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ABSTRACT

Defect center-based spin qubits in solid-state materials show great promise as quantum sen-

sors and nodes in quantum networks. The success of these applications relies on precise con-

trol and understanding of the qubit host material and noise environment, which ultimately

dictate qubit coherence. The nitrogen vacancy (NV) center in diamond is a particular defect

qubit with a robust spin-photon interface and long spin relaxation times, enabling a range

of advances in quantum information science. However, open questions remain regarding the

surrounding host material. In particular, while it is possible to routinely grow single crystal

diamond with nitrogen doping, to synthesize NV centers, a reliable method for characterizing

this doping under growth parameters relevant for many NV applications is lacking. Further-

more, unconverted nitrogen spins (P1 centers) constitute a major source of decoherence in

the diamond lattice. While P1 center spin properties have been studied in bulk, there are

few experiments that probe single P1 centers. Characterizing single P1 spins will advance

understanding of P1-induced decoherence as well as aid in the implementation of P1 centers

as auxiliary qubits in applications of the NV center.

In this thesis, I will describe our recent studies of interactions between the NV center and

nearby P1 electron spins. After an introduction into quantum science and engineering in

Ch. 1, I describe the two defect centers in Ch. 2. I then lay the groundwork for the studies

in this thesis from two very different perspectives: In Ch. 3 I review a theoretical treatment

of noise and spin baths; in Ch. 4 I discuss the details of plasma-enhanced chemical vapor

deposition (PE-CVD) diamond growth and NV center synthesis that we implement in our

studies. The results in Ch. 5 and Ch. 6 require an appreciation of these two disparate ap-

proaches to the systems we study. In Ch. 5 I present quantitative computational studies of

NV decoherence at the length and density scales relevant for synthesizing single NV centers,

providing a reference for future NV synthesis, as well as revealing coherence behavior depen-

dent on the spin bath dimensionality. These data are then applied to characterize nitrogen

xvii



density in-situ via a statistical model, bypassing the need for unreliable bulk characterization

techniques. In Ch. 6 I present measurements of spin bath dynamics at the single-spin level

as a means to understand microscopic processes underlying central spin decoherence. I de-

scribe a polarization- and time-resolved measurement technique of a strongly coupled NV-P1

system that enables a probe of P1 polarization decay under arbitrary microwave and optical

drives. These measurements reveal decay mechanisms on the single-spin level, allowing us

to address open questions about the behavior of P1 spin baths in diamond.
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CHAPTER 1

INTRODUCTION

The world of quantum information science (QIS) – let us loosely define this as the research

field in which a project, at some point, necessitates writing down a non-classical Hamiltonian

– has exploded in the past five to ten years, becoming remarkably well known in the public

sphere for something that has traditionally required acquiring loads of esoteric knowledge

to understand. This time has conveniently overlapped with my time in graduate school,

making for an interesting time not only learning about engineering quantum systems, but

also learning about the growth of a new engineering field. From a national and research

funding perspective, programs are now explicitly focused on quantum science research, often

with the goal of developing new technology that exploits quantum principles, not just gaining

a better understanding of the basic underpinnings of the world. This was most evident in

the passage of the National Quantum Initiative (NQI) bill, but QIS plays a notable part in

other funding programs, and is a component of the more recently passed CHIPS Act. On an

academic level, while the “Quantum Science and Engineering” PhD in this department did

not even technically exist when I entered the University of Chicago, it is now commonplace for

someone to express interest in studying quantum engineering, and job postings for quantum

faculty pop-up alongside those in condensed matter and AMO physics.

This all, of course, raises the question of the definition of the field of quantum research.

To go by my earlier definition, it has only existed at most since Schrödinger wrote his famous

equation (or thereabouts) [236]. On the other hand, some would argue that magnets, dear to

my heart, are inherently quantum mechanical; by this reasoning the first quantum engineer

was whoever invented compasses, and the first quantum materials scientist lived in the iron

age. By a similar reasoning, magnetic resonance imaging (MRI) is a quantum technology,

as is classical computing technology, given the need to describe electrons in a lattice with

band theory [137]. This is not useful.
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We may instead take a less historical, more descriptive look at the field as one with a clear

start in the unique properties of single quantum objects [76, 94, 236] and a less clear end

in applications to sensing and information technologies [11, 13]. Here we may also see why

we talk about quantum science and quantum engineering in the same sentence. A scientific

approach might ask how one can better understand and an engineering approach might ask

how we can better use, but both fill in gaps of the same story arc. Furthermore, we will

find in this thesis that these lines are blurred, and motivations throughout will freely flow

between the two. To follow this arc, we can understand the field by delving deeper into how

we understand systems that exhibit discrete (read: quantum) energy levels, superposition

and coherence, and entanglement; and how we can use such systems to realize advances in

sensing, communication, and computing technology.

1.1 Quantum Science

We will first establish language to discuss quantum systems, and two-level systems (TLS)

in particular. A given system S (this may be a single particle up to a macroscopic object)

may exist in any state |s⟩ contained within its Hilbert space. In quantum mechanics we may

calculate physical properties of a system (position, momentum, energy, etc.) with operators

that act on the system states [94, 237]. For a given operator P̂ there are certain states
∣∣sp〉

of the system such that P̂
∣∣sp〉 = p

∣∣sp〉, where p is a complex number. That is, operating

on our state with the P̂ operator returns the quantity we are looking for. These states
∣∣sp〉

are called eigenstates, or eigenvectors of P̂ , with eigenvalues p. A result from linear algebra

states that if we know the eigenstates of a matrix operator, we can describe the entire space

spanned by the eigenbasis [144]. This will be useful for describing quantum systems.
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1.1.1 The quantum spin

Let us flesh this out for the prototypical–and in this thesis, most important–two-level quan-

tum system of a quantum spin. The relevant operators for our quantum spin are the Pauli

matrices

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , σ̂z =

 1 0

0 −1

 , (1.1)

where z denotes the direction along which a symmetry has been broken, usually by applying a

magnetic field (which interacts with the spin) along that direction, and x and y are orthogonal

directions that form a (lamentably) right-handed coordinate system. These matrices describe

the two-level system in three-dimensional space, and will enable us to measure the component

of the spin along any axis. To understand how our spin can behave along the magnetic field

axis, we first calculate the eigenstates of σz. An eigenstate vi with eigenvalue λi is a state

such that σ̂zvi = λivi, as written earlier for system S. The two vectors that satisfy this are

v↑ =

 1

0

 , v↓ =

 0

1

 , (1.2)

where the arrow labels will be explained in a moment. We can further calculate the eigen-

values

σ̂zv↑ =

 1

0

 = v↑, λ↑ = 1 (1.3)

and

σ̂zv↓ =

 0

−1

 = −v↓, λ↓ = −1. (1.4)

Evidently if our system is in v↑ is takes a definite value +1, and if it is in v↓ is takes the

value −1. This is why we label the states with arrows: we consider the spin to point either

up or down in the magnetic field. In fact, we will label these states |↑⟩ , |↓⟩. As the z-axis
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is the symmetry-breaking axis of our system, these two states define our TLS. Furthermore,

they are orthonormal,  1

0

 ·

 0

−1

 = 0 (1.5)

1.1.2 Superposition and coherence

How is it actually useful that our system has two-levels, though? It is natural now to say

that if our system can be in one of two eigenstates, it can also be in a linear combination, or

superposition, of those eigenstates, with coefficients α, because any such state v = α↑v↑ +

α↓v↓ is also in the eigenspace. In quantum mechanics, there is actually no problem with

our coefficients being complex numbers, so while we enforce normalization of the coefficient

amplitudes such that
√
|α↑|2 + |α↓|2=1, we can maintain an arbitrary phase between the

two, ϕ = arg
α↓
α↑

. This phase makes such states v quantum superpositions, and is essential to

every application of quantum mechanics. It is many times convenient to work with another

mathematical object called the density matrix, ρ [237], defined for a quantum state |ψ⟩ as

ρ̂ ≡ |ψ⟩ ⟨ψ| . (1.6)

If our system is in a superposition |S⟩ = α↑ |↑⟩+ α↓ |↓⟩, the density matrix is

ρ̂ =
(
α↑ |↑⟩+ α↓ |↓⟩

) (
α∗↑ ⟨↑|+ α∗↓ ⟨↓|

)
= |α↑|2 |↑⟩ ⟨↑|+ |α↓|2 |↓⟩ ⟨↓|+ α↑α

∗
↓ |↑⟩ ⟨↓|+ α↓α

∗
↑ |↓⟩ ⟨↑|

=

 |α↑|2 α↑α
∗
↓

α↓α
∗
↑ |α↓|2

 , (1.7)

where the last line is enabled by keeping track of what eigenstates each matrix entry ref-

erences. The density matrix is a beautiful way to explore properties of quantum systems.

4



Before calculating anything, I will first note that the normalization we imposed earlier nat-

urally means that Tr(ρ̂) = 1. It is established to interpret the diagonal values in this matrix

as the populations or probabilities of the system in each eigenstate. Thus, we would say

there is a |α↑|2 probability that we are in the |↑⟩ state.

We can furthermore readily calculate the expectation value of our spin operator (or,

really, any operator) with ρ as [237]

⟨σ̂z⟩ = Tr(ρ̂σ̂z)

= Tr

 |α↑|2 −α↑α∗↓
α↓α

∗
↑ −|α↓|2


= |α↑|2 − |α↓|2. (1.8)

Evidently the expectation value is the difference in populations in each eigenstate, or the spin

polarization. Note that the off-diagonal matrix components have no bearing on this value.

Let us rewrite them in a more friendly manner, knowing that the probability pi = |αi|2.

α↑α
∗
↓ =

√
p↑p↓e

i(ϕ↑−ϕ↓) (1.9)

α↓α
∗
↑ =

√
p↑p↓e

i(ϕ↓−ϕ↑), (1.10)

which we can use to define the “coherence” of our system, which encodes, in some sense, how

well we know the phase relationship ∆ϕ ≡ ϕ↑ − ϕ↓, as

W↑↓ ≡ √
p↑p↓e

i∆ϕ (1.11)

W↓↑ = W ∗
↑↓. (1.12)
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This leads to a more physically meaningful way to write the density matrix for our TLS

ρ̂ =

 p↑ W↑↓

W↓↑ p↓

 . (1.13)

We actually see that density matrices allow us to represent a classical superposition that is

not possible to write with our vector format from above. We want to represent, for example,

a high temperature thermal state, where the up and down populations are equal and there

is no fixed phase relationship,

ρ̂therm =

 1/2 0

0 1/2

 . (1.14)

We can still calculate ⟨σ̂z⟩, finding a spin polarization of 0, as expected.

One can imagine that if there is a decay channel for the coherence, one could start in an

equal quantum superposition and decay into a thermal state:

1

2

 1 1

1 1

 → 1

2

 1 0

0 1

 . (1.15)

A formal treatment of this dissipation with a Lindblad master equation approach [150, 167]

is beyond the scope of this thesis, and we will generally talk about loss of coherence as it is

stated above.

1.1.3 Entanglement

Now, nobody can stop us1 from adding another system (a second spin). We can now talk

about the product-space formed by the two eigenspaces. Without loss of generality, let us

1. I attribute the “nobody can stop us” mentality of physics to Prof. David Kutasov, who fearlessly
inserted different forms of the indentity matrix into many derivations.
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assume that we have two TLSs with bases

E1 = {|↑⟩1 , |↓⟩1}, E2 = {|↑⟩2 , |↓⟩2} (1.16)

such that the product space is

E1,2 = E1 ⊗ E2 (1.17)

= {|↑1⟩ |↑2⟩ , |↑1⟩ |↓2⟩ , |↓1⟩ |↑2⟩ , |↓1⟩ |↓2⟩} (1.18)

= {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}. (1.19)

Note that these are entirely different than when we had ↑ next to ↓ in some fashion above; we

are now talking about two separate particles that can each be either up or down. Or. . . are

we?

Each of the eigenstates of this product space, evident above, can be separated into a

product state, the product of the state of particle 1 with the state of particle 2. But any linear

combination of these states is also a valid state. Can the state |S1S2⟩ = 1√
2
(|↑↑⟩+ |↑↓⟩) be

written as a product state? Yes.

|S1S2⟩ =
1√
2
(|↑↑⟩+ |↑↓⟩) (1.20)

=
1√
2
|↑1⟩ (|↑2⟩+ |↓2⟩) . (1.21)

It is separable. How about the state |S1S2⟩ = 1√
2
(|↑↑⟩+ |↓↓⟩)? It is not possible; this state

is non-separable, or, as is more fun to say, entangled. Heuristically, we will only ever find

both spins up or both spins down. It is very easy to show mathematically that we will never

find this entangled system in the state |↑↓⟩ because when we project our system onto that
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state we get

⟨S1S2| ↑↓ ⟩ = 1√
2
(⟨↑↑|+ ⟨↓↓|) |↑↓⟩ (1.22)

= 1√
2
(1 · 0 + 0 · 1) (1.23)

= 0. (1.24)

1.1.4 Adding two electron spins

We now look at a prototypical “real-world” example of adding together two electrons. We

will analyze this system using Clebsch-Gordon coefficients [231, 277]. Each electron is a total

spin=1/2 system with possible spin states of ms = ±1/2(↑ / ↓). Consulting a coefficient

table, adding two spin-1/2 systems gives us

1

2
⊗ 1

2
= 3 · 1⊕ 1 · 0, (1.25)

that is, three spin-1 states and one spin-0 state. Specifically, we have the following spin-1

states

∣∣T⇑〉 = |↑↑⟩ (1.26)∣∣T⇓〉 = |↓↓⟩ (1.27)

|T0⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩) (1.28)

and the following spin-0 state

|S0⟩ =
1√
2
(|↑↓⟩ − |↓↑⟩) , (1.29)

where the first arrow in each ket refers to the first electron and the second to the second.

We see the spin-1 states form a triplet manifold with three states of different spin pro-

8



jections

〈
T⇑

∣∣ (Ŝz1 + Ŝz2)
∣∣T⇑〉 = 1 (1.30)〈

T⇓
∣∣ (Ŝz1 + Ŝz2)

∣∣T⇓〉 = −1 (1.31)

⟨T0| (Ŝz1 + Ŝz2) |T0⟩ = ⟨T0| (1/2− 1/2) |T0⟩ = 0 (1.32)

(1.33)

forming an effective spin-1 (three-level) system and motivating our labeling, while the single

spin-0 state forms a singlet manifold with spin projection 0.

1.1.5 Spins in magnetic fields

It is worth noting for the future discussion of real qubit systems how these states behave in

magnetic fields. First, consider a static magnetic field B = Bz ẑ. An electron spin state will

shift in energy in response to this field by the Zeeman effect [292]

∆E = −|γe|SzBz, (1.34)

where γe is the electron gyromagnetic ratio and Sz is the spin projection on the z-axis.

Evidently,
∣∣T⇑〉 shifts down with increasing magnetic field,

∣∣T⇓〉 shifts up, and |T0⟩ and |S0⟩

do not shift. In particular, this now means that two states that were previously degenerate

in energy are now split by a Zeeman energy. This will allow, for example, the definition of

a TLS out of a triplet manifold, or as we will like to say, an effective spin-1/2 system.
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1.2 Quantum Engineering

The above features of quantum mechanics have been known for over one hundred years,

and have been true, well, for forever2. But in recent decades physicists have come up with

experiments that take advantage of these properties to a technological end [64, 115, 129, 163,

219, 259]. I would like to broadly refer to these ends–quantum sensing, quantum computing,

and quantum communication–as quantum engineering. I will provide a small taste here of

how each application is made possible by the features covered in the previous section rather

than provide an exhaustive overview of each field, which may be found in the literature.

1.2.1 Quantum sensing

The conceit of quantum sensing is that no TLS is perfectly isolated from its environment [65],

and thus at some point its state populations and coherences–captured in its density matrix–

must decay. If the decay sources are not known and are unwanted, we call this a bug:

decoherence [167, 234]. If we know what is causing decay, and can moreover extract infor-

mation about this decay source, it is a feature: sensing [45, 65]. This concept is of course not

new to the field of quantum; classical sensing can operate in a broadly similar way. What is

new here is the use of coherence–a quantum property–as a sensor.

Let us now consider how a TLS, composed of electron spins, may be used to sense a

magnetic field. This approach applies in general to any system and sensing target with

a linear coupling. We will initialize our system in a superposition of two states |S⟩ =

1√
2
(|0⟩+ |1⟩), where each state has a different spin projection, s0 and s1, respectively. We

stated earlier than a magnetic field shifts the energy of a spin state. Applying the time-

dependent Shrödinger equation to our system with the Hamiltonian Ĥ given by the magnetic

2. To good approximation; I’m not a cosmologist.
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field shift,

Ĥ |S⟩ = −iℏd|S⟩dt (1.35)

−|γe|ŜzBz |S⟩ = −iℏd|S⟩dt

|S⟩ = 1√
2
eiℏ|γe|ŜzBz (|0⟩+ |1⟩)

= 1√
2

(
eiℏ|γe|s0Bzt |0⟩+ eiℏ|γe|s1Bzt |1⟩

)
= 1√

2

(
|0⟩+ eiℏ|γe|(s1−s0)Bzt |1⟩

)
(1.36)

(1.37)

where in the last line we ignore the global phase that is pulled out of the parentheses. Evi-

dently our system acquires a quantum phase, proportional to the difference in spin projection

of the two states and directly proportional to the magnetic field strength,

ϕ = ℏ|γe|(s1 − s0)Bz. (1.38)

We can calculate the time-dependent density matrix of our state

|S⟩ = 1√
2

(
|0⟩+ eiϕt |1⟩

)
(1.39)

ρ̂S = |S⟩ ⟨S|

= 1
2

 1 e−iϕt

eiϕt 1

 (1.40)

and find the magnetic field only affects the state coherence, not the state populations. By

measuring the quantum coherence, we can likewise measure the magnetic field value.
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Quantum-enhanced sensing limits

A common measurement method will project the state coherence onto a population of a

state |Sread⟩, such that

|Sread⟩ = 1
2

[
(eiϕ + 1) |0⟩+ (eiϕ − 1) |1⟩

]
(1.41)

p|0⟩ =
1
2(1 + cosϕ) (1.42)

= cos2 ϕ
2 (1.43)

where the population in a real experiment will be measured N times to be some experimental

value xj , which is averaged in the usual way as
∑N

j=1 xj/N [90]. The associated error ∆ is

given by∆x/
√
N , where ∆x is the error from a single measurement and is the same for each

xj [90]. We find a 1/
√
N dependence of error on the number of measurements.

Consider now how this interferometry progresses if we begin with multiple qubits in

a highly entangled state. Without loss of generality, we will assume that all qubits are

physically the same, i.e., all electrons. We begin in the GHZ state of N qubits [93] and

follow the treatment in Ref. 90. Note that N here is the same as the number of independent

measurements considered above.

|ψin⟩ =
1√
2
(|0 · · · 0⟩+ |1 · · · 1⟩) (1.44)

such that after some time evolution in an external field we acquire a phase Nϕ

|ψout⟩ =
1√
2

(
|0 · · · 0⟩+ eiNϕ |1 · · · 1⟩

)
. (1.45)

If we can perform a simultaneous measurement on all the qubits, the probability of being in

|0 · · · 0⟩ is now cos2 Nϕ
2 and the error is now ∝ 1/N . This demonstrates that, in principle,

a sensing experiment with N entangled qubits will be more precise than N independent
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measurements on a single qubit by a factor of 1/
√
N [90]. This is to say nothing of the

experimental challenges in implementing this [282].

1.2.2 Quantum computing

Quantum computing [189] is generally considered to be quite important and also very diffi-

cult. That is, demonstrating quantum algorithms on quantum computers that truly exceed

the capabilities of classical supercomputers is thought to require orders of magnitude more

physical qubit systems than has currently been demonstrated. I seek here to only demon-

strate an aspect of computing that is unlocked by working with quantum rather than classical

bits. In classical computing we have bits that occupy either a (0) or a (1) state, where we

have chosen to refer to the classical states with boring parentheses. We can examine the

truth table for a common operation between two bits, a controlled-NOT gate, where the

state of the second bit flips if the state of the first is (1):

(00) (00)

(01) (01)

(10) (11)

(11) (10)

We can likewise look at the same table for two qubits that can occupy |0⟩ or |1⟩

|00⟩ |00⟩

|01⟩ |01⟩

|10⟩ |11⟩

|11⟩ |10⟩

This appears boring, as it looks like we have achieved the same results. But now recall that

quantum bits–qubits–can be in quantum superpositions of states, so our control qubit is not
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restricted to only |0⟩ or |1⟩. Consider if our control qubit starts in the arbitrary superposition

a |0⟩ + b |1⟩ and our second qubit begins in the |0⟩ state, such that our two qubit system

begins in a |00⟩ + b |10⟩. Note that this is a separable state. Now, under our CNOT gate,

the state becomes

a |00⟩+ b |10⟩ → a |00⟩+ b |11⟩ , (1.46)

in general a non-separable state. This of course does not on its own constitute a quantum

computer, but it does illustrate how a fundamental two-(qu)bit operation acts radically

differently when applied to a quantum system.

1.2.3 Quantum communication

As with the previous two applications, quantum communication is broadly the same as

classical communication: transmit information, but make it quantum. We may consider

quantum information to be information stored in a qubit, rather than a bit, and can imagine

that this may be useful for connecting quantum systems such as quantum computers or

quantum sensors. Consider two qubits that are entangled in a state 1√
2
(|00⟩+ |11⟩) but are

spatially separated from each other by some technologically relevant distance, for example

different rooms in a building or different buildings in a city. The mechanism by which this

distributed entanglement occurs is beyond the scope of this thesis, but generally requires

something called a “flying qubit,” or a qubit that can coherently travel through space, usually

a photon. We now measure the state of the first qubit. Of course, the two qubits are

entangled, so we are not actually measuring the first qubit to be in either |0⟩ or |1⟩; we

are measuring the composite system to be in either |00⟩ or |11⟩. If we measure the first

qubit to be in |0⟩, then we actually know the second qubit is also in |0⟩, and likewise for

|1⟩. In this way, we can say that, upon a projective measurement of qubit one, information

of its quantum state has also appeared on qubit two. There must be some accompanying

classical information, for example about what state the qubits started in, transmitted as
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well to interpret the state of qubit two and properly transmit information. Nonetheless, we

can see that entangled pairs of qubits can enable the communication of information about

quantum states.

1.3 Motivation

I would like to situate the motivation of this thesis as quantum science for the sake of

quantum engineering. What does this mean? I will generally be concerned with designing

and measuring quantum systems, usually from a materials science perspective, but will

focus solely on the characterization of these systems, rather than pursuing real applications.

This can broadly be viewed through the lens of addressing challenges that arise to quantum

engineering, presented in Fig. 1.1 specifically for generating multi-qubit entangled states that

may be used for quantum sensing, although many of these apply equally well to computing

and communication challenges.

Two are very explicitly materials-focused: material fabrication and surface processing.

Many implementations of quantum science are hosted in material systems [62] (excluding

ions/atoms and free-space photons), and materials have traditionally not been designed with

quantum applications in mind. For example, a classical computing element may operate on

the basis of the average behavior of roughly a mole of electrons in the device, while a quan-

tum element may need to maintain the coherence of a single electron. These are operating

at very different scales, and tolerances for material defects, both structural and doping, that

may be acceptable for classical devices could be detrimental to quantum ones. Furthermore,

functional quantum technologies will require scalable manufacturing at this same tight toler-

ance. This requires fabrication techniques to be developed with the requirements of quantum

systems at the forefront. A related challenge lies in the surface of materials. Surfaces are

generally weird; you are in your material system with your bulk properties, and then sud-

denly you are not. This can cause a problem. Perhaps the behavior of your system hosted

15



in your crystal is different near surfaces where the host material stops. Perhaps the exposed

surface is “noisy” and affects the coherence of a nearby qubit. Many quantum sensing appli-

cations require a sensing qubit to be near the host material surface in order to sense some

target system external to the host, and many devices are necessarily fabricated with qubits

near a surface to facilitate interaction with an external field, such as a photon. In either

case, surface noise sources present a major challenge to quantum engineering, and process

development is necessary to ensure low-noise material surfaces.

Another aspect of materials engineering is designing devices that can mediate interac-

tions between disparate qubits, whether in real space or energy space, so-called quantum

interconnects [11]. These types of devices are necessary, for example, for transmitting quan-

tum information from a quantum computer to a quantum memory node for communication

with another quantum computer. Another possibility is to mediate entanglement between

multiple sensor qubits on a single chip, enabling a multi-qubit sensing module that does

not require the sensing qubits to natively interact with one another. The development of

quantum interconnects is beyond the scope of this thesis.

The two challenges presented on the right of Fig. 1.1 are more concerned with the in-

teractions between the qubit and the surrounding environment, and the issues that arise

when attempting to couple the qubit to a specific target system within that environment

with coupling g. This target may be another qubit, a sensing target, or a mode in an in-

terconnect device. In all cases, however, the qubit and the target are not the only systems

in the universe; the rest of the environment is generally composed of other systems that

couple to the qubit in a similar way to that of the target system. For example, coupling a

spin to a photonic cavity also brings the spin into contact with free-space photonic modes,

and attempting to couple an electron spin to a single nearby nuclear spin (in some host

material) also must contend with coupling to other nuclear spins. This can be summed up

by the statement “nature never lets you win,” presented schematically in the top-right panel
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of Fig. 1.1, where we see that increasing a desired coupling, g, tends to increase undesired

couplings that contribute to a T2 decoherence, which diminishes the ability to resolve the

desired coupling.

We can quantify this with a simple model of an environment composed of N identical

spins all coupled with different strengths gi to a central spin. Consider our qubit to be in a

superposition; we can now treat the effect of these environment couplings as a phase added

to the qubit’s coherence, where the state of the qubit is

|S⟩ = 1√
2

(
|0⟩+ ei

∑N
i=0 git |1⟩

)
= 1√

2

(
|0⟩+ eig0tei

∑N
i=1 git |1⟩

)
(1.47)

W (t) ≡ eig0tei
∑N

i=1 git (1.48)

where between the first and second line we pull out the coupling we wish to resolve and in the

third line we define our coherence W . The effect of the unresolved couplings (here for i ≥ 1)

is to introduce some decoherence (See. Ch. 3), such that there is a challenge to measure

the coupling to environment spin 0 before the amplitude of our coherence dies away. This

may be addressed from a materials perspective–growing qubit systems that control for this

coupling–or a control perspective–designing control schemes that isolate the desired coupling.

The conceit of the final challenge presented in Fig. 1.1 is that the environment can be

leveraged as a potential resource for quantum information processing. Perhaps the envi-

ronment presents a new means for generating entanglement between two quantum systems,

or will enable new ways to protect qubit coherence. This requires both theoretical and

experimental work to better understand.

Applications of NV centers face the myriad of challenges outlined above. Developments

ranging from theoretical to material are needed to further advance NV-based quantum sens-

ing and quantum communication. This thesis is broadly concerned with this task.
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Figure 1.1: Challenges in QIS. A variety of challenges across a range of disciplines exist
when considering long-term QIS goals such as multi-qubit entangled sensors. Figure repro-
duced from Ref. 13.
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CHAPTER 2

NITROGEN QUBITS IN DIAMOND

2.1 Introduction

In this thesis I will be restricted to one material and two quantum systems hosted in said

material. The material is diamond, a wide-bandgap semiconductor and carbon allotrope

that has been studied as much for its industrial and technological applications as for its

gemological ones [210, 290], going as far back as the 13th to 17th centuries [161, 216].

The quantum systems are the negatively charged nitrogen-vacancy (NV–) center and the

neutrally charged substitutional nitrogen (N 0
s , P1) center, shown in Fig. 2.1 on the left and

right, respectively. These are introduced into the diamond lattice either naturally or through

various incorporation techniques, covered in Ch. 4.

The NV center consists of a nitrogen atom sitting on a carbon site next to a vacancy on a

carbon site [58, 59] (it can be written more appropriately as NCVC). The nitrogen brings an

extra electron to the bound system, and another electron from the environment charges the

defect, resulting in a six electron system [165]. The electron density is shown approximately

in Fig. 2.1, left, with shaded green orbs, based on Ref. 30. NV centers may be oriented along

any of the ⟨111⟩ crystal axes. Further details of the NV center not found in this chapter may

be found in relevant reviews [69, 88]. The P1 center is simply a nitrogen atom sitting on a

carbon site with its extra electron acting as a spin-1/2 system [73, 245]. The P1 center is

far less studied than the NV center in QIS, and its properties are rarely investigated on its

own merit in this context. The electron density in Fig. 2.1, right, is meant to schematically

show that under the Jahn-Teller distortion [57], discussed in Sec. 2.3, the electron occupies

an anti-bonding orbital along one of the N C bonds and predominantly resides near the

carbon atom [31, 155]; the shape is not strictly based on calculations.
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Figure 2.1: Nitrogen defects in diamond. Many nitrogen-based defects exist in dia-
mond. Here we show the negatively charged nitrogen vacancy center (NV–) (left) and neu-
trally charged substitutional nitrogen center (N 0

s , also called P1 center) (right). Green orbs
showing electron density follow calculations [30] for the NV and are only schematic for the
P1. The N C bond that the electron lies along is elongated by ≈30% due to a Jahn-Teller
distortion [9, 57]. Figure adapted from Heremans, et al. [106].

2.2 NV center

2.2.1 NV center level structure

Aspects of the NV center necessary to understand the work in this thesis are presented in

Fig. 2.2(a) [68]. The NV electron system has an optical ground to excited state transi-

tion addressable with visible light [68]; both the ground and excited states are composed

of spin triplets [82, 154, 155, 185, 271]. Owing to the wide bandgap of diamond, these

states are situated well within the bandgap and do not interact with the valence and con-

duction bands [69, 73, 154, 155]. The radiative ground to excited state transition is spin-

conversing [165]. A singlet manifold exists at an intermediate energy; the optical states both

couple to this middle system with a smaller, non-radiative coupling compared to the radia-

tive optical coupling [100, 165, 168]. The relative coupling rates of these three manifolds

combine to manifest two properties of the NV center that have enabled a wide range of ad-

vances in quantum technology. The ±1 spin projections in the excited state manifold couple

more strongly to the intermediate singlet state than the 0 projection, which in turn couples

to the optical ground state [22, 165, 190]. This so-called shelving process, from the singlet
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state back to the ground state, is also about an order of magnitude slower than the radiative

decay from the excited state [165]. This means that under optical illumination with light

energetic enough to excite the optical transition, a NV center that begins in the ±1 state will

emit fewer photons back into the environment as it goes through the optical cycle than one

that begins in the 0 state. This provides a method to optically measure the spin state of NV

centers down to the single spin level. Furthermore, the preferential coupling back into the

0 ground state means that even a NV that begins in ±1 will, after a few optical cycles, fall

back into the 0 state, providing a pathway to initialize the ground state spin state [100, 154].

This optical initialization and readout through the inter-system crossing operates up to and

above room temperature [37, 96, 263], truly remarkable for a quantum system. In fact, light

resonant with the optical transition is not even required; off-resonant excitation, commonly

green light at or around 532 nm/2.3 eV, efficiently drives the optical cycle [69, 96, 264]. From

these properties it is clear why the NV center has been such a boon for quantum science and

engineering over the past two decades since the first demonstration of single NV coherent

spin control [121].

2.2.2 NV center fine structure

Fig. 2.2(b) shows the fine structure that arises in the NV spin levels in the presence of a

variety of magnetic stimuli, which we can understand by studying the general NV center

spin Hamiltonian [43, 68]

ĤNV = Ŝ · γ ·B+ Ŝ ·D · Ŝ+ Ŝ ·AN · ÎN +
∑
i

Ŝ ·ACi
· ÎCi

+
∑
j

Ŝ ·DPj
· R̂j (2.1)

where Ŝ is the NV spin operator, ÎN is the nitrogen nuclear spin operator, ÎC is the carbon

nuclear spin operator, R̂ is the spin operator for a fourth spin species, γ is the gyromagnetic

tensor, B is the external magnetic field vector, D is the zero-field splitting (or the crystal
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field splitting), AN is the hyperfine tensor with the N nuclear spin, AC is the hyperfine

tensor with each C nuclear spin, and DR is the dipolar tensor with a generic fourth spin

species. Note that we ignore terms that only involve the nuclear spin energy (nuclear Zeeman,

nuclear quadrupole). We can simplify Eq. (2.1) with a combination of facts about the NV

and assumptions about the NV environment we will be studying. We will list them and then

present a simplified Hamiltonian. The NV gyromagnetic ratio is isotropic [154, 155]; the

NV ground state is spin-1 [154]; we measure 15NV centers, such that the N nuclear spin is

spin-12 and there is no quadrupolar moment [211]; we measure NV centers in 12C isotopically

purified diamond (see Ch. 4) such that there are no 13C nuclear spins [15, 192]; in general

the NV Larmor frequency is far detuned from other spin species P such that we only keep

secular terms (see Ch. 6 for treatment and consequences of another case). Our resulting

Hamiltonian is [43]

ĤNV = (Dgs + ϵ∥Πz)
(
Ŝ2z − 2

3

)
+ γ(BxŜx +ByŜy +BzŜz) + ϵ⊥Πx

(
Ŝ2y − Ŝ2x

)
+

ϵ⊥Πy{Ŝx, Ŝy}+ ϵ′Πx{Ŝx, Ŝz}+ ϵ′Πy{Ŝy, Ŝz} (2.2)

+AN,zzŜz Î
z
N +

∑
j DRj ,zzŜzR̂

(z)
j (2.3)

where Dgs≈3GHz is the axial zero-field splitting [154], Π terms consist of axial and trans-

verse strain and electric fields, ϵ(
′)
(∥,⊥)

are the relevant susceptibilities to those fields, and {·, ·}

is the anti-commutator. We may reformulate this in a matrix form that makes explicit how

each term either shifts the energy level of a NV spin state (diagonal elements) or couples
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two states (off-diagonal terms), where the elements are ordered ms = +1, 0,−1: [43]

Ĥ =



Dgs
3 +

ϵ∥
3 Πz + γBz

+
AN,zz

2 +
∑

j DRj ,zzR
z
j

ϵ′√
2
Π− + γ√

2
B− −ϵ⊥Π+

ϵ′√
2
Π+ + γ√

2
B+ −2Dgs

3 −
2ϵ∥
3 Πz − ϵ′√

2
Π− + γ√

2
B−

−ϵ⊥Π− − ϵ′√
2
Π+ + γ√

2
B+

Dgs
3 + ϵ∥

3 Πz − γBz

−AN,zz
2 −

∑
j DRj ,zzR

z
j


(2.4)

where B± = Bx ± iBy and Π± = Πx + iΠy.

We may now make some statements about the spin-triplet manifold in the presence

of fields. First, it is clear from the diagonal terms that the zero-field splitting, axial

strain/electric fields, and axial magnetic fields introduce a splitting between the three spin

sub-levels. In the left-most segment in Fig. 2.2(b) we show the case of Bz = 0 and Dgs ≫ ϵΠ,

such that |−1⟩ and |+1⟩ are degenerate and there is a spin-allowed transition between |0⟩

and a superposition of |−1⟩ and |+1⟩. In the second segment we show how an axial magnetic

field lifts this degeneracy, leading to two allowed ∆ms = 1 transitions. These transitions

are driven specifically by the off-diagonal B± terms in Eq. (2.4) when ac magnetic fields

are resonant with the transition energy. The hyperfine coupling (third segment) and dipolar

coupling to other spins (fourth segment, assuming a single spin-12 P spin) further shift the

|−1⟩ and |+1⟩ energy levels depending on the spin states, leading a total of eight possible

magnetic NV electron spin transitions. Throughout the experiments in this thesis we will

see magnetic resonance spectra elucidating these various couplings. We additionally see that

strain and electric fields provide couplings between states that enable driving spin transitions

non-magnetically [159, 278], although these effects are beyond the scope of this thesis.

A salient feature arises out of Eq. (2.4) if we consider that any of the B and Π fields

may in general consist of fluctuations whose noise spectrum overlaps with a spin transition

frequency. We further explore this concept in Ch. 3, but we note here that these fluctuations
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clearly couple to multiple NV electron spin transitions, dependent on both the direction and

physical origin of the fields [43].

2.3 P1 center

Nitrogen is an electron donor in group-IV semiconductors [245]. It carries one extra electron

relative to group-IV atoms, and its small size means it can sit in a diamond lattice without

greatly perturbing the crystal [245]. In diamond, the substitutional nitrogen Ns can exist in

three charge states, +, 0, and −, although the − charge state has been shown to be short-

lived [267], and the + charge state does not possess an electron spin [143]. A N 0
s spin doublet

state lives within the diamond bandgap ≈2 eV below the conduction band [79, 105, 221]. At

room temperature (kBTRT = 26meV) this is much too far away to dope the diamond in the

sense of turning it conductive, although the N 0
s has been studied as a local donor to the NV

center, generating the NV– charge state, in type 1b ([N]≈100 ppm) diamond [166].

2.3.1 Structure and Jahn-Teller effect

The structure of the P1 center1 is shown on the right in Fig. 2.1 [245]. The N atom sits on a

carbon site with a single extra electron. Unlike in the case of the NV center, where the N V

bond lowers the symmetry to C3v and the electron spin has a preferred orientation along this

[111] axis set by the crystal field, the P1 center structure does not a priori break the crystal

symmetry. The electron can occupy one of four degenerate anti-bonding orbitals between the

N and one of the four neighboring C atoms. The Jahn-Teller effect (JTE) requires the crystal

to distort to break this symmetry, and at any given time the electron only occupies one of

the four [56, 245]. The crystal distorts along the specific N C bond [245], with the bond

lengthening around 30% according to recent calculations [9, 202], although it was estimated

1. “P1” is the name given to the N 0
s center as identified through ESR measurements. When it is necessary

to distinguish charge states we may use the Ns nomenclature, but otherwise default to “P1 center.”
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Figure 2.2: NV center level structure. (a) The optical structure of the NV center, with a
ground state (GS) and first excited state (ES) separated by 1.9 eV, both spin-triplet states.
Spin-conserving optical transitions between the magnetic sub-levels of each manifold may be
off-resonantly excited, for example by 2.3 eV light. The excited state spin states couple at
different rates (strong, weak) to a non-radiative transition into a singlet inter-system crossing
(ISC), which in turn decays into the ground state spin states. Through optical pumping, this
mechanism allows for optical readout and initialization. (b) The fine-structure of the spin-
triplet ground state manifold. The largest energy scale is typically the zero-field splitting
Dgs between the |ms = 0⟩ and |ms = ±1⟩ sub-levels of the electron spin. Zeeman, nuclear
spin hyperfine, and other dipolar interactions may further split the NV levels, shown here
for a spin-12 nuclear spin and a spin-12 bath spin with ZZ couplings. All states with ms = 0
remain degenerate. ∆ms = ±1 electron spin transitions may by driven with microwaves
resonant with the transition.
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in the past to be between 5% and 36% [4, 54, 245]. This results in the same C3v symmetry

as the NV center.

Barring external stimuli that distort the lattice, there is nothing to prevent the P1 bond

from reorienting (relaxing) onto a different neighboring carbon atom. This has been observed

in ESR measurements, and at relatively warm temperatures ≳ 250K the reorientation has

been ascribed to thermal excitation of the electron providing enough energy to overcome the

energy barrier EJT imposed by the JTE [4, 77, 153, 239]. The reorientation rate νr is then

described by an Arrhenius equation

νr = ν0e
−βEJT (2.5)

where ν0 is the vibrational frequency of the N atom. These parameters have been measured

experimentally as ν0≈1×1013 s−1 and EJT≈0.7 eV [4, 77, 153, 239] and see good agreement

with theory [35]. At lower temperatures the reorientation diverges from this classical behavior

but may still occur via tunnelling across the JT barrier [4]. At room temperature, the

reorientation rate is 17 s−1, or every 60ms. Recent theoretical work [280] has proposed

observing the JT reorientation in a single P1 center via a single NV center using single-shot

readout techniques such as those recently demonstrated in Ref. 66.

2.3.2 Nuclear hyperfine coupling

If we assume some external magnetic field aligned along the [111] axis of a NV in a diamond,

the P1 center can be either aligned to this field, with its wavefunction sitting along the

same [111] axis, or misaligned to this field, with its wavefunction along one of the other

⟨111⟩ axes [54, 56, 245]. However, the electron spin behaves mostly like a free electron with

isotropic gyromagnetic ratio [155] that will align to the magnetic field. Thus, depending

on the orbital orientation, the relative orientation of the electron spin and the nitrogen
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Table 2.1: Hyperfine tensor values for the P1 center.

Isotope Hyperfine coupling (MHz)
14N A∥ = 114.032(3)

A⊥ = 81.318(2)
15N A∥ = −159.730(7)

A⊥ = −113.838(6)

nuclear spin changes, modifying the hyperfine couplings. We may write the P1 electron spin

Hamiltonian as

Ĥ = P̂ · γ ·B+ P̂ ·A · ˆIN (2.6)

where P̂ is the spin-12 operator of the P1 center and A is again the hyperfine tensor with the

nitrogen nuclear spin. As in Eq. (2.1) we ignore nuclear-only terms. We can rewrite this as

Ĥ = γP̂zBz + A∥P̂z Î
(z)
N + A⊥

(
P̂xÎ

(x)
N + P̂y Î

(y)
N

)
(2.7)

with parallel (A∥) and perpendicular (A⊥) hyperfine components. As with the NV center,

the P1 nitrogen can be either 14N (spin-1) or 15N (spin-12). 14N is much more commonly

treated in the literature, although we work exclusively with 15N. The hyperfine parameters

for both species have been measured in Refs. 54, 56 and are presented in Table 2.1. These

numbers appear shockingly high to someone who is used to the few MHz scale of hyperfine

couplings in NV centers. From this we can calculate the ESR transitions with Eq. (2.7)

assuming that the Zeeman energy is the dominant energy scale. This is necessary to assume

that |(↑, ↓)⟩ are good eigenstates of P̂z, and requires external magnetic fields of at least

100G; the experiments performed in this thesis operate around 300G to 400G. We present

hyperfine shifts for both aligned and misaligned axes relative to the Zeeman energy with

B = Bz ẑ in Table 2.2.

As we expect the JT axis states and nuclear spin states to be thermally populated, we
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Table 2.2: Hyperfine-induced splitting of P1 electron spin.

Isotope Axis Iz Hyperfine ∆E − γBz (MHz)
14N aligned −1 117.6

mis. −1 90.9
aligned 0 7.8
mis. 0 10.9
aligned +1 −109.8
mis. +1 −79.5

15N aligned −1/2 −77.07
mis. −1/2 −55.91
aligned +1/2 82.66
mis. +1/2 63.89

expect the P1 ESR transitions to be distributed as 1 : 3 : 1 : 3 : 3 : 1 for 14N and 1 : 3 : 3 : 1

for 15N, moving from lowest to highest energy. This applies for the distribution of energies in

a P1 ensemble and for the population of a single P1 center. In Fig. 2.3 we plot the calculated

spectrum for the allowed ∆ms = 1 transitions from Eq. (2.7) for both isotopes, with the

same assumptions as above. Note that the spectra are plotted in an arbitrary way and do

not refer to any specific mode of measurement. See, e.g., Refs. 75, 245 for comparison.
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14N 15N(a) (b)

|mI=+1⟩ |mI=0⟩ |mI=−1⟩ |mI=−1/2⟩ |mI=+1/2⟩

1x aligned 3x misaligned

Figure 2.3: Calculated P1 ESR spectrum. P1 electron spin transitions calculated with
hyperfine parameters in Table 2.2 for 14N (a) and 15N (b). Nuclear spins states are indicated.
The aligned/misaligned axis labelling in (b) applies to all pairs of resonances.
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CHAPTER 3

CENTRAL SPIN DECOHERENCE

3.1 Motivation

The perfect qubit does not exist [167, 189, 234]. Something external to the qubit state will

always limit the qubit lifetime (T1) and the qubit coherence time (T (∗)
2 ), the characteristic

decay times of the diagonal and off-diagonal elements of the qubit’s density matrix as defined

in Eq. (1.7) [123, 167, 233, 234, 254, 303, 304]. Across quantum applications, these place

limits on the efficacy of a qubit. More specifically, T1 places an ultimate limit on how long

a quantum state is available as a resource. This motivates, for example, using nuclear spins

opposed to electron spins in solid state systems as quantum memories, as they generally

have longer T1 times owing to smaller gyromagnetic ratios [149]. The coherence time limits

the availability of the coherent state for interactions with both other qubits and potential

sensing targets. Applying gates to a qubit is only meaningful so long as the qubit coherence

is maintained (see Sec. 1.1.2). On the flip side, the strength of a field to be sensed is roughly

limited by the coherence time or lifetime of the qubit under the given sensing modality;

otherwise the target cannot be resolved.

The actual sources of coherence decay, however, can be quite complex. Environmental

noise sources can, in general, be thought of as a “bath” coupled to the two-level system qubit

that can absorb (add) excitations from (to) the qubit, shown schematically in Fig. 3.1 [52,

167]. In general we have knowledge about our qubit, with one quantum degree of freedom,

but we do not know the microscopics of our bath, which has many degrees of freedom. If

we assume that the reservoir has no memory (an assumption that we will interrogate later),

then the excitation/decay process erases our knowledge of the qubit state. In this chapter we

will explore different descriptions of noise sources, ranging from semi-classical to quantum

treatments, mainly following the lecture notes of Prof. Aash Clerk’s Quantum Dissipation
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and Quantum Measurement class [51], the review article “Introduction to quantum noise,

measurement, and amplification” by Clerk, et al. [52], and the chapter “Electron spin as a

spectrometer of nuclear-spin noise and other fluctuations” by Rogerio de Sousa, in the book

“Electron spin resonance and related phenomena in low-dimensional structures” [63]. One

may find additional treatments in Refs. 123, 167, 233, 234, 254. We will focus specifically

on the case of decoherence due to a spin bath surrounding a central spin, which is a good

description of the systems studied in this thesis, see Chs. 5 and 6.

The system-bath description takes our initially isolated qubit, a closed quantum system

with totally unitary evolution, and turns it into an open quantum system, where the bath

induces non-unitary evolution of the qubit [51, 167]. But if we expanded our system to

include all the degrees of freedom of the bath, this whole system would be closed. In this

case we can write the entire system+bath Hamiltonian

Ĥtot = Ĥsys + Ĥbath + Ĥint (3.1)

where Ĥint denotes interactions. We can then write the system dynamics

d |ψtot(t)⟩
dt

= −iĤtot |ψtot(t)⟩ (3.2)

and then extract our qubit density matrix from the total system as

ρ̂sys = Trbath [|ψtot(t)⟩ ⟨ψtot(t)|] (3.3)

where the trace is performed over the bath degrees of freedom. But the bath is very complex,

and we do not know Ĥbath or even its degrees of freedom, so this approach is generally

intractable.
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system bath

Γ↑, Γ↓
?
?

?
? ?

Figure 3.1: Two level system and noisy bath. In general, we have a two level system as
our qubit with a known Hamiltonian and a known, or measurable, state. The TLS is coupled
to a noisy bath of unknown character with unknown modes that we cannot measure. The
bath is coupled to the system and can drive excitations at rate Γ↑ and decay at rate Γ↓.

3.2 Basic noise spectrum derivation

We now formalize the concept of a noise spectrum as a description of the bath, following

Ref. 52. In a simplest case, noise acting on a quantum mechanical system is assumed to be

classical; we will look at both classical and quantum noise, and the approximations necessary

to treat noise in different regimes.

3.2.1 Classical noise

We first assume that there is some time-varying field V (t) arising from a bath that couples

to a qubit operator Ŝ as

Ĥsc = V (t)Ŝ. (3.4)

Note here that V (t) is not an operator, it is a classical fluctuating field. There may be a

static or well-characterized (e.g., a microwave signal drive) component to this field; here

we are only concerned with the behavior of the “noisy” part. As an example, a spin bath

composed of many electron spins where at any given instance each spin is in a random state,

and thus imparts a random magnetic field to the central spin, is noisy. In this case, and

without loss of generality, the mean value of the field is ⟨V (t)⟩ = 0, and we assume that the

state of the noise source, and thus the value of V , changes over some characteristic timescale

τc. The goal now is to derive the noise spectrum, in order to understand how noise will drive
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a qubit. The auto-correlation function tells us how correlated or independent the field is at

different times t and t′, defined as

GV V (t− t′) = V (t)V (t′), (3.5)

where we assume that the noise process is stationary, and thus write it as a function of only

the time difference t− t′. In the long time limit, t− t′ ≫ τc, there is no correlation between

the two values, and the function goes to 0. For shorter times there is in general some non-

trivial functional dependence. A common assumption is that the noise is stochastic and is

captured by the function v2e−t/τc , for some amplitude v2.

We now calculate the spectral density of V (t) as

SV V [ω] = lim
T→∞

1

T

∫ T

0
dt

∫ T

0
dt′eiω(t−t′)V (t)V (t′) (3.6)

where T is the time range over which we watch the bath. Rewriting with τ = t − t′ and

assuming T ≫ τc, we can rewrite the first integral with infinite bounds and find

SV V [ω] =
1
T

∫ T
0

∫∞
−∞ dτeiωτV (τ)V (0)

=
∫∞
−∞ dτeiωτV (τ)V (0) (3.7)

GV V =
∫∞
−∞

dω
2π e

−iωτSV V [ω] (3.8)

where we notice that the second part of the integrand is exactly the auto-correlation function

GV V (τ) = V (τ)V (0). Thus the noise spectrum is exactly determined to be the Fourier

transform of the auto-correlation function. Likewise, if one is able to measure the noise

spectrum, one can back-out GV V (τ).

V (t) is a real value that commutes with itself, thusGV V (t−t′) = V (t)V (t′) = V (t′)V (t) =

GV V (t
′ − t) is symmetric in time and the noise spectrum is symmetric in frequency, i.e.,
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SV V [ω] = SV V [−ω].

3.2.2 Quantum noise

We start by considering an operator v̂(t) that couples to the qubit operator Ŝ with coupling

strength A as

Ĥsc = Av̂(t) · Ŝ+ h.c. (3.9)

and define the quantum noise spectrum as

Svv =

∫ ∞

−∞
dτeiωτ ⟨v̂(τ)v̂(0)⟩ . (3.10)

Fermi’s golden rule allows us to write the transition rates of the qubit transition at energy

ω as

Γ↑ = A2Svv[−ω] (3.11)

Γ↓ = A2Svv[+ω] (3.12)

(3.13)

for excitation (↑) and relaxation (↓), i.e., absorbing energy from the reservoir or losing energy

to it. If the reservoir is in thermal equilibrium, detailed balance requires

Γ↑
Γ↓

= e−βω, (3.14)

where β ≡ 1/T . We thus find the following relationship between positive and negative

frequency values for the quantum noise spectrum

Svv[+ω] = eβωSvv[−ω]. (3.15)
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We see that, unlike in the classical case, the spectrum for quantum noise is not symmetric

in frequency. In the high-temperature limit βω ≪ 1 and we recover a frequency-symmetric

spectrum.

Consider, for example, a spin in a magnetic field B with some coupling A to a thermal

bath, for example phonons. The low energy state is parallel to the field and the high energy

state is antiparallel. The energy required to flip the spin is set by the magnetic field, ω = γB.

At high temperature, βγB ≪ 1, the rate to flip the spin up to down is the same as down to

up, and the equilibrium state is a spin that spends half its time up and half its time down.

In the low-temperature regime, we saw that Γ↑
Γ↓

= e−βγB such that the flip rate to the

higher-energy antiparallel state is always less than the flip rate to the lower-energy parallel

state. Evidently, at low temperatures the thermal bath will tend to put the spin in the low

energy state, polarizing the spin into the parallel state.

3.3 Decoherence from a spin bath

Now that we have an abstract1 picture of how to describe a bath, as a continuous noise

spectrum that drives a qubit, we can zoom in and tackle a specific, and very relevant, noisy

system: a central electron spin surrounded by a spin bath. This applies, of course, to the NV

center electron spin surrounded by 13C nuclear spins or N 0
s electron spins in diamond [20].

In principle we could initialize, control, and readout each individual spin in the bath, and

indeed in Ch. 6 we will do this for a single bath spin, but in general this is very difficult.

However, we can of course perform these operations on the central NV spin, our qubit (see

Ch. 2), and will treat all other spins as the bath.

We begin with a microscopic treatment of decoherence, analyzing how dipolar interactions

between the central spin and the bath spins induce decoherence. We will then zoom out and

take an approach that takes a semi-classical noise spectrum as the starting point to recover

1. To an experimentalist
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decoherence.

3.3.1 Microscopic picture

The microscopic details of our system are shown in Fig. 3.2(a). The system and bath are in

a magnetic field B = Bz ẑ and all spins interact via dipolar interactions ∝ 1/
∣∣rij∣∣3, where

rij is the distance between spin i and spin j. The system is described by [234, 244]

Ĥtot = Ĥe + Ĥbath + Ĥe,bath

Ĥe = γeBzŜz

Ĥbath =
∑

j γbathBz Î
(j)
z +

∑
j′<j

∑
α,β=x,y,z D̂αβ [rj , rj′ ]Î

(j)
α Î

(j′)
β

Ĥe,bath = Ŝz
∑

j A(rj)Î
j
z , (3.16)

where γe(bath) is the electron (bath spin) gyromagnetic ratio, Ŝz (Îz) is the electron (bath)

spin Pauli-Z operator, Iα,β are bath spin Pauli operators, D̂ is the dipolar interaction oper-

ator, and A describes the hyperfine (dipolar) interaction with bath nuclear (electron) spins.

For this derivation we will exclude intra-bath interactions, the second term in Ĥbath. At

high magnetic fields (Larmor frequency ≫ interaction strengths) this is a good approxima-

tion for a nuclear spin bath; it is less good for an electron spin bath. This can be treated

with numerical methods, see Ch. 5.

The electron spin qubit begins in an arbitrary superposition

|ψs⟩ = cos θ |0⟩+ eiϕ sin θ |1⟩

ρ̂s =

 cos2 θ cos θ sin θe−iϕ

cos θ sin θeiϕ sin2 θ

 . (3.17)

Without loss of generality we will put the spin in |ψs⟩ = 1√
2

(
|0⟩+ eiϕ |1⟩

)
and, assuming a
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A∝ 1/∣rj∣3

S

Ij
(a)

|0⟩

|1⟩

Bz

∝γeBz

∝γeB(t)~
(b)

Figure 3.2: Qubit in a noisy environment. (a) A central spin (red) with spin operator
Ŝ is surrounded by an environment of bath spins with operators Îj , interacting with dipolar
interactions A ∝ 1/|rj |3. There is a global magnetic field Bz ẑ that sets the quantization axis
of all spins. All bath spins are in an eigenstate (up or down) in a given instance. (b) The
qubit two-level system with states |0⟩ and |1⟩ has a transition frequency γeSz(Bz + B̃(t)),
where B̃(t) is a random field produced by the bath spins and leads to a time dependent shift
of the energy levels.

pure-dephasing form of the qubit evolution that is spin population-conserving [167], describe

the coherence with the phase ϕ. The spin bath has many energy modes |en⟩

Ĥbath |en⟩ = En |en⟩

ρ̂en = 1
Z

∑
n e

−βEn |en⟩ ⟨en|

= 1
Z e

−βĤbath , (3.18)

where Z is the partition function. The total system-bath state is then described by

ρ̂tot = ρ̂s ⊗ ρ̂en

iℏ
dρtot
dt

=
[
Ĥtot, ρ̂tot

]
. (3.19)

We are only concerned with the state of the electron spin, specifically the coherence ⟨1| ρs(t) |0⟩,

so we can trace out the bath degrees of freedom such that

ρ̂s = Trn ρ̂tot (t). (3.20)

We once again arrive at the question of how to treat the bath. The interaction term He,bath
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is essentially a Zeeman shift on the central spin by the magnetic moment of each bath spin.

For a given state of the bath at some time t, the bath spins exert a net magnetic field

B̃(t) = 1
γe

∑
j A(rj)Î

j
z,int(t) such that we can write

Ĥe,bath = γeB̃(t)Sz. (3.21)

Note that we are not saying anything about the statistics of this bath field or about its

quantum or classical nature, only that spins produce magnetic fields.

We now move into the interaction picture with respect to the bath unitary operator

Ûint(t) = eiĤbatht [237]. The density matrix and Hamiltonian in this picture are

ρ̂tot,int(t) = Ûint(t)ρ̂totÛ
†
int(t) (3.22)

Ĥtot,int(t) = Ĥs + Ĥs,bath;int(t)

= γeSz(Bz + B̃(t)), (3.23)

as shown in Fig. 3.2(b), where the qubit transition frequency is dependent on both the static

field Bz and the fluctuating field B̃(t). Time evolution in the interaction picture is achieved

with V̂ (t) = T̂ exp
[
−i

∫ t
0 dt

′Ĥtot,int(t
′)
]
, where T is the time-ordering operator. Thus the

density matrix evolves as

ρ̂tot(t) = V̂ (t)ρ̂tot(0)V̂
†(t) (3.24)

ρs,01(t) =
∑

n ⟨1, en| ρ̂tot(t) |0, en⟩ , (3.25)
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and we note that Htot,int conserves total central spin polarization. Then

ρs,01(t) =
∑

n ⟨1, en| T̂ e
−i

∫ t
0 dt

′Ĥtot,int(t
′)ρ̂e(0)⊗ ρ̂n(0)T̃ e

i
∫ t
0 dt

′Htot,int(t
′) |0, en⟩ (3.26)

= ⟨1| eiγeSzBz ρ̂s(0)e
−iγeSzBz |0⟩ ·∑

n ⟨en| T̂ e
i
2γe

∫ t
0 dt

′B̃(t′)ρ̂n(0)
ˆ̃Te−

i
2γe

∫ t
0 dt

′B̃(t′) |en⟩ (3.27)

= ρs,01(0)e
iγeBztWϕ(t) (3.28)

where ˆ̃T is the anti-time ordering operator, Wϕ(t) is the decoherence function, defined as

everything after and including the sum in Eq. (3.27), and the factor of 1/2 arises from the

eigenvalues of |0, 1⟩.

The first time-dependent term in Eq. (3.28) is simply phase accumulation in a static

magnetic field, and does not decohere the qubit. Why, then, does the magnetic field from the

bath spins decohere the qubit? For one, we do not know the initial state of the bath. We can

generally say the bath is in a thermal state, but this is a macrostate; it says nothing about the

microstate, the specific configuration of bath spins. As each bath spin is in general coupled

to the central spin with a different A(rj), each microstate in general produces a different

magnetic field at the location of the central spin. Second, the bath is actually dynamic, such

that even for a given initial bath state, after some time there can be spin flips and mutual

flip-flops in the bath (although we treated these as perturbations to be ignored earlier). I

will again emphasize that the decoherence–the “open” nature of our qubit–is in some ways a

consequence of the limits of our knowledge, although the “measurement problem” in quantum

mechanics [234] is beyond the scope of this thesis. It should be evident from Eq. (3.27) that

the qubit coherence does not disappear, but rather the qubit interacts with and becomes

entangled with the bath spins [233]. But we do not have enough knowledge about the bath

here to theoretically describe or experimentally recover the coherence that leaks into the

bath spins, and it is thus lost.
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3.3.2 Microscopic picture with classical noise

To make this problem tractable, we will describe the spin bath magnetic field, which depends

on an initial microstate and the bath spin dynamics, as a classical random variable b(t) with

the Hamiltonian

Ĥe = γeSzBz + Szb(t). (3.29)

This reduces the decoherence function to

Wϕ(t) = eiϕ(t) (3.30)

ϕ(t) ≡
∫ t
0 dt

′b(t′). (3.31)

Now, ignoring the global phase from the static field, the coherence is

ρe,01(t) = ρe,01(0)e
iϕ(t), (3.32)

where we know ϕ(t) from b(t) for a single experiment.

We find the average coherence over many measurements

ρe,01 = ρe,01(0)e
iϕ(t). (3.33)

We can Taylor expand the phase as eiϕ(t) = 1 + iϕ − 1
2ϕ

2 + · · · . The first term is a trivial

factor. Without loss of generality we can assume ϕ = 0. The third term and higher even

moments generally survive. If the noisy magnetic field, and thus the phase, is Gaussian,

that is, the randomness is described by a Gaussian distribution p(x) = 1√
2πσ

e−x2/2σ2 , then

all information is contained in the second moment x2 = σ2. Higher even moments can be

decomposed using Wick’s theorem, such as x4 = 3x2 · x2. We thus only keep the second
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moment term, and arrive at

eiϕ = e−
1
2ϕ

2
. (3.34)

This tells us that the decoherence arises from the mean-square of the magnetic interactions

between the central spin and the bath spins,

ϕ(t) =
∑

j

∫ t
0 dt

′AjI
(j)
z (3.35)

ϕ2(t) =
(∑

j AjI
(j)
z t

)2
(3.36)

ϕ2(t) =
∑

j A
2
jI

(j),2
z t2 +

∑
i̸=j AiAjI

(i)
z I

(j)
z t2 (3.37)

=
(∑

j A
2
jI

(j),2
z

)
t2, (3.38)

where the cross term in Eq. (3.37) averages to 0 because the spin states Iz of each bath spin

are uncorrelated from each other. We can then rewrite the coherence as

Wϕ(t) = e−
1
2∆

2t2 , (3.39)

where ∆2 ≡
∑

j A
2
jI

(j),2
z and I

(j),2
z is a constant dependent on the spin multiplicity of the

bath spins.

This assumes the noise is Gaussian distributed. For a general probabilistic distribution

function p(ϕ), the decoherence can be calculated as

eiϕ =

∫ ∞

−∞
eiϕp(ϕ)dϕ. (3.40)

3.4 Coherence measurements

It is natural to ask what the above looks like in an experiment. In general we are con-

cerned with the type of experiment shown in Fig. 3.3(a). First, the qubit is initialized into

an eigenstate. Then, a π/2 operation prepares the qubit in an equal superposition state

41



(a)
Init. U(t)π

2 Meas.

arbitrary

(b)

Init. π
2 Meas.

t
Ramsey

(c)

Init. π
2 Meas.πt/2 t/2

Hahn echo

g(τ)
1

-1

g(τ)
1

-1
τ

τ

t

t

Figure 3.3: Coherence measurements. (a) General qubit coherence measurement. After
preparation in a superposition state, the qubit evolves under free evolution or unitary oper-
ations U(t). (b) In a Ramsey measurement, there is only free evolution. (c) In a Hahn echo
measurement, a π-pulse applies an X or Y gate on the qubit halfway through free evolution.
Weighting functions g(t) are shown for the Ramsey and Hahn echo measurements below the
sequences.

ρ̂ = 1√
2

 1 1

1 1

. The qubit evolves, possibly under some set of unitary operations Û(t)

that modifies the qubit-bath coupling through dynamical decoupling [272, 273]. The qubit

coherence is then measured, often by projecting the coherence onto a state population.

We now describe decoherence here in terms of a noise spectrum. Assuming some time

evolution of the qubit during the coherence experiment described by the weighting function

g(t), the phase acquired in a single shot is

ϕ(t) =

∫ t

0
dt′b(t′)g(t′). (3.41)
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Recalling Eq. (3.8)

ϕ2(t) =
∫ t
0 dt1

∫ t
0 dt2b(t1)g(t1)b(t2)g(t2) (3.42)

=
∫ t
0 dt1

∫ t
0 dt2g(t1)g(t2)b(t1)b(t2) (3.43)

Gbb(t1 − t2) =
∫∞
−∞

dω
2π e

−iω(t1−t2)S[ω] (3.44)

ϕ2(t) =
∫∞
−∞

dω
2πS[ω] ·

∫ t
0 dt1g(t1)e

−iωt1
∫ t
0 dt2g(t2)e

iωt2 . (3.45)

Analogous to the noise spectrum S[ω] for b(t), we can also define the spectral weight, or

filter function, arising from the g(t) dynamics, as

g[ω] =
∫ t
0 dt

′g(t′)e−iωt′ (3.46)

F [ω, t] ≡
∫ t
0 dt1g(t1)e

−iωt1
∫ t
0 dt2g(t2)e

iωt2 (3.47)

= |g[ω]|2

such that decoherence is exactly described by

Wϕ(t) = exp

[
−1

2

∫ ∞

−∞

dω

2π
S[ω]F [ω, t]

]
, (3.48)

where the time dependence indicates that the filter in general changes with qubit evolution

time. This is a very powerful statement. If one knows the nature of environmental noise and

the qubit evolution (usually controlled by the experimentalist), one can calculate a qubit’s

decoherence. More common in an experimental setting, one can measure the decoherence

and can, using the knowledge of F [ω], back out the noise spectrum, see, e.g., Refs. 41, 182,

217, 230, 285.
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3.5 Common filter functions and noise spectra

We can now look at expected qubit behavior under common coherence measurements [20,

98, 212] and noise spectrum functions [63].

3.5.1 Ramsey and Hahn echo coherence measurements

In a Ramsey measurement [20, 212], Fig. 3.3(b), there is no qubit control during the evolution

period and the weighting function is g(t′) = 1, shown in Fig. 3.3(b) below the sequence. For

measurement time t

g[ω] = − i
ω (1− e−iωt) (3.49)

F [ω, t] = 1
ω2 (2− 2 cosωt)

=
sin2 ωt/2
(ω/2)2

. (3.50)

The width and peak height in Eq. (3.50) are determined by t. Importantly, this filter is finite

in the dc limit

lim
ω→0

FRamsey[ω, t] = t2,

revealing that a Ramsey measurement is sensitive to static disorder.

In a Hahn echo measurement [20, 98], Fig. 3.3(c) the qubit is flipped halfway through

the measurement, g(t′) = 1, t′ < t/2; g(t′) = −1, t′ > t/2, shown below the sequence. Then

g[ω] = − i
ωe

−iωt(eiωt/2 − 1)2 (3.51)

F [ω, t] = 1
ω2

[
(eiωt/2 − 1)(e−iωt/2 − 1)

]2
= 1

2
sin4 ωt/4
(ω/4)2

. (3.52)
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(a) (b)

Figure 3.4: Noise spectra and filter functions. Two common noise spectral functions,
Lorentzian (purple) and 1/f (yellow) are plotted alongside Ramsey (Eq. (3.50), blue) and
Hahn echo (Eq. (3.52), red) filter functions for measurement times of 5 µs (a) and 50 µs (b).
The y-axis is a linear scale, and the relative magnitude of spectra and filters is constant
between (a) and (b).

Notably, the Hahn echo filter is zero in the dc limit

lim
ω→0

FHahn[ω, t] = 0, (3.53)

thus a Hahn echo measurement is ideally insensitive to static disorder.

In Fig. 3.4 we plot Ramsey and Hahn echo filter functions for measurement times of t =

5 µs (a) and 50 µs (b). The Ramsey filter is dominated by a low-frequency component while

the Hahn echo filter is peaked around ω = 4/t. As the measurement window increases, both

functions shift to lower frequencies and increase in peak amplitude, where there is increased

overlap with the noise spectra shown (Lorentzian and 1/f noise are plotted, discussed below).
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3.5.2 Coherence in a Lorentzian bath

A simple model of noise assumes that the bath decorrelates exponentially over a single

timescale τc [51]

Gbb(t) = ∆2e−|t|/τc (3.54)

S[ω] = 2∆2τc
1

1+(ωτc)2
(3.55)

where the second line is simply the Fourier transform, a symmetric Lorentzian function

centered at zero frequency with a roll-off frequency of 1/τc, and ∆2 is the mean square

coupling to the bath as defined above. This noise spectrum, plotted in Fig. 3.4, is roughly

constant at low-ω and decays as 1/ω2 at high-ω.

Before calculating coherence, we can already get a sense of how different measurements

interact with the qubit environment from the overlap of the filter functions and the noise

spectra in Fig. 3.4. It is evident that FRamsey[ω, t] has a larger overlap with both Lorentzian

and 1/f noise compared to FHahn[ω, t], which according to Eq. (3.48) directly determines

the coherence.

When measuring a qubit with a Ramsey measurement in the presence of a single Lorentzian

noise source, the expected coherence is

ϕ2 =
∫∞
−∞

dω
2π

1
2

(
2∆2τc

1
1+(ωτc)2

)(
sin2 ωt/2
(ω/2)2

)
(3.56)

= ∆2τ2c

[
t/τc + (e−t/τc − 1)

]
Wϕ(t) = e

−∆2τ2c

[
t/τc+(e−t/τc−1)

]
. (3.57)

We plot this for bath parameters τc = 100 µs and ∆ = 0.1 µs−1, estimated from Ref. 23, in

Fig. 3.5(a). This is in general a complicated function of central spin-bath coupling and bath
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correlation time. In the short time limit, where t≪ τc,

ϕ2 ≈ ∆2τ2c
[
t/τc + (1− t/τc + (t/τc)

2 − 1)
]

Wϕ(t) ≈ e−∆2t2/2, (3.58)

exactly the result in Eq. (3.39). In that case, we did not include any time evolution in

our bath during a single qubit measurement, equivalent to taking the limit τc → ∞ in this

picture. The decoherence here is entirely determined by ∆ with no impact of τc. If the

coherence decays within this time range, we can define a characteristic coherence decay time

T ∗
2 =

√
2/∆ (3.59)

such that Wϕ = e−(t/T ∗
2 )

2
. If this is not the case, that is, coherence persists beyond t≫ T ∗

2 ,

we may consider the other limit, t≫ τc, where

Wϕ(t) ≈ e−∆2τct. (3.60)

Notably, the exponent of the time-dependence, the so-called “stretch factor,” in this case is 1

opposed to 2, indicating a path to infer from a coherence measurement which limit one is in

based on the stretch factor [60, 72]. In Fig. 3.5(b) we show the cross-over in stretch factor,

where we can extract the stretch factor by plotting ϕ2 = − log(coherence) on a log-log plot

and extracting the slope.

In the case of a Hahn echo measurement with a single Lorentzian noise source

ϕ2 =
∫∞
−∞

dω
2π

(
2∆2τc

1
1+(ωτc)2

)(
1
2
sin4 ωt/4
(ω/4)2

)
(3.61)

= ∆2τ2c

(
t/τc − 3 + 4e−t/2τc − e−t/τc

)
(3.62)

Wϕ(t) = e
−∆2τ2c

(
t/τc−3+4e−t/2τc−e−t/τc

)
. (3.63)
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We plot this for the same bath parameters as above in Fig. 3.5(a). We can again look in the

short-time limit relative to bath dynamics

ϕ2 ≈ ∆2τ2c
[
t/τc − 3 + 4(1− t/2τc + t2/8τ2c − t3/48τ3c )− (1− t/τc + t2/2τ2c − t3/6τ3c )

]
Wϕ(t) ≈ e−∆2t3/12τc , (3.64)

where the stretch factor is 3 and we can again define a short-time limit coherence time

T2 = (12τc/∆
2)1/3. (3.65)

In the long-time limit relative to bath dynamics we recover the leading order term

Wϕ(t) ≈ e−∆2τct (3.66)

with a stretch factor of 1. We once again see a cross-over in the stretch factor as we change

time regimes, plotted in Fig. 3.5(b).

In general, when considering decoherence from a single Lorentzian noise source, the full

profile recovered from Eq. (3.48) must be used. However, in experiment, one is often con-

cerned only with the timescale of decoherence and not the full functional form. In this case,

experimental data is often fit to the functional form e−(t/T2)
n
, where n is the stretch factor.

This is often sufficient to enable qubit characterization and sensing, although recent work

has observed the cross-over of the stretch factor [60, 72].

3.5.3 Coherence in the presence of multiple Lorentzian noise sources

Treating the bath as a single mesoscopic object with a Lorentzian noise spectrum and one ∆

and τc is a stringent assumption. More generally, we may consider qubit decoherence in the

presence of multiple quasi-independent noise sources. By quasi-independent we mean that
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(a) (b)

Figure 3.5: Coherence function example. Coherence in a Lorentzian bath with τc =
100 µs, ∆ = 0.1 µs−1 [23]. Under these parameters the lineshape, plotted in (a), is dominated
by the short-time behavior. In (b) we plot directly the acquired dephasing factor on a log-
log plot such that the slope is equal to the stretch factor. We show with dashed lines on
each curve how the slope changes between the short- and long-time limits, with a cross-over
around τc.

each sub-bath is governed independently by its own correlation function Gi(τ), but that in

general spins in different sub-baths can interact via ZZ couplings, and thus the correlation

of one sub-bath may be influenced by the presence of another sub-bath. This situation

may arise, for example, from a spin bath with multiple spin species of different densities

ρi, as with different Jahn Teller-hyperfine states of a P1 center bath, see Ch. 2. We expect

∆i ∝ ρi [23] as the interaction strength has a 1/r3 dependence (for non-dipolar interactions

this scaling may not hold). If bath evolution is dominated by resonant flip-flop interactions

between bath spins, then we can similarly naïvely expect τc ∝ ρ−1 [23], although this picture

is complicated by many-body effects in electron spin baths [302].

Each sub-bath can be considered to independently contribute to central spin decoherence,

such that

Wϕ(t) =
∏

Wϕ(t,∆i, τ
(i)
c ) (3.67)
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In the common Ramsey case, where t≪ τ
(i)
c , ∀i, we recover

Wϕ(t) = e−
∑

i∆
2
i t

2/2

= e−∆2
tott

2/2 (3.68)

where ∆tot is calculated over the entire bath. In this case we find that there is no need to

treat sub-baths separately.

The Hahn echo coherence is in general

Wϕ(t) = e
−
∑

i∆
2
i τ

(i),2
c

(
t/τ

(i)
c −3+4e−t/2τ

(i)
c −e−t/τ

(i)
c

)
(3.69)

becoming

Wϕ(t≪ τc) ≈ e
−
(∑

i∆
2/τ

(i)
c

)
t3/12

= e−(t/T2)
3
, T2 =

(∑
i∆

2
i /12τ

(i)
c

)−1/3
(3.70)

Wϕ(t≫ τc) ≈ e
−
(∑

i∆
2
i τ

(i)
c

)
t

= e−t/T2 , T2 =
(∑

i∆
2
i τ

(i)
c

)−1
. (3.71)

While it is still possible to define a coherence time T2, this time is non-trivially related to

the bath dynamics.

An interesting situation arises when performing a double electron-electron resonance

(DEER) measurement on a multi-component bath (or, in the case of a nuclear spin bath,

electron-nuclear double resonance [ENDOR]). A DEER measurement applies a π-pulse to

bath spins synchronously with the π-pulse on the central spin, thus negating the central

spin weighting function relative to the bath spin states (see App. B for more details of

DEER measurements). Thus the appropriate filter function is Framsey[ω, t] and this can be
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viewed as performing a Ramsey measurement on the component of the bath that is flipped,

along with a Hahn echo measurement on all noise sources that are not flipped. If a bath is

composed of multiple spin species that are not resonant with each other, a single microwave

tone will in general only flip one species, leading to this situation. The DEER measurement

is used extensively in Ch. 6.

Consider a two-component bath with two detuned species with parameters ∆1, τ
(1)
c and

∆2, τ
(2)
c . A DEER (Ramsey) measurement is performed on the first sub-bath and a standard

Hahn echo on the second. The resulting coherence for t≪ τ
(i)
c , ∀i is

Wϕ(t) =
[
e−∆2

1t
2/2

]
·
[
e−∆2

2/τ
(2)
c t3/12

]
= e

−
(
∆2

1t
2/2+∆2

2/τ
(2)
c t3/12

)
. (3.72)

There is now a bi-exponential decay with multiple stretch factors. If there is sufficient

separation of timescales – T
(2)
2 ≫ T

∗(1)
2 – decoherence is dominated by bath 1 and this

measurement can be used to independently characterize ∆1.

3.5.4 Telegraph noise

Sec. 3.5.2 assumed the entire bath can be described by Gbb = ∆2e−|t|/τc . In reality, the bath

may be composed of many fluctuators that evolve on different time-scales [270]. Consider

first a “bath” composed of a single two-level system that flips between states stochastically at

some rate Γ such that the correlation function is ∝ e−Γ|t|. This is the same as the Lorentzian

case, and it trivially produces a Lorentzian bath spectrum in Eq. (3.55)

S[ω] = 2∆2 Γ

Γ2 + ω2
, (3.73)

where we retain the concept of ∆ as denoting the strength of the noise spectrum.
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An ensemble of two-level systems may see different flip rates due to inhomogeneity in

a real device or inhomogeneity in the density, for example. We can consider a continuous

distribution of rates Γmin ≤ Γ ≤ Γmax where the probability of each rate is P (Γ) ∝ 1/Γ.

This situation may arise from a thermally activated or tunneling process [200, 270]. The

resulting noise spectrum

Stot[ω] = 2∆2
∫ Γmax
Γmin

dΓ
Γ

Γ
Γ2+ω2

= (2∆2)
tan−1(Γmax/ω)−tan−1(Γmin/ω)

ω . (3.74)

At large ω ≫ Γmax we get Stot[ω] ≈ (2∆2)Γmax−Γmin
ω2 , the same functional form as a

Lorentzian spectrum at large ω. In an intermediate frequency regime Γmin < ω < Γmax we

recover Stot[ω] ∝ 1/ω, the ubiquitous “1/f ” noise, plotted in Fig. 3.4 for arbitrary amplitude

alongside measurement filter functions. In general we can expect some spectrum ∝ 1/ωα, α ∈

[0, 2].

As this spectrum diverges at low frequency we will only consider the resulting coherence

under a Hahn echo measurement, where the filter function goes to 0 at dc, and assume some

low-frequency cut-off. The coherence is then

∫ ∞

−∞

dω

2π
S[ω]F [ω, t] ∝ 2 · 12

∫∞
0+

dω
ωα

1
2
sin4 ωt/4
(ω/4)2

∝ tα+1 (3.75)

with some constant of proportionality. Importantly, here we discover that, if α is constant

over our spectral range, the stretch factor is α + 1.
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3.6 Conclusion

Fluctuating fields are a fact of the physical world, and inevitably impact quantum states

in every application of quantum mechanics. It is thus imperative to understand how noise

sources behave and interact with a qubit. In this chapter we started from a microscopic

picture and found that we can describe noisy processes in both the time domain, with

correlation functions, and in the frequency domain, with noise spectra. We then saw how

classical noise directly causes decoherence of a qubit. Ramsey and Hahn echo measurements

were analyzed from the perspective of frequency-domain filter functions that expose the qubit

to some part of the bath noise spectrum. In the case of Lorentzian noise spectra, we saw

how the stretch factor inside the exponential decay can vary at different time-scales, with

implications for interpreting coherence measurements.

From one perspective, noise presents a problem by introducing decoherence into a system.

This limits, for example, sensitivity to a sensing target, or the number of coherent operations

that can be performed. However, noise may also be a resource, for example through reservoir

engineering of entangled states [130, 140, 152, 276, 286]. We saw in this chapter that the

underlying physics of the noise is imprinted on the functional form of the coherence. This

enables a potentially very powerful sensing approach where the entire coherence, not just

the coherence time, is utilized. This idea has been explored recently in NV-P1 ensembles

for quantum simulation [60]. Recent work has explored nanoscale noise sensing as a means

to detect phase transitions [47, 71, 158]. Broadly, the nature of correlations and types of

excitations in a material will be imprinted on the noise spectrum, indicating that there

should be information in the sensor coherence about this underlying physics.
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CHAPTER 4

DIAMOND GROWTH AND NITROGEN VACANCY CENTER

SYNTHESIS

Portions of this chapter are published in Ref. 97: X. Guo, N. Delegan, J. C. Karsch (Marcks),

Z. Li, T. Liu, R. Shreiner, A. Butcher, D. D. Awschalom, F. J. Heremans, and A. A. High,

Tunable and Transferable Diamond Membranes for Integrated Quantum Technologies, Nano

Lett., 21, 10392 (2021).

4.1 Motivation

Physics does not exist in a vacuum. In condensed matter physics it often exists in, well,

matter [137]. An electron spin with no host lattice or atmosphere would have nothing to

scatter off of, with no spin bath or environmental noise with which to interact (see Ch. 3). The

spin lifetime and coherence time would be nearly infinite, and we would have an incredibly

boring qubit. An electron in a solid lattice, by contrast, can exhibit a rich tapestry of

non-trivial phenomena, from a spin-photon interface (as in the defects in this thesis) to

superconductivity [69]. In fact it is often not even appropriate to talk about a single electron

in a material, but rather delocalized Bloch waves or Cooper pairs [137]. The material, which

we can consider vaguely as some assemblage of atoms that exhibits emergent phenomena,

clearly impacts the physics we can observe.

One can predict physical properties of a material, but there is no guarantee that these

will be measured. For example, the electrical conductivity of a perfect, defect-free, zero-

temperature lattice is 0 [27], but good luck growing a perfect material. Likewise, one can

measure a physical property of a sample, say, again, the electrical conductivity, but can only

connect it to the underlying physics so far as one knows about the material being measured.

How crystalline is the sample? What is the density of dopant atoms? What are the species
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of dopant atoms? How does the measurement probe affect the sample? These questions

tie a critical knot between theory and experiment with the thread of one’s knowledge of a

sample. By no means does a sample need to be perfect, “simply” understood.

In the study of spin qubits in solid-state hosts it is abundantly clear that qubit properties

are dependent on the properties of the host and how a sample was processed. In our case

of single NV centers in diamond, the coherence–a critical property that we have explored in

Ch. 3–is a function of diamond host carbon isotope [15], nitrogen dopants [23], other defects

and dopants [104, 132, 157, 283], and in some cases, surface treatment [131, 230]. We will

see in the studies in Chs. 5 and 6 that connection between the underlying physics and the

measured quantities relies critically on how good our initial understanding of our sample is.

To this end, for a variety of experiments extending beyond the confines of UChicago, we1

synthesize diamond samples at Argonne National Laboratory via plasma enhanced chemical

vapor deposition (PE-CVD), enabling exquisite isotopic and dopant control as well as control

over the final NV centers that are studied [97, 192]. In this chapter we will review the

processes by which the samples studied in the rest of the thesis are synthesized. In the latter

portion of the chapter, Sec. 4.5, we discuss the fabrication of high-aspect ratio diamond

membranes for quantum technologies, work contained in Ref. 97, with a focus on coherent

NV center spin states hosted therein (the work contributed by this author).

4.2 Crystal growth

Before describing the specifics of our diamond growth, I will review the concept of step-flow

growth, the situation applicable to our diamond CVD growth. I pull heavily from “The

Growth of Crystals and the Equilibrium Structures of Their Surfaces” by W. K. Burton, N.

Cabrebra, and F. C. Frank [39] in describing both the process and the thermodynamics. See

1. When I say “we” in this regard I am mainly referring to Nazar Delegan and F. Joseph Heremans,
Argonne staff scientists, who developed recipes, maintain the tools, process the samples, and actually do
more-or-less everything sample-related described in this chapter.

55



Ref. 6 for an overview of the development of diamond CVD.

It is important to note that at a perfectly flat crystal surface with no disorder there would

be no step-flow growth. Consider a crystal whose surface is in contact with a vapor composed

of the crystal’s constituent atoms (e.g., diamond with some carbon-containing vapor). In

equilibrium, some concentration of adatoms will be adsorbed from the vapor onto the surface

with some rate of exchange between the two. A uniform surface presents a uniform potential

energy environment to the adsorbed atoms, and there is no thermodynamic reason why an

adsorbed atom will stick (grow) onto the crystal rather than eventually return to the vapor.

In this case there is no crystal growth, only crystal stasis. Luckily, real crystal surfaces are

imperfect, even if only by single atomic steps, and these imperfections will enable crystal

growth [39].

We can formalize this process, following Ref. 39. The crystal surface will have some

density ns0 of adsorbants

ns0 = n0e
−βWs , (4.1)

where n0 is roughly the areal density of possible adsorbant positions on the surface and Ws

is the energy of evaporation. Each adsorbant on the surface will in general diffuse around to

other energetically equivalent sites by some distance

x2s = Dsτs (4.2)

for diffusion coefficient Ds and mean lifetime on the surface before evaporation τs. Diffusion

is given by

Ds = a2ν′e−βUs (4.3)

for distance a between sites, frequency factor ν′, and activation energy Us. The lifetime is

given by

τs = νe−βWs (4.4)

56



with frequency factor ν. The frequency factors are given by the atomic frequency of the

crystal and are approximately equal. We then calculate the diffusion length as

xs = aeβ(Ws−Us)/2. (4.5)

Consider the case of Us > Ws. Then xs < a and the average adsorbant evaporates back into

the vapor before moving a single site. For growth to happen, we need the adsorbant to find

a lower energy state and stick to the surface, so this will not do. We require xs > a and thus

Ws > Us to effect crystal growth. This is generally the case.

Further details of the thermodynamics of steps on the surface may be found in Ref. 39.

It is sufficient here to assume that there is some negative energy −Ustep associated with an

adsorbant attaching to the exposed face at a kink in an atomically thin step, where we assume

some thermodynamic density of kinks rather than a perfect straight step face. Then, if the

diffusion length xs is larger than the average distance between kink sites x0, we can expect

adsorbants to, on average, find kink sites and grow the crystal face rather than evaporate.

The step then essentially moves along the crystal face creating more crystal, hence “step-flow

growth.” We show this process schematically in Fig. 4.1. In the figure we show first (A)

adsorbants on the crystal surface near a growth step with thermodynamic kinks. If there

is not enough thermal energy for the adsorbants to diffuse on the surface they will stick on

the surface in place or evaporate. With sufficient thermal energy they will diffuse and find

a kink (B), assuming xs > a as above. If there is too high a density of adsorbants on the

surface they may instead stick to each other (C), forming islands on the surface and leading

to rougher growth [261].

Step-flow growth is critical for the preparation of high-quality NV-containing diamond

samples for a variety of reasons. Growth defects, such as islands, can induce strain, reducing

NV ensemble coherence [20] and leading to variation in optical frequency, although moder-

ate transverse strain may contribute to reduced spectral diffusion [170]. Incorporating point
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Figure 4.1: Adsorbant behavior on surfaces. Depending on the adsorbant density and
available thermal energy, adsorbants on a crystal surface during CVD may evaporate or stick
on the surface away from the step (A), diffuse and fall into a step kink, generating step-flow
growth (B), or form 2D islands away from the step (C).

defects during growth can also reduce optical and spin coherence. Surface roughness, which

may arise from island formation or from growth on a rough substrate, can increase decoher-

ence for near-surface NV centers by introducing more sites for noisy surface spins and charge

traps [50, 230], reducing sensitivity to external sensing targets. Uniform step-flow growth

also enables depth-confined in-situ doping of diamond with a so-called delta(δ)-doping tech-

nique [192], discussed in more detail in Sec. 4.4.

4.3 PE-CVD diamond growth

We now describe our current standard process for PE-CVD diamond step-flow growth. Note

that this process is subject to development.
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4.3.1 Substrate preparation

We begin with “electronic-grade” or “quantum-grade” single-crystal diamond substrates from

Element 6 with {100} faces and <110> edges. These are quoted to have <5 ppb naturally

occurring nitrogen dopants, which is necessary for producing optically resolvable single NV

centers in our growth region. For reference, this corresponds to around 500 nitrogen atoms

within a 532 nm laser optical spot. It is not advisable to synthesize NV centers in material

grown on “optical grade” (now called “PL” substrates) with [N]<1 ppm. While these sub-

strates host features such as preferential alignment of in-grown NV centers [205], the native

concentration is too high to resolve single NVs above.

The as-received substrates come polished to a surface roughness of Ra < 5 nm, much

larger than a single atomic step in {100} diamond, 0.089 nm [261]. To prepare smooth

surfaces for growth we first send substrates to Syntek, LLC for chemical-mechanical polishing,

leading to a surface roughness Rq ≈ 0.3 nm (Fig. 4.2(a)). However, this polishing introduces

strain into the substrate, which may propagate during growth and affect NV properties.

To mitigate this issue we subject the polished substrates to an inductively coupled plasma-

reactive ion etch (ICP-RIE). ICP-RIE etching is performed in an Oxford Lab100. The recipe

has two distinct etch steps performed in order:

1. 10min of Ar/Cl2 etch: Ar 25 sccm, Cl2 40 sccm, 10mTorr, 400W ICP power, 200W

bias, resulting in a 40(6) nmmin−1 etch rate.

2. 1min of O2 etch: O2 50 sccm, 10mTorr, 700W ICP power, 100W bias, resulting in a

130(20) nmmin−1 etch rate.

The etching steps are performed in sequence to provide a ≈533 nm etch depth per step. Due

to an overabundance of caution, all the samples discussed in this paper were submitted to

five cycles of etching for a total removal of ≈2.5 µm. Post-etching surfaces are character-

ized via AFM to ensure Rq≤0.4 nm, confirming that the polished roughness is maintained
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Figure 4.2: AFM characterization of surface roughness, etch step. We confirm that
the surface roughness changes minimally from the polished value (a) to after ICP-RIE (b).

(Fig. 4.2(b), tip artifacts in this dataset lead to overestimation of the Rq value shown).

Element 6 substrate surfaces are not perfectly oriented along the {100} axis, but rather

have a quoted miscut of ±3◦. A miscut actually provides natural terraces for growth, and

can suppress formation of growth defects such as hillocks [174, 261]. Correspondingly, the

miscut angle affects the step-flow growth rate. In practice, the growth rate for each batch of

substrates is re-calibrated as in Fig. 4.5.

To further prepare the substrates we subject them to a multi-step anneal under vacuum

to mobilize and annihilate vacancy clusters [230]. Pre- and post-anneal, substrates undergo

a tri-acid clean in 1 : 1 : 1 NHO3 (nitric) 68% : H2SO4(sulfuric) 98% : HClO4 (perchloric)

70% acids (trace metal grade or better) at 200 ◦C for 2 h or until the perchloric boils off.

These samples are then DI sonicated and N2 dried right before any subsequent steps. This

removes non-diamond carbon from the surface. The anneal recipe is shown in Table 4.1.

The surface roughness remains low post-anneal, pre-growth (Fig. 4.3(a,b)). At this point

substrates are ready to be loaded into the custom-configured Seki Diamond SDS6350 system.
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Table 4.1: Anneal recipe for pre-growth substrate preparation.

Step # Type ◦C/min (ramp) or ◦C (dwell) Time (min)
1 Ramp 1.6
2 Dwell 200 720
3 Ramp 1.6
4 Dwell 400 480
5 Ramp 1.6
6 Dwell 850 480
7 Ramp 1.6
8 Dwell 1200 120
9 Ramp -5
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Figure 4.3: AFM characterization of surface roughness, growth step. We confirm
that the surface roughness remains low after a post-etch (pre-growth) anneal, following the
steps in Table 4.1, in (a,b), and after step-flow growth (c,d), at two different length scales.
Note, the pre-growth and post-growth data are shown from different samples.
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4.3.2 PE-CVD

PE-CVD is performed in a hydrogen plasma with methane CH4 as a carbon precursor. Before

reviewing the details of our growth, we first look at the chemistry of this process. We note

that the lack of in-situ measurements during growth makes it difficult to fully characterize

all the processes at play during CVD growth [261].

Growth chemistry

The mechanism of CVD diamond growth is less straightforward than the process laid out in

Sec. 4.2 owing to the fact that the high concentration of hydrogen in the growth chamber

actually terminates the carbon bonds at the diamond surface, preventing chemisorption of

carbon groups [261]. The presence of active sites is governed by the competition of hydrogen

adsorption to an active carbon site Cd · , where d denotes that the carbon is part of the

diamond and the “.” indicates the site is available, and a hydrogen radical reacting with the

hydrogen termination and removing it from the surface (hydrogen abstraction). These are

captured by

Cd · + H → Cd − H (4.6)

Cd − H + H → Cd · + H2 (4.7)

The hydrogen plasma is necessary to produce precursor species from the methane gas. All

four carbon bonds of methane are satisfied, and thus a methane molecule will not adsorb

onto a Cd · site. However, hydrogen radicals break apart methane molecules via

H + CH4 → CH3 + H2 (4.8)
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where the CH3 radical may then partake in growth. Further reactions may produce other

CHx and C2Hy compounds that also participate. As hydrogen is the dominant species, these

reactions have a small impact on the hydrogen plasma density.

Now that active carbon sites and precursors are available, the carbon radicals can chemisorb

on the surface via

Cd · + CH3 → Cd − CH3 (4.9)

where hydrogen radicals may then abstract the hydrogen away and diamond growth may

proceed [269]. The diamond faces exposed at step edges have a higher density of carbon

sites such that it is favorable for an adsorbed carbon to sit at a step edge, satisfying the

conditions in Sec. 4.2.

Current growth parameters

At present, growth parameters are as described below. However, these parameters are sub-

ject to change, and require re-calibration after, for example, servicing the tool. Note that

parameters here, used for sample growth in Ch. 5 and 6, are different than those used in

Ref. 97 (the sample studied in Sec. 4.5), as the tool was serviced in the intervening time.

A schematic of the growth chamber is shown in Fig. 4.4(a). The prepared substrate sits

in the chamber in a sample holder, where the edge is at the same height as the sample to

aid in plasma uniformity. A mw source sparks the hydrogen plasma. A gas inlet flows in

H2,
12CH4, and 15N2 precursor gases at variable rates controlled via mass flow controllers

(MFCs). Gas flows out through the exhaust. Precursor gases are broken apart in the plasma,

leaving hydrogen radicals, methyl groups (CH2 and CH3), and nitrogen to partake in CVD

growth.

The growth chamber is pumped down to 8× 10−8Torr to minimize background contam-

ination. Thereafter, high purity H2 (99.999 99%) is introduced into the chamber, with the

process microwave power of 11.5Wmm−2 and pressure of 25Torr maintained throughout.
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The substrate temperature was maintained in the range of 800(27) ◦C as tracked by an IR

pyrometer. Before introduction of the diamond growth precursor, the sample is submitted to

a H2 & O2 etch (4% of O2) for 5min and a subsequent 20min etch using H2 only, to etch away

any residual surface contaminants and defects, and expose the growth surface atomic step

edges [191, 258]. Thereafter, 12CH4 (99.9999% chemical purity, 99.99 at% isotopic purity)

is introduced as the carbon precursor. Isotopic growth enables the study of electron spins in

the absence of the natural 13C nuclear spin bath and greatly decreases the inhomogeneous

linewidth of NV center spins [97]. The methane-to-hydrogen ratio is maintained constant at

0.1% (H2:
12CH4 = 400 sccm : 0.4 sccm) as to ensure step-flow growth [97, 191], confirmed by

the low surface roughness post-growth (Fig. 4.3(c,d)). Growth rates for the obtained films

were determined to be 40(10) nmh−1 via ex-situ secondary ion mass spectroscopy (SIMS)

analysis averaged over multiple calibration substrates. Example SIMS data is shown in

Fig. 4.5 for two calibration substrates grown at different CH4 flow rates, ND64 and ND66,

plotting the carbon isotope concentrations in the overgrowth (shaded blue) and the under-

lying substrate (shaded red). In each case the 12C isotopic purity is around 99.995%; the

13C (nuclear spin containing) concentration is reduced from natural abundance (1.09%) by

a factor of 200. The clear boundary in isotopic concentration enables us to distinguish the

overgrowth from the substrate and thus determine the overgrowth thicknesses and growth

rates, assuming constant growth rate throughout.

Our standard CVD overgrowth utilizes isotopically purified methane precursors. How-

ever, natural methane, as well as 13C isotopically purified methane (i.e., higher than natural

abundance) may also be used to achieve natural or higher carbon nuclear spin densities.

This may be advantageous for studies of nuclear spin baths, such as Ref. 122 (although this

work studied naturally occurring substrate NV centers).
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Figure 4.4: CVD growth. (a) CVD growth chamber with gas inlets controlled by mass flow
controllers (MFCs), a sparked plasma with dissociated precursors, and a prepared substrate
sitting in a sample holder. (b) Schematic of resulting δ-doped growth with clean overgrowth
material and thin nitrogen-doped layer.

Figure 4.5: Isotopic overgrowth. SIMS results of carbon isotope concentrations and
overgrowth thicknesses for two calibration samples with different CH4 flow rates.
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4.4 NV synthesis

Nitrogen is incredibly pervasive in our world. Our atmosphere is almost 80% nitrogen.

Naturally occurring diamonds typically contain between 1 ppm and 1 ppk nitrogen dispersed

throughout the crystal [9]. This nitrogen can exist in multiple different defect centers: single

substitutional nitrogen (the N 0
s , P1 center, sometimes also called C-centers), nitrogen pairs

(A-centers), N4V (B-centers) and so on [9]. As we have noted, even the cleanest synthetic

diamond still contains ≤ 5 ppb nitrogen. In all cases, a NV center created at a N site in

one of these crystals will not have any sort of controlled location, and in many cases the

background nitrogen concentration will limit the NV center spin coherence [23].

Many studies of NV centers, especially early on, were performed on naturally occur-

ring centers in either natural or synthetic material [58, 120, 121, 133, 155]. However, to

achieve scalable quantum technologies, it is necessary to control the synthesis of NV cen-

ters in order to interface with devices and sensing targets [11, 97], as well as control spin

coherence [20], ideas explored in the rest of this thesis [13]. A very widespread approach is

ion implantation [25, 55, 70, 87, 112, 118, 173, 186, 193, 211, 222, 229, 246, 262]. In order

to form a NV center, one needs at least one nitrogen atom, one crystal vacancy, and an

electron donor (commonly considered to be another nitrogen atom) [166]. Ion implantation

of nitrogen achieves all of these; as nitrogen travels to its stopping place in the diamond

it leaves a large trail of crystal damage (vacancy complexes). Upon appropriate annealing

conditions, interstitial nitrogen relaxes into crystal sites, and vacancies mobilize and combine

with substitutional nitrogen Ns to form a NV center [88] as

N 0
s + V0 + e– → NV–. (4.10)

Not every Ns is converted to a NV, and other complexes such as multi-vacancy, multi-

nitrogen, and hydrogen-containing complexes may form [9].
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4.4.1 δ-doping nitrogen incorporation

Here, we summarize the δ-doping approach to NV synthesis [172, 191, 192] and discuss recent

challenges that have arisen in our studies as well as paths forward to address some of them.

Along the way we highlight how this approach differs from ion implantation.

The concept of nitrogen δ-doping is fairly straightforward. We know from nature that

nitrogen likes to incorporate into diamond, as discussed earlier; in order to control nitrogen

incorporation we just need to control the presence of nitrogen during diamond formation.

This is readily achieved during PE-CVD growth, in Fig. 4.4(a), with an additional N2 gas

feed line. Other than the introduced nitrogen, background N impurities in the chamber and

crystal remain low. N atoms in the plasma can chemisorb onto an available carbon site on

the substrate and grow in alongside the crystal [192]. Here we see the first advantage of

δ-doping over ion implantation: the nitrogen is incorporated during growth, precluding the

need to damage the crystal, as during implantation. Other than the created Ns centers we

expect no impact on crystal quality.

At our growth rates and nitrogen concentrations we do not expect this process to signif-

icantly affect the crystal growth. However, under higher microwave powers (faster growth)

nitrogen actually increases the crystal growth rate [257]. Additionally, methyl groups in the

next growth layer are less likely to sit above a nitrogen site than another carbon site, such

that for fast CVD growth rates vacancies will incorporate above nitrogen sites, producing

in-grown NV centers with preferential orientations [74, 85, 114, 175, 179, 198, 199, 205, 255].

We do not expect this effect in our slow growth regime on (100) diamond, either.

A major advantage of δ-doping is the ability to control the depth and spread of N in-

corporation independently. In ion implantation, barring post-implantation overgrowth tech-

niques [81, 148, 250], these parameters are both determined by the implantation energy.

When δ-doping, the spread is set by how long N2 is flowed into the chamber, with a tail

set by the nitrogen residency time [191]. By maintaining low growth rates on the order of
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10 nm/h we are able to achieve doped layers down to a few nm, as shown in Fig. 4.6, where

we present SIMS of the two stable nitrogen isotopes in a test sample with five δ-doped layers.

We note a few features. First, the concentrations in the substrate (grey region) are at or

close to the SIMS detection limit (dashed lines). Second, the 14N concentration peaks along-

side the intentionally doped 15N (see below discussion on isotopic tagging). This may result

from 15N2 gas impurity (99.9% isotopic purity) or be an artifact of the SIMS measurement.

The marked maximum 15N concentration corresponds to 100 ppm doping, one-to-two orders

of magnitude larger than what we believe we are doping. In practice, the quantified values

for nominally similar doping runs always vary, and we believe that SIMS density is not a

reliable metric at the densities and thicknesses at which we operate. In Ch. 5 we explore an

alternative method for characterizing nitrogen incorporation density based on NV coherence

measurements. We leave the tick markings in Fig. 4.6 as is but note that we do not find

them quantitatively meaningful.

Doping may occur over larger thicknesses than those shown in Fig. 4.6 [75], although

in practice when synthesizing single NV centers it is beneficial to grow thin layers. At

the ≤few ppm doping levels achievable in our growth, thin δ-doped layers actually produce

quasi-two dimensional distributions of nitrogen [60, 110], leading to non-trivial effects on

spin bath-central spin interactions. This idea is explored in Ch. 5.

The depth of incorporation is determined arbitrarily by the amount of diamond over-

growth post-doping. In this way a sample can be tailored to its application. Many sens-

ing schemes, especially for NMR, require NV centers 5 nm to 10 nm from the diamond

surface, whereas others, such as current and magnon sensing, are less stringent and op-

erate with NV centers 50 nm to 100 nm deep [45]. The biggest difference between these

regimes, from a growth perspective, is the amount of overgrowth. A schematic of a δ-

doped sample with overgrowth is shown in Fig. 4.4(b). Near-surface NV centers, how-

ever, suffer from spin and charge noise introduced by the surface, a topic of ongoing re-
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Figure 4.6: SIMS of nitrogen incorporation. 14N and 15N concentrations in a calibration
sample with five δ-doping layers of varying densities and thicknesses, down to 5.7 nm (left-
most purple [x] peak). Grey region on the right is the substrate, determined through carbon
SIMS (see Fig. 4.5), and dashed purple and green lines at the bottom are the SIMS detection
limits for 15N and 14N, respectively.

search [28, 29, 50, 67, 119, 131, 136, 181, 182, 206, 218, 223, 227, 230, 284, 295]. Alongside

surface reconstruction, surface dangling bonds, and surface termination, NV centers demon-

strate reduced coherence times as well as charge instability. When synthesizing NV centers

for non-near-surface applications, we overgrow >50 nm of diamond above the δ-doped region

to prevent these effects [181, 184]. This depth was shown in Ref. 181 to mitigate the influence

of surface noise on spin properties. However, the bulk T2 coherence times were found to be

≈ 400 µs, far below times that are theoretically achievable, see Ch. 5. In future studies that

seek to improve coherence times through engineering the bulk defect environment, larger

overgrowth layers are advisable.

It is necessary when studying grown NV centers to confirm that one is not measuring a

NV center in the substrate. In our samples this is achieved through isotopic engineering. As

noted above, we generally grow 12C purified diamond. NV centers in 13C nuclear spins baths

exhibit T ∗
2 ≲ 5 µs and usually exhibit oscillations in Hahn echo measurements at the nuclear

spin Larmor frequency in mis-aligned magnetic fields [249]. Thus coherence measurements
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are one method for screening for grown NV centers, as T ∗
2 times in our samples should

generally be longer [15, 20], see Ch. 5. Additionally, we almost exclusively incorporate 15N

(nuclear spin-12 , 0.4% natural abundance) opposed to the more common 14N (nuclear spin-1,

99.6% natural abundance) with 99.99% isotopically pure precursor gas [192]. Thus the vast

majority of δ-doped nitrogen is isotopically distinct from substrate nitrogen. Specifically, the

different nuclear spin multiplicity manifests in a different NV hyperfine spectrum [173, 192]

that is readily identifiable. As an example, see Fig. 4.9(d). With this isotopic engineering

we ensure identifiable NV centers in low nuclear spin-density environments.

4.4.2 Post-growth processing

Electron irradiation and annealing

In contrast to ion implantation, which introduces both Ns and vacancies to the diamond

lattice, δ-doping only incorporates Ns. We thus induce vacancies post-growth, again, in-

dependent of nitrogen incorporation parameters. Vacancy creation for δ-doped NV centers

has been demonstrated with bulk relativistic electron irradiation [97, 181, 192], transmission

electron microscope (TEM) irradiation [75, 78, 110, 172], and 12C ion implantation [193].

Each offers a variety of advantages and disadvantages. Vacancy creation and NV forma-

tion may also be achieved via high-intensity laser pulses, although this has not yet been

demonstrated with δ-doped diamond.

Bulk irradiation is straightforward, uniform, and forgiving with regards to irradiation

energy. The uniformity ensures that NV centers are created over an entire sample, which

is beneficial for experiments that must first identify a “hero” NV, or for preparing many

chiplets from one substrate [97]. However, this uniformity is also a downside if the aim is

to localize the in-plane position of NV centers, an ongoing challenge. A further downside

is that relativistic electrons penetrate mm into diamond, such that they generate vacancies

throughout the entire sample, leading to formation of bulk NVs with substrate nitrogen. We
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say this method is forgiving because a range of electron energies in the MeV range will fully

penetrate a standard diamond substrate and create about 2 vacancies/cm [42, 111, 265].

TEM irradiation offers the ability to further localize NV formation by confining the

vacancy creation with a TEM beam [172] and potentially reach very high (10s of %) N to

NV conversion efficiency [75, 110]. However, if the diamond sample is not thin enough for

electrons to pass through (as may be possible with diamond membranes [97]) then there

is no reference point for navigation other than the corners of the sample, and irradiation

is essentially “flying blind,” which will limit the scalability of this technique. Furthermore,

above an initial 145 keV required to remove a C atom at the diamond surface, vacancies

are formed approximately 1 µm deeper for every additional 1 keV of energy [172]. Thus the

TEM technique may still form substrate NVs. Furthermore, at TEM energies the electrons

do not pass all the way through the sample and it is unclear what happens to them.

Low energy (2 keV to 7 keV) 12C implantation enables modest localization to a volume

(179 nm)3 while mitigating crystal damage near NV centers by spatially separating vacancy

creation–between the surface and the 12C stopping range–and Ns sites [193]. It was also

shown to integrate with aperture implantation techniques that have been demonstrated with

nitrogen ion implantation [25, 112, 118, 193, 229, 246, 262]. However, this approach requires

extra processing steps compared to in-house electron irradiation.

Our standard process utilizes 2MeV relativistic bulk electron irradiation at the Argonne

National Laboratory Low-Energy Accelerator Facility (LEAF)2. Electrons pass through the

entire substrate (generally 100µm to 500µm thick) and create around 2 vacancies/cm [42,

111] (compare experimental 1.53 vacancies/cm [111] to calculated 2.15 vacancies/cm [42]).

For an electron dose X cm−2 and diamond density 176 nm−3 we calculate a resulting vacancy

density, assumed to be constant throughout the sample, of X · 1.1× 10−14 ppb.

Irradiation is followed by annealing under vacuum at 850 ◦C for 2 h. Monovacancies are

2. For years I though LEAF was a person at ANL named Leif, but I was wrong.
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mobile for temperatures above 600 ◦C [53, 142] but Ns and NV centers are stable to around

1400 ◦C [9, 207]. This ensures that vacancies can diffuse around the crystal and combine

with Ns as in Eq. (4.10) without Ns leaving their initial positions. In this way we ensure,

as in ion implantation, that NV centers are pinned to the region of nitrogen doping. We

do not follow the full multi-step anneal in Ref. 230 because we do not believe that electron

irradiation damages the crystal to the same degree as ion implantation. When we followed

a 2 × 1014 cm−2 electron dose with this full ≈50 h process we generated light ensembles of

NVs (not optically resolvable), likely from too high a conversion ratio as well as conversion

of substrate N. However, this merits further exploration, and it should be possible to operate

with a lower dose and longer anneal time if necessary.

Our usual goal is to generate single, optically resolvable NV centers. For excitation with

laser light of wavelength λ through an optic with numerical aperture NA of a sample with

a δ-doped layer of volume density ρ and thickness t < λ, the number of nitrogen atoms in a

diffraction limited optical spot is

NN,spot = π

(
λ

2NA

)2

ρ t. (4.11)

Assuming 532 nm laser light, a 0.9NA objective, and a 4 nm thick δ-doped layer, we find

NN,spot(ρ) = 193 ρ [ppm], where density is in units of ppm. If we assume that every vacancy

diffuses and combines with a Ns
3, then we would conservatively limit ourselves to only

one vacancy passing through an optical spot area during an anneal. For vacancy diffusion

constant D and anneal time τ we can roughly estimate the desired vacancy density as

ρV,max ≈

[
π

(
λ

2NA

)2√
Dτ

]−1

. (4.12)

3. This is not necessarily a good assumption. Vacancies may combine to form multi-vacancy complexes;
vacancies may annihilate at the diamond surface; vacancies may never find a Ns.
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D has been estimated to be 1.8 nm2/s to 6.5 nm2/s [3, 193] at 850 ◦C, leading to a conserva-

tive estimate for the maximum vacancy density with a 2 h anneal of 0.1 ppb to 0.2 ppb. This

corresponds to a 2MeV dose of 1 × 1013 cm−2 to 2 × 1013 cm−2. Of course, this estimate

ignores a lot of factors. In the sample studied in Ch. 5, which underwent 2 × 1014 cm−2

irradiation and a 2 h anneal, we estimate that less than one-in-twenty vacancies produces

a δ-doped NV center. This efficiency is likely limited by vacancy diffusion, and leaves an

excess density of vacancies on the order of the background [N] of ≈1 ppb. Monovacancies in

diamond may also be spin-ful [116, 265] and contribute to NV decoherence. It is likely that

there is room for improvement with respect to irradiation dose and anneal time to maintain

optically resolvable NV creation while reducing vacancy density, but that study is beyond

the scope of this thesis.

Mitigating hydrogen contaminants

It is not surprising that, given the hydrogen content of the plasma during CVD growth,

hydrogen also incorporates into the diamond [240]. Hydrogen, specifically H+, is mobile in

diamond [48, 228], with an estimated diffusion constant of 6 × 105 nm2/s at 775 ◦C [247],

although this number varies in the literature [48, 228]. Thus hydrogen can form defect

complexes with vacancies and NV centers [9, 203] during annealing, precluding NV formation

either by “eating-up” vacancies and converting them to VHx centers [203] or by combining

with NV centers to form NVHx centers, which are optically dark spin defects that are stable

up to around 1800 ◦C [135], and thus are not annealed out during NV formation. A specific

worry on our end is that post-growth and irradiation the crystal contains N, V, and H. During

annealing the H-containing complexes form and we do not produce NV centers [46, 247].

As we were re-tuning our NV synthesis process we initially did not optically observe NV

centers. To mitigate the potential hydrogen contamination we introduced a post-growth out-

gassing step. The plasma is turned off and the chamber is pumped down to 1×10−6 torr. The
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sample is then heated to 500 ◦C to 600 ◦C and allowed to bake for a few hours. Critically,

this step is added post-nitrogen incorporation but before vacancy creation. While VHx

complexes can form, NHx complexes do not appear in the literature [9] beyond theoretical

investigations [92], thus it should be possible to rid the crystal of hydrogen before introducing

vacancies in order to mitigate the effects of hydrogen. Indeed, after introducing this step to

our process we observed NV formation and proceeded with experiments.

In Fig. 4.7 we show results that suggest the out-gassing step indeed removes hydrogen

from the diamond crystal. Fig. 4.7 shows the partial pressure of five gasses, including H2,

measured in a chamber as a diamond sample is heated post-growth to 850 ◦C. The pressure

significantly increases when the sample temperature is raised to ≈500 ◦C, which we believe

is related to hydrogen mobilizing in the diamond and out-gassing into the chamber. The

partial pressure remains elevated for around 3 h. These temperatures are exceeded during

growth, but then the hydrogen-containing plasma is on and thus any equilibrium would leave

hydrogen in the diamond. These observations motivate a more complete study of hydrogen

out-gassing as it relates to NV formation, but our initial observations are promising and

motivate the inclusion of a post-growth step in our standard process where the sample is

heated above 500 ◦C for at least 3 h.

Surface termination

After electron irradiation and sample annealing to form NV centers, each sample is subject

to a final tri-acid clean following the same recipe as in Sec. 4.3.1. This terminates the surface

with oxygen to improve charge and spin properties of near-surface NV centers [101, 230].

4.5 Diamond membranes

A major roadblock to the development of diamond-based quantum technologies is the inte-

gratation of the phenomenal properties of diamond qubits with devices and sensing targets.
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Figure 4.7: Hydrogen out-gassing. Pressure of chamber gasses measured while heating
up a diamond sample post-growth to 850 ◦C. Above 500 ◦C the H2 pressure increases for
around 3 h, indicating the diamond out-gasses H2. There is minimal change observed in
other measured gasses. (Data courtesy of Dr. Jessica Catharine Jones, Argonne National
Laboratory.)

As discussed in this chapter, highly crystalline diamond growth requires a highly crystalline

starting substrate, already precluding methods of integration that would involve diamond

growth on a device substrate. Nanodiamonds, a popular avenue for quantum sensing, do

not reliably host coherent color centers with low-strain. Although recent work is addressing

these issues with surface coatings (unpublished), it is unlikely that nanodiamonds will be

used in diamond-based quantum networking applications. A potential avenue is to work with

diamond thin films. However, high quality, single crystal heteroepitaxial growth of diamond

thin films remains challenging despite recent progress [89, 235]. In response, a variety of

processing and integration schemes have been developed to derive low dimensional struc-

tures out of bulk diamond [2, 38, 83, 108, 225, 274]. While promising, a scalable, high yield

approach that enables full heterostructure-like integration of diamond while maintaining

bulk-like properties – specifically, crystallinity, surface roughness, and color center coherence

– is still lacking.

In this section we first summarize the efficient synthesis and manipulation of ultra-thin di-
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amond membranes suitable for quantum applications. The process is based on a “smart-cut”

technique [2, 34, 86, 162, 208] in conjunction with (PE-CVD) overgrowth. The full results of

this study may be found in Ref. 97. We then report that these structures, even at thickness

≤150 nm, are suitable hosts for NV centers created via implantation. Specifically we show

that NV centers demonstrate bulk-like spin coherence properties at room-temperature.

4.5.1 Diamond Membrane Synthesis

The step-by-step fabrication procedure of the diamond membrane quantum platform is

demonstrated in Fig. 4.8(a)-(e). The process starts with a low energy (150 keV) He+ implan-

tation (5× 1016 cm−2) into diamond substrates, as shown in Fig. 4.8(a). This step forms a

depth-localized graphitized underlayer ≈410 nm deep [300] via damage-induced phase tran-

sition of the carbon bonds from sp3 to sp2. The substrates are then subjected to a multi-step

anneal. The high temperature allows for the mobilization and subsequent annihilation of

implantation-induced crystal damage in the top layer [183, 230]. However, this process is

imperfect, resulting in the top layer remaining unsuitable as a host for highly coherent color

centers.

To achieve pristine crystal quality in the membranes, we follow the “smart-cut” with

homoepitaxial PE-CVD of an isotopically engineered diamond thin film overlayer as shown

in Fig. 4.8(b). During growth, the hydrogen to methane flow rate ratio is kept at 0.05%

to ensure a morphology preserving step-flow growth regime [174, 192]. The growth rates

herein were 6.2(4) nmh−1 to 9.3(8) nmh−1 for 700 ◦C to 500 ◦C heating plate temperature,

respectively. We maintained low rates compared to other works [2, 34] to ensure a more

accurate depth-localization of dopant layers, i.e., δ-doping precision [192]. δ-doping may

be performed during growth, as in the right of Fig. 4.8(b), to synthesize color centers, or

overgrown samples may be ion-implanted, as in the left of Fig. 4.8(b). In both cases a

post-growth anneal generates color centers, see Sec. 4.4.
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To realize a fully integrable diamond platform, we have engineered a high yield, con-

trollable process to lithographically pattern arbitrarily shaped membranes into the over-

grown films and subsequently transfer them onto other substrates/devices. The left of

Fig. 4.8(f) shows inductively coupled plasma (ICP)-defined square-shaped membrane arrays

(200µm side length) used in this work, which are of sufficient size for photonics integra-

tion [26, 40, 274]. Each step of the membrane definition and transfer utilizes established

cleanroom techniques. The size and shape of the membranes are fully defined and can

be tailored to specific applications, with the maximum size only limited by the substrate

dimensions.

Membrane manipulation starts with an EC etching of the graphitic underlayer as shown

in Fig. 4.8(c). Critically, in contrast to previous studies, [34, 147] a small portion of the

underlayer is left unetched, creating a tether that prevents premature membrane detach-

ment before the dry transfer. The transfer process, depicted in Fig. 4.8(d), draws inspiration

from those utilized in van der Waals heterostructure fabrication [301], using a polydimethyl-

siloxane (PDMS) - polycarbonate (PC) stack mounted on a micropositioner to uniformly

dry-adhere and subsequently break-off the target membrane from the tether. The mem-

brane is then flipped with another PDMS stamp and placed on a hydrogen silsesquioxane

(HSQ) - coated carrier wafer. Next, the structure is annealed at 600 ◦C to allow the HSQ

to transition into an easy to process SiOx film [241]. The success of this process is under-

pinned by the adhesion differences between PC, PDMS, and HSQ layers. In this work, we

bond diamond membranes to fused silica and thermal oxide wafers with pre-defined trenches,

generating locally suspended regions. Suspension allows us to control the chemical termi-

nation of both surfaces and reduce HSQ-related fluorescence for photoluminescence (PL)

characterizations of the embedded point defects.

Finally, by flipping the membrane, we are able to fully etch-away the He+-damaged,

graphitized diamond layer with chlorine-based ICP, as shown in Fig. 4.8(e). This ICP etch-
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ing eliminates the undesired fluorescence and built-in strain caused by crystallographic im-

perfections and lattice mismatch [162], while tuning the final membrane thickness. The right

part of Fig. 4.8(f) shows a 20 h grown diamond membrane on a fused silica wafer with 100 nm

final thickness.

4.5.2 Embedded NV Centers

We now investigate the spin coherence of NV centers in the membranes using a home-built

room temperature PL microscope (see App. C). While the Zeeman splitting frequencies of

group IV diamond color centers are one to two orders of magnitude larger than those of the

NV center [226, 243, 252], NV coherence measurements reveal magnetic noise levels which are

also relevant to group IV coherent control [20, 181, 230, 283]. All NV center measurements

presented herein were performed with a 15G static magnetic field applied at 10◦ angle to

the [111] crystal axis. We measured NV centers along all four possible crystal orientations,

determined by different transition frequencies.

Fig. 4.9(a)-(b) show representative free induction decay and spin echo decay curves on

a single long-lived NV spin, with the fitted T ∗
2 and T2 coherence times. The oscillations in

the first 100µs of Fig. 4.9(b) arise from aliasing of electron spin echo envelope modulation.

Together, these measurements demonstrate that membrane fabrication does not preclude

the formation of highly coherent spin qubits. 4.9(c) presents a scatter plot of the T ∗
2 and T2

times, showing a spread of 4.3(3)µs to 149(7)µs and 8(2)µs to 400(100)µs, with most times

(median 50%) falling above 10 µs and 30 µs, respectively.

Comparing the background nitrogen concentration and the observed areal NV density

versus the [N ] implantation dose of 2 × 108 cm−2, we expect that many of our observed

NV centers formed from in-grown nitrogen and vacancies introduced during ion implan-

tation and not exclusively from the implanted nitrogen. Thus, the observed NV centers

are likely distributed throughout the thickness of the membrane, with some residing within
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Figure 4.8: Schematics of the diamond membrane fabrication process. (a) He+

implantation with subsequent annealing to form the membrane (light gray on the top) and
the graphitized layer (dark grey underneath). (b) Color center incorporation via either ion
implantation post isotopically (12C) purified overgrowth (left) or in-situ doping (right). Red
dots: N+. Blue dots: Ge+. Other implanted species (Si+, Sn+) are not shown. (c) Diamond
membrane undercut via EC etching in DI water, with palladium anode (dark red) and
tungsten cathode (dark grey) aiming at the target membrane. A transfer tether is colored
red for better visualization. (d) Membrane dry transfer. The membrane is picked up by the
PDMS/PC stamp (green/purple), flipped onto another PDMS stamp (green), and bonded to
the carrier wafer by HSQ resist (blue). (e) Membrane back etch. The pedestal-like structure
underneath the membrane is formed by ICP etching on the HSQ layer and the carrier wafer.
(f) Microscope images of patterned overgrown membranes (left) and a transferred and back
etched membrane on a fused silica wafer (right). The green squares on the left are patterned
membranes with underneath graphitized layer, and the rectangle on the right indicates the
trench etched prior to the transfer. (Reproduced from Ref. 97)

79



≤15 nm of both surfaces, where previous work demonstrated marked decoherence from sur-

face noise [181]. However, statistically, the surface proximity distribution of the NV alone

cannot fully account for the large number of NV centers with T2 ≤100µs. The multi-species

implantation process is known to introduce crystal damage throughout the ion path, which

can create spin-full vacancy complexes that are not mobilized, nor annihilated during the

annealing process [283]. It is likely that the resulting inhomogeneity of the bulk spin bath is

the main factor limiting NV coherence times. Nonetheless, the spin echo coherence time (T2

up to 400µs) is competitive with near bulk-like properties, and the free induction decay (T ∗
2

up to 150µs) outperforms commercially available bulk material due to the 12C purification.

Therefore, the coherence times presented herein are fully compatible with applications in

quantum sensing and hybrid quantum systems [20, 44, 84].

This membrane fabrication technique is also highly amenable to in-situ δ-doping of 15N

during overgrowth [192]. As a proof of concept we introduced 2 nm-thick area of 15N doping

≈36 nm from the as-grown side of a 110 nm thick diamond membrane (≈250 nm overgrowth

at 700 ◦C). Fig. 4.9(d) shows a PL map of NV centers in such a sample. The 15NV– centers

are labeled in teal circles, while background 14NV– are in white rectangles, with representa-

tive hyperfine-resolved ODMR spectra presented to the right of the figure. We observed a

7 : 11 ratio of [15NV] : [14NV] (SIMS characterized [15NV] of 31(6) ppb). This is in a good

alignment with what was observed for the implantation-synthesised NV centers, showing a

consistent background 14NV density throughout the membrane from the overgrowth pro-

cess. A rigorous quantitative comparison of optimized implanted and in-grown defects as

they relate to the membrane surfaces proximity is left for subsequent studies.

4.6 Summary

In this chapter we have explored the materials science that enables the physics explored

in NV experiments, namely, how we achieve clean diamond growth and NV synthesis. We
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Figure 4.9: Spin characterization of embedded NV centers at room temperature.
(a-b) Representative spin echo and free induction decay curves on a single long-lived NV
spin, accompanied by the T ∗

2 and T2 coherence times. The oscillations in the first 100µs
of (b) arise from aliasing of electron spin echo envelope modulation. (c) A scatter plot of
T ∗
2 and T2 times for the 20 measured NV centers. Inset box plots denote median values of

26 µs and 52.5 µs (dashed lines) and lower-quartile values of 9.5 µs and 28 µs. Error bars are
fit errors. (d) NV PL map of a δ-doped membrane with 15NV– centers (teal circles) and
14NV– centers (white squares) labeled. At right, pulsed-ODMR spectra of the indicated NV
centers. (Reproduced from Ref. 97)
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started with the basics of CVD crystal growth and looked at the complexities of growing

diamond before reviewing everything that goes into our standard growth process, including

δ-doped nitrogen incorporation, bulk electron irradiation, and the mitigation of hydrogen

contaminants. While this process is always in development, we have presented here the cur-

rent process as well as made recommendations for future improvements where appropriate.

We closed with a demonstration of the power of advanced diamond fabrication to produce

high-aspect ratio diamond membranes for integration in quantum sensing and communi-

cation applications. In particular, we demonstrated that even these thin membranes host

coherent color centers suitable for quantum technologies.
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CHAPTER 5

COMPUTATIONALLY INFORMED SYNTHESIS OF NV

CENTERS IN LOW-DIMENSIONAL SPIN BATHS

The contents of this chapter are presented in J. C. Marcks*, M. Onizhuk*, N. Delegan, Y.-

X. Wang, M. Fukami, M. Watts, A. A. Clerk, F. J. Heremans, G. Galli, D. D. Awschalom,

Predictive methods for low-dimensional electron spin bath synthesis in diamond, manuscript

in preparation.

5.1 Summary

The nitrogen vacancy (NV) center in diamond, a well-studied, optically active spin defect,

is the prototypical system in many state-of-the-art quantum sensing and communication

applications. In addition to the enticing properties intrinsic to the NV center, its diamond

host’s nuclear and electronic spin baths can be leveraged as a resource for quantum informa-

tion, rather than allowed to act solely as a decoherence source. However, current synthesis

approaches result in stochastic defect spin positions, reducing the technology’s potential for

deterministic control and yield of NV-spin bath systems, as well as scalability and integra-

tion with other technologies. Here, we demonstrate the use of theoretical calculations of

central spin decoherence as an integral part of an NV-spin bath synthesis workflow, provid-

ing a path forward for the quantitative design of NV center-based quantum sensing systems.

We use computationally generated coherence data to characterize the properties of single

NV qubits across relevant growth parameters to find general trends in coherence time dis-

tributions dependent on spin bath dimensionality and density. We then build a maximum

likelihood estimator with our theoretical model, enabling the characterization of a test sam-

ple through NV T ∗
2 measurements. Finally, we explore the impact of dimensionality on the

yield of strongly coupled electron spin systems. The methods presented herein are general
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and applicable to other qubit platform that can be appropriately simulated.

5.2 Introduction

Defect color centers in diamond [32, 69] have been demonstrated as quantum magnetome-

ters [14, 45, 145, 160, 164, 169, 220, 251, 298] and nodes in quantum communication net-

works [107, 127, 187, 188, 209]. Quantum applications of the nitrogen vacancy (NV) cen-

ter, with a spin-photon interface and coherent operation up to and above room tempera-

ture [69, 106, 151, 263], will benefit from interfacing the central NV spin qubit with acces-

sible dark spins in the diamond lattice for quantum memories [33, 66, 204] and many-body

metrological states [282, 299]. These applications promise to enable national-scale quan-

tum networks and quantum sensing beyond the standard quantum limit. Explorations of

such multi-spin systems have relied on NV centers that are either naturally occurring [33,

66, 99, 107, 139, 209], precluding scalability, or that are formed via nitrogen implanta-

tion [55, 70, 87, 146, 173, 186, 211, 222], introducing crystal damage-induced qubit decoher-

ence sources [283].

Diamond-based quantum applications benefit greatly from the ongoing optimization of

bottom-up color center synthesis via plasma-enhanced chemical vapor deposition (PECVD) [16,

75, 191, 194]. δ-doping studies [172, 192] have demonstrated vacancy diffusion-limited spa-

tially localized NV centers, while avoiding the crystal damage and processing inherent to

aperture mask or focused implantation [25, 112, 118, 193, 229, 246, 262]. PECVD of di-

amond quantum systems has enabled engineering of NV center spin environments via iso-

topic purification [15, 180, 192], dimensionality control [60, 110, 192], and co-doping tech-

niques [104, 132, 157]. However, the development of these techniques has outpaced compu-

tational efforts to model spin bath-induced decoherence [23, 201], and theoretical approaches

have not yet been applied to investigate diamond qubit synthesis. Cluster Correlation Ex-

pansion (CCE) methods provide an accurate tool to model decoherence in varied and tai-
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lored electron and nuclear spin bath environments [195]. Such approaches have recently been

applied to study material systems relevant for quantum applications [24, 128, 196, 201], indi-

cating that CCE may indeed be a powerful tool to enable more efficient synthesis procedures,

which are crucial for the design of quantum materials [62].

In this work, we apply CCE methods, as implemented in the open source framework Py-

CCE [196], to predict and characterize bottom up solid state spin qubit synthesis. We first in-

troduce the computation and materials growth techniques. We then explore a common defect

created during NV center synthesis: the neutrally charged substitutional nitrogen N 0
s with

electron spin S = 1/2 (P1 center). We investigate the P1 center spin bath-induced decoher-

ence [23, 238] of NV centers in diamond across the parameter space of our growth regime

(P1 density and layer thickness), developing a maximum likelihood estimation (MLE) model

based on Ramsey T ∗
2 coherence times. We apply this model to characterize nitrogen incor-

poration in a test sample through coherence measurements. We then study low-dimensional

electron spin baths as hosts to strongly coupled electron spin systems, demonstrating how

our computational techniques can help improve the yield of future quantum devices and aid

in experimental design.

In Fig. 5.1 we show the strategy adopted in this work to improve upon the current NV

synthesis process. The blue boxes show the commonly adopted process for generating single

NV centers. After identifying a desired sample density and geometry, iterations of growth

and secondary ion mass spectroscopy (SIMS) are necessary to confirm the nitrogen doping

density. In practice, we have observed large variations in SIMS results that reduce the efficacy

of this approach, as discussed in Sec. 5.3.2. Here we show that it is beneficial to incorporate

theoretical spin bath predictions as well as an in-situ density characterization tool into

our workflow (green boxes). The understanding of low-dimensional spin bath decoherence

obtained through theory and computation improves initial experiment design, and the local

density feedback enabled by the MLE model circumvents the need for SIMS characterizations
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Figure 5.1: Growth process workflow. The current process steps (blue) for synthesizing a
diamond NV sample. Iterations of growth and SIMS analysis are required to confirm nitrogen
doping densities. The theoretical predictions and density maximum likelihood estimation
model in this work (green) enable a non-destructive feedback process to circumvent SIMS
and allow for an efficient experimental design.

of doping density.

5.3 Results

5.3.1 Validation of theoretical calculations

Within the CCE approach [287, 288] the coherence function L(t) = ⟨0|ρ̂(t)|1⟩
⟨0|ρ̂(0)|1⟩ , defined as the

normalized off-diagonal element of the density matrix of the qubit ρ̂(0), is approximated

as a product of irreducible contributions of bath spin clusters, where the maximum size of

the cluster n corresponds to the order n of the CCE approximation (Fig. 5.2(a)). We find

that the Ramsey signal of the electron spin in the electron spin bath is converged at first

order, enabling the analytical extraction of T ∗
2 from the interactions between the NV and

the weakly coupled P1 centers. The Hahn echo signal is instead simulated at the CCE4 level

of theory (see Sec. 5.4.1).

We validate our theoretical calculations against a reference dataset of NV ensemble co-

herence times in bulk 14N P1 spin baths. We extract T2 from the coherence curve by fitting

the signal to a stretched exponential function, exp [−( t
T2
)n], as shown in Fig. 5.2(b). Results

for T ∗
2 and T2 are overlaid in Fig. 5.2(c) with experimental data, taken from Ref. 23. We
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Figure 5.2: Computational and diamond growth methods. (a) Schematic represen-
tation of the cluster correlation expansion (CCE) approach. (b) Example of the Hahn-echo
coherence calculated using the PyCCE code [196] for various 14N P1 spin baths. The values
of T2 times are extracted from a stretched exponential fit of the form exp [−( t

T2
)n] (dashed

line). (c) T2 and T ∗
2 coherence times overlaid with corresponding experimental data [23],

validating our computational methods. (d) Schematic of isotopically pure (12C) PE-CVD
(100) diamond overgrowth with isotopically tagged 15N nitrogen δ-doping. This sample ge-
ometry with varying nitrogen incorporation density and thickness is considered throughout
this paper. (e,f) Carbon (top) and nitrogen (bottom) isotope concentrations measured via
SIMS on characterization sample, demonstrating isotopic purification of host material and
isotopically tagged nitrogen incorporation. Carbon SIMS is used to calibrate growth rate,
shown in (d). The nitrogen concentration is quantified with NV coherence measurements in
Sec. 5.3.5.
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find excellent agreement with the experimental data, showing that the CCE method yields

a quantitative description of the decoherence due to P1 spin baths. The stretched exponent

parameter of the computed Hahn-echo decay is between n = 1.2-1.3, in excellent agreement

with the data of Ref. 23.

5.3.2 Diamond growth and defect synthesis

The sample studied in this paper, shown schematically in Fig. 5.2(d) was grown with a

3min 10 sccm 15N2 flow at a time corresponding to a depth of ≈50 nm. Nitrogen δ-doping is

achieved by introducing 15N2 gas (99.99% chemical purity, 99.9 at% isotopic purity) during

diamond growth. According to the SIMS characterization of a calibration sample, shown in

Fig. 5.2(e-f), this creates a 3.8(2) nm thick (compared to 1.3+2.2
−0 nm predicted from growth

calibrations) 15N-doped layer at a depth of 50.2(1) nm, with a SIMS-quantified [15N] density

of 0.39(2) ppm. These values are obtained from a calibration sample, processed and grown

identically to the sample studied in this paper.

While SIMS is ideal for detecting low concentrations of dopants in semiconducting ma-

terials, sample geometries unique to our application remain difficult to characterize accu-

rately due to experimental trade-offs. Specifically, the trade-off between depth resolution

and overall sensitivity is dictated by the analysis/sputtering energy. Under our characteri-

zation conditions, the ideal detection limits for 15N2 and 14N2 densities are 1 × 1015 cm−3

(≈0.006 ppm) and 5×1015 cm−3 (≈0.028 ppm), respectively. However, the obtained densities

can vary significantly as a function of sample inhomogeneities, the presence of growth defects,

and experimental conditions. While studying samples that were nominally grown under the

same conditions, SIMS quantification of [15N] has been observed to regularly vary by at

least an order of magnitude, requiring rigorous statistics over growth of multiple samples, a

time- and resource-consuming process. A truly local spin-defect materials characterization

method is necessary, motivating the in-situ maximum likelihood estimation of the density
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characterization presented in Sec. 5.3.5, a new capability enabled by our computational re-

sults. A different approach with NV ensemble coherence measurements has also recently

been developed [60, 110].

5.3.3 Single spin coherence in quasi-2D electron bath

We now turn to investigating single spin coherence properties across the density and thickness

parameter space available for the PECVD growth recipe adopted in this work and described

in Sec. 5.4.2.

We compute Ramsey coherence time T ∗
2 (Fig. 5.3(a), left) for 104 spin bath configurations

with spin bath thickness of 0.5 nm to 12 nm (0.5 nm steps) and density of 0.5 ppm to 12 ppm

(0.5 ppm steps) from the coupling between the central NV spin and weakly coupled P1 spins

(see Sec. 5.4.1). We simulate Hahn-echo measurements (Fig. 5.3(a), right) with spin bath

thicknesses of 1 nm to 10 nm (1 nm steps) and densities of 1 ppm to 12 ppm (1 ppm steps)

(See Sec. A.1.2 for justification of CCE order).

We characterize the distributions of the coherence times with the mean µ = 10⟨log T2⟩ and

the variance σ2 = ⟨log2 T2⟩−⟨log T2⟩2 of the logarithm of the coherence times at each density

and thickness (Fig. 5.3). Using the logarithm of the coherence we can directly compare the

coherence distributions at different timescales.

Figs. 5.3(b,c) and (d,e) depict µ and σ over the chosen range of parameters for T ∗
2

and T2, respectively. In each case, the computed average coherence time decreases with

increasing spin density and/or increasing thickness, as expected. In the three-dimensional

limit, the average coherence time is independent of bath thickness. Observed decrease in µ

as a function of thickness (Fig. 5.3(b) and (d)) suggests the presence a low-dimensional spin

bath regime in the chosen range of parameters.

We analytically derive the distribution of the interaction strength between the central

spin and bath spins in low-dimensional baths in Sec. 5.3.6. In the case of T2, we predict
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Figure 5.3: Single spin coherence in low-dimensional spin baths. (a) Ramsey (left)
and Hahn echo (right) microwave measurement pulse sequences. (b,c) Mean of log T ∗

2 dis-
tributions µ = 10⟨log T

∗
2 ⟩ (b) and variance σ2 = ⟨log2 T ∗

2 ⟩ − ⟨log T ∗
2 ⟩

2 (c) as a function of
P1 density and layer thickness. Values are linearly interpolated between datapoints. The
black dashed line in (c) indicates the thickness equal to the average nearest-neighbor bath
spin distance ⟨rnn⟩ = 0.554ρ−1/3 for each density ρ (see text, Sec. 5.3.6), demonstrating a
boundary between dimensionalities. At right in (b,c) are line-cuts of µ and σ at densities of
1, 5, and 9 ppm. Inset in (c) is σ at multiple densities with thickness normalized by ⟨rnn⟩,
demonstrating universal behavior versus dimensionality. (d,e) Same data as (b,c) presented
for T2 coherence times.
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times >1ms, beyond what is generally observed in experiment. This suggests that experi-

mental T2 times in thin, low density spin baths are limited by noise sources not captured in

our model, as suggested previously [23]. However, our calculations predict that, in princi-

ple, low dimensional lightly doped samples can realize T1 limited coherence times at room

temperature.

Bath dimensionality further impacts the relative distribution of coherence times, de-

scribed by standard deviation σ. Focusing on inhomogeneous dephasing time T ∗
2 (Fig. 5.3(c),

right), σ exhibits unexpected behavior in the region where the thickness equals the average

nearest neighbor distance in three dimensions, ⟨rnn⟩, plotted as a function of density in the

left plot. σ plateaus when the thickness is smaller than ⟨rnn⟩ and decreases when thicknesses

are larger. Inset in Fig. 5.3(c), right, the x-axis is normalized to ⟨rnn⟩, demonstrating uni-

versal behavior of coherence times relative to the bath dimensionality. This indicates that

two-dimensional spin baths naturally have a wider spread of NV coherence times. While thin

and less dense samples may optimize coherence times, they typically also lead to greater fluc-

tuations in single-qubit coherence properties.

We see similar trends in Hahn-echo T2 times (Fig. 5.3(e), right). We find in general

that σT ∗
2
> σT2 . In Sec. A.1.2, we find convergence for T ∗

2 and T2 at twelve and 100 bath

spins, respectively, suggesting heuristically that Ramsey measurements are sensitive to the

variation of a fewer number of spins. In general, one expects a smaller standard deviation

in physical quantities that are sensitive to larger numbers of randomly placed spins due to

the central limit theorem. We thus expect a larger impact of the stochasticity in P1 position

on the T ∗
2 distributions. These results inform solid-state qubit synthesis characterization,

where both T ∗
2 and T2 are standard measurements performed on multiple NV centers.

Our theoretical results constitute a full computational characterization of spin-bath in-

duced coherence times across a range of bath geometries and densities. Our computational

strategy is not limited to NV centers in diamond and can be applied to other spin defect sys-
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tems, as well as other spin bath measurements, as long as the appropriate pulse sequence can

be simulated using the PyCCE code. Additionally, our approach will inform future diamond

growth and NV synthesis. Rather than extrapolating from bulk data [23] or measurements

on single δ-doped NV centers, growth may now be informed by the theoretical predictions

of coherence times distributions.

5.3.4 Sample characterization

We now characterize the coherence of an exemplar sample grown under the conditions out-

lined in Sec. 5.4.2. Fig. 5.4(a) presents frequency-dependent double electron-electron reso-

nance measurements of a single NV center in a P1 center bath. This measurement essentially

performs electron spin resonance (ESR) spectroscopy on target spins by recoupling their

dipolar interactions to the NV probe spin, which are otherwise decoupled by the Hahn-echo

sequence. At the experimental magnetic field of 311G, and given 15N P1 hyperfine couplings,

we expect, based on the possible P1 Jahn-Teller axis directions and 15N nuclear spin states,

transitions near 935MHz and 954MHz for the three misaligned and one aligned axes, respec-

tively, and the nitrogen nuclear spin state +1/2 probed here (only half the bath is probed in

this data). We observe resonances at mircowave light frequencies fP1 of 934.8MHz (fP1,3/8)

and 953.1MHz (fP1,1/8). The subscripts indicate the fraction of the bath probed at that

frequency. This confirms the presence of 15N P1 centers in our sample.

We measure T ∗
2 times for a set of eight single NV centers in the same test sample.

Fig. 5.4(b) shows characteristic Ramsey interferometry data for the one of these NV centers.

Data is fit to an exponential decay with oscillations capturing coupling to single nearby P1

centers, as in the Ramsey analysis in Sec. 5.3. While the 15NV center exhibits a ≈3MHz

splitting from its nitrogen nuclear spin, CCE calculations do not account for the central

spin’s nuclear spin. We are careful to drive with 909 kHz Rabi rate pulses to avoid mixing

nuclear hyperfine effects into our measurement. This NV exhibits T ∗
2=25(2)µs. This process
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Figure 5.4: NV center measurements. (a) DEER spectroscopy with NV center con-
firming the presence of a P1 center electron spin bath. Marked values of fP1 correspond
to P1 ESR transitions corresponding to the static magnetic field and internal P1 hyperfine
parameters. (b) Ramsey interferometry measurement to extract T ∗

2 coherence time. (c)
Compiled decoherence rates for eight measured NV centers overlaid with the best calculated
distribution fit. The height of each data point indicates the PDF value for that time, and is
not extracted from the measurement.

is followed for the remaining NV centers.

Decoherence rates for the set of measured NV centers are plotted in Fig. 5.4(c) along

with the calculated probability distribution function (PDF) that best fits the measured

distribution as determined via MLE, discussed in the next section. The aim in the following

section will be to determine which calculated distribution best fits this dataset.

5.3.5 Maximum likelihood estimation

We develop a MLE model using the data presented in Fig. 5.3. Taking interpolated distribu-

tions f(1/T ∗
2 ), recovered from the numerical data, the likelihood of a given bath configuration

is calculated as the joint probability of the {T ∗
2 } dataset for each pair of bath thickness t
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and density ρ as [7]

L(t, ρ) =
∏
i

f(t, ρ, T ∗
2,i). (5.1)

The MLE procedure determines what coherence distribution best predicts the measured

distribution in Fig. 5.4(c). In Fig. 5.5(a) we plot L(t, ρ) over the computational phase space

for the coherence times in Fig. 5.4(c). We find a band of potential bath geometries that

satisfy the observed coherence time distribution, rather than uniquely predicting a single set

of values. Based on the CVD growth discussed in Sec. 5.4.2, we estimate the bath thickness

at tSIMS =4nm and plot the linecut of L in Fig. 5.5(b). This provides a measure of the

bath density of 3.6(7) ppm, where the error is found by fitting L(tSIMS , ρ) to a normal

distribution.

We now benchmark the error in the MLE procedure versus the number of coherence

time samples in Fig. 5.5(c). For each number of samples, N , and set of bath parameters,

200 random T ∗
2 datasets of N coherence times are chosen from the numerical datasets used

in Sec. 5.3. Then, the likelihood is calculated for a fixed thickness t0, and the relative

error for one dataset is calculated as ϵ2ρ0 = (ρmle − ρ0)
2/ρ20, where ρmle is the density such

that L(t0, ρmle) = max [L(t0, ρ)]. This is averaged over a range of tested densities, plotted

in Fig. 5.5(c). We calculate the error for eight samples to be 25%, corresponding to an

uncertainty of 0.9 ppm for the density estimate from Fig. 5.5(a). This is similar to the error

from fitting L, and is stable when the thickness is varied. We fit the average error as A ·N−p,

shown over the calculated error in Fig. 5.5(c), finding a N−1.6 trend.

5.3.6 Strong coupling yield

Entangled qubit-based sensors promise to greatly enhance quantum sensing capabilities as

compared to the current state-of-the-art [299]. The applicability of these schemes is enabled

by high-yield synthesis of strongly coupled quantum systems, e.g. NV center spins and
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Figure 5.5: Maximum likelihood estimation. (a) Likelihood of dataset in Fig. 5.4(c)
calculated for each set of bath parameters, from theoretical results. (b) Likelihood restricted
to a thickness of tSIMS =4nm (from Fig. 5.2(e)), from which we extract a density of
3.6(7) ppm. (c) Calculated error of density estimation across full density range with fixed
thickness, calculated for 200 random datasets at each density.
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Figure 5.6: Dimensionality dependence of strong coupling. (a) Computed distribution
(using PyCCE) of ratio of nearest-neighbor P1 coupling to background decoherence rate for
105 3 ppm density P1 bath configurations with varying thickness. Curves are offset for clarity.
Shaded regions right of the dashed line indicate coupling ratio ≥ 2π. (b) Percentage of NV-
P1 bath systems with at least one strongly coupled bath spin for varying bath density and
thickness. Average spin-spin distance is marked atop curves for each density.

96



multiple single bath spins. We consider the impact of growth dimensionality on the yield

of such systems analytically, quantifying our results with numerical predictions. In our

calculations we consider central NV spins and P1 bath spins, but our approach is easily

generalized to other spin systems.

Each bath spin couples to the NV with a dipolar coupling strength Ai
z. The NV coherence

in the absence of dynamical protocols and coupled to a bath of many weakly coupled spins

can be described as a product of individual coupling contributions (see Sec. 5.4.1).

We aim to describe how likely the coupling to the nearest spin, A0, is to be greater

than the dephasing from the rest of the bath, Abath. The distributions of nearest neighbor

distance rnn in two and three dimensions are

g2D = exp(−πr2nnς)ς 2πrnn, (5.2)

g3D = exp(−4πr3nnρ/3)ρ 4πr
2
nn, (5.3)

where ρ is the 3D density and ς = ρt is the 2D density for bath thickness t nominally less

than the average nearest neighbor distance. Notably, the distributions depend on the bath

dimensionality. The bath decoherence can be estimated as follows

Γbath2D ∝
√∑

2D

|1/r3|2 =
√∫∞

0 dr2πrςr−6, (5.4)

Γbath3D ∝
√∑

3D

|1/r3|2 =
√∫∞

0 dr4πr2ρr−6. (5.5)

We now define the visibility ν of the nearest neighbour spin as a ratio between its coupling

to the central spin A0 and the decoherence rate induced by all other spins Abath

ν =
|A0|√
2Abath

, (5.6)
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and evaluate average ν over many bath configurations. Assuming the point dipole ap-

proximation to compute the coupling between central and bath spins, we find the average

visibility at the given dimensionality as ⟨νkD⟩ = ⟨|A0|/
√
2Abath⟩ ≃ ⟨r−3

nn/
√
2ΓkD⟩, where

the distributions ΓkD (k = {2, 3}) are given by Eqs. (5.2) and (5.3). We note here that

averaging ΓkD assumes the dephasing rate due to the rest of the spin bath follows a highly

peaked distribution. We then ask if this average is larger for lower dimensional spin baths

by evaluating
ν2D
ν3D

=
⟨r−3

nn/Γ2D⟩
⟨r−3

nn/Γ3D⟩
=

√
2. (5.7)

We find that the visibility of the nearest neighbour spin is
√
2 larger in the 2D case, point-

ing at the fact that yield of strongly coupled bath spins is significantly higher in the low

dimensional systems.

We confirm these analytical predictions with numerical simulations. Using the PyCCE

code we generate 105 50 nm-thick P1 electron spin baths in a (001)-oriented diamond lattice

whose densities range over two orders of magnitude, and divide each bath into slices of varying

thickness. For each density and thickness we compute visibility ν (Eq. (5.6)). Representative

histograms for 3 ppm spin baths are shown in Fig. 5.6(a). As the bath thickness decreases,

the visibility distribution shifts to higher values, in line with the prediction from Eq. (5.7).

We follow the criterion laid out in Sec. 5.4.1 and Eq. (5.11) below to identify strongly coupled

bath spins. We set a threshold for the visibility at ν ≥ 2π. At this value coherence goes

through a full oscillation period when the signal contrast reaches 1/e.

We plot the resulting probability of obtaining strongly coupled spins in Fig. 5.6(b) for

each density. At all densities, the likelihood of finding a NV-spin bath configuration with

the desired coupling ratio is almost three times as high in the thin bath limit. Furthermore,

there is a crossover transition for each density from three-dimensional to two-dimensional

behavior, which intersects with the average nearest neighbor spacing ⟨rnn⟩ = 0.554ρ−1/3,

obtained from Eq. (5.3). Heuristically, as the thickness reduces below ⟨rnn⟩, there are no
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spins proximal to the central spin in the out-of-plane direction, only in the plane of the central

spin. In Sec. A.2 we present a point of comparison between the analytical and numerical

approaches, finding agreement between calculated coupling distributions and the result in

Eq. (5.7).

5.4 Methods

Our work builds on two previously established techniques, CCE calculations and PECVD

synthesis of NV centers in diamond as described below and in Fig. 5.2. We focus on the 15N

isotope of nitrogen for the majority of the calculations as this allows us to experimentally

distinguish intentionally doped defects from background occurring defects.

5.4.1 Theory

The dynamics of the systems are simulated using the following Hamiltonian:

Ĥ = −γeBzŜz +DŜ2z +
∑

i a(mi)P̂z,i − γeBzP̂z,i

+
∑

i SA(i)Pi +
∑

i̸=j PiJ(ij)Pj ,

(5.8)

where γe is the electron spin gyromagnetic ratio, Bz is the magnetic field aligned with

the z-axis, S = (Ŝx, Ŝy, Ŝz) are NV spin operators, D is the NV zero field splitting, P =

(P̂x, P̂y, P̂z) are spin operators of the P1 center, and a(mi) is the hyperfine coupling between

the P1 15N nuclear spin and the P1 electron spin, dependent on the random orientation of

the Jahn-Teller axis along one of four crystal directions and the nuclear spin state for each P1

(mi), where i runs over all the simulated P1 centers [56]. A(i) are dipolar couplings between

the NV center and P1 centers, and J(ij) is the coupling between two P1 electron spins. The

applied 50G is sufficiently past the high field limit and these calculations translate over to

measurements at higher fields as well (see Sec. A.1.1).
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In Sec. A.1.2 and A.1.3 we show convergence tests for Ramsey and Hahn echo simulations

versus both CCE order and total number of simulated bath spins. We use CCE methods

with bath state sampling [197] to achieve convergence for the electron spin bath. For each

pure electron bath state the state of 15N spin and the P1 orientation is chosen at random.

More details about the method are available in [196].

The CCE approach [287, 288] approximates the coherence function L(t) =
⟨σ−(t)⟩
⟨σ−(0)⟩ =

⟨0|ρ̂(t)|1⟩
⟨0|ρ̂(0)|1⟩ , the normalized off-diagonal element of the density matrix ρm,n of the qubit, where

m and n are either the ground or excited spin states |0⟩ and |1⟩, respectively. L(t) is

approximated as a product of cluster contributions:

L(t) =
∏
i

L̃{i}
∏
i,j

L̃{ij}..., (5.9)

where L̃{i} is the contribution of a single bath spin, L̃{ij} is the contribution of spin pairs,

and so on for higher order clusters (Fig. 5.2(a)). The maximum size of the cluster n included

in the expansion denotes the order of CCEn approximation.

The Ramsey signal is converged at the first order of CCE. As such, we can represent the

high-field Ramsey coherence function in the rotating frame for a bath in a fully mixed state

as [297]:

L(t) ≈
N∏
j

cos
A
j
zt

2
≈ exp

[
A2
bath
2 t2

]∏n
i cos

Ai
zt
2

= exp
[
−( t

T ∗
2
)2
]∏n

i cos
Ai
zt
2 (5.10)

where A2
bath =

∑
j(A

j
z)

2

4 , T ∗
2 =

√
2

Abath
index i goes over only n the strongly coupled P1

centers, and index j goes over all other P1s. We define strongly coupled bath spins as

those distinguishable from the background decoherence, setting threshold for its visibility
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(Eq. (5.6)) as:

νi =

∣∣∣A(i)
z

∣∣∣
2

≥ 2π · Abath√
2
, (5.11)

so that at least one full period of oscillation of the coherence function is visible when the

signal contrast reaches 1/e. For each random bath configuration we order the P1 spins

by strength of the coupling, and one-by-one select out the strongly coupled spins until the

condition (5.11) is violated. T ∗
2 is then recovered from the coupling to the remaining bath

spins.

Ref. 201 shows that CCE at second order can be used to qualitatively recover the be-

haviour of T2 coherence times in the P1 bath. We further extend this approach, and con-

verge CCE Hahn echo calculations at 4th order with bath-state sampling (see Sec. A.1.2 and

Fig. A.1(c)).

5.4.2 Materials growth

All defects studied in this work are doped in-situ during diamond PECVD with subsequent

electron irradiation and annealing for NV– activation. See Ch. 4 Sec. 4.3.2 for the growth

recipe used in this work.

Post-growth and nitrogen incorporation, bulk electron irradiation with a 2 × 1014 cm−2

dose at 2MeV and a 2 h anneal at 850 ◦C under an Ar atmosphere converts a fraction of

doped nitrogen into NV centers with [15NV] ≈ 0.01 ppb to 0.1 ppb, with the remaining

nitrogen sites remaining as Ns (P1 centers). NV activation is intentionally performed in a

vacancy diffusion-limited regime [193] in order to reliably obtain optically resolvable single

NV centers. As the nitrogen doping is buried 50 nm below the diamond surface, we do not

expect band-bending effects on the defect charge states [36, 184].
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5.5 Outlook

Point-defects in diamond and other wide-bandgap semiconductors are promising platforms

for qubit-based sensors. Deterministic synthesis of such systems will benefit from feed-

forward techniques that optimize host crystal parameters for specific outcomes and appli-

cations. Additionally, such systems pave the way for entangled qubit-based sensors which

hold great promise to enhance current quantum sensing capabilities. In this paper, we have

demonstrated holistic quantum simulations of NV center coherence (with techniques appli-

cable to other spin defects) as a tool for quantum system coherence characterization driven

synthesis, minimizing the need for large-scale and destructive materials characterization.

Practically, we showed how our approach allows, with basic prior sample knowledge, for the

use of rudimentary T ∗
2 measurements to approximate in-situ doping densities. Specifically,

we have demonstrated a MLE model based on a CCE-generated distribution library as an

aid to process calibration and sample characterization. This method is non-destructive and

operates at the density scales relevant for quantum technologies.

Additionally, the coherence distribution results presented in this paper explore the ex-

pected sample properties in low-dimensional spin baths. By going beyond approximate ana-

lytical treatments and sampling over a wide distribution of random bath configurations with

a range of central spin-bath couplings, the CCE calculations quantitatively capture the con-

nection between bath geometries and coherence time distributions, providing an invaluable

analytical tool for experimental design.

While in this work we focus on a single dominant spin bath species in low-dimensional

geometries, our MLE method is not limited to this regime. CCE methods can readily be

extended to additional spin bath species in diamond, as well as mixed nuclear and electronic

spin baths. By calculating coherence times in these other situations, dopant densities in

samples with multiple dominant noise sources can be characterized. Furthermore, the strat-

egy presented here can be applied to other solid state hosts where qubit coherence is limited
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by spin bath noise.
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CHAPTER 6

RELAXATION MECHANISMS OF A SINGLE DARK

ELECTRON SPIN IN DIAMOND

The contents of this chapter represent a draft of: J. C. Marcks, M. Onizhuk, Y.-X. Wang, B.

Soloway, M. Fukami, N. Delegan, F. J. Heremans, A. A. Clerk, G. Galli, D. D. Awschalom,

Relaxation mechanisms of a single dark electron spin in diamond, manuscript in preparation.

6.1 Summary

Spin baths in solid state hosts both limit coherent central spin operation as well as present a

potential resource for quantum sensing and quantum communication applications with multi-

qubit entangled states. Evolution of a many-body spin bath in general decoheres the central

spin via dipolar interactions, but these same couplings also enable coherent interaction with

suitable qubit control. The optically active nitrogen vacancy (NV) and the optically dark

neutrally charged substitutional nitrogen (N 0
s , P1) centers in diamond are a widely studied

central spin-spin bath system. However, little work has focused explicitly on the P1 center,

and is usually concerned with mesoscopic bath properties and not single spins. A better

understanding of single P1 electron spins will inform NV center decoherence as well as

help evaluate the feasibility of the P1 center as a qubit. In this work, we realize resonant

polarization and off-resonant readout of a single P1 electron spin mediated by the NV center

electron spin, enabling polarization- and time-resolved measurements of the P1 spin decay.

We first measure decay in the dark, finding room temperature, phonon-limited T1 ≈ 2.5ms

despite an environment of ostensibly resonant spins. We then measure long relaxation times

under optical illumination with green light limited by P1 ionization. These results provide

a microscopic view of spin bath dynamics in diamond, and our approach may be applied

to probe spin systems external to a diamond sensor, such as electron spins in spin-labelled
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molecules.

6.2 Introduction

Quantum information technologies are limited by loss of coherence due to the environ-

ment [20, 65]. Solid-state host systems often dictate both challenges and solutions to engi-

neering coherent qubits [10, 62]. Diamond, a wide bandgap semiconductor, is an amenable

host to many emitters with robust spin-photon interfaces [12, 32, 69] that have enabled ad-

vances in quantum sensing [45, 65] and communication [107, 187, 188], as well as interpreta-

tions of quantum mechanics [103, 268]. Weak spin relaxation in diamond-hosted spin defects

such as the nitrogen vacancy (NV) center [213] enable above room-temperature coherent

control and readout [151, 263], facilitating NV-based sensing from condensed matter [45] to

biological [294] systems. However, qubit performance for these applications remains limited

by decohering interactions [20].

Broadly, efforts to engineer coherent NV centers fall into two separate yet complementary

categories: (i) minimize bath interactions via extrinsic fields [5, 18, 29, 49, 61, 124, 256, 272,

273], and (ii) optimize bath spin density and dimensionality via intrinsic sample control [15,

80, 104, 132, 157, 180, 192, 283]. In both cases, optimizing the qubit interaction with the

spin bath is key. Optically dark, electronic spin-1/2 N 0
s defects in the diamond lattice, P1

centers [245], are one of these abundant spin bath species in naturally occurring [126] and

synthesized diamond NV environments [20], and the P1 spin bath is generally treated as a

decoherence source to be mitigated [23]. However, P1 centers have recently been highlighted

and investigated on their own merit for quantum information applications [66, 91, 289, 296],

which motivates investigating properties of single P1 centers. While many studies of NV

center decoherence have characterized mesoscopic properties of the P1 spin bath [17, 23, 60,

102], such as a correlation time, this does not necessarily capture relaxation mechanisms

relevant at the single-spin level.
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In this work, we extend previous techniques to polarize and probe proximal electronic

spins with NV centers [55, 139, 222] to study spin relaxation mechanisms of a single P1

center resolved above the background spin bath via strong coupling to an optically active

NV center, shown schematically in Fig. 6.1(a). We begin with double electron-electron

resonance (DEER) measurements alongside cluster correlation expansion (CCE) calculations

to approximate the P1 spin configuration near the NV center, enabling simulations of spin

bath dynamics. Then, a time-resolved method to polarize and measure single dark bath

spins is demonstrated that allows for arbitrary and independent control of both NV and

bath spins. We apply this method to probe P1 decay.

Through comparison of spin decay to simulations of spin bath dynamics we find that

spin flips in our system are not dominated by intra-bath flip-flops at room temperature,

finding a single spin T1 commensurate with phonon-limited T1 observed in ensemble ESR

measurements [19, 77, 214, 260, 291]. We propose that these spin flips may be a source

of NV decoherence stronger than many-body bath interactions at room temperature. We

further study P1 decay under illumination, which has been demonstrated to photoionize P1

centers [21, 105], finding spin lifetimes limited by ionization of the P1 electron. Finally, we

discuss how the methods used here for the P1 center spin may be readily applied to other

electron spin systems proximal to NV centers in order to elucidate relaxation mechanisms.

6.3 Results

6.3.1 System characterization

We study a strongly coupled NV-P1 system in a two-dimensional 15N δ-doped [192] layer

hosted in 12C isotopically purified PE-CVD grown diamond, shown schematically in Fig. 6.1.

See Ch. 4 and Ch. 5 for a detailed description of sample synthesis. An external magnetic

field of 413G is aligned within 0.5◦ of the [111] crystal axis (NV axis), such that optical
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Figure 6.1: Spin bath characterization. (a) Sample geometry. The NV center and
surrounding P1 centers are hosted in a 4 nm-thick, [N] = 3.6 ppm 15N δ-doped layer within
isotopically purified PECVD diamond. The schematic at right demonstrates the NV strongly
coupled to a P1 bath spin as well as weakly coupled to other P1 bath spins. (b) P1 spin
resonance spectrum with four resonances corresponding to different nuclear spin and Jahn-
Teller states, indicated above the data. (c) Double electron-electron resonance measurement
sequence to recouple interactions between NV and P1 spins. (d) DEER decay with resonant
driving at one (f⇓,3) and two (f⇑,3 and f⇓,3) tones. Simulated signal of best-fit configuration
as determined via CCE is overlaid. The region of 0 µs to 50 µs is zoomed in.
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Figure 6.2: Ns charge population. (a) NV ESR spectrum revealing strongly coupled P1
spin as well as a central frequency that appears when the Ns is in the + charge state and
spinless. (b) Charge population decay measured via DEER contrast at τ = 5 µs.

illumination polarizes the NV nuclear spin [117] to 69%. This enables the < 1MHz Rabi

rates in this work with minimal impact on signal (App. B.1). Under this condition there are

four unique P1 electron spin transitions, measured in Fig. 6.1(b) via the double electron-

electron resonance (DEER) pulse sequence in Fig. 6.1(c) with a frequency-dependent π-pulse

on MW2. See App. B.2 for more details of the DEER measurement. The four transitions

correspond to the two 15N nuclear spin states and the four Jahn-Teller (JT) states (see

Ch. 2), three of which are nearly degenerate due to the magnetic field alignment. Above the

spectrum we identify the corresponding nuclear and JT states, and henceforth refer to these

four frequencies as f⇓,1, f⇓,3, f⇑,3, and f⇑,1, moving from left to right in the spectrum.

We approximate the configuration of P1 centers surrounding the single NV center with

a combined experimental and computational DEER study. In Fig. 6.1(d) we first measure

the in-phase NV coherence under a DEER measurement, S0(t), driving π-pulses at both

one (f⇓,3) and two (f⇓,3 and f⇑,3) resonance tones, observing slow characteristic coherence

decay as well as two visible sets of oscillations that we identify as arising from nearby strongly

coupled spins. Comparing the measured signal to the theoretical expression for DEER in
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the presence of strong coupling derived in App. B.2.3, the observed signal contrast is smaller

than expected for driving 3/8 (6/8) of the bath population in the one (two) tone signal. We

fit the decay curve assuming two strongly coupled spins with non-unit populations ρj and

dipolar couplings Aj , as may arise from multiple charge states, and a background coherence

function with time T2,DEER and stretch factor n,

S0(t) = e−(t/T2,DEER)
n ∏

j

[
(1− 3/8 · ρj) + ρj · cos

Aj

2
t

]
. (6.1)

We fix ρ1 = 0.528, calculated from the amplitude of the first coherence dip in S0, which

is only sensitive to the strongest coupled spin. We then find ρ2 = 0.35, and coupling

strengths of A1 = 2π · 154 kHz and A2 = 2π · 9 kHz for the first and second resolvable spins,

respectively. We then generate 105 potential spin bath configurations with the parameters

in Fig. 6.1. We fix the populations of all bath spins except the strongest coupled spin to 0.35

and fix the population of the strongest spin to 0.528. We simulate the resulting NV DEER

coherence with cluster correlation expansion (CCE) methods and evaluate each configuration

based on how well it matches the experimental signal. Based on CCE convergence tests in

App. A.1.2, we expect DEER to be most sensitive to the ≈ 5 strongest coupled spins with

a smaller dependence on the background spin bath density, due to the incomplete driving

of the spin bath and resulting Ramsey-like and Hahn echo-like behavior. The DEER trace

from the best-matched configuration, calculated with 50 bath spins, is overlaid on the data

in Fig. 6.1(d). We also identify 47 other configurations that match well to our data1. These

bath configurations are used for spin diffusion and T2 simulations in Sec. 6.3.3.

We further investigate the observed P1 population reduction in Fig. 6.2. We first probe

the NV electronic fine structure via high-resolution (pulse bandwidth 14 kHz) optically de-

tected magnetic resonance (ODMR) in Fig. 6.2(a) with laser pulses identical in power and

1. This number reflects the number of available computing cores (48) and is not on its own meaningful.
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time to those used in the DEER measurement. We identify the outer two resonances as

arising from the P1 electron spin-induced splitting, resolvable above the spin linewidth. We

further ascribe the central resonance to a Stark shift [178] that occurs when the nearest Ns

center is in the N +
s charge state, thus removing the electron spin but introducing a point

charge. Assuming the dipolar and Stark shifts correspond to the N 0
s and N +

s states, respec-

tively, we extract a population of ρ1 = 0.63 based on the NV contrast reduction at each

resonance, 19% larger than the value extracted from the coherence dip in Fig 6.1(d).

To better understand the charge population we perform a time-resolved charge decay

measurement, first demonstrated in Ref. 156, in Fig. 6.2(b) using the pulse sequence shown

on top. After a sufficiently long laser pulse (see Sec. 6.3.5) to scramble the Ns charge states

the system is allowed to evolve in the dark for a variable time. We then probe S0 at the first

coherence dip, where the NV is only sensitive to the strongest coupled P1 spin. We observe

a signal corresponding to an initial population ρ1(0) = 0.61 that decays to the ρ1 observed

in Fig. 6.1(d) with exponential decay time Tc = 460(80) µs. We thus believe that the time-

dependent S0 signal represents the steady-state charge population of the Ns bath that arises

from optical illumination and nearby charge traps [95]. We note that this bath-induced Stark

shift may contribute additional decoherence in Ns baths, although this is beyond the scope

of this work.

6.3.2 P1 Polarization and Readout

Polarization and readout of the strongly coupled P1 center is achieved via a combination

of resonant and off-resonant dipolar interactions on both the NV and P1 electron spins,

controlled via the microwave pulse sequence shown in Fig. 6.3(a), with schematics of the

relevant interactions shown above the sequence. The NV begins spin-polarized, after optical

illumination, in the |ms = 0⟩ spin state; the P1 spin begins in a thermal state. Throughout

the measurement the P1 is driven with two microwave tones at f⇓,3 and f⇑,3 to improve
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Figure 6.3: P1 polarization and measurement. (a) NV-P1 polarization-probe measure-
ment sequence. Hartmann-Hahn spin locking turns on polarization transfer between the
initialized NV and the P1. Initial NV pulse axis (±X) determines the sign of the P1 polar-
ization, enabling differential measurement of the P1 spin. The P1 spin polarization (signified
by the shaded circle) evolves during an arbitrary delay time. An out-of-phase DEER mea-
surement, Sπ/2, on the NV probes the P1 polarization. The NV is driven at 2Ω in this
segment to avoid resonance with the P1 during the π-pulse. After NV readout, a long laser
pulse resets the P1 spin state, explored more completely in Sec. 6.3.5. When overlapping
microwave pulses are present, the duration refers to both pulses, with duration referenced
to the drive period. When only one microwave axis is present, it refers to both pulses. “U”
stands in for an arbitrary unitary pulse sequence. (b) Resonant tuning of Rabi drive rate
Ω for all three drive tones. P1 drives are measured via the DEER sequence in Fig. 6.1(c)
with a variable time P1 pulse. (c) Sπ/2 versus probe time τp for two different fixed spin
locking times, with maximum signal at τp = 2.5 µs. (d) NV polarization, measured optically,
after a variable spin locking time τSL (blue, filled circles) and P1 polarization, measured
through Sπ/2 (orange, open circles), after the same time. Correspondence between the two
indicates that Sπ/2 properly measures the polarization transferred to the P1 spin. Maximum
polarization is at τSL = 5 µs.
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signal collection.

Both spins are then driven in a spin locking scheme, first panel, at the Hartmann-Hahn

resonance condition ΩNV = ΩP1, where Ω is the Rabi drive rate. Note that although

the spin-1 NV and spin-12 P1 couple with different strengths to ac magnetic fields, we are

concerned here with the drive rate, not the drive field. Fig. 6.3(b) presents tuning of Ω for

the three drive tones for the NV, P1⇓,3, and P1⇑,3 populations. Rabi measurements of the

P1 are performed with the DEER sequence in Fig. 6.1(b), where we vary the time of the P1

π-pulse, remaining resonant with the P1 ESR frequency. The strong NV-P1 coupling shifts

the P1 resonance frequency by more than the P1 electron spin linewidth when not in the

|ms = 0⟩ state, which is always the case for DEER coherence measurements. Throughout

these measurements, we are careful to tune fP1 and ΩP1 with DEER measurements that

are only sensitive to the single strongly coupled P1 and not the other bath spins by probing

the NV coherence at τ ≲ 10 µs.

In general, Hartmann-Hahn resonance turns on resonant flip-flop interactions of the type

Ŝ+P̂−+h.c., where Ŝ is the NV electron spin operator and P̂ is the P1 electron spin operator,

between the NV and all driven P1 spins. In the strongly coupled case, flip-flops with the

strongest coupled P1 will dominate at short times and polarization is coherently transferred

to the P1 spin, shown schematically above the sequence, with the shaded region representing

polarization. The direction of the P1 polarization depends on the phase of the initial pulse

on the NV (±π/2). After spin locking for a variable time τSL, the P1 spin state is stored in

an eigenstate, and the NV is repolarized with a short laser pulse that does not significantly

perturb the P1 spin state (see Sec. 6.3.5 for details). During the delay period, second panel,

the P1 spin is allowed to freely evolve. Additional stimuli may be added here, such as

microwave and laser pulses, to modify the P1 or NV evolution.

An out-of-phase DEER measurement of the NV coherence, Sπ/2, after interacting with

the P1 spin directly probes the P1 spin state (third panel). In this segment the NV drive
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amplitude is doubled to avoid any resonant interactions with the P1 during the π-pulse.

Details of this readout interaction can be found in Sec. B.2. After the P1 readout, both the

NV and the P1 are reset with a sufficiently long laser pulse around 100µs, as measured in

Sec. 6.3.5 (fourth panel).

In Fig. 6.3(c), Sπ/2 is measured versus DEER probe time τp at two different spin lock

times, τSL = 1, 5 µs. In the case of a NV center strongly coupled to a single bath spin with

coupling A and background decoherence Π(τ), we find

S0(τ) + iSπ/2(τ) = Π(τ) ·
(
cos

A

2
τ + i · p · sin A

2
τ

)
, (6.2)

see Sec. B.2.4 for derivation details. At τSL = 5 µs, corresponding to ≈ 1/(4A), we observe

oscillations that match the strong coupling observed in Fig. 6.1(e), as expected. We extract

τp = 2.5 µs as the probe point that maximizes readout signal.

Fig. 6.3(d) demonstrates the direct probe of polarization coherently exchanged between

the NV and P1 spins. The blue, filled in circles, show the NV population measured after

Hartmann-Hahn polarization transfer (the leftmost panel in Fig. 6.3(a)) at Ω ≈ 400 kHz,

revealing resolvable coupling to the strongest coupled P1 spin. The orange, open circles, show

the P1 polarization read through Sπ/2(τp = 2.5 µs) for the same τSL, with τdelay = 0 µs.

These two curves are mirror images of each other; we observe that as polarization leaves

the NV, it transfers to the P1. Probing at τp = 2.5 µs ensures that Sπ/2 is only sensitive

to polarization on the strongly coupled P1; weaker coupled spins would contribute slower

signals. We identify τSL = 5 µs as the optimal spin locking time to maximize polarization

transfer with a single polarization step.

In comparison to NV correlation measurements that have probed bath evolution, for

example in diamond surface spins [72, 253], or used nuclear spin memories [224] to enhance

spectral resolution, this P1 initialization and readout is not limited by the NV T1 lifetime,

as no signal is stored in the NV spin state. As long as the laser power is low enough such
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that the NV repolarization pulse does not disturb the P1 electron spin, τdelay is only limited

by signal collection at long measurement times. Essentially, the NV center is combined with

appropriate microwave tones to enact the same deterministic polarization and spin-state

probe that is routinely performed optically on the NV electron spin. We note that similar

experiments have combined Hartmann-Hahn polarization transfer with a DEER probe on NV

center-dark spin systems in diamond [139, 222], but these did not include the time-resolved

delay component present here.

6.3.3 P1 electron spin depolarization

We now explore single P1 polarization loss with the measurement described in Sec. 6.3.2.

We begin by considering intra-bath resonant flip-flop processes between the single P1 and

surrounding bath spins as a potential loss mechanism. These processes have been proposed

as the mechanism of spin-bath induced decoherence in NV centers [23] and are the basis for

CCE computational methods.

To obtain an accurate comparison to experiment, we perform a semi-classical Fermi’s

Golden Rule simulation [302] of spin diffusion, where the rate of polarization transfer Γij

between any two bath spins is modified from the isolated dipolar coupling Aij to Γij =

A2
ij

2γ
γ2+(δi−δj)2

, where γ is the intrinsic spin linewidth, approximated as 1/T2,NV , and δi is

the detuning on a given bath spin. We simulate spin diffusion in our system with the spin

configurations determined in Sec. 6.3.1. We evolve the system under couplings Γij between

spins and average over many trajectories with different initial thermal states, calculating δi

directly from the spin bath state. We perform this simulation for initial NV states |0⟩ and

|−1⟩, where the non-zero dipolar field produced by the second state induces an additional

fixed detuning on the polarized spin of A1, strong enough to suppress the Γ1j to other bath

spins and gap out spin diffusion. We present the results in Fig. 6.4(b), with the simulation

trajectories shown in purple and blue for |NV(t)⟩ = |0⟩ , |−1⟩, respectively, with the two-
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Figure 6.4: P1 spin polarization decay. (a) Pulse sequence for time-resolved polarization
decay measurement on strongly coupled P1 electron spin. A π-pulse on the NV center
is added to modify the static detuning of the P1 Larmor frequency. (b) Fermi’s Golden
Rule semi-classical simulations of spin diffusion out of the polarized central P1 spin for
best-matched configurations data in Fig. 6.1(d) with the NV center in the |ms = 0⟩ and
|ms = −1⟩ states. Best-fit is shown in bold trace. (c) Polarization decay of the P1 spin
measured with the sequence in (a) for both NV spin states, corrected for charge decay
observed in Fig. 6.2(b). (d) Polarization decay of the P1 spin measured with the sequence
in (a) for both NV spin states, corrected for charge decay as well as background diffusion
calculated for best-fit configuration in (b). We find T1,P1 = 2.5(3)ms.

spin estimate shown as a dashed line. The simulations predicts polarization decay due to

spin diffusion over tens of ms, and furthermore reveal that the A1 gap strongly modifies the

diffusion at timescales less than the NV T1 time, see App. B.4.

In Fig. 6.4(c) we perform a T1 measurement of the single P1 center with the sequence in

Fig. 6.4(a), where τdelay measures the free evolution time after the NV reinitialization laser

pulse and optional π-pulse. After correcting for the background charge state decay, we find

decay times of 2.0(3)ms and 2.9(4)ms for |NV (t = 0)⟩ = |0⟩ , |−1⟩, respectively, significantly

shorter than the times predicted from flip-flop processes in Fig. 6.4(b), suggesting another
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source of polarization decay. Prior work has measured the 14N P1 ensemble spin relaxation

time via EPR measurements of bulk samples, finding room temperature relaxation times

≈ 2ms [19, 77, 214, 291], in good agreement with our single P1 result. Prior works posit

that the main depolarization mechanism arises from phonon-induced tunneling between P1

Jahn-Teller states accompanied by spin-orbit coupling.

We correct for the calculated slow diffusion by fitting the best-fit simulation in Fig. 6.4(b)

to decay of the form a · e−(t/td)
n

to normalize our decay data, shown in 6.4(d). We recover

a spin relaxation time T1,P1 = 2.5(3)ms.

6.3.4 Bath spin T1 limit to central spin T2

Single spin-flips of nearby spins have recently been explored analytically [171] and experimen-

tally (in the context of superconducting qubits) [125] as a source of central spin decoherence.

In Fig. 6.5(a) we explore the finite spin lifetime of the P1 bath spins as a main source of

decoherence in our system. We calculate the central spin coherence time with the analyti-

cal results in Ref. 125 for a range of T1,P1 times for each bath configuration determined in

Sec. 6.3.1 (the same shown in Fig. 6.4(b)).

We also calculate via CCE the intra-bath dynamics-limited coherence times for each

configuration. T1,P1 = 2.5ms is marked off on the plot, predicting a range for T2 of 545µs to

740µs, an order of magnitude smaller than the CCE prediction, and of 581µs for the best-fit

configuration. We measure a NV T2 of 362(9)µs (Fig. 6.5(b)), which falls within a factor of

2 of the predicted range. Accounting for finite spin lifetimes of bath spins produces a more

accurate prediction of central spin decoherence compared to current methods [196]. This

suggests that the finite room temperature T1,P1 bath spins may be a dominant source of NV

center decoherence, a prospect not previously explored for NV center systems. The relevant

physics, however, has been previously described in the literature [109, 138] and explored in

oxide [176, 177] and silicon systems [266].
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(a) (b)

Figure 6.5: P1 T1 limit to NV T2. (a) Calculation of NV center T2,NV times limited by P1
single spin-flips (orange), characterized by the T1,P1 time, and CCE bath interaction-limited
T2 (blue) calculated for each spin bath configuration determined in Sec. 6.3.1. (b) Single
NV Hahn echo coherence. The T2 time marked by the red star in (a) at T1,P1 determined
in Sec. 6.3.3.

We now combine theoretical results from Ch. 5 with the theoretical estimate for bath

spin lifetime-limited coherence [266, 279] of

T2(T1,P1) ≈ (2πT ∗
2 · T1,P1)

1/2 (6.3)

to explore spin bath geometry and density regimes where the P1 lifetime is relevant for NV

center coherence. In Fig. 6.6(a) we plot T2 versus [N], as measured in Ref. 23, both with

and without the low-density plateau, alongside the calculated T2 from Eq. (6.3) based on the

measured T ∗
2 values in Ref. 23. We find that the bath spin lifetime is only limiting for three-

dimensional densities below around 16 ppb. In Fig. 6.6(b) we calculate T2 from Eq. (6.3),

inputting calculated T ∗
2 values from Ch. 5 and T1,P1 measured in Sec. 6.3.3. We normalize

this value by the coherence times calculated in Ch. 5 via CCE, denoted T2,CCE . We find that

the bath spin lifetime limits coherence up to a much higher density, >10 ppm, in low- and

quasi-low-dimensional spin baths. Note that the T ∗
2 calculations in Ch. 5 exclude strongly

coupled spins (see Sec. 5.4.1) and thus the calculated T2(T1,P1) is likely overestimated.
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(a) (b)

Figure 6.6: P1 T1 limit to NV T2, modelling. (a) Comparison between measured [23] T2
coherence times in bulk N spin baths and expected limit from T1,P1 in the same systems.
(b) Comparison between T1,P1-limited and CCE (intra-bath interactions)-limited T2 times
based on modelling in Ch. 5.

6.3.5 Depolarization under laser illumination

We now apply the technique from Sec. 6.3.2 to measure P1 decay in the presence of green

illumination, ubiquitous in NV center measurements. The pertinent components of the

measurement are shown in the sequence in Fig. 6.3(a) with a variable-power illumination

during the delay window. As in Fig. 6.4 we measure the spin polarization, although we

highlight here that this signal is also sensitive to the charge state. In Fig. 6.7(b) we show

time-traces of P1 decay at powers ranging from 0.1mW to 6.6mW, covering the range of

typical off-resonant laser powers employed in NV ODMR-based experiments. Fig. 6.7(c)

shows the extracted mono-exponential decay rates ΓP1 at each laser power. These data

exhibit saturation behavior; we fit ΓP1 to a saturation curve ΓP1(P ) = 2Γsat
P

P+Psat
for

rate Γsat at saturation power Psat. We find saturation at Psat = 2mW, likely arising from

saturation of surrounding charge traps.

Ionization is expected to play a dominant role in the observed decay, as the 2.3 eV laser

energy is larger than the depth of the P1 electron level in the diamond bandgap (≈ 2 eV).

Assuming ionization is the only relevant process, i.e., the spin polarization persists until the

electron is ionized and subsequently captured by a nearby charge trap or decayed through
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Figure 6.7: P1 decay under illumination. (a) Pulse sequence for time-resolved decay
under green illumination. After P1 spin initialization, the laser is turned on for variable
time τdelay, after which the Sπ/2 probe is performed. The reset laser pulse at the end is
fixed at a power-dependent time long enough to fully decay the P1. (b) P1 polarization
decay under range of laser powers (color-coded in (c)), with mono-exponential fits overlaid.
(c) ΓP1 decay rates extracted from (b) versus laser power, with saturation fit in black and
low-power linear fit in dashed green.

conduction band scattering processes, we extract an ionization cross section from the low-

power data in Fig. 6.7(b) of σion = 1.2(5) × 10−4A2, similar to prior work in ensemble

measurements [67, 113] (see App. B.6 for calculation details). These measurements demon-

strate that the P1 spin polarization persists under illumination beyond the times usually

employed to reinitialize the NV center spin state. This separation of timescales enables the

polarization measurements presented in this work.
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6.4 Discussion

Central spin decoherence arises from evolution of the surrounding spin bath, which is in

turn composed of both single spin and multi-spin interactions. Here we have presented, to

our knowledge, the first study of single P1 spin relaxation mechanisms room temperature,

highly relevant for NV center quantum sensing applications. Specifically, we have leveraged

a method to initialize and probe the P1 electron spin to enable arbitrary microwave and

optical excitation on both the NV and P1 spin systems. This allowed us to shift the local

dipolar field at the strongly coupled P1 spin, in Sec. 6.3.3, and to study spin depolarization

under optical illumination in Sec. 6.3.5, measurements that are not possible under similar

time-resolved correlation studies of bath dynamics.

Under certain spin bath conditions, such as those relevant for single NV center and

thin ensemble synthesis, we have shown that at room temperature, intra-bath flip-flops are

not the dominant mechanism for bath spin dynamics. This motivates a modification to

both theoretical and experimental studies of central spin decoherence. From a modeling

perspective, we have shown that it is necessary to include a Γ1 spin-flip rate for each bath

spin independent of spin bath density and geometry. Specifically, we demonstrated that

the inclusion of Γ1 accounts for the mismatch between prior T2 coherence time calculations

and measurements in low-density spin baths [110, 201]. This also suggests that, in low-

density spin baths, central spin coherence times should improve at lower temperatures as Γ1

is reduced [214, 291].

We note that the polarization and probe technique in Sec. 6.3.2 does not depend on the

nature of the target electron spin as long as the NV-target coupling can be resolved above

background decoherence. This may thus be applied to study electron spins external to the

diamond lattice with near-surface NV centers. Considering the strong coupling condition

presented in Ch. 5 A ≥ 2π/T2, a single spectrally isolated electron spin may be polarized

and probed with a NV center near the (100) diamond face given sufficient geometry.
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In Fig. 6.8 we study the dependence of the maximum NV-target spin distance, and

specifically the height h of the target above the diamond surface, for a NV center at a given

depth d and a maximum dynamically decoupled coherence time T2,DD. As a function of

T2,DD and θB,r, the angle between the magnetic field B and the NV-target vector r,

h(T2,DD, θB,r) =

(
µ0
4π

γ2eℏT2,DD
2π

|1−3 cos2 θB,r|
2

)1/3

·
∣∣sin(θ111 + θB,r)

∣∣− d, (6.4)

where µ0 is the magnetic constant, γe is the electron gyromagnetic ratio, and θ111 is the angle

that the NV axis and the magnetic field (assumed to be parallel) make with the plane of the

diamond surface, shown schematically in the bottom part of Fig. 6.8. In the top of Fig. 6.8,

we plot the positions of the furthest strongly coupled electron spin for a given maximum

coherence time, where the colormap labels T2,DD, such that spins at positions closer to the

diamond surface are also strongly coupled. We set d = 12 nm for the calculation, following

measurements in Ref. 230 of a 12 nm NV with maximum T2,DD = 600 µs with 51 π-pulses

after an oxygen anneal surface treatment. For these NV properties, strong coupling should be

possible for external electron spins ≈20 nm away. This calculation assumes that the target

electron spin is spectrally isolated from the dominant spin noise source, enabling DEER

measurements that do not interact with the dominant source.

Polarization- and time-resolved probes of external target spins will enable measurements

of the spin dynamics of surface spins [72, 215] and in spin-labelled molecules [232, 293].

Diamond surface functionalization [1, 281] would enable these studies in confined systems

with an a priori structure, in contrast to stochastic spin baths. Furthermore, external electron

spins may act as reporter spins that probe a nearby spin system that is not strongly coupled

to the NV center [253, 296]. In this case the target electron may further polarize and measure

a surrounding nuclear spin environment, as in Ref. 122.
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Figure 6.8: Strong coupling to external electron spin. For a given maximum coherence
time T2,DD, color-coded, the top plot shows the contour of furthest positions where strong
coupling between a 12 nm NV center and external electron spin is achievable. The bottom
schematic shows the geometry for Eq. (6.4).
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APPENDIX A

SUPPLEMENTAL NUMERICAL RESULTS

A.1 Cluster correlation expansion

A.1.1 High-field limit

Calculations are performed for a 50G field, while NV measurements are at 311G. A main

concern for CCE calculations is if the electron spins are in the high-field limit relative to other

energy scales. In our case, the dipolar coupling between electron spins is the next highest

energy scale after the Larmor frequency (the nuclear hyperfine, at ≈3MHz, is not considered

in CCE and is not relevant for NV decoherence in our measurements). The lowest P1 Larmor

frequency at 50G is 64MHz. At the densities considered in this work, the smallest average

spin-spin distance is 4.3 nm (12 ppm), corresponding to a dipolar coupling of ≈645 kHz, two

orders of magnitude smaller than the Larmor frequency. Even accounting for variation in

spin-spin position, the Larmor frequency is the dominant energy scale and 50G is already

in the high-field limit for our system. We thus expect no difference in CCE calculations at

the two field values.

A.1.2 CCE order convergence

We evaluate convergence in a 10 ppm, 5 nm P1 spin bath, although the convergence holds

over our simulated range.

We run Hahn echo simulations on a single NV and extract decay times for CCE-2 to CCE-

5, presenting the average coherence time in Fig. A.1(a). Calculations converge at order 4.

All Hahn echo simulations in the main text are performed at order 4. Fig. A.1(b) shows

that Ramsey simulations are consistent across all orders, indicating the NV decoherence is

dominated by dipolar coupling with single bath spins. These data are the ensemble averaged
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times for many NV centers, with the spread of results shown as background shading.

A.1.3 Convergence with number of spins

In this section we look at the number of spins necessary to converge our calculations, as

well as draw interesting conclusions about NV-bath measurements. In Fig. A.1(c), T2

convergence for a single NV is plotted versus the number of bath spins. We find convergence

at NT2 =100 spins, setting a lower bound for all simulations in the main text. In Fig. A.1(d),

T∗
2 converges at NT ∗

2
=10 spins, setting a lower bound for Ramsey results in the main text.

This convergence is more than a computational exercise. This also reveals the number

of bath spins necessary to fully capture the central spin coherence, with physical meaning.

First, we can intuitively see why NT2 = N2
T ∗
2
. From the T∗

2 convergence, we conclude that

the NV signal is dominated by dipolar coupling to 10 bath spins. Heuristically, T2 will

be sensitive to fluctuations in these coupling strengths, a direct result of fluctuations in the

energy, or the linewidth, of each bath spin. The T∗
2 convergence already tells us the linewidth

depends on the coupling to 10 nearby spins, so we can claim that the 10 spins nearby the

NV are further influenced by the 10 spins closest to each of them, and arrive at a total of

100 spins necessary to describe Hahn echo decoherence.

A.2 Analytical and computational coupling ratio comparison

In Ch. 5 Sec. 5.3.6 we calculate in Eq. (5.7) that the coupling ratio for the nearest bath

spin should be
√
2 larger in a two-dimensional bath compared to a three-dimensional bath.

We then use numerical simulations to analyze the incidence of strongly coupled systems.

In Fig. A.2 we present the calculated ratios and show approximate agreement with the

analytical result. Fig. A.2(a) presents the same calculated distributions as in Fig. 5(a) for a

3 ppm bath. In Fig. A.2(b) we scale the coupling ratios in the 2D bath (at 3 ppm) by 1/
√
2,

in accordance with the prediction in Eq. (6). The distributions do not overlap exactly, but

124



b

c d

a

Figure A.1: CCE convergence. Convergence of T2 coherence time CCE calculations versus
CCE order (a) and number of simulated bath spins (b).
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a b

Figure A.2: Coupling distribution versus dimensionality. (a) Calculated coupling
distributions at 3 ppm for 3 nm and 50 nm baths. (b) Same data as in (a), but the coupling
ratios for the 2D bath (3 nm are scaled by 1/

√
2).

we do find agreement in the peak ratio positions (the most likely values), providing a point

of comparison between the analytical and numerical approaches.
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APPENDIX B

SUPPLEMENTAL P1 RELAXATION RESULTS

B.1 NV nuclear spin polarization

Fig. B.1 shows the pulsed ODMR spectrum of the NV center taken with a gaussian-shaped π-

pulse, with two peaks corresponding to the ±1/2 nuclear spin states of the 15N. The nuclear

spin polarization is calculated as I15 = |d1 − d2|/(d1 + d2) where di is the contrast depth

of each peak. The polarization of I15 = 69% corresponds to less than 0.5◦ misalignment

between the magnetic field and the NV axis.

B.2 DEER ESR detection

Conventional electron spin resonance (ESR) measures the resonant absorption of a spin

transition of a paramagnetic sample. In the precense of an external dc magnetic field,

resonant microwaves excite spin precession in a microwave cavity, which is detectable due to

the un-balanced population between the two spin levels, or the thermal polarization [134].

In the absence of polarization no energy is absorbed and there is no ESR signal.

The NV center is a nanoscale ESR detector through double electron-electron resonance

Figure B.1: NV hyperfine spectrum. Pulsed ODMR measurement of NV showing nuclear
spin splitting and polarization of I15 = 69%.
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(DEER). Rather than absorption, the NV electron spin detects nearby spins through their

effect on the NV coherence. The NV acquires a phase ϕ = γBτ from the magnetic field B

of the environment during a measurement of length τ , where γ is the electron gyromagnetic

ratio. When we average many NV measurements, we average this quantity to recover the

observed NV decoherence 〈
eiϕ

〉
= e−⟨ϕ

2⟩/2, (B.1)

where the signal ultimately depends on
〈
ϕ2

〉
. This is in contrast to a conventional ESR

measurement, which depends on ⟨B⟩ ∝ ⟨ϕ⟩. These different averages amount to the mean

and standard deviation of the field produced by target spins. In section B.2.1 we derive these

quantities thermodynamically.

DEER-ESR with a Hahn echo NV measurement is shown in Fig. B.2. A given (in gen-

eral random) configuration of electron spins decoheres the central NV spin through electron-

electron dipolar interactions. Interactions with a resonant species are isolated by simultane-

ously inverting the NV spin and the target spins, the so-called double resonance.

We can consider our central NV spins Ŝ and environment spins Îi, which we can break

into target spins Ît,i and other spins Îo,i. In the first free evolution window in Fig. B.2, the

NV evolves according to interactions

ĤSI,1 =
∑
i

Ŝ · Ît,i +
∑
j

Ŝ · Îo,j . (B.2)

After inverting the central and target spins, the NV evolves in the free second evolution

window under

ĤSI,2 =
∑
i

(−Ŝ) · (−Ît,i) +
∑
j

(−Ŝ) · Îo,j . (B.3)

We see that interactions with the target spins proceed as if there were no inversion, and

interactions with the other spins are reversed and effectively cancelled for equal evolution
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π/2ππ/2
NV

P1

Figure B.2: DEER measurement sequence. The NV is initialized to a superposition on
the Bloch sphere equator, while the other spin, in our case a P1 center electron spin, is in
an eigenstate. When the NV center is flipped with a π pulse, the P1 spin is also flipped,
negating any reversal of the NV-P1 interaction.

times (they are “echoed out”). This analysis shows no dependence on average polarization,

only on a quasi-static (slower than a single measurement window) random configuration of

up and down spins, which can change from measurement to measurement.

B.2.1 Thermal and statistical polarization

Electron spin level separations tend to be in the MHz-GHz range, and spin levels are pop-

ulated according to a Maxwell-Boltzmann distribution. In the high temperature limit of

βγBz ≪ 1, where β ≡ 1/T and γBz is the electron Zeeman energy. This results in a rather

small thermal polarization in the system, given by

Ptherm =
1

3
βγBz(S + 1) (B.4)
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for a spin-S system. At typical operating conditions, Ptherm ≈ 10−4. Measuring the average

magnetization of the target system, ⟨Sz⟩ amounts to measuring this thermal polarization.

However, as noted in section B.2, an NV DEER measurement is sensitive to
〈
S2

〉
, the

fluctuations in the magnetization. This is termed the statistical polarization, given by

Pstat =

√
S + 1

3S

1

N
(B.5)

for a system of N spins. These fluctuations are larger in smaller systems. In section B.2.2

we determine how many bath spins participate in our DEER measurements and calculate

Pstat for the system.

We now derive Eqs. B.4 and B.5, following Slichter [244]. ℏ = kB = 1 in the following.

We begin with the partition function

Z =
∑
n

e−βEn , (B.6)

where En is the energy of each level in the system. En is given by the Zeeman Hamiltonian

for a single spin

Ĥz = −γBzŜz. (B.7)

We are generally in the high temperature limit where βĤz ≪ 1. In this limit we can reduce

the partition function to

Z ≈
∑S

Sz=−S(1 + γBzSz)

= 2S + 1,
(B.8)

as the terms linear in Sz cancel. With the density matrix

ρ̂ =
1

Z
e−βĤz , (B.9)
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physical quantities can be computed. The magnetization for an N -spin system is given by

⟨Mz⟩ = NTr[Ŝz ρ̂] =
N

Z
Tr

[
Sze

−βĤz
]
. (B.10)

In the high temperature limit we expand the exponential and use Tr[Ŝz] = 0 to arrive at

⟨Sz⟩ = 1
ZTr[Ŝz(1− βĤz + · · ·)]

≈ 1
ZTr[γ2βBzŜ

2
z ].

(B.11)

Plugging in Z = 2S+1 and Tr[Ŝ2z ] =
1
3S(S+1)(2S+1), we arrive at the thermal polarization

Ptherm ≡ ⟨Mz⟩
γNS

=
1

3
γβBz(S + 1), (B.12)

where γNS is the total fully polarized magnetization. We can likewise calculate the standard

deviation for an N -spin system.

σ2Mz
=

∑
N

σ2Sz = Nσ2Sz , (B.13)

where

σSz =

√〈
S2z

〉
− ⟨Sz⟩2. (B.14)

As ⟨Sz⟩2 ∝ β2, we can take it to zero and calculate

〈
S2z

〉
= Tr[Ŝ2z ρ̂]

= 1
ZTr

[
Ŝ2ze

−βĤz

]
≈ 1

ZTr[Ŝ2z ],

(B.15)

where the last line is the highest order term. Using the same expressions from above, we
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define the statistical polarization as the fluctuations

Pstat ≡
σMz

γNS
=

√
S + 1

3S

1

N
. (B.16)

For our spin-1/2 system of interest,

Ptherm = 1
2βγB

Pstat = 1/
√
N.

(B.17)

B.2.2 Polarization and spin estimate

In PyCCE convergence calculations in App. A, we find that the number of spins probed in

a Ramsey-style measurement is around 10. From this we calculate statistical fluctuations of

Pstat = 1/
√
10 in a DEER measurement.

B.2.3 Polarized DEER signal

We experimentally probe a system where the NV is strongly coupled to a single P1 above

the background P1-induced decoherence. The NV coherence in this system with no net

polarization is given by L = Π(τ) cos a
2τ , for NV-P1 coupling a and measurement time

τ . Π(τ) is a function capturing the background decoherence. When the P1 is polarized

with some polarization p, the NV coherence is L = Π(τ)
[
cos a

2τ + i · p sin a
2τ

]
. This result

is critical to our polarization measurement. A polarization of the coupled spin imparts

an extra, imaginary coherence to the NV spin, directly proportional to the polarization.

Experimentally, we predict maximum readout fidelity for measurement time τ such that

a

2
τ =

π

2
(2k + 1). (B.18)
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Accounting for background decoherence, we will measure at the first peak, τp = 1
2a . Assum-

ing some fitted decoherence function Π(t), we can normalize the measured Ly to obtain a

quantitative polarization of

pexp =
Ly(τp)

Π(τp) · Lx(0)
. (B.19)

Below, we derive the DEER signal.

B.2.4 Analytical derivation of DEER signal

In the pure dephasing regime the Hamiltonian of a NV center interacting with a single bath

spin can be written as:

Ĥ = Ĥ0 ⊗ |0⟩ ⟨0|+ Ĥ1 ⊗ |1⟩ ⟨1| (B.20)

Where Ĥi is a bath spin Hamiltonian, conditioned on the NV state i:

Ĥ0 = ωŜz, and Ĥ1 = (w + a)Îz + bÎx (B.21)

Where Îα are bath spin operators, ω is the bath spin larmor frequency, a and b are

coupling parameters.

The coherence of the NV can be then expressed in terms of the evolution of the bath

spin:

L(t) = Tr[ρ̂V̂ †
1 V̂0] (B.22)

Where ρ̂ is a density matrix of the bath spin, and propagators V̂0, V̂1 are defined in terms

of the Hamiltonians from Eq. (B.21). In the DEER-type of measurement, the π pulse is

applied simultaneously to the bath spin and the central spin, thus the propagators can be

written as:

V̂0 = e−iĤ1τ/2R̂x(π)e
−iĤ0τ/2, (B.23)
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and

V̂1 = e−iĤ0τ/2R̂x(π)e
−iĤ1τ/2 (B.24)

Where R̂x(π) = −2iÎx is a rotation operator acting on the bath spin and τ is the measure-

ment time.

Using this definition, for the completely unpolarized bath spin (ρ̂0 = 1
2I) we recover the

following expression for the coherence of the central spin:

L0(τ) =
k2x
2

(
1− cos

θ1
2

+ cos
θ0
2

)
+ (1− k2x

2
) cos

θ0
2

cos
θ1
2

+ kz sin
θ0
2

sin
θ1
2
, (B.25)

where θ0 = ωτ , θ1 = τ
√
(ω + a)2 + b2 are bath spin precession angles, and kx =

b√
(ω+a)2+b2

, kz = ω+a√
(ω+a)2+b2

define tilt of the precession axis. Notice that the coher-

ence is real, thus the ⟨Ŝy⟩ signal of the central spin is strictly zero.

We define the density matrix for the polarized bath spin as:

ρ̂p =
1

2
I− p · Îz. (B.26)

Then the NV coherence becomes complex

L(τ) = L0(τ) + i · p · (k
2
x

2
sin

θ0
2

+ (1− k2x
2
) sin

θ0
2
cos

θ1
2

− kz cos
θ0
2
sin

θ1
2
) (B.27)

The equation is significantly simplified in the large magnetic field limit (ω ≫ a, b). In this

case, kx ≈ 0, kz ≈ 1 and we recover:

L(τ) = cos (
θ0 − θ1

2
) + i · p · sin (θ0 − θ1

2
) ≈ cos

a

2
τ + i · p · sin a

2
τ. (B.28)
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B.3 NV-P1 dipolar coupling

Here we provide a detailed derivation for the Hamiltonian of the system consisting of NV

and neighboring P1 centers. The total system Hamiltonian can be generally written as the

sum of intrinsic NV and P1 Hamiltonians, as well as their interaction, as

Ĥsys =ĤNV + ĤP1 + Ĥint. (B.29)

We first consider the NV-P1 interaction Hamiltonian Ĥint, which is given by the dipolar

coupling. Thus, we can express Ĥint in terms of the NV (P1) vector spin operators Ŝ (P̂),

and the distance vector r ≡ rer that connects NV to the P1 spin, i.e., we have

Ĥint =
µ0γ

2
e

4πr3

[
Ŝ · P̂− 3

(
Ŝ · er

)(
P̂ · er

)]
. (B.30)

For convenience, we choose the quantization axis such that the local NV (P1) eigenbasis are

Ŝz (P̂z) eigenstates. Thus, the local NV and P1 Hamiltonians are given by

ĤNV =∆Ŝ2z + ω
(0)
NVŜz, ĤP1 = ωP1P̂z. (B.31)

Note that under this convention, the quantization axes for different spins in general cor-

respond to different geometrical axes. More specifically, we can introduce a different unit

vector e
(NV)
z (e(P1)z ) for each spin Pauli z operator, as

Ŝz = Ŝ · e(NV)
z , P̂z = P̂ · e(P1)z . (B.32)

We are interested in the regime where NV and P1 spin transition frequencies are highly
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off-resonant, which formally requires that

|ωNV − ωP1| ≫J(r) ≡ µ0γ
2
e

4πr3
. (B.33)

Note that with typical values of magnetic field, the LHS is greater than 100MHz, whereas

the dipolar coupling strength J(r) for randomly distributed P1 spins with density of order

1 ppm concentration is predominantly smaller than 100 kHz. In this regime, we can further

simplify the NV-P1 interaction term Ĥint, as any interaction-induced spin flips will be highly

off-resonant and hence strongly suppressed. We can now apply the standard rotating wave

approximation, so that in the rotating frame defined with respect to the local NV and P1

Hamiltonians, the NV-P1 interaction can be approximated as

Ĥ(RWA)
int =

µ0γ
2
e

4πr3
ŜzP̂z

[
e
(NV)
z · e(P1)z − 3

(
e
(NV)
z · er

)(
e
(P1)
z · er

)]
. (B.34)

In the specific case where the NV and P1 spin quantization axes are parallel to each other,

we can further simplify Eq. (B.34) via the angle set by the quantization axis and the real

space NV-P1 vector r⃗, so that we obtain

Ĥ
(RWA)
int =

µ0γ
2
e

4πr3
ŜzP̂z

(
1− 3 cos2 ϕ

)
, cosϕ = e

(NV)
z · er. (B.35)

For convenience, we denote this parallel component of dipolar coupling as Azz in the main

text and in what follows, so that Eq. (B.34) can be rewritten as

Ĥ
(RWA)
int =AzzŜzP̂z. (B.36)
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B.3.1 NV-P1 Hamiltonian with spin locking drives

For the purpose of our discussion, we can view the NV as a spin-1/2 with transition frequency

ωNV. Following discussion on Eq. (B.36), the total system Hamiltonian under the rotating

frame approximation can be written as

Ĥ(RWA)
0 =ωNVŜz + ωP1P̂z + AzzŜzP̂z. (B.37)

Here, Azz is the parallel component of the dipolar coupling as given by Eq. (B.34). We

now consider the case where both NV and P1 spins are driven, with Hamiltonian Ĥdr =

2ΩNVŜx cosωdr,NVt + 2ΩP1P̂x cosωdr,P1t. Since the NV and P1 transition frequencies are

much greater than dipolar coupling strength ωNV, ωP1 ≫ Azz, we can further go to the

rotating frame with respect to the drive frequencies, so that the system Hamiltonian becomes

ĤSL =δNVŜz + δP1P̂z + ΩNVŜx + ΩP1P̂x + AzzŜzP̂z. (B.38)

It is interesting to consider the case where both drives are resonant, i.e. δNV = δP1 = 0, and

satisfy the Hartmann Hahn condition ΩNV = ΩP1 ≡ Ω0. In this regime, for convenience

we can rotate the NV and P1 quantization axes such that Ŝ′z = Ŝx and P̂ ′
z = P̂x. The

spin-locking Hamiltonian can thus be rewritten as

ĤHH =Ω0(Ŝ
′
z + P̂ ′

z) + AzzŜ
′
xP̂

′
x. (B.39)

In the limit where the spin-locking drive amplitude is much greater than dipolar coupling

strength, we can also apply the rotating frame approximation and neglect the counter-

rotating term, i.e.

Ω0 ≫ |Azz| : ĤHH ≃Ω0(Ŝ
′
z + P̂ ′

z) +
Azz

4
(Ŝ′+P̂

′
− + Ŝ′−P̂

′
+). (B.40)
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In this case, the NV spin Rabi ocsillation rate is determined by Azz.

B.3.2 observed spectrum in a strongly coupled system

Let us now consider the spectra we will measure of a strongly coupled NV and P1 system.

The NV spectrum is measured via ODMR; at each frequency we measure how efficiently a π

pulse flips the NV spin. During the NV measurement the nearby P1 is in either |↑⟩ or |↓⟩. In

addition to the external field, the NV sees an additional dipolar coupling to the P1 spin. It

is important to note here than the P1 T1 time should be much longer than the measurement

time, so we can consider the P1 state to be constant.

If |P1⟩ = |↑⟩, its spin projection is Tr(Ŝz ρ̂↑) = 1/2, and if |P1⟩ = |↓⟩, its spin projection is

Tr(Ŝz ρ̂↓) = −1/2. The P1 has equal probability to be in each state, so half the time the NV

sees a positive dipolar field, and half the time it sees a negative dipolar field. Averaging over

many measurements, we expect to see a splitting equal to the dipolar coupling in ODMR.

The P1 spectrum is measured in a DEER measurement. We similarly measure how

efficiently a π pulse flips the P1 spin (for a strongly coupled system one can set the NV

evolution time to read out only the strongly coupled P1). However, here the NV is in a

superposition state while we measure the P1 spectrum, a necessity of the DEER readout

technique. What is the NV spin projection?

Sz = Tr

1

2

 1 1

1 1


 1 0

0 −1


 = 0.

We see that during the DEER measurement, the P1 sees a constant field from the NV and

we do not expect to observe a dipolar splitting in the P1 spectrum.

As an example, compare the NV pulsed ODMR measurement in Fig. B.3(a) with the

DEER-detected P1 spectrum in Fig. B.3(b).
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a b

Figure B.3: Single spin spectra. NV and single P1 spectra captured with pulsed ODMR
(a) and NV-DEER detection (b), respectively, at 311G.

B.4 NV T1 measurement

Here we measure the T1 decay of the NV center and extract both ∆ms = 1 and ∆ms = 2

decay rates, probing both magnetic and electric field noise [43, 182]. Fig. B.4(a) and (b) show

a NV T1 measurement probing decay from |0⟩ to |−1⟩ and from |+1⟩ to |−1⟩, respectively.

Importantly, the decay of P+1−P−1, where Pi indicates the population in |i⟩, is exactly the

decay of the NV dipolar field that the P1 center feels in Sec. 6.3.3. However, even within

the time τdiffusion ≲ T1;+1,−1 = 1.4(1)ms there is significant divergence between the spin

diffusion trajectories.

We calculate Ω = 151(9) s−1 and γ = 270(20) s−1, where Ω characterizes the ∆ms = 1

decay rate between |0⟩ and |±1⟩ and γ characterizes the ∆ms = 2 decay rate between

|+1⟩ and |−1⟩ [43, 182]. γ consists entirely of electric field noise, while Ω consists mainly

of magnetic field noise, although recently it has been shown that electric field noise also

contributes to Ω [43]. This indicates that there is significant bulk electric field noise in our

sample, in line with observations in Ref. 182. This is not necessarily surprising, as we observe

time-dependent charge processes in Fig. 6.2, and thus expect bulk electric field noise. We

note that this places a limit on T2 of 2.8ms, within the range of CCE simulations presented

in Fig. 6.5(a) but well above the T1,P1 limit at room temperature.
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(a) (b)

Figure B.4: NV differential polarization decay. T1 measurements on both ∆ms = 1
(a) and ∆ms = 2 (b) transitions. Labels Pi indicate the population of the |NV ⟩ = |i⟩ spin
state. Extracted T1 times are from a monoexponential fit.

B.5 P1 density variation with laser illumination

Ref. 275 has demonstrated tuning of the P1 spin density with green laser illumination due

to a charge transfer process with other defects in the diamond lattice. We follow the same

measurement protocol here, comparing P1 densities through the NV coherence dip in a

DEER spectrum of one of the P1 transitions. In Fig. B.5 we plot the normalized DEER

spectrum for two laser initialization pulses: (i) 330µW for 1.5 µs and (ii) 3.3mW for 30 µs.

The time in (i) is chosen to be long enough to repolarize the NV but short enough to not

significantly decay the P1 polarization, as measured in the main text. The time in (ii) is

chosen to be long enough to depolarize the P1 spin. We find no significant difference in the

NV contrast and thus the steady-state P1 population, suggesting that across our range of

laser powers there is no difference in the P1 population.

B.6 Ionization cross-section calculation

The ionization rate in terms of laser power P , cross-section σion, and gaussian laser beam

radius r, is

Γion =
Pσ

3.73× 10−19 J · πr2
, (B.41)
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Figure B.5: P1 spectrum versus laser. P1 spectrum measured via NV DEER at two laser
powers (330µW, 3.3mW) and initialization times (1.5 µs, 30 µs). We observe no difference
in the P1 population.

where 3.73× 10−19 J is the energy of a single 532 nm photon. The diffraction-limited gaus-

sian beam radius for our 0.9 NA objective is 150 nm. Extracting the slope of ΓP1/P from

Fig. 6.7(c) in the low-power limit we arrive at

σion = 1.2(5)× 10−4A2 (B.42)
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APPENDIX C

EXPERIMENTAL SETUP

Measurements of single NV centers in Chs. 4, 5, and 6 are performed with a home-built

confocal microscope with single-color excitation for optical initialization and readout, and

microwave electronics for driving ground-state spin transitions (see Ch. 2), shown in Fig. C.1.

I herein describe each component in the optical and electronic systems and their purposes

in Tables C.1, C.2, C.3, C.4, and C.5.

Table C.1: Laser beam setup components.

Label Component Purpose
a 532 nm CW laser (Oxxius, LCX-

532S-150-CSB-PPA)
optical excitation

b variable optical density filter attenuate laser power
c AOM focusing optics focus laser beam incident on AOM

crystal/re-collimate
d AOM (Gooch&Housego, custom) acousto-optic modulator, gate laser pulse

on/off with extinction >40 dB
e mirror pair redirect laser path (not all mirrors are

shown/labelled)
f beam expansion pair expand beam to ensure the beam over-

fills the objective back-aperture

Table C.2: Collection components.

Label Component Purpose
g 594 nm dichroic beam-splitter direct (green) laser to sample and (red)

signal to collection optics
h 620 nm long-pass filter clean up signal
i 532 nm notch filter filter out residual laser light
j fiber-coupled APD (Perkin Elmer,

SPCM-AQRH-13) and focusing
lens

count single photons emitted by defect
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Table C.3: Imaging components.

Label Component Purpose
k flip-mounted pellicle beam-splitter,

8:92 (R:T)
selectively couple white-light and camera
paths into sample path

l white-light source and collimation op-
tic

illuminate sample for imaging

m camera (Hitachi, KP-D20B) image the sample
n pellicle beam-splitter, 45:55 combine white-light and camera paths

Table C.4: Excitation components. Certain lens materials, such as N-BK7 (the 4f lenses in
my setup) fluoresce in the red when excited with green light, just like the NV center. It is
thus impossible to entirely remove the background signal from the lenses. This effect can be
mitigated by placing irises to remove some of this background or by choosing different lens
materials.

Label Component Purpose
o fast steering mirror (Newport, FSM-

300)
adjust angle of laser beam into objective
to scan focused spot on the sample

p 4f lens pair map angle of beam at the FSM onto
an incident angle at the objective back-
aperture

q periscope redirect optical path into objective, like
in a submarine; may also be integrated
with 3-axis stage, although this one is
fixed

r objective (Olympus, MPLFLN100x,
NA0.9)

focus light to sub-micron spot for single
defect excitation/collection; large numer-
ical aperture improve signal collection

s sample hosts spin defects
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Table C.5: Electronic components.

Label Component Purpose
t computer/data acquisition device

(DAQ, NI, USB-6341)
run experiments, initialize electronics,
analyze data, measure photon counts
(DAQ)

u Arbitrary waveform generator
(Swabian, Pulse Streamer 8/2)

generate analog and digital electrical sig-
nals for IQ modulation of mw signal (v),
gating of mw signal (w), and gating of
signal counts (z)

v microwave signal generator (SRS
SG396 or SG384, or HMC1197
eval board

deliver mw signals of variable frequency
and amplitude to sample to manipulate
spin state; in Chs. 5 and 6 the first listed
model drives the NV spin and the second
two drive the P1 spin

w rf switch (Minicircuits, ZASWA-2-
50DR+)

fast gating of mw signal to reduce signal
leakage beyond IQ modulation

x power combiner (Minicircuits,
ZFRSC-123-S+)

couple in additional signal generators
(dashed line)

y high power amplifier (Minicircuits,
ZHL-16W-43+)

amplify mw signal to improve spin drive
rate and overcome myriad losses in the
signal path

z rf switch/logic tree (Minicircuits,
ZYSWA-2-50DR)

gate signal counts; multiple levels of
switches may be used to tag counts as
bright signal, dark signal, reference, etc.
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Figure C.1: Experimental setup. Home-built confocal microscope with laser beam setup
(Table C.1), signal collection (Table C.2), sample imaging (Table C.3), and sample excitation
(Table C.4), and accompanying microwave and timing electronics (Table C.5). Experimen-
talist courtesy of Grant Smith.
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APPENDIX D

PLANAR METAL DEVICE FABRICATION

It is sometimes necessary to venture into the clean room with a perfectly nice diamond

crystal and fabricate metal devices on top of it. These typically act as alignment marker for

optical measurements, microwave striplines, microwave terminations, or electric field pads.

In this Appendix, I lay out the fabrication process I followed to deposit 100 nm to 200 nm

thick Ti/Pt/Au metal devices atop diamond. I then discuss the alternate method of spin

driving used for experiments in Ch. 5 and 6 that does not require patterning microwave drive

devices.

D.1 On-chip fabrication

The basic process steps are as follows: photoresist spinning, optical patterning/mask cre-

ation, metal deposition, metal lift-off.

D.1.1 Photoresist spinning

The initial photoresist (PR) spinning is not on top of the diamond chip but rather to adhere

the diamond, generally 2mm x 2mm square, to a large carrier wafer. The benefits are two-

fold: the diamond is very small, hard to handle, and may be too small for vacuum mounts

in instruments; and this allows us to add sacrificial chips on the diamond edges to prevent

photoresist beading, shown schematically in Fig. D.1. We use a 4 inch Si carrier wafer and

AZ nLOF 2020 negative photoresist.

PR recipe

• Clean all chips in acetone and IPA followed by a DI water rinse and 5min, 180 ◦C bake

to dry
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Si carrier wafer

Diamond chip
Sacrificial chip

Top view Side view

tw
eezers

Figure D.1: Sacrificial chip. Sacrificial chip placement around two diamond samples on a
carrier wafer from top view (left) and side view (right). At right we show how to approach
and place the sacrificial chips to minimize PR sample contamination.

• Spin AZ nLOF 2020 on the Si carrier wafer with

– Step 1: 500 rpm, 250 rpm/s ramp, 10 s (4.5 µm layer)

• Remove carrier wafer from spinner, place diamond chip(s) as close to wafer center as

possible, being careful to drop it straight down to avoid PR climbing atop the diamond

• Place sacrificial chips one-by-one around the edges of the diamond chip(s), as shown in

Fig. D.1. These sacrificial chips are in general not perfect rectangles so this may require

some finagling. It is important to get the sacrificial chips as close as possible to the

diamond edge before dropping onto the carrier wafer to minimize the chip-diamond

distance as well as prevent PR from climbing up the diamond sides. I recommend

approaching the diamond edge with the sacrificial chip at an angle from your dominant

side and then lowering it down into the PR.

• Bake for 12min at 115 ◦C to harden the PR adhesion layer, then cool for a few minutes.

• Spin second layer of AZnLOF 2020 on the diamond and sacrificial chips with

– Step 1: 500 rpm, 100 rpm/s ramp, 10 s. Confirm by eye at beginning of this step
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that the diamond is centered. If not, abort, reposition carrier wafer, and restart.

Once diamond is centered, start adding PR starting on diamond and moving

outward.

– Step 2: 4500 rpm, 2000 rpm/s ramp, 45 s (1 µm to 2 µm thick)

– Step 3: 0 rpm, 1000 rpm/s ramp, 0 s

• Pre-bake PR for 1min at 115 ◦C

• Check PR coverage and edge beading in optical microscope with GREEN filter

D.1.2 Optical patterning

Presently at UChicago we use a Heidelberg MLA150 Direct Write Lithographer. This is a

wonderful tool that directly optically exposes the PR to your pattern by rastering a light

source over the wafer. It can generate features down to 1 µm.

Exposure process

• Expose sample to pattern

• Post-bake PR for 1min at 115 ◦C

• Develop in 300 MIF developer for 1min

• DI water quench to stop developing

• Check in microscope that mask was formed. If underdeveloped, put back in developer.

You will initially want to perform a dose test of your sample, which is readily achieved

in the Heidelberg software. This will tell you the proper dose to expose your PR and get the

features you desire. A standard method is to use a series of vertical lines with pitch equal to

your feature size, expose your sample to the dose test, post-bake and develop, and check in
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a microscope for which dose best produced your features. While this number likely changes

over time, I found that for AZ nLOF 2020 on transparent, 500µm-thick diamond on a Si

carrier wafer with the AZ nLOF 2020 adhesion layer a dose of 240mJ/cm2 works well. But

you should probably recalibrate this.

D.1.3 Metal deposition

Deposition is performed in the Angstrom Nexdep Thermal E-Beam Evaporator. We tend

to deposit Ti(10)/Pt(20)/Au(x) metal stacks, where x is the desired gold thickness. The

Ti acts as an adhesion layer to substrate for the rest of the stack. However, Ti readily

oxidizes to TiO2, which will lead to delamination from the substrate. We thus add a Pt

layer to act as an oxygen diffusion barrier1. The main conductive pathway is through the

Au, which is typically at least 100 nm. The metal thickness may depend on the end device

goal. For example, a microwave termination should be as low resistance as possible in

order to optimally reflect the microwave signal and maximize the drive current through the

short. However, a through-device should be matched to 50Ω to minimize reflections in the

microwave path2.

Deposition recipe

• Perform O2 descum in the downstream asher, recipe 1 (25 s, room temperature. If the

MW fails just reset and run again)

• Mount carrier wafer in deposition chamber

1. This is the inherited group fab knowledge. As we all know, fab is 50% science and 50% black magic,
and it is possible there is a different explanation for why the Pt layer is valuable, or a different metal stack
that achieves the same goal.

2. In older theses from our group you will find shorted devices that were matched to 50Ω, which serves
to dump maximum power into the sample. This was a mistake and should not be replicated, especially for
low-temperature measurements.
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• Pump chamber down to < 2× 10−6 torr

• Ti deposition, I find is stable at 1A/s

• Pt deposition. Pressure will have risen, proceed. This deposition is more finicky, I find

it is stable up to around 0.2A/s, although this may have changed.

• Au deposition, stable at > 1A/s

• Remove carrier wafer from chamber

• Metal lift-off in NMP, agitating and sonicating until chips come off carrier wafer

• Transfer samples to smaller NMP beaker to finish lift-off with reduced worry of rede-

positing all the other metal floating around.

• IPA clean of all chips.

D.2 Draped wirebond

Given that devices fabricated on diamond are much smaller than the microwave wavelength

λ (see App. E) and thus act simply as a load resistance and not a microwave component,

one may ask if it is even necessary to go through the work of creating these little wires.

The answer, in fact, is that one can circumvent this with the draped wirebond method. The

idea is as follows, demonstrated in Fig. D.2. Mount the sample on a printed circuit board

between a signal pin and ground plane. In a wirebond tool, bond a wire between the signal

and ground planes draped over the sample, aiming for the wire to be as close as possible to

the sample. As long as the sample is within λ/8 of the ground plane connection (see App. E)

the wire will deliver a sufficient drive field to the sample for mw control of spin qubits.

This method is sufficient for many experiments, but has some major drawbacks compared

to on-chip devices that should be considered. To start with, between a clean diamond surface
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and a draped wirebond there is no fixed reference system and it is thus very difficult to

navigate a sample. So even with a draped wirebond, it is advisable to fabricate a navigation

system, such as alignment markers. Additionally, the wirebond is typically a 25 µm-diameter

Al wire, compared to a 2 µm to 4 µm by 100 nm fabricated wire. As the wire is draped over

the surface, is partially occludes the excitation and collection, necessitating one to work with

NV centers around 50 µm away from the wire, assuming the wire is very close to or sitting

at the surface. One can image NVs within a diffraction limited spot of a fabricated wire, in

contrast. These difference lead to a large difference in the achievable drive fields.

Assuming the resistance of both wires is far from 50Ω, in both cases the wires carry a

load current IL set by the signal power, such that the circulating magnetic field magnitude

some distance r from the wire is

Bϕ(r) =
µ0IL
2πr

, (D.1)

assuming r << ℓ, the wire length. Even though both wires carry the same current, geometric

constraints mean the drive field will be at least 50 times smaller with the thicker draped

wirebond. This corresponds to a 2500 times larger power, 34 dB, to achieve the same drive

rate. In this sense, a fabricated device is much more efficient. However, devices restrict the

sample region that can be addressed with microwaves to the regions around devices, whereas

draped wirebonds can access the entire length of a sample along the wire axis, and can

be rebonded with little overhead. Thus from an experimental process perspective, draped

wirebonds can be more practical.
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Signal Ground
Wirebond

substrate

(a)

(b)

Figure D.2: Draped wirebond. (a) Schematic of how the wirebond is draped over a
sample, bonded from signal pin to ground plane. (b) An example of a draped wirebond over
a diamond chip sitting on a circuit board. Note that the wire and diamond surface are both
in focus, indicating the wire is very close to the sample.
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APPENDIX E

MICROWAVE NOTES

At modest magnetic fields (≲ 1000G) Larmor frequencies of typical solid state spin qubits

are in the GHz regime, which is great. It is simple to purchase a microwave signal generator

that operates in this regime and plug coaxial cables into it. It is generally necessary to

design some interface between microwaves travelling in a coaxial cable and a sample of

interest, and it is thus helpful to understand the physics underlying microwaves. We begin

by deriving formulae for propagating electrical signals, following David Pozar’s textbook

Microwave Engineering1 and then consider a few situations relevant to devices used for NV

measurements, and the general concept of impedance matching.

E.1 Transmission line wave equation

Consider a transmission line, such as a coaxial cable with ground and signal planes/pins

separated by a dielectric medium, on the order of or longer than a signal wavelength λ.

There is a time- and space-dependent current i(z, t) traveling along the signal pin and a

voltage v(z, t) between signal and ground. The transmission line in general possesses some

series resistance R and series inductance L along the line, and shunt capacitance C and shunt

conductance G (dielectric loss) between signal and ground. Over some differential length ∆z

of line we can then relate the voltage, current, and circuit parameters as

v(z, t)−R∆zi(z, t)− L∆z
∂i(z, t)

∂t
− v(z +∆z, t) = 0 (E.1)

i(z, t)−G∆zv(z +∆z, t)− C∆z
∂v(z +∆z, t)

∂t
− i(z +∆z, t) = 0 (E.2)

1. The best textbook, first introduced to me by Prof. Greg Fuchs, whose response to a question about
microwaves was “just read Pozar.” The book Electromagnetic Waves by David Staelin (it’s Davids all the
way down, folks) also deserves a mention, alongside a shoutout to Dr. Lisa Wickham who taught me AEP
3560 at Cornell.
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which in the limit of ∆z → 0 become

∂v(z, t)

∂z
= −Ri(z, t)− L

∂i(z,t)
∂t (E.3)

∂i(z, t)

∂z
= −Gv(z, t)− C

∂v(z,t)
∂t (E.4)

in the time-domain, so-called telegrapher equations. We now assume that voltage and current

can be written as phasors

v(z, t) = V (z)ejωt (E.5)

I(z, t) = I(z)ejωt (E.6)

where V (z) and I(z) are in general complex numbers with different phases, and we follow

Pozar with j =
√
−1 but not the electrical engineering convention to add a negative sign in

the exponent. Plugging these into Eqs. (E.3) and (E.4) and taking another spatial derivative

we find

d2V (z)

dz2
− γ2V (z) = 0 (E.7)

d2I(z)

dz2
− γ2I(z) = 0 (E.8)

γ =
√
(R + jωL)(G+ jωC). (E.9)

These are simply wave equations for voltage and current, more natural quantities in our

quasi-circuit model than electric and magnetic fields, although they function the same way

and can be directly relate to one another. Our standard traveling wave solutions give us

forward and backward propagating waves along the line of

V (z) = V+e
−γz + V−eγz (E.10)

I(z) = I+e
−γz + I−eγz. (E.11)
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The telegraph equations allow us to rewrite the current as

I(z) =

√
G+ jωC

R + jωL

(
V+e

−γz − V−eγz
)

(E.12)

where critically a minus sign shows up relating the backward propagating wave amplitudes,

such that we can define a characteristic impedance

Z0 =

√
R + jωL

G+ jωC
=
V+
I+

= −V−
I−

. (E.13)

In a lossless line, which we tend to consider, G = 0, R = 0, and we reduce to Z0 =
√
L/C

with γ = jω
√
LC.

E.2 Load impedance

The wavelengths of microwaves are fairly long. At 1GHz the freespace wavelength is 12 ft.

This is much larger than typical diamond chips and it is unlikely that any device fabricated

on the diamond will act as a microwave device versus a load resistance with a quasistatic

current (∂E∂t = 0, cf. Maxwell’s Equations) and thus no radiation. I.e., it will be a wire, not

an antenna. We will first treat these devices as lumped element load impedances at the end

of microwave transmission lines and then look at the case of a draped wirebond that may

look worryingly long.

E.2.1 Reflection coefficient

We saw above that voltage and current waves travel along the transmission line with a

characteristic impedance Z0. In general we have forward and backward propagating waves.

Recall that impedance is pretty general, and the relationship V/I = Z should always hold

locally. Where the transmission line terminates in a load impedance ZL at z = 0 the
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relationship

ZL =
V (0)

I(0)
=

V++V−
I++I−

=
V++V−
V+−V−

Z0 (E.14)

holds. We are specifically interested here in what affect ZL has on the amplitude of the

backward travelling wave, so we solve for V−

V− =
ZL − Z0
ZL + Z0

V+. (E.15)

We see that the load impedance indeed modifies the relative wave amplitudes, and can even

impart a phase if ZL is complex. We then define the reflection coefficient

Γ =
ZL − Z0
ZL + Z0

. (E.16)

Γ imposes a fixed relation between the two wave directions, leading to standing waves on

the transmission line. By enforcing continuity of voltage we can also define a transmission

coefficient

T = 1− Γ =
2ZL

ZL + Z0
. (E.17)

We note here for completeness that this formulation of electrodynamics is more general and

can be applied to any kind of electromagnetic wave propagating in a medium with permit-

tivity ϵ and permeability µ such that the characteristic impedance of the medium relating

the amplitudes of electric and magnetic fields is η =
√
µ/ϵ. Reflection and transmission

coefficients can be similarly defined, where η0 =
√
µ0/ϵ0 ≈ 377Ω. This, however, is not at

the moment relevant. The treatment here assumes a transverse electric and magnetic (TEM)

mode where the electric and magnetic field vectors are both orthogonal to the direction of

propagation, the simplest case of electromagnetic wave propagation.
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E.2.2 Real impedance

With our relatively short wires it should be sufficient to consider them to only have a resis-

tance such that ZL = RL. Furthermore, coaxial cables almost always have Z0 = 50Ω, such

that we can write

Γ =
RL − 50Ω

RL + 50Ω
. (E.18)

We now consider three common cases

RL =


≈ 0, ≪ Z0

Z0

≈ ∞, ≫ Z0

(E.19)

where the first may occur with a draped wirebond or a very thick fabricated device (or a

short circuit–be careful) and the third may occur with an open circuit. The middle case

is a special case termed impedance matching. For RL ≪ Z0, Eq. (E.18) tells us that the

reflection coefficient is Γ = −1. So what are the implications of this? The amplitude of the

reflected voltage wave is V− = −V+, such that at z = 0 the standing voltage wave amplitude

is actually 0. This is intuitive; when we short the signal to ground, Maxwell’s equations

require the voltage to be continuous, and ground is defined as 0 voltage. However, since

I− = −V−/Z0, the reflected current amplitude is I− = I+ such that the total current is

actually at a maximum value of 2V+/Z0. Stepping back for a minute, this is actually great.

We conventionally drive spin qubits with magnetic fields sourced from currents. Maximum

current passing through the load wire means maximum driving efficiency; we don’t even

want a voltage. An effective short between signal and ground is thus a great way to drive

spins if one does not mind all of the microwave power being reflected into the signal path

(check your amplifier specs or use a circulator!), motivating the draped wirebond in App. D.

Curiously, in the case of infinite load resistance, ΓR = 1, such that the all of the power
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is also reflected at the load. However, now V− = V+, I− = −I+, and there is maximum

voltage across and no current passing through the load. This is a bad way to magnetically

drive spins, although it has accidentally lead to some neat physics with electrical drives [8].

Finite length load

It is possible that some devices may occupy an intermediate length-scale where we cannot

assume that their length ℓ≪ λ but also they are not quite waveguides. Consider a long wire-

bond that effectively shorts signal to ground. Then, as above, I(0) = 2V+/Z0 = 2I+. Prop-

agating backwards along the wire the standing wave amplitude is I(z) = 2I+ cos(2πz/λ).

This motivates remaining in a quasistatic regime where z < λ/8 [248], or else one risks

hitting nodes along the wire at z = (2n + 1)λ/4 where I(z) = 0 and there is no net drive

current. For reference, λ/8 = 12.5mm at 3GHz.

E.2.3 Impedance matching

When the load impedance is equal to the characteristic impedance, ZL = Z0, we find Γ = 0

and T = 1. Nothing is reflected. If the load is a termination, then it follows that all

power is transmitted into the load. In general, this is an incredibly important condition to

consider when connecting multiple microwave components. Most components you can buy

are 50Ω, and thus when you plug a cable into a device, signal will pass between them with

no reflection.

However, if one is designing a waveguide, for example, to deliver microwaves to a sample,

one must design the impedance of the waveguide as well as consider the impedance that

terminates the waveguide in order to deliver said microwaves. Essentially, the waveguide

termination, as we saw above, sets a fixed relationship between voltage and current along

the entire device. We can generalize the reflection coefficient to some distance ℓ from the
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end of the device as

Γ(ℓ) =
V+e

−jβℓ

V−ejβℓ
= Γe−2jβℓ, (E.20)

where β = ω
√
LC for the lossless line considered here, and Γ is at the end of the device

as defined in Eq/ (E.16). It is then natural to ask what the resulting impedance is at the

beginning of this device by evaluating the resulting standing waves:

V (−ℓ) = V+

(
ejβℓ + Γe−jβℓ

)
(E.21)

I(−ℓ) = V+

(
ejβℓ − Γe−jβℓ

)
(E.22)

such that the input impedance is

Zin =
V (−ℓ)
I(−ℓ)

= Z0
ZL + jZ0 tan βℓ

Z0 + jZL tan βℓ
. (E.23)

Let us assume for simplicity that the waveguide is designed to have a characteristic

impedance of 50Ω (not a given) because the designer referenced the textbook Coplanar

Waveguide Circuits, Components, and Systems by Rainee N. Simons [242]. If the waveguide

terminates in another 50Ω component, such as another coaxial cable and a 50Ω termination

cap, then Zin = Z0 = 50Ω and we do not have to worry. However, if the end of the waveguide

is shorted, Zin = jZ0 tan βℓ, and if it is open, Zin = −jZ0 cot βℓ. The input impedance is

then a function of how many wavelengths long the waveguide is. For experiments where the

magnetic field, and thus the NV resonance frequency, may be changing, this is bad news.

But in general, this just adds another design constraint.
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APPENDIX F

DO WE BREATHE MORE NITROGEN THAN WE PUT IN

OUR DIAMONDS?

I was asked by a friend as to what contains more nitrogen: a human breath, or the diamonds

we study. For the sake of science communication, I present my results here.

Ref. 141 finds that a single human breath is about 490mL. Standard atmospheric air is

78% N2, such that a breath contains 380mL nitrogen. Using PV = NkBT , we find around

2× 1022 atoms of nitrogen in a single breath.

We study diamonds that are generally 1mm3 to 2mm3 (1 µL to 2 µL, or 0.0175 carat to

0.035 carat). We grow diamond with a very low background nitrogen content of < 5 ppb (see

Ch. 4), giving us around 2 × 1012 atoms of nitrogen in a given sample. This is 10 billion

times less than a breath. This is an extreme limit, though.

Consider a 1 carat diamond with a natural abundance of 100 ppm nitrogen [9]. This

diamond contains 1× 1018 atoms of nitrogen, only 20,000 times less than a breath.
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