscles. The dexterity of these 

bionic hands is severely limited in large part by the absence of tactile feedback about interactions 

with objects. We propose that, to the extent that artificial touch mimics its natural counterpart, 

these sensory signals will be more easily integrated into the motor plan for object manipulation. 

Methods: We describe an approach to convey tactile feedback through electrical stimulation of the 

residual somatosensory nerves that mimics the aggregate activity of tactile fibers that would be 

produced in the nerve of a native hand during object interactions. Specifically, we build a 

parsimonious model that maps the stimulus – described as time-varying indentation depth, 

indentation rate, and acceleration – into continuous estimates of the time-varying population firing 

rate and of the size of the recruited afferent population. Results: The simple model can reconstruct 

aggregate afferent responses to a wide range of stimuli, including those experienced during 

activities of daily living. Conclusion: We discuss how the proposed model can be implemented 

with a peripheral nerve interface and anticipate it will lead to improved dexterity for prosthetic 

hands. 

 
4 This chapter was published: Okorokova, E. V., He, Q., & Bensmaia, S. J. (2018). Biomimetic encoding model for 

restoring touch in bionic hands through a nerve interface. Journal of neural engineering, 15(6), 066033. 

Supplementary materials are available online.  

https://iopscience.iop.org/article/10.1088/1741-2552/aae398/meta
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6.2  Introduction 

Manual interactions with objects involve not only precise control of the fingers and wrist but also 

a continuous barrage of somatosensory signals from the hand (Johansson & Flanagan, 2009). 

These signals convey information about hand movements and postures, about physical interactions 

with the object – contact location, contact timing, contact pressure, slip –, and about the object 

itself – its size, shape, and texture. Some of these signals, particularly those related to hand 

proprioception, are carried by nerve fibers that innervate the muscles and tendons. Others, those 

related to object contact in particular, are carried by thousands of tactile nerve fibers that innervate 

the palmar surface of the hand. The different classes of nerve fibers differ in their response 

properties: slowly adapting type 1 fibers (SA1) respond best to skin indentations, slowly adapting 

type 2 fibers (SA2) to skin stretch, rapidly adapting (RA) fibers and Pacinian corpuscle (PC) fibers 

to low and high frequency vibrations, respectively (Saal & Bensmaia, 2015). SA2 fibers are not 

included in TouchSim because these fibers absent in the glabrous skin of monkeys (from whose 

afferent responses TouchSim was developed). Without these tactile signals, dexterity is severely 

compromised (Augurelle, 2002; Witney, Wing, Thonnard, & Smith, 2004). 

Much of what is known about neural coding in the peripheral nerve stems from recordings from 

individual nerve fibers in anesthetized monkeys or awake humans (Talbot & Mountcastle, 1968; 

Vallbo & Hagbarth, 1968). Attempts to reconstruct the responses of afferent populations based on 

single afferent recordings typically involve estimating time averaged firing rates across afferent 

populations. The prevailing conclusion from this body of work is that individual tactile fibers carry 

ambiguous information about a contacted object and that tactile information is distributed over 

populations of fibers (Johnson, 2001; Muniak, Ray, Hsiao, Dammann, & Bensmaia, 2007; Saal & 

Bensmaia, 2014). 



108 
 

We have recently developed a computational model – dubbed TouchSim – that simulates the 

responses of all tactile fibers to any spatiotemporal deformation of the skin of the hand (Saal, 

Delhaye, Rayhaun, & Bensmaia, 2017). With this model, we can characterize with unprecedented 

spatial and temporal precision how tactile information is distributed across afferent populations. 

In addition to its potential to address basic questions about sensory coding in the somatosensory 

nerves, this newfound capability can inform precisely how to restore the sense of touch in bionic 

hands through electrical activation of tactile nerve fibers (Delhaye, Saal, & Bensmaia, 2016; S. S. 

Kim et al., 2009; Saal & Bensmaia, 2015). 

Indeed, given the importance of touch to dexterity, to construct an agile bionic hand requires not 

only the ability to move the hand precisely but also the means to receive tactile signals about the 

consequences of these movements, particularly as they pertain to object interactions (Bensmaia & 

Miller, 2014; Saal & Bensmaia, 2015). In principle, TouchSim provides us with a precise blueprint 

of tactile restoration as it describes how each tactile nerve fiber will respond to object contact. 

However, manual interactions with objects evoke responses that differ across fibers depending on 

their type, their location with respect to the stimulus, and even idiosyncratic differences across 

nerve fibers of a given type (Roland S Johansson & Flanagan, 2009; Johnson, 2001; Vallbo & 

Hagbarth, 1968; (Dong et al., 2013)). Accordingly, to restore natural touch would require 

stimulating each fiber independently with its own idiosyncratic stimulation pattern, a feat that 

current technologies are nowhere near ready to accomplish. Indeed, state-of-the-art electrical 

interfaces with the nerve comprise tens or hundreds of channels, not the twelve or so thousand that 

would be required for fully biomimetic restoration of touch on the palmar surface of the hand. 

Furthermore, at typical stimulation levels, each channel activates tens or hundreds of fibers and 

evokes highly unnatural synchronous responses in these fibers. Until much denser and more 
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selective neural interfaces become available, then, attempts to mimic nerve responses will have to 

settle for mimicking aggregate neural responses (Delhaye et al., 2016; Saal & Bensmaia, 2015).  

TouchSim can be used to simulate the aggregate behavior of hundreds or thousands of fibers by 

pooling simulated responses across small afferent populations. From the perspective of 

engineering a bionic hand, however, simulating tens of thousands of fibers to then collapse them 

into a small number of unidimensional signals is highly inefficient.  

With this in mind, we have developed a new, intuitive, computationally inexpensive encoding 

algorithm, one that comprises only a handful of parameters but that reconstructs with high accuracy 

the aggregate response of the nerve to time-varying pressure applied to the fingertip. We examine 

the properties of this population signal and demonstrate that it far outperforms more traditional 

sensory encoding algorithms in reconstructing the nerve activity evoked during activities of daily 

living (Clark et al., 2014; Gurpreet Singh Dhillon & Horch, 2005; Graczyk et al., 2016; Stanisa 

Raspopovic, 2014; Schiefer, Tan, Sidek, & Tyler, 2016; Daniel W. Tan et al., 2014). We propose 

that this simple model is precisely what is needed to convert the output of force or pressure sensors 

on bionic hands into biologically realistic patterns of electrical stimulation of the nerve.  Bionic 

hands endowed with this algorithm will provide more realistic tactile feedback to the user thereby 

supporting dexterous interactions with objects. More naturalistic feedback may also improve the 

embodiment of bionic hands and the confidence of users in using them (Marasco, Kim, Colgate, 

Peshkin, & Kuiken, 2011; Schiefer et al., 2016). 

6.3  Results  

The proposed strategy to restore touch consists of converting the output of sensors on the prosthetic 

hand into patterns of electrical stimulation to evoke naturalistic patterns of aggregate activity in 

the residual nerve (Figure 6.1). To this end, we simulate, using TouchSim (Saal et al., 2017), the 
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spiking responses of a population of nerve fibers when a tactile stimulus is applied to a localized 

patch of skin. We then pool all the simulated responses to obtain the time-varying population firing 

rate (𝐹𝑅𝑡). We also evaluate the time-varying surface of afferent activation by inscribing all active 

afferent locations in a polygon and computing its area (𝐴𝑡). This latter quantity represents the size 

of the activated population, which is related to but not identical with the population firing rate. 

Indeed, increasing stimulus intensity results not only in an increase in the firing rate of activated 

tactile fibers but also in the recruitment of additional fibers with receptive fields away from the 

point of contact (Johnson, 1974; Muniak et al., 2007). As discussed below, these two aspects of 

the response – firing rate and activated area – are required to map neural response onto parameters 

of electrical stimulation. Next, we develop a simple mapping between the stimulus – decomposed 

into its time varying indentation, indentation rate, and acceleration – and the aggregate response 

representations (firing rate, area of activation) to obviate the need for the computationally 

demanding and excessively detailed simulation of the entire nerve. Finally, we compare the 

resulting biomimetic encoding model to a more conventional encoding model that signals 

instantaneous pressure.  

6.4  Biomimetic encoding model 

First, we simulated the responses to mechanical noise whose frequency composition matched that 

of natural interactions with objects and of indentations of varying durations and amplitudes as the 

latter are overrepresented during manual interactions with objects (during maintained grasp, for 

example). Stimulus amplitudes spanned the range experienced during activities of daily living (0 

to 3 mm). The training set was thus selected to yield a model that is well suited for common manual 

tasks (see below). Having simulated the aggregate response, we then regressed the time-varying 

firing rate (𝐹𝑅𝑡) and time-varying area of activation (𝐴𝑡) onto the indentation depth, rate, and 
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accelerations of the stimulus. For area, this linear regression was the input to a sigmoidal function 

to capture the leveling-off of activated area at high amplitudes (Figure 6.1 and Supplementary 

Figure 1C). Both models included several time points for all three variables to capture stimulus 

Figure 6.1 - Biomimetic tactile feedback in a bionic hand. Top flow: contact with an object produces temporal patterns of 

pressure on a sensor at the fingertip of the prosthetic hand. In principle, the sensor output could be used as input to TouchSim, 

which would simulate the responses of each afferent innervating the glabrous skin. Spikes could then be pooled across all 

afferents and binned to yield the firing rate of the whole nerve (FRt), as well as the recruitment of nerve fibers (At). These two 

metrics indicate how to modulate frequency and pulse charge to produce a biomimetic pattern of nerve activation. Bottom flow: 

the computationally demanding simulation of TouchSim can be replaced with a simpler model that comprises only a handful of 

parameters to predict aggregate nerve activity. To this end, we find a mapping between stimulus (pressure) and population 

activity (firing rate and recruitment) using a combination of linear and nonlinear filters. 
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dynamics (5 time points, spanning a total of 10 ms for each variable in firing rate model, 2 lags 

spanning a total of 20 ms for each variable in area model, see Methods). The resulting models thus 

mapped the time-varying response onto the time-varying stimulus with up to 15 stimulus-related 

Figure 6.2 - Model validation with parametric stimuli. (A) Inset: the index finger pad was stimulated with a set of tactile stimuli—noise, 

sinusoids and sustained indentations (steps). Main: examples of model fits. Top: time-varying stimulus trace. Middle: population firing 

rate $(F{{R}_{t}})$  computed using the full afferent model (TouchSim, black) and using the simplified biomimetic model (red). Bottom: 

time varying area of activation computed using TouchSim (black) and using the biomimetic model (blue). R2 denotes the match between 

TouchSim and the simple model predictions for that trace. (B) Mean goodness-of-fit for the firing rate and area models trained to 

reconstruct low-frequency stimuli (up to 10 Hz). The test sample consisted of noise filtered below 10 Hz (different seed), steps (of random 

amplitudes and durations), and sinusoids (from 1 to 10 Hz). The simple model captures most of the variance in both the aggregate firing 

rate and activated area over this range of frequencies. (C) Mean goodness-of-fit of firing rate (red) and area (blue) predictions as a 

function of the low-pass cut-off frequency of the stimuli for noise, sinusoids, aand steps. Forty models were trained with varying cut-off 

frequencies (5 Hz–200 Hz) and tested on sinusoids and noise (comprising components with frequencies at or below the training cut-off) 

and steps of random amplitudes and duration. At high frequencies, the aggregate response becomes tonic rather than oscillatory so 

performance plummets for sinusoids and noise (see detailed fits in supplementary figure 2). 
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parameters and an intercept (with three additional parameters for the area computation to capture 

saturation). 

6.5  Model performance 

6.5.1 Noise, sinusoids, and steps 

First, we examined the ability of the model to account for responses to parametric stimuli including 

sinusoids over a range of frequencies, pink noise with different band-passes, and sustained 

indentations varying in duration and amplitude (Figure 6.2A). We found that model performance 

was high for these stimuli, accounting for the bulk of the variance in the simulated aggregate firing 

rate (R2 = 0.85, 0.87, 0.9 for noise, sinusoids and steps, respectively; Figure 6.2B- red) and area of 

activation (R2 = 0.83, 0.61, and 0.71; Figure 6.2B - blue). Note that the model precisely captured 

the hallmark response of the nerve to indentations, which is dominated by onset and offset 

transients and is very weak during static indentation. This property of the nerve response is 

overlooked in standard encoding models that track time-varying pressure (Clark et al., 2014; 

Gurpreet Singh Dhillon & Horch, 2005; Graczyk et al., 2016; Stanisa Raspopovic, 2014; Schiefer 

et al., 2016; Daniel W. Tan et al., 2014). Testing the model across a wider range of frequencies, 

we found that performance deteriorated for high-frequency stimuli, especially for sinusoidal 

stimuli (> 60 Hz) (Figure 6.2C and Supplementary Figure 2), a phenomenon that can be attributed 

to two causes. First, the nerve is differentially sensitive at different frequencies and the model does 

not comprise a term that explicitly incorporates this frequency dependence (Supplementary Figure 

1C). Second, although individual afferents – particularly RA and PC fibers – produce phase-locked 

responses to high-frequency vibrations (Mackevicius, Best, Saal, & Bensmaia, 2012; Talbot & 

Mountcastle, 1968), which in principle the model could follow, this signal vanishes when 
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responses are pooled because different fibers spike at different phases within each cycle (Manfredi 

et al., 2012).  

6.5.2 Natural stimuli 

Next, we tested the model’s ability to account for responses evoked during manual interactions 

with objects. Specifically, we measured the time-varying pressure at the fingertips and palm as a 

Figure 6.3 - Model validation with natural stimuli. (A) Sample traces from pressure sensors on the fingertips and the palm along 

with the firing rate FRt estimated using TouchSim or the biomimetic model for four activities of daily living: opening a door, typing 

on a keyboard, using a mouse, and picking up a cup. Top: each trace denotes the stimulus, color coded by location (see inset). 

Bottom traces: population firing rate (black) versus predicted firing rate computed for each task and each projection field (same 

color as the corresponding stimulus). R2 denotes match between TouchSim and simple model predictions for that trace. (B) Model 

performance, averaged across all sessions and hand locations with significant sensor output. The green and orange bars denote the 

performance of the conventional and biomimetic encoding models, respectively. Error bars show standard errors in each sample. 

(C) Performance of the two models for simulated tactile stimuli mimicking natural stimuli (n  =  200). 
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subject performed a series of activities of daily living (ADL), including grasping a cup, writing 

with a pen, typing, using a computer mouse, and opening a door. The pressure traces evoked during 

ADLs are dominated by low frequencies and informed the selection of training stimuli to fit the 

model. Time-varying skin deformations at each skin location were estimated from the pressure 

output of the sensor and were used as input to the model. We then compared model predictions to 

aggregate responses simulated using TouchSim and found that the linear model accounted for a 

large proportion of the variance in the ADL-evoked responses (Figure 6.3A-B, R2=0.84).  

Next, we compared the performance of the biomimetic encoding model to that of the standard 

encoding model, which simply tracks pressure. We found that the biomimetic model massively 

outperformed the standard model on the ADL-evoked responses (∆R2 = 0.6, paired t-test: t(15) = 

17.86, p = 1.6e-11). As a further test of the model, we simulated the responses to 200 stimuli 

designed to mimic ADLs (see Methods) and found that the biomimetic model far outperformed 

the standard algorithm for these stimuli as well (∆R2 = 0.57, paired t-test: t(199) = 159, p = 9.8e-

212, Figure 6.3C). The biomimetic encoding model outperforms the standard one primarily 

because it takes into account the fact that the nerve is much more responsive to contact transients 

– by including velocity and acceleration terms – and responds only weakly to sustained pressure 

(Figure 6.2A and Figure 6.3A).  

6.6  Discussion 

6.6.1  Stimulation strategy 

The proposed biomimetic model provides a faithful estimate of the response that one would wish 

to elicit in populations of tactile fibers. The overall firing rate (𝐹𝑅𝑡) evoked in the nerve, given 

the spatially restricted stimulus, is likely confined to a single fascicle. The firing rate is determined 

by the activation charge rate, essentially the amount of suprathreshold current delivered to the 
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fascicle (Graczyk et al., 2016). However, standard electrical pulse trains comprise two parameters 

– pulse charge and frequency – and population firing rate can be controlled by modulating either 

parameter. In contrast, area of activation is a proxy for the cross-section of the fascicle that is 

activated at any given time, a quantity that can be controlled by modulating pulse charge. The ratio 

of firing rate to area constitutes an estimate of the mean firing rate of activated neurons, a quantity 

that can be controlled by modulating pulse frequency. We find that the ratio (of population firing 

rate to number of activated fibers) estimated using our model accurately reproduces the ratio 

derived from simulated responses with TouchSim (Supplementary Figure 3). The simple model 

proposed here can then be used to specify the values of these two parameters of electrical 

stimulation as a function of time to produce naturalistic patterns of nerve activation based on the 

time-varying output of pressure sensors on a prosthetic hand.  

The accuracy of our modeling approach places greater emphasis on understanding precisely how 

stimulation regime – pulse charge, pulse frequency, and pulse waveform – maps onto evoked 

afferent activation. To predict the neuronal response evoked by a pattern of electrical stimulation 

requires a realistic biophysical model of somatosensory nerves. Recently, single-cell- and 

population-level models have been developed to describe the response of the nerve to different 

patterns of injected current (O’Brien, 2016). These models, however, are specific to the neural 

interface used for stimulation. Indeed, intrafascicular and extrafascicular interfaces imply different 

tissue conductivities and electric field distributions and, thus, different patterns of afferent 

recruitment with the changes in injected current (Grinberg, Schiefer, Tyler, & Gustafson, 2008; 

Veltink, van AlstÉ, & Boom, 1988). Intraneural interfaces consist of electrodes that penetrate the 

epineurium and make direct contact with nerve fibers (LIFE - Boretius et al., 2010; TIME - 

Gurpreet S. Dhillon, Lawrence, Hutchinson, & Horch, 2004; USEA - Ledbetter et al., 2013). For 
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these interfaces, modeling electrically evoked spiking activity typically involves the 

implementation of a model of spike generation at the Nodes of Ranvier, a model of myelinated 

internodes, and a description of the extracellular space (O’Brien, 2016). For extrafascicular 

interfaces (FINE - Leventhal & Durand, 2004; Tyler & Durand, 2002), however, the stimulating 

electrodes do not directly contact their neuronal targets and neuronal activation also depends on 

spatial factors, such as electrode configuration (Miller, Abbas, Nourski, Hu, & Robinson, 2003), 

pulse polarity (Rattay, 1989), electrode-fiber distance (Mino, Rubinstein, Miller, & Abbas, 2004), 

and nerve fiber geometry (Woo, Miller, & Abbas, 2010). In many cases, spatial factors are 

idiosyncratic and must be assessed on a subject by subject basis, for example the distribution of 

nerve fascicles at the current injection site and the geometry of the channel relative to the nerve 

fibers (N. A. Brill & Tyler, 2017; N. Brill & Tyler, 2011; Gustafson et al., 2009). Furthermore, 

stimulation regimes must be evaluated for their potential to cause damage to the neural tissue with 

chronic deployment (Briaire & Frijns, 2006). While a detailed discussion of how to design a 

precise and accurate mapping between electrical stimulation and neuronal activation falls outside 

the scope of the present paper, the proposed encoding model establishes a need for such a mapping, 

which would make possible the elicitation of neuronal patterns of activation whose naturalism is 

limited only by the capabilities of the neural interface. 
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6.6.2 Submodality-specific models 

Some evidence suggests that tactile nerve fibers are clustered according to their modalities (Hallin 

et al., 1991; Niu et al., 2013). That is, handfuls of fibers of a single class (SA1, RA, PC) are grouped 

together, and these bundles are interleaved seemingly randomly throughout the fascicle. However, 

the spatial scale over which this clustering occurs is too small and its distribution over the fascicle 

too idiosyncratic to be reliably exploited by a neural interface. Nevertheless, once spatial 

Figure 6.4 -  Model implementation details. Firing rate model performance depends on the location of the projection field, the sampling 

rate of the sensor, and the size of the contact area (corresponding to the size of the projection field). (A) Schematic of the hand used in 

the model with abbreviations of hand areas and locations of the centers of projection fields used for each area (black dots). (B) Firing 

rate traces FRt  computed for three locations of the hand using the same time-varying noise stimulus. Responses from the distal digits 

(D1d and D2d) are similar to each other, but differ from responses from the palm (PW1). (C) R2  between FRt  traces derived for 

different locations of the hand. (D) Mean performance as a function of sampling frequency. Model performance improves as temporal 

resolution of the sensor input improves. (E) Mean performance as a function of contact area size (diameter of the pin). The model was 

trained with a contact area of diameter of 2, 4, and 6 mm, respectively, then was tested with different smaller/larger contact areas with 

diameters ranging from 0.1 to 7 mm. For all analyses, the model was trained using sustained indentations and pink noise filtered below 

5 Hz. Test set consisted of steps of varying length and amplitude, noise of random seed and sinusoids of varying frequencies (<5 Hz). 

Model must be tailored to the size of the projection field. 
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selectivity of stimulation is improved, the present model can be used to stimulate each tactile 

submodality appropriately (Supplementary Figure 4). For low-frequency stimuli, the submodality-

specific models are accurate for SA1 and RA responses (Supplementary Figure 4C). As might be 

expected, however, the reconstruction of PC responses is poor because this class of fibers responds 

poorly at low frequencies (Supplementary Figure 4A-B).  

6.6.3  Implementation notes 

The sampling rate of sensors on the bionic hand is a key design specification for the proposed 

biomimetic model. Indeed, afferent responses cannot be accurately estimated if the temporal 

resolution of the input is too coarse (less than 10ms, Figure 6.4D). If a sufficient resolution cannot 

be achieved, model performance can be rescued to an extent by resampling the sensor values 

through interpolation.   

Another important consideration relates to the size and location of the projection field as the model 

parameters depend on the size of the estimated afferent population and the location of their 

receptive fields. Indeed, the number of tactile fibers and the relative proportions of afferents of 

each type depend on both of these factors. We designed the model for a contact area with a diameter 

of 6 mm on the fingertip, thus corresponding to a projection field of equivalent size. However, this 

specific model breaks down when the contact area is much smaller or much bigger (see  Figure 

6.4E), because of the concomitant changes in the sizes and composition of the activated nerve 

fibers. In light of this, successful deployment of the model requires that the projection field of each 

electrode be mapped precisely, for example by having the subject report the location and spatial 

extent of electrically evoked sensations (see Clark et al., 2014; Tan et al., 2014). The idea is to 

design the model for each electrode such that the contact area matches the spatial extent of the 

projection field. As a result, stimulation will produce a sensation whose spatial extent is 
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commensurate with that of a stimulus of equivalent contact area. Otherwise, a mismatch between 

the size of the projection field and the resulting sensations might occur. Regarding location, models 

designed for one digit can be applied to other digits. However, the distal fingertips and the rest of 

the hand yield different models given the pronounced differences in innervation densities of the 

three classes of tactile nerve fibers across these skin locations (see  Figure 6.4A-C). Be that as it 

may, the model for each electrode can readily be designed for the location and spatial extent of its 

projection field to optimize naturalness. 

6.6.4  Limitations of the approach 

As discussed above, the ideal somatosensory prosthesis would stimulate each nerve fiber 

independently with a pulse train designed to mimic that fiber’s idiosyncratic response. However, 

given the limitations of current neural interfaces, we developed a linear model to describe the 

relationship between the time-varying stimulus and the pooled responses of nerve fibers that are 

liable to be activated by a given stimulating electrode. While the relationship between pooled firing 

rates and indentation depth is approximately linear at low frequencies, which dominate during 

activities of daily living, this linearity breaks down at high frequencies (Supplementary Figure 

1C). Another source of lack of fit, described above, is the frequency-dependence of the afferent 

response, particularly at high frequencies, which is not explicitly taken into consideration in the 

model. These non-linearities result in a reduction in the prediction accuracy of the model, which 

is based on a linear mapping, particularly at the higher frequencies. Even at the low frequencies, 

the proposed model does not capture all of the variance in the neuronal response, as might be 

expected given the complex non-linearities between the stimulus and the responses of individual 

afferents. However, in the frequency range relevant for daily interactions with objects, model 
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predictions of aggregate afferent activity are substantially more faithful to the natural neural 

response than are predictions from the standard model. 

The critical bottleneck for the proposed approach, however, is not the failure of the linear modeling 

approach to capture the fine spatio-temporal structure of the neural response but rather the limited 

selectivity of current stimulation technologies. Indeed, synchronous stimulation of many afferents 

limits the spatial resolution of the sensory feedback, obscuring spatial patterning in the stimulus 

that falls within the aggregate receptive field of the stimulated afferents. Furthermore, while the 

aggregate response of the stimulated afferents will be approximately biomimetic, the response of 

individual afferents will not, a feature that is likely to compromise the naturalness of the resulting 

percept. However, the model provides a close approximation of the response at the level that can 

be manipulated with existing technologies, so paves the way for the most biomimetic response that 

can be achieved given technological limitations. To the extent that the spatio-temporal dynamics 

of the aggregate nerve response matter, and given that afferent signals converge as they ascend the 

somatosensory neuraxis, the proposed sensory encoding algorithm is likely to improve the 

intuitiveness and utility of the resulting sensory feedback.  

6.7  Methods 

6.7.1  Computing population firing rate and activated area from TouchSim simulations 

TouchSim simulates afferent responses in two steps. First, the stresses resulting from a stimulus 

applied at the surface of the skin are estimated as two distinct components, one quasi-static, the 

other dynamic. The quasi-static component confers to tactile fibers response properties resulting 

from contact mechanics, such as edge enhancement and surround suppression. The dynamic 

component propagates through the skin surface as a wave and confers to afferents the ability to 

respond to vibration at a distance from contact. Second, TouchSim computes the spiking responses 
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of nerve fibers – which tile the hand at their known densities (Johansson & Westling, 1984) – 

based on these two stress components using an integrate-and-fire mechanism. Responses simulated 

by TouchSim have been shown to match their measured counterparts closely – with single-digit 

millisecond precision – across a wide range of experimental conditions (Saal et al., 2017).  

Simulated responses of all afferents with receptive fields on the palmar surface of the hand were 

pooled to obtain the time-varying population firing rate of the nerve (𝐹𝑅𝑡) in time increments of 2 

ms (Figure 6.1 and Supplementary Figure 2B).  

To estimate area of activation, we pooled the coordinates of all the SA1 and RA fibers that were 

activated within each 10-ms bin and inscribed them in a polygon of minimum area,  𝐴𝑡 (Figure 6.1 

and Supplementary Figure 1B). We excluded PC fibers in this computation because their receptive 

fields are so large as to span most of the hand, and a given PC fiber is activated by touch almost 

anywhere on the hand.  

6.7.2  Training stimulus 

The firing rate of populations of afferents has been shown to be approximately linear (Muniak et 

al., 2007) (Supplementary Figure 1C), but the slope of this function is dependent on stimulus 

frequency. To keep the model simple, we did not incorporate any frequency-dependent terms. As 

a result, the parameters of the model were dependent on the (training) stimulus used to obtain 

them. Indeed, the frequency composition of the training stimulus will determine the degree to 

which different frequency components are weighted in the determination of these parameters. 

Second, sustained indentations of the skin are common during natural interactions with objects – 

during maintained grasp for instance – but absent in a stimulus consisting entirely of noise. With 

this in mind, we designed a training stimulus that comprises both aspects observed in natural 

scenes. The stimulus comprised a mechanical noise component with power spectrum that 
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decreases with frequency proportional to 1/f (pink noise)-. The noise was low-pass filtered to 

truncate high frequency components (see Results section on performance dependence on cut-off 

frequency) and the resulting stimulus was scaled to a maximum indentation amplitude of 3 mm 

(Supplementary Figure 1A). The training stimulus also contained skin indentations of varying 

duration – ranging from 1 to 5 seconds – and varying amplitude – ranging from 0 to 3 mm. We 

verified that the indentation rates of the resulting stimulus fell within a physiologically plausible 

range and did not exceed 80-90 cm/sec, the maximum indentation rate observed during object 

interactions (Säfström & Edin, 2008). A stimulus as short as 100 seconds was sufficient to train 

both the firing rate and the area models.  

6.7.3  Biomimetic encoding model  

We estimate time-varying firing rate (𝐹𝑅̂𝑡) and dynamic area of activation(𝐴̂𝑡) using the following 

models (see Figure 6.1): 

{
𝐹𝑅̂𝑡 =  ℎ𝐹𝑅(𝑊𝐹𝑅𝑆𝑡)

     𝐴̂𝑡 = ℎ𝐴(𝑏, 𝑊𝐴𝑆𝑡)
 

𝑆𝑡 = [1  𝑠𝑡, 𝑠𝑡−1, … , 𝑠𝑡−𝑘, |𝑠̇𝑡|, |𝑠̇𝑡−1|, … , |𝑠̇𝑡−𝑘|, |𝑠̈t|, |𝑠̈t−1|, … , |𝑠̈t−k|] is a vector of stimulus 

features including indentation depth (𝑠), rate (𝑠̇), and acceleration (𝑠̈), with k lags denoting the 

number of time lags. 

ℎ𝐹𝑅(. ) is a nonlinearity of the form ℎ𝐹𝑅(𝑥) =  {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

  to guarantee that firing rate is always 

nonnegative; 

ℎ𝐴(. ) is a nonlinearity defined by a sigmoid function to capture the observed saturation of activated 

area at high amplitudes: 
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      ℎ𝐴(𝑥, 𝑏) =
𝑏0

1+ 𝑒−𝑏1(𝑥− 𝑏2) 

We estimate parameters of the firing rate model (𝑊𝐹𝑅) using least squares regression and 

parameters of the area model (𝑊𝐴, 𝑏) using nonlinear optimization with the Levenberg–Marquardt 

algorithm. We optimized the number of lags 𝑘1−3 to achieve stable cross-validation performance 

across all test stimuli with both models (k = 5 for firing rate and k = 2  for activation area). 

6.7.4  Conventional Encoding Model 

In the majority of sensory feedback algorithms implemented to date in experiments with human 

amputees (see Clark et al., 2014; Dhillon & Horch, 2005; Graczyk et al., 2016; Stanisa Raspopovic, 

2014; Schiefer, Tan, Sidek, & Tyler, 2016; Daniel W. Tan et al., 2014), the firing rate of the nerve 

𝐹𝑅̂𝑡 linearly tracks the time-varying stimulus 𝑠𝑡, such that  

𝐹𝑅̂𝑡  ∝  𝑠𝑡 

We used this model as a baseline, linearly scaling it to best fit the simulated response.  

6.7.5  Model validation 

To test the model, we first assessed the degree to which it could reproduce the time-varying firing 

rate and activated area of afferent population simulated with TouchSim using a set of parametric 

stimuli. Specifically, we computed the output of the model to sinusoids varying in frequency and 

amplitude, noise stimuli with the same spectral profile used to obtain the parameters but with a 

different random seed, and step indentations varying in duration and amplitude. We then compared 

this output with the aggregate firing rate computed using TouchSim. The coefficient of 

determination (R2) was used to gauge model fit. 
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Next, we assessed the model performance on stimuli that reproduce those experienced during 

every day interactions with objects. To this end, we instrumented an adult male participant with a 

sensorized glove (FingerTPS, PPS, Inc., Los Angeles, CA) with six pressure sensors – one on each 

fingertip and one on the palm – and had him perform five standard manual tasks: grasping a cup, 

writing with a pen, typing, clicking a computer mouse and opening a door (for detailed description 

of the data collection, see Kim, Mihalas, Russell, Dong, & Bensmaia, 2011). The output of each 

sensor was converted to indentation depth by scaling it to a maximum of 3 mm. We resampled the 

pressure output from 64Hz to 512 Hz using spline interpolation and filtered the resulting trace with 

a low-pass cut-off of 5Hz to eliminate high-frequency noise. The resulting trace was used as input 

to TouchSim and to the biomimetic encoding model. Models were tailored to the location of the 

projection field, with different sets of coefficients for different sensor locations. 

To further test the biomimetic model, we generated a set of synthetic stimuli designed to mimic 

ADLs in terms of their spectral profile. Specifically, we pooled all ADL samples (n=23) with 

indentation depths greater than 1 mm and estimated their power spectrum using Multi-taper Power 

Spectral Density estimate (Chronux, Matlab). We then generated 200 white noise samples, each 

10 seconds long, converted them to the frequency domain, adjusted their power spectrum to match 

that of ADLs, then converted the resulting spectra back to time domain. The code for computing 

parameters of the biomimetic model is available at http://bensmaialab.org/code/touchmime/. 
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Chapter 7 | Conclusions 

7.1 Summary of results 

The hand is a highly sophisticated and adaptable mechanism that endows humans with an 

extraordinary ability for interacting with objects in a versatile and effortless manner. This ability 

stems from the intricate anatomy of the hand and the associated neural circuitry, which allows for 

precise and coordinated movements. The delicate and intricate finger movements of a pianist while 

playing a piece, the skilled manipulations of a surgeon during surgery, or the deft movements of a 

sculptor molding clay, are all testament to the versatility and complexity of the hand as an effector. 

The objective of this dissertation is to probe the neural mechanisms that mediate hand dexterity 

through studies of motor (M1) and somatosensory (S1) cortices of non-human primates and then 

to use these findings to improve brain-computer interfaces for individuals whose manual dexterity 

was compromised. We focused our attention on grasping behavior (before and after contact with 

an object) which is one of the fundamental functions of the primate hand.  

First, in Chapter 2, we looked at hand preshaping and associated neural responses in the 

sensorimotor cortex as non-human primates grasped objects of various shapes and sizes. We show 

that we can accurately decode kinematics pre-contact with a variety of decoding methods from 

both M1 and S1 even with a small number of neural signals and that different cortical fields carry 

different amounts of information about hand kinematics. In particular, area 3a contained more 

information about hand kinematics than areas 1 and 2 of somatosensory cortex before contact with 

an object was established, which hints at its importance for proprioceptive coding of the hand (Lutz 

& Bensmaia, 2021; E. V. Okorokova et al., 2020).  



131 
 

Second, in Chapter 3, we investigated whether neural population activity is similar during reaching 

and grasping, the two behaviors that involve fundamentally different patterns of kinematics and 

muscle activations. Previously, low-dimensional linear dynamics were observed in neuronal 

populations of motor cortex when monkeys perform reaching movements (Churchland et al., 2012; 

Shenoy et al., 2013). Using a variety of analytical approaches, we showed that M1 does not exhibit 

such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 

are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by 

afferent inputs rather than by intrinsic dynamics (Suresh et al., 2020). 

The first two chapters focused on understanding hand encoding before contact with an object is 

established. However, most manual behaviors involve interaction with objects, which introduces 

another variable into play, namely manual forces. To study force and kinematic representations 

systematically during prehension, we developed a new experimental apparatus that allows us to 

track both hand movement and contact forces as the monkey grasps objects of various 

configurations. In Chapter 4, we show weaker force representation in the motor cortex compared 

to kinematic representation. Nonetheless, decoders that can leverage neural dynamics can reliably 

extract force information from M1 responses. These findings suggest that M1 encodes kinematics 

and forces differently. 

Drawing inspiration from these findings, we examined the representation of grasp force in 

individuals with tetraplegia in Chapter 5. Our study revealed a similarly weak force signal in the 

human motor cortex, but we were able to reliably decode attempted force using a virtual 

environment grasp task. Like in the monkey study, we found that decoders that utilize non-linear 

dynamics in neural responses achieved the best offline and online performance. These results 

demonstrate a similar mechanism of force coding in the motor cortex of monkeys and humans. 
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The use of our decoder may pave the way for more advanced brain-computer interfaces that can 

control not only kinematics but also the precise application of forces on the grasped objects. 

In Chapter 6, we shift our focus to somatosensory feedback, which is necessary for the smooth 

control of both biological and prosthetic hands. We explore the possibility of creating nerve 

stimulation algorithms that mimic biological processes to elicit natural sensations in users of 

peripheral neuroprosthetics. To achieve this, we implemented a simple model based on a realistic 

simulation of the nerve (E. V. Okorokova et al., 2020; Saal et al., 2017) to simulate typical manual 

behaviors, and we tested it on a subject with upper limb amputation (George et al., 2019). Our 

results indicate that the biomimetic stimulation paradigm enables better hand control than classic 

stimulation approaches. 

The results of this dissertation help us understand neural mechanisms of prehension in monkeys 

and humans and pave the way to more naturalistic brain-computer interfaces. 

7.2 Future directions 

There remain a lot of questions outside of the scope of this dissertation. Here we outline some of 

the main directions that are important to investigate within the context of our experimental setups. 

7.2.1 Basic scientific questions  

In Chapter 4, we explored the representation of overall force in the motor cortex. However, when 

we grasp objects, forces are distributed across multiple contacts and may vary based on the hand 

configuration during grasp. The neural encoding of contact forces of hand segments and their 

interaction with the kinematics of the same hand segment is yet to be understood. 

Our prehension apparatus provides an opportunity to study other areas involved in manual 

behaviors, particularly the primary somatosensory cortex, which is the main focus of the lab. The 
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subfields of S1 (areas 3a, 3b, 1, and 2) are responsible for processing information from peripheral 

tactile and proprioceptive receptors in the hand, making them crucial in understanding the 

sensorimotor loop involved in prehensile behaviors. By comparing the kinematics and kinetic 

representations in these areas, we can identify the encoding properties of somatosensory neurons 

during active touch. Moreover, we can look at communication between motor and somatosensory 

areas and uncover their functional dependence.  

Another intriguing concept that we can explore is our ability to perceive a three-dimensional 

structure of an object, also known as stereognosis. Stereognosis is believed to rely on the 

integration of information from proprioception and touch (Delhaye et al., 2018; Goodman & 

Bensmaia, 2018; Hsiao, 2008; S. S. Kim et al., 2015). Using our setup, we can analyze the 

influence of kinematic and kinetic variables on the neural responses to identify where and when 

this convergence arises. 

7.2.2 Brain-computer interfaces 

In Chapter 5, we focused on grasp force decoding in a task that involved only two degrees of 

freedom - hand aperture and force. Our next step is to incorporate more degrees of control, such 

as hand transport and wrist rotation, to make our interface more naturalistic for BCI users. 

Additionally, we plan to explore individual finger movement and forces, which have not been 

systematically studied within the BCI setting. 

Although our BCI task was performed without any sensory feedback, the control of grasp force in 

biological hands heavily relies on somatosensory feedback. Therefore, incorporating tactile 

feedback through intracortical stimulation is one of our next goals. However, we still need to 

uncover suitable parameters to achieve naturalistic force feedback and determine how to 

implement electrical stimulation without harming decoder performance. 
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