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ABSTRACT

This thesis concerns continuous models for 2-dimensional topological insulators. Such sys-

tems are characterized by asymmetric transport along a 1-dimensional curve representing

the interface between two insulating materials. The asymmetric transport is quantified by

an interface conductivity. In two distinct settings, we derive tractable analytic formulas for

this interface conductivity and provide a large class of perturbations under which it is stable.

Our theory applies to models of twisted bilayer graphene, low-energy superconductors, and

relativistic electrons (possibly subject to a magnetic field) described by an appropriate Dirac

operator, among others.

Our second main focus is numerical approximations of the above systems. We define a

modified interface conductivity on a box with periodic boundary conditions, and show that

it is stable and converges rapidly to its infinite-space analogue as the size of the box goes

to infinity. We illustrate with several examples that one can restrict a topological insulator

to a large and discrete torus to obtain accurate numerical evaluations of the conductivity.

Numerical techniques that do not require periodic truncation are also implemented and

analyzed. We derive a novel integral equation for the time-harmonic Klein-Gordon equation

with appropriate jump conditions along a one-dimensional interface. We implement a fast

multipole and sweeping-accelerated iterative algorithm for solving the integral equations, and

demonstrate numerically the fast convergence of this method. Several numerical examples

of solutions and scattering effects illustrate our theory.
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CHAPTER 1

INTRODUCTION

When two insulating materials are brought next to each other, the resulting system may

admit edge modes and exhibit a robust and asymmetric transport along the interface. Math-

ematically, this phenomenon is most often explained by a topological characterization of the

two insulators and/or the new material they form. Examples and applications are found in

various fields, such as solid state physics, quantum computing, and the geophysical sciences

[17, 33, 76, 86, 87]. The focus of this thesis is two-fold: first, to provide a rigorous math-

ematical analysis of a physical observable that quantifies the above behavior; and second,

to perform and analyze numerical approximations of the observable as well as surface waves

corresponding to these systems.

In Sections 2 and 3, the physical systems are modeled by (single-particle) Hamiltonians

H acting on H := L2(R2) ⊗ Cn for n ∈ N+. We assume that H is a self-adjoint pseudo-

differential operator from its domain of definition D(H) ⊂ H to H. We label the spatial

coordinates (x, y) ∈ R2 and the corresponding dual variables (ξ, ζ) ∈ R2. In the simplest

case, the coefficients of (the symbol of) H are constant in (x, y) for |y| ≥ y0. Thus H fits the

above description with |y| ≥ y0 corresponding to the insulating domains, call them H±, and

the interface of the two materials contained in |y| < y0. Note that a Hamiltonian is called

insulating (with respect to an energy interval) if it has a spectral gap (in that interval).

More specifically, in Section 2 below, we will fix m > 0 and −∞ < E1 < E2 < ∞ and

consider a large class of Hamiltonians H including those that satisfy

(H1) Let H = Op(σ) with σ ∈ ESm1,0. Suppose there exist symbols σ± ∈ ESm1,0 indepen-

dent of (x, y) with no spectrum in the open interval (E1, E2), such that σ = σ+ whenever

y ≥ y0 and σ = σ− whenever y ≤ −y0, for some y0 > 0.

We refer to Appendix A.1 for notation and definitions. In particular, the symbol class
1



ESm1,0 is defined below (A.1.4). Moreover, σ is the symbol of a Hamiltonian H = Op(σ)

written in Weyl quantization (A.1.1) (with h = 1), while m is the order of the operator. In

most applications, σ(x, y, ξ, ζ) is the matrix-valued symbol of a differential operator of order

m.

An important hypothesis is the ellipticity condition in the definition of ESm1,0, stating

that the singular values of the symbol grow like |(ξ, ζ)|m at infinity uniformly in the spatial

variables. The second main assumption is that the symbol be independent of position for

|y| ≥ y0. The slab −y0 < y < y0 models the transition from the bulk symbol σ− to the

bulk symbol σ+. The above ellipticity condition implies that H is self-adjoint with domain

of definition the standard Hilbert space Hm in (A.1.3) [20, 56].

Note that we will also use more general hypotheses in Section 2 (allowing for more

complicated geometries; see (H0), (H0’) and (H1’) below), though we now focus on (H1) for

ease of exposition.

We now define the following physical observable [7, 10, 17, 37, 40, 41, 77]

σI(H,P, φ) := Tr i[H,P ]φ′(H), (1.0.1)

where φ ∈ S(0, 1;E1, E2) and P = P (x) ∈ S(0, 1). Here, we denote by S(c1, c2;λ1, λ2) the

set of switch functions, i.e., smooth real-valued functions f on R such that f(x) = c1 for

x ≤ λ1 and f(x) = c2 for x ≥ λ2. The union over λ1 < λ2 is denoted by S(c1, c2).

The conductivity σI := σI(H,P, φ) is the main object of interest in Section 2. It is

a physical observable that can be interpreted as the rate of signal crossing x0 ∈ supp(P ′)

per unit time. Indeed, if ψ(t) = e−itHψ0 solves the Schrödinger equation, then d
dt⟨P ⟩t =

d
dt⟨ψ(t), Pψ(t)⟩ = Tr i[H,P ][ψψ∗](t). Replacing the density ψψ∗(t) by the stationary mixed

state density φ′(H) provides the above interpretation to σI . It therefore characterizes asym-

metric transport along the interface.

The explicit computation of σI as the above trace is tractable for Dirac operators [7] and
2



more general operators with sufficiently simple spectral decomposition [10]. In a variety of

settings however, σI has been shown to equal a difference of bulk topological invariants:

2πσI(H,P, φ) = I(H+)− I(H−),

which are often significantly simpler to compute. Such a result is called a bulk-edge or bulk-

interface correspondence [7, 10, 37, 40, 42, 49, 68]. The above conductivity has also been

related to the (necessarily quantized) index of a Fredholm operator in various contexts; see

[7, 10]. In Section 2.4, we extend these results to prove that

2πσI(H,P, φ) = Index(P̄U(H)P̄ ) (1.0.2)

for a large class of Hamiltonians including (H1). When H satisfies (H1), the above holds

if P̄ = P̄ (x) is the Heavyside step function, with P (x) = P ∈ S(0, 1) smooth as before.

Note that (1.0.2) implies that σI is immune to “continuous” perturbations (to be defined in

Section 2.4 below), as the right-hand side must be integer-valued. The derivation of (1.0.2)

involves a powerful result from [6], which relates the Fredholm index to various traces.

First, however, we directly prove the stability of σI without using index theory; see

Section 2.1. In Section 2.2, we prove a bulk-interface correspondence for all Hamiltonians

satisfying (H1) by deriving an accessible Fedosov-Hörmander formula for σI . We next show

the usefulness of such a correspondence and compute the conductivity explicitly from the

Fedosov-Hörmander formula for a number of models coming from solid state physics [10, 17,

86] and (properly regularized) equatorial waves [10, 33, 48, 79]; see also [15] for an application

to compute topological invariants of replica models for Floquet topological insulators. Section

2.4 then generalizes the theory from Sections 2.1–2.3 to junction (rather than interface)

models, with applications to materials such as twisted bilayer graphene.

The theory in Section 2 applies to a number of systems of differential equations that

3



appear as low-energy models for many topological insulators and superconductors. However,

it does not apply to the magnetic Schrödinger equations that model the integer quantum

Hall effect [5, 6, 16], or to partial-differential models with micro-structures [37, 44].

In Section 3, we calculate σI and prove its stability in the context of magnetic Dirac

equations. Such equations are used in models of graphene subject to external electric and

magnetic fields. The magnetic Dirac Hamiltonian is not elliptic and thus the analysis from

Section 2 does not apply. Instead, σI is related to a spectral flow (see (3.0.5) below), which

we calculate explicitly.

The magnetic Dirac Hamiltonian implements three domain walls that induce asymmetric

transport. These domain walls correspond to transitions in the magnetic field, electric poten-

tial, and a “mass term” across two insulating materials. The existing literature has analyzed

separately the roles of a bounded mass term [7, 10] and magnetic field [29] in generating

asymmetric transport for Dirac models. To our knowledge, this work is the first to combine

the two effects.

The magnetic Dirac Hamiltonian, H, is given by (3.0.2). Its square satisfies H2 =

D2
x+(Dy−A2(x))

2+V (x)Dxσ1+V (x)(Dy−A2(x))σ2+R for R bounded. The leading-order

terms D2
x + (Dy − A2(x))

2 are precicely the Iwatsuka Hamiltonian analyzed in [35], where

there are many results analogous to the ones in this paper. Bulk invariants for magnetic

Schrödinger operators are proposed and analyzed in [6, 16]. The distinguishing features of

our setting are the additional domain walls m (the mass term) and V (the electric potential),

the lack of definiteness of H (the spectrum of H is not bounded above or below), and the fact

that H is a first-order matrix valued differential operator (instead of a second-order scalar

one). As we will see below, the lack of definiteness perhaps provides the biggest challenge;

it will be easy to estimate the absolute value of spectral branches of H, but obtaining the

sign of these branches will require more care.

In [28], the interface conductivity is calculated for magnetic Schrödinger Hamiltonians

4



with constant magnetic field and confining potentials. The interface conductivity is induced

by the potentials much like an “edge conductivity” would be generated by “hard wall” Dirich-

let boundary conditions. A bulk-edge correspondence (involving the edge conductivity) for

magnetic Dirac models is proven in [29].

A main result in Section 3 is to derive an explicit expression for 2πσI by means of a

spectral flow; see Theorems 3.1.1 and 3.2.5 below. We show that 2πσI is quantized and (for

positive energies and constant m and V ) decreases in uniform increments as the strength

of the magnetic field increases. This behavior of the interface conductivity resembles the

integer quantum Hall effect. Theorem 3.1.1 is a bulk-interface correspondence in that it

relates the spectral flow of H to a difference of bulk quantities. The terms in the difference

are not expressed as bulk invariants, such as for instance Chern numbers as introduced in

[16, 29]. This issue, addressed for non-magnetic Dirac Hamiltonians in [7, 10], is not con-

sidered further here. For existing results on the bulk-interface correspondence involving a

spectral flow, see also [7, 47].

Section 4 concerns numerical approximations of topological insulators. We consider

Hamiltonians H satisfying (H1), and restrict them to a box of size L with periodic boundary

conditions. We define a modified interface conductivity (see (4.0.3) below) on the peri-

odic domain, and show that it converges to its infinite space analogue super-algebraically

in L−1 as L → ∞. We prove stability of the modified conductivity in the same limit, and

demonstrate our theoretical results with numerical examples.

The approximate interface conductivity (4.0.3), which is easily estimated computation-

ally, serves as the main spectral object quantifying the topological nature of the asymmetric

transport between insulators in a periodic setting. Several works have addressed the compu-

tation of bulk topological indices [62, 63, 64, 67, 78], based on the notion of “spectral localizer

index”, typically determined by the signs of eigenvalues of an appropriate finite dimensional

5



matrix. The numerical index was used recently in [65] to determine numerically the interface

along which wave packets may propagate. For an analysis of the propagation of wave packets

along curved interfaces in a Dirac model, see [12]. Eigenvalues and edge states for discrete

and continuous models are also computed numerically in [83] using a method that avoids

artificial Dirichlet boundary conditions by utilizing the resolvent of the Hamiltonian.

In Section 5, we derive novel integral equations for the time-harmonic Klein-Gordon

equation in the presence of an interface. Solutions are surface waves that are exponentially

localized to the vicinity of the interface, and propagate outward to infinity. The original PDE

is inspired by Dirac equations, which are ubiquitous in the analysis of topological insulators

(see Section 5.1.2). We analyze the mathematical properties (including well-posedness) of

our integral equations in Section 5.2, and present a numerical method for solving them in

Section 5.3. Examples of solutions and scattering effects are illustrated in Section 5.4.

Similar models to this one arise, and have been studied in a variety of contexts. For work

on the related topic of “leaky quantum graphs” and derivation of similar integral equations,

we refer to [43] and references therein. Under the assumption that Γ is a compact pertur-

bation of the flat interface, [43] for instance derives asymptotic expansions for generalized

eigenfunctions of the Helmholtz operator and obtains expressions for reflection coefficients

in a corresponding scattering theory. Note that our setting places no restriction on the angle

between the asymptotic branches of Γ. The point spectrum of elliptic second-order partial

differential operators with “singular interactions” along a compact interface has also been

analyzed, with an integral formulation in [54]. A Galerkin method for solving it is then

proposed there.

Surface waves and plasmon waves also arise naturally in other physical contexts such as

the solution of Maxwell’s equation in a dielectric medium where the ratio of permittivities

approach a negative real number, see [69, 85] and the references therein and [52, 51, 53]

for numerical methods. Finally, similar surface-wave preconditioners also referred to as on-

6



surface radiation conditions have been used in other contexts for solving high-frequency

scattering problems in acoustics, electromagnetics, and elasticity, see [2, 3, 4, 26, 25, 32, 59]

and the references therein. The on-surface radiation conditions are typically used to improve

the performance of iterative solvers in complicated geometries and the high-frequency regime

and not for the resolution of surface waves inherent to the governing equations.
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CHAPTER 2

ELLIPTIC INTERFACE MODELS

2.1 Stability of physical observable

The purpose of this section is to show that σI(H,P, φ) introduced in (1.0.1) is well defined,

and prove its stability under perturbations of H, P and φ. The following results are obtained

using the theory of pseudo-differential operators (see appendix A) and stability properties of

the trace. Similar results are derived in [10, 11] by showing that σI is the index of a Fredholm

operator, which is known to be invariant under continuous deformations [56]. Here, we do

not relate σI to any index and instead prove its stability directly, as is done in other contexts

in [37, 40, 49, 68].

While the results in this section are significant in their own right, they will also be used

to prove Theorem 2.2.1 below (one of the main results of the paper). The following stability

properties of σI show that the latter can be computed in the semi-classical limit (see Theorem

2.1.11). This allows for a Fedosov-Hörmander formula (2.2.7) for the conductivity, which is

the subject of section 2.2.

To prove that σI is stable, it will be useful to define the following class of pseudo-

differential operators, where we fix Ẽ1 < Ẽ2, and let Φ ∈ C∞c (R) such that Φ ≡ 1 in

[Ẽ1, Ẽ2].

(H0) Let H = Op(σ), such that σ ∈ ESm1,0 and Φ(H) ∈ Op(S(⟨y, ξ, ζ⟩−∞)).

By Proposition A.3.1, any H satisfying (H0) is self-adjoint with domain of definition

D(H) = Hm. Moreover, (z − H)−1 ∈ Op(S(⟨ξ, ζ⟩−m)) with symbolic bounds that blow

up algebraically as ℑz → 0. For any ψ ∈ C∞c (R) and s ∈ N, we have ψ(H) = (i −

H)−sϕs(H) for some ϕs ∈ C∞c (R). Using the Helffer-Sjöstrand formula and composition

calculus, this implies that ψ(H) ∈ Op(S(⟨ξ, ζ⟩−∞)) for every ψ ∈ C∞c (R). If, in particular,
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ψ ∈ C∞c (Ẽ1, Ẽ2), then (H0) and the composition calculus imply that ψ(H) = ψ(H)Φ(H) ∈

Op(S(⟨y, ξ, ζ⟩−∞)).

Note that if Φ ∈ C∞c (E1, E2), then any operator H satisfying (H1) must also satisfy

(H0); see Proposition 2.1.10 below. However, all of the results before Proposition 2.1.10 will

assume only that H satisfies (H0).

We first show that σI(H,P, φ) is well defined.

Lemma 2.1.1. Suppose H satisfies (H0), and let P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1; Ẽ1, Ẽ2).

Then [H,P ]φ′(H) is trace-class. If ψ ∈ C∞c (Ẽ1, Ẽ2), then q(H)[ψ(H), P ] is trace-class for

any polynomial q.

Proof. Recall that φ′ ∈ C∞c (Ẽ1, Ẽ2), and hence φ′(H) ∈ Op(S(⟨y, ξ, ζ⟩−∞)). Since [H,P ] =

(1− P )HP − PH(1− P ) ∈ Op(S(⟨x⟩−∞⟨y, ξ, ζ⟩m)), the composition calculus implies that

[H,P ]φ′(H) is trace-class.

Now if ψ ∈ C∞c (Ẽ1, Ẽ2), then ψ(H) ∈ Op(S(⟨y, ξ, ζ⟩−∞)), and thus [ψ(H), P ] = (1 −

P )ψ(H)P − Pψ(H)(1 − P ) ∈ Op(S(⟨x, y, ξ, ζ⟩−∞)) by the composition calculus. Since

q(H) ∈ Op(S(⟨ξ, ζ⟩km)) for some k ∈ N, it follows that

q(H)[ψ(H), P ] ∈ Op(S(⟨x, y, ξ, ζ⟩−∞))

is trace-class.

Our next result shows that the trace in (1.0.1) is not modified after regularization of the

commutator.

Lemma 2.1.2. Let P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1; Ẽ1, Ẽ2). Let S be any open interval

containing suppφ′, and let Ψ ∈ C∞c (R) such that Ψ(λ) = λ in S. Then given any self-adjoint

H for which [H,P ]φ′(H) is trace-class, it follows that [Ψ(H), P ]φ′(H) is trace-class, with

σI(H,P, φ) = Tr i[Ψ(H), P ]φ′(H). (2.1.1)
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By Lemma 2.1.1, we know that Lemma 2.1.2 applies to any H satisfying (H0).

Proof. Using the Helffer-Sjöstrand formula, we write

[Ψ(H), P ] =
[
− 1

π

ˆ
C
∂̄Ψ̃(z)(z −H)−1d2z, P

]
= − 1

π

ˆ
C
∂̄Ψ̃(z)(z −H)−1[H,P ](z −H)−1d2z,

which implies that

[Ψ(H), P ]φ′(H) = − 1

π

ˆ
C
∂̄Ψ̃(z)(z −H)−1[H,P ]φ′(H)(z −H)−1d2z.

Since
∥∥(z −H)−1

∥∥ ≤ |ℑz|−1 with ∂̄Ψ̃ ∈ C∞c (C) and |∂̄Ψ̃|(z) ≤ C|ℑz|2, the assumption that

[H,P ]φ′(H) is trace-class implies that [Ψ(H), P ]φ′(H) must be trace-class as well.

Let Φ0,Φ00 ∈ C∞c (R) such that φ′ = φ′Φ0 = φ′Φ00 and Φ0 = Φ0Φ00, with ΨΦ00 = λΦ00.

Below, we use the shorthand f := f(H) for all compactly supported functions f . It follows

from cyclicity of the trace [57] that

Tr[H,P ]φ′ = Tr[H,P ]φ′Φ0 = TrΦ0[H,P ]φ
′ = TrΦ0(Φ00HP − PHΦ00)φ

′

= TrΦ0(Φ00ΨP − PΨΦ00)φ
′ = TrΦ0[Ψ, P ]φ

′ = Tr[Ψ, P ]φ′,

and the proof is complete.

We now show that the conductivity is independent of φ ∈ S(0, 1; Ẽ1, Ẽ2).

Proposition 2.1.3. Suppose H satisfies (H0), and let P (x) = P ∈ S(0, 1) and φ1, φ2 ∈

S(0, 1; Ẽ1, Ẽ2). Then

σI(H,P, φ1) = σI(H,P, φ2).
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Proof. It suffices to show that Tr i[H,P ]ϕ′(H) = 0 for all ϕ ∈ C∞c (Ẽ1, Ẽ2). Let ψ ∈

C∞c (Ẽ1, Ẽ2) such that ψ(λ) = λ for all λ in some open interval containing supp(ϕ). It

follows that

Tr[H,P ]ϕ′(H) = Tr[ψ(H), P ]ϕ′(ψ(H)) = Tr
(
− 1

π
[ψ(H), P ]

ˆ
C
∂̄ϕ̃′(z)(z − ψ(H))−1d2z

)
= Tr

(
− 1

π
[ψ(H), P ]

ˆ
C
∂̄ϕ̃(z)(z − ψ(H))−2d2z

)
= Tr

(
− 1

π

ˆ
C
∂̄ϕ̃(z)(z − ψ(H))−1[ψ(H), P ](z − ψ(H))−1d2z

)
= Tr

[
− 1

π

ˆ
C
∂̄ϕ̃(z)(z − ψ(H))−1d2z, P

]
= Tr[ϕ(H), P ],

where we have used Lemma 2.1.2 to justify the first equality, the Helffer-Sjöstrand formula

for the second and last equalities, integration by parts in ∂ for the third equality, cyclicity of

the trace for the fourth equality, and the identity [(z−A)−1, B] = (z−A)−1[A,B](z−A)−1

for the fifth equality.

Now, let P1, P2 ∈ S(0, 1) with Pj = Pj(x) such that PP1 = P and (1−P )(1−P2) = 1−P .

Then

Tr[ϕ(H), P ] = Tr((1− P )ϕ(H)P − Pϕ(H)(1− P )) = Tr(1− P )ϕ(H)P − TrPϕ(H)(1− P )

= Tr(1− P )ϕ(H)PP1 − TrPϕ(H)(1− P )(1− P2)

= TrP1(1− P )ϕ(H)P − Tr(1− P2)Pϕ(H)(1− P )

= TrPP1(1− P )ϕ(H)− Tr(1− P )(1− P2)Pϕ(H)

= TrP (1− P )ϕ(H)− Tr(1− P )Pϕ(H) = 0,

and the proof is complete.

We now prove the stability of the trace with respect to changes in the domain wall P .

Proposition 2.1.4. Suppose H satisfies (H0), φ ∈ S(0, 1; Ẽ1, Ẽ2), and P1, P2 ∈ S(0, 1)
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with Pj = Pj(x). Then

σI(H,P1, φ) = σI(H,P2, φ).

Proof. Using Lemma 2.1.2, we have

σI(H,P2, φ)− σI(H,P1, φ) = Tr i[Ψ(H), P2 − P1]φ
′(H).

Since P2 − P1 ∈ ⟨x⟩−∞, the assumption (H0) implies that (P2 − P1)φ
′(H) is trace-class.

Therefore,

Tr i[Ψ(H), P2 − P1]φ
′(H) = Tr iΨ(H)(P2 − P1)φ

′(H)− Tr i(P2 − P1)Ψ(H)φ′(H)

= Tr i(P2 − P1)φ
′(H)Ψ(H)− Tr i(P2 − P1)Ψ(H)φ′(H) = 0,

where we have used cyclicity of the trace to justify the second equality, and the fact that

[φ′(H),Ψ(H)] = 0 for the last equality.

We have shown that if H satisfies (H0), then σI(H,P, φ) is independent of P (x) = P ∈

S(0, 1) and φ ∈ S(0, 1;E1, E2). Now we want to analyze the stability of σI(H,P, φ) with

respect to perturbations of H. For W a symmetric linear operator (with various additional

assumptions in the results below), let

H(µ) = H + µW for µ ∈ [0, 1].

We begin by introducing a class of appropriately decaying perturbations under which the

interface conductivity is stable.

Theorem 2.1.5. Suppose H satisfies (H0), P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1; Ẽ1, Ẽ2).

Assume that W is symmetric with W ∈ Op(Sm1,0 ∩ S(⟨x, y⟩−δ)) for some δ > 0. If H(1)
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satisfies (H0), then σI(H
(1), P, φ) = σI(H,P, φ).

Proof. The assumption that H(1) satisfies (H0) implies σI(H(1), P, φ) is well defined (see

Lemma 2.1.1), with

σI(H
(1), P, φ)− σI(H,P, φ) =

Tr i[Ψ(H(1)), P ](φ′(H(1))− φ′(H)) + Tr i[Ψ(H(1))−Ψ(H), P ]φ′(H)

by Lemma 2.1.2. Using cyclicity of the trace as in the proof of Proposition 2.1.3, we find

that

Tr i[Ψ(H(1))−Ψ(H), P ]φ′(H) = −Tr i[φ′(H), P ](Ψ(H(1))−Ψ(H)).

Thus by Proposition 2.1.4, it suffices to show that Tr[A,Px0 ]B → 0 as x0 → ∞ for A ∈

{Ψ(H(1)), φ′(H)} and B ∈ {φ′(H(1))−φ′(H),Ψ(H(1))−Ψ(H)}, where Px0(x) := P (x−x0).

Fix ε > 0. For any ϕ ∈ C∞c (Ẽ1, Ẽ2), the Helffer-Sjöstrand formula implies that

ϕ(H(1))− ϕ(H) =
1

π

ˆ
C
∂̄ϕ̃(z)(z −H(1))−1W (z −H)−1d2z.

Propositions A.2.1 and A.3.1 (together with the rapid decay of ∂̄ϕ̃ near the real axis) then

imply that

ϕ(H(1))− ϕ(H) ∈ Op(S(⟨x, y⟩−δ⟨ξ, ζ⟩−m)) ⊂ Op(S(⟨x, y, ξ, ζ⟩−δ)), (2.1.2)

where we have assumed without loss of generality that δ < m. ThusB ∈ Op(S(⟨x, y, ξ, ζ⟩−δ)),

so there exist b0 ∈ C∞c (R4) and b1 ∈ S(1) as small as necessary such that B = B0+B1 with

Bj := Op(bj) and ∥B1∥ < ε. Writing [A,Px0 ] = (1−Px0)APx0−Px0A(1−Px0), Lemma 2.1.6

and the composition calculus imply that [A,Px0 ] ∈ Op(S(⟨x− x0, y, ξ, ζ⟩−∞)) uniformly in
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x0. We conclude that ∥[A,Px0 ]∥1 ≤ C uniformly in x0, hence lim supx0→∞ ∥[A,Px0 ]B1∥1 <

Cε. Moreover, the decay of b0 implies that

∥[A,Px0 ]B0∥1 ≤ C

ˆ
R4

⟨x− x0, y, ξ, ζ⟩−5⟨x, y, ξ, ζ⟩−5dxdydξdζ −→ 0

as x0 → ∞. We have thus shown that

lim sup
x0→∞

∥[A,Px0 ]B∥1 ≤ lim sup
x0→∞

∥[A,Px0 ]B0∥1 + lim sup
x0→∞

∥[A,Px0 ]B1∥1 < Cε.

Since ε was arbitrary, the proof is complete.

Next, we introduce a class of relatively compact perturbations W for which the symbols

of compactly supported functionals of H(1) decay rapidly in ⟨y, ξ, ζ⟩.

Lemma 2.1.6. Suppose H satisfies (H0), and let W be a symmetric pseudo-differential

operator such that W ∈ Op(Sm1,0 ∩ S(⟨ξ, ζ⟩m−δ⟨x, y⟩−δ)) for some δ > 0. Then H(1) ∈

Op(ESm1,0) is self-adjoint with domain of definition Hm, and ϕ(H(1)) ∈ Op(S(⟨y, ξ, ζ⟩−∞))

for any ϕ ∈ C∞c (Ẽ1, Ẽ2).

Proof. That H(1) ∈ Op(ESm1,0) follows immediately from ellipticity of H and the decay of

W . By Proposition A.3.1, this means H(1) is self-adjoint with domain of definition Hm.

Moreover, (z − H(1))−1 ∈ Op(S(⟨ξ, ζ⟩−m)) for all ℑz ̸= 0, with symbolic bounds blowing

up at worst algebraically as ℑz → 0 (see Proposition A.3.1).

Let ϕ, ϕ0 ∈ C∞c (Ẽ1, Ẽ2) such that ϕϕ0 = ϕ, and define Θ := ϕ(H(1)) − ϕ(H) and

Θ0 := ϕ0(H
(1))− ϕ0(H). Then Θ = ΘΘ0 + ϕ(H)Θ0 +Θϕ0(H), and hence

Θ(1−Θ0) = ϕ(H)Θ0 +Θϕ0(H).

By (2.1.2), we have Θ,Θ0 ∈ Op(S(⟨x, y, ξ, ζ⟩−δ)). Thus there exist θ00 ∈ C∞c (R4) and

θ01 ∈ S(1) as small as necessary such that Θ00 = Op(θ00), Θ01 = Op(θ01) with ∥Θ01∥ < 1
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(see Proposition A.2.2), and Θ0 = Θ00 + Θ01. Since ϕ(H), ϕ0(H) ∈ Op(S(⟨y, ξ, ζ⟩−∞)) by

assumption on H, it follows that

Θ(1−Θ01) = Θ(1−Θ0) + ΘΘ00 ∈ Op(S(⟨y, ξ, ζ⟩−∞)),

hence

Θ = (Θ(1−Θ0) + ΘΘ00)(1−Θ01)
−1 ∈ Op(S(⟨y, ξ, ζ⟩−∞)).

We conclude that ϕ(H(1)) = ϕ(H)+Θ ∈ Op(S(⟨y, ξ, ζ⟩−∞)), and the proof is complete.

We now show that the interface conductivity is stable with respect to this class of rela-

tively compact perturbations W .

Theorem 2.1.7. Suppose H satisfies (H0), P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1; Ẽ1, Ẽ2). If

W is symmetric with W ∈ Op(Sm1,0 ∩ S(⟨ξ, ζ⟩
m−δ⟨x, y⟩−δ)) for some δ > 0, then

σI(H
(1), P, φ) = σI(H,P, φ).

Proof. Fix ϕ ∈ C∞c (Ẽ1, Ẽ2) such that ϕ ≡ 1 in some open interval containing supp(φ′).

Lemma 2.1.6 then implies that H(1) satisfies (H0), with Φ replaced by ϕ. The result then

follows from Theorem 2.1.5.

Next, we derive a stability result that no longer requires the perturbation to be relatively

compact. We will instead assume that W is relatively bounded with respect to H, and

require that W be “sufficiently small.”

Theorem 2.1.8. Suppose H satisfies (H0), P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1; Ẽ1, Ẽ2).

If W is symmetric with W ∈ Op(Sm1,0), then σI(H
(µ), P, φ) = σI(H,P, φ) for all µ > 0

sufficiently small.
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In the proof below, we will be analyzing operators A = Op(a) that depend on the

parameter µ. For m : R4 → [0,∞) an order function, we will write A ∈ Op(µS(m)) to mean

that a ∈ S(m) for all µ, with |∂αa| ≤ Cαµm uniformly in µ.

Proof. Since H ∈ Op(ESm1,0) and W is symmetric, it follows that H(µ) ∈ Op(ESm1,0) is

self-adjoint (with domain of definition Hm) whenever µ > 0 is sufficiently small.

Let ϕ, ϕ0 ∈ C∞c (E1, E2) such that ϕϕ0 = ϕ. Following the proof of Lemma 2.1.6, we

define Θ := ϕ(H(µ))− ϕ(H) and Θ0 := ϕ0(H
(µ))− ϕ0(H), and verify that

Θ(1−Θ0) = ϕ(H)Θ0 +Θϕ0(H).

The Helffer-Sjöstrand formula implies that

Θ0 = −µ
π

ˆ
C
∂̄ϕ̃0(z)(z −H(µ))−1W (z −H)−1d2z.

By Propositions A.2.1 and A.3.2, this means Θ0 ∈ Op(µS(⟨ξ, ζ⟩−m)). It follows that (1 −

Θ0)
−1 ∈ Op(S(1)) whenever µ > 0 is sufficiently small, hence

Θ = (ϕ(H)Θ0 +Θϕ0(H))(1−Θ0)
−1 ∈ Op(S(⟨y, ξ, ζ⟩−∞))

by (H0). We conclude that ϕ(H(µ)) = ϕ(H)+Θ ∈ Op(S(⟨y, ξ, ζ⟩−∞)). Since ϕ was arbitrary,

this means σI(H(µ), P, φ) is well defined whenever µ > 0 is small enough.

Let χ ∈ S(1, 0; 1, 2) be monotonically non-increasing, and define

χε(x, y, ξ, ζ) := χ(ε|(x, y, ξ, ζ)|)

and H(µ,ε) := Op(σ + µχεw) for ε ∈ (0, 1]. Since χεw ∈ S(⟨x, y, ξ, ζ⟩−∞), Theorem 2.1.7
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implies that

σI(H
(µ,ε), P, φ) = σI(H,P, φ), ε ∈ (0, 1].

It remains to show that σI(H(µ,ε), P, φ)− σI(H
(µ), P, φ) → 0 as ε ↓ 0. In order to do this,

we will first need symbolic bounds that are uniform in µ and ε.

For any multi-index α and any p > 0, we have |∂αχε|(x, y, ξ, ζ) ≤ Cα,pε
|α|⟨εx, εy, εξ, εζ⟩−p

uniformly in ε. In particular, this means

|∂αχε|(x, y, ξ, ζ) ≤ Cα,|α|ε
|α|⟨εx, εy, εξ, εζ⟩−|α| ≤ Cα,|α|⟨x, y, ξ, ζ⟩

−|α|, ε ∈ (0, 1].

By definition, Op(w) := W satisfies |∂β1x,y∂β2ξ,ζw|(x, y, ξ, ζ) ≤ Cβ⟨ξ, ζ⟩m−|β2| for any multi-

index β = (β1, β2). It follows that

|∂αχε∂βw|(x, y, ξ, ζ) ≤ Cα,β⟨x, y, ξ, ζ⟩−|α|⟨ξ, ζ⟩m−|β2| ≤ Cα,β⟨ξ, ζ⟩m−|α2|−|β2| (2.1.3)

uniformly in ε ∈ (0, 1], hence the set W := {χεw : ε ∈ (0, 1]} satisfies the assumptions of

Proposition A.3.2. It follows that (z−H(µ,ε))−1 ∈ Op(S(⟨ξ, ζ⟩−m)) with all symbolic bounds

uniform in ε ∈ (0, 1] and blowing up algebraically as ℑz → 0. Recall that H(µ) ∈ Op(ESm1,0)

whenever µ > 0 is sufficiently small, thus the same can be said of the (ε-independent)

operator (z − H(µ))−1. With Θ(ε) := ϕ(H(µ,ε)) − ϕ(H(µ)) and Wε := Op((1 − χε)w), the

Helffer-Sjöstrand formula and Proposition A.2.1 then imply that

Θ(ε) =
µ

π

ˆ
C
∂̄ϕ̃(z)(z −H(µ,ε))−1Wε(z −H(µ))−1d2z ∈ Op(µS(⟨ξ, ζ⟩−m)) (2.1.4)

uniformly in µ > 0 sufficiently small and ε ∈ (0, 1]. Since ϕ is arbitrary, we also have that

Θ
(ε)
0 := ϕ0(H

(µ,ε)) − ϕ0(H
(µ)) ∈ Op(µS(⟨ξ, ζ⟩−m)) uniformly in µ and ε. Thus if µ > 0

is small enough, then (1 − Θ
(ε)
0 )−1 ∈ Op(S(1)) uniformly in ε ∈ (0, 1]. Since ϕ(H(µ)) ∈
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Op(S(⟨y, ξ, ζ⟩−∞)), the familiar identity

Θ(ε) = (ϕ(H(µ))Θ
(ε)
0 +Θ(ε)ϕ0(H

(µ)))(1−Θ
(ε)
0 )−1

implies that ϕ(H(µ,ε)) = Θ(ε) + ϕ(H(µ)) ∈ Op(S(⟨y, ξ, ζ⟩−∞)) uniformly in ε ∈ (0, 1].

As in the proof of Theorem 2.1.7, cyclicity of the trace implies that

σI(H
(µ,ε), P, φ)− σI(H

(µ), P, φ) =

Tr i[Ψ(H(µ,ε)), P ](φ′(H(µ,ε))− φ′(H(µ)))− Tr i[φ′(H(µ)), P ](Ψ(H(µ,ε))−Ψ(H(µ))).

Thus it suffices to show that Tr[Aε, P ]Bε → 0 as ε ↓ 0, for Aε ∈ {φ′(H(µ)),Ψ(H(µ,ε))} and

Bε ∈ {φ′(H(µ,ε)) − φ′(H(µ)),Ψ(H(µ,ε)) − Ψ(H(µ))}. In the paragraph above, we showed

that Aε ∈ Op(S(⟨y, ξ, ζ⟩−∞)) uniformly in ε ∈ (0, 1]. The composition calculus then implies

that [Aε, P ] ∈ Op(S(⟨x, y, ξ, ζ⟩−∞)) uniformly in ε ∈ (0, 1]. Using (2.1.4) and the paragraph

above it, we see that Bε ∈ Op(S(1−χε(x, y, ξ, ζ)+ ε)) uniformly in ε ∈ (0, 1]. We thus have

[Aε, P ]Bε ∈ Op(S(⟨x, y, ξ, ζ⟩−5(1− χε(x, y, ξ, ζ) + ε))) uniformly in ε ∈ (0, 1], meaning that

(see appendix A.1)

∥[Aε, P ]Bε∥1 ≤ C

ˆ
R4

⟨x, y, ξ, ζ⟩−5(1− χε(x, y, ξ, ζ) + ε)dxdydξdζ

≤ C
(ˆ

{|(x,y,ξ,ζ)|≥ε−1}
⟨x, y, ξ, ζ⟩−5dxdydξdζ + ε

ˆ
R4

⟨x, y, ξ, ζ⟩−5dxdydξdζ
)

≤ Cε.

This completes the proof.

Theorem 2.1.8 implies the following

Corollary 2.1.9. Let P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1; Ẽ1, Ẽ2). Suppose W ∈ Op(Sm1,0)
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is symmetric such that H(µ) satisfies (H0) for all µ ∈ [0, 1]. Then

σI(H
(1), P, φ) = σI(H,P, φ).

Proof. For any µ ∈ [0, 1], Theorem 2.1.8 implies that σI(H(µ′), P, φ) is constant over µ′ in

some small neighborhood of µ. Thus σI(H(µ), P, φ) is independent of µ ∈ [0, 1], and the

result is complete.

We now turn our attention to operators H satisfying (H1) in Section 1. First, we show

that the latter is a stronger assumption than (H0), meaning that all the previous results

obtained in this section still apply.

Proposition 2.1.10. Suppose H = Op(σ) satisfies (H1) and Φ ∈ C∞c (E1, E2). Define

Hh := Oph(σ) for h ∈ (0, 1]. Then Φ(Hh) ∈ Oph(S(⟨y, ξ, ζ⟩−∞)).

Proof. We observe that Hh = Op1(σ(x, y, hξ, hζ)) satisfies (H1) for all 0 < h ≤ 1, with

σ±(hξ, hζ) replacing σ±(ξ, ζ). This means Hh is self-adjoint with domain Hm that is dense

in H, and (i + Hh)
−1 ∈ Oph(S(⟨ξ, ζ⟩−m)) as recalled in Proposition A.3.1 below. Writing

Φ(Hh) = (i + Hh)
−NΦN (Hh) for ΦN still compactly supported, we obtain that Φ(Hh) ∈

Oph(S(⟨ξ, ζ⟩−∞)).

We now prove decay in y. Since σ± are independent of (x, y) and have a spectral gap

in (E1, E2), it follows that H±,h := Oph(σ±) also have a spectral gap in (E1, E2). Hence

Φ(H±,h) = 0, meaning that

Φ(Hh) = ϕ(y)(Φ(Hh)− Φ(H+,h)) + (1− ϕ(y))(Φ(Hh)− Φ(H−,h)),

where we assume ϕ ∈ S(0, 1). By the Helffer-Sjöstrand Formula, we see that

Φ(Hh)− Φ(H+,h) = − 1

π

ˆ
Z
∂̄Φ̃(z)(z −Hh)

−1(Hh −H+,h)(z −H+,h)
−1d2z,
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with Hh − H+,h = Oph(σ − σ+) and σ − σ+ vanishing for y > 0 sufficiently large. By

Propositions A.2.1 and A.3.1 (and the rapid decay of ∂̄Φ̃ near the real axis), it follows that

Φ(Hh)−Φ(H+,h) ∈ Oph(S(⟨y+⟩−∞)). Since ϕ(y) = ϕ ∈ Oph(S(⟨y−⟩−∞)), the composition

calculus implies that ϕ(y)(Φ(Hh) − Φ(H+,h)) ∈ Oph(⟨y⟩−∞). A parallel argument proves

that (1− ϕ(y))(Φ(Hh)−Φ(H−,h)) ∈ Oph(⟨y⟩−∞), hence Φ(Hh) ∈ Oph(⟨y⟩−∞). The result

then follows from interpolation.

We now show that under (H1), the interface conductivity is stable with respect to semi-

classical rescaling.

Theorem 2.1.11. Suppose H = Op(σ) satisfies (H1), and define Hh := Oph(σ). Let

P (x) = P ∈ S(0, 1) and φ ∈ S(0, 1;E1, E2). Then σI(Hh, P, φ) = σI(H,P, φ) for all

h ∈ (0, 1].

Proof. Fix h ∈ (0, 1]. Since Hh = Op(σh) with σh(x, y, ξ, ζ) = σ(x, y, hξ, hζ), we know that

Hh satisfies (H1). Observe also that for any h′ ∈ (0, 1], we have Hh −Hh′ ∈ Op(Sm1,0). For

h′ ∈ (0, 1] and µ ∈ [0, 1], define σ(µ)
h,h′ := σh + µ(σh′ − σh). By continuity and ellipticity

of σ, we know that whenever |h′ − h| is sufficiently small, σ(µ)
h,h′ ∈ ESm1,0 for all µ ∈ [0, 1].

Moreover, (H1) implies that σ(µ)
h,h′(x, y, ξ, ζ) = σ

(µ)
h,h′,±(ξ, ζ) whenever ±y is sufficiently large,

where

σ
(µ)
h,h′,±(ξ, ζ) := σ±(hξ, hζ) + µ(σ±(h′ξh′ζ)− σ±(hξ, hζ)).

Since σ± have a spectral gap in (E1, E2), it follows (also from σ
(µ)
h,h′ ∈ ESm1,0 and continuity)

that whenever |h′−h| is sufficiently small, σ(µ)
h,h′,± has a spectral gap in (E1+∆, E2−∆) for all

µ ∈ [0, 1], where ∆ := (E2−E1)/4. Thus we have shown that whenever |h′−h| is sufficiently

small and µ ∈ [0, 1], the operator H(µ)
h,h′ := Op(σ

(µ)
h,h′) satisfies (H1) with (E1, E2) replaced

by (E1 +∆, E2 −∆). By Theorem 2.1.8, we conclude that whenever |h′ − h| is sufficiently

small, σI(H
(µ)
h,h′ , P, φ1) is independent of µ ∈ [0, 1], provided φ1 ∈ S(0, 1;E1 +∆, E2 −∆).

In particular, this means σI(Hh′ , P, φ1) = σI(Hh, P, φ1) if |h′ − h| is sufficiently small. But
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since Hh′ satisfies (H1), we know by Proposition 2.1.3 that σI(Hh′ , P, φ) = σI(Hh, P, φ).

We have thus shown that σI(Hh′ , P, φ) is constant over h′ in some small neighborhood of h.

Since h ∈ (0, 1] was arbitrary, the result is complete.

Finally, we show that the interface conductivity is immune to oscillations in the x-variable.

Theorem 2.1.12. Suppose H = Op(σ) satisfies (H1), P (x) = P ∈ S(0, 1) and φ ∈

S(0, 1;E1, E2). Fix x0 ∈ R and define σx0(x, y, ξ, ζ) := σ(x0, y, ξ, ζ) and Hx0 := Op(σx0).

Then σI(Hx0 , P, φ) = σI(H,P, φ).

Proof. Let χ ∈ C∞c (−2, 2) such that χ(x) = 1 whenever x ∈ [−1, 1]. Define χε(x) := χ(εx).

For ε ∈ (0, 1], define σ(ε)(x, y, ξ, ζ) := σ(x − (x − x0)χε(x − x0), y, ξ, ζ), so that σ(ε) = σx0

whenever |x − x0| ≤ ε−1 and σ(ε) = σ whenever |x − x0| ≥ 2ε−1. Since H(ε) := Op(σ(ε))

satisfies (H1) and σ(ε)−σ vanishes whenever ⟨x, y⟩ is sufficiently large, Theorem 2.1.5 implies

that σI(H(ε), P, φ) = σI(H,P, φ) for all ε ∈ (0, 1].

It remains to show that σI(H(ε), P, φ) − σI(Hx0 , P, φ) → 0 as ε ↓ 0. To do this, we

will emulate the argument used to prove Theorem 2.1.8. In particular, it suffices to show

that Tr[Aε, P ]Bε → 0 as ε ↓ 0, for Aε ∈ {ϕ(Hx0), ϕ(H(ε))}, Bε = ϕ(H(ε)) − ϕ(Hx0) and

ϕ ∈ C∞c (E1, E2). As before, Proposition A.3.2 and the composition calculus imply that

[Aε, P ] ∈ Op(S(⟨x, y, ξ, ζ⟩−∞)) uniformly in ε ∈ (0, 1]. By the Helffer-Sjöstrand formula,

Bε =
1

π

ˆ
C
∂̄ϕ̃(z)(z −H(ε))−1(Hx0 −H(ε))(z −Hx0)

−1d2z.

Since σx0 −σ(ε) vanishes whenever |x−x0| ≤ ε−1, it follows that σx0 −σ(ε) ∈ S((1−χε(x−

x0) + ε)⟨ξ, ζ⟩m) uniformly in ε ∈ (0, 1]. By Propositions A.2.1 and A.3.2 (and the rapid

decay of ∂̄ϕ̃ near the real axis), we conclude that Bε ∈ Op(S(1−χε(x− x0) + ε)) uniformly
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in ε ∈ (0, 1]. Therefore,

∥[Aε, P ]Bε∥1 ≤ C

ˆ
R4

⟨x⟩−2⟨y, ξ, ζ⟩−4(1− χε(x− x0) + ε)dxdydξdζ

≤ C

ˆ
R
⟨x⟩−2(1− χε(x− x0) + ε)dx

≤ C
(ˆ

{|x−x0|≥ε−1}
⟨x⟩−2dx+ ε

ˆ
R
⟨x⟩−2dx

)
≤ Cε,

and the proof is complete.

2.2 Bulk-interface correspondence

In this section, we derive an integral representation of the interface conductivity σI in (1.0.1)

that takes the form of a Fedosov-Hörmander formula (2.2.7) as in [10, 11]. We then simplify

the evaluation of this integral under additional assumptions on the Hamiltonian.

The formula (2.2.7) may then be interpreted as in [10] as bulk-difference invariant; see

Corollary 2.2.2. That the interface conductivity is given as bulk-difference invariant (which

are defined in a more general setting than a difference of bulk-invariants) is usually referred

to as a bulk-interface (or bulk-boundary) correspondence; see [7, 10, 37, 40, 42, 49, 68].

Establishing such a correspondence is one of the major objectives of mathematical anal-

yses of topological insulators as it relates the quantized asymmetric transport, a physical

observation, to the topological properties of two bulk insulators.

2.2.1 Bulk-Interface correspondence and semiclassical calculus

The aim of this section is to write the conductivity as an integral involving only the symbol

σ of the Hamiltonian. As demonstrated by sections 2.2.2 and 2.3 below, this integral can be

used to easily evaluate σI in many cases of interest. Unless one can obtain a full spectral

decomposition of the Hamiltonian as in [10], the integral and its simplifications represent
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the most accessible formulas for the conductivity.

The main result of this section is Theorem 2.2.1 below. The formula (2.2.1) simpli-

fies nicely in various cases of interest (see section 2.2.2), and also implies a bulk-interface

correspondence (Corollary 2.2.2) and Fedosov-Hörmander formula (Corollary 2.2.3).

Theorem 2.2.1. Suppose H = Op(σ̃) satisfies (H1), P (x) = P ∈ S(0, 1) and φ ∈

S(0, 1;E1, E2). Let α ∈ (E1, E2), and let R ⊂ R3 be bounded with a piecewise smooth

boundary ∂R. Fix x0 ∈ R, and define σ(y, ξ, ζ) := σ̃(x0, y, ξ, ζ). Assume R contains all

points (y, ξ, ζ) where σ(y, ξ, ζ) has an eigenvalue of α. Then defining z := α + iω and

σz := z − σ, we have that

σI(H,P, φ) =
i

16π3

ˆ
∂R

ˆ +∞

−∞
ΘdωdΣ, Θ := tr εijkσ

−1
z ∂iσzσ

−1
z ∂jσzσ

−1
z νk (2.2.1)

where ν is the unit vector (outwardly) normal to ∂R, dΣ = dΣ(y, ξ, ζ) is the Euclidean

measure on ∂R, and εijk is the anti-symmetric tensor with ε123 = 1 and the variables

identified by (1, 2, 3) = (y, ξ, ζ).

The strategy for the proof is to use an asymptotic expansion in the semiclassical param-

eter h and apply Theorem 2.1.11 to eliminate terms that are not O(1). A similar technique

is used in [10, 11].

Proof. By Proposition 2.1.3, σI(H,P, φ) is independent of φ ∈ S(0, 1;E1, E2), thus we can

take φ′ ∈ C∞c (α0, α) for some α0 > E1. Moreover, by Theorem 2.1.12, we can without loss of

generality assume that σ̃(x, y, ξ, ζ) = σ(y, ξ, ζ) for all (x, y, ξ, ζ) ∈ R4. Theorem 2.1.11 states

that with Hh := Oph(σ̃), σI(Hh, P, φ) is independent of h ∈ (0, 1]. Thus we will expand

σI(Hh, P, φ) in powers of h and ignore terms that are not O(1). We will use the shorthand

σI := σI(Hh, P, φ).

23



Let Oph νh := φ′(Hh). By Proposition A.3.3, we have

νh +
1

π

ˆ
C
∂̄φ̃′(z)q̃z,hd

2z ∈ S−3/2(⟨y, ξ, ζ⟩−∞), (2.2.2)

where

q̃z,h = σ−1
z +

ih

2
{σ−1
z , σz}ζ,yσ−1

z , {a, b}ζ,y := ∂ζa∂yb− ∂ya∂ζb,

and the right-hand side of (2.2.2) is defined by (A.1.2). With Oph(κh) := [Hh, P ], we have

that

κh + ihk1 −
h2

4
k2 ∈ S−3(⟨x⟩−∞⟨ξ, ζ⟩m), k1 := ∂ξσP

′(x), k2 := ∂ξξσP
′′(x).

Since νh ∈ S(⟨y, ξ, ζ⟩−∞) and κh ∈ S−1(⟨x⟩−∞⟨ξ, ζ⟩m), the composition calculus implies

that

κh♯hνh − κhνh +
ih

2
{κh, νh} ∈ S−3(⟨x, y, ξ, ζ⟩−∞), (2.2.3)

where

{a, b} := ∂ξa∂xb+ ∂ζa∂yb− ∂xa∂ξb− ∂ya∂ζb.

Note that S−3 (rather than S−2) appears on the right-hand side of (2.2.3) because κh is

O(h) in S(⟨x⟩−∞⟨ξ, ζ⟩m). Therefore,

σI =
i

(2πh)2
tr

ˆ
R4
κh♯hνhdR4 =

i

(2πh)2
tr

ˆ
R4

(
κhνh −

ih

2
{κh, νh}

)
dR4 + o(1)
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as h→ 0, with dR4 := dxdydξdζ. Since

κhνh = (ihk1 −
h2

4
k2)

1

π

ˆ
C
∂̄φ̃′(z)

(
σ−1
z +

ih

2
{σ−1
z , σz}ζ,yσ−1

z

)
d2z + h5/2ah

with ah ∈ S(⟨x, y, ξ, ζ⟩−∞), and

{κh, νh} =
{
ihk1,

1

π

ˆ
C
∂̄φ̃′(z)σ−1

z d2z
}
+ h2bh, bh ∈ S(⟨x, y, ξ, ζ⟩−∞),

it follows that

σI =
i

(2πh)2
1

π
tr

ˆ
R4

ˆ
C
∂̄φ̃′(z)

(
ihk1σ

−1
z − h2

2
k1{σ−1

z , σz}ζ,yσ−1
z

− h2

4
k2σ

−1
z +

h2

2
{k1, σ−1

z }
)
d2zdR4 + o(1)

as h→ 0. Since σI is independent of h, it follows that the O(h−1) term above vanishes, and

thus

σI =
i

(2π)3
tr

ˆ
R4

ˆ
C
∂̄φ̃′(z)

(
− k1σ

−1
z {σz, σ−1

z }ζ,y −
1

2
k2σ

−1
z + {k1, σ−1

z }
)
d2zdR4.

(2.2.4)

Observe that whenever (y, ξ, ζ) /∈ R, z 7→ σ−1
z is holomorphic and thus the above integral

over z vanishes (this is verified via an integration by parts in ∂̄). Since k1 and k2 vanish

whenever |x| is sufficiently large, the integration region R4 in (2.2.4) can be replaced by the

volume I ×R, with I ⊂ R a bounded interval.

Recalling that ∂xσ ≡ 0, it follows that {k1, σ−1
z } = P ′(x){∂ξσ, σ−1

z }ζ,y−P ′′(x)∂ξσ∂ξσ
−1
z

in (2.2.4). Using that
´
P ′ = 1 and

´
P ′′ = 0, we apply Fubini’s Theorem and integrate
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(2.2.4) in x to obtain

σI =
i

(2π)3
tr

ˆ
R

ˆ
C
∂̄φ̃′(z)

(
∂ξσzσ

−1
z {σz, σ−1

z }ζ,y − {∂ξσz, σ−1
z }ζ,y

)
d2zdR3, (2.2.5)

with dR3 := dydξdζ. At this point, we use the identity {a, b}ζ,y = ∂ζ(a∂yb)− ∂y(a∂ζb) and

integration by parts in (ζ, y) to write

ˆ
R

ˆ
C
∂̄φ̃′(z){∂ξσz, σ−1

z }ζ,yd2zdR3 =

ˆ
∂R

ˆ
C
∂̄φ̃′(z)∂ξσz(∂yσ

−1
z νζ − ∂ζσ

−1
z νy)d

2zdΣ.

(2.2.6)

Since z 7→ σ−1
z is holomorphic whenever (y, ξ, ζ) ∈ ∂R, an integration by parts in ∂̄ reveals

that the right-hand side of (2.2.6) vanishes. Thus we are left with

σI =
i

(2π)3
tr

ˆ
R

ˆ
C
∂̄φ̃′(z)∂ξσzσ

−1
z {σz, σ−1

z }ζ,yd2zdR3.

Integrating by parts in ∂̄ with z =: λ+ iω, we see that

σI =
1

2(2π)3
tr

ˆ
R

ˆ α

α0

φ′(λ)∂ξσzσ
−1
z {σz, σ−1

z }ζ,y
∣∣∣ω=0+

ω=0−
dλdR3.

Since ∂ξσzσ−1
z {σz, σ−1

z }ζ,y → 0 as |ω| → ∞, we have

∂ξσzσ
−1
z {σz, σ−1

z }ζ,y
∣∣∣ω=0+

ω=0−
= −
ˆ +∞

−∞
∂ω(∂ξσzσ

−1
z {σz, σ−1

z }ζ,y)dω.

Cyclicity of the trace and the fact that ∂ωσz = i imply that

tr ∂ω(∂ξσzσ
−1
z {σz, σ−1

z }ζ,y) = −i tr εijk∂k(σ−1
z ∂iσzσ

−1
z ∂jσzσ

−1
z ),

where εijk is the anti-symmetric tensor with ε123 = 1, and the variables are identified by
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(1, 2, 3) = (y, ξ, ζ). Pulling ∂k out of the integral over ω and integrating by parts, we get

tr

ˆ
R
∂ξσzσ

−1
z {σz, σ−1

z }ζ,y
∣∣∣ω=0+

ω=0−
dR3 = i

ˆ
∂R

ˆ +∞

−∞
ΘdωdΣ,

where we recall the definition of Θ in (2.2.1). Thus we have shown that

σI =
i

16π3

ˆ
[α0,α]

φ′(λ)
ˆ
∂R

ˆ +∞

−∞
ΘdωdΣdλ.

Integrating by parts in λ, we obtain

σI =
i

16π3

ˆ
∂R

ˆ +∞

−∞
ΘdωdΣ,

with now z = α+ iω in the above integrand. The fact that only the boundary term survives

follows from analyticity of Θ in z over the region of integration (so that ∂λΘ = −i∂ωΘ).

This completes the proof.

Corollary 2.2.2. Suppose H = Op(σ) satisfies (H1), P (x) = P ∈ S(0, 1) and φ ∈

S(0, 1;E1, E2). Let α ∈ (E1, E2) and define τ±,z := z − σ± with z = α + iω. Then

2πσI(H,P, φ) =
i

8π2
(I+ − I−), I± =

ˆ
R3

tr[τ−1
±,z∂ξτ±,z, τ

−1
±,z∂ζτ±,z]τ

−1
±,zdωdξdζ.

Proof. Fix y0 > 0 sufficiently large, and define RM := (−y0, y0)× (−M,M)2 for all M > 0.

Observe that |Θ| ≤ C⟨ω⟩−3 and |Θ| ≤ C⟨ξ, ζ⟩−m−2 uniformly in (y, ξ, ζ) ∈ ∂RM and

M > 0 sufficiently large, hence |Θ| ≤ C⟨ω⟩−3/2⟨ξ, ζ⟩−
m+2
2 by interpolation. It follows that

´ +∞
−∞ |Θ|dω ≤ C⟨ξ, ζ⟩−

m+2
2 . Therefore, taking R := RM in Theorem 2.2.1 and sending

M → ∞, we see that the contributions to σI in (2.2.1) from the sides of ∂RM with normal

vector in the ξ and ζ directions vanish. Indeed, the area of these surfaces is proportional

to M , with the maximum of the integrand bounded by CM−1−m/2. Thus we are left with

integrals over the sides corresponding to y = ±y0, over which σ(y, ξ, ζ) = σ±(ξ, ζ). As a
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consequence, σI = i
16π3

(I+ − I−), and the proof is complete.

Corollary 2.2.3. Suppose H = Op(σ̃) satisfies (H1), P (x) = P ∈ S(0, 1) and φ ∈

S(0, 1;E1, E2). Let α ∈ (E1, E2), and let S ⊂ R4 be bounded with a piecewise smooth

boundary ∂S. Fix x0 ∈ R and define σ(y, ξ, ζ) := σ̃(x0, y, ξ, ζ). Assume S contains all points

(0, y, ξ, ζ) where σ(y, ξ, ζ) has an eigenvalue of α. Then for z := α+ iω and σz := z− σ, we

have that

2πσI(H,P, φ) =
1

24π2

ˆ
∂S
u · νdΣ3, ul := tr ϵijkl∂iσzσ

−1
z ∂jσzσ

−1
z ∂kσzσ

−1
z , (2.2.7)

where ν is the outward unit normal to ∂S, dΣ3 = dΣ3(ω, y, ξ, ζ) is the Euclidean measure

on ∂S, and ϵijkl the anti-symmetric tensor with ϵ1234 = 1 and the variables identified by

(1, 2, 3, 4) = (ω, y, ξ, ζ).

Observe that we can write the above integral in a more geometric form:

ˆ
∂S
u · νdΣ3 =

ˆ
∂S

(σ−1
z dσz)

3.

Proof. By Theorem 2.2.1,

σI =
i

16π3
lim

M→∞

ˆ
∂R

ˆ M

−M
ΘdωdΣ. (2.2.8)

Since |Θ| ≤ C⟨ω⟩−3, it follows that if z = α± iM and i, j, k ∈ {ω, y, ξ, ζ}, then

ˆ
R
| tr ∂iσzσ−1

z ∂jσzσ
−1
z ∂kσzσ

−1
z |dR3 −→ 0 (2.2.9)

as M → ∞. Since ∂ωσ = i, we know that

Θ = −i tr εijk∂ωσσ−1
z ∂iσzσ

−1
z ∂jσzσ

−1
z νk. (2.2.10)
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It then follows from cyclicity of the trace that

σI =
1

48π3
lim

M→∞

ˆ
∂SM

u · νdΣ3, (2.2.11)

where SM := [−M,M ]×R. Indeed, the integral over [−M,M ]×∂R ⊂ ∂SM is precisely the

integral on the right-hand side of (2.2.8), while the integral over the rest of ∂SM vanishes

in the M → ∞ limit by (2.2.9). The factor of 3 adjustment in (2.2.11) compared to (2.2.8)

is justified by the rank-four tensor ϵijkl, which causes each term on the right-hand side of

(2.2.10) to appear three times in (2.2.11).

By assumption, all singularities of σ−1
z lie in SM ∩S when M is sufficiently large. Hence

σ−1
z is well-defined in SM∆S := (SM ∪S)\(S∩SM ). It follows that for (ω, y, ξ, ζ) ∈ SM∆S,

we have

∇ · u = ϵijkl tr ∂l(∂iσzσ
−1
z ∂jσzσ

−1
z ∂kσzσ

−1
z )

= −ϵijkl tr
(
∂iσzσ

−1
z ∂lσzσ

−1
z ∂jσzσ

−1
z ∂kσzσ

−1
z + ∂iσzσ

−1
z ∂jσzσ

−1
z ∂lσzσ

−1
z ∂kσzσ

−1
z

+
1

2
∂iσzσ

−1
z ∂jσzσ

−1
z ∂kσzσ

−1
z ∂lσzσ

−1
z +

1

2
∂lσzσ

−1
z ∂iσzσ

−1
z ∂jσzσ

−1
z ∂kσzσ

−1
z

)
= 0,

where we have used cyclicity of the trace to justify the second equality, and the antisymmetry

of ϵijkl for the last equality (the third term cancels half the second term, the fourth term

cancels half the first term, half the second term cancels half the first term). Using the

Divergence Theorem, we thus replace ∂SM in (2.2.11) by ∂S and the proof is complete.

2.2.2 Computing the conductivity

This section contains two simplifications of Theorem 2.2.1 that will become useful when

calculating the interface conductivity for systems of interest. The first result (Proposition
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2.2.4) is more general, as it requires σ to have differentiable eigenvalues and eigenvectors (up

to a set of measure zero), and makes no additional assumptions besides (H1). The second

(Proposition 2.2.5) provides an accessible formula for the conductivity as the degree of an

appropriate map, but is restricted to certain two-dimensional models.

Throughout, we will use the shorthand σI := σI(H,P, φ), where it is implied that P (x) =

P ∈ S(0, 1) and φ ∈ S(0, 1;E1, E2). Recall Propositions 2.1.3 and 2.1.4, which state that

σI is independent of φ and P .

Proposition 2.2.4. Suppose H = Op(σ) satisfies (H1). Fix x0 ∈ R and let λℓ(y, ξ, ζ)

denote the eigenvalues of σ(x0, y, ξ, ζ), and ψℓ(y, ξ, ζ) the corresponding eigenvectors. Given

E1 < α < E2 and R as in Theorem 2.2.1, define n+ := {ℓ : λℓ > α on ∂R} and n− :=

{ℓ : λℓ < α on ∂R}. Assume that the λℓ and ψℓ are differentiable on ∂R, up to a set of

Σ-measure zero. Then

2πσI =
i

2π

ˆ
∂R

εijk
∑

ℓ+∈n+,ℓ−∈n−
∂iψ

∗
ℓ+
ψℓ−ψ

∗
ℓ−∂jψℓ+νkdΣ. (2.2.12)

Proof. Recall that by the definition of ∂R, n+ ∪ n− = {1, 2, . . . , n}. Define the projectors

Πℓ := ψℓψ
∗
ℓ . We know that σ =

∑n
ℓ=1 λℓΠℓ, and hence σ−1

z =
∑n
ℓ=1(z − λℓ)

−1Πℓ whenever

ℑz ̸= 0. It follows from (2.2.1) and cyclicity of the trace that

2πσI =
i

8π2

ˆ
∂R

ˆ
R

n∑
ℓ1,ℓ2=1

(z − λℓ1)
−2(z − λℓ2)

−1dωεijk trΠℓ1∂iσΠℓ2∂jσνkdΣ. (2.2.13)

If λℓ1 ̸= λℓ2 , then

(z−λℓ1)
−2(z−λℓ2)

−1 = (λℓ2−λℓ1)
−2((z−λℓ2)

−1−(z−λℓ1)
−1)−(λℓ2−λℓ1)

−1(z−λℓ1)
−2.

Thus the integral over ω vanishes if λℓ1 − α and λℓ2 − α have the same sign, and otherwise
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equals 2π(λℓ2 − λℓ1)
−2. It follows that

2πσI =
i

2π

ˆ
∂R

∑
ℓ+∈n+,ℓ−∈n−

(λℓ+ − λℓ−)
−2εijk trΠℓ+∂iσΠℓ−∂jσνkdΣ,

where we have added the contributions of (ℓ1, ℓ2) ∈ n+ × n− and (ℓ1, ℓ2) ∈ n− × n+ in

(2.2.13). Finally, we observe that

trΠℓ+∂iσΠℓ−∂jσ = tr(λ2ℓ+Πℓ+∂iΠℓ+Πℓ−∂jΠℓ+ + λℓ+λℓ−Πℓ+∂iΠℓ+Πℓ−∂jΠℓ−

+ λℓ+λℓ−Πℓ+∂iΠℓ−Πℓ−∂jΠℓ+ + λ2ℓ−Πℓ+∂iΠℓ−Πℓ−∂jΠℓ−)

= −(λℓ+ − λℓ−)
2 trψℓ+∂iψ

∗
ℓ+
ψℓ−∂jψ

∗
ℓ−

= (λℓ+ − λℓ−)
2∂iψ

∗
ℓ+
ψℓ−ψ

∗
ℓ−∂jψℓ+ ,

and the result is complete.

We now simplify Theorem 2.2.1 for a large class of 2-dimensional models. An analogous

result for tight-binding models can be found in the literature [46]. For the current (non tight-

binding) setting, one can find a similar result in [42] that expresses topological invariants

in terms of the resolvent (iω − H)−1. Our result is unique in that it provides a simple

explicit expression for σI that can easily be computed without the resolvent or a spectral

decomposition.

We say that a point a ∈ Rd is a regular value of a map f : Rd → Rd if the preimage f−1(a)

is a finite collection of points {x1, x2, . . . , xp} ⊂ Rd such that the Jacobian Mmn
j = ∂mfn|xj

is nonsingular for all j. We let R(f) denote the set of all regular values of f . By Sard’s

Theorem [75], we know that Rd \ R(f) has measure zero.

Proposition 2.2.5. Let H = Op(σ) satisfy (H1), and fix x0 ∈ R. Suppose there exist
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(smooth and real-valued) functions f1, f2, f3 such that

σ(x0, y, ξ, ζ) = f1(y, ξ, ζ)σ1 + f2(y, ξ, ζ)σ2 + f3(y, ξ, ζ)σ3

for all (y, ξ, ζ) ∈ R3, where

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (2.2.14)

are the Pauli matrices. In particular, this means there exists a three-dimensional ball S such

that the vector field f := (f1, f2, f3) satisfies |f | :=
√
f21 + f22 + f23 ≥ ε0 in R3 \S, for some

ε0 > 0. Then the set Rε0 := R(f) ∩ {|a| < ε0} is nonempty. Let a ∈ Rε0, and define

f−1(a) =: {(yj , ξj , ζj)}
p
j=1. Then

2πσI = −
p∑
j=1

sgn detMj , (2.2.15)

where Mj ∈ R3×3 is the Jacobian matrix defined by Mmn
j = ∂mfn|(yj ,ξj ,ζj).

Proof. The fact that Rε0 ̸= ∅ is an immediate consequence of Sard’s Theorem [75]. Given

the structure of σ, we take α = 0 in Theorem 2.2.1, meaning that z = iω in (2.2.1). It

follows that

σ−1
z = −(ω2 + |f |2)−1(iω + σ),

from which we conclude that

σ−1
z ∂iσzσ

−1
z ∂jσzσ

−1
z = −(ω2 + |f |2)−3(iω + σ)∂iσ(iω + σ)∂jσ(iω + σ)

=− (ω2 + |f |2)−3σ∂iσσ∂jσσ + ω2(ω2 + |f |2)−3 (∂iσ∂jσσ + ∂iσσ∂jσ + σ∂iσ∂jσ
)

+ . . . ,
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where we have left out terms that are odd in ω in the last line. Carrying out the integral

over ω in (2.2.1), we find that

2πσI =
i

8π2

ˆ
∂R

(
−

3πϵijk

8|f |5
trσ∂iσσ∂jσσ +

πϵijk

8|f |3
tr(∂iσ∂jσσ + ∂iσσ∂jσ + σ∂iσ∂jσ)

)
νkdΣ.

Simplifying the above using cyclicity of the trace and the fact that σ2 = |f |2, we have

2πσI =
i

16π

ˆ
∂R

ϵijk

|f |3
trσ∂iσ∂jσνkdΣ.

Using commutation relations of the Pauli matrices, we see that

trσ∂iσ∂jσ = 4i
(
f1(∂if2∂jf3 − ∂if3∂jf2) + [(1, 2, 3) → (2, 3, 1)] + [(1, 2, 3) → (3, 1, 2)]

)
,

which we may rewrite as 4iϵmnpfm∂ifn∂jfp. Letting w ∈ R3 such that wk =
ϵijk
|f |3 trσ∂iσ∂jσ,

we have

∇ · w =
4i

|f |3
ϵ̃ijkϵmnp∂kfm∂ifn∂jfp

(
1− 3f2m

f21 + f22 + f23

)

away from the zeros of |f |2, where the only nonzero entries of ϵ̃ijk are ϵ̃123 = ϵ̃231 = ϵ̃312 =

1. By symmetry, we know that ϵ̃ijkϵmnpf2m∂kfm∂ifn∂jfp = ϵ̃ijkϵmnpf
2
n∂kfm∂ifn∂jfp =

ϵ̃ijkϵmnpf
2
p∂kfm∂ifn∂jfp, meaning that

∇ · w =
4i

|f |3
ϵ̃ijkϵmnp∂kfm∂ifn∂jfp

(
1−

f2m + f2n + f2p

f21 + f22 + f23

)
= 0.

Thus 2πσI = i
16π

´
∂R w · ν̂dΣ, where ν̂ is the unit vector normal to the surface ∂R and w

has zero divergence everywhere except for a finite number of points in R3. Hence we can
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deform ∂R in any way so long as it encloses the same zeros of |f |3. It follows that

2πσI =
i

16π

ˆ
∂S
w · ν̂dΣ; w · ν̂ =

−4i

|f |3
√
ξ2 + ζ2 + y2

det



0 f1 f2 f3

ξ ∂ξf1 ∂ξf2 ∂ξf3

ζ ∂ζf1 ∂ζf2 ∂ζf3

y ∂yf1 ∂yf2 ∂yf3


.

Using the geometric interpretation of the determinant, we have

2πσI = − 1

4π

ˆ
∂S

1

|f |3
det


f1 f2 f3

∂uf1 ∂uf2 ∂uf3

∂vf1 ∂vf2 ∂vf3

 du ∧ dv,

where u = −ξ̂ sinϕ+ ζ̂ cosϕ and v = −ξ̂ cos θ cosϕ− ζ̂ cos θ sinϕ+ ŷ sin θ, with θ and ϕ the

polar and azimuthal angles that parametrize ∂S. We conclude from [38, Corollary 14.2.1]

and continuity of the degree of a map that 2πσI = − deg g, where g : ∂S → S2 is the Gauss

map defined by

(y, ξ, ζ) 7→ f(y, ξ, ζ)− a

|f(y, ξ, ζ)− a|
.

The fact that deg g =
∑p
j=1 sgn detMj is a direct consequence of [38, Theorems 14.4.3 and

14.4.4].

2.3 Applications

We now apply the preceding results to standard Hamiltonians that appear in the analysis

of topological insulators and superconductors, and in particular the 2 × 2 Dirac system
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[7, 8, 10, 11, 68, 87]

H = Dxσ1 +Dyσ2 +m(y)σ3, (2.3.1)

and models for p-wave and d-wave superconductors following [86],

H =

(
1

2m
(D2

x +D2
y)− µ

)
σ1 +

1

2
(c(y)Dy +Dyc(y))σ2 + c0Dxσ3 (2.3.2)

H =

(
1

2m
(D2

x +D2
y)− µ

)
σ1 + c0(D

2
y −D2

x)σ2 +
1

2
Dx(c(y)Dy +Dyc(y))σ3. (2.3.3)

Here, c0, m, and µ are fixed positive constants, the σi are the Pauli matrices (2.2.14), and

we have defined Dα := −i∂α. We assume that m(y) and c(y) are smooth domain walls with

m(y) =


m−, y ≤ −y0

m+, y ≥ y0

and c(y) =


c−, y ≤ −y0

c+, y ≥ y0

for some y0 > 0, where the constants m± and c± are all nonzero. Without loss of generality,

assume m′(y) ̸= 0 for all y ∈ m−1(0), and c′(y) ̸= 0 for all y ∈ c−1(0).

Throughout this section, let σmin denote the smallest-magnitude eigenvalue of σ. We

continue to use the shorthand σI := σI(H,P, φ), where P (x) = P ∈ S(0, 1) and φ ∈

S(0, 1;E1, E2) is implied.

2× 2 Dirac system (2.3.1). We have H = Op(σ), with σ = ξσ1 + ζσ2 +m(y)σ3. Thus it

is clear that σ ∈ S11,0 with σ2 = ξ2 + ζ2 +m2(y) ≥ ξ2 + ζ2. Using that ⟨ξ, ζ⟩ − |(ξ, ζ)| ≤ 1,

it follows that |σmin| ≥ ⟨ξ, ζ⟩ − 1. Now, take σ± := ξσ1 + ζσ2 ± m±σ3, with E2 :=

min{|m+|, |m−|} and E1 := −E2. Since σ2± = ξ2 + ζ2 +m2
± ≥ m2

±, (H1) is satisfied.

We now apply Proposition 2.2.5 with f = (ξ, ζ,m(y)), so that f−1(0) = {(y, 0, 0) :

m(y) = 0}. Given a point y ∈ m−1(0), the determinant of the Jacobian of f evaluated at

(y, 0, 0) is m′(y). Thus it follows that 2πσI =
1
2(sgn(m−)− sgn(m+)), as in e.g., [7, 10].
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p-wave superconductor model (2.3.2). We have H = Op(σ), with

σ =
( 1

2m
(ξ2 + ζ2)− µ

)
σ1 + c(y)ζσ2 + c0ξσ3.

It follows that σ ∈ S21,0 with, moreover, σ2 =
(

1
2m(ξ2 + ζ2) − µ

)2
+ c2(y)ζ2 + c20ξ

2 ≥(
1
2m(ξ2 + ζ2)− µ

)2
, which implies

|σmin| ≥
∣∣∣ 1

2m
(ξ2 + ζ2)− µ

∣∣∣ = ∣∣∣ 1

2m
(⟨ξ, ζ⟩2 − 1)− µ

∣∣∣.
Thus there exists C1 > 0 and a compact set K ⊂ R2 such that |σmin| ≥ C1⟨ξ, ζ⟩2 for

all (ξ, ζ) ∈ R2 \ K. Moreover, there exists C2 > 0 such that ⟨ξ, ζ⟩2 ≤ C2 and hence

1 + |σmin| ≥ 1 ≥ 1
C2

⟨ξ, ζ⟩2 for all (ξ, ζ) ∈ K. It follows that for c := min{C1,
1
C2

}, we have

1+ |σmin| ≥ c⟨ξ, ζ⟩2, for (ξ, ζ) ∈ R2. Now, take σ± := ( 1
2m(ξ2+ ζ2)−µ)σ1+ c±ζσ2+ c0ξσ3,

so that σ2± = ( 1
2m(ξ2 + ζ2)− µ)2 + c2±ζ

2 + c20ξ
2. Minimizing the above with respect to (ξ, ζ)

is equivalent to minimizing

f±(a, b) :=
( 1

2m
(a+ b)− µ

)2
+ c2±b+ c20a

with respect to (a, b) ≥ 0. We see that

∂af± =
1

m

( 1

2m
(a+ b)− µ

)
+ c20, ∂bf± =

1

m

( 1

2m
(a+ b)− µ

)
+ c2±,

∂2aaf± = ∂2abf± = ∂2bbf± =
1

2m2
,

hence f± is convex. Since ∂af± − ∂bf± = c20 − c2± , we know that the minimum value

of f± is attained when either a = 0 or b = 0. We have f±(0, b) =
(

1
2mb − µ

)2
+ c2±b,

which is a convex function that is minimized when 1
m

(
1
2mb − µ

)
+ c2± = 0, or equivalently

b = 2mµ − 2m2c2± =: b∗. Similarly, f±(a, 0) is a convex function that is minimized when
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a = 2mµ− 2m2c20 =: a∗.

Case 1: Suppose a∗, b∗ < 0. Then the solution for our minimization problem is a = b = 0,

which yields a value of f±(0, 0) = 1
4m2µ

2.

Case 2: Suppose a∗ < 0 < b∗. Then the minimum value of f± over the allowed domain

is

f±(0, b∗) = m2c4± + (2mµ− 2m2c2±)c
2
± = 2mµc2± −m2c4± = mc2±(2µ−mc2±),

which is bounded below by m2c4±.

Case 3: Suppose b∗ < 0 < a∗. Then the minimum value of f± over the allowed domain

is

f±(a∗, 0) = m2c40 + c20(2mµ− 2m2c20) = mc20(2µ−mc20),

which is bounded below by m2c40.

Case 4: Suppose a∗, b∗ > 0. Then the minimum value of f± over the allowed domain is

min{f±(a∗, 0), f±(0, b∗)} = mc21(2µ−mc21), c1 := min{c0, c±}.

In each case, we have proven the existence of E± > 0 such that σ2± ≥ E2
±. Define E0 :=

min{E+, E−}, and take (E1, E2) := (−E0, E0). Thus we have verified (H1).

We now apply Proposition 2.2.5 with f1 = 1
2m(ξ2+ζ2)−µ, f2 = ζc(y), and f3 = c0ξ. The

zeros of f21 + f22 + f23 are (y, ξ, ζ) = (y1, 0,±
√
2mµ), for all y1 ∈ c−1(0). A straightforward

calculation reveals that sgn det ∂mfn|(y1,0,±
√
2mµ) = sgn c′(y1), hence 2πσI = sgn(c−) −

sgn(c+).
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d-wave superconductor model (2.3.3). Here, the symbol of H is

σ =
( 1

2m
(ξ2 + ζ2)− µ

)
σ1 + c0(ζ

2 − ξ2)σ2 + ξζc(y)σ3.

We see that σ ∈ S21,0, and σ2 = ( 1
2m(ξ2 + ζ2)− µ)2 + c20(ζ

2 − ξ2)2 + ξ2ζ2c2(y) ≥ ( 1
2m(ξ2 +

ζ2)−µ)2, hence σ is elliptic. As with the p-wave superconductor, we set σ± equal to σ with

c(y) replaced by c±.

We now apply Proposition 2.2.5, with f1 = 1
2m(ξ2 + ζ2) − µ, f2 = c0(ζ

2 − ξ2), and

f3 = ξζc(y). The zeros of f21+f
2
2+f

2
3 are (y, ξ, ζ) = (y1, ε1

√
mµ, ε2

√
mµ), for all y1 ∈ c−1(0)

and ε1, ε2 ∈ {−1, 1}. (That is, there are four zeros for every y1 ∈ c−1(0).) One can

then easily verify that sgn det ∂mfn|(y1,ε1√mµ,ε2√mµ) = sgn c′(y1). Thus we conclude that

2πσI = 2(sgn(c−)− sgn(c+)).

Regularized model of equatorial waves. The two-dimensional water wave model is

given by a Hamiltonian H0 = Op(σ0) with

σ0(x, y, ξ, ζ) =


0 ξ ζ

ξ 0 −if(y)

ζ if(y) 0

 (2.3.4)

where f(y) is a Coriolis force that is positive when y > 0 (northern hemisphere of (necessarily)

flat Earth) and negative when y < 0; see [10, 33, 79] for background on this water wave

problem and in particular the observation that the bulk-interface correspondence fails for

certain profiles f(y) [10].

We thus consider here a regularized version given by Hamiltonian Hµ = Op(σ) given by
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σ = λ+Π+ + λ−Π− + λ0Π0, where, following calculations in [10, 33]

Πj = ψjψ
∗
j , ψ0 =

1

κ


if

ζ

−ξ

 , ψ± =
1

ρ


ifξ ± κζ

ξζ ± ifκ

ζ2 + f2

 , λ0 = µκ2(1 + κ2)−
1
2 , λ± = ±κ,

with f ∈ S(f−, f+), κ =
√
f2 + ξ2 + ζ2, and ρ = κ

√
2(f2 + ζ2) for some nonzero constants

µ and f±. We verify that Hµ = H0 when the regularization parameter µ = 0.

The role of the regularization is to replace the infinitely degenerate (flat band) eigenvalue

0 by a topologically trivial band with eigenvalues tending to ±∞ as |(ξ, ζ)| → ∞. The choice

of the regularization for λ0 ensure that σ ∈ S11,0 and is elliptic when µ ̸= 0.

As above, we set σ± equal to σ with f(y) replaced by f±. Defining µ1 := min{|µ|, 1}

and f0 := min{|f+|, |f−|}, we can set E2 := f0min{µ1, |µ|f0} and E1 := −E2, so that (H1)

is satisfied.

We apply Proposition 2.2.4, with µ > 0 for concreteness. Take ∂R3 := {y2 + ξ2 + ζ2 =

r2} ⊂ R3, with r > 0 sufficiently large so that |f(y)| ≥ f0 whenever |y| ≥ r. The λj and ψj

are differentiable everywhere on ∂R3, except perhaps where ρ = 0. But {ρ = 0} ∩ ∂R3 ⊂

{ζ = 0}∩{y2+ξ2 = r2} has Σ-measure zero, so indeed the regularity requirement is satisfied.

Observe that

∂ξψ0 =
1

κ


0

0

−1

+ c1ψ0, ∂ζψ0 =
1

κ


0

1

0

+ c2ψ0, ∂yψ0 =
1

κ


if ′

0

0

+ c3ψ0,

where the ci are scalar-valued functions. The terms in the integrand of (2.2.12) corresponding

to the pair {λ0, λ−} are ℑ((ψ∗−∂ξψ0)∗ψ∗−∂ζψ0) = − 1
κ2ρ2

fκ(ζ2+f2), ℑ((ψ∗−∂ξψ0)∗ψ∗−∂yψ0) =
1

κ2ρ2
f ′κζ(ζ2+f2), and ℑ((ψ∗−∂ζψ0)∗ψ∗−∂yψ0) = − 1

κ2ρ2
f ′κξ(ζ2+f2). Thus the contribution
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to 2πσI of {λ0, λ−} is

i

2π

ˆ
∂R3

εijk∂iψ
∗
0ψ−ψ

∗
−∂jψ0νkdΣ

=
i

2π

ˆ
∂R3

2i(ℑ((ψ∗−∂ξψ0)∗ψ∗−∂ζψ0)νy −ℑ((ψ∗−∂ξψ0)∗ψ∗−∂yψ0)νζ

+ ℑ((ψ∗−∂ζψ0)∗ψ∗−∂yψ0)νξ)dΣ

=
1

π

ˆ
∂R3

ζ2 + f2

κ2ρ2
(fy + f ′ζ2 + f ′ξ2)dΣ =

1

2π

ˆ
∂R3

1

κ4
(fy + f ′ζ2 + f ′ξ2)dΣ.

Considering the case f− < 0 < f+, we can without loss of generality take f(y) = y on ∂R3,

so that the integral becomes 1
2π

´
∂R3

1
κ2
dΣ = 2. One verifies that ψ∗−∂ξψ+ = ψ∗−∂ζψ+ =

ψ∗−∂yψ+ = 0, meaning there is no contribution to the conductivity from the pair {λ+, λ−}.

We conclude that 2πσI = 2, which in practice corresponds to two (observed) eastward-

moving asymmetric modes along the equator. A similar calculation shows that 2πσI = 2

also when µ < 0, so that the conductivity is independent of the regularization parameter

µ ̸= 0. If instead we assume that f+ < 0 < f− (with south pole pointing upwards), then

2πσI = −2.

2.4 Extension to junction models

Above, we considered models of two 2-dimensional insulators that were joined together along

a flat (e.g. y = 0) interface. In this subsection, we will generalize the theory to more

complicated geometries; see Figure 2.1 for an illustration. Our goal is to describe systems

exhibiting surface waves that propagate along the interfaces between the + and − regions

with a preferred direction (e.g. moving from left to right). Analogous to (1.0.1), we will

define a junction conductivity that quantifies the net current associated with these waves at

a particular energy. One can define the conductivity so that it measures the contribution

from any combination of interfaces (more details below Corollary 2.4.3).
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Figure 2.1: Two illustrations of the models considered in Section 2.4. Here, two insulators
(labeled by + and −) are joined together at a junction. We analyze the asymmetric transport
along each interface and through the junction. Two example level curves {g = 0} are
presented in each case (solid and dashed curves), for some arbitrary choices of g satisfying
the appropriate assumptions below. The scale of this picture is much smaller than 1, so that
we are not in the region where g(r, θ) = rgΘ(θ).

The main result of this subsection (Theorem 2.4.8 below) is a bulk-interface correspon-

dence, which equates the conductivity to the difference of two integrals depending only on

the associated insulators. In particular, the conductivity does not depend on local properties

of the material, such as the way the insulators are joined together at each interface. The-

orem 2.4.8 allows for straight-forward evaluations of the conductivity using the previously

developed theory for interface models in Sections 2.1–2.3.

The proof of Theorem 2.4.8 requires familiar stability properties of the conductivity,

resembling those of the previous subsections. As an alternative approach, we tie the con-

ductivity to a Fredholm index (Theorem 2.4.2), with the latter known to be quantized and

invariant with respect to a large class of perturbations. This implies a conservation law

(Corollary 2.4.3) showing (among other things) that the currents entering and leaving the

junction are the same. We also prove invariance of the junction conductivity with respect to

the corresponding density of states (Corollary 2.4.4), semiclassical rescaling (Theorem 2.4.7)

and other “continuous” perturbations of the Hamiltonian (Corollary 2.4.5). We conclude

the section with applications to a continuum model of twisted bilayer graphene and a 2× 2
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junction Dirac model.

Let us introduce some notation. As above, the Hamiltonians H act on H := L2(R2)⊗Cn.

We label the spatial coordinates (x, y) ∈ R2 and the corresponding dual variables (ξ, ζ) ∈ R2.

Given functions u ∈ C∞(R2) and A ∈ C∞(R2;Cn×n), fixed matrices A1 and A2 in Cn×n,

and fixed constants c1 ≤ c2, we write A ∈ S(A1, A2; c1, c2;u) to mean that

A =


A1, u < c1

A2, u > c2

. (2.4.1)

We let S(A1, A2;u) denote the union of S(A1, A2; c1, c2;u) over all −∞ < c1 ≤ c2 <

∞. If A = A(α) is a function of just one variable, then we define S(A1, A2; c1, c2) :=

S(A1, A2; c1, c2;α) and S(A1, A2) := S(A1, A2;α). Note that if A(x, y) = χA(u(x, y)) for

some χA ∈ S(A1, A2), then A ∈ S(A1, A2;u).

Let (r, θ) denote the polar coordinates for (x, y). Fix k ∈ N and let Θk ⊂ T be any set

containing 2k elements, where T := [0, 2π) is the one-dimensional torus. Let fΘ ∈ C∞(T)

such that fΘ(θ) = 0 if and only if θ ∈ Θk, and f ′Θ(θ) ̸= 0 whenever θ ∈ Θk. This means fΘ

changes sign across every point in Θk and is bounded away from 0 for all θ away from Θk.

Let f ∈ C∞(R2) such that f(x, y) = f(r, θ) := rfΘ(θ) whenever r ≥ 1.

As before, we will fix −∞ < Ẽ1 < Ẽ2 < ∞ and let Φ ∈ C∞c (R) such that Φ ≡ 1 in

[Ẽ1, Ẽ2]. We make the following assumption.

(H0’) Let H ∈ Op(ESm1,0) such that Φ(H) ∈ Op(S(⟨f(x, y), ξ, ζ⟩−∞)).

Let {θ1, θ2} ⊂ T such that θ1, θ2 /∈ Θk. Let gΘ ∈ C∞(T) such that gΘ(θ) = 0 if

and only if θ ∈ {θ1, θ2}, and g′Θ(θj) ̸= 0 for j ∈ {1, 2}. Let g ∈ C∞(R2) such that

g(x, y) = g(r, θ) = rgΘ(θ) for all r ≥ 1. Our assumptions on f and g imply the existence of
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positive constants C1 < C2 such that

C1⟨x, y⟩ ≤ ⟨f(x, y), g(x, y)⟩ ≤ C2⟨x, y⟩. (2.4.2)

Moreover, there exists a smooth function (x0, y0) : R → R2 with lim|t|→∞ |(x0(t), y0(t))| =

∞ and whose range separates the xy−plane into two regions, R+ and R, such that g ≥ 0 in

R+. One can for example take a curve contained in {g = 0}, in which case (x0(t), y0(t)) =

(β1t, β2t) for all |t| sufficiently large, with the constants β1 and β2 depending only on sgn t.

Our convention is that R+ be on the right side of the curve defined by (x0, y0) as t increases.

That is, if you were to move along the curve with t increasing, then R+ would be on your

right.

The similarity between (H0) and (H0’) naturally implies the following

Lemma 2.4.1. Suppose H satisfies (H0’), and let P (x, y) = P ∈ S(0, 1; g) and φ ∈

S(0, 1; Ẽ1, Ẽ2). Then [H,P ]φ′(H) is trace-class. If ψ ∈ C∞c (Ẽ1, Ẽ2), then q(H)[ψ(H), P ] is

trace-class for any polynomial q.

Proof. Replace (x, y) by (f(x, y), g(x, y)) in the proof of Lemma 2.1.1, and use (2.4.2).

Thus we can define a junction conductivity σI(H,P, φ) by (1.0.1), where the switch

functions satisfy φ ∈ S(0, 1; Ẽ1, Ẽ2) as before and P (x, y) = P ∈ S(0, 1; g). The stability

results from Section 2.1 extend easily to this new setting. For pedagogical purposes, we

instead present an alternative method that ties the conductivity to a Fredholm index.

Theorem 2.4.2. Suppose H satisfies (H0’), and let P (x, y) = P ∈ S(0, 1; g) and φ ∈

S(0, 1; Ẽ1, Ẽ2). Define U(H) := ei2πφ(H) and let P̄ = P̄ (x, y) = χ(g(x, y) − α), where

χ : R → R is the Heavyside step function and α ∈ R. Then P̄U(H)P̄ is a Fredholm operator

on the range of P̄ , with

2πσI(H,P, φ) = Index(P̄U(H)P̄ ).
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Proof. We will prove that

2πσI(H,P, φ) = Tr[U, P ]U∗ = Tr[U, P̄ ]U∗ = Index(P̄UP̄ ), (2.4.3)

where we use the shorthand U := U(H).

We begin by proving the first equality in (2.4.3). Let V := U − I, and observe that

V ∈ C∞c ({Φ = 1}◦). We have

Tr[U, P ]U∗ = Tr[V, P ]U∗ = Tr[V, P ]V ∗ + Tr[V, P ].

Using that [(z−H)−1, P ] = (z−H)−1[H,P ](z−H)−1, the Helffer-Sjöstrand formula (A.1.6)

and cyclicity of the trace [57] imply that

Tr[V, P ]V ∗ = Tr
(
− 1

π

ˆ
C
∂̄Ṽ (z)[H,P ](z −H)−2d2zV ∗(H)

)
.

After integrating by parts in ∂ and using that ∂Ṽ = Ṽ ′ for some almost analytic extension

Ṽ ′ of V ′, we see that

Tr[V, P ]V ∗ = Tr[H,P ]V ′V ∗ = 2πσI(H,P )− Tr 2πi[H,P ]φ′U

= 2πσI(H,P, φ)− Tr[H,P ]V ′.
(2.4.4)

We have thus shown that

Tr[U, P ]U∗ = 2πσI(H,P )− Tr[H,P ]V ′ + Tr[V, P ].

By the same logic used in (2.4.4), we obtain that Tr[H,P ]V ′ = Tr[H,P ]V ′Φ = Tr[V, P ]Φ,
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hence

Tr[U, P ]U∗ = 2πσI(H,P, φ) + Tr[V, P ](1− Φ).

Again using cyclicity of the trace, this means

Tr[U, P ]U∗ = 2πσI(H,P, φ) + TrΨ1[V, P ]Ψ2,

for some Ψj = ψj(H), where ψj ∈ C∞(R) vanishes on supp(V ). The first equality in (2.4.3)

follows.

We now prove the second equality of (2.4.3). Let χ(x, y) = χ1(g(x, y)) where χ1 ∈ C∞c

such that χ(P̄ − P ) = P̄ − P . Then

[U, P̄ − P ]U∗ = [V, P̄ − P ]U∗ = V χ(P̄ − P )U∗ − (P̄ − P )χV U∗

is trace class, as V χ and χV are both trace-class by the ΨDO calculus with P − P1 and U∗

bounded. Since we know that [U, P ]U∗ is trace-class, this proves that

[U, P̄ ]U∗ = [U, P̄ − P ]U∗ + [U, P ]U∗

is trace-class. Now,

Tr[U, P̄ − P ]U∗ = TrV χ(P̄ − P )U∗ − Tr(P̄ − P )χV U∗,

with

TrV χ(P̄ − P )U∗ = Tr(P̄ − P )U∗V χ
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and

Tr(P̄ − P )χV U∗ = Trχ(P̄ − P )χV U∗ = Tr(P̄ − P )χV U∗χ = Tr(P̄ − P )V U∗χ.

Since [V, U∗] = 0, we have proven that Tr[U, P̄−P ]U∗ = 0, which verifies the second equality

of (2.4.3).

Finally, the last equality of (2.4.3) follows immediately from [6, Proposition 2.4] and the

fact that [U, P̄ ]U∗ is trace-class.

Theorem 2.4.2 is a powerful result with many implications. For example, we immediately

have the following three corollaries.

Corollary 2.4.3. Suppose H satisfies (H0’), P, P1 ∈ S(0, 1; g(x, y)) and φ ∈ S(0, 1; Ẽ1, Ẽ2).

Then

σI(H,P, φ) = σI(H,P1, φ).

Proof. Applying Theorem 2.4.2, we have 2πσI(H,P, φ) = Index(P̄U(H)P̄ ) = 2πσI(H,P1, φ).

For an intuitive explanation of the above corollary, recall that our model is of two types

of materials (+ and −) that are smoothly glued together at a junction. See Figure 2.1 for two

examples, where we assume for concreteness that P transitions from 0 to 1 in the vicinity

of {g = 0}. The solid curve (in both panels) can see only one transition (+ to − and − to

+ in the left and right panels, respectively), while the dashed level curves contain multiple

transitions (+ → − → + → − for the left panel and − → + → − → + → − → + for

the right panel). As expected, the conductivity only cares about the “starting” and “ending”

topology along the level curve and is unaffected by oscillations in between. Observe that

Corollary 2.4.3 describes a conservation law, as the solid and dashed curves respectively

measure the conductivity entering and leaving the junction.
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Corollary 2.4.4. Suppose H satisfies (H0’), and let P (x, y) = P ∈ S(0, 1; g) and φ, φ1 ∈

S(0, 1; Ẽ1, Ẽ2). Then

σI(H,P, φ) = σI(H,P, φ1).

Proof. For µ ∈ [0, 1], define φµ := φ+µ(φ1−φ). Theorem 2.4.2 implies that σI(H,P, φ′µ) =

Index(P̄UµP̄ ) for all µ ∈ [0, 1], where Uµ := ei2πφµ(H). With Vµ := Uµ − I, the Helffer-

Sjöstrand formula (A.1.6) implies

Uµ2 − Uµ1 = Vµ2 − Vµ1 = − 1

π

ˆ
C
∂̄(Ṽµ2(z)− Ṽµ1(z))(z −H)−1d2z.

Since |∂̄(Ṽµ2(z) − Ṽµ1(z))| ≤ C|µ2 − µ1| uniformly in µ1, µ2 ∈ [0, 1] and z ∈ C, it follows

that
∥∥Uµ2 − Uµ1

∥∥ → 0 as µ2 − µ1 → 0. Therefore, by [55, Theorem 19.1.5], Index(P̄UµP̄ )

is independent of µ ∈ [0, 1], and the result is complete.

Corollary 2.4.5. Let H ∈ Op(ESm1,0) and W ∈ Op(Sm1,0) such that H(µ) := H + µW

satisfies (H0’) for all µ ∈ [0, 1]. Let P (x, y) = P ∈ S(0, 1; g) and φ ∈ S(0, 1; Ẽ1, Ẽ2). Then

σI(H
(1), P, φ) = σI(H,P, φ).

As before, in the following proofs we write A ∈ Op(µS(m)) to mean that A = Op(a)

with a ∈ S(m) for all µ and |∂αa| ≤ Cαµm uniformly in µ.

Proof. We use the shorthand σI(H
(µ)) := σI(H

(µ), P, φ). By definition, Φ ∈ C∞c (E1, E2)

satisfies φ′Φ = φ′. We see that

σI(H
(µ2))− σI(H

(µ1)) =

Tr i[H(µ2), P ](φ′(H(µ2))− φ′(H(µ1))) + (µ2 − µ1) Tr i[W,P ]φ
′(H(µ1)),
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with

φ′(H(µ2))− φ′(H(µ1)) =
1

π
(µ2 − µ1)

ˆ
C
∂̄φ̃′(z)(z −H(µ2))−1W (z −H(µ1))−1d2z

by the Helffer-Sjöstrand formula (A.1.6). Observe that

φ′(H(µ2))− φ′(H(µ1)) ∈ Op(|µ2 − µ1|S(⟨x, y, ξ, ζ⟩m)) ∩Op(S(⟨f(x, y), ξ, ζ⟩−∞)),

and thus

φ′(H(µ2))− φ′(H(µ1)) ∈ Op(|µ2 − µ1|1/2S(⟨f(x, y), ξ, ζ⟩−∞))

by interpolation. Since [H(µ2), P ] ∈ Op(S(⟨x, y, ξ, ζ⟩m⟨g(x, y)⟩−∞)), the composition calcu-

lus implies that

|Tr i[H(µ2), P ](φ′(H(µ2))− φ′(H(µ1)))| ≤ C|µ2 − µ1|1/2.

Since |Tr i[W,P ]φ′(H(µ1))| ≤ C independent of µ2, we have shown that µ 7→ σI(H
(µ)) is

continuous on µ ∈ [0, 1]. But Theorem 2.4.2 implies that 2πσI(H(µ)) is equal to an (integer-

valued) Fredholm index for all µ, and thus σI(H(µ)) is independent of µ ∈ [0, 1].

Analogous to (H1), we now introduce the following class of symbols.

(H1’) Let H = Op(σ) with σ ∈ ESm1,0. Suppose there exist symbols σ± ∈ Sm1,0 indepen-

dent of (x, y) with no spectrum in the open interval (E1, E2), such that σ = σ± whenever

±f(x, y) > 0 is sufficiently large.

We then have
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Proposition 2.4.6. Suppose H = Op(σ) satisfies (H1’) and Φ ∈ C∞c (E1, E2). Define

Hh := Oph(σ) for h ∈ (0, 1]. Then Φ(Hh) ∈ Oph(S(⟨f(x, y), ξ, ζ⟩−∞)).

Proof. See the proof of Proposition 2.1.10.

Proposition 2.4.6 proves that the class (H1’) is a subset of (H0’). We now show that

under (H1’), the interface conductivity is stable with respect to semi-classical rescaling.

Theorem 2.4.7. Suppose H = Op(σ) satisfies (H1’), and define Hh := Oph(σ). Let

P (x, y) = P ∈ S(0, 1; g) and φ ∈ S(0, 1;E1, E2). Then σI(Hh, P, φ) = σI(H,P, φ) for

all h ∈ (0, 1].

Proof. For h ∈ (0, 1], define Uh := ei2πφ(Hh). Proposition 2.4.6 and Theorem 2.4.2 imply

that 2πσI(Hh, P, φ) = Index(P̄UhP̄ ) for all h ∈ (0, 1]. It thus suffices to show that for any

fixed h ∈ (0, 1], Index(P̄Uh′P̄ ) is constant over h′ in an open neighborhood of h. Using the

Helffer-Sjöstrand formula (A.1.6), we write

Uh′ − Uh =
1

π

ˆ
R
∂̄Ṽ (z)(z −Hh′)

−1(Hh′ −Hh)(z −Hh)
−1d2z.

Since
∥∥(z −Hh′)

−1
∥∥ ≤ |ℑz|−1 and Hh′ −Hh ∈ Op(|h′ − h|S(⟨ξ, ζ⟩m)) with (z −Hh)

−1 ∈

Op(S(⟨ξ, ζ⟩−m)) for all ℑz ̸= 0 (with bounds growing at most algebraically in |ℑz|−1), the

rapid decay of ∂̄Ṽ (z) near the real axis implies that ∥Uh′ − Uh∥ ≤ C|h′ − h|. The result

then follows from [55, Theorem 19.1.5].

2.4.1 Bulk-interface correspondence

As in Section 2.2, the above results allow for an accessible formula for σI(H,P, φ). In

particular, we will prove a bulk-interface correspondence, extending Corollary 2.2.2 to the

junction setting.
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For (t, ξ, ζ) ∈ R3, define

τ(t, ξ, ζ) := σ(x0(t), y0(t), ξ, ζ), τz := z − τ, (2.4.5)

where we recall the definition of (x0, y0) below (2.4.2). By (H1’), there exist t0 > 0 and

symbols τ± ∈ {σ+, σ−} such that τ(t, ξ, ζ) = τ±(ξ, ζ) whenever ±t ≥ t0.

Theorem 2.4.8. Suppose H satisfies (H1’), P (x, y) = P ∈ S(0, 1; g) and φ ∈ S(0, 1;E1, E2).

Let α ∈ (E1, E2) and define τ±,z := z − τ± with z = α + iω. Then

2πσI(H,P, φ) =
i

8π2
(I+ − I−), I± =

ˆ
R3

tr[τ−1
±,z∂ξτ±,z, τ

−1
±,z∂ζτ±,z]τ

−1
±,zdωdξdζ.

As with Theorem 2.2.1, we will expand σI(Hh, P, φ) in the semiclassical parameter h and

apply Theorem 2.4.7 to eliminate terms that are not O(1).

Proof. By Theorem 2.4.4, σI(H,P, φ) is independent of φ ∈ S(0, 1;E1, E2), thus we can

take φ′ ∈ C∞c (α0, α) for some α0 > E1. We will use the shorthand σI := σI(H,P, φ).

Let Oph νh := φ′(Hh). By Proposition A.3.3, we have

νh +
1

π

ˆ
C
∂̄φ̃′(z)q̃z,hd

2z ∈ S−3/2(⟨f(x, y), ξ, ζ⟩−∞),

where

q̃z,h = σ−1
z +

ih

2
{σ−1
z , σz}σ−1

z , {a, b} := ∂ξa∂xb+ ∂ζa∂yb− ∂xa∂ξb− ∂ya∂ζb

and σz := z − σ. With Oph(κh) := [Hh, P ], we have that

κh + ihk1 −
h2

4
k2 ∈ S−3(⟨g(x, y)⟩−∞⟨ξ, ζ⟩m),
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where

k1 := ∂ξσ∂xP + ∂ζσ∂yP, k2 := ∂ξξσ∂xxP + 2∂ξζσ∂xyP + ∂ζζσ∂yyP. (2.4.6)

Since νh ∈ S(⟨f(x, y), ξ, ζ⟩−∞) and κh ∈ S−1(⟨g(x, y)⟩−∞⟨ξ, ζ⟩m), the composition calculus

implies that

κh♯hνh − κhνh +
ih

2
{κh, νh} ∈ S−3(⟨x, y, ξ, ζ⟩−∞),

with S−3 (rather than S−2) above because κh is O(h) in S(⟨g(x, y)⟩−∞⟨ξ, ζ⟩m). Therefore,

σI =
i

(2πh)2
tr

ˆ
R4
κh♯hνhdR4 =

i

(2πh)2
tr

ˆ
R4

(
κhνh −

ih

2
{κh, νh}

)
dR4 + o(1)

as h→ 0, with dR4 := dxdydξdζ. Since

κhνh = (ihk1 −
h2

4
k2)

1

π

ˆ
C
∂̄φ̃′(z)

(
σ−1
z +

ih

2
{σ−1
z , σz}σ−1

z

)
d2z + h5/2ah

for some ah ∈ S(⟨x, y, ξ, ζ⟩−∞) and

{κh, νh} =
{
ihk1,

1

π

ˆ
C
∂̄φ̃′(z)σ−1

z d2z
}
+ h2bh, bh ∈ S(⟨x, y, ξ, ζ⟩−∞),

it follows that

σI =
i

(2πh)2
1

π
tr

ˆ
R4

ˆ
C
∂̄φ̃′(z)

(
ihk1σ

−1
z − h2

2
k1{σ−1

z , σz}σ−1
z

− h2

4
k2σ

−1
z +

h2

2
{k1, σ−1

z }
)
d2zdR4 + o(1)

as h→ 0. Since σI is independent of h, it follows that the O(h−1) term above vanishes, and
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thus

σI =
i

(2π)3
tr

ˆ
R4

ˆ
C
∂̄φ̃′(z)

(
− k1σ

−1
z {σz, σ−1

z } − 1

2
k2σ

−1
z + {k1, σ−1

z }
)
d2zdR4.

Observe that whenever ⟨f(x, y), ξ, ζ⟩ is sufficiently large, z 7→ σ−1
z is holomorphic and thus

the above integral over z vanishes (this is verified via an integration by parts in ∂̄). Using

that k1 and k2 vanish whenever ⟨g(x, y)⟩ is sufficiently large, we can replace the above

integration limit R4 by a sufficiently large rectangle B := Bxy×Bξζ ⊂ R2×R2. We require

that B contain all points (x0(t), y0(t), ξ, ζ) for which σ(x0(t), y0(t), ξ, ζ) has an eigenvalue

of α. Moreover, assume that Bxy contains (x0(t0), y0(t0)) and (x0(−t0), y0(−t0)), where we

recall the respective definitions of t0 and (x0, y0) above Theorem 2.4.8 and below (2.4.2).

At this point, {k1, σ−1
z } can be written in divergence form and the corresponding term

converted (via integration by parts in (x, y, ξ, ζ)) to an integral over the surface ∂B. An

integration by parts in ∂̄ then reveals that the contribution of this term vanishes. Thus we

are left with

σI = − i

(2π)3
tr

ˆ
B

ˆ
C
∂̄φ̃′(z)

(
k1σ

−1
z {σz, σ−1

z }+ 1

2
k2σ

−1
z

)
d2zdR4. (2.4.7)

We now simplify the first term above. Integrating by parts in ∂̄ with z =: λ + iω, we see

that

σI,1 :=
−i

(2π)3
tr

ˆ
B

ˆ
C
∂̄φ̃′(z)k1σ

−1
z {σz, σ−1

z }d2zdR4

=
−1

2(2π)3
tr

ˆ
B

ˆ α

α0

φ′(λ)k1σ
−1
z {σz, σ−1

z }
∣∣∣ω=0+

ω=0−
dλdR4.

Let L := {x0(t), y0(t) : t ∈ R} be the range of (x0, y0). For simplicity, assume that L ⊂
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g−1(0). By cyclicity of the trace and recalling the definition (2.4.6) of k1, it follows that

tr k1{σ−1
z , σz}σ−1

z = − tr(∂xP∂ξσz{σ−1
z , σz}ζ,y + ∂yP∂ζσz{σ−1

z , σz}ξ,x)σ−1
z ,

where we have defined {a, b}α,β := ∂αa∂βb − ∂βa∂αb and used the fact that (∂ξσ, ∂ζσ) =

−(∂ξσz, ∂ζσz). Integrating by parts in x (first term) and y (second term), we obtain

σI,1 = − 1

2(2π)3
tr

ˆ
B

ˆ α

α0

φ′(λ)P
(
∂x(∂ξσz{σ−1

z , σz}ζ,yσ−1
z )

+ ∂y(∂ζσz{σ−1
z , σz}ξ,xσ−1

z )
)∣∣∣ω=0+

ω=0−
dλdR4

+
1

2(2π)3
tr

ˆ
Bξζ

ˆ
Bxy∩L

ˆ α

α0

φ′(λ)(∂ξσz{σ−1
z , σz}ζ,yνx

+ ∂ζσz{σ−1
z , σz}ξ,xνy)σ−1

z

∣∣∣ω=0+

ω=0−
dλdℓdR2

=: σI,10 + σI,11,

where dR2 := dξdζ and dℓ is the integration measure on L. Here, ν is the unit vector

(outwardly) normal to the surface ∂({g(x, y) ≤ 0}∩Bxy). Note that the other surface terms

do not contribute; over (∂({g(x, y) ≤ 0} ∩ Bxy)) \ (Bxy ∩ L), either P = 0 or the map

z 7→ σ−1
z is holomorphic and thus the difference between ω = 0+ and ω = 0− vanishes.

We now verify that the volume term σI,10 vanishes. First, observe that

ˆ
B

ˆ α

α0

φ′(λ)P
(
∂ξ(∂xσz{σ−1

z , σz}ζ,yσ−1
z ) + ∂ζ(∂yσz{σ−1

z , σz}ξ,xσ−1
z )
)∣∣∣ω=0+

ω=0−
dλdR4 = 0,

as we can use the fact that P is independent of (ξ, ζ) to integrate the above left-hand side

by parts in ξ (first term) and ζ (second term) to obtain integrals over ∂Bξζ , over which
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z 7→ σ−1
z is holomorphic. Therefore,

σI,10 = − 1

2(2π)3

ˆ
B

ˆ α

α0

φ′(λ)P tr
(
∂x(∂ξσz{σ−1

z , σz}ζ,yσ−1
z ) + ∂y(∂ζσz{σ−1

z , σz}ξ,xσ−1
z )

− ∂ξ(∂xσz{σ−1
z , σz}ζ,yσ−1

z )− ∂ζ(∂yσz{σ−1
z , σz}ξ,xσ−1

z )
)∣∣∣ω=0+

ω=0−
dλdR4.

A brute force calculation reveals that the above trace vanishes, and thus indeed σI,10 = 0.

For σI,11, we again use cyclicity of the trace to verify that

tr(∂ξσz{σ−1
z , σz}ζ,yσ−1

z νx + ∂ζσz{σ−1
z , σz}ξ,xσ−1

z νy)

= tr((νx∂yσz − νy∂xσz){σ−1
z , σz}ξ,ζσ−1

z ).

We recognize the first factor on the above right-hand side as the derivative of σz in the

direction of L (with t increasing). Recalling the definition of τ in (2.4.5), we see that

∂tτ(t, ξ, ζ) = x′0(t)∂xσ(x0(t), y0(t), ξ, ζ) + y′0(t)∂yσ(x0(t), y0(t), ξ, ζ),

∂ξτ(t, ξ, ζ) = ∂ξσ(x0(t), y0(t), ξ, ζ), ∂ζτ(t, ξ, ζ) = ∂ζσ(x0(t), y0(t), ξ, ζ),

with (x′0, y
′
0) = N(−νy, νx) and dℓ = Ndt, where N :=

√
(x′0(t))

2 + (y′0(t))
2. We conclude

that

σI,1 =
1

16π3
tr

ˆ
R

ˆ
[α0,α]

φ′(λ)∂tτz{τ−1
z , τz}ξ,ζτ−1

z

∣∣∣ω=0+

ω=0−
dλdR3, (2.4.8)

where R = (t1, t2) × Bξζ with t1 = inf{t : (x0(t), y0(t)) ∈ Bxy} and t2 = sup{t :

(x0(t), y0(t)) ∈ Bxy}, and dR3 := dtdξdζ.

We next eliminate φ′ from (2.4.8). Since ∂tτz{τ−1
z , τz}ξ,ζτ−1

z → 0 as |ω| → ∞, we have

∂tτz{τ−1
z , τz}ξ,ζτ−1

z

∣∣∣ω=0+

ω=0−
= −
ˆ +∞

−∞
∂ω(∂tτz{τ−1

z , τz}ξ,ζτ−1
z )dω.
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Cyclicity of the trace and the fact that ∂ωτz = i imply that

tr ∂ω(∂tτz{τ−1
z , τz}ξ,ζτ−1

z ) = −i tr εijk∂k(τ−1
z ∂iτzτ

−1
z ∂jτzτ

−1
z ), (2.4.9)

where εijk is the anti-symmetric tensor with ε123 = 1, and the variables are identified by

(1, 2, 3) = (ξ, ζ, t). Pulling ∂k out of the integral over ω and integrating by parts, we get

tr

ˆ
R
∂tτz{τ−1

z , τz}ξ,ζτ−1
z

∣∣∣ω=0+

ω=0−
dR3 = i

ˆ
∂R

ˆ +∞

−∞
ΘdωdΣ,

where

Θ := tr εijkτ
−1
z ∂iτzτ

−1
z ∂jτzτ

−1
z νk,

and ν is the outward unit normal vector to the surface ∂R with Σ the Euclidean surface

measure in R3. Thus we have shown that

σI,1 =
i

16π3

ˆ
[α0,α]

φ′(λ)
ˆ
∂R

ˆ +∞

−∞
ΘdωdΣdλ.

Integrating by parts in λ, we obtain

σI,1 =
i

16π3

ˆ
∂R

ˆ +∞

−∞
ΘdωdΣ,

with now z = α + iω in the above integrand (and from now on). The fact that only the

boundary term survives follows from analyticity of Θ in z over the region of integration (so

that ∂λΘ = −i∂ωΘ).

Recall that R = (−t0, t0) × (−M,M)2, where M > 0 can be chosen as large as neces-

sary. Observe that |Θ| ≤ C⟨ω⟩−3 and |Θ| ≤ C⟨ξ, ζ⟩−m−2 uniformly in (t, ξ, ζ) ∈ ∂R and

M > 0 sufficiently large, hence |Θ| ≤ C⟨ω⟩−3/2⟨ξ, ζ⟩−
m+2
2 by interpolation. It follows that
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´ +∞
−∞ |Θ|dω ≤ C⟨ξ, ζ⟩−

m+2
2 . Therefore, sending M → ∞, we see that the contributions to

σI,1 from the sides of ∂R with normal vector in the ξ and ζ directions vanish. Indeed, the

area of these surfaces is proportional to M , with the maximum of the integrand bounded by

CM−1−m/2. Thus we are left with integrals over the sides corresponding to t = ±t0, over

which τ(t, ξ, ζ) = τ±(ξ, ζ). As a consequence, σI,1 = i
16π3

(I+ − I−).

Recalling (2.4.7), it remains to show that

σI,2 := − i

2(2π)3
tr

ˆ
R4
k2

ˆ
C
∂̄φ̃′(z)σ−1

z d2zdR4 = 0. (2.4.10)

Define Pε(x, y) := P (ε(x−x̃, y−ỹ)), where (x̃, ỹ) ∈ R2 is chosen such that Pε(x0(t), y0(t)) = 1

for all ε > 0 and t ∈ R. Corollary 2.4.3 implies that σI(H,Pε) is independent of ε, while

σI,1 is independent of ε since I± are. It follows that σI,2 must also be independent of ε > 0.

We will thus replace P by Pε and show that σI,2 → 0 as ε ↓ 0. As stated in the paragraph

below (2.2.4), the integral over C in (2.4.10) vanishes whenever ⟨f(x, y), ξ, ζ⟩ is sufficiently

large (uniformly in ε). From the definition (2.4.6), it follows that k2 = ε2k̃2,ε, where k̃2,ε

vanishes whenever ⟨εg(x−x̃, y−ỹ)⟩ is sufficiently large. We conclude that there exist positive

constants M1 and M2 such that

|σI,2| ≤ Cε2Vol({⟨f(x, y)⟩ ≤M1} ∩ {⟨εg(x− x̃, y − ỹ)⟩ ≤M2}) ≤ Cε,

with the above volume taken in the xy-plane. We have thus shown that σI,2 = 0, and the

proof is complete.

An immediate consequence of Theorem 2.4.8 is

Corollary 2.4.9. Let H̃ = Op(τ) with τ = τ(y, ξ, ζ) and P̃ (x) = P̃ ∈ S(0, 1). Then

σI(H,P ) = σI(H̃, P̃ ).

Proof. Apply Theorem 2.4.8 to H = Op(σ) and H̃ = Op(τ).
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Figure 2.2: Triangular domains form in mechanically relaxed tBLG. We highlight two regions
of interest for our analysis. Region 1 corresponds to an edge, resembling the setting in
Sections 2.1–2.3. Region 2 is at a junction, where the theory from this subsection applies.

Observe that Corollary 2.4.9 reduces the junction conductivity to the simpler setting

of a flat interface analyzed in Sections 2.1–2.3. The insulating materials are described by

τ± = τ(±∞, ξ, ζ).

2.4.2 Applications

Twisted bilayer graphene (tBLG) is widely studied for its unique mechanical and elec-

tronic properties including the magic angle superconductivity [23, 18]. Upon gating, it acts

as host of a network of topological interface channels, which can be seen experimentally

and theoretically [74, 72, 24, 1]. tBLG is constructed by taking two periodic 2D sheets

of graphene and stacking them with a relative twist, typically small. The atoms relax to

minimize energy, forming large triangular regions of the energetically favorable AB and BA

Bernal stacking [80, 24, 31]. It is relevant to note this asymmetric transport under gating is a

separate phenomena from magic angle superconductivity. Indeed, the asymmetric transport

phenomena only requires sufficiently small twist angles and vertical gating, i.e. by inducing

a potential difference between the two layers, while superconductivity can only occur pre-

cisely at the magic twist angles. In this section, we make use of Figure 2.2 for discussion of

the geometry. The interior of one of these triangles can be considered as approximately an
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infinite periodic material as the side of one of these triangles scales inversely proportional to

the small twist angle [24].

Following the Bistritzer-MacDonald model [18], the junction Hamiltonian corresponding

to Region 2 from Figure 2.2 is

Op(σ) = H =

ΩI +D · σ(η) λU∗(x, y)

λU(x, y) −ΩI +D · σ(η)

 . (2.4.11)

Here, λ and Ω are fixed real constants, D · σ(η) := −i∂xσ1 − iη∂yσ2 with η ∈ {−1, 1}, and

U(x, y) := 1
2((1 + m̃(x, y))A+ (1− m̃(x, y))A∗). The function m̃ ∈ C∞ is positive in regions

of AB stacking, negative in regions of BA stacking, and zero on the boundaries between

regions. We assume that m̃ ∈ {−1, 1} away from these boundaries.

To construct such a function m̃ explicitly, define fΘ : T → T by fΘ(θ) = sin(3θ) and

(as above) let f ∈ C∞(R2) such that f(x, y) = rfΘ(θ) for all r ≥ 1, where (r, θ) are the

polar coordinates corresponding to (x, y). For concreteness, take f(x, y) := χ(r)rfΘ(θ),

where χ ∈ S(0, 1; ε, 1) and 0 < ε < 1. Since χ is smooth and vanishes near the origin, it is

immediate that f is smooth.

Let m ∈ S(−1, 1) be monotonically increasing with m(0) = 0, and define m̃(x, y) :=

m(f(x, y)). This definition is consistent with the above constraints, as fΘ > 0 if and only

if 2kπ/3 < θ < (2k + 1)π/3 for some k ∈ {0, 1, 2}. Since m and all of its derivatives are

bounded, it follows that σ ∈ S11,0 with the right-hand side defined in Appendix B. Moreover,

the structure of H (with D · σ(η) on the diagonal and no other derivatives) implies the

existence of a constant c > 0 such that |σmin(x, y, ξ, ζ)| ≥ c⟨ξ, ζ⟩ − 1, where σmin is the

smallest magnitude eigenvalue of σ. We see that when f(x, y) is sufficiently large (resp.
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small), σ = σ+ (resp. σ = σ−), where

σ+ =

ΩI + ξσ1 + ηζσ2 λA∗

λA −ΩI + ξσ1 + ηζσ2


and

σ− =

ΩI + ξσ1 + ηζσ2 λA

λA∗ −ΩI + ξσ1 + ηζσ2

 .

By [13, Appendix A], there exists E > 0 such that σ± (equivalently H± := Op(σ±)) has a

spectral gap in the interval (E1, E2) := (−E,E).

Thus we have shown that H given by (2.4.11) satisfies (H1’), meaning that Theorem 2.4.8

applies. For concreteness, define gΘ : T → T by gΘ(θ) = cos(θ) + cos(π/6) = cos(θ) +
√
3/2

(note that gΘ < 0 if and only if 5π/6 < θ < 7π/6) and take g(x, y) = χ(r)rgΘ(θ). Due to

the factor of χ in the definition of g, the level set g−1(0) is not a curve in the xy−plane.

Still, there exists a smooth function (x0, y0) : R → R2 whose range separates the xy−plane

into two regions, R+ and R−, such that g ≥ 0 in R+ and g ≤ 0 in R−. More specifically,

we can take

(x0(t), y0(t)) =


(
√
3
2 t,

1
2t), t ≤ −1

(−
√
3
2 t,

1
2t), t ≥ 1

and smoothly connect (x0, y0) for |t| < 1 so that g(x0(t), y0(t)) = 0 for all t ∈ R. It follows

that τ(t, ξ, ζ) = σ±(ξ, ζ) whenever ±t > 0 is sufficiently large, where τ is defined in terms

of (x0, y0) by (2.4.5). By [13, Theorem 2.1], this means

2πσI(H,P, φ) = −2η sgn(Ω).
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If Pj = χp(gj(x, y)) for j ∈ {0, 1, 2} with the gj appropriately chosen to satisfy the growth

condition for ⟨f, g⟩, then σI(H,
∑
j Pj , φ) =

∑
j σI(H,Pj , φ). Thus if gj(x, y) = χ(r)rgjΘ(θ)

with gjΘ = cos(θ − 2πj/3) + cos(π/6), then the 2π/3−rotational symmetry of the tBLG

Hamiltonian implies that σI(H,
∑
j Pj , φ) = 3σI(H,P0, φ). That is, each term σI(H,Pj , φ)

in the sum over j sees the same transition from σ− to σ+. In words, the superposition of three

appropriately chosen regularized indicator functions increases the conductivity by a factor

of 3. This makes perfect sense, as the conductivity is now measured through three distinct

regions (supp∇Pj for j = 0, 1, 2), each of which contributes the same value of −η sgn(Ω)/π.

2× 2 Dirac Hamiltonian. We conclude this section with an application of Theorem 2.4.8

to the operator

H = Dxσ1 +Dyσ2 + m̃(x, y)σ3, (2.4.12)

where m̃(x, y) = m(f(x, y)) for some m ∈ S(−1, 1), and

f(r, θ) = χ(r)rfΘ(θ), χ ∈ S(0, 1; ε, 1), fΘ(θ) = sin(kθ)

for some 0 < ε < 1 and k ∈ N+. Note that when k = 1, we recover the setting of a

flat interface analyzed in detail in Sections 2.1–2.3, while k = 3 yields the same hexagonal

structure on the right panel of Figure 2.1. As with the Bistritzer-MacDonald Hamiltonian

(2.4.11), it is straightforward to verify that H defined by (2.4.12) satisfies (H1’), and thus

the above theory applies. The bulk spectral gap in this case is (E1, E2) = (−1, 1).

Take P (x, y) = χp(g(x, y)) for χp ∈ S(0, 1), where g(x, y) = g(r, θ) = χ(r)rgΘ(θ) and

gΘ(θ) = cos(θ − θ1)− cos(θ0), for some 0 < θ0 < π and −π
k < θ1 <

π
k satisfying

θ+ /∈ Θk, 2π − θ+ /∈ Θk, Θk =
{ j

kπ
: j ∈ Z

}
, θ+ := θ0 + θ1.

This way, the zeros of gΘ and fΘ are disjoint. Indeed, gΘ(θ) = 0 if and only if cos(θ− θ1) =
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cos(θ0), which occurs exactly when {θ + 2πj : j ∈ Z} ∩ {θ+, 2π − θ+} ≠ ∅. It follows

that τ(t, ξ, ζ) = ξσ1 + ζσ2 + µ(t)σ3 for some µ ∈ ∪ε1,ε2∈{−1,1}S(ε1, ε2), where the εj

are determined by θ0 and θ1. We have reduced the problem to computing the interface

conductivity for the translation-invariant 2× 2 Dirac system, and hence 2πσI = 1
2(ε1 − ε2)

by Section 2.3. For the case (k, θ1) = (3, 0) which is analyzed numerically in the following

section, we have

2πσI =


−1, 0 < θ0 < π/3

1, π/3 < θ0 < 2π/3

−1, 2π/3 < θ0 < π

.

If g from Figure 2.1 were to have the above form, then θ1 = 0 and θ0 would be the angle

between [the line making up the top of the level curve {g = 0}] and [the positive x−axis].

So π/2 < θ0 < π and 2π/3 < θ0 < π for the left and right panels, respectively.
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CHAPTER 3

MAGNETIC DIRAC EQUATIONS

In this section, we derive a quantized conductivity at the interface of two (distinct) sheets

of graphene (or other similar materials). As we will see below, the Hamiltonians considered

here have symbols that are unbounded in the spatial coordinates (x, y) and not elliptic. As

a result, none of the theory from Section 2 applies directly.

In the absence of external electric and magnetic fields, the edge state dynamics is governed

by a two-dimensional Schrödinger Hamiltonian whose coefficients obey the appropriate hon-

eycomb symmetry away from the interface. It was shown in [8, 36, 44] that at low energies,

this Hamiltonian is well approximated by the following Dirac operator,

HD = Dxσ1 +Dyσ2 +m(x)σ3; Dα := −i∂α, m ∈ S(m−,m+), 0 ̸= m± ∈ R.

Here, S(a, b) := ∪α<βS(a, b;α, β) with S(a, b;α, β) the set of smooth functions f : R → R

such that f(λ) = a (resp. f(λ) = b) whenever λ ≤ α (resp. λ ≥ β), and the Pauli matrices

are given by

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 .

Observe that the interface material described by HD is made up of two insulators (given by

H± := Dxσ1 + Dyσ2 + m±σ3) that are glued together along a one-dimensional interface,

say {m(x) = 0}. The mass term m models the transition from one insulator to the other.

Although H± has a spectral gap in the interval (−|m±|, |m±|), the interface material is a

conductor whenever m+ and m− have opposite sign. In this case HD no longer has a spectral

gap, and the energies in the interval (−m0,m0) with m0 := min{|m−|, |m+|} correspond to

propagating edge modes as described above. As before, the asymmetric transport associated
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with this model is quantified by the following interface conductivity,

σI(H) := Tr i[H,P ]φ′(H). (3.0.1)

Here, P (y) = P ∈ S(0, 1) and φ ∈ S(0, 1;−m0,m0). Explicit formulas for σI (that apply

to HD among other models) are derived in [10, 11]. In [7] it was shown that 2πσI(HD) =

SF(HD;α) = 1
2 sgn(m+−m−), where SF(HD;α) is the spectral flow of HD through α (more

on this below) and α ∈ (−m0,m0). Observe that the quantity sgn(m−−m+) is independent

of α, P and φ, and is robust with respect to changes in m.

The goal of this paper is to extend the above results for HD to Dirac operators with

electric and magnetic fields; we will explicitly calculate the interface conductivity by re-

lating it to a spectral flow, and prove its stability in the presence of perturbations. The

electromagnetic Dirac operators are given by

H = Dxσ1 + (Dy − A2(x))σ2 +m(x)σ3 + V (x)σ0, (3.0.2)

where A2(x) = xB(x) and

B ∈ S(B−, B+), m ∈ S(m−,m+), V ∈ S(V−, V+) (3.0.3)

for some constants B±,m±, V± ∈ R with B± ̸= 0. Here, σ0 is the 2×2 identity matrix. The

vector-valued function A = (0, A2) is the magnetic potential (in the Landau gauge), with

(B + xB′)ẑ = ∇ × A the magnetic field. The function V represents the electric potential.

See [82, Section 4.2] for a derivation of these models.

We see that the Hamiltonian (3.0.2) implements three domain walls given by (3.0.3). The

magnetic domain wall B gives rise to the unbounded term A2(x), while the functions m and

V are necessarily bounded. We have already discussed the domain wall in m as a mechanism
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for transport. To motivate the domain wall in B, we provide an illustrative example.

Consider a two-dimensional electron gas confined to the right-half plane and subject to a

constant (and strong) orthogonal magnetic field. Away from the edge {x = 0} each electron

will move in a (small) circular path, meaning the gas is insulating in its bulk. However the

presence of the edge causes nearby electrons to propagate, giving rise to a current along

the boundary. The same can be said of a (no longer confined) two-dimensional electron gas

subject to an orthogonal magnetic field that changes signs across the y−axis.

The domain wall in V gives rise to an electric field E = −∇V perpendicular to the

interface that vanishes whenever |x| is sufficiently large. Note that if the mass term were to

grow linearly at infinity, the interface conductivity would no longer depend on the magnetic

field [11].

The spectral properties of H are acquired from the following bulk Hamiltonians,

H± = Dxσ1 + (Dy − xB±)σ2 +m±σ3 + V±σ0,

which model the two insulating materials that are glued together to form the conductor with

Hamiltonian H. Since H and H± are translation-invariant in y, we can define their Fourier

transforms by

Ĥ(ζ) = Dxσ1 + (ζ − A2(x))σ2 +m(x)σ3 + V (x)σ0,

Ĥ±(ζ) = Dxσ1 + (ζ − xB±)σ2 +m±σ3 + V±σ0

for ζ ∈ R. It is known that each operator O ∈ {H,H+, H−, Ĥ(ζ), Ĥ+(ζ), Ĥ−(ζ)} is self-

adjoint with domain of definition D(O) = (i − O)−1H; see e.g. [11, 20, 82]. Here, H :=

L2(Rd)⊗C2, where d = 2 for H and H±, and d = 1 for Ĥ and Ĥ±. Note that for a similar

edge model, it was shown that the domain of definition of the Hamiltonian depends on the

strength of the magnetic field [29]. This suggests that D(O) likely depends on B±, though
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we do not investigate this issue here.

Throughout this thesis, we denote the spectrum of an operator O by σ(O) and the

resolvent set of O by ρ(O). Suppose temporarily that V± = 0, as these constants contribute

merely a uniform shift to the spectrum of H±. Then Ĥ2
±(ζ) = D2

x+(ζ−xB±)2+m2
±−B±σ3

is block diagonal, meaning that up to shifts by m2
± − B± and m2

± + B±, the spectra of

Ĥ2
±(ζ) and L±(ζ) := D2

x + (ζ − xB±)2 are the same. But L±(ζ) is the Hamiltonian for

the quantum harmonic oscillator (up to rescaling) and has spectrum consisting entirely of

simple eigenvalues and given by σ(L±(ζ)) = {(2k+1)B : k ∈ N}. The elements of σ(L±(ζ))

are known as “Landau levels.” Since σ(L±(ζ)) (and hence σ(Ĥ±(ζ))) is independent of ζ,

it follows that σ(H±) is made up of a countable collection of points (all corresponding to

essential spectrum now) going to infinity in absolute value; see Lemma 3.1.2. The domain

wall in B can cause spectral gaps between Landau levels to close, with eigenvalues of Ĥ2(ζ)

potentially going to infinity as ζ → ±∞; see Lemma 3.1.7.

When spectral branches of Ĥ(ζ) do not go to infinity, they converge to elements of σ(H±)

as shown by Lemma 3.1.6. Each branch converges both as ζ → ∞ and ζ → −∞ in the case

that B+ and B− have the same sign. When B− < 0 < B+ (resp. B+ < 0 < B−), the

branches converge only as ζ → ∞ (resp. ζ → −∞). Hence no matter the signs of B+ and

B−, the branches of spectrum do not go to infinity as |ζ| → ∞. This means H lacks the

ellipticity that is assumed by (H1) and in [10, 11, 37]. Indeed, the term (Dy −A2(x))σ2 has

(Weyl) symbol (ζ − A2(x))σ2, which can remain small even when |ζ| and |x| are large.

Below is a brief summary of this section. We first define the spectral flow, and in doing

so give an outline of Section 3.1. We refer to [66] for a more generally applicable definition.

The set {Ĥ(ζ) : ζ ∈ R} is a one-parameter family of self-adjoint operators, with Ĥ(ζ)

holomorphic in ζ ∈ C (see [58, Chapter VII.1.1] for a precise definition of holomorphic

operators). We will show with Lemmas 3.1.3 and 3.1.4 that the spectrum of Ĥ(ζ) consists
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entirely of simple eigenvalues {µj(ζ)}j∈Z, where each branch µj : R → R is analytic. Let

R := ρ(H+) ∩ ρ(H−) ∩ R (3.0.4)

denote the bulk band gaps. It turns out that for any energy level α ∈ R, there exists ζα > 0

such that no branches attain the value α when |ζ| > ζα (Lemmas 3.1.6 and 3.1.7). Moreover,

the number of branches to ever attain the value α is finite (Lemma 3.1.8).

This means we can define the spectral flow of H through α to be the signed number of

crossings of branches through α:

SF(H;α) := N↑ −N↓, (3.0.5)

where N↑ (resp. N↓) is the number of branches that are less than α when ζ < −ζα and

greater than α when ζ > ζα (resp. greater than α when ζ < −ζα and less than α when

ζ > ζα). With Theorem 3.1.1 we compute the spectral flow using the max-min principle

[71, 81] and perturbation theory [58].

In Section 3.2, we relate the interface conductivity in (3.0.1) to the spectral flow in (3.0.5)

(Theorem 3.2.5) and prove its stability under a large class of perturbations (Theorems 3.2.9–

3.2.12). The stability results are proved using pseudo-differential calculus as in Section 2

and [10, 11, 37]. But since H is not elliptic, much of the pseudo-differential operator theory

in this existing literature does not apply directly. Still, we are able to use Beals’s criterion

[34, Proposition 8.3] and specific properties of H (as a first-order differential operator with

the spectrum of H± known) to obtain the necessary decay properties; see Lemmas 3.2.2 and

3.2.3. Similar stability results for (also non-elliptic) magnetic Schrödinger operators can be

found in [28, 35].
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3.1 Spectral analysis

In this section we calculate the spectral flow SF(H;α) for α ∈ R, i.e. an energy level in a

spectral gap for both bulk Hamiltonians. This involves analyzing the limiting behavior of the

branches of spectrum µj(ζ) of Ĥ(ζ) as |ζ| → ∞. The multisets S± := {limζ→±∞ µj(ζ)}j∈Z

are determined using a standard max-min argument. Perturbation theory is then used to

match elements in S+ with those in S− to determine the quantities limζ→±∞ µj(ζ) for every

j. We now state the main result, which can be interpreted as a bulk-interface correspondence.

We recall that B± ̸= 0 throughout this paper.

Theorem 3.1.1. Fix α ∈ R. Then SF(H;α) = I(H−;α)− I(H+;α), where

I(H±;α) = sgn(B±) sgn(α− V± −m± sgn(B±))
(
N(H±;α) +

1

2

)
(3.1.1)

and

N(H±;α) =


0; |α− V±| <

√
2|B±|+m2

±,

k;
√
2k|B±|+m2

± < |α− V±| <
√

2(k + 1)|B±|+m2
±, k ∈ N+.

(3.1.2)

Note that N(H±;α) counts the (ζ−independent) number of eigenvalues of Ĥ±(ζ) − V±

in the interval (|m±|, |α − V±|). The above values of α for which SF(α) is not defined are

precisely the elements of σ(H+)∪σ(H−). Although the above expresses the (integer-valued)

spectral flow as a difference of two bulk quantities, it is unclear whether each bulk quantity

may be interpreted as an invariant as in [6, 16].

We refer to Figures 3.1–3.3 for an illustration of the branches of spectrum of H, under

various choices of the parameters B±,m± and V±. 1 For example, in the top right panel of

1. These figures were generated using a standard finite difference approximation of the Hamiltonian with
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Figure 3.1: Plots of the lowest-magnitude eigenvalues of Ĥ(ζ) as a function of ζ, for different
combinations of domain walls in B and m. For all plots, V ≡ 0. The choices of parameters
are B ≡ 2 and m ≡ 2 (top left); B ≡ 2 and m+ = 2 = −m− (top right); B+ = 2 = −B−
and m ≡ 0 (bottom left); B+ = 2 = −B− and m ≡ 2 (bottom right). As ζ → +∞, these
eigenvalues converge to the elements of σ(Ĥ+(ζ)) ∪ σ(Ĥ+(ζ)) as predicted by the theory;
see Lemma 3.1.7. The top left panel illustrates the spectrum of a bulk Hamiltonian; see
Lemma 3.1.2. As demonstrated by the top right plot, a transition in the sign of m generates
a nonzero spectral flow for α near 0 (in this example, SF(H;α) = 1). Comparing the two
bottom plots, we see how a constant nonzero m opens a gap at 0. Although it may look like
the eigenvalues in the bottom plots are degenerate for large ζ, this is not the case (Lemma
3.1.3). They only have the same limit as ζ → ∞.

Figure 3.2 we see that SF(H;α) = 1 for all α near 0, while SF(H;α) = −1 for any α near

2.5.

periodic boundary conditions. The periodic Hamiltonian also has spurious eigenvalues (corresponding to
eigenfunctions that are localized near the boundary; see Section 4 for more details), which are not included
in our plots.
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Figure 3.2: Effect of the electric potential V on the lowest-magnitude eigenvalues of Ĥ(ζ). All
plots have B+ = 2 = −B− and m+ = 2 = −m−. The choices of electric potential are V ≡ 0
(top left); V+ = 0.1 = −V− (top right); V+ = 0.5 = −V− (bottom left); V+ = 2 = −V−
(bottom right). Notice that, as predicted by Lemma 3.1.2, a small domain wall in V opens
a gap between pairs of branches for large ζ (top panels).

The rest of this section is devoted to proving Theorem 3.1.1 (and the statements we made

before it). We begin by determining the spectrum of Ĥ±(ζ).

Lemma 3.1.2. For any ζ ∈ R, the spectrum of Ĥ±(ζ) consists entirely of eigenvalues and
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Figure 3.3: Effect of the signs of B± and m± on the lowest-magnitude eigenvalues of Ĥ(ζ).
Both plots have −B+ = 2 = B− and V ≡ 0. The left panel corresponds to m+ = 1 = −m−
and the right to −m+ = 1 = m−. Since B+ < 0 < B− (in contrast with Figures 3.1 and
3.2), the branches now converge to the elements of σ(Ĥ+(ζ)) ∪ σ(Ĥ+(ζ)) as ζ → −∞ while
going to infinity as ζ → +∞. By comparing the left and right panels, observe that the
sign-flips in m± change the spectral flow only for −1 < α < 1.

is given by

σ(Ĥ±(ζ)) =
{
ε
√
2k|B±|+m2

± + V± : ε ∈ {−1, 1}, k ∈ N+
}⋃{

m± sgn(B±) + V±
}
.

(3.1.3)

Above, the subscripts ± (and one operation ∓) are understood to correspond to the

operator Ĥ± in question. Note that the spectrum of Ĥ±(ζ) is independent of ζ; thus the

spectrum of H± is also given by (3.1.3), only now these values all belong to the essential

spectrum.

Proof. Suppose for concreteness that B+ > 0. Set V+ = 0 without loss of generality,

as this term only contributes a uniform shift of the spectrum. Any eigenpair µ and ψ

of Ĥ+(ζ) must satisfy Ĥ2
+(ζ)ψ = µ2ψ, with Ĥ2

+(ζ) = D2
x + (ζ − B+x)

2 + m2
+ − B+σ3.

The eigenelements of Ĥ2
+(ζ) are well known. The eigenvalues are νk = 2k|B+| + m2

+ for

k ∈ N. When k ∈ N+, νk has multiplicity 2 and the eigenfunctions are ψk,↑ = (ϕk, 0) and

ψk,↓ = (0, ϕk−1), where ϕk(x) = |B+|−1/4ϕ̃k(
√

|B+|x − ζ) with ϕ̃k the Hermite functions.
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We see that ν0 has multiplicity one with eigenfunction ψ0 = (ϕ0, 0). We then verify that

the eigenvalues of Ĥ+(ζ) are µk,ε = ε
√
νk for ε ∈ {−1, 1}, k ∈ N+ and µ0 = m+, with

corresponding eigenfunctions ψk,ε = c1,εψk,↑+ c2,εψk,↓ and ψ0 for some |c1,ε|2+ |c2,ε|2 = 1.

If instead B+ < 0, we would instead have ψk,↑ = (ϕk−1, 0) and ψk,↓ = (0, ϕk). All elements

of the spectrum would be the same as before with the exception of µ0 = −m+ now. The

eigenelements of Ĥ−(ζ) are calculated similarly. This completes the result.

The following two lemmas state important properties of the spectrum of Ĥ(ζ), with ζ ∈ C

now. The extension to complex ζ will be necessary when we later apply the holomorphic

perturbation theory from [58].

Lemma 3.1.3. For any ζ ∈ C, the spectrum of Ĥ(ζ) consists entirely of simple eigenvalues.

Proof. Fix ζ0+iζ1 := ζ ∈ C. We know that Ĥ(ζ0) is self-adjoint [11, 20, 82], hence |ℑµ| ≤ |ζ1|

for all µ ∈ σ(Ĥ(ζ)). The Weyl symbol (see Appendix A.1 for the definition) of Ĥ(ζ) grows

linearly in ⟨x, ξ⟩, as demonstrated by (3.2.2) below. This implies that (i(1+ |ζ1|)+ Ĥ(ζ))−1

is compact (see e.g. [11, 20]), and hence σ(Ĥ(ζ)) consists entirely of eigenvalues. We now

prove that each eigenvalue has multiplicity one. Suppose ψ and ϕ are eigenfunctions of Ĥ

corresponding to eigenvalue µ. This means

−iψ′2 − i(ζ − A2)ψ2 + (V +m)ψ1 = µψ1

−iψ′1 + i(ζ − A2)ψ1 + (V −m)ψ2 = µψ2,

with the same equations holding also with ψ replaced by ϕ. It follows that

ψ1ϕ
′
2 + ψ′1ϕ2 = i(µ−m− V )ψ1ϕ1 + i(µ+m− V )ψ2ϕ2 = ψ2ϕ

′
1 + ψ′2ϕ1,
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so that

∂x(ψ1ϕ2 − ψ2ϕ1) = ψ1ϕ
′
2 + ψ′1ϕ2 − (ψ2ϕ

′
1 + ψ′2ϕ1) = 0.

Since ψ, ϕ, ψ′, ϕ′ all go to zero as |x| → ∞, we have shown that ψ1ϕ2 − ψ2ϕ1 ≡ 0. Thus for

every x ∈ R, the vectors (ψ1(x), ψ2(x)) and (ϕ1(x), ϕ2(x)) are linearly dependent. Normalize

the eigenfunctions so that ψ(x0) = ϕ(x0) for some x0 ∈ R (this can be done because ψ and

ϕ are continuous, hence there must exist a point at which both functions are zero or both

functions are nonzero). Letting ν := ψ − ϕ, we see that

ν′(x) = F (x)ν(x), x ∈ R; ν(x0) = 0,

for some F ∈ C∞(R;C2×2). By regularity of F , the standard uniqueness result for first-order

ODE implies that ν ≡ 0. This completes the result.

Lemma 3.1.4. There exists a countable collection of holomorphic functions, {µj}j∈Z ⊂

Cω(C), such that for each ζ ∈ C, σ(Ĥ(ζ)) = {µj(ζ) : j ∈ Z}. The corresponding eigenpro-

jections are also holomorphic in ζ ∈ C. Finally, the restriction of each µj to the real axis

defines a real-analytic function.

Here, Cω(C) denotes the set of holomorphic functions on C. We refer to [58, Chapter

VII.1.1] for the precise definition of an operator-valued holomorphic function.

Proof. Note that Ĥ(ζ) is holomorphic in ζ ∈ C, thus Lemma 3.1.3 and [58, Theorems VII.1.7

and VII.1.8] imply that the eigenvalues and eigenprojections of Ĥ(ζ) are also holomorphic

in ζ ∈ C. That µj maps R to itself follows directly from the self-adjointness of Ĥ(ζ) when

ζ ∈ R.

Henceforth (unless otherwise specified) it is assumed that ζ ∈ R. We now show that

bounded perturbations of Ĥ cannot change the µj by too much.
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Lemma 3.1.5. Let mj ∈ S(mj,−,mj,+) and Vj ∈ S(Vj,−, Vj,+) for j ∈ {1, 2}, where the

mj,± and Vj,± are real numbers. For ζ ∈ R and λ ∈ [0, 1], set

Ĥ(ζ, λ) = Dxσ1 + (ζ − A2(x))σ2 +m1(x)σ3 + V1(x)σ0

+ λ((m2(x)−m1(x))σ3 + (V2(x)− V1(x))σ0).

Let {µj(ζ, λ)}j∈Z denote the eigenvalues of Ĥ(ζ, λ). Then the µj can be chosen real-analytic

in (ζ, λ) ∈ R× [0, 1] and

|∂λµj(ζ, λ)| ≤ ∥m2 −m1∥∞ + ∥V2 − V1∥∞ .

Proof. Since m and V were arbitrary switch functions, it follows from Lemma 3.1.3 and [58,

Theorems VII.1.7 and VII.1.8] as before that the eigenvalues and eigenprojections of Ĥ(ζ, λ)

are holomorphic in (ζ, λ) ∈ C2. Since the eigenvalues are real whenever ζ and λ are real,

we have proved the first part of the lemma. Letting µ(ζ, λ) denote such an eigenvalue with

Πζ,λ = ψζ,λψ
∗
ζ,λ the projection onto the corresponding (one-dimensional) eigenspace, we

have

Ĥ(ζ, λ)ψζ,λ = µ(ζ, λ)ψζ,λ.

Now fix ζ ∈ R and λ ∈ [0, 1], and let h > 0. Evaluating the difference of the above between

λ and λ+ h yields

(Ĥ(ζ, λ+ h)− Ĥ(ζ, λ))ψζ,λ+h + Ĥ(ζ, λ)(ψζ,λ+h − ψζ,λ)

= Ĥ(ζ, λ+ h)ψζ,λ+h − Ĥ(ζ, λ)ψζ,λ = µ(ζ, λ+ h)ψζ,λ+h − µ(ζ, λ)ψζ,λ

= (µ(ζ, λ+ h)− µ(ζ, λ))ψζ,λ+h + µ(ζ, λ)(ψζ,λ+h − ψζ,λ).
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Multiplying both sides by ψ̄ζ,λ and taking inner products, we obtain

(ψζ,λ, (Ĥ(ζ, λ+ h)− Ĥ(ζ, λ))ψζ,λ+h) = (µ(ζ, λ+ h)− µ(ζ, λ))(ψζ,λ, ψζ,λ+h).

Using that Ĥ(ζ, λ + h) − Ĥ(ζ, λ) = h((m2(x) −m1(x))σ3 + (V2(x) − V1(x))σ0), we divide

both sides by h to get

(ψζ,λ, ((m2(x)−m1(x))σ3 + (V2(x)− V1(x))σ0)ψζ,λ+h)

= h−1(µ(ζ, λ+ h)− µ(ζ, λ))(ψζ,λ, ψζ,λ+h).

(3.1.4)

Since Πζ,λ is holomorphic in λ, the operator norm
∥∥Πζ,λ+h − Πζ,λ

∥∥ goes to zero as h → 0.

Hence ∥∥(ψζ,λ+h, ψζ,λ)ψζ,λ+h − ψζ,λ
∥∥→ 0,

meaning that |(ψζ,λ+h, ψζ,λ)| → 1. Taking the absolute value of (3.1.4) and sending h→ 0,

we thus obtain

|∂λµ(ζ, λ)| ≤ ∥m2 −m1∥∞ + ∥V2 − V1∥∞ .

This completes the proof.

Next we determine the multisets {limζ→±∞ µj(ζ)}j∈Z, which depend on the signs of B+

and B−. Given two sets A and B, we use the notation A+B to denote the multiset formed

by combining A and B. That is, x ∈ A+B if and only if x ∈ A ∪B, where the multiplicity

of x is 2 if x ∈ A ∩B and 1 otherwise. Although each µj has multiplicity 1 (Lemma 3.1.3),

it is possible that two distinct µj converge to the same value (as ζ → ∞ if B− < 0 < B+;

as ζ → −∞ if B+ < 0 < B−).

Lemma 3.1.6. 1. Suppose B− < 0 < B+. Then for each j ∈ Z, µj,∞ := limζ→∞ µj(ζ)

exists and belongs to σ(Ĥ+(ζ))∪σ(Ĥ−(ζ)). For each ν ∈ σ(Ĥ+(ζ))+σ(Ĥ−(ζ)), there
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exists exactly one index j ∈ Z such that µj,∞ = ν.

2. Suppose B+ < 0 < B−. Then for each j ∈ Z, µj,−∞ := limζ→−∞ µj(ζ) exists and

belongs to σ(Ĥ+(ζ)) ∪ σ(Ĥ−(ζ)). For each ν ∈ σ(Ĥ+(ζ)) + σ(Ĥ−(ζ)), there exists

exactly one index j ∈ Z such that µj,−∞ = ν.

3. Suppose 0 < B+, B−. Then for each j ∈ Z, µj,±∞ := limζ→±∞ µj(ζ) exists and

belongs to σ(Ĥ±(ζ)). For each ν ∈ σ(Ĥ±(ζ)), there exists exactly one index j ∈ Z

such that µj,±∞ = ν.

4. Suppose B+, B− < 0. Then for each j ∈ Z, µj,±∞ := limζ→±∞ µj(ζ) exists and

belongs to σ(Ĥ∓(ζ)). For each ν ∈ σ(Ĥ∓(ζ)), there exists exactly one index j ∈ Z

such that µj,±∞ = ν.

Proof. Suppose B− < 0 < B+. Let {νk,± : k ∈ N} denote the full set of eigenvalues of Ĥ±.

Applying the max-min principle (Theorem 4.1.5) to Ĥ2(ζ) (see [30, 88] and Section 4.1 for

similar arguments), it follows that there is a bijection ι : Z → N×{+,−} such that for every

j ∈ Z, µ2j (ζ) → ν2
ι(j)

as ζ → ∞.

Now fix j ∈ Z and let Kj := {i ∈ Z : ν2
ι(i)

= ν2
ι(j)

}. (Lemma 3.1.2 implies that Kj can

have at most four elements.) By Lemma 3.1.5, the quantities limζ→∞ µ2j (ζ) are continuous

in shifts of V . Thus there is a bijection ιj : Kj → ι(Kj) such that for all i ∈ Kj and α

sufficiently small, (µi(ζ) + α)2 → (νιj(i) + α)2 as ζ → ∞. Indeed, the previous paragraph

applies also to H + α, as V ∈ S(V−, V+) was arbitrary. Hence limζ→∞ µi(ζ) = νιj(i) for all

i ∈ Kj , as desired.

The proofs for cases 2–4 are similar.

Lemma 3.1.7. 1. Suppose B− < 0 < B+. For every M > 0, there exists ζ0 ∈ R such

that |µj(ζ)| > M for all ζ < ζ0 and j ∈ Z.

2. Suppose B+ < 0 < B−. For every M > 0, there exists ζ0 ∈ R such that |µj(ζ)| > M

for all ζ > ζ0 and j ∈ Z.
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By continuity of the µj , Lemma 3.1.7 implies that when ±B− < 0 < ±B+, each µj goes

either to +∞ or −∞ as ζ → ∓∞.

Proof. Suppose B− < 0 < B+. We see that

Ĥ2(ζ) = D2
x + (ζ − A2(x))

2 +m2(x)− A′
2(x)σ3 −m′(x)σ2 + V 2(x)

+ 2V (x)(Dxσ1 + (ζ − A2(x))σ2 +m(x)σ3)− iV ′(x)σ1,

(3.1.5)

where σ0 has been dropped from the notation. Since V is bounded, we know there exists a

constant C > 0 such that

|(ψ, V Dxσ1ψ)| ≤ C ∥ψ∥
∥∥ψ′∥∥

for all ψ ∈ H1. Since (ψ,D2
xψ) =

∥∥ψ′∥∥2, it follows that the operator D2
x + V (x)Dxσ1 is

bounded from below. The function A2 is also bounded from below, hence

lim
ζ→−∞

inf
x∈R

(ζ − A2(x))
2 = ∞.

Sincem,V,m′, V ′, A′
2 are all bounded, we conclude that all eigenvalues of Ĥ2(ζ) go to infinity

uniformly as ζ → −∞. The proof for the case B+ < 0 < B− is similar. This completes the

result.

We also need the following result, which ensures that the spectral flow is well defined.

Lemma 3.1.8. For every α ∈ R, the set Tα := {j : α ∈ Ran(µj)} is finite.

Above, Ran(µj) := {µj(ζ) : ζ ∈ R} is the range (or image) of µj .

Proof. Fix α ∈ R. The previous lemmas imply the existence of ζ̄ > 0 such that µj(ζ) ̸= α

for all j ∈ Z and |ζ| > ζ̄. For ζ ∈ R and β > 0, let N(ζ, β) := |{j : µ2j (ζ) < β}|. Suppose
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by contradiction that Tα is infinite. Then there exists a sequence (ζk) ⊂ [−ζ̄ , ζ̄] and a

number ζ∗ ∈ [−ζ̄ , ζ̄] such that ζk → ζ∗ and N(ζk, α
2) → ∞ as k → ∞. But Lemma 3.1.3

implies that N(ζ∗, α2 + 1) < ∞, hence there exist i, j ∈ Z such that µi(ζ∗) ≤ −
√
α2 + 1

and µj(ζ∗) ≥
√
α2 + 1. Lemma 3.1.3 and the fact that N(ζk, α

2) → ∞ imply that for all k

sufficiently large, there exists ℓ ∈ {i, j} such that µ2ℓ(ζk) < α2. Thus either µi or µj is not

continuous at ζ∗, which contradicts Lemma 3.1.4.

To compute the spectral flow in (3.0.5), it remains to determine the sign of µj(ζ) as

ζ → −∞. We will do this first by imposing additional constraints on Ĥ.

Lemma 3.1.9. Fix ζ ∈ R, let m0 ∈ R such that m2
0 >

∥∥A′
2

∥∥
∞, and define

Ĥ0(ζ) := Dxσ1 + (ζ − A2(x))σ2 +m0σ3.

Then Ĥ0(ζ) has a spectral gap in the interval (−∆,∆), with ∆ :=
√
m2

0 −
∥∥A′

2

∥∥
∞.

The above implies that for Ĥ0, if B− < 0 < B+, every branch converging to a positive

(resp. negative) value as ζ → ∞ goes to +∞ (resp. −∞) as ζ → −∞.

Proof. Observe that Ĥ2
0 (ζ) := D2

x + (ζ − A2(x))
2 + m2

0 − A′
2(x)σ3, and the result easily

follows.

We are now ready to complete the proof of Theorem 3.1.1. The idea is to treat Ĥ as a

perturbation of Ĥ0. For ζ ∈ R and (λ1, λ2) ∈ [0, 1]2, define

Ĥ(ζ;λ1, λ2) := Dxσ1 + (ζ − A2(x))σ2 +m0σ3 + λ1(m(x)−m0)σ3 + λ2V (x)σ0,

and let {µj(ζ;λ1, λ2)}j∈Z denote the eigenvalues of Ĥ(ζ;λ1, λ2). We use the shorthand

λ := (λ1, λ2) and µj,±∞(λ) := limζ→±∞ µj(ζ;λ). By Lemma 3.1.5, the µj(ζ;λ) are real-

analytic in (ζ;λ) ∈ R × [0, 1]2 with ∂λiµj(ζ;λ) bounded uniformly in (ζ;λ) for i ∈ {1, 2}.
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This means the limits as ζ → ±∞ of the µj(ζ;λ) depend continuously on λ. Recall that

Lemmas 3.1.6, 3.1.7 and 3.1.9 give us a full description of the µj(ζ; 0, 0).

When B− < 0 < B+, the µj,∞(0, 0) are known (and finite) and µj,−∞(0, 0) = ±∞ if and

only if ±µj,∞(0, 0) > 0. The uniform bounds on ∂λiµj imply that µj,−∞(λ) = µj,−∞(0, 0)

for all λ ∈ [0, 1]2. Combined with Lemma 3.1.3 and the fact that the multiset {µj,∞(1, 1)}j∈Z

is known (Lemmas 3.1.2 and 3.1.6), this will allow us to obtain the limits as ζ → ±∞ of

each µj(ζ; 1, 1) via a smooth transition of λ from (0, 0) to (1, 1). We find it easiest to first

fix λ2 = 0 while smoothly varying λ1 from 0 to 1; then fix λ1 = 1 while smoothly varying

λ2 from 0 to 1. The case B+ < 0 < B− is handled similarly.

When 0 < B+, B−, Lemma 3.1.6 gives us the multisets L± := {µj,±∞(λ)}j∈Z for all

λ ∈ [0, 1]2. The only thing left is to pair each element of L− with an element of L+

(i.e. for each µj,−∞(λ) ∈ L−, determine µj,+∞(λ)). When λ = (0, 0), this pairing follows

immediately from Lemma 3.1.9. That is (using a natural choice of indices),

. . . , µ−1,±∞(0, 0) = −
√

2|B±|+m2
0, µ0,±∞(0, 0) = m0,

µ1,±∞(0, 0) =
√

2|B±|+m2
0, . . .

Since µi,±∞(λ) ̸= µj,±∞(λ) whenever i ̸= j, it is straightforward to obtain the limits of each

µj for λ = (1, 1) (again by a smooth transition from λ = (0, 0) to λ = (1, 1)). The case

B+, B− < 0 is handled similarly.

Proof of Theorem 3.1.1. Take m0 as in Lemma 3.1.9. As in Lemma 3.1.5 the eigenvalues

and eigenprojections of Ĥ(ζ;λ) are holomorphic in (ζ;λ). It then follows from Lemma 3.1.5

that

|∂λ1µ(ζ, λ)| ≤ ∥m−m0∥∞ , |∂λ2µ(ζ, λ)| ≤ ∥V ∥∞ (3.1.6)
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for all eigenvalues µ(ζ;λ) of Ĥ(ζ;λ). Define

Ĥ±(ζ;λ1, λ2) := Dxσ1 + (ζ − xB±)σ2 +m0σ3 + λ1(m± −m0)σ3 + λ2V±σ0.

Lemma 3.1.2 states that the spectrum of Ĥ±(ζ; 0, 0) consists entirely of eigenvalues and is

given by

σ(Ĥ±(ζ; 0, 0)) = {ε
√
2k|B±|+m2

0 : ε ∈ {−1, 1}, k ∈ N+}
⋃

{m0 sgn(B±)}

=: {ν̃k,± : k ∈ Z}.

Note that |ν̃k,±| ≥ |m0| > 0 for all k.

1. Suppose B− < 0 < B+. Recall that {µj(ζ;λ)}j∈Z denotes the (holomorphic in (ζ;λ))

eigenvalues of Ĥ(ζ;λ). Then there is a bijection ι : Z → Z × {+,−} such that

limζ→∞ µj(ζ; 0, 0) = ν̃ι(j) for all j ∈ Z. Lemma 3.1.7 asserts that |µj(ζ; 0, 0)| → ∞ as

ζ → −∞. Hence Lemma 3.1.9 implies that µj,−∞(0, 0) = ±∞ if and only if ±ν̃ι(j) > 0.

That is, the levels ν̃ι(j) > 0 correspond to branches µj(· ; 0, 0) that go to +∞ at −∞,

while the levels ν̃ι(j) < 0 correspond to branches µj(· ; 0, 0) that go to −∞ at −∞.

Thus 0 (or any value in (−|m0|, |m0|)) separates the branches µj(· ; 0, 0) that go to

+∞ at −∞ from those that go to −∞ at −∞, as demonstrated by Figure 3.1 (bottom

right panel).

We now analyze the spectrum of Ĥ(ζ;λ) as λ is continuously deformed from (0, 0) to

(1, 0) to (1, 1), thus separating the effects of m and V . Note that we can choose m0

such that the spectral flow of H through α is well defined when λ ∈ {(0, 0), (1, 0)}

(by definition the spectral flow is well defined when λ = (1, 1)). We follow the con-

vention that µj(ζ;λ) < µj+1(ζ;λ) and µ1,∞(0, 0) = |m0|. This means µj,∞(0, 0) > 0

and µj,−∞(0, 0) = +∞ for all j > 0, while µj,∞(0, 0) < 0 and µj,−∞(0, 0) = −∞

for all j ≤ 0. From (3.1.6), it follows that for all λ ∈ [0, 1]2, µj,−∞(λ) = +∞
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for all j > 0 and µj,−∞(λ) = −∞ for all j ≤ 0. Moreover, (3.1.6) implies that

µ1,∞(1, 0) = max{m+,m−} and µ0,∞(1, 0) = min{m+,m−}. By Lemma 3.1.6, the

values µj,∞(1, 0) can be read off directly from (3.1.3) with V± = 0, as they are exactly

the elements of σ(Ĥ+(0; 1, 0)) + σ(Ĥ−(0; 1, 0) (in increasing order with the limit of µ1

already determined above). This confirms Theorem 3.1.1 in the case that V ≡ 0.

Now we set λ1 = 1 and analyze the transition of λ2 from 0 to 1. Let {ν0,i,±}i∈Z denote

the eigenvalues of Ĥ±(ζ; 1, 0), where ν0,i,± < ν0,i+1,± for all i ∈ Z. The eigenvalues of

Ĥ±(ζ; 1, λ2) are then given by νi,±(λ2) := ν0,i,±+ λ2V± for i ∈ Z. To each νi,±(λ2) is

associated a unique index j = j(λ2, i,±) such that µj(λ2,i,±),∞(1, λ2) = νi,±(λ2). Let

εi,±(λ2) ∈ {1,−1} such that εi,±(λ2) = 1 if and only if µj(λ2,i,±),−∞(1, λ2) = +∞. It

follows that

SF(H(1, λ2);α) =∑
δ∈{+,−}

(|{i : νi,δ(λ2) > α, εi,δ(λ2) = −1}| − |{i : νi,δ(λ2) < α, εi,δ(λ2) = 1}|).

(3.1.7)

By (3.1.6), we know that if νi,+(λ2) /∈ {νi,−(λ2)}i∈Z for all λ2 in an open interval

(a, b), then εi,+(λ2) is constant over λ2 ∈ (a, b). For values λ∗2 and indices i, j such

that νi,+(λ∗2) = νj,−(λ∗2), Lemma 3.1.3 implies that εi,+(λ2) and εj,−(λ2) trade signs

across λ∗2; that is, εi,+(λ∗2 + η) = εj,−(λ∗2 − η) and εj,−(λ∗2 + η) = εi,+(λ
∗
2 − η) for all

η > 0 sufficiently small. But this trade of signs has no effect on the spectral flow (i.e.

if limζ→∞ µ̃1(ζ) = 1 and limζ→∞ µ̃0(ζ) = −1 for some smooth branches of spectrum

µ̃1 and µ̃0, then any spectral flow is independent of whether limζ→−∞(µ̃1(ζ), µ̃0(ζ)) =

(+∞,−∞) or limζ→−∞(µ̃1(ζ), µ̃0(ζ)) = (−∞,+∞)). This means that when evaluat-
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ing the right-hand side of (3.1.7), we can replace εi,δ(λ2) by εi,δ(0) to obtain

SF(H(1, 1);α) =
∑

δ∈{+,−}
(|{i ≤ 0 : ν0,i,δ > α− Vδ}| − |{i > 0 : ν0,i,δ < α− Vδ}|),

where we use the convention that εi,±(0) = 1 if and only if i > 0. To verify that the

above expression yields Theorem 3.1.1 is a straightforward but tedious exercise. We

will do so assuming that m− < 0 < m+, |m−| ≤ |m+| and α − V−, α − V+ > 0, and

leave the other cases (which are handled similarly) to the reader.

Under the above assumptions, it follows that

SF(H(1, 1);α) =M0 −
∑

δ∈{+,−}
|{i > 0 : ν0,i,δ < α− Vδ}| =:M0 −M+ −M−,

(3.1.8)

where

M0 =


1, α− V− < |m−|

0, else,

M+ =


0, α− V+ < m+

k;
√

2(k − 1)B+ +m2
+ < α− V+ <

√
2kB+ +m2

+, k ∈ N+

and

M− =


0, α− V− <

√
2|B−|+m2

−

k;
√

2k|B−|+m2
− < α− V− <

√
2(k + 1)|B−|+m2

−, k ∈ N+.
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We will now show that (3.1.8) agrees with Theorem 3.1.1. Simplifying the formula

(3.1.2) from Theorem 3.1.1, we obtain that

N(H+;α) =


0; α− V+ <

√
2B+ +m2

+,

k;
√
2kB+ +m2

+ < α− V+ <
√

2(k + 1)B+ +m2
+, k ∈ N+

and

N(H−;α) =


0; α− V− <

√
2|B−|+m2

−,

k;
√
2k|B−|+m2

− < α− V− <
√

2(k + 1)|B−|+m2
−, k ∈ N+.

Note from (3.1.1) that in our case,

I(H+;α) = sgn(α− V+ −m+)(N(H+;α) +
1

2
),

I(H−;α) = − sgn(α− V− +m−)(N(H−;α) +
1

2
).

Observe that N(H±;α) = 0 if sgn(α− V± ∓m±) < 0, hence

I(H+;α) =


N(H+;α) +

1
2 , α− V+ −m+ > 0

−1
2 , α− V+ −m+ < 0

and

I(H−;α) =


−N(H−;α)− 1

2 , α− V− +m− > 0

1
2 , α− V− +m− < 0.
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Observe that N(H−;α) =M− and

N(H+;α) =


M+, α− V+ < m+

M+ − 1, else.

Thus

I(H+;α) =


M+ − 1

2 , α− V+ −m+ > 0

−1
2 , α− V+ −m+ < 0

and

I(H−;α) =


−M− − 1

2 , α− V− +m− > 0

1
2 , α− V− +m− < 0.

Since M± = 0 whenever α− V± ∓m± < 0, we conclude that

I(H−;α)− I(H+;α) =


−M− −M+, α− V− +m− > 0,

−M− −M+ + 1, α− V− +m− < 0.

This agrees with (3.1.8), as desired.

2. Suppose 0 < B+, B−. The argument is similar to case 1, only now each µ(ζ;λ)

converges also as ζ → −∞. By Lemmas 3.1.3 and 3.1.9, we know that the branch

µ(ζ; 0, 0) that converges to m0 as ζ → −∞ also converges to m0 as ζ → +∞. Thus

(3.1.6) implies that the branch µ(ζ; 1, 0) that converges to m− as ζ → −∞ must

converge to m+ as ζ → +∞. Finally, this implies that the branch µ(ζ; 1, 1) that

converges to m− + V− as ζ → −∞ must converge to m+ + V+ as ζ → ∞, and the

result follows.
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The case B+ < 0 < B− is handled similarly to case 1; the case B+, B− < 0 is handled

similarly to case 2. This completes the result.

3.2 Physical observable

Let P (y) = P ∈ S(0, 1) and φ ∈ S(0, 1;E1, E2) for some [E1, E2] ⊂ R. As in (1.0.1) and

Section 2, define the interface conductivity associated to H in (3.0.2) by

σI := Tr i[H,P ]φ′(H). (3.2.1)

The goal of this section is to relate σI to the spectral flow from Section 3.1, and to prove its

stability with respect to perturbations of H. To do so, it is convenient to use the framework

of pseudo-differential operators (ΨDOs) and the Helffer-Sjöstrand formula; the notation and

main results we need are summarized in Appendix A.1. Let

σ(x, ξ, ζ) := ξσ1 + (ζ − A2(x))σ2 +m(x)σ3 + V (x)σ0

denote the Weyl symbol of H (so that H = Op(σ)). Similarly, define

σ±(x, ξ, ζ) := ξσ1 + (ζ − xB±)σ2 +m±σ3 + V±σ0

so that H± = Op(σ±). Note that as opposed to the setting described by (H1), the symbols

σ± still depend on the spatial variable x to model a constant magnetic field.

As mentioned at the beginning of this section, σ is not elliptic because its eigenvalues

can remain small even as x and ζ get large. Still, using the fact that

σ2(x, ξ, ζ) = ξ2 + (ζ − A2(x))
2 +m2(x) + V 2(x) + 2V (x)(ξσ1 + (ζ − xB±)σ2 +m±σ3),
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we obtain that

| detσ(x, ξ, ζ)|1/2 ≥ c1⟨ξ, ζ − A2(x)⟩ − c2 (3.2.2)

for some 0 < c1 < 1 and c2 > 0. In order to make use of this inequality, we need to verify

Lemma 3.2.1. The map (x, ξ, ζ) 7→ ⟨ξ, ζ − A2(x)⟩ is an order function.

We refer to Section A.1 for the definitions of an order function and ⟨·⟩.

Proof. It is known (see e.g. [89]) that R2 ∋ Y 7→ ⟨Y ⟩ is an order function. Thus there exist

positive constants C0 and N0 such that

⟨ξ1, ζ1 − A2(x1)⟩ ≤ C0⟨ξ2 − ξ1, ζ2 − A2(x2)− (ζ1 − A2(x1))⟩N0⟨ξ2, ζ2 − A2(x2)⟩

for all (x1, ξ1, ζ1), (x2, ξ2, ζ2) ∈ R3. We write

(ζ2 − A2(x2)− (ζ1 − A2(x1)))
2 ≤ 2((ζ2 − ζ1)

2 + (A2(x2)− A2(x1))
2,

and seek to bound the second term on the above right-hand side. We have

(A2(x2)− A2(x1))
2 = (x2B(x2)− x1B(x1))

2 = ((x2 − x1)B(x2) + x1(B(x2)−B(x1)))
2

≤ 2 ∥B∥2∞ (x2 − x1)
2 + 2x21(B(x2)−B(x1))

2.

Since B(x2)−B(x1) vanishes whenever x1 and x2 are sufficiently large and of the same sign,

there exist positive constants C1 and C2 such that x21(B(x2)−B(x1))
2 ≤ C1(x2−x1)2+C2.

We conclude that

⟨ξ2 − ξ1, ζ2 − A2(x2)− (ζ1 − A2(x1))⟩ ≤ C⟨x2 − x1, ξ2 − ξ1, ζ2 − ζ2⟩
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for some C > 0, and the result is complete.

We begin by showing that σI is well defined. To do this, we will need two useful decay

properties for symbols of related operators.

Lemma 3.2.2. If z ∈ C such that ℑz ̸= 0, then (z − H)−1 = Op(rz) for some rz ∈

S(⟨ξ, ζ − A2(x)⟩−1).

Note that S(⟨ξ, ζ − A2(x)⟩−1) is well defined, by Lemma 3.2.1.

Proof. SinceH is self-adjoint, we know that (z−H)−1 is well defined and bounded. To obtain

bounds for the symbol of (z −H)−1 (and show that it is a ΨDO in the first place), we use

Beals’s criterion presented in [34, Proposition 8.3]. This result states that (z−H)−1 = Op(rz)

for some rz ∈ S(1) if and only if for any collection of linear forms

ℓ1(x, y, ξ, ζ), ℓ2(x, y, ξ, ζ), . . . , ℓN (x, y, ξ, ζ)

on R4, the operator adL1
◦ · · · ◦ adLN

◦ (z −H)−1 is bounded in L2(R2)⊗C2, where Lj :=

Op(ℓj) and adAB := [A,B]. Since σξ = σ1 and σζ = σ2 are constant and σx is bounded,

it is clear that [Lj , H] is bounded for any such Lj . Thus the identity [O, (z − H)−1] =

(z −H)−1[O, H](z −H)−1 easily implies that (z −H)−1 = Op(rz) for some rz ∈ S(1).

By (3.2.2) and the composition calculus, we have

(z − σ)♯(z − σ)−1 = 1 + bz,

where bz ∈ S(⟨ξ, ζ − A2(x)⟩−2). Indeed, all derivatives of σ are bounded and (z − σ)−1 ∈

S(⟨ξ, ζ − A2(x)⟩−1). Letting Gz := Op((z − σ)−1) and Bz := Op(bz), this means

(z −H)Gz = 1 +Bz.
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Applying (z −H)−1 to both sides (on the left), we get

(z −H)−1 = Gz − (z −H)−1Bz.

The first term on the right-hand side has symbol in S(⟨ξ, ζ−A2(x)⟩−1) and the second term

has symbol in S(⟨ξ, ζ−A2(x)⟩−2) ⊂ S(⟨ξ, ζ−A2(x)⟩−1). Therefore, rz ∈ S(⟨ξ, ζ−A2(x)⟩−1)

as desired.

Lemma 3.2.3. For any Φ ∈ C∞c (E1, E2), we have Φ(H) ∈ Op(S(⟨x, ξ, ζ⟩−∞)).

Proof. For any p > 0, we can write Φ(H) = (i − H)−pΦp(H) with Φp ∈ C∞c (E1, E2). By

Lemma 3.2.2 and the composition calculus, this means Φ(H) ∈ Op(S(⟨ξ, ζ − A2(x)⟩−∞)).

Since H± has a spectral gap in [E1, E2], we know that Φ(H±) = 0. Thus we can write

Φ(H) = ϕ(x)(Φ(H) − Φ(H+)) + (1 − ϕ(x))(Φ(H) − Φ(H−)), for some ϕ ∈ S(0, 1). The

Helffer-Sjöstrand formula (A.1.6) implies that

Φ(H)− Φ(H+) =
1

π

ˆ
C
∂̄Φ̃(z)(z −H)−1(H −H+)(z −H+)

−1d2z.

Since σ − σ+ vanishes whenever x is sufficiently large, it follows that Φ(H) − Φ(H+) ∈

Op(S(⟨x+⟩−∞)), where x+ := max{x, 0}. Since ϕ vanishes whenever −x is sufficiently

large, we conclude that ϕ(x)(Φ(H)− Φ(H+)) ∈ Op(S(⟨x⟩−∞)). The same reasoning shows

that (1 − ϕ(x))(Φ(H) − Φ(H−)) ∈ Op(S(⟨x⟩−∞)). We have thus shown that Φ(H) ∈

Op(S(⟨ξ, ζ − A2(x)⟩−∞) ∩ S(⟨x⟩−∞)). By interpolation, the result is complete.

Lemma 3.2.4. For any Φ ∈ C∞c (E1, E2), the operator [H,P ]Φ(H) is trace-class.

Proof. We have [H,P ] = −iP ′(y)σ2 with P ′ ∈ C∞c , hence [H,P ] ∈ Op(S(⟨y⟩−∞)). The

result then follows from Lemma 3.2.3 and the composition calculus.

Now that we have shown that σI is well defined, we relate it to the spectral flow.
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Theorem 3.2.5. For any α ∈ [E1, E2], we have 2πσI = SF(H;α).

Combining Theorems 3.1.1 and 3.2.5, we obtain an explicit formula for σI . In particular,

σI is quantized and independent of compact perturbations in m,B, and V . Moreover, σI is

stable with respect to sufficiently small changes in m±, B± and V±.

Proof. We follow the arguments presented in [10, Section A]. Recall Lemmas 3.1.3 and 3.1.4,

which state that the spectrum of Ĥ(ζ) for ζ ∈ R consists entirely of simple eigenvalues

{µj(ζ)}j∈Z, where each µj : R → R is analytic. For j ∈ Z, let ψj(·, ζ) denote the normalized

eigenfunction (unique up to a phase) of Ĥ(ζ) corresponding to eigenvalue µj(ζ). Using

Lemma 3.1.8, let J ⊂ Z be the finite set of indices corresponding to branches µj that ever

enter the interval [E1, E2]. For any Φ ∈ C∞c (E1, E2), the Schwartz kernel (see Section A.1)

of Φ(H) is thus given by

kΦ(x, x
′; y − y′) =

ˆ
R

∑
j∈J

Φ(µj(ζ))ψj(x, ζ)ψ
∗
j (x

′, ζ)
ei(y−y

′)ζ

2π
dζ. (3.2.3)

Lemmas 3.1.6 and 3.1.7 imply that each µj(ζ) escapes [E1, E2] whenever |ζ| is sufficiently

large, hence the integrand in (3.2.3) is compactly supported in ζ.

By Lemma 2.1.2, we obtain that σI = Tr i[Ψ(H), P ]φ′(H) for any Ψ ∈ C∞c (E1, E2)

that satisfies Ψ(λ) = λ for all λ in some open interval containing supp(φ′). The kernel of

[Ψ(H), P ]φ′(H) is

t(x, x′; y, y′) =
ˆ
R2

(P (y′′)− P (y))kΨ(x, x
′′; y − y′′)kφ′(x

′′, x′; y′′ − y′)dx′′dy′′,

where kΦ for Φ ∈ C∞c (E1, E2) is given by (3.2.3). It follows from (A.1.7) that

σI = i tr

ˆ
R2
t(x, x; y, y)dxdy

= i tr

ˆ
R4

(P (y′)− P (y))kΨ(x, x
′; y − y′)kφ′(x

′, x; y′ − y)dx′dy′dxdy.
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Changing integration variables (y, y′) → (z, y′) with z = y − y′, and using that
´
R P (y

′) −

P (y′ + z)dy′ = −z (which follows from P ∈ S(0, 1)), we obtain

σI = −i tr
ˆ
R3
zkΨ(x, x

′; z)kφ′(x
′, x;−z)dx′dxdz.

By Parseval and using that k∗φ′(x, x
′; z) = kφ′(x

′, x;−z), we have

σI =
1

2π
tr

ˆ
R3
∂ζ k̂Ψ(x, x

′; ζ)k̂∗φ′(x, x
′, ζ)dx′dxdζ.

Note that for any Φ ∈ C∞c (E1, E2),

k̂Φ(x, x
′; ζ) =

J∑
j=1

Φ(µj(ζ))ψj(x, ζ)ψ
∗
j (x

′, ζ),

hence

2πσI = tr

ˆ
R3

J∑
j,k=1

∂ζ(Ψ(µj(ζ))ψj(x, ζ)ψ
∗
j (x

′, ζ))φ′(µk(ζ))ψk(x
′, ζ)ψ∗k(x, ζ)dx

′dxdζ.

(3.2.4)

Since

tr

ˆ
R2
∂ζ(ψj(x, ζ)ψ

∗
j (x

′, ζ))ψk(x
′, ζ)ψ∗k(x, ζ)dx

′dx

= δjk

(ˆ
R
ψ∗k(x, ζ)∂ζψk(x, ζ)dx+

ˆ
R
∂ζψ

∗
k(x, ζ)ψk(x, ζ)dx

)
= δjk∂ζ

ˆ
R
ψ∗k(x, ζ)ψk(x, ζ)dx = 0,
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the contribution to (3.2.4) from ∂ζ(ψj(x, ζ)ψ
∗
j (x

′, ζ)) vanishes, and thus

2πσI = tr

ˆ
R3

J∑
j,k=1

∂ζΨ(µj(ζ))ψj(x, ζ)ψ
∗
j (x

′, ζ)φ′(µk(ζ))ψk(x
′, ζ)ψ∗k(x, ζ)dx

′dxdζ

=

ˆ
R

J∑
j=1

∂ζΨ(µj(ζ))φ
′(µj(ζ))dζ =

ˆ
R

J∑
j=1

∂ζµj(ζ)φ
′(µj(ζ))dζ =

J∑
j=1

ˆ
R
∂ζφ(µj(ζ))dζ,

where we have used orthonormality of the eigenfunctions to justify the second equality above.

It follows that

2πσI =
J∑
j=1

(
lim

ζ→+∞
φ(µj(ζ))− lim

ζ→−∞
φ(µj(ζ))

)
.

Since φ ∈ S(0, 1;E1, E2), the above right-hand side is indeed well defined and the result is

complete.

Now we want to analyze the stability of σI with respect to perturbations. Let

Hµ = H + µW for µ ∈ [0, 1],

where W is a symmetric ΨDO. We begin with a criterion for stability of σI . It will require

two preliminary results (Lemmas 3.2.7 and 3.2.8). Below, U◦ denotes the interior of U .

Theorem 3.2.6. Let Ψ ∈ C∞c (E1, E2) such that φ′ ∈ C∞c ({Ψ(λ) = λ}◦). If Hµ is self-

adjoint and the operators [Hµ, P ]φ
′(Hµ), φ′(Hµ) − φ′(H0) and Ψ(Hµ) − Ψ(H0) are trace-

class, then σI(Hµ) = σI(H0).

Proof. By assumption, σI(Hµ) is well defined. As in the proof of Theorem 3.2.5, it follows

that σI(Hλ) = Tr i[Ψ(Hλ), P ]φ
′(Hλ) for λ ∈ {0, µ}. We can thus write the difference of
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conductivities as

σI(Hµ)− σI(H0) = Tr i[Ψ(Hµ), P ](φ
′(Hµ)− φ′(H0)) + Tr i[Ψ(Hµ)−Ψ(H0), P ]φ

′(H0),

where our hypotheses have guaranteed that each trace is well defined. Using Lemma 3.2.7,

we can replace P above by Py0 , where Py0(y) := P (y − y0). Again applying cyclicity (and

linearity) of the trace, we get σI(Hµ) − σI(H0) =
∑4
j=1TrPy0Aj , where the Aj are all

trace-class. The result then follows from Lemma 3.2.8.

Lemma 3.2.7. Let P1, P2 ∈ S(0, 1) with Pj = Pj(y). Then

Tr i[H,P1]φ
′(H) = Tr i[H,P2]φ

′(H).

Proof. With Ψ defined in Theorem 3.2.6, we have

Tr i[H,P2]φ
′(H)− Tr i[H,P1]φ

′(H) = Tr i[Ψ(H), P2 − P1]φ
′(H).

Since P2−P1 ∈ ⟨x⟩−∞, Lemma 3.2.3 implies that (P2−P1)φ
′(H) is trace-class. Therefore,

Tr i[Ψ(H), P2 − P1]φ
′(H) = Tr iΨ(H)(P2 − P1)φ

′(H)− Tr i(P2 − P1)Ψ(H)φ′(H)

= Tr i(P2 − P1)φ
′(H)Ψ(H)− Tr i(P2 − P1)Ψ(H)φ′(H) = 0,

where we have used cyclicity of the trace to justify the second line, and the fact that

[φ′(H),Ψ(H)] = 0 for the last line.

Lemma 3.2.8. Let P (y) = P ∈ S(0, 1) and y0 ∈ R, and define Py0(y) := P (y − y0). Then

for any trace-class operator A on L2(R2)⊗ Cn, we have TrPy0A→ 0 as y0 → ∞.

Proof. Writing A = 1
2(A+A∗) + 1

2(A−A∗), with 1
2(A+A∗) and i

2(A−A∗) trace-class and

self-adjoint and using the triangle inequality, we may assume that A is self-adjoint. Fix ε > 0.
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By the spectral theorem, there exists an orthonormal basis {ψj}∞j=1 of L2(R2)⊗Cn such that

Aψj = λjψj , with {λj}∞j=1 ⊂ R satisfying
∑∞
j=1 |λj | < ∞. Thus there exists N ∈ N such

that
∑∞
j=N |(ψj , Py0Aψj)| ≤

∑∞
j=N |λj | < ε/2 for all y0 ∈ R. Since {ψj}∞j=1 ⊂ L2(R2)⊗Cn,

we know that, for y0 sufficiently large,
∥∥Py0ψj∥∥ < ε/ (2N ∥A∥) for all j ∈ {1, 2, . . . , N − 1}.

It follows that |TrPy0A| ≤
∑∞
j=1 |(ψj , Py0Aψj)| < ε for all y0 sufficiently large.

We now use Theorem 3.2.6 to prove stability of σI under a large class of perturbations

W . For the rest of this section, let Φ0 ∈ C∞c (E1, E2) such that Ψ ∈ C∞c ({Φ0 = 1}◦), with Ψ

as in Theorem 3.2.6.

Theorem 3.2.9. Let W be a symmetric ΨDO, such that (i ± H0)
−1W is bounded and

Φ0(H0)W is trace-class. Then σI(Hµ) = σI(H0) for all µ > 0 sufficiently small.

Proof. We verify the assumptions of Theorem 3.2.6. Since (i±H0)
−1W is bounded, i±Hµ :

(i − H0)
−1H → H is bijective whenever µ <

∥∥(i±H0)
−1W

∥∥−1, with (i ± Hµ)
−1 = (1 ±

µ(i±H0)
−1W )−1(i±H0)

−1. Hence for all µ > 0 sufficiently small, Hµ is self-adjoint with

the same domain of definition D(Hµ) = D(H0) = (i−H0)
−1H.

It remains to verify that [Hµ, P ]φ
′(Hµ) and Φ(Hµ) − Φ(H0) are trace-class for Φ ∈

{φ′,Ψ}. We start with the difference

Φ(Hµ)− Φ(H0) = (Φ(Hµ)− Φ(H0))(Φ0(Hµ)− Φ0(H0))

+ Φ(H0)(Φ0(Hµ)− Φ0(H0)) + (Φ(Hµ)− Φ(H0))Φ0(H0),

which can be rearranged to give

(Φ(Hµ)− Φ(H0))(1− (Φ0(Hµ)− Φ0(H0)))

= Φ(H0)(Φ0(Hµ)− Φ0(H0)) + (Φ(Hµ)− Φ(H0))Φ0(H0).

(3.2.5)
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By the Helffer-Sjöstrand formula,

Φ0(Hµ)− Φ0(H0) =
1

π

ˆ
C
∂̄Φ̃0(z)(z −H0)

−1µW (z −Hµ)
−1d2z. (3.2.6)

Recall that Φ̃0 ∈ C∞c (C) with |∂̄Φ̃0(z)| ≤ C|ℑz|2, and write

(z −H0)
−1 = (1 + (i− z)(z −H0)

−1)(i−H0)
−1.

Since
∥∥(z −Hµ)

−1
∥∥ ≤ |ℑz|−1, we see that the norm of Φ0(Hµ) − Φ0(H0) is bounded by

Cµ, meaning that it is less than 1 for all µ small enough. It thus suffices to show that each

term on the right-hand side of (3.2.5) is trace-class, as 1− (Φ0(Hµ)−Φ0(H0)) has bounded

inverse. Using (3.2.6), the first term becomes

Φ(H0)(Φ0(Hµ)− Φ0(H0)) =
1

π

ˆ
C
∂̄Φ̃0(z)(z −H0)

−1µΦ(H0)W (z −Hµ)
−1d2z. (3.2.7)

By our assumption that Φ(H0)W is trace-class (and again using that all singularities of

the resolvent operators are compensated by the decay in ∂̄Φ̃0), we conclude that (3.2.7) is

trace-class. Applying the same argument to the second term

(Φ(Hµ)− Φ(H0))Φ0(H0) = − 1

π

ˆ
C
∂̄Φ̃(z)(z −Hµ)

−1µWΦ0(H0)(z −H0)
−1d2z, (3.2.8)

it follows that Φ(Hµ)− Φ(H0) is trace-class.

For the first operator, we write

[Hµ, P ]Φ(Hµ) = [Hµ, P ]Φ(H0) + [Hµ, P ](Φ(Hµ)− Φ(H0)), (3.2.9)

with the first term on the above right-hand side trace-class by Lemma 3.2.3 and the com-

position calculus. To show that the second term is also trace-class, we again use (3.2.5).
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Namely, it suffices to show that

T1 := [H0, P ]A, T2 := [W,P ]A, T3 := [H0, P ]B, T4 := [W,P ]B

are trace-class, withA := Φ(H0)(Φ0(Hµ)−Φ0(H0)) andB := (Φ(Hµ)−Φ(H0))Φ0(H0). That

T1 is trace-class follows immediately from (3.2.7) and boundedness of [H0, P ] = −iP ′(y)σ2.

We know that PWA is trace-class (since (i±H0)
−1W is bounded; this is an assumption on

W ), thus T2 is trace-class if WPA is. We write

WPA =
1

π

ˆ
C
∂̄Φ̃0(z)WP (z −H0)

−1µΦ(H0)W (z −Hµ)
−1d2z

=
1

π

ˆ
C
∂̄Φ̃0(z)W (z −H0)

−1PµΦ(H0)W (z −Hµ)
−1d2z

+
1

π

ˆ
C
∂̄Φ̃0(z)W [P, (z −H0)

−1]µΦ(H0)W (z −Hµ)
−1d2z.

Since [P, (z − H0)
−1] = −(z − H0)

−1[H0, P ](z − H0)
−1, boundedness of [H0, P ] and our

assumption on W imply that WPA is trace-class. Using (3.2.8) and the identity

(z −Hµ)
−1 = (i−Hµ)

−1(1 + (i− z)(z −Hµ)
−1)

= (i−H0)
−1(1− µW (i−H0)

−1)−1(1 + (i− z)(z −Hµ)
−1),

we similarly conclude that T3 and T4 are trace-class. This completes the result.

We now prove a stability result that does not require the perturbation to be “small”. To

do this, we will need the stronger assumption that (i±H0)
−1W is compact.

Theorem 3.2.10. Let W be a symmetric ΨDO. Assume that (i±H0)
−1W is compact and

Φ0(H0)W is trace-class. Then σI(H1) = σI(H0).

Proof. We again verify the hypotheses of Theorem 3.2.6. The fact that (i ± H0)
−1W is

compact implies that H1 = H0+W is self-adjoint with domain of definition D(H1) = D(H0).
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Indeed, the fact thatW is symmetric implies that the kernel of i+H1 is trivial. The Fredholm

alternative and our compactness assumption imply that the dimension of the kernel of 1+(i+

H0)
−1W is equal to the codimension of its range. But 1+(i+H0)

−1W = (i+H0)
−1(i+H1)

with (i+H0)
−1 : H → D(H0) a bijection, and thus codimRan(i+H1) = dimker(i+H1) = 0.

The same argument also shows that codimRan(i−H1) = dimker(i−H1) = 0. We conclude

by [70, Theorem VIII.3] that H1 is self-adjoint.

We now prove the necessary trace-class properties. Let Φ ∈ {φ′,Ψ}. By (3.2.5), (3.2.7)

and (3.2.8), we have that Θ(1 − Θ0) is trace-class, where Θ := Φ(H1) − Φ(H0) and Θ0 :=

Φ0(H1) − Φ0(H0). We know that Θ0 is compact by (3.2.6) and our assumption that W is

relatively compact with respect to H0. Thus there exist Θ00 and Θ01 such that Θ00 has

finite rank, ∥Θ01∥ < 1, and Θ0 = Θ00+Θ01. It follows that Θ(1−Θ01) = Θ(1−Θ0)+ΘΘ00

is trace-class. Applying (1 − Θ01)
−1 to both sides (on the right), we conclude that Θ is

trace-class.

We now show that [H1, P ]Φ(H1) is trace-class. Using (3.2.9), it suffices to show that

[H1, P ]Θ is trace-class. The proof of Theorem 3.2.9 shows that [H1, P ]Θ(1 − Θ0) is trace-

class. As above, we write [H1, P ]Θ = (T+[H1, P ]ΘΘ00)(1−Θ01)
−1 with T and [H1, P ]ΘΘ00

trace-class (the latter because Θ00 has finite rank) and (1−Θ01)
−1 bounded. This completes

the result.

Using Lemmas 3.2.2 and 3.2.3, we see that for any p > 0,

W ∈ Op(S(⟨ξ, ζ − A2(x)⟩⟨y⟩−1−p))

satisfies the assumptions of Theorem 3.2.9 and W ∈ Op(S(⟨ξ, ζ −A2(x)⟩1−p⟨x⟩−p⟨y⟩−1−p))

satisfies the assumptions of Theorem 3.2.10. Note that the assumption that Φ0(H0)W is

trace-class forces the symbol of W to decay in y, as the symbol of H0 is independent of this

variable. We now introduce two stability results that no longer require this decay in y.
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Theorem 3.2.11. Let W = W (x, y) be a symmetric point-wise multiplication operator in

S(1) that is compactly supported in x. Then σI(H +W ) = σI(H).

Proof. The same proofs of Lemmas 3.2.2 and 3.2.3 easily imply that these results hold with

H replaced by H + W . The fact that W is bounded implies that H + W is self-adjoint.

Hence H(µ) := H + µW satisfies the assumptions of Corollary 2.4.5 for all µ ∈ [0, 1] and the

result follows.

Our next result trades the trace-class assumption of Φ0(H0)W in Theorem 2.1.7 for a

smoothness property of W .

Theorem 3.2.12. Let W = Op(w) be a symmetric ΨDO satisfying

w ∈ S(⟨ξ, ζ − A2(x)⟩1−δ⟨x, y⟩−δ)

for some δ > 0, and ∂αw ∈ S(1) for all |α| ≥ 1. Then σI(H +W ) = σI(H).

Proof. Since W is relatively compact with respect to H with the latter self-adjoint, we

know that H(µ) := H + µW is self-adjoint for all µ ∈ [0, 1]. Following the proof of

Lemma 3.2.2 and using the boundedness of ∂αw, we verify that H(µ) ∈ Op(S(⟨ξ, ζ −

A2(x)⟩−1)) for all µ. Thus (3.2.5) implies that Θ(µ)(1 − Θ
(µ)
0 ) ∈ Op(S(x, ξ, ζ)−∞), where

Θ(µ) := Φ(H(µ)) − Φ(H) and Θ
(µ)
0 := Φ0(H

(µ)) − Φ0(H). The Helffer-Sjöstrand for-

mula implies that Θ
(µ)
0 ∈ Op(S(⟨x, y, ξ, ζ⟩−δ)), and therefore Θ

(µ)
0 = Θ

(µ)
00 + Θ

(µ)
01 , where

Θ
(µ)
00 ∈ Op(S(⟨x, y, ξ, ζ⟩−∞)) and Θ

(µ)
01 has symbol in S(1) as small as necessary. We con-

clude that Θ(µ) = (T + Θ(µ)Θ
(µ)
00 )(1 − Θ

(µ)
01 )−1 with T ∈ Op(S(x, ξ, ζ)−∞), Θ(µ)Θ

(µ)
00 ∈

Op(S(⟨x, y, ξ, ζ⟩−∞)) and (1−Θ
(µ)
01 )−1 ∈ Op(S(1)). It follows from the composition calcu-

lus that Φ(H(µ)) = Φ(H) + Θ(µ) ∈ Op(S(⟨x, ξ, ζ⟩−∞)). We have shown that H(µ) satisfies

the assumptions of Corollary 2.4.5 for all µ ∈ [0, 1], and the proof is complete.

We have provided four stability results, each of which has a different assumption on the

perturbation W . We now compare these assumptions using four illustrative examples.
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Example 1. Suppose W = W (y) = η⟨y⟩−1−δ for some δ > 0, where η ∈ {1,−1}.

Then Lemma 3.2.3 and the composition calculus imply that for any p > 0, Φ0(H0)W ∈

Op(S(⟨y⟩−1−δ⟨x, ξ, ζ⟩−p)). It follows that the symbol of Φ0(H0)W is integrable, meaning

that Φ0(H0)W is trace-class. Since W is bounded, we see that W satisfies the assumptions of

Theorem 3.2.9. This means σI(H + µW ) = σI(H) for all µ > 0 sufficiently small. But note

that (i+H0)
−1W is not compact, as its symbol does not decay in ⟨x, ζ⟩. Thus Theorem 3.2.10

does not apply. It is also clear that Theorem 3.2.11 does not apply since W is independent

of x. Theorem 3.2.12 does not apply since the symbol of (i + H)−1W does not decay in

⟨x, ζ⟩.

Example 2. Suppose W = W (x, y) = a⟨x, y⟩−2−δ sgn(y) for some constants a ∈ R

and δ > 0. Define W0(x, y) := a⟨x, y⟩−2−δ. As above it follows that Φ0(H0)W0 is trace-

class. Since y 7→ sgn(y) is bounded, we conclude that Φ0(H0)W is trace-class. Moreover,

since W0 decays in both x and y, the composition calculus implies that (i ± H0)
−1W0 ∈

Op(S(⟨x, y, ξ, ζ⟩−2)), meaning that (i±H0)
−1W0 is compact. Thus (i±H0)

−1W is compact,

meaning that W satisfies the assumptions of Theorem 3.2.10. Although W also satisfies the

assumptions of Theorem 3.2.9, the latter cannot be used to prove σI(H + W ) = σI(H)

when a is sufficiently large. Again it is clear that Theorem 3.2.11 does not apply, as W is

not compactly supported in x. Since W is not continuous, Theorem 3.2.12 does not apply

either.

Example 3. Suppose W (x) = W ∈ C∞c (R), so that Theorem 3.2.11 applies. Then the

symbol of Φ0(H0)W does not decay in y, meaning that Theorem 3.2.12 does not apply and

that Φ0(H0)W is not trace-class. Thus W does not satisfy the assumptions of Theorem 3.2.9

or 3.2.10.

Example 4. Suppose W = W (x, y) = ⟨x, y⟩−δ for some 0 < δ < 1. It is clear that

W satisfies the assumptions of Theorem 3.2.12, but does not decay fast enough to meet the

criteria of Theorems 3.2.9–3.2.11.
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CHAPTER 4

PERIODIC SYSTEMS

This section concerns computational approximations of σI(H,P ). A standard method to

approximate spectral decompositions of operators in R2 is to consider the restriction of the

operator on a box (−πL, πL)2 with periodic boundary conditions and analyze the limit

L→ ∞. However, because of the structure of the domain wall with σ(y) transitioning from

σ− to σ+ as y crosses 0, any periodization generates another transition from σ+ to σ− as y

crosses πL. The asymmetric transport along the x axis when y is close to 0 is compensated

by an asymmetric transport along the x axis when y is close to −πL ≡ πL with opposite

chirality, resulting in a (globally) topologically trivial material.

Periodic systems thus no longer enjoy a non-trivial topology. This is a no-go result

similar to a fermion doubling or Nelson-Ninomiya theorem [87] ensuring that any domain

wall in a mass term on a torus, no matter how large, may continuously be deformed to

a constant mass term. The trace in (1.0.1) therefore needs to be modified so the integral

focuses on the original domain wall, which as L → ∞ becomes well separated from the

spurious second domain wall. While conductivities may be computed for general pseudo-

differential Hamiltonians, as we do in Section 2, see also [11], we restrict our analysis of

periodized Hamiltonians to differential systems and avoid complications resulting from non-

local effects. We therefore consider (unperturbed) infinite-space Hamiltonians that satisfy

(H1) and are differential operators of the form

H =M0D
m
y +MmD

m
x +

m∑
j=0

aj(y)D
j
xD

m−j
y +

∑
i+j≤m−1

aij(y)D
i
xD

j
y, (4.0.1)

where Dx = −i∂x and Dy = −i∂y and M0 and Mm are constant nonsingular Hermitian
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matrices, while

{M0,Mm}


= 0, m is odd

≥ 0, m is even
, {Mi, aj(y)}


= 0, i+ j is odd

≥ 0, i+ j is even
, (4.0.2)

with the second condition understood to hold for all i ∈ {0,m}, j ∈ {0, 1, . . . ,m}, and

y ∈ R. The aj(y) and aij(y) are smooth matrix-valued functions such that H is symmetric.

In particular, this means the leading-order coefficients aj(y) are all Hermitian-valued. The

anti-commutation relations (4.0.2) with {O1, O2} := O1O2 + O2O1 for two operators O1

and O2 ensure that H2 =M2
0D

2m
y +M2

mD
2m
x +A+B, where A is non-negative and B is a

differential operator of order 2m− 1, so that H2 remains a self-adjoint elliptic operator. We

need the above structure in some applications to superconductors. We will finally consider

perturbed operators HV = H + V where V = V (x, y) is a multiplication operator with

support that remains sufficiently close, in an appropriate sense, to the center of the torus.

To approximateH by an operator on (−πL, πL)2, we redefine the coefficients near y = πL

so that they are smoothly connected there. The resulting periodic Hamiltonian is unitarily

equivalent to an operator Hλ on (−π, π)2, with λ = L−1 the relevant parameter. The

details of the construction of Hλ are left for section 4.1. For φ ∈ S(0, 1;E1, E2), we define

the periodic interface conductivity by

σ̃I(Hλ) = Tr iQ[Hλ, P ]φ
′(Hλ), (4.0.3)

where P = P (x) and Q = Q(x, y) = QX(x)QY (y) are smooth point-wise multiplication

operators such that

QΘ(θ) =


1, |θ| ≤ π/2

0, |θ| ≥ π/2 + δQ
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and

P (x) =


0, x1 ≤ x ≤ x2 − π < x1 < −3π/4 < −π/2 < x2

1, x3 ≤ x ≤ x4 x2 < x3 < π/2 < 3π/4 < x4 < π,

for some fixed 0 < δQ < π/4. As we may observe, Q is a spatial filter centered at the domain

wall of interest where P ′ > 0 and vanishing in the vicinity of the unwanted domain wall

where P ′ < 0.

Our main result in Section 4.1 shows that |σ̃I(Hλ)−σI(H)| ≲ λp for any p ≥ 0 as λ→ 0,

which corresponds to an almost-exponential rate of convergence. This is based on a careful

approximation of the periodic eigenfunctions by truncations of the infinite eigenfunctions

corresponding to energies in the bulk spectral gap in the vicinity of domain walls and on a

proof that such periodic eigenfunctions have to be negligible away from the domain walls.

Estimates of the periodic eigenelements by means of min-max theorems allow us to obtain

the above trace estimates.

We next prove in Section 4.2 that for a large class of perturbations Vλ with appropriate

support constraints, |σ̃I(Hλ + Vλ) − σ̃I(Hλ)| ≲ λp as λ → 0, for all p ≥ 0. These results

of approximate stability of conductivities in a periodic setting parallel the exact stability

results in Euclidean space of Section 2.

Section 4.3 finally shows how the above theory applies to the models from solid state

physics that were already considered in Section 2.3.

Section 4.4 presents several numerical simulations highlighting our theoretical findings.

In particular, we demonstrate for several differential operators that σ̃I is a good numerical

approximation of the infinite-space conductivity σI and is stable under perturbations by

sufficiently localized point-wise multiplication operators.

We also confirm numerically several theoretical results obtained for a topologically non-

trivial 3×3 system of water wave equations. In particular, it is known that the bulk-interface
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correspondence may fail for certain domain wall profiles of the un-regularized system. We

confirm numerically results derived in [10] and showing that the conductivity is stable for

some 3× 3 perturbations V but not all. We also confirm results obtained in earlier sections

that a regularized version of the water wave system does have a stable, well defined, edge

conductivity equal to 2.

4.1 Periodic approximations of infinite-space problems

This section addresses approximations of a Hamiltonian in R2 by an operator on the 2-torus

T2. Throughout this thesis, T is identified with [−π, π). We construct the periodic operator

Hλ introduced above and show that the periodic interface conductivity (4.0.3) is a good

approximation of its infinite-space analogue (1.0.1).

Let us introduce the following Hilbert spaces

Hj(X) := {Ψ ∈ L2(X)⊗ Cn | ∂αΨ ∈ L2(X)⊗ Cn ∀ |α| ≤ j},

where j ∈ N and X ∈ {Rd,Td} with d ∈ {1, 2}. For X = Td and a parameter λ ∈ (0, 1], we

define on Hj(X) the inner products and norms

⟨f, g⟩λ,j :=
∑
|α|≤j

⟨λ|α|Dαf, λ|α|Dαg⟩, ∥f∥λ,j := ⟨f, f⟩1/2λ,j ,

with ⟨·, ·⟩ the standard inner product in L2(Td)⊗Cn . For X = Rd, the corresponding inner

product and norm are

(f, g)j :=
∑
|α|≤j

(Dαf,Dαg), |||f |||j := (f, f)
1/2
j ,
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with (·, ·) the standard inner product in L2(Rd)⊗ Cn. We will use the shorthand

H(X) := H0(X), H := H(R2), ⟨·, ·⟩j := ⟨·, ·⟩1,j , ⟨·, ·⟩ := ⟨·, ·⟩0, (·, ·) := (·, ·)0.

We will repeatedly need to rescale functions with λ, embed functions on R in the torus,

and extend functions on T as functions on R. We define these operations as follows. For

λ ∈ (0, 1] and y1 ∈ R, define the unitary map Λλ,y1 : H(R) → H(R) by

(Λλ,y1(u))(y) := λ1/2u(λ(y − y1) + y1), y ∈ R.

Observe that Λ−1
λ,y1

= Λλ−1,y1
.

Let L∞c,2π(R) denote the space of bounded functions f ∈ L∞c (R) such that supp(f) ∈

(τ, τ + 2π) for τ ∈ R. We define by f♯(y) =
∑
q∈Z f(2πq + y) their periodization (which is

smooth when f is smooth) and then P : L∞c,2π(R) → L∞(T) by

Pu(y) = u♯(y) =
∑
q∈Z

u(2πq + y).

Thus, P is an embedding of functions on R with sufficiently small support to functions on

T.

We define P̃ as the operator mapping a function in u ∈ L∞(T) to L∞c (R) by

P̃u(y) = χ[−π,π)(y)u((y + π) mod 2π − π)

with χI the indicatrix function of I ⊂ R.

For u vector-valued, Pu and P̃u are defined as above component-wise.

Construction of the periodic operator. We now construct a differential operator on

the torus. We start from our original operator H = Op(σ), assumed to be a differential
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operator on H = L2(R2)⊗ Cn given by (4.0.1) and (4.0.2) such that σ satisfies (H1).

Any operator with smooth coefficients on the torus will have a transition modeling a

domain wall between σ− and σ+ in the vicinity of y = 0 and another domain wall from σ+

to σ− in the vicinity of y = π. We construct a differential operator H ′ = Op(σ′) with such a

domain wall, i.e., such that σ′ = σ+ whenever y ≤ π− y0 and σ′ = σ− whenever y ≥ π+ y0.

Assume that σ′ is smooth and independent of x, and that for every y′ ∈ R, there exists y ∈ R

such that σ′(y′, ξ, ζ) = σ(y, ξ, ζ). We may for instance choose σ′(y, ξ, ζ) = σ(π − y, ξ, ζ).

The above operators are defined on R and need to be mapped to a torus and glued

together. Define the rescaled versions H̃λ = Op(σ̃λ) and H̃ ′
λ = Op(σ̃′λ), where σ̃λ(y, ξ, ζ) :=

σ(y/λ, λξ, λζ) and σ̃′λ(y, ξ, ζ) := σ′(y−πλ + π, λξ, λζ). Then there exists λ0 ∈ (0, 1] such that

for all λ ∈ (0, λ0], we can define Hλ a differential operator on H(T2) = L2(T2) ⊗ Cn with

smooth coefficients that are equal to those of H̃λ when −π/2 ≤ y ≤ π/2 and H̃ ′
λ when

π/2 ≤ y ≤ 3π/2 (with the equivalence −π/2 ≡ 3π/2 on T). Thus we have

Hλ = λm
(
M0D

m
y +MmD

m
x +

m∑
j=0

aλ,j(y)D
j
xD

m−j
y

)
+

∑
i+j≤m−1

λi+jaλ,ij(y)D
i
xD

j
y,

(4.1.1)

where the aλ,j , aλ,ij ∈ C∞c (T) are constant whenever λy0 ≤ |y| ≤ π− λy0. By definition, we

know that for all j ∈ {0, 1, . . . ,m} and y ∈ T, there exists y′ ∈ R such that aλ,j(y) = aj(y
′).

Hence (4.0.2) holds in the periodic setting, with aj replaced by aλ,j . Moreover, for any

multi-index α ∈ N2, we have λ|α|(
∑
j

∥∥∂αaλ,j∥∥L∞ +
∑
i,j

∥∥∂αaλ,ij∥∥L∞) ≤ C uniformly in

λ.

The Hamiltonian H − E1+E2
2 satisfies the same assumptions as H, thus we can take

−E1 = E2 =: E > 0 without loss of generality. To simplify the following calculations, we

will assume that φ′ is even, so we can let Υ ∈ C∞c (−1, E2 − δ0) for some δ0 > 0, such that

φ′(x) = Υ(x2) for all x ∈ R. Recall that by Corollary 2.4.4, the infinite-space conductivity
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σI(H) is independent of φ ∈ S(0, 1;−E,E).

The main result of this section is the following, where σI and σ̃I are given by (1.0.1) and

(4.0.3), respectively.

Theorem 4.1.1. For any p > 0, there exists a constant Cp > 0 such that |σI(H)−σ̃I(Hλ)| ≤

Cpλ
p as λ→ 0.

Hidden in Theorem 4.1.1 is the assertion that φ′(Hλ) is well defined. It suffices to show

that Hλ is self-adjoint [70], which we do by creating a continuous path between Hλ and a

corresponding differential operator with constant coefficients. To this end, define

Hλ,µ := λm
(
M0D

m
y +MmD

m
x

)
+ µ
(
λm

m∑
j=0

aλ,j(y)D
j
xD

m−j
y +

∑
i+j≤m−1

λi+jaλ,ij(y)D
i
xD

j
y

)

for µ ∈ [0, 1]. Note that Hλ,µ is symmetric since Hλ is.

Proposition 4.1.2. There exist positive constants C1 and C2 such that for all f ∈ Hm(T2),

∥∥Hλ,µf∥∥2 ≥ C1 ∥f∥2λ,m − C2 ∥f∥2

uniformly in λ ∈ (0, λ0] and µ ∈ [0, 1].

In the following proof, we use the Gagliardo-Nirenberg inequality on the Torus which

states that for any non-negative integers i and j satisfying i+ j ≤ m,

∥∥∥∂ix∂jyf∥∥∥ ≤ ∥∂mx f∥
i
m
∥∥∂my f∥∥ j

m ∥f∥1−
i+j
m (4.1.2)

for all f ∈ Hm(T2).

Proof. From the anti-commutation properties (4.0.2), we see that H2
λ,µ = λ2m

(
M2

0D
2m
y +
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M2
mD

2m
x

)
+ Aλ,µ +Bλ,µ, where

Aλ,µ = λ2m

(
{M0,Mm}Dm

y D
m
x + µ

⌊m2 ⌋∑
j=0

(
D

2j
x D

m−j
y {M0, aλ,2j}D

m−j
y

+D
2(m−j)
x D

j
y{Mm, aλ,m−2j}D

j
y

)
+
(
µ

m∑
j=0

aλ,j(y)D
j
xD

m−j
y

)2)

is non-negative and

Bλ,µ =
∑

i+j≤2m−1

λi+j ãλ,µ,ij(y)D
i
xD

j
y

is of order 2m− 1, with λ|α|
∑
i,j

∥∥∂αãλ,µ,ij∥∥L∞ ≤ Cα uniformly in λ and µ for all α ∈ N2.

Using that M0 and Mm are non-singular and Hermitian, we have

∥∥Hλ,µf∥∥2 ≥ λ2mc(
∥∥Dm

y f
∥∥2 + ∥Dm

x f∥
2) + (f,Bλ,µf)

for some c > 0. The result then follows from (4.1.2) and the fact that |(f,Bλ,µf)| ≤

C ∥f∥λ,m ∥f∥λ,m−1.

Proposition 4.1.2 implies the existence of a positive constant C such that ∥f∥λ,m ≤ C ∥g∥

for all f ∈ Hm(T2) and g ∈ H(T2) satisfying (i−Hλ,µ)f = g uniformly in λ and µ. Indeed,

redefining the constants C1 and C2, we have

∥f∥2λ,m ≤ C1

∥∥Hλ,µf∥∥2 + C2 ∥f∥2 = C1 ∥g − if∥2 + C2 ∥f∥2 ≤ C2 ∥g∥2 , (4.1.3)

where the last inequality follows from the fact that ∥f∥2 = ℑ(f, (i − Hλ,µ)f) = ℑ(f, g) ≤

∥f∥ ∥g∥ . Clearly the same bound (4.1.3) holds if i−Hλ,µ is replaced by i+Hλ,µ.

Proposition 4.1.3. For all λ ∈ (0, λ0], Hλ is self-adjoint on H(T2) with domain of defini-

tion Hm(T2).

Proof. By (4.1.3) and regularity of the coefficients of Hλ,µ, we can choose N ∈ N sufficiently
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large such that
∥∥∥(Hλ,(k+1)/N −Hλ,k/N )f

∥∥∥ ≤ ∥g∥ /2 for all g ∈ H(T2), f ∈ Hm(T2) satis-

fying (i−Hλ,k/N )f = g, and k ∈ {0, 1, . . . , N − 1}. Since Hλ,0 is symmetric with constant

coefficients, we know (or easily verify) that i−Hλ,0 is a bijection Hm(T2) → H(T2). Now,

suppose i−Hλ,k/N is a bijection Hm(T2) → H(T2) for some k ∈ {0, 1, . . . , N −1}, meaning

that
∥∥∥(Hλ,(k+1)/N −Hλ,k/N )(i−Hλ,k/N )−1

∥∥∥ ≤ 1/2. Then

i−Hλ,(k+1)/N =
(
1− (Hλ,(k+1)/N −Hλ,k/N )(i−Hλ,k/N )−1

)
(i−Hλ,k/N )

is a bijection Hm(T2) → H(T2), as the first factor on the above right-hand side can be

inverted using the Neuman series. We conclude by induction that i − Hλ,1 = i − Hλ

is a bijection Hm(T2) → H(T2). The same reasoning implies that i + Hλ is a bijection

Hm(T2) → H(T2). Since Hλ is symmetric, it follows from [70, Theorem VIII.3] that Hλ is

self-adjoint with domain of definition Hm(T2). This completes the proof.

For ξ ∈ R, define the differential operator Ĥ(ξ) on H(R) by

Ĥ(ξ) :=M0D
m
y +Mmξ

m +
m∑
j=0

aj(y)ξ
jD

m−j
y +

∑
i+j≤m−1

aij(y)ξ
iD

j
y.

Since the coefficients of H are independent of x, we have the decomposition

H = F−1
ξ→x

ˆ ⊕

R
Ĥ(ξ)dξFx→ξ,

with F the one dimensional Fourier transform in the x-variable.

For λ ∈ (0, λ0] and ξ ∈ R, define the differential operator Ĥλ(ξ) on H(T) by

Ĥλ(ξ) := λmM0D
m
y +Mmξ

m +
m∑
j=0

λm−jaλ,j(y)ξ
jD

m−j
y +

∑
i+j≤m−1

λjaλ,ij(y)ξ
iD

j
y.

(4.1.4)
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Noting that the coefficients of Hλ are independent of x, we see that for any ψ ∈ Hm(T) and

ξ ∈ Z,

(Ĥλ(λξ)ψ)(y) = e−iξx(Hλψξ)(x, y)

for all (x, y) ∈ T2, where ψξ ∈ Hm(T2) is given by ψξ(x, y) = eiξxψ(y).

One can easily apply the logic from the proofs of Propositions 4.1.2 and 4.1.3 to obtain

analogous results for Ĥλ(ξ). Namely, there exist positive constants C1 and C2 such that for

all f ∈ Hm(T),

∥∥∥Ĥλ(ξ)f∥∥∥2 ≥ (C1ξ
2m − C2) ∥f∥2 + C1

∥∥λmDm
y f
∥∥2 (4.1.5)

uniformly in λ ∈ (0, λ0] and ξ ∈ R. As above, this implies that Ĥλ(ξ) is self-adjoint with

domain of definition Hm(T). In addition, we obtain

Proposition 4.1.4. The operator Ĥ2
λ(ξ) is self-adjoint with domain of definition H2m(T)

and its spectrum consists only of eigenvalues that go to +∞.

Proof. Clearly Ĥ2
λ(ξ) is symmetric. Moreover, we see that i+Ĥ2

λ(ξ) = (1−i√
2
+Ĥλ(ξ))(

−1+i√
2

+

Ĥλ(ξ)), with each factor on the right-hand side a bijection Hk+2m(T) → Hk(T) for any

k ∈ N. Thus i + Ĥ2
λ(ξ) is a bijection H2m(T) → H(T). The same holds for i − Ĥ2

λ(ξ),

meaning that Ĥ2
λ(ξ) is self-adjoint with domain H2m(T).

To prove the spectral property, we write (1+Ĥ2
λ(ξ))

−1 = (1+Ĥ2
λ(ξ))

−1(1+Ĥ2
λ,0(ξ))(1+

Ĥ2
λ,0(ξ))

−1 for Ĥλ,0(ξ) := M0λ
mDm

y + Mmξ
m. Since Ĥλ,0(ξ) has constant coefficients,

it is clear that (1 + Ĥ2
λ,0(ξ))

−1 is Hilbert-Schmidt. Since (1 + Ĥ2
λ(ξ))

−1(1 + Ĥ2
λ,0(ξ)) is

bounded, we conclude that (1+ Ĥ2
λ(ξ))

−1 is Hilbert-Schmidt, hence compact. Therefore the

spectrum of (1 + Ĥ2
λ(ξ))

−1 consists entirely of eigenvalues that converge to 0, meaning that

the spectrum of Ĥ2
λ(ξ) consists only of eigenvalues tending to +∞.
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We now state the following well known result characterizing the spectrum of self-adjoint

operators, which can be found in, e.g., [71, 81].

Theorem 4.1.5. Let A : H0 → H0 be self-adjoint with H0 a separable Hilbert space, and

let E1 ≤ E2 ≤ E3 . . . be the eigenvalues of A below the essential spectrum (counted with

multiplicity), respectively, the infimum of the essential spectrum, once there are no more

eigenvalues left. Let vj denote the eigenfunction corresponding to Ej (when the latter is

an eigenvalue), such that ⟨vi, vj⟩ = δij for all i and j. Then for any ℓ ∈ N+ and u ∈

span(v1, v2, . . . , vℓ−1)
⊥, ⟨u,Au⟩ ≥ Eℓ ∥u∥2. Moreover, we have

Eℓ = max
ϕ1,...,ϕℓ−1

min{⟨ϕ,Aϕ⟩ : ϕ ∈ span(ϕ1, . . . , ϕℓ−1)
⊥, ∥ϕ∥ = 1}

= min
ϕ1,...,ϕℓ

max{⟨ϕ,Aϕ⟩ : ϕ ∈ span(ϕ1, . . . , ϕℓ), ∥ϕ∥ = 1}.

We now gather useful properties of the infinite-space operator Ĥ(ξ) and its spectrum.

Proposition 4.1.6. Take H = Op(σ) as above, and fix δ > 0. Then for each ξ ∈ R, Ĥ(ξ)

and Ĥ2(ξ) are self-adjoint with respective domains of definition Hm(R) and H2m(R). The

spectrum of Ĥ2(ξ) in the interval [0, E2− δ) consists of a finite number of eigenvalues, each

with finite multiplicity. These eigenvalues and corresponding eigenfunctions can be chosen so

that they are analytic in ξ. Moreover, the rank of Ĥ2(ξ) in [0, E2 − δ) is uniformly bounded

in ξ ∈ R and vanishes whenever |ξ| is sufficiently large.

Proof. Fix ξ ∈ R. Since Ĥ(ξ) = Op(σξ) with σξ ∈ Sm1,0 elliptic, it follows from [20, 56] that

Ĥ(ξ) is self-adjoint with domain of definition Hm(R). We know that Ĥ2(ξ) = Op(τξ), where

τξ(y, ζ) = (σ♯σ)(y, ξ, ζ). Applying the same argument to the elliptic symbol τξ ∈ S2m1,0 , wee

see that Ĥ2(ξ) is self-adjoint with domain of definition H2m(R). Define σ±,ξ(ζ) := σ±(ξ, ζ)

and τ±,ξ := σ2±,ξ, and observe that τξ = τ+,ξ whenever y ≥ y0, and τξ = τ−,ξ whenever
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y ≤ −y0. Since the τ±,ξ are independent of y,

T±,ξ := Op(τ±,ξ) = (Op(σ±,ξ))
2 ≥ 0.

Let χ ∈ S(0, π/2,−1, 1), and define χε(y) := χ(εy) and

Op(τε,ξ) = Tε,ξ := sin(χε(y))T+,ξ sin(χε(y)) + cos(χε(y))T−,ξ cos(χε(y))

for ε ∈ (0, 1]. We see that τε,ξ = sin2(χε(y))τ+,ξ + cos2(χε(y))τ−,ξ + εrε,ξ, with rε,ξ ∈

S(⟨ζ⟩2m) uniformly in ε, and τ±,ξ ≥ max{E2, c⟨ζ⟩2m}. It follows that

τε,ξ ≥ max{E2, c⟨ζ⟩2m} − c′ε⟨ζ⟩2m

for some positive constant c′, hence τε,ξ ≥ E2 − δ/4 for ε sufficiently small. Using the fact

that Tε,ξ ≥ 0, we apply Lemma 4.1.7 below (with a unitary transformation) to conclude that

Tε,ξ has no spectrum in the interval (−∞, E2 − δ/2) for ε sufficiently small.

We now observe that

(i− Tε,ξ)
−1 − (i− Ĥ2(ξ))−1 =

(i− Tε,ξ)
−1(Ĥ2(ξ)− Tε,ξ)(i− Ĥ2(ξ))−1 ∈ Op(S(⟨y⟩−∞⟨ζ⟩−2m)),

as τξ−τε,ξ ∈ S(⟨y⟩−∞⟨ζ⟩2m) and both resolvents have symbol in S(⟨ζ⟩−2m). Since ⟨ζ⟩−2m ∈

L2(R), it follows that (i − Tε,ξ)
−1 − (i − Ĥ2(ξ))−1 is Hilbert-Schmidt, hence compact. By

[81, Theorem 6.18], we conclude that the essential spectra of Tε,ξ and Ĥ2(ξ) are the same,

meaning that the spectrum of Ĥ2(ξ) in [0, E2− δ/2) consists of eigenvalues, each with finite

multiplicity. The number of these eigenvalues must be finite, as we can verify from the proof

of Proposition 2.1.10 that Φ0(Ĥ
2(ξ)) is trace-class for all Φ0 ∈ C∞c (−1, E2).

Fix ξ ∈ R. Let ψ ∈ C∞c (R) ⊗ Cn such that |||ψ||| = 1. Define ψ̃ := Λ−1
λ1,0

ψ, where
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λ1 ∈ (0, λ0] is sufficiently small so that supp(ψ̃) ⊂ (−π/2, π/2). Then by (4.1.5),

∣∣∣∣∣∣∣∣∣Ĥ(ξ)ψ
∣∣∣∣∣∣∣∣∣ = ∥∥∥Ĥλ1(ξ)Pψ̃∥∥∥ ≥ C1ξ

m − C2.

Since C∞c (R) is dense in Hm(R) with respect to the Hm-norm, we have proved that Ĥ2(ξ)

has no spectrum in [0, E2) whenever |ξ| is sufficiently large.

Let ν1(ξ) ≤ ν2(ξ) ≤ · · · ≤ ν
Ñ(ξ)

(ξ) denote the eigenvalues of Ĥ(ξ) below E2 − δ/2. We

showed above that Ñ(ξ) is finite for all ξ ∈ R. Let N(ξ) be the number of eigenvalues of

Ĥ2(ξ) in [0, E2 − δ). To show that N(ξ) is bounded uniformly in ξ, we will first prove that

the eigenvalues are uniformly equicontinuous in ξ. By “uniformly equicontinuous”, we mean

that for all ε > 0, there exists η > 0 such that for any |ξ1 − ξ2| < η and any j satisfying

j ≤ Ñ(ξ1), it follows that |νj(ξ2)− νj(ξ1)| < ε.

Fix C0 > 0. Let ξ̄ > 0 such that Ĥ2(ξ) has no spectrum in [0, E2−δ/2) whenever |ξ| > ξ̄.

Since Ĥ2(ξ + ρ)− Ĥ2(ξ) is a differential operator of order 2m− 1 with coefficients bounded

by C|ρ|, the Gagliardo-Nirenberg inequality (4.1.2) on R2 implies that

|(u, (Ĥ2(ξ + ρ)− Ĥ2(ξ))u)| ≤ C|ρ| |||u|||
2m−1
m

m |||u|||
1
m ≤ CC

2m−1
m

0 |ρ| |||u|||2 (4.1.6)

uniformly in ρ ∈ [−1, 1] and ξ ∈ [−ξ̄, ξ̄], for all u ∈ Hm(R) satisfying |||u|||m ≤ C0 |||u|||. By

ellipticity of Ĥ(ξ), we can choose C0 sufficiently large so that
∣∣∣∣∣∣∣∣∣Ĥ(ξ)u

∣∣∣∣∣∣∣∣∣ ≥ E |||u||| whenever

|||u|||m > C0 |||u||| and ξ ∈ R. Hence given any ℓ-dimensional subspace Sℓ ⊂ Hm(R), the

bound (4.1.6) holds uniformly in u ∈ Sℓ and ξ ∈ [−ξ̄, ξ̄] satisfying
∣∣∣∣∣∣∣∣∣Ĥ(ξ)u

∣∣∣∣∣∣∣∣∣ < E |||u|||. It

follows that

∣∣∣ max
u∈Sℓ,|||u|||=1

(u, Ĥ2(ξ + ρ)u)− max
u∈Sℓ,|||u|||=1

(u, Ĥ2(ξ)u)
∣∣∣ ≤ CC

2m−1
2m

0 |ρ|; ρ ∈ [−1, 1]

uniformly in ξ ∈ [−ξ̄, ξ̄] satisfying maxu∈Sℓ,|||u|||=1

∣∣∣∣∣∣∣∣∣Ĥ(ξ)u
∣∣∣∣∣∣∣∣∣ < E. Therefore by Theorem
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4.1.5,

|νℓ(ξ + ρ)− νℓ(ξ)| =
∣∣∣min
Sℓ

max
u∈Sℓ,|||u|||=1

(u, Ĥ2(ξ + ρ)u)−min
Sℓ

max
u∈Sℓ,|||u|||=1

(u, Ĥ2(ξ)u)
∣∣∣

≤ CC
2m−1
2m

0 |ρ|

uniformly in ρ ∈ [−1, 1] and ℓ ≤ Ñ(ξ). Thus we have proven uniform equicontinuity of the

eigenvalues.

Suppose by contradiction that N(ξ) is not bounded uniformly in ξ. Since N(ξ) vanishes

outside [−ξ̄, ξ̄], there exists a sequence (ξk) ⊂ [−ξ̄, ξ̄] and a number ξ∗ ∈ [−ξ̄, ξ̄] such that

ξk → ξ∗ and N(ξk) → ∞ as k → ∞. Uniform equicontinuity of the eigenvalues implies that

for all k sufficiently large, all eigenvalues νj satisfying νj(ξk) < E2 − δ must also satisfy

νj(ξ∗) < E2 − δ/2. This implies

Ñ(ξ∗) ≥ N(ξk) → ∞,

which is a contradiction since we already proved that Ñ(ξ∗) must be finite.

It remains to show that the eigenvalues and eigenfunctions can be chosen analytic in ξ

when they lie in [0, E2− δ). We have shown that there exists Ñ0 <∞ such that Ñ(ξ) ≤ Ñ0

for all ξ ∈ R. Thus for all ξ such that ν1(ξ) < E2− δ, there exists k(ξ) ∈ {1, 2, . . . , Ñ0} such

that νk(ξ)+1(ξ) ≥ E2 − δ and νk(ξ)+1(ξ) − νk(ξ)(ξ) ≥ δ
2Ñ0

. Uniform equicontinuity implies

that there exists η > 0 such that νk(ξ)+1(ξ̂) − νk(ξ)(ξ̂) ≥ δ
4Ñ0

whenever |ξ̂ − ξ| < η. Now

write [−ξ̄, ξ̄] ⊂ ∪jBj , where {Bj} is a finite collection of overlapping open intervals (Bj ∩

Bj+1 ̸= ∅) of length 2η. Let ξj be the midpoint of Bj . Then for every j, we can apply [58,

Theorems VII.1.7 and VII.1.8] to the finite system of eigenvalues ν1(ξ), ν2(ξ), . . . , νk(ξj)(ξ)

and corresponding eigenfunctions to conclude that they can be chosen analytic in ξ ∈ Bj .

Since the Bj form an open cover of [−ξ̄, ξ̄], this proves that all eigenvalues (and corresponding

eigenfunctions) in the energy interval [0, E2− δ) can be chosen analytic in ξ. This completes
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the result.

Lemma 4.1.7. Suppose Ah = Oph(a) is non-negative for all h ∈ (0, 1], where a ∈ Sm1,0 is

Hermitian-valued and elliptic. Then for any constant c ≥ 0 satisfying amin ≥ c, there exist

constants β > 0 and 0 < h0 ≤ 1 such that ⟨ψ,Ahψ⟩ ≥ c−βh for all ∥ψ∥ = 1 and h ∈ (0, h0].

Proof. We know that Ah is self-adjoint by our assumptions on a. Since Ah ≥ 0, it follows

that (1 + Ah)
−1 = Oph(rh), where S(1) ∋ rh = (1 + a)−1 + O(h). By the semi-classical

sharp Gårding inequality [34, Theorem 7.12], there exist constants β0 > 0 and 0 < h0 ≤ 1

such that

0 < ⟨ϕ, (1 + Ah)
−1ϕ⟩ ≤

(
(1 + c)−1 + β0h

)
∥ϕ∥2 (4.1.7)

for all nonzero ϕ ∈ H and h ∈ (0, h0]. Let ψ ∈ D(Ah) such that ∥ψ∥ = 1, and define

ϕ = (1 + Ah)
1/2ψ. Then

⟨ψ, (1 + Ah)ψ⟩ = ∥ϕ∥2 =
∥ϕ∥2

∥ψ∥2
=

∥ϕ∥2

⟨ϕ, (1 + Ah)
−1ϕ⟩

≥ 1 + c− βh, h ∈ (0, h0]

for some fixed constant β. This completes the proof.

Spectral approximations. Recall that H ′ = Op(σ′), where for every y′ ∈ R, there exists

y ∈ R such that σ′(y′, ξ, ζ) = σ(y, ξ, ζ). Since σ satisfies (H1), it follows that σ′ is elliptic:

|σ′min| ≥ c⟨ξ, ζ⟩m − 1. Hence the fact that σ′ = σ+ whenever y ≤ π − y0 and σ′ = σ−

whenever y ≥ π+y0 implies that σ′ also satisfies (H1), with the roles of σ+ and σ− reversed.

We conclude that Proposition 4.1.6 still holds if H is replaced by H ′, where we would instead

define ψ̃ := Λ−1
λ1,π

ψ in the third paragraph of the proof.

The approximation result of Theorem 4.1.1 requires a detailed analysis of the spectrum

of Hλ constructed in (4.1.1), which it inherits from that of the operators H and H ′. For

ξ ∈ R, let µ1(ξ) ≤ µ2(ξ) ≤ µ3(ξ) . . . denote the combined eigenvalues of Ĥ2(ξ) and Ĥ ′2(ξ)
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below Σess(Ĥ2(ξ)) ∪ Σess(Ĥ ′2(ξ)), respectively, the infimum of Σess(Ĥ2(ξ)) ∪ Σess(Ĥ ′2(ξ)),

once there are no more eigenvalues left. Let Rξ (resp. R′
ξ) be the set consisting of the indices

j for which µj(ξ) is an eigenvalue of Ĥ2(ξ) (resp. Ĥ ′2(ξ)). Thus Rξ and R′
ξ form a partition

of the indices below Σess(Ĥ2(ξ)) ∪ Σess(Ĥ ′2(ξ)). When µj(ξ) ∈ Rξ ∪ R′
ξ, we denote the

corresponding normalized eigenfunction by ψj,ξ(y). We choose the eigenfunctions so that

(ψi,ξ, ψj,ξ) = δij whenever i, j ∈ Rξ or i, j ∈ R′
ξ.

Let s̃(ξ) be the total number of eigenvalues of Ĥ2 and Ĥ ′2 lying in [0, E2 − δ0
2 ). By

Proposition 4.1.6 (and the above paragraphs), we know that s̃(ξ) is indeed finite and that the

eigenvalues µ1(ξ) . . . µs̃(ξ)(ξ) make up the entire spectrum of Ĥ2(ξ) and Ĥ ′2(ξ) in [0, E2− δ0
2 ).

Moreover, there exists s0 ∈ N such that s̃(ξ) ≤ s0 for all ξ ∈ R, and there exists a compact

interval I ⊂ R such that s̃(ξ) = 0 for all ξ /∈ I.

Let µλ,1(ξ) ≤ µλ,2(ξ) ≤ µλ,3(ξ) . . . denote the eigenvalues of the operator Ĥ2
λ(ξ) defined

on the torus, which we know are well defined and go to infinity by Proposition 4.1.4. Let

θλ,1,ξ, θλ,2,ξ, θλ,3,ξ, . . . be the corresponding (orthonormalized) eigenfunctions.

We now prove a result of (collective) exponential decay of the eigenfunctions of an oper-

ator with constant coefficients outside a bounded interval. This verifies that the low-energy

eigenfunctions are localized to the vicinity of the domain walls, in both the periodic and

infinite-space settings.

Proposition 4.1.8. For any α ∈ N, there are positive constants C and r such that

|∂αy ψj,ξ|(y) ≤ Ce−r|y|

uniformly in j ∈ {1, 2, . . . , s̃(ξ)} and ξ ∈ I. Similarly, given any closed interval T ⊂ T

not containing 0 or π,
∥∥λα∂αy θλ,j,ξ∥∥T ≤ Ce−r/λ uniformly in j and ξ satisfying µλ,j(ξ) <

E2 − δ0/2.

Here and below, we use the shorthand ∥·∥T := ∥·∥L2(T )⊗Cn if T ⊂ T.
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Proof. We first prove the claim regarding the infinite-space eigenfunctions and assume y > 0

for concreteness. Restricted to the region y > y0, we have Ĥ(ξ) = Op(σ+,ξ(ζ)), where

σ+,ξ(ζ) = σ+(ξ, ζ). Our spectral gap assumption in (H1) is that σ2+(ξ, ζ) does not have

eigenvalues inside [0, E2) while here by construction, µj ∈ [0, E2
0 ] with E0 :=

√
E2 − δ0

2 < E.

By construction of ψj,ξ, the statement thus follows if we can prove the bound for any solution

ψ of

(σ2+,ξ(Dy)− µ)ψ(y) = 0, y > y0 (4.1.8)

for an eigenvalue µ ∈ [0, E2
0 ]. We replace the above system by the first-order system

d

dy
u = Au

for A = Aξ a N × N matrix with N = 2mn and u = (ψ, ψ′, . . . , ψ(2m−1))t. We then

write A = PJP−1 with J in Jordan form and u = Pv. Solving Jv = d
dyv, we see that

each eigenvalue ν of J must correspond to an eigenfunction of the form v = eνyv0 so that

u = eνyPv0. This means that for every such ν, there exists a solution ψ of (4.1.8) that is of

the form ψ(y) = eνyψ̄0, where ψ̄0 ∈ Cn is independent of y. Since ψ ̸= 0 by definition, this

shows that

det(σ2+,ξ(−iν)− µ) = 0; (4.1.9)

that is, σ2+,ξ(−iν) must have an eigenvalue that is equal to µ. We will now show that ν must

be bounded away from the imaginary axis, uniformly in all variables. First, observe that

since σ+,ξ(ζ) is bounded above by C⟨ξ, ζ⟩m and elliptic in ζ, there exist positive constants

ν1 and δ1 such that whenever |ℑν| > ν1 and |ℜν| < δ1, all eigenvalues of σ+,ξ(−iν) lie

outside (−E,E). Since σ+,ξ(ζ) is continuous in ζ and σ+,ξ(−iν) does not have spectrum in
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(−E,E) when ℜν = 0, there exists δ2 > 0 such that whenever |ℑν| ≤ ν1 and |ℜν| < δ2,

all eigenvalues of σ+,ξ(−iν) lie outside [−E0, E0]. Thus, taking δ̃ := min{δ1, δ2}, we have

shown that all ν satisfying (4.1.9) must also satisfy |ℜν| ≥ δ̃.

It is clear that δ̃ = δ̃(ξ, µ) is continuous in both variables. Since σ+,ξ(ζ) is bounded above

by C⟨ξ, ζ⟩m and elliptic in ξ, there exist positive constants ξ0 and δ0 such that for all |ξ| ≥ ξ0,

any ν solving (4.1.9) must also satisfy |ℜν| ≥ δ0. Thus, setting K := [−ξ0, ξ0] × [−E0, E0]

and δ := min{δ0,min(ξ,µ)∈K δ̃(ξ, µ)} > 0, we have shown that all solutions ν of (4.1.9)

satisfy |ℜν| ≥ δ > 0 uniformly in ξ ∈ R and µ ∈ [0, E2
0 ].

Note that every solution ψ of (4.1.8) is a finite linear combination of terms of the form

ykeνyψ̄k, with ν satisfying (4.1.9). Since ψ is square integrable in y (and thus cannot

be exponentially increasing), this shows that ψ and all of its derivatives are exponentially

decreasing as y → ∞, uniformly in ξ and µ. Thus we have proven the desired decay property

for eigenfunctions of Ĥ(ξ) as y → ∞. The argument for exponential decay as y → −∞ is

identical, as is the proof for eigenfunctions of Ĥ ′(ξ).

The same ideas are used for the periodic eigenfunctions, only now we must handle the

λ-dependence. By definition of T , there exists a closed interval T1 ⊂ T, also not containing

0 or π, such that T ⊂ T ◦
1 . Suppose that T1 ⊂ (0, π) for concreteness. The defining equation

for the eigenfunctions θλ,j,ξ in T1 is

σ2+(ξ, λDy)θλ,j,ξ(y) = µλ,j(ξ)θλ,j,ξ(y).

This is equivalent to solving an equation of the form

(σ2+(Dy)− µ)f(y) = 0, f(y) = θλ(λy), (4.1.10)

where y ∈ Tλ,1 := λ−1T1 and 0 ≤ µ ≤ E2
0 < E2. The differential equation in (4.1.10) is

identical to (4.1.8), with f replacing ψ. Hence θλ(y) = f(y/λ) is exponentially increasing or
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decreasing in T1 with a rate that is proportional to λ−1. Since θλ(y) has bounded L2−norm

on T1, its L2−norm on T is bounded by Ce−r/λ for r > 0. Derivatives of θλ also satisfy

such an estimate. This completes the proof.

What remains before proving Theorem 4.1.1 is to show that the combined spectrum

(including eigenspaces) of the infinite-space Hamiltonians is a good approximation of the

spectrum of the periodic Hamiltonian. We will truncate the infinite-space eigenfunctions

ψj,ξ so that they have compact support and can be embedded in the torus. Due to the rapid

decay (in y) of these eigenfunctions and their derivatives, the truncated versions almost solve

the eigenproblem, admitting a small residual term that goes to zero with λ. The fact that

the eigenvalues for the periodic problem are themselves well approximated is the statement

of Proposition 4.1.10, and follows from Lemma 4.1.9 and Theorem 4.1.5. Once the error in

eigenvalues is controlled, we use Lemma 4.1.12 to show that the periodic eigenfunctions are

well approximated by their infinite-space analogues, which will allow us to directly bound

the error |σ̃I(Hλ)− σI(H)|.

For the following results, ξ ∈ R is assumed to be arbitrary and is dropped from the

notation for brevity. It will be clear that the below estimates are all uniform in ξ, given the

uniform bounds from Proposition 4.1.8.

Eigenvalue approximation. Let s be the total number of eigenvalues of Ĥ2 and Ĥ ′2 lying

in [0, E2−δ0). For ℓ ∈ {0, 1, . . . , s}, define R̃ℓ := {1, 2, . . . , ℓ}∩R and R̃′
ℓ := {1, 2, . . . , ℓ}∩R′.

1 We will need to approximate the eigenfunctions of the infinite-space Hamiltonian by

functions that live on the torus. Let χ̂0 ∈ C∞c (−π/4, π/4) such that 0 ≤ χ̂0 ≤ 1 on R and

χ̂0 = 1 in [−π/8, π/8]. Similarly, let χ̂π ∈ C∞c (π − π/4, π + π/4) such that 0 ≤ χ̂π ≤ 1 on

R and χ̂π = 1 in [π − π/8, π + π/8]. Define ψ0λ,j := χ̂tjΛ
−1
λ,tj

ψj , where tj = 0 if j ∈ R and

1. The sets R = Rξ and R′ = R′
ξ are defined between Propositions 4.1.6 and 4.1.8.
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tj = π if j ∈ R′. Set ψλ,1 := Nλ,1ψ
0
λ,1, and for all j > 1 define

ψλ,j = Nλ,j(ψ
0
λ,j −

j−1∑
i=1

⟨ψλ,i, ψ0λ,j⟩ψλ,i),

with Nλ,j > 0 such that
∥∥ψλ,j∥∥ = 1. Thus the ψλ,j form an orthonormal set of functions on

R2. Let ψ̃λ,j := Pψλ,j , which is well defined since the support of each ψλ,j is contained in

an interval of length π/2.

In words, what we have done is embed the infinite-space eigenfunctions on the torus by

rescaling in λ as necessary, truncating them to have compact support and orthonormalizing at

the end. By the rapid decay of the ψj,ξ (Proposition 4.1.8), the error we get from truncating

and orthonormalizing goes to zero exponentially in λ. Namely, we have that for any α ∈ N,

there exist positive constants C and r such that

∣∣∣∣∣∣∣∣∣λ|α|∂αy (ψλ,j − Λ−1
λ,tj

ψj)
∣∣∣∣∣∣∣∣∣ ≤ Ce−r/λ (4.1.11)

uniformly in λ ∈ (0, λ0] for all j ∈ {1, 2, . . . , s}.

Lemma 4.1.9. There exist positive constants C and r such that for all λ ∈ (0, λ0], ℓ ∈

{0, 1, . . . , s}, and u0 ∈ (span{ψ̃λ,j}ℓj=1)
⊥ such that supp(u0) ⊂ (−3π

4 ,
3π
4 ) or supp(u0) ⊂

(π4 ,
7π
4 ),

⟨u0, Ĥ2
λu0⟩ ≥

(
min{µℓ+1, E

2 + 1} − Ce−r/λ
)
∥u0∥2 . (4.1.12)

Proof. Suppose supp(u0) ⊂ (−3π
4 ,

3π
4 ) for concreteness and ∥u0∥ = 1 without loss of gen-

erality. Then for u := Λλ,0P̃u0, we have ⟨u0, Ĥ2
λu0⟩ = (u, Ĥ2u). Define ũ := u −∑

j∈R̃ℓ
(ψj , u)ψj , so that (ψj , ũ) = 0 for all j ∈ Rℓ, and hence

(ũ, Ĥ2ũ) ≥ |||ũ|||2min{µj : j ∈ (R ∪ {s0 + 1}) ∩ {ℓ+ 1, ℓ+ 2, . . . , s0 + 1}} ≥ µℓ+1 |||ũ|||2
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by Theorem 4.1.5. Since |||ũ|||2 = 1−
∑
j∈R̃ℓ

|(ψj , u)|2, it follows that

(u, Ĥ2u) = (ũ, Ĥ2ũ) +
∑
j∈R̃ℓ

µj |(ψj , u)|2 ≥ µℓ+1 −
∑
j∈R̃ℓ

(µℓ+1 − µj)|(ψj , u)|2.

Using that (Λλ,0ψλ,j , u) = 0, we see by (4.1.11) that

|(ψj , u)| = |(Λλ,0ψλ,j − ψj , u)| ≤
∣∣∣∣∣∣Λλ,0ψλ,j − ψj

∣∣∣∣∣∣ ≤ Ce−r/λ

for all j ∈ R̃ℓ. We conclude that

(u, Ĥ2u) ≥ µℓ+1(1− Ce−r/λ) ≥ min{µℓ+1, E
2 + 1} − Ce−r/λ,

and the result is complete.

We will now show that the eigenvalues for the periodic problem are well approximated

by those for the infinite-space problem. The lower bounds for the µλ,j(ξ) will be obtained

using Theorem 4.1.5 and Lemma 4.1.9.

Proposition 4.1.10. There exist positive constants C and r such that

µℓ − Ce−r/λ ≤ µλ,ℓ ≤ µℓ + Ce−r/λ

uniformly in λ ∈ (0, λ0] for all ℓ ∈ {1, 2, . . . , s}. Moreover, µλ,s+1 /∈ supp(Υ) for all λ

sufficiently small.

Proof. We recall that φ′(x) = Υ(x2). We first prove the upper bound. Fix λ ∈ (0, λ0] and

ℓ ∈ {1, . . . , s}. Let u =
∑ℓ
j=1 ajψ̃λ,j with the aj ∈ C such that

∑ℓ
j=1 |aj |2 = 1. Then

⟨u, Ĥ2
λu⟩ =

ℓ∑
j=1

aj⟨u, Ĥ2
λψ̃λ,j⟩ =

ℓ∑
j=1

|aj |2µj +
ℓ∑

j=1

aj⟨u, (Ĥ2
λ − µj)ψ̃λ,j⟩,
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with the first term on the right-hand side bounded above by µℓ. To control the second term,

observe that

∥∥∥(Ĥ2
λ − µj)ψ̃λ,j

∥∥∥ =
∣∣∣∣∣∣∣∣∣(Aj − µj)Λλ,tjψλ,j

∣∣∣∣∣∣∣∣∣ ,
with (Aj , tj) = (Ĥ2, 0) if j ∈ R and (Aj , tj) = (Ĥ ′2, π) if j ∈ R′. Using that (Aj−µj)ψj = 0,

we conclude that

⟨u, Ĥ2
λu⟩ ≤ µℓ +

ℓ∑
j=1

∣∣∣∣∣∣∣∣∣(Aj − µj)(Λλ,tjψλ,j − ψj)
∣∣∣∣∣∣∣∣∣ ≤ µℓ + Ce−r/λ,

where the last inequality follows from (4.1.11). Since u was an arbitrary function in a

subspace of dimension ℓ, Theorem 4.1.5 implies that µλ,ℓ ≤ µℓ + Ce−r/λ.

We will now prove the significantly more challenging lower bound. Let T0 = (−3π
4 ,−

π
4 )∪

(π4 ,
3π
4 ) and T1 = (−7π

8 ,−
π
8 ) ∪ (π8 ,

7π
8 ) be subsets of the torus T, so that T0 ⊂⊂ T1 ⊂⊂ T.

Fix χ0 > 0, and let χ̃ : T → [0, χ0] be a smooth function supported in T1 such that χ̃ = χ0

in T̄0. Let

Bλ = χ̃Rmχ̃

with Rm an elliptic operator 1+ λ2mD2m
y . This is an operator that is large on T0 as well as

non-negative.

Let χ : T → [0, 1] be a smooth function supported in (−3π
4 ,

3π
4 ) such that χ = 1 in

[−π
4 ,

π
4 ]. Note that supp(χ′) ⊂ T0. Let u be an arbitrary function in Hm(T). Then,

⟨(1− χ)u, Ĥ2
λχu⟩ = ⟨(1− χ)Ĥλu, χĤλu⟩+ ⟨(1− χ)Ĥλu, [Ĥλ, χ]u⟩ − ⟨[Ĥλ, χ]u, Ĥλχu⟩.

(4.1.13)

The first term on the above right-hand side is non-negative since both χ and 1 − χ are.

We now control the remaining terms. Observe that all operators involved are differential
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operators, and the coefficients of [Ĥλ, χ] vanish wherever χ′ does. Thus

⟨(1− χ)Ĥλu, [Ĥλ, χ]u⟩ =
1

χ20
⟨(1− χ)Ĥλχ̃u, [Ĥλ, χ]χ̃u⟩.

We can similarly insert factors of χ̃/χ0 in the third term of (4.1.13). Since Ĥλ is a differential

operator of order m and the commutators [Ĥλ, χ] introduce an extra factor of λ, there exists

a constant C0 > 0 such that

ℜ⟨(1− χ)u, Ĥ2
λχu⟩ ≥ −C0λ

χ20
(
∥∥λmDm

y χ̃u
∥∥2 + ∥χ̃u∥2) (4.1.14)

uniformly in u ∈ Hm(T). Since ⟨u,Bλu⟩ = ∥χ̃u∥2 +
∥∥λmDm

y χ̃u
∥∥2 , we can choose χ0

sufficiently large so that

⟨u,Bλu⟩+ 2ℜ⟨(1− χ)u, Ĥ2
λχu⟩ ≥

C

χ20
(
∥∥λmDm

y χ̃u
∥∥2 + ∥χ̃u∥2) ≥ C ∥u∥2T0 (4.1.15)

for C > 0 as large as necessary. Recall that ∥·∥T0 := ∥·∥L2(T0)⊗Cn .

By Proposition 4.1.8, we know that the low-energy spectrum of Ĥ2
λ satisfies

max
ψ∈S̃s; ∥ψ∥=1

⟨Bλψ, ψ⟩ = ε ≤ e−r/λ (4.1.16)

for some c > 0, with S̃s = span(θλ,1, . . . θλ,s). Recall from the definition of s that µλ,ℓ < E2

remains in the (infinite domain) spectral gap for all ℓ ≤ s.

Let us consider the operator Ĥ2
λ + Bλ, also self-adjoint (this is proved as for Ĥ2

λ), with

eigenvalues νλ,j . For 1 ≤ ℓ ≤ s, we have by the min-max principle,

νλ,ℓ = min
Sℓ

max
ψ∈Sℓ, ∥ψ∥=1

⟨Ĥ2
λψ, ψ⟩+ ⟨Bλψ, ψ⟩ ≤ max

ψ∈S̃ℓ, ∥ψ∥=1
⟨Ĥ2

λψ, ψ⟩+ ⟨Bλψ, ψ⟩ ≤ µλ,ℓ + ε.

We may therefore obtain a lower bound for νλ,ℓ now thanks to the regularization Bλ. We
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have

νλ,ℓ ≥ min
u∈S⊥

ℓ−1, ∥ψ∥=1
⟨(Ĥ2

λ +Bλ)u, u⟩

with now Sℓ−1 the span of ψ̃λ,j for 1 ≤ j ≤ ℓ − 1 using both families of infinite-domain

eigenfunctions properly embedded in the torus.

It follows from Lemma 4.1.9 and (4.1.15) that for u ∈ S⊥ℓ−1,

⟨u, (Ĥ2
λ +Bλ)u⟩ = ⟨Ĥ2

λχu, χu⟩+ ⟨Ĥ2
λ(1− χ)u, (1− χ)u⟩+ 2ℜ⟨Ĥ2

λχu, (1− χ)u⟩+ ⟨Bλu, u⟩

≥ (µℓ − η)∥χu∥2 + (µℓ − η)∥(1− χ)u∥2 + C∥u∥2T0 ,

with η ≤ Ce−r/λ. So, with C large, we have ⟨u, (Ĥ2
λ +Bλ)u⟩ ≥ (µℓ − η) ∥u∥2 and thus get

µλ,ℓ ≥ νλ,ℓ − ε ≥ µℓ − ε− η ≥ µℓ − Ce−r/λ

for all λ sufficiently small.

It remains to prove that µλ,s+1 lies above the support of Υ when λ is small enough. By

definition of Υ, there exists δ′ > 0 such that Υ ∈ C∞c (−1, E2 − δ0 − δ′). Let u ∈ Hm(T)

such that u ∈ S⊥s and ∥u∥ = 1. Take χ as above, with the additional requirement that

supp(χ′) ⊂ T ′
0 for some T ′

0 ⊂ T0 satisfying ∥u∥2T ′
0
≤ δ′

E2+1
. By (4.1.3), which can easily be

shown to hold in this one-dimensional setting (see (4.1.5)), it follows that

∥∥∥[Ĥλ, χ](i− Ĥλ)
−1
∥∥∥ ≤ Cλ, λ ∈ (0, λ0].

Writing [Ĥλ, χ] = [Ĥλ, χ](i− Ĥλ)
−1(i− Ĥλ) and Ĥλχ = [Ĥλ, χ] + χĤλ, we use (4.1.13) to

conclude that

⟨(1− χ)u, Ĥ2
λχu⟩ ≥ −Cλ

(∥∥∥Ĥλu∥∥∥2 + ∥u∥2
)
= −Cλ

(∥∥∥Ĥλu∥∥∥2 + 1
)
.
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Hence by Lemma 4.1.9, we have

⟨u, Ĥ2
λu⟩ = ⟨χu, Ĥ2

λχu⟩+ ⟨(1− χ)u, Ĥ2
λ(1− χ)u⟩+ 2ℜ⟨(1− χ)u, Ĥ2

λχu⟩

≥ (µ̌s+1 − Ce−r/λ) ∥χu∥2 + (µ̌s+1 − Ce−r/λ) ∥(1− χ)u∥2 − Cλ
(∥∥∥Ĥλu∥∥∥2 + 1

)
,

where µ̌s+1 := min{µs+1, E
2+1}. It follows that ⟨u, Ĥ2

λu⟩ ≥ µ̌s+1(∥χu∥2+ ∥(1− χ)u∥2)−

Cλ. Since

1 = ∥u∥2 = ∥χu∥2 + ∥(1− χ)u∥2 + 2⟨(1− χ)u, χu⟩ ≤ ∥χu∥2 + ∥(1− χ)u∥2 + 1

2
∥u∥2T ′

0
,

we have shown that

⟨u, Ĥ2
λu⟩ ≥ µ̌s+1 −

1

2
µ̌s+1 ∥u∥2T ′

0
− Cλ ≥ µ̌s+1 −

1

2
δ′ − Cλ.

Since u was arbitrary, Theorem 4.1.5 implies that µλ,s+1 ≥ µ̌s+1 − δ′ for all λ sufficiently

small. We know that µs+1 ≥ E2 − δ0 by definition, hence µλ,s+1 ≥ E2 − δ0 − δ′. This

completes the proof.

Eigenspace approximation. For the following lemma, fix λ ∈ (0, 1] and let

{ϕ1, ϕ2, . . . , ϕs} ⊂ Hm(T)

such that ⟨ϕi, ϕj⟩ = δij . For any integers j, k, and ℓ satisfying 1 ≤ j ≤ k ≤ ℓ ≤ s, define

αj,k,ℓ :=
(
1−

ℓ∑
i=j

|⟨θλ,i, ϕk⟩|2
)1/2

, αk,ℓ := α1,k,ℓ, rj := (Ĥ2
λ − µλ,j)ϕj . (4.1.17)
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Note that if we denote by Πj,ℓ the orthogonal projector onto the span of {θλ,j , . . . , θλ,ℓ},

then we have

αj,k,ℓ = ∥(I − Πj,ℓ)ϕk∥. (4.1.18)

Lemma 4.1.11. Let j, k, ℓ be integers satisfying 1 ≤ j ≤ k ≤ ℓ ≤ s. Then

α2j,k,ℓ ≤ ∥rk∥2 (µλ,ℓ+1 − µλ,k)
−2 +

j−1∑
i=1

∥ri∥2 (µλ,j − µλ,i)
−2. (4.1.19)

(4.1.18) means ϕk lives approximately in span(θλ,j , θλ,j+1, . . . , θλ,ℓ) when the right-hand

side of (4.1.19) is small.

Proof. For brevity, set θi := θλ,i. We see that α2j,k,ℓ = α2k,ℓ +
∑j−1
i=1 |⟨θi, ϕk⟩|

2, with

j−1∑
i=1

|⟨θi, ϕk⟩|2 ≤
j−1∑
i=1

(
1−

j−1∑
h=1

|⟨θi, ϕh⟩|2
)
=

j−1∑
h=1

(
1−

j−1∑
i=1

|⟨θi, ϕh⟩|2
)
=

j−1∑
h=1

α2h,j−1.

It remains to bound α2k,ℓ and the α2h,j−1. Define ϕ̃k := ϕk−
∑ℓ
i=1⟨θi, ϕk⟩θi, so that ⟨θi, ϕ̃k⟩ =

0 for all i ∈ {1, . . . , ℓ}, and thus

⟨ϕ̃k, Ĥ2
λϕ̃k⟩ ≥ µλ,ℓ+1

∥∥∥ϕ̃j∥∥∥2 = µλ,ℓ+1α
2
k,ℓ (4.1.20)

by Theorem 4.1.5. We also see that Ĥ2
λϕ̃k = µλ,kϕk −

∑ℓ
i=1 µλ,i⟨θi, ϕk⟩θi + rk, and hence

⟨ϕ̃k, Ĥ2
λϕ̃k⟩ = µλ,k − µλ,k

ℓ∑
i=1

|⟨θi, ϕk⟩|2 + ⟨ϕ̃k, rk⟩

= µλ,kα
2
k,ℓ + ⟨ϕ̃k, rk⟩ ≤ µλ,kα

2
k,ℓ + ∥rk∥αk,ℓ.

(4.1.21)

Combining (4.1.20) and (4.1.21), we obtain that αk,ℓ ≤ ∥rk∥ (µλ,ℓ+1 − µλ,k)
−1. The same
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argument proves that αh,j−1 ≤ ∥rh∥ (µλ,j − µλ,h)
−1 for all h ∈ {1, 2, . . . , j − 1}, and the

result is complete.

We will apply Lemma 4.1.11 to the functions ϕj = ψ̃λ,j . We write rj = (Ĥ2
λ − µj)ψ̃λ,j +

(µj−µλ,j)ψ̃λ,j , meaning that
∥∥rj∥∥ ≤

∥∥∥(Ĥ2
λ − µj)ψ̃λ,j

∥∥∥+|µj−µλ,j | ≤ Ce−r/λ, where the last

inequality follows from Proposition 4.1.10 and its proof. Thus if min{µλ,ℓ+1 − µλ,k, µλ,j −

µλ,j−1} ≥ δ for some δ > 0, then α2j,k,ℓ ≤ Cδ−2e−r/λ. In addition, we have

β2j,k,ℓ : =

∥∥∥∥∥∥θλ,k −
ℓ∑
i=j

⟨ψ̃λ,i, θλ,k⟩ψ̃λ,i

∥∥∥∥∥∥
2

= 1−
ℓ∑
i=j

|⟨ψ̃λ,i, θλ,k⟩|2

≤
ℓ∑

i′=j

(1−
ℓ∑
i=j

|⟨ψ̃λ,i, θλ,i′⟩|2) =
ℓ∑
i=j

(1−
ℓ∑

i′=j

|⟨ψ̃λ,i, θλ,i′⟩|2)

=
ℓ∑
i=j

α2j,i,ℓ ≤ C(ℓ+ 1− j)δ−2e−r/λ.

(4.1.22)

Lemma 4.1.12. Let Aλ :=
∑m−1
i=0 aλ,i(y)λ

iDi
y be an operator on H(T), for some smooth

coefficients aλ,i satisfying
m−1∑
i=0

∥∥∥λkDk
yaλ,i

∥∥∥
L∞(T)

≤ C ′

uniformly in λ for all k ∈ {0, 1, . . . ,m}. Let j ≤ ℓ be positive integers such that ℓ ≤ s and

define δ := min{µλ,ℓ+1−µλ,ℓ, µλ,j−µλ,j−1}, where the second argument is ignored if j = 1.

Then there exist positive constants C and r such that

∣∣∣ ℓ∑
i=j

(
⟨θλ,i, Aλθλ,i⟩ − ⟨ψ̃λ,i, Aλψ̃λ,i⟩

)∣∣∣ ≤ Cδ−1e−r/λ.
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Proof. First, we observe that for all i ∈ {1, . . . , s} and k ∈ {0, 1, . . . ,m},

∥∥∥λkDk
yνλ,i

∥∥∥2 ≤
∥∥λmDm

y νλ,i
∥∥2k

m ≤ C0

(∥∥∥Ĥλνλ,i∥∥∥2 + C1

) k
m ≤ C0(E

2 + C1)
k
m , ν = θ, ψ̃

(4.1.23)

uniformly in λ, with the second inequality following from ellipticity of Ĥλ. We write

ℓ∑
i=j

(
⟨θλ,i, Aλθλ,i⟩ − ⟨ψ̃λ,i, Aλψ̃λ,i⟩

)
=

ℓ∑
i=j

(
⟨θλ,i −

ℓ∑
i′=j

⟨ψ̃λ,i′ , θλ,i⟩ψ̃λ,i′ , Aλθλ,i⟩ − ⟨ψ̃λ,i, Aλ(ψ̃λ,i −
ℓ∑

i′=j

⟨θλ,i′ , ψ̃λ,i⟩θλ,i′)⟩
)
,

which implies that

∣∣∣ ℓ∑
i=j

(
⟨θλ,i, Aλθλ,i⟩ − ⟨ψ̃λ,i, Aλψ̃λ,i⟩

)∣∣∣ ≤ ℓ∑
i=j

(
βj,i,ℓ

∥∥Aλθλ,i∥∥+ αj,i,ℓ

∥∥∥A∗
λψ̃λ,i

∥∥∥),
where A∗

λ :=
∑m−1
i=0 λiDi

ya
∗
λ,i(y) is the formal adjoint of Aλ. By (4.1.23), we know that the

norms of Aλνλ,i and A∗
λνλ,i are bounded uniformly in λ, for ν = θ, ψ̃. Using (4.1.22) and the

corresponding bound for α2j,i,ℓ, we conclude that
∣∣∣∑ℓ

i=j

(
⟨θλ,i, Aλθλ,i⟩ − ⟨ψ̃λ,i, Aλψ̃λ,i⟩

)∣∣∣ ≤
Cδ−1e−r/λ. This completes the result.

Conductivity approximation. We are now ready to prove Theorem 4.1.1. We will write

σ̃I as a sum of inner products over ξ ∈ λZ, thus it is helpful to reintroduce the ξ-dependent

notation.

Proof of Theorem 4.1.1. Since the coefficients of Hλ are independent of x, we have

2πσ̃I = 2πTr iQ[Hλ, P ]Υ(H2
λ) =

∑
ξ∈λZ

∑
j∈N

⟨θλ,j,ξ, iλQYGλ(ξ)Υ(Ĥ2
λ(ξ))θλ,j,ξ⟩,
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where

Gλ(ξ) := mMmξ
m−1 +

m∑
j=1

jλm−jaλ,j(y)ξ
j−1D

m−j
y +

∑
i+j≤m−1

iλjaλ,ij(y)ξ
i−1D

j
y.

To obtain Gλ, we used that the contributions from QX [Hλ, P ] of all second and higher order

derivatives of P must vanish, as
´
TQXP

(q)(x)dx = P (q−1)(π/2)−P (q−1)(−π/2) = 0 for all

q > 1. Using that the θλ,j,ξ are eigenfunctions of Ĥ2
λ(ξ), we obtain that

2πσ̃I =
∑

ξ∈λZ∩I

s0∑
j=1

⟨θλ,j,ξ, iλQYGλ(ξ)θλ,j,ξ⟩Υ(µλ,j(ξ)).

The next step is to partition the eigenvalues into clusters so that eigenvalues that are

nearby belong to the same cluster and the separation between clusters is controlled (bounded

from below). We will choose the clusters with diameter sufficiently small so that we can

approximate all eigenvalues in a given cluster by the smallest eigenvalue in the cluster,

with negligible error. Once Υ is constant over each cluster, we will approximate σ̃I by a

corresponding sum involving the ψ̃λ,j and apply Lemma 4.1.12 to control the error.

By Proposition 4.1.10, the number of eigenvalues of Ĥ2
λ(ξ) in supp(Υ) is bounded by s(ξ)

uniformly in λ > 0 sufficiently small and ξ ∈ λZ. Recall that s(ξ) is the total number of

eigenvalues of Ĥ2(ξ) and Ĥ ′2(ξ) lying in [0, E2−δ0), which is itself bounded by s0 uniformly

in ξ and vanishes whenever ξ /∈ I, with I ⊂ R a compact interval; see Proposition 4.1.6. Let

ξ ∈ λZ∩I and δ := δ(λ). Define k0(ξ) := 1, and for all i ≥ 1 define ki(ξ) := inf{ℓ > ki−1(ξ) :

µλ,ℓ(ξ)−µλ,ℓ−1(ξ) ≥ δ or ℓ > s(ξ)}. We see that the ki(ξ) form an increasing sequence of

integers, with kJ(ξ)(ξ) = s(ξ)+1 for some J(ξ) ∈ N. Define Sξ,j := {kj , . . . , kj+1−1} for all

j ∈ {0, 1, . . . , J(ξ)− 1}, so that Sξ,0, Sξ,1, . . . , Sξ,J(ξ)−1 forms a partition of {1, 2, . . . , s(ξ)}.
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Thus we have

2πσ̃I =
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈Sξ,i

⟨θλ,j,ξ, iλQYGλ(ξ)θλ,j,ξ⟩Υ(µλ,j(ξ)).

By (4.1.23), we see that |⟨θλ,j,ξ, Gλ(ξ)θλ,j,ξ⟩| ≤ C uniformly in λ and ξ. Defining

2πσ̃I,1 :=
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈Sξ,i

⟨θλ,j,ξ, iλQYGλ(ξ)θλ,j,ξ⟩Υ(µλ,ki(ξ)),

which replaces each eigenvalue by the smallest eigenvalue in its cluster, we thus obtain that

|σ̃I,1 − σ̃I | ≤ s0(|I|+ 1)C sup
|x−y|<δ

|Υ(x)−Υ(y)| ≤ Cδ (4.1.24)

by regularity of Υ, with |I| the length of the interval I. We will now control the error from

replacing the periodic eigenfunctions θλ,j,ξ in σ̃I,1 by the truncations ψ̃λ,j,ξ. Namely, it

follows from Lemma 4.1.12 that

2πσ̃I,2 :=
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈Sξ,i

⟨ψ̃λ,j,ξ, iλQYGλ(ξ)ψ̃λ,j,ξ⟩Υ(µλ,ki(ξ))

satisfies |σ̃I,2− σ̃I,1| ≤ Cδ−1e−r/λ. Here, we have used the extra factor of λ that appears in

the inner product to cancel the λ−1 scaling of the number of terms in the sum over ξ. We

can simplify σ̃I,2 as

2πσ̃I,2 =
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

⟨ψ̃λ,j,ξ, iλGλ(ξ)ψ̃λ,j,ξ⟩Υ(µλ,ki(ξ)),

with S′ξ,i containing only the indices j in Sξ,i such that supp(ψ̃j,ξ,λ) ∩ suppQY ̸= ∅. That

is, S′ξ,i ⊆ Sξ,i and
⋃J(ξ)−1
i=0 S′ξ,i = Rξ. Here, we used the fact that QY = 1 on supp(ψ̃λ,j,ξ)
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for all j ∈ S′ξ,i.

Note that for all ξ ∈ λZ ∩ I, i ∈ {1, . . . , J(ξ)− 1} and j ∈ S′ξ,i, we have

|µj(ξ)− µλ,ki(ξ)| ≤ |µj(ξ)− µλ,j(ξ)|+ |µλ,j(ξ)− µλ,ki(ξ)| ≤ C(e−r/λ + δ)

by Proposition 4.1.10. Thus, by the same logic used to justify (4.1.24), we know that

2πσ̃I,3 :=
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

⟨ψ̃λ,j,ξ, iλGλ(ξ)ψ̃λ,j,ξ⟩Υ(µj(ξ))

satisfies |σ̃I,3 − σ̃I,2| ≤ C(e−r/λ + δ).

We now express σ̃I,3 in terms of functions in H(R) as

2πσ̃I,3 = λ
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

(Λλ,0ψλ,j,ξ, Ĝ(ξ)Λλ,0ψλ,j,ξ)Υ(µj(ξ)),

where Ĝ(ξ) = Op(τξ) with τξ(y, ζ) := ∂ξσ(y, ξ, ζ) Hermitian-valued. Defining

2πσ̃I,4 := λ
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

(ψj,ξ, Ĝ(ξ)ψj,ξ)Υ(µj(ξ)),

it follows that

2π(σ̃I,4 − σ̃I,3) = λ
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

(
(ψj,ξ − Λλ,0ψλ,j,ξ, Ĝ(ξ)ψj,ξ)

+ (Λλ,0ψλ,j,ξ, Ĝ(ξ)(ψj,ξ − Λλ,0ψλ,j,ξ))
)
Υ(µj(ξ)),
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so that

2π|σ̃I,4 − σ̃I,3| ≤ λ
∑

ξ∈λZ∩I

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

( ∣∣∣∣∣∣ψj,ξ − Λλ,0ψλ,j,ξ
∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣Ĝ(ξ)ψj,ξ∣∣∣∣∣∣∣∣∣

+
∣∣∣∣∣∣∣∣∣Ĝ(ξ)Λλ,0ψλ,j,ξ∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣ψj,ξ − Λλ,0ψλ,j,ξ

∣∣∣∣∣∣ ) ∥Υ∥∞ .

Note that Ĝ(ξ) ∈ Op(Sm1,0) and (i− Ĥ(ξ))−1 ∈ Op(S−m1,0 ) by (H1), hence Ĝ(ξ)(i− Ĥ(ξ))−1

is bounded for all ξ ∈ I. The norm is continuous as a function of ξ in I a compact interval,

meaning that
∥∥∥Ĝ(ξ)(i− Ĥ(ξ))−1

∥∥∥ is bounded uniformly in ξ ∈ I. Writing

Ĝ(ξ)ψj,ξ = Ĝ(ξ)(1 + Ĥ2(ξ))−1(1 + Ĥ2(ξ))ψj,ξ

with
∣∣∣∣∣∣∣∣∣(1 + Ĥ2(ξ))ψj,ξ

∣∣∣∣∣∣∣∣∣ ≤ 1+E2 for all j ≤ s(ξ), it follows from (4.1.11) that |σ̃I,4−σ̃I,3| ≤

Ce−r/λ.

So far, we have shown that |σ̃I,4 − σ̃I | ≤ C(δ−1e−r/λ + e−r/λ + δ), for some positive

constants C and r. Therefore, setting δ := e−r/2λ, we obtain that |σ̃I,4 − σ̃I | ≤ Ce−r/2λ.

Finally, we recall from [7, 10] that

2πσI =

ˆ
R

J(ξ)−1∑
i=0

∑
j∈S′

ξ,i

(ψj,ξ, Ĝ(ξ)ψj,ξ)Υ(µj(ξ))dξ,

with the above integrand a smooth, compactly supported function of ξ by Proposition 4.1.6.

It is well known (see, e.g. [60]) that such integrals can be approximated by sampling over

a uniform grid of size λ, with convergence faster than any power of λ. We conclude that

|σ̃I,4 − σI | ≤ Cλp, and the proof is complete.

Observe that |σ̃I,4−σI | is the only error term that does not converge exponentially in λ.

Thus if it were not for the approximation of the integral over ξ by a discrete sum, we would

get exponential convergence of the periodic conductivity to its corresponding infinite-space
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value.

4.2 Stability of physical observable

The aim of this section is to prove stability of σ̃I(Hλ) under perturbations in the limit λ→ 0,

with Hλ given by (4.1.1) and σ̃I by (4.0.3). We consider perturbations of the form Vλ :=∑
i+j≤m−1 λ

i+jvλ,ij(x, y)D
i
xD

j
y, where the vλ,ij are smooth matrix-valued functions that

make Vλ a symmetric differential operator on L2(T2)⊗Cn. Assume that
∑
i,j

∥∥vλ,ij∥∥L∞ ≤ C

uniformly in λ. Suppose there exists a closed set S1 ⊂ T2 such that ∪i,j supp(vλ,ij) ⊂ S1

for all λ ∈ (0, λ0] and supp((1−Q)P ′) ∩ S1 = ∅.

The condition on the sup-norm of vλ,ij guarantees that the coefficients of Hλ + Vλ are

bounded uniformly in λ. As in section 4.1 and combined with the assumption that Vλ is

symmetric, this ensures that Hλ + µVλ is uniformly elliptic (in the sense of Proposition

4.1.2) and hence self-adjoint. Note that L∞−bounds on derivatives of the vλ,ij are not

necessary since Vλ has no leading order terms. The condition on the support of vλ,ij is

natural as it ensures that the perturbation is close to the domain wall of interest and well

separated from the spurious domain wall introduced by the periodization. It allows us to

express σ̃I(Hλ + Vλ)− σ̃I(Hλ) as the integral over a product of operators, two of which are

differential operators with disjoint support (see the proof of Theorem 4.2.1 below). Note that

the assumption supp((1−Q)P ′) ∩ S1 = ∅ could easily be replaced by supp(QP ′) ∩ S1 = ∅.

Our main stability result is the following

Theorem 4.2.1. Take Hλ and Vλ as above. Then for all N ∈ N,

|σ̃I(Hλ + Vλ)− σ̃I(Hλ)| ≤ CNλ
N .

This result, combined with that of Theorem 4.1.1, shows that the periodic approximation

of the conductivity enjoys a spectral (almost exponential) convergence property with σI(H)−
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σ̃I(Hλ + Vλ) being of order λp for any p ≥ 0.

The rest of this section is devoted to proving Theorem 4.2.1. For ε ∈ {0, 1}, define

Hλ,ε := Hλ+ εVλ.2 The arguments from section 4.1 can easily be adapted to prove that the

Hλ,ε are self-adjoint for all λ, with

∥∥Hλ,εf∥∥2 ≥ C1 ∥f∥2λ,m − C2 ∥f∥2 ,
∥∥∥λ|α|Dα(i−Hλ,ε)

−1
∥∥∥ ≤ C (4.2.1)

for all f ∈ Hm(T2) and |α| ≤ m uniformly in λ ∈ (0, λ0].

We first show that σ̃I is unchanged for Q replaced by Q − 1, using 1 = Q + 1 − Q and

the following result:

Lemma 4.2.2. Let H be a self-adjoint linear operator and Φ ∈ C∞c (R) such that [H,P ]Φ(H),

HΦ(H), and Φ(H) are trace-class. Then Tr i[H,P ]Φ(H) = 0.

Proof. Since P is bounded, PHΦ(H) is trace class, and thus so is HPΦ(H) = [H,P ]Φ(H)+

PHΦ(H). Using Lemma 2.1.2 (which still applies in the periodic setting) and cyclicity of

the trace, we have

Tr i[H,P ]Φ(H) = Tr i[Ψ(H), P ]Φ(H) = Tr iΨ(H)PΦ(H)− Tr iPΨ(H)Φ(H)

= Tr iPΦ(H)Ψ(H)− Tr iPΨ(H)Φ(H) = 0,

as desired.

Clearly, and thankfully, the assumptions of Lemma 4.2.2 were not satisfied in the infinite-

space setting. However, due to compactness of the torus, these assumptions hold in the

periodic setting for the Hamiltonians we consider as we show below. The filter Q that

appears in σ̃I thus allows for non-vanishing conductivities.

We now bound the trace-norm of appropriate functionals of the Hλ,ε.

2. Not to be confused with the operators Hλ,µ from section 4.1.
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Proposition 4.2.3. For all Φ ∈ C∞c (R) and ε ∈ {0, 1}, there is a positive constant C such

that
∥∥Φ(Hλ,ε)∥∥1 ≤ Cλ−2 uniformly in λ ∈ (0, λ0].

Proof. Let M > 0 such that Φ ∈ C∞c (−M,M). For (ξ, ζ) ∈ Z2 and j ∈ {1, 2, . . . , n}, define

ϕξ,ζ,j(x, y) =
1
2πe

i(ξx+ζy)vj , where vj is the jth column of the n× n identity matrix. Thus

the ϕξ,ζ,j form an orthonormal basis for H(T2). Let k ∈ N and define Sk := (Z ∩ [−k +

1, k − 1])2 × (N ∩ [1, n]) and Tk := (Z2 × (N ∩ [1, n])) \ Sk. Let u =
∑

(ξ,ζ,j)∈Tk cξ,ζ,jϕξ,ζ,j ,

with (cξ,ζ,j) ⊂ C chosen so that u ∈ Hm(T2). It follows that

∥u∥2λ,m =
∑

|α|≤m

∑
(ξ,ζ,j)∈Tk

|cξ,ζ,j |2(λξ)2α1(λζ)2α2

≥ (λk)2m
∑

(ξ,ζ,j)∈Tk

|cξ,ζ,j |2 = (λk)2m ∥u∥2 .

To justify the inequality, we sum over α ∈ {(m, 0), (0,m)} and use the fact that for all

(ξ, ζ, j) ∈ Tk, ξ ≥ k or ζ ≥ k. Thus if (λk)2m ≥ C−1
1 (M2 + C2), then (4.2.1) implies

that
∥∥Hλ,εu∥∥2 ≥M2 ∥u∥2. Since u is an arbitrary function in span(ϕξ,ζ,j : (ξ, ζ, j) ∈ Sk)

⊥,

Theorem 4.1.5 implies that the spectrum ofH2
λ,ε in (−∞,M2) consists entirely of eigenvalues,

and the number of these eigenvalues is bounded by Cλ−2 for some C > 0. Hence the number

of eigenvalues of Hλ,ε in (−M,M) is also bounded by Cλ−2, and the result follows.

We are now ready to prove the main result of this section. Below we bound the difference

of conductivities |σ̃I(Hλ,1)− σ̃I(Hλ,0)| by the product of a trace-norm and operator-norm.

Proposition 4.2.3 provides a (λ−dependent) bound on the involved trace-norm. Combined

with (4.2.1), this bound verifies the assumptions of Lemma 4.2.2. We conclude by showing

that the operator norm goes to zero faster than any power of λ.

Proof of Theorem 4.2.1. Let W = W (x, y) be a smooth point-wise multiplication operator
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proportional to the identity matrix. By (4.2.1), we have

∥∥∥[Hλ,ε′ ,W ](z −Hλ,ε)
−1
∥∥∥ =

∥∥∥[Vλ,W ](i−Hλ,ε)
−1(i−Hλ,ε)(z −Hλ,ε)

−1
∥∥∥

≤
∥∥∥[Vλ,W ](i−Hλ,ε)

−1
∥∥∥(1 + |i− z|

∥∥∥(z −Hλ,ε)
−1
∥∥∥)

≤ C|ℑz|−1λ

(4.2.2)

for all (ε, ε′) ∈ {0, 1}2 uniformly in λ ∈ (0, λ0] and z ∈ Z \ {ℑz = 0}, where Z := [E1, E2]×

[−2, 2] ⊂ C. Similarly,

∥∥∥Vλ(z −Hλ,ε)
−1
∥∥∥ ≤ C|ℑz|−1 (4.2.3)

uniformly in λ ∈ (0, λ0] and z ∈ Z \ {ℑz = 0}. Let Φ ∈ C∞c (E1, E2) such that Φφ′ = φ′.

Applying Proposition 4.2.3 to the compactly supported function x 7→ (i−x)Φ(x), we obtain

by (4.2.2) that

∥∥[Hλ,ε,W ]Φ(Hλ,ε)
∥∥
1
≤
∥∥∥[Hλ,ε,W ](i−Hλ,ε)

−1
∥∥∥∥∥(i−Hλ,ε)Φ(Hλ,ε)

∥∥
1
≤ Cλ−1 (4.2.4)

uniformly in λ.

Fix N ∈ N and define Q̃ := Q − 1. With Proposition 4.2.3 and (4.2.4), we have ver-

ified that Hλ,ε satisfies the assumptions of Lemma 4.2.2 for ε ∈ {0, 1}, hence σ̃I(Hλ,ε) =

Tr iQ̃[Hλ,ε, P ]φ
′(Hλ,ε). By assumption, Q̃[Vλ, P ] = 0, so that

σ̃I(Hλ,ε) = Tr iQ̃[Hλ,0, P ]φ
′(Hλ,ε).

Moreover, there exists a (λ-independent) smooth point-wise multiplication operator R pro-

portional to the identity matrix, such that R = 1 on supp(Q̃P ′) and supp(R) ∩ S1 = ∅. It
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follows that

σ̃I(Hλ,0)− σ̃I(Hλ,1) = Tr iRQ̃[Hλ,0, P ](φ
′(Hλ,0)− φ′(Hλ,1))

= Tr iQ̃[Hλ,0, P ]Φ(Hλ,0)(φ
′(Hλ,0)− φ′(Hλ,1))R

+ Tr iQ̃[Hλ,0, P ]R(Φ(Hλ,0)− Φ(Hλ,1))φ
′(Hλ,1) =: ∆0 +∆1,

where we have used cyclicity of the trace to move R to the right-most position on the second

line. By the Helffer-Sjöstrand formula, we see that

(φ′(Hλ,0)− φ′(Hλ,1))R =
1

π

ˆ
Z
∂̄φ̃′(z)(z −Hλ,1)

−1Vλ(z −Hλ,0)
−1Rd2z.

Since supp(R) and S1 are closed and disjoint sets, there exists a (λ-independent) collection

{W0,W1, . . . ,WN} of smooth, point-wise multiplication operators proportional to the iden-

tity matrix such that WjVλ = 0 and Wj+1Wj = Wj for all j and λ, with W0 := R. Using

the fact that [(z −Hλ,0)
−1,Wj ] = (z −Hλ,0)

−1[Hλ,0,Wj ](z −Hλ,0)
−1, we obtain that

Vλ(z −Hλ,0)
−1R = Vλ[(z −Hλ,0)

−1,W0] = Vλ(z −Hλ,0)
−1[Hλ,0,W0](z −Hλ,0)

−1

= Vλ(z −Hλ,0)
−1W1[Hλ,0,W0](z −Hλ,0)

−1

= Vλ(z −Hλ,0)
−1[Hλ,0,W1](z −Hλ,0)

−1[Hλ,0,W0](z −Hλ,0)
−1

= Vλ(z −Hλ,0)
−1W2[Hλ,0,W1](z −Hλ,0)

−1[Hλ,0,W0](z −Hλ,0)
−1

= . . .

= Vλ(z −Hλ,0)
−1[Hλ,0,WN ](z −Hλ,0)

−1[Hλ,0,WN−1](z −Hλ,0)
−1

. . . (z −Hλ,0)
−1[Hλ,0,W0](z −Hλ,0)

−1.

By (4.2.2),
∥∥[Hλ,0,Wj ](z −Hλ,0)

−1
∥∥ ≤ Cj |ℑz|−1λ for every j. Thus by (4.2.3) and the

rapid decay of ∂̄φ̃′ near the real axis, it follows that
∥∥(φ′(Hλ,0)− φ′(Hλ,1))R

∥∥ ≤ CλN+1.
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Using (4.2.4), we conclude that

|∆0| ≤
∥∥∥Q̃[Hλ,0, P ]Φ(Hλ,0)∥∥∥

1

∥∥(φ′(Hλ,0)− φ′(Hλ,1))R
∥∥ ≤ CλN .

By cyclicity of the trace, ∆1 = Tr iφ′(Hλ,1)Q̃[Hλ,0, P ]R(Φ(Hλ,0) − Φ(Hλ,1)), so that the

above argument can be repeated to obtain the same bound for |∆1|. We conclude that

|σ̃I(Hλ,0)− σ̃I(Hλ,1)| ≤ CλN , and the proof is complete.

4.3 Applications

We apply the main results from Sections 4.1 and 4.2 to the Hamiltonians from Section 2.3

that are differential operators. We have already verified that these systems satisfy (H1),

thus the only thing left to check is the anti-commutation relations of the leading order terms

(4.0.2).

2 × 2 Dirac system (2.3.1). We have H = Dxσ1 + Dyσ2 + m(y)σ3, meaning that we

can take M0 = σ2, M1 = σ1, and a00(y) = m(y)σ3. Since the σj are nonsingular and

{σ1, σ2} = 0, (4.0.2) holds. It follows that |σ̃I(Hλ) − σI(H)| ≤ Cpλ
p as λ → 0, for any

p. Moreover, |σ̃I(Hλ) − σ̃I(Hλ + Vλ)| ≤ Cpλ
p for all smooth Hermitian-valued point-wise

multiplication operators Vλ = Vλ(x, y) such that ∥Vλ∥L∞ ≤ C uniformly in λ, and that

satisfy S1 ∩ supp(1−Q) = ∅ for some closed set S1 containing ∪λ supp(Vλ).

p-wave superconductor model (2.3.2). We can take M0 = M2 = 1
2mσ1, which takes

care of all leading order terms. Since σ1 is non-singular, (4.0.2) holds. It follows that

|σ̃I(Hλ) − σI(H)| ≤ Cpλ
p for any p. We also have |σ̃I(Hλ) − σ̃I(Hλ + Vλ)| ≤ Cpλ

p for all

Hermitian-valued first-order differential operators Vλ :=
∑
i+j≤1 λ

i+jvλ,ij(x, y)D
i
xD

j
y with

smooth coefficients vλ,ij such that
∑
i,j

∥∥vλ,ij∥∥L∞ ≤ C and ∪i,j supp(vλ,ij) ⊂ S1 uniformly

in λ, for some closed set S1 satisfying S1 ∩ supp(1−Q) = ∅.

d-wave superconductor model (2.3.3). Take M0 = M2 = 1
2mσ1, a0 = c0σ2, a1(y) =
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c(y)σ3, a2 = −c0σ2. Since σ1 is nonsingular and {σ1, σj} = 0 for j ∈ {2, 3}, (4.0.2) holds.

The following conclusions are the same as those for the p-wave superconductor model above.

4.4 Numerical simulations

To illustrate the stability (or not) of interface conductivities, we present numerical simu-

lations of the 2 × 2 Dirac and p-wave superconductor models from section 2.3, as well as

models of equatorial waves analyzed in section 2.3 (see also [10]). We discretize a grid of size

Lx×Ly = 24×24 uniformly into Nx×Ny = 64×64 grid points and impose periodic bound-

ary conditions. Point-wise multiplication operators are represented as diagonal matrices,

and derivatives D̃α ≈ 1
i ∂α (α = x, y) are computed in the Fourier basis D̃α = F−1

α ΛαFα,

where Fα is the discrete Fourier transform with respect to direction α, and

Λα =
2π

NαLα
diag

(
− Nα

2
,−Nα

2
+ 1, . . . ,

Nα
2

− 1
)
.

Note that Fα is unitary, so that F−1
α = F ∗

α. We refer the reader to [84] for more details on

spectral methods and their accuracy.

As in section 4.1, we define the conductivity by

σ̃I(H) := Tr iQ[H,P ]φ′(H),

where P = P (x) and Q = Q(x, y) = QX(x)QY (y) are point-wise multiplication operators

satisfying

P (x) =


1, δx ≤ x ≤ 3Lx/8

0, −3Lx/8 ≤ x ≤ −δx
and QΘ(θ) =


1, |θ| ≤ Lθ/4

0, |θ| ≥ Lθ/4 + δθ

,

for some 0 < δθ ≪ Lθ/4. The Hamiltonians are periodized so that the y dependent terms
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Figure 4.1: Eigenfunctions of the periodic 2× 2 Dirac Hamiltonian (top) and p-wave super-
conductor (bottom) models. First three columns: edge states localized at the y = 0 and
y = ±Ly/2 interfaces; far right: bulk states that do not contribute to the conductivity. The
plotted vector components and corresponding eigenvalues are labeled.

(m(y) for the 2 × 2 Dirac system and c(y) for the p-wave superconductor) are equal to 1

whenever δ′ ≤ y ≤ Ly/2− δ′ and −1 for −Ly/2+ δ′ ≤ y ≤ −δ′, and are smoothly connected

in between. Here, δ′ is a positive constant that is small relative to Ly, but large enough for the

interval (−δ′, δ′) to contain at least 3 grid points. The eigenvalues of H in the support of φ′

(and the corresponding eigenvectors) are computed using the “eigs” command in MATLAB.

Since the number of these eigenvalues is typically much smaller than the dimension of H,

we avoid the computational expense of a full spectral decomposition.

For the 2× 2 models, we consider perturbations of the form

V (x, y) = (n̂ · σ⃗)v(x, y), v(x, y) =


r exp(−a2/(a2 − x2 − y2)), x2 + y2 < a2,

0, else,

where n̂ ∈ R4 is a unit normal vector and σ⃗ = (σ0, σ1, σ2, σ3). Here, the σj are the Pauli

matrices (with σ0 the 2×2 identity matrix). We observe that σ̃I is stable with respect to such

perturbations. Namely, if we fix the support of v to lie well within supp(Q) while increasing

the amplitude of that perturbation, the conductivity does not change by much (even if the
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Figure 4.2: Perturbed eigenfunctions of the 2 × 2 Dirac (top) and p-wave superconductor
(bottom) models. For all plots, r = 2 and a = 7.5. We see a mix of propagating and evanes-
cent modes. Despite the qualitative differences between the perturbed and unperturbed
eigenfunctions, the conductivity remains approximately the same.

amplitude is very large). Similarly, for a fixed amplitude, the conductivity remains close to

its original value until v becomes highly delocalized. See Figure 4.3 (left), where we have

plotted the dependence of the conductivity on the perturbation strength and localization

for the 2 × 2 Dirac and p-wave superconductor models. Note that for many other choices

of parameters, the conductivity remains within 2% of its unperturbed value for values of

r and a much larger than 10. The empirical stability of σ̃I is entirely consistent with the

theoretical results from earlier sections.

We present examples of computed eigenfunctions for the 2 × 2 Dirac and p-wave super-

conductor models in Figures 4.1 and 4.2. We observe that perturbations V of the above

form strongly alter the edge states. They are no longer a superposition of terms of the form

eiξxψ(y) and we even recognise localized modes (see top right of Figure 4.2) that do not

contribute to the conductivity. Thus the robustness of σ̃I observed in Figure 4.3 occurs in

spite of the instability of the eigenfunctions with respect to perturbations.

One may also consider filters Q∆X ,∆Y
(x, y) = Q∆X

(x)Q∆Y
(y) with different centers,
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2π
σ̃
I

Figure 4.3: The left panel demonstrates the numerical stability of σ̃I for the 2×2 Dirac (solid
line) and p-wave superconductor (dashed line) models. For the solid line, we fixed a = 7.5
(with r varying) and the dashed line corresponds to r = 10 (with a varying). The center
panel shows the conductivity for the 2 × 2 Dirac (solid line) and p-wave superconductor
(dashed line) models as a function of the center of QY . As expected, we get −1,−2 when
the filter selects the increasing domain wall and 1, 2 when the filter selects the decreasing
domain wall, with a sharp transition in between. The right panel plots the conductivity for
the 3 × 3 model as a function of perturbation strength, for perturbations in four distinct
matrix elements. The conductivity is stable with respect to perturbations of the other five
matrix elements; see text.

where

Q∆Θ
(θ) =


1, θ ∈ [−Lθ

4 −∆Θ,
Lθ
4 −∆Θ]

0, θ /∈ (−Lθ
4 −∆Θ − δθ,

Lθ
4 −∆Θ + δθ).

When ∆Y = Ly/2, Q would instead test the conductivity associated to the opposite, spuri-

ous, domain wall. As the center ∆Y of the filter increases, we expect the numerical conduc-

tivity σI to shift from the conductivity of one domain wall to the that of the next domain

wall. This is confirmed by the plot in Figure 4.3 (center) obtained for the 2 × 2 Dirac and

p-wave superconductor models. Translating the center of Q in the x-direction would have

the same effect, as the sign of P ′ on the support of Q changes when ∆X = Lx/2.

We finally carry out the above numerical simulations on the model of equatorial waves

presented in section 2.3; see also [10]. The unperturbed Hamiltonian with symbol given in
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(2.3.4) is

H0 = (Dx, Dy,−f(y)) · Γ, (4.4.1)

where Γ = (γ1, γ4, γ7) with the γi denoting the (3×3) Gell-Mann matrices. The Coriolis force

is given by f(y), which changes signs across the equator. As shown in [10], the conductivity

of such a system depends on the choice of f when µ = 0 whereas the theory presented in

section 2.3 shows that the conductivity equals 2 as soon as µ ̸= 0. For example, 2πσI = 1 if

f = f0 sgn(y), and 2πσI = 2 if f(y) = βy, with f0, β > 0.

Moreover, it was shown in [10] that the conductivity is stable under perturbations of

the form V = diag(V11, 0, 0), but not V = diag(0, V22, V33). We have verified these results

numerically for f(y) a smooth periodic function satisfying the same conditions as m(y) and

c(y) above. For example, we see that if V0 = 5gLy/4(y) (where gσ(y) is the pdf of a Gaussian

with mean zero and standard deviation σ), then 2πσ̃I = 1.9950 if V = 0, 2πσ̃I = 1.9941

if V = diag(V0, 0, 0), 2πσ̃I = −0.5394 if V = diag(0, V0, 0), and 2πσ̃I = 0.1430 if V =

diag(0, 0, V0). More generally, we have verified numerically that σ̃I is stable, as predicted by

theory, under perturbations of the form V (y) times any of the matrices


1 0 0

0 0 0

0 0 0

 ,


0 1 0

1 0 0

0 0 0

 ,


0 0 1

0 0 0

1 0 0

 ,


0 i 0

−i 0 0

0 0 0

 ,


0 0 i

0 0 0

−i 0 0

 ,


0 0 0

0 0 i

0 −i 0

 , (4.4.2)

and unstable under all other Hermitian perturbations, see Figure 4.3 (right).

Given thatH is translationally invariant in x, we can approximate its continuous branches

of spectrum by computing the eigenvalues of Ĥ[ξ] := (ξ,Dy,−f(y)) · Γ as a function of

ξ ∈
{2πj
Nx

: j ∈ {−Nx
2
,−Nx

2
+ 1, . . . ,

Nx
2

− 1}
}
,
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E
(ξ
)

Figure 4.4: Branches of continuous spectrum for the 3× 3 equatorial wave Hamiltonian, for
different values of regularization parameter µ. The top line corresponds to f(y) = sgn(y)
while the bottom line corresponds to f(y) = tanh(βy). The solid curves represent the
nontrivial increasing branches (and the two flat bands at ±1 when µ = 0 and f(y) = sgn(y)).
For µ = 0, we omit many eigenvalues approximately equal to 0, as they correspond to
essential spectrum for the continuous problem. When µ > 0 (resp. µ < 0), these eigenvalues
populate the region {E(ξ) > 0} (resp. {E(ξ) < 0}), making it difficult to identify branches
of spectrum there.

see Figure 4.4 (µ = 0). Consistent with theory [10], the number of branches passing through

E = ±1/2 depends on the profile of f . Namely, we obtain two nondecreasing branches

of continuous spectrum passing through E = 1/2 when using f(y) = tanh(βy) and only

one with f(y) = sgn(y). (The qualitative behavior of the branches is independent of the

above perturbations under which σ̃I is stable.) Here, β > 0 is sufficiently small so that

the transition of f(y) from values near −1 to values near 1 occurs over at least several grid

points. Of course, f(y) is periodically wrapped, so that it in fact equals − tanh(β(y∓Ly/2))

in the vicinity of y = ±Ly/2.

Given [10, Theorem 2.1 and Appendix B] and the fact that σI(H) := Tr i[H,P ]φ′(H) = 0

for all matrices H and P , we would expect the number of signed crossings of E = 1/2 to
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be 0. That is, every nondecreasing branch of spectrum passing through E = 1/2 should be

accompanied by a nonincreasing branch that also passes through E = 1/2, as we observe.

But these nonincreasing branches correspond to eigenfunctions that localize at y = ±Ly/2

and thus become insignificant when we apply Q to compute σ̃I .

The plots in Figure 4.4 with µ ̸= 0 correspond to the regularized model from Section

2.3. As expected, we find two nondecreasing branches of spectrum passing through the

energy interval of interest when f(y) is smooth or µ ̸= 0. Again, the qualitative behavior

of the branches is robust to perturbations of the form (4.4.2). We see that the branches

corresponding to f(y) = sgn(y), particularly E(ξ) = ±1 for µ = 0, are more sensitive to

variations in µ than those corresponding to smooth f . The flat bands are eliminated when

µ ̸= 0, resulting in two non-trivial increasing branches of spectrum.
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CHAPTER 5

INTEGRAL FORMULATION OF KLEIN-GORDON SINGULAR

WAVEGUIDES

The time-harmonic Klein-Gordon equation,

−∆u+m2u = E2u

arises naturally in a wide variety of contexts, including condensed matter and particle physics,

classical mechanics, and optics. When |E| < m it models an insulating medium: solutions

decay exponentially quickly away from a source. In the last forty years there has been

particular interest in the case in which two different insulators are brought together, meeting

at an interface. In such situations, depending on the physical parameters, it is possible to

generate surface waves which are localized near, and propagate along, the interface.

In two dimensions, this can be modelled by the following set of partial differential equa-

tions (PDEs)



−∆u(x) +m2
2u(x)− E2u(x) = f2(x), x ∈ Ω2,

−∆u(x) +m2
1u(x)− E2u(x) = f1(x), x ∈ Ω1,

limy→x∈Ω2
u(y) = limy→x∈Ω1

u(y), x ∈ Γ,

limy→x∈Ω2
n̂(x) · ∇u(y)− limy→x∈Ω1

n̂(x) · ∇u(y) = −(m1 +m2)u(x), x ∈ Γ,

(5.0.1)

where n̂(x) denotes the unit normal to Γ at x ∈ Γ pointing in the direction of Ω2, the

domains Ω1 and Ω2 denote the supports of the first and second insulators, respectively, m1

and m2 we refer to as their ‘masses’, E is an energy, and f1 and f2 are source terms. In the

sequel we will always assume that |E|2 < m2
1,m

2
2, that Ω1 ∪ Ω2 = R2 is the entire plane,
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and that Ω1 and Ω2 meet along an interface Γ = ∂Ω1 = ∂Ω2. Moreover, we assume that

Γ is a single smooth simple curve which is asymptotically flat in both directions and has a

positive opening angle at infinity (see Section 5.1.2 for precise definitions and more detailed

discussions). Intuitively, we require Γ has a smooth parameterization γ : R → Γ which

asymptotically approach two different rays as t goes to −∞ and ∞. In order to have unique

solutions, one should also supplement these equations with suitable boundary conditions at

infinity and radiation boundary conditions along the interface.

In this section we construct a novel system of boundary integral equations for solving

the above equation, establishing bounded invertibility for a range of masses and interfaces

(see Section 5.2). Our approach is based on introducing an auxiliary variable defined via

the fundamental solution of a certain time-harmonic wave equation on the interface Γ. This

formulation easily lends itself to implementation. In Section 5.3 we describe an algorithm

based on our boundary integral equations, and in Section 5.4 present several numerical

examples.

This section focuses on solving a source problem for singular Schrödinger equations with

outgoing radiation conditions for an energy range E ∈ (−m0,m0). A complete spectral

analysis of the problem seems quite challenging. In a subsequent work, we plan to extend

the current analysis of Dirac operators and more complex geometries for interfaces.

5.1 Mathematical preliminaries

5.1.1 Detailed formulation of the problem

In this section we give a more precise statement of the problem under consideration, and

summarize the associated conditions on the interface. Towards that end, suppose we are

given a smooth simple curve Γ separating the plane into a lower region Ω1 and an upper

region Ω2. Let γ : R → R2 be an arclength parameterization. Moreover, with n̂(t) the normal
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vector to γ at t ∈ R pointing in the direction of Ω2 (using the same notation n̂ for n̂(t) and

n̂(γ(t)) to simplify), we assume that (γ′(t), n̂(t)) has positive orientation. For concreteness,

we additionally assume that:

|γ′(t)| = 1, |γ′′(t)|2 + |γ′′′(t)| ≤ C0e
−β|t| , (5.1.1)

lim
t→∞

|γ(±t)| = ∞, lim
t→∞

|γ(t)− γ(−t)| = ∞ , (5.1.2)

where C0, and β are positive real constants. The fact that γ is one-to-one (along with

assumption (5.1.2) above) implies the existence of some c > 0 such that

|γ(t)− γ(s)|
|t− s|

≥ c, s, t ∈ R. (5.1.3)

Given a suitably-differentiable function u, for ease of exposition we set

[[n̂ · ∇u]](t) := lims→0+ n̂(t) · ∇ [u(γ(t) + s n̂(t))− u(γ(t)− s n̂(t))] ,

[[u]](t) := lims→0+ [u(γ(t) + s n̂(t))− u(γ(t)− s n̂(t))] .

Finally, we suppose that we are given positive real numbers m1,m2, as well as a real number

E such that |E| < min(m1,m2). In the following we set ωj =
√
m2
j − E2.

Ω2
Γ

Ω1

γ(t)

n(t)

Figure 5.1: Geometry

In this paper, we consider the time-harmonic Klein Gordon equation with piecewise
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discontinuous masses meeting at a single one-dimensional interface:

−∆u(x) + ω22u(x) = f2(x), x ∈ Ω2,

−∆u(x) + ω21u(x) = f1(x), x ∈ Ω1.

(5.1.4)

Here the functions f1 and f2 correspond to compactly-supported sources in the lower and

upper regions, respectively. For ease of exposition in the following we will denote by f the

function which is equal to f2 in Ω2 and to f1 in Ω1. Along the interface we enforce continuity

of u as well as a jump condition in the normal derivative, as below

[[n̂ · ∇u]](γ(t)) = −(m2 +m1)u(γ(t)), t ∈ R,

[[u]](γ(t)) = 0, t ∈ R.
(5.1.5)

Remark 5.1.1. The continuity condition is relatively standard. The jump condition in the

normal derivative is possibly less so. Our principle motivation comes from the consideration

of topological insulators, as is briefly discussed in Section 5.1.2. Boundary conditions such

as this also arise in the study of “leaky” waveguides, particularly in the context of “leaky

quantum waveguides” (see [43] and the references therein).

With the above assumptions, we will show that there exist solutions u of the PDE which

propagate along Γ. These solutions can be interpreted as consisting in part of a surface wave

emanating from the sources f1 and f2, confined in an exponential neighborhood of Γ. To

enforce the condition that the surface wave should travel outwards (i.e. no energy should

come in from infinity) we impose additional radiation conditions,

lim
t→±∞

(±∂t − iE)u(γ(t) + rn̂(t)) = 0, r ̸= 0, (5.1.6)

lim
d(x,Γ)→∞

u(x) = 0, (5.1.7)

where d(x,Γ) := min{|x − y| : y ∈ Γ} is the distance between x and Γ. The requirement
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(5.1.6) is known as an outgoing radiation condition, and intuitively means that u(γ(t)+rn̂(t))

ought to look like CeiE|t| when |t| is large (where C ∈ R is some constant). The outward

propagation of u can be seen from the corresponding solution of the Schrödinger equation,

which is of the form eiE(|t|−s), where s represents the time variable. Indeed, this solution is

a function of t − s (resp. t + s) when t > 0 (resp. t < 0). We refer to [39] for more details

on this topic in similar settings.

Our main objective in this paper is the analysis of the problem (5.1.4) with boundary

conditions (5.1.5, 5.1.6, 5.1.7).

5.1.2 Relation to Dirac equations and topological insulators

The above equations are closely related to certain Dirac equations arising in the study of

topological insulators. In this section we elaborate on this connection in more detail. We

begin by recalling that in two dimensions, the time-harmonic Dirac equation is given by

−iσ3∂xψ − iσ1∂yψ +mσ2ψ = Eψ, (5.1.8)

where ψ : R2 → C2, m : R2 → R, and σ1, σ2, and σ3 are the Pauli spin matrices defined by

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , and σ3 =

1 0

0 −1

 .

Dirac equations are natural models in the description of topological insulators and the trans-

port observed at an interface separating two insulators in different phases [17, 10, 11, 14]. In

particular, if we assume that two insulators are brought together along an interface {y = 0},

we set m(x, y) = m2 for y > 0 and m(x, y) = −m1 for y < 0. While each region on its own

acts as an insulator provided |E| < min(|m1|, |m2|) =: m∗, this is no longer the case for the

combination, which admits absolutely continuous spectra in (−m∗,m∗) when the signs of
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m1 and m2 are the same.

Squaring the Dirac equation (5.1.8) one obtains

−∂2xψ − ∂2yψ + [m2
2θ(y) +m2

1θ(−y)]ψ − E2ψ + (m2 +m1)δ0(y)σ3ψ = 0.

Here θ(y) is the Heaviside function, equal to 1 for y > 0 and to 0 for y ≤ 0. The above

equation is diagonal, i.e. the components of ψ are not coupled. The equation for the first

component is

−∆ψ1 + [m2
2θ(y) +m2

1θ(−y)]ψ1 − E2ψ1 + (m2 +m1)δ0(y)ψ1 = 0,

which admits only the trivial solution ψ1 = 0 (provided ψ1 is not exponentially increasing

in |y|). The more interesting second component satisfies

−∆ψ2 + [m2
2θ(y) +m2

1θ(−y)]ψ2 − E2ψ2 − (m2 +m1)δ0(y)ψ2 = 0,

which is exactly (5.1.4, 5.1.5), at least when sources are neglected.

Our main objective in this paper is to analyze such a scalar equation and focus on the

resulting propagation of signals along the interface Γ separating the insulators. In particular,

we are interested in the setting where Γ is curved. The corresponding analysis to the vector-

valued Dirac equation is postponed to a later study.

For an analysis of the temporal propagation of wavepackets along a curved interface in

the semiclassical regime (i.e, for wavepackets asymptotically localized in the near vicinity of

the interface) in both topologically trivial (Klein-Gordon) and non-trivial (Dirac) settings,

see [9, 12].
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5.1.3 Boundary integral operators and their properties

In this section we introduce several frequently-encountered boundary integral operators

which will be useful in defining the boundary integral equations for the solution of PDE

(5.1.4). We begin by recalling that for any ω in the right-half of the complex plane, the

Green’s function Gω(x, y) for the PDE

−∆u(x) + ω2u(x) = δ(x− y),

lim
|x|→∞

u(x) = 0,
(5.1.9)

is given by

Gω(x, y) =
1

2π
K0(ω|x− y|), (5.1.10)

where K0 is the modified Bessel function of the second kind.

Given a function ρ ∈ L2(R) we define its single-layer potential Sω[ρ] by

Sω[ρ](x) =

ˆ
R
Gω(x, γ(t)) ρ(t) dt

and its double-layer potential Dω[ρ] by

Dω[ρ](x) = −
ˆ
R
n̂(t) · ∇xGω(x, γ(t)) ρ(t) dt

for x /∈ Γ. Note that standard definitions of the above operators usually contain a factor of

|γ′(t)| in the integrand, while we assume that |γ′| ≡ 1. It is well-known (see [54, Lemmas

3.3 and 3.5] for example) that Sω is continuous across Γ while Dω and n̂ · ∇Sω satisfy the
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following jump relations

lim
s→0+

Dω[ρ](t± s n̂(t)) = ±1

2
ρ(t)−

ˆ
R
n̂(t′) · ∇Gω(γ(t), γ(t′)) ρ(t′) dt′ (5.1.11)

lim
s→0+

n̂(t) · ∇Sω[ρ](t± s n̂(t)) = ∓1

2
ρ(t) +

ˆ
R
n̂(t) · ∇Gω(γ(t), γ(t′)) ρ(t′) dt′. (5.1.12)

We note that the two integral operators appearing on the right-hand sides of the previous

equations are compact (in L2(R)), as their kernels are continuous and rapidly decaying in t

and t′. With some abuse of notation, in the following we denote these operators by Dω and

S ′
ω, respectively. We define Sω and D′

ω by

Sω[ρ](t) =
ˆ
R
Gω(γ(t), γ(t

′)) ρ(t′) dt′,

D′
ω[ρ](t) = −

ˆ
R
n̂(t′) · ∇2Gω(γ(t), γ(t

′)) n̂(t) ρ(t′) dt′,

with ∇2Gω the Hessian of Gω. We note that in this case, Sω, Dω, S ′
ω and D′

ω can be viewed

as operators from L2(R) → L2(R). Finally, we remark that both Dω and S ′
ω are zero when

restricted to any portion of the boundary which is flat. Moreover, for flat interfaces the

kernels of Sω and D′
ω2 −D′

ω1 have the following Sommerfeld integral representations

Sω[ρ](t) =
ˆ
R
Kω(t− t′) ρ(t′) dt′, (5.1.13)

(D′
ω2 −D′

ω1)[ρ](t) =

ˆ
R
Hω2,ω1(t− t′) ρ(t′) dt′, (5.1.14)

where

Kω(t) =
1

4π

ˆ
R

eiξt√
ξ2 + ω2

dξ, (5.1.15)

Hω2,ω1(t) =
1

4π

ˆ
R

(√
ξ2 + ω22 −

√
ξ2 + ω21

)
eiξt dξ. (5.1.16)
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5.2 Analytical results

5.2.1 The BIEs

Let us now state the boundary integral formulation of the PDE (5.1.4, 5.1.5, 5.1.6, 5.1.7).

We begin with the case m1 = m2 = m.

First, we define the operator Q via the following formula

Qρ(t) =
m2

E

ˆ
R
eiE|t−t′|ρ(t′)dt′, ρ ∈ L2(R), (5.2.1)

and set L := 1− 2mSω and P := 1 +Q so that

Lρ(t) = ρ(t)− 2m

ˆ
R
Gω(γ(t), γ(t

′)) ρ(t′) dt′,

Pρ(t) = ρ(t) +
m2

E

ˆ
R
eiE|t−t′|ρ(t′)dt′ ,

(5.2.2)

for ρ ∈ L2(R).

Then, we seek a density ρ : R → C, which satisfies the following boundary integral

equation

LPρ = 2mui, (5.2.3)

where ui is given by

ui(x) :=

ˆ
R2
Gω(x, y)f(y)dy. (5.2.4)

Here, as above, f denotes the function which is equal to f2 in Ω2 and f1 in Ω1.

The following theorem relates the solutions of (5.2.3) to the solutions of (5.1.4, 5.1.5,

5.1.6, 5.1.7).
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Theorem 5.2.1. Suppose m1 = m2 =: m. Let ρ ∈ L1 be a solution of (5.2.3), and set

µ := Pρ, us := Sω[µ], u := ui + us. (5.2.5)

Then (5.1.4), (5.1.5), (5.1.6) and (5.1.7) hold. In particular, u constructed in this way

is a solution of the PDE.

Remark 5.2.2. The operator Q can naturally be interpreted as the fundamental solution

operator of the one-dimensional Helmholtz equation

∆Γv + E2v = m2ρ,

where ∆Γ is the Laplace-Beltrami operator of the interface curve Γ.

Remark 5.2.3. Note that the operator Q could have equally been defined by replacing

eiE|t−t′| by e−iE|t−t′|. The choice of sign in (5.2.1) amounts to a choice of outgoing ra-

diation condition, namely that we filter out incoming radiation. Indeed, if ρ ∈ L1, then

limt→±∞(Qρ(t) − m2

E eiE|t|ρ̂(±E)) = 0, meaning that solutions of a time-dependent Klein

Gordon problem would propagate to the right for t > 0 and to the left for t < 0 whenever

|t| is sufficiently large (t is the space, not time, variable here). See [39] for details on the

notion of incoming and outgoing radiation.

Suppose now that m1 ̸= m2, and define m̄ := 1
2(m1 + m2). Analogous to (5.2.1), let

Q2 : L2(R) → L2(R) be given by

Q2ρ(t) =
m̄2

E

ˆ
R
eiE|t−t′|ρ(t′)dt′, ρ ∈ L2(R). (5.2.6)
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We define the operator L2 : (L2(R))2 → (L2(R))2 by

L2 := 1−

S ′
ω2 − S ′

ω1 + m̄[Sω2 + Sω1 ] m̄ [Dω2 +Dω1 ] +D′
ω2 −D′

ω1

−(Sω2 − Sω1) −(Dω2 −Dω1)

 (5.2.7)

and P2 : (L2(R))2 → (L2(R))2 by

P2 :=

I + V

Q2 0

0 0

V −1

 , V :=

 −1 1
2m2

− 1
2m1

1
2m2

− 1
2m1

1

 . (5.2.8)

Our integral equation is then to find a density σ ∈ (L2(R))2 such that

L2P2σ = r, (5.2.9)

where

r : =

[[n̂ · ∇ui]] + 2m̄ui)

− [[ui]]

 ,

ui(x) : =


´
Ω2
Gω2(x, y)f2(y) dy, x ∈ Ω2,

´
Ω1
Gω1(x, y)f1(y) dy, x ∈ Ω1.

(5.2.10)

We can then relate the solutions of (5.2.9) to solutions of (5.1.4, 5.1.5, 5.1.6, 5.1.7).

Theorem 5.2.4. Suppose σ ∈ (L1(R))2 is a solution of (5.2.9), and set

µ
ρ

 := P2σ, us(x) =


Dω2 [ρ](x) + Sω2 [µ](x), x ∈ Ω2,

Dω1 [ρ](x) + Sω1 [µ](x), x ∈ Ω1.

(5.2.11)

Then u := ui + us satisfies (5.1.4), (5.1.5), (5.1.6) and (5.1.7).

For proofs of Theorems 5.2.1 and 5.2.4, see Section 5.5.
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As we will show in subsection 5.2.2 below, the integral equations (5.2.3) and (5.2.9) admit

a unique solution when the interface is flat. The rest of this section concerns well-posedness of

the boundary formulation for arbitrary interfaces satisfying assumptions (5.1.1) and (5.1.2).

We will assume that m1 = m2 =: m throughout. In principle, similar arguments should

extend to the m1 ̸= m2 case, though the presentation would be more complicated due to the

presence of terms involving double layer potentials and their derivatives.

Our main results are Theorems 5.2.5 and 5.2.7 below, which state that the integral

formulation (5.2.3) is well posed for “almost all” choices of m and E. The rapid decay of the

curvature of γ at infinity allows for tools from perturbation theory to be applied. To prove

Theorem 5.2.5, we will compare the generic (curved-interface) integral operators with their

flat-interface simplifications, and show that the operator norm of the difference is small in

some asymptotic regime. The difference operator also plays a central role in the proof of

Theorem 5.2.7, though a smallness condition is no longer required. To distinguish between

the arbitrary and flat cases, let L0 : L2(R) → L2(R) be defined by

L0µ(t) := µ(t)− m

2π

ˆ
R

ˆ
R

eiξ(t−t
′)√

ξ2 + ω2
dξ µ(t′) dt, µ ∈ L2(R), (5.2.12)

so that L0 is the operator L in (5.2.2) when the boundary is flat. Then (5.2.3) can be

rewritten as (L0P + (L − L0)P)ρ = 2mui, or equivalently

(1 +M)ρ = 2m(L0P)−1ui, M := (L0P)−1(L − L0)P . (5.2.13)

Thus to prove well-posedness of the integral formulation, it suffices to show that the

operator 1+M has bounded inverse. As suggested above, one condition that would guarantee

bounded invertibility is that M be bounded with operator norm strictly less than 1, in which

case 1+M could be inverted by the Neumann series. But although (L0P)−1 is bounded on

L2 and L−L0 has a rapidly decaying kernel, M is not bounded on L2 due to its right-most
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factor of P . We thus introduce the following weighted L2 spaces on which M is not only

bounded but compact (to be proved in Section 5.5; see Lemma 5.5.3). For α ∈ R, define

wα(t) := eα|t| and L2α := {ρ ∈ L2(R) : wαρ ∈ L2(R)}. Define ∥·∥L2
α

by ∥ρ∥L2
α
:= ∥wαρ∥L2 .

For the following, fix m0 > 0 and E0 ∈ (−m0,m0) \ {0}, define ω0 :=
√
m2

0 − E2
0 , and

set m = λm0 and E = λE0 for λ ∈ R. Let α∗ > 0 such that wα∗(·)K0(ω0| · |) ∈ L1,

ˆ
R2

(
eα∗teα∗s|t− s|3e−βχ(s,t)K1(cω0|t− s|)

)2
dtds <∞, α∗ <

√√√√√4m4
0 + E4

0 − E2
0

2
,

| · |3K1(c| · |) ≤ Ce−α∗|·| for some C > 0, and α∗ < β, where β and c are defined by (5.1.1)

and (5.1.3), and

χ(s, t) :=


min{|s|, |t|}, st > 0

0, else.

Here, the Kj : (0,∞) → (0,∞) are modified Bessel functions of the second kind. They are

continuous, exponentially decaying at infinity, and satisfy K0(r) ∼ − log r and K1(r) ∼ 1/r

as r ↓ 0. Thus α∗ is indeed well defined.

We now state our first well-posedness result. Its proof uses that M is small in operator

norm for all λ sufficiently large; see Section 5.5. Most of the theory from the proof would

hold also on spaces with algebraic weights. However, the final step requires holomorphic

continuation of λ into the complex plane. When λ (and hence E) has negative imaginary

part, the kernel of Q has exponential growth away from the diagonal. Thus to ensure that

Q is well defined, it is necessary to consider functions that decay exponentially at infinity.

Theorem 5.2.5. For any α ∈ (0, α∗], the integral equation (5.2.3) admits a unique solution

ρ ∈ L2α for all but a finite number of λ ∈ [1,∞).

Remark 5.2.6. We note that the above dependence of m and E on λ is equivalent to setting
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m = m0 and E = E0 while changing γ by γλ(t) := λγ(t/λ). Thus increasing the value of λ

can be thought of as stretching out the interface.

We conclude the section with a second well-posedness result, which (drops the above

λ-dependence and) states that for any fixed m > 0, our integral formulation (5.2.3) has a

unique solution for all but a countable number of values of E ∈ (−m,m) \ {0}, with 0 and

±m the only possible accumulation points of these undesirable E-values. The proof, which

is postponed to Section 5.5, uses the compactness of M but does not require its operator

norm to be small.

Theorem 5.2.7. Fix m > 0. For any ε > 0 and α > 0 sufficiently small (depending on ε),

the integral equation (5.2.3) admits a unique solution ρ ∈ L2α for all but a finite number of

E ∈ [−m+ ε,−ε] ∪ [ε,m− ε].

5.2.2 Intuitive derivation of the boundary integral equations

In this section we outline an intuitive derivation of the boundary integral equations, and

sketch a proof of invertibility for the case of a flat interface. As before, we begin with the

case m1 = m2.

For equal masses, the equations (5.1.4) are

∆u(x)− ω2u(x) = f(x), x ∈ R2 \ Γ, (5.2.14)

where ω := ω1 = ω2.

Then if we define the functions ui and us by

ui(x) :=

ˆ
R2
Gω(x, y)f(y)dy, us := u− ui, (5.2.15)

and assume the existence of a density µ ∈ L2(R) such that us(x) = Sω[µ](x) for all x ∈ R2\Γ,
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it follows that

−µ(t) + 2mSω[µ](t) = −2mui(γ(t)), t ∈ R. (5.2.16)

Indeed, ui is smooth across Γ and hence the definition of us implies


∆us(x)− ω2us(x) = 0, x ∈ R2 \ Γ,

[[n̂ · ∇us]] + 2mus = −2mui, x ∈ Γ,

(5.2.17)

with the added condition that us+ ui is continuous across Γ. It is clear that the first line of

(5.2.17) holds for any choice of µ, while the boundary equation (5.2.16) is a consequence of

the second line of (5.2.17) together with (5.1.12) and the definition of µ.

We recognize the left-hand side of (5.2.16) as −Lµ, where we recall the definition of L in

(5.2.2). We will see below that for the flat-interface case, L has a continuous spectrum which

passes through zero. As such, in general the solution will not be unique without imposing

additional conditions. Moreover, if the domain is truncated, the resulting truncated operator

will at best be poorly-conditioned in the limit as the length of the boundary tends to infinity

and in general will not converge as the size of the truncated domain grows. For a flat

interface, the problem is easily analyzed in the Fourier domain. Indeed, observing that

Ft→ξ

{ 1

E
eiE|t|

}
= lim

ε↓0
Ft→ξ

{ 1

E + iε
ei(E+iε)|t|

}
= − 2i

ξ2 − E2
, (5.2.18)

we see that

F{LPρ}(ξ) =
(
1− m√

ξ2 + ω2

)(
1− 2im2

ξ2 − E2

)
ρ̃(ξ) =: a(ξ)ρ̃(ξ), (5.2.19)

where P is defined in (5.2.2) and ρ̃ denotes the Fourier transform of ρ. Here, we used (5.1.15)

to derive the Fourier representation of L. The fact that LP is a point-wise multiplication

157



in the Fourier domain follows immediately from translation invariance of L and P (both

kernels k(t, t′) are functions of only t − t′). The singularities of the second factor of a at

ξ = ±E are canceled by the zeros of the first factor, making a an analytic function. Since

a is nonzero for all ξ and converges to 1 as |ξ| → ∞, there exist constants 0 < c < C such

that c ≤ |a| ≤ C uniformly in ξ.

We conclude that the operator (LP)−1 is bounded on L2(R) with (bounded and analytic)

Fourier symbol

a−1 =
[(

1− m√
ξ2 + ω2

)(
1− 2im2

ξ2 − E2

)]−1
=
(
1 +

m√
ξ2 + ω2

)(
1 +

(2i+ 1)m2

ξ2 − E2 − 2im2

)
.

(5.2.20)

This means there exists a unique function ρ ∈ L2(R) such that LPρ = 2mui, and hence the

boundary integral equation is invertible (with a bounded solution).

Suppose now m1 ̸= m2. This case is slightly more complicated, though the reasoning is

similar to the previous case. Define the functions ui and us by

ui(x) =


´
Ω2
Gω2(x, y)f2(y) dy, x ∈ Ω2,

´
Ω1
Gω1(x, y)f1(y) dy, x ∈ Ω1,

, us := u− ui. (5.2.21)

Note that ui is no longer continuous across Γ. For notational convenience, on the boundary

between Ω1 and Ω2 we set ui to be the average of the limits from above and below. If there

are densities µ, ρ ∈ L2(R) such that

us(x) =


Dω2 [ρ](x) + Sω2 [µ](x), x ∈ Ω2,

Dω1 [ρ](x) + Sω1 [µ](x), x ∈ Ω1,

(5.2.22)
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then we eventually arrive at the following linear system of equations for µ and ρ,

ρ(t) +

[
Dω2 [ρ](t)−Dω1 [ρ](t)

]
+

[
Sω2 [µ](t)− Sω1 [µ](t)

]
= − [[ui]](γ(t)), (5.2.23)

−µ(t) +

[
S ′
ω2
[µ](t)− S ′

ω1
[µ](t)

]
+

[
D′

ω2
[ρ](t)−D′

ω1
[ρ](t)

]

+m̄

[
Sω2 [µ](t) + Sω1 [µ](t)

]
+ m̄

[
Dω2 [ρ](t) +Dω1 [ρ](t)

]
(5.2.24)

+ 2m̄ui(γ(t)) = − [[n̂ · ∇ui]](γ(t)),

which are understood to hold for all t ∈ R. Recall the definition m̄ := 1
2(m1 + m2). To

derive the above, observe that the definition of the scattered field us implies that


∆us(x)− ω22us(x) = 0, x ∈ Ω2,

∆us(x)− ω21us(x) = 0, x ∈ Ω1,

[[n̂ · ∇us]] + (m2 +m1)us = − [[n̂ · ∇ui]]− (m2 +m1)ui, x ∈ Γ,

(5.2.25)

with us+ui continuous across Γ as before. The first two lines of (5.2.25) hold for any choice

of µ and ρ. Enforcing continuity of u at the interface, and using the jump relations (5.1.11,

5.1.12) for the layer potentials, we obtain (5.2.23). Since u on Γ takes the form

u(γ(t)) =
1

2
[Dω2 [ρ](t) +Dω1 [ρ](t)] +

1

2

[
Sω2 [µ](t) + Sω1 [µ](t)

]
+ ui(γ(t)), (5.2.26)

the derivative jump condition in (5.2.25) implies (5.2.24).

Observe that (5.2.23, 5.2.24) reads

L2

µ
ρ

 = r, (5.2.27)
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where L2 and r are defined in (5.2.7) and (5.2.10), respectively. As above, L2 may admit a

continuous spectrum passing through zero, hence solving for (µ, ρ) in (5.2.27) is in general

an ill-posed problem.

To remedy this issue, we again turn our attention to the special case of a flat boundary,

where Fourier representations of the relevant integral operators are given by (5.1.15) and

(5.1.16). Taking the Fourier transform of (5.2.23) in the flat case, we find that

ρ̃(ξ) +
1

2

 1√
ξ2 + ω22

− 1√
ξ2 + ω21

 µ̃(ξ) = − [[ũi]](ξ). (5.2.28)

Similarly, upon taking the Fourier transform of (5.2.24), we obtain

−µ̃− 1

2

[√
ξ2 + ω22 −

√
ξ2 + ω21

]
ρ̃+

m2 +m1

4

 1√
ξ2 + ω22

+
1√

ξ2 + ω21

 µ̃
= −m2 +m1

2
(ũi,1 + ũi,2)−

[[
n̂ · ∇̃ui

]]
. (5.2.29)

After solving (5.2.28) for ρ̃ and substituting it into (5.2.29) we see that

[
−1 +

1

4
(ξ2 − ξ1)(ξ

−1
2 − ξ−1

1 ) +
m2 +m1

4
(ξ−1
2 + ξ−1

1 )

]
µ̃ = ψ̃ (5.2.30)

where ξ1,2 =
√
ξ2 + ω21,2 =

√
ξ2 +m2

1,2 − E2, and

ψ̃(ξ) = −m2 +m1

2
(ũi,1 + ũi,2)−

[[
n̂ · ∇̃ui

]]
− 1

2
(ξ2 − ξ1) [[ũi]](ξ).

Let R(ξ) denote the Fourier multiplier from the left-hand side of (5.2.30) defined by

R(ξ) := −1 +
1

4
(ξ2 − ξ1)(ξ

−1
2 − ξ−1

1 ) +
m2 +m1

4
(ξ−1
2 + ξ−1

1 ). (5.2.31)
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Differentiating (5.2.31) with respect to ξ2 we see that

d

dξ2
R(ξ) = −m2 +m1

8

ξ32 + ξ31
ξ31ξ

3
2

+
1

8

(ξ22 − ξ21)
2

ξ31ξ
3
2

.

Now, ξ22 − ξ21 = ω22 − ω21, ξ2 ≥ ω2, ξ1 ≥ ω1, and m1 +m2 > ω1 + ω2, from which it follows

that

(m2 +m1)(ξ
3
2 + ξ31)− (ξ22 − ξ21)

2 ≥ ω42 + ω41 − ω42 − ω41 + 2ω22ω
2
1 > 0.

In particular, R(ξ) is decreasing for ξ < 0 and increasing for ξ > 0, from which it follows

immediately that ξ = ±E are the only roots.

Finally, we observe that the nullvectors (µ̃(ξ), ρ̃(ξ))t associated with ξ = ±E are both

v =

 −1

1
2m2

− 1
2m1

 . (5.2.32)

Motivated by this, we change variables to remove the singularity captured by the nul-

lvectors in (5.2.32). Namely, we introduce the new unknowns, σ1 and σ2 defined implicitly

by

µ
ρ

 = P2

σ1
σ2

 , (5.2.33)

with P2 given by (5.2.8). As with Q for the one-mass case, the Fourier transform of Q2

has singularities at ξ = ±E. Thus the singularities of P2 exactly cancel the zeros of L2.

Substituting (5.2.33) into the Fourier transformed boundary integral equations (5.2.28) and

(5.2.29), we obtain an invertible system for σ1 and σ2. In particular, L2P2 is bounded with

bounded inverse.
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5.3 Numerical apparatus

In this section we describe an algorithm for solving equations (5.1.4, 5.1.6, 5.1.7) via the

boundary integral equations (5.2.3) and (5.2.5). For notational convenience we present only

the case in which m1 = m2 =: m. The more general case can be solved in a similar way. In

subsection 5.3.1 we briefly discuss the details of the discretization used. Following this, in

subsection 5.3.2 we describe several accelerations that were made to improve the computa-

tional efficiency.

5.3.1 The discretization

In this section, we use the boundary integral equation package chunkie (see [27]) to discretize

the interface and construct the entries of the discrete approximation to the operators L and

P given by (5.2.2) and L2 and P2 defined in (5.2.7) and (5.2.8). To simplify the presentation

of our method, we assume that m1 = m2 =: m throughout this section. This means the

relevant integral equation is LPρ = 2mui.

The interface is truncated to [a, b] in parameter space, i.e. we restrict γ(t) : [a, b] to its

image. This truncated curve is then adaptively split into “chunks” where each chunk is the

image of a subinterval of [a, b], and is discretized using 16 Gauss-Legendre points. Chunks

are refined until the tails of the Legendre coefficients of the speed of parameterization, and

of the x, y coordinates of the curve are resolved. In particular, suppose that x(j)n , y
(j)
n , s

(j)
n

are the the Legendre coefficients computed using 32 nodes on a chunk [aj , bj ], i.e.


x(t)

y(t)

s(t)

 =
32∑
n=1


x
(j)
n

y
(j)
n

s
(j)
n

Pn
(
aj +

(t+ 1)

2
(bj − aj)

)
, (5.3.1)

where s(t) = |γ′(t)|, and Pn(t) is the Legendre polynomial of degree n on [−1, 1]. Then the
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chunk [aj , bj ] is resolved if

max

√∑32
n=17 |xn|2

16
,

√∑32
n=17 |yn|2

16
,

√∑32
n=17 |sn|2

16

 ≤ ε , (5.3.2)

for a specified tolerance ε. If the chunk is not resolved, then it is split into two chunks of

equal length in parameter space [aj , (aj+ bj)/2], and [(aj+ bj)/2, bj ]. Once all of the chunks

are resolved, they are subsequently balanced so that adjacent chunks satisfy a 2 : 1 length

restriction: if γj and γℓ are adjacent to each other then they satisfy |γj |/|γℓ| ∈ [0.5, 2]. At

the end of the adaptive procedure, the restriction of γ to [a, b] is represented via a collection

of nc chunks, [a, b] = ∪ncj=1[aj , aj+1] with the understanding that a1 = a, and anc+1 = b.

Remark 5.3.1. In the proofs, we have assumed γ′ ≡ 1 for convenience. The proofs can

be suitably modified as long as ||γ′| − 1| ≤ Ce−α|t| for some positive constants C and α.

Relaxing this restriction provides greater flexibility for parametrizing complicated curves.

Recall that the solution ρ ∈ L2α(R), and hence there exists an M such that

√√√√´[−∞,−M ]∪[M,∞] |ρ|2 ds´∞
−∞ |ρ|2 ds

≤ ε . (5.3.3)

This estimate justifies the existence of a truncation [a, b] such that the solution can be

accurately represented via its restriction to some bounded interval of R. In all the examples,

the interval [a, b] is taken to be the smallest interval satisfying the following two criteria: a)

that the boundary is nearly flat outside of [a, b], i.e. there exists a constant vector c ∈ R2,

such that |γ′(t) − c| ≤ ε for all c ∈ R2 \ [a, b], and b) the boundary data ui is numerically

supported on [a, b] to precision ε, i.e. |ui|L2(R\[a,b])/|ui|L2(R) ≤ ε.

Given these restrictions, the composition LP is discretized as an intergral operator on

L2 functions defined on the interval [a, b]. Even though ρ will be numerically supported on

[a, b], the operator P maps compactly supported functions to an oscillatory function that is
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O(1) on the whole real line. On the other hand, the kernel in the integral operator L decays

exponentially as exp (−ωd), where d denotes the Euclidean distance between points on the

interface. Thus, in order to compute the solution ρ accurately, one needs to discretize the

integral operator P from L2 functions on [a, b] to L2 functions on [a′, b′], and the integral

operator L from L2 functions on [a′, b′] to L2 functions [a, b], where a′ = a − log (1/ε)/ω,

and b′ = b + log (1/ε)/ω. The necessity and sufficiency of this choice of the buffer region is

illustrated through the results in Section 5.4.1.

We now turn our attention to the discretization of the integral operators L and P .

Suppose that there are an additional nbuffer points introduced in each of the buffer regions

[a′, a] and [b, b′]. Suppose that tj ∈ [a′, b′], j = 1, 2 . . . nover = 16nc + 2nbuffer are the

discretized values of t in parameter space. Let n0 = nbuffer + 16nc. Suppose that the points

are ordered in increasing values of t. Then the points j = 1, 2 . . . nbuffer correspond to the

left buffer region [a′, a], the points j = nbuffer+1, . . . n0 correspond to the interval [a, b], and

the points j = n0 + 1, . . . nover correspond to the right buffer region [b, b′]. Note that the

density ρ is discretized through its values at ρ(tj), for j = nbuffer + 1, . . . n0, and hence the

discretized linear system corresponding to LP will be of size n0 − nbuffer = 16nc.

Both the kernels L and P have non-smooth and at most weakly singular kernels for small

distances and require specialized quadrature rules for integrating them. We use the gener-

alized Gaussian quadrature rules of [22, 21] for the accurate computation of these integrals.

In particular, the quadrature rule is a target dependent locally-corrected quadrature rule

which accurately integrates the specific non-smooth behavior of the kernel in the vicinity of

the origin. For every point tj ∈ [ai, ai+1], there exist weights wj,ℓ for all tℓ ∈ [ai−1, ai+1]

such that the discretized versions of P and L, denoted by P and L respectively, are given by
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P[ρ](tj) =
m2

E

n0∑
ℓ=nbuffer+1

(δj,ℓ + eiE|tj−tℓ|wℓ)ρ(tℓ)

+

n0∑
ℓ=nbuffer+1
tℓ∈[ai−1,ai+1]

ρ(tℓ)wj,ℓ , j = 1, 2, . . . nover

L[µ](tj) = µ(tj)− 2m

nover∑
ℓ=1
ℓ̸=j

Gω(γ(tj), γ(tℓ))µ(tℓ)wℓ

+

nover∑
ℓ=1

tℓ∈[ai−1,ai+1]

µ(tℓ)wj,ℓ , j = nbuffer + 1, nbuffer + 2, . . . n0 .

(5.3.4)

Here δj,ℓ is the Kronecker delta, i.e. δj,j = 1 and δj,ℓ = 0 otherwise, and wj , j =

1, 2 . . . nover, denote the quadrature weights for integrating smooth functions on the interface.

The factorized linear systems L and P are illustrated in Figure 5.3.

Remark 5.3.2. Recall that L may have a continuous spectrum passing through zero while P

is not bounded; see (5.2.19). Thus it is expected (and observed numerically) that in general,

L and P both have very large condition numbers. This could in principle lead to catastrophic

cancellation arising from the numerical implementation of the operator product LP. We

postpone a thorough treatment of this potential issue to future study. Practically speaking,

the accuracy of our numerical method does not seem to suffer from the poor condition numbers

of L and P. Indeed, as illustrated by Section 5.4.1, we observe low errors for a variety of

interfaces and wide range of parameters.

5.3.2 Accelerations of the numerical method

In this section, we discuss a fast algorithm for the evaluation of the matrix vector product

LP[ρ]. The kernel of P is the Green’s function of a one-dimensional translation-invariant el-
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Figure 5.2: Schematic of the discretization approach used by chunkie. In the inlay, bounds
between ‘chunks’ are shown with vertical lines, and discretization nodes are denoted by red
triangles. For clarity, the ‘panel’ shown is 8th rather than 16th.

Figure 5.3: The factorized linear system, after discretization.

liptic ordinary differential equation and hence can be accelerated using a sweeping algorithm.

In order to apply P rapidly, we just need a fast algorithm for the evaluation of

P[ρ](tj) =
m2

E

n0∑
ℓ=nbuffer+1

eiE|tj−tℓ|ρ(tℓ)wℓ , j = 1, 2, . . . nover , (5.3.5)

since the rest of the interaction is sparse and can be computed in O(nover) CPU time. The

main idea of the sweeping algorithm is to split the solution into two parts for any point tj ,

t ≤ tj , and t > tj , where both pieces can be updated in O(1) operations as we move from

tj → tj+1 or tj → tj−1. Let v↑ and v↓ denote the accumulation of the rightward moving
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solution (corresponding to t ≤ tj) and the leftward moving solution(corresponding to t > tj)

respectively.

In particular, we split the solution as follows,

P [ρ](tj) =
m2

E

n0∑
ℓ=nbuffer+1

ℓ≤j

eiE(tj−tℓ)ρ(tℓ)wℓ +
m2

E

n0∑
ℓ=nbuffer+1

ℓ>j

eiE(tℓ−tj)ρ(tℓ)wℓ

= v
↑
j + v

↓
j .

(5.3.6)

A simple calculation shows that v↑ and v↓ satisfy the following recurrence relations

v
↑
j = v

↑
j−1e

iE(tj−tj−1) +
m2

E
ρ(tj)wjIj∈[nbuffer+1,n0]

,

v
↓
j = eiE(tj+1−tj)

(
v
↓
j+1 +

m2

E
ρ(tj+1)wj+1Ij+1∈[nbuffer+1,n0]

)
,

(5.3.7)

where Ij∈A is the indicator function of the set A, which is equal to 1 if j ∈ A, and 0 otherwise.

Thus, v↑ satisfies an upward recurrence in j, while v↓ satisfies a downward recurrence, and

both v↑ and v↓ can be computed for all j in O(nover) work. The recurrences are initialized

with v↑1 = 0, and v↓nover = 0.

On the other hand, the kernel of L is the Green’s function of the two dimensional

Helmholtz equation with imaginary wave number ω and the bulk of the computation is

given by

− 2m

nover∑
ℓ=1
ℓ ̸=j

Gω(γ(tj), γ(tℓ))µ(tℓ)wℓ , j = nbuffer + 1, . . . n0 . (5.3.8)

The above sum can be computed at all tj , j = nbuffer+1, . . . n0 in O(nover) CPU time using

the standard fast multipole method; see [73, 50]. We use the fast multipole implementation

in fmm2d for evaluating the sum in [45]. The rest of the computation in L is sparse whose

number of nonzero elements is also O(nover).

Combining both of these fast algorithms, the matrix vector product LP[ρ] can be applied
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in O(nover) CPU time. Thus, the solution ρ can be obtained in O(noverniter) CPU time

using iterative methods like the generalized minimum residual (GMRES) method, where

niter is the number of GMRES iterations required for the relative residual to drop below a

prescribed tolerance. In practice, the integral equation tends to be well-conditioned which

results in niter = O(1), and thus the computational complexity of obtaining the solution ρ

is O(nover).

5.4 Numerical illustrations and examples

In this section, we provide several examples of the numerical method described in Section

5.3. We demonstrate accuracy or self-convergence of the algorithm and test its speed for

a variety of interfaces; see subsection 5.4.1. In subsection 5.4.2, we plot corresponding

solutions and compute reflection coefficients for a scattering theory. We refer to Figure 5.4

for an illustration of the interfaces used in our examples.

5.4.1 Illustration of the numerical method

This section presents the accuracy and speed of our numerical method for various interfaces.

We begin with the flat-interface (Γ0) case, where there is an analytic expression for the

Green’s function. For simplicity, we assume that m1 = m2 =: m. If u denotes our computed

solution, we define the relative error of u at the point xT by |u(xT ) − u∗(xT )|/|u∗(xT )|,

where u∗ is the true solution. Figure 5.5 contains a plot of this relative error (computed at

four arbitrary points) as a function of nc, as well as illustrations of the computed Green’s

function and densities. Observe that our solution is highly accurate even for small values of

nc.

For arbitrary non-flat interfaces (such as Γ1,Γ2,Γ3), analytic solutions are not known and

hence we cannot compute the exact relative error. Instead, we perform a self-convergence

test, which involves approximating the true solution by the numerical solution at some
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Figure 5.4: The interfaces Γ0 (top left), Γ1 (top right), Γ2 (bottom left) and Γ3 (bottom
right), with respective sources at (0, 2.5), (0, 1), (0,−7) and (0, 3) as indicated by the red
dot. Outside the plotted region, the interfaces extend linearly to infinity.

Figure 5.5: Densities µ and ρ (top left panel), relative error of the computed solution at the
indicated points as a function of nc (bottom left panel), and Green’s function u (center and
right panels) corresponding to the flat interface Γ0 with m = 2 and E = 1. The top left
panel zooms in on the region [10, 10] × {0} ⊂ Γ0, with t = 60 corresponding to the point
(0, 0) ∈ Γ0.
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large value N∗ of nc. If we now let uN denote the computed solution with nc = N , our

approximate relative error at the target xT is given by |uN (xT )− uN∗(xT )|/|uN∗(xT )|. For

a corresponding plot with N∗ = 512, see Figure 5.6 (left panel). We again observe fast

convergence in nc, though understandably not as fast as the flat-interface case.

Another parameter of interest is the truncation length nbuffer (introduced in Section

5.3.1). Its default value (unless otherwise specified) is

nbuffer = 2

⌈
nc log(10

16)

m0∆t

⌉
=: 2⌈Mb⌉,

where m0 := min(m1,m2) and ∆t is the arclength of Γ over the entire discretized region

(that is, the region discretized by all nover = n + 2nbuffer grid points; see Section 5.3.1).

Here, Mb ∈ N is sufficiently large so that interactions between points separated by at least

Mb grid points are bounded by 10−16 in absolute value. Some routines in the numerical

experiments presented here were set to a tolerance of 10−12, so the error of 10−16 more than

ensures that any error we observe would not be due to truncation.

To test the effect of nbuffer on the convergence of our method, we introduce τ > 0 and

set nbuffer = 2⌈τMb⌉. In the center panel of Figure 5.6, we plot

|unc,τ (xT )− u512,τ (xT )|/|u512,τ (xT )|

as a function of τ , where uN,τ is our computed solution with nc = N and nbuffer = 2⌈τMb⌉.

We set nc = 128, 64, 256 for Γ1,Γ2,Γ3, respectively. Given the small truncation error toler-

ance at τ = 1, it makes sense that decreasing the value of τ from 1 would not immediately

increase the relative error. Still, once τ gets small enough (say, less than 0.5), the truncation

length is too small and the convergence of our method suffers. The relative error increases

when τ increases from 1, as we do not keep enough grid points in this case.

In summary, the left panel illustrates relative error at fixed τ = 1 and varying nc, while

170



Figure 5.6: Self-convergence tests for varying nc (left panel) and truncation length (center
panel). The relative error is computed at xT = (−1, 1), (7,−7), (1,−3) for Γ1,Γ2,Γ3 respec-
tively. For each interface, the source location is given by Figure 5.4. The respective values of
m and E are those from Figures 5.7 (top right panel), 5.8 and 5.9 below. The computational
cost of obtaining u(xT ) is illustrated by the right panel.

the center panel illustrates relative error at fixed nc (depending on the interface) and varying

τ . We refer to the right panel of Figure 5.6 for a plot of the speed of our method as a function

of nc. As predicted, the computation time grows only linearly in nc. The respective slopes

of the line of best fit for Γ1,Γ2,Γ3 are 1.06×10−2, 1.03×10−2, 8.43×10−3, with an average

value of 9.78×10−3. These slopes were computed using only the data for nc > 50 to eliminate

the effect of the nonlinear behavior of the curves for small nc. The lines of best fit are used

to extrapolate the data to nc > 256 in the plot.

5.4.2 Examples of applications

We now present various examples corresponding to the non-flat interfaces from Figure 5.4.

The Green’s function, u, and densities, µ and ρ, for a source (whose location is given by

Figure 5.4) near a non-flat section of the interface are plotted in Figures 5.7–5.10. As

expected, ω =
√
m2 − E2 dictates the rate at which solutions decay away from the interface.

In particular, larger values of ω result in faster decaying solutions. In the case of different

masses, we observe that u decays more rapidly in the domain with larger ω; see Figures 5.7

and 5.10.

Our numerical experiments (Figures 5.5 and 5.9) verify that the density ρ from (5.2.5) is
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Figure 5.7: Green’s function, u, for interface Γ1 with m1 = 2, E = 0.8 and m2 = 3 (top left)
m2 = 2 (top right), m2 = 1.5 (bottom left) and m2 = 1 (bottom right).

Figure 5.8: Densities, µ and ρ, and Green’s function, u, for the interface Γ2 with m1 = m2 =
2/3 and E = 1/3. The left plot zooms in on the part of Γ2 connecting the points (−30.0, 0.0)
and (14.8,−8.5), with t = 185 corresponding to the point (−13.5,−10.6).
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Figure 5.9: Density, µ, and Green’s function, u, for the interface Γ3 with m1 = m2 = 3
and E = 2. The left plot zooms in on the part of Γ3 connecting the points (−10.0, 0.0) and
(18.0, 0.0), with t = 70 corresponding to the point (1.4,−0.2).

Figure 5.10: Green’s function, u, for the interface Γ3, where (m1,m2, E) = (1.20, 4.00, 1.00)
for the left panel, (m1,m2, E) = (2.00, 3.00, 1.50) for the center panel, and (m1,m2, E) =
(2.25, 6.00, 2.00) for the right panel.
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Figure 5.11: Green’s function, u, for the interface Γ2 with source located at (−40, 1). Here,
(m,E) is (0.75, 0.25), (0.75, 0.5), (1.5, 1) and (4, 1) for the top-left, top-right, bottom-left and
bottom-right panels, respectively.

rapidly decaying, while µ := Pρ obeys an outgoing radiation condition, oscillating without

decay. For an illustration of ρ and µ in the vicinity of a source (zooming in on the region

where ρ is not small), see Figure 5.8.

In Figure 5.11 we move the source to (−40, 1) and observe that the propagation of the

resulting wave along the interface depends on the choice of (m,E). As stated in Remark 5.2.6,

increasing the value of ω is equivalent to smoothing out the interface, thus it makes sense

that the solutions on the top row get reflected while those on the bottom get transmitted.

Similarly, the small values of m and E in Figure 5.8 (combined with the corresponding source

location; see Figure 5.4, bottom left panel) result in a solution that is concentrated near the

oscillatory part of Γ2.

We conclude this section with a scattering experiment. Let us consider the interface
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parametrized by γ(t) = 2e−0.05t2 sin(bt + 0.4), for some b ≥ 0. Note that the value b = 2

gives Γ3. We place a source near the interface, to the left of and far away from its oscillations.

The density µ is proportional to the solution u along the interface, as (5.2.16) implies

that µ = 2m(ui+us) = 2mu on Γ. The outgoing condition (5.1.6) implies that µ(t) ≈ CeiEt

for t > 0 sufficiently large. Between the source and oscillations, we have that µ(t) ≈

AeiEt+Be−iEt, where |A| and |B| are the respective amplitudes of the incoming and reflected

waves. The transmission and reflection coefficients are then defined by TL := |C|2/|A|2 and

RL := |B|2/|A|2.

Since µ = (1 + Q)ρ with ρ ∈ L1, it follows that µ(t) ≈ m2

E e±iEtρ̂(±E) as t → ±∞. It

follows that C = m2

2E ρ̂(E). As t → −∞, we get contributions from both the reflection and

the source. Hence B = L − B0, where L = m2

2E ρ̂(−E) and B0 = m2

2E ρ̂0(−E) with ρ0 the

solution corresponding to k = 0. Thus, using the identity TL + RL = 1, we compute the

transmission and reflection coefficients using only ρ̂0(−E) and ρ̂(±E).

For a plot of RL as a function of b, see Figure 5.12 (left panel). When b is small, Γ

resembles a flat interface and thus RL is close to 0. For larger values of b (say b > 2), the

oscillations of the interface cause solutions to back-scatter, as RL is approximately 1. The

transition of RL from 0 to 1 contains a small interval in b at which there is a sudden dip in

RL. See Figure 5.12 (center and right panels) for an illustration of the qualitatively different

behavior of solutions corresponding to nearly identical interfaces. We suspect there may be

other values of b (out of the range of values in Figure 5.12) for which sharp transitions in

RL occur, but postpone a thorough investigation of these critical values to future analyses.
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Figure 5.12: Scattering experiment for an interface parametrized by γ(t) = 2e−0.05t2 sin(bt+
0.4), for b ≥ 0. The source is located at (−40, 1), and (m,E) = (4, 1). The center and
right panels illustrate the Green’s function, u, corresponding to b = 1.87 and b = 2.00,
respectively.

5.5 Proofs of main analytical results

This section is devoted to proving the statements from Section 5.2.1. First, we prove Theo-

rems 5.2.1 and 5.2.4, verifying that u obtained by our boundary integral formulation solves

the PDE (5.1.4, 5.1.5, 5.1.6, 5.1.7). We then prove Theorem 5.2.5 using Lemma 5.5.3 and

Proposition 5.5.6, which in turn require Lemma 5.5.2 below. For completeness, we also state

and prove Proposition 5.5.5–an extension of Lemma 5.5.3 which could be used interchange-

ably with Proposition 5.5.6 in our proof of Theorem 5.2.5. These propositions and lemmas

provide bounds on ∥M∥ that guarantee bounded invertibility of 1 + M in the λ → ∞

limit. This section concludes with a proof of Theorem 5.2.7. The latter uses Lemma 5.5.7

below, which asserts that any solution of the homogeneous Klein-Gordon PDE (5.5.10) with

complexified E must be trivial.

Let us begin with the proofs of Theorems 5.2.1 and 5.2.4.

Proof of Theorem 5.2.1. That (5.1.7) holds is a consequence of the exponential decay of

K0(ω|x− γ(t)|) in |x− γ(t)| and the Lebesgue dominated convergence theorem. The latter

also implies that (5.1.4) holds, while the jump conditions (5.1.5) follow immediately from

the derivation of (5.2.16).

Let us now prove the outgoing condition (5.1.6). Since f ∈ C∞c (R2), we have that
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ui ∈ C∞ with ui and all its derivatives decaying rapidly at infinity. Hence ui satisfies (5.1.6),

so it remains to consider us. We will treat each term on the right-hand side of µ = ρ +Qρ

separately. Set r ̸= 0 and take t0 > 0 sufficiently large so that {γ(t)+rn̂(t) : t ≥ t0}∩Γ = ∅.

Note that our assumptions (5.1.1) and (5.1.2) on γ ensure that t0 is well defined. Let t ≥ t0.

Then g(s) := γ(t)+rn̂(t)−γ(s) is a smooth non-vanishing function satisfying |g(s)| ≳ |t−s|

for all |t− s| sufficiently large. Thus for j ∈ {0, 1}, ∂jtK0(ω|γ(t) + rn̂(t)− γ(s)|) is bounded

and exponentially decaying in |t− s|. Since ρ ∈ L1, this means

(∂t − iE)Sω[ρ](γ(t) + rn̂(t)) =
1

2π

ˆ
R
(∂t − iE)K0(ω|γ(t) + rn̂(t)− γ(s)|)ρ(s)ds (5.5.1)

goes to 0 as t→ ∞. We now consider Qρ. Again using that ρ ∈ L1, it follows that

(∂t − iE)Qρ(t) = im2
ˆ ∞

−∞
(sgn(t− t′)− 1)eiE|t−t′|ρ(t′)dt′

= −2im2
ˆ ∞

t
e−iE(t−t′)ρ(t′)dt′

(5.5.2)

goes to 0 as t→ ∞. Writing

∂tSω[Qρ](γ(t) + rn̂(t)) =
1

2π

ˆ
R
∂tK0(ω|γ(t) + rn̂(t)− γ(s)|)Qρ(s)ds,

the strategy now is to show that ∂tK0 above is well approximated by −∂sK0, so that we can

then integrate by parts in s and apply (5.5.2). By the assumed exponential decay of γ′′, it

follows that

∣∣∣∂t|γ(t) + rn̂(t)− γ(s)|+ ∂s|γ(t) + rn̂(t)− γ(s)|
∣∣∣ ≤ C1e

−β̃min{t,s}1{s>0} (5.5.3)

for some positive constants C1 and β̃. Defining R(t, s) := C1ωK1(ω|γ(t) + rn̂(t) − γ(s)|),
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this means

∣∣∣(∂t + ∂s)K0(ω|γ(t) + rn̂(t)− γ(s)|)
∣∣∣ ≤ R(t, s)e−β̃min{t,s}1{s>0} ,

and thus

ˆ
R

∣∣∣(∂t + ∂s)K0(ω|γ(t) + rn̂(t)− γ(s)|)Qρ(s)
∣∣∣ds

≤
ˆ t/2

−∞
R(t, s)|Qρ(s)|ds+

ˆ ∞

t/2
R(t, s)e−β̃min{t,s}|Qρ(s)|ds.

Note that ρ ∈ L1 implies Qρ ∈ L∞. Since there exist positive constants C2 and η such that

R(t, s) ≤ C2e
−η|t−s| for all t ≥ t0 and s ∈ R, it follows that

ˆ t/2

−∞
R(t, s)|Qρ(s)|ds+

ˆ ∞

t/2
R(t, s)e−β̃min{t,s}|Qρ(s)|ds

≤
(C2

η
e−ηt/2 +

2C2

η
e−β̃t/2

)
∥Qρ∥∞ ,

hence

lim
t→∞

ˆ
R

∣∣∣(∂t + ∂s)K0(ω|γ(t) + rn̂(t)− γ(s)|)Qρ(s)
∣∣∣ds = 0.

Integrating by parts, we obtain

∣∣∣ ˆ
R
(∂s + iE)K0(ω|γ(t) + rn̂(t)− γ(s)|)Qρ(s)ds

∣∣∣
=
∣∣∣ ˆ

R
K0(ω|γ(t) + rn̂(t)− γ(s)|)((Qρ)′(s)− iEQρ(s))ds

∣∣∣
≤
ˆ t/2

−∞
K0(ω|γ(t) + rn̂(t)− γ(s)|)|(Qρ)′(s)− iEQρ(s)|ds

+
∥∥(Qρ)′ − iEQρ

∥∥
L∞[t/2,∞)

ˆ ∞

t/2
K0(ω|γ(t) + rn̂(t)− γ(s)|)ds.

178



The first term on the above right-hand side goes to 0 as t→ ∞ by the exponential decay of

K0. The second term goes to 0 by (5.5.2) and the fact that ∥K0(ω|γ(t) + rn̂(t)− γ(·)|)∥L1 ≤

C uniformly in t ≥ t0. We conclude that

|(∂t − iE)Sω[Qρ](γ(t) + rn̂(t))| ≤ 1

2π

( ˆ
R

∣∣∣(∂t + ∂s)K0(ω|γ(t) + rn̂(t)− γ(s)|)Qρ(s)
∣∣∣ds

+
∣∣∣ˆ

R
(∂s + iE)K0(ω|γ(t) + rn̂(t)− γ(s)|)Qρ(s)ds

∣∣∣),
with both terms on the right-hand side going to 0 as t → ∞. We have thus shown that

limt→∞(∂t − iE)u(γ(t) + sn̂(t)) = 0 The same argument applies when t < 0 (with ∂t

replaced by −∂t) and thus we have verified (5.1.6).

Proof of Theorem 5.2.4. As before, (5.1.7) and (5.1.4) follow immediately from dominated

Lebesgue, while the derivation of (5.2.23, 5.2.24) implies (5.1.5). We now prove (5.1.6).

Recalling the definition of (µ, ρ) in (5.2.11), the same arguments from Theorem 5.2.1 imply

that µ = µ0 + µ1 and ρ = ρ0 + ρ1, where µ0, ρ0 ∈ L1, limt±∞(∂t ∓ iE)µ1(t) = 0 and

limt±∞(∂t∓ iE)ρ1(t) = 0. Hence (following the proof of Theorem 5.2.1) ui+Sωj [µ] satisfies

(5.1.6) for j ∈ {1, 2}. It remains to analyze Dωj [ρ]. Fix r > 0, take t0 > 0 sufficiently large

so that {γ(t) + rn̂(t) : t ≥ t0}∩Γ = ∅, and let t ≥ t0. Defining g(t, s) := γ(t) + rn̂(t)− γ(s),

we have

Dω2 [ρ](γ(t) + rn̂(t)) =
1

2π

ˆ
R
n̂(s) · g(t, s)

|g(t, s)|
K1(ω2|g(t, s)|)ρ(s)ds.

The exponential decay (5.1.1) of γ′′ implies that

|(∂t + ∂s)g(t, s)|+ |(∂t + ∂s)n̂(s)| ≤ Ce−β̃min{s,t}1{s>0}

for some positive constants C and β̃. Since K ′
1(ω2|g(t, s)|) decays exponentially in |t − s|

with ∥K1(ω2|g(t, ·)|)∥L1
+
∥∥K ′

1(ω2|g(t, ·)|)
∥∥
L1

≤ C uniformly in t ≥ t0, it follows (as in the
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proof of Theorem 5.2.1) that

|(∂t − iE)Dω2 [ρ1](γ(t) + rn̂(t))|

≤ 1

2π

∣∣∣ ˆ
R
(∂t + ∂s)

(
n̂(s) · g(t, s)

|g(t, s)|
K1(ω2|g(t, s)|)

)
ρ1(s)ds

∣∣∣
+

1

2π

∣∣∣ ˆ
R
n̂(s) · g(t, s)

|g(t, s)|
K1(ω2|g(t, s)|)(∂s − iE)ρ1(s)ds

∣∣∣,
(5.5.4)

with both terms on the right-hand side going to 0 as t→ ∞. Similarly, the fact that ρ0 ∈ L1

directly implies that (∂t − iE)Dω2 [ρ0](γ(t) + rn̂(t)) → 0 as t → ∞. The limit t → −∞ is

treated similarly, as is the case r < 0. This completes the proof.

Remark 5.5.1. The solution u can actually satisfy a stronger outgoing condition than

(5.1.6). It is possible to show that

lim
t→±∞

sup
r∈[−1,1]

|(±∂t − iE)u(γ(t) + rn̂(t))| = 0, (5.5.5)

but this requires regularity of ρ (when m1 = m2) or σ (when m1 ̸= m2). More specifically,

the left-hand side of (5.5.3) and R(t, s) := C1ωK1(ω|γ(t) + rn̂(t) − γ(s)|) can instead be

bounded above by C1|t − s|e−β̃min{t,s}1{s>0}and C2√
|t−s|2+r2

e−η|t−s|, respectively, where the

positive constants C1, C2, β̃, η are independent of r. Thus all bounds after (5.5.3) can be

shown to hold uniformly in r. The only obstruction to obtaining (5.5.5) is (5.5.1), due to

the singularity of K1 = −K ′
0 at zero. But if ρ were (weakly) differentiable with ρ′(t) → 0

as |t| → ∞, then µ := Pρ would satisfy limt→±∞(∂t ∓ iE)µ(t) = 0, meaning that all the

bounds starting from (5.5.3) would hold with Qρ replaced by µ. Thus we would obtain (5.5.5)

in this case. Similarly, if σ is weakly differentiable with σ′(t) → 0 as |t| → ∞, then (5.5.5)

holds for the m1 ̸= m2 case.

To guarantee this extra regularity of ρ and σ, we would need to show that LP and L2P2

are invertible on H1
α := {ρ ∈ L2α : ρ′ ∈ L2α}. Such results are natural extensions of the ones
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presented in Section 5.2.1 for L2α, and their proofs would likely use similar techniques to the

ones presented below. However, we do not pursue this issue further here.

The next part of this section is devoted to proving Theorem 5.2.5. As in the statement

of the theorem, m0 > 0 and E0 ∈ (−m0,m0) \ {0} will be fixed, with ω0 :=
√
m2

0 − E2
0 .

The parameters m and E of our integral equation (5.2.3) will depend on the parameter

λ ∈ [1,∞) via the relations m = λm0 and E = λE0. The constant α∗ is defined above

Theorem 5.2.5. Recall the definitions of L,P ,L0 and M in (5.2.2), (5.2.12) and (5.2.13).

We will use ∥·∥ to denote the operator norm. More specifically, if B1 and B2 are Banach

spaces and A : B1 → B2 is a linear operator, then ∥A∥ := sup{∥Aψ∥2 : ∥ψ∥1 = 1}, where

∥·∥j denotes the norm on Bj .

We begin with the following important lemmas.

Lemma 5.5.2. For all α ∈ (0, α∗], the operator (L0P)−1 is bounded on L2α with
∥∥(L0P)−1

∥∥ ≤

C uniformly in λ ∈ [1,∞).

Proof. Fix α ∈ (0, α∗]. By (5.2.20) we know that (L0P)−1 = (1 + R0)(1 + R1), where R0

and R1 are convolutions by r0 := mK0(ω| · |) and r1 :=
(i−2)m2

2ζ eiζ|·|, respectively, with

ζ := a+ + ia− and

a± :=

√√√√√4m4
0 + E4

0 ± E2
0

2
.

Thus there exists r ∈ L1 such that eα|·|r(·) ∈ L1 and |rj(t)| ≤ λr(λ(t)) for all λ ∈ [1,∞)

and j ∈ {1, 2}. Using the identity ∥g1 ∗ g2∥L2 ≤ ∥g1∥L1 ∥g2∥L2 with g1(t) = λeα|t|r(λ|t|)

and g2(t) = eα|t||ρ|(t), we obtain that for ρ ∈ L2α and j ∈ {1, 2},

∥∥Rjρ∥∥2L2
α
≤
ˆ
R
e2α|t|

(ˆ
R
λr(λ|t− t′|)ρ(t′)dt′

)2
dt

≤
ˆ
R

(ˆ
R
λeα|t−t

′|r(λ|t− t′|)eα|t
′||ρ|(t′)dt′

)2
dt
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is bounded uniformly in λ ∈ [1,∞). This completes the proof.

Lemma 5.5.3. For all α ∈ (0, α∗] and λ ∈ [1,∞), the operator M is Hilbert-Schmidt (hence

compact) on L2α.

Proof. Fix α ∈ (0, α∗] and λ ∈ [1,∞), and note that L2α ⊂ L1 ∩ L2. Define A1 : L2 →

L2α, A2 : L2 → L2, A3 : L2α → L2 by

A1 = W−1
α , A2 = Wα(L0 − L)Wα, A3 = W−1

α P ,

where Wα is point-wise multiplication by wα. Our strategy is to bound each term on the

right-hand side of M = (L0P)−1A1A2A3. We immediately have ∥A1ρ∥L2
α
= ∥ρ∥L2 , so A1

is bounded. Using that

|Pρ|(t) ≤ |ρ|(t) + m2

|E|
∥ρ∥L1 ≤ |ρ|(t) + C ∥ρ∥L2

α
, (5.5.6)

we have ∥A3ρ∥L2 ≤ C ∥ρ∥L2
α
, hence A3 is also bounded. By Lemma 5.5.2, (L0P)−1 is

bounded on L2α.

It remains to show that A2 is Hilbert-Schmidt. To do so, we will prove exponential decay

of the kernel of L0−L using the decay properties of K0 and the fact that our interface rapidly

converges to a straight line at infinity (5.1.1). Let ℓ∆(t, s) = K0(ω|γ(t)−γ(s)|)−K0(ω|t−s|)

so that −m
π ℓ∆(t, s) is the kernel of L− L0. Since K0 and K1 = −K ′

0 are both positive and

monotonically decreasing, and |γ(t)− γ(s)| ≤ |t− s|, it follows that

0 ≤ ℓ∆(t, s) =

ˆ ω|t−s|

ω|γ(t)−γ(s)|
K1(z)dz ≤ ω(|t− s| − |γ(t)− γ(s)|)K1(ω|γ(t)− γ(s)|).

Hence

0 ≤ ℓ∆(t, s) ≤ ω(|t− s| − |γ(t)− γ(s)|)K1(cω|t− s|), (5.5.7)
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where c > 0 is defined by (5.1.3). The factor K1(cω|t−s|) decays exponentially in |t−s| but

has a singularity at t = s. To show that ℓ∆ is bounded and decays exponentially in |t|+ |s|,

we will control the difference |t− s| − |γ(t)− γ(s)|.

By smoothness of γ, for every s, t ∈ R there exist r1, r2 ∈ [min{s, t},max{s, t}] such that

γ(t) = γ(s) + (t− s)γ′(s) +
1

2
(t− s)2γ′′(s) +

1

3!
(t− s)3(γ′′′1 (r1), γ

′′′
2 (r2)). (5.5.8)

Since |γ′| ≡ 1 and thus γ′ · γ′′ ≡ 0, we have

γ′(s) · (γ(t)− γ(s)) = t− s+
1

3!
(t− s)3γ′(s) · (γ′′′1 (r1), γ

′′′
2 (r2)).

Multiplying both sides by t− s and using (5.5.8) to expand (t− s)γ′(s), it follows that

|γ(t)− γ(s)|2 = (t− s)2 +
1

3!
(t− s)4γ′(s) · (γ′′′1 (r1), γ

′′′
2 (r2)) +

1

2
(t− s)2γ′′(s)(γ(t)− γ(s))

+
1

3!
(t− s)3(γ′′′1 (r1), γ

′′′
2 (r2)) · (γ(t)− γ(s)).

Again using (5.5.8) to expand γ(t)− γ(s) on the bottom line, we obtain that

|γ(t)− γ(s)|2 ≤ (t− s)2 + CJ(s, t)(t− s)4, J(s, t) := |γ′′|2s,t + |γ′′′|s,t

for some C > 0, where the semi-norm | · |s,t is defined by

|η|s,t := ∥η∥L∞[min{s,t},max{s,t}] .

This implies 0 ≤ |t − s| − |γ(t) − γ(s)| ≤ CJ(s, t)|t − s|3. From the rapid decay (5.1.1) of
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|γ′′|2 + |γ′′′| at infinity, it follows that

0 ≤ |t− s| − |γ(t)− γ(s)| ≤ C0√
2
|t− s|3e−βχ(s,t), χ(s, t) :=


min{|s|, |t|}, st > 0

0, else.

Using (5.5.7), we have

0 ≤ ℓ∆(t, s) ≤ ω√
2
C0|t− s|3e−βχ(s,t)K1(cω|t− s|). (5.5.9)

By definition of α∗, we conclude that

ˆ
R2
w2
α(t)w

2
α(s)ℓ

2
∆(t, s)dtds <∞.

This means A2 is Hilbert-Schmidt and the proof is complete.

Henceforth, ∥·∥2 denotes the Hilbert-Schmidt norm.

Remark 5.5.4. Since the constant C in (5.5.6) is proportional to 1/|E|, we have shown

that ∥M∥2 ≤ C/|E| as E → 0. The singularity at E = 0 should not be surprising, as

outgoing and incoming conditions at infinity are the same in this case. It turns out that

an appropriate linear combination of outgoing and incoming conditions produces an operator

that behaves better in the E → 0 limit. Indeed, we could have instead defined Q : L2α → L∞

by Qρ(t) = i
2E

´∞
−∞(eiE|t−t′|− e−iE|t−t′|)ρ(t′)dt′, which is bounded uniformly in E (for any

α > 0). The resulting solution would now look like sin(E|t|) as |t| → ∞.

Lemma 5.5.3 implies that if (5.2.13) does not have a unique solution ρ, then the kernel

of 1 +M is a nontrivial finite-dimensional subspace of L2α. An extension of Lemma 5.5.3 is

the following

Proposition 5.5.5. For any α ∈ (0, α∗], ∥M∥2 ≤ C/
√
λ as λ→ ∞.
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Proof. Suppose λ ≥ 1. As in the proof of Lemma 5.5.3, we will bound each factor on the

right-hand side of M = (L0P)−1A1A2A3. By Lemma 5.5.2, the operator norm of (L0P)−1

on L2α is bounded uniformly in λ. From (5.5.6) it is clear that ∥A3∥ ≤ Cλ. Since A1 is

independent of λ, it remains to bound ∥A2∥2.

The kernel of A2 is k(t, s) = m
π wα(t)ℓ∆(t, s)wα(s), with ℓ∆(t, s) = K0(ω|γ(t)− γ(s)|)−

K0(ω|t− s|) as before. From (5.5.9) it follows that

k2(t, s) ≤
(mωC0√

2π

)2
w2
α(t)w

2
α(s)(t− s)6e−2βχ(s,t)K2

1(cω|t− s|).

Performing the change of variables (ξ, ζ) := (t−s, t+s) and using the fact that |ζ+ξ|+|ζ−ξ| ≤

|ζ + λξ| + |ζ − λξ| and χ(ζ−λξ2 , ζ+λξ2 ) ≤ χ(ζ−ξ2 , ζ+ξ2 ) for all λ ≥ 1 and ξ, ζ ∈ R, it follows

that

∥k∥2L2 ≤ 1

2

(mωC0√
2π

)2 ˆ
R2
w2
α

(ζ + λξ

2

)
w2
α

(ζ − λξ

2

)
ξ6e−2βχ( ζ−λξ

2 , ζ+λξ
2 )K2

1(cω0λ|ξ|)dζdξ

=
1

2λ7

(mωC0√
2π

)2 ˆ
R2
w2
α

(ζ + ξ

2

)
w2
α

(ζ − ξ

2

)
ξ6e−2βχ( ζ−ξ

2 , ζ+ξ
2 )K2

1(cω0|ξ|)dζdξ.

Since the above integral is finite (by definition of α∗) and independent of λ, we have shown

that ∥k∥L2 ≤ C/λ3/2 for all λ sufficiently large. Thus

∥M∥2 ≤
∥∥∥(L0P)−1

∥∥∥ ∥A1∥ ∥A2∥2 ∥A3∥ ≤ C/
√
λ

and the proof is complete.

The above result implies that ∥M∥ → 0 as λ→ ∞. However, it is possible to get faster

decay of ∥M∥ in λ.

Proposition 5.5.6. For any α ∈ (0, α∗], ∥M∥ ≤ C/λ as λ→ ∞.

Proof. Recall Lemma 5.5.2, which states that
∥∥(L0P)−1

∥∥ ≤ C uniformly in λ. Thus it
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remains to bound the norm of (L−L0)P . We will bound the terms L−L0 and (L−L0)Q

separately.

We begin with the latter. We have that ∥Qρ∥∞ ≤ Cm2

E ∥ρ∥L2
α
, thus for (L − L0)Q

it suffices to bound L − L0 from L∞ to L2α. The kernel of L − L0 is −m
π ℓ∆(t, s), where

ℓ∆(t, s) = K0(ω|γ(t) − γ(s)|) −K0(ω|t − s|). Using (5.5.9), it follows that for ρ ∈ L∞ we

have

|(L − L0)ρ|(t) ≤
m

π
∥ρ∥
ˆ
R
ℓ∆(t, s)ds

≤ C ∥ρ∥λ2
ˆ
R
|t− s|3e−βχ(s,t)K1(cω|t− s|)ds

=: C ∥ρ∥λ2I,

where ∥ρ∥ := ∥ρ∥∞. For concreteness, suppose t ≥ 0. This means

χ(s, t) =


0, s < 0

s, 0 ≤ s ≤ t

t, s > t

so that

I =

ˆ 0

−∞
κω(t− s)ds+

ˆ t

0
κω(t− s)e−βsds+

ˆ ∞

t
κω(t− s)e−βtds =: I1 + I2 + I3,

where we have defined κω(x) := |x|3K1(cω|x|). Recall that by definition of α∗, we have
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0 < α∗ < β and κ1(x) ≤ Ce−α∗|x| for all x ∈ R. Thus

I1 ≤ Cω−4
ˆ ∞

t
e−α∗sds =

C

α∗ω4
e−α∗t = C1ω

−4e−α∗t,

I2 =

ˆ t

0
κω(s)e

−β(t−s)ds ≤ Cω−4
ˆ t

0
e−α∗se−β(t−s)ds

≤ C

(β − α∗)ω4
e−βt(e(β−α∗)t − 1) ≤ C2ω

−4e−α∗t,

I3 = e−βt
ˆ 0

−∞
κω(s)ds ≤

C

α∗ω4
e−βt = C3ω

−4e−βt ≤ C3ω
−4e−α∗t

uniformly in t ≥ 0, for some positive constants C1, C2 and C3. Repeating the same argument

for t < 0 and recalling that α < α∗, it follows that ∥(L − L0)ρ∥L2
α
≤ C∥ρ∥

λ2
. Thus we have

shown that ∥(L − L0)Q∥ ≤ C/λ.

It remains to bound L − L0 from L2α to itself. We already showed in the proof of

Proposition 5.5.5 that A2 = Wα(L0−L)Wα is Hilbert-Schmidt on L2 with ∥A2∥2 ≤ C/λ3/2.

This means ∥L − L0∥L2
α→L2

α
≤ C/λ3/2 and the proof is complete.

Finally, we prove the first well-posedness result of Section 5.2.1.

Proof of Theorem 5.2.5. Fix α ∈ (0, α∗] and δ ∈ (0, α).

Since M : L2α → L2α is holomorphic in λ ∈ [1,∞) × (−δ, δ), we apply Lemma 5.5.3,

Proposition 5.5.6 and Kato perturbation theory [58, Theorem VII.1.9] to prove that M has

an eigenvalue of −1 for only a finite number of λ ∈ [1,∞). The result then follows from

(5.2.13).

As opposed to the above, Theorem 5.2.7 does not require M to be small in any limit.

Instead, we show that −1 belongs to the resolvent set of M whenever ℑE > 0. To this end,

we state the following

Lemma 5.5.7. Fix m > 0. For all E ∈ C with 0 < |ℜE| < m and ℑE ̸= 0, if u ∈ H1(R2)

solves (5.5.10) below, then u ≡ 0.
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Proof. Integrating by parts, we see that

ˆ
Ωj

|∇u|2dx = −ω2
ˆ
Ωj

|u|2dx+ εj

ˆ
Γ
un̂ · ∇udt,

where ε1 = 1 and ε2 = −1. Taking the sum over j and using the second line of (5.5.10), we

obtain

ˆ
R2

|∇u|2dx+ ω2
ˆ
R2

|u|2dx = 2m

ˆ
Γ
|u|2dt

Taking the imaginary part of both sides, we conclude that
´
R2 |u|2dx = 0 and the result is

complete.

Using the above lemma, we now prove the second well-posedness result from Section

5.2.1.

Proof of Theorem 5.2.7. Fix ε > 0 and for α > 0 define Zα,ε := ([−m+ ε,−ε]∪ [ε,m− ε])×

(−α/2, α/2) ⊂ C. The same arguments as above show that M : L2α → L2α is Hilbert-Schmidt

and holomorphic in E ∈ Zα,ε for all α > 0 sufficiently small.

Fix E ∈ Zα,ε such that ℑE > 0. By contradiction suppose M has an eigenvalue of −1.

Then there exists 0 ̸= ρ ∈ L2α such that (1 + M)ρ = 0. Letting µ := Pρ, it follows that

u = Sω[µ] solves the homogeneous problem


∆u(x)− ω2u(x) = 0, x ∈ R2 \ Γ,

[[n̂ · ∇u]](γ(t)) = −2mu(γ(t)), t ∈ R,

[[u]](γ(t)) = 0, t ∈ R,

(5.5.10)

where ω2 = m2 −E2. Since E has positive imaginary part, Q is bounded from L2α to itself,

meaning that µ ∈ L2α. It follows that u and ∇u decay rapidly at infinity; for example,

u ∈ H1(R2). Lemma 5.5.7 then implies that Sω[µ] ≡ 0; hence µ ≡ 0 by (5.1.12). It follows
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from (5.2.18) that 0 = µ̃(ξ) = (1 − 2im2

ξ2−E2 )ρ̃(ξ), from which we conclude that ρ ≡ 0, a

contradiction. Indeed, if α is chosen sufficiently small, then 1 is not in the image of the

map R ∋ ξ 7→ 2im2

ξ2−E2 . We have thus shown that −1 is not an eigenvalue of M whenever

E ∈ Zα,ε has positive imaginary part. This means we can again apply [58, Theorem VII.1.9]

to complete the result.

Remark 5.5.8. It is crucial that Zα,ε be bounded away from 0 as Q is not holomorphic there.

Thus we cannot guarantee that the number of “bad” E-values near 0 is finite. As suggested

by Remark 5.5.4, one could redefine Q by Qρ(t) = i
2E

´∞
−∞(eiE|t−t′| − e−iE|t−t′|)ρ(t′)dt′ to

make it holomorphic, but then the outgoing conditions (5.1.6) would not be satisfied.
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APPENDIX A

PSEUDO-DIFFERENTIAL CALCULUS

A.1 Notation and functional setting

Given a bounded linear operator A : H → H for H a Hilbert space, we denote by A∗ its

adjoint and ∥A∥ its operator norm. If, in addition, A∗A is compact, then by the spectral

theorem, A∗A admits a countable collection of eigenvalues {λj} ⊂ [0,∞) converging to

0. The operator A is Hilbert-Schmidt if ∥A∥2 :=
∑
j λj < ∞ and trace-class if ∥A∥1 :=∑

j

√
λj <∞. If A is trace-class, we define the trace of A by

TrA :=
∑
j∈N

(ψj , Aψj),

where {ψj}j∈N is any Hilbert basis of H (the trace is independent of the chosen Hilbert

basis).

Weyl Quantization. See [34, Chapter 7]. Let S(Rd)⊗Cn be the Schwartz space of vector-

valued functions and S ′(Rd) ⊗ Cn its dual. Given a parameter h ∈ (0, 1] and a symbol

a(x, ξ;h) = a ∈ S ′(Rd × Rd)⊗ Cn×n, we define the Weyl quantization of a as the operator

Oph(a)ψ(x) :=
1

(2πh)d

ˆ
R2d

ei(x−y)·ξ/ha(
x+ y

2
, ξ;h)ψ(y)dydξ, ψ ∈ S(Rd)⊗ Cn.

(A.1.1)

When a is polynomial in ξ, it follows that Oph(a) is a differential operator. We denote by

Op a = Op1 a for h = 1.

Any bounded matrix-valued operator A from S(Rd) ⊗ Cn to S ′(Rd) ⊗ Cn admits a
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Schwartz kernel kA ∈ S ′(Rd × Rd)⊗ Cn×n such that

Aψ(x) =

ˆ
Rd
kA(x, y)ψ(y)dy, ψ ∈ S(Rd)⊗ Cn.

If A = Op(a), then

a(x, ξ) =

ˆ
Rd
e−iy·ξkA(x+

y

2
, x− y

2
)dy.

Order functions and symbol classes. See [20] and [34, Chapter 7]. For (x, ξ) = X ∈ R2d,

we define ⟨X⟩ :=
√

1 + |X|2. A function m : R2d → [0,∞) is called an order function if there

exist constants C0 > 0, N0 > 0 such that m(X) ≤ C0⟨X − Y ⟩N0m(Y ) for all X, Y ∈ R2d.

Note that ⟨X⟩p and ⟨X±⟩ are order functions for all p ∈ R, where X+ := max{X, 0} (with

the max defined element-wise) and X− := −(−X)+. Moreover, if m1 and m2 are order

functions, then so is m1m2.

We say that a ∈ S(m) if for every α ∈ N2d, there exists Cα > 0 such that |∂αa(X;h)| ≤

Cαm(X) for all X ∈ R2d and h ∈ (0, 1]. We write S(m−∞) to denote the intersection over

s ∈ N of S(m−s). For δ ∈ [0, 1] and k ∈ R, we say that a(X;h) ∈ Skδ (m) if for every α ∈ N2d,

there exists Cα > 0 such that

|∂αa(X;h)| ≤ Cαm(X)h−δ|α|−k, (A.1.2)

uniformly in X ∈ R2d and h ∈ (0, 1]. If either k or δ are omitted, they are assumed to be

zero. We will always write the order function m when using these symbol classes.

By [34, Chapter 7], we know that if a ∈ S(m1) and b ∈ S(m2), then Oph(c) :=

Oph(a)Oph(b) is a pseudo-differential operator, with

c(x, ξ;h) = (a♯hb)(x, ξ;h) :=
(
ei

h
2 (∂x·∂ζ−∂y·∂ξ)a(x, ξ;h)b(y, ζ;h)

)∣∣∣
y=x,ζ=ξ
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and c ∈ S(m1m2). See also Proposition A.2.1 for explicit bounds on c.

For m ∈ Z, define the standard Hilbert spaces

Hm := {Ψ ∈ S ′(R2)⊗ Cn | ∂αΨ ∈ H ∀ |α| ≤ m}. (A.1.3)

Following [20, 55, 61], we define the Hörmander class Sm1,0 to be the space of symbols a(x, ξ)

that satisfy

|(∂αξ ∂
β
xa)(x, ξ)| ≤ Cα,β⟨ξ⟩m−|α|; α, β ∈ Nd. (A.1.4)

We define ESm1,0 to be the space of Hermitian-valued symbols a(x, ξ) that satisfy (A.1.4) and

|amin(x, ξ)| ≥ c⟨ξ⟩m − 1 for some c > 0, where amin is the smallest-magnitude eigenvalue of

a.

If A is a symbol class (e.g. S(m), Sm1,0, ES
m
1,0), we write A ∈ Op(A) to mean that

A = Op(a) for some a ∈ A. In the case A = S(m), the notation A ∈ Oph(S(m)) means that

A = Oph(a) for some a ∈ S(m).

Helffer-Sjöstrand formula. See [34, Chapter 8]. Given f ∈ C∞c (R), there exists an almost

analytic extension f̃ ∈ C∞c (C) that satisfies

|∂̄f̃ | ≤ CN |ω|N , N ∈ {0, 1, 2, . . . }; f̃(λ) = f(λ), λ ∈ R. (A.1.5)

Here, z =: λ+iω and ∂̄ := 1
2∂λ+

i
2∂ω. We now recall [34, Theorem 8.1]. If H is a self-adjoint

operator on a Hilbert space, then

f(H) = − 1

π

ˆ
∂̄f̃(z)(z −H)−1d2z, (A.1.6)

where d2z is the Lebesgue measure on C. (A.1.6) is known as the Helffer-Sjöstrand formula,

and we use it repeatedly in this thesis.
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Trace-class operators. See [34, Chapter 9]. Suppose m ∈ L1(R2d), and |∂αa(x, ξ;h)| ≤

Cαm(x, ξ) for all α ∈ N2d and h ∈ (0, 1] (meaning that a ∈ S(m)). Then Oph(a) is trace-class

with ∥Oph(a)∥1 ≤ Cmax|α|≤2d+1Cα ∥m∥L1 and

TrOph(a) =
1

(2πh)d

ˆ
R2d

tr a(x, ξ;h)dxdξ, (A.1.7)

where C depends only on d and tr is the standard matrix trace. To obtain the above equality,

we use [34, Theorem 9.4] to write

TrOph(a(x, ξ;h)) = TrOp1(a(x, hξ;h))

=
1

(2π)d

ˆ
R2d

tr a(x, hξ;h)dxdξ =
1

(2πh)d

ˆ
R2d

tr a(x, ξ;h)dxdξ.

The results from [20, 34] that were used in this section are stated for scalar symbols.

They extend to the matrix-valued case; see [19].

A.2 Composition calculus

For m : R2d → [0,∞) an order function, u ∈ S(m) and N ∈ N, define

C̃N (u,m) :=
∑

|α|≤N
inf{C > 0 : |∂αu| ≤ Cm}.

For u1, u2 ∈ C∞(R2d;Cn×n) and N ∈ N, define

TN (u1, u2) = (TN (u1, u2))(x, ξ)

:=
N−1∑
j=0

((ih(Dξ ·Dy −Dx ·Dη)/2)j

j!
u1(x, ξ)u2(y, η)

)
|y=x,η=ξ.

Proposition A.2.1. Let m1,m2 : R2d → [0,∞) be order functions. Then there exists s ∈ N
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such that for every N ∈ N and α ∈ N2d,

|∂α(u1♯hu2 − TN )| ≤ Cα,N

|α|∑
j=0

C̃2N+s+j(u1,m1)C̃2N+s+|α|−j(u2,m2)h
Nm1m2

uniformly in u1 ∈ S(m1), u2 ∈ S(m2) and h ∈ (0, 1].

Proof. We follow arguments from [34, Chapter 7] and [89, Chapters 3 & 4]. Since

u1♯hu2 = (ei
h
2 (Dξ·Dy−Dx·Dη)u1(x, ξ)u2(y, η))|y=x,η=ξ =: (eihA(D)u1(x, ξ)u2(y, η))|y=x,η=ξ

and Dα commutes with eihA(D) (for any α ∈ Nd), it suffices to show that there exists s ∈ N

such that for any N ∈ N and order function m : R4d → [0,∞),

∣∣∣eihA(D)u(X)−
∑

j≤N−1

(ihA(D))j

j!
u(X)

∣∣∣ ≤ CN C̃2N+s(u,m)hNm(X)

uniformly in u ∈ S(m) and h ∈ (0, 1]. Here, we use the shorthand X := (x, y, ξ, ζ) ∈ R4d.

Since A is non-degenerate, we can let A−1(X) = 1
2⟨Q

−1X,X⟩ be the dual quadratic form

on R4d. Then, as stated in [34, bottom of page 80], eihA(D)u = Kh ∗ u, where

Kh(x) = Ch−2de−iA
−1(X)/h.

We then write

eihA(D)u = (χKh) ∗ u+ ((1− χ)Kh) ∗ u =: t1 + t2,

where χ ∈ C∞c (B(0, 2)) is equal to 1 in B(0, 1). Set p := 2d + 1. By [89, Theorems 3.14 &
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4.16 and their proofs], we obtain that

∣∣∣t1(X)−
∑

j≤N−1

(ihA(D))j

j!
u(X)

∣∣∣ ≤ CNh
N

∑
|α|≤2N+p

sup
B(X,2)

|∂αu|

≤ CN C̃2N+p(u,m)hNm(X).

For the second term, we directly apply [34, equation (7.19)] to obtain that for every k ∈ N,

|t2(X)| ≤ Ckh
k
∑

|α|≤k+p

∥∥∥⟨X − ·⟩−k−2d∂αu(·)
∥∥∥
L1

≤ CkC̃k+p(u,m)hk
∥∥∥⟨X − ·⟩−k−2dm(·)

∥∥∥
L1
.

Using that m(Y ) ≤ C⟨X − Y ⟩N0m(X) for some N0 > 0, it follows that

|t2(X)| ≤ CkC̃k+p(u,m)hkm(X)
∥∥∥⟨·⟩N0−k−2d

∥∥∥
L1
.

Thus for all k > N0 + p (so that the above integral is finite),

|t2(X)| ≤ CkC̃k+p(u,m)hkm(X).

This completes the result.

Proposition A.2.2. There exists N ∈ N such that ∥Oph(u)∥ ≤ C̃N (u, 1) uniformly in

u ∈ S(1) and h ∈ (0, 1].

Proof. See [34, Theorem 7.11 and its proof].

A.3 Elliptic operators and resolvent estimates

Proposition A.3.1. Let σ ∈ ESm1,0. Then for all h ∈ (0, 1], the operator Hh := Oph(σ)

is self-adjoint with domain of definition Hm. This means we can define Oph(rz,h) := (z −

Hh)
−1 whenever ℑz ̸= 0. Let Z ⊂ C be bounded such that ℑz ̸= 0 for all z ∈ Z. Then there
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exists s ∈ N such that for any α ∈ N2d,

|∂αrz,h(x, ξ)| ≤ Cα|ℑz|−s−|α|⟨ξ⟩−m

uniformly in z ∈ Z and h ∈ (0, 1].

Proof. By [20, Corollary 2 and the paragraph following Theorem 3], we know that Hh is self-

adjoint with domain of definition Hm. Applying also [34, the paragraphs between equation

(8.11) and Proposition 8.5], it follows that (i − Hh)
−1 ∈ Oph(S(⟨ξ, ζ⟩−m)) is a bijection

of L2(Rd) ⊗ Cn onto Hm. For ℑz ̸= 0, we have that Az,h := 1 − (i − z)(i − Hh)
−1 is a

bijection of L2(Rd)⊗ Cn onto itself, with
∥∥∥A−1

z,h

∥∥∥ ≤ C|ℑz|−1 uniformly in z ∈ Z. Applying

[34, Proposition 8.4] to Oph(bz,h) := A−1
z,h, we obtain that

|∂αbz,h(x, ξ)| ≤ Cα|ℑz|−2d−2−|α|

uniformly in z ∈ Z and h ∈ (0, 1]. The result then follows from Proposition A.2.1 (with

N = 0) and the fact that (z −Hh)
−1 = (i−Hh)

−1A−1
z,h.

Below, let Mn denote the space of Hermitian n× n matrices.

Proposition A.3.2. Let σ ∈ ESm1,0 and W ⊂ C∞(R2d;Mn). Suppose that for any (α, β) ∈

N2d,

|∂αx ∂
β
ξ w(x, ξ)| ≤ Cα⟨ξ⟩m−|β| (A.3.1)

uniformly in w ∈ W (meaning that W ⊂ Sm1,0). For µ ∈ [0, 1] and w ∈ W, define Hµ,w :=

Op(σ + µw). Then there exists µ0 ∈ (0, 1] such that the following conditions hold:

1. If w ∈ W and µ ∈ [0, µ0], then Hµ,w is self-adjoint with domain of definition Hm.
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2. For ℑz ̸= 0, define Op(rz,µ,w) := (z − Hµ,w)
−1. Let Z ⊂ C be bounded such that

ℑz ̸= 0 for all z ∈ Z. Then there exists s ∈ N such that for any α ∈ N2d,

|∂αrz,µ,w(x, ξ)| ≤ Cα|ℑz|−s−|α|⟨ξ⟩−m

uniformly in z ∈ Z, w ∈ W and µ ∈ [0, µ0].

Proof. Define σ(µ,w) := σ + µw.

1. The uniform bounds (A.3.1) imply that whenever µ > 0 is sufficiently small, σ(µ,w) ∈

ESm1,0 for all w ∈ W . Hence in this case, Hµ,w is self-adjoint with domain of definition

Hm.

2. We write (i−Hµ,w)
−1 = (1 + (i−Hµ,w)

−1µW )(i−H)−1, which implies

(i−Hµ,w)
−1(1− µW (i−H)−1) = (i−H)−1,

where W := Oph(w) and H := Op(σ). By (A.3.1) and Proposition A.2.2, we conclude

that whenever µ > 0 is sufficiently small, Aµ,w := 1 − µW (i − H)−1 is a bijection

of L2(Rd) ⊗ Cn onto itself, with A−1
µ,w ∈ Op(S(1)) uniformly in µ and w. Since

(i − H)−1 ∈ Op(S(⟨ξ⟩−m)) by Proposition A.3.1, it follows that (i − Hµ,w)
−1 ∈

Op(S(⟨ξ⟩−m)) uniformly in µ and w. The bounds on rz,µ,w then follow from the same

argument that was used in the proof of Proposition A.3.1 (after it was shown that

(i−Hh)
−1 ∈ Oph(S(⟨ξ, ζ⟩−m)) there).

Proposition A.3.3. Let σ ∈ ESm1,0 and define Hh := Oph(σ) for h ∈ (0, 1]. Let ϕ ∈

C∞c (E1, E2) and define Oph(νh) := ϕ(Hh). Let m : R2d → [0,∞) be any order function such

that νh ∈ S(m−∞) and all eigenvalues of σ lie outside the interval (E1, E2) whenever m is
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sufficiently large. For z ∈ C, define σz := z − σ. For N ∈ N+, define qz,h,N recursively by

qz,h,1 := σ−1
z and

qz,h,N = σ−1
z

(
1−

N−1∑
j=1

((ih(Dξ ·Dy −Dx ·Dη)/2)j

j!
σz(x, ξ)qz,h,N−j(y, η)

)
|y=x,η=ξ

)

for all N ≥ 2. Then for all N ∈ N,

νh +
1

π

ˆ
C
∂̄ϕ̃(z)qz,h,Nd2z ∈ S−N+1/2(m−∞). (A.3.2)

Proof. Note that supp(ϕ̃) ⊂ (E1, E2) × (−M,M) =: Z for some 0 < M < ∞, hence the

integral over C in (A.3.2) can be restricted to an integral over Z. By assumption, for any

N ∈ N, z 7→ qz,h,N is analytic in z ∈ Z so long as m(x, ξ) is sufficiently large (independent

of h). Integrating by parts, we conclude that
´
Z ∂̄ϕ̃(z)qz,h,Nd2z vanishes whenever m(x, ξ)

is sufficiently large. This implies

νh +
1

π

ˆ
Z
∂̄ϕ̃(z)qz,h,Nd2z ∈ S(m−∞).

The result will follow from an h-dependent bound of the above left-hand side and interpola-

tion. Namely, it suffices to show that

νh +
1

π

ˆ
Z
∂̄ϕ̃(z)qz,h,Nd2z ∈ S−N+1/4(1). (A.3.3)

By the Helffer-Sjöstrand formula, the above left-hand side equals

− 1

π

ˆ
C
∂̄ϕ̃(z)rz,hd

2z +
1

π

ˆ
Z
∂̄ϕ̃(z)qz,h,Nd2z =

1

π

ˆ
Z
∂̄ϕ̃(z)(qz,h,N − rz,h)d

2z,

where Oph(rz,h) := (z −Hh)
−1. Therefore, given the rapid decay of ∂̄ϕ̃ near the real axis,
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(A.3.3) holds if there exists s ∈ N such that for all α ∈ Nd and N ∈ N,

|∂α(qz,h,N − rz,h)| ≤ Cα,N |ℑz|−(2N+2s+|α|+1)hN (A.3.4)

uniformly in z ∈ Z and h ∈ (0, 1]. We will now prove (A.3.4) by induction.

Using that σz♯hrz,h = 1 for all h ∈ (0, 1], it follows from Proposition A.2.1 that

|∂α(1− σzrz,h)| ≤ Cα,1

|α|∑
j=0

C̃2+s+j(σz, ⟨ξ⟩m)C̃2+s+|α|−j(rz,h, ⟨ξ⟩
−m)h,

hence

|∂α(σ−1
z − rz,h)| = |∂α(σ−1

z (1− σzrz,h))|

≤ Cα,1

|α|∑
j=0

|α|−j∑
k=0

C̃j(σ
−1
z , ⟨ξ⟩−m)C̃2+s+k(σz, ⟨ξ⟩m)C̃2+s+|α|−j−k(rz,h, ⟨ξ⟩

−m)h

uniformly in z ∈ Z and h ∈ (0, 1]. Observe that for k ∈ N,

C̃k(σ
−1
z , ⟨ξ⟩−m) ≤ C|ℑz|−1−k, C̃k(σz, ⟨ξ⟩m) ≤ C

uniformly in z ∈ Z. Since C̃k(rz,h, ⟨ξ⟩−m) ≤ C|ℑz|−s−k by Proposition A.3.1, we have

verified (A.3.4) when N = 1.

Now, fix N ∈ N and suppose that for all k ∈ {1, . . . , N},

|∂α(qz,h,k − rz,h)| ≤ Cα,k|ℑz|−(2k+2s+|α|+1)hk
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uniformly in z ∈ Z and h ∈ (0, 1]. Then

qz,h,N+1 − rz,h

= σ−1
z

(
1− σzrz,h −

N∑
j=1

((ih(Dξ ·Dy −Dx ·Dη)/2)j

j!
σz(x, ξ)qz,h,N+1−j(y, η)

)
|y=x,η=ξ

)

= σ−1
z

(
1−

N∑
j=0

((ih(Dξ ·Dy −Dx ·Dη)/2)j

j!
σz(x, ξ)rz,h(y, η)

)
|y=x,η=ξ

)

+ σ−1
z

N∑
j=1

((ih(Dξ ·Dy −Dx ·Dη)/2)j

j!
σz(x, ξ)(rz,h(y, η)− qz,h,N+1−j(y, η))

)
|y=x,η=ξ

=: t1 + t2.

Proposition A.2.1 implies that

|∂αt1| ≤ Cα,N+1

|α|∑
j=0

|α|−j∑
k=0

C̃j(σ
−1
z , ⟨ξ⟩−m)C̃2(N+1)+s+k(σz, ⟨ξ⟩

m)

× C̃2(N+1)+s+|α|−j−k(rz,h, ⟨ξ⟩
−m)hN+1

≤ Cα,N+1|ℑz|−(2(N+1)+2s+|α|+1)hN+1.

Define t2 =: σ−1
z
∑N
j=1 t2,j . By our inductive hypothesis,

|∂αt2,j | ≤ Cα,jh
j
|α|+j∑
i=0

C̃i(σz, ⟨ξ⟩m)C̃|α|+j−i(rz,h − qz,h,N+1−j , 1)⟨ξ⟩m

≤ Cα,j |ℑz|−(2(N+1−j)+2s+|α|+j+1)hN+1⟨ξ⟩m

= Cα,j |ℑz|−(2(N+1)+2s+|α|+1−j)hN+1⟨ξ⟩m

≤ Cα,j |ℑz|−(2(N+1)+2s+|α|)hN+1⟨ξ⟩m.
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It follows that

|∂α(σ−1
z t2,j)| ≤ Cα,j |ℑz|−(2(N+1)+2s+|α|+1)hN+1.

for all j ∈ {1, . . . , N}. We have thus verified (A.3.4) for all N ∈ N, and the proof is

complete.

For completeness, we now write an expansion for νh that does not involve an integral.

Proposition A.3.4. Take σ, νh, φ and m as above. Let {µj}dj=1 denote the eigenvalues of

σ and {Πj}dj=1 the corresponding eigenprojections, so that σ =
∑d
j=1 µjΠj. Then

νh = φ′(σ) + ih
d∑

ℓ1,ℓ2,ℓ3=1

Ψ(µℓ1 , µℓ2 , µℓ3)Πℓ1

n∑
k=1

(∂xkσΠℓ2∂ξkσ − ∂ξkσΠℓ2∂xkσ)Πℓ3

+O(h3/2)

in S(m−∞), where Ψ ∈ C∞(R3) is defined by

Ψ(x, y, z) =
1

(x− y)(x− z)
φ′(x) +

1

(y − x)(y − z)
φ′(y) +

1

(z − x)(z − y)
φ′(z).

Proof. This result is a direct application of Proposition A.3.3. Namely, qz,h,1 = σ−1
z , so the

O(1) in the expansion for νh is

− 1

π

ˆ
C
∂̄φ̃′(z)σ−1

z d2z = φ′(σ).

The O(h) term is

− i

π

ˆ
C
∂̄φ̃′(z)σ−1

z {σz, σ−1
z }d2z.

201



Using the eigendecomposition σ =
∑d
j=1 µjΠj , a simple calculation reveals that

σ−1
z {σz, σ−1

z } =

d∑
ℓ1,ℓ2,ℓ3=1

(z − µℓ1)
−1(z − µℓ2)

−1(z − µℓ3)
−1Πℓ1

n∑
k=1

(∂xkσΠℓ2∂ξkσ − ∂ξkσΠℓ2∂xkσ)Πℓ3 .

The result then follows from the identity

− 1

π

ˆ
C
∂̄φ̃′(z)(z − µℓ1)

−1(z − µℓ2)
−1(z − µℓ3)

−1d2z = Ψ(µℓ1 , µℓ2 , µℓ3).
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