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ABSTRACT

This dissertation examines the performance analysis and design of multi-class multi-server

bipartite queueing systems under a FCFS-ALIS service discipline. The class of queueing

systems we look at have m servers with exponentially distributed service times organised into

n service classes, where a service class is defined by the subset of servers that it is compatible

with. We begin by analysing the performance of the system with fixed arrival rates into

the different service classes under conventional heavy-traffic conditions, where the traffic

intensity approaches one from below. Building upon the formulation and results of Afèche

et al. (2021), we generalize the model by allowing the vector of arrival rates to approach

the heavy-traffic limit from an arbitrary direction. We characterize the steady-state waiting

times of the various service classes and demonstrate that a much wider range of waiting

time outcomes is achievable when the direction of approach is generalised. Furthermore,

we establish that the matching probabilities, i.e., the probabilities of different customers

who join different service classes being served by different servers, do not depend on the

direction along which the system approaches heavy traffic. We also investigate the design

of compatibility between service classes and servers, finding that a service provider who has

complete control over the matching can design a delay-minimizing menu by considering only

the limiting arrival rates. When some constraints on the compatibility structure exist, the

direction of convergence to heavy-traffic affects which menu minimizes delay. Additionally,

we discover that the bipartite matching queueing system exhibits a form of Braess’s paradox,

where adding more connectivity to an existing system can lead to higher average waiting

times, even when neither customers nor servers are acting strategically.

We then extend the model to allow for strategic behaviour. We assume that customers

of different types have heterogeneous preferences over the many servers available. The goal

of the service provider is to design a menu of service classes that balances two competing ob-

jectives: (1) maximize customers’ average matching reward and (2) minimize customers’ av-
ix



erage waiting time. Customers act as rational self-interested utility maximizing agents when

choosing which service class to join. In particular, they join the class that maximizes their

expected ex-ante net utility, which is given by the difference between the server-dependent

service reward they receive minus a disutility based on the mean steady-state waiting time

of the service class they join. We study the menu design problem under conventional heavy

traffic conditions. For the case of two servers, we provide a complete characterization of the

possible menus and their delay-reward tradeoffs. For general number of servers, we prove

that if the service provider only cares about minimizing average delay or maximizing total

matching reward then very simple menus are optimal. Finally, we provide Mixed Integer

Linear Programming (MILP) formulations for optimizing the delay-reward trade-off within

fairly rich and practically relevant families of menus, which we term Partitioned and Tai-

lored.
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CHAPTER 1

INTRODUCTION

Multi-class multi-server queueing systems are used to model many real-world settings, in-

cluding applications such as public housing, health care, the adoption of children, and man-

ufacturing. These settings can experience extremely high levels of congestion. For example,

the Chicago Housing Authority reported more than 170,000 families waiting for public hous-

ing in 2021 (Sheridan (2022)). Similarly, in the same year, about 113,589 children in the

United States were waiting to be adopted (Duffin (2022)). In the healthcare system, more

than 100,000 people are waiting for an organ transplant at any given moment in time, with

average waiting times that can be as long as 5 years for a kidney transplant according to

the National Kidney Foundation. Because of these high levels of congestion, any improve-

ments we can make to the design of these systems can have significant benefits for the people

waiting.

This dissertation contributes to the literature on the analysis and design of multi-class

multi-server queueing systems. The particular type of multi-class multi-server queueing

systems we consider are systems in which m heterogeneous servers are organised into n

service classes, where each service class is compatible with a particular subset of servers. We

assume a first-come-first-served assign-longest-idle-server (FCFS-ALIS) service discipline is

used. That is, when a server finishes serving a customer, they consider all of the customers

that belong to classes they are compatible with, and serve the customer that has been

waiting the longest. Similarly, if a customer were to arrive to the system at a time in which

multiple servers she is compatible with are idle and available to serve her, then she would

be served by the server that had been idle the longest. While the FCFS-ALIS assumption is

restrictive, and may have negative implications in terms of performance, it is an important

service discipline to study as it is simple and easy to implement, and widely used in practice.

1



It also has an appealing notion of fairness, which is important in some of our motivating

examples such as public housing. In addition to the FCFS-ALIS assumption, we also assume

that customers arrive to the system according to independent Poisson processes, and servers

have exponential service rates which depend only on the server.

While these models are useful for studying many different applications, they can be both

analytically and computationally intractable, making questions of performance analysis and

system design difficult to answer. Because of this, we study the problem under conventional

heavy-traffic conditions, in which we consider a sequence of systems where the service rates

and the menu of service classes remain fixed, and we increase the arrival rates into the

different service classes until the sum of the arrival rates is equal to the total service capacity.

We then calculate the limiting outcomes of this sequence of systems. By using a heavy-traffic

scaling, we are able to provide approximations of these systems that are much simpler to

analyse and reveal fundamental properties of the system. The heavy-traffic assumption is not

only mathematically more tractable, it is also very appropriate for our motivating examples,

which in the real world are operating with very high levels of congestion.

In Chapter 2, which is based on Hillas et al. (2023), we consider the problem when

the arrival rates into the different service classes are fixed. We study the problem under

conventional heavy-traffic conditions, in which we consider a sequence of systems where

the service rates and the menu of service classes remain fixed, and we increase the arrival

rates into the different service classes until the sum of the arrival rates is equal to the

total service capacity. We develop heavy-traffic machinery to calculate the limiting expected

delays customers face, and the expected matching probabilities, that is, the probabilities

with which different customers are served by different servers at the limit of this sequence

of systems. In doing so, we are generalising the results of Afèche et al. (2021), by using a

more general heavy-traffic scaling. This generalisation is important as it allows for a wider

range of waiting time outcomes to be observed for the same limiting vector of arrival rates.
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To see this, consider a system with two independent M/M/1 queues, both being served

at rate 1. Using a conventional heavy traffic scaling, in which the number of servers and the

service rates remain fixed, and the traffic intensity approaches 1 from below, the limiting

arrival rates of both queues will be 1. The heavy traffic scaling in Afèche et al. (2021) has the

proportion of customers arriving into the different queues remaining constant while taking

the limit. However, if we do this in our simple M/M/1 example, we can see that this would

limit us to concluding that the heavy traffic delays of both queues are equal. If instead we

generalise the approach to heavy-traffic, allowing the arrival rates into the different queues

to approach their limits at different rates, we are able to choose parameters such that the

queues will experience different heavy-traffic delays. We can interpret the different rates of

approach in the real world as the different queues having arrival rates closer or further away

to their predicted limiting value.

This allows for a wider range of scenarios to be modelled accurately, which is necessary in

Chapter 3 in order to extend the model to allow for customers to strategically choose which

service classes to join. This extension also motivates us to allow for queues with no arrivals.

This can be important for developing a coherent model when including strategic behaviour.

In this case, it is possible to offer queues that no customers will choose to join, but we still

need to calculate expected delays for those queues in order to justify why customers are not

choosing to join them.

We begin Chapter 2 by calculating the waiting time and matching probability outcomes

in heavy-traffic. We show that different approaches to the heavy-traffic limit produce dif-

ferent limiting waiting times, while the matching probabilities depend only on the limiting

vector of arrival rates. Based on this, we demonstrate through an example that very minor

perturbations in arrival rates can produce significant improvements in waiting time outcomes

in the pre-limit. We end Chapter 2 by discussing some basic questions regarding the design

of menus of service classes when customers are not behaving strategically and arrival rates

3



into the different service classes are fixed. We find that when the service provider has com-

plete control over the compatibility structure, they only need to consider the limiting arrival

rates in order to design a delay minimising menu. When there are some constraints on the

compatibility structure, then the particular approach to heavy-traffic does affect which menu

minimises delay.

In Chapter 3, which is based on Hillas et al. (2023), we use the machinery developed in

Chapter 2 to study the question of how to design multi-class multi-server queueing systems

when customers are allowed to strategically choose for themselves which queues to join. In

particular, we consider the problem of designing a matching queueing system such as the one

depicted in Figure 1.1. As in Chapter 2, servers are heterogeneous in terms of the amount

of time it takes them to serve a customer (i.e., have different service rates µj), and are

organised into a collection of n service classes. What is different in Chapter 3 is that instead

of the arrival rates into the different service classes being exogenously given, customers of

different types θ = 1, . . . ,Θ arrive to the system at rates αθ and upon arrival are able to

choose for themsleves which service classes to join. Additionally, we now assume that not

1Choice 
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Figure 1.1: A multi-class multi-server matching queueing system.

only are servers heterogeneous in their arrival rates, they are heterogenous in other attributes

that affect the reward {Vθj} that customers receive for the service. Customers choose which
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service classes to join by trading off the expected value of service they will receive from each

service class against the expected delay at the service classes.

The goal of the service provider is to design a service mechanism that will match cus-

tomers to servers and will balance two (usually) competing objectives: (1) maximize cus-

tomers’ average matching service reward and (2) minimize customers’ average waiting time.

We will restrict ourselves to a special class of mechanisms in which the service provider offers

a static menu of service classes i = 1, . . . , n and customers choose which one of them to join

upon arrival. As in Chapter 2, a service class is defined by the subset of servers that are

able to serve customers who join that class.

We begin by defining a strategic equilibrium in the pre-limit, where we use a Nash

equilibrium type concept. We explore some of the features and challenges of this model

when there are only two servers. We find that when there are only two servers, there are

significant simplifications to the analysis we can make relative to the general case. However,

even with these simplifications, equilibrium analysis and the menu design problem cannot

be completely studied analytically, but must be studied computationally.

In order to tackle the problem more generally, we extend our notion of a strategic equi-

librium to heavy-traffic. We define and prove the existence of heavy-traffic equilibria in this

setting. We explore menus that will be optimal for a service provider looking to maximise

the value achieved by serving customers using servers they most prefer, and menus that will

be optimal for a service provider looking to minimise delay. In some cases it is possible to

achieve both of these goals simultansouly, and we provide necessary and sufficient conditions

to understand when this is possible. For when this is not possible, we provide mixed-integer

linear-programmes (MILPS) that identify menus that trade-off the performance of these

two objectives. We complete the chapter with a simple numerical analysis to evaluate the

performance of our MILPS.
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1.1 Related Literature

Related Literature. Heavy-traffic approximations have long been used to simplify the

study of intractable queueing systems. Early works in this area include Kingman (1962) and

Whitt (1974). These papers look at a so-called “conventional” approach to heavy-traffic, in

which the number of servers and their service capacities remain fixed, and the arrival rate

grows large in such a way that the traffic intensity of the system converges to one from below.

An alternative class of “many-server” heavy-traffic limits have also been considered in the

literature by carefully letting the number of servers and arrival rate grow unboundedly, e.g.,

Halfin and Whitt (1981) or Atar (2012). Motivated by mathematical tractability as well as

by the fact that many real-world service systems operate under high levels of congestion, we

will study the performance of our multi-class multi-server bipartite queuing system operating

under conventional heavy traffic conditions.

A range of questions can be answered using heavy-traffic approximations. In the context

of parallel service systems, Harrison and Lopez (1999) study the question of optimal control

of parallel service systems, that is, which servers should be used to serve which service classes,

and in which order should the different service classes be served. Harrison and Lopez (1999)

solve an approximating Brownian control problem, and conjecture that a discrete review

policy will minimise holding costs for the original queuing system. This approach of using

an approximating Brownian control problem to develop an optimal policy was originally

suggested by Harrison (1988). Williams (2000) and Bell and Williams (2001) go on to prove

the asymptotic optimality of a continuous review policy for a two-server system. Following

this work, Mandelbaum and Stolyar (2004a) proves the asymptotic optimality of the cµ−rule

for convex holding costs. A distinctive feature in all of these papers is that they impose a

complete resource pooling condition on the connectivity and/or compatibility between service

classes and servers (see Harrison and Lopez, 1999). Roughly speaking, this condition boils
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down to assuming that the servers’ capacities can be pooled together so that the servers can

essentially act as a single “super-server”. This assumption significantly simplifies the analysis

as it allows us to obtain a single-dimensional state-space description of the workload of the

system in the heavy traffic limit.

The complete resource pooling assumption is quite restrictive, however, and can be shown

not to hold when strategic customer behaviour is allowed as in Caldentey et al. (2023). There

has already been some work moving beyond the complete resource pooling assumption.

Kushner and Chen (2000) prove the convergence to the heavy-traffic limit of a particular

class of systems that do not satisfy the complete resource pooling assumption under quite

general conditions. Pesic and Williams (2016) generalises Harrison and Lopez (1999) beyond

the complete resource pooling assumption. Other works analysing multi-class multi-server

queueing systems with no complete resource pooling assumption include Shah and de Veciana

(2016) and Hurtado Lange and Maguluri (2022). Shah and de Veciana (2016) look at a

system in which servers simultaneously work to process the same job, while Hurtado Lange

and Maguluri (2022) analyse a generalised switch problem under a MaxWeight service policy.

In addition to studying the problem of optimal control, questions regarding the perfor-

mance of parallel service systems have been studied using heavy-traffic approximations, or

fluid approximations more generally. Talreja and Whitt (2008) looks at the problem of cal-

culating matching rates for a parallel service system operating under FCFS, that is, with

what probability is each service class served by each server, although the authors looked at

this question for an overloaded system with abandonments. Matching rates were calculated

for specific classes of networks. Various approximation methods have been developed for

calculating matching rates including the dissipative algorithm proposed by Caldentey and

Kaplan (2002), a related approximation based on Ohm’s law proposed by Fazel-Zarandi and

Kaplan (2018) and a quadratic programming formulation proposed by Afèche et al. (2021).

Of these papers looking at the performance of parallel service systems under FCFS, Afèche
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et al. (2021) is the only one to also look at calculating waiting times as we do here. Another

contribution of Afèche et al. (2021) is to study the question of the design of matching topolo-

gies fixing the scheduling policy. While Afèche et al. (2021) studies this design question for a

FCFS service discipline, Varma and Maguluri (2021) studies the same question of the design

of matching topologies under a MaxWeight service discipline.

The specific model we look at here is a generalisation of Afèche et al. (2021), which

itself developed out of a long history of papers studying bipartite queueing systems and

bipartite matching models under an FCFS service discipline. Early papers in this area

include Schwartz (2004) and Green (1985), who look at the steady-state performance of these

systems given a particular hierarchical compatibility structure between service classes and

service classes, and Kaplan (1984, 1988), who similarly analysed the steady-state performance

of parallel queuing systems, but for more general compatibility structures. Following Kaplan

(1984, 1988), Kaplan’s multi-class multi-server queueing model was adapted by Caldentey

and Kaplan (2002), who introduced an infinite-bipartite matching model to analyse matching

probabilities under a FCFS service discipline. The infinite matching model was further

developed in Caldentey et al. (2009), Bušić et al. (2013), Adan and Weiss (2012), Adan et al.

(2018a) and Fazel-Zarandi and Kaplan (2018). The connection between the steady-state

solution of the queueing model and the infinite bipartite matching model was formalized by

Adan and Weiss (2014) under the FCFS-ALIS service discipline (see also Adan et al., 2018b,

2019 and the survey by Gardner and Righter, 2020).

Since the development of the infinite matching model and the queueing model, different

authors have looked at different aspects of the problem. Bušić et al. (2013), Mairesse and

Moyal (2017), and Moyal and Perry (2017) look at stability conditions of such systems, and

find that the system will be stable so long as a set of Hall’s type conditions are satisfied.

Also of interest are the steady-state matching probabilities. Caldentey et al. (2009) were

able to use a particular Markov chain representation to calculate the steady-state distribu-
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tion of the matching system for particular classes of matching topologies. Adan and Weiss

(2012) came up with an alternative Markov chain representation to derive the steady-state

distribution of the matching system for general matching topologies, while Adan and Weiss

(2014) used a similar approach to look at the multi-class multi-server queueing problem, and

showed the equivalence of the steady-state outcomes for the matching and the overloaded

queueing system. However, the combinatorial structure of the state space description of

the Markov chain limits the size of the systems that can be studied both analytically and

computationally. Afèche et al. (2021) use heavy traffic analysis to unveil a number of struc-

tural properties embedded in the infinite matching model and its corresponding multi-class

bipartite matching queueing system (see also the survey by Gardner and Righter, 2020 for

a comprehensive review of related papers and models).

For the most part, the aforementioned stream of literature has assumed that the matching

topology connecting services classes to servers is exogenously given and has focused on the

performance analysis of the queueing system; i.e., identifying conditions that ensure stability

or characterizing steady-state matching rates. The problem of designing optimal matching

topologies is studied in Afèche et al. (2021) under the assumption that consumers are passive

agents who do not choose which service class to join. In this setting, they can restrict

themselves to topologies in which there is a one-to-one correspondence between customer

types and service classes and so the design problem reduces to deciding the subset of servers

that should serve each service class. To deal with the combinatorial complexity of the

problem identified by Adan and Weiss (2014), Afèche et al. (2021) rely on a heavy traffic

analysis that unveils a surprisingly simple structure. Namely, under heavy-traffic conditions,

they show that any bipartite matching system can be partitioned into a collection of complete

resource pooling (CRP) subsystems, which are interconnected using a direct acyclic graph

(DAG). The significance of these results is that they allow us to replace the combinatorial

structure of the original queueing system (expressed in terms of permutations of servers)
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with a more aggregate representation defined by the collection of topological orders of the

CRP components. As a result, they show that the DAG together with the aggregate service

capacity on each CRP component fully determines the vector of steady-state waiting times.

Combining this insight with a Quadratic Programming approach to approximate matching

flows, Afèche et al. (2021) propose a mixed-integer linear program formulation that can

be used to characterize the set of matching topologies that optimize the tradeoff between

matching rewards and waiting times in a Pareto efficiency sense.

This work builds on and extends Afèche et al. (2021) first by considering a more general

heavy-traffic scaling, and also by allowing consumers to choose the service class they want

to join. In Chapter 2, we will see that our more general heavy-traffic scaling allows for a

wider range of waiting time outcomes to be modelled. In Chapter 3, we will see that the

extension to strategic customers is not trivial. For one, the number of service classes can no

longer be reduced to the number of customer types as the service provider can in principle

offer a full service menu with as many service classes as the number of possible subsets of

the servers. Also, by allowing customers to self-select the service class they want to join,

the service provider has less control over the final matching. In other words, while in Afèche

et al. (2021) the service provider acts as a central planner that has full control over how

to route customers to service classes, in our case the central planner acts as a principal

that can only induce agents (customers) to join a particular service class by designing an

incentive compatible menu. The Principal-Agent nature of our problem implies that waiting

times and matching flows must be computed while imposing equilibrium conditions, which

brings an extra layer of complexity to the problem. Finally, another subtle but important

difference between Afèche et al. (2021) and our paper relates to how a heavy traffic analysis

can be conducted. Specifically, in Afèche et al. (2021) the heavy traffic limit was essentially

exogenously defined by letting the vector of customers’ arrival rates converge (from below)

along a pre-specified direction to a limiting vector of arrival rates. In contrast, in our case in
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which customers self-select the service class they want to join, the direction of convergence

to heavy traffic is endogenously determined in equilibrium.

A distinctive feature of many of the papers that we have discussed so far, and which is

also central to our work, is the FCFS-ALIS service discipline that is used in the matching

of customers and servers. This type of service discipline is appropriate in settings (such as

public housing allocations, adoption agencies or state-run nursing homes, to name a few)

in which fairness considerations and/or legal regulations prevent the service provider from

implementing other types of priority-based policies that could be (or could be perceived to be)

discriminatory. If we relax this requirement, there exists a vast queueing literature on skill-

based routing devoted to the problem of characterizing dynamic scheduling policies to control

and optimize the flow of customers in a multi-server setting. Some representative examples

of this stream of work include Harrison (1998), Harrison and Lopez (1999), Mandelbaum

and Stolyar (2004b), Atar (2005), Bell and Williams (2005), Wallace and Whitt (2005), Dai

and Tezcan (2005), Gurvich and Whitt (2009, 2010), Ward and Armony (2013), and Comte

(2019). Comte (2019) in particular like us consider the routing from arrivals to service classes

and service classes to servers separately, although their model does not include strategic

behaviour.

Another stream of papers that is relevant to our work is concerned with the design of

differentiated service menus. Some representative papers in this area include Van Mieghem

(2000), Plambeck (2004), Maglaras and Zeevi (2005), Afèche (2013), Afèche and Pavlin

(2016), Nazerzadeh and Randhawa (2018), Afèche et al. (2021), Ashlagi et al. (2021) and

Ashlagi et al. (2022). The typical setting in these papers is one in which customers are

heterogeneous in terms of their valuation or willingness-to-pay for service and their sensitivity

to delay, while servers are homogeneous (in many cases a single server is considered). Under

these conditions, a service class consists of two components: (1) the price that the service

provider charges for the service and (2) the expected waiting time. Operationally, the service
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provider controls the service discipline which allows her to offer differentiated waiting times

to the different service classes. The goal of the service provider is to design a menu of service

classes that maximizes her profit or in some cases a social welfare objective.

In terms of applications, stochastic matching systems have been extensively used in the

healthcare literature to study organ transplantation (e.g., Zenios et al. 2000, Akan et al.

2012, Bertsimas et al. 2013 and Ding et al. 2018) and kidney exchanges (e.g., Unver (2010),

Anderson et al. 2017, Ashlagi et al. 2018b and Akbarpour et al. 2018). Other applications in-

clude public housing (e.g., Bloch and Cantala 2017, Leshno 2017, and Arnosti and Shi 2018),

adoptions (e.g., Baccara et al. 2014 and Slaugh et al. 2016), labor markets (e.g., Rogerson

et al. 2005, Arnosti et al. 2018 and Baccara et al. 2018), assemble-to-order manufacturing

(e.g., Gurvich and Ward, 2014 and Nazari and Stolyar, 2016) and process flexibility (e.g.,

Jordan and Graves, 1995, Bassamboo et al., 2012, Tsitsiklis and Xu, 2012, 2017 and Shi

et al., 2018).

1.2 Notation

To simplify notation, we will adopt the following conventions. For a positive integer k ∈ N, we

let [k] := {1, 2, . . . , k}. For a vector x = (xi)i∈[k] and a subset S ⊆ [k], we let xS :=
∑

i∈S xi

and |x| := x[k] =
∑k

i=1 xi. All vectors are column vectors, and for a vector x ∈ Rk, we let

|x| :=∑i∈[k] xi.
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CHAPTER 2

HEAVY TRAFFIC ANALYSIS OF BIPARTITE QUEUEING

SYSTEMS

2.1 Introduction

In this chapter, we anayse the performance of multi-class bipartite queueing systems for fixed

matching topologies under an FCFS-ALIS service discipline. Multi-class bipartite queuing

systems are used for modelling a variety of important applications, such as public housing,

health-care, and manufacturing. However, these models can be both analytically and compu-

tationally intractable, making questions of performance analysis and system design difficult

to answer. Because of this, we use a heavy-traffic scaling to provide approximations of these

systems that are much simpler to analyse and reveal fundamental properties of the system.

The specific model in this chapter has n service classes and m distinct servers. Cus-

tomers arrive to each class according to independent Poisson processes. Service times are

exponentially distributed, with service rates depending only on the server, and not on the

service class. Each service class has a particular subset of servers they can be served by.

Each server may potentially be compatible with multiple service classes. Servers serve the

service classes they are compatible with according to a FCFS-ALIS service discipline. That

is, when a server finishes serving a customer, they consider all of the customers that belong to

classes they are compatible with, and serve the customer that has been waiting the longest.

Similarly, if a customer were to arrive to a service class and find multiple servers they are

compatible with idle, they would be assigned to the server that had been idle the longest.

We analyse two aspects of the performance of this model, the expected waiting times of

the different service classes, and the matching probabilities of the different service classes,

that is, the probability with which a customer of a given class is served by a particular server.
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The chapter is organized as follows. In Section 2.2 we provide a detailed mathematical

description of the bipartite queueing model, review some related results in the literature

and introduce the heavy traffic regime that we will use to analyze the performance of the

system. Section 2.3 is devoted to the derivation of the limiting steady-state waiting times

of the different service classes. Our main result in this section is Theorem 1 which provides

a complete characterization of these limiting waiting times in terms of an underlying set

of complete resource pooling components and their connectivity that emerge under heavy

traffic. In Section 2.4 we study the steady-state matching probabilities between service

classes and servers and show in Theorem 2 that these probabilities do not depend on the

particular direction along which the system reaches heavy traffic. This is in direct contrast

to the behaviour of the steady-state waiting times, which are particularly sensitive to the

direction of convergence. In Section 2.5 we discuss a number of insights that emerge from

our theoretical results. For instance, what vectors of delays are implementable and how to

design the connectivity between service classes and servers to achieve them. We also show

that adding more connectivity to an existing bipartite queueing system can lead to longer

average delays (i.e., some form of Braess’s paradox). Section 2.6 contains the proofs and

additional discussion of our main results Theorems 1 and 2. Finally, the Appendix contains

additional proofs of various intermediate results. Concluding remarks and discussion of

future directions can be found in Chapter 4

2.2 Model Description

In this section, we provide a detailed mathematical description of the model and basic

definitions.

We consider a service system as follows. We have a set of m servers organised into a

set of n service classes. Each service class is served by a particular subset of servers. This
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information is encoded in a compatibility matrix M ∈ {0, 1}n×m, where service class i can

be served by server j iff mij = 1. Customers arrive to the service classes according to

independent Poisson processes. We let λ = (λ1, ..., λn) be the arrival rates into the different

service classes. Service times are exponentially distributed, and depend only on the server.

The vector of service rates will be denoted by µ = (µ1, ..., µm). Servers will serve customers

they are compatible with according to a FCFS-ALIS service discipline.

To illustrate, Figure 2.1 depicts an example with four servers (m = 4), and four service

classes (n = 4).

. . .λ1  

. . .λ2

. . .λ3

1

2

3

4

μ1

μ2

μ3

μ4. . .λ4

Figure 2.1: Example with four service classes and four servers.

In this example, the menu M is given by

M =



1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1


, (2.1)

that is, class 1 is compatible with server 1; class 2 is compatible with server 2; class 3 is

compatible with server 3; and class 4 is compatible with all servers. Note that a server may

belong to multiple service classes.

We are only interested in systems which operate with stable queue lengths. The following
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result, from Adan and Weiss (2014) tells us exactly which triplets (λ, µ,M) produce stable

steady-state outcomes.

Proposition 1. (Adan and Weiss, 2014, Theorem 2.1) For a menu M with arrival rates λ

and service rates µ, define the slack of a set of servers ∆S ⊆ [m] as

∆S (M) :=
∑
j∈S

µj −
∑

i∈US (M)

λi for all S ⊆ [m], (2.2)

where

US (M) :=
{
i ∈ [n] :

∑
j∈S c

mij = 0
}

is the subset of service classes that can only be served by servers in S .

The menu M admits a steady state under a FCFS-ALIS service discipline if and only if:

∆S (M) > 0 for all S ⊆ [m].

2.2.1 Steady state results for fixed arrival rates Our results build on the

steady state analysis of Adan and Weiss (2014), which we briefly review for completeness.

The authors derive their results based on a Markov chain representation of the system

defined on a carefully crafted state space X. A state in this state space is described by three

components: (i) a permutation of servers s = (s1, . . . , sm), (ii) an integer b ∈ {0, . . . ,m}

indicating the number of busy servers, and (iii) a vector (n1, . . . , nb) that indicates the

composition of customers waiting for service in the different service classes. It is helpful to

denote a generic state x ∈ X by the tuple:

x = (s1, n1, s2, n2, . . . , sb, nb, sb+1, . . . , sm). (2.3)

The first b components (s1, . . . , sb) of the server permutation s denote the b busy servers
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ranked according to the arrival time of the customer they are serving, with server s1 serv-

ing the oldest arrival and server sb serving the youngest arrival. The remaining servers

(sb+1, . . . , sm) are all idle and ranked in the order they became idle, with sb+1 the server

that has been idle the longest. Finally, nℓ for ℓ = 1, . . . , b, represents the number of cus-

tomers in the system who arrived after the job currently being served by sℓ but before the

job currently being served by sℓ+1. Due to the FCFS-ALIS service discipline, we know

these customers can only be served by some server in (s1, . . . , sℓ). That is, each of these nℓ

customers must belong to some service class in U(s1, . . . , sℓ).

According to (Adan and Weiss, 2014, Theorem 2.1), the steady-state probability of state

x admits the product form:

π(x) = B
b∏

ℓ=1

λ
nℓ
U(s1,...,sℓ)

µ
nℓ+1
{s1,...,sℓ}

m∏
ℓ=b+1

λ−1
C(sℓ,...,sm)

, (2.4)

where B is an appropriate normalizing constant. Additionally, each of the nℓ customers

‘between’ server sℓ and server sℓ+1 belongs to service class i ∈ U(s1, . . . , sℓ) independently

with probability λi
λU(s1,...,sℓ)

.

These steady-state probabilities can be used to calculate the expected number of cus-

tomers of each type in the system. Little’s Law can then be applied to calculate expected

steady-state mean waiting times. However, if we consider the process for calculating ex-

pected waiting times even for our relatively simple example in Figure 2.1, we see that while

these calculations are possible, the process is laborious and the resulting expressions are

unwieldy. For example, let us consider how we would calculate the expected number of class

4 customers. We first observe that class 4 customers are compatible with all servers. This

means that the only times class 4 customers are waiting in the system is if all servers are

busy when a class 4 customer arrives. Thus if we want to calculate the expected number of

class 4 customers waiting for service in the system, we can restrict ourselves to considering
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only the states in which all 4 servers are busy.

Fixing the permutation of servers, and the number of busy servers, the values of ni are

geometrically distributed, and hence the expected values have closed form expressions. For

example, if we condition on being in the subset of states x ∈ X(s1,s2,s3,s4)
such that b = 4

and the server permutation (s1, s2, s3, s4), i.e. x = (s1, n1, s2, n2, s3, n3, s4, n4), then the

expected value of n4 is

E(n4|x ∈ X(s1,s2,s3,s4)
) =

B|λ| · |µ|
(µ1 − λ1)(µ1 + µ2 − (λ1 + λ2))(|µ| − µ4 − (|λ| − λ4))(|µ| − |λ|)

(2.5)

where |λ| := λ1+λ2+λ3+λ4, |µ| := µ1+µ2+µ3+µ4 and B is an appropriate normalizing

constant. Note that n4 is not the number of class 4 customers; instead n4 is the number

of customers who arrived to the system after the customer server 4 is currently serving.

Therefore the expected number of class 4 customers conditional on being in the subset of

states X(s1,s2,s3,s4)
is λ4

|λ|E[n4|x ∈ X(s1,s2,s3,s4)
].

To fully calculate the expected number of class 4 customers, we would need to repeat

this process for every permutation of servers. Since there are four servers, there are 24

possible permutations of servers to sum over, with different combinations of terms appearing

in the denominator for each permutation. This gives us very complicated expressions for the

expected number of servers. If we were instead looking at the number of class 1 customers,

we would also need to consider states in which only some servers are busy, giving us even

more server combinations that we need to consider.

It is this underlying computational complexity -which grows combinatorially fast in the

size of the system– that motivates our move to heavy traffic. As the system approaches

heavy traffic, the probability of being in a state with an idle server approaches 0, letting us

restrict our attention only to states in which all servers are busy. Additionally, we show in

Proposition 7 that in heavy-traffic, only certain server permutations have positive probability,
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which is a fact that simplifies the problem even further.

2.2.2 Heavy traffic scaling The last part of the model is the heavy-traffic scaling.

As mentioned in the Introduction, our formulation extends Afèche et al. (2021), who con-

sider a specific direction of convergence to heavy traffic to derive their results. Specifically,

they assume that the proportions of customers joining the different service classes remain

constant as the system approaches heavy traffic. In this work, we allow a general direction

of convergence.

We consider a conventional heavy traffic regime in which the arrival rates approach the

capacity of the service system, while the number of service classes and servers, and the

service menu remain constant. We parameterize our systems by ϵ, and let the service system

approach heavy traffic as ϵ ↓ 0. Specifically, we assume that there is a sequence of arrival

rates λ(ϵ) = {λi(ϵ)}i∈[n] where

λi
(ϵ) = Λi − γiϵ+ o(ϵ) ≥ 0 for all i ∈ [n] and 0 < ϵ < ϵ+, (2.6)

for some vector Λ ∈ Rn
+, some vector γ ∈ Rn, and some ϵ+ > 0. We make the following

additional assumptions on λ(ϵ) and µ.

Assumption 1. All of the following hold for arrival rates λ(ϵ) given by (2.6) and service

rates µ:

(i) |Λ| = |µ|,

(ii) |γ| > 0,

(iii) γi < 0 for all i ∈ [n] such that Λi = 0.

Parts (i) and (ii) ensure that we are approaching heavy traffic from below. Part (iii) is

implied by λi
(ϵ) > 0 for all i ∈ [n] and 0 < ϵ < ϵ+, but we include it in Assumption 1 for

clarity. Note that for i ∈ [n] such that Λi > 0, we allow γi to be positive, negative, or zero.
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This is more general than the scaling used in Afèche et al. (2021), where the authors

assume that γ = Λ. Additionally, Afèche et al. (2021) requires that Λi > 0 for all i ∈ [n].

We relax that assumption here, as it is useful to allow for no arrivals to particular service

classes when considering strategic customer behaviour.

We are only interested in studying systems which produce stable outcomes. This leads

us to restrict our attention to a set of admissible menus.

Definition 1. (Admissible Menus) For a given menu M , arrival rates λ(ϵ), and service rates

µ, define for any subset of servers S ⊆ [m] and ϵ > 0

∆(ϵ)

S (M) :=
∑
j∈S

µj −
∑

i∈US (M)

λ(ϵ)

i . (2.7)

A menu M is admissible under arrival rates λ(ϵ) and service rates µ if

∆(ϵ)

S (M) = Ω(ϵ) for all S ⊆ [m].

In words, this ensures that the menu M and arrival rates λ(ϵ) admit a steady state under

a FCFS-ALIS service discipline, and that the slack in the system is converging slowly enough

so that the average delays of the different service classes converge when scaled by ϵ.

We let M(λ(ϵ), µ) denote the set of all menus M that are admissible for arrival rates λ(ϵ)

and service rates µ. The set M(λ(ϵ), µ) will be non-empty for all pairs (λ(ϵ), µ) satisfying

Assumption 1. To see this, observe that the complete menu M such that mij = 1 for all

i ∈ [n] and j ∈ [m] will be admissible for all (λ(ϵ), µ) satisfying Assumption 1. The complete

menu will operate like a single queue with arrival rates |λ(ϵ)| that is served by all servers.
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2.3 Mean Waiting Times in Heavy Traffic

We are interested in calculating the mean waiting times of the different service classes.

Because we are looking at a conventional heavy traffic setting, the waiting times themselves

will grow out of bound as ϵ ↓ 0. We will instead look at the scaled mean waiting times

Ŵi
(ϵ)

= ϵ ·Wi
(ϵ), (2.8)

which will remain bounded in heavy traffic.

In what follows we show how to find the limiting expected waiting times by building

upon and extending the methods and results in Afèche et al. (2021).

2.3.1 Feasible flows and CRP components We begin by identifying the feasible

flows of customers between service classes and servers. For arrival rates λ(ϵ) and service rates

µ satisfying Assumption 1, and an admissible menu M ∈ M(λ(ϵ), µ), for 0 ≤ ϵ < ϵ0 we define

the set of feasible flows as

F(ϵ, λ(ϵ),M) :=
{
f = [fij ] ≥ 0 :

∑
i∈[n]

fij ≤ µj , ∀j ∈ [m];

∑
j∈[m]

fij = λi
(ϵ), ∀i ∈ [n]; fij = 0, ∀(i, j) : mij = 0

}
,

(2.9)

where ϵ0 ∈ R is such that λ(ϵ) > 0 for all 0 < ϵ < 0. We know from the admissibility of M

that such an ϵ0 exists, and that F(ϵ, λ(ϵ),M) is non-empty for all 0 < ϵ < ϵ0. The following

lemma shows that F(0, λ(ϵ)M) is also non-empty. The proof relies on F(ϵ, λ(ϵ),M) being a

subset of a compact set Fmax(λ
(ϵ)) for 0 ≤ ϵ < ϵ0.

Lemma 1. For a given λ(ϵ) and µ satisfying Assumption 1, and M ∈ M(λ(ϵ), µ), the
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set F(0,Λ,M) is non-empty. Furthermore, every sequence of flows f (ϵ) such that f (ϵ) ∈

F(ϵ, λ(ϵ),M) has a sub-sequence that converges to some f̃ ∈ F(0,Λ,M).

Proof: See Appendix 2.A. □

As this lemma suggests, the set F(0,Λ,M) contains information about what sort of

flows it is possible to observe in heavy traffic. We will use the set of feasible limiting flows

to determine which servers have a positive probability of serving which service classes in the

limit. To do this, we will first define the residual matching of the menu M .

Definition 2. (Residual Matching) For a given (λ(ϵ), µ,M) such that λ(ϵ) and µ satisfy

Assumption 1 and M ∈ M(λ(ϵ), µ) we define the residual matching M̆ , where M̆ = [m̆ij ]

satisfies m̆ij = 1 if and only if there exists flows f̃ ∈ F(0,Λ,M) such that f̃ij > 0.

Intuitively, for a service class i and server j with mij = 1 but m̆ij = 0, the flow of

customers from service class i to server j must vanish in the heavy-traffic limit. Afèche et al.

(2021) provide an algorithm for finding the residual matching. However, for small, simple

systems the residual matching can be found by inspection. To see this, consider again the

simple example in Figure 2.1, specifying the service rates to be µ = [2, 1, 2, 1]. We will

consider two example vectors of arrival rates, Λa = [2, 1, 1, 2] and Λb = [2, 1, 0, 3]. In each

case, there is only one set of feasible flows in F(0,Λa,M) and F(0,Λb,M), given by

faij =



2 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1


and fbij =



2 0 0 0

0 1 0 0

0 0 0 0

0 0 2 1


. (2.10)

In example (a), the arcs in the compatibility network with mij = 1 and m̆ij = 0 are

(4,1) and (4,2). While service class 4 is compatible with servers 1 and 2, there will be zero
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flow between class 4 and servers 1 and 2 in the limit. All the service capacity of servers

1 and 2 will be allocated to serving classes 1 and 2. We can see this visually in panel (a)

in Figure 2.2, where the arcs with mij = 1 and m̆ij = 1 are represented with solid lines,

and the arcs with mij = 1 and m̆ij = 0 are represented with dashed lines. Example (b) is

similar, but we now additionally have arc (3,3) with m33 = 1 and m̆33 = 0. In panel (b)

of Figure 2.2 we can see that class 3 only has one dashed arc connecting it to any servers,

representing that no servers are allocating any capacity to class 3 in the limit, even though

class 3 is compatible with server 3.

. . .Λ1 = 2

. . .Λ2 = 1

. . .Λ3 = 1

1

2

3

4

μ1 = 2

μ2 = 1

μ3 = 2

μ4 = 1. . .Λ4 = 2

Lambda_3 = 1(a) Residual matching (a)

. . .Λ1 = 2

. . .Λ2 = 1

. . .Λ3 = 0

1

2

3

4

μ1 = 2

μ2 = 1

μ3 = 2

μ4 = 1. . .Λ4 = 3

Lambda_3 = 0(b) Residual matching (b)

Figure 2.2: Examples of residual matchings.

Knowing the residual matching allows us to decompose the initial bipartite matching

system into a partition of independent components, which Afèche et al. (2021) refer to as

complete resource pooling (CRP) components.

Definition 3. (CRP Component) For a given (λ(ϵ), µ,M) such that λ(ϵ) and µ satisfy As-

sumption 1 and M ∈ M(λ(ϵ), µ), let the induced residual matching be denoted M̆ . We say

that the subset C = (C,S) ∈ 2[n] × 2[m] of service classes and servers forms a CRP compo-

nent if for any pair of nodes k1, k2 ∈ C ∪ S there exists a path between k1 and k2 in M̆ , and

C is maximal in the sense that the condition is violated for any strict superset of C.

We let {C1,C2, . . . ,CK} denote the collection of CRP components induced by the resid-

ual matching M̆ , where K is the number of components. Each Ck = (Ck,Sk) is defined by
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the subset of service classes Ck and the subset of servers Sk that belong to Ck. Since we

allow for service classes with no arrivals, that is Λi = 0, some CRP components will have an

empty server set. Each service class with Λi = 0 forms a separate CRP component with an

empty server set. We denote the subset of such CRP components by I0:

I0 = {k : Λk = 0}. (2.11)

We let K ′ := K − |I0| be the number of CRP components with non-empty sets of servers,

and will assume that the CRP components are indexed so that the components in [K] \ I0
have indices 1, 2, . . . , K ′. We will use k(i) and k(j) to denote the component that service

class i or server j is part of, where the use should be clear from context.

To make these ideas more concrete, let us return to our examples in Figure 2.2. In example

(a), service class 1 and server 1 make up a CRP component, as they are not connected to

any other service classes or servers with solid arcs. Similarly, service class 2 and server 2

make up a CRP component. We can see a path between classes 3 and 4 through server

3, so these classes along with servers 3 and 4 make up a single CRP component. This

means the CRP components for example (a) can be written as C1 = (C1,S2 = ({1}, {1}),

C2 = (C2,S2 = ({2}, {2}), and C3 = (C3,S3 = ({3, 4}, {3, 4}). Example (b) is similar,

the difference being that now service class 3 is not connected to any server or service class

with a solid arc, and therefore is in a CRP component by itself with an empty server set,

i.e. I0 = {3}. So the CRP components for example (b) are C1 = (C1,S2 = ({1}, {1}),

C2 = (C2,S2 = ({2}, {2}), C3 = (C3,S3 = ({4}, {3, 4}), and C4 = (C4,S4 = ({3}, {∅}).

Abusing notation, we denote the aggregate arrival and service rates for the CRP compo-

nents under λ(ϵ) as:

∀k ∈ [K] : λ̃(ϵ)

k =
∑
i∈Ck

λi
(ϵ) =: Λ̃k − ϵγ̃k + o(ϵ), and µ̃k =

∑
j∈Sk

µj , (2.12)
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where Λ̃k =
∑

i∈Ck Λi and γ̃k =
∑

i∈Ck γi. We will later show that each CRP component

must satisfy Λ̃k = µ̃k so that the slack between demand and capacity within a CRP com-

ponent in heavy-traffic goes to zero with ϵ. While each CRP component is critically loaded,

the “well-connectedness” within a CRP component allows shifting load from one service class

to another on short time scales. In particular, we will show in Theorem 1 that under an

FCFS-ALIS policy, waiting times are balanced in such a way that service classes that belong

to the same CRP component have the same limiting scaled mean waiting time in the heavy

traffic limit.

2.3.2 Directed Acyclic Graph of CRP components The menu M and the

residual matching M̆ uniquely induce a directed acyclic graph (DAG) on the collection of

CRP components defined in the previous step. This is useful as the DAG defines a precedence

relation among service classes: since component k1 has a directed arc to component k2, there

is a service class in k1 that can be served by a server in k2. This means k1 can “off-load”

its customers to the servers of component k2, and so the instantaneous waiting time in

component k1 cannot exceed that in component k2 under FCFS-ALIS. This intuition is

made precise in the proof of Theorem 1.

The following is a formal statement of how the DAG is induced.

Definition 4. (DAG) Given the menu M = [mij ], and the CRP components {Ck =

(Ck,Sk) : k = 1, . . . , K} induced by the residual matching M̆ , we define D = ([K],A) asso-

ciated to M as the directed acyclic graph whose nodes correspond to the CRP components,

and there is a directed arc (k1, k2) ∈ A from component Ck1 to component Ck2 if and only

if there exists a service class i ∈ Ck1 and a server j ∈ Sk2 such that mij = 1. We use the

notation k1
D
⇝ k2 to denote that there is a directed path k1 to k2 in the DAG D.

(Afèche et al., 2021, Lemma 2) formally proves that the directed graph defined above is

in fact acyclic.
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Returning to our examples in Figure 2.2, the DAGs are given below. In both cases,

ℂ2

ℂ1
ℂ3

ℂ1 = ( 1 , 1 )
ℂ2 = ( 2 , 2 )
ℂ3 = ( 3,4 , 3,4 )

(a) DAG (a)

ℂ2

ℂ1
ℂ3ℂ4

ℂ1 = ( 1 , 1 )
ℂ2 = ( 2 , 2 )
ℂ3 = ( 4 , 3,4 )
ℂ4 = ( 3 , ∅ )

(b) DAG (b)

Figure 2.3: Examples of DAGs.

service class 4 can be served by servers 1 and 2 in the original menu, i.e. m41 = m42 = 1,

and so there are directed arcs from C3 to C1 and C2. In example (b), C4 contains service

class 3 but no servers, since service class 3 has an arrival rate of 0. Therefore C4 has a

directed arc to C3, as this is the CRP component containing the server that service class 3

is compatible with.

As we mentioned earlier, our computations for the heavy-traffic waiting times build on

the work of Adan and Weiss (2014). The crucial component of their analysis is a state-space

representation for the FCFS-ALIS matching model which involves ranking the busy servers

in order of the waiting time of the customers they are serving. As was proved in Afèche et al.

(2021) for the less general scaling, in heavy-traffic this entails restricting attention to only

certain permutations of the CRP components which have asymptotically non-zero steady-

state probability. We show in Proposition 7 that this also holds for our more general scaling.

The topological orders of the DAG D are precisely these permutations. The definition we

give next differs slightly from Afèche et al. (2021) due to the potential presence of CRP

components with Λ̃k = 0.

Definition 5. (Topological Orders on CRP Components) Let {C1,C2, . . . ,CK ′} be the CRP

components with Λ̃k > 0. Given the DAG D = ([K],A), we say that a permutation σ =

(σ(1), σ(2), . . . , σ(K ′)) of [K ′] induces a topological order (Cσ(1),Cσ(2), . . . ,Cσ(K ′)) of these

CRP components if for every pair (k1, k2) ∈ [K ′] such that k1
D
⇝ k2, we have σ−1(k2) <
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σ−1(k1). In other words, sink components of D precede source components. We let T (D, K ′)

denote the set of all permutations σ of [K ′] that induce a topological order on components

{C1, . . . ,CK ′}.

Further, for each σ ∈ T (D, K ′), we partition the CRP components [K] by associating a

subset for each k ∈ [K ′] as follows:

comps(σ, k) := {σ(k)} ∪ {κ ∈ I0 : k = max{k′ ∈ [K ′] : κ
D
⇝ σ(k′)}}. (2.13)

The interpretation of this is that for each index k ∈ [K ′], we associate the CRP component

corresponding to σ(k) as well as all CRP components κ with Λ̃κ = 0 (i.e., server-less com-

ponents) for which the component σ(k) is the last component in the topological order σ that

is reachable from κ via a directed path.

We will use the shorthand comps−1(σ, k) to denote the index κ ∈ [K ′] such that k ∈

comps(σ, κ).

To highlight the difference with Afèche et al. (2021), under the heavy-traffic regime

considered in Afèche et al. (2021) all CRP components have a non-empty server set Sj . In

contrast, in our model, we have service classes that are in CRP components by themselves.

These CRP components are special in that they have no incoming arc in the DAG D, and can

only have a directed arc to CRP components with non-empty server sets. The topological

orders T (D, K ′) can thus be thought of as preprocessing D to remove the server-less CRP

components {CK ′+1, . . . ,CK} which are “hanging off” D, and finding topological orders on

the remaining components. Since the topological order has sink components of D preceding

source components, and as we mentioned earlier, the DAG defines a precedence relation

among service classes, we can then interpret comps−1(σ, k) as associating each server-less

CRP component with the CRP component that is reachable from it that has the shortest

steady-state wait.
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Returning to our examples in Figure 2.3, both example (a) and example (b) have the

same set of CRP components with positive limiting arrival rates, the set {C1,C2,C3}. Both

examples also have the same connectivity with these components. C3 has directed arcs to C1

and C2, but there are no arcs between C2 and C2. Hence in any topological orders on these

CRP components, we know that C1 and C2 come before C3, but C1 can come either before

or after C2. Thus the possible permutations are σ1 = (1, 2, 3) and σ2 = (2, 1, 3), and the

associated topological orders are (C1,C2,C3) and (C2,C1,C3). As example (a) has no CRP

components with limiting arrival rates of 0, for each σ and each k, comps(σ, k) is simply the

set containing the index of the CRP component at position k of the topological order σ. In

example (b), C4 has λ̃4 = 0, so for each topological order σ, we need to determine for which

k we have 4 ∈ comps(σ, k). The only directed arc from C4 to any other CRP component is

to C3. Hence for each σ, we have that 4 ∈ comps(σ, k) if and only if 3 ∈ comps(σ, 4). Since

C3 is the last element of the topological order for both permutations σa and σb, we have

that comps(σa, 3) = comps(σb, 3) = {3, 4}.

2.3.3 Calculating waiting times Let T (D, K ′) = (σ1, . . . , σT ) be the collection

of topological orders on {C1, . . . ,CK ′} (the components with Λ̃k > 0). For a topological

order σt ∈ T (D, K ′) with the associated function comps(σt, ·) defined in (2.13), we define

the unnormalized probability of being in a state associated with the topological order σt as:

Q(σt) =
∏

κ∈[K ′]

1∑κ
ℓ=1 γ̃comps(σt,ℓ)

, (2.14)

where we use the shorthand

γ̃comps(σ,ℓ) =
∑

κ∈comps(σ,ℓ)

γ̃κ.
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For a permutation σt ∈ T (D, K ′), for any CRP component Ck, we define the waiting time

conditioned on the topological order σt as:

wσt,k =
K ′∑

κ=comps−1(σt,k)

1∑κ
ℓ=1 γ̃comps(σt,ℓ)

. (2.15)

The following Lemma 2 proves that the expressions above are well-defined.

Lemma 2. For λ(ϵ) and µ satisfying Assumption 1, and for some M ∈ M(λ(ϵ), µ) for all

permutations σt ∈ T (D, K ′) of CRP components {C1, . . . ,CK ′} and for all κ ∈ [K ′],

κ∑
ℓ=1

γ̃comps(σt,ℓ) > 0.

Proof: See Appendix 2.A. □

With the expressions for the unnormalized probabilities and conditional waiting times

of topological orders in place, we are ready to state our main theorem regarding the mean

scaled steady-state waiting times of different service classes.

Theorem 1. Take any (λ(ϵ), µ,M) such that λ(ϵ) and µ satisfy Assumption 1. For an admis-

sible menu M ∈ M(λ(ϵ), µ), let M̆ be the residual matching, and let the collection of CRP

components induced by M̆ be denoted {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}. Then, service classes

that belong to the same CRP component experience the same scaled steady-state mean wait-

ing time in heavy traffic. Furthermore, the scaled steady-state mean waiting time of CRP

component Ck is equal to

ŴCk
=

T (M)∑
t=1

(
Q(σt)

Q(σ1) +Q(σ2) + · · ·+Q(σT (M))

)
wσt,k. (2.16)

The proof of Theorem 1 can be found in Section 2.6.1.
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2.4 Matching Probabilities in Heavy Traffic

Another performance metric of interest is the matching probabilities, that is, for each service

class i and server j, the probability that a customer who joins class i is served by server

j. For any menu M that is admissible with arrival rates λ(ϵ) and service rates µ, we let

p(ϵ)(M,λ(ϵ), µ) be the matrix of matching probabilities, so p(ϵ)

ij (M,λ(ϵ), µ) is the steady state

probability with which a customer who joins class i ∈ [n] is served by server j ∈ [m]. While

exact matching probabilities are difficult to calculate, and remain difficult to calculate even

in heavy traffic, we are able to provide two results regarding how matching rate calculations

simplify as we move to heavy traffic.

Before stating our results, it will be useful to describe the combinations of limiting arrival

rates Λ, service rates µ, and menus M such that there is some sequence λ(ϵ) converging

to Λ that makes M admissible. The following proposition will help us understand these

combinations.

Proposition 2. Take any sequence of arrival rates λ(ϵ) and service rates µ such that , λ(ϵ)

and µ satisfy Assumption 1, and let M be such that M ∈ M(λ(ϵ)µ). Let Λ = limϵ→0 λ
(ϵ).

Then M is admissible with service rates µ and arrival rates

λ(ϵ) = Λ− ϵΛ, for ϵ > 0.

Furthermore, if M is admissible with λ(ϵ) = Λ − ϵΛ and µ, then the menu M̆ given by the

residual matching of M is also admissible with λ(ϵ) = Λ− ϵΛ and µ.

Proof: See Appendix 2.B. □

This lets us talk about menus that are admissible for limiting arrival rates Λ and service

rates µ. We will define the set M+(Λ, µ) to be the set of all menus M such that M is

admissible for arrival rates λ(ϵ) = Λ(1− ϵ) and service rates µ. This provides us with a more
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convenient way to express our results regarding matching probabilities, the first of which is

stated formally in Theorem 2. This tells us that while the limiting expected delays depend

on the particular sequence of arrival rates λ(ϵ), and in particular depend on the slacks γ, the

matching probabilities depend only on the limiting arrival rates.

Theorem 2. Take any limiting arrival rates Λ and service rates µ such that |Λ| = |µ|.

Consider any menu M ∈ M+(Λ, µ). Take any two sequences of arrival rates λ(ϵ)
a and λ(ϵ)

b

such that limϵ→0 λ
(ϵ)
a = limϵ→0 λ

(ϵ)

b = Λ, both sequences satisfy Assumption 1 with µ, and

M is admissible for both sequences of arrival rates with µ. Then limϵ→0 p
(ϵ)

ij (M,λ(ϵ)
a , µ) =

limϵ→0 p
(ϵ)

ij (M,λ(ϵ)

b , µ) for all i ∈ [n] and j ∈ [m].

The proofs of Theorem 2 and Corollary 1 can be found in Section 2.6.2.

Theorem 2 lets us talk about the matching probabilities of a menu M just in terms of

the limiting arrival rates Λ and service rates µ. In light of this, for the rest of this chapter,

we will refer to matching probabilities in terms of the limiting arrival rates, that is, we will

write p(ϵ)

ij (M,Λ, µ).

The second result we have relating to matching probabilities, stated formally in Corol-

lary 1, tells us that matching probabilities within a CRP component are independent of all

other CRP components.

Corollary 1. Take any limiting arrival rates Λ and service rates µ such that |Λ| = |µ|, and

take any M ∈ M+(Λ, µ). Let M̆ be the residual matching, and let the collection of CRP

components induced by M̆ be denoted {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}. Then for any service

class i ∈ Ck and server j ∈ Sk,

lim
ϵ→0

p(ϵ)

ij (M,Λ, µ) = lim
ϵ→0

p(ϵ)

ij (M̆,Λ, µ).

Corollary 1 implies that when calculating the matching rates, we can look at each CRP

component individually. Additionally, it tells us that the DAG structure does not affect the
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matching probabilities. We will see in Section 2.5 that two menus M and M ′ with the same

residual matching M̆ can have significantly different expected waiting times in heavy-traffic

if the two menus induce different DAGs. Corollary 1 tells us that despite this, the limiting

matching probabilities of menus M and M ′ are the same.

2.5 Discussion

Before getting into the proofs of our main results, we discuss some of their implications,

while highlighting the differences between the behaviours of our model and the model in

Afèche et al. (2021). We also explore some simple questions regarding the design of menus

of service classes.

2.5.1 Implementable outcomes Our motivation for the heavy-traffic scaling used

in this dissertation is that it allows for a wider range of outcomes than the proportional

scaling used in Afèche et al. (2021). The following definition will help formalise what we

mean by this.

Definition 6. (Implementable Waiting Times) Take limiting arrival rates Λ, service rates µ,

and a menu M such that a collection of CRP components C = {C1,C2, . . . ,CK} is induced.

We say a vector of limiting scaled waiting times W = (W1,W2, . . . ,WK) is implementable

if there exists γ ∈ Rn such that the menu M is admissible for the pair (λ(ϵ), µ) where

λ(ϵ)

i = Λi − ϵγi + o(ϵ), for all i ∈ [n],

and the resulting limiting waiting times ŴCk
given by (2.16) are equal to Wk for all k ∈ [K].

If we only look at the scaling in Afèche et al. (2021), in which γ = Λ, then each combina-

tion of limiting arrival rates Λ, service rates µ, and menu M can produce one specific vector

of waiting times. By allowing γ to change, we increase the set of implementable outcomes.
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As we alluded to in Section 2.3, the DAG provides information about which vectors of

waiting times are implementable. The following statement, which is a corollary of Theorem 1,

formalises this idea.

Corollary 2. If W ∈ RK
+ is implementable, then W is consistent with some topological order

σ ∈ T (D, K ′). That is, there is some topological order σ ∈ T (D, K ′) such that Wk ≤ Wκ

only if comps−1(σ, κ) ≤ comps−1(σ, k).

Proof: See Appendix 2.C. □

Corollary 2 provides a necessary condition for waiting times to be implementable. While

completely characterising the set of implementable waiting times for a particular Λ, µ, and

M is difficult in general, we are able to provide a sufficient condition for waiting times to be

implementable for menus such that the DAG satisfies the following property.

Definition 7. (Chained DAGs) A DAG on C = {C1,C2, . . . ,CK} is chained if there exists

a partition C = {C1,C2, . . . ,CL} of C such that the DAG includes a directed arc from Ci to

Ck if and only if Ci ∈ Cℓ and Ck ∈ Cℓ+1 for some ℓ ∈ [L− 1].

Figure 2.4 illustrates an example of a chained DAG in panel (a) and one unchained

DAG (i.e., a DAG that is not chained) in panel (b), both over a collection of seven CRP

components. For the chained DAG in panel (a), L = 4 and C1 = {C2,C3}, C2 = {C4},

C2
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Figure 2.4: Examples of chained (panel a) and unchained (panel b) DAGs over seven CRP
components.

C3 = {C1,C6,C7} and C4 = {C5}. On the other hand, to see that the DAG in panel (b) is
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not chained, note that we cannot satisfy the requirement in Definition 7 if we consider the

three CRP components C1, C2 and C4. Indeed, the arcs connecting C2 and C4 to C1 would

require that C2 and C4 belong to the same class Cl in the partition C for some ℓ, but then

the arc connecting C2 to C4 would require these two CRP components to be in different

classes in C .

For menus such that the DAG is chained, the following result regarding which vectors of

waiting times are implementable applies.

Proposition 3. Take limiting arrival rates Λ, service rates µ, and a menu M such that

M ∈ M+(Λ, µ), and the collection of CRP components C = {C1,C2, . . . ,CK} and the

chained DAG D = (|K|,A) are induced. Let C = {C1,C2, . . . ,CL} be the partition of C

described in Definition 7.

The vector W = (W1,W2, . . . ,WK) ∈ RK
+ is implementable if the following both hold:

(i) Wk = Wκ for all (k, κ) ∈ [K]× [K] such that Wk ∈ Cℓ and Wκ ∈ Cℓ for some ℓ ∈ [L],

(ii) Wk < Wκ for all (k, κ) ∈ [K] × [K] such that Wk ∈ Cℓ and Wκ ∈ Cℓ′ for some

(ℓ, ℓ′) ∈ [L]× [L] where ℓ < ℓ′.

Proof: See Appendix 2.C. □

This tells us that we greatly increase the set of implementable outcomes by using a more

general heavy traffic scaling.

2.5.2 Menu Design We now turn our attention to some simple questions regarding

the design of menus of service classes. We will consider two objectives: (1) minimising the

total average delay across all service classes, and (2) minimising the maximum expected

delay of any service class. We will assume that the arrival rates into the service classes λ(ϵ)

and the service rates µ are fixed, and the service provider is designing the menu M , or the

compatibility between the service classes and servers.
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When the service provider has complete flexibility over how to design the menu, the

service provider can minimise both the average delay and the maximum delay faced by any

service class simultaneously. The following proposition shows that this can be achieved with

a menu that has a single CRP component.

Proposition 4. Given arrival rates λ(ϵ) and service rates µ satisfying Assumption 1, for any

admissible menu M ∈ M(λ(ϵ), µ),

ŴCk
≥ 1

|Γ| ,

for all k ∈ [K].

Furthermore, ŴCk
= 1

|Γ| for some k ∈ [K] if and only if there exists a directed path from

ŴCk
to any other CRP component Cκ with κ ∈ {[K]\k}. This condition is trivially satisfied

if there is only one CRP component.

Proof: See Appendix 2.C. □

Therefore any menu that induces a single CRP component will ensure that all service

classes achieve the minimum possible expected delay, hence minimising both the average

delay across all service classes and the maximum delay faced by any service class. The

following proposition is helpful in designing such a menu.

Proposition 5. Consider a system with limiting arrival rates Λ and service rates µ. Any

menu M such that ∑
j∈S

∑
i∈[n]

Λimij <
∑
j∈S

µj , for all S ⊊ [m]

will be admissible for any vector of slacks Γ ∈ Rn such that |Γ| > 0. Furthermore, such a

menu will induce a single CRP component.

Proof: See Appendix 2.C. □

A complete menu, in which every service class is compatible with every server, will always

satisfy this condition. The complete menu will operate like a single queue served by all servers
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according to an FCFS service discipline. Proposition 5 also tells us that we do not need to

know the values for the slacks Γ to design a delay minimising menu, making it easier to

implement in practice.

While a menu that induces a single CRP component minimises delays, it may not be

desirable or even feasible to offer such a menu due to real-world compatibility constraints

on which servers can serve which customer types. Motivated by these sorts of constraints,

we consider the question of how to design the DAG on a collection of CRP components to

minimise expected delays for customers.

It will be useful first to understand the expression for average expected delays across all

service classes. In Equation (2.16) we defined the delay of each CRP component conditional

on being in a particular topological order. We can similarly define w̄σ, the average delay

across all service classes conditional on being in a particular topological order σ, as

w̄σ =
K ′∑
κ=1

∑κ
k=1 µ̃σ(k)∑κ

ℓ=1 γ̃comps(σ,ℓ)
. (2.17)

This then lets us express the average expected delay for a particular menu M as

W̄ =
1

|µ|

T (M)∑
t=1

(
Q(σt)

Q(σ1) +Q(σ2) + · · ·+Q(σT (M))

)
K ′∑
κ=1

∑κ
k=1 µ̃σ(k)∑κ

ℓ=1 γ̃comps(σt,ℓ)
. (2.18)

Here we can also see the differences with Afèche et al. (2021), in which the authors find

that the average delays depend only on the number of CRP components. With our more

general scaling, the average delays depend on the values of the slacks themselves, as well as

the structure of the DAG and the set of topological orders that are induced.

Introducing additional arcs into the DAG reduces the number of topological orders. If

we can introduce or remove arcs from a DAG in such a way that the system spends more

time in states associated with topological orders that have lower conditional average delays
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w̄σ, then the total average delay will be reduced. However, the values of the slacks of the

different CRP components γ̃ limit how we are able to adjust the DAG and still have an

admissible menu. This leads us to the following definition of an admissible topological order.

Definition 8. A topological order σ is admissible for arrival rates λ(ϵ) and service rates µ

satisfying Assumption 1, and a collection of CRP components {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}

if and only if
∑k

ℓ=1 γ̃ℓ > 0 for all k ∈ [K ′].

The following lemma tells us how admissible topological orders relate to admissible menus.

Lemma 3. Take any arrival rates λ(ϵ) and service rates µ satisfying Assumption 1, and any

collection of CRP components {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}. For any admissible topological

order σ, we can construct an admissible menu M ∈ M(λ(ϵ), µ) such that the DAG induced by

M with λ(ϵ) and µ only admits the topological order σ. Furthermore, if σ is not admissible,

then there are no admissible menus M that admit the topological order σ.

Proof: See Appendix 2.C. □

The set of admissible topological orders tells us which DAGs are feasible given a particular

CRP component. We can then minimise average delays by identifying the topological order

with the lowest condition delays.

Proposition 6. Given limiting arrival rates Λ, service rates µ, slacks Γ, and CRP compo-

nents {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}, there will be a permutation of CRP components σ that

minimises the average expected delay across all implementable topological orders,

w̄σ =
K ′∑
κ=1

∑κ
k=1 µ̃σ(k)∑κ

ℓ=1 γ̃comps(σ,ℓ)
.

The DAG or menu that will minimise delays is one that only allows for this topological order.

Proof: See Appendix 2.C. □
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Given that adding arcs to a DAG is achieved by adding additional flexibility to a service

system, one might think that adding an additional arc to a DAG will always reduce expected

delays. However, we find that adding arcs to the DAG may potentially increase, decrease, or

not affect the average delays. This can be shown through the following two server example.

Consider the case of two independent M/M/1 queues. We will use Ma to denote this

menu. Let the arrivals rates be λ(ϵ)

1 = 1− ϵγ1, and λ(ϵ)

2 = 1− ϵγ2, and let µ1 = µ2 = 1. It is

straightforward to calculate that Ŵ1 = 1/γ1 and Ŵ2 = 1/γ2. The average delay across both

service classes is then

W̄a =
1

2

(
1

γ1
+

1

γ2

)
(2.19)

If we were to consider the alternative menu

Mb =

 1 1

0 1

 , (2.20)

then using Theorem 1 we find that Ŵ1 = 1/(γ1 + γ2) and Ŵ2 = 1/(γ1 + γ2) + 1/γ2. The

average delay across both service classes is then

W̄b =
1

γ1 + γ2
+

1

2γ2
. (2.21)

Therefore the difference in average delays is

∆ab := W̄b − W̄a =
1

γ1 + γ2
− 1

2γ1
.

When γ1 = γ2, ∆ab = 0 and menus Ma and Mb have the same average delays. When

γ1 > γ2, ∆ab is positive, and menu Mb has higher average delays than Ma, despite the

additional flexibility. Otherwise, ∆ab is negative, and menu Mb has lower average delays

than Ma.
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This simple example demonstrates that adding additional flexibility to the design of the

menu does not necessarily reduce the average delay (i.e., some form of Braess’s paradox).

Therefore if a service provider is considering adding additional flexibility to a system, it is

important to carefully consider the way in which flexibility is being added.

2.5.3 Numerical example We will end this section by returning to our example in

Figure 2.2 (a) to make some of the ideas discussed in the section more concrete. Recall the

menu M is given by

M =



1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1


. (2.22)

The limiting arrival rates are Λ = (2, 1, 1, 2), and service rates are µ = (2, 1, 2, 1). We will

let the sequence of arrival rates be λ(ϵ)

i = Λi − ϵγi for 1 ≤ i ≤ 4. We have three CRP

components, C1 consisting of class 1 and server 1, C2 consisting of class 2 and server 2, and

C3 consisting of classes 3 and 4 and servers 3 and 4.

We will begin by considering the question of implementability. We can see that the DAG

induced by M is a chained DAG, with C1 and C2 belonging to one partition in the chain,

and C3 belonging to the other partition in the chain. Then Proposition 3 tells us that we

can implement any waiting times W1 = W2 > W3 > 0.

In this simple case, we can see which delays are implementable more directly, by looking

at the exact expressions for the delays. Using Theorem 1, we can calculate the delays as

Ŵ1 =
1

γ1
+

1

γ1 + γ2 + γ3 + γ4
, Ŵ2 =

1

γ2
+

1

γ1 + γ2 + γ3
, and Ŵ3 =

1

γ1 + γ2 + γ3 + γ4
.

By looking at these expressions, we can see that we can implement any delays W1, W2, and

W3 such that W3 > 0, W1 > W3 and W2 > W3. To do this we would let γ1 = 1
W1−W3

,
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γ2 = 1
W2−W3

, and γ3 + γ4 = γ1 + γ2 − 1/W1.

This also suggests that in a congested system, a service provider is able to produce

significant improvements in delay if they can make small changes to the arrival rates into

the different service classes.

Suppose arrival rates are initially such that the slacks are proportional to arrival rates,

i.e. γ = Λ, as in Afèche et al. (2021). The following table shows us the improvements in

delay by adjusting the slacks so that γ′ = (9, 9,−3,−9) for different values of ϵ. Note that

|Λ| = |γ′|, so this adjustment does not alter the total arrival rate of customers into the

system. We also show the percentage difference in average delays, denoted δW̄%, as well as

the percentage of customers who are joining a different service class across the two scenarios,

denoted δλ%.

ϵ γ Ŵ1 Ŵ2 Ŵ3 Ŵ4 W̄ δW̄% δλ%

0.1 Λ 0.5727 1.0652 0.1649 0.1182 0.4353 61.43% 33.33%
γ′ 0.2029 0.2001 0.2344 0.1237 0.1679

0.05 Λ 0.6171 1.1151 0.1651 0.1408 0.4660 60.32% 15.79%
γ′ 0.2351 0.2339 0.1830 0.1431 0.1849

0.01 Λ 0.6563 1.1562 0.1662 0.1612 0.4929 56.82% 3.03%
γ′ 0.2678 0.2677 0.1670 0.1613 0.2128

Table 2.1: Expected delays for different slacks.

As we can see, significant improvements in scaled delays are achieved while only changing

the arrivals of a relatively small fraction of customers, with the improvements in comparison

to the change required increasing as congestion increases.

Finally, we look at the question of menu design. In particular, we look at how we can

change a menu to improve delays given a fixed CRP component structure, and fixed arrival

rates. The residual matching for the menu M in Equation (2.24) with limiting arrival rates
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Λ = (2, 1, 2, 1) and service rates µ = (2, 1, 1, 2) is

M̆ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1


. (2.23)

There are 6 possible permutations of CRP components when the menu is just the residual

matching M̆ , these permutations being all the permutations of the number (1, 2, 3). We can

use Equation (2.17) to calculate the expected delay conditional on a particular permutation

of CRP components. In this case, we will assume the slacks are γ = (4, 3, 1, 1). The

following table uses Equation (2.17) to calculate the conditional delays for all possible server

permutations. We can see from this table that the permutation of CRP components that

Permutation Delay
(1,2,3) µ1

γ1
+ µ1+µ2

γ1+γ2
+ µ1+µ2+µ3+µ4

γ1+γ2+γ3+γ4
= 1.595

(1,3,2) µ1
γ1

+ µ1+µ3+µ4
γ1+γ3+γ4

+ µ1+µ2+µ3+µ4
γ1+γ2+γ3+γ4

= 2

(2,1,3) µ2
γ2

+ µ1+µ2
γ1+γ2

+ µ1+µ2+µ3+µ4
γ1+γ2+γ3+γ4

= 1.429

(2,3,1) µ2
γ2

+ µ2+µ3+µ4
γ2+γ3+γ4

+ µ1+µ2+µ3+µ4
γ1+γ2+γ3+γ4

= 8

(3,1,2) µ3+µ4
γ3+γ4

+ µ1+µ3+µ4
γ1+γ3+γ4

+ µ1+µ2+µ3+µ4
γ1+γ2+γ3+γ4

= 3

(3,2,1) µ3+µ4
γ3+γ4

+ µ2+µ3+µ4
γ2+γ3+γ4

+ µ1+µ2+µ3+µ4
γ1+γ2+γ3+γ4

= 2.967

Table 2.2: Expected delays for different permutations of CRP components.

minimises delay is (2,1,3). We can then design a menu such that the DAG only admits this

specific topological order. The DAG that achieves this is shown below.

ℂ2ℂ1ℂ3

ℂ1 = ( 1 , 1 )
ℂ2 = ( 2 , 2 )
ℂ3 = ( 3,4 , 3,4 )

Figure 2.5: Delay minimising DAG.
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This DAG can be achieved by having the service class in C1 served by the server in C2,

and either of the service classes in C3 served by the server in C1. The following menu is one

example of a menu that achieves this.

M ′ =



1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1


. (2.24)

In comparison, the original menu M in Equation (2.24) with γ = (4, 2, 1, 1) has average

delays of 1.5, which as expected is higher than the average delays of our newly designed

menu.

2.6 Proof of Main Results

We end this chapter by presenting proofs of our results.

2.6.1 Proof of Theorem 1 The key observation needed to prove Theorem 1 is that

only a relatively small subset of states have positive probability in heavy-traffic, and the

information about which states have positive probability is captured by the CRP components

and the DAG on the CRP components. However, before we go into more detail, it will be

useful to introduce some notation. In section Equation (2.12), we defined the aggregate

arrival rate for a CRP component Ck to be λ̃(ϵ)

k =
∑

i∈Ck λi
(ϵ) = Λ̃k−ϵγ̃k+o(ϵ). For a subset

of servers S ⊆ [m], we define the slack for S by:

∆(S) = µS − λUS(M), (2.25)
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where US(M) is defined in Proposition 1 as the subset of service classes that can only be

served (or, uniquely served) by servers in S under the menu M . For succinctness, we will

suppress the dependence on M in this section and use the notation U(S) for US(M).

It will also be useful to further aggregate the state space described in Section 2.2.1 so

that the state depends only on the server permutation s and the number of busy servers b,

and not the number of customers. Specifically, for a server permutation s = {s1, . . . , sm}

and b ∈ {0, 1, . . . ,m} define:

P (s; b) = {x ∈ X : x = (s1, n1, . . . , sb, nb, sb+1, sb+2 . . . , sm)}

as the set of all states where s is the ranking of servers in terms of the age of the customer for

busy servers and the time since idleness for idle servers, and where exactly the first b servers

in s are busy. We then have the following expression for the probability of the aggregate

state P (s; b):

π(P (s; b)) =
∞∑

n1=0

· · ·
∞∑

nb=0

B
b∏

ℓ=1

λ
nℓ
U(s1,...,sℓ)

µ
nℓ+1
{s1,...,sℓ}

m∏
ℓ=b+1

λ−1
C(sℓ,...,sm)

= B
b∏

ℓ=1

1

∆(s1, . . . , sℓ)

m∏
ℓ=b+1

λ−1
C(sℓ,...,sm)

. (2.26)

As a last step before developing the proof of Theorem 1, in Lemma 4 we state some

properties of CRP components and topological orders that will be useful. This lemma has

been slightly modified from (Afèche et al., 2021, Lemma 6).

Lemma 4. Let M be a service menu and {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK} be its CRP com-

ponents under a given heavy-traffic equilibrium strategy profile. For a CRP component

Ck = (Ck,Sk) with non-empty Sk (i.e., k ∈ [K ′]) :

(i) The aggregate demand of service classes converges to the aggregate service rate as
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ϵ → 0, that is, Λ̃k := ΛCk = µSk =: µ̃k (see (2.12) for definitions).

(ii) For any strict subset of servers S ⊂ Sk, the set of service classes in residual matching

M̆ served only by S is a strict subset of Ck, and S exhibits strictly positive slack as

ϵ → 0, that is,

∀S ⊂ Sk : US(M̆) ⊂ Ck and µS > Λ
US(M̆)

.

Further, since US(M) ⊆ US(M̆), the positive slack condition also holds for US(M).

(Recall that US(M) is the subset of service classes that can only be served by servers

in S.)

Let σ ∈ T (D, K ′) be a topological order of the CRP components with non-empty server

sets. Define Sk = Sσ(1) ∪ Sσ(2) ∪ · · · ∪ Sσ(k) and Ck = Cσ(1) ∪ Cσ(2) ∪ · · · ∪ Cσ(k) to be the

subset of servers and service classes in the first k CRP components in the topological order.

Define

C ′
k =

{
∪κCκ|κ ∈ {K ′ + 1, . . . , K} : ∃k′ ∈ {1, . . . , k}, κ ∈ comps(σ, k′)

}
to be the service classes of server-less CRP components that are part of comps(σ, k′) for some

k′ ∈ [k]. Then,

(iii) Customers in Ck ∪ C ′
k are exclusively served by servers in Sk. That is,

USk
(M) = Ck ∪ C ′

k.

(iv) The capacity slack of the set of servers Sk converges to zero as ϵ → 0, in particular,

∆(Sk) = ϵ

k∑
ℓ=1

γ̃comps(σ,ℓ) + o(ϵ).
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Proof: See Appendix 2.D. □

We can now begin calculating the expected waits. Using the aggregated states from Equa-

tion (2.26), the following lemma (rephrased) from Afèche et al. (2021) gives an expression

for the mean waiting time for each service class in terms of the probabilities π(P (s; b)).

Lemma 5. (Afèche et al., 2021, Lemma 6) The steady-state mean waiting time of service

class i is equal to

Wi =
∑
s∈Σm

m∑
b=1

Wi(s; b) · π(P (s; b)),

where Σm denotes the set of all the permutations of [m],

Wi(s; b) =
b∑

ℓ=1

11
(
i ∈ U(s1, . . . , sℓ)

)
∆(s1, . . . , sℓ)

,

and π(P (s; b)) is given by (2.26).

We are able to simplify these expressions further by showing that only a relatively small

subset of aggregate states (s, b) have asymptotically non-zero probabilities in heavy-traffic.

These states are exactly those that are consistent with T (D, K ′) = (σ1, . . . , σT ) the collection

of topological orders on {C1, . . . ,CK ′}, a notion we will formalize in Definition 9. Our first

step to showing this is to consider the slacks ∆(s1, . . . , sℓ), which the preceding lemma

suggests will be an important part of the analysis. Lemma 6 below, which is an extension of

(Afèche et al., 2021, Lemma 4) shows that only certain subsets of servers have “interesting”

slacks under a given sequence of arrival rates λ(ϵ).

Lemma 6. Let D be the DAG for the CRP decomposition {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}

under some menu M and a given heavy-traffic equilibrium strategy profile. Then, a subset

of servers {s1, . . . , sℓ} ⊆ [m] satisfies

lim
ϵ→0

ϵ

∆(s1, . . . , sℓ)
> 0
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if and only if there exists a topological order σ ∈ T (D, K ′) and an integer k such that

{s1, . . . , sℓ} =
k⋃

i=1

Sσ(i). (2.27)

Further, in this case :

lim
ϵ→0

ϵ

∆(s1, . . . , sℓ)
=

1∑k
i=1 γ̃comps(σ,i)

for any topological order σ for which (2.27) is satisfied.

Proof: See Appendix 2.D. □

As implied in the previous paragraph, we can use Lemma 6 to prove Proposition 7 below,

which states that a relatively small number of aggregate states have positive steady-state

probability in heavy traffic; these are the aggregate states P (s;m) in which s is a permutation

of the servers induced by a topological order σ ∈ T (D, K ′) and such that all servers are busy.

Definition 9. (Server Permutations Induced by Topological Orders) We say that a permutation

of the servers s = (s1, s2, . . . , sm) ∈ Σm is induced by the topological order σ ∈ T (D, K ′),

if s can be expressed as a concatenation of sub-permutations:

s =
(
sσ(1)||sσ(2)|| · · · ||sσ(K ′)

)

with sk ∈ ΣSk denoting a permutation of the servers Sk of CRP component Ck. In other

words, the servers of a CRP component are contiguous in the permutation s, and the order

of the CRP components obeys the topological order σ.

Returning to our four server example in Figure 2.3a, the CRP components were C1 =

(C1,S2 = ({1}, {1}), C2 = (C2,S2 = ({2}, {2}), and C3 = (C3,S3 = ({3, 4}, {3, 4}), and

the topological orders were σa = (1, 2, 3) and σb = (2, 1, 3). Definition 9 tells us the
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topological order σa induces two possible server permutations, sa1 = (s1||s2||s3||s4) and

sa2 = (s1||s2||s4||s3).

The next proposition is an extension of (Afèche et al., 2021, Proposition 2).

Proposition 7. Let D be the DAG for the CRP decomposition {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}

under some menu M and a heavy-traffic strategy profile. Let s ∈ Σm be a server permutation.

1. If b < m, and/or s is not a permutation of the servers induced by some topological

order σ ∈ T (D, K ′), then

lim
ϵ→0

π(P (s; b)) = 0.

2. If b = m and s =
(
sσ(1)||sσ(2)|| · · · ||sσ(K ′)

)
is a server permutation induced by topo-

logical order σ ∈ T (D, K ′) with subpermutations sk ∈ ΣSk , then

lim
ϵ→0

π(P (s; b)) = B′ ·Q(σ)
K ′∏
k=1

θk(sk)

where B′ is a normalization constant, Q(σ) was defined in (2.14) as

Q(σ) =
∏

κ∈[K ′]

1∑κ
ℓ=1 γ̃comps(σ,ℓ)

,

and
{
θk : ΣSk → ℜ+

}
k∈[K ′] is a fixed collection of functions mapping the sub-permutation

of servers of CRP components to positive reals.

Using Proposition 7 and the normalization condition
∑

s∈Σm,0≤b≤m π(P (s; b)) = 1, we
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get:

lim
ϵ→0

∑
s∈Σm,0≤b≤m

π(P (s; b)) =
∑

σ∈T (D,K ′)

∑
s=(sσ(1)||sσ(2)||···||sσ(K′))

{sk∈ΣSk}k∈[K′]

π(P (s;m))

=
∑

σ∈T (D,K ′)

∑
s=(sσ(1)||sσ(2)||···||sσ(K′))

{sk∈ΣSk}k∈[K′]

B′ ·Q(σ)
K ′∏
k=1

θk(sk)

=

 ∑
σ∈T (D,K ′)

Q(σ)


B′ ∑

{sk∈ΣSk}k∈[K′]

K ′∏
k=1

θk(sk)

 ,

or, B′ ∑
{sk∈ΣSk}k∈[K′]

K ′∏
k=1

θk(sk)

 =
1∑

σ∈T (D,K ′)Q(σ)
.

Finally, we provide a lemma giving expressions for the scaled Wi(s; b) when s is a server

permutation induced by a topological order σ, and b = m, as these are the only permutations

that will be important in arriving at the result. A somewhat remarkable fact is that the

limiting scaled Wi(s;m) depends only on the topological order σ and not the full server

permutation s.

Lemma 7. Let s = (s1, . . . , sm) be a server permutation induced by the topological order

σ ∈ T (D, [K ′]). For a service class i ∈ Ck,

lim
ϵ→0

ϵWi(s;m) = wσ,k :=
K ′∑

κ=comps−1(σ,k)

1∑κ
ℓ=1 γ̃comps(σ,ℓ)

. (2.28)

Proof: See Appendix 2.D. □

Combining Proposition 7 with Lemmas 5-7, the limiting scaled mean waiting time for
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service class i ∈ Ck is:

Ŵ ∗
i = lim

ϵ→0
ϵ ·Wi

= lim
ϵ→0

∑
s∈Σm

ϵ
m∑
b=1

Wi(s; b) · π(P (s; b)).

Using the product rule of limits 1 we can reduce the above sum to a sum over server permu-

tations induced by topological orders, and where all servers are busy.

Ŵ ∗
i = lim

ϵ→0

∑
σ∈T (D,K ′)

∑
s=(sσ(1)||sσ(2)||···||sσ(K′))

{sk∈ΣSk}k∈[K′]

ϵ ·Wi(s;m) · π(P (s;m))

=
∑

σ∈T (D,K ′)

∑
s=(sσ(1)||sσ(2)||···||sσ(K′))

{sk∈ΣSk}k∈[K′]

wσ,k · B′ ·Q(σ)
K ′∏
ℓ=1

θℓ(sℓ)

=
∑

σ∈T (D,K ′)

wσ,k ·Q(σ)
∑

s=(sσ(1)||sσ(2)||···||sσ(K′))
{sk∈ΣSk}k∈[K′]

B′
K ′∏
ℓ=1

θℓ(sℓ)

=

∑
σ∈T (D,[K ′])wσ,k ·Q(σ)∑

σ∈T (D,K ′)Q(σ)

=: W̃k,

as in the theorem statement.

2.6.2 Proof of Theorem 2 Throughout this section, we will take the menu M ,

limiting arrival rates Λ and service rates µ, and slacks Γ to be given, and largely suppress

any dependence on M in the notation. We will let M̆ be the residual matching of the menu

M with arrival rates Λ and service rates µ.

1. Product rule of limits: If limx→x0 f(x) = F and limx→x0 g(x) = G, then limx→x0 f(x)g(x) exists and
equals FG.
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Instead of directly working with the matching rates p(ϵ)

ij (M), we will look at the service

probabilities q(ϵ)

ij . For all i ∈ [n] and j ∈ [m], q(ϵ)

ij (x) is the probability with which server

j serves customer i given the system is in state x and server j has become idle. We prove

Theorem 2 by deriving and simplifying expressions for the limiting service probabilities qij

for the menu M , and find that the limiting service probabilities depend only on the service

rates µ, limiting arrival rates Λ, and the connectivity within each CRP component. To do

this, we will make use of a new state space aggregation which we will introduce here.

In Section 2.6.1, we introduced the aggregate states P (s, b) for ever s ∈ Σm and b ∈ [m].

Recall that P (s, b) is the set of all states where s is the ranking of servers in terms of the

age of the customers they are serving for busy servers, and the time since becoming idle for

the idle servers, and b is the number of busy servers. In this section, we further aggregate

the state space, so that we can consider all of the states in which we observe a particular

subpermutation of servers within a CRP component together. Specifically, for some k ∈ [K ′]

and some subpermutation sk ∈ ΣSk
, we define

Pk(sk) = ∪σ∈T (D,K ′)

{
s ∈ P (s,m)|s =

(
sσ(1)|| · · · ||sk|| · · · ||sσ(K ′)

)
,

sκ ∈ ΣSκ
for κ ∈ [K ′] and κ ̸= k

}

Note that while the set of aggregated states P (s, b) does not depend on the menu being

offered, Pk(sk) depends on the set of topological orders, and hence does depend on the

menu.

The first main step of our derivation will be to calculate the limiting service probabilities

for our new further aggregated state space. That is, for each pair of service classes i ∈ [n]

and servers j ∈ [m] in the same CRP component, and for any subpermutation of servers

within that CRP component sk(k) ∈ ΣSk(j)
, we would like to calculate qij(Pk(j)(sk(j))), the

limiting service probability of service class i by server j given the system is in a state in
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Pk(j)(sk(j)). Recall that k(j) denotes the index of the CRP component that server j belongs

to. We do not consider i and j that are not in the same CRP component, as we know the

limiting service probabilities of service classes and servers that are not in the same CRP

component converge to zero. Similarly, we do not consider that service probabilities in any

states x not in Pk(sk) for some k ∈ [K ′] and sk ∈ ΣSk
, as those states have idle servers, and

hence have probabilities converging to zero.

We will begin by writing the state dependent matching probability q(ϵ)

ij (x) for an arbitrary

state x ∈ Pk(j)(sk(j)). We will let j(x) denote the position in the server permutation of

server j in the state x and similarly will let j(s) denote the position of server j in the server

permutation s. We can look at q(ϵ)

ij (x) by conditioning on the position in the queuing network

of the potential customer of type i that j serves. This lets us express q(ϵ)

ij(x)
as

q(ϵ)

ij (x) =
m∑

r=j(x)

 r−1∏
u=j(x)

λnu{U(s1,...,su∩C(j)}
λnu
U(s1,...,su)

λi

nr∑
y=1

λnr−1

{U(s1,...,sr)∩C(j)}
λnr
U(s1,...,sr)


=λi

m∑
r=j(x)

 r−1∏
u=j(x)

λnu{U(s1,...,su)∩C(j)}
λnu
U(s1,...,su)

 (2.29)

×

 λnr
U(s1,...,sr)

− λnr{U(s1,...,sr)∩C(j)}

λnr
U(s1,...,sr)

(
λU(s1,...,sr)

− λ{U(s1,...,sr)∩C(j)}
)
 . (2.30)

It will be useful to decompose this expression into two parts, q+ij(x), the part of the

expression representing a transition within the CRP component, and q0ij(x), the part of

the expression representing a transition outside of the CRP component. We suppress the
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dependence on ϵ to reduce clutter in the notation. So

q+ij(x) = λi

mk∑
r=j(x)

 r−1∏
u=j(x)

λnu{U(s1,...,su)∩C(j)}
λnu
U(s1,...,su)


×

 λnr
U(s1,...,sr)

− λnr{U(s1,...,sr)∩C(j)}

λnr
U(s1,...,sr)

(
λU(s1,...,sr)

− λ{U(s1,...,sr)∩C(j)}
)
 ,

and q0ij(x) = q(ϵ)

ij (x) − q+ij(x). Recall that mκ =
∑

ℓ∈[κ] |Sℓ|, that is, mκ is the number of

servers in the first κ CRP components in the topological order.

As an intermediate step to looking at the aggregate matching probabilities q(ϵ)

ij (Pk(sk)),

we will first look at the partially aggregated matching probabilities q(ϵ)

ij (P (s,m)).

q(ϵ)

ij (P (s,m)) =
1

π(P (s,m))

 ∑
x∈P (s,m)

π(x)q+ij(x) +
∑

x∈P (s,m)

π(x)q0ij(x)

 .

However, the second term represents transitions from a state where the permutation of

servers is induced by a topological order to a state where the permutation of servers is not

induced by a topological order, and hence has a limiting probability of zero. This means

we expect the second term in this expression to converge to zero, which we prove in the

following lemma.

Lemma 8. For a given admissible service menu M with limiting arrival rates Λ, service rates

µ, and slacks Γ, let {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK} be the set of CRP components, and let

T (D, K ′) be the set of topological orders on the CRP components. Then for any permutation

of servers s induced by some topological order σ ∈ T (D, K ′),

lim
ϵ→0

∑
x∈P (s,m)

π(x)q0ij(x) = 0
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Proof: See Appendix 2.E. □

We will now fix a topological order σ ∈ T (D, K ′), and a server permutation s ∈ Σm that

is induced by σ. To reduce notational clutter, we assume without loss of generality that

the CRP components are labelled in order of their position in the topological order, that is,

σ(k) = k for all k ∈ K ′. Using Lemma 8, we can write q(ϵ)

ij (P (s,m)) as

q(ϵ)

ij (P (s,m)) =
1

π(P (s,m))

∑
x∈P (s,m)

π(x)q+ij(x) + o(1),

or written another way,

q(ϵ)

ij (P (s,m)) =
λi

π(P (s,m))

∞∑
n1=0

· · ·
∞∑

nm=0

B
m∏
ℓ=1

λ
nℓ
U(s1,...,sℓ)

µ
nℓ+1
{s1,...,sℓ}

q+ij(s1, n1, · · · , sm, nm) + o(1).

(2.31)

The following notation will be useful in simplifying this expression. Recall from Equa-

tion (2.25) that

∆(S) = µS − λUS(M).

It will also be useful to define ∆j(S) as

∆j(S) = µS − λ{US(M)∩C(j)}. (2.32)
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We can then write Equation (2.31) as

q(ϵ)

ij (P (s,m)) =
Bλi

π(P (s,m))

 m∏
ℓ=mk(j)+1

1

∆(s1, . . . , sℓ)


mk(j)−1∏

ℓ=1

1

∆(s1, . . . , sℓ)



×

 j−1∏
ℓ=mk(j)−1+1

1

∆(s1, . . . , sℓ)

[ mk(j)∑
r=j(s)

 r∏
u=j(s)

1

∆j(s1, . . . , su)


×

mk(j)∏
ℓ=r+1

1

∆(s1, . . . , sℓ)

( 1

∆(s1, . . . , sr)
− 1

∆j(s1, . . . , sr)

)]
+ o(1), (2.33)

where as before mκ =
∑

ℓ∈[κ] |Sℓ|.That is, mκ is the number of servers in the first κ CRP

components in the topological order.

We saw in Section 2.6.1 that the limiting values of ∆(s1, . . . , sℓ) depend on the values of

ℓ. If ℓ = mκ for some κ ∈ [K ′], then we know from Lemma 6 that

lim
ϵ→0

ϵ

∆(s1, . . . , smκ)
=

1∑κ
ℓ=1 γ̃comps(σ,ℓ)

.

For all other values of ℓ, there is some κ ∈ [K ′] such that mκ−1 + 1 ≤ ℓ ≤ mκ − 1. Here

we take m0 = 0. We let S = {smκ−1+1, . . . , sℓ}. Following the outline in (Afèche et al.,

2021, Lemmas 5 and 8), we can show that:

lim
ϵ→0

∆(s1, . . . , sℓ) = µS − Λ
US(M̆)

> 0.

In particular, this means that for all κ ∈ [K ′], and mκ−1+1 ≤ ℓ ≤ mκ−1, limϵ→0∆(s1, . . . , sℓ)

is a real number greater than zero that depends only on the permutation of servers in Cκ.

The same reasoning implies that for all j ≤ ℓ ≤ mk(j), limϵ→0∆j(s1, . . . , sℓ) is a real

number greater than zero that depends only on the permutation or servers in Ck.

We can use these observations to prove the following lemma.
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Lemma 9. We can find functions
{
θκ : ΣSκ → ℜ+

}
κ∈[K ′], Hij : ΣSk(j) → ℜ+, and Gij :

ΣSk(j) → ℜ+, such that qij(P (s,m)) = limϵ→0 q
(ϵ)

ij (P (s,m)) can be written as

qij(P (s,m)) = lim
ϵ→0

 Bλi
π(P (s,m))ϵK

′Q(σ)

 ∏
κ̸=k(j)

θκ(sκ)

Hij(sk(j))


− lim

ϵ→0

[
Bλi

π(P (s,m))ϵK
′−1

∏
κ̸=k

1∑κ
ℓ=1 γ̃comps(σ,ℓ)

 (2.34)

 ∏
κ̸=k(j)

θκ(sκ)

Gij(sk(j)) + o(1)

]
, (2.35)

where θκ and Hij only depend on M̆ , Λ, and µ.

Proof: See Appendix 2.E. □

We provide exact definitions of
{
θk : ΣSk → ℜ+

}
k∈[K ′], Hij : ΣSk → ℜ+, and Gij :

ΣSk → ℜ+ in the proof of Lemma 9 in Appendix 2.E.

Notice that the first line in Equation (2.34) has an ϵ−K ′
term, and the second line has

an ϵ−(K ′−1) term. Since qij are probabilities and therefore must be between 0 and 1, we

know that limϵ→0Bϵ−K ′
is bounded. This implies that limϵ→0Bϵ−(K ′−1) = 0, and so only

the first line in Equation (2.34) will be non-zero. Thus

qij(P (s,m)) =
B′λi

π(P (s,m))
Q(σ)

∏
κ̸=k

θκ(sκ)

Hij(sk(j)). (2.36)

Because qij are matching probabilities, we also know that

qij(P (s,m)) =
qij(P (s,m))∑

i′∈Ck(j) qi′j(P (s,m))
. (2.37)

Since the only term in Equation (2.37) that depend on j is the Hij(sk(j)) term, we can write
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qij(P (s,m)) as

qij(P (s,m)) =
Hij(sk(j))∑

i′∈Ck Hi′j(sk(j))
. (2.38)

Since Equation (2.38) holds for any server permutation s ∈ Σ, and depends only on sk and

not on the rest of the server permutation, this implies that

qij(Pk(j)(sk(j))) =
Hij(sk(j))∑

i′∈Ck Hi′j(sk(j))
. (2.39)

Since, as Lemma 9 states, Hij(sk(j)) does not depend on Γ, the remaining step needed to

prove Theorem 2 is to show that π(Pk(j)(sk(j))) also does not depend on Γ. This is captured

in the following lemma.

Lemma 10. For an admissible service menu M with limiting arrival rates Λ service rates µ,

and slacks Γ, the limiting probability of being in a state with the sub-permutation of server

sk ∈ ΣSk
for k ∈ K ′ is equal to

lim
ϵ→0

π(Pk(sk)) =
θk(sk)∑

sκ∈ΣSk
θκ(sκ)

,

where
{
θκ : ΣSκ → ℜ+

}
κ∈[K ′] is a function that depends only on M̆ , Λ, and µ.

Proof: See Appendix 2.E. □

Combining Lemma 10 with Equation (2.38), we have that the limiting service probabilities

limϵ→0 q
(ϵ)

ij do not depend on the exact values of the slacks Γ, only requiring that M is an

admissible menu for the slacks Γ.
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2.A Section 2.3 Proofs

Proof of Lemma 1: Let us define the set Fmax as

Fmax :=

∑
i∈[n]

f = [fij ] :
∑
i∈[n]

fij ≤ µj ∀j ∈ [m] , f ≥ 0, fij = 0, ∀(i, j) : mij = 0

 .

Note that for all ϵ ∈ [0, ϵo), F(ϵ, λ(ϵ),M) ⊆ Fmax. Furthermore, since Fmax is a compact

set, we know that the sequence f (ϵ) has a subsequence that converges to some limit in Fmax.

Let f̃ denote this limit. To prove that f̃ ∈ F(0, λ(ϵ),M), all that remains to be shown is that

f̃ satisfies ∑
j∈[m]

f̃ij = Λi, for all i ∈ [n].

But we know that

∑
j∈[m]

f (ϵ)

ij = λ(ϵ)

i , for all i ∈ [n] and 0 < ϵ < ϵ0,

and f̃ is the limit of a subsequence of f (ϵ), and so

∑
j∈[m]

f̃ij = lim
ϵ→0

λ(ϵ)

i = Λi, for all i ∈ [n]

as required. □

Proof of Lemma 2: Fix a topological order σt ∈ T (D, [K ′]) and an index κ ∈ [K ′].

Define the sets

C =
κ⋃

ℓ=1

{Ci : i ∈ comps(σt, ℓ)} , and S =
κ⋃

ℓ=1

{Si : i ∈ comps(σt, ℓ)} .
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By the definition of the DAG D and topological order σt, we have that

S = S(C ).

That is, the services classes C are only served by servers in S . We can find a lower bound

on the scaled mean waiting times of the service classes in C using the scaled mean waiting

time of a M/M/1 queue:

∑
i∈C

λ(ϵ)

i Ŵi
(ϵ) ≥ ϵ

µS − λ(ϵ)

C

. (2.A1)

Further, from Lemma 4 we know that,

µS − λ(ϵ)

C = ϵ
κ∑

ℓ=1

γ̃comps(σt,ℓ) + o(ϵ).

If, contradictory to the Lemma 2,
∑κ

ℓ=1 γ̃comps(σt,ℓ) ≤ 0, then the right-hand side of (2.A1)

must diverge, and hence the sum on the left-hand side as well. However, from the admissi-

bility of M , each Ŵi
(ϵ)

converges, and therefore also the sum on the left-hand side of (2.A1).

Thus we must have
∑κ

ℓ=1 γ̃comps(σt,ℓ) > 0 for all σt ∈ T (D, [K ′]) and κ ∈ [K ′]. □

2.B Section 2.4 Proofs

Proof of Proposition 2: Given M is admissible for (λ(ϵ), µ), we know from the definition

of admissibility that

∆(ϵ)

S (M) :=
∑
j∈S

µj −
∑

i∈US (M)

λ(ϵ)

i = Ω(ϵ) for all S ⊆ [m]. (2.A1)
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To show M is admissible for (Λ− ϵΛ, µ), we must show that

∑
j∈S

µj −
∑

i∈US (M)

Λi + ϵ
∑

i∈US (M)

Λi = Ω(ϵ) for all S ⊆ [m]. (2.A2)

Equation (2.A1) implies that
∑

j∈S µj −∑i∈US (M) Λi ≥ 0 for all S ⊆ [m]. For any

S ⊆ [m] such that
∑

j∈S µj−
∑

i∈US (M) Λi > 0, Equation (2.A2) holds without regardless

of the ϵ terms. In the case that
∑

j∈S µj −
∑

i∈US (M) Λi = 0, then

∑
j∈S

µj −
∑

i∈US (M)

Λi + ϵ
∑

i∈US (M)

Λi = ϵ
∑

i∈US (M)

Λi

= ϵ
∑
j∈S

µj .

But
∑

j∈S µj > 0, so ϵ
∑

j∈S µj = Ω(ϵ) as required.

The second part of the proposition states that M̆ is admissible for (Λ− ϵΛ, µ). To show

this, similarly to the first part of the proposition we must show that

∑
j∈S

µj −
∑

i∈US (M̆)

Λi + ϵ
∑

i∈US (M̆)

Λi = Ω(ϵ) for all S ⊆ [m]. (2.A3)

There are two cases to consider. In the first case, S = ∪k∈TSk for some T ⊆ K. In

words, this means that S is the union of servers in a particular subset of CRP components.

It is shown in the proof of (Afèche et al., 2021, Lemma 4) that in this case,
∑

j∈S µj =∑
i∈US (M̆)

Λi, and Equation (2.A3) holds following the same reasoning as in the first part of

the proposition. In the second case, S ̸= ∪k∈TSk for any T ⊆ K, and the proof of (Afèche

et al., 2021, Lemma 4) shows that
∑

j∈S µj >
∑

i∈US (M̆)
Λi, and Equation (2.A3) holds

following similar reasoning as in the first part of the proposition. □
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2.C Section 2.5 Proofs

Proof of Corollary 2: We will prove this corollary by proving the contrapositive.

So suppose there are k ∈ [K] and κ ∈ [K] such that there are no topological orders

σ ∈ T (D, K ′) with comps−1(σ, κ) ≤ comps−1(σ, k). This means that in every topological

order σ ∈ T (D, K ′), comps−1(σ, κ) > comps−1(σ, k). From the definition of the conditional

delay wσ,k in Equation (2.15), this implies that wσ,k > wσ,κ for all σ ∈ T (D, K ′). As the

total delays are weighted sums of the conditional delays, this proves the result. □

Proof of Proposition 3: Without loss of generality let us index the CRP components

in such a way that Wk ≤ Wk+1 for all k ∈ [K − 1]. Recall {C1, . . . ,CL} is the partition

described in Definition 7. Are stated in the proposition, we will assume

(i) Wk = Wκ for all (k, κ) ∈ [K]× [K] such that Wk ∈ Cℓ and Wκ ∈ Cℓ for some ℓ ∈ [L],

(ii) Wk < Wκ for all (k, κ) ∈ [K] × [K] such that Wk ∈ Cℓ and Wκ ∈ Cℓ′ for some

(ℓ, ℓ′) ∈ [L]× [L] where ℓ < ℓ′.

We will now show how to choose a vector of capacity slacks γ̃ = (γ̃1, . . . , γ̃K) such that

WCk
= Wk for all k ∈ [K]. Fix γ̃ such that γ̃k = γ̂ℓ for all k ∈ Cℓ. It follows from

the chained structure of the DAG and the construction of γ̃ that for any permutation σ =

(σ(1), σ(2), . . . , σ(K)) induced by some topological order the vector (γ̃σ−1(1), γ̃σ−1(2), . . . , γ̃σ−1(K))

is constant. This observation together with Theorem 1 imply that Q(σ) in Equation (2.14)

is also constant, independent of σ. Furthermore, by symmetry, it is not hard to see that two

CRP components that belong to the same partition Cℓ have the same limiting scaled waiting

times, which we denote by Ŵℓ. One can show from Theorem 1 that

Ŵℓ = Ŵℓ−1 +
1

nℓ

nℓ∑
s=1

1∑L
j=ℓ+1 nj γ̂j + s γ̂ℓ

, ℓ = 1, 2 . . . , L (2.A1)
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with Ŵ0 = 0. We use this condition to find the values of {γ̂ℓ} that implement {Wℓ}, that

is, Ŵℓ = Wℓ for all ℓ ∈ [L]. To this end, we use backward induction on ℓ. For ℓ = L we

have that

ŴL = ŴL−1 +
1

nL

nL∑
s=1

1

s γ̂L
.

Thus, γ̂L must satisfy

γ̂L =
1

(WL −WL−1)

1

nL

nL∑
s=1

1

s
.

Now suppose that we have determined the values of γ̂L, γ̂L−1, . . . , γ̂ℓ+1 and define Γ̂ℓ :=∑L
j=ℓ+1 nj γ̂j . We find the value γ̂ℓ by solving (2.A1)

Wℓ = Wℓ−1 +
1

nℓ

nℓ∑
s=1

1

Γ̂ℓ + s γ̂ℓ
.

We note that there exists a unique γ̂ℓ that solves this equation in the region γ̂ℓ > −Γ̂ℓ/nℓ.

This follows from the fact that the summation above is monotonically decreasing in γ̂ℓ in

this region and diverges to +∞ as γ̂ℓ approaches Γ̂ℓ/nℓ from above and converges to zero as

γ̂ℓ approaches ∞. □

Proof of Proposition 4: Note from (2.14) that

wσ,k :=
K∑

κ=σ−1(k)

1∑κ
ℓ=1 γ̃σ(ℓ)

=
1

|a| +
K−1∑

κ=σ−1(k)

1∑κ
ℓ=1 γ̃σ(ℓ)

.

Let us prove that wσ,k ≥ 1/|a|. From the previous equation, this would follow if the last

summation is nonnegative. Suppose, by contradiction that this is not the case. Then, there

exists a κ such that σ−1(k) ≤ κ ≤ K − 1 such that
∑κ

ℓ=1 γ̃σ(ℓ) < 0. In other words,

the cumulative capacity slack of the CRP components {Cσ(1),Cσ(2), . . . ,Cσ(κ)} is negative.

However, this would imply that the cumulative arrival rate to these components exceeds
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the total service capacity of all the servers in these components. This, together with the

DAG structure connecting all the CRP components imply that the stability condition in

Proposition 1 is violated, which holds by assumption. From this contradiction we conclude

that wσ,k ≥ 1/|a| and then from (2.16) we also get that WCk
≥ 1/|a|.

Let us now prove the second part of the corollary, namely, there can be at most one CRP

component κ̂ ∈ [K] such that ŴCκ̂
= 1/|a|. From the previous discussion, it follows that

the requirement ŴCκ̂
= 1/|a| can only be satisfied if wσ,κ̂ = 1/|a| for all permutations σ

associated a topological order. But this can only happen if σ−1(κ̂) = K for all permutation

σ. Evidently, this condition can only be satisfied by at most one CRP component and holds

trivially if K = 1. □

Proof of Proposition 5: Take any slacks γ with |γ| > 0. We will first show that M

is admissible with λ(ϵ) = Λ− ϵγ + o(ϵ) and µ. To do this, we need to show that

∆(ϵ)

S (M) = Ω(ϵ) for all S ⊆ [m],

where

∆(ϵ)

S (M) :=
∑
j∈S

µj −
∑

i∈US (M)

λ(ϵ)

i .

We define DS as

DS =
∑
j∈S

µj −
∑

i∈US (M)

Λi

for all S ⊆ [m]. Then

∆(ϵ)

S (M) = DS + ϵ
∑
j∈S

γi + o(ϵ) for all S ⊆ [m],

From the definition of M we know that DS > 0 for all S ⊆ [m], implying that ∆(ϵ)

S (M) = Ωϵ
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for all S ⊆ [m]. For the case of S = [m], since |Λ| = |µ|, and |γ| > 0,

∆(ϵ)

S (M) = +ϵ|γ|+ o(ϵ) = Ω(ϵ)

as required.

What remains to be shown is that M induces a single CRP component. This follows from

part (i) of Lemma 4, which states that within a CRP component Λ̃k := ΛCk = µSk =: µ̃k

(see (2.12) for definitions). But with our choice of M , we know that for any subset of servers

S ⊊ [m], any subset of customers classes C ⊆ [n] such that every class in C is compatible

with some server in S will have ΛC < µS . Thus there are no CRP components that do not

consist of all service classes and all servers, implying there is exactly one CRP component.

□

Proof of Lemma 3: We assume without loss of generality that the CRP components

are labelled so that comps−1(σ, k) = k for all k ∈ [K ′]. We construct the menu M as

follows. Let M̆ be any residual matching associated with the collection of CRP components

C = {C1, . . . ,CK ′ ,CK ′+1, . . . ,CK}. Construct the menu M as follows. Let mij = 1 for all

i ∈ [n] and j ∈ [m] such that m̆ij = 1. Then for every k ∈ [K ′ − 1], let mij = 1 for some

i ∈ Ck+1 and some j ∈ Sk. That is, for every CRP component Ck for k ∈ [K ′−1], we assign

some service class in Ck+1 to be a served by a server in Ck. We will show that this has the

effect of adding an arc to the DAG from Ck+1 to C without altering the CRP component

structure.

We will begin by assuming that there are no service classes with zero arrivals, that is, we

assume that Λ̃k > 0 for all k ∈ [K], and K = K ′. In this case, we let mij = 0 for all other

combinations of i ∈ [n] and j ∈ [m]. We will mention at the end of this proof how to adjust

the menu M for the case in which there is at least one k ∈ [K] with Λ̃k = 0.

The next step is to show that the CRP components of M are C. This is equivalent
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to showing that F(0,Λ,M) = F(0,Λ, M̆). First note that there can only be flow between

servers in Sk and customers in Ck∪Ck+1 for k ∈ [K−1], and there can only be flow between

servers in SK and customers in CK due to the construction of M . But there can be no flow

between servers in S1 and customers in C2, as all of the capacity of servers in S1 needs to

be allocated to servers in C1, since Λ̃1 = µ̃1. It can then be argued inductively that servers

in Sk do not have the capacity to allocate flow to customers in Ck+1, even though there is a

server that has the compatibility to do so. Thus F(0,Λ,M) = F(0,Λ, M̆) as required.

Next, we will show that the DAG of M only admits the topological order σ. This is

true based on the construction of M . The only arcs in M that are not in the residual

matching M̆ are between components Ck and Ck+1 for k ∈ [K − 1′], and there is such an

arc for k ∈ [K − 1]. Thus we require for any topological order σt admitted by M that

σt(k) < σt(k + 1) for k ∈ [K − 1]. But the only topological order that achieves this is σ,

where as stated previously σ(k) = k.

The final step needed to prove the first claim in Lemma 3 is to show that M is admissible.

Recall from Definition 1 that for a menu to be admissible we require that ∆(ϵ)

S (M) = Ω(ϵ)

for all S ⊆ [m], where

∆(ϵ)

S (M) :=
∑
j∈S

µj −
∑

i∈US (M)

λ(ϵ)

i .

The proof of (Afèche et al., 2021, Lemma 4) argues that if the subset of servers S ⊆ [m] is

not equal to ∪k
ℓ=1Sℓ for some k ∈ [K], then

µS − ΛUS(M) > 0.

which means that ∆(ϵ)

S (M) = Ω(ϵ) for all S ⊆ [m] that is not equal to ∪k
ℓ=1Sℓ for some

k ∈ [K]. For S ⊆ [m] such that S = ∪k
κ=1Sℓ for some k ∈ [K], we know from Lemma 4
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that
∑

j∈S µj =
∑

i∈US (M) Λi. So

∆(ϵ)

S (M)
k∑

ℓ=1

ϵγ̃ℓ − o(ϵ).

But since from the statement of the lemma,
∑k

ℓ=1 ϵγ̃ℓ > 0 for all k ∈ [K], this means that

∆(ϵ)

S (M) = Ω(ϵ) as required. Hence M is admissible as claimed.

This also demonstrates why no admissible menu M can admit a topological order σ such

that
∑k

ℓ=1 ϵγ̃ℓ ≤ 0 for some k ∈ [K ′]. If that were the case, then we would have that

limϵ→0∆
(ϵ)

S (M) ≤ 0 for S = ∪k
κ=1Sℓ, which contradicts M being admissible. This holds

even if we were to consider the scenario in which Λ̃k = 0 for some k ∈ [K], as this would

only decrease the values of γ̃comps(σ),k, making it more difficult to satisfy the condition

limϵ→0∆
(ϵ)

S (M) > 0.

Finally, we will mention how we can extend the construction of M to account for CRP

components k with Λ̃k = 0. Recall that these CRP components do not influence the topo-

logical orders themselves, only the slacks the elements comps(σ, k). We require for the

admissibility of M that
∑k

ℓ=1 comps(σ, ℓ) > 0 for all k ∈ [K ′]. This can potentially be

achieved in many ways, one of which will always be to let mij = 1 for some j in CK ′ and

for all i ∈ [n] such that Λi = 0. This construction will mean that γ̃comps(σ,k) = γ̃k for all

k ∈ [K ′− 1], and γ̃comps(σ,K ′) = γ̃K ′ +
∑

i:Λi=0 γi. Thus
∑k

ℓ=1 compsσ, ℓ =
∑k

ℓ=1 γ̃k > 0 for

all k ∈ [K ′ − 1], and
∑K ′

ℓ=1 compsσ, ℓ = |γ| > 0 as required. □

Proof of Proposition 6: Because the total delays are weighted averages of conditional

delays, we know if the only conditional delay we are taking the average over is the minimum

possible conditional delay, we will achieve the minimum total delay. From Lemma 3, we

know for any admissible menu M , the only topological orders with positive probability are

those that are admissible.

Because the set of all permutations of CRP components is finite, the set of admissible
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topological orders is finite. Thus there will be some implementable topological order that

achieves the minimum conditional delay (If there are some i ∈ [n] such that Λi = 0, for each

topological order we would also need to consider the assignment of customers classes with

zero arrivals to servers that minimises delay for each topological order).

Therefore we will be able to minimise the total average delay by choosing an admissible

menu M that only allows for the admissible topological order that achieves the minimum

conditional delay. We know that such a menu exists from Lemma 3. □

2.D Section 2.6.1 Proofs

Proof of Lemma 4: There are two differences between the setup in our paper and in

Afèche et al. (2021): first, the constants γi for the approach to heavy-traffic are allowed to

be arbitrary, while in Afèche et al. (2021) the authors impose γi = Λi. Second, our setup

has service classes with Λi = 0 and hence CRP components which consist of a single service

class and no servers. Despite these, the proofs for parts (i) and (ii) are identical to the proofs

of parts (i) and (ii) of (Afèche et al., 2021, Lemma 3).

Part (iii) of (Afèche et al., 2021, Lemma 3) states that USk
(M) = Ck, which in our setup

should be interpreted as

USk
(M) ∩

{
∪K ′
ℓ=1Cℓ

}
= Ck.

In addition, a server-less CRP component Cκ = ({i}, ∅) consisting of a single service class

i is part of the set of service classes uniquely served by the set USk
(M) if and only if all

the CRP components k′ such that Cκ has a directed arc to Ck′ in the DAG D = ([K],A)

are included in (σ(1), . . . , σ(k)). Recalling the definition of the function comps(σ, ·), this is

equivalent to saying that comps−1(σ, κ) ≤ k.
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Part (iv) follows from the definition of slack ∆() and part (iii):

∆(Sk) = µSk
− λUS (M) =

k∑
ℓ=1

µSℓ −
k∑

ℓ=1

∑
κ∈comps(σ,ℓ)

λCκ

=
k∑

ℓ=1

∑
κ∈comps(σ,ℓ)

µSκ − λCκ =: ϵ
k∑

ℓ=1

γ̃comps(σ,ℓ) + o(ϵ).

□

Proof of Lemma 6: The first part follows from the proof of (Afèche et al., 2021,

Lemma 4) where it is argued that if the subset S = {s1, . . . , sℓ} does not obey the condition

mentioned, then

µS − ΛUS(M) > 0,

and hence limϵ→0
ϵ

∆(S)
= 0. The second part follows from part (iv) of Lemma 4. □

Proof of Proposition 7: The proof of the first part of the Proposition follows exactly

the same lines as (Afèche et al., 2021, Proposition 2) and hence we omit it. The calculations

for the second part are as follows. Fix a topological ordering σ ∈ T (D, K ′), sub-permutations

sk ∈ ΣSk , and s = (sσ(1)|| · · · ||sσ(K ′)). For succinctness, define mk for k ∈ {0, 1, . . . , K ′−1}

by

m0 = 0, and mℓ = mℓ−1 + |Sσ(ℓ−1)|.

From (2.26)

π(P (s;m)) = B
m∏
ℓ=1

1

∆(s1, . . . , sℓ)

= B
K ′∏
k=1

 mk−1∏
ℓ=mk−1+1

1

∆(s1, . . . , sℓ)

 · 1

∆(s1, . . . , smk)
.
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By Lemma 6,

lim
ϵ→0

ϵ

∆(s1, . . . , smk)
=

1∑k
i=1 γ̃comps(σ,i)

.

For some k ∈ [K ′], and mk−1 + 1 ≤ ℓ ≤ mk − 1, denote S = {smk−1+1, . . . , sℓ}. Following

the outline in (Afèche et al., 2021, Lemmas 5 and 8), it follows that:

lim
ϵ→0

∆(s1, . . . , sℓ) = µS − Λ
US(M̆)

> 0.

For sk = (sk(1), . . . .sk(|Sk|)) ∈ ΣSk , denote

θk(sk) =

|Sk|−1∏
ℓ=1

1

µ{sk(1),...,sk(ℓ)} − Λ
U{sk(1),...,sk(ℓ)}(M̆)

. (2.A1)

Then,

lim
ϵ→0

π(P (s;m)) = lim
ϵ→0

B
ϵK

′

K ′∏
k=1

 mk−1∏
ℓ=mk−1+1

1

∆(s1, . . . , sℓ)

 · ϵ

∆(s1, . . . , smk)

= B′
 K ′∏

k=1

1∑k
i=1 γ̃comps(σ,i)

 K ′∏
k=1

θk(sk)


= B′ ·Q(σ) ·

K ′∏
k=1

θk(sk),

where B′ = limϵ→0 Bϵ−K ′
. □

Proof of Lemma 7: Let s = (sσ(1)|| · · · ||sσ(K ′)) = (s1, . . . , sm) ∈ Σm be induced by

topological order σ ∈ T (D, K ′), and define mℓ for ℓ ∈ {0, 1, . . . , K ′ − 1} by

m0 = 0, and mℓ = mℓ−1 + |Sσ(ℓ−1)|.

68



Define j(s, i) = min{ℓ : i ∈ U(s1, . . . , sℓ)}, and define κ satisfying mκ−1 + 1 ≤ j ≤ mκ.

Then, using Lemma 5, we have

lim
ϵ→0

ϵ ·Wi(s;m) = lim
ϵ→0

m∑
ℓ=j(s,i)

ϵ

∆(s1, . . . , sℓ)

and since each of limϵ→0
ϵ

∆(s1,...,sℓ)
exists by Lemma 6,

=
m∑

ℓ=j(s,i)

lim
ϵ→0

ϵ

∆(s1, . . . , sℓ)

=
K ′∑
k=κ

lim
ϵ→0

ϵ

∆(s1, . . . , smk)
+

∑
j(s,i)≤ℓ≤m,
∄k : ℓ=mk

lim
ϵ→0

ϵ

∆(s1, . . . , sℓ)

=
K ′∑
k=κ

1∑k
ℓ=1 γ̃comps(σ,ℓ)

.

The last equality follows because the second term in the preceding expression is 0 by

Lemma 6, and each of the terms in the first sum is precisely of the form (2.27) in Lemma 6.

The Lemma now follows by noting that κ only depends on the CRP component Ck that

service class i belongs to and therefore so does the last expression, and κ = comps−1(σ, k).

□

2.E Section 2.6.2 Proofs

Proof of Lemma 8: Let S ′ be the set of all server permutations that are not induced

by any topological order. Let s be a server permutation induced by some topological order

σ ∈ T (D, K ′).
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We know from flow balance that

lim
ϵ→0

∑
s′∈S ′

m∑
b=0

π(P (s′, b)) ≥ lim
ϵ→0

∑
x∈P (s,m)

π(x)q0ij(x).

□

But Proposition 7 tells us that

lim
ϵ→0

∑
s′∈S ′

m∑
b=0

π(P (s′, b)) = 0.

Since π(x) ∈ [0, 1] and q0ij(x) ∈ [0, 1] for all i ∈ [n], j ∈ [m], and x ∈ P (s,m), this means

that

lim
ϵ→0

∑
x∈P (s,m)

π(x)q0ij(x) = 0.

Proof of Lemma 9: Recall from Definition 9 that since the permutation of servers

s is induced by the topological order σ, we can express s as the concatenation of sub-

permutations:

s =
(
sσ(1)||sσ(2)|| · · · ||sσ(K ′)

)
with sκ ∈ ΣSκ denoting a permutation of the servers Sκ of CRP component Cκ.

For sκ = (sκ(1), . . . .sκ(|Sκ|)) ∈ ΣSκ , denote

θκ(sκ) =

|Sκ|−1∏
ℓ=1

1

µ{sκ(1),...,sκ(ℓ)} − Λ
U{sκ(1),...,sκ(ℓ)}(M̆)

.
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Also denote for sk ∈ Σk

Hij(sk) = lim
ϵ→0

|Sk|−1∑
r=ĵ

[ r∏
u=ĵ

1

∆j(s1, . . . , su)

|Sk|−1∏
ℓ=r+1

1

∆(s1, . . . , sℓ)


×
(

1

∆(s1, . . . , sr)
− 1

∆j(s1, . . . , sr)

)]
+

|Sk|∏
u=ĵ

1

∆j(s1, . . . , su)

and

Gij(sk) = lim
ϵ→0

1

∆j(sk(1), . . . , sk(|Sk|)

|Sk|∏
u=ĵ

1

∆j(s1, . . . , su)
.

Finally also recall the definition of Q(σ) from Equation (2.14) as

Q(σ) =
∏

κ∈[K ′]

1∑κ
ℓ=1 γ̃comps(σt,ℓ)

.

This lets us write qij(P (s,m)) = limϵ→0 q
(ϵ)

ij (P (s,m)) as

qij(P (s,m)) =
B′λi

π(P (s,m))
Q(σ)

∏
κ̸=k

θκ(sκ)

Hij(sk)

− lim
ϵ→0

 ϵB′λi
π(P (s,m))

∏
κ̸=k

1∑κ
ℓ=1 γ̃comps(σ,ℓ)

∏
κ̸=k

θκ(sκ)

Gij(sk) + o(ϵ),


(2.A1)

where B′ = limϵ→0 Bϵ−K ′
. □

Proof of Lemma 10: From Proposition 7, we know that

lim
ϵ→0

π(P (s,m)) = B′ ·Q(σ)
K ′∏
k=1

θk(sk), (2.A2)
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where θk(sk) is given by Equation (2.A1).

From the definition of Pk(sk),we have that

π(Pk(sk)) =
∑

σ∈T (D,K ′)

∑
s=(sσ(1)||sσ(2)||···||sk||···||sσ(K′))

{sk∈ΣSκ}κ∈[K′]

π(P (s,m)). (2.A3)

This means that

lim
ϵ→0

πM (P (sk)) = B′
M

∑
σ∈T (D,K ′)

∑
s=(sσ(1)||sσ(2)||···||sk||···||sσ(K′))

{sk∈ΣSκ}κ∈[K′]

Q(σ)
K ′∏
k=1

θk(sk)

= B′
M

∑
σ∈T (D,K ′)

[
Q(σ)

∑
s=(sσ(1)||sσ(2)||···||sk||···||sσ(K′))

{sk∈ΣSκ}κ∈[K′]

K ′∏
k=1

θk(sk)

]
(2.A4)

Since the values of θκ(sκ) are independent of each other and do not depend on σ, we can

rewrite this as

lim
ϵ→0

πM (P (sk)) = B′
M · θk(sk)

 ∑
σ∈T (D,K ′)

Q(σ)

∏
κ̸=k

∑
sκ∈ΣSκ

θκ(sκ) (2.A5)

Recall from Section 2.6.1B′
M

∑
{sk∈ΣSk}k∈[K′]

K ′∏
k=1

θk(sk)

 =
1∑

σ∈T (D,K ′)Q(σ)
.

This lets us rewrite B′
M as

B′
M =

1(∏K ′
κ=1

∑
{sκ∈ΣSκ} θκ(sκ)

)∑
σ∈T (D,K ′)Q(σ)
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Substituting this back into Equation (2.A5), we have that

lim
ϵ→0

π(Pk(sk)) =
θk(sk)∑

sκ∈ΣSk
θκ(sκ)

. (2.A6)

But θk(sk) depend only on Λ, µ, and M̆ , for all k ∈ [K ′], proving the result. □
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CHAPTER 3

DESIGNING SERVICE MENUS FOR BIPARTITE QUEUEING

SYSTEMS WITH STRATEGIC CUSTOMERS

3.1 Introduction

In this chapter, we extend the model in Chapter 2 to allow for customers to strategically

choose which service classes to join when they arrive into the system. We consider the

question of how to design a queueing system in a multi-class multi-server environment when

customers are acting strategically. In particular, we will the consider problem of designing a

queueing matching system such as the one depicted in Figure 3.1. In this system, customers

of different types θ = 1, . . . ,Θ arrive to the system at rates αθ seeking service by one of

many available servers j = 1, . . . ,m. (A detailed mathematical formulation is provided in

Section 3.2.) Servers are heterogeneous in terms of the amount of time it takes them to serve
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Figure 3.1: A multi-class multi-server matching queueing system.

a customer (i.e., have different service rates µj) as well as on other attributes that affect the

reward {Vθj} that customers receive for the service.
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The goal of the service provider is to design a service mechanism that will match cus-

tomers to servers and will balance two (usually) competing objectives: (1) maximize cus-

tomers’ average matching service reward and (2) minimize customers’ average waiting time.

We will restrict ourselves to a special class of mechanisms in which the service provider of-

fers a static menu of service classes i = 1, . . . , n and customers choose which one of them to

join upon arrival. A service class is defined by a single queue served by a specific subset of

servers under a FCFS-ALIS service discipline. Upon arrival, customers must choose which

service class to join. The decision is irrevocable, so no jockeying among queues or reneging

is allowed. A strategy for a type-θ customer is defined by a probability distribution {qθi}

over the service classes, with qθi being the probability that a type-θ customer joins service

class i. We assume that customers act as rational self-interested agents when choosing their

strategies by maximizing their expected net utility, which is given by the difference between

the expected server-dependent service reward they receive and a disutility waiting cost based

on the mean steady-state waiting time Wi of the service class they join. The expected server-

dependent service reward that a customer gets from joining a service class depends on the

steady-state matching probabilities {pij} that determine the likelihood that a customer who

joins class i will be served by server j in equilibrium under the FCFS-ALIS service discipline.

To illustrate some of the features of the problem at hand, let us consider a concrete

example with two servers (m = 2). In this setting, the service provider can offer one of

the five different service menus in Figure 3.2. For example, she can offer a Dedicated menu
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Figure 3.2: Possible service menus in a system with two servers.
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(far-most left panel) consisting of two service classes (queues) each served exclusively by one

of the two servers. Alternatively, the service provider can offer a Full menu (middle panel) in

which customers have three options; they can choose between two dedicated service classes

each served exclusively by one of the two servers or they can join a third class served by

both servers. A customer who chooses this third class does not know with certainty which

one of the two servers will be the one providing the service. The service provider can also

offer a Ni menu for i = 1, 2, (right two panels), in which the customers have two options;

they can choose between a dedicated service class served exclusively by server i, or they can

join a class served by both servers.

Figure 3.3 depicts an example of the equilibrium performance of the five menus in Fig-

ure 3.2 in the average reward vs. average delay quadrant for different values of the system

utilization ρ. A complete analysis of the two-server case is presented in Section 3.5.
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Figure 3.3: Equilibrium performance of the five menus (Dedicated (D), Single Line (SL),
Full (F), N1 and N2) in the average reward vs. average delay quadrant for different values
of the system utilization ρ.

For example, we will show that if the service provider only cares about minimizing cus-

tomers’ average waiting times, then the Single-Line menu is an optimal menu (see Theo-

rem 4), which is something to be expected since a single line guarantees complete resource

pooling. On the flip side, if the service provider is exclusively interested in maximizing av-

erage matching rewards and pays no attention to waiting times, then the Dedicated menu is

an optimal menu (see Theorem 5) under heavy traffic conditions.
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It is worth noticing that in this example, we have chosen the parameters of the model

in such a way that menu N2 dominates the other four menus when the system operates in

heavy traffic ρ ↑ 1 (right-most panel). Thus, in this case, it is possible to select a menu

that achieves first best performance in both measures simultaneously (see Remark 4 for

details). The model parameters we have chosen to achieve this are such that there is exactly

one customer type that prefers server 1 to server 2, and the arrival rate of that customer

type exceeds the capacity of server 1. With parameters satisfying these conditions, even the

customer type who most prefers server 1 needs to be served partially by server 2 in order for

the system to have stable queue lengths, and so there is no need for the service provider to

offer service class served only by server 1, and thus the service provider has enough service

pooling to achieve the minimum possible heavy traffic delays. By still offering a class served

only by server 2, the service provider is able to divert customers who prefer server 2 to server

1 away from server 1, allowing all of server 1’s capacity to be used to serve customers who

prefer server 1, thus achieving the maximum possible matching value.

Interestingly, since the N2 menu is a restricted version of the Full menu in which service

class 1 is not offered, this example shows that reducing customers’ choices can lead to more

efficient outcomes (a form of Braess’s paradox).

The rest of this chapter is organised as follows. In Section 3.2, we formally introduce the

model and the notion of equilibrium we use. In Section 3.3, we show some of the features

and challenges of this model when there are only two servers. We find that even when

there are only two servers, we are unable to solve the problem analytically and instead must

rely on identifying equilibria computationally. While it is possible to solve the problem

computationally for two servers, the approach does not extend to the general case. This

motivates the development of a strategic equilibrium in heavy-traffic that we present in

Section 3.4. In Section 3.5 we return to our two server example, and complete the equilibrium

analysis and consider the menu design problem in heavy-traffic. In Section 3.6, we investigate
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conditions under which a first best menu exists in a system with an arbitrary number of

servers. We show that in the extreme cases in which the service provider’s sensitivity to delay

ζ is either zero or infinity an optimal menu is given by a Single-Line or Dedicated menu,

respectively. For an arbitrary value of ζ, we derive necessary (Theorem 7) and sufficient

(Theorem 8) conditions for a first best outcome to be achieved, which are based on the

solution to a max-flow problem.

Following this, we develop three classes of menus that perform well, though not necessarily

optimally. In Section 3.7, we study a special class of Partition menus in which the set of

servers are partitioned into pools of servers, each acting as a ‘super-server’ that serves a

single service class. One of the key advantages of partition menus is that they are very

simple to explain and implement in practice. Furthermore, despite their limitations, partition

menus have a number of desirable theoretical properties (e.g., they include both delay-

minimizing and reward-maximizing menus) that the service provider can use to balance the

trade-off between waiting times and matching values. Furthermore, they are also tractable

from a computational standpoint and we exploit this in Section 3.7.3 to propose a mixed-

integer linear program (MILP) that finds an optimal partition menu. In Section 3.8 we

adopt a mechanism design approach to tackle the problem of finding optimal service menus.

Specifically, we formulate MILPs that design a service class or set of service classes for each

customer type to maximize a certain objective in an incentive compatible way. We call

menus we design using this approach Tailored menus, as every service class is tailored to

a specific customer type. We look at two classes of Tailored menus. In Section 3.8.1 we

develop a MILP formulation that finds a delay-minimizing tailored menu among those that

generate the maximum matching value. In Section 3.8.2 we take the opposite point of view

and formulate a MILP that finds a value-maximize menu among a particular subset of menus

that support complete resource pooling and therefore have minimum mean delay. Finally,

in Section 3.9 we conduct a set of numerical experiments to compare the performance of
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Partition and Tailored menus as a function of different parameters of the model including the

matrix of matching rewards V and the service provider’s sensitivity to delay ζ. Concluding

remarks and discussion of future research directions can be found in Chapter 4.

3.2 Model Description

In this section, we provide a detailed mathematical description of the queueing service system

depicted in Figure 3.1. The system is composed of three main components: (i) the stochastic

model governing the queueing dynamics of the various service classes and servers’ service

discipline, (ii) the strategies that customers use to choose which service class to join upon

arrival, and (iii) the service provider’s objective criteria (and corresponding optimization

problem) that are used to select an optimal menu of service classes to offer. (The service

provider selects this menu at time t = 0 and keeps it fixed from then on.) We next discuss

these three components in tandem.

(i) Queueing Model: A collection of Θ ∈ N customer types arrives to the service

system over time according to independent Poisson processes with rates α = (αθ)θ∈[Θ]. The

system is composed of m servers and n service classes, where each service class i ∈ [n] is

defined by a subset Si ⊆ [m] of the m available servers. Server j ∈ [m] has an exponentially

distributed service time with rate µj and we let µ = (µj)j∈[m] denote the vector of service

rates of the m servers.

The collection of service classes constitutes a service menu, which can be expressed by a

binary compatibility matrix M ∈ {0, 1}n×m, where the entries of M specify which service

classes can be served by which servers. That is, service class i can be served by server j

if and only if mij = 1 for i ∈ [n] and j ∈ [m]. Using a slight abuse of terminology and

notation, we refer to the matrix M as a service menu and use i ∈ M to denote that service

class i belongs to service menu M .
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We assume that upon arrival and before observing the queue lengths, customers select

one service class and join the queue of this class and wait to be served according to a FIFO

queueing discipline. This decision is irreversible, that is, after joining a queue, the customer

stays in it until the service is completed. Servers, on the other hand, serve the different

classes using a FCFS service discipline among all compatible service classes, that is, an idle

server j ∈ [m] serves the customer that has been waiting the longest among all the service

classes i ∈ M such that j ∈ Si. We also assume that a customer who arrives to find idle

compatible servers (and hence also an empty queue) will be routed to the compatible server

that has been idle the longest. Under these conditions, we say that the queueing system

operates under a FCFS-ALIS (first come first served - assign longest idle server) service

discipline.

(ii) Customers’ Strategies: For a given service menu M ∈ {0, 1}n×m, a strategy for

an arriving customer type θ is a probability distribution qθ = (qθi)i∈M over the set of service

classes in M , where qθi is the probability that a type-θ customer selects to join class i ∈ M .

We let q = {qθ}θ∈Θ denote the strategy profile of all customer types and let Q(M) be the

set of all feasible strategy profiles for a given menu M , that is,

Q(M) :=
{
q ∈ RΘ×n

+ :
∑
i∈M

qθi = 1 for all θ ∈ [Θ]
}
.

A strategy profile q ∈ Q(M) induces a vector of arrival rates λ(q) = (λi(q))i∈M to each

service class, where

λi(q) =
∑
θ∈[Θ]

αθ qθi i ∈ M.

Indirectly, through the vector of arrival rates λ(q), the strategy profile q ∈ Q(M) also

determines the vector W (q) = (Wi(q))i∈M of steady-state waiting times for each service

class as well as the matrix of matching probabilities p(q) = (pij(q)) between service classes

80



and servers, where pij(q) denotes the steady-state probability that a customer joining class

i ∈ M will be served by server j ∈ [m] under the strategy profile q. We will restrict our

attention to menus M and strategies q ∈ Q(M) that are stable in the sense that they jointly

admit a well-defined steady state for the service system. The condition for a menu to be

stable in terms of the arrival rates into the service classes λ(q) and the service rates of the

different servers µ is given in Proposition 1.

We will further restrict attention to admissible menus M for which the stability condition

above is satisfied for some feasible strategy profile q ∈ Q(M). Note that this is a different

notion of admissibility than we used in Chapter 2. We will not be using the notion of

admissibility from Chapter 2 in this chapter.

Definition 10. (Admissible Menus and Strategies) A menu M is admissible if there exists

a strategy profile q ∈ Q(M) for which the service system is stable, that is, the inequalities in

Proposition 1 are satisfied. We let M denote the set of admissible menus.

For an admissible menu M ∈ M, we denote by Q(M) ⊆ Q(M) the set of all feasible

strategy profiles for which the service system is stable.

A necessary and sufficient condition for M to be non-empty is that the cumulative

arrival rate is strictly less than the cumulative service capacity, |α| < |µ|. Indeed, under

this condition, it is not hard to see that any menu M in which every server is connected to

at least one service class is admissible. In particular, the single-line menu (i.e., n = 1 and

m1j = 1 for all j ∈ [m]) is admissible.

We will now look at how customers choose their strategies. We assume that customers

have heterogeneous preferences over the servers and we denote by Vθ = (Vθj)j∈[m], the vector

of rewards for a type-θ customer, where Vθj is the reward that a customer θ gets when served

by server j. We further assume that customers incur a per-unit cost of waiting δ, which is

homogeneous across customer types. The parameter δ captures the customers’ sensitivity to
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delay. We then assume the expected utility that a type-θ customer gets from joining class i

is then equal to

Uθi(W, p) :=
∑
j∈Si

pij Vθj − δ Wi.

Given a pair (W, p) of steady-steady waiting times and matching probabilities, a rational

utility-maximizing type-θ customer joins the service class i that maximizes Uθi(W, p) in

equilibrium.

Definition 11. (∆-Equilibrium and Equilibrium Profiles) Let M ∈ M and let q∗ ∈ Q(M)

be a strategy profile with corresponding vector of waiting times W ∗ = W (q∗) and matrix of

matching probabilities p∗ = p(q∗).

–) ∆-Equilibrium Profile: For a given ∆ ≥ 0, we say that (q∗,W ∗, p∗) is a ∆-equilibrium

profile if for all θ ∈ [Θ] and for all i, k ∈ [n]

q∗θi
(
Uθi(W

∗, p∗)− Uθk(W
∗, p∗)

)
+∆ ≥ 0.

We let Q∆(M) be the set of strategies q∗ for which an ∆-equilibrium profile (q∗,W ∗, p∗)

exists.

–) Equilibrium Profile: We say that (q∗,W ∗, p∗) is an equilibrium profile if it is a 0-

equilibrium profile. We let Q∗(M) be the set of strategies q∗ for which an equilibrium profile

(q∗,W ∗, p∗) exists.

Trivially, every equilibrium profile is a ∆-equilibrium profile for all ∆ > 0. We also note

that in an equilibrium profile (q∗,W ∗, p∗) if q∗θi > 0 for some customer type θ ∈ Θ and

service class i ∈ [n] then we must have that Uθi(W
∗, p∗) ≥ Uθk(W

∗, p∗) for all service classes

k ∈ [n]. That is, the expected utility that customer type θ gets from joining class i is at

least as large as the expected utility that the customer would get from joining any other

service class k. In other words, in a equilibrium we can have q∗θi > 0 only if Uθi(W
∗, p∗) =
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maxk∈[n]{Uθk(W
∗, p∗)}.

The following theorem guarantees the existence of equilibrium profiles when the system

has sufficient service capacity to serve all of the customers.

Theorem 3. Suppose that |α| < |µ|, and M ∈ M is an admissible service menu. Then

there exists an equilibrium strategy profile q∗ ∈ Q∗(M).

The proof of the theorem can be found in Section 3.A.1, and is based on a fixed-point

argument.

(iii) Optimal Service Menu: The final component of the model corresponds to the

objective that the service provider uses to select an optimal menu M∗ ∈ M. Similar to

the preferences of individual customers, we assume that the service provider is interested in

maximizing the value generated by the matching between customers and servers while mini-

mizing the waiting time experienced by these customers. Specifically, for a given admissible

menu M and customers’ strategy q ∈ Q(M), we assume that the service provider collects a

payoff equal to

Π(M, q) := V (M, q)− ζ W (M, q), (3.2.1)

where ζ is a positive scalar that captures the service provider’s sensitivity to customers’

delays and

V (M, q) :=
∑
θ∈[Θ]

∑
i∈[n]

∑
j∈[m]

αθ qθi pij(q)Vθj and W (M, q) :=
∑
i∈[n]

λi(q)Wi(q)

correspond to the cumulative steady state matching reward and waiting time, respectively,

experienced by all customers.

It is worth noticing that while the service provider selects the service menu M , it is the

customers who decide which service classes they want to join by selecting an equilibrium
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strategy q∗ ∈ Q∗(M). Hence, from a game theoretic standpoint, the service provider acts

as Stackelberg leader who moves first by selecting the service menu M ∈ M to offer at

time 0 and then the arriving customers respond to the specific choice of M by selecting

a best-response strategy q∗ ∈ Q∗(M) that maximizes their expected utility according to

Definition 11. Hence, the service provider’s optimization problem can be formulated as

follows:

sup
M∈M

sup
q∗∈Q∗(M)

Π(M, q∗). (3.2.2)

Remark 1. Formulation (3.2.2) assumes that the service provider is able to select which equi-

librium strategy q∗ ∈ Q∗(M) customers’ will end up playing. This is, of course, without loss

of generality for those admissible menus M for which Q∗(M) is a singleton. However, when

M induces multiple equilibria formulation (3.2.2) models the problem of an ‘optimistic’ service

provider. Alternatively, we could have adopted a pessimistic view by formulating the service

provider’s problem as follows:

sup
M∈M

inf
q∗∈Q∗(M)

Π(M, q∗). ⋄

Remark 2. (Social Planner) If ζ = δ then Π(M, q) =
∑

θ∈[Θ] αθ Uθ(q), where Uθ(q) is the

expected utility of a θ customer under strategy q, that is, Uθ(q) :=
∑

i∈[n] qθiUθi(W (q), p(q)).

In other words, when ζ = δ the service provider acts as a social planner who is interested in

maximizing the cumulative utility of all customers. ⋄

3.3 Service Menus with Two Servers

In this section we illustrate the model and solution to the service provider’s problem in

(3.2.1) by characterizing optimal service menus for the special case in which the system has

two servers (i.e., m = 2). In this setting, we are able to obtain a complete solution as a
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function of the model’s parameters, which provides a number of insights that we will use

later to analyze the general case with an arbitrary number of severs. The two-server model

is also worth studying in its own right as it provides a parsimonious framework that allows

for a non-trivial segmentation of service (e.g., high vs. low quality or fast vs. slow service).

With two servers, there are three possible service classes, namely, Class 1 served only by

server 1, Class 2 served only by server 2, and Class 3 served by both servers. With these

three classes available, the service provider can offer one of the following five admissible

service menus (see Figure 3.2):1

• Dedicated menu (D), in which Classes 1 and 2 are offered,

• Single-line menu (SL), in which only service Class 3 is offered,

• Full menu (F), in which all three classes are offered,

• Ni menu, in which Classes i and 3 are both offered, for i = 1, 2.

3.3.1 Performance Analysis in Steady State In order to derive the equilibrium

strategies of these menus we first need to characterize their steady-state performance in

terms of waiting times and matching probabilities. To this end, let us fix the service menu

M . Since the steady-state analysis of the Dedicated and Single Line menus reduce to those

of two M/M/1 and one M/M/2 systems, respectively, we will only discuss the cases in which

M ∈ {F, N1, N2}.

We derive the steady-state performance of an arbitrary strategy profile q ∈ Q(M) using

the Markov chain representation of the system proposed by Adan and Weiss (2014) and

its corresponding stationary distribution. The following result summarizes this derivation,

1. We note that it is possible to offer two additional menus each consisting exclusively of service Class i
with i = 1, 2. However, the menu that offers only Class i is dominated by menu Ni.
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whose statement make use of the following notation Λ := |λ|, Γ := |µ|, ∆i := µi − λi, for

i = 1, 2, ∆ := Γ− Λ and

B :=

[
∆+ λ3
∆∆1∆2

+
1

∆1 (Λ− λ1)
+

1

∆2 (Λ− λ2)
+

Λ + λ3
Λ (Λ− λ1) (Λ− λ2)

]−1

.

Proposition 8. (Steady-State Performance) Suppose M ∈ {F, N1, N2}. Let q ∈ Q(M) be

a fixed customers’ strategy profile, which induces a vector of arrival rates {λi}i∈[n] to the

service classes. Then, the steady-state probability that a customer joining Class 3 is served

by server 1 and server 2 are equal to

p31 = B
[

1

Λ (Λ− λ2)
+

1

∆2 (Λ− λ2)
+

1

∆ (Γ− λ2)

(
1 +

µ1
∆2

)]
and p32 = 1− p31,

(3.3.1)

respectively. The steady-state waiting times for the three services classes are given by

W1 = W3 +
B
∆2
1

[
1

Λ− λ1
+

1

∆

]
, W2 = W3 +

B
∆2
2

[
1

Λ− λ2
+

1

∆

]
and W3 =

B (∆ + λ3)

∆2∆1∆2
.

(3.3.2)

Proof of Proposition 8: Let X denote set of states of the Markov chain proposed

by Adan and Weiss (2014) with x ∈ X a generic state of this Markov chain and π(x) its

steady state probability distribution. The set X is partitioned into the following subsets:

(a) x = (si, ni, sj , nj3): Both servers are busy with server i serving the oldest arrival, with

i = 1, 2 and j = 3− i. There are ni ≥ 0 customers waiting in the queue of Class i and

nj3 ≥ 0 customers waiting in the queues of Classes j and 3 combined. The steady-state

probability of x is given by

π(x) = B λnii (λ1 + λ2 + λ3)
nj3

µni+1
i (µ1 + µ2)

nj3+1
,

for some appropriate normalizing constant B.
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(b) x = (si, ni, sj): Server i is busy and server j is idle. There are ni ≥ 0 customers

waiting in the queue of Class i and the queues of Classes 1 and 3 are necessarily empty.

In this case,

π(x) = B λnii

µni+1
i (λj + λ3)

.

(c) x = (si, sj): Both servers are idle with server i being idle the longest. In this case,

π(x) =
B

(λ1 + λ2 + λ3)(λi + λ3)
.

The value of B is obtained by imposing

∑
x∈X

π(x) = 1.

To alleviate the notation, let us define Λ := λ1 + λ2 + λ3, Γ := µ1 + µ2, ∆1 := µ1 − λ1,

∆2 := µ2 − λ2 and ∆ := Γ− Λ. It follows that

B =

[
∆+ λ3
∆∆1∆2

+
1

∆1 (Λ− λ1)
+

1

∆2 (Λ− λ2)
+

Λ + λ3
Λ (Λ− λ1) (Λ− λ2)

]−1

. (3.3.3)

To calculate the matching probabilities, we first calculate the rate of transitions in the

Markov chain associated with a customer from service class 3 beginning service with each

server. As the problem is symmetric in the servers, we will only go through the calculations

to identify the rate of transitions associated with a class 3 customer beginning service with

server 1, which we shall label f31.

The FCFS-ALIS service discipline lets us immediately conclude that there are no tran-

sitions from states (s2, s1) or (s1, n1, s2) that involve a class 3 customer beginning service

with server 1. Any arriving class 3 customer will immediately begin service with the server
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who has been idle longest, which is server 2 in both cases. In the (s1, n1, s2), we can

also see that server 1 completing service will not trigger a class 3 customer beginning ser-

vice with server 1, as the only waiting customers for server 1 to serve are those that are

incompatible with server 2 (i.e., class 1 customers). Similar reasoning tells us that the

transitions from state (s1, s2) and (s2, n2, s1) associated with a class 3 customer beginning

service with server 1 are all of those transitions resulting from a class 3 customer arriv-

ing, and hence f31 includes the terms λ3π(s1, s2) and λ3π(s2, n2, s1). For n1 > 0, there

are no transitions from (s1, n1, s2, n2) that result in a class 3 customer beginning service

with server 1, since as soon as a server 1 finishes serving the customer they are currently

serving, they will begin serving another waiting class 1 customer. However, for n1 = 0

and n2 > 0, when server 1 finished serving their current customer, they will begin service

with a class 3 customer if a class 3 has been waiting the longest out of those compatible

with server 1. This will happen if n2 consists of x class 2 customers, followed by a class

3 customer. Thus f31 will include the term µ1
∑∞

n2=1

∑n2−1
x=0

λx2λ3
(λ1+λ2+λ3)x+1π(s1, 0, s2, n2).

We can use similar reasoning to include that the transition rate also includes the term

µ1
∑∞

n1=1

∑∞
n2=0

∑n1−1
x=0

λx1λ3
(λ1+λ2+λ3)x+1π(s2, n2, s1, n1).

Thus the total rate of transitions involving a class 3 customer beginning service with

server 1 is

f31 = Bλ3
[

1

Λ (Λ− λ2)
+

1

∆2 (Λ− λ2)
+

1

∆ (Γ− λ2)

(
1 +

µ1
∆2

)]
. (3.3.4)

The probability that a class 3 customer is server by server 1 is p31 = f31/λ3.

To conclude the proof, we note that the expected waiting times for the different service

class can be calculated using Little’s Law. □

3.3.2 Equilibrium Strategies The key feature of the two-server model that we

exploit to derive customers’ equilibrium strategies is the fact that we can rank the cus-
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tomer types based on their relative preferences over the two servers. To this end, define

∆Vθ := Vθ2−Vθ1 for each customer type θ ∈ [Θ] and label the elements in [Θ] by θ1, θ2, . . . , θΘ

such that ∆Vθi ≤ ∆Vθj for all 1 ≤ i < j ≤ Θ. In case of a tie, the class that values server 2

more gets assigned a higher index.

Under this indexing, it is not hard to see that we can restrict ourselves to cut-off

(threshold-type) equilibria. For example, if the service provider offers a Dedicated menu

then a type θ customer (weakly) prefers Class 1 over Class 2 if ∆Vθ ≤ δ (W2 −W1). Thus,

there exists a customer type θτ with τ ∈ [Θ] such that all customer types θk with k ≤ τ − 1

select Class 1, all customer types θk with k ≥ τ + 1 select Class 2 and customers of type

θτ are indifferent and randomize between the two service classes. Similarly, if the service

provider offers the Full menu then a type θ customer weakly prefers Class 1 to Class 3 if

p32∆Vθ ≤ δ (W3 − W1) and weakly prefers Class 2 to Class 3 if p31∆Vθ ≥ δ (W2 − W3).

In this case, an equilibrium involves two thresholds, τ1, τ2 ∈ [Θ] with τ1 ≤ τ2. All customer

types θk with k ≤ τ1 − 1 select Class 1, all customer types θk with k ≥ τ2 + 1 select Class

2, all customer types θk with τ1 + 1 ≤ k ≤ τ2 − 1 select Class 3, customers type θτi are

indifferent between Class i and Class 3 for i = 1, 2.

Proposition 9 below exploits this threshold structure to characterize equilibrium strategies

for the D, N1 and F menus2. The statement of this proposition make use of some additional

notation. For 0 ≤ x1 ≤ x2 ≤ Θ, we define

λ1(x) :=

⌊x⌋∑
k=1

αθk + (x− ⌊x⌋)αθ⌈x⌉ ,

λ2(x2) = |α| − λ1(x2) and λ3(x1, x2) = |α| − λ1(x1)− λ2(x2). These are the arrival rates to

service classes 1, 2 and 3, respectively, if all customers type {1, 2, . . . , ⌊x1⌋} plus a fraction

2. The equilibrium strategy for the Single Line is trivial and for the N2 menu it can be derived from the
one for the N1 menu by interchanging the labels of the two servers.
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(x1 − ⌊x1⌋) of customers type ⌈x1⌉ join Class 1, all customers type {⌈x2⌉ + 1, . . . ,Θ} plus

a fraction (⌈x2⌉ − x2) of customers type ⌈x2⌉ join Class 2, and all remaining customers

join Class 3. To ensure stability, we will need to bound the values of x1 and x2 such that

0 ≤ x1 ≤ x̄1 and x2 ≤ x2 ≤ Θ with

x̄1 := max
{
0 ≤ x ≤ Θ: λ1(x) ≤ µ1

}
and x2 := min

{
0 ≤ x ≤ Θ: λ2(x) ≤ µ2

}
.

Note that under the global stability condition |α| < |µ| we must have x2 < x̄1. For a pair

(x1, x2) ∈ [0, x̄1) × (x2, |Θ|] ∩ {x1 ≤ x2}, we define the steady-state matching probabilities

p3j(x1, x2) and waiting times Wi(x1, x2) for i = 1, 2, 3 and j = 1, 2 by replacing the values

λ1(x1), λ2(x2) and λ3(x1, x2) in equations (3.3.1) and (3.3.2), respectively.

Proposition 9. Suppose the service provider offers menus M ∈ {D,N1, F}. There exists

two thresholds 0 ≤ x∗1 ≤ x∗2 ≤ ϑ such that an equilibrium profile (q∗θk1, q
∗
θk2

, q∗θk3) for a type-θk

customer satisfies

q∗θk1 =


1 if k ≤

⌈
x∗1
⌉
− 1

x∗1 −
⌊
x∗1
⌋

if k =
⌈
x∗1
⌉

0 if k ≥
⌈
x∗1
⌉
+ 1

q∗θk2 =


0 if k ≤

⌈
x∗2
⌉
− 1⌈

x∗2
⌉
− x∗2 if k =

⌈
x∗2
⌉

1 if k ≥
⌈
x∗2
⌉
+ 1

and q∗θk3 = 1 − q∗θk1 − q∗θk2. The values of x∗1 and x∗2 depends on the specific menu M as

follows:

–) Dedicated Menu: Let x∗ = sup
{
x ∈ (x2, x̄1) : ∆Vθ⌈x⌉ ≤ δ

(
W2(x, x) − W1(x, x)

)}
. If

x∗ /∈ N then x∗1 = x∗2 = x∗. Otherwise, x∗1 = x∗ + 1 and x∗2 = x∗.

–) N1 Menu: x∗1 = sup
{
x ∈ [0, x2∧ x̄1) : p32(x, x

∗
2)∆Vθ⌈x⌉ ≤ δ

(
W3(x, x

∗
2)−W1(x, x

∗
2)
)}

and x∗2 = Θ.
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–) Full Menu: The values of x∗1 and x∗2 solves the system of equations

x∗1 = sup
{
x ∈ [0, x∗2 ∧ x̄1) : p32(x, x

∗
2)∆Vθ⌈x⌉ ≤ δ

(
W3(x, x

∗
2)−W1(x, x

∗
2)
)}

x∗2 = sup
{
x ∈ (x2 ∨ x∗1, |Θ|] : p31(x

∗
1, x)∆Vθ⌈x⌉ ≤ δ

(
W2(x

∗
1, x)−W3(x

∗
1, x)

)}
.

Proof of Proposition 9: The proof of the proposition follows from noticing that

in the equilibrium of each of the three menus, some customer type(s) needs to randomise

between two service classes to ensure that the equilibrium conditions are satisfied. It is

easy to see that the values of x∗i , i = 1, 2 specify precisely the customer types that need to

randomise. □

An example of the equilibrium outcomes derived in Proposition 9 is depicted in Figure 3.3.

While Proposition 9 provides a complete characterization of customers’ equilibrium strate-

gies for the Dedicated, N1 (N2), and Full menus we can only derive these equilibria com-

putationally for any particular set of parameters. Furthermore, as we try to move to more

complex systems with an arbitrary number of servers, we are no longer able to rank customer

types based on their preferences over just two servers and use the simple cut-off analysis that

we have used above to derive their equilibrium strategies. For this reason, and to say some-

thing more concrete about equilibrium outcomes for general systems, we will investigate their

performance under heavy traffic conditions.

3.4 Heavy Traffic Regime

In this section, we present the model that we will use to formally study the question of

menu design through heavy-traffic asymptotics. First, in Section 3.4.1, we present the spe-

cific heavy traffic scaling of the system primitives. In Section 3.4.2 we present a quadratic

programming (QP) formulation that we will use to approximate the matching probabilities
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under the FCFS-ALIS service requirement. Finally, in Section 3.4.3, we introduce the notion

of a heavy traffic equilibria, which we use to extend Definition 11 to our heavy traffic regime.

3.4.1 Scaling We construct a sequence of matching queueing systems parameterized by

ϵ and use the superscript (ϵ) to emphasize the dependence of various quantities on ϵ. For

example, αθ(ϵ) and qθ
(ϵ) = (qθ1

(ϵ), . . . , qθn
(ϵ)) are the arrival rate and strategy profile of type-θ

customers in system ϵ.

We assume that the bipartite matching system approaches heavy traffic as ϵ ↓ 0. Specif-

ically, we assume that there are two vectors A, a ∈ RΘ
+ (independent of ϵ) with |A| = |µ| so

that the sequence of arrival rates α(ϵ) = {αθ(ϵ)}θ∈Θ satisfies (for ϵ small enough):

αθ
(ϵ) = Aθ − aθϵ ≥ 0 for all θ ∈ [Θ]. (3.4.1)

Intuitively, in the heavy-traffic regime, the arrival rates α(ϵ) approach the limiting rates A

along the direction specified by a. It follows that the traffic intensity of the ϵth system equals

ρ(ϵ) :=

∑
θ αθ

(ϵ)

µ1 + · · ·+ µm
=

|A| − |a| ϵ
|µ| = 1− |a|

|µ| ϵ

and approaches one (i.e., 100% system utilization) as ϵ ↓ 0.

We let M(ϵ) denote the class of menus M that are admissible in the sense of Definition 10.

It is not hard to see that the sets M(ϵ) are monotonic in ϵ and so the limit M̂ := limϵ↓0M(ϵ)

exists. We will refer to M̂ as the set of admissible menus in heavy traffic.

Under the heavy traffic condition in (3.4.1), the waiting time Wi
(ϵ)(q(ϵ)) will grow out of

bound as ϵ ↓ 0. For this reason, we assume that δ(ϵ) goes to 0 as ϵ ↓ 0 in such a way that

the product δ(ϵ) Wi
(ϵ)(q(ϵ)) converges to a well-defined non-trivial limit. In particular, we will

assume that δ(ϵ) = δ ϵ for some fixed constant δ > 0 independent of ϵ3. Given this scaling,

3. Alternatively, we could consider a slightly more general scaling of δ(ϵ) that only requires limϵ↓0
δ(ϵ)

ϵ = δ.
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we find convenient to define the scaled mean waiting time

Ŵi
(ϵ)
(q(ϵ)) := ϵ ·Wi

(ϵ)(q(ϵ)), (3.4.2)

which remains bounded in heavy traffic. Finally, the expected utility of a customer type θ

under strategy q(ϵ)

θ is given by

U (ϵ)

θi (q
(ϵ)) =

∑
j∈Si

p(ϵ)

ij (q
(ϵ))Vθj − δ Ŵi

(ϵ)
(q(ϵ)).

Note that the valuations V = [Vθj ] and service rates µ = (µj) remain constant independent

of ϵ.

Here we can see the benefits of assuming that the delay sensitivity δ(ϵ) goes to zero with

ϵ. If we did not make this assumption, then the unbounded delay costs would dominate

the finite service valuation in customers’ utility function, and our model would predict that

customers would ignore service values and act only to minimise delays. By modelling delay

sensitivity in the way we do here, the value customers receive from service and their expected

delay costs remain of the same order. This means we are able to more accurately model real

world scenarios with finite delays, in which customers are still accounting for service values

when making choices. For the same reasons, a similar scaling is introduced for the service

provider’s delay sensitivity: ζ (ϵ) = ζ · ϵ for some fixed ζ > 0.

With abuse of notation, we denote the limiting average reward and limiting average scaled

delay by:

V
∗
:=

1

|A| limϵ↓0
∑
θ∈[Θ]

∑
i∈[n]

∑
j∈[m]

Aθ q
(ϵ)

θi p
(ϵ)

ij (q
(ϵ))Vθj and W

∗
:=

1

|A| limϵ↓0
∑
i∈[n]

λ(ϵ)

i (q(ϵ)) Ŵ (ϵ)

i (q(ϵ)).
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Thus the service provider’s problem in heavy-traffic is to maximise

Π(M, q(ϵ)) = V
∗ − ζW

∗
. (3.4.3)

3.4.2 Matching Probabilities under Heavy Traffic Equilibrium: While

the problem of computing waiting times under a FCFS-ALIS service discipline simplifies sig-

nificantly under heavy traffic conditions, computing the steady-state matching probabilities

pij remains computational challenging due to the underlying combinatorial structure of the

state-space of the system (see Adan and Weiss, 2014). In Chapter 2, we showed that in the

heavy traffic limit the value of pij , for some service class i and server j that belong to the

same CRP component, depends exclusively on the structure of the matching within the CRP

components.

While this result reduces the problem of computing the steady-state matching probabil-

ities under heavy traffic conditions to each individual CRP component, the combinatorial

structure of the possible states within each CRP is still an obstacle for efficiently computing

pij . Caldentey et al. (2009) and Afèche et al. (2021) identify special classes of topologies

under which the matching probabilities can be computed efficiently using a quadratic pro-

gram. Specifically, for a given menu M = [mij ] in this class of topologies, the matching

probabilities pij can be computed solving the following quadratic program:

min
p

∑
i∈[n]

∑
j∈[m]

λi
µj

mij p
2
ij (QP)

subject to
∑
i∈[n]

λimij pij = µj ∀j ∈ [m],

∑
j∈Si

mij pij = 1 ∀i ∈ [m],

pij ≥ 0 ∀(i, j) ∈ [n]× [m].
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The classes of matching topologies M = [mij ] for which it is known that the (QP)

formulation produces the exact matching probabilities under a FCFS-ALIS service discipline

includes:

• Spanning Forest: M induces a spanning forest on the bipartite graph between service

classes and servers;

• Complete Graph: mij = 1 for all i ∈ [n] and j ∈ [m];

• Almost Complete: n = m, m1j = 1 and mij = 1 for i = 2, . . . , n for all j ∈ [m];

• Quasi-Complete: n = m and mij = 1 if and only if i ̸= j.

In general, however, the (QP) formulation only provides an approximation to the actual

FCFS-ALIS matching probabilities (see Afèche et al., 2021 and Fazel-Zarandi and Kaplan,

2018 for detailed numerical experiments) and, to the best of our knowledge, it is still unknown

whether there exists a computationally efficient method to determine the exact matching

probabilities for an arbitrary matching topology.

In what follows, we will proceed with our analysis using the QP formulation to compute

the matching flows. The following facts about an optimal solution to (QP) are proven in

Afèche et al. (2021).

Proposition 10. Let M be an admissible menu in heavy traffic, i.e., M ∈ M̂. Then,

1. The quadratic program in (QP) is feasible and admits a unique optimal solution p∗(M).

2. A feasible matrix of matching probabilities p(M) = [pij(M)] is the optimal solution

to (QP) if and only if there exist multipliers (ωj , j ∈ [m]) for the first set of con-

straints and (ηi, i ∈ [n]) for the second set of constraints satisfying the KKT first

order stationarity conditions:

p∗ij(M) = max{µj
(
ηi + ωj

)
, 0}, ∀(i, j) : mij = 1.
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The second property is particularly useful because it allows for a simple encoding of the

constraints imposed by the QP formulation4 on the matching probabilities.

3.4.3 Heavy-Traffic Equilibrium For a given admissible menu in heavy traffic

M ∈ M̂, we are interested in identifying a limiting equilibrium, as ϵ ↓ 0. To this end, we

introduce the notion of a heavy-traffic equilibrium.

Definition 12. (Heavy Traffic Equilibrium) For a given admissible menu in heavy traffic

M ∈ M̂, we say that (q̂∗, Ŵ ∗, p̂∗) is a heavy traffic equilibrium if there exists a vector

ϕ̂∗ ∈ R|Θ|×n such that q̂∗ + ϵ ϕ̂∗ ∈ Q for all ϵ ≥ 0 and the following two conditions are

satisfied:

(a) Heavy Traffic Limit: Ŵ ∗ = limϵ↓0 Ŵ (ϵ)(q̂∗ + ϵ ϕ̂∗) and p̂∗ = limϵ↓0 p(ϵ)(q̂∗ + ϵ ϕ̂∗).

(b) Best-Response: For all θ ∈ Θ and for all i, k ∈ [n]

q̂∗θi
(
Uθi(Ŵ

∗, p̂∗)− Uθk(Ŵ
∗, p̂∗)

)
≥ 0.

We let Q̂∗(M) be the set of all strategy profiles q̂∗ for which there exists a heavy traffic

equilibrium (q̂∗, Ŵ ∗, p̂∗).

Notice that when the strategies are of the form in Definition 12, strategy profiles induce

a vector λ(ϵ) of pre-limit arrival rates into service classes given by

λi
(ϵ) =

∑
θ∈Θ

αθ
(ϵ)qθi

(ϵ) =
∑
θ∈Θ

Aθq̂θi − ϵ
∑
θ∈Θ

(aθq̂θi − Aθϕ̂θi) + o(ϵ) =: Λi − ϵγi + o(ϵ), (3.4.4)

which is exactly the scaling of pre-limit arrival rates that we need to take advantage of our

performance analysis in Chapter 2.

4. Which is an approximation for the FCFS-ALIS requirements that we need to impose on p = [pij ].
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For the notion of a heavy-traffic equilibrium to be of any practical interest, we would

like to be able to map it back to some concrete equilibrium in the pre-limit. The following

proposition formalizes this requirement by showing that we can always view a heavy-traffic

equilibrium as the limit of a sequence of ϵ-equilibria in the pre-limit, as ϵ ↓ 0.

Proposition 11. Let q̂∗ ∈ Q̂∗(M) for some admissible menu M ∈ M̂ in heavy traffic.

Then, there exists a sequence of strategy profiles (q(ϵ))ϵ>0 with corresponding steady-state

waiting times W (ϵ) = {W (ϵ)

i (q(ϵ))}i∈[n] and matching probabilities p(ϵ) = [p(ϵ)

ij (q
(ϵ))]i∈[n],j∈[m]

such that (q(ϵ),W (ϵ), p(ϵ)) is a ∆(ϵ)-equilibrium profile for a sequence (∆(ϵ))ϵ>0 that satisfies

limϵ↓0∆(ϵ) = 0.

Remark 3. A possible shortcoming of the definition of a heavy traffic equilibrium in Definition 12

is that the sequence of strategy profiles {q(ϵ)}ϵ>0 that defines a heavy traffic equilibrium is not

required to be a sequence of pre-limit equilibria. Thus, it is possible that a heavy traffic equilibrium

is not the limit of any sequence of pre-limit equilibria. Proposition 11, however, guarantees that

the strategy profiles {q(ϵ)}ϵ>0 are ϵ-equilibria in the pre-limit and so the incentives that customers

have to deviate from the strategy q(ϵ) become negligible as ϵ ↓ 0. ⋄

The definition of a heavy-traffic equilibrium highlights an important feature of our asymp-

totic analysis of an equilibrium. Namely, to characterize a heavy traffic equilibrium it is not

enough to identify the limiting strategy q̂∗ but we must also specify the direction ϕ̂∗ of con-

vergence. The reason is that the limiting vector of steady-state waiting times Ŵ ∗ is not just

a function of q̂∗but also of ϕ̂∗. We illustrate this point with the following example.

Example 1. Consider the system in Figure 3.4 with two customer types (|Θ| = 2), two

servers (m = 2) and two service classes (n = 2) each served exclusively by one of the servers.

The arrival and service rates in the ϵth system are given by α(ϵ) = A − a ϵ = (2, 1) − (1, 0) ϵ

and µ = (µ1, µ2) = (1, 2), respectively. Customers of type 1 prefer server 1 over server 2

(i.e., V11 > V12) while the opposite is true for customers type 2 (i.e., V21 < V22).
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Figure 3.4: Example with two customer types, two service classes and two servers.

For the given values of the arrival and service rates as well as the preferences of the

customers, it should be intuitively clear that an equilibrium strategy q(ϵ) for the ϵth system

takes the form q(ϵ)

22 = 1 − q(ϵ)

21 = 1 and q(ϵ)

12 = 1 − q(ϵ)

11 = 0.5 + ϕ ϵ + o(ϵ) for some scalar ϕ

such that |ϕ| < 1/4 (this condition ensures that the queueing system is stable for ϵ > small

enough). The strategy profile q(ϵ) converges, as ϵ ↓ 0, to q̂∗ given by q̂∗11 = q̂∗12 = 1/2 and

q̂∗22 = 1− q̂∗21 = 1. Thus, in the limit, half of type 1 customers are served by server 1 and all

type 2 customers are served by server 2.

Since each service class behaves as an M/M/1 queue, the scaled steady-state waiting times

in the ϵth system are given by

Ŵ1
(ϵ)
(q(ϵ)) =

1

0.5 + 2ϕ+O(ϵ)
and Ŵ2

(ϵ)
(q(ϵ)) =

1

0.5− 2ϕ+O(ϵ)
.

It follows from the above that to characterize the limiting value of the waiting times the

limiting strategy q̂∗ is not enough, and the direction ϕ of convergence of the strategy profile

q(ϵ) is necessary. To pinpoint the precise value of ϕ that will ensure that q̂∗ is a heavy traffic

equilibrium we must impose the best-response condition in Definition 12. In this example,

customers type 1 randomize between service classes 1 and 2 and so they must be indifferent

between them. It follows that

lim
ϵ↓0
(
Ŵ1

(ϵ)
(q(ϵ))− Ŵ2

(ϵ)
(q(ϵ))

)
=

V11 − V12
δ

.
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Letting β := (V11 − V12)/δ, we get that choosing

ϕ∗ =
2−

√
4 + β2

4 β

ensures that q̂∗ is indeed a heavy traffic equilibrium in the sense of Definition 12. □

3.4.4 Pareto Improvement and Chained DAGs Consider an admissible menu

in heavy traffic M ∈ M̂ with a heavy traffic equilibrium (q̂∗, Ŵ ∗, p̂∗) and let C = {C1, , . . . ,CK}

be its corresponding collection of CRP components5. Our next result shows that under fairly

general conditions we can always find another menu with a heavy traffic equilibrium with

the same collection of CRP components that (weakly) Pareto dominates (q̂∗, Ŵ ∗, p̂∗).

Proposition 12. Consider an admissible menu M ∈ M̂ with a heavy traffic equilibrium

(q̂∗, Ŵ ∗, p̂∗) and CRP components C = {C1, . . . ,CK}. Denote by ŴCk
the limiting scaled

waiting time of component Ck for k ∈ [K] and assume (after relabeling if necessary) that

ŴC1
≤ ŴC2

≤ · · · ≤ ŴCK
. Suppose that 1/|a| ≤ ŴC1

< ŴC2
, then there exists a menu

M ′ ∈ M̂ with a heavy traffic equilibrium (q̂∗, Ŵ ′, p̂∗) with the same set of CRP components

C and such that Ŵ ′ ≤ Ŵ ∗. Furthermore, in this new equilibrium the CRP components in C

are connected through a chained DAG (see Definition 7).

Proposition 12 is significant as it reveals that for the purpose of finding an optimal service

menu we can essentially restrict ourselves to menus that induce a heavy traffic equilibrium

with CRP components connected by a chained DAG. We will take full advantage of this

property in Section 3.7, where we study the class of Partition service menus. We also note

that we can extend the result in the proposition to include the degenerate case 1/|a| <

ŴC1
= ŴC2

6. In this case, however, we can only show that for any ε > 0 (small) there

5. CRP components were defined in Definition 3

6. Recall that by Proposition 4 the case 1/|a| = ŴC1 = ŴC2 is not possible.
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exists a ε-heavy-traffic equilibria with the same CRP components connected by a chained

DAG that (weakly) Pareto dominates (q̂∗, Ŵ ∗, p̂∗).

3.5 Service Menus with Two Servers

In this section, we return to the two server example to illustrate the analysis of heavy traffic

equilibria. In this setting, we are able to obtain a complete solution and derive a number

of insights that we will use later to analyze the general case with an arbitrary number of

servers.

Before we begin studying the possible menus and their equilibria, it helps to establish

some benchmarks for what performance one might aim for along the dimensions of average

waiting time and matching reward, respectively. Looking first at average waiting time, it is

quite straightforward to see that one can not expect an average delay smaller than that of

a single server queue with service rate equal to the total service rates of the m servers, and

the arrival rate equal to the total arrival rate of the customer types. Under heavy-traffic, we

denote this ideal scaled delay as Wmin:

Wmin =
1

|a| . (3.5.1)

(Recall that |a| = ∑
θ∈Θ aθ is the aggregated capacity slack.) Next, turning to matching

reward, the following max-flow linear program solves the matching that a central planner

would like to implement if she had complete control over the assignment of customers to

servers and were only concerned with maximizing matching rewards.

V max := max
fθj≥0

∑
θ,j

fθj Vθj subject to
∑
j

fθj = Aθ, ∀θ ∈ Θ and
∑
θ

fθj = µj , j = 1, 2.

(3.5.2)
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It thus follows that V max is an upper bound on the cumulative matching value that can be

achieved by any menu in equilibrium.

We now consider the space of admissible menus. Recall from Section 3.3 that with two

servers, there are three possible service classes, namely, Class 1 served only by server 1, Class

2 served only by server 2, and Class 3 served by both servers. All five of the service menus

we discussed in Section 3.3 are admissible in heavy traffic. These menus are:

• Dedicated menu (D), in which Classes 1 and 2 are offered,

• Single-line menu (SL), in which only service Class 3 is offered,

• Full menu (F), in which all three classes are offered,

• Ni menu, in which Classes i and 3 are both offered, for i = 1, 2.

Also recall that when there are only two servers, we can index the customer types according

to their relative preferences over the two servers. Specifically, we order the customer types

{θ1, θ2, . . . , θ|Θ|} such that ∆Vθi ≤ ∆Vθj for all 1 ≤ i < j ≤ |Θ|, where ∆Vθi = Vθ2 − Vθ1 .

Let us define the subsets Θ0 := {θ ∈ [Θ] : ∆Vθ = 0}, Θ1 := {θ ∈ [Θ] : ∆Vθ < 0}, Θ2 :=

{θ ∈ [Θ] : ∆Vθ > 0} so that customers in Θ0 are indifferent between the two servers while

customers in Θi strictly prefer server i = 1, 2. We also define Ai :=
∑

θ∈Θi
Aθ to be the

limiting arrival rate of customers in Θi, for i = 0, 1, 2.

To fix ideas and notation, let us assume that the capacity of server 1 is insufficient to

serve all customers who strictly prefer server 1 over server 2, i.e., A1 > µ1. The case A2 > µ2

is of course equivalent after relabeling the servers. The case Ai < µi for i = 1, 2 is discussed

at the end of this section in Remark 4. Finally, the boundary case Ai = µi for i = 1, 2 can

be analyzed using similar ideas and, for brevity, is omitted.

Under the assumption A1 > µ1, Figure 3.5 depicts an example of the performance of the

heavy traffic equilibrium of the five menus in the delay vs. reward quadrant. As we can see

from the figure, we can split the five menus into two groups:
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Figure 3.5: Performance of the heavy traffic equilibrium for Dedicated, Single Line, Full, N1
and N2 menus. Data: |Θ| = 5, A = (1, 1, 3, 3, 2), a = (2, 2, 2, 2, 2), V·1 = (10, 10, 5.1, 9, 2),
δ = 1, V·2 = (2, 8, 5, 10, 4) and µ1 = 3, µ2 = 7.

1. Delay Minimizing Menus: The Single Line and N2 menus achieve the minimum

possible average scaled waiting time, Wmin.

2. Reward Maximizing Menus: The Dedicated, Full and N1 menus all lead to equilib-

ria that attain maximum possible matching reward, V max. Furthermore, the equilibrium

of the Full and N1 turn out to be equivalent in heavy traffic.

To get some intuition about this segmentation of the menus, consider Figure 3.6 that

summarizes the heavy traffic equilibrium outcome for the five menus in terms of matching

flows and corresponding DAG of CRP components. Note that both the Single Line and the

N2 menu induce a single CRP component in equilibrium. For the Single Line this is trivially

the case and for the N2 menu this follows from the fact that A1 > µ1 and so there are

enough customers who want to join class 3 to ensure a positive flow from class 3 to server 2

in equilibrium. Thus, with a single CRP component, Proposition 4 implies that customers’

average waiting time is minimized and equals Wmin. In terms of matching rewards, however,

the Single Line and N2 menus have different performance. On one hand, the Single Line
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Figure 3.6: Summary of the heavy traffic equilibrium outcome for the five menus in terms
of matching flows and DAG of CRP components.
Top Panel depicts the matching flows between the customer types and service classes in-
dicate equilibrium strategies. Solid (dashed) arrows between the service classes and servers
indicate asymptotically non-negligible (negligible) flows.
Bottom Panel depicts the DAG that emerges in the heavy traffic equilibrium, where CS

C
denotes a CRP that includes service classes in C and servers in S.

produces the lowest average reward (V min in Figure 3.5) among all five menus, while the N2

menu generates an intermediate reward value V med in Figure 3.5. To compute the value of

V min note that in the Single Line menu all customers –irrespective of their type– are matched

to servers in proportion to their service rate, that is,

V min =
∑
θ∈Θ

Aθ

|A|

(
µ1

µ1 + µ2
Vθ1 +

µ2
µ1 + µ2

Vθ2

)
. (3.5.3)

On the other hand, to compute V med, we note that since the N2 menu induces a single CRP

component, the two service classes offered in N2 (namely, classes 2 and 3) have the same

waiting time in equilibrium. As a result, all customer types that strictly prefer server 1

join class 3 and all customer types that strictly prefer server 2 join class 2. Customers who

are indifferent between the two servers are also indifferent between the two service classes

since they have the same waiting time. However, the assumption A1 > µ1 together with our

‘optimistic’ formulation (see Remark 1) imply that all these indifferent customers join class
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2 in equilibrium. It follows that

V med =
∑
θ∈Θ1

Aθ

|A|

(
µ1
A1

Vθ1 +
A1 − µ1

A1
Vθ2

)
+

∑
θ∈Θ0∪Θ2

Aθ

|A| Vθ2. (3.5.4)

Let us turn to the three reward maximizing menus: Dedicated, Full and N1. The common

feature of these three menus is that they all include service Class 1 and since A1 > µ1:

(i) server 1 exclusively serves customer types that prefer it the most, leading to reward

maximization, and (ii) there is at least one customer type in Θ1 that must be indifferent

between joining Class 1 and some other class. It is precisely this indifference condition that

pinpoints the heavy traffic equilibrium for these three menus. In terms of the average delay

experienced by customers in equilibrium, the Full and N1 menus produce the same average

delay Wmed, while the Dedicated produces an average delay Wmax, with Wmed ≤ Wmax. This

is an example of the Pareto improvement described in Proposition 12, since the DAGs of

Full and N1 menu can be seen as chaining the CRP components of the Dedicated menu.

The following proposition summarizes the performance of the heavy traffic equilibrium

for each of the five menus.

Proposition 13. Suppose that A1 ≥ µ1. Then, the performance of the heavy traffic equilib-

rium, in terms of average waiting times and matching rewards, for each of the five menus is

given by:

Dedicated N1 Full N2 Single-line

Avg. Waiting Times Wmax Wmed Wmed Wmin Wmin

Avg. Matching Rewards V max V max V max V med V min

Table 3.1: Menu outcomes for the two-server case.

such that Wmin ≤ Wmed ≤ Wmax and V min ≤ V med ≤ V max. The values of Wmin, V min,
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V med and V max are derived in equations (3.5.1)-(3.5.2) and the values of Wmed and Wmax are

derived in the proof of the proposition in equations (3.A3) and (3.A2), respectively.

Let us conclude this section with the following two remarks.

Remark 4. (First Best Menu). There are two cases in which the service provider can achieve

a first outcome, namely, Wmin delays and V max rewards:

(i) Suppose Ai = µi for either i = 1 or i = 2. Then, offering the N3−i menu achieves

first best. To see this, take for example the case A1 = µ1, then we get from (3.5.4) that

V med = V max and from Proposition 13 we conclude that the N2 menu Pareto dominates

the other four menus as it achieves the best performance in both dimensions (waiting

times and rewards).

(ii) Consider the case Ai < µi for i = 1, 2, that is, when both servers have excess capacity

to serve the customer types that strictly preferred them. In this case, the Full menu

is optimal as it Pareto dominates the other four menus. To see this, note that the

condition Ai < µi implies that a stable strategy is to have customers in Θi joining

class i (for i = 1, 2) and the indifferent customers in Θ0 joining class 3. This strategy

will naturally maximize average matching rewards. Furthermore, in the heavy traffic

regime, this strategy will induce a single CRP component and so the average waiting

time of each service class is the same. Thus, no customer type has an incentive to

switch to another class. As a result, a Full menu achieves simultaneously the minimum

average waiting time and the maximum matching reward and it is therefore optimal.

We also note that the equivalence between the Full and N1 menus does not hold anymore

when Ai < µi for i = 1, 2. In this case, the N1 menu does not produce maximum matching

rewards since some customers in Θ2 will have to be served by server 1 in equilibrium. ⋄
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Remark 5. (Trivial CRP Components) In Figure 3.6, the DAG induced by the Full menu

has a CRP component C∅
2 which includes class 2 and no server. This anomaly happens

because even though class 2 is offered there are no customers joining this class in the heavy

traffic equilibrium. Note that despite the fact that there is no flow of customers joining

class 2, we still need to assign a waiting time to this class to enforce equilibrium conditions.

Chapter 2 contains a detailed discussion of how to compute the waiting time of these trivial

CRP components in heavy traffic. ⋄

3.6 First Best Menus

We saw in our discussion of the two-server case that it is sometimes possible to offer a service

menu that achieves a first best outcome, that is, maximum possible matching values and

minimum possible average waiting times simultaneously (see Remark 4). In this section, we

investigate conditions under which a first best menu exists in a system with an arbitrary

number of servers. To this end, we find it convenient to first discuss two special menus,

namely the Single Line (SL) and Dedicated (D) menus, which exhibit extreme and contrasting

performance in terms of matching rewards and waiting times. While a Single Line menu

minimizes waiting times at the expense of matching values the opposite is true for the

Dedicated menu. This is illustrated in Figure 3.5 for the two-server case.

3.6.1 Single Line Menu: In the Single Line menu the service provider offers a single

service class which is served by all servers. This is the simplest and most common ser-

vice configuration used in practice in which all m servers serve a single service class. By

Proposition 4, the Single Line exhibits complete resource pooling and therefore minimizes

average waiting times in heavy traffic, Ŵ SL = 1/|a|. Thus, it is an optimal menu when

the service provider is interested in minimizing customers’ average waiting times exclusively

(i.e., ζ = ∞). However, as we saw in the two-server model, the Single-Line menu is not
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Pareto optimal in general. Actually, our next result reveals that while the Single-Line menu

minimizes waiting times, it also minimizes average matching rewards.

Theorem 4. For any an admissible menu in heavy traffic M ∈ M̂ and any heavy traffic

equilibrium strategy profile q̂∗ ∈ Q̂∗(M) under M , let V (M, q̂∗) be the average matching

rewards under the pair (M, q̂∗). Let also V
SL be the average matching reward under the

Single Line menu. Then,

V
SL ≤ V (M, q̂∗).

The proof of Theorem 4 can be found in Section 3.A.5. Intuitively, the key limitation

of the Single Line menu exposed in Theorem 4 is its inability to customize the matching

between customers and servers since all customers are essentially treated equally. This raises

the question of how to design a menu that maximizes customer’s rewards among all menus

that have an equilibrium with a single CRP component. We will return to this question in

Section 3.8.2.

3.6.2 Dedicated Menu: In the Dedicated menu each server operates independently

serving its own service class. In other words, the matching topology MD = [mD
ij ] ∈ {0, 1}m×m

of the Dedicated menu satisfies mD
ij = 11(i = j). In contrast to the Single Line menu, the

Dedicated menu has no resource pooling but offers full flexibility to match customers to

servers, and in Theorem 5 below we show that this matching flexibility is actually maximal.

To this end, let us consider the following max-flow problem for system ϵ, which is central to
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our characterization of first best menus:

V (ϵ)
:= max

f (ϵ)
θj ≥0

∑
θ,j

f (ϵ)

θj Vθj (Max-flow)

subject to
∑
j

f (ϵ)

θj = α(ϵ)

θ ∀θ ∈ [Θ], (flow balance)

∑
θ

f (ϵ)

θj ≤ µj ∀j ∈ [m], (capacity)

where f (ϵ)

θj represents the flow of customers type θ served by server j. We note that the

value of V (ϵ) corresponds to the maximum average matching reward that a central planner

can achieve if she has full control on how to match customers to servers. It follows that V (ϵ)

provides an upper bound on the maximum matching reward that the service provide can get

from any equilibrium. Interestingly, our next result shows the Dedicated menu achieves this

upper bound asymptotically. In other words, the Dedicate menu is an optimal menu if the

service provider is completely insensitive to waiting times (i.e., ζ = 0). This is interesting

because customers’ equilibrium strategies still depend on the waiting times of each service

class, and so even if ζ = 0 the service provider cannot simply disregard the effect of waiting

times on the overall performance.

Theorem 5. Let V (ϵ) be the matching value of an equilibrium for the Dedicated menu for

system ϵ. Then, V (ϵ) − V (ϵ) = O(ϵ), i.e., the Dedicated menu asymptotically maximizes

average matching value in heavy traffic.

Proof Sketch: (See Section 3.A.6 for a complete proof) Since some elements of the

proof are quite insightful and useful for the discussion that follows, we provide a quick proof

sketch here and defer a full version to the Appendix. First, let us introduce the dual variables η(ϵ)

θ

for the flow balance for customer type θ, and ω(ϵ)

j for the capacity constraint for server j. The
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dual problem to (Max-flow) is

min
ω(ϵ)
j ≥0,η(ϵ)

θ

∑
θ

α(ϵ)

θ η(ϵ)

θ +
∑
j

µj ω
(ϵ)

j subject to η(ϵ)

θ + ω(ϵ)

j ≥ Vθj ∀θ, j.

(Dual-Max-flow)

The main idea is to show that any equilibrium strategy q(ϵ) ∈ Q∗(MD) for the Dedicated menu

(which exists due to Theorem 3) induces a vector of flow rates from customers to servers, f (ϵ)

θj (q
(ϵ)),

that can be used to construct a feasible dual solution such that approximate complementary

slackness holds in the following sense:

(
µj −

∑
θ

f (ϵ)

θj

)
ω(ϵ)

j = O(ϵ), and
(
η(ϵ)

θ + ω(ϵ)

j − Vθj

)
f (ϵ)

θj = 0,

for all θ and j, which then guarantees that f (ϵ)

θj is approximately optimal for (Max-flow) with

an O(ϵ) additive suboptimality, which vanishes as ϵ ↓ 0.

In particular, given that the expected waiting time at queue j under f (ϵ)

θj equals Ŵ (ϵ)

j =

1/(µj −
∑

θ f
(ϵ)

θj ), we define for all j ∈ [m] and θ ∈ Θ,

ωj
(ϵ) = δ Ŵ (ϵ)

j and ηθ
(ϵ) = max

j

{
Vθj − ωj

(ϵ)
}

(3.6.1)

as a feasible dual solution. By the definition above, η(ϵ)

θ is in fact the utility of type θ customers.

To see the intuition behind why complementary slackness holds, the first set of conditions follow

from the definition of ω(ϵ)

j . For the second set, since under any equilibrium, f (ϵ)

θj > 0 only if

Vθj − ω(ϵ)

j ≥ η(ϵ)

θ , exact complementary slackness holds for the second set of conditions. □

Remark 6. As we alluded to in the proof sketch, the optimal dual variables of (Max-flow)

(for the limiting case ϵ = 0) have the following interpretation: ωj denotes the limiting scaled

mean delay disutility for server j under the Dedicated menu, and ηθ denotes the average
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utility of customer type θ under delay disutilities {ωj}. However, the dual solution is only

determined up to a translation; for any τ , (ηθ + τ) and (ωj − τ) are also an optimal dual

solution. Therefore without loss of generality, we can assume minj ωj = 0, so that the true

scaled delay disutility for server j is δŴj = ωj + ω0 for some ω0.

Our next somewhat surprising result generalizes Theorem 5 in the sense that any menu

M which includes the Dedicated menu as a sub-menu also maximizes the average matching

value.

Theorem 6. Let M be any service menu which includes the Dedicated menu as a submenu.

That is, for every server j, there exists a service class i(j) such that mi(j),j = 1, and

mi(j),j′ = 0 for any j′ ̸= j. Then the menu M attains the maximum matching reward under

any heavy-traffic equilibrium.

The detailed proof of Theorem 6 can be found in Section 3.A.7. The crux of the proof

relies on two observations. First, if there is a service class i and server j with p̂∗ij > 0 then

Ŵi, the limiting scaled mean delay of service class i, equals Ŵj , the limiting scaled mean

delay of the service class dedicated to server j. This Ŵj still gives the dual ωj as in the

proof sketch above. Second, if a type θ joins a service class i which has p̂∗ij > 0 and p̂∗ij′ > 0

for servers j ̸= j′ then Vθj = Vθj′ otherwise type θ has a strictly improving deviation to

a dedicated service class. These two can be combined to get back the condition that the

limiting flow from type θ to server j, fθj > 0, only if Vθj − δŴj = ηθ = maxj′{Vθj′ − ωj′}.

3.6.3 Necessary and Sufficient Conditions for First Best Outcomes:

From the performance of the Single Line and Dedicated menus we have that for a menu to

achieve first best it must simultaneously induce an equilibrium with (i) a single CRP com-

ponent and (ii) matching flows that coincide with the solution of the (Max-flow) problem.

In this section, we use this insight to identify necessary and sufficient conditions for a first

best outcome to be achievable.
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Theorem 7. (Necessary Conditions) If the service provider is able to achieve a first best

outcome, then there exists a solution to (Max-flow) with ϵ = 0 such that the following two

conditions hold:

1. The arcs associated with strictly positive flows form a connected graph.

2. Every customer type weakly prefers their matching outcome to that of any other cus-

tomer type.

A proof of this theorem can be found in Section 3.A.8, but we will briefly provide some

intuition here. If a first best outcome can be achieved, then the flows between service

classes and servers must form a connected graph to support a single CRP component. This

implies that the flows between customer types and servers must also form a connected graph.

Similarly, since a first best outcome necessarily achieves the maximum possible matching

values, we know that the flows between customer types and servers (via the service classes

offered) must also be a solution to (Max-flow). Since the flows form an equilibrium, we

know that no customer type prefers the matching outcome of any other customer type. Note

that we do not need to consider waiting times when evaluating the incentive compatibility

of the outcome as when there is a single CRP component, all service classes have the same

expected delay.

A particular system will fail the first condition when the only solutions to (Max-flow)

have some subset of customer types exactly served by a particular subset of servers. In this

case, the only solutions to (Max-flow) with ϵ = 0 are disconnected. This could happen, for

instance, if there is exactly enough service capacity to have all customer types served by their

most preferred servers. We can only achieve a single CRP component in this situation is

some customer types are served by servers that are not their most preferred server, meaning

that it is not possible to achieve a single CRP component and a value maximising solution

simultaneously.
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The second condition will fail if it is not incentive compatible for the customers to main-

tain value maximising flows when expected delays are the same across service classes. This

can happen because the solution to (Max-flow) is prioritising customer types with large

differences between valuations. If customer type θ̂ and customer type θ̃ both prefer server 1

to server 2, but V
θ̂1
−V

θ̂2
> V

θ̃1
−V

θ̃2
, then the (Max-flow) solution will allocate server 1 to

θ̂ customers over θ̃ customers. However, the customer types themselves care only that they

prefer one matching outcome to another, and the degree to which they prefer one matching

outcome does not matter. This can result in a mismatch between the solution to (Max-flow)

and the customers preferences.

One extreme example of the second condition failing is when there exists (σθ)θ∈[Θ] and

{βj}j∈[m] such that Vθj = σθβj for all θ ∈ [Θ] and j ∈ [m]. In this case, no matter how the

service classes are designed, all customers will have the same ordinal preferences over the

matching outcomes of the different service classes. Hence it will be impossible to maintain

a single CRP component in equilibrium when offering multiple service classes, as it will

only be incentive compatible for different customer types to join different service classes if

there are differences in expected delays between service classes. However, achieving a value

maximising outcome will require that only customer types with higher values of σθ are served

by servers with higher values of βj .

Next, we provide sufficient conditions for a first best outcome to be achievable.

Theorem 8. (Sufficient Conditions) The service provider is always able to achieve a first

best outcome if there exists a solution to (Max-flow) with ϵ = 0 such that the following two

conditions hold:

1. The basic feasible activities induce a connected tree

2. Every customer type weakly prefers their matching outcome to that of any other cus-

tomer type.
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The menu that achieves the first best outcome is the menu in which there is a single service

class for each customer type, and that service class consists of all of the servers that they are

connected to in the Max Flow solution.

As the proof of this theorem is short and intuitive, we include it here.

Proof. To see that these conditions are sufficient, we can consider what would happen if the

proposed menu were offered. Since the flows form a connected tree, we know that these

flows are those that would be achieved if this menu were to be offered, and each customer

type were to join their assigned service class. As the resulting graph is connected, we know

that a single CRP component is achieved, and hence minimum possible expected waiting

times occur. Because each customer type weakly prefers their own matching outcomes to

that of any other customer type, and waiting times across service classes are equal, it is an

equilibrium for each customer type to join their assigned service class.

This also provides some intuition as to why the conditions stated in Theorem 7 are not

sufficient for a first best outcome to be possible. If the flows associated with the feasible

activities form a tree, we can guarantee that there is a combination of menu and customer

strategies will achieve these flows. If the flows associated with the feasible activities form a

cycle, we cannot make the same guarantee.

We can satisfy the sufficient conditions by ensuring that different customer types have

different rankings of servers. This will mean that it is incentive compatible for different

customer types to join different service classes when the expected delays at the different

service classes are the same. While there are different ways this can be achieved, we provide

a some specific examples to help make the intuition clear.

One way that these sufficient conditions can be satisfied is to have ‘enough’ indifferent

customers in the system. One example of how this could happen is if there is some mass of
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customer types who have strict preferences between servers, and some mass of customers who

have pairs of servers that they are indifferent between, but they prefer to all other servers.

If there is enough service capacity so that all customer types with strict preferences can be

served by their most preferred servers, and an ordering of servers so that for every pair of

servers (j, j + 1) for j = 1, ...,m − 1 there is a customer type who is indifferent between

servers j and j + 1, then the sufficient conditions will be satisfied. The menu that achieves

the first best outcomes offers a dedicated service class for each server, that is, a service class

only served by this server, and an additional service class for each pair of servers (j, j + 1)

for j = 1, ...,m−1. A single CRP component is achieved by have all customer types join the

service class served by their most preferred pair of servers if they are indifferent between a

pair of servers, and their most preferred server otherwise, and since every customer types is

being served by their most preferred server or servers, it is both an equilibrium and a value

maximising outcome.

Another way in which these conditions will be satisfied if every customer type has a

different most preferred server, but the same second most preferred server. We additionally

require that there is sufficient service capacity to serve each customer type by either their

most preferred server or their second most preferred server, but there is insufficient service

capacity to serve any customer type completely using their most preferred server. In this

case we can achieve a first best outcome by designing a service class for each customer type,

where the service class for type θ customers is served by both their most preferred server and

their second most preferred server. If we offer this menu, since there is insufficient service

capacity to serve any customer type completely using their most preferred server, we know

a single CRP component will result if each customer type joins the service class designed

for them. Additionally, since each customer type is joining the service class being served

by their most preferred servers, it will be incentive compatible for them to do so. Thus an

equilibrium and a value maximising outcome is also achieved.
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These two examples demonstrate that putting a particular structure on the valuations

themselves is insufficient for guaranteeing the existence of a first best outcome. It is the

interaction between the valuations, arrival rates, and service capacity that tells us whether

or not a first best outcome is achievable. We would also like to note that while the specific

examples we mention here have all customer types being served by their most preferred

or two most preferred servers, a first best outcome can sometimes be achieved with some

customer types not being served at all by their most preferred server.

3.7 Partition Menus

In the previous section we identified conditions under which there exists a menu that achieves

first best outcome. In general, however, first best cannot be achieved and an optimal menu

must appropriately balance the trade-off between waiting times and matching rewards. In

this section, we investigate this trade-off by restricting ourselves to the study of a special class

of Partition menus in which the set of servers is partitioned into K pools S = {S1, . . . ,SK}

for some K ∈ [m]. We will consider two classes of partition menus.

• Pure Partition Menus: These are menus in which each partition of servers Sk
is dedicated to serving exclusively a single service class, say Ck. The left panel in

Figure 3.7 depicts an example of a pure partition menu with four customers classes

and five servers. In this example, servers are partitioned into two sets S1 = {1, 2, 3}

and S2 = {4, 5} with all servers in partition Si serving exclusively service class i, for

i = 1, 2.

It is worth noticing that in heavy traffic, a partition menu consists of K disconnected

CRP components C = {C1,C2, . . . ,CK}, with Ck = (Ck,Sk).

• Chained Partition Menus: These are modified pure partition menus with some

additional connectivity among the CRP components C = {C1,C2, . . . ,CK} so that
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the underlying DAG has a chained structure (see Definition 7). Thus, every chained

partition menu has associated an underlying pure partition menu that defines it. For

example, the right panel in Figure 3.7 depicts a chained partition menu associated to

the pure partition in the right panel that includes a link (dashed arc) connecting C1

to C2.
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Choice 
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C2

C1

Pure Partition Chained Partition

Figure 3.7: Example of pure partition and chained partition menus with two partitions of
servers S1 = {1, 2, 3} and S2 = {4, 5}.

While restrictive, partition menus have a number of desirable properties from a practical

standpoint as they are easy to explain to customers and require limited scheduling coordi-

nation among the servers. For instance, in a pure partition menu, each server can manage

FCFS requirements by tracking a single service class and customers only need to know their

queueing position in a single line to assess their service status. In addition, by varying the

number of partitions and their composition, partition menus offer a fair amount of flexibil-

ity that the service provider can use to trade-off matching rewards and waiting times. For

instance, two notable examples of partition menus are the Single Line and the Dedicated

menu discussed in Sections 3.6.1 and 3.6.2, respectively.

3.7.1 Pure Partition Menus: Let us fix a partition S = {S1, . . . ,SK}, with all the

servers in partition Sk serving a unique service class Ck. It is easy to see that each pair

Ck = (Ck,Sk) corresponds to a different CRP component in any heavy traffic equilibrium.
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In this setting, a strategy profile can be represented by a matrix q = [qθk], where qθk is the

probability that a type θ customer joins Ck. Moreover, since each service class Ck is served

exclusively by the servers in Sk, the limiting matching probabilities p̂ of any heavy traffic

equilibrium must trivially satisfy p̂kj = 11(j ∈ Sk)µj/µSk , where µSk =
∑

j∈Sk µj . It follows

that the average limiting reward that a type θ customer gets from joining service class Ck
equals

V θk :=
∑
j∈Sk

µj Vθj
µSk

.

It is not hard to see that a pure partition menu with servers’ partition S = {S1, . . . ,SK}

behaves, in the heavy traffic limit, as the Dedicated menu in which each partition of servers Sk
acts as a ‘super-server’ with capacity µSk and with a matrix of matching rewards V = [V θk]

between customers types and super-servers. With this interpretation, on can show that

Theorem 5 extends to this case in a relatively straightforward fashion. Specifically, consider

the following modified version of the max-flow problem parameterized by the partition S:

V (ϵ)

S := max
f (ϵ)
θk≥0

∑
θ,k

f (ϵ)

θk V θk subject to
∑
k

f (ϵ)

θk = α(ϵ)

θ and
∑
θ

f (ϵ)

θk ≤ µSk , (3.7.1)

where f (ϵ)

θk represents the flow of customers type θ joining service class Ck. As in the case of

the Dedicated menu, V (ϵ)

S provides an upper bound on the maximum matching reward that

the service provide can get from any equilibrium under the pure partition menu S.

Corollary 3. The average matching value V (ϵ)

S of any equilibrium for the pure partition

menu with server partition S satisfies V (ϵ)

S − V (ϵ)

S = O(ϵ).

The proof the corollary can be found in Section 3.A.9. According to the previous result,

all equilibria associated to the pure partition menu with partition S generate the same

matching value VS := minϵ↓0 V
(ϵ)

S , in the heavy traffic limit. Under the following assumption

on the max-flow problem (3.7.1), the limiting scaled waiting time of the pure partition menu
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is also uniquely determined.

Assumption 2. The solution to (3.7.1) with ϵ = 0 is unique, and the basic feasible activities

(that is, the edges (θ, k) with fθk > 0) induce a connected tree.

Assumption 2 is quite mild. For example if one were to generate a random instance of

the service system by sampling the valuations Vθj from non-atomic distributions then the

maximum flow is unique with probability 1. Similarly, if either the arrival rates Aθ or the

service rates µj are randomly sampled from non-atomic distributions then the maximum

flow forest is a connected tree with probability 1.

Under Assumption 2, the limiting mean scaled waiting times of all service classes in the

pure partition menu are determined up to an additive constant. This is because a customer

type θ randomizing between service classes Ck and Ck′ must be indifferent between them,

and hence it must be true that V θk−δŴk = V θk′−δŴk′ . The connectivity assumption then

implies that knowing Ŵk for some service class yields the waiting time for all service classes.

Recall from Remark 6 that we can express the limiting scaled waiting times Ŵk in terms of

the dual variables ωk for the service capacity constraints in (3.7.1). Specifically, there exist

a vector of dual variables {ωk} with mink ωk = 0 and a scalar ω0 such that δ Ŵk = ωk +ω0.

We use this representation in the next proposition to derive the precise waiting times under

a partition menu.

Proposition 14. Suppose Assumption 2 holds and let {ωk} be a vector of dual variables for

the service capacity constraints in (3.7.1) such that mink ωk = 0. Then, the limiting scaled

mean waiting times for the pure partition menu are given by Ŵ PB
k = (ωk + ω0)/δ where

ω0 ≥ δ/|a| solves:
K∑
k=1

δ

ωk + ω0
= |a|.

We omit a formal proof as the intuition is simple: Under the pure partition menu, each

service class Ck behaves asymptotically in the heavy traffic limit as an independent M/M/1
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queue with service capacity µSk . Thus a limiting scaled mean waiting time of Ŵk implies

limϵ↓0(µSk − λ(ϵ)

k )/ϵ = 1/Ŵk, where λ(ϵ)

k =
∑

θ f
(ϵ)

θk is total arrival rate at service class Ck.

Further, limϵ↓0
∑

j(µSk − λ(ϵ)

k )/ϵ = |a| by the heavy-traffic scaling in (3.4.1), which provides

the necessary condition to pin down ω0.

3.7.2 Chained Partition Menus: Corollary 3 shows that pure partition menus

maximize matching values for a given partition of servers. At the same time, they do not

allow any form of capacity sharing between partitions, and this can lead to poor performance

in terms of waiting times. To partially correct for this deficiency, we exploit the result

Proposition 12 and consider a modified class of pure partition menus by “chaining” the

service classes in increasing order of their waiting time. We refer to this class of menus

as chained partitions. Intuitively, while a pure partition menu results in a DAG with K

disconnected CRP components (where each partition of servers along with their service class

are in a CRP component of their own), a chained partition leads to a DAG which is a

directed path (i.e., a single topological order), and allows for capacity pooling across CRP

components. A special case of this construction is the N1 menu in Section 3.5, where the

chaining is apparent in Figure 3.6 (see also the right panel in Figure 3.7).

Recall that Proposition 3 provides a characterization of a class of scaled limiting waiting

times that can be implemented in heavy traffic using a chained DAG. We take advantage

of this result to derive the waiting times of a chained partition menu under the following

additional assumption.

Assumption 3. There exists an optimal vector {ωk} of dual variables for the service capacity

constraints in (3.7.1) such that 0 = ω̂(1) < ω̂(2).

In the statement of the following proposition, we let S = {S1, . . . ,SK} be a fixed partition

of servers and Ck the service class connected to all servers in Sk. We let MPB
S denote the

pure partition menu defined by {(Ck,Sk) : k ∈ [K]}.
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Proposition 15. Let Assumptions 2 and 3 hold and let {ωk} be the optimal vector of dual

variables satisfying the conditions in Assumption 3. Without loss of generality, let us relabel

the K service partitions in such a way that 0 = ω1 < ω2 ≤ ω3 ≤ · · · ≤ ωK . Define a

chained partition menu MCB
S by extending the pure partition menu MPB

S as follows: add a

link connecting service class Ck to any server in partition Sk+1 for k = 1, . . . , K − 1. The

resulting chained partition menu generates maximum matching value V̄ and has limiting

scaled waiting times given by

Ŵ CB
1 =

1

|a| and Ŵ CB
k =

ωk
δ

+
1

|a| , k = 2, . . . , K.

It follows from Proposition 14 that Ŵ CB
k = Ŵ PB

k − Ŵ PB
1 + 1

|a| ≤ Ŵ PB
k . Thus, from the

prespective of the service provider, the chained menu MCB
S (weakly) Pareto dominates the

pure partition menu MPB
S .

The proof of the proposition can be found in Section 3.A.10. We note that under the

chained partition menu Ŵ CB
1 = 1/|a|, which by Proposition 4 is the delay under a completely

pooled system and the lowest delay possible for a service class under any menu.

3.7.3 Optimal Partitions: We conclude this section by developing a mixed-integer

linear program (MILP) to find an optimal chained partition menu. As these menus are

constructed from partitions of servers, the number of possible menus grows rapidly with

the number of servers. However, many of these menus will be Pareto dominated by others.

The MILP formulation in Figure 3.8 assumes a fixed number K of partitions and finds the

optimal partition of servers S = {S1, . . . ,SK}. By varying the value of K from 1 to m we

can find the optimal chained partition menu. We will also describe a process that uses the

MILP to identify the set of Pareto efficient chained menus.

The following are the main decision variables used in the MILP formulation:
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-) {mkj , k ∈ [K], j ∈ [m]}: binary decision variables representing the service menu; 1 if

server j belongs to partition Sk and 0 otherwise.

-) {fθk, θ ∈ [Θ], k ∈ [K]}: flow of type-θ customers joining service class Ck.
-)
{
fθkj , θ ∈ [Θ], k ∈ [K], j ∈ [m]

}
: flow of type-θ customers joining service class Ck and

served by server j.

-)
{
V θk, θ ∈ [Θ], k ∈ [K]

}
: average value that a type-θ customer gets from joining class

Ck.
-)
{
Vθkj , θ ∈ [Θ], k ∈ [K], j ∈ [m]

}
: value that a type-θ customer gets from joining class

Ck and service from server j. Desired behavior is that Vθkj = V θk if j ∈ Sk, and

Vθkj = 0 otherwise.

-) {ωk, k ∈ [K]}: waiting time experienced by a customer who joins Ck.
-)
{
ωkj , k ∈ [K], j ∈ [m]

}
: scaled mean waiting time experienced by a customer who

joins Ck and gets served by server j. Desired behavior is that ωkj = ωk if j ∈ Sk, and

ωkj = 0 otherwise.

-) mkj : 1 if server j belongs to partition Sk and 0 otherwise.

-) fθkj : flow of type-θ customers joining Ck and served by server j.

-) fθk: flow of type-θ customers joining Ck.
-) Vθkj : value that a type-θ customer gets from joining class Ck and service from server

j.

-) Vθk: average value that a type-θ customer gets from joining class Ck.
-) ωkj : waiting time experienced by a customer who joins Ck and get served by server j.

-) ωk: waiting time experienced by a customer who joins Ck.
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Objective:

VPB
K := max

∑
θkj

fθkj · Vθj − ζ
∑
kj

µjωkj (3.7.2)

Constraints:

Server assignment:
∑
k

mkj = 1,
∑
j

mkj ≥ 1. (3.7.3)

Enforcing max matching value: ηθ + δ ωk ≥ V θk,
∑
θkj

fθkj · Vθj =
∑
θ

Aθηθ + δ
∑
kj

µjωkj .

(3.7.4)

Waiting time within partitions: ωk + (mkj − 1)M ≤ ωkj ≤ ωk, ωkj ≤ mkjM. (3.7.5)

Customers’ valuation for partitions: V θk + (mkj − 1)M ≤ Vθkj ≤ V θk, Vθkj ≤ mkjM,

(3.7.6a)∑
j

µjVθkj =
∑
j

mkjµjVθj . (3.7.6b)

Flow balance:
∑
k

fθk = αθ,
∑
θk

fθkj ≤ µj . (3.7.7)

Auxiliary flow constraints: fθkj + (mkl − 1)M ≤ gθkjl ≤ fθkj , gθkjl ≤ mklM, (3.7.8a)

fθk + (mkj − 1)M ≤ gθkj ≤ fθk, gθkj ≤ mkjM, (3.7.8b)∑
l

gθkjl · µl = gθkj · µj . (3.7.8c)

Non-negativity of decision variables

{fθk}, {fθkj}, {gθkj}, {gθkjl}, {Vθk}, {Vθkj}, {ωk}, {ωkj} ≥ 0 and {mkj} ∈ {0, 1}. (3.7.9)

Figure 3.8: MILP for finding the optimal partition menu with K partitions.
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The key idea in this MILP is that since a chained partition menu acts like a chained-

dedicated menu on super-servers, we can use simultaneously the primal and dual constraints

corresponding to max-flow problem in (3.7.1) to ensure that customer arrival rates are con-

sistent with an equilibrium strategy profile. As mentioned in Remark 6, the dual variables

ωk can be interpreted as waiting times for the service classes. This means that by incorpo-

rating the dual constraints and dual variables into the MILP, we are able to include both

the matching values and the waiting times of the service classes into the objective function.

This is captured in the set of constraints (3.7.4).

For a given value of ζ, we can solve the MILP to find the optimal maximizing chained

partition menu. In addition, we can use the MILP to generate a Pareto frontier within

the class of partition menus using standard multi-objective optimisation techniques for two

objectives. We refer interested readers to Marler and Arora (2004) for a review of such

methods.

3.8 Tailored Menus

In the previous section, we approached the problem of menu design by optimizing over the

class of partitioned service menus in which each service class is associated with a unique

and disjoint set of servers. In this section, we take an alternative perspective and use a

mechanism design approach to tackle the problem of finding efficient menus. In particular,

we use MILPs to design a service class or set of service classes for each customer type to

optimize particular objectives. Since customers are acting strategically, we must also add

constraints incentive compatibility constraints to the MILPs to ensure that the MILPs are

optimizing over equilibrium outcomes. We refer to menus we design using this mechanism

design approach as Tailored menus, as every service class is tailored to a particular customer

type.
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We use this mechanism design approach to design two different types of tailored menus. In

Section 3.8.1, we formulate a MILP that identifies the delay-minimizing menu among the set

of menus that achieve the maximum matching value outcome. In Section 3.8.2, we formulate

a MILP that identifies the value-maximizing menu among the set of menus that achieve the

minimum delay outcome, and have only a single service class for each customer type. A key

advantage of tailored menus over partitioned menus is that they provide more flexibility to

customize the matching between customer types and servers. On the flip side, tailored menus

are more complex to design and possibly less practical from an implementation standpoint.

3.8.1 Value Maximizing Tailored Menus: The results in Sections 3.6.2 and 3.7.2

establish that a chained Dedicated menu maximizes the service provider’s matching value.

However, this menu has limited capacity pooling and therefore offers no guarantee of pro-

viding a good performance in terms of waiting times. To address this limitation we will

formulate a MILP that minimizes waiting times over the class of menus that produce the

maximum matching value.

Formally, we begin by solving (Max-flow) (under ϵ = 0) to obtain the flow {fθj}, which

we will assume is unique and induces a connected tree by Assumption 2. Let Sθ := {j : fθj >

0} denote the set of servers with non-zero flow from customer type θ in the maximum value

flow. The menu design task then is to partition Sθ for each customer type θ into service

bundles specifically intended for θ.

We will use the following notation:

• Bθ = 2Sθ \ ∅ denotes all the non-empty subsets of Sθ.

• For type θ, we call a set b ∈ Bθ a service bundle intended for type θ, and also use it to

denote the vector b = (b1, . . . , bm) where bj = 1 if j ∈ B and bj = 0 otherwise. Note

that although we associate bundle b with a subset of servers, each such bundle is also
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implicitly associated with a customer type. Thus we can have one subset of servers S

offered as two bundles, one for customer type θ and for customer type θ′.

• Aθb =
∑

j fθjbj denotes the total arrival rate into bundle b (if offered) from customer

type θ.

• For b ∈ Bθ, for any θ′:

V θ′b =

∑
j fθjbjVθ′j
Aθb

denotes the average value type θ′ obtains from type θ’s bundle b. Note that here we are

assuming that the flow from bundle b to the servers is consistent with the maximum

flow f .

Note that given the maximum flow {fθj}, the above are constants which we will use in our

MILP formulation. We explain the decision variables and the constraints of the MILP briefly

next:

Decision Variable:

-) {yb, b ∈ ∪θBθ}: These binary decision variables correspond to the possible service

bundles for all customer types. A value of 1 indicates the bundle is offered and 0

indicates it is not offered.

-) {Wb, b ∈ ∪θBθ}: These continuous non-negative decision variables correspond to the

delay of bundles measure in units of (dis)utility up to a translation so that minbWb = 0.

-) {Uθ, θ ∈ Θ}: These continuous non-negative decision variables correspond to the

utility of a type θ customer (up to a translation).

-) {W ′
j , j ∈ [m]}: These decision variables correspond to the delay of server j (and

thus of all offered bundles containing server j), measured in units of (dis)utility and

determined up to a translation.
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Objective:

W∗ := min
∑
θ

∑
b∈Bθ

Aθ,b ·Wθ,b

Constraints:

Feasibility of menu:
∑
b∈Bθ

bjyb = 1. (3.8.1)

Consistency of waiting times: W ′
j − (1− yb)M ≤ Wb ≤ W ′

j + (1− yb)M, Wb ≤ ybM.

(3.8.2)

Utility for each type: V θ,b −Wb − (1− yb)M ≤ Uθ ≤ V θ,b −Wb + (1− yb)M. (3.8.3)

Incentive compatibility: Uθ′ ≥ V θ′,b −Wb − (1− yb)M. (3.8.4)

Non-negativity of decision variables: {Wb}, {W ′
j},≥ 0 and {yb} ∈ {0, 1}.

Figure 3.9: MILP for finding tailored menu with minimum average delay under maximum
total value constraint.

Constraint (3.8.1) ensures that for each customer type θ, a server j with fθj > 0 in the

max value flow solution is offered in exactly one bundle intended for θ. Constraint (3.8.2)

ensures that (i) the delay disutility Wb of any bundle b that is offered and contains server j

equals the delay disutility W ′
j for server j and (ii) the delay disutility for any bundle b that

is not offered is forced to 0 (so it contributes 0 to the objective). Constraint (3.8.3) ensures
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that the utility of a customer type θ equals the utility of any offered bundle b intended for

θ. Finally, (3.8.4) ensures that the utility of type θ′ is at least the utility she derives from

all offered bundles (which may or may not be intended for θ′).

The objective minimizes the total delay disutility. The solution to the MILP will assign

a set of service bundles to each customer type. Each assigned service bundle corresponds to

a service class. Let {b1, . . . , bs} be the bundles selected by the MILP, so that without loss of

generality we can assume that 0 = Wb1 ≤ Wb2 ≤ · · · ≤ Wbs . Making a similar assumption as

used for Proposition 15, we can show the existence of a menu and an equilibrium such that

at the heavy traffic limit bundle b is served only by the servers in bundle b and the limiting

scaled mean delay of bundle b is Ŵb =
Wb
δ + ω∗0. In other words, the objective of the MILP

measures precisely the additional delay disutility compared to the minimum delay disutility

experienced under a single CRP matching system.

The solution may potentially offer identical service bundles to multiple customer types.

There would be no differences in terms of outcomes if the service provider were to offer

distinct service classes for each customer type, or only offer each distinct service bundle

once. The solution to the MILP may potentially assign multiple service bundles to a single

customer type, in which case in equilibrium that customer type will be joining multiple service

classes. Because of this, the Value Maximizing Tailored menu may have more distinct service

classes than there are customer types.

Note that for every customer type θ, we need to enumerate all 2Sθ bundles. Computa-

tionally this is not prohibitive if in the maximum value tree, the degree of each customer

type is small. In Section 3.9 we present results from numerical experiments based on the

MILP in Figure 3.9.

3.8.2 Delay Minimizing Tailored Menus: According to Proposition 4, any

menu that induces a heavy traffic equilibrium with a single CRP component (such as the
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Single Line menu) minimizes customers’ limiting waiting times. In this section, we look

at how to find a menu with higher matching values than the Single Line menu, while still

maintaining a single CRP component at the heavy traffic equilibrium. We will narrow our

focus to menus in which each customer type is joining a single service class in equilibrium

in designing such a menu. This restriction means the arrival rates into the different service

classes are fixed, which allows us to encode the flows between service classes and servers

within a MILP. We will see in Section 3.9 that the menus we identify perform well even with

this restriction.

Just like in the previous section, we will formulate this problem as a mixed-integer linear

program. Consider a menu M with |Θ| = n and let V θi denote the average reward that

a customer type θ is expected to receive by joining service class i. Since, |Θ| = n, in

what follows we will abuse notation and refer to service class i ∈ [n] as the one targeted to

customers of type i ∈ Θ. Similarly, we will denote by Ai the limiting arrival rate at class

i ∈ [n].

To ensure the incentive compatibility of the proposed menu, the service provider would

like to design the menu in such a way that (i) it induces a single CRP component and (ii)

the following IC condition is satisfied.

V ii ≥ V ik, for all k ∈ [n]. (IC)

To formulate the service provider problem, we will rely on the quadratic program (QP) to

approximate the steady-state matching probabilities for a given matching topology. Specif-

ically, we propose the mixed integer linear program (MILP)7 presented in Figure 3.10 to

identify the matching probabilities that maximize the approximated average reward under

the (IC) condition and the single CRP requirement.

7. This MILP is an extension of the one studied in Afèche et al. (2021).
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Objective:
V∗ := max

∑
ij

Ai · pij · Vij

Constraints:

Approximate FCFS matching rates: KKT conditions of the (QP)∑
j∈[m]

pij = 1,
∑
i∈[n]

fij = µj , pij ≤ Zmij , pij ≤ Zzij , νij ≤ (n+m+ 1)Y · (1− zij),

(3.8.5a)

µj(θi + γj + νij)− Z(1−mij) ≤ pij ≤ µj(θi + γj + νij) + Z(1−mij), (3.8.5b)

where Y :=
1

2
max

{
1

Amin
,

1

µmin

}
and Z := Amax · µmax ·

(
n

Amin
+

m

µmin
+ (n+m+ 1)2Y

)
Amax = max

i∈[n]
{Ai}, Amin = min

i∈[n]
{Ai}, µmax = max

j∈[m]
{µj}, µmin = min

j∈[m]
{µj}.

Enforcing incentive compatibility condition (IC):
∑
j∈[m]

Vij (pkj − pij) ≤ 0. (3.8.6)

Enforcing a single CRP component: n sets of constraints (indexed by k ∈ C)∑
i∈C

g
(k)
ij = µj ,

∑
j∈S

g
(k)
ij = Ai −

ε

n− 1
, g

(k)
kj = Ak + ε g

(k)
ij ≤ Zmi,j , (3.8.7)

where ε :=

∏
i∈[n]

qi
∏
j∈[m]

qj

−1

and pi
qi

= Ãi,
pj
qj

= µj are the rational number representations.

Non-negativity of decision variables: {pij}, {νij}, {g(k)ij } ≥ 0 and {mij}, {zij} ∈ {0, 1}.

Figure 3.10: MILP for finding a tailored menu with maximum reward rate under minimum
average delay constraint.

We explain the decision variables and the constraints of the MILP in brief next.

Decision Variables:

• {mij , (i, j) ∈ [n] × [m]}: These binary decision variables correspond to the matching

topology.

• {pij , (i, j) ∈ [n]× [m]} : These decision variables approximate the matching probabil-
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ities on edge (i, j) under the matching topology {mij} and FCFS-ALIS matching.

• {ηi, (i ∈ [n]);ωj , (j ∈ [m]); νij , ((i, j) ∈ [n]×[m])} : These decision variables correspond

to the dual variables for flow balance constraints (3.8.5a), and non-negativity constraint

for pij , respectively, and are used to enforce the KKT conditions for the quadratic pro-

gram (QP). Recall that the QP dictates that for some constants {ηi}i∈[n], {γj}j∈[m],

and {νij}(i,j)∈[n]×[m] ≥ 0, we have p∗ij = µj(θi + γj + νij) and fij · νij = 0 if mij = 1,

and f∗ij = 0 otherwise.

• {zij , (i, j) ∈ [n] × [m]}: The binary variable zi,j is used to enforce complementary

slackness for the non-negativity constraint pij ≥ 0: zi,j = 0 enforces pij = 0 and

zi,j = 1 enforces νi,j = 0.

• {g(k)ij , (i, j, k) ∈ [n] × [m] × [n]} : These n sets of flow variables (where the set is

indexed by the superscript k ∈ [n]) are used to enforce the single CRP (equivalently

minimum average delay) requirement. In words, the kth set of variables corresponds to

the adjusted flows when we increase Ak by a small ε, and reduce each Ai for i ̸= k by

ε
n−1 .

Constraints (3.8.5a)-(3.8.5b) are the flow balance constraints. The constants Y, Z ensure

that the constraints impose the KKT conditions of (QP) for any matching topology M .

These constraints and the non-negativity of pij imply:

pij =


µj(θi + γj + νij), mij = 1,

0, mij = 0.

Constraints (3.8.5a) and non-negativity of pij and νij imply the complementary slackness

constraint fij · νij = 0. Constraints (3.8.6) ensures the IC condition V ii ≥ V ik for all

i, k ∈ [n]. Finally, the proof that the constraints (3.8.7) are necessary and sufficient to
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ensure that the matching topology M = [mij ] induces a single CRP component can be

found in Afèche et al. (2021).

3.9 Numerical Experiments

In Sections 3.7 and 3.8, we presented two classes of service menus that the service provider

can use to design the service system, partition menus and tailored menus. In this section,

we perform some preliminary numerical experiments to explore two questions. Firstly, we

would like to understand for which preference structures the different approaches perform

better or worse. Secondly, we would like to understand how what is the cost to the service

provider of not being able to control customer strategies.

We begin by showing plots of the performance of Pareto efficient partition menus and

tailored menus in the reward-delay quadrant for three particular instances of parameters. The

customer valuations for servers were generated using the distribution Vθj = θ× j +N(0, σ),

where both θ and j take values in {1, 2, 3, 4, 5}. (Recall that θ indexes customer types

and j servers.) Valuations are then translated so that minθj Vθj = 0, and scaled so that

maxθj Vθj = 10. We show results for σ ∈ {0, 2, 5}, Γ = [1, 1, 1, 1, 1], A = 5/18[2, 5, 1, 6, 4],

and a = 1/5[1, 1, 1, 1, 1]. For comparison, we also show a bound on the performance of any

menu using a linear programming relaxation of the problem that assumes that the service

provider is able to decide the delays and matching rates for each customer type separately,

and only the incentive compatibility constraints need to be satisfied. Details of the LP

bound can be found in Appendix C. These plots provide some intuition about the relative

performance of each menu. We will later show that this intuition applies quite generally,

and does not depend on the particular valuations used to generate these plots. As we can

see, the partition menus perform better relative to the tailored menus when there is less

noise. The delay minimising tailored menu performs better as the noise increases. The value

131



18 19 20 21 22 23 24 25

total value

1

2

3

4

5

6
av

er
ag

e 
de

la
y 

co
st

 = 0

18 19 20 21 22 23 24 25

total value

1

2

3

4

5

6

av
er

ag
e 

de
la

y 
co

st

 = 2

18 19 20 21 22 23 24 25

total value

1

2

3

4

5

6

av
er

ag
e 

de
la

y 
co

st

 = 5

Dedicated & Single Line
Min Wait Tailor
Value Max Tailor
Partition
LP Bound

Figure 3.11: Performance of different menus when Vθj = θ · j +N(0, σ) for σ = 0, 2, 5 in the
average reward vs. average delay quadrant.

maximising tailored menu only performs better than some partition menus when noise is

large.

Next, we compare the performance of the different mathematical programming approaches

for different values of ζ. Using the same valuation distributions and the same values of Γ,

A, and a as we used to generate Figure 3.11, we compare the performance of the chained

partition menus and the tailored menus. For σ = 2 and σ = 5, we randomly generate 100

different instances of valuations, and report the average performance across all the instances.

For σ = 0, since there is no randomness, we only have one instance, and so we report the per-

formance of that instance directly. For each value of ζ and each valuation instance, we find

the optimal partition menu. For each instance, the tailored menus do not change depending

on ζ, only the objective function values do.

For each menu, we report the ratio

V̂ ∗ − ζŴ ∗

V̂VM − ζŴDM

.

That is, we are comparing the performance of each menu with that of the first best outcome,
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in which matching values are maximized and delays are minimized simultaneously. In the

last row of the table, we report the same ratio for the LP bound.

σ 0 2
ζ 0 0.05 0.25 0.5 0 0.05 0.25 0.5

CP 1.000 0.972 0.864 0.806 1.000 0.975 0.896 0.848
VM 1.000 0.972 0.851 0.683 1.000 0.975 0.867 0.720
DM 0.828 0.826 0.818 0.806 0.909 0.908 0.904 0.898
LP 1.000 0.979 0.897 0.806 1.000 0.988 0.955 0.931

σ 5
ζ 0 0.05 0.25 0.5

CP 1.000 0.980 0.919 0.878
VM 1.000 0.981 0.899 0.789
DM 0.957 0.957 0.955 0.953
LP 1.000 0.994 0.979 0.971

Table 3.2: Average performance of different menus when Vθj = θ · j +N(0, σ) for σ = 0, 2, 5
relative to the LP bound.

These results show that the intuitions from Figure 3.11 hold true across many instances,

as well as providing some new intuitions. For low values of ζ, the optimal partition menu

performs at least as well as the tailored menus, and when there is no noise, the partition

menu performs at least as well as the tailored menus for all values of ζ. For high values of ζ,

the delay minimizing tailored menu performs at least as well as the partition menus and the

value maximising tailored menus, regardless of how much noise there is. The performance

of the delay minimising tailored menu also improves relative to the LP bound as the noise

increases. The value maximising tailored menu only outperforms the partition menus when

noise is large, and ζ is small.

By comparing the performance of each menu with the first best outcome, we are able to

see how much the service provider is losing out by not being able to control the customer

strategies as well as the menu. When the service provider can control the customer strategies
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as well as the menu, they are always able to achieve an outcome arbitrarily close to the first

best outcome, by offering all of the service classes in the Dedicated menu, and an additional

service class served by all servers. The strategies that will achieve close to a first best outcome

would be to have customers generally use their value maximising strategy, while diverting a

small amount of flow to the service class served by all servers.

We can see the performance of all menus relative to the first best outcome decreases

with ζ. This would continue for all values of ζ for the value maximising menu, as the value

maximising menu is a fixed menu with delays worse than the first best delays. The delay

minimising menu achieves the minimum possible delay, so for large enough values of ζ we

would see the performance of the delay minimising menu begin to improve relative to the

first best outcome, as the delays become more and more dominant in the objective. We

would expect the same thing to happen for the LP bound and the optimal partition menu,

as for large enough ζ, the LP bound and the optimal partition menu would have minimum

possible delays, which can always be achieved in an incentive compatible way by offering a

single line menu. We can also see that the performance of all menus relative to the first best

outcome improves as noise increases.
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3.A Chapter 3 Proofs

3.A.1 Proof of Theorem 3: We will use Kakutani’s Fixed Point Theorem to show

that a ∆-equilibrium exists for ∆ = 0 when |α| < |µ|.

Theorem 9 (Kakutani’s Fixed Point Theorem). Let Q be a non-empty, compact and convex

subset of some Euclidean space Rn. Let F : Q → 2Q be a set-valued funtcion on X with the

following properties:

• F has a closed graph;

• F (q) is non-empty and convex for all q ∈ Q.

Then F has a fixed point.

We will apply Kakutani’s Fixed Point Theorem to a best response function F : Q → 2Q,

which we will now construct. In constructing the best response function F , it will be useful

to extend our definitions of Wi(q), pij(q), and Uθi(q) to strategy profiles q for which the

system does not admit a steady state under a FCFS-ALIS service discipline.

To do this, we introduce the concept of a reduced service system. Fix a strategy profile

q, and let λI(q) denote the arrival rate into the set I of service classes under q. The strategy

profile q need not admit a steady state distribution. Thus, we define I ⊆ [n] as the minimal

set of unstable service classes and let J = S(I ) be the servers compatible with I under

menu M . That is, I is the minimal set satisfying ∀I ′ ∩ I = ∅:

λI ′(q) < µS(I ′)∩J ,

where J := [m] \ J , and I := [n] \ I . The set I is unique, and a non-constructive

method of identification is as follows: Let f∗ denote the optimal value of the maximum
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flow in the network with nodes [m] ∪ [n], maximum inflow into service node i of λi(q) and

maximum capacity of server node j of µj . If for a service class i, there exists some ϵi > 0,

such that the new maximum flow obtained by increasing the inflow into service class i by ϵi

is f∗ + ϵi then i ∈ I , otherwise i ∈ I .

The reduced service system is given by only keeping the service classes I and servers

J . The menu MI is the submatrix of M with rows corresponding to service classes in I ,

and columns corresponding to J . We use λI (q) to denote the vector of arrival rates for

service classes I , and ΓJ as the service rate vector for the servers in J . Note that the

sets I and J are a function of the strategy profile q. We will denote them by I (q) and

J (q) when this dependence is not clear from the context.

We now use this reduced system to define pij(q) and Wi(q) for arbitrary strategy profiles

q (potentially for which the system is unstable), and the best response map. By definition,

the reduced service system (λI (q),ΓJ ,MI ) is stable, and hence admits steady state mean

waiting times which we denote by WI
i (q) for i ∈ I , and matching probabilities, defined

to be pI
ij (q) for i ∈ I , j ∈ J . For i ∈ I , j ∈ J , we set pij(q) = pI

ij (q). For all

other combinations of (i, j) ∈ [n] × [m], we set pij(q) = 0. Similarly for i ∈ I we set

Wi(q) = WI
i (q), and for all i /∈ I we set Wi(q) = ∞.

With these extended definitions of pij(q) and Wi(q), we can also extend the definition of

Uθi(q) which allows us to define the best response set of each customer type for any strategy

profile q. Let Bθ(q) be the set of all service classes which maximize the utility of customers

in class θ given strategy profile q, that is,

Bθ(q) =

{
i ∈ [n]

∣∣∣∣ i ∈ argmax
i′

Uθi′(q)

}
.
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For any customer type θ and any strategy profile q, let

Fθ(q) = conv({ei|i ∈ Bθ(q)}).

We then define the best response function F (q) as

F (q) = ×
θ∈Θ

Fθ(q). (3.A1)

It is clear from the definition of F that F (q) is non-empty and convex for all q. All that

remains to be shown in order to use Kakutani’s Fixed Point Theorem is that the graph of

F is closed. To do this, we will show that the graph of F contains all of its limit points.

Let {qk}k∈N and {q∗k}k∈N be a sequences of strategy profiles such that qk → q and

q∗k → q∗, where q and q∗ are strategy profiles, and q∗k ∈ F (qk) for all k ∈ N. To show that

the graph of F contains all of its limits points, we need to show that q∗ ∈ F (q). To do this,

we need to show that for all θ ∈ Θ and i ∈ [n] such that q∗θi > 0, q∗θi ∈ Bθ(q).

Consider any pair (θ, i) such that q∗θi > 0. Then there must exist some K ∈ N such that

for all k > K, q∗kθi > 0. This implies that i ∈ Bθ(qk) for all k > K, or, Uθi(qk) ≥ Uθi′(qk)

for all i′ ∈ [n]. To show that Uθi(q) ≥ Uθi′(q) for all i′ ∈ [n], it suffices to show that

Uθi(qk) → Uθi(q) for all θ, i as k → ∞.

Let I (q) denote the set of stable service classes under limiting strategy profile q. Since

qk → q implies λI(qk) → λI(q) for all subsets I ⊆ [n], it is true that I (q) = lim infk→∞ I (qk).

Further, for all i /∈ I (q) (the unstable service classes), Wi(qk) → ∞ and hence limk→∞ Uθi(qk)

= −∞ = Uθi(q) for i /∈ I . For the remaining classes, i ∈ I (q), there exists some K, such

that for all k ≥ K, i ∈ I (qk). Thus by continuity of the steady-state distribution for

FCFS-ALIS model (for stable matching topologies), for i ∈ I (q), pij(qk) → pij(q) and

Wi(qk) → Wi(q), and hence Uθi(qk) → Uθi(q).
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This completes the proof that the graph of F is closed. So Kakutani’s Fixed Point

Theorem applies, and we know that there exists some strategy profile q satisfying q ∈ F (q).

□

3.A.2 Proof of Proposition 13: To compute the average scaled waiting time Wmax

under the Dedicated menu we need to impose the equilibrium conditions. First, we need

to ensure that the limiting arrival rate to class i converges (from below) to µi for i = 1, 2.

Thus, under the assumption A1 > µ1, we must have some customer type θ̄ ∈ Θ1 that is

randomizing between joining the dedicated queue for server 1 and the dedicated queue for

server 2. In equilibrium, this randomization strategy should be such that this customer type

is indeed indifferent between joining these two service classes. To identify the type θ̄ we need

to rank the customers’ types in Θ1 according to the value of ∆Vθ. For this, let K1 = |Θ1|

denote the cardinality of |Θ1| and let us index its elements Θ1 = {θ1, θ2, . . . , θK1
} in such

a way that ∆Vθ1 ≥ ∆Vθ2 ≥ · · · ≥ ∆VθK1
. In case of ties, i.e., if ∆Vθi = ∆Vθi+1

, then we

require Vθi1 ≥ Vθi+11.

Let us denote by κ̄ the index that defines θ̄, that is, θ̄ = θκ̄. Now, if type-θκ̄ customers

are indifferent between the two service classes then we must have that customers’ type θk

(with k < κ̄) prefer class 1 over class 2. Hence, to ensure that the arrival rate to class i

converges to µi from below the value of κ̄ must be equal to

κ̄ := min

{
κ ∈ [K1] :

κ∑
k=1

Aθk > µ(1)

}

and a fraction

q̂κ̄ :=
µ1 −

∑κ̄−1
k=1 Aθk∑κ̄

k=1Aθk

of the type-θκ̄ customers must select class 1.

Also, a type-θκ̄ is indifferent between the two dedicated queues if ∆Vθκ̄ = δ (ŴD
1 − ŴD

2 ),
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where ŴD
i is the scaled steady-state mean waiting time of class i = 1, 2 under the Dedicated

menu. Furthermore, from Theorem 1, we know that ŴD
i = 1/γ̃i, where γ̃i is the scaled

capacity slack of class i. But the sum of the slacks of the two classes is equal to the

aggregated system lack, that is, γ̃1+ γ̃2 = |a|. Using this identity, the indifference condition

∆Vθκ̄ = δ (ŴD
1 − ŴD

2 ) leads to the following equation on γ̃1:

∆Vθκ̄ = δ

(
1

γ̃1
− 1

|a| − γ̃1

)
.

Solving for γ̃1 and plugging back the solution in the values for ŴD
1 and ŴD

2 we get

ŴD
1 =

2∆Vθκ̄

2 δ + |a|∆Vθκ̄ −
√
4 δ2 +

(
|a|∆Vθκ̄

)2

ŴD
2 =

2∆Vθκ̄

|a|∆Vθκ̄ − 2 δ +

√
4 δ2 +

(
|a|∆Vθκ̄

)2 .
Finally, to obtain the value of Wmax we note that in a Dedicated menu a flow of µi customers

join class i in the heavy traffic limit, i = 1, 2. It follows that

Wmax =

(
µ1

µ1 + µ2

)
ŴD

1 +

(
µ2

µ1 + µ2

)
ŴD

2 . (3.A2)

Let us turn to the derivation of Wmed, the average customers’ delay performance achieved

by the Full and N1 menus. We can compute this value using a similar line arguments

as the one we just used to compute Wmax. Again the equilibrium conditions imply that

customers type-θκ̄ (same as above) must randomize between joining class 1 or class 3 and the

randomization probability must equal q̂θκ̄ to ensure that the arrival rate to class i converges

to µi from below in the heavy traffic limit for i = 1, 3. The main difference with the Dedicated

menu is than under the N1 menu the two CRP components are not longer disconnected but
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rather chained. Thus, Theorem 1 implies that the scaled waiting time of class 3 is equal

to Ŵ N1

3 = 1/|a|. In addition, a type-θκ̄ is indifferent between the two classes if ∆Vθκ̄ =

δ (Ŵ N1

1 − Ŵ N1

3 ) and so Ŵ N1

1 = 1/|a|+∆Vθκ̄/δ. Combining these values with the fact that a

flow of µ1 customers join class 1 in equilibrium we get that

Wmed =
1

|a| +
(

µ1
µ1 + µ2

)
∆Vθκ̄
δ

. (3.A3)

□

3.A.3 Proof of Proposition 11: Since q̂∗ is a heavy traffic equilibrium, there exists

a direction ϕ̂∗ ∈ R|Θ| satisfying the conditions in Definition 12. For ϵ > 0, let us define

the strategy q(ϵ) = q̂∗ + ϕ̂∗ ϵ. To prove the result, we will show that q(ϵ) satisfies condition

(a) in the proposition for an appropriate sequence (∆ϵ)ϵ>0 that converges to 0 as ϵ ↓ 0.

Specifically, we need to show that for all θ ∈ Θ and for all i, k ∈ [n]

q(ϵ)

θi

(
Uθi

(
W (ϵ)(ϵ)(q(ϵ)), p(ϵ)(q(ϵ))

)
− Uθk

(
W (ϵ)(ϵ)(q(ϵ)), p(ϵ)(q(ϵ))

))
≥ −∆(ϵ). (3.A4)

Since q̂∗ is a heavy traffic equilibrium converging along the direction ϕ̂∗, conditions (a) and

(b) in Definition 12 imply that the left-hand side of this inequality converges to a non-

negative limit as ϵ ↓ 0. It follows then that for all ∆ > 0 there exists an ε(∆) > 0 such that

for all ϵ ∈ (0, ε(∆)) we have

q(ϵ)

θi

(
Uθi

(
Ŵ (ϵ)(q(ϵ)), p(ϵ)(q(ϵ))

)
− Uθk

(
Ŵ (ϵ)(q(ϵ)), p(ϵ)(q(ϵ))

))
≥ −∆.

Furthermore, we can always select the mapping ε(∆) > 0 to be continuous and monotonically

increasing in a neighborhood (0, ∆̄), for some ∆̄ > 0, and such that lim∆↓0 ε(∆) = 0. Then,

for ϵ small enough we can define ∆(ϵ) := ε−1(ϵ/2). It follows that limϵ↓0∆(ϵ) = 0 and that

the inequality in (3.A4) is satisfied. □
140



3.A.4 Proof of Proposition 12: Let us use a slight abuse of notation and denote

by Ŵ ∗
k the limiting scaled waiting times of all service classes that belong to Ck for k ∈ [K].

Define the vector Ŵ ′ such that Ŵ ′
k = Ŵ ∗

k − Ŵ ∗
1 +1/|a|. We next show that (q̂∗, Ŵ ′, p̂∗) is a

heavy traffic equilibrium that weakly Pareto dominates (q̂∗, Ŵ ∗, p̂∗) since Ŵ ′ ≤ Ŵ ∗. To this

end, we note that by Proposition 3 Ŵ ′ is implementable by a chained DAG on C. Let γ̃′ =

(γ̃′1, . . . , γ̃
′
K) be the vector of cumulative capacity slacks that implement Ŵ ′(see Definition 6)

and define the direction of convergence to heavy traffic ϕ′ as a solution to system of linear

equations γ̃′ = a q̂∗ − Aϕ′. By this construction, one case see that (q̂∗, Ŵ ′, p̂∗) satisfies

conditions (a) and (b) in Definition 12. Indeed, (a) holds since the sequence of pre-limit

strategy profiles q′(ϵ) = q̂∗ + ϵ ϕ′ satisfies Ŵ ′ = limϵ↓0 Ŵ (ϵ)(q′(ϵ)) and p̂∗ = limϵ↓0 p(ϵ)(q′(ϵ)).

On the other hand, (b) holds trivially since Ŵ ′
k is a translation of Ŵ ∗. □

3.A.5 Proof of Theorem 4: First, under a Single Line menu every customer –

irrespective of its type– is served by server j with probability µj/|µ|. It follows that,

V
SL

=
∑
θ∈Θ

Aθ

|A|
∑
j∈[m]

µj
|µ| Vθj .

On the other hand, let Ŵ ∗ = (Ŵ ∗
i )i∈[n] and p̂∗ = [p̂∗ij ]i∈[n],j∈[m] be the limiting steady-state

waiting times and matching probabilities under the pair (M, q̂∗). It follows that

V (M, q̂∗) =
∑
θ∈Θ

Aθ

|A|
∑
i∈[n]

q̂∗θi
∑
j∈[m]

p̂∗ij Vθj .

Now, let λ̂∗i be the equilibrium arrival rate to class i ∈ [n] under (M, q̂∗), that is,

λ̂∗i =
∑
θ∈Θ

Aθ q̂
∗
θi.
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and let us define the strategy q = [qθi]θ∈Θ,i∈[n] by

qθi =
λ̂∗i
|µ| .

Note that q is feasible strategy (i.e., q ∈ Q) since |λ̂∗| = |A| = |µ|.

By the equilibrium condition that q̂∗ satisfies, there is no customer type θ that would

strictly prefer to use strategy (qθi)i∈[n] instead of (q̂∗θi)i∈[n]. It follows that

∑
i∈[n]

q̂∗θi
( ∑
j∈[m]

p̂∗ij Vθj − δ Ŵi

)
≥

∑
i∈[n]

qθi

( ∑
j∈[m]

p̂∗ij Vθj − δ Ŵi

)
(equilibrium condition)

=
∑
i∈[n]

λ̂∗i
|A|
( ∑
j∈[m]

p̂∗ij Vθj − δ Ŵi

)
(definition of λ̂∗i )

=
∑
j∈[m]

Vθj
|µ|

∑
i∈[n]

λ̂∗i p̂
∗
ij − δ

∑
i∈[n]

λ̂∗i
|µ| Ŵi

=
∑
j∈[m]

µj
|µ| Vθj − δ

∑
i∈[n]

λ̂∗i
|µ| Ŵi. (since

∑
i∈[n] λ̂

∗
i p̂

∗
ij = µj)

Let multiply both sides of the inequality by Aθ/|A| and sum over θ ∈ Θ to get

V (M, q̂∗)− δ
∑
θ∈Θ

Aθ

|A|
∑
i∈[n]

q̂∗θi Ŵi ≥ V
SL − δ

∑
θ∈Θ

Aθ

|A|
∑
i∈[n]

λ̂∗i
|µ| Ŵi.

But

∑
θ∈Θ

Aθ

|A|
∑
i∈[n]

q̂∗θi Ŵi =
∑
i∈[n]

Ŵi

|A|
∑
θ∈Θ

Aθ q̂
∗
θi

=
∑
i∈[n]

λ̂∗i
|µ| Ŵi =

∑
θ∈Θ

Aθ

|A|
∑
i∈[n]

λ̂∗i
|µ| Ŵi (recall that |A| = |µ|)

and so we conclude that V (M, q̂∗) ≥ V
SL. □
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3.A.6 Proof of Theorem 5: We will now use approximate complementary slackness

to show that any equilibrium set of flows under the partition menu gives an approximately

optimal solution to the max flow problem (Max-flow), and that the optimality gap goes to

0 as ϵ ↓ 0.

Recall that f (ϵ)

θj is the flow of customers type θ served by server j in the max flow for-

mulation (Max-flow). Similarly, η(ϵ)

θ and ω(ϵ)

j are the dual variables for the flow balance

constraint for customer type θ and the capacity constraint of server j, respectively, in the

dual problem (3.6.2). For a feasible primal solution f (ϵ)

θj and a feasible dual solution (η(ϵ)

θ , ω(ϵ)

j )

to satisfy approximate complementary slackness, it is sufficient that

0 ≤
(
µj −

∑
θ f

(ϵ)

θj

)
ω(ϵ)

j ≤ εj

0 ≤
(
η(ϵ)

θ + ω(ϵ)

j − Vθj

)
f (ϵ)

θj ≤ εθj (3.A5)

for all θ and j, and εj , εθj ≪ 1. With these we can show approximate optimality of f (ϵ)

θj ,

namely, show that
∑

θ,j Vθj f
(ϵ)

θj ≈ V̄ (ϵ). Formally, weak duality gives:

∑
θ,j

f (ϵ)

θj Vθj ≤ V̄ (ϵ) ≤
∑
θ

α(ϵ)

θ η(ϵ)

θ +
∑
j

µj ω
(ϵ)

j .

Weak complementary slackness and primal/dual feasibility imply:

∑
θ

α(ϵ)

θ η(ϵ)

θ +
∑
j

µj ω
(ϵ)

j ≤
∑
θ,j

f (ϵ)

θjη
(ϵ)

θ +
∑
j

(
ω(ϵ)

j

∑
θ

f (ϵ)

θj + εj

)

=
∑
θ,j

f (ϵ)

θj

(
η(ϵ)

θ + ω(ϵ)

j

)
+
∑
j

εj

≤
∑
θ,j

f (ϵ)

θj Vθj +
∑
θ,j

εθj +
∑
j

εj .
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Combining, we get

V̄ (ϵ) −

∑
θ,j

εθj +
∑
j

εj

 ≤
∑
θ,j

f (ϵ)

θj Vθj ≤ V̄ (ϵ). (3.A6)

Let us now show that for any equilibrium arrival rates fθj
(ϵ)1 for the ϵth system, we can

construct a dual solution such that approximate complementary slackness holds. To this

end, let Ŵ (ϵ)

j be the equilibrium limited scaled waiting time for the service class served by

server j. For all j ∈ [m] and θ ∈ Θ, we let

ωj
(ϵ) = δ Ŵ (ϵ)

j and ηθ
(ϵ) = max

j

{
Vθj − ωj

(ϵ)
}

(3.A7)

denote a feasible dual solution. We know that under any equilibrium, f (ϵ)

θk > 0 only ifj

j ∈ argmax
j′

{
V θj − δ Ŵ (ϵ)

j

}
, that is, j ∈ argmax

j′

{
V θj − ω(ϵ)

j

}
.

Therefore f (ϵ)

θj > 0 only if ηθ(ϵ) +ωj
(ϵ) −Vθj = 0. So exact complementary slackness holds for

the first set of dual constraints: εθj = 0 for all θ, j. Furthermore, for the primal constraints,

we use the fact that under the Dedicated menu service class j operates as a single M/M/1

queue with arrival rate
∑

θ fθj
(ϵ) and service capacity j. It follows that the (non-scaled)

waiting time in service class j equals W (ϵ)

j = 1/(µj −∑θ fθj
(ϵ)). Thus, since the scaled

waiting time in service class j satisfies Ŵ (ϵ)

j = ϵW (ϵ)

j , which implies

0 ≤
(
µj −

∑
θ

fθj
(ϵ)

)
ωj

(ϵ) = δ ϵ. (3.A8)

1. We know that an equilibrium exists from Theorem 3.
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Or, approximate complementary slackness holds with εj = δ ϵ. Then (3.A6) implies

V̄ (ϵ) −
∑
θ,j

fθj
(ϵ)Vθj ≤ δ ϵm.

So as ϵ ↓ 0, the difference between the value V (ϵ) :=
∑

θ,j fθj
(ϵ)Vθj achieved in equilibrium

under the Dedicated menu and the upper bound V̄ (ϵ) converges to zero. □

3.A.7 Proof of Theorem 6: To get the main idea across, we first assume that for all

customer types θ, the rewards Vθj are distinct. Later in the proof we remove this assumption.

Let the service classes be labelled so that service class j is the dedicated service class

for server j. We begin by claiming that in any heavy traffic equilibrium, with limiting

probabilities p̂∗, for any service class i there can be at most one server j with p̂∗ij > 0.

Suppose not, and assume that there are p̂∗ij > 0 and p̂∗ij′ > 0 (for simplicity assume there

are only two such servers, the proof generalizes easily). Then servers j and j′ must be in the

same CRP component. Further service classes dedicated to servers j and j′ must also be in

the same CRP component and hence the limiting scaled mean delay of service classes j and

j′ equal the limiting scaled mean waiting time for service class i. It can happen that the

arrival rate into the dedicated service classes j or j′ could be zero, however we can still talk

about the virtual waiting time of a customer joining these service classes, and the statement

would hold for the limiting scaled virtual waiting time.

Now by assumption, at least one of the dedicated service classes j or j′ give strictly higher

matching value and no higher delay to any customer type joining class i, and therefore this

can not be an equilibrium.

The equilibrium matching system therefore looks as follows: the service classes are par-

titioned into m + 1 sets C0, C1, . . . , Cm, such that the classes in C0 have asymptotically

negligible demand: C0 = {i ∈ [n]|Λi = 0}. For j ≥ 1, the service classes in Cj have asymp-
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totically non-negligible flow to only server j: p̂∗ij = 1 for i ∈ Cj . Again, for this outcome

to be an equilibrium, we must have the limiting scaled mean waiting for all service classes

within each Cj (j ≥ 1) to be equal, and therefore in heavy-traffic limit any customer type

will be indifferent between any service class within Cj . We will denote by Ŵ ∗
j the limiting

scaled mean waiting time for service classes in Cj for j ≥ 2. To summarize, for any service

class i ∈ Cj , the limiting utility obtained by a customer type θ is Uθi = Vθj − δŴj .

Define:

fθj =
∑
i∈Cj

Aθq̂
∗
θi. (3.A9)

as the total flow from customer type θ to server j (through service classes in Cj). Denoting

the utility of type θ as

Uθ = max
i

Uθi = max
j

Vθj − δŴj ,

best response condition gives fθj > 0 only if j ∈ argmaxj′
{
Vθj′ − δŴj′

}
or equivalently,

fθj ·
(
Uθ − Vθj + δŴj

)
= 0.

But these are precisely the complementary slackness conditions for the maximum value flow

linear program (Max-flow) in the proof of Theorem 5. Since [fθj ] is a feasible primal so-

lution, the complementary slackness conditions imply that it is also an optimal, and hence

value maximizing, flow.

Removing assumption on rewards: To summarize what we have done so far, we

showed that we can use the equilibrium to define the flow matrix [fθj ], customer utilities

Uθ, and server delays δŴj so that they are feasible primal dual solutions to the maximum

value flow problem (Max-flow) and satisfy complementary slackness conditions. We now
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show we can do so without the restriction on rewards.

Fix a heavy-traffic equilibrium q̂∗, and the resulting limiting probabilities p̂∗. Define Ŵi

as the limiting mean scaled waiting time of the CRP component that service class j belongs

to. Recall the definitions:

Uθi =
∑
j

p̂∗ijVθj − δŴi,

and by the best response condition, the customer utility is defined by

Uθ = max
i

Uθi.

Define S∗(i) = {j : p̂∗ij > 0} as the “effective”set of servers for service class i. Let customer

type θ join a service class i (that is, q̂∗θi > 0) so that Uθ = Uθi. Suppose |S∗(i)| ≥ 2 (the case

|S∗(i) = 1| is vacuously true for the argument). Then we must have that for j, j′ ∈ S∗(i),

Ŵj = Ŵj′ since j, j′ are in the same CRP component. It must also be the case that for all

j ∈ S∗(i), Vθj are equal. If not, then type θ can deviate to the dedicated service class for

the server j ∈ S∗(i) with highest reward – this strictly improves the reward and does not

incur any further delay disutility. Therefore, for all j ∈ S∗(i)

Vθj − δŴj = Uθi = Uθ.

Define the total flow from customer type θ to server j, fθj , as:

fθj = Aθ

∑
i

q̂∗θip̂
∗
ij .

The preceding arguments imply fθj > 0 only if Uθ = Vθj − δŴj . We thus again find that

[fθj ], Uθ, Ŵj define feasible primal-dual solution to (Max-flow) satisfying complementary

slackness, and hence the flow [fθj ] maximizes the matching reward. □
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3.A.8 Proof of Theorem 7: Suppose the service provider is able to achieve a first

best outcome by offering the menu M∗. As there may be multiple equilibria, throughout

this proof we will use equilibrium to mean the first best outcome achieving equilibrium. Let

q∗θi be the equilibrium strategies, and let p∗ij be the equilibrium matching rates. We will also

let f∗θj be the equilibrium flows between customer types and servers.

Since a first best outcome is achieved, we know that f∗ij constitute an optimal solution to

Max-flow with ϵ = 0. We will begin by showing that the positive flows from this solution

form a connected graph.

Since a first best outcome is achieved, we know that in equilibirum there is a single CRP

component, and hence there is a connected graph between service classes and servers. Since

every customer type is joining at least one service class, this implies that there is a path

between every customer type and every server, which in turn implies that there is a path

between every pair of customer types. Hence the flows between customer types and servers

also form a connected graph.

Next we will show that no customer type prefers the Max-flow matching outcome of

any other customer type. Take any two customer types θ̂ and θ̃. We will show that θ̂ does

not prefer that matching outcome of θ̃. We will let V̂ be the matching value that θ̂ achieves

from their equilibrium strategy. Since there is a single CRP component, we know that V̂ is

the value that θ̂ gains from every service class they are joining in equilibrium, and that V̂ is

at least as large as the value θ̂ would achieve from joining any other service class.
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The value θ̂ gains from θ̃’s Max-flow matching outcome is

V (θ̂, θ̃) =
∑
i

q∗
θ̃i

∑
j

pijVθ̂,j

≤
∑
i

q∗
θ̃i
V̂

= V̂ .

Thus θ̂ prefers their own matching outcome to that of any other customer type. This

completes the proof. □

3.A.9 Proof of Corollary 3: The proof of this corollary follows the proof of Theo-

rem 5 for the Dedicated menu essentially verbatim by reinterpreting an individual server in

the Dedicated menu by a super-server for each of the partitions with a service capacity equals

to the sum of the capacities of the servers in the partition. The only small difference in the

proof relates to equation (3.A8). Specifically, since super-server k does not operates exactly

as an M/M/1, it is not longer true that the (non-scaled) waiting time W (ϵ)

k for service class Ck
is equal to 1/(µSk−

∑
θ f̂θk). However, we next show that for all ϵ ≤ minj{µj}/((m+1) |a|),

we have (
µSk −

∑
θ

f̂θk

)
W (ϵ)

k ≤ 2,

which suffices to complete the rest of the steps in the proof of Theorem 5.

To this end, we use the fact that service class Ck is a single-line multi-server queue

with arrival rate
∑

θ f
(ϵ)

θk and system utilization ρ(ϵ)

k :=
∑

θ f
(ϵ)

θk/µSk . Let us denote by mk

the number of servers in Sk and by {π(ϵ)

k (s)} the stationary distribution of the number of

customers in service class k (including those in service). The average number of customers
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in this class satisfies

L(ϵ)

k =
∞∑
s=0

s π(ϵ)

k (s) ≤
mk−1∑
s=0

mk π
(ϵ)

k (s) +
∞∑

s=mk

s π(ϵ)

k (s) = mk +
∞∑

s=mk

(s−mk) π
(ϵ)

k (s)

= mk +
∞∑
s=0

s π(ϵ)

k (mk + s) = mk +
∞∑
s=0

s (ρ(ϵ)

k )s π(ϵ)

k (mk) = mk +
ρ(ϵ)

k

(1− ρ(ϵ)

k )2
π(ϵ)

k (mk).

In the second-to-last equality we have used the brith-death property structure of the system,

which implies πk(s) = (ρ(ϵ)

k )s−mk π(ϵ)

k (mk) for all s ≥ mk. We also use this fact to get an

upper bound on the value of π(ϵ)

k (mk) as follows:

1 =
∞∑
s=0

π(ϵ)

k (s) ≥
∞∑

s=mk

π(ϵ)

k (s) =
∞∑

s=mk

(ρ(ϵ)

k )s−mk π(ϵ)

k (mk) =
π(ϵ)

k (mk)

1− ρ(ϵ)

k

=⇒ π(ϵ)

k (mk) ≤ 1−ρ(ϵ)

k .

Combining this inequality, the inequality for L(ϵ)

k above and the fact that W (ϵ)

k = L(ϵ)

k /
∑

θ f
(ϵ)

θk

(by Little’s law) we get

(
µSk −

∑
θ

f (ϵ)

θk

)
W (ϵ)

k ≤
(
µSk −

∑
θ

f (ϵ)

θk

) mk∑
θ f̂θk

+ 1.

By stability we must have
∑

θ fθk
(ϵ) ≥ |α(ϵ)| − (|µ| − µSk) = µSk − |a| ϵ. We use this

inequality to upper bound the right-hand side above to get

(
µSk −

∑
θ

f (ϵ)

θk

)
W (ϵ)

k ≤ |a|mk ϵ

µSk − |a| ϵ + 1.

Finally, it is not hard to check that for ϵ ≤ minj{µj}/((m + 1) |a|) the upper bound above

is less than or equal to 2. □

3.A.10 Proof of Proposition 15: Let (q̂∗, Ŵ PB, p̂∗) be the heavy traffic equilibrium

under the pure partition menu. From Proposition 14 and the assumption ω1 < ω2 we have
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that 1/|a| < Ŵ PB
1 < Ŵ PB

2 . Thus, (q̂∗, Ŵ PB, p̂∗) satisfies the conditions in Proposition 12. It

follows that we can construct another heavy traffic equilibrium (q̂∗, Ŵ CB, p̂∗) that (weakly)

Pareto dominates (q̂∗, Ŵ PB, p̂∗) by chaining the CRP components in the pure partition menu.

Furthermore, from the proof of Proposition 12 we have that Ŵ CB
1 = 1/|a| and Ŵ CB

k =

Ŵ PB
k −Ŵ PB

1 +1/|a| as required. Finally, it follows trivially that the two heavy traffic equilibria

(q̂∗, Ŵ PB, p̂∗) and (q̂∗, Ŵ CB, p̂∗) produce the same matching value V̄ since they have the same

limiting strategy profile q̂∗ and matching probabilities p̂∗. □
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3.B Upper Bound LP

Here we include the LP used to find an upper bound under FCFS-ALIS scheduling on the

performance of any menu used in section Section 3.9.

The following are the decision variables used in the LP. formulation:

-) pθj : probability that customer type θ is served by server j.

-) fθj : flow of type-θ customers to server j.

-) Wθ: waiting time for type θ customers.

Objective: ∑
θ∈Θ

Aθ

∑
j∈[m]

pθjVθj − ζ
∑
θ∈Θ

AθWθ (3.A1)

Constraints:

Flow balance:
∑
j

pθj = 1,
∑
θ

Aθpθj = µ, fθj = Aθpθj . (3.A2)

Waiting time constraint: Wθ ≥
1∑
θ aθ

(3.A3)

Incentive compatibility:
∑
j

(
pθj − pθ′j

)
Vθj +Wθ′ −Wθ ≥ 0. (3.A4)

Non-negativity of decision variables: {pθj}, {fθj}{Wθ} ≥ 0. (3.A5)

Figure 12: LP for finding an upperbound on the performance of any menu.
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CHAPTER 4

CONCLUDING REMARKS AND FUTURE DIRECTIONS

In Chapter 2, we studied the performance of multi-class multi-server bipartite queueing sys-

tems under a FCFS-ALIS service discipline by extending the heavy traffic analysis introduced

in Afèche et al. (2021) for a similar class of systems. In Theorem 1 we have provided a general

characterization of the mean steady-state waiting time for each service class. Our charac-

terization relies on decomposing the queueing system into a collection of complete resource

pooling (CRP) components and identifying the connectivity among these CRP components

in the form of a directed acyclic graph (DAG). Interestingly, only the knowledge of this

DAG together with the capacity slack in each CRP component is enough to derive the mean

steady-state waiting time for all service classes. We have also studied the steady-state match-

ing probabilities between service classes and servers and showed in Theorem 2 that only the

limiting values of arrival and service rates influence these matching probabilities. This is

in direct contrast to the behaviour of the mean steady-state waiting times, which are also

affected by the direction of convergence to heavy traffic. To illustrate this point, we have

provided a numerical example that shows that small changes to the arrival rates in a heavily

congested system can have large impacts on the average delays. We use our results regarding

steady-state outcomes to explore some questions regarding the design of queueing systems.

In doing this, we find that when service providers are looking to minimise expected delays

and have complete control over the design of the menu, then they should implement a menu

that induces a single CRP component.

In Chapter 3, we have taken the first steps towards studying the design of service systems

with congestion in the presence of strategic customers. A key message of our results is

that more is not always better – restricting customer choice is as important as offering

richer service classes. On the constructive side, we presented a mathematical programming
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approach to menu design. Our experimental results demonstrate that menus with one service

class per type are sufficient to find good menus. In particular, there exist menus which achieve

minimum average delay, and at the same time achieve matching values quite close to the

optimal. Such menus are appealing for two reasons (i) their simplicity, and (ii) the ability

to search within this space through a mathematical programming approach.

Our work points towards several promising research directions. An area that deserves

further investigation is the relationship between delays and the underlying matching topology

in our bipartite queueing system when arrival rates into the different service classes are fixed.

In Section 2.5.3, we demonstrate that adding more connectivity to the system can lead to a

deterioration in the average waiting time of customers, exhibiting a form of Braess’s paradox,

despite neither customers nor servers acting strategically. Mathematically, this negative

effect happens when adding an additional arc to the menu increases the probability of a

topological order with higher conditional delays. Theorem 1 characterizes waiting time delays

and can be used to identify an optimal flexibility structure as a combinatorial optimization

problem over the collection of directed acyclic graphs (DAGs) associated with a particular

set of CRP components.

Several challenging problems remain towards building a full theory of service menu design

with strategic customers; we mention a few. First, we saw empirical evidence that menus

with one service class per customer type can perform well, but lack theoretical bounds.

Second, we need a better characterization of the effect of reward structure on the trade-off

between matching value and delay on the Pareto frontier. An even simpler question is the

following: Given a reward matrix, what is the minimum loss in matching value necessary

under a single CRP constraint? This question is quite similar in spirit to the notion of price

of envy-freeness in the literature on envy-free cake cutting. Again, our experiments indicate

this to be small, but it is possible to construct extreme examples where the matching value

under a single CRP constraint can be an arbitrarily small fraction of the optimal which makes

154



our experimental results even more intriguing. A third question is on the non-uniqueness of

equilibrium. We avoided equilibrium selection problems via the notion of provider-preferred

equilibrium, but menus with unique equilibria may offer practical advantages such as ro-

bustness. Alternatively, one could explore the pessimistic formulation further. While the

matching value outcomes Dedicated and Pure Partition Menus are the same for all equilibria,

giving us some understanding of their performance even in the pessimistic case, both classes

of Tailored menus we have developed do not have natural extensions for the pessimistic for-

mulation. An interesting direction to explore would be how to approach the menu design

question when taking a pessimistic approach. Fourth, our results rely on the quasilinear

structure of the utility function and homogeneous delay costs. With heterogeneous delay

costs, the value optimality of the dedicated menu also breaks down. Extension to more

general reward structures, or better yet, menus which are robust to the misspecification of

utility functions is also an important and challenging direction. Finally, the vast literature on

the design of price/lead-time menus relies on the achievable region method queueing systems

where the service provider has full flexibility to dynamically route customers. A similar tool

for FCFS-ALIS queueing systems could further expand the menu design settings to which

we can apply a mathematical programming approach.

Considering both questions of menu design and performance analysis, there are alterna-

tive modelling choices that could be worth exploring. For example, while we have focused

on conventional heavy-traffic scaling in this work, a many-server scaling may be more appro-

priate for certain application settings, such as public housing and healthcare, where many

identical servers are available. Furthermore, we have primarily examined steady-state out-

comes, but in real-world scenarios, conditions often change frequently, making it unclear

if a steady-state will be achieved. Therefore, studying the transient behaviour of bipartite

queueing systems could also be of interest.
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