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Abstract

Let K be a function field over a local field k. We show that the valuation rings of

K/k are definable. Furthermore, if chark = 0 and td(K/k) = 1, then any function

field L over a local field λ elementarily equivalent to K must be isomorphic to K (as

function fields).
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Model Theory provides a way to understand the

essence of mathematical objects, by abstracting

away from their specific properties and studying

their underlying structure.

Macintyre, Angus

Model Theory = Universal Algebra + Logic

Model Theory = Algebraic Geometry - Field

Keisler, H. Jerome & Chang, Chen Chung

1
Introduction

Logic is frequently viewed as a secluded isle, its findings rarely deemed relevant to

the bustling conversations on the main mathematical continent. An exception to

this is Model Theory. Introduced by Tarski in the 1950s, Model Theory has since

demonstrated its formidable power as a tool to study other classical branches of

mathematics, in particular Number Theory and Algebraic Geometry. For example,

as of this writing, the only known proof of the celebrated Mordell-Lang Conjecture

in Algebraic Geometry is model-theoretic.

The reason for this is that many of the algebraic, geometric and arithmetical

properties of fields are determined by their first-order theory. One naturally wonders,
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to which extent does the first-order theory Th(K) of a field K determines its algebraic

structure? Two fields K and L are said to be elementarily equivalent, denoted

K ≡ L, if they have the same first-order theory. A fundamental question of the Model

Theory of fields is: For which class of fields does elementary equivalence implies

isomorphism?

This thesis shows that elementary equivalence implies isomorphism for the class

of function fields K/k of p-adic curves. Actually it proves something slightly stronger.

Theorem 6.1.1 states that if K/k is a function field of some p-adic curve, then any

p-adic function field L/λ (not necessarily of transcendence degree 1) that is elemen-

tary equivalent to K/k, must be isomorphic to K/k as function fields. This is the

consequence of our main theorem on the definability of valuation rings of function

fields of curves over local fields (cf. Theorem 7.3.1).

In this Introduction, we give a brief outline of this thesis and the proof of the

main result.

1.1 Organization of This Text

This work lies at the intersection of Model Theory, Number Theory and Algebraic

Geometry. To accommodate readers of various backgrounds, as well as to motivate

the use of certain concepts and ideas, Chapter 2-5 will be dedicated to introducing

the various tools from these three areas. Note that though some degree of motivation

is given for most concepts, only those whose precise definitions are important to the

proof of the main theorem will be explicitly defined. The content of these preliminary

chapters are as follow.

• Chapter 2 introduces the basic concepts of Model Theory and explains why we

care about the first-order theory of fields.

• Chapter 3 motivates and states the Elementary Equivalence vs. Isomorphism
2



problem. It also includes a brief history of work on this problem.

• Chapter 4 reveals an interface between Model-Theory and Number Theory,

namely via norms of cyclic algebras. In particular, Theorem 4.3.2 of Merkurjev-

Susslin could be employ to give a first-order characterization of vanishing of

certain cocycles.

• The star of Chapter 5 is Kato’s Local Global Principle (Theorem 5.4.2), which

relate the global behavior of cocycles to its local behavior. To capture “local”

behavior, we review Krull’s generalization of the concept of discrete rank 1

valuations, as well as the definition of Riemann-Zariski space V(K) of valuations

of a field K. The topology of V(K) will be important in the proof of Proposition

7.3.1, the most technical proof in this text.

The proof of the main theorem is covered in the last two chapters. (See the next

section for an outline of the proof).

1.2 Outline of the Proof

Let K/k be the function field of some smooth projective curve X over a local field

k. In Chapter 6, we show that to the main theorem will follow from the definability

of the valuation rings of K/k (i.e. valuation rings of K containing k). Thus the rest

of the thesis (Chapter 7) is devoted to proving that the valuation rings of K/k are

definable. The main ideas are as follows.

Suppose without loss of generality that K contains a primitive l-th root of unity.

Let Hi(K) ∶=Hi(K;µl) denote the Galois cohomology groups of K with coefficients

in µl. We utilize the following insights of Pop in [8].

1. There is a first-order characterization of the vanishing of certain types of cocyles

in Hi(K).
3



2. Kato’s Local-Global Principle in turn allows us to relate the vanishing of such

cocycles to vanishing of its restriction to certain Henselizations of K.

The rough outline of our proof of definability of valuation rings of K/k is as follows.

1. To each “nice” triple a ∈ (K∗)3, we assign a cocyle LaM and a set suppX(LaM)

of valuations of K/k. The ring OX(a) of functions regular on suppX(LaM) can

also be defined in an obvious way.

2. It turns out that every valuations wx of K/k could be realized as the common

support of some nice tuples a and b. For such choice of a and b, the valuation

ring Owx is definable in terms of the rings of regular functions OX(a) and

OX(b). Thus definability of Owx will follow from definability of the latter two.

3. The definability of OX(a) can in turn be reduced to the definability of certain

set Γ(a) consisting of γ ∈ K∗ whose valuations on suppX(LaM) satisfy certain

constraint.

4. The most technical part of the text is the proof of definability of Γ(a) (cf.

Proposition 7.3.1). The rough idea is as follows. Fix a nice triple a. To each γ

one can assign three families Kγ,i, i = 0,1,2 of extensions of K. These definitions

of Kγ,i and Γ(a) are chosen such that Γ(a) is exactly the set of γ such that LaiM

is nontrivial over one of the family Kγ,i. The latter is definable by Theorem

4.3.2 of Merkurjev-Susslin.

5. The key tools employed in the proof of the above characterization of Γ(a) are

Kato’s Local Global Principle (Theorem 5.4.2) and the topology of the Riemann-

Zariski’s space of K.
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2
Preliminaries on Model Theory

2.1 Language and Structures

Definition 2.1.1. A language L = ((f)f∈F ; (R)R∈R; cc∈C) consists of three types of

data:

• a set F of (n-nary, for any n ∈ Z≥0) function symbols;

• a set R of (n-nary, for any n ∈ Z≥0) relation symbols;

• a set C of constant symbols.

5



We will be working with the language LRings = (+, ⋅; 0,1) of Rings which consists

of two binary function symbols + and ⋅, together with two constant symbols 0 and 1.

Definition 2.1.2 (L-Formulas and Sentences). • Informally, a first-order L-

formula is a finite sequence formed by the symbols of L, together with variables

as well as logical quantifiers (∀,∃) and logical connectives (∨,∧,¬).

• A variable not preceded by a quantifier is called a free variable. Those that are

preceded by quantifiers are called bounded variables.

• A first-order L sentence is a first-order L-formula in which all variables

are bounded.

Convention 2.1.1. 1. From now on, unless otherwise specified, all formulas are

assumed to be first-order.

2. When we want to emphasize that x1, . . . , xn are (all of) the free variables in a

formula ϕ, we will write ϕ(x1, . . . , xn).

3. In this thesis, formulas are defined using the following syntax.

ϕ(x1, . . . , xn) ←→ [Definition].

4. For ease of reading, we will often use descriptive English name, instead of Greek

letters, for formulas.

Example 1. The following are LRings formulas. Only the last one is a sentence.

1. AreInverses(x, y) ←→ x ⋅ y = 1;

2. isInvertible(x) ←→ ∃y, x ⋅ y = 1;

3. isZeroOrInvertible(x) ←→ (x = 0) ∨ (∃y, x ⋅ y = 1);
6



4. EveryNonZeroElementIsInvertible←→ ∀x, (x = 0) ∨ (∃y, x ⋅ y = 1).

Definition 2.1.3. An L-structure A is a pair consisting of a set A (called its uni-

verse) and a function (called an interpretation) mapping

• each n-nary function symbol f of L to a function fA ∶ An → A;

• each n-nary relation symbol R of L to an n-nary relation RA on A (i.e. a subset

of An);

• each constant symbols c of L to an element cA of A.

We often denote such a structure by A = (A; (fA)f∈F ; (RA)R∈R; (cA)c∈C).

Example 2.

Every ring R is equipped with a canonical LRings-structure, in which the func-

tion symbols +, ⋅ are interpreted as the additive and multiplicative operations on R,

while the constant symbols 0 and 1 are interpreted as the additive and multiplicative

identities of R, respectively.

On the other hand, not all LRings-structures are rings. Recall that an LRings

structure A = (A;+A, ⋅A; 0A,1A) is simply a set A together with a choice of binary

operations +A and ⋅A and constants 0A and 1A of A. To guarantee that the inter-

preted operations endows A with a ring structure, we need to further require that A

“satisfies” certain sentences. The definition of “satisfaction” will be given in the next

section.

Convention 2.1.2. From now on, when talking about a ring A as LRings-structure,

we will always assume the canonical interpretation. Thus for convenience, we will

use the same notation A to denote both the underlying structure and the universe.

Similarly, we will use the same symbols (+; ⋅; 1; 0) to denote their interpretations in

A.
7



2.2 Definable Sets

Definition 2.2.1 (L-Definability without Parameters). Let A be an L structure

with universe A and let ϕ(t) ∶= ϕ(t1, . . . , tn) be an L-formula. Given a tuple a ∶=

(a1, . . . , an) ∈ A
n, we can substitute all the symbols in ϕ by their interpretations un-

der A and all the variables ti’s by the corresponding ai’s to get a meaningful statement

about A.

1. If this resulting statement is true for A, we say that A satisfies ϕ(a), and

denote this by A ⊧ ϕ(a). Such a tuple a is called a realization of ϕ in A.

2. The set of all realizations of ϕ in A is denoted by ϕ(A).

3. A subset S ⊂ An is said to be L-definable (in A) without parameter if

S = ϕ(A) for some L- formula ϕ. We call ϕ a formula defining or cutting

out S in A.

Example 1. Let L = LRings.

1. The positive real numbers are definable in R by the formula

Pos(t) ←→ ∃y((y ≠ 0) ∧ (t = y2)).

2. Similarly, by Lagrange’s Four Square Theorem, N is definable inside Z by the

formula

Natural(t) ←→ ∃x1, . . . , x4, [(x1 ≠ 0) ∧ (x
2
1 + x

2
2 + x

2
3 + x

2
4 = t)].

3. Less obvious is the fact that for p ≠ 2, Zp can be defined inside Qp by the

formula

Integer(t) ←→ ∃y, y2 = pt2 + 1.

8



More generally, by [5], the valuation ring of any henselian (cf. Definition 5.3.2)

valued field k is definable in k.

4. A beautiful result by Julia Robinson shows that Z is definable inside Q.

Definition 2.2.2 (L-Definability with Parameters). Let A be an L structure with

universe A. A subset S ⊂ An is said to be L-definable (in A) with parameters if

there exists some L-formula Φ(x; t) and some tuple c ∈ Am such that S = Φ(c;A) ∶=

{a ∈ An ∣ A ⊧ Φ(c;a)}. In other words, S is definable without parameters over the

language L(c) ∶= L ∪ {c1, . . . , cm} obtained by adjoining to L a constant symbol ci for

each ci. (Note that A could naturally be viewed as an L(c)-structure with ci
A = ci. )

To stay within the language L, we will often refer to Φ(c1, . . . , cm; t) as an L-

formula with parameters (instead of “an L(c) formula”).

Example 2. Let L = LRings. Let k be a field, viewed as an L-structure. Then

for every polynomial f(x) = ∑d
i=0 aix

i ∈ k[x], its zero sets in k is definable by the

following formula with parameters ai.

Vf (a0, . . . , ad; t) ←→
d

∑
i=0

ait
i = 0.

Similarly, we can define the set of b ∈ k that can be represented by f over k using the

following formula with parameters ai.

Φ(a; b) ←→ ∃t,
d

∑
i=0

ait
i = b.

Definition 2.2.3 (Definable Sets and Functions). Let A be an L structure with uni-

verse A.
9



1. An L-definable set of A is a subset S ⊂ An for some n such that is L-definable

in A either with or without parameters.

2. A function F ∶ Am → An is said to be definable if its graph is definable (as a

subset of Am+n). Clearly if F is definable then so is the image imF and the

fiber F−1(b) for any b ∈ An.

Observation 2.2.1. Let L = LRings. Let k be a field, viewed as an L-structure. Then

any polynomial F (x1, . . . , xn) ∈ k[x1, . . . , xn] could be viewed as a definable function

(with parameters).

Example 3. Quadratic forms over k and “norm forms” of certain cyclic extensions

or cyclic algebras over k (cf. Section 4.3) are definable as functions (with parameters).

An insight by Pop [8] is we can utilize Milnor Conjecture and Merkurjev-Susslin’s the-

orem translate statements about such forms into cohomological terms. In particular,

we get a first order characterization of vanishing of certain cocycles (cf. Theorem

4.3.1 and Theorem 4.3.2). This is one of the key tools in proving our main theorem.

2.3 Theories and Models

Definition 2.3.1. A set T of first-order L-sentences is called a first-order L-theory.

The sentences in T are also often referred to as the axioms of T . We say that an

L-structure A is a model of T and write A ⊧ T if A ⊧ ϕ for all formulas ϕ of T .

Example 1. TRings, TCommutative Rings and TFields The theory TRings is defined

as the set consisting of the following L-sentences.

1. ∀x, y, x + y = y + x

2. ∀x,x + 0 = x

10



3. ∀x,∃y, x + y = 0

4. ∀x,x ⋅ 1 = 1 ⋅ x = x

5. ∀x, y, z (x + y) ⋅ z = x ⋅ z + y ⋅ z

6. ∀x, y, z (x ⋅ y) ⋅ z = x ⋅ (y ⋅ z)

7. 1 ≠ 0.

Example 2. Theory of Fields By definition, the theory TCommutative Rings is

obtained from TRings by adding a single axiom ∀x, y, (x ⋅ y) = (y ⋅ x). Similarly

the theory TFields is obtained from TCommutative Rings by adding the axiom ∀x, (x =

0) ∨ (∃y, x ⋅ y = 1).

Example 3. Recall that an L-ring structure A = (A;+A, ⋅A; 0A,1A) is a set A

together with a choice of binary operations +A and ⋅A and constants 0A and 1A of

A.

Observe that A ⊧ TRings iff the operations +A, ⋅A gives A a ring structure with

additive constant 0A and multiplicative constant 1A. In other words, true to its

name, all the models of TRings are rings. Similarly A ⊧ TFields iff A is a field under

the interpreted operations.

Definition 2.3.2. The L-theory of an L-structure A, denoted ThL(A), is defined as

the set of all L sentences that holds for A. We say that two L-structures A and B are

elementarily equivalent (over L) if ThL(A) = ThL(B) and write A ≡L B. This

defines an equivalence relation on the class of L-structures.

Example 4. Any two algebraically closed field of the same characteristic are

elementarily equivalent over the language LRings. In other words, if we let ACFp

denote the set of first order LRings sentences that hold for all algebraically closed
11



field of characteristic p, then ACFp = Th(k) for any particular algebraically closed

field k of characteristic p. This could be used to give a model theoretic proof of

Hilbert Nullstellensatz.

There is yet another equivalence relations on L-structures called isomorphism.

In the case of rings viewed as LRings structures, this reduces to the usual notion of ring

isomorphism. That is, two rings R and S are isomorphic as LRings structures iff they

are isomorphic as rings. Observe that clearly if two rings R and S are isomorphic,

then they are also elementary equivalence. (Actually, for structures over any language

L, isomorphism always implies elementary equivalence.) A natural question is, is the

converse true? We will discuss this question specifically in the context of fields, viewed

as LRings structures, in the next chapter.

2.4 Why “First” Order

Roughly speaking, the main distinction between "first" and higher order logics is that

in the former, one can quantify only over elements, not subsets. Put differently, in

an explicit structure A with universe A, all variables of a first-order formula could

be interpreted only as elements of A; whereas higher-order logic allows for variables

that can be interpreted as subsets of A. This restriction on first-order logic protects

it from Russell-paradox type of pathologies. As a consequence, for first order logic,

truth is equivalent to provability. More precisely, given an appropriate definition of

“proofs”, we have the following.

Fact 2.4.1 (Godel Completeness Theorem). Fix a language L. Let T be a first order

L-theory. Then for any a first order L-formula Φ, Φ holds in all models of T iff Φ

can be “proven” from the axioms in T .

In fact, by Lindstrom, first-order logic is the “best possible one”, in the sense

12



that it is the “strongest” logic in which both Completeness and (downward) Löwen-

heim–Skolem (see Section 3.1) hold.

The following striking example demonstrate the power of Completeness.

Fact 2.4.2 (Principle of Characteristic Transfer.). Let Φ be a first order LRing-

sentence. Then C ⊧ Φ iff for all but finitely many prime p, Φ holds for all algebraically

closed fields of characteristic p, .

Idea of Proof. Let ACF be the set of sentences that hold for all algebraically fields.

For each prime p, let charp denote the sentence 1 +⋯ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

= 0. Then observe that

for every prime p, ACFp is generated by the “logical consequences” of ACF∪{charp},

whereas ACF0 is generated by the “logical consequences” of ACF∪{¬ charp ∣p prime }.

Now Example 4, Φ holds for C iff it holds for all algebraically closed field of

characteristic 0. By Completeness, there must exists a proof of Φ from the axioms of

ACF0. Since such a proof must be “finite”, it could only use finitely many of the axioms

¬ charp. In other words, the set P ∶= {p ∣ ¬ charp is “used” in the proof of Φ} is finite.

Thus the same proof must apply to any algebraically closed field of characteristic

p /∈ P . Again by Completeness, Φ must hold for all such fields.

Remark 2.4.1. The above principle could be used to give an extremely short model-

theoretic proof of the Ax-Grothendieck Theorem in Algebraic Geometry.

13



3
Model Theory of Fields and The EEIP

Problem

Convention 3.0.1. For the rest of this dissertation, we will only be talking about the

language LRings. Thus we will drop the prefix L when referring to formulas, structures

and definable sets etc.

14



3.1 The EEIP Problem for Fields

Example 4 and Fact 2.4.2 demonstrate the power of model theory as a tools for

studying fields. Naturally one wonders: to which extent does first order theory of a

field K determines its algebraic properties? For example, does Th(K) determine the

isomorphism class of K? That is, is it true that if two fields K and L are elementarily

equivalent, then they must also be isomorphic?

The astute readers might have already notice that Example 4 completely annihi-

late this naive conjecture. Worse still, since Q ≡ C, not only does elementary equiv-

alence not imply isomorphism as fields, but it does not even imply isomorphisms as

sets ! More generally, it turns out, by a theorem of Lowenheim and Skolem, if a theory

T has one infinite model, then it must have infinite models of every cardinality.

Thus maybe the question we should ask instead is, for which class of fields does

elementary equivalence implies isomorphism?

Definition 3.1.1 (EEIP). Let K and F be two classes of fields. We say that the pair

(K,F) is EEIP if for every K ∈ K and F ∈ F , we have K ≡ F iff K ≅ F .

When F = K, we will simply say K instead of (K,K).

Example 1. The pair ({Finite Fields},{Fields}) is EEIP since the isomorphism

class of every finite field is uniquely determined by its cardinality. More explicitly,

if K is a finite field with q elements, then we can take ΘK be to be the following

sentence.

∃x1, . . . , xq, ( ⋀
i≠j
(xi ≠ xj)) ∧ (∀t,⋁

i
(t = xi)).

Of particular interest is when the classes K and F are subclasses of the class

of finitely generated field extensions K/k. This is because every such field can be

realized as the function field of some variety over k and thus allow for investigation

using geometrical methods. In particular, the so-called Pop Conjecture claims that
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that the class of finitely generated fields (i.e. fields finitely generated over their prime

subfield) is EEIP. This was recently proven in by Pop and Dittman, assuming strong

desingularization in the case of char 2.

Convention 3.1.1. • For the rest of this dissertation, a function field K/k

will mean a finitely generated with extension K/k with k relatively algebraically

closed in K. We call k the constant field of K/k.

• When td(K/k) = 1, there exists a unique projective regular (hence smooth if k

is pefect) curve X over k whose function field is K. We will refer to X as the

(unique) smooth model of K/k. This smooth model can be constructed using

the Riemann-Zariski space (cf. Definition 5.2.1) of K/k which as a set consists

of equivalence classes of valuations (cf. Definition 5.1.1) of K/k.

• Two function fields K/k and L/λ are said to be isomorphic (as function

fields), denoted K/k ≅ L/λ, iff there exists an isomorphism K ≅ L which re-

stricts to an isomorphism k ≅ λ on the constant fields.

• When K is a class consisting only of function fields, the isomorphism in the

definitions of EEIP and Strong EEIP are required to be function field isomor-

phisms.

3.2 EEIP Problem for Function Fields: History and Ideas

1. In 1979, Rumely [10] proved that the class of global fields is EEIP, using class

field theory.

2. The first class of function fields known to be EEIP is that of curves of over an

algebraically closed field, of genus not equal to 1 (Duret 1986) [2]. Duret later

managed to extend the result to curves of genus 1 with complex multiplication.
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The case of curves of genus 1 continued to be explored by Pierce and Vidaux

but only over languages extending LRings.

3. The so-called Pop Conjecture was first posed by Pop in 2002 [8]. In this paper,

Pop employs Milnor Conjecture to prove definability of algebraic dependence.

This allows him to prove that EEIP holds for the class of finitely generated

function fields of general type, as well as the class of function fields over a given

algebraically closed field k.

See the next chapter for a brief explanation of the role of Milnor conjecture in

the proof.

4. Employing the Pfister Foms and cohomological techniques introduced by Pop,

Poonen [6] proved in 2007 that for finitely generated fields, characteristic and

algebraic independence are definable. Later that year Pop and Poonen [7] extent

the result to function fields over large fields. Additionally, they also prove that

the constant fields of such fields are definable.

5. In 2008, Scanlon attempted a proof of the Pop Conjecture [11]. Though ulti-

mately found incorrect, the proof introduces the idea of using definability of

valuation rings to prove bi-interpretability with the natural numbers, which for

finitely generated fields would imply EEIP.

6. In 2017, using higher Local Global Principle, Pop managed to prove the Pop

Conjecture for fields of Kronecker dimension at most 3. [9]

7. The full Pop Conjecture was finally proven by Pop and Dittman, assuming

strong desingularization in char 2. [1]
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4
First-Order Characterization of Vanishing

of 3-cocycles

4.1 Overview

A significant insight of Pop in the 2002 paper is that, for a field F of characteristic

not equal to 2, Milnor conjecture could be use to give first order characterization of

vanishing of cocycles of Hm(F,µ2). The main ideas are as follows.

1. The Kummer isomorphism F∗/(F∗)2 ≅ H1(F,µ2) associates to each element

a ∈ F∗ a one-cocyle LaM ∈ H1(F,µ2). This in turn allows one to associate to
18



each tuple a = (a0, . . . , am) ∈ (F
∗)m+1 an m-cocyle LaM ∶= La0M ∪ ⋯ ∪ LamM ∈

Hm+1(F,µ2).

2. On the other hand, to each tuple a, one can also associate a quadratic form ⟪a⟫

(called a Pfister Form), which as a function is definable with parameters a.

3. By Milnor Conjecture, the m-cocyle LaM is trivial iff the quadratic form ⟪a⟫

represents 0 nontrivially over F . This gives a first-order characterization of the

vanishing of LaM.

In this chapter, we extend the same idea to include fields of characteristic 2. This

can be done as follows. Let l be a any prime and let F be a field containing a primitive

l-th root of unity.

1. Again, the Kummer isomorphism F∗/(F∗)l ≅ H1(F,µl) associates to each ele-

ment a ∈ F∗ a one-cocyle LaM ∈H1(F,µl). (Note that this is the base case of the

Bloch-Kato conjecture, which generalizes the Milnor Conjecture). This in turn

allows one to associate to each tuple a = (a0, . . . , am) ∈ (F
∗)m+1 an m-cocyle

LaM = La0M ∪⋯ ∪ LamM ∈Hm+1(F,µl).

2. In the case when m = 1 or 2, we can associate to a1, . . . , am a “norm form”

N(a1, . . . , am) which is definable (as a function) with parameters a.

In particular, for m = 2, one can associate to (a1, a2) an l-cyclic algebra Aa1,a2

define N(a1, a2) in terms of its “reduced norm”. When l = 2, Aa1,a2 is simply

the generalized quaternion algebra (a1, a2)F and whose norm is given by the

Pfister form ⟪a1, a2⟫, as above.

3. For such m, by Merkurjev-Susslin, LaM is trivial ⇐⇒ a0 can be represented by

N(a) over F . This gives a first-order characterization of vanishing of 2 and 3

cocyles with coefficients in µl.
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Below is the organization for this Chapter.

• The first section explicitly defines the cocycle LaM associates to a tuple a ∈

(F∗)m.

• The next/last section defines the norm form N(a) for a ∈ (F∗)m, where m = 2

or m = 3.

4.2 The Cocyle associated to a tuple of elements of F

For the rest of this chapter, fix a prime l. Let F be a field containing a primitive l-th

root of unity ζ. Then the absolute Galois group GF ∶= Gal(Fs/F ) acts trivially on the

group of roots unity µl, so the map ζ ↦ 1 gives a GF -module isomorphism µl ≅ Z/lZ.

In particular, for every i ∈ Z≥0, we have Hi+1(F,µ⊗i
l
) =Hi+1(F,Z/lZ) =∶Hi+1(F ).

The Kummer Exact Sequence 0→ µl → F∗s
x↦xl
ÐÐÐ→ F∗s → 0. induces the follow-

ing Long Exact Sequence in cohomology

⋯ // H0(F,F∗s ) // H0(F,F∗s ) // H1(F,µl) // H1(F,F∗s ) // ⋯

⋯ // F∗ //x↦xl // F∗ // H1(F,µl) // 0 // ⋯

As H1(F,F∗s ) = 0 by Hilbert 90, the connecting homomorphism induces the fol-

lowing Kummer Isomorphism which associates to each a ∈ F∗ a one-cocyle LaM in

H1(F,µl).

(F∗)/(F∗)l →H1(F,µl)

a↦ LaM ∶ (σ ↦
σ( l
√
a)

l
√
a
) .

Using cup product, one can extend the above map to associate to every n-tuple a
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some n-cocyle (a), as follows.

(
F∗

(F∗)l
)
n

→Hn(F,µl)

a = (a0, . . . , an−1) ↦ LaM ∶= La0M ∪ La1M ∪⋯ ∪ Lan−1M.

For later use in Chapter 7, we introduce the following notations and observations.

Notation 4.2.1. We will denote the image of the above map by LḞnM. Given α ∈ LḞnM

and a ∈ (F∗)n, we say a represents α if α = (a) in Hn(F ).

Observation 4.2.1. Obviously, if a represents α and so does any tuple c such that

ci ∈ ai(F
∗)l, for all i.

Fact 4.2.1. The cocyles in LḞnM generate the whole of Hn(F ).

4.3 First-Order Characterization of Vanishing of Cocycles

Using Norm

4.3.1 Main Idea

When n = 1 or 2, for every LaM ∈Hn(F ), one can associate certain “norm form” N(a),

which is definable (as a function) with parameters a. This is because H1(F ) classifies

cyclic extensions of F of degree dividing l while H2(F,µl) classifies central simple

F -algebras of exponent dividing l, and such extensions and algebras come equipped

with canonical norm maps. It turns out that for all cocyles LaM ∈ Hn(F ) and all

b ∈ F∗, LaM ∪ LbM is trivial in Hn+1(F ) iff N(a) represents b over F . This gives us a

first-order way to express the vanishing of LaM ∪ LbM

21



4.3.2 The Norm Group Associated to a one-cocyle LaM

F l − {0}

F ( l
√
a)∗ F∗

GLF (F (
l
√
a)) F∗.

∼

Na

ρ1

N
F ( l
√

a)/F

det

To each cocyle of the form LaM ∈ H1(F ), one can associate the cyclic extension

F ( l
√
a)/F (note that this extension is Galois since we assumed that F contains a

primitive l-th root of unity). The Kummer Isomorphism F∗/(F∗)l ≅ H1(F ) ensures

that this map is well-defined.

Recall the following basic facts about F ( l
√
a).

1. F ( l
√
a) is an l-dim vector space with basis {1, l

√
a, . . . , l

√
a
l−1
}. In other words,

we have a bijection F l → F ( l
√
a) which is defined on the standard basis by

ei ∶= (0, . . . ,1, . . . ,0) ↦
l
√
a
i.

2. We have a homomorphism ρ1 ∶ F ( l
√
a)∗ → GLF (F (

l
√
a) sending every b ∈

F ( l
√
a)∗ to the “multiplication by b” map. The pullback of the determinant

map on GLF (F ( l
√
a) under ρ1 gives a norm map NF ( l√a)/F ∶ F ( l

√
a)∗ → F∗.

Now define Na ∶ (F )l − {0} → F∗ to be the pullback of NF ( l√a)/F ∶ F ( l
√
a)∗ → F∗

under the identification F l − {0} → F ( l
√
a)∗. Explicitly, we have

Na(c0, . . . , cl−1) ∶= NF ( l√a/F )(c0
l
√
a +⋯ + cl−1(

l
√
a)l−1).

4.3.3 The Norm Group Associated to a two-cocyle La1, a2M

The following part of the Long Exact Sequence associated to the above Kummer

Sequence implies that H2(F ) ≅ lBr(F ).
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H1(F,F∗s ) // H2(F,µl) //

≅
��

H2(F,F∗s )

≅
��

// H2(F,F∗s )

≅
��

0 // H2(F,µl) // Br(F )
A↦A⊗l // Br(F )

In particular, to each two-cocyle of the form La1, a2M ∶= La1M ∪ La2M ∈ H2(F ), one

can associate a central simple F -algebra Aa1,a2 ∈ lBr(F ).

Recall the following basic facts about Aa1,a2 .

1. Aa1,a2 is an F -vector space of dim l2, with basis {αi1α
j
2 ∣ 0 ≤ i, j ≤ l − 1}, where

αi ∶= l
√
ai.

2. Aa1,a2 “splits” over F ( l
√
a1), that is Aa1,a2 ⊗F F ( l

√
a1) ≅ Ml(F ( l

√
a1)). The

pullback of the determinant map onMl(F ( l
√
a1)) to Aa1,a2 ↪ Aa1,a2⊗F F ( l

√
a1)

defines a reduced norm map Nrd ∶ Aa1,a2 → F .

Now, define Na1,a2 ∶ F
l2 → F to be the pullback of the reduced norm map under the

bijection F l2 → Aa1,a2 corresponding to the above choice of basis.

F l2

Aa1,a2 F

Aa1,a2 ⊗ F (
l
√
a) F ( l

√
a)

Ml(F (
l
√
a)) F ( l

√
a)

∼

Na1,a2

Nrd

∼
det

4.3.4 Vanishing of two-cocyles and three-cocyles in terms of Norms

The following well-known result from the theory of Brauer Groups gives us a first-

order way to express the vanishing of a two cocyle La, bM ∈H2(F ).
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Theorem 4.3.1. For all a, b ∈ F∗, we have LaM ∪ LbM = 0 ∈ H2(F ) ⇐⇒ Aa,b = 0 ∈

lBr(F ) ⇐⇒ Na represents b.

For a first-order characterization of the vanishing of three-cocyles, we use the

following celebrated Theorem 12.1 in [4] by Merkurjev and Susslin.

Theorem 4.3.2 (Merkurjev-Susslin). For all a1, a2, b ∈ F∗, we have La1, a2M∪ LbM = 0

in H3(F ) iff Na1,a2 represents b.
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5
Valuations and Local Global Principle

5.1 Valuations as Order of Vanishing

Definition 5.1.1. A valued field (K,v) is a field K endowed with a valuation

v, i.e. a surjective map v ∶K → (Γ,+,≤)∪{∞} from K to some ordered abelian

group (Γ,+,≤) satisfying

• v(0) = ∞;

• v restricts to a group homomorphism K∗ → Γ;

• (non-archimedean Property) For all a, b ∈K, v(a + b) ≥min(v(a), v(b)).
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We call Γ the value group of v.

1. Let Ov ∶= {f ∈K ∣ v(f) ≥ 0Γ}. The non-archimedean property ensures that Ov is

a local subring of K with maximal ideal mv ∶= {f ∈ K ∣ v(f) > 0}. The quotient

Kv ∶= Ov/mv is called the residue field of v.

2. The ring Ov is an example of a valuation ring of K. The latter is defined

as a subring R ⊂ K such that for all f ∈ K, either f ∈ R or f−1 ∈ R. It turns

out that every valuation ring of K is of the form Ov for some valuation v. In

particular, this induces a bijection

{valuation rings of K} ←→ {(equivalence classes) of valuations on K},

where two valuations v and w on K are considered equivalent iff Ov = Ow.

We also call Ov the valuation ring of v.

3. If v is trivial on some subfield k of K (equivalently, if Ov ⊃ k), we call v a

valuation of K/k and Ov a valuation ring of K/k.

We are particularly interested in (normalized) discrete rank 1 valuations, define

as follows.

Definition 5.1.2. A discrete rank 1 valuation v on a field K is a valuation

with value group (Z,≤) with the ordering inherited from R. We denote the set of

(equivalence classes of) discrete rank 1 valuations of K (resp. of K/k) by P(K)

(resp. P(K/k)).

The valuation ring Ov of a discrete rank 1 valuation v is a principal ideal domain

all of whose nonzero ideals are powers of mv. An element πv ∈ Ov generates mv iff

v(πv) = 1. Any such πv is called a uniformizer of v.

Example 1. p-adic Valuations
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1. Let K be the field of fraction of a domain O with unique factorization into prime

ideals (i.e. a Dedekind domain). Then for every nonzero prime ideal p ⊲ O,

we can define a discrete rank 1 valuation vp, called the p-adic valuation of K,

as follows. First, we define vp on 0 ≠ r ∈ O by letting vp(r) be the exponent

of p in the unique factorization of the ideal rO into prime ideals. Then we

extend vp to K∗ by defining vp(f) = vp(r) − vp(s) for any r, s ∈ O such that

f = r/s. It is easy to check that vp is well-defined and that its valuation ring

the localization Op of O at p. Note that when p is a maximal ideal, the residue

field Kvp = Op/pOp = (O/p)(0) is isomorphic O/p.

Below we look at some particular examples.

2. Let K = Q,O = Z and p = pZ for some prime p. Then the valuation vp ∶= vp is

called the p-adic valuation on Q. It has valuation ring (Zp, pZp), uniformizer

p and residue field Z/pZ ≅ Fp.

3. Let K = k(C) and O = k[C] be the function field and the coordinate ring of

some smooth affine curve C. Let P ∈ C and let pP = I(P ) be the ideal of all

functions f ∈ k[C] vanishing at P . Then for every f ∈ K∗, wP (f) ∶= vp(f) is

simply the “order of vanishing of f at P ” and the valuation ring (OwP ,mwP ) is

simply the ring (OP ,mP ) of functions regular at P .

We can think of OP as the “ring of functions that can be evaluated at P ” and

the residue map OP → OP /mP =∶ κ(P ) = KvP as the “evaluation at P ” map.

To see the intuition behind this, consider the simple case of K = k(t) = k(A1
k
)

of field of rational functions on the affine line. Then for any a ∈ A1
k
, since

pa = (t − a) is a maximal ideal of k[C] = k[t], by the last comment in part

1, we have Kva = k[t]/(t − a) ≅ k. Under this identification, the residue map

Oa = k[t](t−a) →Kva = k[t]/(t − a) ≅ k is given by f ↦ f (mod (t − a)) ↦ f(a).
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4. The above example of course generalizes to function fields K = k(C) of smooth

projective curves. Thus to each point P ∈ C, one can associate a valuation wP

(capturing “order of vanishing at P ”) whose valuation ring is the ring (OP ,mP )

of functions regular at P . It turns out that every valuation ring of K/k arise

this way. In particular, we have the following bijections.

{closed points of C} {Valuation Rings of K/k} P(K/k)

P (OP ,mP ) wP

∼ ∼

In particular, we could recover the unique smooth model C from P(K/k) (cf.

Definition 5.2.1 below).

5. More generally, let K = k(X) is the function field of a smooth (or simply

normal) projective variety X over k. Then to every “codim 1 point” x ∈ X

(i.e. a codim 1 irreducible subvariety of X, aka. prime divisor of X), we can

associate a discrete normalized rank one valuation wx of K/k in a similar way.

5.2 The Riemann-Zariski Space of K

As mentioned in part 4 of Example 1 above, when K/k is a function field of tran-

scendence degree 1, we can construct a projective smooth model of K/k from the

valuations of K/k. More generally, for any field K, the valuations on K naturally

form a topological space called the Riemann-Zariski Space of K, defined as follows.

Definition 5.2.1 (The Riemann-Zariski Space of K). The Riemann-Zariski Space

of K is the topological space space whose underlying set and topology are defined as

follows.
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• Underlying set: V(K) := the set of (equivalence classes) of valuations (not

necessarily discrete rank 1) on K.

• Topology: the coarsest topology in which sets of the forms {[w] ∈ V(K) ∣ w(a) ≥

0}, a ∈K are both closed and open.

The following fact about the Riemann-Zariski Space of K will be used in the proof

of Proposition 7.3.1, which is key to the proof of definability of valuation rings.

Fact 5.2.1. 1. The Riemann-Zariski Space of K is compact Hausdorff.

2. For all a ∈K, the sets {[w] ∈ V(K) ∣ w(a) > 0} and {[w] ∈ V(K) ∣ w(a) = 0} are

also both open and closed.

5.3 Completion and Henselization

To each valued field (K,v), one can associate a valued field (K̂v, v̂) called the com-

pletion of K at v where K ↪ Kv. The following examples demonstrate how the

completion K̂v captures local behavior of elements of K at v.

Example 1.

1. Again, let K be the function field of the Riemann Sphere C∞, viewed as a

curve over C. Let P ∈ C∞ and let OP ,mP and wP be as in Part 4 of Example

1. Let zP be a local coordinate at P . Then zP is a uniformizer of vP and

the completion K̂wP is simply the field K((zP )) of Laurent series in zP . In

particular, the inclusion K ↪ K̂wP assigns to every function f ∈ K its Laurent

Expansion at P .

2. Let K = Q and let v = vp be a p-adic valuation, as defined in Part 2 of Example

1. Then the completion (K̂v, v̂) is the field Qp of p-adic numbers.
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Since our dissertation is about function fields over local fields, let us quickly recall

the definition of the latter.

Definition 5.3.1 (Local Fields). 1. A global field is either a number field or the

function field of some curve over some finite field.

2. A local field (or to some authors, a nonArchimedean local field, is the

completion of a global field at some nontrivial valuation.

Fact 5.3.1. 1. The local fields of positive characteristic are exactly the field of

Laurent Series Fq((t)) over some finite field Fq.

2. The local fields k of characteristic 0 are exactly the finite extensions of Qp as p

ranges over rational primes. By Krasner’s Lemma, which itself is a consequence

of Hensel’s Lemma, every such k could be generated over Qp by some element

whose minimal polynomials has rational coefficients. That is, there exists an

irreducible polynomial f(x) ∈ Q[x] such that k ≅ Qp[x]/(f(x)).

In general, when v is a discrete rank 1 , the completion (K̂v, v̂) always satisfies

the Hensel’s Lemma, i.e. it is henselian.

Definition 5.3.2. A valued field (K,v) is called henselian if the following holds.

For every polynomial f ∈ Ov[x] and a ∈ Ov such that f(a) ≡ 0 in κ(v) but f ′(a) /≡ 0

in κ(v), there exists α ∈ Ov such that f(α) = 0 and α ≡ a in κ(v). In other words,

every simple root of f ∈ κ(v)[x] lifts to a root of f in Ov.

For a general valuation v on K, however, the completion of (K,v) might no

longer be Henselian. In such cases, we work instead with the henselization (Kv,v)

of (K,v), which, roughly speaking, is the “smallest” valued field extending K that is

henselian.
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5.4 From Local to Global

Sometimes, local information at certain valuations of K can be patch together to

give global information about K. One way to do so is via the so-called Local Global

Principles. Informally, a Local Global Principle (LGP) for K is any theorem of the

form

Property P holds for K ⇐⇒ P holds for Kv (or K̂v) for all v in some V ⊂ V(K).

5.4.1 Historical Motivation

The first theorem to be officially called an LGP is the Hasse-Minkowski’s Principle

for ternary quadratic forms over Q. It states that such a quadratic form represents 0

over Q iff it represents 0 over R and over Qp for every prime p. Hasse later generalizes

this principle to certain norm forms in the following theorem.

Theorem 5.4.1 (Hasse Norm Theorem). Let F be an algebraic number field. Let

a ∈ F and L =K( l
√
a). Let N(a) denote the norm form induced by NL/F , as defined

in Section 4.3.2. Then for every b ∈ F , b is represented by Na over F iff it is

represented by N(a) over all completions of F .

Since by Theorem 4.3.1 , the cyclic algebra Aa,b splits over F iff Na represents b

over F , an immediate consequence of the above is that a cyclic algebra splits over F

iff it splits over all completions of F .

Working together with Noether and Brauer, Hasse finally managed to generalize

this result to any central simple algebra over number field, not necessarily cyclic ones.

(This is in turn used to show that all central division algebras over number fields are

cyclic.) More precisely, the Hasse-Brauer-Noether LGP states that for a number field
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F , the following sequence is exact.

0→ Br(F ) → ⊕
v∈P(F )

Br(F̂v)
∑ Invv
ÐÐÐÐ→ Q/Z→ 0.

Remark 5.4.1. Using Hasse Invariants Invv in the above map, Hasse managed

to define a Hasse Symbol which generalizes Artin Symbol, Hilbert Symbol and

Legendre Symbol. Using the Hasse symbols, Hasse was able to generalize Artin

Reciprocity (which itself is a generalization of Hilbert Reciprocity and Quadratic

Reciprocity). Thus in a sense, Quadratic Reciprocity itself could be considered a

LGP - the original LGP for Class Field Theory.

5.4.2 Cohomological LGP

For the rest of this chapter, we use the same notation as in Chapter 4.

Kato’s insight is to view the Hasse-Brauer-Noether LGP as a “cohomological LGP”

(our terminology).

Definition 5.4.1 (Cohomological LGP). Let F be a field. For each w ∈ P(F ), let

Fw denote the completion of F at w if F is a number field and the Henselization of

F at w otherwise. Recall that for each such w, the quotient map from the absolute

Galois group of Fw to that of F induces restriction maps resw ∶Hn(F ) →Hn(Fw)

in every degree n.

We say that a field F admits a Cohomological LGP in degree d (with respect

to the fixed prime l) if the following two conditions hold.

1. For each cocycle α ∈ Hd(F ), resw(α) = 0 ∈ Hd(Fw) for all but finitely many

w ∈ P(F ).

2. The Global Restriction Map (in degree d) resd ∶Hd(F )
⊕ resw
ÐÐÐÐ→⊕w∈P(F )Hd(Fw)
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is injective. Explicitly, this means that for all α ∈Hd(F ), we have

α = 0 ∈Hd(F ) ⇐⇒ resw(α) = 0 ∈H
d(Fw), ∀w ∈ P(F ).

Example 1. Cohomological Version of Hasse-Brauer-Noether LGP Let F

be an algebraic number field. The injection Br(F ) → ⊕v∈P(F )Br(F̂v) in the Hasse-

Brauer-Noether’s SES restricts to an injection on the l-torsion subgroups lBr(F ) ↪

⊕v∈P(F ) lBr(F̂v). By Chapter 4, this is equivalent to saying that the global restriction

map H2(F ) ↪ ⊕v∈P(F )H2(Fv) is injective. In particular, F admits a cohomological

LGP in degree 2.

Observing that every number field has Kronecker dimension 1, Kato suspects

that for fields of Kronecker dimension d admits a LGP in degree d + 1. From this

starting point, he managed to give a sufficient condition for existence of certain LGP

in higher degrees. This is expressed in terms of the boundary homomorphisms and

the Arithmetical Bloch-Ogus Complex, explained in the next section.

5.4.3 Kato’s LGP

Let (X ,OX ) be an excellent normal integral scheme of dimension d with function

field F . Under some hypotheses, Kato showed in [3] that one has the following

Arithmetical Bloch-Ogus Complex

C0
n(X) ∶H

d+1(F )
∂1
Ð→ ⊕

x∈X 1

Hd(κ(x))
∂2
Ð→ ⋯ ⊕

x∈X d−1

H2(κ(x))
∂d
Ð→ ⊕

x∈X d

H1(κ(x))

where here X i denote the set of points x ∈ X of codimension i.

The map ∂1 is defined as follows. As (X ,OX ) is normal, for x ∈ X 1, the local

ring Ox ∶= OX ,x is a valuation ring with canonical discrete rank 1 valuation wx.
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Observe that the corresponding residue field Kwx is exactly the residue field κ(x) ∶=

OX ,x/mx of the structure sheaf OX at x. Under some hypotheses, Kato showed in

[3] that for each such codim 1 point x and for every i ≥ 0, there exists a boundary

homomorphism ∂x ∶Hi+1(F ) →Hi(κ(x)) with the following properties.

Fact 5.4.1. 1. ∂x factors through the residue map as

∂x ∶H
i+1(F )

resw
ÐÐ→Hi+1(Fw)

∂̂x
Ð→Hi(κ(x)).

Additionally, when l is prime to the characteristic of κ(x), the map Hi+1(Fw)
∂̂x
Ð→

Hi(κ(x)) is known to be an isomorphism.

2. If a1,⋯, ai ∈ F∗ are wx units then for all a0 ∈ F∗, we have ∂x(La0, . . . , anM)) =

wx(a0)La1, . . . , anM ∈Hi+1(κ(x)).

The map ∂1 is defined as the direct sum of ∂x as x ranges over X1. By the

first property above, we see that the injectivity of ∂1 would imply injectivity of

Hd+1(F ) ⊕
resx

ÐÐÐÐ→ ⊕x∈X 1Hd+1(Fx). In particular, if ∂1 is injective, then F admits

a LGP in degree d + 1. In Proposition 5.2 in [3], Kato proved that this is the case if

X be a regular proper flat scheme of dim 2 over the valuation ring of some discretely

valued field. This gives the following LGP in degree 3.

Theorem 5.4.2 (Kato’s LGP in degree 3). Let (k, v) be a complete discretely valued

field with finite residue field. Let X be a regular proper flat scheme over the valuation

ring Ov such that X ⊗Ov
k is smooth over k. If dimX = 2 then the function field of

X admits an LGP in degree 3.
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6
EEIP for Function Fields of P -adic Curves

6.1 Introduction and Overview

Definition 6.1.1. We say that K/k is a local function field, if k is a local field,

relatively algebraically closed in K and K is finitely generated over k. We call k the

constant subfield of K.

By Fact 5.3.1, k must be one of two “types”: either k = Fq((t)) for a unique finite

field Fq or k is a finite extension of Qp for some unique prime p. In the latter case,

we also call K/k a p-adic function field.

Please note that some authors used the term local function field to refer instead
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to local fields of positive characteristic.

The goal of this thesis is to prove the following theorem.

Theorem 6.1.1 (EEIP for Function Fields of p-adic Curves).

The pair ({p-adic function fields of td 1},{p-adic function fields}) is EEIP.

Explicitly, let K/k and L/l be p-adic function fields, elementarily equivalent over the

language of Rings. If td(L/k) = 1 then K/k must be isomorphic to L/l as function

fields.

In this chapter, we explain how this theorem will follow from the definability of

the valuation rings of K/k. The main work lies in the next chapter, where we prove

that the valuation rings of K/k are parametrizable by a formula ValK(a; t) dependent

on K.

6.2 Preliminaries: Definability of the Constant Field and Its

“Type”

It turns out that for local function fields, the constant subfield and transcendence

degree are uniformly definable. In other words, we have the following.

Proposition 6.2.1. There exist formulas Const(t) and Curve such that for all local

function fields K/k, we have k = Const(K) and K ⊧ Curve ⇐⇒ td(K/k) = 1.

Proof. Since k is a 2-cohomologically well-behaved large field (in the sense defined in

[7]), this follows from Theorem 1.4. and Proposition 5.5. of [7].

Since (k, v) is henselian, its valuation ring Ov is definable inside k (and hence

inside K) by [5]. As a consequence, we have the following.
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Corollary 6.2.1 (Definability of “Types” of Local Fields). For every prime p and

prime power q, there exist formulas BaseQp and BaseFq satisfying the following. For

every local field (k, v), we have

• k ⊧ BaseQp iff k is a finite extension of Qp;

• k ⊧ BaseFq iff k is the Laurent Series field Fq((t)).

Proof. First, observe that as valuation rings are uniformly definable in local fields,

so are their maximal ideals and the cardinality and characteristic of the residue field.

This is because if a valuation ring Ov of a field k is definable, then we can characterize

its maximal ideals mv as well as the characteristic and cardinality of the residue

field kv in the following way. (For examples of explicit formulas, see the proof of

Proposition 6.3.1. )

• mv is the set of all t ∈ O such that either t = 0 or t−1 /∈ O;

• charkv = p iff (1 + 1 +⋯ + 1) ∈ mv;

• #∣kv∣ = q iff there exist f1, . . . , fq satisfying

1. (fi − fj) /∈ mv for all i ≠ j.

2. For all g ∈ O, there exists i such that (g − fi) ∈ mv.

The formulas BaseQp and BaseFq can now be defined using the following characteri-

zations.

• A local field (k, v) is a finite extension of Qp iff charkv = p but chark ≠ p.

• A local field (k, v) is the Laurent Series field Fq((t)) for some prime power

q = pd iff charkv = chark = p and #∣kv∣ = q.
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Corollary 6.2.2 (Strong EEIP for Local Fields). Let (k, v) be a local field. Then

there exists a first order formula Typek such that for all local fields (λ,v) we have

λ ⊧ Typek iff λ ≅ k.

Proof. First, consider the case when k is a finite extension of Qp. By Fact 5.3.1, we

can write k = Qp(α) for some α whose minimal polynomial f over Qp has rational

coefficients.

6.3 Definability of Valuation Rings implies EEIP

Definition 6.3.1. Let K/k be a local function field of transcendence degree 1.

1. Let Val(z; t) ∶= Val(z1, . . . , zm; t) be a first-order formula.

We say that Val(a; t) contains all the valuation (rings) of K/k if for every

valuation ring O of K/k, there exists (a1, . . . am) ∈ Km, such that Val(a;K) =

O.

We say that Val(z; t) parametrizes all the valuation rings of K/k if it

contains all the valuation ring of K/k, and for every tuple a ∈ Km, the set of

realizations Val(a;K) is a valuation ring of K/k. If such a formula exists, we

say that the valuation rings of K/k are parametrizable. We also call Val(z; t)

a parametrization of the valuation rings of K/k.

2. We say that the collection of formula {degN (t) ∣ N ∈ N} defines degrees in

K/k if for all N ∈ N and t ∈K, we have K ⊧ degN (t) ⇐⇒ [K ∶ k(t)] = N .

It turns out that if the valuation rings of K/k (i.e. valuation rings of K containing

k) are parametrizable, then there is a collection of formula defining degrees in K/k.

Proposition 6.3.1. Given any formulas Val(z; t) ∶= Val(z1, . . . , zm; t) and any N ∈ N,

there exist formulas Ring(t;u) and a collection of formulas {degN (t) ∣ N ∈ N} such
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that for every p-adic function field K/k, if Val(z; t) parametrizes all the valuation

rings of K/k, then we have the following.

1. For all t ∈K, Ring(t;K) is the relative algebraic closure of k[t] in K.

2. {degN (t) ∣ N ∈ N} defines degrees in K/k.

Proof. 1. Recall that for every t ∈ K, the relative algebraic closure k̃[t] of k[t] in

K is the intersection of all valuation rings of K/k containing t. In other words,

k̃[t] =Ring(t;K) where

Ring(t;u) ←→ ∀a, [Val(a; t) Ô⇒ Val(a;u)].

2. For readability, we will build degN (t) from a several simpler formulas, defined

as follows.

1. Formula for Maximal Ideals

M(a; t) ←→

⎡
⎢
⎢
⎢
⎢
⎣

(t ≠ 0) Ô⇒ (Val(a; t) ∧ ¬Val(a; t−1))
⎤
⎥
⎥
⎥
⎥
⎦

.

Observe that for all a ∈Km,M(a;K) is the maximal ideal of the valuation

ring Val(a;K).

2. Formula for Uniformizing Parameters

π(a; t) ←→ ∀f,

⎡
⎢
⎢
⎢
⎢
⎣

(Val(a; f) Ô⇒ M(a; ft))

∧ (M(a; f) Ô⇒ ∃g, [Val(a; g) ∧ (f = gt)])

⎤
⎥
⎥
⎥
⎥
⎦

.

Observe that for all a ∈Km and all t ∈K, K ⊧ π(a; t) iff t is a uniformiza-

tion parameter of Val(a;K).
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3. Formula for Branch Points

BranchPoint(f, c) ←→ ∃a, (M(a; f − c) ∧ ¬π(a; f − c)).

Observe that for all f ∈ K and c ∈ k, K ⊧ BranchPoint(f, c) iff c is a

“branch point” of f , i.e. there exists some closed point x in a smooth

model X of K/k such that the order of vanishing of f − c at x is greater

than 1.

4. Formula for Dimension of the Residue Fields For each d ∈ N, define

dimd(a) ←→ ∃t1, . . . , td,

⎡
⎢
⎢
⎢
⎢
⎣

∀c1, . . . , cd,(⋀
i
Const(ci) ∧M(a;∑

i
citi)) Ô⇒ ⋀

i
M(a; ci)

⎤
⎥
⎥
⎥
⎥
⎦

∧

⎡
⎢
⎢
⎢
⎢
⎣

∀f,O(a; f) Ô⇒ (∃c1, . . . , cd,⋀
i
Const(ci) ∧M(a;∑

i
(f − citi)))

⎤
⎥
⎥
⎥
⎥
⎦

.

Observe that for every a ∈Km and every d ∈ N, we have K ⊧ dimd(a) ⇐⇒

the residue field of Val(a;K) has dimension d over k.

Finally, we are now ready to define degN (t). Let P(N) ∶= {(d1, . . . , dN ) ∈ Z≥0 ∣

∑i di = N} be the set of partitions of N . Let degN (t) be the formula

∀c,
⎛

⎝
¬BranchPoint(f, c) Ô⇒ [ ⋁

d∈P(N)
(∃(a)1, . . . (a)N ,⋀

i
dimdi(a))]

⎞

⎠
.

Now we show how our main theorem would follow from definability of valuation

rings of K/k.

Proposition 6.3.2. Let K/k be a local function field of transcendence degree 1. Sup-
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pose the valuation rings of K/k are parametrizable by a formula ValK(z, t) such

that for all field L and all tuples b ∈ Lm, ValK(b, L) is a valuation ring of L. Let

{degN (x) ∣ N ∈ N} be defined as in Proposition 6.3.1. Then the following must hold.

1. There exists a sentence ψK such that for all local function fields L/λ, if L ⊧ ψK

then we have

• td(L/λ) = 1;

• For every valuation ring O of L/λ, there exist b ∈ Lm such that O =

ValK(b, L). In other words, if L ⊧ ψK then the formula ValK(z, t) also

parametrizes the valuation rings of L/λ. Consequently, by Proposition ??,

{degN (x) ∣ N ∈ N} also defines degrees in L/λ.

2. Let L/λ be a p-adic function field elementarily equivalent to K. Then L/λ is

isomorphic to K/k as function fields.

Proof. 1. Define ψK by ψK ←→ Curve∧[∀c, (Const(c) ⇐⇒ ∀a,Val(a; c))].

Let L/λ be a local function field such that L ⊧ ψK . Then by λ = Const(L) and

L is the function field of a smooth projective curve Y over λ. By definition of

ψK , we also have λ = ⋂b∈Lm ValK(b;L). Suppose by contradiction that there

exists some valuation ring O of L/λ, such that O ≠ Val(b;L) for all b ∈ Lm.

Note that O is the local ring Oy at some point y ∈ Y . By Riemann-Roch, there

exists a function g ∈ L with a single pole at y. Since g has a pole, it cannot be

a constant. On the other hand, since it is regular at all points other than y, it

lies in ⋂b∈Lm ValK(b;L) (contradiction).

2. Observe that Corollary 6.2.2, we must have k ≅ λ.

Now, let d the degree of any irreducible planar affine curve with function field

K/k. Let S be the set of irreducible polynomials F (X,Y ) ∈ k[X,Y ] of degF =
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degX F = degY F = d such that K is the function field of the affine curve cut

out by F (i.e. K = Frac(k[X,Y ]/(F )). Note that S ≠ ∅, by our choice of d. For

each F ∈ S, let AF denote the ring of definition of F , i.e. the ring generated

over Q by the coefficients of F .

Let m ∶= min{ td (Frac(AF )/Q)∣F ∈ S} (note: we allow m = 0). Let F be an

element of S corresponding to m. Then there exists algebraically independent

elements a1, . . . , am ∈ AF such that AF is algebraic over the polynomial ring

Q[a1, . . . , am] = Q[a]. Thus we can write

AF = Q[a1, . . . , an;α1, . . . , αm] =
Q[a; t]

(g1(a; t), . . . , gs(a; t))

for some αi ∈ AF and some (finitely many) polynomials gi ∈ Q(z; t).

Now, observe that there must exists some polynomial F ∈ Q[x, t;X,Y ] such

that F(a, α;X,Y ) = F (X,Y ) and some pair ξ1, ξ2 ∈ K satisfying F (ξ1, ξ2) = 0.

Thus the tuple (a;α; ξ1, ξ2, ) satisfies the formula Φ(z, t;x, y) defined as the

conjunction of the following formulas.

(a) z and t lie in the constant field.

(b) g1(z; t) = ⋯ = gs(z; t) = 0;

(c) F(z; t;X,Y ) ∈ k[X,Y ] is irreducible (as a polynomial in X and Y );

(d) F(z, t;x, y) = 0;

(e) [K ∶ k(x)] = [K ∶ k(y)] = d.

In other words, K ⊧ ∃z, t;x, y,Φ(z, t;x, y). Since L ≡ K, Φ must have some

realizations (b, β; η1, η2) in L. In other words, there exist b, β; η1, η2 ∈ L such

that the following hold.

(a) b1, . . . , bm;β1, . . . , βn ∈ λ.
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(b) g1(b;β) = ⋯ = gs(b;β) = 0;

(c) F(b, β;X,Y ) ∈ λ[X,Y ] is irreducible (as a polynomial in X and Y );

(d) F(b, β; η1, η2) = 0;

(e) [L ∶ λ(η1)] = [L ∶ λ(η2)] = d.

In particular, we have a surjection Q[a, α] = Q[a;t]
(g1(a;t),...,gs(a;t))

↠ Q[b, β]. We

claim that this is an isomorphism. It suffices to show that b are algebraically

independent over Q. Indeed, suppose there exists some nonzero polynomial

h ∈ Q[z] such that h(b) = 0. Then L ⊧ ∃z, t;x, y, Φ(z, t;x, y) ∧ h(z). Thus

so must K. Let (c, γ, ϵ1, ϵ2) be a realization of this formula in K. Then the

polynomial H(X,Y ) ∶= F(c, γ;X,Y ) is a member of S whose ring of definition

AH satisfies td (Frac(AH)) <m, contradicting the minimality of m.

Since the valuation rings of k ≅ λ are definable, we can arrange for the isomor-

phism Q(a, α) → Q(b, β) to be an “isometry”. In particular, it extends to an

isomorphism k ≅ λ. Thus we have an embedding K = k(ξ1, ξ2) ≅ λ(η1, η2) ⊂ L.

K ≅ k(ξ1, ξ2) k ⊗
Q(a,α)[X,Y ]
(F(a,α;X,Y ))

λ⊗
Q(b,β)[X,Y ]

(F(b,β;X,Y ))
λ(η1, η2) ⊂ L

k k ⊗Q(a, α) Q(b, β) ⊗ λ λ

∼ ∼ ∼

∼ ∼ ∼

On the other hand, by definition of ηi’s and F , we have d = [K ∶ k(ξ1)] =
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[k(ξ1, ξ2) ∶ k(ξ1)] = [λ(η1, η2) ∶ λ(η1)] ≤ [L ∶ λ(η1)] = d.

K ≅ k(ξ1, ξ2) λ(η1, η2) L

k(ξ1) λ(η1)

∼

deg d

∼
deg d

Thus equality must hold throughout. In particular, we must have λ(η1, η2) = L.
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7
Definability of Valuation Rings

7.1 Set-Up

For the rest of this chapter, let (k, v) be a local field with valuation ring (Ov,mv)

and residue field kv. Let K = k(X) be the function field of a smooth curve X over

K.

Let l = 2 if chark ≠ 2 and l = 3 otherwise.

In this chapter we want to show that the valuation rings ifK/k are parametrizable.

Suppose without loss of generality thatK contains a primitive 2l-th root of unity. Our

main tool is Kato’s Local Global Principle. To apply it, we fix a regular projective
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Ov-model X of X. In particular, X = Xk ∶= X ×Ov
k is the generic fiber of X . As

mentioned in part 5 of Example 1, every codim 1 point x ∈ X 1 induces a discrete rank

1 valuation wx on K. Thus, letting Kx denote the corresponding Henselization, by

Kato’s LGP (Theorem 5.4.2), we have the following.

A cocyle α ∈H3(K) vanishes iff its restriction resw(α) = 0 ∈H
3(Kx) for every x ∈ X 1.

Fact 7.1.1. Let x ∈ X 1. Then there are two possibilities for x.

1. If x is the the generic points of some special fiber Xs of X , then wx∣k = v and

κ(x) is a global function field over the finite field kv.

2. If x is a closed point of the generic fiber X of X , then wx∣k is trivial and and

κ(x)/k is finite. In particular, κ(x) is a local field.

In particular, let X0 denote the set of closed points of the generic fiber X. Then the

valuation rings of K/k are exactly the local rings Ox for x ∈X0.

7.2 Overview

Let K/k be a local function field of transcendence degree 1 .

Our main goal in this chapter is to show that the valuation rings of K/k are

parametrizable. Since k is definable in K by Proposition 6.2.1, the proposition below

implies that it suffices to find a formula containing all the valuation rings of K/k.

Proposition 7.2.1. Given any formulas O(z; t) ∶= O(z1, . . . , zm; t) and Const(t),

there exists a formula Val(z; t) such that for every local function field K/k, if O(z; t)

contains all the valuation rings of K/k and Const(t) defines k in K, then Val(z; t)

parametrizes all the valuation rings of K/k.
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Proof. For readability, we will built the formula Val(z; t) from a series of simpler

formulas, defined below.

isRing(a) ←→ O(a; 1) ∧ O(a; 0)

∧

⎡
⎢
⎢
⎢
⎢
⎣

∀s, t,([O(a; t) ∧ O(a; s)] Ô⇒ [O(a; s − t) ∧ O(a; st)])

⎤
⎥
⎥
⎥
⎥
⎦

;

isValRing(a) ←→ isRing(a) ∧

⎡
⎢
⎢
⎢
⎢
⎣

∀t,(t ≠ 0 Ô⇒ [O(a; t) ∨ O(a; t−1)])
⎤
⎥
⎥
⎥
⎥
⎦

;

isTrivialOnConst(a) ←→ isValRing(a) ∧

⎡
⎢
⎢
⎢
⎢
⎣

∀c, t,(Const(c) Ô⇒ O(a; c))

⎤
⎥
⎥
⎥
⎥
⎦

.

Finally, we define Val(a,b; t) as

Val(a,b; t) ←→

⎡
⎢
⎢
⎢
⎢
⎣

isTrivialOnConst(a,b) Ô⇒ O(a,b; t)

⎤
⎥
⎥
⎥
⎥
⎦

.

Our plan for constructing a formula containing all valuations of K/k is as follows.

1. For each three cocyle α ∈ LK̇3M (cf. Notations 4.2.1 ), we define the notion of

the support of α on X, denoted suppX(α).

2. It turns out that for all α, the ring OX(α) ∶= OX(suppX(α)) of regular func-

tions on suppX(α) is definable by a formula with parameters a, where a is any

“nice” representative of α. (cf. Lemma 7.3.2)

3. Moreover, for every x ∈ X0, if {x} = suppX(α) ∩ supp(β) for some α,β ∈ LK̇3M,

then the local ring Ox is definable in terms of OX(α) and OX(β). In particular,

we will define a formula O(z1, . . . , z6; t) such that if a and b are any “nice”

representatives of α and β, respectively, then O(a,b;K) = Ox.
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4. Finally, we show that indeed every x ∈ X0 could be realized as the common

support of some α and β in LK̇3M. Thus the formulaO(z; t) contains all valuation

rings of K/k.

7.3 Definability of Rings of Regular Functions on the

Supports of 3-cocyles

7.3.1 The Support of a cocyle on X

Definition 7.3.1. For each cocyle α ∈H3(K), we define the support of α on X to

be the set suppX(α) of x ∈X0 at which (α) is nontrivial; i.e. resx(α) ≠ 0 ∈H3(Kx) ∶=

H3(Kx, µl).

Lemma 7.3.1. Let α ∈ LK̇3M. Let a ∈ (K∗)3 be any representative of α. Then for all

x ∈ supp(α), there exists i such that l ∤ wx(ai). In particular, suppX(α) is finite.

Proof. Suppose by contradiction that l ∣ wx(ai) for all ai. Then we can write ai = bliui

for some bi ∈ Kx and ui ∈ O
∗
x. By Observation 4.2.1 that resx(a) = resx(u). On the

other hand, by Fact 5.4.2, ∂x(u) = wx(u0)(u1 ∪ u2) = 0. The same fact now implies

that resx(u), and hence resx(a) is trivial (contradiction).

Thus l ∤ wx(ai) for some i. In particular, for such i, wx(ai) ≠ 0 so x must be

a pole or a zero of ai on X. As ai ≠ 0, there are only finitely many possibilities for

x.

Lemma 7.3.2. Let α ∈ LK̇3M. Then α can be represented by a nice tuple, i.e. a

tuple a ∈ (K∗)3 such that if for all x ∈ suppX(LaM), we have 0 ≤ mini{wx(ai)} is not

divisible by l. We also such a tuple a nice representative of α.

Proof. First we claim that there is representative b of α such that for all x ∈ suppX(b),

wx(bi) ≥ 0. Indeed, Let c be a representative of α. By Lemma 7.3.1 above, supp(α)
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is finite. Thus Weak Approximation implies that for every P ∈ supp(α), there exists

fP ∈K such that wP (fP ) > 0 and wx(fP ) = 0 for all P ≠ x ∈ suppX(α).

Now for each i = 0,1,2, let Poles(ci) ∶= {P ∈ suppX(α) ∣ wP (ci) < 0}. Since for

each i, this is a finite set, we can define bi ∶= ∏P ∈Poles(ci) f
l∣wP (ci)∣
P ci. By Observation

4.2.1, (b) is also a representative of α (with no “poles” on suppX(α), as desired).

Finally, to construct a nice representative a of α, we first define a function e =

(e0, e1, e2) ∶ supp(α) → (lZ)3 as follows. For every x ∈ suppX(α), let mx ∶= min{i ∣

l ∤ wx(bi)}. Observe that mx is well-defined by Lemma 7.3.1 above. Define ej(x) = 0

for j ≠mx and emx(x) = (∑j≠mx
wx(bj)).

Now, for i = 0,1,2, let ai = ∏x∈suppX(α) f
lei(x)
P bi.

7.3.2 Definability of the Ring of Regular Functions on suppX(α)

Let a ∈ (K∗)3 be a nice tuple representing LaM =∶ α. For each x ∈ suppX(α), define

Γx ∶=

⎧⎪⎪
⎨
⎪⎪⎩

γ ∈K ∣ wx(γ
l) >min(wx(a0),wx(a1),wx(a2))

⎫⎪⎪
⎬
⎪⎪⎭

.

Observe that, the local ring Ox at x can be recovered from Γx by Ox = {f ∈K ∣ fΓx ⊆

Γx}.

Let Γ(a) ∶= ⋃x∈suppX(α) Γx and O(a) = {γ ∈ K ∣ γΓ(a) ⊆ Γ(a)}. The fol-

lowing lemma shows that O(a) is exactly the ring of regular functions OX(α) ∶=

⋂x∈suppX(α)Ox on suppX(α).

Lemma 7.3.3.

O(a) = ⋂
x∈suppX(α)

Ox

Proof. Clearly, ⋂
x∈suppX(α)

Ox ⊆ O(a). Now let f ∈ K such that f /∈ OP for some
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P ∈ suppX(α). We show that f /∈ O(a).

Indeed, let m be the minimal valuation of an element of ΓP . Since by Lemma

7.3.1, suppX(α) is finite, Weak Approximation implies that the existence of γ ∈ K

such that wP (γ) = m and lwx(fγ) ≤ mini(wx(ai)) for all P ≠ x ∈ suppX(α). Then

γ ∈ Γx ⊂ Γ(a), but fγ /∈ ⋃
x∈suppX(α)

Γx = Γ(a).

Our goal is to prove definability of O(a). It is clear that this would follow from

the definability of Γ(a), which we plan to prove as follows. To each γ ∈ K we will

associate three families Kγ,ai , i = 0,1,2 of field extensions of K. Then Proposition

6.1.1 below shows that Γ(a) could be characterize as the set of γ ∈ K for which LaM

is nontrivial on all members of one of the family Kγ,i.

To prepare for Proposition 6.1.1, we need the following notations and lemmas.

For each fixed a, f ∈K∗, let Kf,a ∶=K(
l
√

1 − f l

a ).

Lemma 7.3.4. Fix a, f ∈K∗. Let w be a discrete rank 1 valuation on L ∶=Kf,a and

let w be its restriction to K.

1. If a is not an l-th power in the Henselization Lw of L at w, then w(f
l

a ) ≥ 0, i.e.

lw(f) ≥ w(a).

2. If lw(f) > w(a) then Kw = Lw ⊃Kf,a.

Proof. Let ϵ ∶= l
√

1 − f l

a ∈ L so that we have ϵl = 1 −
f l

a
.

1. First, we claim that ϵ is an w-unit. To see this, observe that the group U1
w of

principal w units is contained in Llw. Thus if w(ϵ) > 0 then f l

a ∈ U
1
w ⊂ L

l
w so

a ∈ Llw (contradiction). On the other hand, if if w(ϵ) < 0 then 1−ϵ−l ∈∈ U1
w ⊂ L

l
w.

Since (−1) ∈Kl ⊆ Llw, we have a = (−1)f lϵ−l(1 − ϵ−l) ∈ Llw (contradiction).

Now, if w(f l/a) < 0 then w(ϵ) = min(w(1),w(f l/a)) < 0, contradicting the

above claim. Thus w(f l/a), and hence w(f l/a), must be positive.
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2. Indeed, for such a w, 1 − f l

a is a principal w-unit so w splits completely in L.

Now for each γ and a inK, we associate a family of extensionsKγ,a ∶= {Kγc,aKγc−1,a ∣

c ∈ k∗}. Given any cocyle α ∈H3(K), we say that α is nontrivial over the family

Kγ,a if it is nontrivial over every member of the family.

Proposition 7.3.1. Let a ∈ (K∗)3 be a nice tuple. Then we have the following

characterization of Γ(a).

Γ(a) = {γ ∈K ∣ ∃i, LaM is nontrivial over Kγ,ai}.

Proof. Let γ ∈ Γ(a). In other words, suppose there exists x in the support of LaM such

that

wx(γ
l) >min(wx(a0),wx(a1),wx(a2)) =∶ wx(a0) ≥ 0, say.

Then for all c ∈ k∗, we have wx(γlc) = wx(γlc−1) = wx(γl) > wx(a0). By Lemma 7.3.4,

we must haveKx must containsKγc,a andKγc−1,a and hence their compositum. Since

x ∈ suppX(LaM), we must have LaM is nontrivial over Kγc,aKγc−1,a.

Now conversely, suppose LaM is nontrivial over Kγ,ai for say ai = a0 =∶ a. Let c be

a nonzero power of a uniformizer of k. For each N ∈ N, as LaM is nontrivial over LN ∶=

KγcN ,aKγc−N ,a, by Kato’s LGP (Theorem 5.4.2), there must exist some nontrivial

discrete valuation wN of LN such that LaM is nontrivial over the Henselization of LN

at wN . Then in particular, by Lemma 7.3.1, a = a0 cannot be an l-th power in this

Henselization. Consequently, Lemma 7.3.4 implies that the restriction wN of wN to

K must satisfy the following.

• wN (γ
l) + lNwN (c) ≥ wN (a);

• wN (γ
l) − lNwN (c) ≥ ∣wN (a).
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By replacing c with its inverse, we can assume that wN (c) ≥ 0 for infinitely many

N ∈ N. This means that VN ≠ ∅ for infinitely many N , where VN denote the set of

valuations w ∈ P(K) satisfying the following three conditions.

1. α is nontrivial over Kw.

2. w(c) ≥ 0;

3. w(γl) − lNw(c) ≥ wN (a).

Observe that VN form a descending nested sequence of closed sets in the Riemann-

Zariski space of K (cf. Definition 5.2.1). Since the latter is compact Hausdorff (cf.

Fact 5.2.1) and since VN are not all empty, the intersection ⋂
VN≠∅

VN must contain

some wx ∈ P(K).

For such an x, we have

1. LaM is nontrivial over Kx.

2. wx(c) ≥ 0;

3. For every m ∈ N, there exists N >m such that wx(γl) − lNwx(c) ≥ ∣wx(a)∣.

The last two conditions are possible only if wx(c) = 0. Since c is not a unit of k,

this implies that wx∣k is trivial, i.e. x ∈ X0 and hence x ∈ suppX(α) (cf. Fact 7.1.1).

On the other hand, we have wx(γl) = wx(γl) − lNwx(c) ≥ wx(a) ≥mini (wx(ai)) As

a is nice, i.e. l ∤mini (wx(ai)), the inequality must be strict. In particular, γ ∈ Γ(a),

as desired.

Corollary 7.3.1. There exists a first order formula O(z; t) ∶= OK(z; t), dependent

on K, such that for any nice tuples a, the set of realizations O(a;K) is exactly the

ring O(a) =OX(LaM) of functions regular on suppX(LaM).
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Proof. By Section 4.3.4, there exists a formula Φ(a, γ, c) such that for all (a, γ, c) ∈K5

we have K ⊧ Φ(a, γ, c) iff LaM is nontrivial over Ka0,γ,c.

Define the formula

G(a;γ) ←→ ∀c, ([(Const(c) ∧ (c ≠ 0)] Ô⇒ [Φ(a, γ, c) ∧Φ(a, γ, c−1)]) .

Then for every nice tuple a, the set of realizations G(a;K) is simply Γ(a).

Finally, let O(a; t) be the formula ∀γ, [G(a;γ) Ô⇒ G(a; tγ)].

7.3.3 Definability of valuation rings of K/k

In this section, we prove the following theorem.

Theorem 7.3.1. Let K/k be a local function field of transcendence degree 1. Then

there exists a formula ValK(z; t) ∶= ValK(z1,⋯, z6; t) parametrizing all the valuation

rings of K/k. Furthermore, for every field L and every tuple b ∈ L6, the set of

realizations ValK(b;L) is a valuation ring of L.

By Proposition 7.2.1, it suffices for us to construct a formula O(z; t) containing all

the valuation rings of K. To motivate the definition of O(z; t), we need the following

proposition.

Proposition 7.3.2. Let α,β ∈ LK̇3M and x ∈ X be such that {x} = suppX(α) ∩

suppX(β). Then O∗x could be characterized in terms of R ∶=OX(α) and S ∶=OX(β)

as follows

O∗x = {f ∈K ∣ ∃r ∈ R, r0 ∈ R
∗, s ∈ S, s0 ∈ S∗ such that f =

r0
r
=
s

s0
} .

Proof. Let f ∈O∗x. Since Ox is the localization of R at mx ∩R, we can write f = r0/r

for r0, r ∈ R, r /∈ mx. Thus r ∈O∗x so as f ∈O∗x, r0 must also lie in O∗x.
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Similarly, as Ox is the localization of S at mx ∩ S, we can write f = s/s0 for

s, s0 ∈ R,s0 /∈ mx. Thus s0 ∈O∗x.

Conversely, suppose f = r0/r = s/s0 for some r0 ∈ R∗, r ∈ R, s ∈ S and s0 ∈ S
∗.

Then Since R∗, S∗ ⊆ O∗x, we must have wx(r0) = wx(s0) = 0. On the other hand,

since R,S ⊆Ox, we also have wx(r) ≥ 0 and wx(s) ≥ 0. Thus 0 ≥ wx(r0/r) = wx(f) =

wx(s/s0) ≥ 0 so equality must hold throughout. In particular, wx(f) = 0, as desired.

This motivates the definition of the following formulas.

O∗(a,b; t) ←→ ∃r0, s0, s,
⎛

⎝
[t =

r0
r
=
s

s0
]∧

[O(a; r) ∧O(a; r0) ∧O(a; r−10 )] ∧ [O(b; s) ∧O(b; s0) ∧O(b; s−10 )]
⎞

⎠
.

O(a,b; t) ←→ [O∗(a,b; t) ∨ O∗(a,b; t + 1)].

Corollary 7.3.2. Let α,β ∈ LK̇3M and x ∈X be such that {x} = suppX(α)∩suppX(β).

Let a and b be nice representatives of α and β, respectively. Then O∗(a,b;K) = O∗x

and O(a,b;K) = Ox.

Proof. The first claim follows immediately from Proposition 7.3.2. The second claim

comes from observing that Ox = O∗x ∪mx ⊆ O∗x ∪ (O∗x − 1) ⊆ Ox. Thus equality must

hold throughout. In particular, Ox = O∗x ∪ (O∗x − 1).

Proposition 7.3.3. The formula O(a,b; t) defined above contains all valuation rings

of K/k.

Proof. Let x be a closed point of X. By Lemma 7.3.2 and Corollary 7.3.2,it suffices

for us to show that there exists a and b ∈ (K∗)3 such that suppX(LaM)∩suppX(LbM) =

{x}.
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As 0 ≠ lH
2(κ(x)), Fact 4.2.1 implies that there must exist some nonzero a1, a2 ∈

κ(x). Let a1 and a2 denote any of their respective lifts to Ox. Observe that for both

i, as ai ≠ 0, we must have wx(ai) = 0.

By Riemann-Roch, there exists f ∈K such that f has a unique pole at x of order

not divisible by l. Let a0 = 1/f . By Lemma 7.3.1, we have resx(a) ≠ 0 over Kx, i.e.

x ∈ suppX (a).

Finally, let b1 = a1 and b2 = a2 and b0 =
1

f+1 . By Lemma 7.3.1 (change), for any

P ∈ X0, we have P ∈ suppX(LaM) ∩ suppX(LbM) iff l ∤ wP (a1) and l ∤ wP (b1) iff

P = x, as claimed.

Theorem 7.3.1 now follows immediately from the above Proposition and Proposi-

tion 7.2.1. Together with Proposition 6.3.2, this in turn implies the Main Theorem

6.1.1.
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