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ABSTRACT

The first part of this thesis studied GSp4-type abelian varieties and the corresponding com-

patible systems of GSp4 representations. Techniques in [BCGP21] are applied to show that

one can prove the potential modularity of these abelian varieties and compatible systems

under some conditions that guarantee a sufficient amount of good primes. Then, in the

second part, we use the potential modularity theorems to prove that K3 surfaces over totally

real field F with Picard rank ≥ 17 are potentially modular.
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CHAPTER 1

BACKGROUNDS

1.1 Introduction and Notations

Let F be a totally real field and X/F be an algebraic K3 surface of geometric Picard rank

ρ. Then the singular cohomology H = H2(X,Q) with its Hodge structure splits as a direct

sum

H = T ⊕NS(X)

consisting of the Néron-Severi group with rational coefficients and the transcendental part

T of rank 22 − ρ ( [Mor84]), and associated to it is a corresponding compatible system of

Galois representations

ρp : GF → GO22−ρ(Qp)

Let ζX(s) denote the Hasse-Weil zeta function of X, then there is an equality

1

ζX(s)
= ζ(s)ζ(s− 2)L(T, s− 1)L(NS, s− 1)

The Hasse-Weil conjecture states that ζX(s) should extend to a meromorphic function for

all s ∈ C and satisfy a functional equation. It is known that this holds for the L-function

of the Artin motive NS(X) due to Artin-Braeur theorem [Bra47]. So the conjecture would

follow from the conjecture that the motive T (or the associated compatible system {ρp}) is

potentially automorphic. That is, there is a finite extension F ′/F such that the restrictions

of the motive become automorphic. The main theorem of this thesis proves that this is true

when the geometric Picard rank is larger than or equal to 17.

Theorem 1.1. Suppose that the geometric Picard rank ofX is ρ ≥ 17. Then T is potentially

modular, and the Hasse-Weil conjecture holds for X.
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Example 1.2. Suppose that A/Q is an abelian variety. Then associated to A is a K3

surface X known as the Kummer surface of A; it is a resolution of A/[−1], and it has

geometric Picard rank ≥ 17 (more precisely, 16 + dimNS(A)). The main theorem in this

case then follows from the main theorem of [BCGP21].

One key point is that are many other examples of X with Picard rank ≥ 17 which are not

of this form. Such X do however turn out to be associated with either abelian surfaces A or

fake abelian surfaces A. Moreover, the varieties A in question need not be defined over F , but

rather are defined over some finite Galois extensions E/F and such that A is isogenous to Aσ

for any σ ∈ Gal(E/F ). These are analogues of the so-called Q-curves for GL2 considered by

Ribet [Rib04]. The next step is to prove that all such varieties (with motivic descent data

to F ) are potentially modular.

In the rest of this chapter, we will introduce the formal definitions of compatible systems

of Galois representations, especially the GSp4 representations which will be our main interest

of study in this paper.

In chapter 2 we introduce the possible abelian varieties that give compatible systems

of GSp4 representations. We call these abelian varieties of GSp4-type, and we say that a

compatible system is geometric if it comes from such an abelian variety.

In chapter 3 we discuss the large image property of geometric compatible systems of GSp4

representations and proved that under the assumption of the large image property there are

an ample source of good primes l such that the abelian variety satisfies some ordinariness

condition for at least one prime λ above l.

In chapter 4 we apply the Serre-Tate theory to construct a desired lift of Ā/Fl for some

good prime l, and in chapter 6 we first use the theorem of Moret-Bailly to construct an

abelian variety A together with two primes p and q such that A[p] coincides with that of

the original abelian variety A, and A[q] is isomorphic to an induced representation. This

process requires smoothness and connectedness of the moduli space of the GSp4 type abelian
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varieties, which is resolved in chapter 5 through a construction of Shimura varieties. Finally,

we apply the modularity lifting theorems to show the potential modularity of the constructed

abelian variety A, and hence the original abelian variety A and the compatible system RA.

In chapter 7, we apply the motivic lifting results from [Pat19] to construct a compatible

system R of Galois representations from the transcendental motive T , and we show that

potential modularity theorem proved in chapter 6 applies to R, hence proving the main

result.

Note that our arguments do not apply to general compatible families of dimension 5

with Hodge-Tate weights [−1, 0, 0, 0, 1], even those assumed to arise from geometry. Not

only do we need purity, but we also use the fact that the Tate conjecture is known for K3

surfaces [And96]. More generally, we exploit the existence of the Kuga-Satake construction in

order to find motivic lifts of the representations ρp to GSp4(Q̄p). The required ingredients

we use can all be found in [Pat19], though we also prove that the representations ρp are

absolutely irreducible in general which requires more work but also strongly relies on the

assumption of large Picard rank.

To prove potential modularity (§6), we naturally use the main modularity lifting the-

orem of [BCGP21, §7] as well as the methods of [BCGP21, §9]. One notable difference

with [BCGP21] is that for general GSp4 type abelian varieties we need to assume the base

field is Q rather than a totally real field, or at least the abelian variety should have descent

data to Q. In particular, we do not prove potential modularity for all abelian varieties A

of GSp4-type, that is, abelian varieties A such that End(A)⊗Q contains a totally real field K

with dim(A) = 2[K : Q] (§2). The reason that we are not able to do this is that we are

unable to prove that such abelian varieties admit enough primes p splitting completely in F

such that A is "distinguished ordinary", that is, primes p for which A is ordinary at all v | p

and the unit crystalline Frobenius eigenvalues are distinct modulo p (§3). As a result, more

assumptions, including the ordinariness assumption (Definition 1.8), and the large image
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assumption (Definition 3.2), need to be added to apply the potential modularity theorems.

This paper will mainly use the notations as in [BCGP21]: For a perfect field K, we let

OK be the ring of integers, K̄ denote an algebraic closure of K and GK the absolute Galois

group Gal(K̄/K). For each prime p not equal to the characteristic of K, we let ϵp denote

the p-adic cyclotomic character and ϵ̄p its reduction modulo p, and will commonly omit the

p and write as ϵ and ϵ̄ for simplicity.

Let K/Q be a finite extension. If v is a finite place of K we write Kv for the corresponding

local field and K(v) for its residue field, and Frobv := FrobKv
be the geometric Frobenius

element in GKv
. If v is a real place of K, then we let [cv] denote the conjugacy class in GK

consisting of complex conjugations associated to v.

1.2 Compatible System of GSp4 representations

Definition 1.3. Let F be a number field. By a rank n weakly compatible system of l-adic

representations R of GF defined over M we mean a 5-tuple

(
M,S,Qv(X), {ρλ}, {Hτ}

)
where

(1) M is a number field;

(2) S is a finite set of primes of F ;

(3) For each prime v /∈ S of F , Qv(X) is a monic degree n polynomial in M [X];

(4) For each prime λ | l of M , we have

ρλ : GF → GLn(M̄λ)
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a continuous semi-simple representation such that

• if v /∈ S and v ∤ l is a prime of F then ρλ is unramified at v and ρλ(Frobv) has

characteristic polynomial Qv(X);

• if v | l, then ρλ|GFv
is de Rham, and in the case v /∈ S crystalline;

(5) For τ : F ↪→ M̄ , Hτ is a multiset of n integers such that for any M̄ ↪→ M̄λ over M we

have HTτ (ρλ) = Hτ .

We will call R strictly compatible if for each finite place v of F there is a Weil–Deligne

representation WDv(R) of the Weil group WFv
over M̄ such that for each place λ of M and

every M -linear embedding ι : M̄ ↪→ M̄λ we have

ιWDv(R) ∼= WD(ρλ|GFv
)F−ss.

We say that the compatible system R is pure of weight w ∈ Z if for a density one set of

primes v of F with residue character p, each root of α of Qv(X) in M̄ satisfies |ι(α)|2 = pw

for all embeddings ι : M̄ ↪→ C.

In particular, we say R is a (weakly) compatible system of GSp4 representation if n = 4

and ρλ : GF → GSp4(K̄λ), here

GSp4(K) = {g ∈ GL4(K) : gJgt = ν(g)J},

where ν(g) : GSp4 → Gm is the similitude character, and

J =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


.
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Compatible systems of representations naturally arise from abelian varieties, as we have

the following result:

Proposition 1.4. (Theorem 2.8.1, [BCGP21]) If A is an abelian variety over a number field

F , then for each 0 ≤ i ≤ 2 dimX, the l-adic cohomology groups Hi(AF̄ , Q̄l) form a strictly

compatible system which is pure of weight i and which is defined over Q.

Definition 1.5. If A/F is an abelian variety, then we may write the Galois representation

ρA,l as H1(AF̄ , Q̄l) (which is also the dual of the Tate module TlA(F̄ )), and RA to be the

compatible system {ρA,l}.

The next lemma shows that if one representation ρ comes from H1(A, Q̄p) for one p, then

we can extend it to a compatible system of representations that all comes from the same

abelian variety.

Lemma 1.6. Let ρ denote an absolutely irreducible representation of GF . Suppose that ρ

occurs inside H1(A, Q̄p) for some abelian variety A/F , and assuming that the Tate con-

jecture holds for A. Then ρ extends to a weakly compatible system of irreducible Galois

representations (M,S, {Qv(X)}, {ρλ}, H) for some number field M such that ρλ occurs in-

side H1(A, Q̄l) for all λ | l.

Proof. We may assume that A/F is simple. Let D = End0(A) = End(A)⊗Z Q, and let M

denote the center of D. For any prime l, the group H1(A,Ql) is a module over M ⊗ Ql =∏
λ|lMλ, and we may correspondingly write H1(A,Ql) =

∏
λ|lWλ. The Galois represen-

tations ρλ already give rise to a weakly compatible family of representations of dimen-

sion 2 dim(A)/[M : Q] with coefficients in M (see [Rib04, Thm 2.1.2] and [Shi67, §11.10]).

On the other hand, by the Tate conjecture, we know that

D ⊗Q Ql = EndGF
H1(A,Ql),

6



and hence D⊗M Mλ = EndGF
(Wλ). It follows that, over the algebraic closure M̄λ, we may

write the extension of scalars of Wλ as V n
λ for some (absolutely) irreducible representation Vλ

of dimension 2 dim(A)/(n[M : Q]) with n2 = [D : M ]. Here notice that an extension of

scalars is only necessary for the finitely many primes in M which D/M is ramified. Since

the representations V n
λ form the compatible system associated to Wλ, it follows that the Vλ

themselves form a compatible system also with coefficients in some fixed finite extension of

M .

There is another way to get compatible systems of GSp4 representations, which is to

consider the induction of compatible systems of GL2 representations. Let F/E be a quadratic

extension and r : ρF → GL(V ) = GL2(K) is a 2-dimensional representation. Choose σ to

be an element in GE \GF , and suppose it satisfies that det r = det rσ. Then det r extends

to two possible characters χ1 and χ2 on GE . Let

ρ = Ind
GE
GF

r : GE → GL(V ⊕ σV ) = GL4(K),

and notice that ∧2ρ is the sum of χ1, χ2 and some 4-dimensional representation. Therefore

under some suitable basis ρ gives simplectic representations ρi : GE → GSp4(K) with

similitude character χi for i = 1 or 2.

With our choice of J , the image will land in the subgroup



∗ 0 0 ∗

0 ∗ ∗ 0

0 ∗ ∗ 0

∗ 0 0 ∗


∩GSp4(K).

In this paper we are only interested in the case where det r = det rσ = ϵ−1 is the inverse

cyclotomic character of GF , and we take Ind
GE
GF

r to be the symplectic representation that
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has similitude character the inverse cyclotomic character of GE . For example, if C/F is an

elliptic curve and r be the representation that corresponds to the dual of the Tate module

of C, then Ind
GE
GF

r would correspond to the dual of the Tate module of the abelian variety

ResFE C, with the symplectic structure coming from the Weil pairing.

In order to derive potential automorphy results we need the following ordinary properties

of the compatible system.

Definition 1.7. For a set of primes S of Q, we say S is of strongly positive density if for

any finite extension F/Q, the set of primes over S in F has positive density.

Definition 1.8. For a prime p in Q that totally splits in F and M , for a prime λ | p in M ,

we say that R is λ-ordinary if the representations ρλ|GFv
are ordinary mod λ for all v | p in

F , and p-ordinary if it is λ-ordinary for all λ | p in M .

We say R is strongly positive ordinary if it is p-ordinary for a strongly positive set of

primes in Q.

Given λ-ordinariness, for a prime λ | p in M , R is called λ-distinguished ordinary if for

any v | p in F , Qv(X) has distinct unit roots mod λ.

8



CHAPTER 2

ABELIAN VARIETIES OF GSp4-TYPE

In this chapter we introduce a list of abelian varieties that give compatible systems of GSp4

representations. Let F be a totally real Galois extension of Q and let A be a simple principally

polarized abelian variety over F of dimension g with no CM. We write End0(A) = End(A)⊗

Q.

2.1 Real GSp4 Type Abelian Varieties

Definition 2.1. We say that the abelian variety A is of real GSp4 type if K = End0(A) is

a totally real field of degree d, with g = 2d.

Let l be a prime in Q that totally splits in F and suppose l = λ1 · · ·λd also totally splits

in K. Then A[l] ∼=
⊕d

i=1A[λi] as OK -modules and thus we have the Tate modules

Tl(A) = lim
←−

A[ln] =
d⊕

i=1

Tλi(A)

also decomposes into d components. Also, the l-divisible groups A[l∞], defined as the induc-

tive system (A[ln], ιn)n, where the exact sequence holds:

0 A[ln] A[ln+1] A[ln+1]
ιn [ln]

,

also decomposes into the "λi-divible" groups defined in the same way. That is,

A[l∞] ∼=
d⊕

i=1

A[λ∞i ].
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For such primes l, let λ | l be a prime over l in K, then we can write

ρ∨A,λ : GF → GL(TλA)

to be the Galois representation coming from the Tate module, and

ρ̄∨A,λ : GF → GL(A[λ])

be the residual representation that comes from A[λ]. Note that ρ∨A,λ and ρ̄∨A,λ are the dual

of ρA,λ and ρ̄A,λ respectively, the latter being the Galois representation and the residual

representation coming from VA,λ = H1(A,Kλ).

The following propositions are a series of well-known results of l-adic Galois representa-

tions that come from geometry:

Proposition 2.2. When A is of real GSp4 type, we have

ρA,λ : GF → GSp4(Kλ)

and

ρ̄A,λ : GF → GSp4(K(λ))
∼= GSp4(Fl).

Let p be a prime that totally splits in F with v | p a prime above p in F , we have the

following well-known property for representations ρA,λ|GFv
.

Proposition 2.3. If the abelian variety A is of GSp4-type, then the characteristic polynomial

of Frobenius ρA,λ(Frobv) is of form

Qv(X) = X4 − avX3 + bvX
2 − pχ(Frobv)avX + p2χ2(Frobv)

is independent from the choice of l and λ and the coefficients therefore are in OK . Here χ
10



is a totally even finite order character hence ζ := χ(Frobv) is a root of unity with uniformly

bounded order. The roots of the polynomials are of form

α, pζα−1, β, pζβ−1,

and are all Weil numbers, which are numbers π such that for any embedding ψ : Q̄ ↪→ C,

|ψ(π)| = √p.

By an argument in [BCGP21] Theorem 8.5.2, since χ is finite order and totally even

we can find a totally real extension F ′/F such that χ|GF ′
∼= ψ2 and we can untwist χ

by considering the compatible system ρA,λ|GF ′ ⊗ (ψ−1). Therefore, from now on (in the

following two cases) we may assume that χ is trivial and the compatible system of GSp4

representations will have similitude ϵ−1.

Proposition 2.4. Abelian variety A of real GSp4-type gives a weakly compatible system of

GSp4 representations of GF pure of weight 1, still denoted by RA, over K.

2.2 Fake GSp4 Type Abelian Varieties

Now we introduce a type of abelian varieties that also give compatible systems of GSp4

representations of GF .

Definition 2.5. We say that the abelian variety A is of fake GSp4 type if D = End0(A) is

a quarternion algebra over a totally real field K of degree d, with g = 4d.

Proposition 2.6. Abelian variety A of fake GSp4 type gives a weakly compatible system

RA of GSp4 representations of GF defined over K and is pure of weight 1.

Proof. For a prime l in Q that totally splits in K and F and λ | l in K that is unramified

in D, we have D ⊗Kλ
∼= M2(Kλ) and the characteristic polynomial of Frobv for v | p in F

11



would thus have form

Qv(X) = QA,v(X)2,

where

QA,v(X) = X4 − avX3 + bvX
2 − pavX + p2

with coefficients in K. Also, if we let ρλ : GFv
→ GL8(Kλ) to be the the Galois representa-

tion that comes from WA,λ = H1(A,Kλ) (which is also the dual of λ-adic Tate module TλA),

then the image of ρλ lies in
(
GSp4(Kλ)

)2. In other words, we can write WA,λ = VA,λ⊕VA,λ

and ρλ = ρA,λ⊕ ρA,λ for some ρA,λ : GF → GSp4(Kv), such that the characteristic polyno-

mial of Frobv with respect to ρA,λ is QA,v(X).

For primes that are ramified in D, then after a quadratic extension K ′/K such that the

quarternion algebra D splits, or D ⊗K ′ ∼= M2(K
′), we can still have ρλ = ρA,λ ⊕ ρA,λ for

some ρA,λ : GF → GSp4(K
′
λ). Thus the characteristic polynomial of Frobenius would also

have form

Qv(X) = QA,v(X)2,

where

QA,v(X) = X4 − avX3 + bvX
2 − pavX + p2,

and with coefficients of QA,v in the integer ring of an at most some quadratic extension of

K (since the coefficients of Qv(X) are in K). Thus the characteristic polynomial of Frobv

with respect to ρA,λ is QA,v(X).

Now that we have definition of ρA,λ on all v’s we are now able to show that ρA,λ’s form a

compatible system of GSp4 representations. This comes from the fact that ρλ’s form a rank

8 compatible system of representations and ρλ ∼= ρA,λ ⊕ ρA,λ.

12



2.3 Abelian Varieties with Descent Data

In [Rib04], Ribet introduced the Q-curves, which are elliptic curves A/F such that Aσ is

isogenous to A for all σ ∈ Gal(F/Q). He then proved that all Q-curves are modular. Here

we introduce an analogous definition for GSp4 type abelian varieties.

Definition 2.7. Let F/E/Q be two Galois extensions of Q. A (real or fake) GSp4 type

abelian variety A over F is said to be with descent data to E if Aσ is F -isogenous to A for

all σ ∈ Gal(F/E).

Proposition 2.8. If A is with descent data to E, then A gives a compatible system of

twisted GSp4 representations of GE . That is, there exists a compatible system R =

(K,S, {ρλ}, {Qv}, {Hτ}) of GSp4 representations ρλ : GE → GSp4(K̄λ) such that

ρλ|GF
= χ⊗ ρA,λ,

where χ : GE → K̄×λ a totally even finite order character and ρA,λ is the l-adic representation

of that comes from VA,λ ⊆ H1(A,Kλ). The coefficients will not necessarily be in K, but

will be in some fixed finite extension of K.

Proof. Since Aσ is isogenous to A, we have isomorphisms denoted by ψσ : VAσ,λ → VA,λ

for σ ∈ Gal(F/E) (and thus well defined for each σ ∈ GE) and we may first define the map

ρ̃λ : GE → GSp(VA,λ) as

ρ̃λ(σ) = ψσ ◦ σ.

Note that the map isn’t necessarily a homomorphism from GE to GSp(VA,λ), but the com-

position

ρ̃λ(σ)ρ̃λ(τ)ρ̃
−1
λ (στ)

acts on VA,λ as ψσψστ ψ−1στ , which can also be viewed as some K̄×-valued function c(ρ, τ) on

GE ×GE . It is easy to check that c is a locally constant 2-cocycle on GE with value in K̄×.
13



This means that there exists a well defined representation of

Pρ̄λ : GE → PGSp4(Kλ).

Now by a theorem of Tate [Pat19], we have H2(GE , K̄
×) being trivial and this means that we

can find a lift ρλ : GE → GSp4(K̄λ) such that its restriction to GF is a twist of the original

representation ρA,λ by a finite order character. In other words, we can write ρλ|GF
= χ⊗ρA,λ

such that χ is a finite order character.

In addition, for a prime v in E that totally splits in F , since the Frobenii of primes above

v are GE-conjugates of the other, we can deduce that after the twist χ, the characteristic

polynomial of Frobvi should be the same, thus the coefficients avi and bvi are only dependent

on v and we may write the characteristic polynomials as

Qv(X) = X4 − avX3 + bvX
2 − pavX + p2

(here p is the residue characteristic) and will have coefficients in some fixed finite extension

of K.

Now we may define the compatible system of GSp4 representations of GF over M to

be geometric, if there exists an abelian variety A/H over some Galois extension H/F with

descent data to F such that either

• A is of real GSp4 type with End0(A) =M and H1(A,Mλ) = VA,λ gives the compatible

system, or

• A is of fake GSp4 type with End0(A) = D for some quaternion algebra D/M and

H1(A,Mλ) = VA,λ ⊕ VA,λ for sufficiently large prime l and λ | l, and such that VA,λ

gives the compatible system.

14



Now that we have formulated the correspondence between geometric compatible sys-

tems of GSp4 representations and GSp4-type abelian varieties, we can define distinguished

ordinariness for abelian varieties as the following:

Definition 2.9. Let A be a GSp4-type abelian variety. For a prime p in Q that totally splits

in F and M , let p be a prime above p in M , we say that A is p-ordinary or p-ordinary if the

corresponding GSp4 representations ρA,p are p-ordinary or p-ordinary.

We say A is strongly positive ordinary if it is p-ordinary for a strongly positive set of

primes in Q.

Given p-ordinariness, for a prime p | p in M , we say that A is p-distinguished ordinary if

Qv(X) has distinct unit roots mod p for all v | p.

An immediate proposition of the above definition of distinguished ordinariness is the

following:

Proposition 2.10. If A is p-ordinary then the corresponding compatible system RA is

p-ordinary, and if the characteristic polynomial of Frobv on ρA,λ is denoted by

Qv(x) = x4 − avx3 + bvx
2 − pavx+ p2,

then p-ordinariness is equivalent to p ∤ bv for all primes v | p in F .

If A is p-distinguished ordinary, then further we have p ∤ a2v − 4bv for all v | p.

15



CHAPTER 3

LARGE IMAGE PROPERTY

In this chapter we derive certain large image properties of the compatible system of Galois

representations associated to abelian varieties of GSp4-type, and show that we can find

enough good primes under certain large image hypotheses.

3.1 The Large Image Hypothesis

We first derive an analogous result to [BGK03, Theorem 3.5]. Notice that the arguments

there don’t apply directly in our case of real or fake GSp4 type abelian varieties since

dimA/[K : Q] = 2 or 4 are even numbers.

Lemma 3.1. (cf. [BGK03] Lemma 3.2) SupposeR is a geometric compatible system of GSp4

representations of GF over M . Then for sufficiently large prime l that completely splits in

F and M and λ | l the λ-adic monodromy group has Lie algebra sp4 or so4 = sl2 ⊕ sl2.

Proof. Throughout the following proof l should be chosen as completely split in M and F .

Recall that the λ-adic monodromy group G
alg
l is the algebraic closure of ρA,l ⊗ Ql in the

group GL4/Ql, and we write (G
alg
l )′ to be the derived subgroup.

If we write gss = Lie(G
alg
l )′, and

VA,l = H1(A,Ql) =
⊕
λ|l

VA,λ

where VA,λ = VA,l ⊗Kλ, and let V̄A,λ = VA,λ ⊗ Q̄l. By the relation

G
alg
l ⊂

∏
λ|l

GSp(VA,λ)
∼=
∏
λ|l

GSp4/Ql

16



we have

gss ⊂
⊕
λ|l

sp4(VA,λ)

Projecting onto the λ component we see that the image of gss ⊗ Q̄l in sp4(V̄A,λ) is

semisimple, and we can write it as a decomposition

V̄A,λ = E(ω1)⊗Q̄l
· · · ⊗Q̄l

E(ωr),

where E(ωi) for all 1 ≤ i ≤ r are the irreducible (orthogonal or symplectic) Lie algebra

modules of the highest weight ωi corresponding to simple Lie algebras gi which are summands

of the image

Im
(
gss ⊗ Q̄l → sp4(V̄A,λ)

)
=

r⊕
i=1

gi.

By [ [Pin98], Corollary 5.11] all simple factors of gss⊗Q̄l are of classical type A, B, C or D

and the weights ωi are minimal. Since dimQ̄l
V̄A,λ = 4, there are only two possible choices of

decomposition: Either the product E(ω1)⊗Q̄l
· · ·⊗Q̄l

E(ωr) consists of a single space E(ω1)

and the g1-action on E(ω1) is of type C symplectic representation, thus
⊕r

i=1 gi = sp4, or

it consists of two spaces E(ω1)⊗Q̄l
E(ω2) each of dimension 2, with gi acts as sl2 on E(ωi),

thus
⊕r

i=1 gi = sl2 ⊕ sl2 ∼= so4.

If A is of fake GSp4 type, then for sufficiently large prime l, since the representation

WA,l = H1(A,Ql) can be decomposed into two identical components WA,l = VA,l ⊕ VA,l

and thus the original Galois representation ρl can be decomposed as ρl ∼= ρA,l ⊕ ρA,l for

some GL2g-representation ρA,l, now the monodromy group G
alg
l is the algebraic closure of

ρA,l ⊗Ql and and (G
alg
l )′ be the derived subgroup. Also we have

VA,λ = VA,l ⊗K Kλ

17



thus

VA,l =
⊕
λ|l

VA,λ

By the exact same argument above on the semisimple part of the Lie algebra in the

projection to sp4(VA,λ) we have the λ-adic monodromy group has Lie algebra sp4, or so4.

Definition 3.2. We say that a geometric compatible system R of GSp4 representations (or

the corresponding real or fake GSp4 type abelian variety) has large image property if for

sufficiently large l that completely splits in F and M and any λ | l in M we have the Lie

algebra of the λ-adic monodromy group being sp4.

Proposition 3.3. Given large image property, for sufficiently large l, the image of the

residual representation ρ̄A,λ at least contains Sp4(Fl).

Proof. Note that Lemma 3.1 proved that the h = 2 case in Lemma 3.2 in [BGK03] holds

when {ρA,λ} has large image property, and the same argument from Lemma 3.2-Lemma 3.5

implies that the h = 2 case of Lemma 3.5 also holds for real or fake abelian varieties of GSp4

type that has large image property.

So if we consider the residual representation

ρ̄A,l =
∏
λ|l

ρ̄A,λ,

then for sufficiently large l we have

[
ρ̄A,l(GF ), ρ̄A,l(GF )

]
=
∏
λ|l

Sp4(Fl),

or

[ρ̄A,λ(GF ), ρ̄A,λ(GF )] = Sp4(Fl).

18



This means that for sufficiently large l and λ | l, The residual representations

ρ̄A,λ : GF → GSp4(Fl)

will have image at least containing Sp4(Fl).

We now define a residual representation to be vast and tidy in the sense of [BCGP21]

Definition 7.5.6 and Definition 7.5.11. We also have the following lemma that shows the

implication from large image property to vast and tidiness for GSp4 residual representations:

Lemma 3.4. (cf. [BCGP21] Lemma 7.5.15) For p > 3, if ρ̄ : GF → GSp4(Fp) that has

image at least containing Sp4 and with similitude character ϵ̄−1, then ρ̄ is vast and tidy.

Proof. For vastness notice that we still have the image of ρ̄|G
F (ζNp )

equal to Sp4(Fp) for all

N ∈ Z+ (here ζp is the p-th root of unity). The rest follows from the arguments in [BCGP21]

Lemma 7.5.15.

For p > 3, tidiness follows from the fact that the center of the image of ρ̄ (since the

similitude character is ϵ̄−1) will have order p− 1 and [BCGP21] Lemma 7.5.12.

Apart from this lemma we will also need the large image property for certain induced

representation, which we will use in chapter 7. Namely, we have:

Lemma 3.5. ( [BCGP21] Lemma 7.5.22) Suppose that p > 3, F1/F is a quadratic extension

such that F1 is unramified at p, and r̄ : GF1
→ GL2(Fp) restricted to GF1(ζp)

has image

SL2(Fp). Choose σ ∈ GF \GF1
, and assume that the determinants det r̄σ = det r̄ are equal

to ϵ̄−1 but the projective images Proj r̄σ ≇ Proj r̄ are distinct. Let ρ̄ := Ind
GF
GF1

r̄ : GF →

GSp4(Fp), then ρ̄ is vast and tidy.
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3.2 Distinguished Ordinary Primes

Lemma 3.6. (cf. Lemma 4.2 [CGH19]) For a GSp4-type abelian variety A/F that satisfies

the large image property, given the characteristic polynomial of Frobv for a prime v with

residue characteristic p,

Qv(X) = X4 − avX3 + bvX
2 − pζavX + p2ζ2

with coefficients in K and ζ a root of unity with uniformly bounded order, then there is no

linear relation between p, a2v, bv that can hold for a set of primes in F with positive density.

Proof. Note that p, a2v and bv are respectively the trace of Frobv on Kλ(1), VA,λ⊗VA,λ, and

∧2VA,λ. If there were such a relation, we would have a representation W built out of copies

of the above three spaces such that Frobv has zero trace for a set of primes with positive

density.

From Lemma 3.1, we know that for sufficiently large l and λ | l, the image of the residual

representation ρ̄A,λ contains at least Sp4(K(λ)), so the image of GF on GL(VA,λ) is at least

a subset of GSp4(OKλ
) with positive measure. Thus a corresponding relation must hold

for elements in GSp4 on a set of positive measure. Namely, if we write the eigenvalue of

an element in GSp4(OKλ
) as α, β, pζβ−1, pζα−1, then there would exist a linear relation

between

p, (α + β + pζα−1 + pζβ−1)2, and

2pζ + αβ + pζα−1β + pζαβ−1 + p2ζ2α−1β−1

that holds on a set with positive measure, hence for all α, β, p, which is not possible.

Definition 3.7. We define p a good prime in Q if it satisfies the following properties:

20



(1) p totally splits in K and F , and unramified in D if applicable.

(2) There exists a prime p | p of K such that A is p-distinguished ordinary.

(3) For all v | p in F , The residual representations ρ̄A,p : GFv
→ GSp4(Fp) at least contain

Sp4(Fp).

Lemma 3.8. Let A/F be an abelian surface with End(A) = Z, or a fake abelian surface with

End(A) an order in a quaternion algebra D over Q. If A satisfies the large image property,

then the good primes have relative density one in the set of primes that splits totally in F .

Proof. This is essentially Lemma 9.2.5 of [BCGP21].

For primes p that splits totally in F and v | p in F , since each root π of the characteristic

polynomial satisfies that for any embedding ψ : Q̄ ↪→ C, |ψ(π)| = √p, we have |ψ(av)| ≤ 4
√
p

and |ψ(bv)− 2p| ≤ 4p for every ψ, thus |ψ(a2v − 4bv)| ≤ 40p for every ψ.

Now Lemma 3.6 shows that for each integer c such that |c| ≤ 6, the relation bv = cp can

only hold for a set of primes with zero density. This means that the primes such that p ∤ bv,

or the ordinary primes, will have relative density one.

Similarly, for each integer |c| ≤ 40, the relation a2v − 4bv = cp can only hold for a set of

primes with zero density. This means that the distinguished primes will also have relative

density one and this proves the lemma.

The previous lemma suggests that there are a sufficient amount of good primes for abelian

varieties of GSp4 type when the coefficient field K = Q. For general K, we have the following

result:

Lemma 3.9. Let A/F be a strongly positive ordinary abelian variety of GSp4 type with

descent data to Q and has large image property, then the good primes have positive relative

density in the set of primes that splits totally in K and F .
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Proof. Lemma 3.1 shows that primes p that satisfy (3) have relative density one, and thus

the primes that satisfy both (3) and p-ordinariness have positive relative density. From now

on we assume that p splits completely in both F and the coefficient field K. Again we use

the fact from the previous lemma that |ψ(a2v − 4bv)| ≤ 40p for every ψ.

Recall that p-distinguished ordinariness is equivalent to that p ∤ a2v−4bv for all v | p. But

since A is with descent data to Q, for σ ∈ Gal(F/Q) we have aσv = χ(σ)av and bσv = χ(σ)2bv.

Thus for sufficiently large p, p | a2v − 4bv is equivalent to p | (aσv )2 − 4bσv .

If A is not p-distinguished ordinary for any p, then for each p, p | a2v − 4bv for at least

one v | p thus for all v | p due to the above deduction. Therefore for all v | p, a2v − 4bv

must be divisible by every prime above p, which means that p | a2v − 4bv. There are only

finite number of choices for 1
p(a

2
v − 4bv) since they are algebraic integers in some fixed finite

extension of K. And by Lemma 3.6, for each choice such v has zero density. This means

that primes satisfying (2) has positive relative density in the set of primes that totally splits

in K.

Suppose A/F is a strongly positive ordinary abelian variety of GSp4 type with descent

data to Q, then we can choose p and q be two good primes and p, q be two primes inK above p

and q respectively such that A is both p- and q- distinguished ordinary. Furthermore, we can

choose q to be such that it does not divide the discriminant of the characteristic polynomial

of Frobv for all v | p in F .

Thus Frobv will have distinct unit roots, denoted by α, β, and are also distinct mod q.

Thus the representation ρA,q|GFv
and the corresponding residual representation will be of

form

ρA,q|GFv
=



λα 0 0 0

0 λβ 0 0

0 0 ϵ−1λ−1β 0

0 0 0 ϵ−1λ−1α


,

22



ρ̄A,q|GFv
=



λᾱ 0 0 0

0 λβ̄ 0 0

0 0 ϵ̄−1λ−1
β̄

0

0 0 0 ϵ̄−1λ−1ᾱ


,

where λα (λβ , etc.) is the character that sends Frobv to α (β, etc.).
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CHAPTER 4

THE SERRE-TATE CANONICAL LIFT

Let p be a prime that totally splits in K and p | p be a prime above p in K. In this chapter’s

first part, we derive the analogous results of Serre-Tate canonical lifts for p-distinguished

ordinary principally polarized abelian varieties A over a finite field k of characteristic p.

We first recall the original Serre-Tate theorem.

Theorem 4.1. (Serre-Tate) Let k be a finite field of characteristic p > 0, and R be a ring

with a nilpotent ideal I ⊂ R satisfying R/I ∼= k. We define A (R) be the category of abelian

schemes over Spec(R), and D(R) be the category of triples (Ak, G, E), where

• Ak is an abelian scheme over Spec(k);

• G is a p-divisible group over Spec(R);

• E is an isomorphism Ak[p
∞]

∼−→ G×R k.

Then the functor Φ : A → D , where

A 7→ (A×R k,A[p∞], natural E),

is an equivalence of categories.

Now assume that the abelian variety Ā/k has good ordinary reduction at p. Let R be

an artinian local ring and mR be the maximal ideal and R/mR = k. Then there exists an

integer n such that mn
R = (0). By the original Serre-Tate theorem, the set of liftings of A to

R is equivalent to the liftings of the p-divisible groups

A[p∞] =
⊕
v|p

A[v∞] = A[p∞]⊕ A[p̄∞],
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where

A[p̄∞] =
⊕

v|p, v ̸=p

A[v∞].

We now want to consider the lift of A[p∞] to A[p∞] in R. Since A is p-ordinary, we have

a canonical product structure of p-divisible group

A[p∞] = Â× TpA⊗ (Kp/OKp
),

where TpA⊗ (Kp/OKp
) is the étale quotient, and the toroidal formal group Â satisfies

Â ∼= HomOKp
(TpA

∨, Ĝm). (4.1)

The identification of (4.1) is given by the following steps:

(i) We have the Weil pairings

epn : A[pn]× A∨[pn]→ µpn .

(ii) Restricting the pairing to Â gives the pairing

epn : Â[pn]× A∨[pn]→ µpn .

This gives an isomorphism

Â[pn] ∼= HomOK
(A∨[pn], µpn).

(iii) Taking inverse limit gives the isomorphism

Â ∼= HomOKp
(TpA

∨, Ĝm).
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For a lift A/R of A/k, the p-divisible part of A also has a canonical structure of extension

0 −→ Â −→ A[p∞] −→ TpA⊗ (Kp/OKp
) −→ 0

The isomorphism of k-groups (4.1) extends to isomorphism of R-groups

Â ∼= HomOKp
(TpA

∨, Ĝm)

via the pairing

EA : Â × TpA∨ → Ĝm

that canonically extends from the Weil pairing.

Lemma 4.2. Let p be a prime that totally splits in the number fields K and F . If an

abelian variety A/F is p-distinguished ordinary with an OK or OD (which is an order of a

quaternion algebra over K) action, then for any v | p in F there exists a lift Ã/Fv which is

also p-distinguished ordinary and with OK or OD action, and satisfies that

ρ̄
Ã,p
|GFv

=



χ̄1 0 0 0

0 χ̄2 0 0

0 0 ϵ̄−1χ̄−12 0

0 0 0 ϵ̄−1χ̄−11


= (ρ̄A,p|GFv

)ss,

a diagonal matrix.

Proof. Consider the reduction modulo v of A, denoted by the p-distinguished ordinary

abelian variety Ā over the residue field F(v) of Fv (which is isomorphic to Fp). Let W (F(v))

be the ring of Witt vectors over F(v), and take a series of Artinian local rings Rn =

W (F(v))/(v
n), and let An be the lift of Ā on Rn such that:
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(i) An[p̄
∞] = A|W (F(v))/(v

n)[p̄
∞]; That is, A fixes everything else but the p-divisible part

in A[p∞].

(ii) The lift An[p
∞] is the unique split lift of Ā[p∞], that is, the extension

0 −→ Ân −→ An[p
∞] −→ TpA⊗ (Kp/OKp

) −→ 0

is split.

If we take the limit of the Rn’s we obtain a lift

A = lim
−→
An

on W (F(v)) that also has the canonical product structure

A = Â × TpA⊗ (Kp/OKp
).

Since W (F(v)) is isomorphic to OFv
, we may as well think of A as defined over Fv.

Now consider any endomorphism f : A→ A that gives an endomorphism f̄ on Ā hence

an endomorphism on the p-divisible group Ā[p∞].

For each n, since An does not change the p̄-divisible part, the action lifts to an endomor-

phism on An[p̄
∞], and the split extension structure also canonically gives an endomorphism

on the p-divisible part An[p
∞] that lifts f̄ |Ā[p∞]. This means that we can canonically lift f̄

to an endomorphism on the whole p-divisible group, thus defining a morphism

fn : (Ā, G, E)→ (Ā, G, E)

on D(Rn). By Serre-Tate Theorem (considering the inverse functor of Φ), this gives an

endomorphism fn ∈ End(An). Passing to limits we know that any endomorphism of A gets
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deformed to an endomorphism on A thus we still have an OK or OD action on A.

In particular, we have the Frobenius morphism Frobv on Ā lifts and since the action of

it on the dual of TpĀ is of form

(
χ̄1 0

0 χ̄2

)
due to p-distinguished ordinariness, the Galois

representation associated to the lift A would be of form

ρ̄A,p
∣∣
GFv

∼=



χ̄1 0 0 0

0 χ̄2 0 0

0 0 ϵ̄−1χ̄−12 0

0 0 0 ϵ̄−1χ̄−11


,

a diagonal matrix due to the product structure on A[p∞].

We call the Ã we choose in Lemma 4.2 the p-canonical lift of Ā to Fv.

Corollary 4.3. For a strongly positive ordinary abelian variety A/F of GSp4 type with

descent data to Q and satisfies the large image property, there exist good primes p and q of

A with p | p and q | q primes in K such that A is p- and q-distinguished ordinary, and for

each w | q in F we can find a lift Ãw/Fw of Ā/F(w) such that both ρ̄
Ãw,q
|GFv

(for all v | p

in F ) and ρ̄
Ãw,q
|GFw

are diagonal matrices.

Proof. We choose the good primes p and q in Q with p | p and q | q in K according to the

arguments in the end of §3.2, and we know that ρ̄A,q|GFv
is of form



λᾱ 0 0 0

0 λβ̄ 0 0

0 0 ϵ̄−1λ−1
β̄

0

0 0 0 ϵ̄−1λ−1ᾱ


,
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a diagonal matrix.

Now if we take Ãw/Fw to be the q-canonical lift of Ā/F(w), then it does not change the

Galois representation on GFv
. (in other words, it does not change the action of Frobv acting

on the q-divisible group Ãw[q
∞].) Thus ρ̄

Ãw,q
|GFv

= ρ̄A,q|GFv
would also be diagonal.

On the other hand, since Ā/F(w) is q-distinguished ordinary with an OK or OD action,

by Lemma 4.2 the q-canonical lift Ãw satisfies that

ρ̄
Ãw,q
|GFw

=
(
ρ̄A,q|GFw

)ss
=



χ̄1 0 0 0

0 χ̄2 0 0

0 0 ϵ̄−1χ̄−12 0

0 0 0 ϵ̄−1χ̄−11


,

is also a diagonal matrix.
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CHAPTER 5

MODULI SPACES OF GSp4 TYPE ABELIAN VARIETIES

The goal of this chapter is to prove the following statement:

Theorem 5.1. Given a type (real or fake) and a totally real number field F of degree d,

and a quarternion algebra B/F if the type is fake, suppose p, q are two primes of F above p

and q respectively that split completely in F , then if we consider the moduli space Y/E of

all triples (A, ιp, ιq) consisting of

• An abelian variety A of dimension g over E of GSp4 type with End0(A) = F (if real,

so g = 2d) or B (if fake, so g = 4d);

• A full level-pq structure, in the sense of

– An isomorphism of group schemes ιp : A[p]→ (Z/pZ)g × µgp;

– An isomorphism of group schemes ιq : A[q]→ (Z/qZ)g × µgq ;

then Y is smooth and geometrically connected.

5.1 Construction of the Shimura Variety

We will first construct the Shimura variety corresponding to GSp4 type abelian varieties

following the arguments of [KR00]. Now in either cases (real or fake) we let B be an

indefinite quaternion algebra over a totally real field F with canonical involution ι and a

maximal order OB such that Oι
B = OB , and let C =M2(B) with the involution x′ = (xι)t.

Let {σ1, · · · , σd} be the set of real embeddings F ↪→ R.

Let V = {x ∈ C : x′ = x, tr(x) = 0} be a five dimensional vector space over F

with a quadratic form q defined by x2 = q(x) · 12 of signature (3,2). Then the natural
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homomorphism C(V ) → C extending the inclusion V ↪→ C to its Clifford algebra gives an

isomorphism C+(V ) ∼= C. We may let

G = ResF/Q
(
GSpin(V )

)
be the restriction of scalars from F to Q of the general Spin group

GSpin(V ) = {g ∈ C× : gg′ = ν(g)}

of V , so

G(Q) ∼= GSpin(3, 2, F ),

and G(R) = G(Q) ⊗ R acts on V d(R), which is d copies of V (R), via the real embeddings

σi on the i-th component. We define G(Q)+ to be the connected component of elements in

G(Q) such that ν(g) is a totally positive element in F×.

Let D be the set of z = (z1, · · · zd) such that zi = (zi1, zi2) represents a negative 2-plane

in the i-th copy of V (R) in V d(R) with zi1 and zi2 be a properly oriented basis such that

the restriction of the quadratic form q from V (R) to zi has matrix −12 for the basis zi1, zi2.

Then

Jz := (zi1zi2)
d
i=1 ∈ C

d(R)

lies in G(R) and defines a morphism on R:

hz : S→ G, hz(i) = Jz

since J ′z = −Jz and JzJ
′
z = 1. Thus D can be viewed as the space of conjugacy classes of

such maps under the action of the group G(R) by

Jgz = gJzg
−1.
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Choose an element τ ∈ B× such that τ ι = −τ, τ2 = −D(B) (where D(B) is the

discriminant of B) and τOBτ
−1 = OB , then the map x 7→ x∗ = τxιτ−1 gives a positive

involution on OB . If we write OC = M2(OB) and W = Od
C , viewed as left and right C

(thus, G(Q))-module, and let α = diag(τ, τ) ∈ OC , then α′ = −α and the map

x 7→ x∗ := αx′α−1

is a positive involution on OC .

We may define the alternating form

⟨·, ·⟩ : W ×W → Q

by

⟨x, y⟩ =
d∑

i=1

tr(y′iα
−1xi).

Then for c ∈ C, we have

⟨cx, y⟩ =
d∑

i=1

tr(y′iα
−1(cxi)) =

d∑
i=1

tr(y′iα
−1cαα−1xi) = ⟨x, c∗y⟩

and

⟨xc, y⟩ =
d∑

i=1

tr(y′iα
−1xic) =

d∑
i=1

tr(cy′iα
−1xi) = ⟨x, yc′⟩.

In particular,

⟨xg, yg⟩ = ν(g)⟨x, y⟩,

for g ∈ G and especially,

⟨xJz, yJz⟩ = ⟨x, y⟩.

This means that (W (R), ⟨·, ·⟩) is a skew-Hermitian (OC(R), ∗)-module with G being
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the algebraic group of symplectic F -linear automorphisms up to a similitude factor ν ∈

ResF/QGm ⊗Q R.

Now for a compact open subgroup K ⊂ G(A∞), consider the functor MK that associates

to a locally noetherian scheme S over Q the set of quadruples (A, ι, λ, η̄), such that

• A is a abelian scheme over S up to isogeny;

• ι : C → End0(A) is a homomorphism that satisfies a determinant condition

det
(
ι(c) | Lie(A)

)
= N2(c),

where N is the reduced norm on C. It also induces a homomorphism from C to the

endomorphism of the dual of A denoted by ι∨ : C → End0(A∨).

• λ is a Q-class of polarizations on A that is compatible to the action by C, that is,

λ ◦ ι(c) = ι∨(c) ◦ λ.

• η̄ is a K-class of C ⊗ A∞-linear isomorphisms

η : VA∞(A)→ W (A∞) = W (Ẑ)⊗Q.

that respect the symplectic forms on both sides up to a scalar multiple in A∞. Here

VA∞(A) =
∏
l

Tl(A)⊗Q ∼= H1(A,A∞)

is the adelic Tate module of A.

Note that this abelian scheme A will have dimension 8d over S.
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Proposition 5.2. (cf. [KR00, Prop. 1.1] ) For K neat (in the sense of [Lan13]) this moduli

problem is representable by a smooth quasi-projective scheme MK over Q and

MK(C) ∼= ShK(G,D)(C),

where ShK(G,D) is the Shimura variety defined by the PEL datum (G,D).

Proof. The representability is proved in §5 of [Kot92] (our moduli problem is in case C so

no further discussion is required), and we now show the correspondence of complex points

following [KR00].

For each i ∈ {1, 2, · · · d} and thus an inclusion σi : F ↪→ R, We can find τi = D(B)−1/2τ ∈

B×(R) so τ2 = −1, and let αi = D(B)−1/2α. Choose an element βi ∈ B×(R) such that

βiτ = −τβi, βι = −β and normalized such that β2 = 1.

Then

(
0 βi

−βi 0

)
and

(
0 τiβi

−τiβi 0

)
forms a standard basis of a negative 2-plane on

the i-th component of V d(R), denoted by zi, and

 0 βi

−βi 0


 0 τiβi

−τiβi 0

 =

τi 0

0 τi

 = αi

.

So we write z0 = (zi)
d
i=1 and Jz0 = (αi)

d
i=1. Then if h = hz0 be the map such that

h(i) = Jz0 then

⟨xJz0 , y⟩ = −⟨x, yJz0⟩ = ⟨yJz0 , x⟩,

and

⟨xJz0 , x⟩ =
d∑

i=1

tr
(
x′iα
−1xiαi

)
= D(B)−1/2

d∑
i=1

tr(x∗i xi) > 0.
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Moreover, for g ∈ G,

⟨xJgz0 , x⟩ = ⟨xgJz0g
−1, x⟩ = ν(g)−1⟨xgJz0 , xg⟩.

This means that if we write D+ be the connected component of D containing z0 then for

z ∈ D+, z = gz0 for some g ∈ G+ and the pairing ⟨xJz, y⟩ is symmetric and positive definite.

Now for each z ∈ D+ we obtain a principally polarized abelian variety Az be the 8d-

dimensional complex structure (W (R), Jz) modulo the lattice W (Z), and with principle

polarization λ induced by the pairing ⟨·, ·⟩. It carries an action of OC by left multiplication

(thus the homomorphism ι : C → End0(Az)) and such that it is compatible with the

polarization λ. Also, we have the isomorphism of the finite adelic Tate module

VA∞(Az) ∼= W (Ẑ)⊗Q ∼= W (A∞).

We can correspond the pair (z, gK) ∈ D+ × G(A∞)/K to the quadruple (Az, ι, λ, η̄)

where ι and λ are defined as above and η̄ be the K-class of isomorphism induced by right

multiplication by g on W (A∞), that is, the composition

VA∞(Az) ∼= W (A∞)
·g−→ W (A∞).

For γ ∈ G(Q)+, we can establish an isomorphism between quadruples corresponding to pairs

(z, gK) and (γz, γgK) via the element in Hom(Az, Aγz)⊗Z Q defined upon W (R) by right

multiplication by γ−1, and thus we have the correspondence

MK(C) ∼= G(Q)+\D+ ×G(A∞)/K ∼= G(Q)\D ×G(A∞)/K.
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5.2 Proof of Theorem 5.1

Now we are able to describe the moduli problem in Theorem 5.1. If B is of fake type (an

indefinite quaternion algebra that is division), then choose an idempotent element e ∈ OC

and eA gives an abelian variety of dimension 4d and has action by OB . Conversely for a

fake GSp4 type abelian variety A, A × A gives an abelian variety that has OC = M2(OB)

action.

On the other hand, if B is of real type (so B ∼= M2(F )), then we may choose idempotent

elements e in OC and e′ in OB and e′eA gives an abelian variety of dimension 2d and has

action by OF . Conversely for a real GSp4 type abelian variety A, A × A gives an ablian

variety that has OB =M2(OF ) action, and the product of four copies of A gives an abelian

variety that has OC action.

Therefore the moduli problems in Theorem 5.1 can be identified with the moduli problem

described in §5.1 over E with a certain full level-pq structure. Smoothness easily follows from

the construction of the Shimura variety, and in order to prove Theorem 5.1 we need to check

connectedness.

Notice that the algebraic group G ∼= ResF/QGSp4 is connected, we can deduce that

(G,D) is a PEL Shimura datum of type C ( [Mil05]), and connectedness now follows from

the arguments in §8 of [Kot92], and the Hasse principle of G.
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CHAPTER 6

POTENTIAL MODULARITY OF GSp4 TYPE ABELIAN

VARIETIES

6.1 The Theorem of Moret-Bailly

In this chapter, we first introduce the well-known theorem of Moret-Bailly,

Theorem 6.1. (Proposition 3.1.1, [BLGGT14]) Let K0/K/E be number fields with K0/K

and K/E Galois. Suppose S be a finite set of places of E and SK be the set of places

of K above S. For v ∈ SK , let L′v/Kv be a finite Galois extension with L′σv = σL′v for

σ ∈ GE . Suppose also that T/K is a smooth geometrically connected variety and that for

each v ∈ SK we are given a non-empty, Gal(L′v/Kv)-invariant, open subset Ωv ⊂ T (L′v).

Then there exists a finite Galois extension L/K and a point P ∈ T (L) such that

• L/E is Galois;

• L/K is linearly disjoint from K0/K;

• if v ∈ SK and w a prime of L above v then Lw/Kv is isomorphic to L′v/Kv and

P ∈ Ωv ⊂ T (L′v) ∼= T (Lw).

The following proposition is a consequence of the theorem of Moret-Bailly, which is

originally proved in [Cal12] and generalized in [BCGP21].

Lemma 6.2. Let G be a finite group, E/Q a finite Galois extension, and S a set of primes

of E. Let E′/E, E0/E be finite extensions, linearly disjoint from each other.

Let S′ be the set of places in E′ over S. For each finite prime v ∈ S′, let H ′v/E′v be a

finite Galois extension with a fixed inclusion ϕv : Gal(H ′v/E
′
v) → G with image Dv. For

each real prime v ∈ S′, let cv ∈ G be an element of order dividing 2.
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Then there exists a number field K/E and a finite Galois extension L/K such that if

K ′ = KE′ and L′ = LE′, then

(1) There is an isomorphism Gal(L/K)→ G;

(2) L/E is linearly disjoint from E0E′/E;

(3) All places of S′ splits completely in K ′;

(4) For all local places w above v ∈ S′, the local extension L′w/K
′
w is equal to H ′v/E

′
v,

with a commutative diagram

Gal(L′w/K
′
w) Dw

Gal(H ′v/E
′
v) Dv

ϕv

(5) For all real places w of K ′ above v ∈ S′, complex conjugation cw ∈ G is conjugate to

cv.

Proof. This is Proposition 9.1.12 of [BCGP21].

We are going to use this lemma to show that in our construction in Lemma 4.3, the

diagonal representations ρ̄
Ãw,q

restricted to GFw
and all GFv

’s are potentially induced rep-

resentations.

Lemma 6.3. (cf. Lemma 9.2.7 [BCGP21]) Let A/F be a strongly positive ordinary GSp4-

type abelian variety with descent data to Q and satisfying the large image property, and let

p, q be good primes chosen as in Lemma 4.3. Fix a real quadratic extension F ′/F such that

p and q split completely and that it is linearly disjoint from the kernel of the action GF on

A[p] and A[q]. Then we can find a totally real Galois extension F1/F of F and a quadratic

extension F2/F1 := F1F
′/F1, and a representation r̄ : GF2

→ GL2(Fq), such that
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(1) p, q splits totally in F1;

(2) F1/F is linearly disjoint from F ′/F and the kernel of the action GQ on A[p] and A[q];

(3) det r̄ = ϵ̄−1.

(4) r̄(GF2
) = GL2(Fq), and the projective image of r̄ is not equal to its conjugate under

Gal(F2/F1).

(5) Let ρ̄ = Ind
GF1
GF2

r̄ with similitude character ϵ̄−1, then it is vast and tidy, and satisfies

(i) For all primes w | q of F and w1 | w of F1,

ρ̄|GF1,w1

∼= ρ̄
Ãw,q
|GFw

=
(
ρ̄A,q|GFw

)ss
,

(ii) For all primes v | p of F and v1 | v of F1,

ρ̄|GF1,v1

∼= ρ̄
Ãw,q
|GFv

= ρ̄A,q|GFv
.

Proof. Fix a prime ℓ ∤ pq in F . We are going to apply Lemma 6.2 with G = GL2(Fq), and

with E = F , E0/F be the extension containing the kernels of ρ̄A,v and ρ̄A,w in GF . Let

E′/F be any quadratic extension linearly disjoint from E0/F . Let S = {ℓ, p, q,∞}. For

infinite places v, we let cv to have eigenvalues 1 and −1.

For prime v | p in F , if we write v = v1v2 in E′, then we can let ϕv1 to be the representa-

tion corresponding to

(
λᾱ 0

0 ϵ̄−1λ−1ᾱ

)
and ϕv2 corresponding to

(
λβ̄ 0

0 ϵ̄−1λ−1
β̄

)
. Similarly,

we can write w = w1w2 in E′ for w | q and let ϕw1 correspond to

(
χ̄1 0

0 ϵ̄−1χ̄−11

)
and ϕw2

correspond to

(
χ̄2 0

0 ϵ̄−1χ̄−12

)
.
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Finally for ℓ = l1l2 in E′, we let ϕl1 and ϕl2 to be such that they both have determinant

ϵ̄−1, ϕl1 be unramified while Projϕl2 be ramified.

Given the above setup, we can find a totally real extension F1 (corresponding to the field

K as in Lemma 6.2), and F2 = F ′F1 be the quadratic extension that satisfies (1) and (2),

together with a representation r̄ : GF1
→ GL2(Fq) that is vast and tidy due to Lemma 3.5.

It satisfies (5) due to the construction in Lemma 4.3. (4) is satisfied because of the behavior

of r̄ on primes above ℓ. By further replacing F by a totally real quadratic extension (in

which p, q, ℓ totally split) we can assume that the character ϵ̄ det(r̄) has a square root in F1.

Replacing r̄ by its twist by the square root of ϵ̄ det(r̄) gives a representation that satisfies

(3).

Theorem 6.4. Given a non-CM abelian variety A/F of GSp4-type with descent data to Q

that is strongly positive ordinary and has large image property. Let the totally real field K

be End0(A) if A is of real type and the base field of the quarternion algebra D = End0(A)

if A is of fake type. Then we can find primes p, q totally split in F,K (and unramified in D

if A is of fake type) and an abelian variety A/F ′, where F ′ is a totally real extension of F

in which p, q totally split, such that there exists p | p, q | q in K such that A[p] ∼= A[p], and

A[q] is induced as representations.

Proof. We choose the good primes p and q, together with p | p and q | q in K. For w | q in

F , we can find a q-canonical lifting Ãw as in Lemma 4.3. Then from Lemma 6.3 there exists

a totally real extension F1/F such that Ãw[q] gives the dual of the induced representation

ρ̄ = Ind
GF1
GF2

r̄.

Now let Y/F1 to be the moduli space of all triples (B, ιp, ιq) consisting of GSp4-type

abelian varieties B with endomorphism ring either OK or OD, together with symplectic

isomorphisms
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• ιp : B[p]→ A[p]|GF1
;

• ιq : B[q]→ ρ̄∨ if B is of real type, or ιq : B[q]→ (ρ̄∨)2 if B is of fake type,

as in §5. For finite primes λ, let Ωλ = Y ord(F1,λ) ⊂ Y (F1,λ) be the subspace of those that

has good ordinary reduction. Then for every prime λ | pq, Ωλ ̸= ∅, since we can choose

A itself for λ | p, and Ãw for λ | w | q due to the construction in Lemma 4.3. For primes

λ | ∞, Y (F1,λ) is also nonempty because of the assumption det r̄ = ϵ̄−1.

By the theorem of Moret-Bailly, we apply Theorem 6.1 wth E = F,K = F1, K0 be the

compositum of F2 and the kernels of GF on A[p], Ãw[q], the extensions L′v/Kv be trivial,

and T/K = Y/F1 be the smooth geometrically connected variety, together with the open

subsets Ωv’s.

Thus we can find a totally real field F ′/F , linearly disjoint from F2/F1 and the kernels of

GF on A[p], Ãw[q], such that p, q splits completely, and Y (F ′)∩
⋂
λ|pq Ωλ is non-empty. This

means that there exists an abelian variety A/F ′ such that A has good ordinary reduction

mod every prime above p, q, and such that A[p] ∼= A[p], and A[q] is induced as Galois

representation.

Remark 6.5. Note that when K is Q, which is the case where A is an abelian surface or fake

abelian surface, then we no longer need the descent data and the ordinariness assumption

to find the good primes p and q due to Theorem 3.8.

In these cases, we have p = p and q = q, so the q-canonical lifts Ãw become the usual

canonical lift of Ā/F(w) to Fw, and the above Lemma 6.3 becomes Lemma 9.2.7 in [BCGP21].

Theorem 6.4 holds due to the smoothess and connectedness on moduli spaces of abelian

surfaces or fake abelian surfaces with full level-pq structure.
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6.2 Potential Modularity Theorems

First we recall the Galois representations associated to automorphic GSp4 representations.

Theorem 6.6. ( [BCGP21], Theorem 2.7.1-2) Suppose that F is a totally real field and let

π be a cuspidal automorphic representation of GSp4(AF ) of parallel weight 2 and has central

character | · |2.

Fix a prime p and a prime λ | p in K, then there is a continuous semisimple representation

ρπ,λ : GF → GSp4(K̄λ) satisfying the following properties:

(1) The similitude character is ν(ρπ,λ) = ϵ−1.

(2) For each prime v of F , we have

WD(ρπ,λ|GFv
)ss ∼= recλ(πv ⊗ |ν|−3/2)ss,

where the recλ map that sends admissible irreducible complex representations of GSp4(Fv)

to a Frobenius-semisimple complex Weil–Deligne representations of the Weil groupWFv

given by the local Langlands correspondence [GT11]. (Here we are fixing an embedding

of coefficients K̄λ → C.)

(3) If v | p, then ρπ,λ|GFv
is de Rham with Hodge-Tate weights [0, 0, 1, 1]. Furthermore, if

π is λ-ordinary, then

ρπ,λ|GFv
=



λαv ∗ ∗ ∗

0 λβv ∗ ∗

0 0 ϵ−1λ−1βv
∗

0 0 0 ϵ−1λ−1αv

.



(4) If ρπ,λ is irreducible, then for each finite prime v of F , ρπ,λ|GFv
is pure.
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Definition 6.7. Let F be a totally real number field. We say that a representation ρ : GF →

GSp4(K̄λ) is modular if there is a cuspidal automorphic representation π of GSp4(AF ) of

parallel weight 2 and central character | · |2 that satisfies ρ ∼= ρπ,λ. We say that ρ is

potentially modular if there is a finite Galois extension F ′/F of totally real fields such that

ρ|GF ′ is modular.

For a compatible system of GSp4 representationsR, we say thatR is modular (potentially

modular) if ρλ is modular for some (equivalently, for any) λ.

If A/F is an abelian variety of GSp4 type, then we say A is modular (potentially mod-

ular) if RA is modular, in other words, ρA,λ is modular (potentially modular) for some

(equivalently, for any) λ.

Theorem 6.8. ( [BCGP21], Theorem 8.4.1) Suppose that p ≥ 3 splits completely in K and

the totally real field F/Q. Fix p | p a prime in K. Suppose that ρ : GF → GSp4(K̄p)

satisfies:

(1) The similitude character of ρ is ϵ−1;

(2) The representation ρ̄ is vast and tidy;

(3) For all v | p, ρ̄|GFv
is conjugate to a representation of form



λ̄αv 0 ∗ ∗

0 λ̄βv ∗ ∗

0 0 ϵ̄−1λ̄−1βv
0

0 0 0 ϵ̄−1λ̄−1αv


where αv ̸= βv;

(4) There exists π of parallel weight 2 and central character | · |2, which is ordinary at all

v | p, such that ρ̄π,p ∼= ρ̄.
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(5) For all finite places p of F , ρ|GFv
and ρπ,p|GFv

are pure.

Then ρ is modular. More precisely, there exists an ordinary automorphic representation

π′ of GSp4(AF ) of parallel weight 2 and central character | · |2 that satisfies ρπ′,p ∼= ρ.

For twisted Galois representations, we also have the following theorem.

Theorem 6.9. ( [BCGP21], Theorem 8.5.2) Suppose that p ≥ 3 splits completely in K and

the totally real field F/Q. Fix p | p a prime in K. Suppose that ρ : GF → GSp4(K̄p)

satisfies:

(1) The similitude character of ρ is ϵ−1χ, where χ is a totally even finite order character,

and is unramified at all places above p;

(2) The representation ρ̄ is vast and tidy;

(3) For all v | p, ρ̄|GFv
is conjugate to a representation of form



λ̄αv 0 ∗ ∗

0 λ̄βv ∗ ∗

0 0 χ̄ϵ̄−1λ̄−1βv
0

0 0 0 χ̄ϵ̄−1λ̄−1αv


where αv ̸= βv;

(4) There exists π of parallel weight 2 and central character | · |2, which is a twist of an

ordinary character at all v | p, such that ρ̄π,p ∼= ρ̄.

(5) For all finite places v of F , ρ|GFv
and ρπ,p|GFv

are pure.

Then ρ is modular. More precisely, there exists a twisted ordinary automorphic rep-

resentation π′ of GSp4(AF ) of parallel weight 2 and central character | · |2 that satisfies

ρπ′,p
∼= ρ.
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In §6, we showed that we can find an abelian variety A such that ρ̄A,q is induced from

GL2 representations. The next theorem shows that such GL2 representations are potentially

modular.

Theorem 6.10. ( [BCGP21] Theorem 9.1.11) Let F1/F be a finite extension of totally real

fields and let p, q > 2 be distinct primes that splits completely in K and F1. Fix a prime

q | q in K. Let r̄ : GF1
→ GL2(K̄(q))

∼= GL2(F̄q) be a representation with determinant ϵ̄−1.

Suppose that for each place w | q of F1, r̄|F1,w
is of form

(
λ̄αw 0

0 ϵ̄−1λ̄−1αw

)
, and suppose

that r̄ is unramified at all places above p.

Then r is potentially modular as GL2 representation. More precisely, let F 0/F be a finite

extension, then there is a finite Galois extension F ′/F of totally real fields in which p and

q split completely and which is linearly disjoint from F1F
0/F , and a q-ordinary cuspidal

automorphic representation Π of GL2(AF1F ′) of weight 0 and trivial central character which

is unramified at all places dividing pq and satisfies ρ̄Π,q
∼= r̄|GF1F

′ .

Theorem 6.11. Let R be a geometric compatible system of GSp4 representation satisfying

the large image property and falls in one of the two cases:

• R is defined over GQ and is strongly positive ordinary; In other words, R comes from a

non-CM strongly positive ordinary abelian variety A/F of GSp4-type that has descent

data to Q and satisfies the large image property;

• R has coefficients in Q for a set of primes of density one, which includes the case where

R comes from an abelian surface A with endomorphism ring Z or a fake abelian surface

with endomorphism ring OD for a quaternion algebra D/Q.

Then R (hence A) is potentially modular.

Proof. We first apply Lemma 3.9 in the first case and Lemma 3.8 in the second case to get

the good primes p and q. Following the notations of Theorem 6.4, we know that there exists
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an abelian variety A/F ′ over a totally real extension field F ′ in which p, q splits completely,

such that A[p] ∼= A[p], and A[q] ∼= ρ̄∨ or (ρ̄∨)2, where ρ̄ = Ind
GF
GF ′

r̄ is induced with r̄

satisfying properties in Lemma 6.3.

By Theorem 6.10, after replacing F ′ with a further totally real extension, we can maintain

all assumptions in Theorem 6.4 and there exists a q-ordinary automorphic representation Π of

GL2(AF1F ′) of weight 0 and trivial central character and is unramified at all places dividing

pq that satisfies ρ̄Π,q
∼= r̄|GF1F

′ .

It follows from [Rob01, Thm. 8.6] that there is an automorphic representation π of

GSp4(AF ′) of parallel weight 2 and trivial central character whose transfer to GL4(AF ′) is

the automorphic induction of Π⊗|·|. So ρπ,q ∼= Ind
GF ′
GF1F

′
ρΠ,q, and ρ̄π,q ∼= ρ̄|GF ′ . In addition,

π is ordinary, and ρπ,λ is pure at all finite places since ρΠ,λ is.

Now we first apply Theorem 6.8 to ρA,q and conclude that it is modular. Thus ρA,p is

modular, and we may apply Theorem 6.8 again to deduce that ρA,p|GF ′ is modular, thus A

is potentially modular.
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CHAPTER 7

K3 SURFACES WITH LARGE PICARD RANK

7.1 Compatible System of Representations Associated to K3

Surfaces

Let F be a totally real field and X/F be a K3 surface with geometric Picard number 17.

We are interested in considering the transcendental motive T which is complement of the

image of the cycle classes. Let S := (Q, S, {Pv(X)}, {ρp}, Hτ ) denote the compatible system

of Galois representations Vp := Tp(−1) which are the p-adic realizations of T (−1) inside

H2(X,Qp). There is a perfect orthogonal pairing

H2(X,Qp(1))×H2(X,Qp(1))→ Qp

which gives rise to such a pairing on Tp. It follows that det(ρp) = ϵ5pηp where ϵp is the p-adic

cyclotomic character and ηp = det(ρp(−1)) is also self-dual, and thus ηp = η∨p = η−1p is at

most quadratic. The determinant is also a compatible system and thus is independent of p,

and hence we write it simply as η.

We have the following well-known properties for the compatible system S:

(1) If v /∈ S and v ∤ p then ρp is unramified at v and ρp(Frobv) has characteristic polyno-

mial Pv(X) ∈ Z[x].

(2) For all p, the representation ρp is de Rham with Hodge–Tate weights H = [0, 1, 1, 1, 2].

If in addition v /∈ S, then ρp is crystalline, and the characteristic polynomial of crys-

talline Frobenius Frobv is Pv(X).

(3) The representation ρp is pure of weight 2.
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(4) If v ∈ S and v ∤ p, then the semi-simplification of the representation to ρp|IFv has

uniformly bounded order. That is, there exists a fixed finite extension of K/Fv such

that ρp|GK
is unipotent on inertia.

Our main goal would be to construct from S a compatible family R of 4-dimensional rep-

resentations to GSp4(Q̄p) that lifts the representations ρp⊗η via the degree 2 isogeny GSp4 →

GO5.

Theorem 7.1. Suppose that there exists a prime p for which Tp has monodromy group with

Lie algebra so5. Then:

(1) There exists a simple abelian variety A/F with End0(A) = D having center M and a

weakly compatible system

R = (M,S, {Qv(X)}, {ρ̃λ}, [0, 0, 1, 1])

of Galois representations such that, for all l that totally splits in M and all λ | l in M ,

the representation ρ̃λ is irreducible, occurs inside H1(A, Q̄l), and the composition

ρ̃λ : GQ → GSp4(Q̄l)→ GO5(Q̄l)

is isomorphic to ρl ⊗ η.

(2) There exists a finite Galois extension E/F with Gal(E/F ) = (Z/2Z)m such that the

restriction of this compatible system comes from either an abelian surface A/E or a

fake abelian surface A/E with descent data to F .

Proof. The irreducible representation ρp ⊗ η lifts to a representation ρ̃ : GF → GSp4(Q̄p)

with Hodge-Tate weights [0, 0, 1, 1] by [Pat19] §3.2. Furthermore, according to Proposition

4.2.31 of [Pat19], ρ̃ lies in some abelian variety A after some finite extension. Thus by Lemma
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1.6, it can be extended to some compatible systemR = (M,S, {Qv(X)}, {ρ̃λ}, [0, 0, 1, 1]) that

comes from the abelian variety A.

Then we have Gal(M/Q) acting onR via coefficients. If σ ∈ Gal(M/Q), we see thatRσ is

also a compatible system, and the corresponding compatible system of GO5 representations

given by ∧2Rσ is equal to the compatible system associated to ρp ⊗ η. We deduce that

Rσ is isomorphic to R up to at most a quadratic twist by irreducibility. Hence there exists

an extension E/F (with Galois group (Z/2Z)m for some m) where all these twists become

trivial. But then R restricted to GE is invariant under Gal(M/Q), and hence forms a

compatible system with coefficients in Q. But now the proof of [BCGP21] Lemma 10.3.2

implies that R over E/F is associated to either an abelian surface or fake abelian surface A

over E, and the fact thatR can be extended to GF and gives the same Galois representations

up to twist proves the descent data.

We now show the irreducibility of one (hence for all) Tp together with the large image

property:

Lemma 7.2. The representation Tp can not have any one-dimensional factors.

Proof. Any one dimensional factor must correspond to a representation of GF with Hodge–

Tate weight −1, 0, or 1. If it has Hodge-Tate weight 0, then the character has finite order.

By the Tate conjecture for K3 surfaces over a number field it must come from a (Q̄p-linear

combination of) cycle classes, which contradicts the assumption that T is the transcendental

motive. If the Hodge–Tate weight is −1 or 1, it must come from χϵ−1 or χϵ where χ is some

finite order character and ϵ is the cyclotomic character. But this contradicts purity.

Lemma 7.3. If Tp is irreducible for one p, then it is absolutely irreducible for all p and the

Lie algebra of the monodromy group contains so5.
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Proof. Suppose that Tp is irreducible for one p. We first claim that Tp must be absolutely

irreducible. Note that dimTp = 5 is prime. Hence if it is reducible but not absolutely irre-

ducible, then Tp⊗Qp
Q̄p has to decompose into the product of 1-dimensional representations

which are conjugate by the action of GQp
. These one dimensional representations must be

Hodge-Tate, and thus of the form χ ϵm for some m where χ is a finite order character and ϵ

is the cyclotomic character. But GQp
fixes ϵ, which means that all the Hodge-Tate weights

of Tp are equal, a contradiction.

Hence we may assume that Tp is absolutely irreducible. Suppose that Tp becomes re-

ducible over a finite extension. Since GF acts transitively on the factors they must all have

the same dimension, which must therefore be equal 1. Moreover the dimension of each iso-

typic component is independent of the character. The characters cannot all be the same

since Tp has distinct Hodge-Tate weights. Hence all the characters are distinct, and thus Tp

is induced from a character of a degree 5 extension K/F which is de Rham and hence an

algebraic character by [CG18, Lemma 4.3]. But such a K cannot be CM and hence the only

algebraic characters are finite order characters times characters of GF , and the induction of

such a character has all Hodge-Tate weights equal, which is again a contradiction.

Thus the monodromy representation of Tp is connected. The only proper Lie subalgebra

of so5 ≃ sp4 with irreducible representations of dimension 5 is sl2 acting via the 4th symmet-

ric power representation. But if Tp is the 4th symmetric power of some representation over

some finite extension of GF , then the Hodge-Tate weights at any embedding will necessarily

be in arithmetic progression which they are not.

Hence Tp must have monodromy group so5. But now by Theorem 7.1 there exists a

compatible system R of absolutely irreducible GSp4 representations ρ̃λ and it follows by

constancy of ranks that the monodromy at each prime has semisimple part so5 = sp4

or so4 = sl2 × sl2. In the latter case, the representation Tl decomposes into a direct sum of

a one-dimensional representation and a 4 dimensional representation, which is not possible
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from the previous lemma.

It follows that if Tp is not absolutely irreducible then it must decompose as Ap ⊕ Bp

where dim(Ap) = 2 and dim(Bp) = 3 are both irreducible.

Lemma 7.4. If Tp is reducible, then Ap is the Galois representation associated to a CM

modular form of level only divisible by primes in S and bounded independently of p.

Proof. Since Tp carries a generalized orthogonal form, it follows that Ap and Bp are both

also orthogonal and in particular self-dual up to twist. Hence either Ap had Hodge-Tate

weights [−1, 1] and Bp has Hodge–Tate weights [0, 0, 0], or Ap has Hodge-Tate weights [0, 0]

and Bp has Hodge-Tate weights [−1, 0, 1]. The Galois representation associated to Ap has

image in GO2(Zp), thus is potentially abelian.

The Fontaine-Mazur conjecture is known for potentially abelian representations. In par-

ticular, if Ap has Hodge-Tate weights [0, 0], then it has finite image, which would contradict

the Tate conjecture as in the proof of Lemma 7.2. Hence for any such p we may assume

that Ap has Hodge-Tate weights [−1, 1] and Ap(−1) is the Galois representation associated

to a CM modular form of weight 3 with good reduction outside S. The uniform boundedness

of level at primes in S is deduced from property (4) of the compatible system S.

We now prove the desired irreducibility statement.

Theorem 7.5. The representation Tp is absolutely irreducible for all p with monodromy

group containing sp4.

Proof. By Lemma 7.3, it suffices to assume that Tp is reducible for all primes p and reach a

contradiction. If Tp is reducible, then by the previous lemma the 3-dimensional factor Bp has

Hodge-Tate weights [0, 0, 0], and for each p, the 2-dimensional Galois representation Ap(−1)

comes from one of only finitely many weight 3 CM modular forms π. All such forms are

induced from a finite set of imaginary quadratic fields (those unramified outside S).
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Hence we may assume that, for some set of primes Σ of strongly positive density that

split completely in each of these quadratic fields, that Ap is associated to a fixed such π, and

in particular Ap = Ind
GF
GE

χp for a fixed imaginary quadratic field E/F and Grössencharacter

χp of E.

Let PAp,v(X) denote the characteristic polynomial of Frobenius on Ap(−1) at v for v /∈

S ∪ {p}F , and let PAp,v(X) denote the characteristic polynomial of crystalline Frobenius

on Ap(−1) at v assuming that v | p and v /∈ S. Because the Grössencharacters give rise to a

weakly compatible system, these polynomials do not depend on p as long as p ∈ Σ. Hence

we may write them as PA,v(X), and similarly we may write PB,v(X). Since Ap(−1) occurs

in H2(X,Qp) we also see that these polynomials have integral coefficients.

We now have a factorization

Pv(X) = PA,v(X)PB,v(X).

for all v. Recall that the Hodge-Tate weights of ρp are [0, 1, 1, 1, 2]. On the other hand, since

primes p ∈ Σ split in E by construction, the representation Ap is ordinary at p and hence the

Newton Polygon of PA,v(X) has slopes 0 and 2. By Newton over Hodge, this implies that

the Newton Polygon of Bp has all slopes equal to 1. That means that the roots of PB,v(X)

are all divisible by p as algebraic integers. But by purity they also have absolute value p for

all complex embeddings, and thus it follows that the roots of PB,v(pX) are roots of unity.

Since Pv(X) is a degree 5 polynomial over Q, they are indeed roots of unity of bounded order.

Since there are only finitely many such roots of unity, we deduce that for a set Σ of strongly

positive density, the polynomial PB,v(X) is given by a fixed polynomial. On the other hand,

up to twist, the Galois representation associated to Bp has image inside SO3(Qp). Hence

either the monodromy group of Bp is connected, in which case Bp would have Lie algebra sl2

acting via the symmetric square, or Bp is potentially abelian with finite image or induced.

In the latter case we can again apply the Fontaine-Mazur conjecture to get a contradic-
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tion, so we may assume that the monodromy group of Bp has Lie algebra sl2. But then from

the Cebotarev density theorem we see that any subset of primes with a fixed characteristic

polynomial has density zero, a contradiction.

In order to apply our potential modularity results in chapter 6 we need an extra lemma

on ordinariness:

Lemma 7.6. The representation Tp(−1) contains at least one crystalline eigenvalue which

is a p-adic unit for a set of primes p of density one. The representations ρλ are also ordinary

for all λ | p with distinct unit eigenvalues mod λ for a set of primes p of density one.

Proof. Note that Tp(−1) has Hodge-Tate weights [0, 1, 1, 1, 2]. If all crystalline eigenvalues

were not p-adic units, then the polynomial Pv(X) = X5+ tvX
4+ . . .+p5η(p) would have p |

tv. By purity, we have |tv| ≤ 5p. Thus we would have to have tv/p = a for some fixed

integer |a| ≤ 5, and some set of primes v of strongly positive density. Arguing as in the

proof of Lemma 3.6, this contradicts the fact that the monodromy group of Tp contains so5

for any prime p. This proves the first part of the lemma.

Now suppose ρ̃λ : GF → GSp4(Q̄p) be the representation lifting Tp(−1). Note that

all of the crystalline Frobenius eigenvalues of ρ̃λ will be algebraic integers. Suppose they

are αv, βv, pζα−1v , pζβ−1v , where ζ is a root of unity of uniformly bounded order. Up to

symmetry, if Tp(−1) has a crystalline eigenvalue which is an p-adic unit then we may assume

that αvβv is prime to p, and hence that ρλ is ordinary for all λ | p and a set p of density one.

Write

Qv(X) = X4 − avX3 + bvX
2 − pζavX + p2ζ2

= (X − αv)(X − βv)(X − pζα−1v )(X − pζβ−1v ) ∈ OM [X].

The ordinary assumption implies that bv ̸≡ 0 mod λ for all λ | p. Suppose that the unit
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root eigenvalues are the same for some λ | p. Then a2v − 4bv ≡ 0 mod λ. On the other hand

if σ ∈ Gal(M/Q), then aσv = χ(σ)av and bσv = χ(σ)2bv for some finite order character χ, and

so (aσv )
2− 4bσv = χ(σ)2(a2v− 4bv), hence if this is divisible by one λ then it is divisible by all,

and thus (at least for p unramified in M) that a2v − 4bv is divisible by p. Since ρλ is pure of

weight one, it follows that (a2v − 4bv)/p ∈ OM has absolute value bounded uniformly in p,

and there are only finitely many such elements in OM with this property.

But once more arguing as in the proof of Lemma 3.6, the fact that the image of ρ̃λ has

monodromy group containing sp4 for all λ shows that the eigenvalues would be different

modulo λ for a set of primes p of relative density one.

Now that we have constructed the abelian variety A/E with descent data to F that gives

the compatible system R and proved that it is strongly positive ordinary, thus we have:

Corollary 7.7. The compatible system of GSp4 representation R constructed in Theorem

7.1 that corresponds to the transcendental motive T is potentially modular. Therefore,

Theorem 1.1 is true when X has Picard rank 17.

Proof. The compatible system defined in Theorem 7.1 falls into the second case of Theorem

6.11, where we consider R to be the compatible system of representations of GE with coef-

ficients in Q for a set of primes of density one. In fact, Lemma 7.6 shows that we can find

good primes p and q to perform the trick in Theorem 6.4 and thus the desired result just

follows from Theorem 6.11.

7.2 The Geometric Picard Rank ≥ 18

Now suppose X/F has geometric Picard rank 18. Then associated to Tp(−1) is a compatible

system S = (M,S, {Qv(X)}, {ρp}, [0, 1, 1, 2]). We now derive similar results for Tp:

Lemma 7.8. The semisimple part of the Lie algebra of the monodromy group of Tp is so4 ≃

sl2 ⊕ sl2.
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Proof. Suppose that Tp is not absolutely irreducible. Since Lemma 8.2 also applies here,

it follows that Tp ⊗ Q̄p it is a direct sum of two factors Ap and Bp of dimension 2. We

show that this cannot occur even over some finite extension of F . If Ap and Bp are both

orthogonal, they are both induced, and then Tp is potentially abelian. Thus without loss

of generality Ap is not orthogonal, which implies that the dual of Ap under the orthogonal

pairing is a twist of Bp. Since two-dimensional representations are self-dual up to twist, it

follows that Tp ≃ Ap ⊕ Ap ⊗ χ for some character χ which will be algebraic.

But since Tp is pure of weight 1, it follows that Ap is also pure of weight one, and that χ

is pure of weight zero, and thus has finite image. But then the Hodge–Tate weights of Tp

must each have multiplicity two, which is a contradiction.

Suppose that Tp is absolutely irreducible but becomes reducible after a finite extension.

The factors must each have the same dimension. If they have dimension one then Tp is

potentially abelian. If they have dimension 2 then Tp is once more of the form Ap ⊕ Bp

after restricting to some finite extension which we have already considered. Thus Tp remains

irreducible over any finite extension and the only possibility is that the monodromy group

is so4.

There is an isogeny GL2(Q̄p)×GL2(Q̄p)→ GO4(Q̄p) whose image is the connected sub-

group of index two. By [LP92], the component group of a compatible family is independent

of p, and thus there exists an (at most) degree two extension L/F such that the image of Tp

lands inside this image.

Theorem 7.9. Suppose that there exists a prime p for which Tp has monodromy group with

Lie algebra so4. Then there exists an extension L/F of degree at most two over which the

monodromy of Tp is connected such that:

(1) There exists simple abelian varieties E1/L and E2/L and weakly compatible families

Ri = (M,S, {Qv,i(X)}, {ρ̃λ,i}, [0, 1])
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of Galois representations such that, for all l and all λ | l, the representation ρ̃λ,i is

irreducible, occurs inside H1(Ei, Q̄l) as a Gal(Q̄/L) representation, and the composite

ρ̃λ : GL → GL2(Q̄p)×GL2(Q̄p)→ GO4(Q̄l)

is isomorphic to ρl restricted to GL.

(2) There exists a finite Galois extension H/L such that the restriction of these compatible

families comes from either elliptic curves Ei/H or fake elliptic curves Ei/H with descent

data to L, that is, there exist isogenies between Ei and Eσ
i for any σ ∈ Gal(H/L).

Proof. By [Pat19, §3.2], the representation ρp : GE → GO4(Qp) lifts to a representation ρ̃ :

GE → GL2(Q̄p)×GL2(Q̄p) with Hodge-Tate weights [0, 0, 1, 1] and monodromy group whose

Lie algebra has semisimple part sl2 ⊕ sl2. By [Pat19, Lemma 4.2.22], over some finite

extension E′/E, the representation ρ̃ is part of a compatible family of Galois representations

associated to (part of) some abelian variety. In particular, the 2-dimensional constituents

also come from abelian varieties Ei/L giving rise to R1 and R2 respectively, with coefficients

jointly in some finite extension F . Now consider the action of Gal(M/Q) on the coefficients,

we have

Rσ
1 ⊗R

σ
2 ≃ R1 ⊗R2 ≃ S,

because the latter has coefficients over Q. If follows that Rσ
i = Rj ⊗ χσ for each σ where j

may or may not be equal to i, and χσ is a finite order character. If there exists a σ such

that Rσ
1 is a twist of R2, then their monodromy groups are the same on a finite index, which

contradicts the fact that the relevant Lie algebra is sl2⊕sl2 and not sl2. Hence Rσ
i is a twist

of Ri for each σ. Letting H/L denote the fixed field of these characters, we deduce that Ri

as a compatible family over GL has coefficients in Q. But now we are done using the same

idea of the proof of [BCGP21, Theorem 10.3.2].

Theorem 7.10. Theorem 1.1 is also true when X has Picard rank ≥ 18.
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Proof. Suppose the Picard rank is 18. Then it suffices to show that the compatible fami-

lies R1 and R2 constructed in Theorem 7.9 are potentially modular, and then to use the

automorphic of tensor products GL2 ×GL2 → GL4 [Ram00]. But the potential (simultane-

ous) modularity of R1 and R2 follows from [ACC+18, Theorem 7.1.10].

If the Picard rank is 19 or 20, then S is regular and thus potentially automorphic

by [BLGGT14] Theorem A.

When the Picard rank is 19 or 20, it is easy to deduce the stronger claim that S is automor-

phic. In the rank 20 case the representation is orthogonal and thus induced. In the rank 19

case, the compatible system of GO3 representations lifts as in the proof of Theorem 7.1 to

a 2-dimensional family associated with a GL2-type abelian variety with descent to F , and

hence the result follows from [Rib04] and the proof of Serre’s conjecture [Kha06,KW09].
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