
THE UNIVERSITY OF CHICAGO

ACCELERATING PROTEIN DESIGN WITH DEEP LEARNING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

MATTHEW TIMOTHY MCPARTLON

CHICAGO, ILLINOIS

AUGUST 2023

Copyright © 2023 by Matthew Timothy McPartlon

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vi

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

NOTATION AND CONVENTIONS . x

1 INTRODUCTION . 1
1.1 Outline of Thesis . 1
1.2 Background: Proteins . 1
1.3 Background: Machine Learning . 5
1.4 Graph Neural Networks . 6
1.5 Transformers . 7

2 FIXED BACKBONE DESIGN . 10
2.1 Introduction . 11
2.2 Methods . 13

2.2.1 Input Representation . 14
2.2.2 Network Architecture . 18
2.2.3 Sequence Design . 31
2.2.4 Rotamer Conditioning . 31
2.2.5 Per-Residue Confidence Prediction 31
2.2.6 Model Loss . 33
2.2.7 Rotamer and Clash Optimization . 35
2.2.8 Training Details . 37
2.2.9 Test Datasets . 38

2.3 Results . 38
2.3.1 Overview . 38
2.3.2 Evaluation Criteria . 40
2.3.3 Side Chain Packing . 43
2.3.4 Sequence Design . 52
2.3.5 Confidence Predictions . 60

2.4 Ablation Studies and Architecture Assessment 62
2.5 Concluding Discussion . 65

3 FLEXIBLE DOCKING . 69
3.1 Introduction . 70
3.2 Related Work . 72
3.3 Methods . 76

3.3.1 Input Features . 77

iii

3.3.2 Architecture and Hyperparamter Details 79
3.3.3 Network Architecture and Training 81
3.3.4 Loss . 84
3.3.5 Training . 87
3.3.6 Evaluation Criteria . 90

3.4 Docking Results . 94
3.4.1 Antibody Docking . 94
3.4.2 Results for DB5 Unbound and Predicted Targets 98
3.4.3 Decoy Ranking with Predicted lDDT 101
3.4.4 Genetic Algorithm for Protein-Protein Docking 105
3.4.5 Comparison to AlphaFold-Multimer 107

3.5 Ablation Study . 110
3.6 CDR-Loop Design . 112

3.6.1 Incorporating Coordinates . 114
3.6.2 Results . 115

3.7 Concluding Remarks . 118

A SUPPLEMENT TO CHAPTER 2 . 120
A.1 Data Collection . 120
A.2 Training Details . 122
A.3 Supplementary Figures . 124
A.4 Supplementary Tables . 125

B SUPPLEMENT TO CHAPTER 3 . 129
B.1 Data Collection . 129
B.2 Extended Results and Examples . 130

B.2.1 Docking Benchmark Version 5 . 130

BIBLIOGRAPHY . 140

iv

LIST OF FIGURES

1.1 Molecular Structure of an Amino Acid Residue in a Protein Chain 2
1.2 The Four levels of Protein Structure . 4
1.3 Multi-Head Attention . 9

2.1 Overview of AttnPacker . 14
2.2 Input Feature Embedding . 17
2.3 Simplified Triangle Attention Updates . 21
2.4 Full Architecture of AttnPacker . 30
2.5 Post-Processing Procedure: Running Time and Per-Residue RMSD Change . . . 37
2.6 Examples of Side-Chain Packing and Design on Native and Non-Native Backbones 39
2.7 Example Backbone Packings where AttnPacker Yields Correct Results 48
2.8 Non-Native Side-Chain RMSD against Backbone RMSD 49
2.9 RMSD Box Plots for Bulky Amino Acids . 50
2.10 χ1−4 Accuracy Conditioned on Average Side-Chain Atom B-factor for CASP13

Targets . 53
2.11 In-Silico Evaluation of Sequence Designs . 54
2.12 ScTM and plDDT Distributions for CASP13 and CASP14 Targets 58
2.13 Zero-Shot Mutation Effect Prediction . 60
2.14 Model Confidence Calibration . 61
2.15 RMSD and Chi MAE Conditioned on Cβ Centrality 65

3.1 Approach Overview . 73
3.2 DockGPT Architecture and Loss . 80
3.3 Illustration of Common RMSD Types used to Assess Protein Complex Predictions 91
3.4 Illustration of Complex Predictions With Varying DockQ Scores 92
3.5 Results for Antibody Benchmark Predicted and Unbound Inputs 95
3.6 RMSD of CDR Loop Regions - Docking Antibody Benchmark Predicted and

Unbound Inputs . 97
3.7 Results for DB5 Targets With AlphaFold2 Predicted, and Unbound Monomer

Structures as Input . 99
3.8 Predictions for one DB5 Target With Unbound Structure as Input. 101
3.9 Analysis of lDDT Predictions . 102
3.10 Selection Overview for DB5 Unbound Targets 103
3.11 Examination of Conformational Flexibility for DB5 Unbound Targets 104
3.12 Genetic Algorithm Explores Diverse Binding Modes 107
3.13 Binding site precision and recall for AlphaFold-Multimer on Ab-Bench targets . 108
3.14 Comparison of Complex Predictions by DockGPT and AlphaFold-Multimer . . . 110
3.15 Examples of Antibody Docking and CDR-loop Design 118

A.1 Locality Aware Graph Transformer Block . 124
A.2 TFN-Transformer Block . 124

B.1 Comparison Between DockGPT and Equidock 138
B.2 Docking Predictions for Antibody Benchmark Target 2W9E 139

v

LIST OF TABLES

2.1 Input Features . 15
2.2 Description of Input Embedding Procedures . 16
2.3 Memory Comparison of Triangle Attention . 29
2.4 Definition of the Distal Side-Chain Atom . 32
2.5 Symmetric Side-Chains . 34
2.6 Hydrogen Bond Donors and Acceptors . 41
2.7 Overall RMSD and χ1 − χ4 MAE Results for the CASP13 and CASP14 targets

(Native Backbones) . 44
2.8 χ1−4 Accuracy and Clash Results for the CASP13 and CASP14 targets (Native

Backbones) . 45
2.9 Results for Non-Native Backbone Structures Predicted by AlphaFold2 47
2.10 χ-Dihedral MAE◦ and Accuracy for Charged and Polar Amino Acids 52
2.11 Inverse Folding Results with Partial Sequence Information 55
2.12 Comparison of Inverse Folding Results with Other Methods 56
2.13 Predicted Likelihoods Correlate With Mutation Effects in de novo - Designed

Mini Proteins . 59
2.14 Equivariant Attention and Similarity Formulas 62
2.15 Attention and Similarity Performance Comparison (Ablation) 63
2.16 Architecture and Hyperparameter Performance Comparison (Ablation) 64
2.17 Time comparison of PSCP methods . 66

3.1 Docking Results for Rosetta Antibody Design Bound Targets 98
3.2 Comparison of Our Method and AlphaFold-Multimer on Two Docking Benchmarks109
3.3 Architecture Ablation Study . 111
3.4 Results for CDR-Loop Design . 116
3.5 CDR-Loop Design with Framework Coordinates 117

A.1 Model Hyperparameters . 123
A.2 Overall RMSD, and MAE Results for CASP13 and CASP14 FM Targets 125
A.3 Average Per-Residue RMSD for CASP13 Targets 126
A.4 Average Per-Residue RMSD for CASP14 Targets 127
A.5 List of Targets in each Test Dataset . 128

B.1 General Protein Docking Results with Receptor and Ligand Chains Predicted by
AlphaFold2 (Top-1). 130

B.2 General Protein Docking Results with Receptor and Ligand Chains Predicted by
AlphaFold2 (Top-5). 131

B.3 General Protein Docking Results with Docking Benchmark Version 5 Unbound
Chains as input (Top-1). 132

B.4 General Protein Docking Results with Docking Benchmark Version 5 Unbound
Chains as input (Top-5). 133

B.5 Antibody Docking Results for AlphaFold-Multimer Predicted Antibody and Al-
phaFold2 Predicted Antigen (Top-1). 134

vi

B.6 Antibody Docking Results for AlphaFold-Multimer Predicted Antibody and Al-
phaFold2 Predicted Antigen (Top-5). 135

B.7 Antibody Benchmark Docking Results, Starting from Unbound Chain Conforma-
tions (Top-1). 136

B.8 Antibody Benchmark Docking Results, Starting from Unbound Chain Conforma-
tions (Top-5). 137

vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Jinbo Xu, for his mentorship and for making

this work possible. Your ability to identify the crux of a problem is exceptional. You pushed

me to develop a skill set that is highly transferable and somehow both broad and deep. Our

discussions have forever changed the way I approach science.

I would like to extend my sincerest thanks to Andy Drucker, who helped start me on my

research journey. I am also indebted to Janos Simon for his mentorship at the start of my

Ph.D. and continued guidance thereafter. I am deeply grateful to Gerry Brady, for whom I

was a teaching assistant at least a dozen times. You have made my experience ω(1) times

more enjoyable than it would have otherwise been.

I am fortunate to have made incredible friends during my Ph.D. To Chris Jones, Goutham

Rajendran, Jafar Jafarov, Nathan Mull, Sudarshan Babu, Andrew Eckhart, Lonnie Hatcher,

Hy Trong Son, Ben Lai, and Mourad Heddaya, thank you all for making grad school fun.

This journey was made possible by many educators and friends along the way. Thank you

to Don Fremont for your encouragement and for constantly promoting the joys of learning.

Thank you to Cristian Rojas and Aaron Wood for pushing me to study mathematics and

entertaining my tangential questions during office hours. To Aaron Ackbarali, thank you

for your friendship and for introducing me to advanced mathematics. Special thanks to

Paul Kehle for exposing me to research and allowing me the freedom to become completely

enthralled by a problem. I am also thankful to David Eck for his invaluable guidance and

friendship. Finally, I would be remiss not to mention Stina Bridgeman, who first exposed me

to computer science and has forever shaped how I think about programming and problem-

solving.

Last and most importantly, I’d like to thank my family for seven years of support and

encouragement. To my parents, Tim and Melissa, thank you for promoting creativity, hard

work, and self-reliance. You are both my role models, and none of this would have been

possible without you.

viii

ABSTRACT

The human proteome comprises tens of thousands of proteins, each tailored for a specific

function by the selective pressures of evolution. The field of protein design seeks to develop

proteins with new or enhanced functions at will, ultimately bypassing the evolutionary clock.

In this thesis, we introduce general machine-learning methods for accelerating protein design,

with a particular focus on modeling protein structure.

First, we propose an approach for fixed-backbone design (Chapter 2), the problem of

designing primary sequence and side-chain rotamers for a given backbone conformation.

Whereas classic approaches formulate sequence and rotamer design tasks separately, we

offer an approach to solve both simultaneously. To realize this, we develop a deep neural

network that effectively leverages backbone coordinates. By exploiting backbone geometry,

we efficiently represent atomic microenvironments at the coordinate level and ultimately

avoid discrete rotamer sampling. This results in more robust designs and accurate quality

estimates for downstream tasks.

Next, we introduce a framework for flexible protein-protein docking (Chapter 3), the

task of determining the structure of a protein complex given the unbound structures of its

constituent chains. Traditional docking methods are limited by their reliance on empiri-

cal physics-based scoring functions, inability to accommodate conformational flexibility, and

failure to incorporate binding sites. To address these challenges, we propose an end-to-end

approach that can model conformational changes and target specific interactions while sig-

nificantly reducing computational time. As one of the pioneering deep learning methods

for this task, we uncover key determinants underlying our success and provide important

insights for future research. Finally, we highlight the generality of our approach by ex-

tending it to simultaneously dock and co-design the sequence and structure of antibody

complementarity-determining regions targeting a specified epitope.

ix

NOTATION AND CONVENTIONS

We typically use lowercase letters for vector-valued variables and capital letters for matrices.

We use a calligraphic font for collections of objects such as sets or graphs.

We adopt the convention of using xi and bold xi to distinguish between vector and scalar

values, i.e. xi ∈ R, and xi ∈ R>1. When the vector represents 3D coordinates, we add an

arrow, i.e., x⃗.

We use {xi} to distinguish the specific datapoint xi from the list of datapoints {xi} =

x1, . . . ,xn (or list of scalars {xi}) indexed by i. For example, we may use {eij} to denote

the set of all pair features in a graph neural network.

A protein P = ({si}, {x⃗a
i : a ∈ A}) with L residues labeled 1..L with atom types a ∈ A,

is represented by its amino acid sequence {si} = s1, . . . sL, and atom coordinates {x⃗a
i } =

x⃗a
1, . . . , x⃗

a
L ⊂ R3. Each element si can be any of the 20 naturally occurring amino acid

types.

When presenting architectural details in text, algorithms, and diagrams, we capitalize

operator names that encapsulate learnable parameters, e.g., we use Linear (·) to represent

a linear transformation with a learnable weight matrix W and bias vector b. Operators

without learnable parameters are written in lowercase, e.g., ’softmax,’ ’mean,’ etc.

x

CHAPTER 1

INTRODUCTION

1.1 Outline of Thesis

In Chapter 2, we introduce a fixed backbone protein design method. This problem comprises

two major sub-tasks, inverse folding, and side-chain packing, both of which are fundamental

problems in protein design and have been extensively studied individually.1 As such, we

often compare with methods designed exclusively for one of these sub-tasks and separate

our results accordingly. Code and tutorials for our method are made publicly available at

https://github.com/MattMcPartlon/attnpacker.

In Chapter 3, we propose a model and framework for learning flexible protein-protein

docking. We highlight the generality of our approach by simultaneously docking and co-

designing antibody CDR loops. Code for the main components of our model is made publicly

available at https://github.com/MattMcPartlon/protein-docking. All code used to generate

results for competing methods is also available on our GitHub page.

In the remainder of this chapter, we give a brief overview of proteins and machine learn-

ing. We try to focus on the aspects most relevant to this thesis for each topic. For proteins,

we focus primarily on understanding their many representations. To tie this in with ma-

chine learning, we emphasize architectures and learning paradigms most amenable to these

representations.

1.2 Background: Proteins

A protein is a large, complex molecule comprising one or more linear chains of amino acids.

Within each chain, amino acid residues2 are joined to their neighbors by a covalent “peptide

1. [Cao+10; QZ20; Dau+22; Str+20; Jin+20; Xio+14; JKS21; Jin+22; Kuh19; Hsu+22; HPZ20; DSK09;
Mis+21; Ana+22; YZY22; XB06; Che+20; NRB12]

2. Chemically, the term ’residue’ refers to something which remains after a part of it is consumed in a
chemical reaction.

1

https://github.com/MattMcPartlon/attnpacker
https://github.com/MattMcPartlon/protein-docking

bond”. Peptide bonds form by condensation reactions, in which the amino acids lose a single

water molecule (hence the name ’residue’). In analogy to language, amino acids function as

the letters in the alphabet, and proteins function as words. Just as words have disparate

meanings, even two very small proteins can have drastically different properties, such as

thermostability, structure, and function.

Figure 1.1: Molecular structure of an amino acid residue in a protein
chain. Hydrogen atoms are omitted. Atoms are colored following the CPK coloring
(Corey–Pauling–Koltun) convention. (A) Illustration of two bonded amino acids at con-
secutive positions in a protein chain. Each amino acid residue consists of a backbone and
side-chain (also called R, or Rotamer) group. (B) and (C) molecular structure of side chains
for amino acids Leucine and Histidine. Atoms are labeled following conventions.

At a molecular level, amino acids each share a similar structure. Each has a carboxyl and

amino group bonded to the same central carbon (Cα) atom. The twenty naturally occurring

amino acids are distinguished by their side-chain (sometimes called "R-group"), illustrated

in Figure 1.1A. Traditionally, non-hydrogen atoms in the R-Group are labeled with their

2

atomic symbol and a Greek letter. Greek letters are chosen alphabetically based on the

number of bonds separating the atom from the backbone alpha-carbon. If the same number

of bonds separates two atoms, then a number is added to distinguish them. An example is

shown in Figure 1.1B and C.

A protein chain of length L is fully characterized by its amino acid sequence {s} =

(s1, . . . , sL) ∈ [1, . . . , 20]L, and atom coordinates, {x⃗a
i }, where i is the index of the corre-

sponding amino acid, and a is the atom type. Some examples of proteins include antibodies,

which protect the body from foreign compounds, and enzymes, which facilitate almost all

chemical reactions in cells.

Protein Structure

Protein Structure is broken down into four classes: primary, secondary, tertiary, and quater-

nary (see Figure 1.2). The primary structure corresponds to the linear order of a protein’s

amino acid sequence. The secondary structure describes the local three-dimensional geom-

etry. The tertiary structure defines a single protein chain’s global shape, or fold. Last, the

quaternary structure corresponds to the arrangement of multiple interacting chains.

The nature of covalent peptide bonds in the protein backbone significantly constrains

the local structure of a fold. Because of this, segments of backbone atoms often conform

to similar secondary structure motifs. There are three broad classes of secondary structural

elements: α-helices, β-sheets, and loops. Regular dihedral angles between consecutive triplets

of backbone atoms characterize sheets and helices. Loops correspond to disordered regions

without regular patterns. Examples of each motif are illustrated in Figure 1.2B.

The three-dimensional tertiary structure (fold) of a protein reflects its function, and it is

uniquely determined by its amino acid sequence (up to the environment). The fold itself is

stabilized by inter-residue interactions such as salt bridges, hydrogen bonds, disulfide bonds,

and Van der Waals forces as well as hydrophobic interactions with the surrounding aqueous

environment. An example of protein tertiary structure is shown in Figure 1.2C.

3

To carry out tasks in the cell, proteins often interact with one another to form a com-

plex. Quaternary structure is the three-dimensional shape of two or more interacting protein

chains. To avoid confusion, we often refer to proteins with multiple chains as multimers and

those with a single chain as monomers.

Figure 1.2: The four levels of protein structure. (A) Illustration of protein primary
structure, showing each amino acid’s backbone and side chain atoms in stick representation.
(B) Cartoon representation of PDB entry 2A9K colored by secondary structure. Loops,
helices, and sheets are colored white, red, and blue respectively. (C) Cartoon representation
of PDB Entry 1JPS. (D and E) Cartoon representations of protein complex 2QOM (D) and
1BL8 (E) with individual chains colored red or blue. These two examples illustrate protein
complexes formed by two or more copies of the same chain. The graphic used to illustrate
primary sequence (A) was taken from https://bair.berkeley.edu/blog/2019/11/04/proteins.

4

1.3 Background: Machine Learning

Machine learning broadly describes the process of fitting computational models to examples.

A list of parameters typically describes a model, and the “learning” process involves finding

specific parameters that minimize a given objective function. A simple example is fitting the

slope and intercept coefficients of a linear regression. Deep learning is a subset of machine

learning that uses neural networks with many layers to parameterize models.

Geometric Deep Learning The field of geometric deep learning is concerned with mod-

eling data with underlying geometric relationships. Typically, this involves developing ar-

chitectures that are invariant or equivariant with respect to the action of some symmetry

group. Notable examples include the permutation equivariance of graph neural networks

and the translation equivariance of convolutional neural networks.

This thesis is entirely concerned with geometric deep-learning methods and the properties

of the underlying networks. For example, we may wish to design a neural network f : X → Y

that is invariant to some action h : X → X , that is

f(x) = f(h(x)) ∀x ∈ X . (1.1)

More generally, we try to develop networks that capture properties of the input with

respect to certain actions that should leave the property unchanged. In more technical terms,

f is said to be equivariant with respect to the action of a group G and a corresponding set

of transformations Tg : V → V , if there exists a transformation Sg : Y → Y such that,

Sg[f(x)] = f(Tg[x]), ∀g ∈ G.

The special case where Sg is the identity transformation corresponds to invariance.

In the case of proteins, we are primarily interested in equivariance to 3D rotations and

translations, which the special Euclidean group characterizes in 3 dimensions, SE(3) =

5

{(R, t⃗)}. Given input coordinates x⃗ and transformed coordinates Rx⃗+ t⃗, a network that is

equivariant to rotations and translations receives the same gradient updates for each example.

This allows the network to learn properties of coordinates independent of transformations

that do not modify chemical characteristics.

In the remainder of this section, we provide some additional background and discuss

broader classes of neural networks. Much of this thesis is dedicated to describing new machine

learning architectures, and extensive details regarding their design are provided in each

chapter.

1.4 Graph Neural Networks

Graph neural networks (GNNs) are functions on featurized graphs G =
(
V = {vi}, E = {eij}

)
,

where each node vi ∈ Rdv and edge eij ∈ Rde is associated with some data. In the context

of proteins, nodes may represent amino acids, and data vector vi can be used to encode

the corresponding residue type as a one-hot encoding (e.g., dv = 20). Typically, edge data

represent physical quantities such as inter-atom distance or the existence of molecular bonds.

GNNs come in many different flavors (e.g., GAT [Vel+18], GCN [KW16], MPNN [Gil+17],

SchNet [Sch+18], EGNN [SHW21a]), and most commonly consist of several repeated layers.

Each layer is permutation invariant (or permutation equivariant) with respect to the ordering

of the vertices. Each layer in a GNN typically has the form:

mij = ϕℓm

(
vℓi ,v

ℓ
j , eij

)
(Message Passing) (1.2)

mi =
⊕

j∈N (i)

mij (Aggregation/Pooling) (1.3)

vℓ+1
i = ϕℓv

(
vℓi ,mi

)
(Update) (1.4)

6

where ℓ is the index of the GNN layer, ϕℓm, and ϕℓv are functions (most often neural networks),

and
⊕

is some permutation invariant or equivariant operation (most often a summation).

1.5 Transformers

The transformer model [Vas+17] is prevalent in almost every major sub-field of deep learning.

It underlies large language models (e.g. BERT [Dev+18], T5 [Raf+19], GPT-3 [Bro+20],

ChatGPT [Ast87]), and is now state-of-the-art for image classification (e.g. ViT [Dos+20],

DETR [Car+20]) and generation (stable diffusion [Rom+21], RIN [JFC22]). The primary

building block of the transformer architecture is the attention head. Here, we describe the

ubiquitous special case, the self-attention head with cosine similarity, and refer the reader to

[Lin+21] for a more comprehensive review. Beforehand, we briefly motivate the use of this

architecture for molecular

The Transformer Model and Proteins

In the context of deep-learning applications to proteins, the transformer model has been

applied with unparalleled success on tasks such as protein structure prediction [Jum+21;

Bae+21; Lin+22; Wu+22], protein sequence modeling [Riv+19; Mad+23; Mei+21], and

inverse folding [Ing+19; Jin+20; MLX22; Hsu+22], among others. Much of the success of this

architecture stems from its ability to model sequential and graph-like data while naturally

capturing long-range dependencies. Unlike text, protein residues have both sequential and

spatial dependencies. Indeed, residues that interact in 3D space (i.e., in the protein’s folded

state) tend to co-evolve, which has implications on both the primary sequence and 3D

structure. Nevertheless, spatially close residues may be arbitrarily distant in sequential

order. These types of relationships are naturally captured by the transformer’s self-attention

mechanism (Section 1.5), which computes L2 weights indicating interaction weights between

all residue pairs. In contrast, an architecture like convolutional neural networks (CNNs)

7

has a much harder time modeling long-range dependencies because each layer operates only

on sequentially local features. As another example, recurrent neural networks often fail to

learn long-range dependencies as a result of exploding or vanishing gradients during training

[BSF94].

Self-Attention

The self-attention head consists of three learnable functions, ϕQ, ϕK , and ϕV . Each learnable

function ϕ(·) is typically implemented as a linear projection. However, it can be beneficial

to consider more general classes of functions, as we will see in Chapter 2. Given a sequence

of inputs {xi}, we associate each with a query, key, and value:

qi = ϕQ(xi) ∈ Rd, ki = ϕK(xi) ∈ Rd, vi = ϕV (xi) ∈ Rc. (1.5)

Keys and queries for different data points are then compared to compute similarity scores

σij , and then normalized to obtain attention weights αij

σij = sim
(
qi,kj

)
, αij = softmaxj

(
σij

)
=

expσij∑
j expσij

. (1.6)

Most often, sim
(
qi,kj

)
is implemented as the cosine similarity between query and key,

sim
(
qi,kj

)
=

q⊤i kj√
d
. (1.7)

To stabilize training, the
√
d in the denominator was suggested in [Vas+17]. If we assume

each entry in qi,kj is distributed as a unit normal N (µ = 0, σ = 1)), then q⊤i kj is dis-

tributed as N
(
µ = 0, σ =

√
d)
)
.

Finally, an attention-modulated sum of the values is used to produce an embedding ai

of each data point:

8

ai =
∑
j

αijvj . (1.8)

Each layer of the transformer consists of several self-attention heads (multi-head atten-

tion), each learning independent representations of the underlying data. The multi-head-

attention block aggregates each head’s output by concatenating the embeddings and linearly

projecting back to the original input dimension with a learned weight matrix. This is illus-

trated in Figure 1.3.

Figure 1.3: Multi-head Attention. Illustration of multi-head attention block. shapes of
underlying data tensors are shown in parentheses. n is used to denote the number of input
features, and h is used to denote the number of heads. Feature dimensions: din: input, dq:
keys and queries, dv: values.

The attention head is easy to generalize to the GNN framework. In fact, the self-attention

update described in Section 1.5 is already permutation-equivariant with respect to vertices.

To incorporate edges, restrict the sums in Equations (1.6) and (1.8) to the neighbors of i.

αij =
exp [σij]∑

j∈N (i) exp[σij]
ai =

∑
j∈N (i)

αijvj . (1.9)

That is, we compute the attention weights for node i considering only nodes j with i ∼ j.

9

CHAPTER 2

FIXED BACKBONE DESIGN

Protein fixed-backbone design, the task of predicting protein primary sequence and side-

chain rotamers given backbone atom coordinates, has important applications to structure

prediction, refinement, and more general design problems. Traditionally, the two sub-tasks

are carried out independently, with inverse folding algorithms handling sequence design and

side-chain packing (SCP) methods predicting rotamers for the designed sequence. Although

the two tasks differ in output, both require reasoning around sequence-structure compatibil-

ity, and we hypothesized that a single architecture could effectively model both tasks.

In this chapter, we present AttnPacker, a deep-learning method for fixed-backbone design.

Unlike existing methods, AttnPacker directly incorporates backbone 3D geometry to simul-

taneously compute all side-chain coordinates without delegating to a discrete rotamer library

or performing expensive conformational search and sampling steps. This enables a signifi-

cant increase in computational efficiency, decreasing inference time by over 100x compared

to the deep-learning-based method DLPacker and physics-based RosettaPacker. Different

from traditional SCP approaches, AttnPacker is easily extended to co-design sequences and

side-chains, producing designs with sub-native Rosetta energy and high in silico consistency.

Tested on the CASP13 and CASP14 native and non-native protein backbones, AttnPacker

computes physically realistic designs, reducing steric clashes and improving RMSD and dihe-

dral accuracy compared to state-of-the-art methods SCWRL4, FASPR, RosettaPacker, and

DLPacker.

This chapter presents work with Jinbo Xu and was accepted to Proceedings of the Na-

tional Academy of Sciences (PNAS) in April 2023 [MX22].

10

2.1 Introduction

Protein side-chain packing (PSCP) involves predicting the three dimensional coordinates of

a protein’s side-chain atoms given the backbone conformation (coordinates) and primary

sequence. This problem has important applications to protein structure prediction [FBB07;

Far+17; Chi+95], design [OJK15; Sim+19; DH99; Wat+16], and protein-protein interactions

[WBA16; Hog+18]. Traditional methods for PSCP rely on minimizing some energy func-

tion over a set of rotamers from a fixed library [HPZ20; YSW07; Lia+11; BKK20; Alf+17;

DSK09; XB06; Cao+10]. These methods tend to differ primarily in their choice of rotamer

library [Ren+14; SD11; Dun02], energy function [Jum+18; YSW08; FW11; GPS16], and en-

ergy minimization procedure. Although many of them have shown success, the use of search

heuristics coupled with a discrete sampling procedure could ultimately limit their accu-

racy. Currently, the fastest among them (OSCAR-star [Lia+11], FASPR [HPZ20], SCWRL4

[DSK09]) do not employ deep learning (DL) and are rotamer library-based.

Aside from traditional approaches, several machine learning (ML) methods have been

developed for PSCP [NRB12; Mis+21; XWM20; XWM21; YSW07; Liu+17; XB06]. One

of the earliest methods, SIDEPro [NRB12], attempts to learn an additive energy function

over pairwise atomic distances for each side-chain rotamer. This is achieved by training a

family of 156 feedforward networks - one for each amino acid and contacting atom type. The

rotamer with the lowest energy is then selected. DLPacker [Mis+21] formulates PSCP as an

image-to-image transformation problem and employs a deep U-net style neural network. The

method iteratively predicts side-chain atom positions using a voxelized representation of the

residue’s local environment as input and outputs densities for the respective side-chain atoms.

To convert the network’s output to coordinates, the densities are then compared to a rotamer

database, and the closest conformation is selected. The most recent version of OPUS-Rota4

[XWM21] uses a pipeline of multiple deep networks to predict side-chain coordinates. The

method uses predicted side-chain dihedral angles to obtain an initial model and then applies

gradient descent on predicted distance constraints to obtain a final structure. It is worth

11

noting that OPUS-Rota4, to the best of our knowledge, is the only ML-based PSCP method

that directly utilizes multiple sequence alignments (MSAs) as part of its input. Apart from

methods specifically designed for PSCP, many protein structure prediction methods also pro-

duce side-chain coordinate information. AlphaFold2 [Jum+21], and RosettaFold [Bae+21]

can produce highly accurate structures from primary sequence and MSA information along

with optional template structures. Another class of structure predictors, including ESMFold

[Lin+22] and OmegaFold [Wu+22], rely on massive pre-trained language models to derive

structure from primary sequence alone.

In a complementary line of research, a spate of machine learning methods have been

developed for protein inverse folding [QZ20; Jin+20; Hsu+22; YZY22; Dau+22]. Akin

to PSCP, inverse folding methods attempt to find a protein sequence that folds to a given

backbone structure. Although the two tasks differ in output, both problems require reasoning

around sequence-structure compatibility, and we hypothesized that a single architecture

could effectively model both tasks.

Here we present AttnPacker, a new deep architecture for PSCP. Our method is inspired

by recent advancements in modeling three-dimensional data, and architectures for protein

structure prediction - most notably AlphaFold2 [Jum+21], Tensor Field Networks (TFN)

[Tho+18], and the SE(3)-Transformer [Fuc+20]. By modifying and combining components

of these architectures, we can significantly outperform other PSCP methods, in terms of

speed, memory efficiency, side-chain atom clashes, and overall accuracy, using only features

derived directly from the primary sequence and backbone coordinates.

Specifically, we introduce a deep graph transformer architecture leveraging both geo-

metric and relational aspects of PSCP. Inspired by AlphaFold2, we propose locality-aware

triangle updates to refine our pairwise features using a graph-based framework for computing

triangle attention and multiplication updates. By doing this, we can significantly reduce the

memory and build higher-capacity models. In addition, we explore several SE(3)-equivariant

attention mechanisms and propose an equivariant transformer architecture for learning from

12

3D points.

Our method, AttnPacker, guarantees physically realistic rotamers with negligible devi-

ation from ideal bond lengths and angles and minimal steric hindrance. AttnPacker also

predicts per-residue confidence scores, which correlate strongly with side-chain root mean

squared deviation (RMSD) and χ1 dihedral error. AttnPacker significantly outperforms

traditional PSCP methods on CASP13 and CASP14 native backbones with average recon-

structed RMSD over 18% lower than the next best method on each test set. AttnPacker

also surpasses the deep learning method DLPacker, with an 11% lower average RMSD while

significantly improving side-chain dihedral accuracy. In addition to accuracy, we show that

AttnPacker consistently produces packings with notably fewer atom clashes than other meth-

ods.

To demonstrate our method’s broader applicability to protein design, we analyze At-

tnPacker’s efficacy in (1) handling non-native backbones and (2) simultaneously designing

primary sequence and packing side-chains. We show that AttnPacker performs favorably

to state-of-the-art structure prediction methods AlphaFold2, RosettaFold, and OmegaFold,

inferring accurate conformations from predicted backbone structures. For the second task,

we train a variant of AttnPacker for co-design, which achieves native sequence recovery com-

petitive with state-of-the-art methods, while also producing highly accurate packings. We

validate these designs in-silico with Rosetta and find that AttnPacker-designed structures

often yield sub-native Rosetta energy.

2.2 Methods

We now describe our input representation (Section 2.2.1), model architecture (Section 2.2.2),

loss function (Section 2.2.6), training details (Section 2.2.8), and test datasets (Section 2.2.9).

We also explain how our architecture enables co-design of sequence and structure (Sec-

tion 2.2.3) and how estimates of packing quality can be learned in conjunction with these

tasks (Section 2.2.5). Our post-processing procedure, which ensures ideal rotamer geometry

13

and low steric hindrance, is detailed in Section 2.2.7. Information regarding data collection

and hyperparameters are withheld to Appendix A, Appendix A.1, and Appendix A.2. A

schematic overview of AttnPacker is shown in Figure 2.1.

Figure 2.1: Overview of AttnPacker. AttnPacker generates input features from protein
backbone coordinates and primary sequence. Backbone coordinates are also used to derive
a spatial feature graph and equivariant basis for the TFN-Transformer sub-network. An
invariant graph-transformer module processes the initial feature graph. The updated repre-
sentation is passed to an equivariant TFN-Transformer that computes side-chain coordinates,
per-residue confidence scores, and (optionally) a designed sequence. Predicted coordinates
are post-processed to remove steric clashes and ensure idealized geometry.

2.2.1 Input Representation

We are given a protein P = ({si}, {x⃗a
i }) with L residues, atoms a ∈ {N,Cα,C,O}, in-

dexed by i. All input features are derived from primary sequence and backbone heavy-atom

coordinates. The input to our network is a featurized graph

Gθ =
(
{xi}i=1..L,

{
eij : d(i, j) < θ

})
(2.1)

where d(x, y) denotes the distance between Cα atoms for residues x and y, and θ ∈ R is a

pre-defined threshold.

14

Input Features Residue (node) features consist of encodings for amino acid type, back-

bone dihedral angles, relative sequence position, and the number of atoms in a residue’s

immediate micro-environment (centrality). Pair (edge) features encode inter-residue ori-

entation as defined by [Yan+20b], along with inter-atom distance and a joint encoding of

relative sequence separation and amino acid type. An overview of input feature types and the

corresponding shape can be found in Table 2.1. AttnPacker’s input embedding procedures

are provided in Table 2.2 and Figure 2.2.

Features
Name & Shape Description

res_type
[L]

A number in the range 0 to 21 representing the corre-
sponding amino acid type, a gap, or a missing residue

bb_dihedral
[L, 3]

Backbone phi, psi, and omega dihedral angles.

seq_pos
[L]

The sequence index of the respective residue, from 1 to
L

centrality
[L]

The number of Cβ atoms within 16Å of residue of the
respective residue’s Cβ atom. For this procedure, Cβ
atoms are imputed according to Equation (2.2).

atom_distance
[L,L, 3]

One-hot encoded binned distance between Cα − Cα,
Cα − N , and N − O atoms in each residue. Each bin
represents a distances from 2Å-20Å with two separate
bins used for distances falling outside of this range.

tr_orientations
[L,L, 3]

Dihedral and planar angles defined by Yang et
al[Yan+20b].

Table 2.1: Input features used by AttnPacker. The shape of the corresponding type
for a protein with L residues is shown below each feature.

Most of AttnPacker’s input features are standard amongst contemporary protein design

methods [Ing+19; QZ20; Dau+22; MLX22; JX21; JKS21]. The exception is residue degree

centrality. The use of centrality-based encodings was studied in [Yin+21], where the authors

found that transformers significantly benefit from adding centrality encodings with graph-

like data. We choose to incorporate this information at the input level rather than in each

15

attention block (as is proposed in [Yin+21]). Originally, we included SS3 secondary structure

as a residue feature but found that this had no impact on average rotamer RMSD scores.

Input Embedding Encodings of each feature are generated following the procedures in

Table 2.2. To incorporate sequence information into pair features, we learn two separate

linear embeddings, EA and EB , for residue types. The pair feature for residues i and j of

type si and sj is given by the outer-sum of EA (si) and EB
(
sj
)
. Following [Jum+21], we

also add a learned embedding of the signed relative sequence separation i − j. To enable

sequence design, a separate ⟨MASK⟩ token is added to represent a “missing residue” type. A

diagram of the embedding procedure is shown in Figure 2.2.

Procedure Description
bin_centrality(c) :
N→ [0..6]

Mapping given by c 7→ min
(
⌊ c8⌋, 6

)
bin_angle(θ) :
(−π, π)→ [0..35]

Mapping given given by θ 7→ ⌊36 · θ+π
2π ⌋

encode_angle(θ) :
(−π, π)→ [0, 1]2

Mapping given by θ 7→ (cos θ, sin θ)

bin_rel_pos(p) :
[1..L]→ [0..9]

Mapping given by p 7→ ⌊10 · p−1L ⌋

bin_rel_sep(s) :
[0..L− 1]→ [0..48]

Maps the (signed) sequence separation s to the index of a predefined
interval. We chose intervals
[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6), [6, 7), [7, 8), [8, 10), [10,
12), [12, 15), [15, 20), [20, 30), [30,∞),
plus the negation of each interval.

bin_dist(d) :
R≥0 → [0..33]

Maps the pairwise distance d to one of 32 equal width bins in the
range 2Å..20Å. Distances less than 2Å and distances greater than
20Å are placed into separate bins.

Table 2.2: Description of Input Embedding Procedures. The name of the procedure
(top), along with the domain and range (bottom) are given in the first column. Here, we
use L to denote the protein length. These procedures are referenced in Figure 2.2.

To generate Cβ atom positions for orientation and centrality, we impute a unit vector in

the direction x⃗
Cβ
i − x⃗Cα

i before computing the respective features. The imputed vector is

16

calculated as in [Jin+20] using

√
1

3
⟨n⃗× x⃗⟩ −

√
2

3
⟨n⃗+ x⃗⟩ (2.2)

where ⟨x⃗⟩ = x⃗/∥x⃗∥2, n⃗ = x⃗N
i − x⃗Cα

i , and x⃗ = x⃗C
i − x⃗Cα

i .

Figure 2.2: Overview of input feature embedding. The feature shape is shown in
parentheses. Residue and pairwise features are embedded separately. Only information
derived from primary sequence and backbone coordinates is considered. Full explanations
of procedures referenced in this figure are given in Table 2.2. For residue features in our
final models, we use dcen = 7 for the one-hot encodings of centrality features, dA = 6 for
our backbone torsion angle embedding dimension, and dRr

= 32 for residue type embedding
dimension. For pairwise features, we use dD = 34 for each one-hot distance encodings,
dRp

= 48 for residue pair embeddings, and dA = 6 for embeddings of trRosetta orientations.

17

2.2.2 Network Architecture

Our network comprises two modules. The first is a locality-aware graph transformer which

selectively updates node and pair features, and the second is a TFN-based SE(3)-equivariant

transformer inspired by Fuchs et al. [Fuc+20].

The initial graph transformer learns invariant representations of each residue and edge

in the input graph. The TFN-transformer incorporates backbone coordinates and uses the

learned representations to predict amino acid types and side-chain atom coordinates.

Unlike the locality-aware graph transformer, the TFN-Transformer does not update pair

features. Instead, pair features are passed through an MLP to generate radial kernels trans-

forming residue features at each attention layer. We hypothesized that learning pair rep-

resentations may lead to better performance, which is justified by our ablation studies (see

Section 2.4). The choice of components also allows us to predict the 3D coordinates of

all side-chain atoms for a given protein without relying on rotamer libraries or expensive

conformational sampling.

In the remainder of this section, we provide an in-depth overview of our architecture

components. Ablation studies comparing the impact of specific components are reported

in Section 2.4, and Tables 2.15 and 2.16. Schematic representations of attention blocks are

given in Figures A.1 and A.2.

Locality-Aware Graph Transformer

Before incorporating backbone coordinates into AttnPacker, we first generate an invariant

graph representation using a deep transformer network. This module draws components from

the Evoformer, introduced in AlphaFold2, for processing MSA and pair features. Namely,

we introduce variants of pair-biased self-attention for node updates, and triangle-attention

and multiplication for pair updates. Different from the protein structure prediction setting

for which these updates were designed, we are given a backbone as input. We take advan-

tage of this by restricting updates to spatially close residues and generalize each component
18

to arbitrary graphs. Concretely, we restrict residue attention to the top-k spatially closest

nearest neighbors as defined by Cα distance. Next, we introduce locality-aware triangle up-

dates, which non-trivially restrict multiplication (Algorithm 1) and attention (Algorithm 2)

to a subset of pre-defined triangles in the input graph. Throughout this section, we de-

scribe our modifications and graph representation in more detail. We provide pseudocode

for triangle attention and triangle multiplication updates as implemented in AlphaFold2 in

Algorithms 1 and 2 for completeness. For simplicity, we describe all procedures for undirected

graphs, though it is straightforward to extend to directed graphs.

Algorithm 1 Triangle Multiplicative Update (“outgoing”, [Jum+21])
1: Input
2: zij : Pair Features, in Rdz

3: c: intermediate dimension, in N
4: Output
5: z

′
ij : Updated Pair Features, in Rdz

6:
7: function TriangleMultiplicationOutgoing(zij , c = 128) :
8: zij ← LayerNorm

(
zij

)
9: aij , bij = sigmoid

(
Linear

(
zij

))
⊙ Linear

(
zij

)
▷ aij , bij ∈ Rc

10: gij = sigmoid
(
Linear

(
zij

))
▷ gij ∈ Rdz

11: z
′
ij = gij ⊙ Linear

(
LayerNorm

(∑
k aik ⊙ bjk

))
▷ z

′
ij ∈ Rdz

12: return z
′
ij

Global Triangle Updates Global triangle updates have the general form:

e
(ℓ+1)
ij = f

(
e
(ℓ)
ij ,

{(
e
(ℓ)
ik , e

(ℓ)
jk

)}
k=1,...,L

)
(2.3)

where e(ℓ) denotes the pair features at layer ℓ in the network. The pair feature updates

presented in Algorithms 1 and 2 can be seen as aggregating information over each triangle

in the input graph G. The algorithms correspond to the special case where G is complete,

resulting in Ω(L3) time complexity per operation at each block. Moreover, an additional

Ω(h · L3) space is needed to store triangle attention logits (i.e. αijk in Algorithm 2) for
19

backpropagation, where h is the number of attention heads. Although techniques such as

gradient checkpointing [Che+16] or mixed precision training [Mic+17] may be applied to

reduce some of this burden, the time and space complexity significantly limit the practi-

tioner’s ability to experiment with these operations, as batch sizes, sequence crop lengths,

and precision must all be reduced. For example, triangle attention over a complete graph

with 1000 nodes would require over four gigabytes of storage per head, assuming standard

32-bit floating point precision.

Algorithm 2 Triangle Attention Head (“starting”, [Jum+21])
1: Input
2: zij : Pair Features, in Rdz

3: dh: intermediate dimension, in N
4: Output
5: zij : Output of a single triangle-attention head, in Rdh

6:
7: function TriangleAttentionHeadStarting(zij , dh = 32):
8: zij ← LayerNorm

(
zij

)
9: qij , kij , vij , gij , bij = LinearNoBias

(
zij

)
▷ qij , kij , vij , gij ∈ Rdh , bij ∈ R

10: # Similarity
11: σijk =

(
1√
dh
q⊤ijkik + bjk

)
12: αijk = softmaxk

(
σijk

)
13: zij = sigmoid

(
gij

)
⊙

∑
k αijkvik

14: return zij

Locality Aware Triangle Updates Locality-aware triangle updates generalize Equa-

tion (2.3) by restricting only to triangles of an underlying graph G:

e
(ℓ+1)
ij = f

(
e
(ℓ)
ij ,

{(
e
(ℓ)
ik , e

(ℓ)
jk

)
: k ∈ N (i) ∩N (j)

}
k=1,...,L

)
. (2.4)

Concretely, we replace line 11 in Algorithm 1 with

z
′
ij = gij ⊙ Linear

LayerNorm

 ∑
k∈N (i)∩N (j)

aik ⊙ bjk

 , (2.5)

20

where the feature zij is valid only for those edges (i, j) ∈ E (G). Similarly, we can restrict

the softmax and sum in lines 11 and 12 of Algorithm 2 to the same subset as Equation (2.5)

αijk = softmaxk∈N (i)∩N (j)

(
σijk

)
(2.6)

zij = sigmoid
(
gij

)
⊙

∑
k∈N (i)∩N (j)

αijkvik. (2.7)

We refer to the modifications proposed in Equations (2.5) and (2.6) as “locality-aware”

triangle updates. To see the correspondence, we can quickly implement local triangle updates

by computing a global triangle mask to modulate similarity calculations (see Figure 2.3).

This approach does not yield the time and space savings previously discussed but does serve

as a simple proof of concept and drop-in replacement for existing models.

Figure 2.3: A simple implementation of local triangle attention updates. A mask
of dimension L×L×L is used to control which triangles (and respective edge features) are
updated during attention calculations. Masked positions are kept unchanged, and unmasked
positions are filled with a large negative value (−106) before softmax is applied to compute
attention weights.

Pair-Biased Self-Attention Pair features are used to bias residue self-attention logits.

The standard formula for computing key-value similarity (Equation (1.6)) is modified to

σij =
1√
2d

(
q⊤i kj + bij

)
, αij =

expσij∑
j∈N (i) expσij

, (2.8)

21

where d is the dimension of qi, and bij = Linear(zij) is a learnable scalar obtained as a

linear projection of pair feature zij ∈ Rdz .

Implementation Details Theoretically, the time and space complexity of node updates

is O(E), where E is the number of edges in the input graph. For triangle updates, com-

plexity is bounded by the number of triangles in the input graph. Unfortunately, these

bounds are difficult to achieve in practice, as the features are represented as tensors of a

fixed dimension. Implementing these updates efficiently while taking advantage of built-in

broadcasting and parallelism in popular deep learning software (e.g. PyTorch [Pas+19] or

TensorFlow [Mar+15]) requires significant care. In light of this, we carefully construct our

input graphs to exploit parallelism. These considerations and a formal description of our

graph representation are described in the next sections.

Graph Representation Distinct from the protein structure prediction setting, PSCP

requires the protein backbone coordinates as input. With this information, we can perform

updates in a geometrically motivated manner – by considering only residue whose atoms are

spatially close. Given backbone Cα coordinates {x⃗cα
k } Our input graph G = (V,E; θ) is

defined by the adjacency relation

adjθ
(
i, j; {x⃗cα

k }k
)
≜ adjθ (i, j) = ∥x⃗cα

i − x⃗cα
j ∥2 < θ. (2.9)

In practice, we restrict the neighborhood of a node i to only the k spatially closest

neighbors. This fixes the maximum degree in our graph and allows us to represent the

adjacency function with a fixed index tensor of shape L × k, plus an additional L × k

Boolean mask tensor to indicate those residues with fewer than k neighbors.

Similarly, we can order the triangles in G based on the maximum side length,

22

ℓ(∆ijk) = max ({∥x⃗cα
s − x⃗cα

t ∥2 : s, t ∈ (i, j, k)}) , (2.10)

and restrict the triangles considered for each edge to the k
′
of minimum weight. We note that

Equation (2.9) already implies that residues comprising any triangle in G have maximum

pairwise distance θ.

To efficiently implement triangle updates, we store two separate adjacency lists Ai
ij [·],

A
j
ij [·] for each edge (i, j); consisting of triangle edges incident node i, and triangle edges

incident node j. Importantly, the lists are ordered such that (i, j), Ai
ij [k], A

j
ij [k] is a triangle

in G. The adjacency lists use space Ω(E × k′).

Time and Space Complexity We restrict our input graph to have a maximum degree at

most k by selecting only the nearest neighbors of each node. This means that the maximum

size of E is k · L. Furthermore, no edge can appear in more than k − 1 triangles, as this

would contradict the maximum degree constraint. It follows that G contains at most k2 · L

triangles. Based on the bounds given in the previous sections, we can efficiently compute

triangle updates in time and space O(k2 · L), and residue updates in time O(k · L).

When the underlying point set consists of backbone atom coordinates for a protein, a

reasonable choice of distance threshold θ results in a relatively small set of edges and triangles.

Setting k = 24 and θ = 16 resulted in approximately the same rotamer prediction accuracy

using k = θ =∞. Technically, since k is fixed, updates are linear in the sequence length. In

practice, the performance gains become noticeable when the sequence length L exceeds 200

residues.

TFN-Transformer

The second module is an SE(3)-equivariant neural network inspired by the SE(3)-Transformer

introduced by Fuchs et al. [Fuc+20]. Like the SE(3)-Transformer, attention heads use TFNs
23

to produce keys and values for scalar and point features.

Our implementation differs in a few key areas. First, we use shared attention with cosine

similarity (see Table 2.14). That is, we aggregate the attention logits of each feature type

(e.g., scalars and points) to produce shared attention weights. Furthermore, in each attention

block, we augment the input to the TFN radial kernel with pairwise distance information

(Algorithm 5) between hidden coordinate features and make further use of the pair features

to bias self-attention weights and update scalar features (Algorithm 3). Implementation

details are provided throughout the remainder of this section.

Tensor Field Networks (TFNs) TFNs operate on irreducible representations of the

rotation group SO(3). These representations have dimension 2ℓ + 1, where ℓ denotes the

rotation order. The rotation orders ℓ = 0, 1, 2 correspond to scalars, vectors in 3-space, and

symmetric traceless matrices [Tho+18].

The input to a TFN can be represented as a vector field of the form

f (x⃗) =
∑
i

xiδ (x⃗− x⃗i) , (2.11)

where δ is the Dirac delta function, {x⃗i} are 3D points, and {xi} are features of the cor-

responding point such as residue identity, charge, etc., represented as the concatenation of

elements in SO(3). That is

xi =
⊕
ℓ≥0

xℓ
i , xℓ

i ∈ Rdℓ×2ℓ+1, (2.12)

where
⊕

denotes concatenation.

TFN Attention Head We begin by describing a single Attention head (Algorithm 3).

We use dℓ to denote the input dimension and hℓ to denote the hidden dimension (head

dimension) of type ℓ features. Each attention head has a separate learnable weight γℓ for

24

Algorithm 3 TFN-Transformer Attention Head
1: Input
2: xℓ

i : type-ℓ features in Rdℓ×2ℓ+1

3: zij : pair features in Rdz

4: Bℓ,kij : equivariant basis mapping type ℓ features to type k features
5: r⃗ij : input relative coordinates in R1×3

6: Ni: List of neighbor indices for each residue 1..i

7: Output
8: oℓi : attention head features for each input type ℓ = 0 . . .

9: function TFNAttnetionHead(xℓ
i , zij , B

ℓ,k
ij , rij , Ni):

10: zij , x
ℓ
i ← LayerNorm

(
zij

)
, SE3Norm(xℓ

i)
11: # Compute TFN keys and values
12: z̃ij ← AugmentPairFeats

(
zij ,x

1
i , rij

)
13: kℓij ,v

ℓ
ij = TFN(xℓ

i , z̃ij ,B
ℓ,k
ij ,Ni) ▷ defined for i, j such that j ∈ Ni \ i

14: qℓi = SE3Linear(xℓ
i) ▷ kℓi , q

ℓ
i ,v

ℓ
i ∈ Rhℓ

15: bij = LinearNoBias(zij) ▷ pair bias, bij ∈ R
16: ẑij = LinearNoBias(zij) ◦ sigmoid

(
LinearNoBias(zij)

)
▷ pair features,

ẑij ∈ Rd
z
′×1

17: wℓ = 1√
(2ℓ+1)·hℓ

▷ head weights for each input type ℓ = 0 . . .

18: # Compute pair similarity and self-similarity
19: σℓij =

∑dℓ
c=1 q

ℓ
ic · k

ℓ
ijc

20: σℓii = SE3Linear(xℓ
i)

21: # Share Attention weights for each i and each type
22: αij = softmaxj∈Ni

(
bij +

∑
ℓw

ℓ · γℓ · σℓij
)

23: oℓi =
∑

j∈Ni
αij · vℓij

24: o
pair
i =

∑
j∈Ni

αij · ẑij
25: # Scalar output augmented with attention-weighted edge information
26: o

(0)
i ← concat

(
o
(0)
i ,o

pair
i

)
27: return oℓi

each input type ℓ. This weight is the softplus of a learnable scalar and is initialized so that

γℓ = 1 (e.g., [Jum+21, Supplementary Information, Section 1.8.2]). For each input type,

the output of each attention head is concatenated and linearly projected so that the output

dimension matches the original input dimension. All linear projections (SE3Linear) follow

the scheme proposed in [Den+21].

25

Algorithm 4 SE(3)-Equivariant Normalization
1: Input
2: xℓ

i : type-ℓ features in Rdℓ×2ℓ+1

3: Output
4: x̄ℓ

i : normalized type-ℓ features in Rdℓ×2ℓ+1

5:
6: function SE3Norm(xℓ

i , nonlin = GELU) :

7: normℓ
i = concatk=1..dℓ

(∥∥∥xℓ
i,k

∥∥∥)
8: tℓi = nonlin

(
normℓ

i ⊙ σ
ℓ + βℓ

)
9: x̄ℓ

i = concatk=1..dℓ

(
xℓ
i,k

normℓ
i,k

)
⊙ tℓi

10: return x̄ℓ
i

Normalization We propose a method similar to Layer normalization (Algorithm 4) with

a norm-based non-linearity. Several papers have proposed SE(3)-Equivariant Normalization

schemes (e.g., [Fuc+20; Den+21; Jin+20]), most include some form of layer-normalization

[BKH16], or restriction on the ℓ2 norm of coordinate features. In our experiments, we found

that applying layer normalization to coordinate norms (and subsequently scaling by these

values) caused instability. In light of this we simply learn a scale and bias σℓ and βℓ for each

feature type.

Algorithm 5 Augment Edge Features
1: Input
2: zij : pair features in Rdz

3: c⃗
(k)
i : hidden coordinate features in Rdp×3 for each residue i

4: rij : input relative coordinates in R1×3

5: Output
6: z̃ij : augmented edge features in Rdz+2·dp

7:
8: function AugmentPairFeats(zij , c

(k)
i , rij) :

9: dij = concatk=1..dp

(∥∥∥rij + (
c
(k)
j − c

(k)
i

)∥∥∥
2

)
▷ dij ∈ Rdp , units = nanometers

10: z̃ij = concat
(
zij ,LayerNorm

(
dij

)
,dij

)
11: return z̃ij

26

Pair Feature Augmentation As mentioned in Section 2.2.2, we do not update pair

features in the TFN-Transformer. Instead, pair features are used to parameterize radial

kernels transforming the features of incident residues.

In augmenting the pair features with distance information (Algorithm 5), we chose to

append both normalized and un-normalized distances between the hidden points. The output

of this function is passed directly to the TFN radial kernel, which employs a 3-layer MLP

with GELU nonlinearity to produce pairwise kernels for each pair of input feature types.

TFN-transformer The TFN-Transformer (Algorithm 6) consists of three components:

(1) An equivariant mapping of scalar and coordinate input features to hidden feature types/dimensions,

(2) multiple TFN-based attention layers, and (3) An equivariant mapping from hidden fea-

ture types/dimensions to output feature types and dimensions. A schematic overview is

given in Figure A.2.

27

Algorithm 6 TFN-Transformer
1: Input
2: si: scalar residue features in Rs×1

3: ci: backbone coordinates for each residue in Rc×3

4: zij : pair features in Rdz

5: Ni: List of neighbor indices for each residue 1..i
6: ℓmax: number of hidden types 0..ℓmax

7: Output
8: sout,i: updated scalar residue features in Rdscalar×1

9: cout,i: updated coordinate features ∈ Rdcoord×3

10: function TFN-Transformer(si, ci, zij ,Ni) :
11: rij = cj,0 − ci,0 ▷ relative coordinates ∈ R1×3

12: Bℓ,kij = ComputeEquivariantBasis
(
rij , ℓmax

)
13: ci ← concatk

(
ci,k − ci,0

)
14: # Equivariant Input Mapping
15: xℓ

hid,i = TFN
(
(si, ci), zij ,B

ℓ,k
ij ,Ni

)
▷ x̃ℓ

i ∈ Rdℓ×2ℓ+1, ℓin = 0, 1 and ℓout = 0..ℓmax

16: xℓ
hid,i ← SE3Norm

(
xℓ
hid,i

)
17:
18: for 1..NLayers do

19: xℓ
res,i = TFNAttention

(
xℓ
hid,i, zij ,B

ℓ,k
ij , rij ,Ni

)
20: xℓ

hid,i ← ReZero
(
xℓ
hid,i,x

ℓ
res,i

)
21: xℓ

res,i = SE3FeedForward
(
SE3Norm

(
xℓ
hid,i

))
22: xℓ

hid,i ← ReZero
(
xℓ
hid,i,x

ℓ
res,i

)
23: # Equivariant Output Mapping
24: xℓ

hid,i ← SE3Norm
(
xℓ
hid,i

)
25: xℓ

out,i = TFN
(
xℓ
hid,i, zij ,B

ℓ,k
ij ,Ni

)
▷ ℓin = 0..ℓmax, ℓout = 0, 1

26: xℓ
out,i ← SE3Linear

(
SE3Norm

(
xℓ
out,i, nonlin = Identity

))
▷

x0
out,i ∈ Rdscalar×1, x0

out,i ∈ Rdcoord×3

27: sout,i, cout,i = x0
out,i,x

1
out,i

28: return sout,i, cout,i

Memory Optimization

One of the main drawbacks of the SE(3)-Transformer is high memory usage caused by com-

puting equivariant pairwise kernels in each attention block. To alleviate some of this over-

head, we modify the TFN implementation used in the original SE3-Transformer proposed by

28

Storage for attention logits
using B-Float presision

L = 300 L = 500

Triangle Attention B · L3 · h·D 5.2 Gb 24.0 Gb
Locality Aware

Triangle Attention
B · 2N2L · h ·D 0.10 Gb 0.17 Gb

Table 2.3: A comparison of memory usage for storing pair attention logits. L is
the length of the input sequence. The third and fourth columns show the memory usage for
an input sequence of length 300 and length 500 respectively. Values are calculated by fixing
the number of heads h = 4, the depth D = 12, the number of nearest neighbors N = 30,
and the floating point precision B = 32.

Fuchs et al. [Fuc+20]. Given input feature tensors of size (din, oin),(dout, oout) respectively,

the corresponding basis element mapping between these types has shape (oin, oin · oout). Let

f = min (oin, oout) denote the frequency of the mapping, then for each pair of features, we

require a radial kernel of size (din, dout, f). To ensure equivariance, the kernel passes through

the corresponding basis element, yielding an intermediate tensor of shape

(din, dout, f, oin, oin · oout) .

That is, the kernel is obtained by multiplying the radial weights for each pair through the

corresponding basis element. The input features are then multiplied through the respective

kernel to yield the desired output, and the process is repeated for each pair of input and

output types.

As TFNs are used to produce key and value vectors in each attention block, the interme-

diate kernel mapping between type-ℓ features at each block requires memory proportional

to

2 · dℓin · h
ℓ · dℓ · (2ℓ+ 1)4 ,

where hℓ, dℓ are are the number of heads and head dimension for type ℓ features.

In our implementation, we can obtain a factor ≈ oin · oout reduction in memory by

simplifying the calculation of tensor products between representations. In practice, this

29

corresponds to refactoring the matrix multiplications in the TFN kernel. Rather than mul-

tiply the radial weights through the basis, we first multiply the features through the basis,

and then multiply the result with the radial weights. The memory required to store the

intermediate tensors is reduced to

din · dout · f︸ ︷︷ ︸
radial weights

+ din · oin · oout︸ ︷︷ ︸
finBin→out

.

This greatly reduces the memory burden of TFNs and, together with gradient checkpointing,

allows us to fit a much deeper and larger model on a single GPU.

Full Architecture

Figure 2.4: Full architecture of AttnPacker. we use si to denote scalar (residue) features,
and zij to denote pair features. Backbone coordinates define residue and pair adjacencies
and are included in the equivariant input mapping (see Algorithm 6). The Equivariant input
mapping returns type ℓ features xℓi for user-defined types ℓ > 0. In our model, scalar output
features x0i are discarded, and coordinate output x1i has dcoord = 32, one channel for each
possible side-chain atom type.

Our full architecture is shown in Figure 2.4. It consists of an input embedding (Figure 2.2)

to produce scalar features for residues and pairs and is followed by a locality-aware graph

transformer and TFN-transformer. Pair features are only modified in the locality-aware

graph transformer block. The TFN-Transformer still uses pair features to produce radial

kernels, bias attention logits, and augment the output of each attention head.

30

2.2.3 Sequence Design

On top of rotamer prediction, we train a variant of AttnPacker (AttnPacker + Design) to

residue types from partial sequence information. Both PSCP and inverse-folding involve

reasoning over sequence and structure compatibility, and we hypothesized that a single

architecture could be used for both tasks. To enable this, we randomly mask and corrupt

subsets of the input sequence during training and ask our model to predict the amino acid

type and side-chain conformation for these missing residues. To generate sequences, we

perform Gibbs sampling, as described in [Joh+21].

2.2.4 Rotamer Conditioning

AttnPacker+Design is able to condition on partial sequence information. For residues with

known identities, rotamer conditioning can be performed by passing the coordinates as input

to the TFN-Transformer, or by passing an invariant encoding of the side-chain dihedrals to

the graph transformer. We opted for the latter, using sine and cosine encodings of each

side-chain dihedral χ1 − χ4 when present and using 0 otherwise. The training procedure

is identical, except that we select a random subset of unmasked residues (i.e., residues for

which sequence identity is known) and provide these dihedrals as input.

2.2.5 Per-Residue Confidence Prediction

Estimating Packing Quality

Along with side-chain conformations, AttnPacker also outputs per-residue estimates of se-

quence prediction and packing quality. This is useful in the protein design setting, where

the practitioner may be interested in determining the degree of sequence-structure compati-

bility. To estimate packing quality, we predict a per-residue local distance dissimilarity test

(plDDT) score for a predefined atom in each amino acid side-chain.

31

plDDTi =
1

|N (i)|
·

∑
j∈N (i)

lDDT
(
abs

(
dij − d∗ij

))
(2.13)

where dij , d∗ij are the predicted and ground truth distance between selected atoms in residues

i and j,

N (i) =
{
j : d∗ij < 12Å

}
,

and

lDDT (d) =
1

4
·

3∑
k=0

1d≤2k−1 (2.14)

To compute a loss for this prediction, we pass our output residue features through a

shallow feedforward network with output representing 25 equal-width binned log likelihoods

in the range [0, 1]. The predictions are compared with the ground-truth labels plDDTi by

cross-entropy loss. Atom types used for each residue are given in Table 2.4 For each residue

type, we selected the most distal atom in the χ1 or χ2 dihedral group, with Cα and Cβ

chosen for Gly and Ala, respectively (see Table 2.4). In Figure 2.9, we show that this metric

correlates strongly with ground-truth side-chain plDDT, side-chain RMSD, and χ1 dihedral

error.

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE

CB CZ CG CG SG CG CG CA CG1 CG

LEU LYS MET PHE PRO SER THR TRP TYR VAL

CG CD CG CG CG OG OG1 CG CG CG2

Table 2.4: Definition of the distal side-chain atom for each residue type.

Packing Large Proteins We remark that confidence predictions are used to produce

accurate side-chain packings of large proteins. To do this, we linearly crop the input structure

and sequence into overlapping segments of a predefined length Lcrop, where consecutive

32

segments overlap on the last and first Lcrop/2 residues, respectively. For residues contained

in multiple segments, we choose the side chain/sequence predictions with higher predicted

confidence scores.

Estimating Sequence Quality

When using AttnPacker to design sequence and rotamers jointly, we also output sequence

confidence scores obtained by taking the average cross entropy between predicted sequence

labels and predicted amino acid type probabilities. Concretely, given sequence labels {si} ∈

{0, . . . 19}L and residue-type probabilities {pi} with pi ∈ R20 for each residue i, the sequence

score is defined as

seq-score = − 1

L

∑
i

log pi[si]. (2.15)

where pi[si] is the probability assigned to amino acid type si at position i.

Shown in Figure 2.14, we find a strong Spearman correlation between sequence score and

native sequence recovery (|ρ| = 0.90) and between predicted plDDT and sequence recovery

(|ρ| = 0.83).

2.2.6 Model Loss

Four separate loss functions are applied to the output - one for each of the predicted residue,

pair, and coordinate features. When training with missing residue types, cross-entropy

(NSR) loss is computed on predicted residue features after applying a shallow feed-forward

network to produce residue-type logits. Notably, we compute loss on the predicted residue

feature even if the corresponding amino acid type was included in the input since we corrupt

each residue type uniformly at random with probability p = 0.05

We also compute an auxiliary loss over predicted distances of distal side-chain atoms (see

‘tip-atom’ defined in [Hir+20]). This term is applied to the pair output of the locality-aware

graph transformer. The pair output is first symmetrized, and then logits are obtained by

33

linearly projecting into 46 bins covering 2Å− 20Å. Two bins are also added for a predicted

distance less than 2Å and greater than 20Å. If locality-aware attention is used, the loss is

only computed for pair ij if the corresponding residues are adjacent. Pairwise distograms

are obtained by taking a softmax of the logits, and an averaged cross-entropy loss is then

applied.

The final loss term is applied to the predicted coordinates. For every residue, we predict

the positions of all 33 side chain atom types and only compute loss on the coordinates which

are present in the native structure. The loss is computed as

L(i) = mean{huber
(
x⃗a
i − x⃗

a,∗
i

)
: a ∈ A(i)}, (2.16)

where A(i) denotes the set of atoms in the side chain of residue i and huber (x, y, β) is the

Huber loss between x and y with smoothing parameter β. The final loss is computed as

meani
(
L(i)

)
.

Some care must be taken in computing Equation (2.16) since some residues have sym-

metric side-chains. For these residues, we consider all possible symmetries by swapping the

coordinates of symmetric atoms and take the lesser of the swapped and not-swapped loss for

the respective residue. A list of residues with symmetric side-chains and pairs of atoms for

which we swap coordinates can be found in Table 2.5.

Arg Asn Asp Gln Glu Leu

NH1,NH2 OD1,ND2 OD1, OD2 OE1, NE2 OE1, OE2 CD1, CD2

His Leu Phe Tyr Val

ND1, CD2 CD1, CD2 CD1,CD2 CD1, CD2 CG1, CG2

NE2, CE1 - CE1,CE2 CE1, CE2 -

Table 2.5: Symmetric side-chains. Amino acids with side-chain symmetries and the atom
pairs which constitute these symmetries.

34

The overall loss function is given by

L = 1 · Lcoord + 0.2 · Ldist + 0.15 · LplDDT + 0.15 · Lseq. (2.17)

We note that little time was spent in tuning the weights of our loss function.

2.2.7 Rotamer and Clash Optimization

As our method directly predicts side-chain atom coordinates, there is no guarantee that bond

lengths and angles between predicted atoms will be physically realistic. To avoid limitations

inherent in discrete rotamer sampling, we develop a continuous mapping from dihedrals

to rotamers and from atomic distances to steric clashes. This enables us to use gradient

descent in optimizing our conformations while also providing guarantees of idealized rotamer

geometry. Although our objective function is highly non-convex, we show empirically that

proper rotamer initialization results in a minimal increase in per-residue RMSD.

Rotamer Post-Processing

In Algorithm 7, vdW
(
i, j, a, a

′)
is a pre-computed table giving the minimum distance at

which atoms a, a
′
in residues i and j are considered to clash. In computing this table, we

consider only atom pairs separated by at least four bonds, where at most one of a and a
′
is a

backbone atom (as backbone flexibility is not modeled by our algorithm). We also subtract

0.4 Å from hydrogen donor and acceptor pairs, given in Table 2.6. Last, we set the clash

tolerance to 1.8 Å for pairs of Cysteine sulfur atoms to account for disulfide bonds (typically

observed at a distance of 2.05 Å). the The function ToAllAtomCoordinates converts

backbone frames and side-chain torsion angles to 3D-coordinates, following [Jum+21, Sup-

plementary Information, Algorithm 24]. In converting to 3D coordinates, we use idealized

bond lengths and angles for each residue type, taken from OpenFold [Ahd+22]. We also use

code from OpenFold to compute side-chain dihedral angles. At the start of post-processing,

35

Algorithm 7 Post-Process Predictions
1: Input
2: x⃗a

i : All-atom coordinates for each residue, i and atom a in R3

3: χ
(t)
i : Side chain dihedrals for each residue i, and t = 1, 2, 3, 4

4: si: Amino acid type of each residue i
5: tvdw: Steric clash tolerance parameter, in R
6: Output
7: LRMS:RMSD loss
8: Lsteric:Steric clash loss
9:

10: function ProjectRotamerStep(x⃗i, χ
(t)
i , si, tvdw) :

11: y⃗ai = ToAllAtomCoordinates
(
x⃗
{N,Cα,C}
i , χ

(t)
i ,Si

)
12: d

a,a
′

i,j =

∥∥∥∥y⃗ai − x⃗a
′

j

∥∥∥∥
2

13: LRMS = meani,a
(
d
a,a
i,i

)
14: Lsteric =

∑
i,j,a,a

′
ReLU

(
vdW

(
i, j, a, a

′) · tvdw − d
a,a

′

i,j

)
15: return LRMS, Lsteric

we initialize each dihedral according to our coordinate predictions and update dihedrals χ(t)i

according to the gradients of the steric and RMSD loss. We remark that this procedure can

also be performed on native structures, and we find an average side-chain RMSD difference

of 0.08Å before and after post-processing CASP13 native structures.

Running Time and Effect on Per-Residue RMSD

We find that side-chain RMSD increases only slightly after post-processing (see Figure 2.5A).

Upon visually inspecting the raw coordinates output from our method, we found that most

residue side-chains were predicted with near-ideal geometry. Most violations occurred for

bulky amino acids like Arg or Glu, where the two branching atoms at terminal groups had

short bond lengths (illustrated in Figure 2.5B). This is likely a side-effect of training with

RMSD loss, as the last dihedral is difficult to predict for these residues, and shortening

bond lengths can reduce the RMSD of incorrect predictions. Finally, we remark that our

36

Figure 2.5: Post-processing procedure. (A) Bar plot of average RMSD of each residue
type before (red) and after (blue) rotamer and steric clash optimization. We also add a
small illustration of side-chain conformations before (red) and after (blue) post-processing
on CASP target T1043. (A) Running time of the post-processing procedure (y-axis) against
input protein length (x-axis) for three different settings. For example, the red line shows
the time taken to run 50 LBFGS [Byr+95] optimization steps with both steric clash and
rotamer RMSD loss. On average, 50 optimization steps will remove all clashes at a 0.9
tolerance threshold.

post-processing procedure requires only a PDB file as input and is broadly applicable for a

range of other tasks.

2.2.8 Training Details

We trained and validated all models using the BC40 data set1. The data set contains roughly

39k proteins which are selected from the PDB database by 40% sequence identity cutoff. We

filtered entries from this dataset so that no single target had greater than 40% sequence

identity with any target in our test set, and we used a 90-10 split for training and validation.

We train our models for ten epochs using the Adam [KB15] optimizer with default settings

and a learning rate of 10−3. To save memory, we crop all training examples to at most 400

residues by randomly selecting a single contiguous region. A complete summary of training

data, optimization settings, and training procedure is given in Appendix A.2.

1. BC40 is publicly available at: https://drug.ai.tencent.com/protein/bc40/download.html

37

https://drug.ai.tencent.com/protein/bc40/download.html

2.2.9 Test Datasets

Native Backbones Our native backbone data consists of protein backbones downloaded

from the 13th and 14th Critical Assessment of Techniques for Protein Structure Prediction

(CASP) database. This includes 82 regular targets in CASP13 and 64 regular targets in

CASP14 (see Table A.5 for a full list of targets). We also consider CASP13 and CASP14

free modeling targets and provide results in Table A.2. We chose to use the CASP13 and

CASP14 test sets as there is no canonical training or validation sets for PSCP, and in most

cases, these test sets have little overlap with the training sets used for the methods in

comparison.

Predicted (Non-Native) Backbones We also generated a set of non-native backbone

structures for the CASP13 and CASP14 targets, using AlphaFold2 from ColabFold [Mir+22].

We selected all non-native backbones with (1) at most 600 residues and (2) Cα RMSD less

than 2.5 Å from native. The rationale for this decision is given in Section 2.3.3. More details

on data generation are given in Appendix A.1.

2.3 Results

Results for side-chain packing are given in Section 2.3.3, and sequence design in Section 2.3.4.

We evaluate the quality of our confidence predictions in Section 2.3.5, and postpone ablation

studies for Section 2.4.

2.3.1 Overview

When reporting results for our method, we distinguish between the model trained only

for PSCP (AttnPacker) and the model trained for PSCP and fixed-backbone design (At-

tnPacker+Design). When assessing RMSD and dihedral prediction accuracy, the design

variant of AttnPacker was provided with complete sequence information as input. When

38

Figure 2.6: Examples of Side-Chain Packing and co-design on native and non-
native backbones. Native backbones are shown in what using cartoon format. Native
side-chains are shown in white using sticks. (A) Illustration of correct and incorrect side-
chain predictions (cyan) from AttnPacker for CASP target T0951. (B) AttnPacker prediction
on AF2 predicted backbone for CASP target T0951. (C) AttnPacker designed sequence and
side-chains for the same target.

designing a sequence, we do not give this variant any sequence information unless otherwise

specified. We use the same hyperparameters for each model, shown in Appendix A.2. We

also remark that all results for our methods are taken after post-processing, according to the

procedure described in Section 2B.5.

Side-Chain Packing

When native backbones are given, we compare our method against several popular PSCP

methods: DLPacker, RosettaPacker, SCWRL4, and FASPR. We use bold fonts and under-

lining in each table to mark the best and second-best performers in each category, respec-

tively. For non-native backbones, we compare our method with DLPacker, RosettaPacker,

RosettaFold, Omegafold, and AlphaFold2. Results for AlphaFold2 are split further by in-

formation provided at inference time. We consider MSA and backbone templates as input

(AF2+MSA+Temp.), and without MSA, given only backbone templates (AF2+Temp.). Re-

sults for RosettaFold are included only for the CASP14 targets. Complete details on data

collection are provided in Appendix A.1
39

Additional results for side-chain packing are given in Appendix A.4. Ablation studies

and a detailed analysis of different architectural components can be found in Section 2.4.

2.3.2 Evaluation Criteria

Side Chain Packing

Per-Residue RMSD and Dihedral MAE We consider residue-level RMSD and dihe-

dral angle deviations between predicted and native rotamers. Residue RMSD is calculated

over non-hydrogen side chain atoms and excludes residues Ala and Gly. Overall RMSD

is computed by averaging over all residues in all proteins for a dataset. For a side-chain

dihedral χi, mean absolute error (MAE) is calculated analogously to RMSD. Some residue

types have bimodal MAE distributions, and the average MAE tends to be much lower than

the median. We also report dihedral accuracy to better illustrate instances where entire

side-chains are correctly predicted. Overall accuracy (χ1−4 Acc.) is defined as the fraction

of residues having all dihedral angles within 20◦ of the corresponding native angles. The

accuracy of a fixed dihedral χi is defined analogously over all residues containing this angle.

As pointed out by Zhang et al. [HPZ20], the prediction accuracy of side-chain dihedrals is

much sharper when all side-chain dihedrals are considered, and a 20◦ cutoff, and hence, we

opt to use this criterion for all reported accuracy scores. Following [HPZ20], in computing

RMSD and angle MAE statistics, the symmetry of residues Asp, Glu, Phe, Arg, and Tyr

were considered. We also consider flipping Asn, Gln, and His terminal groups when com-

puting RMSD due to difficulties distinguishing these atoms [Cao+10]. A complete list of

symmetries can be found in Table 2.5.

Steric Clashes To assess the quality of packed solutions, we also consider the average

number of steric clashes in packing solutions. Two atoms are considered to clash if their

distance is smaller than a fixed percentage of the sum of their van der Waals (vdW) radii,

taken from the AMBER force field [Wan+04]. For this metric, we consider only atom pairs

40

separated by at least four bonds, where at least one atom belongs to a residue side chain. To

account for the fact that atoms sharing a hydrogen bond can favorably approach distances

within the sum of their vdW radii [LN98] by reducing the clash cutoff by 0.4Å for atom pairs

comprised of donor-borne hydrogen and acceptor (see Table 2.6 donors and acceptors).

Donors OH OG OG1 N ND1 ND2 NE NE1 NE2 NH1 NH2 NZ

Acceptors O OD1 OD2 OE1 OE2 OH OG OG1 ND1 NE2

Table 2.6: Hydrogen Bond Donor and Acceptor atoms. Note that some atoms may act as
both donors and acceptors and some atoms may appear in multiple residues

Sequence Design

Sequence Recovery and Perplexity Inverse folding methods are notoriously difficult

to benchmark. They are traditionally evaluated using (i) native sequence recovery (NSR)

rate, and (ii) model perplexity (when applicable). The rationale is that NSR assesses how

closely a designed sequence matches the native sequence of an input backbone structure, and

perplexity tests the ability of the model to assign a high likelihood to the native sequence.

Following Jing et al. [Jin+20], NSR is reported as the median (over all structures) of the

average percentage of residues correctly recovered.

In Silico Evaluation While experimental validation remains the gold-standard for eval-

uating designed proteins, recent works [Tri+23; Wat+22; Wan+21] have used protein struc-

ture prediction methods as an in silico proxy. Following [Tri+23], we use self-consistency

TM-score (scTM) and predicted lDDT (plDDT) to assess our designs. scTM indicates how

well sequences encode structure by measuring the TM-score [ZS04] between predicted and

ground-truth backbones. Predicted lDDT indicates how confidently a sequence folds to the

predicted structure. Each metric is computed using ESMFold [Lin+22].

41

Co-Design It is difficult to evaluate sequence and rotamer co-designs. In particular, pre-

dicted rotamers will be incompatible with the native when the residue types do not match.

Nevertheless, we report the Rosetta energy of our co-designs and compare that with the

energy of the native structure (sequence and conformation). This experiment is meant to

assess how well our designs agree with physics based energy functions, using the the native

sequence and rotamer conformations as a baseline. In theory, the native sequence should

yield the lowest energy for a given conformation, though we find that our designs yield sig-

nificantly lower energy on average. We report these results alongside sequence design in

Section 2.3.4.

Mutation Effect Prediction Besides predicting amino acid identities, inverse folding

models have also been used to predict the effect of point mutations on protein stability, and

other criteria [Ing+19; Hsu+22; YZY22]. To quantify our model’s ability to predict protein

mutation effects, we use the log ratios of the wild-type amino acid and the mutated amino

acid at the mutated index i. Formally, for a protein sequence S = s1, . . . sn and backbone

conformation C, we compare the log probability ratio of mutation xmutant appearing at

sequence position i against the wild-type xwild−type while conditioning on the backbone

conformation C. and S−i; the identities of all amino acids aside form si. The calculation is

shown in Equation (2.18).

log p(si = xmutant|S−i, C)− log p(si = xwild−type|S−i, C) (2.18)

Definition of Core and Surface Residues

In some instances, we divide our results based on residue centrality ; the number of Cβ

atoms within a 10Å ball of the query residue’s Cβ atom. For this measure, Cβ atoms from

the native conformation are used. Core residues are defined as those amino acids with a

centrality of at least 20, and surface residues are those with at most 15 Cβ atoms within

42

the same region of interest.

2.3.3 Side Chain Packing

We begin by comparing average RMSD and dihedral accuracy over CASP13 and CASP14

test sets. Additional results for CASP free-modeling targets can be found in Table A.2.

Example side-chain packings are shown in Figures 2.6 and 2.7.

Native Backbones

As shown in Table 2.7, our method (AttnPacker and AttnPacker+Design) consistently

achieves the lowest RMSD in each centrality category on both datasets. The performance car-

ries over into dihedral prediction accuracy, where our method also achieves top performance

for both datasets, regardless of residue centrality. Notably, physics-based RosettaPacker

performs well on core residues, while its accuracy for surface residues ultimately hinders its

overall performance. Compared to the deep learning method DLPacker, we obtain notably

lower RMSD scores in all centrality categories, with the largest improvement on surface

residues. We also improve overall dihedral accuracy over DLPacker by more than 3% for

each test set.

Focusing on dihedral angle MAE across χ1 − χ4 degrees of freedom, we see that our

method achieves top-1 performance on both CASP13 and CASP14 native backbones targets,

and top-1 or top-2 performance on CASP14 native backbones. In line with the results

reported by Misiura et al. [Mis+21], when compared to traditional methods, deep learning

methods recover χ1 dihedral angles considerably closer to those of the native structure.

Compared to the next best non-deep-learning method, we improve average χ1 MAE by 28%

and 22% for CASP13 and CASP14 targets. Unlike DLPacker, this improvement carries over

to χ2 angle prediction, where we obtain 18% and 17% improvements over the next best

non-deep-learning method on CASP13 and CASP14 targets.

As shown in Table 2.8, AttnPacker also produces much fewer steric clashes and is the

43

RMSD (Å)↓ χ−MAE◦↓
Method All Surface Core χ1 χ2 χ3 χ4

CASP13

SCWRL 0.934 1.200 0.597 27.64 28.97 49.57 61.54
FASPR 0.910 1.167 0.604 27.04 28.41 50.30 60.89
RosettaPacker 0.872 1.171 0.509 25.88 28.25 48.13 59.82
DL-Packer 0.772 1.018 0.483 22.18 27.00 51.22 70.04
TFN-Transformer 0.738 0.968 0.470 20.18 25.50 46.32 60.64
AttnPacker 0.669 0.881 0.414 18.92 23.17 44.89 58.98

+Design 0.673 0.887 0.424 18.77 23.44 46.12 59.57
Count 19118 6046 8880 19118 14333 4887 2268

CASP14

SCWRL 1.062 1.331 0.677 33.50 33.05 51.61 55.28
FASPR 1.048 1.304 0.696 33.04 32.49 50.15 54.82
RosettaPacker 1.006 1.384 0.716 31.79 33.00 50.54 56.16
DL-Packer 0.929 1.197 0.562 29.01 31.69 53.98 72.88
TFN-Transformer 0.895 1.139 0.544 27.18 29.13 49.73 51.97
AttnPacker 0.823 1.067 0.502 25.34 28.19 48.77 51.92

+Design 0.815 1.058 0.466 24.75 27.56 48.96 55.06
Count 17693 4979 8476 17693 13588 4613 2194

Table 2.7: Overall RMSD and χ1 − χ4 MAE results for the CASP13 and CASP14 targets
while native backbones are given. For RMSD, columns divide results by residue degree
centrality (All, Core, and Surface). Residue counts for each category are shown as a separate
row for each dataset

only method that generates fewer clashes than what is found in experimental structures. We

remark that Rosetta also includes the capability to perform side-chain minimization after

packing, which could remove many of the clashes in RosettaPacker’s output, but we did not

perform this as a post-processing step.

44

χ1−4Acc. (%)↑ Clash↑
Method All Surface Core r = 0.9 r = 0.8

CASP13

SCWRL 56.2% 45.2% 71.2% 20.6 4.6
FASPR 56.4% 45.5% 70.3% 23.3 5.6
RosettaPacker 58.6% 45.9% 75.3% 10.3 2.6
DL-Packer 58.8% 47.3% 73.9% 7.3 2.0
TFN-Transformer 60.1% 47.4% 73.7% 1.2∗ 0.3∗

AttnPacker 62.1% 51.5% 75.9% 1.4∗ 0.3∗

+Design 61.2% 50.7% 75.5% 1.2∗ 0.2∗

Count 19118 6046 8880

CASP14

SCWRL 45.4% 35.1% 62.3% 24.6 6.5
FASPR 46.3% 36.3% 62.3% 29.5 8.7
RosettaPacker 47.5% 35.3% 66.1% 17.1 5.2
DL-Packer 48.0% 36.3% 66.8% 10.7 3.0
TFN-Transformer 50.0% 38.7% 67.8% 2.8∗ 0.9∗

AttnPacker 50.9% 39.1% 68.2% 3.0∗ 1.0∗

+Design 51.6% 39.8% 70.6% 2.5∗ 0.8∗

Count 17693 4979 8476

Table 2.8: χ1−4 accuracy and Clash Results for the CASP13 and CASP14 targets while
native backbones are given. For accuracy, columns divide results by residue degree centrality
(All, Core, and Surface). Residue counts for each category are shown as a separate row for
each dataset. The average number of clashes for each target using a 90% and 80% fraction of
the van der Waals radius is given in the rightmost columns. An asterisk indicates an average
clash value below that of native structures; 5.9, and 0.4 for CASP13 and 7.9, and 2.5 for
CASP14. Results for AttnPacker+Design are obtained with the native sequence provided.

Non-Native Backbones

Comparing PSCP methods directly to protein structure prediction methods is difficult be-

cause the predicted tertiary structure can deviate far from that of the native. Side-chain

MAE and RMSD statistics also lose interpretability as the predicted backbone structure

deviates from the ground truth and native contacts are not conserved. Huang et al. [HPZ20]

noticed that χ1−4 recovery rates decrease significantly for non-native side chain packing when

45

backbone RMSD is larger than 2.38Å. Cao et al. also find a strong correlation between de

novo designability and backbone Cα RMSD in protein binder design. In an attempt to fairly

compare structure prediction methods to PSCP methods, we restrict to predicted backbones

with Cα RMSD at most 2.5Å from native in the main text, and include a comparison of side-

chain RMSD and χ1 MAE against a broader range of backbone RMSDs in Figure 2.8. Since

non-native backbones can deviate from ground truth, we compute a transformation to align

backbone heavy atoms N , Cα, and C for each residue in the predicted structure to the cor-

responding residue in the native structure. After applying this per-residue transformation,

we can compute side-chain RMSD and dihedral MAE as usual.

As a consequence of choosing low RMSD backbones, we remark that the comparison

may be biased in favor of PSP methods since we consider only those targets for which Al-

phaFold2 already produces accurate backbone conformations. Furthermore, the results may

be biased against OmegaFold and RosettaFold, since target selection was based exclusively

on AlphaFold2 accuracy.

For simplicity, we exclude FASPR and SCWRL and include only the top-performing

traditional method RosettaPacker. As shown in Table 2.9, discarding MSA information

from AlphaFold2 input causes a drastic reduction in performance. RosettaFold (with MSA)

performs slightly better than AlphaFold2 (without MSA), having a slightly higher average

RMSD but better dihedral accuracy. The relatively poor performance of these methods is

likely attributed to inaccurate backbone predictions, where the average RMSDs are 13Å and

15 Å for RosettaFold and AF2+Temp, respectively. It is likely that MSA information also

contributes to AlphaFold2’s success on CASP14 targets, where the nearly identical archi-

tecture used in OmegaFold falls short in terms of dihedral accuracy. Part of this reduction

can be attributed to OmegaFold predicting more accurate backbone conformations for the

CASP13 targets, with an average RMSD of 4Å increasing to 6Å for the CASP14 targets.

The two methods perform similarly in terms of χ1 MAE and RMSD on both data sets,

with OmegaFold having a slight edge in terms of χ1 prediction, despite predicting backbone

46

RMSD↓ MAE◦ ↓ Acc.↑ Clash (%VdW)↓
All χ1 χ1−4 100% 90% 80%

Method CASP13 Non-Native (N=7490)

AF2+Temp. 1.401 45.00 32.9% 80.0 30.5 13.2
AF2+MSA+Temp. 0.944 30.12 54.8% 39.7 1.1∗ 0.0∗

OmegaFold 0.926 28.15 54.6% 52.3 10.7 2.8
RosettaPacker 0.953 30.16 54.6% 45.9 3.9 0.6
DLPacker 0.925 29.56 53.3% 39.4 3.3 0.4∗

AttnPacker 0.871 28.00 55.0% 28.8∗ 0.4∗ 0.0∗

+Design 0.876 27.87 54.6% 30.7∗ 0.4∗ 0.0∗

CASP14 Non-Native (N=4327)

AF2+Temp. 1.431 47.40 28.4% 77.2 29.4 12.3
AF2+MSA+Temp. 0.948 30.36 52.2% 38.8∗ 1.7∗ 0.0∗

OmegaFold 0.949 29.32 49.3% 54.7 10.8 3.0
RosettaFold 1.51 48.45 34.8% 40.6 1.3∗ 0.0∗

RosettaPacker 0.980 30.85 51.2% 46.7 3.3 0.4∗

DLPacker 0.955 30.39 49.9% 38.8∗ 4.4 0.7∗

AttnPacker 0.902 29.14 51.2% 30.8∗ 0.44∗ 0.0∗

+Design 0.884 28.18 51.1% 32.6∗ 0.48∗ 0.0∗

Table 2.9: Results for packing non-native backbone structures predicted by AlphaFold2.
Values are derived from a total of 47 CASP13 and 27 CASP14 targets, all having at most
600 residues and Cα RMSD less than 2.5Å from native. An asterisk indicates an average
clash value below that of corresponding native structures - 34.6, 2.2, and 0.5 for CASP13
and 40.0, 2.7, and 0.7 for CASP14. Results for AttnPacker+Design are obtained with the
native sequence provided.

conformations with higher RMSD on average.

For PSCP methods, AttnPacker achieves top performance in terms of RMSD and χ1

MAE, with significantly lower overall RMSD and a smaller improvement in χ1 MAE over

OmegaFold. For several targets, AttnPacker produces packings with nearly 30% lower RMSD

than AlphaFold2, an example of which is given in Figure 2.7B. For non-native backbones,

RosettaPacker is more competitive with our method, having dihedral accuracy within a

percentage point of the best score on both test sets and a slightly smaller gap in terms of

47

RMSD.

Overall, we see fewer steric clashes on non-native backbones than on native backbones.

Looking into this, we found a correlation between protein length and the average number of

clashes. This difference is likely attributed to non-native backbones being restricted to less

than 600 amino acids in length.

Figure 2.7: Example backbone packing where AttnPacker yields correct results.
(A) The backbone of CASP13 target T0968s1 is shown in cartoon representation, and se-
lected side chains are shown using stick representation. Amino acid names and sequence
positions are shown for select residues. AttnPacker achieves an average RMSD 0.36Å, and
DLPacker achieves 0.62Å. B Native and AlphaFold2 predicted backbones for CASP13 target
T0980s1 are shown in cartoon representation, and selected side chains are shown using stick
representation. Amino acid names and sequence positions are shown for select residues. Here,
AttnPacker achieves an average RMSD 0.83Å, average RMSD, and AlphaFold2 achieves
1.08Å. (C), shows OmegaFold’s predicted backbone for the same target.

OmegaFold and non-MSA-based AlphaFold2 have the highest per-target average. This

may contribute to OmegaFold’s accuracy in terms of χ1 MAE and RMSD, as it frequently

predicts packings with large amounts of steric hindrance. This highlights the importance

of considering steric clashes alongside traditional metrics when analyzing modeling perfor-

mance. AttnPacker has fewer steric clashes than MSA-based AlphaFold2 and corresponding

native structures, indicating that our method is effective at producing physically realistic

packings. It is well known that AlphaFold2 structures can contain considerable steric hin-

drance between side-chain atoms. According to the AlphaFold Structure Database [Var+21],

this typically occurs only in low-confidence regions. Since we selected only accurately mod-

eled backbones, these numbers may be biased. This could also explain why the average

48

https://alphafold.ebi.ac.uk/faq

number of clashes is much higher when excluding MSA information. We also note that

AlphaFold2 is fine-tuned with steric clash loss, likely contributing to lower clash values.

Figure 2.8: (A) Per-target scatter plot comparing AttnPacker and AlphaFold2 (AF2) on
non-native backbones for CASP13 and CASP14 targets. The x-axis shows backbone Cα
RMSD between AlphaFold2 predicted backbones and native structures. The y-axis shows
the percentage difference in average side-chain RMSD using our method’s prediction as the
initial value. Each point represents the percentage difference in side-chain RMSD for a single
protein packed by AF2 and AttnPacker. (B) Analogous plot using χ1 MAE (degrees) as
criteria. (C,D) show frequency plots of per-target steric clashes using 90% van der Waals
radius. The x-axis shows the number of steric clashes, and the y-axis shows the number
of (non-native backbone) targets having this many clashes. Our method is compared to
AlphaFold2 in (C) and OmegaFold in (D). For All plots, we restrict to backbone RMSD
<10Å for clarity, as only a small fraction of targets are predicted with larger RMSD.

49

RMSD for Bulky Amino Acids

In terms of residue-level RMSD, the most significant improvements are achieved for Arg and

His, each of which have large positively charged side-chains, as well as bulky hydrophobic

amino acids Phe, Trp, and Tyr.

Figure 2.9: RMSD box plots for bulky amino acids on the CASP13 targets. Each
box plot shows the average RMSD(Å) (y-axis) of each method (x-axis) on His, Phe, Arg,
Trp, and Tyr. (A) shows RMSD values over all centrality categories, (B) restricts to the
protein core, and (C) to the protein surface. Each box extends from the data’s lower to
upper quartile values, with an orange line at the median. 95% confidence intervals around
the median are shown with a notch, and the mean is shown with a green circle. For each
residue type, a random sample of 80 RMSD values is plotted vertically with each bar.

In Figure 2.9, we break the y-axis for all residues except Arg but maintain the split-axis
50

formatting for consistency. Aside from Arg, all RMSD distributions have two major peaks

around 0.5 Å, corresponding to correct predictions, and around 4-5 Å, corresponding to

mirrored conformations.

As shown in Figure 3A, AttnPacker improves the overall RMSD of each amino acid

type by 10%-20%, In Figure 2.9C, we show that part of this reduction can be attributed

to more accurate modeling of surface residues, where deep learning methods outperform

traditional approaches by 20% for these residue types. In the protein core, deep learning

methods lose their edge on His, Arg, and Trp. Incorrect modeling of bulky amino acids in the

protein core could cause adverse effects on neighboring amino acids, leading to inaccurate

downstream predictions. The density of atoms in the protein core also provides more packing

constraints, which is favorable for traditional energy-based methods like RosettaPacker. A

complete overview of residue-level RMSD on the CASP13 and CASP14 targets is given in

Tables A.3 and A.4.

Dihedral Accuracy Large Amino Acids with High Degrees of Freedom

To better understand the instances where our method loses its advantage to traditional PSCP

algorithms, we evaluate dihedral predictions on four large amino acids with high side-chain

dihedral degrees of freedom. We consider dihedral prediction for charged and polar amino

acids Lys, Arg, Glu, and Gln in Table 2.10.

For these residue types, we restrict the comparison to the top-performing classical method

RosettaPacker. For these amino acids, our method is still competitive with RosettaPacker,

achieving top performance in χ1 − χ4 MAE for all but χ3 of Lys. Surprisingly, low dihedral

MAE does not always translate to high dihedral accuracy. Although AttnPacker almost

always obtains lower MAE and RMSD values (see Tables A.3 and A.4) than RosettaPacker,

the physics-based method, achieves top-1 χ1−4 accuracy for both Arg and Lys. In Fig-

ure 2.10, we consider accuracy conditioned on average B-factor and show that inaccuracies

in 3D models are unlikely to be the cause of this discrepancy. We hypothesize that this

51

MAE◦ ↓ Acc.(%)↑
Method χ1 χ2 χ3 χ4 χ1−2 χ1−4

Arg
Ros. Pack. 32.0 32.21 59.3 63.3 52.5% 22.2%
DLPack. 28.6 32.5 61.1 67.2 49.1% 14.5%
AttnPack. 26.2 30.1 57.0 61.8 50.5% 13.3%

Lys
Ros. Pack. 31.3 37.9 45.0 56.5 51.5% 21.6%
DLPack. 27.6 37.6 51.8 72.7 46.1% 9.6%
AttnPack. 24.1 33.8 45.9 56.3 54.2% 16.0%

Gln
Ros. Pack. 32.2 42.4 54.0 50.9% 29.7%
DLPack. 30.5 39.9 50.4 51.9% 26.0%
AttnPack. 24.8 34.6 43.0 56.3% 34.0%

Glu
Ros. Pack. 38.9 43.7 31.1 43.9% 24.9%
DLPack. 34.6 42.4 36.5 42.9% 22.0%
AttnPack. 29.0 38.1 27.9 49.2% 30.1%

Table 2.10: χ-Dihedral MAE◦ and accuracy on the CASP13 targets for charged
and polar Amino Acids Arg, Lys, Gln, and Glu.

is a side-effect of using RMSD as a training objective, which places more importance on

accurately predicting lower-order dihedrals. This suggests that new training methods or

loss functions which improve higher-order dihedral accuracy are important areas for future

research.

2.3.4 Sequence Design

We find that AttnPacker’s sequence designs strongly encode native backbones, achieving

native-like scores for both scTM and plDDT metrics (Figure 2.11(B and C)). Extended in

silico analysis of AttnPacker and ProteinMPNN is provided in Section 2.3.4. Results for

native sequence recovery and perplexity in various design settings are given in Tables 2.11

and 2.12.

52

Figure 2.10: χ1−4 accuracy conditioned on average side-chain atom B-factor for
CASP13 targets. Dihedral accuracy for AttnPacker (blue) and RosettaPacker (red) are
shown for four amino acid types. Gray bars indicate the frequency of the corresponding
residue type and b-factor bin, as indicated by a secondary y-axis shown on the left of each
plot. For each residue, we compute the B-factor by averaging over the values of each side-
chain atom type.

Co-Design

In Figure 2.11A, we evaluate AttnPacker’s ability to co-design sequence and rotamers by

considering Rosetta energy values. We exclude side-chain statistics from this analysis as the

amino acid type predicted by AttnPacker+Design may be different from that of the native.

An example of AttnPacker designed sequence and side-chains is given in Figure 2.6.

Figure 2.11A shows the energy of AttnPacker fixed-backbone designs and Rosetta gener-

53

Figure 2.11: In silico evaluation of AttnPacker generated sequence designs for
CASP13 targets. (A) Scatter Plot of Rosetta energy for Rosetta-relaxed native structures
(x-axis) against percentage change in Rosetta energy for designed sequences and side-chain
conformations (y-axis). Orange dots correspond to Rosetta designs, and blue dots correspond
to designs with AttnPacker. Energy scores were computed after running Rosetta’s FastRelax
protocol (outlined in Appendix A.1).Plots on the right show ESMFold scTM (B) and plDDT
scores (C) for native (gray) and AttnPacker-generated (blue) sequences.

ated designs using corresponding native proteins from the CASP13 and CASP14 test set as a

baseline. Rosetta designs were obtained using the FastDesign protocol [CLG10; Lem+20],

and energy was calculated with the Rosetta ref_2015 energy function [Alf+17]. A de-

tailed overview of data collection for this process is provided in Appendix A.1. We remark

that other programs have been developed for this task, e.g. Osprey [Gai+13], protCAD

[SD02], and SCADS [FAK07] but they lack documentation and have not been rigorously

benchmarked. On average, designs from AttnPacker yield lower energy than both native

structures and Rosetta designs, indicating that our method captures biologically meaningful

aspects of sequence-structure compatibility.

In Table 2.11, we show results for AttnPacker+Design when various levels of partial se-

quence information are provided. We consider masking randomly selected subsets of residues

(Random-Mask), and masking a contiguous segment (Linear-Mask) of 5, 10, or 20 residues

were also chosen at random. In the random-mask setting, we choose the number of residues

54

Random-Mask Linear-Mask
(%) Masked Residues Length
10% 25% 50% 5 10 20

Native Sequence Recovery (NSR) ↑
Mean 50.8% 51.3% 48.7% 50.9% 53.3% 52.4%
Med. 52.7% 52.7% 49.8% 60.0% 50.0% 55.0%
Std. 0.14 0.10 0.08 0.20 0.17 0.13

Perplexity ↓
Mean 4.65 4.71 5.01 5.15 4.78 4.64
Med. 4.21 4.12 4.30 3.89 4.07 4.05
Std. 1.97 1.70 1.59 3.77 2.84 2.33

Table 2.11: Inverse folding results with varying levels of sequence information
for CASP13 targets. Native sequence recovery (top) and perplexity (bottom) values
are extracted only for residues where sequence information is withheld. Five designs were
produced for each target in the CASP13 test set and each setting. Results for each setting
were obtained by averaging over all designs.

in each subset as a fixed percentage of the protein’s length, using values 10%,25% and 50%.

Results in Table 2.11 indicate that median sequence recovery tends to decrease as the

percentage of masked residues increases. A similar trend is seen for mean and median

perplexity, which positively correlates with the percentage of masked residues. For instance,

when only 10% of the input sequence is masked, AttnPacker achieves a median recovery of

52.7%, dropping to 48.6% when the entire sequence is withheld. These results suggest that

AttnPacker is able to incorporate sequence context in its designs effectively.

Results on linear masking are somewhat surprising. Median perplexity is lowest for the

smallest mask length of five residues and roughly the same for longer lengths. Standard

deviations in perplexity and recovery also decrease as crop length increases. Like side-chain

RMSD, sequence recovery is also highly correlated with residue degree centrality [Ing+19].

Shorter crop lengths may have a higher chance of having all or no residues in the protein core,

whereas longer crop lengths are more likely to have residues in both regions. Future work

may analyze performance conditioned on the average residue centrality of masked residues.

In Table 2.12, we compare AttnPacker+Design to ProteinMPNN, GVP-GNN, and Roset-

taDesign. In comparing with GVP-GNN we re-trained the model on the same training set

55

NSR ↑ Perplexity ↓
Method Mean Med. Mean Med
AttnPacker+Design 47.8% 48.6% 5.39 5.09
ProteinMPNN-0.002 48.5% 51.3% 5.64 4.85
ProteinMPNN-0.01 44.8% 46.7% 6.41 5.53
ProteinMPNN-0.02 42.3% 44.3% 6.94 6.22
GVP-GNN + (CATH4.2) 42.2% 44.0% 5.77 5.12
GVP-GNN + (BC40) 41.9% 43.3% 5.82 5.04
RosettaDesign 33.8% 34.2% - -

Table 2.12: Inverse Folding Results on CASP13 targets. We suffix ProteinMPNN
with the training noise level, e.g., ProteinMPNN-0.01 corresponds to ProteinMPNN trained
with 0.1Å noise on coordinates. Methods GVP + BC40 and GVP + CATH4.2 use the
same hyperparameters reported by Jing et al.[Jin+20] but differ on the training set used -
CATH4.2, and BC40, respectively.

as AttnPacker+Design to provide an unbiased comparison. Pre-trained models were used

for ProteinMPNN and we remark that there may be some train/test overlap for this model.

The data collection process is detailed in Appendix A.1.

As shown in Table 2.12, AttnPacker+Design performs similarly to ProteinMPNN while

outperforming GVP-GNN trained on the same dataset. The GVP-GNN model is relatively

shallow compared to AttnPacker, using only three encoder-decoder layers. GVP-GNN also

uses much smaller hidden dimensions: 100 for scalar features, 16 for coordinate features, and

32 for pair features. We attempted to train wider and deeper variants of GVP-GNN, but

could not significantly improve performance, likely because of the well-known over-smoothing

issue [CW20] with graph neural networks.

ESMFold Evaluation

To understand how well our generated sequences encode native backbone structure, we used

ESMFold [Lin+22] to predict structures from sequence designs for CASP13 and CASP14

targets. In Figure 2.12, we show scTM and plDDT distributions for AttnPacker+Design and

ProteinMPNN using native backbones of CASP13 and CASP14 targets. For this assessment,

we follow the methodology in ProteinMPNN, restricting to targets with at most 350 residues,

56

and generate eight sequences per target backbone. Sequences for AttnPacker were sampled

using Gibbs sampling as described in [Joh+21], with a total of 20 transitions per design,

using a 15% re-sampling rate and linear temperature decay from 0.5 to 0.1. A script for

running this sampling procedure can be found on our GitHub repo.

Sequences generated from CASP13 and CASP14 native backbones are predicted confi-

dently and accurately by both methods. However, ProteinMPNN predicts a higher propor-

tion of sequences with scTM and plDDT at the upper tails of the distribution. As mentioned

in our discussion, this may be attributed to perturbing backbone coordinates with Gaussian

noise or re-sampling clusters at inference time. We also remark that our training set is fil-

tered against CASP13 and CASP14 target backbones. It is possible that the training data

used for ProteinMPNN has some overlap with these targets.

The authors of ProteinMPNN note that AlphaFold success rate tends to increase mono-

tonically in the number of recycling iterations and conjecture that single sequence structure

prediction models may yield even higher success rates ([Dau+22], Supplementary Material,

“Further in silico analysis”). Our results in Figure 2.12 offer some empirical evidence of

this hypothesis. Independent assessment on CASP13 targets shows similar native sequence

recovery rates as reported on the PDB test set (52% for monomers).

57

Figure 2.12: ScTM and plDDT distributions for CASP13 and CASP14 targets.
Distributions for AttnPacker, ProteinMPNN, and native sequences are shown in blue, gray,
and red, respectively.

58

Zero-shot Protein Mutation Effect Prediction

For this task, we trained another variant of AttnPacker using a higher weight for native

sequence recovery and a lower weight for side-chain RMSD loss; Equation (2.17) is modified

to

L = 0.15 · Lcoord + 0.2 · Ldist + 0.15 · LplDDT + 1 · Lseq. (2.19)

Following Ingraham et al. [Ing+19], we first assess our model’s performance on predicting

protein stability in response to single-point mutations using deep mutational scanning data

from [Roc+17]. In Table 2.13 we observe that conditioning on the partial input sequence (in

addition to backbone conformation) leads to improvements in stability prediction for eight

of the ten de novo designed mini-proteins. Moreover, our model improves over the Structure

Transformer for nine of the ten targets.

Topology ββαββ αββα αα avg.
ID 37 1498 1702 1716 779 223 726 872 134 138 -
Structure Trans. 0.47 0.450.12 0.47 0.57 0.36 0.11 0.21 0.24 0.33 0.33
Ours (given S−i, C) 0.740.43 0.280.58 0.58 0.51 0.330.42 0.510.58 0.50
Ours (given C) 0.70 0.39 0.26 0.52 0.48 0.49 0.330.42 0.510.52 0.46
GVP-GNN 0.53 0.39 0.26 0.57 0.48 0.47 0.19 0.39 0.44 0.44 0.42
GVP-Transformer+AF2 0.70 0.33 0.22 0.58 0.640.550.26 0.42 0.50 0.58 0.48

Table 2.13: Predicted likelihoods correlate with mutation effects in de novo - de-
signed mini proteins. Pearson Correlation between high-throughput mutation effect data
from a systematic design of mini proteins. Each design (column) includes 775 experimentally
tested mutant protein sequences. Results are split by fold topology (first row) and design
model (second row) as referenced in [Roc+17]. Results for the Structure Transformer are
generated on rigid backbones, and taken from Table 5 of [Ing+19]. Results for GVP-GNN
and GVP-Transformer+AF2 are taken from [Hsu+22], table C.2.

Moreover, our model outperforms protein language models TAPE [Rao+19] and UniRep

[All+19] trained on large sequence databases across 12 DMS datasets in zero-shot protein

mutation effect prediction regardless of sequence evolutionary information as shown in Fig-

ure 2.13A. This result indicates that AttnPacker captures the underlying functional interac-

tion between the 3-dimensional conformation and the amino acid sequences of a given protein
59

which suggests structure information may facilitate the characterization of protein mutation

effects. We also noticed in Figure 2.13(B) that the performance of our method correlates

with the similarity between the DMS target structure and our training set but independent

of the sequence identity between the DMS target and our training set. This further confirms

that our zero-shot mutation effect prediction is structure-aware.

Figure 2.13: Zero-shot prediction performance (A) Per task performance of our model
compared with two other language models, UniRep and TAPE, on 12 DMS datasets measured
by rank correlation. (B) Performance of our model against the top-1 TM-Align score (right)
and sequence identity (left) among the training protein and DMS targets.

2.3.5 Confidence Predictions

Illustrated in Figure 2.14, AttnPacker’s side-chain lDDT predictions correlate strongly with

ground truth lDDT for both native (ρ = 0.85) and non-native (ρ = 0.92) input backbones

(Figure 2.14D). Furthermore, show that this metric is consistent with per-target side-chain

RMSD and χ1 MAE (Figure 2.14E,F), suggesting that confidence predictions can be used

to accurately assess rotamer quality.

Figure 2.14A-C shows how predicted sequence and side-chain lDDT scores can be used to

60

predict design quality. Interestingly, we see a strong correlation between predicted side-chain

lDDT and native sequence recovery (Figure 2.14C). This strongly suggests that the model

is able to reason about sequence-structure compatibility.

Figure 2.14: Model Confidence Calibration. (A-C) Scatter plots between predicted
side-chain lDDT, sequence score, and native sequence recovery for CASP13 targets. To
generate results, AttnPacker+Design was run five times for each target with no sequence
information provided. Each metric was averaged over decoys for each target to produce the
plots. Plots (D-E) were generated using the native sequence as input. (D) shows a scatter
plot of predicted side-chain lDDT (y-axis) against ground-truth side-chain lDDT for native
and non-native CASP targets. Spearman correlations are ρ = 0.92 and ρ = 0.85 respectively.
(E and F) show predicted side-chain lDDT (y-axis), against average side-chain RMSD and
χ1-MAE for CASP13 and CASP14 native targets. The Design variant of AttnPacker was
also used for plots (D-F), but full sequence information was provided.

61

2.4 Ablation Studies and Architecture Assessment

Much of AttnPacker’s success can be attributed to novel architectural components, described

in Section 2B. Our stand-alone TFN-Transformer outperforms DLPacker with respect to both

overall RMSD and dihedral angle accuracy on native backbones. Integrating local triangle

updates boosts accuracy further, especially for core residues, as shown in Figure 2.15, and

Table 2.16. Some of this improvement may come from increased depth, which effectively

increases the network’s receptive field. This is supported by the fact that performance dif-

ferences are minimal for residues on the protein surface. Compared to full triangle updates,

as implemented in AlphaFold2, our local approach roughly matches the performance while

considering only the 30 nearest neighbors of each residue. These results and several other

ablation studies are shown in Section 2.4. We consider several variants of SE(3)-equivariant

Similarity

Dot Product σℓij =
(
qℓi

)⊤
kℓij + bℓij

Distance σℓij =

(
qℓi

)⊤
kℓij ℓ = 0∥∥∥Tii (qℓi)− Tij (kℓij)∥∥∥22 ℓ > 0

Attention
Per-Type f ℓout,i =

∑
j∈N (i)w

ℓαℓijvij

Shared f ℓout,i =
∑

j∈N (i)

(∑
ℓ
′ wℓ

′
αℓ

′

ij

)
vℓij

Table 2.14: SE(3)-equivariant Similarity and attention types. Here, we use a su-
perscript ℓ to denote type-ℓ features of dimension 2ℓ + 1 (i.e. ℓ = 0 for scalar features and
ℓ = 1 for point features). For distance similarity, we use Txy to denote some transforma-
tion mapping points into so-called “local frames” of the respective node used to ensure the
equivariance of the operation.

self-attention. Each variant can be categorized by the operation used to compute the similar-

ity between keys and queries of different feature types (i.e., 1D-scalar and 3D-point features)

and the operation used to compute the final attention weights. We focus on the well-known

dot product similarity, used in the SE(3)-Transformer and negative distance similarity, which
62

was first presented in the Invariant Point Attention module of AlphaFold2. Aside from cal-

culating the similarity between points, these architectures also differ in their calculation of

attention scores - AlphaFold2 uses the same shared attention weights for scalar and point

features, whereas the SE(3)-Transformer computes attention weights for each type. This is

outlined more formally in Table 2.14. Following the conventions of ([Tho+18; Fuc+20]), we

use a superscript ℓ to denote type-ℓ features of dimension 2ℓ+ 1.

We trained four TFN-Transformer models differing only by attention and similarity type.

Hyperparameters were chosen to match those in Table A.1. The average RMSD and dihedral

accuracy results of the four attention variants are shown in Table 2.15.

CASP13 CASP14
RMSD(Å)↓ χ1−4 Acc↑ RMSD(Å)↓ χ1−4 Acc↑

Similarity Attention All Core Sfc. All All Core Sfc. All

Distance per-type 0.811 0.555 1.074 55.1% 0.972 0.669 1.197 45.2%
shared 0.764 0.512 0.943 57.3% 0.909 0.590 1.150 46.9%

Dot-Prod. per-type 0.736 0.496 0.907 58.1% 0.878 0.572 1.113 47.4%
shared 0.710 0.487 0.895 58.4% 0.865 0.564 1.102 48.0%

Table 2.15: Comparison of SE(3)-equivariant attention and similarity operations
on performance for CASP13 and CASP14 targets. Performance is measured using
average residue RMSD (Å) and χ1−4 prediction accuracy.

The results in Table 2.15 show that shared attention weights produce better results

for both similarity types. Overall, dot-product-based similarity outperforms distance-based

similarity, even when per-type attention is used. As pointed out by Fuchs et al. [Fuc+20],

this may be because each basis kernel in a TFN is completely constrained in the angular

direction. By using dot-product-based similarity, the angular profile of the basis kernels is

modulated by the attention weights.

We also experimented with different architectural variants. First, we used a linear pro-

jection rather than a TFN to compute keys at each attention head. Next, we augmented

the input to the TFN radial kernel by concatenating the pairwise distances between hidden

coordinates. Third, we tried removing the attention calculation between points and instead

used only scalar features to compute attention weights. For each variant, shared attention
63

weights and dot product similarity was used. As shown in Table 2.16, using a linear projec-

tion for attention keys has the largest impact on RMSD score - surprisingly much more than

removing point-based attention all together. This suggests that TFN neighbor convolutions

are an important component of the architecture. The results also show that RMSD scores

are improved when pairwise distances between hidden coordinate features are concatenated

to the input of the TFN radial kernel. In all ablations, we see little variation in RMSD scores

for surface residues.

(A) RMSD (Å)↓ (B) RMSD (Å)↓
TFN-
Transformer All Core Sfc. TFN

+Local All Core Sfc.

Baseline 0.710 0.487 0.895 θ = 8 0.695 0.480 0.895
+ Pairwise Dist. 0.698 0.475 0.892 θ = 12 0.679 0.438 0.888
+ No coord. attn. 0.743 0.539 0.962 θ = 16 0.669 0.414 0.881
+ Linear Keys 0.809 0.565 1.001 θ =∞ 0.665 0.409 0.876

Table 2.16: Architecture and hyperparameter study. The tables show the average
side-chain RMSD on the CASP13 targets. Table (a) shows the effect of TFN architectural
features. Baseline denotes our TFN-Transformer with shared dot-product attention and
pair bias. The other three rows show results after changing some components. Table (b)
shows the effect of neighbor distance threshold on RMSD with θ = 8, 12, 16 and ∞. Each
model in (b) uses our locality-aware graph transformer with distance cutoff θ and TFN-
Transformer with shared dot-product similarity, pair bias, and pairwise distance features.
All other hyperparameters were held constant.

We also considered the effect of the neighbor distance threshold on performance. This

threshold is used as the maximum valid edge length for triangle updates and to determine

residue adjacency in the locality-aware graph transformer. It is also used to define the

neighborhood of scalar and point features in the TFN-Transformer. We tried three distance

thresholds, 8Å, 12Å, and 16Å The results are shown in Table 2.16.

Average RMSD clearly decreases with increasing neighbor distance. The marginal im-

provement diminishes with increasing radius, and the bulk of the improvement comes from

residues in the protein core.

Not surprisingly, RMSD and chi angle prediction errors decrease rapidly as centrality

increases. It is also clear that the marginal improvement garnered from including our graph
64

Figure 2.15: Average RMSD (Å) and χ1−4-MAE◦ against centrality. The y-axis shows
average RMSD (left) and average χ-MAE (right) for methods DLPacker, TFN-Transformer
(TFN), and AttnPacker against residue centrality (x-axis). Values were computed using all
targets in both CASP13 and CASP14 data sets. Values were disregarded if the number of
residues with the corresponding centrality was less than 30. We remark that RMSD was
computed before performing post-processing for our methods.

transformer module increases with centrality. For both RMSD and MAE, the performance

gap between the TFN-Transformer and our complete model increases with centrality, suggest-

ing that triangle updates are important for accurately determining side-chain conformations

in protein cores. The opposite is true when comparing TFN+Tri with DLPacker, where

the gap decreases as centrality increases. This is not surprising, as DLPacker iteratively

constructs each residue’s side-chain using only atoms in the residue’s immediate microen-

vironment as input. This choice of input features implies that features for protein surface

residues are more sparse than those for core residues.

2.5 Concluding Discussion

We have developed AttnPacker, an SE(3)-equivariant model for the direct prediction of se-

quence and side-chain coordinates. AttnPacker uses spatial information derived from protein

backbone coordinates to efficiently model residue and pairwise neighborhoods. This, cou-

pled with an SE(3)-equivariant architecture, allows for the simultaneous prediction of all

side-chain rotamers without conformational sampling or discrete rotamer selection.

Components of our deep learning model were inspired by AlphaFold2 and the SE(3)-

Transformer. By generalizing and carefully evaluating ideas from these architectures, we were
65

able to achieve comparable or better accuracy while drastically improving efficiency. Specif-

ically, we generalized two components of AlphaFold2 to spatial graphs specific to protein

backbones. We also modified the attention heads of the SE(3)-Transformer to incorporate

pair bias, distance information between hidden points, and shared attention weights.

Even without mechanisms from AlphaFold2, our modified TFN-Transformer outperforms

all other PSCP methods on native backbones in terms of average RMSD on the CASP13 and

CASP14 targets. On the other hand, the baseline SE(3)-Transformer of Fuchs et al. falls

short of DLPacker for residues in the protein core (see Section 2.4). Part of this improvement

is achieved by augmenting edge features with pairwise distance information between hidden

points. We hypothesize that this information is especially important for deeper TFN-based

architectures because information about relative distances between hidden coordinates is lost

as a result of using spherical basis functions.

Method Ours DLPack RosPack FASPR SCWRL4
Rel. Time 1.0 124.4 151.7 0.5 14.7

Table 2.17: Time comparison of PSCP methods. Relative times for reconstructing
the side-chain atoms of all 83 CASP13 targets. We exclude the time for running our post-
processing procedure, as this can be done in parallel on CPU. DLPacker (DLPack) and At-
tnPacker (Ours) were run on a single RTXA6000 GPU. RosettaPacker (RosPack), SCWRL4,
and FASPR were run on a single AMD EPYC 7742 processor. With local triangle updates,
our method reconstructs all side-chain atoms for all the CASP13 targets in 68 seconds.

On top of outperforming other popular methods, our model presents several other advan-

tages. First, it is extremely fast. Table 2.17). shows the cumulative and relative time spent

by each method for reconstructing side-chains of all the CASP13 targets. We can predict all

side-chain conformations for a 600-residue protein in less than a second using a single Nvidia

RTXA6000 GPU. On the other hand, DLPacker must be run iteratively for each amino acid

side-chain creating a strong dependence on protein length at inference time. Our model

is also very simple to use - it requires only a protein data bank (PDB) file. In contrast,

OPUS-Rota4 [XWM21] requires voxel representations of atomic environments derived from

DLPacker, logits from trRosetta100, secondary structure, and constraint files derived from

66

the output of OPUS-CM. Obtaining the requisite input data was too burdensome to provide

a comparison.

Furthermore, since our method directly predicts side-chain coordinates, the output is

fully differentiable which benefits downstream prediction tasks such as refinement or protein-

protein interaction. This also circumvents the use of engineered energy functions and rotamer

libraries and emphasizes architectural innovations and better loss functions.

AttnPacker also succeeds in efficiently modeling residue-level local environments by using

locality-based graph attention during feature and structure generation stages. On the other

hand, DLPacker and OPUS-Rota4 use 3D-voxelized representations of each amino acid’s

microenvironment - requiring space O
(
v3cd

)
, where v is the voxelized width (40 in the case

of DLPacker and OPUS), c is the number of channels, and d is the channel dimension. Al-

though this choice of representation has helped facilitate good performance for each method,

the memory requirements prevent simultaneous modeling of all amino acid side-chains which

could ultimately hinder reconstruction accuracy. We hypothesize that simultaneously mod-

eling all side-chains helps contribute to our method’s success.

Although AttnPacker yields significant improvements in residue-level RMSD, we remark

that traditional PSCP methods SCWRL, FASPR, and RosettaPacker still perform compara-

bly in terms of χ3 and χ4 angle prediction. We guess that incorporating dihedral information

into our model - either directly or through an appropriate loss function - could help improve

performance.

In addition to side-chain packing, the design variant of AttnPacker is able to generate

sequences with both high recovery (mean NSR of 47.8%, CASP13), and high in-silico success

rates (mean scTM of 0.77, CASP13). These results are competitive with the inverse-folding

method ProteinMPNN, which achieves a mean NSR of 48.5% and ESMFold scTM of 0.83 for

the CASP13 targets. Unlike AttnPacker, ProteinMPNN does not directly model coordinates

and is primarily featurized by pairwise distances between backbone atoms. In training

ProteinMPNN, backbone atoms are perturbed with a small amount of Gaussian noise (SD

67

= 0.02Å). This data augmentation strategy is found to increase in-silico success rates and

may explain some of the performance differences between the two methods. Furthermore,

ProteinMPNN is trained on a combination of monomeric and multimeric inputs. The training

set is clustered at 30% sequence identity and contains 23k clusters of protein assemblies in

the PDB as of August 2021. At every training epoch, representatives from each cluster are

re-sampled, which may also favorably impact performance.

68

CHAPTER 3

FLEXIBLE DOCKING

Protein complexes are vital to many biological processes, and their understanding can lead

to the development of new drugs and therapies. Although the structure of individual protein

chains can now be predicted with high accuracy, determining the three-dimensional structure

of a complex remains a challenge. Protein docking, the task of computationally determining

the structure of a protein complex given the unbound structures of its components (and

optionally binding site information), provides a way to predict protein complex structure.

Traditional docking methods rely on empirical scoring functions and rigid body simulations

to predict the binding poses of two or more proteins. However, they often make unrealistic

assumptions about input structures and are not effective at accommodating conformational

flexibility or binding site information. In this chapter, we present DockGPT (Generative

Protein Transformer for Docking), an end-to-end deep learning method for flexible and site-

specific protein docking that allows conformational flexibility and can effectively make use

of binding site information. Tested on multiple benchmarks with unbound and predicted

monomer structures as input, we significantly outperform existing methods in accuracy and

running time. Our performance is especially pronounced for antibody-antigen complexes,

where we predict binding poses with high accuracy even without binding site information.

Finally, we highlight our method’s generality by extending it to simultaneously dock and

co-design the sequence and structure of antibody complementarity-determining regions tar-

geting a specified epitope.

This chapter presents work with Jinbo Xu. The main content was recently released as a

pre-print in April 2023 [MX23].

69

3.1 Introduction

The bound configuration of two or more proteins helps regulate many biological processes,

including signal transduction [LY16; Hub01], membrane transport [Süd95; Jia+22], and cell

metabolism [DW08; Luz+21]. The process by which unbound protein chains bind together

to form a complex is often controlled by more general protein-protein interactions (PPIs)

[SB21; BMP13; Zou+18], and accordingly, aberrant PPIs are associated with various dis-

eases, including cancer, infectious diseases, and neurodegenerative diseases [Lu+20]. The role

of PPIs in protein complex formation makes selective targeting of PPIs an essential strategy

for drug design and already forms the basis for several established cancer immunotherapies

such as monoclonal antibodies [WSW10; Sin+19]. Although most proteins interact with

partners to form a complex, experimental methods for determining the structures are often

expensive and technically difficult to administer [Man13; RS02]. As a result, protein com-

plexes account for only a small fraction of entries in the Protein Data Bank (PDB) [Ber+00],

highlighting the need for effective in silico methods.

Although it is possible to infer protein complex structure from primary sequence informa-

tion alone, in many cases, the three-dimensional structures of constituent (unbound) chains

have already been experimentally determined. Moreover, extra information such as target

binding sites or inter-chain contacts is readily available in many applications or can be de-

rived through experimental methods such as cross-linking mass spectrometry [Orb+18]. In

these scenarios, protein docking methods can be used to predict a complex structure. De-

spite having many practical applications [Kac+18; Bar+17; Ben+21], the efficacy of in silico

protein docking or design methods is ultimately hindered by unrealistic assumptions about

input structures, and failure to effectively utilize PPI information such as binding sites and

inter-protein contacts.

Current computational methods for protein docking and design typically impose back-

bone and side-chain rigidity constraints and are trained to utilize specific side-chain inter-

actions or protein backbone placements derived from native complexes which are already

70

optimal for binding [Cao+21; Tor+19]. Training computational models on only bound

structures – in which binding interfaces match perfectly – is, in a sense “starting with the

answer.” In the real world, unbound chains typically lack shape complementarity because

proteins tend to deform substantially upon binding [Mar+08; TB05], even for small-molecule

ligands [MD09]. Accounting for backbone and side-chain flexibility can significantly increase

the number of sequences that fold to the structure while maintaining the general fold of

the protein [MK09], and is especially important for protein design because mutations in

sequence often result in small changes to the backbone structure, [SHD22], and potentially

large changes to surrounding side-chain conformations [Eya+03].

In addition to overlooking conformational flexibility, current methods tend to either ig-

nore or ineffectively incorporate PPI information. For many applications, it is important to

consider interactions as a particular binding site, such as targeting catalytic sites of enzymes

or designing therapeutics to block a specific protein-protein interaction. A salient example

is the design of neutralizing antibodies targeting the SARS-CoV-2 S protein, which initi-

ates infection upon binding to the human angiotensin-converting enzyme 2 (ACE2) receptor

[Cha+21; DYZ21]. In most cases, PPIs such as binding sites or inter-chain contacts are

utilized only as a post-processing step to re-rank or filter out incompatible predictions.

Flexible docking and the design of protein complexes present several challenges for ma-

chine learning. First, the 3D geometry of multiple proteins is inherently difficult to represent.

The difficulty arises from the fact that spatial relationships between receptor and ligand

structures are ambiguous at the input level, yet inter-protein interactions must still be mod-

eled jointly by the learning algorithm. Although several geometric deep-learning approaches

offer a way to directly model 3D point clouds, so far, only one end-to-end machine-learning

method has been proposed for general protein docking [Gan+22]. This method does not take

into consideration backbone flexibility or bindings site information and suffers from excessive

steric clashes in its predictions. Finally, sufficient training data is also scarce. Currently,

there is no large dataset consisting of both protein complexes and their unbound components.

71

In this work, we introduce DockGPT, an end-to-end deep-learning approach to site-

specific flexible docking and design. In developing DockGPT, we hypothesized that neural

networks could accurately recover protein 3D coordinates from coarse or incomplete descrip-

tions of their geometry. After affirming this capability, we approached flexible docking in a

manner analogous to matrix completion followed by multidimensional scaling. In the matrix

completion step, missing entries loosely correspond to inter-chain quantities such as distance

and orientation. The imputed representation is then converted to 3D geometry to recover

the bound complex. This framing allows us to naturally incorporate PPI information as

input through residue-level binding interfaces or interfacial contacts. In addition, removing

some intra-chain geometry allows us to simultaneously dock and design protein segments

while still targeting specific binding sites.

To better incorporate flexibility into our predictions, we provide only a coarse description

of intra-chain geometry, presenting distance and angle information within a resolution of at

least 2Å and 20◦, respectively. On top of this, we attempt to approximate the unbound state

of each training example by applying Rosetta’s FastRelax protocol [Lem+20] to individual

chains.

To validate our approach, we perform an extensive comparison against four other pro-

tein docking methods on unbound chains from Antibody Benchmark (Ab-Bench)[Gue+21b],

and Docking Benchmark Version 5 [Vre+15]. We also show that DockGPT performs well

in docking protein structures predicted by AlphaFold2 [Jum+21] with high success rates.

Finally, we demonstrate how to extend DockGPT to perform simultaneous docking and de

novo design by docking antibody-antigen partners while concurrently predicting both the

sequence and structure of all heavy chain complementarity-determining regions (CDRs).

3.2 Related Work

Traditional Methods for Protein Docking Protein docking is traditionally performed

in three steps: (1) sampling of candidate conformations, (2) score-based ranking of candi-

72

Figure 3.1: Approach overview. (A) Unbound chain sequence, coordinates, and (op-
tional) information regarding binding interface(s) are given as input. (B) An invariant
representation of 3D geometry is constructed for each chain from quantities such as pair-
wise atom distances and orientations. If interface residues or contacts are provided, this
information is added to the respective residue and pair features. Other features are dis-
cussed in Section 3.3.1. (C) The main network consists of two submodules. The structure
encoder develops a joint representation of the input chains and the structure decoder infers
the 3D geometry. (D) The output of the main network is the complex 3D coordinates and
per-residue confidence predictions. Steps (C) and (D) are repeated four times, with output
residue, pair, and distance features recycled from the previous iteration.

dates, and (3) refinement of top-ranking complex structures. These algorithms primarily

differ in either of the first two steps. Holding the position of the receptor fixed, each can-

didate conformation can be described by a 3-dimensional rotation and translation of the

input ligand. Although the search space has relatively few degrees of freedom, the size of the

effective candidate space can still total into the millions, even for small ligands [Ben+21].

In addition, the choice of score function usually induces a rugged energy landscape which is

difficult to optimize over.

73

Within this paradigm, methods such as HDock [Yan+17; Yan+20a], PatchDock [Sch+05],

ZDock [Pie+14], Attract [Vri+15], ClusPro [Koz+17], RosettaDock server [LG08], and Had-

dock [van+16], have been developed and made available for public access. Among these

methods, PatchDock is one of the most widely used and computationally efficient. Patch-

Dock avoids brute-force search over transformation space by matching protein surface patches

based on “shape complementarity.” Ligand transformations that align favorable patches bol-

ster wide binding interfaces and avoid steric clashes resulting in favorable energy scores.

HDock, ClusPro, and ZDock all make use of the Fast Fourier Transform algorithm to effi-

ciently perform a global search on a 3D grid. The methods differ in how they post-process

each candidate. ClusPro clusters candidates by root-mean-squared deviation and attempts

to find a cluster with favorable energies. ZDock uses a combination of shape complementar-

ity, electrostatics, and statistical potential terms for scoring. HDock, ranked as the number

one docking server for multimeric protein structure prediction in the community-wide critical

assessment of structure prediction 13 (CASP13-CAPRI) experiment in 2018, uses an itera-

tive knowledge-based scoring function to discern the native complex. For a more complete

review of traditional docking methods, available software, and accomplishments, we refer the

reader to the comprehensive reviews [Agr+19; Wan+16; PST17].

The majority of these methods incorporate backbone and side-chain flexibility only as a

post-processing step, e.g. through molecular dynamics simulations. In order to incorporate

inter-chain contacts or binding site residues, traditional docking methods typically alter their

score function, or restrict search or results to ligand transformations matching these criteria.

For example, ZDock allows users to specify “undesirable” residue contacts and penalizes

these interactions via the score function, and HDock applies post-processing to filter out

predictions lacking target interactions.

Machine Learning for Protein Docking In the past, machine learning has been used

outright or combined with physics-based methods for scoring docked complexes [Gue+21a;

74

AM15; McN+21]. Recently, end-to-end machine learning methods EquiDock [Gan+22] and

EquiBind [Stä+22] were proposed for protein docking and docking drug-like molecules. In

particular, EquiDock makes use of an SE(3)-equivariant graph matching network to output a

single rigid rotation and translation, which, when applied to the ligand, places it in a docked

position relative to the receptor. This is done by matching and aligning predicted keypoints,

which roughly correspond to the centroid of the binding interface. Although this method

provides favorable theoretical guarantees, it does not perform well in practice. On top of

this, the independent SE(3)-equivariant graph matching network and training procedure are

relatively complicated. Training EquiDock requires solving an optimal transport plan which

matches predicted interface key points to ground truth positions for each example. Custom

loss functions are developed to back-propagate gradients through alignments and to penalize

surface intersections. Moreover, it is unclear how to extend this method to account for

conformational flexibility or more than two interacting chains. In contrast, our framework is

conceptually very simple, utilizes standard architectural components and losses, allows for

flexibility, and is straightforward to extend to three or more chains.

De novo Binder Design Recently, there has been a spate of interest in de novo protein

design using deep learning, especially the design of small protein binders. AlphaDesign

[JKS21] introduces a framework for de novo protein design which uses AlphaFold2 inside an

optimizable design process, and [Ben+22] uses both AlphaFold2 and RosettaFold to improve

the experimental success rate of their designs. Wang et al. [Wan+21] describe a method for

de novo design of proteins harboring a desired binding or catalytic motif based on modifying

the input and training of the RosettaFold network and augmenting the loss function. Here

we show that our docking method can be easily extended to de novo design a protein that

may bind a specific target site.

Geometric Deep Learning Complementary to this work, several geometric deep learning

methods tailored explicitly towards modeling symmetries of point clouds have been proposed

75

[Sch+17; Tho+18; Fuc+20; Jin+21; SHW21b]. These methods have helped facilitate sig-

nificant improvements in protein-related molecular modeling tasks such as protein structure

prediction [Bae+21; Jum+21; Eva+22; Wu+22; Lin+22; Ahd+22], inverse folding [Jin+20;

Hsu+22; MLX22], and de novo design [Wan+21; AA22; Jin+22; Ben+22; LMX22].

3.3 Methods

We now give an overview of our input representation, architecture, loss, training procedure,

and training datasets.

Notation

To distinguish between multiple chains, we use C1, . . . , Ck ⊆ {1, . . . , n} to denote the partition

of residue indices into chains 1, . . . , k. We also use C (i) to denote the chain containing residue

i, i.e. C (i) ∈ {C1, . . . , Ck}.

3D rigid transformations T =
(
R, t⃗

)
are represented by a rotation R ∈ SO(3), and

translation t⃗ ∈ R3. We use the operator ◦ to denote the composition of rigid transformations

T ◦ T
′
≜

(
RR

′
, t⃗+Rt⃗

′
)
. (3.1)

We use

T (x⃗) ≜ Rx⃗+ t⃗ (3.2)

to denote the action of the rigid transformation T on a vector x⃗ ∈ R3. For notational

convenience and as a visual aid, we adopt the notation

[x⃗]T ≜ T−1 (x⃗) (3.3)

to denote the vector of coordinates x⃗ in the local frame defined by T .

76

3.3.1 Input Features

The input to our network is a complete graph G =
(
V = {xi}, E = {eij}

)
where V consists

of residue features xi and E consists of pair features eij between residues i and j. The bulk

of our input features are generated independently for each input chain. We refer to those

features which do not depend on the input complex as intra-chain features and those which

do as inter-chain features. In the interest of clarity, we first describe intra-chain features,

which are independent of the protein complex being predicted.

Intra-Chain Features

Residue Features We generate residue features for each chain and join them by concate-

nating along the sequence dimension. The input feature xi associated with residue i consists

of four encodings:

xchain
i =

(
EAA (si) , Epos (i, |C(i)|) , Ecen(i, x⃗

Cβ
i), Edih (θi)

)
. (3.4)

The first, EAA (s), is a one-hot encoding of the amino acid type s using 20 bins for

each naturally occurring amino acid. The next, Epos, encodes the residue relative sequence

position into ten equal-width bins. As a proxy for estimating whether a residue is on the

protein’s surface, we use a centrality encoding, Ecen, which corresponds to the number of

Cβ atoms in a ball of radius 10Å around the query residue. We encode this feature with

six radial basis functions equally spaced between 6 and 40 and only consider residues in the

same chain as the query atom. Last, Edih, encodes the angle θ ∈ [−180◦, 180◦] into 18 bins

of width 20◦. The input θi ∈ {ϕi, ψi} are the phi and psi backbone torsion angles of residue

i. For residues before and after chain breaks or at the N and C terminus of a chain, we set

the phi and psi angles to 0.

77

Pair Features Pair features are made up of low-resolution descriptions of pairwise distance

and orientation and relative sequence information. The features for each chain are stacked to

form a block-diagonal input matrix. A separate learned parameter is used to fill the missing

off-diagonal entries. For a pair of residues i and j, in a common chain, the corresponding

feature eij consists of three one-hot encodings

echain
ij =

(
Edist

(
∥x⃗Cα

i − x⃗a
j∥2

)
, Eori

(
θij

)
, Esep (i− j)

)
. (3.5)

Edist is an encoding of the distance d into six equal-width bins between 2Å and 16Å, with

one extra bin added for distances greater than 16Å. We include distances between Cα and

each atom type a ∈ {N,Cα,C,Cβ}. Eori, encodes the angle θ performed in the same manner

as the backbone dihedral encoding for residue features. The input angles θij ∈
{
ϕij , ψij , ωij

}
are pairwise residue orientations defined in [Yan+20b]. Note that all pairwise distances and

angles are known only within a resolution of at least 2Å and 20◦, respectively. The last

feature, Esep (·), is a one-hot encoding of signed relative sequence separation into 32 classes,

in the same manner as [MLX22].

Inter-Chain Features

We add three additional features to encode information about the target protein complex

and PPIs.

Inter-Chain Interface (Residue) fi ∈ {0, 1} is an optional binary flag indicating whether

the Cα atom of residue i is within 10Å of a Cα atom belonging to a residue in a different

chain. This flag is 0 if this criterion does not hold.

Inter-Chain Contact (Pair) fij ∈ {0, 1} indicates whether two residues in separate

chains are in contact. This occurs when the distance between x⃗Cα
i and x⃗Cα

j is less than

10Å. This flag is 0 if this criterion does not hold.

78

Relative Chain (Pair) A one-hot encoding of the relative chain index for residues i and

j into three classes. Let ci, cj ∈ {1, . . . , k} denote the chain index of residues i and j, then

fij = OneHot
(
sign

(
ci − cj

))
, where sign (x) ∈ {−1, 0, 1}.

The interface and contact flags provide context for residues on the binding interface for

each chain, restricting the effective search space during inference. In real-world applications,

knowledge of the binding interface may be limited or unknown. In light of this, we provide

only a limited number of contacts or binding residues, chosen randomly for each training

example. Specifically, for each input, we include no contacts or no residue flags independently,

with a probability of 1/2. This means that during training, the method sees 25% of examples

without any interface or contact information, 50% with one or the other, and 25% with both

features provided, on average. If interface features are included, we randomly sub-sample a

number of interface residues Nint ∼ geom (1/5) to include, meaning five residues are selected

on average. Similarly, we sub-sample Ncon ∼ geom(1/3) inter-chain contacts when this

feature is used, resulting in three provided contacts on average.

The relative chain encoding provides a way to distinguish between intra-chain and inter-

chain pair features. By taking a signed difference, pair features eij and eji receive different

encodings when i and j are in distinct chains. This not only discriminates the endpoints as

belonging to different chains but also breaks symmetry.

3.3.2 Architecture and Hyperparamter Details

Figure 3.2 shows a schematic overview of our model architecture and loss. We do not

explicitly show our structure encoder module since it differs only slightly from the structure

decoder; the rigid update is removed, and IPA block is replaced with a pair-biased attention

block. Though not displayed in the figure, we follow the Pre-LayerNorm scheme described

in [Xio+20] where layer normalization [BKH16] is placed inside the attention and transition

residuals. In addition (pun intended), we use ReZero [Bac+20] for all residuals. Each

feed-forward transition consists of one hidden layer having a dimension four times that of

79

Figure 3.2: DockGPT architecture and loss. Learnable modules are shown with bold
text and bold borders. Modules operating on residue features are shown in orange, and those
operating on pair features are shown in blue. Modules making direct or indirect use of coor-
dinates are shown in red. Optional input and sequence and structure co-generation modules
are shown in light gray. We use ⊕ to denote residual operations, ⊙ to denote element-wise
multiplication and ⊚ to denote the element-wise composition of two rigid transformations.
Labeling of IPA and pair blocks with the index of their respective layer is omitted, as block
weights may be shared across multiple layers. We highlight with a blue/red background those
modules which are encoder/decoder specific (i.e., pair updates are omitted in the decoder,
and rigids are omitted in the encoder). The structure encoder uses pair-biased multi-head
attention for residue updates, and the structure decoder uses invariant point attention. Fi-
nally, layer normalization is applied but not displayed here, except in deriving the logits for
loss.

the input dimension. For pointwise nonlinearity, we use gated GELU (GeGLU) based on

success in other sequence modeling tasks [HG16; Sha20]. The Learned Outer-Prod module

is nearly identical to the outer-product mean module described in [Jum+21], except we use

a smaller intermediate dimension (c = 16 vs. c = 32) and skip the mean operation. The

rigid update maps residue features to a per-residue rigid rotation and translation. This is

implemented as a learned linear projection preceded by layer normalization. The composition

of rigid transformations is implemented in the same manner as the backbone update in

AlphaFold2 (see [Jum+21] Supp. Material, Algorithm 23). In some settings, incorporating

prior coordinate information may be useful. Specifically, a subset of coordinates can be

held fixed by replacing the corresponding rigid rotation and translation updates with the

80

respective identity transformations (i.e., I3 and 0⃗). More details on this are provided in

Section 3.6.1.

We use a hidden dimension of 256 for residue features and 128 for pair features in both

submodules. All triangle multiplication updates use four heads of dimension 32 for queries

and values. In the encoder submodule, we use eight attention heads of dimension 32 for each

residue update block. Decoder IPA uses 12 heads per block, with dimensions 16 for scalar

features and four/eight for point queries/values.

3.3.3 Network Architecture and Training

We design a two-stage network making use of triangle multiplication, pair-biased attention,

and invariant point attention (IPA). Our first module, which we refer to as the “structure

encoder,” produces an invariant representation of the protein complex, which is subsequently

converted to 3D coordinates by the second module, the “structure decoder.” Our encoder

uses pair-biased attention to update residue features and triangle multiplication to update

pair features. The decoder updates only residue features using IPA. We also make use of

feature recycling during training and inference. We note that although our architecture

modifies or extends some components in AlphaFold2, the two architectures are functionally

quite distinct. We do not make use of multiple sequence alignments (MSAs), templates,

global attention, self-distillation, or other elements contributing to the success of AlphaFold2.

In contrast, we hope to learn the principles governing protein binding from sequence and

structure alone and develop a more specialized architecture to do so.

Network Architecture

Here, we provide a general overview of our architectural components. A schematic overview

of the architecture and loss can be found in Figure 3.2. Complete implementation details

and more thorough descriptions of each submodule can be found in Section 3.3.2.

81

Structure Encoder Layer Our encoder produces a joint representation of the input

chains. Since inter-chain features are mostly missing from the input, we hypothesized that a

network that updates pair features would facilitate more successful docking. Consequently,

we chose to update pair features using incoming and outgoing triangle-multiplicative updates

[Jum+21].

x
(ℓ+1)
i = Pair-Bias-Attn-Block(ℓ)

(
x
(ℓ)
i , e

(ℓ)
ij

)
(3.6)

e
(ℓ+1)
ij = Pair-Block(ℓ)

(
x
(ℓ+1)
i , e

(ℓ)
ij

)
(3.7)

Each layer has two update blocks. The first block updates the residue features using

multi-head attention with pair bias. The next block transforms the updated residue features

into an update for the pair representation using a learned outer product and then applies

triangle multiplication and a shallow feed-forward network to the result.

Structure Decoder Layer The decoder module converts the encoder representation to

3D Geometry. Since we do not make direct use of coordinate information in our input

(although we show that this can be done for special cases in Section 3.3.3), we sought an

invariant architecture specialized for coordinate prediction and ultimately settled on IPA.

At each layer, node features are transformed according to

x
(ℓ+1)
i = IPA-Block

(
x
(ℓ)
i , eenc

ij , T
(ℓ)
i

)
(3.8)

T
(ℓ+1)
i = T

(ℓ)
i ◦RigidUpdate

(
x
(ℓ+1)
i

)
, (3.9)

where eenc denotes the pair feature representation at the last encoder layer.

We use a total of six decoder layers, sharing the same weights for all six layers. We

perform recycling during training and inference, allowing us to execute our model multiple

82

times on the same example. This is done by embedding the previous iteration’s outputs in

the next iteration’s inputs. Our best-performing model uses the same scheme as described

in the AlphaFold2 implementation ([Jum+21], supplementary section 1.10). In concurrence

with AlphaFold2 and OpenFold [Ahd+22], we find that recycling significantly improves pre-

diction quality while incurring only a constant increase in inference and training time. We

experimented with recycling features from the structure decoder rather than the encoder.

Since the decoder residue features encode plDDT information, we hypothesized that this

information could better inform future iterations. This ablation and others are shown in

Section 3.5.

Coordinate Prediction In predicting residue-wise atom coordinates, we deviate from the

strategy of AlphaFold2 and simply compute the local-frame coordinates for each atom using

a learned linear projection. The coordinates for Cα are taken as the translation component

of the per-residue predicted rigid transformation, and the remaining atom coordinates are

predicted as

x⃗a
i = T

(L)
i ◦ Linear3D

(
LayerNorm

(
x
(L)
i

))
(3.10)

where L denotes the index of the last decoder layer, and Linear3D is a learned projection

into dimension |A| × 3. Note that only one rigid transformation is used to produce all atom

coordinates for a given residue.

Handling Coordinates as Input Although we do not explicitly use coordinates in our

docking model, for certain tasks, it may be important to incorporate this information as part

of the input. This is especially salient in antibody loop design, where the framework region

remains mostly rigid upon binding. In Section 3.6.1, we show how to modify Equation (3.9)

and Equation (3.10) to easily incorporate rigid, flexible, and missing coordinates as part of

the input while still maintaining SE(3)-equivariance. We also provide empirical results for

83

designing CDR loops with this modification in Section 3.6.2.

3.3.4 Loss

Our network is trained end-to-end with gradients coming from frame-aligned point error

(FAPE), pairwise distance, per-residue lDDT (plDDT), and a few other auxiliary losses.

We remark that our implementation of FAPE differs from that in AlphaFold2, as we use a

different method for predicting coordinates. Other modifications were made in the clamping

procedure of FAPE loss to facilitate faster convergence. A complete overview is provided

throughout the remainder of this section.

We use the same loss function for pre-training and fine-tuning:

L = 1.0LFAPE + 1.0Laux-FAPE + 0.5Ldist + 0.5LplDDT + 0.2Lviol. (3.11)

Each term in the loss (Equation (3.11)) is described in the remainder of this section.

Similar to AlphaFold2, we also apply an averaged FAPE loss Laux-FAPE on the interme-

diate structures produced by the shared-weight layers of our decoder module. For the results

in Sections 3.6 and 3.6.2, we add an additional term which is an averaged cross-entropy loss

for amino acid identity, given weight 0.5

When writing equations for loss functions, we assume that we have output residue features

{xi}, pair features {eij}, rigid transformations {Ti} =
{(
Ri, t⃗i

)}
, and coordinates {x⃗a

i }

for each atom type a ∈ A as described in Section 3.3.3.

Per Residue lDDT

Residue output features are used to predict per-residue local distance difference test scores

(plDDT). We compute lDDT as in Equation (2.14). In defining the ground-truth labels,

there are two reasonable approaches. The first approach directly uses predicted coordinates,

84

plDDTi =
1

|N (i)|
·

∑
j∈N (i)

lDDT
(
abs

(∥∥∥⃗ti − t⃗j

∥∥∥
2
−
∥∥∥⃗t∗i − t⃗

∗
j

∥∥∥
2

))
, (3.12)

where N (i) =
{
j :

∥∥∥⃗t∗i − t⃗
∗
j

∥∥∥
2
< 12Å

}
, and

The alternative approach compares coordinates as they are seen in the predicted local

frames of each residue. For this, we use predicted rigid transformations Ti =
(
Ri, t⃗i

)
i=1,...,n

and true rigids T ∗i =
(
R∗i , t⃗

∗
i

)
i=1,...,n

obtained from the native conformation to compute the

local pLDDT score as:

plDDT-Locali =

1

|N (i)|
·

∑
j∈N (i)

lDDT
(

abs
(∥∥∥∥[⃗ti]Ti −

[⃗
tj

]
Ti

∥∥∥∥
2
−

∥∥∥∥[⃗t∗i]T ∗
i

−
[⃗
t
∗
j

]
T ∗
i

∥∥∥∥
2

))

=
1

|N (i)|
·

∑
j∈N (i)

lDDT
(

abs
(∥∥∥∥[⃗tj]Ti

∥∥∥∥
2
−

∥∥∥∥[⃗t∗j]T ∗
i

∥∥∥∥
2

))
.

(3.13)

Ultimately, we use the standard plDDT to train our model. Although local-frame coordinates

and distances are compared in each IPA head, we found that the local plDDT produces less

accurate confidence estimates, and is also more difficult to optimize. Nevertheless, we include

the alternative definition as it may be of interest to some readers.

To compute plDDT loss, we pass our output residue features xi through a shallow feed-

forward network with output representing 20 equal-width binned log likelihoods in the range

[0, 1]. The predictions are compared with the ground-truth labels plDDTi by cross-entropy

loss.

85

Pairwise Distance

We predict pairwise distances for four atom pairs (Cα,X) , where X ∈ {N,Cα,C,Cβ} from

2-20Å using a bin width of 0.4Å. An extra bin is added for distances beyond 20Å. We do

not separate inter and intra-chain atom pairs. Cross entropy loss is applied to compare the

prediction to the ground truth.

Violation Loss

Unlike AlphaFold2, we predict only a single rigid transformation for each input residue. This

means that intra-residue bond lengths and angles must be learned in the linear projection

used to obtain predicted atom coordinates. We find that violation loss is very important

for generating physically realistic conformations, and also for avoiding unfavorable steric

interactions such as surface intersection. Here we use the same violation loss as defined in

AlphaFold-Multimer; bond angle, bond length, and one-sided flat bottom steric penalty. We

omit the “Center of Mass” loss [Eva+22, eq.1] as it had no empirical effect on performance.

FAPE

Here we describe a slight modification of the frame-aligned point error (FAPE) loss described

in [Jum+21; Eva+22]. We reiterate that only a single rigid transformation is predicted for

each residue and thus rigid transformations for each output atom type cannot be directly

compared.

Given predicted atom coordinates x⃗a
j for each atom a ∈ Aj of residue j, we compute the

per-residue FAPE, (pFAPE) for residue i as

pFAPE
(
Ti, x⃗

a
j ; θ

)
= mean

j,a∈Aj

(
min

(∥∥∥∥[x⃗a
j

]
Ti
−
[
x⃗
a,∗
j

]
T ∗
i

∥∥∥∥
2
, θ

))
(3.14)

the FAPE loss over all residues is then

86

FAPE
(
Ti, x⃗

a
j ; θ

)
=

1

θ
·mean

i

(
pFAPE

(
Ti, x⃗

a
j ; θ

))
(3.15)

Our network employs two FAPE loss terms, each with equal weight. The first, FAPEintra

is intra-chain FAPE which restricts the computation to pairwise relative coordinates within

the same chain. The second is Inter-chain FAPE which applies the loss between atom

coordinates in separate chains. Formally,

LFAPE =
1

k
·

∑
C∈{C1,...,Ck}

FAPE
(
{Ti}i∈C ,

{
x⃗a
j

}
j∈C

; θintra

)
︸ ︷︷ ︸

intra-FAPE

+ FAPE
(
{Ti}i∈C ,

{
x⃗a
j

}
j /∈C

; θinter

)
︸ ︷︷ ︸

inter-FAPE

 .

(3.16)

Following AlphaFold-Multimer, we use θintra = 10, and θinter = 30 with probability 0.9 and

randomly set θ =∞ for each FAPE type with probability 0.1.

3.3.5 Training

For general protein docking, model training is split into two stages. In the first stage, we pre-

train on a mix of complexes and monomers, randomly selecting a monomer or a complex to

train on with equal probability. This repeats for five epochs. The rationale for this decision

is described in Section 3.3.5. Afterward, monomers are removed, and we train exclusively

on complexes. For all complexes in our training sets, we relaxed each individual chain using

Rosetta’s FastRelax protocol [Lem+20] with all default settings (antibody heavy and light

chains were relaxed jointly when applicable). For antibody-antigen docking results, we fine-

tuned the model on a dataset consisting of only antibody-antigen complexes.

All models were trained on 48Gb Nvidia RTX A6000 GPUs and optimized using Adam

87

[KB15] with default parameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8), with learning rate 10−3

during pre-training, and 5 · 10−4 afterwards. We apply per-example gradient clipping by

global norm as described in [Jum+21, supplementary material, section 1.11.3], and scale the

loss of each example by the log of the total number of residues to up-weight larger complexes.

We validate our model every 500 mini-batches, using a minibatch size of 24. We train our

model for at most 15 epochs and apply early stopping with patience of eight validation steps.

Since ReZero is used for residuals, we do not use any learning rate warm-up.

During the mixed monomer/multimer pre-training phase, we crop complex chains so that

the total number of residues does not exceed 500. We also remark that during the pre-training

stage, we append a binary flag to each residue and pair feature indicating whether the input

corresponds to a single chain – in which case the chain should be treated as rigid. For general

multimer training and antibody fine-tuning, we place the encoder and decoder modules on

separate GPUs and increase the crop size to 800 amino acids. Any complex containing a chain

with more than 550 residues is removed from our training datasets. When cropping antibody-

antigen complex chains, we randomly sample a contiguous subset of antigen residues so that

the total number of resulting residues is 800. We follow the same strategy for general proteins

but choose a chain to crop at random. We note that no cropping was performed at inference

time for any of the results in this paper.

Rationale for Monomer Pre-Training While developing this model, we first ran ex-

periments to understand how well our architecture performed on multidimensional scaling

tasks. For this, we sought to recover the Cα trace of protein chains given only distance and

inter-residue orientation. We found that our deep model was able to recover the original

Cα-trace with sub-angstrom RMSD using a 2Å resolution for distances, and 20◦ resolution

for angles after around 4k mini-batches (approximately 1.5 epochs).

We attempted to apply the same model to learn rigid docking, providing the same intra-

chain information but excluding all inter-chain features. In these experiments, the model

88

struggled to reconstruct the conformations of the respective chains with reasonable accuracy

and showed a tendency to favor auxiliary loss terms such as pairwise distance. This behavior

persisted even after significantly more gradient updates.

Considering this, we decided to separate FAPE loss into inter and intra-chain components,

similar to what is done in [Eva+22], and pre-train our model on a 50-50 split of protein

complexes and monomers. This resulted in significantly faster convergence in FAPE loss and

far more accurate 3D models. We remark that a single float (1 or 0) is appended to each

residue and pair feature to indicate if the input is a complex or monomer.

Training Datasets

Monomers For pre-training, with single chains, we randomly sample chains from the pub-

licly available BC40 dataset, consisting of roughly 37k chains filtered to 40% nonredundancy.

Proteins with greater than 40% sequence similarity to any chain in our test datasets are re-

moved.

General Protein Complexes We use a subset of the publicly available Database of

Interacting Protein Structures (DIPS)1 [Tow+18]. The training set is generated to exclude

any complex that has any individual protein with over 30% sequence identity when aligned

to any protein in the Docking Benchmark Version 5 test set (described in Section 3.3.6).

We follow the training and validation splits for DIPS used in [Tow+18], with 33159 and 829

complexes, respectively.

Antibody-Antigen Complexes For fine-tuning on antibody complexes, we use the pub-

licly available Structural Antibody Database (SAbDab), which consists of 4994 antibody

structures renumbered according to the Chothia numbering scheme [CL87; Cho+89; ALC97].

1. Downloaded from https://github.com/drorlab/DIPS.

89

https://drug.ai.tencent.com/protein/bc40/download.html
https://github.com/drorlab/DIPS

Various papers from Chothia have conflicting definitions of heavy-chain CDRs 2. In light

of this, we use the most recent definitions from [ALC97]. We generate train and test splits

based on antigen sequence similarity, filtering out examples where antigen chains have more

than 40% sequence identity using mmseqs [HSS16]. Before generating clusters, we removed

all targets with overlap in our test sets using the same criteria. We remark that no filtering

is performed against antibodies. This results in roughly 3k complexes, for which we use an

8:1:1 split for training, validation, and testing.

3.3.6 Evaluation Criteria

To measure docking prediction quality, we report interface root-mean-square deviation (I-

RMSD), ligand root-mean-square deviation (L-RMSD), DockQ score, and DockQ success

rate (SR) as reported by the DockQ algorithm3 [BW16]. DockQ score is a single continuous

quality measure for protein docking models based on the Critical Assessment of PRedicted

Interactions (CAPRI) community evaluation protocol. In Figure 3.4, we provide some vi-

sual examples of low, acceptable, and medium-quality complex predictions according to the

DockQ metric. For antibody chains, we sometimes report CDR-RMSD, which is calculated

after superimposing the Cα atoms of the heavy and light chain framework regions using the

Kabsch algorithm [Kab76]. Finally, we sometimes include complex root-mean-square devi-

ation (C-RMSD), which is derived by simultaneously superimposing all Cα atoms between

two protein complexes. We visually illustrate the difference between C-RMSD, L-RMSD and

I-RMSD in Figure 3.3.

2. See here for a nice summary of CDR numbering schemes and changes in corresponding CDR loop
definitions over time.

3. DockQ is publicly available for download at http://github.com/bjornwallner/DockQ/

90

http://www.bioinf.org.uk/abs/info.html
http://github.com/bjornwallner/DockQ/

Figure 3.3: Illustration of common RMSD types used to assess protein complex
predictions (PDB entry 1JTD). The regions which are aligned for each RMSD type are
set as opaque.

When assessing top-k performance, we take the best score over the top-k ranked pre-

dictions of each target. When interface residues or contacts are specified, the information

is randomly sampled from the native complex. If binding site information is given, each

method is run fifteen times for each target, each run with different random samples. For

energy-based methods, outputs are ranked by predicted energy. For our method, we use the

predicted interface lDDT to rank each prediction. (see Section 3.4.3 for details).

91

Figure 3.4: Illustration of complex predictions with varying DockQ scores. Three
predictions are shown for PDB entry 4G6M. Distinct predictions are shown in each column.
The bottom row shows the predicted complex aligned to the ground-truth antigen (receptor),
and the top row shows the same predictions aligned to the ground-truth antibody (ligand).

Docking Paradigms

In this work, we are primarily concerned with predicting the bound conformation of a protein

complex, given only unbound conformations of constituent chains. This is easily confused

with redocking, the task of predicting a protein complex given bound conformations of each

chain as input. Redocking is considerably easier than docking. For this task, traditional

score-based methods are able to accurately predict most protein complexes. We verify this

claim in Section 3.4.1, where we consider redocking antibody-antigen complexes.

When assessing docking performance, we sometimes condition on information about PPIs,

92

such as interacting residues. Traditionally, amino acids are defined as interacting if any heavy

atoms are within 6Å from one another. In this work, we used a more relaxed definition, where

residues are defined as interacting if the distance between their Cα atoms is less than 10Å.

This definition applies to downstream protein design tasks, where knowledge of sequence

or side-chain conformations may be missing or incomplete. In some cases, we provide the

identity of select residues on the binding interface of a complex. In other settings, we provide

contacts, which correspond to interacting residue pairs. We refer to the setting where neither

interface residues nor contacts are specified as blind docking.

Benchmarks

For each benchmark, we include only receptor-ligand pairs having at least four contacts and

maximum chain-wise RMSD less than 10Å from the bound state. We note that some of

the baselines might have used part of the DB5 test set in validating their models, and thus

the scores may be optimistic. In addition to bound and unbound structures, we include

comparisons using receptor and ligand structures predicted by AlphaFold2 or AlphaFold-

Multimer[Eva+22]. The same filtering criteria are applied to predicted structures.

Antibody Benchmark (Ab-Bench) [Gue+21b] A non-redundant set of 46 test cases

for antibody-antigen docking and affinity prediction. This set contains both bound and

unbound structures with diverse CDR-loop conformations between the bound and unbound

states, ranging from ≤ 1Å to ≥ 4Å for CDR-H3. When AlphaFold-predicted structures are

used as input, 26 test cases are used.

Docking Benchmark Version 5 (DB5) Test [Vre+15] To the best of our knowledge,

DB5 [Vre+15], which contains 253 structures, is the largest dataset containing both protein

complexes and the unbound structures of their components. We use 42 complexes from the

DB5 test set, which are held out by the DIPS training split. For predicted structures, we

also gathered 26 receptor-ligand pairs meeting the filtering criteria.
93

Rosetta Antibody Design (RAbD) [Ado+18] A set of 46 κ and 14 λ antibody-antigen

complexes. The benchmark contains antibodies with high CDR diversity and a wide range of

length classes. All structures have experimental resolution ≤ 2.5Å, buried surface area in the

antibody-antigen complex of ≥ 7002, and contacts with CDRs in both the light and heavy

chain regions. These structures were used to assess the performance of docking algorithms

in the bound input context, and results are given in Table 3.1.

3.4 Docking Results

We compare DockGPT against ZDock [Pie+14], HDock [Yan+20a], PatchDock [Sch+05],

and EquiDock [Gan+22]. We downloaded their code and ran them locally. More details can

be found in Appendix B.1.

In addition to docking software, we compare with AlphaFold-Multimer [Eva+22] in Sec-

tion 3.4.5, fig. 3.14, and table 3.2. We do not do so in the main text, as the focus of this

manuscript is protein docking and assessing the ability of docking programs to target specific

binding sites. In general, current complex prediction algorithms such as AlphaFold-Multimer

do not explicitly make use of binding site information, although this may be derived implic-

itly via multiple sequence alignments or templates. That is, they lack the ability to target

specific binding modes, which further highlights the importance of effective docking methods.

3.4.1 Antibody Docking

We now compare methods on docking antibody-antigen unbound and predicted structures

from the Antibody Benchmark dataset. As shown in Figure 3.5, for all but a few cases, our

performance on docking AlphaFold2-predicted structures roughly matches that on unbound

inputs. In the interest of brevity, we report statistics for unbound inputs unless otherwise

specified. Additional results and tables with RMSD and DockQ statistics are provided in

Appendix B.2.1.

94

Figure 3.5: Results for Antibody Benchmark predicted and unbound inputs. (A)
Legends to distinguish between the five methods and the target type (predicted or unbound)
in plots (B–E). (B) and (C) show top-1 and top-5 success rates for each method on unbound
targets, with no epitope residues provided (blind) and 4 or 12 epitope residues provided. (D)
Split violin plots showing interface RMSD distributions for docking unbound (left half) and
predicted (right half) chains given 0, 4, or 12 epitope residues. Each violin plot marks the
median value with a white dot and shows the interquartile range with a bold vertical line.
Both top-1 and top-5 distributions are shown when 4 and 12 epitope residues are provided.
(E) Ligand RMSD distributions, in the same manner as (D).

In Figure 2C and 2D, our method obtains top performance in blind docking (i.e., no

interfacial contacts or residues are provided as input), with considerably lower interface and

ligand RMSD values than others. This holds regardless of whether unbound or predicted

structures are used as input. This carries over to DockQ success rate where our method

exceeds 25% for both input types. Since our method is deterministic, we only make a single

prediction in the blind setting; thus, top-1 and top-5 success rates are the same. In an

attempt to improve blind-docking results, we developed a genetic algorithm that exploits

our method’s ability to target different binding modes and predict docking quality. Details

are given in Section 3.4.4 and examples are shown in Figure 3.12. This procedure increases

both top-1 and top-5 success rates to 37.0% and 45.7%, respectively.
95

For blind docking, traditional methods improve significantly when top-5 predictions are

considered. ZDock’s top-1 predictions are successful for only one target, but this increases to

8 targets (17.4%) for top-5. Similarly, HDock improves median interface RMSD by roughly

5Å, from 15.6Å for top-1 to 10.8Å for top-5. EquiDock performs the worst of all five methods,

with no DockQ successes for unbound or predicted targets. The method’s poor performance

is likely a result of excessive steric clashes. On average, EquiDock has 581 backbone atom

clashes between antibody and antigen chains. In contrast, our method does not produce more

than three atom clashes for any target. Clash distributions for our method and EquiDock,

along with some example predictions, can be found in Figure B.1.

Compared to the blind setting, performance for all methods improves significantly when

information of the antigen binding interface (epitope) is included. When four epitope residues

are given, we reduce top-1 median interface RMSD from 9.2Å to 3.1Å. Top-1 ligand RMSD

decreases accordingly, from 19.5Å to 9.5Å. For traditional methods, the RMSD reduction

is less dramatic. The best-performing traditional method, ZDock, decreases top-1 interface

RMSD from 12.8Å for blind docking to 10.4Å when 4 epitope residues are given. Even when

binding interfaces are accurately predicted, traditional methods often fail to orient protein

backbones properly. When 12 epitope residues are provided, the lower-quartile interface

RMSD of ZDock is 3.6Å, but the same quartile ligand RMSD is 14.4Å for top-1 predictions.

On the other hand, our method obtains 1.2Å and 3.5Å RMSDs, respectively.

Parallel to blind docking performance, top-5 predictions of the traditional methods yield

significantly higher DockQ success rates than top-1 when epitope residues are included.

Furthermore, traditional methods see substantial improvements on all metrics when more

epitope residues are provided. HDock and ZDock obtain top-5 DockQ success rates of 47.8%

and 56.5% with 12 epitope residues, but only 30.4% and 28.3% with four residues. This

is likely a side-effect of the post-processing procedure, as increasing the number of epitope

residues limits the size of the effective candidate space. In contrast, our method achieves a

top-5 DockQ success rate of 71.7% with four epitope residues, increasing to 87.0% with 12.

96

Figure 3.6: RMSD of CDR Loop Regions. (A) and (B) Scatter plots of heavy chain CDR
RMSD between DockGPT predictions and the ground truth (bound) complex structure.
Here, the x-axis shows RMSD between the input (unbound or AF2-predicted) heavy chain
CDRs and corresponding segments in the ground truth complex structure. The y-axis shows
RMSD between our predicted heavy chain CDRs and corresponding segments in the ground
truth. Points below the y = x axis correspond to targets having lower RMSD for our
predicted complex structures. The cumulative fraction of targets with CDR-RMSD less
than the corresponding x value is also plotted on a secondary axis using a red line for our
predictions and a green line for unbound or predicted inputs. We provided our method with
12 residues on the antigen epitope for these plots.

This suggests that our method has learned to use binding site information as more than just

a search filter.

Considering the relationship between binding interface quality and prediction accuracy,

in Figure 2E, we consider the heavy chain CDR-RMSD distribution of our docked antibody

structures. Here, we see that CDR loop conformations predicted by our method are closer to

the ground truth than that of the unbound or AF2-Predicted input. Predicted heavy-chain

CDR conformations have median RMSD 1.55Å, 1.39 Å, and 1.81 Å compared to 1.82 Å,

1.67 Å, and 1.94Å for the unbound input. The outcome is similar when starting from AF2-

predicted input structures. This implies that our method goes beyond multidimensional

scaling and actually learns to incorporate backbone flexibility in its predictions.

Results for docking bound antibody-antigen structures are radically different than those

shown in Figure 3.5. When blind-docking bound chains HDock and PatchDock achieve

DockQ success rates of 79% and 25%, respectively, for RAbD targets (see Table 3.1). If we

fine-tune and evaluate our model on bound antibody-antigen chains, the blind-docking suc-

cess rate increases more than two-fold to 62%. This implies that important information about

97

antibody-antigen binding interfaces is captured in the bound structures and highlights the

importance of comparing docking methods on benchmarks containing unbound structures.

When training and analyzing on bound inputs, we still provide only a coarse description

of backbone geometry and do not consider input side-chain conformations. We hypothesize

that more fine-grained features would significantly improve performance for bound targets.

Interestingly, although EquiDock was trained on bound structures, the approach still under-

performs on bound targets, with a success rate of 1.2%.

Rosetta Antibody Design (Bound Targets)
I-RMSD↓ L-RMSD↓ DockQ↑

Epitope Method Med. Mean Std. Med. Mean Std. SR Med. Mean Std.

0

EquiDock 14.76 15.47 3.60 40.70 41.89 12.05 1.7% 0.02 0.03 0.03
ZDock 5.43 8.35 8.01 14.22 22.05 24.01 50.0% 0.29 0.43 0.40
PatchDock 11.33 10.33 6.78 26.96 29.00 22.95 25.9% 0.04 0.24 0.34
HDock 0.32 4.56 9.01 1.01 13.56 26.52 79.3% 0.98 0.77 0.39
Ours 1.79 5.75 7.60 5.0 16.7 22.0 61.7% 0.44 0.45 0.37

2
Ours

1.55 2.42 2.99 4.0 8.6 11.4 78.6% 0.62 0.56 0.32
4 1.20 1.87 2.10 3.5 6.9 8.3 82.1% 0.66 0.59 0.30

All 1.17 1.78 1.95 3.3 7.1 12.2 87.5% 0.73 0.64 0.27

Table 3.1: Docking results for Rosetta Antibody Design bound targets. Results on
the RAbD test set using bound chains as input to each docking method. Results for our
method are generated after fine-tuning on bound antibody-antigen chains. The x-axis in the
below four pictures shows the number of epitope residues provided to the docking methods.
DockQ score cutoffs for acceptable, medium, and high-quality predictions are ≥ 0.23, ≥ 0.49,
and ≥ 0.80

3.4.2 Results for DB5 Unbound and Predicted Targets

Results for DB5 targets are shown in Figure 3.7. Here, we focus mainly on performance

when residue contacts are provided but also consider providing a limited number of interface

residues on one or more chains. We chose to provide at most C = 3 inter-chain contacts
98

because, in theory, the number of rotational degrees of freedom for the ligand chain should

be roughly max(0, 3−C) if the contacts are well distributed. More results for DB5 predicted

and unbound targets are shown in Figures 3.7, 3.10 and 3.11 and appendix B.2.1, including

tables with RMSD and DockQ statistics and performance on blind docking.

Figure 3.7: Results for DB5 with AlphaFold2 predicted, and unbound monomer
structures as input. (A) Per-method distribution of inference times for docking DB5
unbound targets. (B) Bar plot of Top-1 DockQ success rates for DB5 unbound targets.
Each method was given one, two, or three contacts (C = 1, 2, 3) or no contacts and four
residues distributed over both the receptor and ligand binding interfaces (I = 4). (C) Bar
plot of top-5 DockQ success rates, analogous to (B). (D) Scatter plot of the number of
interacting residues in predicted complexes (y-axis) compared to the ground truth complex
(x-axis). Blind docking predictions were made for all DB5 unbound targets, and interacting
residues include only Cα atoms, with a cutoff distance of 10Å. (E) and (F) Split violin plots
of Interface-RMSD and Ligand-RMSD distributions as in Figure 3.5. In (B, C, E, F), we
exclude Equidock because this method does not accept interface or contact information as
input. Legends to distinguish between the five methods and target type are shown alongside
RMSD distributions in (E) and (F).

For both unbound and AF2-predicted targets, supplying our model with a single contact

99

generates better top-1 median RMSD scores than traditional methods supplied with up to

three contacts. When one contact is given, DockGPT achieves a top-1 DockQ success rate of

45.2%, and 59.5% for top-5. In contrast, ZDock and HDock have less than 20% success for

top-1 and 33.3% for top-5. When two contacts are provided, DockGPT’s top-5 predictions

are correct for all but three targets. All targets have a correct top-5 prediction when three

contacts are provided. On the other hand, the success rate of traditional methods improves

only moderately, with a maximum top-5 success rate of 45.2% for ZDock across all settings.

On top of performance, our method also achieves significantly faster inference times

than others, averaging inference times more than three orders of magnitude faster than

ZDock,HDock, and PatchDock, and approximately six times faster than EquiDock.

As shown in Figure 3.7D, blind docking predictions for methods EquiDock, HDock, and

PatchDock tend to have large binding interfaces, even when there are few contacts in the

ground truth complex. The tendency is most pronounced for EquiDock, which regularly

predicts receptor-ligand poses with large surface overlap. On average, EquiDock, predicts a

binding interface size that is 5.4× larger than the ground truth. PatchDock, HDock average

2.9× and 2.3×, that of the native complex, respectively. In contrast, ZDock and our method

are the least biased, averaging 1.9× and 1.4×, respectively.

The tendency to predict large binding interfaces may be explained by considering the

objective functions of each method. PatchDock explicitly rewards large binding interfaces

and high shape complementarity. HDock and ZDock both rank decoys by summing pairwise

interfacial energy terms, and larger binding pockets may offer more potential for weak yet

statistically favorable interactions. EquiDock, is trained to predict key points corresponding

to the binding interface of each chain. It may be preferable from a loss perspective to predict

key points near the chain’s center of mass when the binding interface is hard to discern. In

theory, a chain’s center of mass offers a low-variance estimation of the true binding region.

Finally, our method is trained with clamped FAPE loss, and thus all predictions that deviate

beyond the clamp value are equally “bad” in a gradient sense. Adding violation loss also

100

ensures that the model is heavily penalized if surfaces intersect.

Figure 3.8: Predictions for one DB5 target with unbound structure as input.
Ground-truth and docking predictions for PDB entry 2A1A. For each method, we show the
surface of the predicted and ground truth ligand relative to the ground truth receptor. For
this example, we selected traditional method HDock as it performed similarly or better than
ZDock and PatchDock.

An example of the behavior described in the previous paragraph is shown in Figure 3.8.

Although EquiDock’s prediction is physically unrealistic, it still compares similarly to HDock

in terms of interface and complex RMSD. EquiDock’s prediction has an interface RMSD of

14.8Å, and a complex RMSD of 17.2Å, whereas HDock obtains 20.5Å and 14.9Å respectively.

It is also clear that HDock predicts a large binding interface for this target, even though

the true binding interface is relatively small. This example also highlights the importance

of assessing ligand RMSD in addition to complex and interface RMSD.

3.4.3 Decoy Ranking with Predicted lDDT

In Section 3.3.6, we mention that predicted complexes are ranked by predicted interface lDDT

(I-plDDT). By selecting the target with the highest I-plDDT score, we are able to improve

DockQ success rate, and RMSD scores compared to random sampling (see Figures 3.9, 3.10

and 3.11). We now describe this procedure in more detail. We define the predicted binding

interface as the set of residues having at least one predicted inter-chain contact with Cα

distance between predicted coordinates less than 10Å. Formally, it is the set:

{i ∈ C1 ∪ · · · ∪ Ck : ∃j /∈ C(i), ∥x⃗Cα
i − x⃗Cα

j ∥2 < 10}, (3.17)

101

where x⃗Cα
i are predicted Cα-coordinates.

The ground-truth binding interface is defined analogously with respect to coordinates

taken from the ground truth complex. To rank decoys for a given target, we average the

per-residue plDDT for those residues on the predicted binding interface. This differs from

the standard predicted lDDT, which averages over the entire complex. For a given residue,

we compute the predicted plDDT score as an expectation over the bin labels used for lDDT

loss (Section 3.3.4) with respect to the softmax of predicted logits.

Figure 3.9: Analysis of lDDT predictions. Each plot shows results for predictions made
on DB5 bound or unbound input chains, providing the model with four interface residues
and four contacts sampled at random from the ground truth complex. Each dot represents a
decoy generated from bound or unbound input chains. A total of five decoys were generated
for each target. Correlation coefficients for predictions derived from unbound and bound
targets are denoted with ρu and ρb, respectively. (A) scatter plot of predicted lDDT (x-axis)
for the predicted binding interface against actual lDDT (y-axis) for the ground truth binding
interface. Unbound targets are shown in blue (ρu = 0.69), and bound targets are shown in
green (ρb = 0.83). We remark that the predicted and actual interfaces may differ. (B)
Scatter plot of predicted lDDT (x-axis) and actual lDDT (y-axis) for bound and unbound
targets (ρu = 0.70, ρb = 0.95). (C) Scatter plot of predicted lDDT using the predicted
binding interface against the complex RMSD of the predicted structure (ρu = −0.74).

Figure 3.9 shows scatter plots of plDDT and i-plDDT for DB5 bound and unbound

targets. In plot (C), we find a strong correlation between I-plDDT and complex RMSD for

unbound targets, suggesting that this quantity is effective for ranking decoy structures. We

explore this further in Figure 3.10, which compares the complex RMSD (A) and interface

RMSD (B) distributions of decoys selected by plDDT (orange) and the same distributions

computed over all decoys (blue). In this figure, we generate five decoys per target and assess
102

them across 12 binding site settings, varying the number of provided contacts or interface

residues in each setting. Mean, and median RMSD scores for selected decoys are lower across

all binding site contexts. RMSD distributions of decoys selected by interface plDDT are also

consistently more concentrated at lower values.

Figure 3.10: Selection overview for DB5 unbound targets (without recycling iter-
ations). For this experiment, we generate five decoys for each target using a reduced model
(no side-chain prediction, no recycling). Each row/column corresponds to a number of pro-
vided contacts/ interface residues. This information is derived as a random sample from the
native conformation. For each violin plot, we compare the complex RMSD (C-RMSD, (A))
or Interface RMSD (I-RMSD, (B)) of all predictions (blue) against the prediction for each
target having the highest predicted interface plDDT (orange). We remark that results in the
two plots use only Cα atoms to compute each RMSD type, and as such, may differ slightly
from the results reported in other sections.

Last, we consider our model’s ability to predict conformation changes upon binding.

In Figure 3.11 (A, B), we see that the chain-wise RMSD between predicted and unbound

structures is similar for all but a handful of targets. In terms of interface RMSD, predicted

structures are slightly more similar to the bound conformation, especially when there are

larger discrepancies in the interface of aligned bound and unbound structures.

Unfortunately, the conformation similarity between DB5 bound and unbound structures

is relatively high, and more diverse structures should be examined before drawing conclusions

from these results; nevertheless, in Figure 3.11 (C and D), we consider a case study on

103

Figure 3.11: Examination of conformational flexibility for DB5 unbound targets.
As in Figure 3.9, we generate five predictions per DB5 target, using unbound chains as input
to our model. For each prediction, we provide our model with three contacts sampled at
random. (A) Scatter plot of receptor/ligand chain-wise RMSD between bound and unbound
chains (x-axis) against predicted and bound chains (y-axis). Red dots show the decoy with
the highest predicted interface pLDDT for each target. (B1) Shows the interface RMSD
in the same manner as (A). (B2) zooms in on the 0-2.5Å range of (B1). (C–E) Cartoon
representations of our prediction, bound, and unbound chains for DB5 target 3AAD. (C)
Our top-ranked prediction for DB5 target 3AAD using unbound chains as input is shown
in blue, and the bound conformation in red. (D) Cartoon representations of our top-ranked
prediction (blue) and unbound chains (orange) for target 3AAD. For this image, unbound
chains are optimally aligned to respective bound chains using a chain-wise Kabsch alignment.
(E) Our model’s top-3 ranked predictions for 3AAD are colored by predicted interface lDDT.
Lower transparency is used to denote lower predicted interface-LDDT. For this target, the
RMSD between bound and unbound receptor chains (top, helices) is 4.18Å, and 2.05 Å for
the ligand chain (bottom, sheets). When bound and unbound chains are optimally aligned,
the interface RMSD is ≈ 6.8Å. Our top-ranked prediction obtains an interface RMSD of
2.6Å.

PDB entry 3AAD, where our model predicts a conformation diverging significantly from

the unbound state. For this target, our model with highest predicted interface lDDT has

interface RMSD 2.6Å, whereas an optimal alignment mapping the unbound chains to the

104

bound complex has interface RMSD 6.8Å. Moreover, our model predicts a conformation for

the helical receptor chain that is only 2.2Å from that of the bound conformation, compared

to 4.2 for unbound-bound conformation. We remark that the maximum sequence identity

between target 3AAD and any training example is only 9%.

3.4.4 Genetic Algorithm for Protein-Protein Docking

Although our method is deterministic, sampling can still be performed by providing differ-

ent subsets of inter-chain contacts or interface residues for the same example. If confidence

predictions correlated perfectly with complex RMSD (see Figure 3.9), we could discern the

native complex by enumerating all subsets of inter-chain contacts as input to our algorithm.

Inspired by this idea, we develop a genetic algorithm to guide complex predictions toward

high-confidence binding modes. This approach significantly improves Antibody-Antigen pre-

diction quality and enables us to predict ensembles of conformations in the absence of binding

site information. We describe this approach throughout the remainder of this section.

To sample conformations in the absence of interfacial residue and contact information,

Any genetic algorithm consists of four main components: (1) a genetic representation of the

solution domain, (2) a “fitness” function to assess population quality, (3) a mutation function

that alters representations, and (4) a crossover function that combines two representations.

Given an initial population of solution candidates, the algorithm then proceeds to produce

new “generations” by assessing the fitness of each candidate and stochastically selecting those

with favorable fitness to combine or mutate. We describe each component of our algorithm

below.

Solution Representation Solutions are represented as a binary vector of interface residues.

The length of this vector is Lrec + Llig where Lrec is the length of the receptor chain, and

Llig is the length of the ligand chain. Each position of the vector corresponds to a residue

in one of the chains, and a one at position i is meant to indicate that this residue i is part

105

of the binding interface.

Initial Population To generate initial candidates {X(0)
0 , . . . , X

(0)

n(0)
}, we randomly sample

a single residue on the surface of receptor and ligand chains, and provide these two residues

as the “interface-residue” feature. For antibodies, we restrict the sampling to residues in

CDR H1-3 loops. Random surface residues are chosen by scaling a 3-dimensional Gaussian

(direction), to the maximum distance between any two residues in the protein and then

choosing the residue closest to this point.

Fitness Function To evaluate the fitness of each candidate, we use the candidate solution

as the binding interface feature and then compute a function of predicted interface-pLDDT

on the output. We choose f(X, t) = exp[(t+1)·(I-pLDDT(X))] where t is a scaling parameter

(chosen ad hoc as one plus the index of the current iteration).

Mutation Function Given a set of solution candidates, {X(1)
1 , . . . , X

(1)

n(1)
} and correspond-

ing structures generated at time t, we select a subset of n = n(t+1) with replacement ac-

cording to the fitness function f(·, t), and randomly sub-sample six residues on the predicted

binding interface. We choose to sample a fixed number here because we empirically found

that predicted interface lDDT scores have a modest correlation with the number of interface

residues provided as input.

Example predictions for PDB target 2YVJ are shown in Figure 3.12. For this target, the

decoy with the highest predicted interface lDDT has a low DockQ score, but the third ranked

prediction has a DockQ score above 0.7. Results for Ab-Bench and DB5 targets are given in

Tables 3.2 and B.3 to B.8. To generate results, we run this procedure for ten generations,

using an initial population size of 50 and subsequent population sizes of 25.

106

Figure 3.12: Genetic Algorithm Explores Diverse Binding Modes Ground truth and
example predictions from our genetic algorithm for DB5 target 2YVJ. In all sub-figures, the
ground truth receptor is shown in orange, the bound ligand in gray, and our predictions in
blue. (A) The bound complex of DB5 Target 2YVJ. (B–D) the top three ranked predictions
using our genetic algorithm. (E) Rank 2, 3, 5, and 6 predictions from our genetic algorithm.
Rank 1 and 4 predictions are omitted for visual clarity, as they clash with other predictions.
The bound ligand is also shown in gray. Although our method fails to generate an accurate
top-1 prediction, our third-ranked prediction successfully docks to the same interfacial region.

3.4.5 Comparison to AlphaFold-Multimer

We compare our method with AlphaFold-Multimer in the blind docking setting on DB5

and Ab-Bench benchmarks described in Section 3.3.6. In addition to comparing the two

methods directly, we also include a hybrid approach (Ours + AF). For this approach, we

provide our method with up to three randomly sampled residues from antibody-antigen

binding interfaces predicted by AlphaFold-Multimer. No information on native complexes is

used. We generated 100 decoys for each target and selected the decoy with highest predicted

interface lDDT as our final prediction (selection as described in Section 3.4.3). The results

are shown in Table 3.2.

Motivating the hybrid approach, we analyzed binding site information extracted from

AlphaFold-Multimer predictions (Figure 3.13). As expected, AlphaFold-Multimer recovers

the antibody paratope with high precision. Perhaps more surprisingly, we see that at least

part of the antigen epitope is recovered with relatively high precision but lower recall. Notic-

ing this, we conjectured that our results might be improved by sampling a limited number

of predicted binding modes and ranking predictions.

Our blind docking (i.e., our deep learning plus our genetic algorithm) greatly outperforms

107

Figure 3.13: Binding site precision and recall for AlphaFold-Multimer on Ab-
Bench targets. Histograms of binding site precision and recall for AlphaFold-Multimer
predicted structures on Ab-Bench targets. Recovered contacts, antigen binding interface
(epitope), and antibody binding interface (paratope) are shown from left to right.

AF-Multimer on antigen-antibody complex structure prediction without using any binding

site information. But on general protein targets, our method performs poorly. Adding AF-

Multimer predicted interface or contact information significantly improves prediction quality

since this indirectly makes use of MSA information. We hypothesize that directly including

MSA information could significantly improve prediction quality for general proteins, espe-

cially in conjunction with our genetic algorithm, as model confidence predictions correlate

strongly with predicted interface plDDT, but we leave this study for future work.

Recently, Yin et al. [Yin+22] benchmarked AlphaFold-Multimer and other docking pro-

grams on antibody-antigen and general protein targets using the sequences or structures

of unbound chains. This study found that AlphaFold-Multimer performs very poorly for

antibodies, successfully predicting only 11% of targets. In their study, the authors iden-

tified sequence and structural features associated with the lack of AlphaFold success and

attributed the performance gap to a lack of co-evolutionary signal. For antibody-antigen

complexes, they found that the success rate of AlphaFold-Multimer was not much differ-

ent when the model was given only templates and no MSA information. In this setting,

AlphaFold-Multimer is similar to our model. We hypothesize that our performance improve-

ment for antibody-antigen targets comes from (1) fine-tuning and (2) no MSA inputs. Since

108

DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Antibody Benchmark (Top-1)
AF-Mult. 28.3% 1.9 9.3 14.7 12.2 22.6 36.0
Ours 26.1% 2.5 9.2 12.1 8.2 19.5 25.4
Ours+GA 37.0% 1.8 8.3 12.4 5.5 19.2 26.4
Ours+AFM 28.3% 1.9 10.1 13.3 5.7 20.1 27.8

Antibody Benchmark (Top-5)
AF-Mult. 34.8% 1.8 5.8 13.1 9.2 18.3 26.4
Ours+GA 45.7% 1.7 4.0 7.3 4.9 11.5 19.8
Ours+AFM 37.0% 1.7 4.4 8.9 5.4 11.3 19.0

Docking Benchmark Version 5.5 (Top-1)
AFM 50.0% 0.9 7.9 16.4 2.8 19.6 35.2
Ours 7.1% 8.9 13.3 17.4 24.2 35.4 49.5
Ours+GA 9.5% 9.7 14.0 17.5 23.1 33.4 47.5
Ours+AFM 42.8% 2.7 5.7 14.3 6.6 17.4 28.7

Docking Benchmark Version 5.5 (Top-5)
AFM 50% 0.9 4.7 13.0 2.6 12.2 30.2
Ours+GA 16.7% 5.4 8.8 13.6 12.9 20.7 34.3
Ours+AFM 52.4% 2.0 5.1 12.7 5.2 12.4 24.5

Table 3.2: Comparison of DockGPT and AlphaFold-Multimer on two docking
benchmarks Results for AlphaFold-Multimer (AFM), our method (ours), our method with
genetic algorithm (Ours+GA), and our method using AlphaFold-Multimer predicted inter-
faces (Ours+AFM) for Ab-Bench and DB5 benchmarks. AlphaFold-Multimer outperforms
our method on blind docking general protein targets from DB5. Our method does not make
use of MSA information, which is especially important for general proteins where binding
interfaces are harder to discern. For antibody complexes, the paratope is limited to CDR
loops, and our method has an easier time predicting the complex.

we do not train with MSA information, our model is forced to learn sequence and structural

features which facilitate good binding modes. This is particularly useful for immunoglobulin

targets, as antibody-antigen interfaces are less likely to have co-evolving sequences available

for MSA generation [Yin+22].

While AlphaFold-Multimer often predicts correct conformations for antibody and anti-

gen chains, the predicted complex can deviate far from the ground truth. For example,

Figure 3.14A shows that although the complex structure is far from the ground truth, the

antibody and antigen structures are highly similar to their respective bound counterparts,

with less than 2Å complex-RMSD between predicted and unbound antibody chains, and

109

Figure 3.14: Comparison of structure predictions between DockGPT and
AlphaFold-Multimer. In this figure, all predictions from our model were made with
AlphaFold2 or AlphaFold-Multimer predicted structures as input. (A) Predictions for DB5
target 1JTD. Our method uses one random contact. (B) Predictions for RAbD target 2ADF.
Our prediction uses four randomly chosen epitope residues. (C) Example of high interface
and ligand RMSD for an antibody-antigen complex predicted by AlphaFold-Multimer (left).
Alignment of predicted chains to the ground truth structure (right). (D,E) Another example
where AlphaFold predicts correct chain conformations but an incorrect complex. Supply-
ing our method with antigen epitope residues predicted by AlphaFold improves complex
prediction quality (left) and CDR loop RMSD (right)

1.1Å RMSD between predicted and bound antigen chain. In Figure 3.14(A,B,D), we provide

more examples illustrating this and also show how our model can be used in conjunction

with AlphaFold to improve prediction quality when binding site information is known.

3.5 Ablation Study

We trained several ablated models to identify how different components of our architec-

ture and training procedure contribute to docking performance. We show results for four

additional models in Table 3.3.

We find that removing the shared weight layers and auxiliary FAPE loss from our struc-

ture decoder leads to the largest degradation in performance. We also remark that ablating

110

the centrality encoding or adding a secondary structure encoding to our input residue features

had an insignificant impact on performance. We remark that including ESM1b [Riv+19] en-

codings (+ ESM1b) of each chain did not noticeably improve performance in the blind

docking setting. We obtain DockQ scores ≥ 0.23 for three targets when ESM1b encodings

are used and two targets when the encodings are removed. These encodings do not signif-

icantly improve performance, so we opted for the simpler model. Interestingly, the variant

of our model that does not use recycling can still obtain competitive top-5 performance but

suffers in top-1 performance. Recycling decoder residue features is also competitive with the

baseline recycling implementation but does not result in significantly better performance.

Top-1 Top-5
I-RMSD L-RMSD SR(%) I-RMSD L-RMSD SR(%)

4 Interface
Baseline 4.7 14.5 47.6% 3.0 8.6 69.0%
No Recycle 8.4 20.0 29.7% 3.9 8.5 64.9%
+ ESM1b 5.1 13.8 47.6% 3.3 8.8 73.3%
No Share Wts. 4.9 16.6 42.9% 3.9 9.6 54.8%
Recycle Dec. 5.3 13.7 42.9% 3.4 8.8 73.3%

1-Contact
Baseline 5.8 13.6 45.2% 3.5 10.2 59.5%
No Recycle 8.0 20.0 33.3% 4.1 11.5 51.4%
+ ESM1b 5.6 18.1 37.7% 3.6 9.5 62.2%
No Share Wts. 7.2 22.1 31.0% 3.7 11.4 45.2%
Recycle Dec. 5.7 18.0 37.7% 3.3 9.5 59.5%

Table 3.3: Ablation Study We consider the top-1 and top-5 performance of model variants
on DB5 unbound targets using one contact or four interfacial residues as input. This infor-
mation is randomly sampled independently for each variant, and 15 decoys are generated for
each target. Predicted IplDDT is used to rank each decoy. The baseline model is described
in the main text. For the four variants, we considered removing recycling (No Recycle),
adding ESM1b encodings of chain sequences as input (+ESM1b), learning separate weights
for each decoder block (No Share Wts), and recycling decoder residue features, rather than
encoder residue features (Recycle Dec.). When learning separate weights for decoder layers,
we also remove auxiliary FAPE loss.

111

3.6 CDR-Loop Design

We now describe how DockGPT can be extended to perform sequence/structure co-design.

As a proof of concept, we consider the task of CDR-loop generation, focusing on heavy chain

CDRs H1-H3. We note that our method also designs light chain CDRs, but we omit this for

brevity.

First, we describe the modifications made to DockGPT, which enable de novo design.

We then show how context such as pairwise atom distances, or even atomic coordinates can

be incorporated into the design task. Finally, we compare our approach to four other CDR

loop design algorithms and analyze the factors contributing to our success.

Approach To perform joint imputation of sequence and complex structure, we re-frame

the design task as a data imputation problem and develop a masked autoencoder framework.

Unlike the original framework proposed by He et al. [He+21], we do include mask tokens in

our encoder. This provides a more natural way to incorporate partial context such as partial

structure and missing sequence, or known secondary structure and missing tertiary structure.

It is also easy to incorporate partial context with our input featurization (Section 3.3.1) which

consists almost exclusively of one-hot encodings. To enable masking, we simply augment each

encoding with an extra bin, ⟨MASK⟩, for mask values.

Implementation We use the same features as described in Section 3.3.1, except for residue

degree centrality. We exclude degree centrality since this information is unlikely to be avail-

able for most de novo design tasks. We add one additional residue feature; a one-hot encod-

ing of secondary structure using three classes for sheets, helices, and loops. We encode all

CDR residues as loops during inference and do not mask this feature during training. We

found that the secondary structure encoding improved convergence when transitioning from

pre-training to fine-tuning on antibody structures. During pre-training, we masked linear

segments of a randomly selected chain, sampling the segments based on proximity to the

112

chain’s binding interface. The process is detailed in Algorithm 8, where we consider the

case of two interacting chains, though it is straightforward to extend to general complexes.

We remark that the receptor and ligand labels in Algorithm 8 are arbitrary. We randomly

select one chain as the receptor and the other as the ligand before performing this procedure.

The length r of the masked segment is selected from a geometric distribution as geom
(

1
15

)
.

For each residue in the chosen segment, we replace the corresponding features with separate

⟨MASK⟩ parameters except for relative sequence position and relative sequence separation.

To be clear, no inter-atom distance or orientation information is given for masked residues.

Algorithm 8 Select Masked Region
1: Input
2: {x⃗i}: Cα coordinates for protein dimer
3: ℓ: Length of region to mask
4: {Ck}: Chain indices for receptor and ligand (k = 1, 2)
5: Output
6: r: [r, r + ℓ) segment to mask in ligand chain.
7:
8: function SelectRegionMask({x⃗i}, ℓ, C1, C2, σ = 4) :
9: {x⃗L

i }, {x⃗
R
j } = {x⃗i : i ∈ C1}, {x⃗j : j ∈ C2}

10: Dij = ∥x⃗L
i − x⃗R

j ∥2
11: Sij =

1
1+D2

ij/4

12: s
(L)
i =

∑
j Sij

13: choose r ∈ [0, |C1| − ℓ] w.p. ∝ exp

[∑ℓ
c=1 s

(L)
r+c

σ

]
14: return r

The methods we compare with (see Table 3.4) are trained, validated, and tested on

different datasets. Code has not been released for all of these methods, and because of this, we

tried to replicate their training and testing procedures as accurately as possible. To generate

our data, we use the scheme proposed in Jin et al. [Jin+22], using the SAbDab dataset

described in Section 3.3.5, generating CDR-clusters at 40% sequence identity and using an

8:1:1 split for training, validation, and test sets, respectively. Some example generations are

shown in Figure 3.15

113

3.6.1 Incorporating Coordinates

Here, we describe how fixed, flexible, and rigid coordinates can be incorporated into the

masked-design framework while still maintaining SE(3)-equivariance. We note that, by using

IPA, our decoder is already equivariant to any global rigid transformation applied to per-

residue local frames [Jum+21, Suppl. Material, 1.8.2]. Moreover, the same proof shows that

scalar node features are invariant to any global rigid transformation. Thus, setting rigids

T (0) in the decoder submodule to those derived from a complete set of backbone coordinates

results in an SE(3)-equivariant update to the rigid frames and an invariant update to the

scalar features.

We now argue a more general claim: that IPA can be made SE(3)-equivariant even when

some input coordinates are rigid (fixed), flexible, or missing. Let C = Cfixed ∪ Cflexible ∪

Cmissing be a partition of the input residues i = 1, . . . , L denoting those residues with

coordinates which should remain fixed, those which are flexible, and those with coordinates

that are missing. Without loss of generality, assume that the coordinates which are not

missing have mean 0⃗. We propose to initialize all missing coordinates at the origin.

Intuitively, mean-centering the complex implies that missing coordinates are viewed

equivalently in the global and local frames of every fixed and flexible residue at initial-

ization; since they are initialized at the origin. Note that any global rotation applied to the

input points will leave the origin fixed, and thus only the fixed or flexible coordinates will

change position. Since IPA is equivariant to global rotations, the claim follows directly from

the equivariance of IPA. That is, applying a global rotation to all residue coordinates - while

keeping the scalar embeddings fixed - will result in an equivalent update to the local frames.

To keep the coordinates corresponding to residues in Cfixed static, we modify the update

in Equation (3.9) to

T
(ℓ+1)
i =

T
(ℓ)
i i ∈ Cfixed

T
(ℓ)
i ◦RigidUpdate

(
x
(ℓ+1)
i

)
otherwise

(3.18)

114

From the equation above, it’s clear that transformations corresponding to fixed positions

(i ∈ Cfixed) remain fixed in the output. This implies that

[
0⃗
]
T
(ℓ)
i

=
[
0⃗
]
T
(0)
i

= t⃗
(0)
i = x⃗

Cα,input
i ∀i ∈ Cfixed. (3.19)

This maintains local consistency and allows the network to learn the placement of missing

atoms with respect to a fixed set of reference frames. To fix coordinates, we simply replace

the prediction of x⃗a
i (i ∈ Cfixed) in Equation (3.10) with the coordinates given as input.

For practical reasons, mean-centering all of the input coordinates does not actually result

in an equivariant update – this is because the rigid frames use a specific atom (e.g., Cα) to

initialize their translation. Thus, in practice, only the rigid translations should have mean

zero.

3.6.2 Results

Evaluation Metrics

We provide a comparison with four other protein design frameworks tailored towards an-

tibodies, RefineGNN[JX21], CoordVAE[LMX22], AR-GNN [JBJ20], and LSTM [Sak+21;

Akb+22]. In Tables 3.4 and 3.5, we report native sequence recovery (NSR) and perplexity

as described in Chapter 2, Section 2.3.2. When reporting CDR RMSD, we use the same

methodology as described in Section 3.3.6. To generate our method’s results in Tables 3.4

and 3.5, we provide four native antibody-antigen contacts and produce five decoys per target.

The decoy with the highest predicted interface plDDT is selected for comparison.

Loop Design with Framework Distance as Context

In Table 3.4, we show design results for our method using coarse distance and orientation

information as input. Despite receiving low-resolution descriptions of antibody and antigen

115

Structure Prediction Sequence Prediction

Method RMSD↓ PPL↓ NSR↑ PPL↓

H1 H2 H3 Fr H1 H2 H3 H1-H3

(Ours+FT) 1.11 1.02 1.88 0.72 4.46 6.71 10.68 39.7% 7.67

CoordVAE 0.96 1.00 1.95 – – – – – –

Refine-
GNN

1.18 0.87 2.50 – 6.09 6.58 8.38 35.4% –

AR-GNN 2.97 2.27 3.63 – 6.44 6.86 9.44 23.9% –

LSTM – – – – 6.79 7.21 9.70 22.5% –

Table 3.4: Results for CDR-loop design. Performance of our method and four others,
CoordVAE [LMX22], Refine-GNN [Jin+22], AR-GNN [JBJ20; Jin+22] and LSTM [Sak+21;
Akb+22], on the task of predicting CDR H1-H3 loop conformation and sequence. For our
method, “FT” denotes fine-tuning on antibody structures. The columns H1-H3 show the
Cα-RMSD of heavy chain CDR H1-H3 between predicted and native structures. For our
method, we also list the RMSD of the predicted and bound framework regions under column
“Fr”. Perplexity (PPL) of sequence predictions for each CDR loop are shown in separate
columns. Finally, overall perplexity and native sequence recovery across all loop regions are
shown in the rightmost columns. We note that AR-GNN and Refine-GNN predict sequence
and structure for each CDR loop region separately while conditioning on the native sequence
and structure of the other CDR regions. This may result in slightly lower perplexity for these
models.

chains, we can still recover antibody framework regions with sub-Angstrom RMSD. Fur-

thermore, none of the four other methods can design CDR loop regions in the presence of

an antigen; for these methods, the sequence and structure generation results in Table 3.4

are generated on bound heavy-light chains, with the bound antigen omitted. In contrast,

our method simultaneously docks and designs all six heavy and light chain CDR loops and

sequences simultaneously.

Loop Design with Coordinates as Context

In settings such as CDR-loop generation, fixing the heavy and light chain framework regions

may be practically useful. To enable de novo design of loop regions, the CDR L1-L3 and

116

H1-H3 segments can simply be treated as missing. To test whether this approach works

in practice, we fine-tuned the same pre-trained model from Section 3.6 while supplying the

coordinates of the heavy and light chain framework regions to the structure-decoder module.

The framework coordinates are treated as rigid during inference, and the rest of the procedure

is implemented exactly as described in Section 3.6. Of course, it is also possible to provide

the coordinates of the docked antigen complex and the framework. For example, coordinates

on or surrounding the epitope may be treated as flexible and the others as rigid depending

on the use case. We omit this setting here as the manuscript focuses primarily on protein

docking, and the former is a significantly simpler task.

Structure Prediction Sequence Prediction

Our Method RMSD↓ PPL↓ CDR
H1-3

H1 H2 H3 Fr H1 H2 H3 NSR PPL

No FT 1.43 1.53 2.49 0.55 4.84 7.53 11.17 37.5% 8.41

FT 1.11 1.04 1.88 0.82 4.46 6.71 10.68 39.7% 7.67

FT + Fr-Coord 1.03 0.98 1.78 – 4.27 6.50 10.36 40.6% 7.18

Table 3.5: CDR-loop design with framework coordinates Results from our method
without framework coordinates and fine-tuning (No FT), without framework coordinates
and with fine-tuning (FT) and with fine-tuning and coordinates for antibody heavy and
light chain framework regions (FT + Fr-Coord). The same criteria and results from our
method described for Section 3.6 are used here.

Fine-tuning our model on SAbDab reduces overall sequence perplexity (p = 0.086) and

CDR-RMSD (p < 0.005 for CDR H1-H3). We remark that including framework coordinates

reduces median CDR H1-H3 RMSD and sequence perplexity, but hypothesis tests comparing

our fine-tuned models with and without framework coordinates do not support this claim

(p = 0.41, p = 0.43, p = 0.86 for CDR H1, H2, and H3 RMSD). Nevertheless, this outcome

provides further empirical justification for our results in Section 3.6.1 and acts as a robust

proof of concept for integrating coordinate information into docking or de novo design tasks.

117

Figure 3.15: Examples of antibody docking and CDR-loop design Example docking
and designs comparing our predictions with native structures. For each example, we give
the length (L) of CDR H3 and the RMSD between the predicted (red) and ground truth
(orange) conformations. For simplicity, only heavy chains are displayed. Only the bound
antigen (gray-white) is shown when the prediction L-RMSD is less than 2 Å. (A) Fab of mAb
3E9 in complex with Plasmodium vivax reticulocyte-binding protein 2b (PvRBP2b) (PDB:
6BPA, L = 11, RMSD = 1.49). (B) Fab of IgG B13I2 bound to synthetic 19-amino acid
peptide homolog of the C helix of myohemerythrin (PDB: 2IGF, L = 11, RMSD = 1.19).
(C) Fab of mAb B10 heavy chain in complex with A(H3N2) influenza Virus (PDB: 6N6B,
L = 9, RMSD = 1.21). (D) Fab of igG 7B2 bound to 13-residue HIV-1 GP41 peptide
(PDB: 4YDV, L = 17, RMSD = 2.86)

3.7 Concluding Remarks

In this work, we developed DockGPT, a deep learning architecture for flexible protein docking

with applications to de novo design of protein-binding proteins. Unlike other methods, our

approach circumvents explicit training on bound structures and offers a natural approach to

modeling conformational flexibility in complex prediction. By comparison across multiple

benchmarks, we show that DockGPT meets or exceeds state-of-the-art methods on rigorous

quality metrics while also making better use of binding site information when it’s available.

With significantly reduced inference times and explicit confidence estimates, we anticipate

that our model will find further applications to machine-learning-based virtual screening and

de novo design platforms.

Despite our success, there are several limitations and extensions of our approach left open

for future investigation. We use only a single atom type and threshold to supply our model

with interface and contact information. Although it is straightforward to incorporate more

fine-grained binding site information, we did not explore this here. Parallel to this, supplying

118

noisy or probabilistic binding site information could potentially improve performance and

generalization.

Our training procedure enables the generation of diverse conformations by enumerating

random contacts. We show in Section 3.4.4 how this can be used to rank and generate diverse

binding modes and ultimately improve blind docking. We suspect that this approach can be

refined or extended to achieve even better performance. Specifically, (1) MSA information

should significantly improve confidence predictions, (2) predicted distances should be used

to generate a better initial population, and (3) Considering more candidates should help

improve results. It is also important to maintain a diverse set population at any given time

step. Conformations should be clustered by complex RMSD and only one representative

from each cluster should be considered when sampling for the next population. We remark

that we did not perform this clustering.

Although some of our deep network components were drawn from AlphaFold2, we do not

incorporate any MSA information. We expect MSA embeddings to be especially helpful in

the blind docking setting. Finally, for de novo design tasks, we only analyzed our model on

CDR loop design and do not include estimates of binding affinity or free energy. Evaluation

across more rigorous criteria and a broader range of design tasks must still be performed. We

hope that future work will address some of these issues and develop this approach further.

119

APPENDIX A

SUPPLEMENT TO CHAPTER 2

A.1 Data Collection

Side-Chain Packing

SCWRL4(ver 4.02) and FASPR were run with default configurations. Rosetta’s fixbb appli-

cation was run with non-flexible backbone coordinates and the maximum number of rotamers

by passing -EX1, -EX2, -EX3 and -EX4 flags. We also included flags -packing:repack_only

to disable design, -no_his_his_pairE, and -multi_cool_annealer 10 to set the number of

annealing iterations - these settings are recommended in the rosetta tutorial. We ran Rosetta

Packer 5 times for each target protein using Rosetta’s ref2015 energy function and selected

the conformation with the lowest energy. DLPacker was run using the pre-trained release

from the author’s github, downloaded on Sept. 17th, 2021. Side-chains were reconstructed

in non-increasing order of the number of atoms in the corresponding amino acid’s microen-

vironment.

AlphaFold2-predicted structures were generated with ColabFold[Mir+22] using default

settings and a single template PDB containing only backbone heavy atoms from the corre-

sponding native target. We ran inference twice for each target, once using ColabFold’s default

MSA generation[SS17], and once without MSA information, by passing the single-sequence

flag. For both settings, we chose the predicted structure having the highest predicted lDDT

score for analysis. We note that AMBER relaxation was not performed on any AlphaFold2

predictions. Omegafold source code was downloaded from the official GitHub repo, and

the standard inference script was used. CASP14 predictions for RosettaFold are linked on

the official GitHub page1. The first RosettaFold model for each target was selected for

comparison.

1. download link: https://files.ipd.uw.edu/pub/RoseTTAFold/casp14_models.tar.gz

120

https://github.com/nekitmm/DLPacker
https://github.com/nekitmm/DLPacker
https://github.com/HeliXonProtein/OmegaFold
https://github.com/RosettaCommons/RoseTTAFold
https://files.ipd.uw.edu/pub/RoseTTAFold/pdb100_2020Mar11.tar.gz

Inverse Folding

To produce Rosetta sequence and side-chain co-designs, we follow Rosetta’s FastDesign pro-

tocol, which performs a combination of rotamer packing and sequence design. To generate

a res_file, we specify pack=True, design=True, input_sc=False, which corresponds to en-

abling side-chain prediction, designing sequence, and ignoring input side chains. We then

relax each design and native structure with five separate trajectories, taking the average

energy value over each run. When relaxing native structures and designs, we use the default

FastRelax protocol, and specify the flags -use_input_sc to ensure initial side-chain conforma-

tions are considered, and -relax:coord_constrain_sidechains -relax:coord_cst_stdev <SD>,

where SD=0.1, to penalize deviation from side-chain rotamer predictions. The source code

used for these procedures is available in our official GitHub repo.

Inference with ProteinMPNN was performed using source code from the author’s google

colab notebook. During inference, we did not add any noise to input coordinates, as we

noticed this hurt performance. We ran inference on full-backbone atom models, trained

with 0.02Å, 0.01Å, 0.002Å, and set the sampling temperature to 0 (i.e. selected the amino

acid type with the highest predicted probability for each position). Sequences for Rosetta

(RosettaDesign) were generated using the same methodology as for side-chain packing but

with sequence design enabled. Designs for GVP-GNN + CATH4.2 were generated with the

inference script and pre-trained model from the official github repo, downloaded on March

13th, 2022, and trained on the CATH4.2 dataset, curated by Ingraham et al.[Ing+19]. To

provide a more fair comparison with this method, we retrained GVP-GNN from scratch on

our BC40 training dataset and report separate results. We refer to the latter variant as

GVP-GNN+BC40.

121

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/movers_pages/FastRelaxMover
https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb
https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb
https://github.com/drorlab/gvp

A.2 Training Details

We train our models for 10 epochs with an initial learning rate of 10−3. The learning rate is

decreased by a factor of two every three epochs, and we do not use any warm-up.

To optimize our models, we use Adam[KB15] with parameters β1 = 0.9, β2 = 0.999, and

ϵ = 10−8, and use a minibatch size of 16. To stabilize training and avoid using learning rate

warm-up schedules, we use ReZero[Bac+20], for every residual connection in our transformer

blocks. We also apply gradient clipping by global norm[PMB13] to clip the gradients of each

example in a minibatch to have ℓ2 norm at most 1.

We apply gradient checkpointing on the triangle attention logits and TFN kernel outputs.

This yields a massive decrease in memory consumption during training, at a cost of a ≈ 50%

decrease in speed. Details are provided in Section 2.2.2. Overall, each model was trained for

roughly six days on a single Nvidia RTX A6000 GPU.

Each protein in our training set is cropped to at most 400 residues. For a protein with

L residues, r1, . . . rL−1, L > 400, we randomly select a contiguous subset by sampling

t ∼ [1, L+ 1− 400], and then choose rt, . . . , r400+t−1 as the training crop.

Overview of Hyperparameters

We tried to maintain consistent hyperparameters for all models. We mainly tuned parameters

for model depth, number of nearest neighbors, number of attention heads, head dimension,

and the distance at which residues or pair features should be considered neighbors. We

settled upon the hyperparameter values listed in Table A.1. In choosing the parameters, we

aimed to balance memory usage with model capacity in each submodule. The final settings

required ~32GB of GPU memory during training when full triangle updates are used (this

is based on a maximum sequence length of 400 residues).

122

Graph

Transformer Full

Tri. Updates

(residue, pair)

Graph

Transformer

Local Tri. Updates

(residue, pair)

TFN-Transformer

(scalar, point)

Depth 12 12 8

Hidden Dim. 256, 128 256, 128 200, 16

Num. Attention

Heads

8, 4 8,4 12, 12

Head Dim. 32, 32 32, 32 16, 4

Neighbor Dis-

tance Cutoff

N/A 16, 16 16

Max. Nearest

Neighbors

N/A 30, 30 16

Table A.1: Hyperparameters used for fixed backbone design models

123

Figure A.1: Architecture of Locality Aware Graph Transformer Block. Standard
multi-headed graph attention is used to update node features while edges between adjacent
nodes are updated with triangle multiplication and attention. For each triangle update, edge
adjacency information is used to select only those triangles having maximum side-length less
than a fixed threshold.

A.3 Supplementary Figures

Figure A.2: Architecture of TFN-based transformer block. Keys and values are
computed using TFNs. The input to each TFN radial kernel consists of pair features and
distance information between points for the corresponding pair. Pair features are also linearly
projected to bias the similarity logits for adjacent pairs of residues. The multi-headed SE(3)-
similarity and SE(3)-Attention modules are detailed in Table 2.14. Learnable modules are
displayed in bold font.

124

A.4 Supplementary Tables

RMSD (Å)↓ χ−MAE◦↓ χ-Acc(%)↑

Method All Sfc. Core χ1 χ2 χ3 χ4 All Sfc. Core

SCWRL 0.947 1.174 0.554 27.51 29.70 49.20 59.74 56.4% 47.2% 73.1%

FASPR 0.930 1.154 0.557 27.17 29.38 50.14 59.75 56.4% 47.9% 71.6%

RosettaPacker 0.886 1.126 0.480 25.97 28.87 47.36 54.82 58.7% 47.9% 77.3%

DL-Packer 0.783 0.989 0.446 22.14 27.00 50.38 70.18 58.9% 49.4% 75.5%

AttnPack. 0.672 0.856 0.375 18.32 24.24 46.28 57.97 62.7% 53.9% 77.7%

+Design 0.669 0.843 0.382 17.86 24.13 45.75 57.57 61.7% 52.7% 77.1%

Table A.2: Average RMSD
(
Å
)

and MAE results for the CASP13-FM and
CASP14-FM targets. To better understand AttnPacker’s ability to generalize to new
folds, we evaluated each method on CASP13 and CASP14 free modeling (FM) targets.
These datasets consist of proteins with previously unseen folds and hard analogous fold-
based models (see Table A.5 for a complete list). Results are divided by residue degree
centrality (All, Core, and Surface). A total of 6866 residues were compared for this table,
with 3649 surface residues and 1622 core residues.

125

CASP13
#Res SCWRL FASPR Ros-P DL-P Ours

ARG 1107 2.216 2.192 2.063 1.916 1.679
ASN 1089 0.923 0.894 0.883 0.768 0.663
ASP 1212 0.888 0.906 0.872 0.725 0.610
CYS 238 0.533 0.549 0.447 0.446 0.341
GLN 844 1.489 1.478 1.331 1.241 1.048
GLU 1264 1.469 1.466 1.419 1.316 1.137
HIS 468 1.073 0.913 0.936 0.754 0.681
ILE 1315 0.577 0.577 0.545 0.519 0.452
LEU 2114 0.604 0.592 0.566 0.518 0.432
LYS 1161 1.751 1.732 1.647 1.524 1.364
MET 511 1.324 1.228 1.167 1.105 0.956
PHE 949 0.825 0.731 0.742 0.564 0.450
PRO 1017 0.248 0.236 0.228 0.188 0.178
SER 1558 0.720 0.721 0.698 0.580 0.510
THR 1401 0.514 0.506 0.490 0.448 0.391
TRP 385 1.332 1.128 1.001 0.837 0.698
TYR 897 1.034 0.965 0.980 0.678 0.603
VAL 1588 0.328 0.328 0.316 0.291 0.251
AVG. 0.934 0.910 0.872 0.772 0.669

Table A.3: Average Per-Residue RMSD for CASP13 Targets by method (column) and residue
type (row). We add a row AVG. to show the average RMSD over all residue types. Here,
we shorten names for DLPacker (DL-P), RosettaPacker (Ros-P), and AttnPacker (Ours)

126

CASP14
#Res SCWRL FASPR Ros-P DL-P Ours

ARG 841 2.292 2.313 2.167 2.002 1.825
ASN 1338 1.062 1.031 0.976 0.923 0.806
ASP 1223 1.020 1.058 1.005 0.936 0.841
CYS 186 0.526 0.553 0.304 0.473 0.371
GLN 741 1.563 1.554 1.440 1.325 1.199
GLU 1277 1.611 1.596 1.554 1.497 1.395
HIS 378 1.118 1.057 0.947 0.893 0.815
ILE 1377 0.729 0.770 0.758 0.701 0.616
LEU 1823 0.753 0.712 0.719 0.650 0.573
LYS 1353 1.848 1.836 1.784 1.660 1.462
MET 401 1.527 1.341 1.357 1.308 1.139
PHE 933 0.905 0.885 0.811 0.731 0.559
PRO 792 0.263 0.252 0.257 0.218 0.220
SER 1420 0.866 0.844 0.815 0.736 0.652
THR 1214 0.707 0.685 0.687 0.643 0.578
TRP 229 1.466 1.319 1.416 1.083 0.996
TYR 882 1.063 1.046 0.972 0.800 0.618
VAL 1285 0.431 0.444 0.428 0.394 0.352
AVG. 1.062 1.048 1.006 0.929 0.823

Table A.4: Average Per-Residue RMSD for CASP14 Targets by method (column) and residue
type (row). We add a row AVG. to show the average RMSD over all residue types. Here,
we shorten names for DLPacker (DL-P), RosettaPacker (Ros-P), and AttnPacker (Ours)

127

Data Set Targets
CASP13 T0949, T0950, T0951, T0953s1, T0953s2, T0954, T0955, T0957s1,

T0957s2, T0958, T0959, T0960, T0961, T0962, T0963, T0964,
T0965, T0966, T0967, T0968s1, T0968s2, T0969, T0970, T0971,
T0973, T0974s1, T0974s2, T0975, T0976, T0977, T0978, T0979,
T0980s1, T0980s2, T0981, T0982, T0983, T0984, T0985, T0986s1,
T0986s2, T0987, T0988, T0989, T0990, T0991, T0992, T0993s1,
T0993s2, T0994, T0995, T0996, T0997, T0998, T1000, T1001,
T1002, T1003, T1004, T1005, T1006, T1008, T1009, T1010,
T1011, T1013, T1014, T1015s1, T1015s2, T1016, T1016_A,
T1017s1, T1017s2, T1018, T1019s1, T1019s2, T1020, T1021s1,
T1021s2, T1021s3, T1022s1, T1022s2

CASP14 T1024, T1025, T1026, T1027, T1028, T1030, T1031, T1032,
T1033, T1034, T1035, T1036s1, T1037, T1038, T1039, T1040,
T1042, T1043, T1045s1, T1045s2, T1046s1, T1046s2, T1047s1,
T1047s2, T1048, T1049, T1052, T1053, T1054, T1055, T1056,
T1057, T1058, T1060s2, T1060s3, T1062, T1064, T1065s1,
T1065s2, T1067, T1068, T1070, T1072s1, T1073, T1074, T1078,
T1079, T1080, T1082, T1083, T1084, T1087, T1088, T1089,
T1090, T1091, T1092, T1093, T1094, T1095, T1096, T1098,
T1099, T1100

CASP13-
FM T0950, T0953s1, T0953s2, T0957s1, T0957s2, T0960, T0963,

T0968s1, T0968s2, T0969, T0975, T0980s1, T0981, T0986s2,
T0987, T0989, T0990, T0991, T0998, T1000, T1001, T1010,
T1015s1, T1017s2, T1021s3, T1022s1

CASP14-
FM T1027, T1031, T1033, T1037, T1038, T1039, T1040, T1042,

T1043, T1047s1, T1049, T1064, T1070, T1074, T1090, T1093,
T1094, T1096

Table A.5: List of targets in each test data set.

128

APPENDIX B

SUPPLEMENT TO CHAPTER 3

B.1 Data Collection

For all methods, the receptor and ligand chains were randomly rotated and translated before

inference. For general proteins, the smaller of the two targets was treated as the ligand (ties

broken based on chain order in PDB file). For antibody-antigen chains, the antigen was

always treated as the ligand.

Code for EquiDock was downloaded from the author’s GitHub page. Standalone pack-

ages for HDock, PatchDock, and ZDock were downloaded from the respective servers. All

binding interface and contact information were given as input for HDock and PatchDock.

Still, the results required an additional post-processing step when run locally. For this, we

enumerate all predictions of each program and choose the lowest energy prediction satisfying

the interface and contact criteria. We reiterate that interface and contacts are defined using

Cα atoms with a 10Å cutoff. In some cases, HDock or PatchDock did not produce any

decoys meeting all criteria. In these cases, we choose the lowest-scoring model with the most

recovered interface residues and contacts.

AlphaFold and AlphaFold-Multimer were run with ColabFold [Mir+22] using the pro-

vided template and MSA servers. Default settings were used for all other options. Colab-

Fold’s monomer setting was used to predict all chains in the DB5 benchmark and all antigen

chains in the RAbD and Ab-Bench benchmarks. The multimer setting was used to generate

all predicted antibody structures with bound heavy and light chains.

As mentioned in Section 3.3.5, we filter unbound and predicted targets based on RMSD

to the bound conformation. Full lists of targets used for comparisons are included with the

code at https://github.com/MattMcPartlon/protein-docking

129

https://github.com/octavian-ganea/equidock_public
http://hdock.phys.hust.edu.cn/
http://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
https://zdock.umassmed.edu/
https://github.com/MattMcPartlon/protein-docking

B.2 Extended Results and Examples

B.2.1 Docking Benchmark Version 5

Docking Benchmark Version 5.5, AF2-Predicted (Top-1)
DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind
EquiDock 0.0% 9.8 12.2 15.4 26.4 42.1 50.1
ZDock 9.1% 8.5 12.9 17.6 19.5 29.5 34.8
PatchDock 4.5% 11.5 14.4 19.4 29.8 38.2 55.5
HDock 9.1% 12.0 15.2 20.6 27.5 36.9 63.6
Ours 9.1% 9.6 13.8 18.9 22.8 34.3 58.3
4 Interface
ZDock 9.1% 7.2 11.9 15.3 17.6 27.8 33.1
PatchDock 4.5% 9.7 11.7 14.4 21.1 29.5 38.6
HDock 9.1% 8.7 11.3 14.4 21.1 30.1 41.4
Ours 59.1% 2.2 3.2 7.4 6.1 7.1 22.2
1 Contact
ZDock 13.6% 6.5 12.0 17.6 17.0 28.4 37.8
PatchDock 4.5% 10.0 14.4 19.1 21.1 34.6 54.9
HDock 9.1% 10.9 15.0 20.6 27.5 39.0 63.6
Ours 27.3% 3.6 7.1 10.3 10.0 18.3 29.1
2 Contacts
ZDock 9.1% 7.2 11.5 15.6 17.0 26.9 34.8
PatchDock 4.5% 9.1 12.8 15.4 22.1 31.1 50.1
HDock 13.6% 7.9 14.6 20.6 23.1 39.0 63.6
Ours 66.7% 2.3 3.3 6.4 6.4 7.3 17.7
3 Contacts
ZDock 13.6% 6.5 11.0 15.6 15.2 28.4 34.8
PatchDock 4.5% 9.8 13.7 15.6 27.1 31.4 52.9
HDock 18.2% 7.8 15.0 20.6 18.7 38.4 63.6
Ours 75.0% 1.5 2.4 4.1 4.6 7.8 11.7

Table B.1: Top-1 docking statistics for docking DB5 targets, given chain confor-
mations predicted by AlphaFold2.

130

Docking Benchmark Version 5.5, AF2-Predicted (Top-5)
DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind
ZDock 18.2% 5.5 10.0 13.0 12.0 22.4 31.1
PatchDock 9.1% 8.4 10.2 11.6 18.6 27.4 32.0
HDock 18.2% 8.6 11.0 13.3 17.0 28.6 34.1
4 Interface
ZDock 31.8% 2.9 6.8 10.2 8.1 15.2 26.9
PatchDock 18.2% 5.1 8.3 10.0 15.1 18.1 27.8
HDock 27.3% 3.6 8.3 10.1 14.6 19.6 25.9
Ours 68.2% 2.2 2.6 4.1 5.4 6.8 10.6
1 Contact
ZDock 36.4% 2.7 6.5 13.0 8.0 18.4 31.1
PatchDock 27.3% 4.0 8.4 11.2 13.1 19.0 32.0
HDock 22.7% 6.0 10.2 12.8 16.8 23.8 33.5
Ours 54.5% 2.4 2.8 7.2 6.7 10.5 15.7
2 Contacts
ZDock 36.4% 2.4 6.5 13.0 5.8 17.3 31.1
PatchDock 27.3% 4.0 7.9 10.6 13.1 18.6 32.0
HDock 22.7% 6.0 8.8 11.1 16.8 24.0 29.5
Ours 90.5% 1.9 2.4 3.0 5.1 6.5 7.3
3 Contacts
ZDock 40.9% 2.4 6.9 13.2 5.8 15.2 31.4
PatchDock 27.3% 3.7 7.3 9.9 11.1 16.7 32.0
HDock 27.3% 3.8 8.4 10.1 14.6 22.7 28.9
Ours 95.0% 1.4 2.0 2.4 4.0 5.3 8.0

Table B.2: Top-5 docking statistics for docking DB5 targets, given chain confor-
mations predicted by AlphaFold2.

131

Docking Benchmark Version 5.5, Unbound (Top-1)
DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind
EquiDock 0.0% 11.4 14.1 17.1 35.0 40.8 50.6
ZDock 11.9% 11.8 14.1 17.3 25.0 34.4 42.8
PatchDock 0.0% 11.8 15.6 19.6 38.8 48.0 56.7
HDock 9.5% 11.3 15.9 18.0 29.7 41.8 53.5
AFM 50.0% 0.9 7.9 16.4 2.8 19.6 35.2
Ours 7.1% 8.9 13.3 17.4 24.2 35.4 49.5
Ours+GA 9.5% 9.7 14.0 17.5 23.1 33.4 47.5
Ours+AFM 42.8% 2.7 5.7 14.3 6.6 17.4 28.7
4 Interface
ZDock 14.3% 8.7 11.7 13.8 18.4 26.9 34.9
PatchDock 2.4% 9.2 11.6 15.8 26.2 37.4 52.5
HDock 11.9% 8.0 10.7 14.3 19.3 29.6 39.7
Ours 47.6% 2.7 4.7 8.9 7.1 14.5 23.6
1 Contact
ZDock 16.7% 7.7 11.2 14.4 19.3 31.4 38.8
PatchDock 2.4% 10.9 14.2 18.8 34.9 45.5 54.5
HDock 14.3% 10.3 14.8 17.7 26.9 38.0 52.2
Ours 45.2% 2.5 5.8 9.9 8.6 13.6 26.8
2 Contacts
ZDock 19.0% 6.7 11.9 14.4 17.9 30.5 41.9
PatchDock 4.8% 9.4 14.1 17.5 27.0 40.2 53.2
HDock 14.3% 7.9 11.3 17.5 20.4 28.2 48.1
Ours 66.7% 1.7 2.7 4.6 4.1 7.3 13.9
3 Contacts
ZDock 23.8% 4.5 10.3 14.2 14.4 24.6 37.6
PatchDock 7.1% 9.1 13.3 17.5 27.3 39.2 53.2
HDock 19.0% 6.5 10.5 17.0 15.5 27.3 45.3
Ours 88.0% 1.6 2.3 3.5 5.0 5.8 9.1

Table B.3: Top-1 docking statistics for DB5 targets, given unbound chain confor-
mations as input.

132

Docking Benchmark Version 5.5, Unbound (Top-5)
DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind
ZDock 14.3% 7.3 10.1 12.7 17.2 22.7 32.6
PatchDock 0.0% 9.0 11.5 15.0 26.8 37.9 48.9
HDock 19.0% 6.8 10.2 11.6 15.7 26.2 32.1
AFM 50% 0.9 4.7 13.0 2.6 12.2 30.2
Ours+GA 16.7% 5.4 8.8 13.6 12.9 20.7 34.3
Ours+AFM 52.4% 2.0 5.1 12.7 5.2 12.4 24.5
4 Interface
ZDock 33.3% 3.4 6.2 9.0 10.8 17.1 20.6
PatchDock 4.8% 8.3 9.5 12.1 17.3 26.4 40.6
HDock 31.0% 3.5 7.4 9.8 12.0 19.2 24.5
Ours 69.0% 2.1 3.0 5.2 5.9 8.6 12.5
1 Contact
ZDock 31.0% 3.3 7.3 11.2 10.7 18.5 29.1
PatchDock 7.1% 7.8 10.7 14.5 18.5 36.1 46.0
HDock 33.3% 3.4 7.1 10.5 12.0 19.2 29.1
Ours 59.5% 2.0 3.5 6.2 5.5 10.2 16.3
2 Contacts
ZDock 40.5% 2.9 5.9 10.1 9.8 17.1 25.9
PatchDock 14.3% 6.6 9.1 12.8 15.0 27.7 43.3
HDock 38.1% 3.4 6.5 10.0 11.3 17.1 29.3
Ours 92.9% 1.6 2.1 2.6 3.9 5.3 8.1
3 Contacts
ZDock 45.2% 2.8 4.9 8.5 9.0 16.5 22.2
PatchDock 16.7% 5.5 9.1 11.8 15.0 24.9 42.9
HDock 38.1% 3.3 6.6 9.6 11.3 16.9 24.5
Ours 100% 1.4 1.8 2.6 4.3 5.1 6.4

Table B.4: Top-5 docking statistics for DB5 targets, given unbound chain confor-
mations as input.

133

Antibody Benchmark

Antibody Benchmark Predicted Targets (Top-1)

DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind

EquiDock 0.0% 13.2 14.5 16.4 38.3 41.6 50.0

ZDock 3.8% 10.6 12.9 15.4 21.9 26.8 37.3

PatchDock 0.0% 12.3 14.0 18.8 26.3 33.3 49.5

HDock 0.0% 11.9 13.5 18.9 25.5 31.2 52.4

Ours 26.9% 2.8 10.4 13.9 9.4 22.9 26.4

Ours+GA 42.3% 1.9 7.3 9.0 6.5 15.5 19.4

4 Epitope

ZDock 7.7% 7.4 9.4 13.2 18.6 24.7 31.8

PatchDock 3.8% 10.3 12.2 14.5 24.8 27.2 40.0

HDock 3.8% 9.0 13.2 14.1 23.0 27.6 35.2

Ours 53.8% 1.9 2.7 9.3 4.8 8.5 28.0

12 Epitope

ZDock 19.2% 5.7 10.3 11.6 14.0 23.2 28.6

PatchDock 11.5% 7.4 10.2 12.4 17.3 26.1 38.9

HDock 7.7% 7.8 10.2 13.5 17.9 24.3 30.2

Ours 69.2% 1.3 1.8 5.8 3.7 6.1 21.1

Table B.5: Top-1 docking statistics for AlphaFold-Multimer predicted antibody
and AlphaFold2 predicted antigen.

134

Antibody Benchmark Predicted Targets (Top-5)

DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind

ZDock 7.7% 6.4 9.6 11.5 14.7 19.8 28.7

PatchDock 3.8% 7.8 10.9 12.2 18.4 22.7 28.0

HDock 3.8% 8.1 10.1 12.4 18.3 25.2 30.7

Ours+GA 46.2% 1.8 7.2 9.1 6.5 13.5 17.3

4 Epitope

ZDock 30.8% 3.9 6.1 8.8 8.9 15.3 21.0

PatchDock 7.7% 6.0 7.7 9.5 15.2 19.4 26.4

HDock 19.2% 5.0 7.5 10.4 15.8 19.5 25.9

Ours 69.2% 1.5 2.4 3.4 4.4 6.0 11.8

12 Epitope

ZDock 57.7% 2.0 3.9 6.2 4.8 11.8 15.8

PatchDock 30.8% 4.5 6.0 7.4 8.9 17.2 24.3

HDock 50.0% 2.1 5.3 8.6 5.8 13.2 22.7

Ours 88.5% 1.3 1.7 3.2 3.7 4.8 9.8

Table B.6: Top-5 docking statistics for AlphaFold-Multimer predicted antibody
and AlphaFold2 predicted antigen.

135

Antibody Benchmark Unbound Targets (Top-1)

DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind

EquiDock 0.0% 11.6 13.7 16.8 31.9 41.1 51.0

ZDock 2.2% 10.1 12.8 17.0 23.9 28.2 39.3

PatchDock 0.0% 12 13.9 15.5 26.1 32.2 46.3

HDock 2.2% 12.5 15.6 19.8 24.0 47.3 58.5

AF-Mult. 28.3% 1.9 9.3 14.7 12.2 22.6 36.0

Ours 26.1% 2.5 9.2 12.1 8.2 19.5 25.4

Ours+GA 37.0% 1.8 8.3 12.4 5.5 19.2 26.4

Ours+AFM 28.3% 1.9 10.1 13.3 5.7 20.1 27.8

4 Epitope

ZDock 8.7% 8.2 10.4 13.3 20.7 27.2 33.0

PatchDock 0.0% 9.7 11.9 14.7 22.4 28.8 39.7

HDock 8.7% 9.9 12.1 15.7 21.3 27.6 42.6

Ours 54.3% 1.6 3.1 6.8 4.6 9.5 20.6

12 Epitope

ZDock 26.1% 3.6 8.5 11.4 14.4 20.7 27.8

PatchDock 0.0% 8.4 10.2 12.9 21.3 25.1 32.7

HDock 13.0% 7.6 10.3 13.1 18.6 23.9 36.1

Ours 65.2% 1.2 1.9 6.8 3.8 7.5 22.3

Table B.7: Top-1 statistics for docking Antibody Benchmark targets given un-
bound chain conformations as input.

136

Antibody Benchmark Unbound Targets (Top-5)

DockQ↑ I-RMSD↓ L-RMSD↓
SR (%) 25th 50th 75th 25th 50th 75th

Blind

ZDock 17.4% 5.8 8.1 11.5 14.7 21.2 28.6

PatchDock 2.2% 6.6 10.2 12.9 19.7 23.9 37.0

HDock 8.7% 8.6 10.8 13.7 21.1 24.4 39.3

AF-Mult. 34.8% 1.8 5.8 13.1 9.2 18.3 26.4

Ours+GA 45.7% 1.7 4.0 7.3 4.9 11.5 19.8

Ours+AFM 37.0% 1.7 4.4 8.9 5.4 11.3 19.0

4 Epitope

ZDock 28.3% 2.8 6.2 7.9 10.2 15 21.2

PatchDock 8.7% 6.0 8.2 9.2 16.8 20.1 28.5

HDock 30.4% 3.4 7.5 9.9 11.7 18.9 23.6

Ours 71.7% 1.4 2.5 3.7 4.4 6.7 12.3

12 Epitope

ZDock 56.5% 1.4 3.2 7.2 5.3 9.7 20.7

PatchDock 21.7% 4.2 6.4 7.9 15.2 17.8 27.2

HDock 47.8% 2.2 4.2 7.8 7.6 14.2 22.2

Ours 87.0% 1.2 1.5 2.6 3.5 5.4 8.8

Table B.8: Top-5 statistics for docking Antibody Benchmark targets given un-
bound chain conformations as input.

137

Examples

Figure B.1: Comparison between DockGPT and Equidock Blind docking predictions
for a single domain antibody targeting the toxin Ricin (A and B), and therapeutic antibody
which targets the CD4 binding site on the HIV-1 spike protein (C and D). In (A–D), we
show the bound antigen in orange and the bound antibody in light gray. For clarity, we
align each complex prediction to the ground truth using only the antigen chain and show
only the predicted antibody in blue. We also show the solvent-accessible surface of antibody
predictions (independent of the antigen) to better illustrate surface intersections. The RMSD
between bound and unbound antigen chains is less than 2Å for both targets. (E) Distribution
of the number of steric clashes for blind docking DB5 unbound targets. We consider only
backbone atom clashes since EquiDock cannot modify side-chain conformations. Two atoms
are said to clash if each atom belongs to a different chain and the pairwise distance is less
than 90% the sum of their van der Waals radii.

138

Figure B.2: Docking Predictions for Antibody Benchmark target 2W9E Protein
backbones are shown in cartoon format with ground-truth antibody and antigen structures
shown in green for each figure. The antigen epitope is highlighted in yellow. We show each
method’s predicted antibody orientation relative to the ground truth antigen in a different
color. Ligand RMSD (LRMSD) is shown for each prediction. (A) Blind docking predic-
tions for methods EquiDock, ZDock, PatchDock, HDock, and DockGPT. (B) Close-up of
EquiDock’s prediction showing the excessive surface overlap between antibody and antigen
chain predictions. (C) Top-1 docking predictions for each method, except EquiDock given
four epitope residues. (D) Ground truth complex. (E) Top-1 docking predictions for each
method, except EquiDock given 12 epitope residues.

139

BIBLIOGRAPHY

[AA22] Namrata Anand and Tudor Achim. Protein Structure and Sequence Generation
with Equivariant Denoising Diffusion Probabilistic Models. 2022.

[Ado+18] Jared Adolf-Bryfogle et al. “RosettaAntibodyDesign (RAbD): A general frame-
work for computational antibody design”. en. In: PLoS Comput. Biol. 14.4 (Apr.
2018), e1006112.

[Agr+19] Piyush Agrawal et al. “Benchmarking of different molecular docking methods
for protein-peptide docking”. In: BMC Bioinformatics 19.13 (Feb. 2019), p. 426.

[Ahd+22] Gustaf Ahdritz et al. “OpenFold: Retraining AlphaFold2 yields new insights into
its learning mechanisms and capacity for generalization”. In: bioRxiv (2022).
eprint: https://www.biorxiv.org/content/early/2022/11/22/2022.11.20
.517210.full.pdf.

[Akb+22] Rahmad Akbar et al. “In silico proof of principle of machine learning-based
antibody design at unconstrained scale”. en. In: MAbs 14.1 (Jan. 2022).

[ALC97] B Al-Lazikani, A M Lesk, and C Chothia. “Standard conformations for the
canonical structures of immunoglobulins”. en. In: J. Mol. Biol. 273.4 (Nov.
1997), pp. 927–948.

[Alf+17] Rebecca F. Alford et al. “The Rosetta All-Atom Energy Function for Macro-
molecular Modeling and Design.” In: Journal of chemical theory and computa-
tion 13 6 (2017), pp. 3031–3048.

[All+19] Ethan C Alley et al. “Unified rational protein engineering with sequence-based
deep representation learning”. In: Nature methods 16.12 (2019), pp. 1315–1322.

[AM15] Hossam M Ashtawy and Nihar R Mahapatra. “Machine-learning scoring func-
tions for identifying native poses of ligands docked to known and novel proteins”.
en. In: BMC Bioinformatics 16 Suppl 6.S6 (Apr. 2015), S3.

[Ana+22] N. Anand et al. “Protein sequence design with a learned potential”. In: Nat
Commun 13.1 (Feb. 2022), p. 746.

[Ast87] Rick Astley. Never Gonna Give You Up. 1987.

[Bac+20] Thomas Bachlechner et al. ReZero is All You Need: Fast Convergence at Large
Depth. 2020. arXiv: 2003.04887 [cs.LG].

[Bae+21] Minkyung Baek et al. “Accurate prediction of protein structures and interac-
tions using a three-track neural network”. In: Science 373.6557 (2021), pp. 871–
876. eprint: https://www.science.org/doi/pdf/10.1126/science.abj8754.

[Bar+17] Damian Bartuzi et al. “Recent advances and applications of molecular docking
to G protein-coupled receptors”. en. In: Molecules 22.2 (Feb. 2017), p. 340.

[Ben+21] B.J. Bender et al. “A practical guide to large-scale docking”. In: Nature Protocols
16 (2021), pp. 4799–4832.

[Ben+22] Nathaniel Bennett et al. “Improving de novo Protein Binder Design with Deep
Learning”. In: bioRxiv (2022).

140

https://www.biorxiv.org/content/early/2022/11/22/2022.11.20.517210.full.pdf
https://www.biorxiv.org/content/early/2022/11/22/2022.11.20.517210.full.pdf
https://arxiv.org/abs/2003.04887
https://www.science.org/doi/pdf/10.1126/science.abj8754

[Ber+00] H M Berman et al. “The Protein Data Bank”. en. In: Nucleic Acids Res. 28.1
(Jan. 2000), pp. 235–242.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization.
2016.

[BKK20] Aleksandra Badaczewska-Dawid, Andrzej Kolinski, and Sebastian Kmiecik. “Com-
putational reconstruction of atomistic protein structures from coarse-grained
models”. In: Computational and structural biotechnology journal 18 (2020),
pp. 162–176.

[BMP13] Laura Bettinetti, Matteo Magnani, and Alessandro Padova. “Drug Discovery
by Targeting Protein–Protein Interactions”. In: Disruption of Protein-Protein
Interfaces: In Search of New Inhibitors. Ed. by Stefano Mangani. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 1–29.

[Bro+20] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: CoRR
abs/2005.14165 (2020). arXiv: 2005.14165.

[BSF94] Y Bengio, P Simard, and P Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. en. In: IEEE Trans. Neural Netw. 5.2 (1994),
pp. 157–166.

[BW16] Sankar Basu and Björn Wallner. “DockQ: A quality measure for protein-protein
docking models”. en. In: PLoS One 11.8 (Aug. 2016), e0161879.

[Byr+95] Richard H. Byrd et al. “A Limited Memory Algorithm for Bound Constrained
Optimization”. In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–
1208.

[Cao+10] Yang Cao et al. “Improved side-chain modeling by coupling clash-detection
guided iterative search with rotamer relaxation”. In: Bioinformatics 27.6 (Jan.
2010), pp. 785–790. eprint: https://academic.oup.com/bioinformatics/ar
ticle-pdf/27/6/785/16902094/btr009.pdf.

[Cao+21] Longxing Cao et al. “Robust de novo design of protein binding proteins from
target structural information alone”. In: bioRxiv (2021).

[Car+20] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In:
CoRR abs/2005.12872 (2020). arXiv: 2005.12872.

[Cha+21] Chung-ke Chang et al. “Targeting protein-protein interaction interfaces in COVID-
19 drug discovery”. In: Computational and Structural Biotechnology Journal 19
(2021), pp. 2246–2255.

[Che+16] Tianqi Chen et al. “Training Deep Nets with Sublinear Memory Cost”. In: CoRR
abs/1604.06174 (2016). arXiv: 1604.06174.

[Che+20] Sheng Chen et al. “To Improve Protein Sequence Profile Prediction through
Image Captioning on Pairwise Residue Distance Map”. In: Journal of Chemical
Information and Modeling 60.1 (2020). Pmid: 31800243, pp. 391–399.

[Chi+95] G. Chinea et al. “The use of position-specific rotamers in model building by
homology”. In: Proteins 23.3 (1995), pp. 415–421.

141

https://arxiv.org/abs/2005.14165
https://academic.oup.com/bioinformatics/article-pdf/27/6/785/16902094/btr009.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/6/785/16902094/btr009.pdf
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/1604.06174

[Cho+89] Cyrus Chothia et al. “Conformations of immunoglobulin hypervariable regions”.
In: Nature 342.6252 (Dec. 1989), pp. 877–883.

[CL87] Cyrus Chothia and Arthur M. Lesk. “Canonical structures for the hypervariable
regions of immunoglobulins”. In: Journal of Molecular Biology 196.4 (1987),
pp. 901–917.

[CLG10] Sidhartha Chaudhury, Sergey Lyskov, and Jeffrey J. Gray. “PyRosetta: a script-
based interface for implementing molecular modeling algorithms using Rosetta”.
In: Bioinformatics 26 5 (2010), pp. 689–91.

[CW20] Chen Cai and Yusu Wang. “A Note on Over-Smoothing for Graph Neural Net-
works”. In: CoRR abs/2006.13318 (2020). arXiv: 2006.13318.

[Dau+22] J. Dauparas et al. “Robust deep learning based protein sequence design using
ProteinMPNN”. In: Science 378.6615 (2022), pp. 49–56.

[Den+21] Congyue Deng et al. “Vector Neurons: A General Framework for SO(3)-Equivariant
Networks”. In: ArXiv abs/2104.12229 (2021).

[Dev+18] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.048
05.

[DH99] John R. Desjarlais and Tracy M. Handel. “Side-chain and backbone flexibility in
protein core design.” In: Journal of molecular biology 290 1 (1999), pp. 305–18.

[Dos+20] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale”. In: CoRR abs/2010.11929 (2020). arXiv: 2010.1
1929.

[DSK09] R Dunbrack, M Shapovalov, and G Krivov. “Improved prediction of protein side-
chain conformations with SCWRL4”. In: Proteins 77.4 (Dec. 2009), pp. 778–
795.

[Dun02] Roland L Dunbrack. “Rotamer Libraries in the 21st Century”. In: Current Opin-
ion in Structural Biology 12.4 (2002), pp. 431–440.

[DW08] Pawel Durek and Dirk Walther. “The integrated analysis of metabolic and pro-
tein interaction networks reveals novel molecular organizing principles”. en. In:
BMC Syst. Biol. 2.1 (Nov. 2008), p. 100.

[DYZ21] Lanying Du, Yang Yang, and Xiujuan Zhang. “Neutralizing antibodies for the
prevention and treatment of COVID-19”. In: Cellular & Molecular Immunology
18.10 (2021), pp. 2293–2306.

[Eva+22] Richard Evans et al. “Protein complex prediction with AlphaFold-Multimer”.
In: bioRxiv (2022).

[Eya+03] Eran Eyal et al. “Protein side-chain rearrangement in regions of point muta-
tions”. en. In: Proteins 50.2 (Feb. 2003), pp. 272–282.

[FAK07] Xiaoran Fu, James R Apgar, and Amy E Keating. “Modeling backbone flexi-
bility to achieve sequence diversity: the design of novel alpha-helical ligands for
Bcl-xL”. en. In: J. Mol. Biol. 371.4 (Aug. 2007), pp. 1099–1117.

142

https://arxiv.org/abs/2006.13318
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

[Far+17] S. Farokhirad et al. “3.13 Computational Methods Related to Molecular Struc-
ture and Reaction Chemistry of Biomaterials”. In: Comprehensive Biomaterials
II. Ed. by Paul Ducheyne. Oxford: Elsevier, 2017, pp. 245–267.

[FBB07] G Faure, A Bornot, and AG de Brevern. “Protein contacts, inter-residue in-
teractions and side-chain modelling.” In: Erratum in: Biochimie 90 4 (2007),
pp. 626–39.

[Fuc+20] Fabian Fuchs et al. “SE(3)-Transformers: 3D Roto-Translation Equivariant At-
tention Networks”. In: Advances in Neural Information Processing Systems. Ed.
by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 1970–1981.

[FW11] Amr Fahmy and Gerhard Wagner. “Optimization of van der Waals Energy
for Protein Side-Chain Placement and Design”. In: Biophysical Journal 101.7
(2011), pp. 1690–1698.

[Gai+13] Pablo Gainza et al. “OSPREY: protein design with ensembles, flexibility, and
provable algorithms”. en. In: Methods Enzymol. 523 (2013), pp. 87–107.

[Gan+22] Octavian-Eugen Ganea et al. “Independent SE(3)-Equivariant Models for End-
to-End Rigid Protein Docking”. In: International Conference on Learning Rep-
resentations. 2022.

[Gil+17] Justin Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In:
CoRR abs/1704.01212 (2017). arXiv: 1704.01212.

[GPS16] Thomas Gaillard, Nicolas Panel, and Thomas Simonson. “Protein side chain
conformation predictions with an MMGBSA energy function”. en. In: Proteins
84.6 (June 2016), pp. 803–819.

[Gue+21a] Isabella Guedes et al. “New machine learning and physics-based scoring func-
tions for drug discovery”. In: Nature Scientific Reports 11 (2021).

[Gue+21b] Johnathan D Guest et al. “An expanded benchmark for antibody-antigen dock-
ing and affinity prediction reveals insights into antibody recognition determi-
nants”. en. In: Structure 29.6 (June 2021), pp. 606–621.

[He+21] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”. In:
CoRR abs/2111.06377 (2021). arXiv: 2111.06377.

[HG16] Dan Hendrycks and Kevin Gimpel. “Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units”. In: CoRR abs/1606.08415
(2016).

[Hir+20] Naozumi Hiranuma et al. “Improved protein structure refinement guided by
deep learning based accuracy estimation”. In: bioRxiv (2020). eprint: https:
//www.biorxiv.org/content/early/2020/11/04/2020.07.17.209643.full
.pdf.

[Hog+18] Herve Hogues et al. “ProPOSE: Direct Exhaustive Protein-Protein Docking
with Side Chain Flexibility”. In: Journal of Chemical Theory and Computation
14.9 (2018). Pmid: 30107730, pp. 4938–4947. eprint: https://doi.org/10.10
21/acs.jctc.8b00225.

143

https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2111.06377
https://www.biorxiv.org/content/early/2020/11/04/2020.07.17.209643.full.pdf
https://www.biorxiv.org/content/early/2020/11/04/2020.07.17.209643.full.pdf
https://www.biorxiv.org/content/early/2020/11/04/2020.07.17.209643.full.pdf
https://doi.org/10.1021/acs.jctc.8b00225
https://doi.org/10.1021/acs.jctc.8b00225

[HPZ20] Xiaoqiang Huang, Robin Pearce, and Yang Zhang. “FASPR: an open-source
tool for fast and accurate protein side-chain packing”. In: Bioinformatics 36.12
(Apr. 2020), pp. 3758–3765. eprint: https://academic.oup.com/bioinforma
tics/article-pdf/36/12/3758/33437211/btaa234.pdf.

[HSS16] Maria Hauser, Martin Steinegger, and Johannes Söding. “MMseqs software suite
for fast and deep clustering and searching of large protein sequence sets”. en.
In: Bioinformatics 32.9 (May 2016), pp. 1323–1330.

[Hsu+22] Chloe Hsu et al. “Learning inverse folding from millions of predicted structures”.
In: bioRxiv (2022).

[Hub01] A Huber. “Scaffolding proteins organize multimolecular protein complexes for
sensory signal transduction”. en. In: Eur. J. Neurosci. 14.5 (Sept. 2001), pp. 769–
776.

[Ing+19] John Ingraham et al. “Generative Models for Graph-Based Protein Design”. In:
Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.
Vol. 32. Curran Associates, Inc., 2019.

[JBJ20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-Objective Molecule
Generation using Interpretable Substructures. 2020.

[JFC22] Allan Jabri, David Fleet, and Ting Chen. Scalable Adaptive Computation for
Iterative Generation. 2022. arXiv: 2212.11972 [cs.LG].

[Jia+22] Yining Jiang et al. “Membrane-mediated protein interactions drive membrane
protein organization”. In: Nature Communications 13.1 (2022), p. 7373.

[Jin+20] Bowen Jing et al. Learning from Protein Structure with Geometric Vector Per-
ceptrons. 2020.

[Jin+21] Bowen Jing et al. Equivariant Graph Neural Networks for 3D Macromolecular
Structure. 2021.

[Jin+22] Wengong Jin et al. “Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design”. In: International Conference on Learning Rep-
resentations. 2022.

[JKS21] Michael Jendrusch, Jan O. Korbel, and S. Kashif Sadiq. “AlphaDesign: A de
novo protein design framework based on AlphaFold”. In: bioRxiv (2021).

[Joh+21] Sean R. Johnson et al. “Generating novel protein sequences using Gibbs sam-
pling of masked language models”. In: bioRxiv (2021).

[Jum+18] John M. Jumper et al. “Accurate calculation of side chain packing and free en-
ergy with applications to protein molecular dynamics”. In: PLOS Computational
Biology 14.12 (Dec. 2018), pp. 1–25.

[Jum+21] John Jumper et al. “Highly accurate protein structure prediction with Al-
phaFold”. In: Nature 596.7873 (Aug. 2021), pp. 583–589.

[JX21] X Jing and J Xu. “Fast and effective protein model refinement using deep graph
neural networks”. In: Nat. Comput Sci 1 (2021), pp. 462–469.

144

https://academic.oup.com/bioinformatics/article-pdf/36/12/3758/33437211/btaa234.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/12/3758/33437211/btaa234.pdf
https://arxiv.org/abs/2212.11972

[Kab76] Wolfgang Kabsch. “A solution for the best rotation to relate two sets of vectors”.
In: Acta Crystallographica Section A 32 (1976), pp. 922–923.

[Kac+18] Agnieszka A Kaczor et al. “Protein-protein docking in drug design and discov-
ery”. en. In: Methods Mol. Biol. 1762 (2018), pp. 285–305.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed.
by Yoshua Bengio and Yann LeCun. 2015.

[Koz+17] D Kozakov et al. “The ClusPro web server for protein-protein docking”. In:
Nature Protocols 12.2 (Feb. 2017), pp. 255–278.

[Kuh19] Brian Kuhlman. “Designing protein structures and complexes with the molec-
ular modeling program Rosetta”. In: Journal of Biological Chemistry 294.50
(2019), pp. 19436–19443.

[KW16] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In: CoRR abs/1609.02907 (2016). arXiv: 1609.02907.

[Lem+20] J. K. Leman et al. “Macromolecular modeling and design in Rosetta: recent
methods and frameworks”. en. In: Nat Methods 17.7 (July 2020), pp. 665–680.

[LG08] Sergey Lyskov and Jeffrey J Gray. “The RosettaDock server for local protein-
protein docking”. en. In: Nucleic Acids Res. 36.Web Server issue (July 2008),
W233–8.

[Lia+11] S Liang et al. “Fast and accurate prediction of protein side-chain conformations”.
In: Bioinformatics 20 (2011).

[Lin+21] Tianyang Lin et al. “A Survey of Transformers”. In: CoRR abs/2106.04554
(2021). arXiv: 2106.04554.

[Lin+22] Zeming Lin et al. “Language models of protein sequences at the scale of evolu-
tion enable accurate structure prediction”. In: bioRxiv (2022).

[Liu+17] Ke Liu et al. Prediction of amino acid side chain conformation using a deep
neural network. 2017. arXiv: 1707.08381 [q-bio.BM].

[LMX22] Boqiao Lai, Matt McPartlon, and Jinbo Xu. “End-to-End deep structure gen-
erative model for protein design”. In: bioRxiv (2022).

[LN98] A J Li and R Nussinov. “A set of van der Waals and coulombic radii of protein
atoms for molecular and solvent-accessible surface calculation, packing evalua-
tion, and docking”. en. In: Proteins 32.1 (July 1998), pp. 111–127.

[Lu+20] Haiying Lu et al. “Recent advances in the development of protein–protein in-
teractions modulators: mechanisms and clinical trials”. In: Signal Transduction
and Targeted Therapy 5.1 (2020), p. 213.

[Luz+21] Marcin Luzarowski et al. “Global mapping of protein–metabolite interactions
in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phospho-
glycerate kinase activity”. In: Communications Biology 4.1 (2021), p. 181.

145

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2106.04554
https://arxiv.org/abs/1707.08381

[LY16] Michael J Lee and Michael B Yaffe. “Protein regulation in signal transduction”.
en. In: Cold Spring Harb. Perspect. Biol. 8.6 (June 2016).

[Mad+23] Ali Madani et al. “Large language models generate functional protein sequences
across diverse families”. In: Nature Biotechnology (2023).

[Man13] Stefano Mangani. “Protein–Protein Interactions in the Solid State: The Trou-
bles of Crystallizing Protein–Protein Complexes”. In: ed. by Stefano Mangani.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 113–134.

[Mar+08] Juliette Martin et al. “Structural deformation upon protein-protein interaction:
A structural alphabet approach”. en. In: Bmc 8.12 (2008).

[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015.

[McN+21] Andrew T McNutt et al. “GNINA 1.0: molecular docking with deep learning”.
en. In: J. Cheminform. 13.1 (June 2021), p. 43.

[MD09] David L. Mobley and Ken A. Dill. “Binding of Small-Molecule Ligands to Pro-
teins: “What You See” Is Not Always “What You Get””. In: Structure 17.4
(2009), pp. 489–498.

[Mei+21] Joshua Meier et al. “Language models enable zero-shot prediction of the ef-
fects of mutations on protein function”. In: Advances in Neural Information
Processing Systems 34 (2021).

[Mic+17] Paulius Micikevicius et al. “Mixed Precision Training”. In: CoRR abs/1710.03740
(2017). arXiv: 1710.03740.

[Mir+22] Milot Mirdita et al. “ColabFold: making protein folding accessible to all”. en.
In: Nat. Methods 19.6 (June 1, 2022), pp. 679–682.

[Mis+21] Mikita Misiura et al. “DLPacker: Deep Learning for Prediction of Amino Acid
Side Chain Conformations in Proteins”. In: bioRxiv (2021). eprint: https://www
.biorxiv.org/content/early/2021/05/25/2021.05.23.445347.full.pdf.

[MK09] Daniel J Mandell and Tanja Kortemme. “Backbone flexibility in computational
protein design”. en. In: Curr. Opin. Biotechnol. 20.4 (Aug. 2009), pp. 420–428.

[MLX22] Matt McPartlon, Ben Lai, and Jinbo Xu. “A Deep SE(3)-Equivariant Model
for Learning Inverse Protein Folding”. In: bioRxiv (2022).

[MX22] Matthew McPartlon and Jinbo Xu. “AttnPacker: An end-to-end deep learning
method for rotamer-free protein side-chain packing”. In: bioRxiv (2022).

[MX23] Matt McPartlon and Jinbo Xu. “Deep Learning for Flexible and Site-Specific
Protein Docking and Design”. In: bioRxiv (2023).

[NRB12] K Nagata, A Randall, and P Baldi. “SIDEpro: a novel machine learning ap-
proach for the fast and accurate prediction of side-chain conformations”. In:
Proteins 80.1 (2012), pp. 142–153.

[OJK15] Noah Ollikainen, René M. de Jong, and Tanja Kortemme. “Coupling Protein
Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand
Specificity”. In: PLoS Computational Biology 11 (2015).

146

https://arxiv.org/abs/1710.03740
https://www.biorxiv.org/content/early/2021/05/25/2021.05.23.445347.full.pdf
https://www.biorxiv.org/content/early/2021/05/25/2021.05.23.445347.full.pdf

[Orb+18] Zsuzsanna Orbán-Németh et al. “Structural prediction of protein models us-
ing distance restraints derived from cross-linking mass spectrometry data”. In:
Nature Protocols 13.3 (Mar. 2018), pp. 478–494.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035.

[Pie+14] Brian G Pierce et al. “ZDOCK server: interactive docking prediction of protein-
protein complexes and symmetric multimers”. en. In: Bioinformatics 30.12 (June
2014), pp. 1771–1773.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of
Training Recurrent Neural Networks”. In: Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28.
Icml’13. Atlanta, GA, USA: JMLR.org, 2013, pp. Iii-1310-iii–1318.

[PST17] Nataraj S Pagadala, Khajamohiddin Syed, and Jack Tuszynski. “Software for
molecular docking: a review”. en. In: Biophys. Rev. 9.2 (Apr. 2017), pp. 91–102.

[QZ20] Yifei Qi and John Z. H. Zhang. “DenseCPD: Improving the Accuracy of Neural-
Network-Based Computational Protein Sequence Design with DenseNet”. In:
Journal of Chemical Information and Modeling 60.3 (Mar. 2020), pp. 1245–
1252.

[Raf+19] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer”. In: CoRR abs/1910.10683 (2019). arXiv: 1910.106
83.

[Rao+19] Roshan Rao et al. “Evaluating protein transfer learning with TAPE”. In: Ad-
vances in neural information processing systems 32 (2019).

[Ren+14] P. Douglas Renfrew et al. “A Rotamer Library to Enable Modeling and Design
of Peptoid Foldamers”. In: Journal of the American Chemical Society 136.24
(2014). Pmid: 24823488, pp. 8772–8782. eprint: https://doi.org/10.1021/j
a503776z.

[Riv+19] Alexander Rives et al. “Biological Structure and Function Emerge from Scaling
Unsupervised Learning to 250 Million Protein Sequences”. In: Pnas (2019).

[Roc+17] Gabriel J. Rocklin et al. “Global analysis of protein folding using massively
parallel design, synthesis, and testing”. In: Science 357.6347 (2017), pp. 168–
175.

[Rom+21] Robin Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion
Models”. In: CoRR abs/2112.10752 (2021). arXiv: 2112.10752.

[RS02] Sergei Radaev and Peter D. Sun. “Crystallization of protein–protein complexes”.
In: Journal of Applied Crystallography 35.6 (Dec. 2002), pp. 674–676.

[Sak+21] Koichiro Saka et al. “Antibody design using LSTM based deep generative model
from phage display library for affinity maturation”. en. In: Scientific Reports
11.5852 (Mar. 2021).

147

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1021/ja503776z
https://doi.org/10.1021/ja503776z
https://arxiv.org/abs/2112.10752

[SB21] Brandon Charles Seychell and Tobias Beck. “Molecular basis for protein-protein
interactions”. en. In: Beilstein J. Org. Chem. 17 (Jan. 2021), pp. 1–10.

[Sch+05] Dina Schneidman-Duhovny et al. “PatchDock and SymmDock: servers for rigid
and symmetric docking”. en. In: Nucleic Acids Res. 33.Web Server issue (July
2005), pp. 363–367.

[Sch+17] Kristof T. Schütt et al. “SchNet : A continuous-filter convolutional neural net-
work for modeling quantum interactions”. In: (2017).

[Sch+18] K. T. Schütt et al. “SchNet - A deep learning architecture for molecules and
materials”. In: The Journal of Chemical Physics 148.24 (June 2018), p. 241722.

[SD02] Christopher M Summa and William F DeGrado. protCAD: Protein Computer
Aided Design. 2002. url: https://triad.protabit.com/ (visited on 04/06/2023).

[SD11] Maxim V Shapovalov and Roland L Dunbrack Jr. “A smoothed backbone-
dependent rotamer library for proteins derived from adaptive kernel density
estimates and regressions”. en. In: Structure 19.6 (June 2011), pp. 844–858.

[Sha20] Noam Shazeer. “GLU Variants Improve Transformer”. In: CoRR abs/2002.05202
(2020).

[SHD22] Cristina Sotomayor-Vivas, Enrique Hernández-Lemus, and Rodrigo Dorantes-
Gilardi. “Linking protein structural and functional change to mutation using
amino acid networks”. In: Plos One 17.1 (Jan. 2022), pp. 1–23.

[SHW21a] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant
Graph Neural Networks”. In: CoRR abs/2102.09844 (2021).

[SHW21b] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant
Graph Neural Networks”. In: CoRR abs/2102.09844 (2021).

[Sim+19] David Simoncini et al. “A structural homology approach for computational
protein design with flexible backbone”. In: Bioinformatics (2019).

[Sin+19] Priyanka Singh et al. “Determination of Protein–Protein Interactions in a Mix-
ture of Two Monoclonal Antibodies”. In: Molecular Pharmaceutics 16.12 (2019).
Pmid: 31613625, pp. 4775–4786.

[SS17] Martin Steinegger and Johannes Söding. “MMseqs2 enables sensitive protein se-
quence searching for the analysis of massive data sets”. In: Nature Biotechnology
35.11 (2017), pp. 1026–1028.

[Stä+22] Hannes Stärk et al. “EquiBind: Geometric Deep Learning for Drug Binding
Structure Prediction”. In: (2022).

[Str+20] Alexey Strokach et al. “Fast and Flexible Protein Design Using Deep Graph
Neural Networks”. In: Cell Systems 11.4 (2020), 402–411.e4.

[Süd95] Thomas C. Südhof. “The synaptic vesicle cycle: a cascade of protein–protein
interactions”. In: Nature 375.6533 (1995), pp. 645–653.

[TB05] Dror Tobi and Ivet Bahar. “Structural changes involved in protein binding cor-
relate with intrinsic motions of proteins in the unbound state”. In: Proceedings
of the National Academy of Sciences 102.52 (2005), pp. 18908–18913.

148

https://triad.protabit.com/

[Tho+18] Nathaniel Thomas et al. “Tensor Field Networks: Rotation- and Translation-
Equivariant Neural Networks for 3D Point Clouds”. In: CoRR abs/1802.08219
(2018). arXiv: 1802.08219.

[Tor+19] Pedro H. M. Torres et al. “Key Topics in Molecular Docking for Drug Design”.
In: International Journal of Molecular Sciences 20.18 (2019).

[Tow+18] Raphael J. L. Townshend et al. End-to-End Learning on 3D Protein Structure
for Interface Prediction. 2018.

[Tri+23] Brian L. Trippe et al. “Diffusion Probabilistic Modeling of Protein Backbones in
3D for the motif-scaffolding problem”. In: International Conference on Learning
Representations. 2023.

[van+16] G.C.P. van Zundert et al. “The HADDOCK2.2 Web Server: User-Friendly Inte-
grative Modeling of Biomolecular Complexes”. In: Journal of Molecular Biology
428.4 (2016). Computation Resources for Molecular Biology, pp. 720–725.

[Var+21] Mihaly Varadi et al. “AlphaFold Protein Structure Database: massively ex-
panding the structural coverage of protein-sequence space with high-accuracy
models”. In: Nucleic Acids Research 50.D1 (Nov. 2021), pp. D439–d444. eprint:
https://academic.oup.com/nar/article-pdf/50/D1/D439/43502749/gkab
1061.pdf.

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762.

[Vel+18] Petar Veličković et al. Graph Attention Networks. 2018. arXiv: 1710.10903
[stat.ML].

[Vre+15] Thom Vreven et al. “Updates to the integrated protein-protein interaction
benchmarks: Docking benchmark version 5 and affinity benchmark version 2”.
en. In: J. Mol. Biol. 427.19 (Sept. 2015), pp. 3031–3041.

[Vri+15] Sjoerd J de Vries et al. “A web interface for easy flexible protein-protein docking
with ATTRACT”. en. In: Biophys. J. 108.3 (Feb. 2015), pp. 462–465.

[Wan+04] Junmei Wang et al. “Development and testing of a general amber force field”.
In: Journal of computational chemistry 25.9 (July 2004), pp. 1157–1174.

[Wan+16] Zhe Wang et al. “Comprehensive evaluation of ten docking programs on a di-
verse set of protein–ligand complexes: the prediction accuracy of sampling power
and scoring power”. In: Phys. Chem. Chem. Phys. 18 (18 2016), pp. 12964–
12975.

[Wan+21] Jue Wang et al. “Deep learning methods for designing proteins scaffolding func-
tional sites”. In: bioRxiv (2021).

[Wat+16] Andrew M. Watkins et al. “Rotamer libraries for the high-resolution design of
β-amino acid foldamers”. In: bioRxiv (2016).

[Wat+22] Joseph L. Watson et al. “Broadly applicable and accurate protein design by
integrating structure prediction networks and diffusion generative models”. In:
bioRxiv (2022).

149

https://arxiv.org/abs/1802.08219
https://academic.oup.com/nar/article-pdf/50/D1/D439/43502749/gkab1061.pdf
https://academic.oup.com/nar/article-pdf/50/D1/D439/43502749/gkab1061.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903

[WBA16] Andrew M. Watkins, Richard Bonneau, and Paramjit S. Arora. “Side-Chain
Conformational Preferences Govern Protein-Protein Interactions.” In: Journal
of the American Chemical Society 138 33 (2016), pp. 10386–9.

[WSW10] LM Weiner, R Surana, and S Wang. “Monoclonal antibodies: versatile platforms
for cancer immunotherapy.” In: Nat Rev Immunol 10 (2010), pp. 317–327.

[Wu+22] Ruidong Wu et al. “High-resolution de novo structure prediction from primary
sequence”. In: bioRxiv (2022). eprint: https://www.biorxiv.org/content/ea
rly/2022/07/22/2022.07.21.500999.full.pdf.

[XB06] Jinbo Xu and Bonnie Berger. “Fast and Accurate Algorithms for Protein Side-
Chain Packing”. In: J. Acm 53.4 (July 2006), pp. 533–557.

[Xio+14] Peng Xiong et al. “Protein design with a comprehensive statistical energy func-
tion and boosted by experimental selection for foldability.” In: Nature commu-
nications 5 (2014), p. 5330.

[Xio+20] Ruibin Xiong et al. “On Layer Normalization in the Transformer Architecture”.
In: CoRR abs/2002.04745 (2020).

[XWM20] Gang Xu, Qinghua Wang, and Jianpeng Ma. “OPUS-Rota3: Improving pro-
tein side-chain modeling by deep neural networks and ensemble methods”. In:
Journal of Chemical Information and Modeling 60 12 (2020), pp. 6691–6697.

[XWM21] Gang Xu, Qinghua Wang, and Jianpeng Ma. “OPUS-Rota4: A Gradient-Based
Protein Side-Chain Modeling Framework Assisted by Deep Learning-Based Pre-
dictors”. In: bioRxiv (2021). eprint: https://www.biorxiv.org/content/ear
ly/2021/07/23/2021.07.22.453446.full.pdf.

[Yan+17] Yumeng Yan et al. “HDOCK: a web server for protein-protein and protein-
DNA/RNA docking based on a hybrid strategy”. en. In: Nucleic Acids Res.
45.W1 (July 2017), W365–w373.

[Yan+20a] Yumeng Yan et al. “The HDOCK server for integrated protein–protein docking”.
In: Nature Protocols 15.5 (May 2020), pp. 1829–1852.

[Yan+20b] Jianyi Yang et al. “Improved protein structure prediction using predicted in-
terresidue orientations”. In: Proceedings of the National Academy of Sciences
117.3 (2020), pp. 1496–1503. eprint: https://www.pnas.org/content/117/3
/1496.full.pdf.

[Yin+21] Chengxuan Ying et al. “Do Transformers Really Perform Bad for Graph Rep-
resentation?” In: CoRR abs/2106.05234 (2021). arXiv: 2106.05234.

[Yin+22] Rui Yin et al. “Benchmarking AlphaFold for protein complex modeling reveals
accuracy determinants”. en. In: Protein Sci. 31.8 (Aug. 2022), e4379.

[YSW07] Chen Yanover, Ora Schueler-Furman, and Yair Weiss. “Minimizing and Learn-
ing Energy Functions for Side-Chain Prediction”. In: Recomb. 2007.

[YSW08] Chen Yanover, Ora Schueler-Furman, and Yair Weiss. “Minimizing and learning
energy functions for side-chain prediction”. en. In: J. Comput. Biol. 15.7 (Sept.
2008), pp. 899–911.

150

https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999.full.pdf
https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999.full.pdf
https://www.biorxiv.org/content/early/2021/07/23/2021.07.22.453446.full.pdf
https://www.biorxiv.org/content/early/2021/07/23/2021.07.22.453446.full.pdf
https://www.pnas.org/content/117/3/1496.full.pdf
https://www.pnas.org/content/117/3/1496.full.pdf
https://arxiv.org/abs/2106.05234

[YZY22] Kevin K. Yang, Niccolò Zanichelli, and Hugh Yeh. “Masked inverse folding with
sequence transfer for protein representation learning”. In: bioRxiv (2022).

[Zou+18] Xu-Dong Zou et al. “PPI network analyses of human WD40 protein family
systematically reveal their tendency to assemble complexes and facilitate the
complex predictions”. In: BMC Systems Biology 12.4 (Apr. 2018), p. 41.

[ZS04] Yang Zhang and Jeffrey Skolnick. “Scoring function for automated assessment
of protein structure template quality”. In: Proteins 57.4 (Dec. 2004), pp. 702–
710.

151

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Notation and Conventions
	1 Introduction
	1.1 Outline of Thesis
	1.2 Background: Proteins
	1.3 Background: Machine Learning
	1.4 Graph Neural Networks
	1.5 Transformers

	2 Fixed Backbone Design
	2.1 Introduction
	2.2 Methods
	2.2.1 Input Representation
	2.2.2 Network Architecture
	2.2.3 Sequence Design
	2.2.4 Rotamer Conditioning
	2.2.5 Per-Residue Confidence Prediction
	2.2.6 Model Loss
	2.2.7 Rotamer and Clash Optimization
	2.2.8 Training Details
	2.2.9 Test Datasets

	2.3 Results
	2.3.1 Overview
	2.3.2 Evaluation Criteria
	2.3.3 Side Chain Packing
	2.3.4 Sequence Design
	2.3.5 Confidence Predictions

	2.4 Ablation Studies and Architecture Assessment
	2.5 Concluding Discussion

	3 Flexible Docking
	3.1 Introduction
	3.2 Related Work
	3.3 Methods
	3.3.1 Input Features
	3.3.2 Architecture and Hyperparamter Details
	3.3.3 Network Architecture and Training
	3.3.4 Loss
	3.3.5 Training
	3.3.6 Evaluation Criteria

	3.4 Docking Results
	3.4.1 Antibody Docking
	3.4.2 Results for DB5 Unbound and Predicted Targets
	3.4.3 Decoy Ranking with Predicted lDDT
	3.4.4 Genetic Algorithm for Protein-Protein Docking
	3.4.5 Comparison to AlphaFold-Multimer

	3.5 Ablation Study
	3.6 CDR-Loop Design
	3.6.1 Incorporating Coordinates
	3.6.2 Results

	3.7 Concluding Remarks

	A Supplement to Chapter 2
	A.1 Data Collection
	A.2 Training Details
	A.3 Supplementary Figures
	A.4 Supplementary Tables

	B Supplement to Chapter 3
	B.1 Data Collection
	B.2 Extended Results and Examples
	B.2.1 Docking Benchmark Version 5

	Bibliography

