
 

 

THE UNIVERSITY OF CHICAGO 

 

 

DECOMPOSING COMPLEX MOVEMENT USING DISCRETE DYNAMICAL 

POPULATION STATES 

 

 

A DISSERTATION SUBMITTED TO 

THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES  

AND THE PRITZKER SCHOOL OF MEDICINE 

IN CANDIDACY FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

COMMITTEE ON COMPUTATIONAL NEUROSCIENCE 

 

 

BY 

CALEB SCHEFFER SPONHEIM 

 

 

CHICAGO, ILLINOIS 

AUGUST 2023  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2023 by Caleb Scheffer Sponheim 

All Rights Reserved  



iii 

 

Table of Contents 

List of Figures ................................................................................................................................. v 
List of Tables ................................................................................................................................. vi 
Acknowledgements ....................................................................................................................... vii 
Abstract ........................................................................................................................................ viii 
0: Introduction ................................................................................................................................. 1 

Dynamical Systems and Optimal Control Theory................................................................... 3 
Movement Compositionality ................................................................................................... 5 
Population States in Primary Motor Cortex ............................................................................ 5 

1: Discrete Neural Population States Decompose Movement with Different Switching Linear 

Dynamics ........................................................................................................................................ 8 
Introduction ............................................................................................................................. 8 
Methods ................................................................................................................................. 10 

Subjects and array implantation ............................................................................ 10 
Random Target Pursuit Task ................................................................................ 11 
Data Collection ..................................................................................................... 12 
Data Processing ..................................................................................................... 13 
rSLDS Implementation ......................................................................................... 14 
Cross Validation Procedures ................................................................................. 16 
Dynamics Analysis ............................................................................................... 17 

Results ................................................................................................................................... 18 
rSLDS model fitting .............................................................................................. 18 
Kinematic Decomposition .................................................................................... 19 
Comparison with other models ............................................................................. 21 
State Dynamics ..................................................................................................... 23 
Neighboring States Similarities ............................................................................ 25 

Discussion.............................................................................................................................. 26 
Limitations ............................................................................................................ 27 
Future Directions .................................................................................................. 28 

2: Conclusion ................................................................................................................................ 29 
Future Directions ................................................................................................................... 30 

Other Behavioral Contexts .................................................................................... 31 
Additional Brain Areas ......................................................................................... 32 
Analyzing Muscle Activity ................................................................................... 33 

Overall Conclusion ................................................................................................................ 34 
References .................................................................................................................................. 35 

Appendix ....................................................................................................................................... 43 
A. Longevity and Reliability of Chronic Unit Recordings .................................................... 43 

Abstract.................................................................................................................................. 43 
1. Introduction ....................................................................................................................... 44 
2. Methods ............................................................................................................................. 47 

2.1 Non-Human Primate Subjects......................................................................... 47 
2.2 Human Subjects .............................................................................................. 48 
2.3 Neural Data Processing ................................................................................... 49 

3. Results ............................................................................................................................... 52 
3.4 Lifetime of chronic recordings........................................................................ 52 



iv 

 

3.2 Extended long-term recordings ....................................................................... 53 
3.3 Reliability among arrays possessing viable recordings .................................. 57 
3.4 Performance effects of electrode tip metallization and length ........................ 59 
3.5 Maximum performance over array lifetime .................................................... 61 

4. Discussion.......................................................................................................................... 62 
4.1 Species-specific differences in signal quality ................................................. 64 
4.2 Study Limitations ............................................................................................ 65 

B. Supplementary Figures ..................................................................................................... 67 
 

  



v 

 

List of Figures 

 

Figure 1. Random Target Pursuit Task, rSLDS overview, and state-space visualization. ........... 12 

Figure 2. Decomposition of kinematics using rSLDS .................................................................. 19 

Figure 3. Decoding and cross-validated performance results ....................................................... 21 

Figure 4. Differences in dynamics of discrete states .................................................................... 24 

Figure 5. Example waveforms and signal-to-noise ratio (SNR) from a UEA recording session . 53 

Figure 6. Summary heat map of signal-to-noise ratio (circle color) and array yield (circle size) 

over time for all array implants analyzed ..................................................................................... 55 

Figure 7. Proportion of arrays exceeding a certain yield at month-to-month intervals post-

implantation .................................................................................................................................. 56 

Figure 8. Extended long-term performance for a subset of arrays ............................................... 58 

Figure 9. Reliability of viable chronic recordings over time ........................................................ 59 

Figure 10. Effects of electrode tip metallization and electrode length on array performance in 

NHP implants ................................................................................................................................ 60 

Figure 11. Maximum possible yield ............................................................................................. 62 

Figure 12. Full Kinematic Figure. ................................................................................................. 67 

Figure 13. Grid Search for Optimal Discrete state and Dimensions from rSLDS models. .......... 68 

  



vi 

 

List of Tables 

Table 1. List of microelectrode arrays included in the current study ........................................... 51 
 

  



vii 

 

Acknowledgements 

To members of the Hatsopoulos Lab, past and present: Vassilis, Freddie, Taka, 

Kathikeyan, Alex, Carrie, Hide, Wei, Marina, Jeff, Paul, Courtney, Rebecca, Taylor, Ariana, 

Dalton, Rashi, Carmen, and Milan. Your support and input have been invaluable. 

To the workers of the Animal Resource Center: Husbandry staff for keeping our animals 

happy and comfortable, vets and vet techs for keeping them healthy. Thank you for your 

dedication, facilitation, and input to our research. 

To my dissertation committee, your advice and guidance have been instrumental. I want 

to specifically acknowledge Matt Kaufman for donating hours of his time to my math 

conundrums and scientific strategy.  

To my nonhuman primate colleagues, those I have met or otherwise: Rockstar, Raju, 

Breaux, Kris, Theseus, Hermes. 

To Nicho, for the steadfast advocacy and willingness to defend my time throughout my 

tenure in the Hatsopoulos lab. Thank you for your unyielding mentorship. 

To my mother and father, two sources of academic and personal inspiration. To my 

brothers, Emmett and Aidan, whose perspectives, choices, and lived experiences will always 

make me grateful to know them. I love you all very much. 

To my friends, past and present, whose positive influences, support, and warmth has 

buoyed me throughout this process. From long table-top role-playing sessions to twenty-mile 

runs, my life is leagues better having spent these years with y’all. 

To my love, Anna; your light and purpose enriches my life. It excites me to no end to 

realize that we get to start the next chapter of our lives together, and that we get to bring our cats 

along for the ride.  



viii 

 

Abstract 

The long history of research on primary motor cortex has led to a consensus that low-

dimensional dynamics can characterize motor population activity, with categorically different 

activity regimens during distinct phases of movement. Here I build from previous work in the 

previous work to strengthen the claim that primary motor cortex uses distinct patterns of 

population neural activity which switch during movement execution. I replicate previous 

findings using parametric Hidden Markov Models and evolve our understanding of these 

population states by implementing recurrent switching linear dynamical systems models on data 

from nonhuman primates executing two-dimensional planar reaching movements. Neural 

population states mapped onto accelerative and decelerative directional components of motion, 

and linear dynamics of discrete states exhibit relationships with the kinematics they produce. 

These results further support the view that movement representations in M1 populations 

decompose movements into accelerative/decelerative directional elements instead of bell-shaped 

sub movements. Here I also present potential applications and evolutions of these findings in 

future experiments and contexts.



 

1 

 

 

0: Introduction 

The study of brain function has historically focused on the points at which the nervous 

system interacts with our environment. Scientists have conducted research to understand our 

bodies’ physical interactions with the world for hundreds of years, and the ability for scientists to 

measure the relationship between brain and behavior in a sophisticated manner has increased in 

scale and scope substantially over the past fifty years. Much of this work is possible by 

collaborating with human participants; however, questions about cellular processes and neural 

circuits usually require invasive experiments involving animal models. 

A large body of work has been conducted and continues to be pursued with nonhuman 

primates (NHPs), specifically Rhesus Macaques. There are a few reasons why Rhesus Macaques 

are still used heavily in motor neuroscience research: Macaques can be trained on complex tasks 

combining visuospatial and motor components that are difficult if not impossible for other 

species. They also possess opposable thumbs, and a neocortex evolutionarily proximate to our 

own. As with any model species, researchers have also designated Rhesus Macaques as a 

preferred model simply due to the large body of existing research with them. This long history of 

behavioral training has made macaques a preferred species to relate activity in primary motor 

cortex to movement and motor behaviors. Recent developments in markerless tracking and 

calcium imaging have increased the usage and popularity of rodent animal models for addressing 

questions in motor neuroscience (Mathis et al. 2018); these species are extremely nascent in their 

potential to provide deep insights, but the focus of the present dissertation is with experiments 

conducted in conjunction with rhesus macaques. 
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One of the main focuses of researchers has been the function of neocortex, specifically 

primary motor cortex (M1). Neuroscientists designate M1 as an extremely important cortical 

area for motor signals; it is an area which coordinates and structures motor signals, containing 

activity which correlates with kinematics, kinetics, and muscle activity, among other movement-

related variables (Dum and Strick 1991). In primate species with anatomically distinct M1 areas 

(namely rhesus macaques), scientists have found M1 to be functionally related to motor learning 

and dexterous motor behavior (Apostolos P. Georgopoulos, Schwartz, and Kettner 1986; A P 

Georgopoulos et al. 1982; Schwartz 1994; Tanji and Evarts 1975; Jackson, Mavoori, and Fetz 

2006; Cheney and Fetz 1980; Fetz and Finocchio 1971). M1, in the case of primates, can even 

send commands directly to the spinal cord via special brain cells called corticomotoneuronal 

cells (Rathelot and Strick 2009). Other commands travel out of M1 to other important subcortical 

areas of the brain, including thalamic regions, striatum, and cerebellum (Gibson, Houk, and 

Kohlerman 1985). Researchers study M1 via a myriad of technical approaches: lesion studies, 

acute inactivations, single neuron recordings, types of imaging, as well as chronic neural 

population recordings. By combining multiple single neuron recordings, researchers have been 

able to characterize the response properties of M1 neural populations (Apostolos P. 

Georgopoulos, Schwartz, and Kettner 1986; A P Georgopoulos et al. 1982). 

As soon as they became available, researchers took advantage of advances in electronics 

fabrication and manufacturing to create dense, high-performance electrode arrays, 

simultaneously recording large populations of separable neurons (Sponheim et al. 2021; 

Nordhausen, Maynard, and Normann 1996). Chronically recording M1 during animal behavior 

allowed researchers to test additional hypotheses for the link between M1 activity and resulting 

behavior. Alongside innovation in array manufacturing, increased computational power allowed 
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for the practical use of machine learning to model neural activity, leading to powerful tools 

which infer the activity of an entire population based of the small subset of neurons to which 

scientists have access (Pandarinath et al. 2018). 

Dynamical Systems and Optimal Control Theory 

There are two major theoretical approaches which inform the research presented in this 

dissertation: Optimal Control Theory and Dynamical Systems Theory. It should be noted that 

neither of these theories are mutually exclusive. Optimal Control Theory interprets the human 

motor control system by describing its impressive capabilities and explicating a control system 

that could accomplish such functionality (Scott and An 2004; Todorov and Jordan 2002). Arm 

movements are smooth, controlled, and can exhibit startling consistency in task-relevant settings. 

This highly performant system is also simultaneously noisy, approximate, subject to delay, and 

variable in many aspects. For primary motor cortex to be useful in coordinating motor 

commands, it must be capable of simultaneously taking in higher-level target and goal 

information and sending commands, all while incorporating constant sensory feedback. 

Todorov and Jordan posited that for a system to overcome the stochastic nature of a 

squishy biological body, it must allow variability in a fashion, and utilize feedback to correct for 

errors (Scott and An 2004; Todorov and Jordan 2002). As a result, their hypothetical control 

system only corrects errors that negatively impact performance on a goal-directed task, whereas 

variability in other dimensions or domains of movement are not. For example, if a finger reaches 

the “send” button of a text message, it does not matter the trajectory it took to get there, variable, 

or otherwise. Todorov and Jordan also propose that a set of control rules could exist for different 

behavioral contexts, prioritizing certain open loop responses. An evolution of this optimal 
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control theory is one in which command structures based on feedback are not adjusted or 

changed constantly – rather, motor commands and mapping would change intermittently, to 

allow for feedback and error correction to be more precise and predictable.  

Intermittent Control Theory is a subset of Optimal Control Theory and supposes that 

certain behaviors humans exert would benefit from a system that observes constantly, yet acts 

intermittently, such as reaching or eye movements (Gawthrop et al. 2011; Karniel 2013; Leib, 

d’Avella, and Nisky 2017). By switching intermittently between certain patterns of activity based 

on feedback, a system like primary motor cortex would be more energy efficient and resilient to 

noise. While this framework for an intermittent control system has not been adopted by systems 

neuroscientists, in particular experimentalists, it serves as a potential explanation for the results 

found by work published in 2019 by Naama Kadmon Harpaz (Kadmon Harpaz et al. 2019). 

Additionally, this idea of intermittent changes in control signals may align with how certain 

movements are composed already. 

Scientists have found utility in modeling neural activity using dynamical systems 

approaches. In the context of M1 population activity, significant evidence has been established 

that the current state of a neural system, plus some noise, can determine the future state of that 

system, while correlating strongly with produced movement (Shenoy, Sahani, and Churchland 

2013). A key observation which has benefitted this interpretation is that neural activity often 

inhabits a lower-dimensional subspace, plane, or manifold within a higher-dimensional space of 

all possible neural activity (Vyas et al. 2020); using dimensionality reduction techniques, the 

state of a neural dynamical system can be more readily described (Yu et al. 2009).  
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Movement Compositionality 

The concept of movement compositionality posits that movements, particularly complex 

movements such as speaking and writing, are composed of a series of movement elements. 

Behavioral evidence for movement compositionality has been shown at the kinematic and 

dynamics levels (Doeringer and Hogan 1998; D’Avella, Saltiel, and Bizzi 2003; Hatsopoulos, 

Xu, and Amit 2007). The idea of a reusable set of movement elements combined in diverse ways 

provides a computationally efficient method for generating a rich variety of different 

movements, much like the productive capacity of language in expressing an infinite number of 

ideas with a limited set of words. If this concept of compositionality forms the foundation for the 

neural control of movement, one should expect to find evidence for discrete neural states 

associated with movement elements. The neural activity responsible for the preparation of a 

movement has consistently been identified as separable and different from primary motor 

activity during movement itself (Churchland and Shenoy 2007; Kaufman et al. 2016; Elsayed et 

al. 2016). M1 also transitions between a passive and active state, or a preparation and movement 

state, during a given behavioral task, with the transition between these two sets of dynamics 

initiated by a large condition-invariant signal (Kaufman et al. 2014). The Shenoy group even 

used a Hidden Markov Model (HMM) to define a discrete transition between a preparatory and 

execution state (Kemere et al. 2008). 

Population States in Primary Motor Cortex 

Researchers have identified that M1 displays distinctive low dimensional linear dynamics 

during the execution of reaching movements; it also displays activity in linearly separable neural 
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subspaces when an animal prepares to move and initiates a movement (Elsayed et al. 2016). 

Taken together, primary motor cortical activity is often designated as a nonlinear dynamical 

system to support these different dynamics (Vyas et al. 2020). Unfortunately, modeling nonlinear 

dynamical systems is an extremely difficult and often intractable challenge; as such, researchers 

have developed approaches which approximate the hypothetical nonlinear dynamical system 

primary motor cortex may use to generate movement, without having to solve a complicated and 

hairy optimization problem (Sabatini and Kaufman 2021; Linderman et al. 2017; Glaser et al. 

2020; E. Fox et al. 2008; Pandarinath et al. 2018). I present an application of one such solution in 

Chapter 1 and discuss other approaches in the conclusion of this dissertation.  

While differential equations and linear algebra were brought to bear on population 

activity, an important body of work has focused on identifying the fundamental building blocks 

of movement, often called movement primitives. Classical perspectives on movement primitives 

posit that full sub-movements, those being a reach whose directionless speed profile is bell-

shaped, remains the coherent unit of movement coding for which primary motor cortex codes (A 

P Georgopoulos et al. 1982; Morasso 1981).  

Recent research has built upon this previous work by identifying neural patterns which 

imply a finer-grain decomposition, a small unit of basic building block of movement (Kadmon 

Harpaz et al. 2019). This work has shown consistent changes in population activity 

corresponding to speed extrema as opposed to speed minima. Without using kinematic data as an 

input, researchers used an HMM and found distinct population states under two different planar 

reaching paradigms, each of which corresponded to accelerative or decelerative segments 

moving in a particular direction. Moreover, using simple linear models, another study showed 

that a minority of neurons in motor cortex exhibit a unique encoding of movement during a 



 

7 

 

 

double step reaching paradigm (Dickey, Amit, and Hatsopoulos 2013); the neurons aborted their 

activity when the target moved positions, and seemingly restarted its activity as if beginning a 

new reaching movement; the remainder of the neural population continued coding for the end of 

the first movement, however. In contrast, there exists evidence that primary motor cortex 

simultaneously codes for rapid sequences of reaches, not building movement coding using fused 

elements (Zimnik and Churchland 2021). Evidence has been provided for mid-movement state 

transitions (Suway et al. 2018a), showing consistent stability in preferred directions during a 

three-dimensional center-out reaching task. Specifically, researchers found three epochs of stable 

PDs, between which populations discretely transitioned. Researchers have also showed that M1 

activity distinctly shifts consistently in the middle of reaching, potentially due to a change in 

population activity state (Takei et al. 2018). 

A key component of deciphering the relationship between brain and behavior is 

identifying the structure and nature of the brain activity itself. In M1, conversations about the 

main components of activity, the building blocks which are utilized to generate movement, have 

been in contention for decades. This dissertation’s goal is to further investigate the possibility 

that M1 population activity could be approximated with different blocks of low-dimensional 

patterns, particularly during movement. 

  



 

8 

 

 

1: Discrete Neural Population States Decompose 

Movement with Different Switching Linear Dynamics 

Introduction 

Prominent theories of motor control agree that populations of neurons in the primary 

motor cortex (M1) work in tandem to transmit commands via the midbrain and spinal cord to 

muscle groups, generating movement (Omrani et al. 2017). Research from a variety of scientists 

describe these coordinated signals as a dynamical system - that is, population activity that 

dynamically evolves over time and whose current state can predict its future state, with noise 

(Churchland et al. 2012; Vyas et al. 2020; Shenoy, Sahani, and Churchland 2013). Additionally, 

studies have identified different and separable dynamics in neural populations depending on the 

behavioral state of an animal (Elsayed et al. 2016). When an animal prepares to move, M1 

population activity displays distinct regimens of activity, which significantly shift when the 

animal begins to execute a movement (Kaufman et al. 2016).These changes in coordinated 

activity patterns have been identified using various analyses and have historically decomposed 

neural population “states” into preparatory and execution-related epochs. These movements 

often correspond with a set of rotational dynamics identified in low-dimensional latent space 

(Churchland et al. 2012). The ballistic reaches often observed in center-out reaching tasks can 

also be described as a “submovement” with an associated bell-shaped speed profile, i.e., an 

acceleration away from the center, paired with a deceleration as the hand approaches the target. 

Recent work suggests that neural population activity and coding significantly changes 

during movement itself and the bell-shaped speed profiles associated with a simple point-to-point 
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reaching movement could be separated into multiple neural states. Suway and colleagues (Suway 

et al. 2018b) demonstrated that the preferred directions of individual neurons quickly change 

between two periods of stability roughly associated with accelerative and decelerative 

components of point-to-point reaching movements. Moreover, Hidden Markov Models (HMMs) 

trained solely on neural activity in motor and parietal cortices have demonstrated that population 

activity reliably decomposes reaching kinematics into accelerative and decelerative components 

of movement (Kadmon Harpaz et al. 2019). 

Hidden Markov Models are Markovian processes which predict the probability that a 

system’s state is one of a set of possible states that cannot be directly observed. The hidden states 

of the system are inferred from observed emissions. The fundamental assumption of applying 

HMMs to modeling neural activity is that we can infer the overall hidden population state from 

the noisy signal of neural activity.  

However, while an HMM provides behaviorally meaningful decompositions of M1 

population activity, it has distinct limitations. In particular, the emission probabilities of a given 

hidden state are static - they cannot account for neural dynamics that occur within the state. 

Without extending the HMM framework, these models fail to describe whether and how the 

neural population follows predictable laws of motion within a given hidden state. As many 

recent studies have demonstrated, neural dynamics are important to incorporate into our 

understanding of discrete population states and their decomposition of resultant kinematics 

(Sabatini and Kaufman 2021; Musall et al. 2019; Omrani et al. 2017). Extending past patterns of 

kinematic decomposition using models that more faithfully capture the temporal evolution of 

population activity would bolster the case for mid-movement neural population states.  
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In order to incorporate neural dynamics while accounting for the possible discrete nature 

of population states in M1, we modeled population activity as a recurrent switching dynamical 

system (rSLDS); (Linderman et al. 2017). This class of generative models decomposes 

population activity into a set of discrete population states, each of which is modeled as a unique 

linear dynamical system, thereby approximating the underlying nonlinear dynamics as a 

piecewise set of linear dynamical systems. These models not only allowed us to decompose 

kinematics according to the most likely inferred population state at any given point in time, but 

they also enabled us to model distinct linear dynamics associated with each discrete state. Using 

rSLDS to model neural activity during continuous, sequential reaching movements performed by 

nonhuman primates, we show here that neural state transitions occur at speed extrema such that 

states map to accelerative and decelerative movement segments in particular motion directions, 

as has been shown with simpler models. More importantly, neural states associated with 

accelerative and decelerative movement segments possess qualitatively different characteristics 

in their neural dynamics. 

Methods 

Subjects and array implantation 

Experiments were conducted with three male rhesus macaques (“RJ”, “RS”, and “BX”). 

Multi-electrode Utah arrays were implanted in the arm/hand area of primary motor cortex of 

each subject. For RJ and RS, one 96-channel array (1.0 mm long electrodes) was implanted 

whereas for BX, two 64-channel arrays (1.5 mm long electrodes) were implanted parallel to the 

central sulcus on the precentral gyrus. Using intracortical microstimulation on the arrays in BX, 



 

11 

 

 

the medial array evoked responses in the proximal arm and wrist, whereas the lateral array 

evoked responses in the wrist and hand. All surgical and behavioral procedures were approved 

by the University of Chicago Institutional Animal Care and Use Committee and conform to the 

principles outlined in the Guide for the Care and Use of Laboratory Animals. 

Random Target Pursuit Task 

Subjects performed a Random Target Pursuit (RTP) task, which presented the animal 

with a sequence of seven pseudo randomly placed targets, one at a time (Figure 1A) (Kadmon 

Harpaz et al. 2019; Hatsopoulos, Joshi, and O’Leary 2004). Subjects moved a cursor to the 

targets on a screen by controlling the position of a handle in the horizontal plane which was 

placed at the end of a two-link exoskeletal robot (Kinarm Kingston, Ontario) on which their arm 

rested. Once the cursor controlled by the animal intersected with a target, it would disappear and 

the next target in the sequence would appear. After seven target intersections, the trial was 

marked successful and the animal was rewarded. We only included and analyzed successful 

trials. 
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Figure 1. Random Target Pursuit Task, rSLDS overview, and state-space visualization. A. 

Subjects were presented with seven targets sequentially at random locations, reward was 

delivered upon intersection with the final target. B. Neural population activity was summed 

across 50ms bins, and modeled using a recurrent switching linear dynamical system to identify 

and describe common activity patterns using multiple linear dynamical systems. C. Graphical 

model of the recurrent switching linear dynamical system. Recurrent connections are labeled in 

red. D. Hypothetical example of a two-dimensional, three-state model flow field; visualizing the 

piecewise linear approximation of nonlinear dynamics. 

Data Collection 

Detailed explanations of data collection and handling can be found in previous work from 

our research group (Hatsopoulos, Xu, and Amit 2007). The exoskeleton used by the subjects 

tracked their shoulder, elbow, and hand position, translating their movements to a cursor on a 

screen in their line of sight (BKIN Technologies). X and Y hand positions were gathered using 
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forward kinematics calculations from motors attached to the shoulder and elbow joints of the 

exoskeleton. RS and RJ kinematics were sampled at 500Hz; BX kinematics were collected at 

2kHz. 

Neural data was gathered at 30kHz with Blackrock Utah microelectrode arrays implanted 

in Primary Motor Cortex. Signals from individual separable neurons were sorted offline, with the 

number of units recorded ranging from 70 units for subject RJ, 100 units for subject RS and 141 

units for subject BX. 

Data Processing 

Data from RJ and RS were spike sorted using Offline Sorter (“Offline Sorter” 2017); data 

from BX was spike sorted using Kilosort2 and manually curated using Phy (Pachitariu, Sridhar, 

and Stringer 2023). Spiketimes detected from spike-sorted waveforms were collected into bins 

with the width of 50 ms. Neural and kinematic data were included in trials defined as a window 

of time from the initial target intersection to the last target intersection. 

Kinematics were resampled to 1kHz for all subjects and bidirectionally low pass filtered 

at 6hz using a 6th order Butterworth filter. Directionless speed and acceleration were calculated 

from x and y velocity data. Based on the discrete state transition times derived from the 

appropriate rSLDS model, we broke up each trial’s kinematics into snippets of movement 

according to each discrete state visit over 100ms. We collated these snippets according to each 

discrete state identity, across trials. We calculated kinematic metrics to characterize each discrete 

state’s kinematic decomposition, including mean snippet duration (as seen in Figure 4B), 

normalized speed profiles (Figure 2A), and state snippet direction (Figure 2A). 
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rSLDS Implementation 

The primary goals of the present work is to verify the reliability of previous results found 

by Kadmon Harpaz (2019) using more sophisticated modeling approaches. An essential part of 

that is to verify those results using the same analytical approach. We began by replicating the 

results from previous work using the same models and different datasets. We utilized the tabular 

nonparametric hidden Markov model described in Kadmon Harpaz (2019) and verified similar 

results. This type of model, instead of designating a particular emission model for some 

distribution of emission values (such as a Poisson emission model, which designates a 

probability of spiking), fits a parameter to each unique spike count integer present in the dataset 

across the neural population for each discrete state. As with the models we present in our main 

results, the number of discrete states for these tabular models were provided a priori; unlike our 

main results, the optimal number of states were determined using minimum Akaike Information 

Criterion (AIC), calculated separately for each subject’s dataset. Specifically, we were able to 

verify that the discrete state timing modeled using a nonparametric tabular HMM demonstrated 

consistent state transitions at speed extrema, and each discrete state showed accelerative or 

decelerative trends in speed. 

The main results presented here are based on state space models developed by Scott 

Linderman’s research group under the umbrella term “ssm” (State Space Models). We present 

results mainly from the recurrent Switching Linear Dynamical Systems (rSLDS) class of models 

included in ssm. 

Linear Dynamical Systems (LDS) are commonly used to characterize neural population 

activity (Shenoy, Sahani, and Churchland 2013). In the context of summarizing and describing 



 

15 

 

 

brain activity, LDS models often identify latent neural subspaces/manifolds within high-

dimensional neural activity and use a linear set of differential equations to describe the low-

dimensional latent activity. Switching Linear Dynamical Systems incorporate Markovian 

discrete states and low-dimensional latent continuous states, whose probabilities and transitions 

are modeled with a Hidden Markov Model; these switching models allow each discrete state to 

be associated with a separate set of low-dimensional linear differential equations (Linderman et 

al. 2017). By identifying areas of latent space where specific population states have the highest 

probability, SLDS models break up low-dimensional latent space into “pie slices” of separate, 

individual linear dynamical systems with distinct linear dynamics. Recurrent SLDS models 

(rSLDS) extend this approach by allowing the linear dynamics of each discrete state to influence 

the probabilities of discrete state transitions (Equation 2). Put another way, rSLDS models are 

allowed to learn the dependence between a continuous state in a certain location in state space, 

and discrete state switch timing; if a latent neural trajectory maintains its presence in a particular 

area of state space and exhibits similar dynamics, it will resist switching discrete states due to 

that behavior, even if discrete state Markovian transition probability to switch is high.  

rSLDS models characterize population dynamics using latent variables with lower 

dimensionality than the entire neural population. A Generalized Linear Model (GLM) is 

established and fit to describe a linear transformation between high-dimensional neural activity 

and low-dimensional latent space and is trained alongside continuous and discrete states using 

expectation maximization and a structured mean field variational posterior. The details of 

optimization procedures can be found in Linderman et al., (2017) or Glaser et al,. (2020) 

(Linderman et al. 2017; Glaser et al. 2020). 
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The rSLDS models we used here assumed diagonal gaussian dynamics (the diagonal and 

gaussian characteristics only extend to the noise term included in fitting the dynamics) with a 

Poisson emission distribution of spike times. All models for each subject were trained on 

available neural data from 80% of behavioral trials and tested using the remaining 20% of trials. 

In addition, during cross-validation, models were trained on 75% of the recorded neurons, with 

25% held out to solely test on.  

The low-dimensional latent trajectory of a given trial is determined by the dynamics A, a 

bias term b, and a gaussian noise covariance term Q at each timestep t.  

(1) 𝑥𝑡 ≈ 𝐴(𝑧𝑡)𝑥𝑡−1 + 𝑏(𝑧𝑡) + 𝑄(𝑧𝑡) 

Discrete state switching is determined using a Markovian process; the most probable 

discrete state at any point in time and at any given point in low-dimensional latent space is 

determined by a combination of markov state probabilities R and recurrent weights x from the 

previous timestep: 

(2) 𝑧𝑡 ~ 𝐶𝑎𝑡(𝜋𝑡), 𝜋𝑡  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑧𝑡−1
𝑥𝑡−1 + 𝑟𝑧𝑡−1

), 

Discrete state timing was estimated for each test trial, and mapped to kinematic data with 

a 100ms lag to account for the delay between the motor cortical activity and limb movement 

(Schwartz 1994; Paninski et al. 2004). Kinematic data was segmented into separate snippets 

according to neural state timing. State snippets were collected and analyzed for various 

characteristics and compared with the corresponding discrete states’ linear dynamical systems. 

Cross Validation Procedures 

rSLDS models utilize advanced optimization procedures to identify local minima 

solutions, but they require a small number of hyperparameters to be specified a priori. For our 
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purposes, the most important hyperparameters to identify were the optimal number of discrete 

states and the dimensionality of the resulting latent state model where the continuous states and 

linear dynamics for each discrete state would be defined. We performed a grid search across a 

range of potential discrete states and latent dimensions (2-40 discrete states, 2-80 latent 

dimensions), calculating the mean of the log-likelihood of held-out trials across five separate 

folds of test and train data (using the same 80%, 20% test split). We implemented neural 

population co-smoothing by additionally holding out 25% of the neural population during 

training and calculated the log-likelihood of the neural activity of only those neurons in held-out 

test trials given the trained model. Stated another way, when calculating the probability of test 

data, models were trained on 80% of available trials; for those 80% of trials, 75% of the 

available neural population were used for training. When testing these trained models, we 

calculated the likelihood that the held out 20% of trials, and the 25% of neurons within those 

trials, could be produced given the trained models. This method of training latent variables 

models on a portion of a neural population is referred to as Co-Smoothing. Co-smoothing allows 

for a more accurate assessment of cross-validated model performance to infer neural population 

activity (Pei et al. 2021). 

Dynamics Analysis 

In addition to providing a more sophisticated analysis of population activity, we used 

rSLDS models to investigate any connection between the linear dynamics of each discrete state 

and the kinematics they generate. We focused our analysis on the speed of latent trajectories of 

all trials in our dataset, as well as the eigenvalues and eigenvectors of the linear dynamics 

matrices 𝐴 for each discrete state for each subject. Additionally, we assessed the dimensions 
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accounting for the highest portion of variance for each discrete state by projecting latent values 

from each state onto their respective eigenvectors. We selected a subset of dimensions for each 

discrete state based on their highest variability up to 90% cumulative variance. The results 

presented in Figure 4 were calculated using that subset of dimensions for each subject and 

discrete state. A key component of our analyses included examining the low-dimensional latent 

trajectories of individual trials. We calculated the speed of these trajectories as they evolved over 

time through different discrete states (and therefore different sets of linear dynamics) and 

compared those collections of trajectories between different classes of states. 

Results 

rSLDS model fitting 

We analyzed population activity from M1 in three non-human primates who were trained 

to perform a random-target pursuit (RTP) task in the horizontal plane. The RTP task required the 

animal to reach continuously to a sequence of randomly positioned targets, as opposed to single 

ballistic movements often seen in center-out reaching tasks (Figure 1A). We used rSLDS models 

to analyze the latent dynamical structure of neural activity during each animal’s reaching 

behavior, decomposing kinematics into discrete states solely based on neural population activity 

(Figure 1B-D). 

Utilizing a cross-validated and co-smoothed grid search from 2-40 discrete states and 2-

80 latent dimensions, we were able to identify the following optimal states and dimensions for 

each subject’s datasets. We used 10 states and 25 dimensions for subject RS, 14 states and 22 

dimensions for subject RJ, and 10 states and 30 dimensions for subject BX. Individual cross-
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validated performance plots of log likelihood grid searches can be found in supplementary 

materials (Figure S2).  

 
Figure 2. Decomposition of kinematics using rSLDS. A. a subset of discrete states, showing 

the kinematic segments and the normalized mean speed profiles of the segments corresponding 

to each state for subject RS. The inset polar histogram shows the directionality of each state’s 

segments. B. The relationship between the number of state transitions and speed extrema across 

trials. Each point corresponds to a single RTP trial. 

 

Kinematic Decomposition 

We assessed whether the transitions in discrete states (and therefore linear dynamics) 

occurred at relevant and consistent points in behavior. The rSLDS model identified states that 

decomposed continuous, sequential reaching movements into segments moving directions that 

were either accelerative or decelerative (Figure 2A). To determine whether a state was classified 

as accelerative or decelerative, we computed a linear regression to the normalized speed profile 

of each states’ movement snippets; if the slope of the linear fit was higher than 0.2, it was 

classified as accelerative. If it was below -0.2, it was classified as decelerative.  

To evaluate whether neural transitions occurred close to speed extrema, we first 

computed the correlation between the number of speed extrema in each trial and the number of 

discrete states transitions in each trial. We calculated the threshold for speed extrema detection 

by equating the number of speed extrema to the number of discrete state transitions across the 
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entire dataset, not per trial. the number of speed extrema per trial were significantly correlated 

with the number of state transitions (r=0.46, p<0.0001 for RS, r=0.16, p<.01 for Bx. and r=0.73, 

p<0.0001 for RJ) (Figure 2C; Figure S2D-F).  

For each instance of a speed extrema, we also calculated metrics of Precision and Recall 

utilized in Kadmon Harpaz (2019) and compared Precision and Recall scores to scored 

calculated using a null model. In our analysis, a “true positive” was registered if a speed 

extremum occurred within 50ms of a neural transition, a “false positive” if a state transition 

occurred without a speed extremum nearby, and a “false negative” if a speed extremum was 

detected without a state transition nearby. Precision was defined as: 

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall was defined as: 

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

These metrics were calculated using 2000ms windows, across all trials concatenated 

together, within each subject separately. Our null model was calculated by randomly shuffling 

the order of the windows of neural transition timepoints, such that the state transition windows 

were no longer matched with their original location in the dataset. The best outcome of prevision 

and recall would be a value of one; we found that for all three subjects’ data, precision and recall 

were significantly greater for the real state transitions and kinematics than the null shuffled 

model (p < .001)  (Figure 2B; Figure S2A-C).  
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Figure 3. Decoding and cross-validated performance results. A,B,C. Cross-validated and co-

smoothed log-likelihood, for a linear dynamical system (black), versus the optimal discrete state 

rSLDS model (green). Across all three subjects, rSLDS models had a higher probability of held-

out test data then LDS models. D,E,F. Treating latent variables from each model (save raw 

neural data) as the inputs, linear Kalman filters were used to predict hand velocity on portions of 

held-out test data. rSLDS model R2 is plotted on the x-axis, compared with one of three 

alternative models on the y-axis. Dots plotted below the diagonal indicate superior rSLDS model 

performance. 

Comparison with other models 

Next, we compared rSLDS with other simpler models in terms of capturing the spatio-

temporal structure of M1 population activity, and of decoding movement of the hand. These 

other models included a single, non-switching linear dynamical system (LDS), as well as a 

Poisson parametric Hidden Markov Model (HMM) that does not consider dynamics. Using a 
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parameter sweep (through a range of latent dimensions for latent variable models, and a range of 

discrete states for HMM models), we found the optimal number of discrete states for the rSLDS 

and HMM models using the log likelihood of held-out trials / neurons from cross-validated and 

co-smoothed data. We then systematically varied the number of latent dimensions for the rSLDS 

and LDS models and compared log likelihood of held-out test data (Figure 3A-C). The log 

likelihood for the optimal rSLDS models were higher than that of the two other two models for 

all three subjects, indicating the recurrent switching model more accurately captured the 

structure of the data. Hidden Markov Models  do not employ low-dimensional neural 

trajectories, so we were unable to include cross-validated performance metrics for these classes 

of models in Figures 3A-C. 

We then examined whether the latent trajectory values from the rSLDS model could 

more accurately decode hand velocity than latent trajectory values from other models. We used a 

Kalman filter (KordingLab python decoding package), treating latent dimension values from the 

LDS and rSLDS model as the inputs, with x- and y- components of hand velocity as the 

predicted outputs. Decoders were trained on ninety-nine percent of available data, with one 

percent held out to evaluate predictive fit using the fraction of variance accounted for metric 

(R2). Test performance was evaluated across 100 folds of data. Three different models were 

chosen to benchmark rSLDS latent value decoding performance: the LDS latent dimension 

value, the parametric HMM’s mean spike count parameters from the emission probabilities, and 

the raw high-dimensional neural data (evaluated in 50ms bins). In the HMMs’ case, in lieu of 

low-dimensional latent variables as decoder inputs, we used the Poisson mean spike count 

parameters for each neuron associated with the discrete state, at each time point for which the 

given state was most probable; for example, if an HMM were to predict state 4 as most probable, 



 

23 

 

 

the input values for the decoder would be the mean spike count parameter for each neuron 

associated with state 4, for as long as that state is most probable and active, switching to a 

different set of mean spike count parameters if another state became more probable. 

We compared R2 across equivalent cross-validated test folds of data for these four types 

of models, including rSLDS (Figure 3). Across all three subjects, rSLDS models decoded 

kinematics as well or better than other models; using a Wilcoxon rank-sum test, across all five 

cross-validation folds of data, rSLDS performed significantly better than the other tested inputs 

(p < 0.01, Wilcoxon rank-sum). 

State Dynamics 

Each discrete state modeled by rSLDS is associated with its own unique linear dynamical 

system, which can be characterized using the eigenvalues and eigenvectors of the dynamics 

matrix of each state. We found that the real eigenvalues of each state, for each subject, ranged 

from 0 to 1, indicating convergence and decay to their respective fixed points. We also verified 

that the corresponding imaginary eigenvalues were all larger than zero, indicating rotation of the 

states’ linear dynamics around their given fixed points (Figure 4A). We found that discrete states 

with short-duration kinematic snippets, meaning that certain discrete states had smaller 

timelengths of continuous state visits, displayed lower real eigenvalue magnitudes (Figure 4B). 

This trend demonstrates that fast-decaying dynamics tend to be associated with short state visits, 

and therefore shorter movement snippet in kinematics. This trend was shown across all three 

subjects, and implied that short movements may be driven by fast-decaying state dynamics. 
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Figure 4. Differences in dynamics of discrete states; top row shows results from subject RS, 

middle row subject BX, and bottom row subject RJ. A. speed of neural trajectories belonging to 

accelerative and decelerative eigenvalues. B. Comparison of individual state real eigenvalue 

magnitude and average snippet length C. Cosine of the angle of state eigenvectors which 

transition between one another, compared to angles between all other states. 
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States were classified as “accelerative” based on the slope of mean normalized speed 

profiles of respective kinematic segments. Accelerative states had significantly lower real 

eigenvalues (p < 0.05, test) and demonstrated higher (though not significantly so) imaginative 

components of complex eigenvalues than decelerative states. We also compared the directionless 

“speed” of neural trajectories (calculated using the derivative of the latent value across 

dimensions) in accelerative versus decelerative states and found significant differences (Figure 

4A). Neural trajectories in accelerative states were over 25% faster than those in decelerative 

states. All three subjects displayed faster trajectories in accelerative states than decelerative 

states.  

Neighboring States Similarities 

While rSLDS models approximate a lower-dimensional nonlinear dynamical system 

using multiple discrete piecewise linear dynamical systems, the neural trajectories which travel 

through latent space and across discrete state boundaries are smooth and continuous. We wanted 

to find out whether the direction of different discrete state dynamics was more similar for 

transitions between adjacent states for which we observed neural trajectories from our data. We 

found that the directions of dynamics as measured by the eigenvectors of adjacent states, whose 

boundaries supported neural trajectories observed in data, were more similar to one another than 

states where transitions never occurred (Wilcoxon Rank Sum Test, p < .05)(Figure 4C). This 

result implies that transitions represent a change in dynamics strength and direction but a 

continuity of neural trajectory; these discrete states do not require neural trajectories to support 

discontinuities in low dimensional latent space.  
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Discussion 

By incorporating neural dynamics in a state-based population model, we have provided 

further evidence that population activity in M1 transitions across discrete states, each of which 

maps to an accelerative or decelerative directional segment of upper-limb movement. Each state 

is characterized by a unique linear dynamical system whose properties differ qualitatively 

between associated accelerative and decelerative segments. These results suggest alterations in 

neural population coding over the course of a continuous movement. 

Why distinct neural population states decompose continuous movements into accelerative 

and decelerative movement segments is unclear. One possibility is that these different segments 

are associated with distinct agonist/antagonist muscle groups. However, our analysis identified 

distinct population states for accelerations in one direction and decelerations in the opposite 

direction which presumably recruit similar muscle groups (See orange and gray states in Figure 

2A). Another possibility is that tuning properties of individual neurons become unstable across 

the population at certain points in a reaching movement thus resulting in population state change. 

In particular, one particularly relevant study indicated that directional tuning across a neural 

population remains stable for brief periods of time punctuated by instabilities at one or two 

points during a point-to-point reaching task (Suway et al. 2018b). The first of these instabilities 

occurs after movement onset at ~100 ms before peak speed which, given a ~100 ms lag between 

M1 and limb movement (Schwartz 1994; Paninski et al. 2004), may correspond to a population 

state transition we observed from acceleration to deceleration. The second of these instabilities is 

more prominent in reaching movement that require stopping at the target which does not apply in 

the random-target pursuit task where movements move through the targets without stopping. 
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Mid-movement neural decomposition implies a potentially different view of what 

constitutes a movement primitive at least at the level of primary motor cortex. Classical 

perspectives on movement primitives propose that submovements with bell-shaped speed 

profiles (i.e. a combination of acceleration and deceleration) constitute the kinematic units of 

reaching movements (A P Georgopoulos et al. 1982; Morasso 1981). Our results suggest that 

population cortical activity decomposes movements at a finer grain and forms neural building 

blocks that parse movements at speed extrema as opposed to whole submovements. 

We observed linear rotational dynamics within each discrete state, in line with past 

studies identifying rotational dynamics associated with movement (Churchland et al. 2012; 

Sabatini and Kaufman 2021; Musall et al. 2019). However, given that population dynamics in 

motor cortex is almost certainly non-linear (Sabatini and Kaufman 2021), we argue here that an 

accurate description of population dynamics can be obtained by approximating the non-linearity 

as a piecewise linear system Of the available sophisticated generative models that combine 

discrete state-based structure with neural dynamics (E. B. Fox et al. 2010; E. Fox et al. 2008; 

Glaser et al. 2020; Zoltowski, Pillow, and Linderman 2020), we moved ahead with models which 

incorporated switching behavior.  

Limitations 

Generative models such as rSLDS provide a unique opportunity to predict the evolution 

of neural activity over time. Because of time and availability, we were unable to implement 

additional analyses to evaluate the predictive ability of these rSLDS models or implement 

comparisons to more sophisticated neural decoders such as LFADS. 
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Future Directions 

This project represents the application of rSLDS to a random target pursuit behavioral 

task; these tools and analytic approaches could be applied to any collection of time series 

behavior and population activity. There is no reason to believe that rSLDS could not be applied 

to orofacial behavior, grasping behavior, or even naturalistic locomotion with neural network 

kinematic tracking such as DeepLabCut (Mathis et al. 2018). All in all, It is important to find out 

whether the primary motor cortex uses similar dynamical modes to produce different behaviors; 

by expanding the collection of behaviors, similarities between discrete states may be identified 

across categories of movements. 

More sophisticated dynamics analysis would help elucidate meaningful differences or 

similarities between discrete states’ linear dynamical systems. Since our study began, more 

advanced versions of recurrent dynamical systems models have been released including faster 

implementations of rSLDS (Chang et al. 2022). Other researchers have also extended rSLDS to 

model multiple separate neural populations (Glaser et al. 2020). We look forward to extending 

and validating the results presented in the current study using these recently developed methods. 

Other approaches such as LDR are converging on similar dynamical phenomena, approximating 

nonlinear dynamical systems to drive behavior (Sabatini and Kaufman 2021). 
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2: Conclusion 

Recurrent Switching Linear Dynamical Systems (rSLDS), applied to neural data 

associated with more naturalistic and complex behavior such as the Random Target Pursuit Task, 

provides a tractable and interpretable set of computational tools to approximate the nonlinear 

dynamical system of primary motor cortical activity. The work presented in this dissertation 

demonstrates that rSLDS and similar models can be used to model and structure neural data. 

Also, the dynamics and structure identified by these models can be linked to behavior. In 

particular, the work presented here contributes to convergent support that M1 utilizes 

significantly different building blocks of neural activity to drive arm movements during 

accelerative and decelerative reaches in different directions.  

M1 certainly engages with complex nonlinear dynamics for at least three crucial reasons. 

M1 must incorporate sensory feedback from multiple brain regions at diverse types of delays; it 

must also receive signals from higher-level motor areas containing sequence (Supplementary 

Motor Area) and preparatory (dorsal Premotor Cortex) information. It needs to incorporate these 

inputs while also coordinating the generation of neural patterns to generate movement via output 

pathways (e.g., red nucleus, thalamus, spinal cord). As such, it would make sense for M1 to 

generate different patterns of activity at different periods of time, potentially even during the 

execution of movement.  

While M1 may drive movement using a nonlinear set of dynamics, computationally 

modeling such a system in a nonlinear way proves difficult. Optimizing and fitting a nonlinear 

dynamical system to neural data is currently intractable, so rSLDS sidesteps the issue by 

approximating a nonlinear system with a piecewise combination of linear dynamical systems 
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with discrete borders. Fitting, modeling, and analyzing sets of linear differential equations is 

much easier, therefore allowing researchers to evaluate hypotheses and present results in a more 

effective way. rSLDS is just one example of a collection of converging neural population activity 

analysis methods, but there are other approaches worth considering, especially in the pursuit of 

understanding the basic building blocks of activity that primary motor cortex may use to generate 

movement. 

Future Directions 

While my dissertation is mostly focused on a set of models developed by the Linderman 

group in 2018, development has continued apace. As of writing, the Linderman group recently 

released a new set of models, underpinned by Google’s JAX framework, dubbed DYNAMAX 

(Chang et al. 2022). DYNAMAX promises to make fitting and applying probabilistic latent state 

space models easier, all while enabling compatibility with modern machine learning capabilities 

and toolboxes. While not defined as a neuroscientific endeavor, groups like Linderman’s 

continue to push the frontier of probabilistic latent state-space models, for all aspects of 

applications, not only neural activity. 

A computational approach aimed squarely at uncovering the complexity of motor cortical 

activity comes from Matthew Kaufman’s lab here at the University of Chicago, with their 

development of their Location Dependent Rotations (LDR) model of motor activity (Sabatini and 

Kaufman 2021). LDR posits that M1 activity inhabits a low-dimensional curved latent manifold, 

which supports many locations for rotational dynamics, depending on the direction and type of 

movement. By describing neural dynamics as a “record player in a large bowl,” Sabatini and 

Kaufman put forward another way to approximate nonlinear dynamics in a tractable way. To 
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make considerable progress in understanding the structure of M1 activity and its connection to 

movement, strong and equitable collaborations must occur between experimentalists and 

computational groups. Collaborations must occur to ground progress in experimental work, and 

research labs which combine experiments with theory should continue to be supported. 

Other Behavioral Contexts 

One of the major potential benefits from probabilistic generative models such as rSLDS 

is that they do not rely upon trial-averaged data (Linderman et al. 2017). This characteristic 

allowed us to analyze RTP data, but it also means that these models are extensible enough to 

identify and model high-dimensional neural data from any brain area. Our implementation of 

rSLDS decomposes behavioral data using the structure identified purely from neural data and 

could be applied to other tasks and behavioral contexts. This implementation would allow us to 

address one of the largest potential follow-up questions from this dissertation: to what extent do 

these neural population states generalize to other behavioral contexts? 

In our lab, we were able to record animals performing two different tasks (center-out 

reaching and RTP) within the same recording session. This means that we should be able to 

analyze the same cortical population generating two distinct tasks and compare the results. These 

data are a valuable tool for comparison, since it is still difficult to isolate neurons across 

recording sessions, especially with chronically implanted arrays. If distinct population states are 

a common characteristic of motor command structure, one would expect finding consistent state 

structure in different behavioral tasks. If states found in one task fail to be identified in another, it 

may hint at population states as a more limited and constrained phenomena. Additionally, we 

must further explore the nature of the transitions between said population states; while our 
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previous method displays a state transition between two 50ms time bins, the timescale and nature 

of transitions is certainly more complex, as evidenced by Schwartz’ work (Suway et al. 2018b). 

One benefit of dual-task recordings is the ability to train neural models on data from one task and 

test the model on data from the other task in the same session. While this approach only works in 

situations where the same neural population is recorded in multiple tasks, it allows for a direct 

test of latent state applicability for these models. 

Even without the ability to apply models from one task directly to different behavioral 

context, there remains enormous benefit for analyzing existing neural and behavioral data with 

new tools. For example, the Hatsopoulos Lab has gathered neural and kinematic data associated 

with animals reaching and grasping various objects (Saleh, Takahashi, and Hatsopoulos 2012). 

Additionally, the lab has a long-standing interest in orofacial control, including a large amount of 

data concerning tongue and jaw movement (Laurence-Chasen et al. 2023). Bringing these new 

probabilistic models to bear on additional rich datasets could prove extremely fruitful for 

identifying links between neural activity and behavior. 

Additional Brain Areas 

Just as the computational approaches mentioned here can be applied to other behavioral 

tasks, they can just as effectively be applied to other brain areas for the same tasks. In fact, 

population states have already been identified in visual cortex (Engel et al. 2016) and parietal 

cortex using Hidden Markov Models (Diomedi et al. 2021). While we could conduct new 

experiments, many chronic recording implants and resulting datasets from our lab contain neural 

populations from premotor cortex. Dorsal premotor cortex contains higher-order motor 

information about target location and movement preparation; it may demonstrate significantly 
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different neural population state structure and dynamics if modeled using rSLDS (Dekleva, 

Kording, and Miller 2018). Premotor cortex may utilize population states for motor planning 

during the preparation stages of movement but not during execution; however, little research has 

been conducted to confirm this. Conversely, premotor cortex may not exhibit state-based 

structure at all, implying M1 is unique in its temporal structure. 

Analyzing Muscle Activity 

Another important ambiguity to be interrogated is the relationship between neural activity 

in neocortex, and muscle activity. We still do not understand the signal transformations that 

occur along the motor pathway between these two parts of the nervous system, but by analyzing 

the temporal structure of activity at both points, we may gain some insight without needing to 

record directly from the spinal cord. There is evidence to suggest that intermittent changes in a 

motor control signal (in this case, a firing rate transient) are interpreted by the spinal cord and 

transformed into continuous activity in muscles (Shalit et al. 2012), but this concept has not been 

examined in the context of state-based population activity and transitions. 

A possible approach to analyzing muscle activity would be to simply decompose signals 

from recorded muscles in the same manner as kinematics. However, a more interesting analysis 

would involve using EMG recordings from muscles as inputs to a switching linear dynamical 

system model instead of neural activity; these probabilistic models, although discrete, may be 

able to identify the latent structure of the transformed motor signal, if it exists. We would expect 

not to observe similar state structure at this point in the motor system, but it may uncover other 

latent structure to these signals. 
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Overall Conclusion 

From the very beginning, my intention with my PhD research and dissertation work were 

two-fold: to become a responsible, high-performing scientist, and to contribute in some way to 

the ongoing conversation about motor control. With these experiments, I have gained the skills 

necessary to conduct science well. I have also been able to contribute to the scientific 

conversation in two ways: there are consistent and significant differences in the neural dynamics 

which drive accelerative versus decelerative movements in various reach directions; in addition, 

I have demonstrated that using discrete state and linear dynamical system categorization to 

decompose kinematics is a useful, extensible, and tractable way to analyze complex, naturalistic 

behavioral data. 
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Appendix 

A. Longevity and Reliability of Chronic Unit Recordings 

Abstract 

Objective. Microelectrode arrays are standard tools for conducting chronic 

electrophysiological experiments, allowing researchers to simultaneously record from large 

numbers of neurons. Specifically, Utah electrode arrays (UEAs) have been utilized by scientists 

in many species, including rodents, rhesus macaques, marmosets, and human participants. The 

field of clinical human brain-computer interfaces currently relies on the UEA as a number of 

research groups have FDA clearance for this device through the investigational device exemption 

pathway. Despite its widespread usage in systems neuroscience, few studies have 

comprehensively evaluated the reliability and signal quality of the Utah array over long periods 

of time in a large dataset. Approach. We collected and analyzed over six thousand recorded 

datasets from various cortical areas spanning almost 9 years of experiments, totaling seventeen 

rhesus macaques (Macaca Mulatta) and two human subjects, and fifty-five separate 

microelectrode Utah arrays. The scale of this dataset allowed us to evaluate the average life of 

these arrays, based primarily on the signal-to-noise ratio of each electrode over time. Main 

Results. Using implants in primary motor, premotor, prefrontal, and somatosensory cortices, we 

found that the average lifespan of available recordings from UEAs was 622 days, although we 

provide several examples of these UEAs lasting over one thousand days and one up to 9 years; 

human implants were also shown to last longer than non-human primate implants. We also found 
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that electrode length did not affect longevity and quality, but iridium oxide metallization on the 

electrode tip exhibited superior longevity and quality as compared to platinum metallization.  

 

Significance. Understanding longevity and reliability of microelectrode array recordings 

allows researchers to set expectations and plan experiments accordingly and maximize the 

amount of high-quality data gathered. Our results suggest that one can expect chronic unit 

recordings to last at least two years, with the possibility for arrays to last the better part of a 

decade. 

1. Introduction 

First developed in 1992, a microelectrode array recording platform now called the “Utah 

Electrode Array” (UEA) has provided the opportunity for researchers to record from populations 

of neurons simultaneously, in-vivo, in a chronic preparation (Jones, Campbell, and Normann 

1992). Today, UEAs are a standard data collection method for systems neuroscience and 

represent a common choice for chronic multi-electrode array recordings, particularly in animal 

models such as rodents and non-human primates (NHPs), including macaques and marmosets 

(Walker, MacLean, and Hatsopoulos 2017; Black et al. 2018; Barrese et al. 2013). With the 

popularity of such a tool comes increased scrutiny on the reliability and failure modes of the 

technology. UEAs, like all chronic neural implants that interface with brain tissue, usually 

degrade in their recording capabilities over time (Barrese et al. 2013); in some cases, these 

implants can experience more acute issues, either during surgical implantation or shortly 

thereafter, whereas in many other cases these implants can reliably record unit activity for 

several years (Barrese et al. 2013). These implants have been in widespread use for many years, 
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yet there have been few attempts to quantify the reliability of this technology in-vivo (Barrese et 

al. 2013). Most previous efforts to quantify the signal quality of UEAs over time, while laudable, 

have focused heavily on the consistency of neuronal characteristics in a small sample size of 

implants and subjects (Rousche and Normann 1998; Suner et al. 2005; Chestek et al. 2011; 

Downey et al. 2018; Fraser and Schwartz 2012). Other studies have examined the longevity and 

reliability of other chronic electrophysiological recording technologies, to help researchers 

manage expectations and select the right tool for the job (Kozai et al. 2015; Salatino et al. 2017; 

Polikov, Tresco, and Reichert 2005a; Buzsáki 2004). However, one previous study has examined 

the failure modes and reliability of UEAs from a large sample size, albeit with UEAs undergoing 

significant changes in manufacturing processes (4). The current work aims to extend this 

previous study by considering more recent UEAs whose manufacturing process has become 

relatively stable and considers UEAs with iridium oxide metallization optimized for stimulation 

as well as platinum metallization on the electrode tips.  

UEAs currently remain the only FDA-cleared intracortical implant for chronic human 

neuroscientific studies under Investigational Device Exemptions (IDE), an allowance which is 

held by several groups across the United States. There have been at least eighteen human 

subjects who have received a chronic UEA implant for brain computer interface (BCI) studies 

reported in the literature as of 2019 (Bullard et al. 2020), and we estimate that at least another 

seven people have been implanted since then (Collinger 2021). Human studies require ongoing 

consideration of the risk-benefit ratio of implanting human subjects, which will be informed by 

more information on the expected reliability and longevity of these implants over time. A 

majority of human studies expect participants to remain in the study for at least 1 year, which is 

supported by a significant body of evidence demonstrating the safety and efficacy of these 
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devices for long term recording (Walker, MacLean, and Hatsopoulos 2017; Black et al. 2018). 

Here we extend this earlier work by examining a large number of array implants over extended 

durations up to 9 years in both humans and non-human primate subjects.  

It is likely that the UEA will continue to be the dominant neural recording platform for 

human intracortical BCI studies in the near future. FDA clearance for investigational approval 

still requires the collection of significant longitudinal safety and efficacy data along with the 

institutional knowledge for a successful clinical trial design (Center for Devices and Radiological 

Health, n.d.). A number of efforts are currently underway to develop more advanced tools for 

chronic implants across non-human and human primates alike (Jun et al. 2017; Musk 2019; 

Piech et al. 2020), but given the prevalence of the UEA for chronic recording and stimulation, it 

is imperative to characterize the reliability of these arrays across and within species, to take full 

advantage of their capabilities. 

Here, using data from over 6000 recording sessions in 55 array implants across human 

(n=2) and non-human primate (n=17) subjects, we assess the reliability of long-term unit 

recordings in primary motor, dorsal and ventral premotor, prefrontal, and primary somatosensory 

cortices. We show that nearly fifty percent of implants exhibit year-long recordings with a yield 

greater than 40% of the total available electrodes displaying satisfactory quality (SNR>1.5). 

Moreover, long-term recordings from ~1000 days and up to nine years are shown to be possible 

in some cases. We also examine the influence of electrode length and electrode-tip metallization 

on the longevity and quality of recordings. 
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2. Methods 

2.1 Non-Human Primate Subjects  

Recordings collected during the period of 2003-2020 from a total of 55 UEAs implanted 

in seventeen rhesus macaques (Macaca Mulatta) (10 female, seven male) were analyzed. This 

project analyzed data from the maximum possible number of recordings throughout the history 

of our research group. All animals were implanted with at least one (often two or more) UEAs 

(Blackrock Microsystems, Inc. Salt Lake City, UT). The earliest implants were manufactured by 

Cyberkinetics Neurotechnology Systems, Inc., Foxboro MA whose research business was sold to 

Blackrock Microsystems, Inc. in 2008. The metallization, number of electrodes, and electrode 

length of these arrays varied depending on brain area, scientific need, and implantation year, and 

individual array details are included in Table 1. Briefly, arrays were either implanted as an 8x8 

or 10x10 grid, with either 1.5 mm or 1.0 mm length electrodes (although never mixed within a 

given array), with electrode tips metallized with either platinum or iridium-oxide. Since our 

research group focuses primarily on upper limb motor tasks, UEAs were most often implanted in 

primary motor (M1), dorsal premotor (PMd), or ventral premotor cortices (PMv). Other 

implanted areas included somatosensory (S1), orofacial primary motor (M1o), and prefrontal 

cortex (PFC). We saw no appreciable difference in signal longevity or quality between the two 

areas which had large enough numbers of implants to compare (dorsal/ventral premotor versus 

primary motor areas). All implants were connected to CerePort connectors with analog 

headstages produced by Blackrock Microsystems. All arrays were wired in a consistent manner; 

none were hand soldered. 
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Data collection was conducted using Blackrock’s Cerebus data acquisition system. 

Neural data recorded as analog signals were amplified with a gain of five thousand, bandpass 

filtered using the built-in hardware filter between 0.3 Hz and 7.5 kHz and digitized at 30 kHz. 

Spike waveforms were detected and saved into the “.nev” file format at 46 samples per 

waveform. Spike events were detected using a global root mean squared signal energy (RMS) 

threshold set by the experimenter; occasionally the experimenter manually adjusted individual 

electrodes’ thresholds.  

Due to the broad date range of these recordings, training protocols and behavioral tasks 

varied widely across our subjects. Most subjects were trained to perform upper limb motor tasks, 

either involving two-dimensional planar reaching tasks using a two-link exoskeletal robot 

(Kinarm, BKIN Technologies, Ltd., Kingston, Ontario), unconstrained three-dimensional 

reaching, grasping, and reach-to-grasp tasks, or brain-computer interface (BCI) tasks. One 

animal also engaged in orofacial behavior.  

2.2 Human Subjects 

Two 96-channel arrays were implanted in participant P1, and two 88-channel arrays were 

implanted in participant P2. Arrays were implanted in the hand knob area of motor cortex 

(precentral gyrus). P2 also had two thirty-two channel arrays implanted in somatosensory cortex 

for the purposes of electrical stimulation; recording and stimulation performance for these arrays 

has been previously described (Hughes et al. 2020). Participant P1 contributed to 350 recording 

sessions over 2.7 years. Participant P2 contributed to 721 recordings sessions over 5.3 years 

(Downey et al. 2018). Data collection with participant P2 is ongoing. Neural data were recorded 
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at the beginning of each BCI testing session while the participants were at rest or speaking with 

experimenters. 

2.3 Neural Data Processing 

Each “.nev” file was processed to evaluate the number of electrodes that displayed spike 

events over the entire recording. A channel’s spikes were included in an SNR calculation if at 

least fourteen spike events were detected throughout the entire recording. Each electrode’s 

signal-to-noise ratio (SNR) was calculated by measuring the average peak-to-trough amplitude 

of the electrode’s waveforms and dividing it by two times the average standard deviation of the 

voltage of the waveforms. The average standard deviation was computed by taking the mean of 

standard deviation values over all forty-six samples of the waveform. If the electrode’s SNR 

exceeded 1.5, the electrode was designated as “good” and counted towards that recording’s array 

yield. This threshold guarantees that a channel’s signal is 50% higher than the noise of the 

channel. This threshold may be seen as too high by some, but we preferred to have confidence in 

a “good” channel, rather than include channels of nebulous quality. It should be noted that neural 

signals with an SNR of less than 1.5 can still carry information that may be useful for BCI or 

scientific applications. Moreover, each recording was manually inspected and erroneous “good” 

channels, often having inaccurate SNR measurements due to artifacts, were removed from the 

“good” electrode count. No spike sorting was performed so our SNR values were conservative 

and were lower than would be expected from individually sorted units. Also, due to the lack of 

spike sorting, we could not address the degree to which array recordings change in their 

capability to detect separable units within a given electrode’s signal. All statistics and figures 

displaying SNR were calculated across all electrodes of the array in which spikes were detected 
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After manual inspection, our search resulted in data from nineteen subjects (17 NHPs and 

two humans) and 55 Utah microelectrode arrays, totaling 6132 recording sessions. Due to 

different array sizes (8x8, 10x10), array yield of arrays was not presented as the absolute number 

of electrodes but rather as the percentage of total recordable electrodes, thus allowing for 

comparisons across different electrode configurations. SNR was also calculated as an average 

across all electrodes within a given recording session. 

 It is important to note that the number of arrays we could examine decreased with time 

due to loss of signals, hardware failure, infections surrounding the percutaneous connector, and 

experiment termination (see Table 1). Some analyses took loss of arrays into account to represent 

the number of arrays that survived past a certain point in time (see Figure 7). Other analyses 

prioritized calculating the reliability and yield of functioning arrays, considering only arrays 

from which viable recordings were possible (see Figure 9). 
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Name Sex 
Brain 
Area 

Implant 
Date 

Electrode 
Length (mm) 

Size Metallization 
Number of 
Recordings 

Reason for 
Termination 

AtPmv F PMv 80123 1 96 Platinum 47 Signal Quality 

AtM1b F M1 130305 1 128 Iridium Oxide 40 Signal Quality 

AtM1o F M1o 80123 1 96 Platinum 13 Medical 

BiM1 M M1o 100824 1 96 Iridium Oxide 10 Signal Quality 

BoPMda M PMd 30128 1 96 Platinum 317 Signal Quality 

BoM1b M M1 80408 1.5 96 Iridium Oxide 68 Signal Quality 

BoPMdb M PMd 80408 1 96 Platinum 68 Signal Quality 

BoM1a M M1 30128 1 96 Platinum 6 Signal Quality 

CoPMd F PMd 90413 1 96 Platinum 82 Medical 

CoM1 F M1 90413 1.5 96 Platinum 68 Medical 

CoPMv F PMv 90413 1.5 96 Platinum 54 Medical 

JaPMv M PMv 121002 1.5 96 Iridium Oxide 27 Signal Quality 

JaPMd M PMd 121002 1 96 Iridium Oxide 17 Signal Quality 

KiM1ips F M1ipsi 120604 1 96 Iridium Oxide 327 Study End 

KiM1con F M1con 120604 1 96 Iridium Oxide 51 Study End 

LeM1c M M1l 150720 1 128 Iridium Oxide 202 Signal Quality 

LeM1b M M1m 150720 1 128 Iridium Oxide 63 Signal Quality 

LeM1a M M1 110711 1.5 96 Iridium Oxide 38 Signal Quality 

LePMd M PMd 110711 1.5 96 Platinum 32 Signal Quality 

LePMv M PMv 110711 1.5 96 Platinum 25 Signal Quality 

MkM1c M M1m 71128 1 96 Iridium Oxide 501 Hardware Failure 

MkM1b M M1l 60906 1 96 Platinum 32 Hardware Failure 

MkM1d M M1l 71128 1 96 Platinum 32 Hardware Failure 

MkM1a M M1m 60906 1 96 Platinum 28 Hardware Failure 

MkPMd M PMd 60906 1 96 Platinum 14 Hardware Failure 

NkM1b F M1contra 140303 1 96 Iridium Oxide 42 Study End 

NkPFC F PFCcontra 140303 1 96 Iridium Oxide 13 Study End 

NkM1a F M1ipsi 140303 1 96 Iridium Oxide 12 Study End 

NiPMv F PMv 41103 1 96 Platinum 91 Signal Quality 

NiM1 F M1 41103 1 96 Platinum 86 Signal Quality 

NiPMd F PMd 41103 1 96 Platinum 21 Signal Quality 

OrM1a F M1 70501 1.5 96 Platinum 52 Signal Quality 

OrM1b F M1o 70501 1 96 Platinum 52 Signal Quality 

OrPmv F PMv 70501 1 96 Platinum 18 Signal Quality 

RjPMd M PMd 31027 1 96 Platinum 156 Signal Quality 

RjM1a M M1 31027 1 64 Platinum 81 Signal Quality 

RjM1b M M1 50804 1 96 Platinum 21 Hardware Failure 

RjPMv M PMv 50804 1 96 Platinum 10 Hardware Failure 

RoM1a M M1 40602 1 96 Platinum 211 Signal Quality 

RoPMd M PMd 40602 1 96 Platinum 34 Signal Quality 

RxM1a F M1 50328 1 96 Platinum 97 Signal Quality 

RxPMva F PMv 50328 1 96 Platinum 80 Signal Quality 

RxM1b F M1 60712 1.5 96 Platinum 55 Signal Quality 

RxPMdb F PMd 60712 1 96 Platinum 42 Signal Quality 

RxM1c F M1 90729 1.5 96 Iridium Oxide 33 Signal Quality 

RxPMvb F PMv 60712 1 96 Platinum 27 Signal Quality 

RxPMda F PMd 50328 1 96 Platinum 10 Signal Quality 

RxS1a F S1 90729 1.5 96 Iridium Oxide 6 Signal Quality 

VePMv F PMv 50809 1 32 Platinum 132 Medical 

VeM1a F M1 50809 1 96 Platinum 110 Medical 

VePMd F PMd 50809 1 96 Platinum 48 Medical 

ZiM1a F M1contra 120730 1 96 Iridium Oxide 384 Study End 

ZiM1c F M1ipsi 120730 1 96 Iridium Oxide 5 Study End 

Table 1. List of microelectrode arrays included in the current study. 
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P1_A F M1 120210 1.5 96 Platinum 350 Medical 

P1_P F M1 120210 1.5 96 Platinum 335 Medical 

P2_A M M1 150504 1.5 88 Platinum 722 N/A 

P2_P M M1 150504 1.5 88 Platinum 718 N/A 

 

Table 1 Continued. List of microelectrode arrays included in the current study. Column A 

indicates the abbreviation used for the identity of the animal and brain area. Many animals were 

implanted with multiple arrays. Column B indicates the sex of the animal in which the array was 

implanted. Column C indicates the brain area in which the array was implanted. Column D 

indicates the date of initial array implantation in YYMMDD format. The rightmost column is 

reserved for reasons for explant. “Medical” encompasses infections, skin retraction, or other 

medical issues which required the implant to be removed, unrelated to signal quality. “Signal 

Quality” refers to poor signal quality or yield. “Study End” indicates that the arrays were 

explanted not due to poor signal quality, but due to the end of a given experiment. “Hardware 

failure” indicates non-array components failing such that recording ability was compromised. 

The final four rows of Table 1 are reserved for the human participant arrays which were included 

in the study. 

3. Results 

3.4 Lifetime of chronic recordings 

A total of over six thousand recording sessions over fifty-five arrays in seventeen animals 

and two human subjects were analyzed by computing SNR values of unsorted waveforms for 

each electrode on the array (Figure 5). A subset of electrodes was then selected as “good” if their 

SNR exceeded 1.5 and passed our manual examination from which overall yield was assessed 

over time. Over the fifty-five array implants, there was a large variance in lifetime of recordings 

from 44 days to over three thousand days (Figure 2). Recordings from UEAs were terminated for 

several reasons including loss of signals, electrode assembly hardware failure (i.e. the titanium 

connector pedestal detached from the skull), infections surrounding the connector pedestal, or 

completion of an experiment (Table 1).  

 To gauge the likelihood that a UEA would provide high quality signals over time, 

we examined the proportion of arrays that exceeded a fixed percentage yield at month-to-month 
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intervals (Figure 7). We observed a slight increase in the proportion of arrays exceeding a given 

yield in the first month of recording post-implantation followed by a steady decrease over 36 

months. Nearly seventy percent of arrays displayed at least a 40% yield in the first three months 

of recordings and fifty percent of arrays exceeded the same yield threshold after one year of 

recording. A long tail of reliability was observed with nearly ten percent of arrays exceeding the 

same yield threshold out to at least 36 months post-implantation.  

 
Figure 5. Example waveforms and signal-to-noise ratio (SNR) from a UEA recording 

session (Subject Mk, array MkM1c). SNR values are presented in the top left corner of each 

panel. Red SNR values indicate electrodes which exceeded the requisite SNR threshold of 1.5 to 

be considered as “good” electrodes included in subsequent analyses of array yield. The red line 

in each panel indicates the threshold across which a waveform must cross to be considered an 

action potential. Empty panels indicate electrodes in which less than fourteen spikes were 

detected within the given recording session, and therefore were not included in analysis. 

3.2 Extended long-term recordings 

To examine the day-to-day variability in signal quality among very long-term recordings, 

we focused on a subset of arrays that continued to record good signals beyond 950 days (Figure 

V
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8a). Sixteen out of fifty-five arrays displayed longevity well over eight hundred days of which 

three lasted well into five years of service (two of the three arrays were implanted in human 

subject P2). One array (Mk) exhibited extended recording capabilities to nearly nine years, only 

needing to be explanted due to an infection near the connector. This subset of arrays generally 

displayed a gradual decrease in signal quality over time with variations from recording to 

recording presumably due to several factors such as micro-movements of the array that may have 

occurred in the home cage such as sudden head accelerations  
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Figure 6. Summary heat map of signal-to-noise ratio (circle color) and array yield (circle 

size) over time for all array implants analyzed. Each colored circle denotes a single recording 

session. The color of the circle denotes the average SNR of the array for that given recording 

session. The size of the circle denotes the percentage of electrodes in that array that demonstrated 

a signal-to-noise ratio above a threshold of 1.5. 
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Figure 7. Proportion of arrays exceeding a certain yield at month-to-month intervals post-

implantation. Each line delineates a different percentage yield threshold. If an array is not 

recorded from in a given time window, it is not counted in the “proportion” estimate. After their 

last available recording date, arrays are counted in the proportion measurement, to accurately 

depict the degradation of arrays on average. However, arrays which ceased recording due to 

medical, hardware failure, or study end reasons (see Table 1) were not included in the proportion 

measurement after their last available recording date.  

 

(excluding our human participants) (Santhanam et al. 2007), headstage malfunctions, and 

sources of electrical noise of unknown origin that could not be eliminated. The two arrays 

implanted in a human subject (P2) are still implanted as of July 2021 with good recording 

quality.  
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3.3 Reliability among arrays possessing viable recordings 

We next examined the temporal evolution of average yield and SNR among arrays from 

which recordings continued to be available and did not include arrays from which recordings 

were terminated (Figure 9). Therefore, the number of arrays contributing to the average 

decreased with time, and standard error values increased. However, with this measure, we were 

able to confirm that arrays implanted in NHPs typically maintained their electrode yield and 

SNR over most of their lifetime (Figure 9a). In contrast to long-term yield, short-term yield 

displayed a rapid increase over the first 40 days post-implantation in NHP implants (Figure 5b). 
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Figure 8. Extended long-term performance for a subset of arrays. a. Yield for long-term 

array implants as a function of days post-implantation. Lines indicate best fit linear regressions 

to the data for each array. The recording quality metrics exhibit a discontinuity at day 565 for 

subject P1, due to a change in the spike threshold from −5.25 to −4.5 RMS, indicated by the 

vertical dashed lines. b. Example spike waveforms from one array implant (MkM1c) at regular 

intervals over nearly 9 years. SNR values are presented at the top left corner of each panel (red 

font denotes electrodes that exceeded an SNR threshold of 1.5). c. SNR of Monkey Mk’s 

recordings, over the lifetime of the implant. 

 

Using the same methods used for NHP analyses, we also examined the signal quality 

over time for UEAs implanted in human participants as part of a brain-machine interface study 

(Collinger et al. 2013). We found that electrode yield increased slightly and SNR steadily 

increased in the short-term, saturating to some overall maximum value after approximately four 

weeks (Figure 9c,d). Due to the consistent and long-term nature of the human BCI study, signal 

quality metrics were available for human arrays for almost 1000 and 2000 days for subject P1 
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and P2, respectively. The electrode yield from these two human participants was generally 

higher and more consistent over time as compared to our NHP results though a slow decline in 

SNR was noted over time as in the NHP arrays. 

  
Figure 9. Reliability of viable chronic recordings over time. Shaded regions denote standard 
error of the mean. a. Average yield (blue) and SNR (red) over arrays with viable recordings (i.e. array 
recordings that were not terminated) versus number of days post-implantation for NHP implants. 
Full time range not shown (maximum lifetime is in excess of 3000 days). b. Close-up of average yield 
and SNR over the first 40 days post-implantation. c,d. equivalent statistics for human implants. 

Further details can be found in Downey et al., 2018 (Downey et al. 2018). The purple vertical line 
indicates the date at which the R.M.S. spike threshold was set to a different value during data 
collection (see methods for details). The change in the figure is due to a larger number of recordings 
becoming possible to average across, reducing variance in the estimate of yield and SNR. The green 
line indicates the date data collection with P1 ended. 

3.4 Performance effects of electrode tip metallization and length  

Platinum metallization of the electrode tips was adopted in the early fabrication of UEAs 

but was not well suited for microstimulation of the cortex. The option to use iridium oxide 

metallization was made available in 2009 which allowed for chronic stimulation due to its 

improved charge injection capacity, as well as recording (iridium oxide arrays were used for 

acute stimulation in our lab but were not used for chronic stimulation) (Negi et al. 2010). We 
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directly compared recording yield and SNR between these two metallization options and found 

that average array yield was significantly higher for iridium oxide as compared to platinum tips 

during chronic recordings in the intermediate time range although there was no difference in the 

short and long term (Figure 10a). In contrast, there was no significant difference in mean SNR 

between the two metallization materials at any time (Figure 10b). 

 
Figure 10. Effects of electrode tip metallization and electrode length on array performance 

in NHP implants. a, c. The average yield for each six-month date window was calculated for 

each array; an average was then taken across all arrays with the same metallization or electrode 

length (short-1.0 mm, long-1.5 mm), respectively. Shaded regions for all plots indicate the 

standard error of the mean, across arrays. b, d. Average SNR based on metallization and 

electrode length, respectively. Statistical tests were corrected for multiple comparisons using 

Bonferroni correction. Stars indicate statistically significant differences between groups, 

Bonferroni corrected. Averages were calculated over recordings and arrays for which data was 

available for each time window. Only NHP data were used for this figure.  

 

We also compared recording performance between short (1.0 mm) and long (1.5 mm) 

electrodes. Given our research interests in motor and premotor cortices, our initial bias was to 

use long electrodes to target as close to layer five as possible in the thicker motor cortex. 

However, we were also concerned about the known observation that UEAs sink over the long 

term by compressing superficial layers, and so we also used short electrodes in some cases in 

order to prevent the tips from sinking into white matter particularly in the thinner premotor 
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cortex (unpublished histology). We found no difference in average yield or SNR between short 

and long electrodes (Figure 10c,d). 

During our analysis, questions arose about the potential impact of manufacturer changes 

or surgeon experience over the entire range of dates during which implants were placed in 

subjects. To address these concerns, we analyzed the reliability of all NHP implants, based on 

their implantation date. Despite having been implanted by different surgeons, and having 

undergone largely minor changes in manufacturing process, we observed no significant 

relationship between array longevity and date of implant (r = 0.11, p = 0.43). 

3.5 Maximum performance over array lifetime 

We next addressed the maximum possible performance for these arrays over their 

lifetimes. We calculated the distribution of maximum yield over arrays and the time post-

implantation when the maximum yield occurred. Despite the large variance in maximum yield 

across arrays, we found that 16 (out of 55) arrays exhibited a maximum yield exceeding 90% 

(Figure 11a). The maximum yield typically occurred within the first 150 days of a given array’s 

recording life (Figure 11b).  
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Figure 11. Maximum possible yield. a. Distribution of the maximum recorded electrode yield 

over all arrays, from 0% to 100% of possible electrodes. b. Distribution of dates when the 

maximum number of recorded channels occurred. Most maximum recording days occurred 

within the first 150 days post-implantation. 

4. Discussion 

UEAs are now a standard recording device for chronic electrophysiology in animals and 

is the only chronic intracortical recording technology that is FDA-cleared for investigational 

purposes in humans. Assessing the longevity and reliability of these devices is important for 

long-term experiments in NHPs and is of particular significance for chronic use in human BCIs. 

Most previous publications have examined the signal quality of Utah arrays using data from a 

limited number of subjects or explicitly focused on physical failure modes of the arrays 

(however, see (4) for one exception); other papers have examined the longevity and/or reliability 

of electrophysiological recording techniques, while not specifically focusing on the Utah Array 

(Rousche and Normann 1998; Suner et al. 2005; Chestek et al. 2011; Downey et al. 2018; 

Bullard et al. 2020; Fraser and Schwartz 2012; Kozai et al. 2015; Salatino et al. 2017; Buzsáki 
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2004; Polikov, Tresco, and Reichert 2005a). We found that nearly sixty percent of array implants 

exceeded 40% electrode yield after 6 months post implantation and nearly fifty percent of array 

implants exceeded 40% yield at one year. We also observed a subset of arrays (n=12) that 

exhibited moderate yield and SNR beyond 900 days post-implantation and one implant lasted 

nearly 9 years. We also characterized an important aspect of this recording technology, namely, a 

rapid increase in electrode yield within the first 40 days post-implantation in the non-human 

primate implants, most likely because of acute inflammation and subsequent recovery after 

surgery (Downey et al. 2018). Early recovery of signal quality post-implantation is likely due to 

alleviation of acute inflammation and potential small hematomas as swelling and bleeding 

reduce. The acute immune response to a foreign body is associated with activated microglia and 

astrocytes which begins at the moment of insertion and lasts approximately 6-8 weeks post-

implantation followed by a chronic response associated with glial encapsulation of the foreign 

body (Polikov, Tresco, and Reichert 2005b). The improved yield in the first 40 days post-

implantation may be related to the termination of the acute immune response whereas the long-

term decrease in yield may be in part the result of gliotic encapsulation. 

We also observed that the yield of human implants was higher than NHP implants. There 

are many potential reasons for this difference, despite the hardware itself being identical: Utah 

arrays approved for human implant undergo additional quality control checks prior to implant; 

surgical procedures are executed by neurosurgeons as opposed to an investigator with a scientific 

or engineering background; most importantly, human study participants and their caregivers take 

care of the connector and surrounding skin whereas monkeys can damage their own connector or 

the skin around the percutaneous connector pedestal leading to infection or failure of the implant. 
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The results directly reported here are limited to two human participants, but successful long term 

human implants have been commonly reported in the literature (Bullard et al. 2020) 

Our findings also suggest that UEAs with iridium oxide metallized tips result in higher 

recording yield as compared to platinum metallization (in non-human primates). Iridium oxide 

also has the added benefit that chronic electrical stimulation is possible. However, these results 

should be interpreted with caution given the fact that our platinum implants were done earlier 

than the iridium oxide implants over the 17 years of implants examined in this study. The 

improved yield of the iridium oxide implants may have been due to improvements in surgical 

techniques as we learned better implantation methods. There have been a few improvements in 

the UEA manufacturing process over the 17-year period most of which were relatively minor 

with the exception of transitioning from array to wafer scale manufacturing in 2009-10 that may 

explain the improved yield of the iridium oxide implants (Blackrock Microsystems, n.d.). 

Nevertheless, when considering all our implants regardless of metallization, we found no 

correlation between array longevity and date of implant.  

4.1 Species-specific differences in signal quality 

Data from our human subjects tended to display higher array yields and SNR than the 

NHP data. However, the number of human datasets was vastly smaller (only four arrays and two 

subjects) than the datasets in the NHPs, and so it is difficult to draw any strong conclusions 

regarding differences in signal quality between humans and NHPs. One possibility may be that 

the surgical ability with which microelectrode arrays were implanted may have had a significant 

impact on the eventual efficacy and quality of long-term recordings in each subject. With each 

human implant, trained neurosurgeons and a team of surgical staff supported the careful 
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placement of UEAs; with each NHP implant, the process was conducted by PIs, postdocs, and 

graduate students. Although veterinarian and animal clinic personnel are sometimes available for 

NHP implantation procedures in some research institutions, the availability of these resources is 

far from guaranteed. An added factor that may have contributed to the human implants’ higher 

signal quality and lifespan was more diligent care. NHPs have a higher likelihood of implant 

damage due to their activity and behavior, while human participants are generally more careful 

with their implants. Moreover, the wound margins surrounding the percutaneous connectors tend 

to become dirtier and more prone to infections in NHPs versus humans.  

Although our ability to comment on the consistency of human implant reliability is 

limited due to our small sample size, previous work indicates that the duration of human 

implants can also vary (Bullard et al. 2020). Across eighteen chronic human implants (including 

the two participants included here), at least nine remained implanted for at least 1 year and seven 

of these for more than 2 years. Importantly, the authors noted that some of these experiments 

remain ongoing and that the total reported duration does not indicate that the array failed. 

4.2 Study Limitations 

One of our unique advantages in investigating questions concerning multi-electrode array 

signal quality is the massive amount of data available to us over the past 17 years. However, our 

intentions for implanting these arrays were to address scientific questions regarding cortical 

function and not to specifically address array longevity and reliability. Therefore, one limitation 

of this study is that we did not sample recordings evenly in time, and we sometimes terminated 

recording when we were finished with experiments instead of due to array failure.  
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Another limitation due to the size and scale of the datasets with which we analyzed was 

the lack of spike sorting to distinguish individual single units within a given electrode. As a 

result, all our metrics and analyses are on the scale of individual electrodes and arrays, instead of 

individual single units. Our decision to forgo spike sorting, therefore, underestimates unit yield 

and SNR because two high SNR single units of different amplitudes on a single electrode, for 

example, would result in a lower average SNR. It should be reiterated that meaningful 

information about the brain may be derived from channels which exhibit poorly isolated units. 

The Utah Array continues to be a reliable and valuable tool for systems neuroscience and 

human brain-computer interfaces. We have demonstrated that most non-human primate implants 

will reliably last over a year, with the potential for arrays to last for the better part of a decade; 

human implants also display impressive longevity, lasting multiple years. While the Utah array 

may be acceptable for current animal research, more research and development must be done to 

create chronic implants that will reliably last into years and decades of use, for human 

applications and more advanced animal studies.  
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B. Supplementary Figures 

 
Figure 12. Transition and Extrema Comparisons. A,B,C. histograms showing time in ms from 

each speed extrema to the closest neural transition (black), and the time in ms from each extrema 

to a randomly sampled timepoint in the trial (orange). D,E,F. Scatter plots showing the number 

of per-trial speed extrema versus the number of discrete state transitions, with identity line 

(black) and linear regression line (red) and correlation strength (in text box). 
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Figure 13. Grid Search for Optimal Discrete state and Dimensions from rSLDS models.  

Three-dimensional and two-dimensional representations of hyper-parameter grid search, plotting 

cross-validated log-likelihood. 


