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ABSTRACT

The Standard Model (SM) of particle physics is an e�ective theory for describing the in-

teractions of fundamental particles and their properties. In spite of countless experimental

agreements with the predictions of the SM, we have good reason to believe that the SM is

not a complete description of particle physics. This unknown description of particle physics

which is beyond that of the SM is the focus of this dissertation.

We start by studying model-independent �avor non-universal UV e�ects at proton-proton

colliders, low-energy �avor physics, and exotic Higgs decays. We then discuss the details of

de�ning an arrival time for a jet to better search for long-lived particles which decay hadron-

ically. Next, we study how an extended Higgs sector with an approximate Z2 symmetry

can a�ect electroweak precision observables, collider experiments, and cosmology. Lastly,

we study a framework for a dark matter model where the dark sector was described by an

approximate conformal �eld theory at early times.

xiii



CHAPTER 1

INTRODUCTION

1.1 The Standard Model

1.1.1 Description of the Standard Model

The Standard Model (SM) is an anomaly-free, renormalizable, spontaneously broken gauge

theory in 3 + 1 spacetime dimensions with the following symmetry breaking structure:

SU(3)C×SU(2)L×U(1)Y → SU(3)Y ×U(1)EM . The gauge structure implies the existence

of three types of massless vector �elds; each in the adjoint representation of its corresponding

gauge group. The particle content can be labeled by its representations under Lorentz, its

representation under the gauge groups, and U(1)Y charge:

Field Lorentz SU(3)C SU(2)L U(1)Y
Qi (1/2, 0) 3 2 1/6
ui (0, 1/2) 3 1 2/3
di (0, 1/2) 3 1 −1/3
Li (1/2, 0) 1 2 −1/2
ei (0, 1/2) 1 1 −1
H 0 1 2 1/2

Table 1.1: The representations of the SM particle content labeled by the dimension of the
representation and their hypercharges. The index i = 1, 2, 3 labels the generation of the
particle

In addition to minimal coupling to the gauge sector, the SM contains Yukawa interactions

and a Higgs potential

L ⊃ −(yuij ūiH̃Qj + ydij d̄iH
†Qj + yeij ēiH

†Lj + h.c)− V (|H|2), (1.1)

where

H̃ = iσ2H, V (|H|2) = −µ2|H|2 + λ|H|4. (1.2)

1



The tachyonic mass in the Higgs potential implies an instability near H = 0 and that the

true ground state of the potential is at

|H|2 = µ2/(2λ) ≡ v2. (1.3)

Without loss of generality, we can parametrize the components of the vacuum excitations of

the Higgs �eld as

H
.
=

 ϕ+

1√
2
(v + h+ iϕ0)

 . (1.4)

For perturbations about this minimum, the original SU(2)L×U(1)Y subgroup of the SM is

realized non-linearly. A U(1)EM subgroup of SU(2)L × U(1)Y is still realized linearly and

is identi�ed with the U(1) corresponding to electromagnetism. The electromagnetic charge

is a linear combination of its SU(2) weight and U(1)Y charge. In addition, the originally

massless gauge �elds and chiral fermions gains mass terms. By diagonalizing these masses,

we obtain the �elds which corresponds to the physical quarks1, leptons, W boson, Z boson,

and photon. Due to the fact that there are separate left and right rotations in the quark

sector across generations, there is physical mixing in the mass basis mediated by charged

currents. This is characterized by the Cabibbo-Kobayashi-Masukawa (CKM) matrix.

A well known fact about the Standard Model is that the couplings for the Yang-Mills

�elds are asymptotically free [12]. For the weak interaction, due to the heavy mediators,

this fact does not a�ect our ability to perform perturbative calculations at low energies.

However, this is not true for the strong interaction. It is observed that low energy quan-

tum chromodynamics (QCD) results in con�nement; quarks and gluons form color-singlet

bound states. This means that the external states in scattering experiments are hadrons

and glueballs2. To perform perturbative calculations at low-energies, it was realized that

1. Here, I'm using physical in a very loose sense.

2. Glueballs have not been discovered experimentally as of writing.
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con�nement generates a non-zero vacuum expectation value for the quark condensate q̄q.

This in turn spontaneously breaks the approximate3 chiral symmetry of the three lightest

quarks: SU(3)L×SU(3)R → SU(3)V . The pseudo-Nambu-Goldstone bosons corresponding

to this symmetry breaking pattern is identi�ed with the mesons. The low-energy baryonic

degrees of freedom can be classi�ed under its representation under Lorentz, SU(3)V , and its

U(1)EM charge.

1.1.2 (Un)E�ectiveness of the Standard Model

Using the above model and 19 precisely measured experimental inputs, one can calculate var-

ious low-energy observables and di�erential cross sections corresponding to various scattering

experiments. For the most part, there have been no experimental results within the Stan-

dard Model's prediction power that were signi�cantly di�erent from the Standard Model's

prediction (i.e. > 5σ).

There are a handful of anomalies in experimental results. A subset of these include: the

anomalous value of the muon anomalous magnetic moment, excesses in the KOTO experi-

ment, and the CDF-II measurement of the W boson mass [13, 14, 15]. These experimental

anomalies, if con�rmed, could be an indication of physics beyond the Standard Model. This

can be used as a motivation for building new models. An example in which we build a model

to explain the W -mass anomaly is given in Chapter 4.

While experimental anomalies provide motivations for very particular BSM models, they

are not the main reason why particle theorists are certain that the Standard Model of particle

physics is incomplete. Below are a list of experimental observations that physicists are highly

con�dent in that, if true, necessitates physics beyond the Standard Model.

� Neutrino masses The Standard Model only includes degrees of freedom which exists

in nature. As we have yet to observe right-handed neutrinos, there is no mass term for

3. This is exact in the massless limit.

3



neutrinos in the SM. However, the observation of neutrino oscillations indicates that

at least two of the three known neutrino species have non-zero masses [16].

� Matter-antimatter asymmetry In the observable universe, it is an empirical fact

that there is more matter than antimatter. This asymmetry can be produced in the

early universe as long as there are processes which satisfy the Sakharov conditions [17].

While the SM does contain processes which satis�es the Sakharov conditions, it cannot

generate a su�ciently large asymmetry.

� Dark matter There are copious indirect evidence for the existence of dark matter.

This includes explaining galactic rotation curves, lensing observations, and large scale

structure formation. Observationally, dark matter does not interact very strongly with

baryons and structure formation necessitates cold dark matter. As such, none of the

particles in the Standard Model can account for 100% of dark matter. Details on

popular dark matter candidates and production mechanisms will be discussed later.

When modeling the e�ects of BSM on existing and future measurements, it is important

to know whether or not new particles exists at the scale of the measurement. While the

null result of various Large Hadron Collider (LHC) searches may seem to indicate that the

answer is no, it is entirely possible that existing search strategies may completely miss the

signal. In that case, it is imperative that new ideas are implemented to make full use of

the High-Luminosity Large Hadron Collider (HL-LHC) dataset. The existing detectors at

the LHC have been upgraded for the high luminosity run and other detectors have been

added. An example of a strategy to improve sensitivity to long-lived particles which decay

hadronically is provided in Chapter 3.

If there are indeed no new particles at the energy scale of a given experiment which

contributes directly to said measurement, then the e�ects of ultraviolet (UV) physics can

be e�ectively captured by treating the SM as an e�ective �eld theory. From the top-down
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point of view, an e�ective �eld theory is obtained when UV modes are integrated out of

the path integral. This process has two e�ects. Firstly, it induces threshold corrections to

relevant parameters of the theory (e.g. the Higgs mass parameter when a heavy scalar is

integrated out). Secondly, it generates an in�nite set of irrelevant operators suppressed by

inverse powers of the heavy scale with known coe�cients. Due to this scale suppression,

operators which are more irrelevant will contribute less to a given physical observable than

those that are less irrelevant.

As we generically do not know the underlying UV model, one typically takes a bottom-

up approach. We augment the Standard Model with all possible gauge invariant irrelevant

operators with unknown coe�cients and unknown scale. Due to the scale suppression, it

is generally su�cient to only include the leading irrelevant operator which contributes to

a given observable. Due to the consistency of the SM predictions with experiments, any

e�ects these irrelevant operators have on physical observables must be smaller than the

experimental uncertainty. This allows us to impose constraints on the unknown coe�cients

and scale. An example exploring the reach of this unknown scale at HL-LHC and future

colliders from �avor non-universal models is given in Chapter 2.

1.2 Dark Matter

In a previous section, we had brie�y outlined the empirical evidence for the existence of dark

matter. We will now review what we know about dark matter based on experimental results.

We will start by going into detail about the evidence supporting the existence of dark matter

before discussing constraints on its properties.

The initial evidence for dark matter originated in the mid 1900s when various physicists

noted that the velocity of stars as a function of distance from the center of their host galaxy

is much larger than expected based on the amount of luminous matter [18]. This suggested

either the presence of non-luminous matter or Newtonian gravity is modi�ed on galactic
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scales.

The latter hypothesis became disfavored with the observation of the bullet cluster. In

this observation, the amount of baryonic matter from the two colliding galaxy clusters were

measured by the light emitted by stars and scattering of gas. Gravitational lensing was

used to determine the total mass distribution as throughout the collision event. The lensing

observations are most easily modeled by the inclusion of additional non-luminous matter

that scatters weakly with baryons and itself. This observation is used to set limits on dark

matter self-interactions to σ/m < 1 cm2/g [19].

In addition to astrophysical observations, cosmology also heavily favors the existence of

dark matter. The cosmic microwave background (CMB) is a largely isotropic bath of thermal

photons with T ≈ 2.7 K believed to be from the surface of last scattering at recombination

(when the expected thermal energy of electrons is insu�cient to overcome the binding energy

of hydrogen). This temperature can be used to infer how long ago recombination occurred.

At this time, the over-densities of baryons and photons are largely correlated due to them

initially being in equilibrium. One can then evolve the baryon over-densities under GR to

determine when large scale structure could have formed under the hypothesis that baryons

comprised a majority of matter in the universe. What one �nds is that the earliest observed

galaxies and large scale structure could not have possibly formed at the observed time.

This implies the existence of additional matter that do not interact with photons to aid

in structure formation. The size of large scale structure has been used to constrain the

free-streaming length of dark matter in the early universe.

Using these early universe observations, one can perform �ts to various cosmological

models. Using PLANCK data, it was found that the standard model of cosmology, ΛCDM,

�ts extremely well and the cold dark matter makes up roughly 23% of the current energy

density of the universe[20]. Based o� of the dynamics of the Milky Way and the solar

system's position in the galaxy, one can infer that the local dark matter density is roughly

6



ρDM, local ∼ 0.4 GeV cm−3 [21].

If dark matter has some non-gravitational interactions with standard model particles,

then this can in principle be detected via scattering with the local dark matter. The null

result of various direct detection experiments have been used to set bounds on dark matter

interaction with nucleons and electrons for dark matter masses comparable to their masses.

For dark matter candidates with masses lighter than O(keV), stars place stringent bounds

on how strongly dark matter can interact with electrons. For lighter dark matter candidates,

the Migdal e�ect can be used to constrain the interaction strength with electrons [22, 23].

Stars contain a high density of high energy electrons. If electrons have a non-zero coupling

to dark matter, these high energy electrons can radiate dark matter. As dark matter is

unlikely to scatter with electrons, they can free stream from the core to surface; contributing

to anomalous cooling of stars.

1.2.1 Dark matter models

In addition to the model independent constraints, a dark matter model should contain both

a stable/cosmologically long-lived dark matter candidate and a population mechanism for

generic initial conditions. Here, I will list a sample of models and their population mecha-

nism. I will also include references studying model-speci�c constraints.

� WIMPs are a class of dark matter models with weak scale masses (i.e. ∼ O(TeV)) and

couplings populated by thermal freeze-out. A common WIMP candidate is the light-

est supersymmetric particle (LSP) in a supersymmetric theory with R-parity. Generic

WIMP models with weak scale couplings to nucleons and electrons are highly con-

strained by direct detection experiments. However, there are still various WIMP mod-

els that are still viable.[24, 25, 26]

� Fuzzy dark matter corresponds to dark matter candidates with mass ∼ O(10−20 eV).

From the light mass, cold fuzzy dark matter necessarily has very high number densities.
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This generically rules out fermionic fuzzy dark matter candidates [27]. Common candi-

dates include ultra-light axions, scalars, and dark photons. Fuzzy dark matter generally

has the constraint that they cannot be produced via a thermal process. A common pro-

duction mechanism is known as misalignment [28]. [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

� MACHOs are a class of non-particle dark matter. They generically include any form

of dim or non-luminous astronomical object. One popular MACHO candidate are

primordial black holes. They can be produced from overdensities in the early universe.

From observations, only PBHs with mass ∼ 10−13 M⊙ or ∼ 1015 M⊙ can account for

100% of DM without being already ruled out [39]. [40]

� Freeze-in is a process in which dark matter is populated without ever being in thermal

equilibrium. This is ensured by having a negligible initial population of dark matter

and tiny portal coupling to the Standard Model. [41, 42]

� A list of other possible dark matter models and their corresponding constraints can be

found in Refs. [43, 44, 45, 46, 47, 48, 49]

The above list provides a set of simpli�ed models for experimentalists to target in their

searches. However, an important question is whether they can be realized in a UV theory

and whether or not the IR observables are su�cient to fully specify the model's predictions.

In chapter 5, we will explicitly construct a framework for a UV model which sets up freeze-in

while having very di�erent predictions.

1.3 General model building considerations

In addition to empirical evidence of phenomena not explained by the Standard Model, there

remains the question of what sets the free parameters of the Standard Model. When building

a UV BSM model, one would ideally like to also address this. The question pertaining to

the free parameters of the SM can be classi�ed into the following:
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� Electroweak hierarchy problem The mass of the Higgs boson is observed to be

approximately 125 GeV. When integrating out massive degrees of freedom from a

UV theory which couples to the Higgs, the Higgs mass parameter receives threshold

corrections proportional to the square of the mass of the particle being integrated out

[50]. If such a massive particle exists, then the Higgs mass parameter appears to be

unnaturally small. Is there a mechanism which sets the Higgs mass to what we observe?

There are two very popular classes of models which tries to address this. The �rst are

composite Higgs models where the Higgs mass is set by an RG �xed-point rather than

some relevant parameter in the Lagrangian that get corrected quadratically. The other

is supersymmetry where additional scalar/fermionic partners are introduced to cancel

the corresponding threshold correction.

� Strong CP problem The θ parameter parameterizes di�erent Yang-Mills vacua which

are topologically distinct. This choice of the Yang-Mills vacuum can be incorporated

into the SM Lagrangian by introducing the θ-term: θtr(GG̃). A linear combination

of θ and the phase of the Yukawa matrices (known as θ̄) characterizes the physical

CP violation in the strong sector. From measurements of the neutron electric dipole

moment, it can be inferred that |θ̄| < 10−10. If these two are the only contributions

to θ̄, then the supposedly free parameter θ is very close to the phase of the Yukawa

matrices. Is there a physical mechanism which makes it so? Classes of solutions include

spontaneous CP breaking (Nelson-Barr models) and the QCD axion.

� Flavor problem In the SM, we see a hierarchy of masses of the fermions across the

generations. In addition, there also appears to be a hierarchy in terms of the mixing

across generations. Is there a physical mechanism which generates this observation?

� Grand uni�cation In the SM, the electromagnetic force and weak force unify. Does

the electroweak force unify with the strong force as well at higher energies? If so, what
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is the underlying structure? Well known examples of GUT theories include SO(10),

SU(5), and SU(4)×SU(2)×SU(2). Recently, from the analysis of the (approximate)

�avor symmetry in the Standard Model, it was proposed that there are only four

possible embeddings [51].

1.4 Outline of the thesis

The outline of this thesis is as follows. Chapter 2 contains a study on an EFT description of

models which a�ect the quark sector in a non-universal manner. In this study, we studied

the reach of future hadron colliders have on these models. Chapter 3 contains a study on

how best to de�ne the arrival time of a jet in the context of displaced trackless jets in

searches for long-lived particles. Chapter 4 studies a model in which the Standard Model

has an additional Higgs in the j = 1 representation of SU(2)L. In this extension, there is an

approximate Z2 symmetry. Chapter 5 studies a model in which the dark sector is described

by a conformal �eld theory during its production. In this study, we also show how the initial

condition of freeze-in can be realized within this framework.
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CHAPTER 2

EFT ANALYSIS OF FLAVOR MODELS

A large portion of this chapter is reprinted with permission from:

Wen Han Chiu, Zhen Liu, and Lian-Tao Wang. Probing �avor nonuniversal theories through

Higgs physics at the LHC and future colliders. Phys.Rev.D 101 (2020) 3, 035045.

©2020 American Physical Society

2.1 Introduction

The Standard Model (SM) is often perceived as complete with the discovery of the Higgs

boson in 2012 [52, 53]. Below the electroweak (EW) scale, the predictive power of the SM is

immense. It provides a mechanism for elementary particles to obtain masses and accurately

predicts the rates of particle scattering. However, many puzzles remains to be explained.

These include the origin of the electroweak scale and the �avor structure of the SM. These

puzzles indicate the existence of new physics (NP) beyond the Standard Model (BSM).

For any BSM model, once all massive BSM particles above the EW scale have been

integrated out, their e�ects will be encoded in the Wilson coe�cients of higher-dimensional

operators involving SM particles. In a �avor-universal theory, there is one dimension-5

operator and 59 dimension-6 operators up to hermitian conjugation [54]. For most processes

accessible at colliders, the leading order correction to the SM is dimension-6.

The Higgs doublet is present in a large number of these operators. Hence, the constraint

on the new physics scale, ΛNP, is typically associated with processes involving either the

Higgs or the longitudinal modes of the massive gauge bosons. These constraints can be

obtained from future Higgs factories, where very clean measurements can be performed.

Even in the scenario of cancellations among operators, it is still possible to probe new

physics up to O(10) TeV [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].
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In many of these existing studies and analyses of the Higgs physics at current and future

colliders, they tend to focus on universal theories. Especially those involving electroweak

precision observables (EWPO). However, in general, most BSM theories have couplings in

which the third generation and the �rst two generations can be considerably di�erent. These

include models such as supersymmetry, composite Higgs, as well as quark �avor models

[66, 67, 68, 69, 70, 71, 72, 73, 74, 75].

The constraints from LEP measurements on such new physics scenarios are rather weak.

By comparison, the high center-of-mass energy at the Large Hadron Collider (LHC) leads

to an enhancement of the new physics e�ect which scale with a higher power of energy

compared to the background [76, 77, 78, 79, 80, 81, 82]. This can be further enhanced

at future hadron colliders at higher energies, such as the 27 TeV high energy upgrade to

the LHC [82, 83], and a pp collider in a 100 km tunnel with possible beam center of mass

energy at 37.5 TeV [84, 85] and 100 TeV [86, 87, 84]. Moreover, the hadronic initial states

imply good constraints on light-quark operators by virtue of high statistics from the parton

distribution function (PDF). Hence, these hadronic colliders are the best place to search

for �avor universality violations. In particular, for operators which modify the couplings

between the �rst generation of quarks associated with the Higgs boson.

In this work, we will focus on probing �avor non-universal theories. We will present

results involving the �rst generation up-type �avor operators, which generally has the best

sensitivities at proton-proton colliders. The result can be extended to other operators via

the appropriate parton luminosity rescaling and also possibly via the �nal state selection.

The structure of this chapter is as follows: in Sec. 2.2, we will introduce the new physics

scenario we are considering in this chapter. In Sec. 2.3, we will present the projected

constraints at both the High Luminosity (HL) LHC and potential future hadron colliders.

The possible existing constraints from �avor physics will be discussed in Sec. 2.4. The

complementarity of this study with exotic Higgs decay will be discussed in Sec. 2.5 and
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lastly, we will conclude.

2.2 Flavor non-universal scenario

The �avor non-universal operators in the Warsaw basis associated with the �rst generation

are listed in Table 2.1 [54].

Operators

OHu = (iH† ↔
DµH)(ūRγ

µuR)

OHd = (iH† ↔
DµH)(d̄Rγ

µdR)

O(1)
HQ = (iH† ↔

DµH)(Q̄γµQ)

O(3)
HQ = (iH†σa

↔
DµH)(Q̄γµσaQ)

Table 2.1: The set of operators with an energy-enhanced contribution to the pp → V h, V V
amplitudes.

These operators can be classi�ed using the so-called high energy primaries associated

with a given diboson process [80, 88]. These are the coe�cient of the term in the relevant

diboson process's signal-to-background ratio with the largest energy scaling behavior. Hence,

these are the primary observable in the high-energy limit. So if one wishes to constrain new

physics using a diboson process at a hadron collider in a general EFT setup, the leading

results in new physics constraints should be associated with one of the operators in Table

2.1.

The Wilson coe�cient of OHu is the high-energy primary associated with fRf̄R →

W+
LW

−
L and fRf̄R → ZLh. There are existing studies in both of these channels, though

only the WW channel has been studied in the �avor non-universal scenario [89, 90]. For the

operators O(1)
HQ and O(3)

HQ, the contribution to the WW channel is enhanced relative to Zh

due to the inclusion of the t-channel diagram. As a result, one can expect more stringent

constraints on the Wilson coe�cients of these operators from the WW process.

To determine the overall reach in the parameter space of non-universal models through
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Zh production, we focus on the contribution of OHu. The result of the other operators can

be parameterized and derived in a similar manner.

To begin, the e�ective Lagrangian with dimension-6 operators involving up type quarks

is

L = LSM +
cHu
Λ2

(iH† ↔
DµH)(ūR,igijγ

µuR,j), (2.1)

where i, j are �avor indices. For now we focus on the scenario in which the only nonzero

coupling is guu = 1. Moving to the mass eigenstate basis, we get

L ⊃ cHu
Λ2

(iH† ↔
DµH)(ū′R,iU

†
R,ijgjkγ

µUR,kluR,l), (2.2)

where UR is the unitary matrix which, alongside UL, diagonalizes the mass matrix. Due

to the small charm fraction in the parton distribution functions and the typical smallness

of the o�-diagonal terms of the rotation matrices in most �avor models, we expect their

contributions to be negligible. Hence, we will neglect the contribution from the o�-diagonal

terms for the Zh process. Moving to the EW broken phase, we have

i(H† ↔
DµH) ⊃ − g

2cw
(v + h)2Zµ. (2.3)

This interaction term gives us the relevant Feynman rules for Zh:

Z

uRuR

1

= −i gv
2

2cw

cHu
Λ2

,

uR

uR

Z

h

1

= −i gv
cw

cHu
Λ2

(2.4)

where cw and sw (in later text) denote cos θw and sin θw of the Weinberg angle θw with

s2w ≃ 0.23, and g is the SU(2) gauge coupling.
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2.3 Detailed Analysis

To obtain projections on the sensitivities, one million pp → Zh events were generated in

MG5_aMC with the operator implemented using a UFO �le generated in FeynRules

[91, 92, 93]. The Wilson coe�cient normalized with a NP scale of 1 TeV, cHu/Λ
2
TeV, was

varied from -1 to 1 in increments of 0.1. The data were then scaled to match the number of

expected events for a given integrated luminosity. Next, the signal was split into bins of 150

GeV, matching roughly the energy resolution of the Zh system invariant mass over a large

range. The number of signal events as a function of the Wilson coe�cient was obtained by

interpolation.

The SM background under 3 TeV was estimated using the 2017 ATLAS search on heavy

resonances to Zh �nal state [94]. Above the 3 TeV threshold, the background was modeled

by �tting the tail of the data to an exponential function, equivalent to a �xed selection

e�ciency for high invariant mass regions of the background.

Our signal Z and h with subsequent decays into dileptons and bb̄ were multiplied by the

corresponding decay branching fractions respectively, to match the �nal state of the ATLAS

search. A pT > 300 GeV cut and a |η| < 2.5 cut were applied to the Higgs. A universal cut

e�ciency was then imposed on the signal events to match the number of Standard Model

events computed in the ATLAS search.

A binned likelihood test was performed by de�ning the signi�cance, Z, of each bin as

a function of the Wilson coe�cients, e.g., cHu/Λ
2
TeV for signal and background numbers of

events of s and b, as

Zi =

[
2

(
(s+ b) ln

[
(s+ b)(b+ δ2b )

b2 + (s+ b)δ2b

]
− b2

δ2b
ln

[
1 +

δ2bs

b(b+ δ2b )

])]1/2
, (2.5)

where δb is the uncertainty [95]. The 2σ constraint up to a given center-of-mass energy,
√
ŝ,

was computed by adding the signi�cance of bins with mZh <
√
ŝ in quadrature and solving
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for
∑
i Z

2
i (cHu/Λ

2
TeV) = 4.

When calculating the sensitivities for future hadron collider, signal events were obtained

in the same manner as the HL-LHC calculation. For the background, a di�erential rescaling

was performed by computing the ratios of the parton luminosity at each mass bin using

ManeParse 2.0 [96] and the NNPDF23_nlo PDF set [97] yielding a background estimate

for
√
ŝ < 14 TeV. As the e�ective theory is only well-de�ned for energy scales below the

cut-o�, our constraints are physically meaningful if ŝ < Λ2. Hence, only bins with ŝ < Λ2

will be used in calculating the sensitivities.

For the uncertainty used in our analysis, a 5% universal systematic and statistical uncer-

tainty was assumed. However, it should be noted that for bins with larger invariant masses,

the theoretical uncertainty from the choice of factorization scale increases. This increase

of uncertainty can be estimated by performing the analysis with the factorization and nor-

malization scale set to be 0.5, 1, and 2 times m2
T , where, mT is the transverse mass of the

system. We show the sensitivity to the new physics scale with these di�erent choices of the

scales in Fig. 2.1. The scale dependence of our sensitivity as discussed earlier, grows with

center of mass energy, up to roughly 3% with the Zh center of mass energy at 4 TeV.

To take the scale dependence into account, we assumed the per bin PDF uncertainty is

Gaussian and de�ned it as:

δPDF,i =
1

2

(∣∣∣n Q2

m2
T

=1

i − n

Q2

m2
T

=0.5

i

∣∣∣+ ∣∣∣n Q2

m2
T

=1

i − n

Q2

m2
T

=2

i

∣∣∣), (2.6)

where ni is the number of events in the ith bin after imposing the appropriate cuts. This

was added to our systematic uncertainty linearly.

The 95% C.L. sensitivity for the benchmark Wilson coe�cient, cHu = 1, including the

PDF uncertainties, are given in Fig. 2.2. Constraints on new physics scales up to about 3.3

TeV can be obtained for HL-LHC, 7.3 TeV for HE-LHC, 9.2 TeV for a 37.5 TeV FCC-hh,

and 17.8 TeV for a 100 TeV FCC-hh.
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Figure 2.1: The e�ects of changing the scale factor on the constraints from HL-LHC with a
reference value of cHu = 1.
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Figure 2.2: The constraints on the scale of new physics including PDF uncertainties probed
by HL-LHC (left) and potential future hadron colliders (right) using the benchmark point
of cHu = 1.

For regions of parameter space beyond our benchmark point, we redid the calculations

with di�erent values of cHu. The regions of parameter space that can be probed are given

in Fig. 2.3. For comparison, the constraints from a corresponding lepton collider were

also included in the plot. The LEP constraints were obtained by looking at the shift in
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g
Z,u
R induced by our operator and �tting to the number provided in Ref. [98]. The CEPC

projections were obtained from Ref. [65], assuming �avor universality. This assumption will

result in a more optimistic estimate as the EWPO will also receive contributions from the

other generations. In addition, we also include the reach from pp → WW for HL-LHC by

translating the constraint on g
Z,u
R into a constraint on cHu/Λ

2 [89]. From the �gure, we can

see that Zh production is indeed competitive to other direct and indirect probes over a large

range of parameter space.

LEP

HL-LHC pp→Zh

HL-LHC pp→VV
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Figure 2.3: The constraints on the scale of new physics for models with di�erent values of
cHu which can be probed by Higgsstrahlung at HL-LHC (left) and potential future hadron
colliders (right) using only bins satisfying ŝ < Λ2. For comparison, the existing constraints
from LEP and the reach from diboson at HL-LHC was also included for the HL-LHC plot
while a next generation lepton collider reach was included for the future collider plot.

To ensure that neglecting dimension-8 operators is well justi�ed, its contribution must

be small relative to the dimension-6 operators. First, we can compute the change in the

invariant matrix element in powers of ŝ.

∆|M|2
|MSM|2 =

s4wc
2
w

e2(32s4w − 24s2w + 9)

(
144

c2w
e2
c2Hu
Λ4

ŝ2 + 96
cHu
Λ2

ŝ

)
, (2.7)

where e is the electric coupling constant around 0.3.

Noting that the coe�cient of the quadratic piece is an order of magnitude larger than the

linear piece, the contribution from |Od=6|2 will dominate once cHuŝ/Λ2 ≳ O(0.1). Given the
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same suppression of Λ4, the contribution from dimension-8 operators should be estimated

as well.

As dimension-8 operators do not generate any new vertices which contribute to Zh pro-

duction at tree-level, they contribute by modifying the vertex factors in Eq. (2.4). So one

can estimate the leading contribution by taking the linear piece in Eq. (2.7) and replacing

cHu → cHu +
∑
i,j

aici,j
pi · pj
Λ2

, (2.8)

where the i, j indices denote the di�erent legs in the Feynman diagram and ai is some O(1)

number.

So, in models where the Wilson coe�cients of the dimension-8 operators are less than or

comparable to the dimension-6 operators, the leading contribution from dimension-8 are esti-

mated to be smaller than dimension-6 and dimension-6 squared. In cases where dimension-8

operators Wilson coe�cients being larger than dimension-6, one should view our constraints

as those on a given linear combination of the Wilson coe�cient of dimension-6 and dimension-

8 that can be absorbed into the dimension-6 operators. For instance, dimension-8 operators

derived with additional H†H insertions to the dimension-6 operators can be captured by

rede�ning the dimension-6 operators' coe�cients concerning the Zh process considered in

this work. The estimation of the sensitivity to new physics scale Λ for Wilson coe�cient of

order unity remains the same.

2.4 Flavor physics constraints

The type of �avor models that we are looking at may have non-trivial constraints from �avor

changing neutral currents (FCNC). This is due to the presence of �avor-mixing terms in the

Lagrangian in the mass eigenbasis. The dominant constraint on up-type �avor mixing is

through charm-number violating processes, in particular from D0− D̄0 mixing [99]. In order
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to have a rough estimate of what region of parameter space has been ruled out by existing

measurements, we computed the leading order contribution from our operator.

From Eqs. (2.2) and (2.3), the operator which directly contributes to FCNC via D0− D̄0

mixing is

L∆C=1 = −cHuMZv

Λ2
ZµūRγ

µcR(U
†
R,uuUR,uc).

Integrating out the Z propagator gives the e�ective operator:

L∆C=2
e� = 3

(cHuv
Λ2

(U
†
R,uuUR,uc)

)2
ūRγ

µcRūRγµcR.

Figure 2.4: A subset of diagrams which contribute to D0 − D0 mixing at leading order to
illustrate the parametric dependence for each ∆C = 2 e�ective operators.

From Fig. 2.4, it can be seen that at dimension-6, SM process contributes to the op-

erator ūLγ
µcLūLγµcL while the SM-EFT cross terms contributes to operators of the form
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ūLcLūRcR. Thus, the leading contribution to the operator ūRγ
µcRūRγµcR is the EFT only

term. The Wilson coe�cient of this operator has been constrained in [99] using a global

�t with all possible low-energy dimension-6 operators. As such, this should be viewed as a

conservative estimate of the current constraint. Assuming that only our operator contributes

to the observables used to derive these constraints, we obtain

3
∣∣∣cHuv
Λ2

(U
†
R,uuUR,uc)

∣∣∣2 ≲ 5.7× 10−7
(

1

1 TeV

)2

. (2.9)

This gives us a constraint on the Wilson coe�cient of the operator that depends on the

�avor model of interest. As a benchmark model (benchmark theory 1), suppose that

|U†
R,uuUR,uc| = |VudVcd|, we get

Λ/
√
cHu ≳ 11 TeV. (2.10)

In addition, one could consider constraints from the operator ūLcLūRcR. The dominant

contribution comes from the bottom quark, so Wilson coe�cient is on the order of

∼ v2

M2
Z

M2
b

M2
W

1

16π2
cHu
Λ2

|Vub||Vcb|(U†
R,uuUR,uc)

≲ 1.6× 10−7
(

1

1 TeV

)2

.

(2.11)

The constraints on our Wilson coe�cient from this operator in benchmark theory 1 is

Λ/
√
cHu ≳ 0.16 TeV, clearly weaker than the previous one.

These �avor constraints appear to be very strong in a generic �avor violating theory.

However, we can consider models where the operator under considerations applies to the

�rst two generations universally, maintaining a U(2)2-�avor symmetry in the quark sector

(benchmark theory 2). These types of models can be motivated due to the large mass gap

between the second and third generation [74, 75]. In this scenario, gij = diag(1, 1, 0). The
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Figure 2.5: The �avor constraints (un�lled, dotted curves) plotted on top of the HL-LHC
(left) and potential future hadron collider (right) constraints. Benchmark theory 1 refers to

the fully �avor non-universal theory with the choice of |U†
R,uuUR,uc| = |VudVcd|. Benchmark

theory 2 refers to the theory which is universal across the �rst 2 generations with a similar
choice for the right-handed rotations.

LHC constraints are not expected to change by much due to the limited charm fraction in

the large x region. In the mass eigenstates, we now have

L∆C=1 → −cHuMZv

Λ2
ZµūRγ

µcR

(
U
†
R,uuUR,uc + U

†
R,ucUR,cc

)
.

As UR is unitary, the term in the parenthesis is equal to −U†
R,utUR,tc. Due to the

smallness of the corresponding CKM elements, this quantity is naturally small in most �avor

models. This relaxes the constraints given by Eq. (2.9) by a factor of about O(10−3) for a

similar benchmark point and hence relax the constraints on the Wilson coe�cient to be

Λ/
√
cHu ≳ 0.4 TeV. (2.12)

The U(2)-�avored quark sectors also modi�es Γ(Z → cc̄); which has been measured to

about 1.6% accuracy [100]. In the small charm mass limit, the fractional change in the

Z → cc̄ width is given by:
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∆Γ(Z → cc̄)

Γ(Z → cc̄)
≈ 2gR∆gR
g2L + g2R

≈ −0.0615
cHu
Λ2
TeV

(2.13)

For comparison, constraints for the benchmark �avor models were plotted on top of

the collider constraints. From Fig. 2.5, the reach from WW production is comparable

to the region ruled our by FCNCs for the partial universal theory (benchmark theory 2).

Higgsstrahlung at a 37.5 TeV pp collider with 15 ab−1 of integrated luminosity is comparable

to the region ruled out by existing FCNC measurements for the fully �avor non-universal

theory (benchmark theory 1).

2.5 Complementarity to Higgs Exotic Decay
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Figure 2.6: The modi�cations to the Higgs decays into an on-shell Z boson and quark anti-
quark pairs from the operator under consideration.

The Higgs physics exotic decays [101] are also modi�ed by these operators. The operator

OHu contributes directly to h → Zuū decay through the addition of the two diagrams in

Fig. 2.7. The �rst by shifting gR and the second by generating a contact term.
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Figure 2.7: The additional diagrams contributing to h→ Zuū.

The shift on the branching ratio was computed using the same model �le with

MG5_aMC, shown in Fig. 2.6 as a function of the Wilson coe�cient over operator scale

squared. We can see the interference term dominance and generically the shift of the order

10−5-10−6. The future lepton collider Higgs factories will produce around one million Higgs

bosons in a clean environment. In principle, the modi�cation can be measured as an exclusive

mode, especially with charm-quark �avor tagging. Furthermore, in contrast to the H →

ZZ∗, this channel would exhibit di�erent kinematic features.

Assuming an upper limit in this channel of 10−5 and 3× 10−6, we can probe cHu/Λ
2
TeV

up to order unity and 0.3, respectively. With a dedicated search, this may further improve.

Although not competitive to the high energy probes, this channel does provide a comple-

mentary probe to the same physics and will help reveal the nature of the underlying physics.

2.6 Conclusion and outlook

By parameterizing the e�ects of new physics with non-renormalizable operators, we have

studied the potential reach of the HL-LHC and future colliders which modify the Z, h,

and quark couplings in �avor non-universal models. Using a binned-likelihood test, we

determined that Zh production is the optimal diboson process to yield constraints on the

dimension-six operator, OHu and OHd, beating the constraints from LEP and the WW

production at the HL-LHC. With a detailed analysis, we computed the projected sensitivity
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of the Zh process on these operators at the HL-LHC, HE-LHC, and FCC-hh. In comparison

with the �avor constraints and future lepton collider projection, our results show that the

Zh process yields competitive sensitivities .

Depending on the choice of right-handed rotations, a portion of the parameter space for

�avor non-universal models not excluded by existing FCNC measurements can be tested by

the Higgsstrahlung process. For instance, Higgsstrahlung can exclude a signi�cant portion

of the �rst 2 generation partial universal theories compared with what is currently excluded

by measurements. This study also shows the exotic Higgs decay searches at future Higgs

factories are complementary to the high energy Zh process. Should future measurements

establish any deviations in quark couplings, our proposed measurements will help reveal the

�avor nature of the underlying new physics.
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CHAPTER 3

TIMING JETS
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3.1 Introduction

The time at which a particle arrives at a particular detector layer is a piece of independently

measurable and valuable information. Measuring the time of a lepton, a photon, or a hadron

has been used extensively at the Large Hadron Collider (LHC) to great e�ect.1 Recently, it

was shown that timing information is vital in the search for long-lived particles (LLPs) [108].

The upgraded electronics at the high-luminosity LHC will signi�cantly improve the timing

resolution for various subdetectors, reaching tens of picoseconds in some cases, extending the

sensitivity of LLP searches even further. For instance, particle timing can improve prompt

detection of beyond the Standard Model (BSM) physics [109], enable LLP mass and lifetime

determination [110, 111, 112, 113], and enhance other various BSM searches [114, 115, 116,

117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,

136, 137, 138, 139].

Obtaining similar information for �nal-state quarks and gluons, however, is much more

challenging. These particles undergo showering and hadronization before arriving at the

detector as a collection of particles, with a corresponding collection of arrival times. A jet

is the standard object that combines these particles into a single object that can be used

in analyses and searches. In momentum-space variables, summing the four-vectors of the

1. Timing has been used in existing searches for heavy stable charged particles [102, 103], stopped parti-
cles [104, 105], and non-pointing photons [106, 107], where spatial information is unavailable or ine�ective.
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constituents provides a natural de�nition of the four-vector of the jet. Unfortunately, there

is not an obvious choice for the de�nition of the arrival time of a jet.

The selection of a proper jet time de�nition is pivotal. A proper de�nition will enable

e�cient separation of the Standard Model (SM) prompt background and BSM long-lived

signatures. A poor de�nition, on the other hand, will not allow us to take full advantage

of the precision timing capabilities at the level of 30 − 40 picoseconds, that will be part of

upgrades to ATLAS [140], CMS [141], and LHCb [142]. Already, CMS has demonstrated

sensitivity to delayed jets in their search for displaced gluinos [143].

Beyond just performance, a proper de�nition of jet time may help identify exciting prop-

erties of quantum chromodynamics (QCD), enable new jet tagging possibilities, and provide

additional inputs for machine learning applications. Even pileup suppression may bene�t

substantially from an e�ective usage of jet time because generically pileup vertices have a

spread both in space and in time. At the high-luminosity LHC any improvements to pileup

suppression are indispensable.

The purpose of this chapter is to explore a variety of de�nitions of jet time and charac-

terize their performances. As with any measurement tool, there are two aspects: accuracy

and precision. For jet time, as we will discuss in detail later, the �correct� time is somewhat

ambiguous. The precision, or resolution, is well-de�ned and will be the main criterion in

comparing di�erent approaches.

The structure of the chapter is as follows. In Sec. 3.2 we provide a brief overview of

various possible de�nitions of jet time. The general behavior, both for prompt jets and

delayed jets, is discussed in Sec. 3.3. In Sec. 3.4 we perform an in-depth numerical study of

the behavior of each jet time de�nition, paying special attention to the dependence on the

event geometry. Finally, our conclusions are in Sec. 3.5 along with outlook for future studies.

Several appendices are included for cross-checks and studies of additional e�ects. We discuss

the behavior of jet time when endcaps are also used to measure arrival times in App. 3.A, the
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impact of pileup and jet grooming in App. 3.B, the e�ects of detector resolution in App. 3.C,

and the impact of hadronization in App. 3.D.

3.2 De�nitions for Jet Time

In this section we brie�y describe the de�nitions of jet time that we study. More detailed

descriptions will follow in Sec. 3.3 and simulation results will be shown in Sec. 3.4.

We �rst de�ne our notation. A single particle i has a four-momentum (Ei, p⃗i) and a

particle time ti, which is the time that it crosses a particular layer of the detector. A jet J

is a set of particles which we write as J = {i}. While a particle has an unambiguous time,

the jet has a set of times {ti} associated to it. In the same way that it is often useful to

treat the jet as a single four-vector, e.g. in new physics searches, it is also useful to be able

to assign a jet a single time tJ , that we call the jet time.

There are a number of possibilities that can be used. One can choose a single constituent

i′ in the jet and use its particle time ti′ to represent the jet time. Jet time de�nitions of this

type include:

� median time: take tJ to be the median value of the particle times {ti},

� hardest time: take tJ to be the time tih , that corresponds to the time of the constituent

ih with the largest transverse momentum,

� random time: take tJ to be a randomly-drawn value of the particle times {ti}.

The median time has been used by CMS in their search for gluinos with displaced de-

cays [143]. The hardest particle in a jet is likely to be very close to the jet axis so it may be

a good proxy for the time of the jet. We do not expect choosing a random particle time as

the jet time to perform well, but it is useful as a baseline comparison.

Another option is to calculate tJ from a weighted sum of {ti}, similar to a jet shape.
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Generically, this would take the form2

t
(α,β,γ)
J ∝

∑
i∈jet

(pT,i)
α(∆Ri)

βt
γ
i , (3.1)

where ∆Ri is the ηϕ-distance between particle i and the jet axis. The two simplest versions

of a weighted sum are the average time where (α, β, γ) = (0, 0, 1) and the pT -weighted time

where (α, β, γ) = (1, 0, 1):3

� average time: take tJ to be

t
average
J =

1

N

N∑
i=1

ti, (3.2)

where there are N particles in the jet,

� pT -weighted time: take tJ to be

t
pT
J =

1

HT,J

N∑
i=1

pT,iti, HT,J =
N∑
i=1

pT,i, (3.3)

where HT,J is a normalization factor.

Finally, one could simply disregard the particles times, treat the jet as a single particle,

and calculate its time based on the jet kinematics. There are two variations depending on

whether the jet is treated as a massless particle or massive particle:

� null time: treat the jet J as a massless particle and calculate its crossing time using

the three-momentum p⃗J of the jet (assuming knowledge of the production vertex),

� kinematic time: treat the jet J as a massive particle and calculate its crossing time

2. A number of alternatives are possible, such as particle energy E in place of pT or angle θ in place of
∆R. In a brief survey, we did not �nd these to outperform the variables used in Eq. (3.1).

3. We brie�y studied a few additional cases such as p2T -weighted but did not see an improvement over the
pT -weighted time or average time. An optimization of α, β, and γ is beyond the scope of this work.
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using the four-momentum (EJ , p⃗J ) of the jet (assuming knowledge of the production

vertex).

Since these de�nitions do not utilize the information available from timing measurements, we

do not expect them to be optimal. They are useful, however, to determine what constitutes

good performance from a jet time de�nition. In particular, the null time represents the

crossing time if the parton did not undergo showering and hadronization and will serve as a

useful reference time.4

After having chosen a de�nition for tJ we also need to choose a metric to evaluate which

de�nition is the most useful. For a jet time de�nition, we will compare the relative time

di�erence ∆t/tref de�ned as

∆t

tref
=
tJ − trefJ
trefJ

, (3.4)

to determine a good choice.

Each jet has a di�erent value of ∆t/tref so that a sample of jets will lead to a distribution

for the relative time di�erence. The mean of this distribution corresponds to the accuracy

of the jet time de�nition while the width corresponds to the precision, or resolution, of

the de�nition. Since the choice of tref is arbitrary it is not obvious that the mean of the

distribution is important (not to mention that constant o�sets can be corrected in practice).

The width of the distribution, on the other hand, is a robust indicator of a stable time

de�nition. For that reason, the width of the relative time di�erence distribution will be used

as the �gure of merit when comparing de�nitions.

3.3 General Behavior

In this section, we study analytically the general behavior of the various jet time de�nitions.

We start with the prompt case where the majority of particles originate from the origin

4. Note that while for prompt jets the null time is computable in data, for delayed jets the null time
requires the location of the displaced vertex so it is not always computable in data.
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and then we move on to the delayed case where the majority of particles originate from a

displaced decay.

3.3.1 Prompt Particles

For prompt particles we assume that the particles originate at t = 0 from the origin of the

detector x⃗ = 0⃗.5 As a detector model, we will consider an in�nite cylinder with radius rT .
6

The time ti of a particle i with four-momentum (Ei, p⃗i) is then given by

ti =
rT
c

Ei
pT,i

, (3.5)

where c is the speed of light.

For a massless particle this simpli�es to

ti =
rT
c

|p⃗i|
pT,i

=
rT
c

cosh ηi, (3.6)

which is a good approximation for particles in a high-momentum jet.

The jet times coming from a single particle within the jet are similarly calculated. For

the median, hardest, and random times, the time of the jet is given by the time of the

median-time particle im, the hardest particle ih, or a random particle ir, respectively, and is

t
{median,hardest,random}
J = t{im,ih,ir} =

rT
c

cosh η{im,ih,ir}. (3.7)

With the cylindrical detector, the null and kinematic times of the jet, with four-momentum

5. In reality and in simulation, there are displacements from processes like B-hadron decays. These have
a negligible impact on our analysis.

6. The di�erences when endcaps are included are discussed in App. 3.A.
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(EJ , p⃗J ), can also be calculated. The null time of a jet is

tnullJ =
rT
c

|p⃗J |
pT,J

=
rT
c

cosh ηJ , (3.8)

while the kinematic time of a jet is

tkinematic
J =

rT
c

EJ
pT,J

= tnullJ
EJ
|p⃗J |

. (3.9)

In the limit of small jet mass these de�nitions di�er by O(m2
J/p⃗J

2).

The average and pT -weighted times follow the de�nitions in Eqs. (3.2) and (3.3).

Prompt Relative Time Di�erence

For jet times using a single particle (median, hardest, and random times), with a time ti,

the relative time di�erence using Eqs. (3.7) and (3.8) is

∆t

tref
=
ti − tnullJ

tnullJ

=
cosh ηi
cosh ηJ

− 1. (3.10)

When the particle i points along the same direction as the jet axis, the relative time di�erence

is always zero. When there is a �xed angular distance ∆η between the particle i and the jet

axis, however, the relative time di�erence changes with ηJ . Due to the detector geometry,

as the jet becomes more forward, the relative time di�erence will grow.

The furthest that a particle i can be from the axis of the jet is approximately given by

the jet radius Rjet. Therefore, for a given ηJ there is a maximum relative time di�erence

given by

∆t

tref

∣∣∣∣max

=
cosh(ηJ ±Rjet)

cosh ηJ
− 1, (3.11)

where the + applies for positive ηJ and the − applies for negative ηJ .

The minimum is similar except that for |ηJ | < Rjet there is a stronger bound that comes
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from the fact that ηi = 0 for a massless particle corresponds to the fastest time possible

since it is the shortest path from the origin. The bound for |ηJ | < Rjet consequently only

depends on ηJ . We �nd

∆t

tref

∣∣∣∣min

=


sech ηJ − 1, |ηJ | < Rjet,

cosh(ηJ∓Rjet)
cosh ηJ

− 1, else.

(3.12)

Eqs. (3.11) and (3.12) taken together specify boundaries in the space of pseudorapidity vs.

relative time di�erence. The di�erent jet time de�nitions will have di�erent distributions

within these boundaries. Fig. 3.1 illustrates these boundaries graphically.

⃗p J = (pT,J, ηJ, ϕJ)

⃗p i = (pT,i, ηi, ϕi)

Δt ∝ cosh(ηJ + Rjet) − cosh ηJ

Δt ∝ cosh(ηJ − Rjet) − cosh ηJ

rT

ηJ > Rjet|ηJ | < Rjet

Δt ∝ 1 − cosh ηJ

ηi = 0

jet:

Figure 3.1: The slowest particle time, Eq. (3.11), follows the high |η| boundary of the jet
(blue). The fastest particle time, Eq. (3.12), follows the low |η| boundary of the jet (green)
or the η = 0 line (red).

At ηJ = 0 the minimum of ∆t/tref is 0 while the maximum is cosh(Rjet)− 1 > 0 which

means that the relative time di�erence cannot be negative. Therefore, for very central jets we

expect the relative time di�erence distributions to skew towards positive values since there
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is more available phase space. For less central jets we do not expect a strong preference for

positive or negative values based only on phase space.

For the kinematic time rather a bound, one can relate the relative time di�erence to a

kinematic quantity. From Eqs. (3.8) and (3.9) we �nd that for the kinematic time

∆t

tref
=

EJ
|p⃗J |

− 1 =
1

βJ
− 1, (3.13)

where βJ is the velocity. Since βJ ≤ 1 the relative time di�erence for the kinematic time is

always non-negative. This is expected since the kinematic time points in the same direction

as the null time, but adjusts for the mass of the jet.

Next, we move to the relative time di�erence for the pT -weighted time. This has a simple

form given our cylindrical detector model. The pT -weighted time is

t
pT
J =

1

HT,J

N∑
i=1

pT,iti =
1

HT,J

N∑
i=1

rT
c
Ei =

rT
c

EJ
HT,J

, (3.14)

and the corresponding relative time di�erence is

∆t

tref
=

EJ
HT,J

pT,J
|p⃗J |

− 1 =
EJ
|p⃗J |

pT,J
HT,J

− 1. (3.15)

Written in the form after the second equality we recognize the factor EJ/|p⃗J | ≥ 1 from

Eq. (3.13). The other factor pT,J/HT,J is the ratio of the jet pT to the scalar sum of the

constituent pT values. Since pT,J is a vector sum we have pT,J/HT,J ≤ 1. The distribution

at a given ηJ is determined by the η-dependence of each of these two terms.

For small mass jets EJ/|p⃗J | ≈ 1 + m2
J/p⃗J

2 and schematically for QCD jets the mass

is ⟨m2
J ⟩ ∼ R2 p2T,J ∼ R2 p⃗J

2 sech2ηJ [144]. Consequently, EJ/|p⃗J | ∼ 1 + R2 sech2ηJ

which peaks at ηJ = 0 and reduces as |ηJ | grows. The other quantity pT,J/HT,J depends

on the energy distribution in the jet and is not strongly correlated with ηJ . Therefore, we
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expect that the relative time distribution for the pT -weighted time to be positively-skewed

for central jets and switch over to negatively-skewed as the jets become more forward.

3.3.2 Delayed Particles

Next, we study the jet time behavior for delayed particles. Our benchmark scenario involves

a mother particle M that travels a macroscopic distance, then decays into two daughter

particles D and D̃. We assume that M and D̃ are unobserved while D is colored and results

in a jet due to showering and hadronization.7 In our numerical study we takeM as a gluino,

D̃ as a gravitino, and D as a gluon.

Let the mother M have four-momentum (EM , p⃗M ) and decay at the displaced vertex

x⃗M at a time tM . The daughter D showers and hadronizes into a delayed jet. A particle

i in the delayed jet has a four-momentum (Ei, p⃗i) and originates from x⃗M at tM . Let the

vector pointing from x⃗M to where i crosses the detector be x⃗i.
8

If particle i is measured, but the displaced vertex is not identi�ed, then i will be assumed

to have come from the origin, having traveled along x⃗i
′ = x⃗M + x⃗i. This is illustrated in

Fig. 3.2. We call the kinematics computed using x⃗i
′ the observed kinematics and those using

x⃗i the truth kinematics.

four-vector assumed trajectory

truth (Ei, p⃗i) x⃗i

observed (Ei, p⃗i
′) x⃗i

′

(3.16)

For transverse displacements ≳ 10 cm the tracking e�ciency is ≲ 40% in CMS and drops

o� further above 50 cm [145]. Conservatively, we assume that the displaced vertex is not

7. If M or D̃ (or both) are colored, they will propagate as color-neutral R-hadrons. They will be unob-
served if the resulting R-hadrons are electrically-neutral.

8. For simplicity we neglect the e�ects of curvature in the magnetic �eld of the detector. For a magnetic
�eld of 3.8 T the e�ect on the measurement of time or momentum is less than 1% for particles with pT >
2.5 GeV. In App. 3.B where we study pileup, we do include curvature induced by the magnetic �eld.
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⃗x i

⃗x M

⃗x ′ i

xT,M

rT

rT

Δϕ

xT,M

xT,i

Ei, ⃗p iEi, ⃗p ′ i

⃗x i

⃗x M

⃗x ′ i

xT,M

rT

rT

Δϕ

xT,M

xT,i

Ei, ⃗p iEi, ⃗p ′ i

Figure 3.2: The mother particle M travels along x⃗M and decays to a delayed jet (shaded
brown). The daughter particle i travels along x⃗i until it crosses the detector. If the displaced
vertex is not identi�ed then i is assumed to have traveled along x⃗i

′.

identi�ed and work with the observed kinematics. Jet times that do not use the pT values

of particles in the time de�nition, e.g. the median time, are mostly insensitive to whether

the truth or observed kinematics are used.

In the following, we begin by studying the three primary e�ects which control the per-

formance of the timing of a delayed jet.

Observed Kinematics

For a massless particle i, if it is prompt its time is fully speci�ed by its pseudorapidity

ηi (see Eq. (3.6)). When i is delayed, its time depends now on its pseudorapidity ηi, the

pseudorapidity of the mother ηM , the azimuthal angle di�erence ∆ϕ = ϕi − ϕM , the speed

of the mother βM , and the transverse decay location of the mother xT,M :

ηM , ηi, ∆ϕ, βM , xT,M . (3.17)
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The transverse distance xT,i traveled by i is calculated to be

xT,i =
√
r2T − x2T,M sin2(∆ϕ)− xT,M cos(∆ϕ). (3.18)

The observed kinematics, (pT,i
′, ηi′, ϕi′), can be computed in terms of the variables in

Eq. (3.17) and xT,i. The observed pseudorapidity ηi
′ is found from solving

rT sinh(ηi
′) = xT,M sinh(ηM ) + xT,i sinh(ηi). (3.19)

In terms of the true transverse momentum pT,i, the observed transverse momentum pT,i
′ is

pT,i
′
√

1 +

(
xT,M
rT

sinh(ηM ) +
xT,i
rT

sinh(ηi)

)2

= pT,i cosh(ηi). (3.20)

Finally, the observed azimuthal angle ϕi
′ is

tan(ϕi
′) =

xT,M sin(ϕM ) + xT,i sin(ϕi)

xT,M cos(ϕM ) + xT,i cos(ϕi)
. (3.21)

Jets are clustered using the observed kinematics. The time ti of a particle i is not impacted

by using observed kinematics because the arrival time of a particle is an independent mea-

surement. Since x⃗i and x⃗i
′ cross the detector at the same location, the e�ect on clustering

using observed kinematics is nearly negligible (comparable to the di�erence between di�erent

jet algorithms).

The primary impact of using observed kinematics is on jet time de�nitions that utilize

pT information. We expect the pT -weighted time to be impacted at a noticeable level (the

size of this e�ect will be studied in Sec. 3.4). The hardest time could be a�ected if which jet

constituent is the hardest changes under the observed kinematics. In practice, this is rare

due to the hierarchical nature of the parton shower. The median time, likewise, is minimally
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a�ected.

E�ective Radius

The radius of a jet, Rjet, is a parameter in the jet �nding algorithm that determines which

particles are included in the same jet. It determines the catchment area of a jet in ηϕ-space

which is approximately a circle with radius Rjet for cone-like algorithms used on isolated

jets [146].

When choosing a jet radius there are trade-o�s. If the radius is too small, then particles

coming from the showering of a hard particle could fall outside a particular jet and the jet

will not be a useful proxy for the underlying hard quark or gluon. If the radius is too large,

the jet is more susceptible to contamination like underlying event and pileup [144].

One consequence for prompt jets of using a �xed Rjet for jet �nding is that an optimal

jet radius may be di�erent for central jets as compared to forward jets. This is because for

a �xed Rjet in ηϕ-space, the corresponding angular distance, ∆θ, between a pair of particles

is smaller for forward jets than for central jets. Physically, if a set of central particles within

a jet with radius Rjet were shifted to larger |η| values, then they may not all �t within a

radius Rjet anymore.

Rjet

Δθ

Figure 3.3: Illustration of ∆θ e�ect for prompt jets. The dashed lines depict jets with the
same Rjet while the shaded regions depict jets with the same ∆θ.

In the prompt case, we consider the e�ective radius of the jet to be the angular distance
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∆θ that is required to keep ∆R �xed. This means that forward jets have a smaller e�ective

radius than central jets because for �xed ∆R the required ∆θ distance shrinks. See Fig. 3.3

for an illustration. Variable R jets were proposed to account for this by letting the jet radius

grow at larger |η| by scaling the radius inversely with transverse momentum [147].

In contrast, for delayed jets we consider the e�ective radius of a jet to be the true ∆R

distance that is required to keep observed ∆R �xed. There are two factors that alter the

e�ective radius for delayed jets. The �rst is that a non-zero value of xT,M means the jet

originates closer to the detector radius rT . The same way that the image from a projector is

smaller as you move the projector closer to the screen, a �xed observed∆R value corresponds

to a larger true ∆R value as xT,M grows. See Fig. 3.4 for an illustration.

xT,M

ReffηJ ≃ 0 Reff

ηJ ≃ − 2

Figure 3.4: Illustration of Reff e�ect for delayed jets. The brown shaded region has a larger
Reff compared to the dashed lines because xT,M is larger. The blue shaded region shows
both the e�ect of shifting and tilting.

The second e�ect is that both ηJ and ηM can vary. Changing ηJ tilts the direction of

the jet and generally causes the e�ective radius to shrink with ηJ similar to the prompt case.

Changing ηM is not a tilt, but rather a shift of the origin point of the particles. Due to the

geometry of ηϕ-space the e�ective radius generally increases as |ηM | grows.
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The e�ective radius can be estimated numerically. As shorthand we write the observed

pseudorapidity of a jet as ηJ
′ = f(ηM , xT,M , ηJ ) where the function is found in Eq. (3.19).

We de�ne the e�ective jet radius as Reff and �nd it by solving

Rjet = f

(
ηM , xT,M , ηJ +

1

2
Reff

)
− f

(
ηM , xT,M , ηJ − 1

2
Reff

)
. (3.22)

The de�nition is not rigorous but rather is meant to provide intuition for the general behavior.

We also set ∆ϕ zero in the above for simplicity. In Fig. 3.5 we plot Reff as a function of ηJ

for several sample points of xT,M and ηM with �xed jet radius Rjet = 0.5.

xT ,M=0.5 m, ηM=2
xT ,M=0.5 m, ηM=0
xT ,M=0.75 m, ηM=2

-6 -4 -2 0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ηJ

R
ef
f

Figure 3.5: The e�ective radius, Re�, as a function of ηJ with xT = 0.5 m and ηM = 2 (blue
solid line), xT = 0.5 m and ηM = 0 (yellow solid line), and xT = 0.75 m and ηM = 2 (red
solid line). A �xed value of 0.5 is also shown (red dashed line).

For isolated QCD jets, we expect the jet properties to change slowly with respect to

increasing Reff . In a typical parton shower there are both more and higher momentum

particles near the center of the jet. Including additional soft particles further from the jet

axis will not perturb the jet four-vector by much. When Reff decreases the jet properties

should change faster as more and higher momentum particles are excluded.
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Daughter Time Fraction

The third e�ect is the fraction of time that comes from time of �ight of the daughter i as

compared to the time of �ight of the mother, as shown in Fig. 3.6. Intuitively, when the

mother travels more of the distance from the origin to the detector, there is less variation

among the times of the particles in a jet. Consequently, the distribution of jet times becomes

narrower.

xT,M

rT

rT

Δϕ

xT,M

xT,i

tM

⃗p J

tD

Figure 3.6: The time of �ight of the mother particle is tM and the time of �ight of a daughter
particle is tD.

The time of a delayed particle i is

ti = tM +
|x⃗i|
c

Ei
|p⃗i|

= tM +
xT,i
c

Ei
pT,i

. (3.23)

The null time of a jet, which we continue to use as the reference time, is

tnullJ = tM +
xT,J
c

|p⃗J |
pT,J

= tM +
xT,J
c

cosh ηJ . (3.24)
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Let us �rst consider the relative time di�erence for the median time so that i = im. We have

∆t

tref
=
ti − tnullJ

tnullJ

=

(
tM +

xT,i
c

Ei
pT,i

)
−
(
tM +

xT,J
c

|p⃗J |
pT,J

)
tM +

xT,J
c

|p⃗J |
pT,J

. (3.25)

We set tD ≡ (xT,J/c)(|p⃗J |/pT,J ), representing the �null" time from the daughter segment.

If we approximate xT,i = xT,J (i.e. the jet is narrow) and particle i as massless, then we

�nd

∆t

tref
=

tD
tM + tD

(
cosh ηi
cosh ηJ

− 1

)
. (3.26)

The �rst factor is the fraction of the particle's time that is traveled by the daughter and the

second factor we recognize from Eq. (3.10) as the prompt distribution evaluated at particle

i's true pseudorapidity. As the distance the daughter travels, xT,J , shrinks, so does the

spread in ∆t/tref .

Delayed Relative Time Di�erence

Here we brie�y review our expectations for the relative time di�erence in delayed jets. Recall

that for single particle measures, like the median or the hardest, the prompt relative time is

given by

∆t

tref
=

cosh ηi
cosh ηJ

− 1. (3.27)

The three e�ects that cause the delayed distribution to di�er from Eq. (3.27) are:

� the daughter time fraction,

� the e�ective radius of the jet,

� the di�erence between observed and truth kinematics.

Let us now contrast a few jet time de�nitions to assess the impact of each delayed e�ect

on the relative time distribution. We start with the hardest time. The di�erence in observed
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kinematics should have a negligible e�ect except in rare instances when the hardest particle

in a jet changes between observed and truth kinematics. The e�ective radius should also

have a minimal e�ect because the hardest particle in a jet tends to be near the jet axis. The

daughter time fraction, however, is an irreducible e�ect.

From Eq. (3.26) we see that the delayed distribution inherits the prompt dependence on

the daughter's true pseudorapidity, but with an additional suppression from the fact that

spread between particles occurs over a smaller distance. The suppression comes from the

prefactor
tD(xT,M , ηi)

tD(xT,M , ηi) + tM (xT,M , ηM , βM )
. (3.28)

The times scale with their respective pseudorapidities, tM ∝ cosh(ηM ) and tD ∝ cosh(ηi),

so that the prefactor is closest to 1 when ηD ≈ 0 and |ηi| is large, and closest to 0 when

ηi ≈ 0 and |ηD| is large. The prefactor can range from 0 to 1 and it plays a large role in the

relative time di�erence distribution.

Next, we consider the median time. Again, we expect the observed kinematics to have a

negligible e�ect on the relative time di�erence. The e�ective radius, however, can now have

an impact because each particle has an equal e�ect on the median time of a jet. As Reff

grows, particles further from the jet axis are included in the jet and in the calculation of

the jet time. Being far from the jet axis, these particles act like noise for the particle time

distribution leading to more variation in the relative time di�erence distribution. Conversely,

a shrinking Reff will tend to narrow the distribution somewhat. The daughter time fraction

is irreducible and has an O(1) e�ect on the median time.

Finally, we consider the pT -weighted time. The daughter time fraction is again a driving

e�ect. The impact of the e�ective radius should be smaller than in the median case, because

particles far from the jet axis are typically soft so their contribution to the pT -weighted time

is suppressed by their pT . The observed kinematics, however, can now have a large e�ect.
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The pT -weighted time for delayed jets is

t
pT
J =

1

HT,J
′

N∑
i=1

pT,i
′ti, HT,J

′ =
N∑
i=1

pT,i
′. (3.29)

From Eq. (3.20) we see that the ratio pT,i
′/pT,i is independent of momentum. This means in

the in�nitely-narrow jet limit the pT -weighted time is not a�ected by the observed kinematics.

Beyond this limit, the e�ect of using the observed pT can be large if the variation of pT,i
′/pT,i

is large over the area of the jet.

The ability to accurately identify displaced vertices can eliminate the impact of the

observed kinematics. Such an upgrade would be expected to improve the performance of the

pT -weighted time, but have a small e�ect on the hardest time and the median time.

3.4 Numerical Results

In this section, we compute the relative time di�erences for several jet time de�nitions in

simulated data. Results will be compared with the derived behaviors from Sec. 3.3 and are

found to follow the predicted trends.

3.4.1 Simulation Details

For prompt jets, we generate pp→ Z ′ → qq̄ events, where q = u, d, using Pythia v8.240 [148]

at a center of mass energy of
√
s = 14 TeV and with a Z ′ mass of mZ ′ = 1 TeV. Initial

state radiation (ISR) and multiparton interactions (MPI) are turned o�. Particles with

pT < 0.5 GeV or with |η| > 4 are discarded. Particles are clustered into anti-kT jets [149]

with Rjet = 0.5 using FastJet v3.3.2 [150]. The results are presented at particle-level without

any detector resolution or time resolution included. The impact of these e�ects is shown in

App. 3.C to be small.

For delayed jets, we generate pp → g̃g̃ → (gG̃)(gG̃) at parton-level using MadGraph5
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v2.7.3 [91] at a center of mass energy of
√
s = 14 TeV and with particle masses ofmg̃ = 2 TeV

and m
G̃

= 10−16 TeV.9 Events are showered with Pythia with ISR and MPI turned o�.

Particles with an observed transverse momentum below pT
′ < 0.5 GeV or with an observed

pseudorapidity |η′| > 4 are discarded, where a cylindrical detector with a radius of rT = 1 m

is used.

In both the prompt and delayed samples, hadronization is turned o�. In Pythia, when

there are both prompt and displaced particles, due to the hadronization procedure, some

particles that descend from the displaced gluon can be assigned to the prompt vertex. Using

unhadronized events avoids the issue of determining to which vertex a hadron should be

assigned. In App. 3.D we compare the relative time distributions, in a prompt sample, with

and without hadronization and �nd that the impact is at most a few percent.

3.4.2 Prompt Jets

We �rst look at prompt jets because the prompt distributions are inputs to understanding

the delayed distributions. In each event we only consider the hardest jet and require that it

has pT > 250 GeV.

In Fig. 3.7 (left) we show the distribution of ∆t/tref for jets with |ηJ | < 0.5 for the

jet time de�nitions of pT -weighted, median, hardest, average, and random. As expected,

selecting a random particle in the jet to represent the jet time yields the widest distribution.

Its distribution skews towards positive relative times because ηJ = 0 corresponds to the

fastest possible time, meaning there is more phase space for positive values. The other time

de�nitions have narrower distributions but still skew towards positive values. The median,

hardest, and average times have comparable performance, while the pT -weighted time has

the narrowest distribution.

From Fig. 3.7 we see that each ∆t/tref distribution peaks near zero, but that the mean

9. Whether using gluon-initiated or light quark-initiated jets does not give rise to qualitative di�erences.
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depends on the range of ηJ used. The width of the distributions is an indicator of the

resolution of a method and a useful �gure of merit. Since these distributions are non-

Gaussian, the 1σ standard deviation does not fully characterize the shapes, and in particular

does not provide useful information about the tails. For that reason, we use the 3σ width

(i.e. the bounds of the integral containing 99.7% of events) for comparison.10 With this as

the resolution, the pT -weighted time performs 5 times better than the hardest time and 6

times better than the median time.
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Figure 3.7: The relative time di�erence distribution in prompt jets for |ηJ | < 0.5 (left) and
for 1.0 < |ηJ | < 1.5 (right).

In Fig. 3.7 (right) we look at the relative time distribution for jets with 1.0 < |ηJ | < 1.5.

The same pattern is present here where the random time is the widest distribution, followed

by the median, hardest, and average times with similar widths, and the pT -weighted time

with the narrowest distribution. Again, comparing the resolutions, we �nd that the pT -

weighted time is 16 times better than the hardest time and 17 times better than the median

time. The distributions of the median and hardest times widen noticeably in this 1.0 <

|ηJ | < 1.5 range, as compared to |ηJ | < 0.5, as predicted by Eqs. (3.11) and (3.12). The pT -

weighted time instead depends on the interplay between EJ/|p⃗J | and the ratio of transverse

momentum to the scalar sum of the constituents' transverse momenta.

10. In fact, we use the minimum width that contains 99.7% of the events rather than width centered at
the mean because of the asymmetric nature of the distributions.
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Figure 3.8: The relative time di�erence vs. ηJ distribution for random time (left) and median
time (right). The solid red curves depict the bounds from Eqs. (3.11) and (3.12). The dashed
red curve depicts the same bounds for a jet of radius (2/3)Rjet.

To better understand the di�erence between ηJ regions, we look at the two-dimensional

distribution of ∆t/tref vs. ηJ . Fig. 3.8 shows this distribution for random time with the

bounds from Eqs. (3.11) and (3.12) overlaid. The majority of events �ll out the region

between the bounds with a few events above the maximum, due to mass e�ects, and a few

events below the minimum due to the fact that particles can be slightly farther than Rjet

from the jet axis.

Fig. 3.8 (right) shows ∆t/tref vs. ηJ for the median time. The red solid lines are the

boundaries from Eqs. (3.11) and (3.12). This distribution clusters closer around ∆t/tref

values near zero. In fact, the dashed lines are boundaries for a jet with radius (2/3)Rjet

which corresponds to the empirical observation that the behavior of the median time is

similar to choosing a random particle from a narrower jet.

In Fig. 3.9 we show the same distribution for the pT -weighted time. Here, we see that the

behavior predicted by Eq. (3.15) does appear in the simulation. The positive relative time

di�erences near ηJ = 0 result from the EJ/|p⃗J | factor. The shape in that region even follows

sech2(ηJ ) as discussed in Sec. 3.3.1. As |ηJ | grows past ≈ 2 the EJ/|p⃗J | factor approaches
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Figure 3.9: The relative time di�erence vs. ηJ distribution for pT -weighted time. The dashed
red curve depicts the relation in Eq. (3.15).

unity and the pT,J/HT,J factor determines the shape. Both of these factors have a narrow

distribution leading to an overall narrow distribution for the relative time di�erence for the

pT -weighted time.

3.4.3 Delayed Jets

For delayed jets the parameter space expands from ηJ to ηM , ηJ , ∆ϕ, βM , and xT,M .

To study a delayed sample, we vary the values for ηM , ηJ , and xT,M and �x ∆ϕ = 0

and βM = 0.4. The e�ect of non-zero ∆ϕ has been discussed in our analytic estimates in

Section 3.3.2.

In every event, there are two gluinos, each of which decay to a gluon leading to a hard jet.

One of these gluinos is forced to decay outside of the detector while the other gluino is set

to have velocity βM and decays at a transverse distance xT,M to a gluon that points along

ηJ at parton-level. This same event is then re-showered many times to produce a sample of

jets.

We consider only the hardest jet (that originates from inside the detector) in the event and

require it to have an observed pT
′ > 50 GeV. In order to identify e�ects that are dependent
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on the event topology, we discard events that di�er by more than 0.25 in pseudorapidity or

0.25 in azimuthal angle before and after showering.
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Figure 3.10: The relative time di�erence distribution for (ηM , ηJ ) = (0, 0) (top left),
(ηM , ηJ ) = (2, 0) (top right), (ηM , ηJ ) = (0,−2) (bottom left), and (ηM , ηJ ) = (2,−2)
(bottom right) for xT = 0.5 m.

We �rst look at distributions of ∆t/tref in Fig. 3.10 for xT,M = 0.5 m. The top left plot

shows the pT -weighted, median, hardest, average, and random times with (ηM , ηJ ) = (0, 0).

Much like the prompt case, every de�nition skews positive since ηJ = 0 corresponds to

fastest possible arrival time. The distributions are narrower than the prompt case due to the

decrease in variation in arrival time as captured by the daughter time fraction in Eq. (3.28).

Fig. 3.10 (top right) shows the ∆t/tref distributions for (ηM , ηJ ) = (2, 0) which corre-

sponds to a forward gluino that decays to gluon that travels perpendicular to the beamline,

directly to the detector. From Eq. (3.26) we expect this distribution to be similar to the

prompt distribution for central jets. Compared to the (ηM , ηJ ) = (0, 0), this point has a
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smaller daughter time fraction and is narrower as expected.

The bottom left of Fig. 3.10 shows ∆t/tref distributions for (ηM , ηJ ) = (0,−2). Here

the gluino travels perpendicular to the beamline then decays to a backward pointing gluon.

The observed pseudorapidity for the gluon is ηJ
′ = −1.3. Focusing �rst on the pT -weighted

time, we see that the distribution is slightly wider than the prompt case, Fig. 3.9, despite a

slight suppression of ≈ 0.6 from the daughter time fraction. This is due to a sizable variation

between the observed and truth kinematics. The median and hardest distributions do not

di�er much from their prompt counterparts.

Fig. 3.10 (bottom right) shows the distributions for (ηM , ηJ ) = (2,−2). In this case,

each distribution is very narrow. This is primarily a consequence of the jet having Re� =

0.27.11 While the pT -weighted distribution is still narrow, the di�erence is not as large as

for other jet times because of the discrepancy between observed and truth kinematics for

this con�guration.

In Fig. 3.11 we show a scan over ηJ in the x-direction and ηM in the y-direction for

the pT -weighted, median, and hardest times. Here, we observe the general trend primarily

follows Eq. (3.26). Changing ηJ we see that distribution width tends to track with the

corresponding pseudorapidity for the prompt distribution. The slight narrowing at large

|ηM | is due to the changing daughter time fraction, as in Eq. (3.28). The few deviations

from this pattern are caused by larger changes in the e�ective radius and additionally from

the observed kinematics for the pT -weighted time. Fig. 3.12 shows a scan over ηJ in the

x-direction and ηM in the y-direction for di�erent values of xT,M . The distributions are

narrow over the full parameter space.

The parameter scans in Figs. 3.11 and 3.12 are useful for emphasizing a few physics points.

Firstly, the pT -weighted time is consistently better than other jet time de�nitions across

the variation of key kinematics, namely ηM and ηJ . Secondly, the pT -weighted time has a

11. Note that because the particles in a jet are not uniformly distributed, excluding particles that are
farther from the jet axis does result in a narrower relative time di�erence distribution.
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di�erent spread at di�erent kinematical points which means one should compute calibrations

and e�ciencies at each point rather than using a single value over all of parameter space.

3.5 Conclusions

The time of a jet is a theoretically ambiguous and yet experimentally highly relevant quan-

tity. The time pro�le of a jet provides a new independent probe of jet properties, potentially

deepening our understanding of QCD. Experimentally, the jet time is an observable with

strong discrimination power in searches for long-lived particles. Like how the jet clustering

algorithm itself de�nes a jet using a collection of particles, the choice of jet time de�nition

determines its properties and performance. A useful de�nition should have predictable be-

havior, give the closest representation to the parton-level information, and, more importantly,

minimize the spread in arrival time.

In this work, we primarily studied �ve de�nitions of jet time. The �rst was the pT -

weighted time where the jet time is a pT -weighted sum of the jet constituent arrival times.

The second was the median time which uses the median constituent time as the jet time.

The third was the hardest time where the time of the highest pT constituent is used as the

jet time. The fourth was the average time where the jet time is taken as the average of

the constituent times. The �fth was the random time where the time of a constituent was

randomly chosen to be used as the jet time.

To evaluate the various de�nitions, we both predicted and computed in simulation the

relative time di�erence of a de�nition compared to the time it would take a massless parton

to travel along the jet's trajectory. The width of the relative time di�erence distribution

tells us how precisely the jet time can be measured. For prompt jets, we showed that the

performance depends on the pseudorapidity of the jet. Due to the geometry of the detector

barrel, all jet time de�nitions have wider distributions as the jets become more forward. We

found that the pT -weighted jet time consistently has the best performance. For instance, for
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central jets with 1.0 < |η| < 1.5, the pT -weighted time has a 16-fold improvement over the

(next-best-performing) hardest time. For central jets with |η| < 0.5, the pT -weighted time

has a 5-fold improvement over hardest time.

For delayed jets, the full kinematics of the event a�ects the performance. Speci�cally, the

direction of the mother particle, the direction of the jet, and the transverse decay location

of the mother particle determine the behavior of the jet times. We show that delayed jet

timing behavior can be understood through three e�ects. The �rst is the daughter time

fraction which is the fact that as the displaced vertex gets closer to the detector there is

less distance for the constituents to travel and consequently less spread in their times. The

second is the e�ective radius of the jet that is an e�ect of the displaced vertex. The third is

the that observed pT di�ers from the true pT , which occurs when the displaced vertex is not

identi�ed. Just as for prompt jets, the pT -weighted time has the best performance over the

full parameter space. Furthermore, the strong dependence on the event kinematics empha-

sizes the importance of having an e�ciency map that depends on the long-lived particle's

direction, its decay location, and the direction of the daughter jet.

This work is the �rst study that looks at the impact of di�erent de�nitions of jet time.

There are many related directions that can be explored. For instance, �nding the jet time

de�nition that is most amenable to direct calculation may help reduce theory uncertainties.

More practically, given the trigger computation complexity budget, it would be useful to

understand the best alternative jet time de�nition for a low-level delayed jet trigger. On

the analysis side, studies could be done on the interplay between jet time and pileup and

grooming. Other new physics models with di�erent event topologies would be interesting to

study. More detailed signal-speci�c studies are needed to evaluate the direct impact of using

the jet time in new physics searches. We are optimistic that the jet time has the potential

to be a standard tool in long-lived particle searches in the near future.
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3.A Finite Length Detectors

In the main text, we consider a detector with only a barrel capable of timing measurements.

If one includes endcaps, then the timing distributions are di�erent for jets with times that

the endcaps would measure.

If the pseudorapidity at which the barrel connects to the endcap is ηEC, then the arrival

time of a particle i at the endcap is

t
endcap
i =

zEC
c

1

tanh ηi
, (3.30)

where zEC = rT cosh ηEC. If all of the jet's constituents lie solely in the endcap, the trajectory

that yields the shortest (largest) arrival time is now the most forward (central) constituent.

For jets with constituents in the intermediate region, the trajectory that yields the largest

arrival time is always the trajectory intersecting the barrel-endcap corner. Depending on the

jet axis, the shortest arrival time can be a constituent that intersects the barrel or the endcap.

In Fig. 3.13 we show the maximum and minimum relative time di�erences (for a single-

particle measure) for rT = 1 m and a total barrel length of L = 6 m which corresponds to

ηEC = 1.76.12 Once all jet constituents lie within the endcap, the allowed spread in relative

time di�erence sharply drops for prompt jets.

3.B Pileup and Grooming

We simulate pileup by overlaying nPU soft QCD vertices onto our hard event. The number

of pileup events is Poisson distributed, with ⟨nPU⟩ = 140 and a cuto� at 200 vertices. The

pileup vertices follows a Gaussian spread in both z and t, with σz = cσt = 60 mm [153].

The events with pileup include all of the detector e�ects discussed in App. 3.C.

12. This yields the approximate inner geometry of the CMS and ATLAS electromagnetic calorimeters [151,
152].
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The relative time di�erences without any form of pileup mitigation are shown in Fig. 3.14

for |ηJ | < 0.5 (left) and 1.0 < |ηJ | < 1.5 (right). The average time distribution gets distorted

for the |ηJ | < 0.5 bin, and the peak shifts away from zero considerably. Like those from

pileup, low-energy particles have a smaller curvature radius from the magnetic �eld and

are therefore delayed more than higher-energy particles. Since a sizable fraction of a jet's

constituents can come from pileup, this causes the average time to shift considerably. The

same reasoning is responsible for the broadening of the distributions of the median and

pT -weighted times. The hardest time is a�ected very little.

The 1.0 < |ηJ | < 1.5 bin shows less impact from pileup as can be seen, for example, by

the peak of the average time distribution remaining close to zero. Similarly, the distributions

of the other times broaden slightly, but their peaks do not shift. This is the result of the pT

cut restricting to more energetic particles at larger pseudorapidities.

For pileup mitigation, we use an idealized version of charged hadron subtraction [154]

where we assume all charged pileup can be removed. The remaining particles were then

clustered into Rjet = 0.5 anti-kT jets and trimmed [155] with Rsub = 0.2 and fcut = 0.03.

The choice of keeping Rjet the same is to ensure that the jet times with and without pileup

mitigation are directly comparable.

The distributions for the |ηJ | < 0.5 bin are shown in Fig. 3.15. The improvement

is predominantly due to the removal of soft charged pileup particles by charged hadron

subtraction. These constituents are the ones that are mainly delayed by mass e�ects and

the magnetic �eld. Trimming plays a minor role because Rsub is not signi�cantly smaller

than Rjet and the number of pileup vertices is large. More aggressive trimming may improve

results slightly.13

13. One could also study the performance using pileup mitigation techniques that are better suited to large
values of ⟨nPU⟩ such as jet cleansing [156], constituent subtraction [157], PUPPI [158], soft killer [159], or
PUMML [160]. This is beyond the scope of this work.
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3.C Detector E�ects

In this section we show the e�ects of implementing a simple detector model. We �rst im-

plement time resolution, followed by time and spatial resolution. The e�ects are shown in a

prompt sample for |ηJ | < 0.5 in Fig. 3.16 and for 1.5 < |ηJ | < 2.0 in Fig. 3.17.

For time resolution, we round each particle's time to the nearest multiple of 30 ps.

This is the expected resolution of LHC upgrades [140, 141, 142]. The e�ect on the ∆t/tref

distribution can be seen by comparing the left plots (no timing resolution) to the center

plots (30 ps timing resolution) in Figs. 3.16 and 3.17. In both cases, the time resolution has

a negligible e�ect on the shape of the distribution.

For spatial resolution, we consider an η×ϕ grid of 0.05×0.05 cells. The four-momenta are

replaced with a massless four-vector with the same energy as the particle, and the direction

shifted pointing to the center of the corresponding ηϕ-cell. If multiple particles fall into the

same cell and the same time window, their energies are added, and they are combined into

a single cell. The e�ect on the ∆t/tref distribution can be seen in Fig. 3.16 (right) and

Fig. 3.17 (right).

In the |ηJ | < 0.5 bin, we see that spatial resolution does not signi�cantly a�ect the

timing distributions. By contrast, the 1.0 < |ηJ | < 1.5 bin has a noticeable broadening in

the pT -weighted distribution and moderate broadening in the median and hardest distribu-

tions. This is because the fractional momentum resolution induced by the spatial resolution

increases with |η|. This impacts both the momentum of the jets and their constituents.

Lastly, we considered the impact of including a 4T magnetic �eld. In this case, the

particles were hadronized (in order to get the correct electric charge of the hadrons), and at

the same time and spatial resolution was applied. The e�ect on the relative time distribution

for both bins are shown in Fig. 3.18. There is a very slight positive pull in the |ηJ | < 0.5 bin

(left) while the 1.0 < |ηJ | < 1.5 bin (right) has no noticeable change. This di�erence is due

to the pT > 0.5 GeV cut imposed on the constituents. As η increases, the energy required
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to pass the pT cut also increases. The shift in arrival time due to the change in path length

is inversely proportional to the energy.

3.D Hadronization

In this study the events are not hadronized to ensure that Pythia assigns the correct vertex

to each delayed particle. Fig. 3.19 compares the relative time di�erence for prompt jets

with and without hadronization for the pT -weighted time (left), median time (center), and

hardest time (right) in the range 1.0 < |ηJ | < 1.5. Of the three, only the median time shows

a slight observable change.
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Figure 3.11: The relative time di�erence distribution for the pT -weighted (blue), median
(yellow), and hardest (red) times as a function of ηJ (x-axis) and of ηM (y-axis) with a
transverse decay location of xT,M = 0.5 m. The vertical axis in each plot is in log-scale and

ranges from 10−5 to 1.
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Figure 3.12: The relative time di�erence distribution for xT,M = 0.25 m (blue), xT,M =
0.50 m (gray), and xT,M = 0.75 m (purple dashed) times as a function of ηJ (x-axis) and
of ηM (y-axis) for the pT -weighted time. The vertical axis in each plot is in log-scale and
ranges from 10−5 to 1.
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Figure 3.13: The boundaries for the relative time di�erence as a function of ηJ . This can be
compared with the boundaries in Fig. 3.8.
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Figure 3.14: The relative time di�erence distribution for |ηJ | < 0.5 (left) and 1.0 < |ηJ | < 1.5
(right) with pileup and no subtraction. The |ηJ | < 0.5 plot can be compared with Fig. 3.18
(left) and the 1.0 < |ηJ | < 1.5 plot can be compared with Fig. 3.18 (right).
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Figure 3.15: The relative time di�erence distribution for |ηJ | < 0.5 with pileup, charged
hadron subtraction, and trimming. This can be compared with Fig. 3.14 (left).
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Figure 3.16: The relative time di�erence distribution for |ηJ | < 0.5 with no detector e�ects
(left), with time resolution added (center), and with time and spatial resolution added (right).
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Figure 3.17: The relative time di�erence distribution for 1.0 < |ηJ | < 1.5 with no detector
e�ects (left), with time resolution added (center), and with time and spatial resolution added
(right).
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Figure 3.18: The relative time di�erence distribution for |ηJ | < 0.5 (left) and 1.0 < |ηJ | < 1.5
(right) with a magnetic �eld. The |ηJ | < 0.5 plot can be compared with Fig. 3.16 (right)
and the 1.0 < |ηJ | < 1.5 plot can be compared with Fig. 3.17 (right).
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CHAPTER 4

MODELING EXPERIMENTAL ANOMALIES
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down on the W boson mass. Eur.Phys.J.C 82 (2022) 10, 944.
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4.1 Introduction

Recently, the CDF-II experiment [14] measured the W boson mass to be

mW,CDF-II = 80.4335± 0.0094 GeV. (4.1)

This suggests a 7σ derivation from the Standard Model (SM) prediction [3],

mW,SM = 80.357± 0.006 GeV. (4.2)

The CDF-II measurement of mW is also in tension with the measurements from the previous

collider experiments at ∼ 2.6σ [3, 161]. The discrepancy might be due to some unknown

experimental systematical uncertainties, but it could also be a hint for new physics [162,

163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,

182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,

201, 202, 203, 171, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218,

219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 182, 229, 230, 231, 232, 233, 234, 235, 236,

237, 238, 239, 240, 241, 242, 243, 244, 245, 246]. A class of new physics solutions contain

extensions to the Standard Model (SM) Higgs sector, whereby the new Higgs states provide

additional sources of custodial symmetry breaking [162, 163, 164, 165, 166, 167, 168, 169,
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170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184]. In a particular class

of models, the correction to the W mass from new physics enters at the one-loop level. The

new physics scale is then predicted to be around a few hundreds of GeV. This is particularly

interesting since it could give rise to signals in LHC new physics searches. The new physics

in this class are generically in some SU(2)L multiplet. The correction to the W mass

requires that the masses of the di�erent members of the multiplet receive di�erent custodial

symmetry breaking contributions from the electroweak symmetry breaking. Hence, some of

the couplings between the new physics and the Higgs need to be sizable, and there need to

be signi�cant mass splittings within the multiplet. Both of these features have interesting

phenomenological consequences.

In this chapter, we explore the phenomenology of the Higgs Triplet Model (HTM), with

hypercharge Y = 1, in the context of electroweak precision measurements, direct collider

searches, and Higgs precision measurement in light of the CDF-IIW mass measurement. The

prediction of this model for theW mass has been investigated in Ref. [175]. We go beyond the

existing works by investigating the compatibility of the mW,CDF−II preferred triplet spectra

with the measurements of the e�ective weak mixing angle and Higgs precision data as well

as by providing a comprehensive analysis of possible signatures at the Large Hadron Collider

(LHC). Furthermore, we explore the situation that the new Higgs triplet is approximately

inert. This can be achieved naturally by imposing an approximate Z2 symmetry, which can

be broken softly. In this case, its lightest neutral states can be candidates for a fraction of

stable dark matter or decaying dark matter. We explore the CDF-II measurement's impact

on those dark matter candidates.

The chapter is organized as follows: in Section 4.2, we brie�y review the Higgs Triplet

Model; in Section 4.3, we calculate the HTM's correction to the W mass at the one loop

and give the preferred mass spectra for the new Higgses from the CDF-II measurement. We

explore the phenomenology of this spectra in various aspects, including their contributions
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to the e�ective weak mixing angle in Section 4.4, the compatibility with the Higgs precision

measurement in Section 4.5, the bounds and discovery channels from the LHC direct searches

in Section 4.6, and their cosmological implications in Section 4.7. We conclude in Section 4.8.

In the appendices, we give details of the self-energy corrections and the SM �tting formula

and discuss the soft Z2 breaking limit, the unitarity and vacuum stability bounds, the Landau

pole, and the decoupling limit of the HTM.

4.2 Higgs Triplet Model

In the HTM, the Higgs sector contains an isospin doublet Φ with hypercharge Y = 1
2 and

an isospin triplet ∆ with Y = 1.1 They can be parameterized as

Φ =

 G+

vϕ+h+iG
0

√
2

 , ∆ =

 H+√
2

H++

∆0 −H+√
2

 with ∆0 =
v∆ +H + iA√

2
, (4.3)

where vϕ and v∆ are the vacuum expectation values (vev's) of the doublet and triplet �eld

obeying

v2 ≡ v2ϕ + 2v2∆ ≈ (246GeV)2. (4.4)

In addition to the SM-like Higgs boson, the scalar sector contains six new Higgs bosons

(degrees of freedom): the CP-even H boson, the CP-odd A boson, the singly-charged H±

bosons, and the doubly-charged H±± bosons.

In this model, the tree level W and Z boson masses are given by

m2
W =

g2

4
v2, m2

Z =
g2

4c2W
(v2 + 2v2∆), (4.5)

where c2W ≡ cos2 θW and θW is the weak mixing angle. If we take the Z boson mass as

1. Alternatively, one can also consider a adding a Y = 0 triplet to the SM. In this model, MW receives a
positive tree-level shift allowing to easily �t the CDF-II anomaly (see e.g. Refs. [185, 173]).
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an input, the expected W boson mass is naively smaller than the SM prediction at the tree

level

mW = mtree
W,SM

(
1− v2∆

v2

)
+∆mW , (4.6)

where ∆mW denotes loop corrections.

However, as we shall see below, a mass splitting between the new Higgs states can correct

the W mass at the loop level with an opposite sign compared to the tree level correction. To

explain the CDF-II result, it is preferred that the 1-loop correction dominates over the tree

level correction, i.e., v∆ ≪ v. Assuming the di�erence between the CDF-II measurement

and the SM prediction mainly comes from the loop correction ∆mW , i.e.,

v2∆
v2

≪
mW,CDF−II −mW,SM

mW,SM
, (4.7)

this restricts v∆ ≪ 7.6 GeV. To be concrete, we assume that v∆ < 1 GeV in the rest of the

chapter. For simplicity, we will work in the limit v∆ = 0 for the calculation of the W mass

correction, e�ective weak mixing angle, the Higgs di-photon rate, and the trilinear Higgs

coupling (see below). Note that deviations from this limit will be suppressed by powers of

v2∆/v
2 ≲ 2× 10−5 and will be ignored.

4.2.1 The Inert Triplet

The limit of v∆ = 0 can be realized in a strict sense by imposing a Z2 symmetry, under

which Φ is Z2-even and ∆ is Z2-odd. This Z2 can also be used to forbid the neutrino yukawa

term typically seen in the Type-II seesaw model. The general gauge invariant potential is
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then given by

V (Φ,∆) = m2Φ†Φ +M2Tr(∆†∆)

+ λ1

(
Φ†Φ

)2
+ λ2

[
Tr(∆†∆)

]2
+ λ3Tr

[
(∆†∆)2

]
+ λ4

(
Φ†Φ

)
Tr(∆†∆) + λ5Φ

†∆∆†Φ,

(4.8)

where all the parameters in the potential can be taken to be real. The minimization of the

potential yields

m2 = −λ1v2, v∆ = 0. (4.9)

In terms of the physical states, the quadratic part of the Higgs potential is

V (Φ,∆) ⊃ 1

2
(2λ1v

2)h2 +
1

2

(
M2 +

λ4v
2

2

)(
A2 +H2 + 2H++H−− + 2H+H−

)
+

1

4
λ5v

2
(
A2 +H2 +H+H−

)
.

(4.10)

Then, the mass spectrum is given by

m2
h = 2λ1v

2,

m2
A = m2

H =M2 + (λ4 + λ5)
v2

2
,

m2
H+ =M2 + λ4

v2

2
+ λ5

v2

4
,

m2
H++ =M2 + λ4

v2

2
.

(4.11)

We can substitute the Higgs potential parameters m2, M2, λ1, λ5 by v, m
2
h, m

2
A,H = m2

A =

m2
H , m

2
H+ , and m

2
H++ , where v = (

√
2GF )

−1/2 ≃ 246 GeV and mh ≃ 125 GeV. The free

parameters in this model are thus given by

mA,H , mH+ , mH++ , λ2, λ3, λ4 (4.12)
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α−1
em = 137.035999084, mZ = 91.1876 GeV, GF = 1.166378 · 10−5 GeV−2,

mt = 172.76 GeV, mh = 125.09 GeV, αs(m
2
Z) = 0.1179,

∆α = 0.0591577.

Table 4.1: Input parameters used in computation. Note that ∆α is the sum of the hadronic

contribution∆α
(5)
had(m

2
Z) = 0.02766 and the leptonic contribution∆αlept = 0.031497687 [11].

with the condition that

m2
H+ −m2

H++ = m2
A,H −m2

H+ =
λ5v

2

4
. (4.13)

I.e., the coupling λ5 controls the splitting of the mass spectrum. For the rest of the discussion,

the model with λ5 > 0 (λ5 < 0) will be referred to as the type-I (II) Higgs triplet model, which

has a mass ordering of mH++ < mH+ < mA,H (mA,H < mH+ < mH++), respectively.

4.3 One-loop corrected W boson mass

If H++, H+ and H,A have sizable mass splittings, i.e., if |λ5| is large, the HTM provides ad-

ditional sources of custodial symmetry breaking, therefore correcting the W mass di�erently

than the Z mass. We summarize our results below. Note that we perform this calculation

in the limit v∆ = 0. Finite values for v∆ compatible with the upper bound of Eq. (4.7) will

only induce negligible small shifts of mW . All necessary self-energy corrections are listed

in App. 4.A (see also Ref. [247]). Tab. 4.1 lists all of the input parameters [3] used in the

computation.

To determine the W mass from the measurement of the Fermi coupling constant GF , we

note that,

GF =
παem,0√
2m2

W,0s
2
W,0

(
1 +

ΠWW (0)

m2
W

+ δV B

)
, (4.14)

where terms with 0 subscripts are the bare parameters, ΠWW is the self-energy of theW , and

δV B are the vertex and the box diagram corrections to the muon decay process. Rewriting
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this expression in terms of the physical parameters, one gets at the one-loop level that

GF =
παem√
2m2

W s2W

(
1 +

δαem
αem

− δm2
W

m2
W

− δs2W
s2W

+
ΠWW (0)

m2
W

+ δV B

)
≡ παem√

2m2
W s2W

(1 + ∆r),

(4.15)

where δαem, δm
2
W , and δs2W are the counterterms for the �ne-structure constant αem, the

W mass, and weak mixing angle sW ≡ sin θW , respectively. The counterterm of s2W can

be expressed in terms of the W and Z mass counterterms, which we de�ne in the on-shell

scheme,

δs2W = −δc2W = −c2W

(
δm2

W

m2
W

− δm2
Z

m2
Z

)
. (4.16)

The αem counterterm, which we also de�ne in the on-shell scheme, is given by

δαem
αem

= Π′
γγ(0) + 2

cW
sW

Π1PI
Zγ (0)

m2
Z

, (4.17)

where Π′
γγ(0) ≡ dΠγγ(p

2)/dp2|p2=0. Combining everything, ∆r is at the one-loop level given

by

∆r = Π′
γγ(0) +

Π1PI
WW (0)− ReΠ1PI

WW (m2
W )

m2
W

+
c2W
s2W

(
ReΠ1PI

WW (m2
W )

m2
W

− ReΠ1PI
ZZ (m

2
Z)

m2
Z

)

+ 2
cW
sW

Π1PI
Zγ (0)

m2
Z

+ δV B . (4.18)

The vertex and box diagram corrections to the muon decay, δV B , are given by (see e.g.

Ref. [248])

δV B =
αem

4πs2W

(
6 +

7c2W + 3s2W
2s2W

ln c2W

)
, (4.19)

where we neglected the contributions proportional to the electron and muon Yukawa cou-

plings.
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Based on Eq. (4.15), we can then write

m2
W = m2

Z ×
(
1

2
+

√
1

4
− παem√

2GFm
2
Z

(1 + ∆r(mW ))

)
, (4.20)

which we can iterate to solve for mW .

For the numerical implementation, we follow the procedure outlined e.g. in [249]. We

split ∆r into three parts: the one-loop SM contributions that depend on mW as an input

(∆rSM,W ), the remaining one-loop and higher-order SM contributions (∆rSM, rest), and the

beyond-the-Standard-Model (BSM) contributions (∆rBSM),

∆r = ∆rSM,W (mW,BSM) + ∆rSM, rest +∆rBSM. (4.21)

The quantity ∆rSM, rest is given by

∆rSM, rest = ∆rSM −∆rSM,W (mW,SM), (4.22)

where mW,SM is computed from the �tting formula given in Ref. [250] (see App. 4.B). The

�tting formula can also be used to obtain a number for ∆rSM (i.e., ∆rSM ≃ 0.03807).

Combining the Eqs. (4.21) and (4.22) together yields

∆r(mW,BSM) = ∆rSM −∆rSM,W (mW,SM) + ∆rSM,W (mW,BSM) + ∆rBSM, (4.23)

This equation consistently combines the full HTM one-loop corrections with the SM higher-

order corrections, which are crucial for a precise result.

In the left (right) panel of Fig. 4.1, we show the resulting numerical value for mW as

a function of |λ5| = λ5 (|λ5| = −λ5) and mlightest = mH++ (mlightest = mA,H) for the

type-I (II) HTM.2 In both panels, we depict the CDF measured (PDG) value as a brown

2. A plot showing mW as a function of the mass di�erence between the doubly- the singly-charged Higgs
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Figure 4.1: One-loop corrected W boson mass mW as a function of the coupling |λ5| =
4|m2

H+ − m2
H++|/v2 for various masses of the lightest state in the HTM. We assume the

mass hierarchy of the new states following mH++ < mH+ < mA (mH++ > mH+ > mA)
in the left (right) panel. Di�erent curves in each panel represent di�erent masses for the
lightest state. The brown (dark purple) line represent the CDF II measured (PDG) value
and the yellow (purple)/gray band shows the 1σ/2σ intervals.

(dark purple) line, the 1σ region as a yellow (purple) band, and the 2σ region as gray bands.

For a �xed value of the lightest BSM state mlightest, the one-loop corrected W boson mass

increases with |λ5|. For a �xed shift in the W mass, a heavier mlightest requires a larger

value of |λ5|. With the same mlightest, the type-I model needs a larger value of |λ5| to obtain

the same W mass shift compared to the type II.

The largish value of |λ5| required for large choices of mlightest could potentially cause the

appearance of a Landau pole close to the electroweak scale. As we show in App. 4.E, no

Landau pole appears below ∼ 10 TeV. This makes the additional contribution from the UV

completion above the Landau pole subleading in comparison to those considered here.

Furthermore, we scan mlightest and λ5 to pinpoint the parameter regions predicting a

mW value close to the CDF-II measurement. The resulting mass spectra for the new Higgs

states are shown in Fig. 4.2. The �rst, third, and �fth (second, fourth, and sixth) panels

respectively represent the spectra for the type-I (II) HTM that yield the mW value measured

bosons alongside a discussion of the decoupling of the BSM states can be found in App. 4.F.
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Figure 4.2: Mass spectrum of the new Higgs states for a given |λ5| that yields the CDF-II
measured central values of mW , mW − 2σmW , or mW + 2σmW for the type-I and type-II
HTM. We exclude the mass spectrum that corresponds mH++ < 42.9GeV (excluded by Z
decays [1]) for the type-I model and that corresponds tomA,H < mh/2 = 62.5GeV (excluded
by Higgs precision measurement, see Sec. 4.5.2) for the type-II model. In each panel, we
explicitly show three sets of benchmark values.

by CDF-II, the CDF-II value plus two times the experimental one-sigma uncertainty, and the

CDF-II value minus two times the experimental one-sigma uncertainty. The blue, purple,

and red lines in each panel represent the corresponding values of mA,H , mH+ , and mH++ ,

respectively. We also explicitly show three sets of benchmark values for each scenario. For

the type-I HTM, we do not show the mass spectrum corresponding to mH++ < 42.9GeV

since it is excluded by the measurement of Z boson decays [1]. For the type-II HTM, we do

not show the mass spectrum corresponding to mH,A < mh/2 = 62.5GeV given it is excluded

by the precision measurement of exotic Higgs decays as we discuss in Sec. 4.5.2. Note that

there are stronger yet model-dependent constraints on the HTM mass spectrum from direct

collider searches. We will summarize them in detail in Sec. 4.6.
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4.4 E�ective weak mixing angle

After obtaining the preferred spectra of the HTM, we assess whether these are compatible

with the electroweak precision data by computing the e�ective weak mixing angle, sin2 θe�.

In this computation, αem, MZ , and GF are chosen as inputs. Experimentally, sin2 θe� is

de�ned as the ratio of the leptonic vector current to the leptonic axial current at the Z pole.

The deviation from the tree-level value of the mixing angle, s2W , can be parameterized by

∆κ, where

sin2 θe� = s2W (1 + ∆κ). (4.24)

At one-loop, ∆κ obtains contributions from A − Z mixing, corrections to the weak mixing

angle, and corrections to the axial/vector vertices,

∆κ = − cW
sW

(
ReΠ1PI

Zγ (m
2
Z)

m2
Z

)
− c2W
s2W

(
ReΠ1PI

WW (m2
W )

m2
W

− ReΠ1PI
ZZ (m

2
Z)

m2
Z

)

+
vl

vl − al

(
F lV (m

2
z)

vl
− F lA(m

2
z)

al

)
, (4.25)

where vl and al are the tree-level vector and axial couplings respectively, and F lV,A are the

form-factors for the leptonic vector/axial currents. Since the extra Higgs bosons do not

couple to the SM fermions, they do not contribute to F lV,A.

We compute the SM contribution to sin2 θe� with the help of the SM �tting formula.

Similar to the treatment of ∆r, we split ∆κ into three pieces,

∆κ = ∆κSM,W (mW,BSM) + ∆κSM, rest +∆κBSM . (4.26)

∆κSM, rest is determined via

∆κSM = ∆κSM,W (mW,SM) + ∆κSM, rest, (4.27)
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where ∆κSM ≃ 0.03640 is computed from the �tting formula given in Ref. [251] (see

App. 4.B) and ∆κSM,W (mW,SM) ≃ 0.03628 is Eq. (4.25) restricted to the SM contribu-

tion only, which explicitly depends on mW .

In Fig. 4.3, we check whether the parameter space of the HTM that predicts mW close

to the CDF-II value is compatible with the measured e�ective mixing angle. The upper

(lower) row of Fig. 4.3 shows the resulting sin2 θe� vs. mW plot for a given mlightest in the

interval [100 GeV, 1000 GeV] and |λ5| ∈ [0, 10] for the type-I (II) HTM. For each panel, we

highlight the CDF-II (PDG) mW value as the brown (dark purple) vertical lines while the

yellow (purple) and gray vertical bands show the 1σ and 2σ ranges, respectively. The dark

green horizontal lines in the left column represent the world-average value for the e�ective

weak mixing angle [2, 3] while the green and gray horizontal band shows 1σ and 2σ range

respectively. For comparison, we show in the right column the value of the single most

precise e�ective weak mixing angle measurement obtained by the SLD collaboration [2].

In the limit of |λ5| = 0, the type-I/II HTM predicts a W boson mass that agrees well

with the world-averaged value. The e�ective weak mixing angle also agrees well with its

world-average. As |λ5| increases, the resulting mW increases while the resulting sin2 θe�

decreases.3 On the other hand, a change in mlightest has a less signi�cant impact (at least

for mlightest ≳ 400GeV). Note that a heavier mlightest yields a larger deviation from the

world average for sin2 θe� for the type-I model while it yields a smaller departure for type

II. For the type-I model, the parameter space that explains mW,CDF-II is consistent with the

world averaged value of sin2 θe� within 2σ level. For the type-II model, the two measurements

are inconsistent at the 2σ level for the mlightest�|λ5| parameter space that we scanned. If we

instead compare sin2 θe� to the value measured by the SLD collaboration [2], we �nd that

the parameter space explaining mW,CDF-II is consistent with the measured sin2 θe� within

the 2σ level for both type-I and -II mass hierarchies.

3. In the limit of small |λ5|, the correction to both the W mass and e�ective mixing angle is sensitive to
the sign of λ5. In particular, this results in the turning behavior seen for the type-I HTM.
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In the Two-Higgs-doublet model (2HDM), for which also large upwards shift of mW

with respect to the SM prediction can be realized, a quite similar correlation between the

predictions for mW and sin2 θe� is known to exist (see e.g. Ref. [167]). In comparison to the

2HDM, the type-I triplet model provides a slightly better �t of the e�ective weak mixing

angle measurements if the the lightest BSM state is close to the electroweak scale; in contrast,

the type-II triplet model provides a slightly worse �t if the lightest BSM state is close to the

electroweak scale.

4.5 Precision measurement of the Standard Model Higgs

For v∆ ≃ 0, the tree-level couplings of the SM-like Higgs boson are only modi�ed negligibly

with respect to the SM. Signi�cant e�ects can, however, occur a the loop level or through

the presence of new exotic decay modes.

4.5.1 Higgs-photon coupling and Higgs self-coupling

We de�ne the ratio of the coupling between the SM-like Higgs boson and photon to the SM

predicted coupling by

κ2γ ≡
ΓH→γγ

ΓSMH→γγ

.

For the triplet model, it is given by

κ2γ =

∣∣∣∣43F1/2(τt) + . . .+Q2
H±±

v2λhH±±H∓∓
m2

h

F±(τH±±) +Q2
H±

v2λhH±H∓
m2

h

F±(τH±)

∣∣∣∣2∣∣∣43F1/2(τt) + . . .
∣∣∣2 ,

(4.28)
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where Q denotes the electric charge; τf ≡ m2
h/(4m

2
f ); and the ellipsis denotes subleading

SM contributions. The scalar couplings are given by

λhH±±H∓∓ = −vλ4, λhH±H∓ = −v(λ4 + λ5/2). (4.29)

The loop functions F1/2 and F± have the form

F1/2(τ) =
(τ − 1)f(τ) + τ

τ2
, F±(τ) =

τ − f(τ)

τ
(4.30)

with

f(τ) =


arcsin2(

√
τ) if τ ≤ 1,

−1
4

(
ln

1+
√
1−1/τ

1−
√
1−1/τ

− iπ

)2

if τ > 1.

(4.31)

We evaluate the LHC constraints set on the triplet couplings through modi�cations of the

H → γγ rate by employing HiggsSignals [252, 253].

In addition to the di-photon rate, we also evaluate loop corrections to the trilinear Higgs

self-coupling, which can receive large quantum corrections in the presence of large scalar

couplings potentially excluding otherwise unconstrained parameter space (see e.g. Ref. [254]).

We compute the one-loop correction using FeynArts [255] and FormCalc [256] with the

necessary model �le derived using FeynRules [257, 93]. For this calculation, we renormalize

the SM-like Higgs boson mass in the on-shell scheme. The SM-like vev is also renormalized

in the on-shell scheme by renormalizing the W and Z boson masses as well as the electric

charge in the on-shell scheme.

We compare the predicted value for the trilinear Higgs self-coupling normalized to the

SM tree-level value, κλ, to the strongest current bound of −1.0 ≤ κλ ≤ 6.6 [258] (at 95%

CL). This bound is based on searches for the production of two Higgs bosons and assumes
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that this production mechanism is only a�ected by a deviation of the trilinear Higgs self-

coupling from its SM value. While quantum corrections to double-Higgs production are

not only induced by corrections to the trilinear Higgs self-coupling, evaluating the one-loop

corrections to the trilinear Higgs self-coupling takes into account all one-loop corrections to

double Higgs production leading in powers of scalar couplings. Since the scalar couplings

are responsible for the dominant deviation from the SM, this justi�es applying the bound of

Ref. [258].

The constraints in the (mH++ ,mH+) parameter plane due to modi�cations of κγ and

κλ are shown in Fig. 4.4. The blue shaded region shows the excluded parameter space by

measurements of the Higgs di-photon rate (demanding compatibility at 95% CL); the orange

shaded region is excluded by the constraint on the trilinear Higgs couplings (at 95% CL).

Moreover, we show the constraints set by perturbative unitarity (green hashed region) and

by the (meta-)stability of the electroweak vacuum (red hashed region), which we evaluate as

detailed in App. 4.D. Note that we set λ4 = 0 and λ2 = λ3 = 1 in drawing the plots.4

For the left panel of Fig. 4.4, we concentrate on the type-I hierarchy. Almost the com-

plete lower right half of the parameter plane is excluded by requiring metastability of the

electroweak vacuum. Perturbative unitarity excludes large di�erences between mH++ and

mH+ . Measurements of the Higgs to di-photon rate additionally exclude a portion of the

parameter space around mH++ ∼ 300GeV and mH++ ∼ 450GeV unconstrained by pertur-

bative unitary and vacuum stability. The experimental measurements of the Higgs trilinear

coupling are, so far, not precise enough to probe parameter space unconstrained by perturba-

tive unitarity and vacuum stability in the considered scenario. We �nd, the parameter space

favored by the CDF-II measurement of mW (red narrow band) with mH++ ≳ 250GeV,

which lies close to the diagonal, to not lie in the parameter space excluded by the above

mentioned constraints. In addition to the constraints discussed above, we also show the

4. Larger values for λ4 tighten the constraints from h→ γγ. Larger values for λ2,3 tighten the perturbative
unitarity constraint while relaxing the vacuum stability constraint.
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LHC constraints on mH++ if H++ decays promptly (gray band) or if it is detector stable

(gray dash line). These constraints are discussed in detail in Sec. 4.6.2 below.

For type II (see the right panel of Fig. 4.4), the constraints set by the Higgs couplings,

perturbative unitarity and vacuum stability are unchanged. The parameter space favored

by the CDF-II mW measurements (blue narrow bands) is, however, shifted downwards with

respect to the type-I hierarchy. As a result, the parameter space favored by the CDF-II mW

measurements lies at the boundary of the region excluded by demanding vacuum stability.

The parameter space favored by mW,CDF-II is only accessible for mH++ ≲ 350GeV. Note,

however, that the evaluating of the vacuum stability constraint relies on various assumptions

(see App. 4.D).

4.5.2 Exotic decays of the Higgs boson

For the type-I HTM, the branching ratio for h → H++H−− depends on λ4 (see Eq. 4.29).

This coupling needs to be small (≲ 1 for mlightest ∼ O(100) GeV) in order to evade con-

straints from the di-photon decay rate of the SM-like Higgs boson. This leads to negligibly

small exotic decay modes for the SM-like Higgs boson (if at all kinematically accessible).

The situation is quite di�erent for the type-II HTM. In this case, the exotic decay modes

of the SM-like Higgs boson are mainly given by h → HH, h → AA, and h → H+H− once

they are kinetically accessible. Their branching ratios mostly depend on λ5 (4.29), which

needs to be large to explain the CDF-II measurement of mW .

We compute the branching ratio for the SM-like Higgs boson decays to the BSM Higgs

states for the type-II model as a function of mA,H for the parameter space that explains

mW,CDF-II. We �nd the resulting branching ratio to lie between 80%−97% if the decay modes

are kinematically accessible (mA,H < mh/2). Such a large branching ratio for the exotic

decays is in tension with the Higgs precision measurements from the LHC. For example, the

ATLAS experiment places a 95% CL constraint of Br(h → BSM) = Br(h → inv) + Br(h →
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undetected) < 49% [259]. A similar constraint has also been placed by CMS experiment [260].

These constraints exclude the type-II model if neutral states are lighter than mh/2.

4.6 Direct searches at the LHC

In this Section, we study potential LHC signals of the new scalars with a spectrum preferred

by mW,CDF−II. As we have demonstrated in the previous sections, an explanation of the W

mass deviation in the context of the HTM points to new Higgs bosons below a TeV which

makes them targets for direct searches at the LHC. As a guide for the dedicated experimental

searches in the future, the main goal of this section is to highlight the promising search

channels with distinct signatures. Of course, some of the LHC searches designed to look for

di�erent signal processes would also have sensitivity to the signals considered here. To this

end, we recast some of the most relevant searches. Instead of providing detailed limits on the

model, our focus is to obtain an indication whether the parameter space has been thoroughly

covered. As we will show later in this section, most of the parameter space remains open.

We expect dedicated searches designed speci�cally for the signature described in this section

will be much more sensitive. For the rest of this section, we start by discussing the various

production channels for the BSM states. We then di�erentiate between three situations for

the decays of the BSM Higgs states resulting in distinct collider signatures: a promptly-

decaying lightest BSM state, a detector-stable lightest BSM state, a long-lived lightest BSM

state.

4.6.1 Production

In the absence of additional Yukawa-type interaction terms and for v∆ ≪ v, the exotic Higgs

states are dominantly produced via electroweak pair production as shown in the upper row

of Fig. 4.5.

In order to obtain an overview of the rate of the various production channels, we computed
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the next-leading-order (NLO) pair production cross sections for both mass hierarchies using a

modi�ed version of the Type-II Seesaw model �le [261] (derived using FeynRules 2.3 [93])

and MG5aMC@NLO v2.9.10 [91]. The dependence of the production cross sections on the

lightest BSM state mass in the respective model type is shown in Fig. 4.6. Here, we have

chosen the mass spectrum such that we can reproduce the CDF-II central value for mW as

shown in Fig. 4.2.

For type I (see left panel of Fig. 4.6), the pp→ H±±H∓ channel mediated by aW boson

has the largest cross section of up to ∼ 1 pb for mH++ ∼ 100 GeV. The pp → H±±H∓∓

production cross section is of similar size (especially for lower mass values). Less important

are the pp→ H±H +H±A, pp→ HA, and the pp→ H±H∓ production channels.

The overall behavior is similar for type II (see right panel of Fig. 4.6). As a consequence

of H and A being the lightest BSM Higgs bosons, the pp → H±H + H±A and pp → HA

channels have, however, now the largest cross sections given their larger phase spaces. Their

cross sections reach ∼ 1 pb for mH,A ∼ 100 GeV.

In our discussion of potential search strategies at the LHC below, we will only focus on

the production channels with the largest cross sections.

4.6.2 Detection signatures

In order to correctly reproduce the W mass measured by CDF-II, the triplet vev v∆ generi-

cally needs to be small. Given the size of v∆ is controlled by the amount of soft breaking, a

small value can be naturally achieved. If the triplet vev is exactly zero, the lightest triplet

state is stable. This implies that the choice of v∆ directly a�ects the lifetime of the light-

est state, thus a�ecting the detection signature at the LHC. We discuss the cosmological

implications in Sec. 4.7.

In Fig. 4.7, we show this lifetime of the lightest state for di�erent choices of v∆ ranging

from 10−8GeV to 1 GeV for the type-I/II HTM. For v∆ ∼ 10−4 GeV, the lifetime of
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the lightest state is generically of the order of the B-meson lifetime. As such, any decay

products of the lightest state will be tagged as displaced. For v∆ ∼ 10−8 GeV, the lifetime

is generically orders of magnitude greater than the radius of the detector. In this case, the

lightest state is unlikely to decay within the detector volume.

We further show the decay branching ratio of H and A for type-II model in Fig. 4.8

(assuming a small but �nite v∆).
5 Generically, the branching ratio of the dominant decay

mode is always very close to one. This dominant decay mode depends on whether or not the

preferred �nal state is kinematically accessible. For the CP-even BSM Higgs boson, H, the

important thresholds are the hh and WW mass thresholds. For the CP-odd Higgs boson,

A, the important threshold is the Zh mass threshold. Below the lowest mass threshold, they

both predominantly decay to bb̄ due to the bottom Yukawa inherited from its mixing with

the SM Higgs doublet.

In the remainder of the section, we discuss the qualitatively di�erent LHC signatures

for the three di�erent lifetime domains: prompt decay of the lightest state, detector-stable

lightest state, long-lived lightest state.

The lightest state promptly decays

An overview of the main LHC search channels for a promptly decaying lightest BSM state

for the type-I and type-II HTM can be found in Tab. 4.2.

For type-I HTM, the production process with the largest cross section is pp→ H±±H∓.

The singly-charged Higgs boson then decays to a doubly-charged Higgs boson via emission

of a W boson, H∓ → H∓∓W±. All doubly-charged Higgs bosons will then promptly decay

into a pair of W bosons, H±± → W±W±, with branching ratio ≈ 1. (c.f., the lower left

diagram of Fig. 4.5.) As such, the corresponding search channel will be a �nal state of �ve

W bosons. These W bosons could be o�-shell depending on the masses.

5. Branching ratios for the lightest state in the type-I HTM, H++, can be found in e.g. in Ref. [1].
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Type I, Prompt
Main Channels Example Signature

pp→ H±±H∓ → H±±(H∓∓W±) → 5W (∗) 5 ℓ+ /ET
pp→ H++H−− → (W+W+)(W−W+) 4 ℓ+ /ET

pp→ H±H(A) → H±(H±W∓) → (H±±W∓)(H±±W∓W∓) → 7W (∗) 7ℓ+ /ET

Type II, Prompt
mH,A Main Channels Example Signature

≲ 250 GeV
pp→ H±H/A→ W±(∗)bb̄bb̄ monolepton+up to 4 b-jets+ /ET

pp→ HA→ bb̄bb̄ up to 4 b-jets

≳ 250 GeV
pp→ H±H/A→ (W±H/A)H/A, H/A→ hh/Z multi b-jets + leptons+/ET

pp→ HA→ Zhhh up to 6 b-jets + leptonic Z

Table 4.2: Summary of main channels and example search signatures for additional Higgs
bosons of the HTM that promptly decay at the LHC. The upper and lower tables consider
the type-I and II HTM, respectively. See text for more details.

No dedicated searches for this channel exist so far. To nevertheless gain an estimate for

the LHC sensitivity for this signature, we use CheckMATE 2.2 [262, 148, 263, 150, 264, 149,

265] to recast a large set of existing searches on a set of benchmark points. CheckMATE will

generically summarize the result with r = S/S95, where S is the number of signal events

and S95 is the 95% C.L. limit on the number of signal events for the given analysis. For

statistically limited searches, one would expect r to scale as
√∫

Ldt. We will use this naive

scaling to make statements about potential reach with searches involving more data.

We �nd that mH++ = 150 GeV can be excluded by recasting the multi-lepton �nal

state search of Ref. [266] (i.e., by the B02 signal region). Based on this channel, one could

potentially expect to fully close the gap of 84GeV ≤ mH++ ≤ 200GeV between the searches

for doubly-charged Higgs boson pair production based, as described below. We also checked

a benchmark point of mH++ = 350 GeV. Here, we expect four on-shell W bosons and

one o�-shell W boson in the �nal state. This benchmark is not constrained, for example,

by using the search of Ref. [266] in the G05 signal region. Applying the naive integrated

luminosity based rescaling indicates that the full high-luminosity (HL)-LHC dataset (3 ab−1)

can exclude this mass point; albeit with an analysis that is not dedicated to searching for a
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doubly-charged Higgs.

In the type-I HTM, the process with the second largest cross section is doubly-charged

Higgs boson pair production, pp → H±±H∓∓. The corresponding search channel involves

a �nal state of four W bosons. A dedicated search for this signature has been performed by

ATLAS using 13 TeV data [267, 268] . Their search excludes doubly charged Higgs promptly

decaying into W bosons with masses 200GeV ≤ mH++ ≤ 350GeV. Studies recasting 8 TeV

ATLAS data excludes the mass range mH++ < 84GeV [1, 269].

Another signi�cant production process for the type-I HTM is pp→ H±H/A. The neutral

Higgs boson in the type-I HTM decays to a singly-charged Higgs boson via W (∗) emission

with a branching ratio close to one. (H/A→ W∓H±, c.f., the lower left diagram of Fig. 4.5.)

Fully decaying all of the extra Higgs bosons will generate a �nal state of seven W (∗) bosons.

The corresponding experimental �nal state will contain various jets, leptons and missing

transverse energy. We have checked a benchmark point with mH++ = 350 GeV using the

search in Ref. [270] in signal region SR12, and found that it is not sensitive to this point.

For the type-II HTM, the production process with the largest cross section is pp →

H±H/A. The singly-charged Higgs boson will decay to H/A via W boson emission, H± →

W±H/A; both H and A have roughly the same probability of being produced. From Fig. 4.8,

the neutral Higgs boson will likely decay to either to a heavy fermion pair or a pair of SM

bosons. As before, all of these SM bosons could be o�-shell. For this scenario, we ran

CheckMATE for both mH = 100 GeV and mH = 300 GeV. We �nd both benchmark values

to be allowed using the built-in 13 TeV run analyses. The mH = 100 GeV benchmark point

scenario yielded r ≈ 0.6 using the search of Ref. [271] in the 3b1j signal region. As this

study only used 3.2 fb−1 of 13 TeV data, one could potentially exclude the benchmark (i.e.,

cases where di-boson decays are kinematically forbidden) at 2σ using a dedicated search with

existing data. The mH = 300 GeV benchmark point yielded r ≈ 0.1 using the search of

Ref. [270]. Even with the full HL-LHC dataset, it seems unlikely that a re-analysis could
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exclude this parameter point based on naive rescaling alone. This analysis is not dedicated

to this particular search. It does not make use of the h or Z in the �nal state.

For the type-II HTM with a light H/A, pp → HA production can be sizable. For

mH = 100 GeV, recasting Ref. [271] in the same signal regions as the previous production

mode yielded r ≈ 0.4. Once again, naive luminosity based scaling indicates that existing data

is potentially su�cient to exclude this. For mH = 300 GeV, we obtained r ≈ 0.02 using [271]

in the 4b1j signal region. Accounting for the di�erences in integrated luminosity used in this

and Ref. [270], the exclusion reach comparable to the previous production mode. It should

be noted that this production mode ensures a Z boson in the �nal state. Reconstructing it

can potentially reduce the background.

The lightest state is detector stable

In this section, we consider the case in which the lightest member of the Higgs triplet is

stable on detector timescales. This can be achieve with a small v∆ ≲ 10−8 GeV.

In type I, if the lightest state is detector stable, charged tracks in multiple subsystems

of the detector are a generic signature. ATLAS presented a search for such tracks excluding

doubly-charged particles masses below 1050 GeV [272]. The unexcluded mass regions will

typically require very large values of λ5 to give the desired shift in the W mass as shown

in Fig. 4.2.

In type II, starting with the pp→ H±H/A production, a generic �nal state consists ofW ∗

and missing transverse energy (MET). As such, the search channels are either monolepton

+ MET or dijet + MET. Recasting existing searches using CheckMATE did not yield any

exclusions for the mH = 100 GeV benchmark point. pp → H±±H∓ production leads to

a di�erent �nal state with more visible particles. The �nal state consists now out of three

W (∗) boson. The �nal state signature could be three charged leptons + MET, two charged

leptons + jets + MET, monolepton + jets + MET, or jets + MET. We will focus on the three
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charged lepton signature. Our recasting with this benchmark show that current searches,

such as the one in Ref. [266], is not yet sensitive. Naively rescaling based on the full HL-

LHC integrated luminosity shows that this analysis barely misses the exclusion. Lastly,

for pp → HA production, the main search channel is a mono-jet or mono-photon + MET

signature (with the jet or photon originating from initial-state radiation). Current available

searches, such as Ref. [271] in the MET1j signal region, are not sensitive. This scenario can

potentially be excluded using the full HL-LHC dataset.

The lightest state is long-lived

If the charged particle decays before reaching the muon spectrometer, the previously men-

tioned ATLAS charged track search [272] is not sensitive to it. If the particle decays in

the inner tracker, the signal caused by doubly-charged Higgs bosons will be disappearing

tracks plus delayed multi-lepton/multi-jet �nal states. Depending on the initial state, one

may also expect prompt o�-shell W bosons. These prompt jets/leptons could be used to tag

the events provided that the intrinsic jet time spread is su�ciently low [273]. It should also

be noted that recently ATLAS found am anomalously large ionization energy loss [274]. A

highly boosted, long-lived, doubly-charged particle is a potential explanation to explain this

excess [275] suggesting that H±± could be a good candidate. A large partonic center-of-mass

energy could provide the desired boost. A detailed study should be performed to determine

the viability of the HTM as an explanation for the dE/dx anomaly.

For the neutral Higgs states, Ref. [276] could be recasted for pair production of the

neutral Higgs. However, the only hard objects in this production mode are delayed objects.

Generically, we expect a search strategy involving prompt jets/lepton tagging + delayed

jets/leptons to be better. Furthermore, for mA > 215 GeV, the dominant decay mode

involves an on-shell Z boson. Reconstructing a delayed Z boson will be a good signal to

search for.
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4.7 Cosmological implications

For su�ciently small v∆, the lifetime of the lightest states in type-II, H and A, could be

longer than the age of the Universe. Given H and A are electrically neutral, they could

provide a good candidate for dark matter or a massive relic. To explain the mW value

measured by CDF-II, a large |λ5| is needed. This requires H and A to strongly couple to h.

Such strong couplings yield a small relic density for H/A if they are produced through the

standard thermal freeze-out. The large couplings also lead to large scattering cross sections

betweenH/A and nucleons as well as the production of signi�cant amounts of electromagnetic

or hadronic energy if they are not cosmologically stable.

We �rst compute the thermal relic density for A andH using MadDM 3.2 [277]. The upper

panel of Fig. 4.9 shows the resulting sum of the relative relic abundances for H and A with

respect to that of cold dark matter, fχ ≡ ΩH+A/Ωc as a function of mA,H ≡ mH ≃ mA
6

for model parameters that explains the CDF-II measured mW within 2σ. The relative relic

abundance of A and H ranges from 10−7 to 10−1 of the total dark matter abundance. It

reaches a maximum of 7% aroundmA,H ≈ mW and converges to ∼ 1% formA,H > 700GeV.

The dips aroundmA,H = mZ/2 andmA,H = mh/2 correspond to the resonant enhancement

of the annihilation cross sections. Note that the parameter space below mA,H < mh/2

(shaded in gray) is excluded by Higgs precision measurements at the LHC (see Sec. 4.5.2).

If we restrict mH,A to be away from the resonant region of mh/2, i.e. mH,A > 63GeV, the

relative abundance fχ varies from 0.08% to 7%.

To discuss the observational signatures of the massive relic, we consider two scenarios

according to the lifetime of H and A: (i) H and A are cosmologically stable and (ii) H and

A are cosmologically unstable.7 For the parameters that explain mW,CDF-II, the lifetime

6. The mass splitting between H and A is at O(v2∆/v
2). It is negligible for the value of v∆ we are

interested in.

7. We do not consider the scenario where A is stable and H is unstable given the small di�erence in their
lifetimes for a �xed v∆ compared to the cosmological timescales.
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of H and A mostly depends on the size of v∆ and weakly depends on mH,A. Besides the

two parameters, the observational signature of the massive relic additionally depends on fχ,

which is determined by mA,H as shown in the upper left panel of Fig. 4.9.

4.7.1 Stable massive relic

For scenario (i), H/A could enter dark matter direct detection experiments on Earth and

leave imprints even if they are subdominant components of dark matter. Given H/A are

thermally produced in the early universe, their lifetime coincides with the age of the Universe.

To realize the stable relic scenario, the lifetime for H/A needs to be longer than the age of

universe today τH,A ≳ τU = 1018 sec. A stronger constraints on τA,H comes from the

observations of the di�used γ-ray backgrounds [278, 279, 280, 9]. Observations from Fermi-

LAT telescope restrict the decaying time of dark matter τχ ≳ 1028 sec if it consists all the

dark matter [9]. We translate this bound into τH,A ≳ 1028fχ sec if only an fχ fraction of

dark matter decays visibly. This is shown as the brown shaded region in the right panel

of Fig. 4.9. To satisfy the constraint, v∆ needs to be small. In the right panel of Fig. 4.9,

we explicitly show the value of v∆ for a given lifetime for A with mass mA = 1.5TeV as the

blue upper ticks. For the mA,H parameter space we consider, we �nd that setting

v∆ ≲ 10−16 eV

guarantees the cosmological stability.

We use MadDM 3.2 [277] to compute the spin-independent direct detection cross sec-

tion for A and H. The lower panel of Fig. 4.9 shows the corresponding sum of the spin-

independent direct detection cross section between the nucleon and H/A, weighted by the

relative abundance. In the computation, we assume the relative abundance fχ between the

massive relic and cold dark matter stays the same for the local dark matter environment
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(with cold dark matter density ρlocal = 0.3GeV/cm3). Besides, the two share the same

velocity distribution. The resulting weighted cross section (blue band), which is favored to

explain mW,CDF-II, is ranging from 10−49 cm2 to 10−44 cm2 for mA,H ranging from 30 GeV

to 1.5 TeV. In the same panel, we also show 95% CL constraint from the LUX-ZEPLIN (LZ)

experiment with 5.5 ton·60 day exposure, where we scale up the cross section by 1.96/1.64

to estimate 95% CL limit based on the 90% CL limit reported in [4]. Note that most of

the parameter space to explain mW,CDF-II is excluded by the LZ experiment together with

the Higgs precision measurement. One exception is a �ne-tuned parameter space with mA,H

slightly abovemh/2, which could be excluded by future direct detection experiments or Higgs

precision measurements. Otherwise, an additional mechanism is needed to further deplete

its relic abundance to make this case viable.

4.7.2 Decaying massive relic

If H and A are not cosmologically stable, they could decay into the Standard Model par-

ticles through their couplings to the SM-like Higgs boson. The decays could inject signif-

icant amount of electromagnetic or hadronic energy into the Standard Model plasma in

the early universe or intergalactic medium in the late universe, depending on the their life-

times. This could lead to various observational signature in astrophysics and cosmology,

such as those from Big Bang Nucleosynthesis (BBN) [281, 6, 7], Cosmic Microwave Back-

ground (CMB) [282, 283, 284, 7, 8], and galactic and extragalactic di�use γ-ray background

observations [278, 279, 280, 9], even if they are subdominant components of dark matter.

In the right panel of Fig. 4.9, we summarize current cosmological constraints on visibly-

decaying massive relic from BBN [6], CMB (combining constraints from anisotropy [7] from

Planck 2018 and spectra distortion ([8]) from COBE/FIRAS), and isotropic γ-ray back-

ground [9] as yellow, green, and brown shaded regions, respectively. To get the BBN con-

straints, we take the constraints on massive relic χ with mχ = 1TeV that decaying to bb̄
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from Ref. ([6]) 8. This constraints are representative for massive relic that mostly decaying

to hadronic energy. As shown in Ref. [6], lighter relic (mχ = 30GeV and mχ = 100GeV)

or other hadronic energy-dominant decay channels (χ → ūu, t̄t, gg,WW ) share similar con-

straints. Constraints for massive relics decaying to electromagnetic energy, e.g. χ → e+e−,

are generically weaker than those for relics decaying to hadronic energy. In our scenario

explaining the CDF-II mW measurement, the dominant decay channels of H (A) are bb̄,

WW , and hh (bb and Zh), depending on the kinematic accessibility (c.f. Fig. 4.8). All these

decay channels generate signi�cant amount of hadronic energy. Hence the BBN constraint

we quoted are applicable.

In the same panel, we highlight a light blue band to show the range of the relative

abundance for mH,A > 63GeV (away from the �ne-tuned mass region) whose corresponding

parameters explain mW,CDF-II. For such an abundance range (0.08%�7%), the strongest

constraints for the decaying relic come from BBN, which restrict τA,H ≲ 50 sec. To satisfy

this constraint, the value of v∆ needs to be large. In the right panel of Fig. 4.9, we explicitly

show the value of v∆ for a given lifetime of A with mass mA = 65GeV as the red upper

ticks. For the mA,H parameter space we consider, we �nd that

v∆ ≳ 1 eV

guarantees that A andH evade all the cosmological constraints for a visibly-decaying massive

relic in the scenario which explains the CDF-II mW measurement. Note that v∆ ≥ 1 eV

corresponds to cτH,A ≲ 1 km. Such decay signal could be searched at the long-lived particle

search facilities at the LHC.

8. The original constraints are expressed in the variablemχnχ/s wheremχnχ is the density of the massive
relic and s is the entropy density. We translate the constraints into those on fχ.
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4.8 Summary of the chapter

In this work, we studied the HTM with hypercharge Y = 1 in light of the recent CDF-II W

mass measurement. The HTM can be realized with two distinct types of spectra: type I for

which mH++ < mH+ < mH,A, and type II for which mH++ > mH+ > mH,A. First, we de-

rived the mass spectrum of the additional Higgs bosons (for both type I and type II) preferred

by the CDF-II mW measurement. For this mass spectra, we then checked the compatibility

with experimental measurements of the e�ective weak mixing angle and Higgs precision data

(i.e., measurements of the Higgs di-photon rate, constraints on the Higgs trilinear coupling

and constraints on exotic decay channels of the SM-like Higgs boson). For the type-I HTM,

we �nd that mass spectra (as shown in the �rst, third, and �fth panel of Fig. 4.2) with the

lightest state mass mH++ ≳ 250GeV explain the observed mW,CDF-II while being consistent

with the measurements of the e�ective weak mixing angle and Higgs precision measurements,

while also satisfying the theoretical constraints of perturbative unitarity and vacuum stabil-

ity. For the type-II HTM, we �nd that mass spectra (as shown in the second, fourth, and

sixth panel of Fig. 4.2) with the lightest state mass 62.5GeV ≲ mH,A ≲ 350GeV explain

the observed mW,CDF-II while being consistent with the Higgs precision measurements, per-

turbative unitarity, and vacuum stability. For type II, we, however, �nd a mild tension with

the world average measurement of sin2θeff
at the 2σ level, while still being well consistent

with the single-most precise measurement of the e�ective weak mixing angle by the SLD

collaboration.

Direct searches at the LHC provide stronger yet model-dependent constraints on the

HTM. The model dependence mainly originates from the decay length of the lightest state,

which is mostly controlled by the value of v∆ and mlightest (c.f. Fig. 4.7). We classi�ed the

LHC signatures according to if the lightest state promptly decays, if it is detector-stable,

or it is long-lived. We investigated the collider phenomenology for each of these cases and

pointed out a number of promising discovery channels that the LHC could be sensitive to
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(summaries of those channels can be found in Tabs. 4.2). Current LHC searches are most

sensitive to the type-I HTM with a prompt decay of the lightest state (excluding 200GeV <

mH++ < 350GeV) or detector-stable lightest state (excluding mH++ < 1050GeV). A

dedicated analysis using current data can also exclude a promptly decaying doubly-charged

Higgs with mH++ ∼ 150 GeV by studying the H±±H∓ production channel. The case of a

long-lived lightest state is so far largely unconstrained for type I. Dedicated searches with

the existing data could e�ectively cover the parameter space for the type-II HTM, especially

given the constrained mass range for which the CDF-II measurement can be explained while

evading other constraints (see above).

Furthermore, we explored the scenario that the new Higgs triplet is approximately inert.

In this case, its lightest neutral state can be a candidate for a sub-dominate fraction of stable

dark matter if v∆ ≲ 10−16 eV or decaying dark matter if v∆ ≳ 1 eV. The former scenario

is almost fully constrained by current dark matter direct detection experiments such as the

LZ experiment. The later scenario remains possible.

4.A Self-energy corrections

We take the one-loop contributions to self energies from Ref. [247], setting v∆ = 0, in the

computation of mW and sin2 θe�. We listed all the relevant formula here for readers' conve-

nience. The corrections are parameterized in terms of g2 = e2/s2W and g2Z = e2/(s2W c2W ).
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The BSM contributions to the vector-boson self energies are given by

Π
1PI, BSM
WW (p2) =

g2

16π2

(
B5(p

2,m2
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2
H+) (4.32)

+
1

2
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2
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1

2
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2
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)
,
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Π
1PI, BSM
Zγ (p2) = − egZ

16π2

(
2(c2W − s2W )B5(p

2,m2
H++ ,m

2
H++)

+
1

2
(c2W − s2W − 1)B5(p

2,m2
H+ ,m

2
H+)

)
(4.36)

where B0,1,00,11(p
2,m2

1,m
2
2) are the Passarino-Veltman two-point functions, which we eval-

uate using LoopTools 2.16 [256]. The remaining loop-functions are given by

B3(p
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1,m
2
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1,m

2
2)−B11(p
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2), (4.37)
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2
1) + A0(m

2
2)− 4B00(p

2,m2
1,m

2
2), (4.39)

where A0(m
2) is the Passarino-Veltman one-point function.

The SM contributions to ∆r (and sin2 θe�) can be separated into three classes: those

from scalar bosons, fermions, and gauge bosons � i.e., Π
1PI, SM
i (p2) = Π

1PI, SM
i,S (p2) +

Π
1PI, SM
i,F (p2)+Π

1PI, SM
i,V (p2) where i = WW,ZZ, γγ, Zγ. The scalar contributions are given
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by
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The fermionic contributions are given by
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where mf , Qf , If , and N
f
c are the mass, electric charge, isospin, and color numbers of the

SM fermion f , respectively. Here, we sum over all the SM quarks and leptons.
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Finally, the gauge boson contributions are given by
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where D = 4 − 2ϵ with ϵ being the dimensional regulator. The divergences of the loop

functions are given by
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where ∆ = 1
ϵ + lnµ2 with µ being the renormalization scale.

4.B The SM �tting formula

The SM prediction for the W boson mass, mW , and the leptonic e�ective mixing angle,

sin2 θW , are parameterized by the �tting formula in Ref. [250]) and Ref. ([251], respectively.

We list them here for readers' convenience. The �tting formula for mW,SM is given by

mW,SM = m0
W − c1dH − c2dH

2 + c3dH
4 + c4(dh− 1)− c5dα + c6dt

− c7dt
2 − c8dHdt+ c9dhdt− c10dαs + c11dZ, (4.56)
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where

dH = ln
( mh

100 GeV

)
, dh =

( mh

100 GeV

)2
,

dt =
( mt

174.3 GeV

)2
− 1, dZ =

mZ

91.1875 GeV
− 1,

dα =
∆α

0.05907
− 1, dαs =

αs(m
2
Z)

0.119
− 1 (4.57)

and the coe�cients are given by

m0
W = 80.3799 GeV, c1 = 0.05263 GeV, c2 = 0.010239 GeV,

c3 = 0.000954 GeV, c4 = −0.000054 GeV, c5 = 1.077 GeV,

c6 = 0.5252 GeV, c7 = 0.0700 GeV, c8 = 0.004102 GeV,

c9 = 0.000111 GeV, c10 = 0.0774 GeV, c11 = 115.0 GeV. (4.58)

This �tting formula includes the complete one-loop and two-loop results [285, 286, 287, 288,

289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 251]). Moreover, partial

higher-order corrections up to four-loop order are included ([302, 303, 304, 305, 306, 307,

308, 309, 310, 311].

The �tting formula for sin2 θℓe�, SM is given by

sin2 θℓe�, SM = s0 + d1LH + d2L
2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α + d6∆t

+ d7∆
2
t + d8∆t(∆H − 1) + d9∆αs + d10∆Z , (4.59)
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where

LH = ln
( mh

100 GeV

)
, ∆H =

mh

100 GeV
,

∆α =
∆α

0.05907
− 1, ∆t =

( mt

178.0 GeV

)2
− 1,

∆αs =
αs(m

2
Z)

0.117
− 1, ∆Z =

mZ

91.1876 GeV
− 1 (4.60)

and the coe�cients

s0 = 0.2312527, d1 = 4.729× 10−4, d2 = 2.07× 10−5,

d3 = 3.85× 10−6, d4 = −1.85× 10−6, d5 = 2.07× 10−2,

d6 = −2.851× 10−3, d7 = 1.82× 10−4, d8 = −9.74× 10−6,

d9 = 3.98× 10−4, d10 = −0.655. (4.61)

This �tting formula is based on the full one-, and two-loop corrections as well as the leading

three- and four-loop corrections computed in Refs. [302, 303, 306, 307, 287, 288, 289, 290,

292, 312, 304, 291]. The corresponding ∆κSM can then be derived by

∆κSM =
sin2 θℓe�, SM

1−m2
W,SM/m

2
Z

− 1. (4.62)

4.C Soft Z2 breaking

Here we introduce a soft Z2 breaking term in the Higgs potential

∆V = µΦTiσ2∆
†Φ + h.c. = −

√
2µHh2 + µ(−

√
2H−G+G0 +H−−G+G+ + h.c.) (4.63)
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where µ is assumed to be real. Such a term breaks the degeneracy between the two neutral

states H,A, therefore it is expected that m2
H −m2

A ∝ µ2. ∆V generates a non-zero v∆:

v∆ ≈
√
2

2M2/v2 + λ4 + λ5
µ+O(µ3),

v2ϕ ≈− m2

λ1
+O(µ2) = v2 − 2v2∆.

(4.64)

De�ning ϵ ≡
√
2v∆/v ≪ 1, the explicit Z2 breaking mixes the states of Φ and ∆ with the

same quantum numbers at O(ϵ). To avoid confusion, we write the weak eigenstates as

Φ′ =

 H+
1

vϕ+H1+iA1√
2

 , ∆′ =

 H+
2√
2

H++

v∆+H2+iA2√
2

−H+
2√
2

 (4.65)

The physical 125 GeV Higgs boson, and the Goldstone bosons that would become the longi-

tudinal W and Z all have small mixtures of the corresponding component of the triplet:

h ≈ H1 +
M2

M2
∆ − 2λ1v2

√
2ϵH2 , G

+ ≈ H+
1 + ϵH+

2 , G0 ≈ A1 +
√
2ϵA2 , (4.66)

where M2
∆ = M2 + 1

2(λ4 + λ5)v
2. This mixture allows the mass eigenstates H and A to

decay to fermions even though no Yukawa interactions are explicitly introduced in the triplet

model. Up to quadratic order in ϵ, the physical states have masses given by

m2
h = 2λ1v

2 −
(
2λ1v

2 + 2M2 M2

M2
∆ − 2λ1v2

)
ϵ2,

m2
H =M2

∆ +

(
v2(λ2 + λ3) +M2 M2

M2
∆ − 2λ1v2

)
ϵ2,

m2
A =M2

∆ + 2M2
∆ϵ

2,

m2
H+ =M2

∆ − λ5
4
v2 +M2

∆ϵ
2,

m2
H++ =M2

∆ − λ5
2
v2 +

λ5 − λ3
2

v2ϵ2.

(4.67)

97



From (4.66), when m2
H → m2

h, the mixing parameter between H1 and H2 diverges. This

means that h and H can be maximally mixed even when ϵ ≪ 1. In this limit, the H − h

mixing depends on the details of the Higgs potential parameters.

4.D Unitarity and Vacuum Stability Bounds

We follow the analysis of vacuum stability and unitarity constraints as given by [313, 247].

Demanding perturbative unitarity impose an upper bound on the eigenvalues of the 2 → 2

scattering matrix

|xi| < 8π, i = 1, 2, 3 (4.68)

where

x1 = 3λ1 + 7λ∆ +

√
(3λ1 − 7λ∆)2 +

3

2
(2λ4 + λ5)2, x2 =

1

2
(2λ4 + 3λ5), x3 =

1

2
(2λ4 − λ5).

(4.69)

Taking λ∆ ≡ λ2 = λ3 > 0, the necessary and su�cient condition for the Higgs potential to

be bounded from below is

λ1 > 0, λ∆ > 0, 2
√

2λ1λ∆ + λ4 +min(0, λ5) > 0 (4.70)

The �rst two conditions are trivially satis�ed. In terms of masses of physical states and M2,

the last condition can be written as

mh

v

√
λ∆ +

m2
H++ −M2

v2
+min

(
0, 2

m2
H+ −m2

H++

v2

)
> 0 (4.71)

This can be easily satis�ed if λ4 ≥ 0 and the mass spectrum is thatmA(H) > mH+ > mH++ .

If the spectrum is mA(H) < mH+ < mH++ , the vacuum stability condition places an upper
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bound on the mass of H++:

mhv
√
λ∆ + 2m2

H+ −m2
H++ > M2 > 0 (4.72)

While boundedness-from-below is only a necessary condition for vacuum stability, we do not

expect a second minimum deeper than the electroweak vacuum to exists since we always

assume that v∆ ≪ v recovering approximately the SM vacuum structure.

The conditions in Eq. 4.72 imposes absolute stability. One can slightly relax this as-

sumption by demanding metastability with a lifetime longer than the age of the Universe.

For large �eld values, the quartic term dominates allowing to solve analytical for the bounce

action B [314]. Following Ref. [315, 316], we then demand that B < 440 resulting in the

condition

1

4
λ1 cos

4 φ+ (λ2 + λ3) sin
4 φ+

1

8
(λ4 + λ5) cos

2 φ sin2 φ < − π2

165
≃ −0.06 (4.73)

for any φ ∈ [0, 2π].

4.E Landau Pole

From Sec. 4.3, we see that a larger choice of mlightest generically requires a larger value of

λ5. This generally tells us that the Landau pole could potentially be very close to mlightest.

For our purposes, we will denote the Landau pole as the scale at which the running coupling

λ5(µ) grows to 4π.

Here, we will compute the one-loop beta function for λ5. For simplicity, we will only

compute the leading λ25 term. The one-loop counterterm for λ5 in d = 4− 2ϵ is given by

δ(1)λ5 =
λ25
8π2

(
1

ϵ
+ �nite

)
. (4.74)
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At leading order in λ5, the wave functions of Φ and ∆ are not renormalized at the one-loop

level. As such, the one-loop beta function for λ5 is simply

βλ5 =
dλ5
d lnµ

=
λ25
4π2

(4.75)

Solving the RGE yields

ΛLandau-pole = mlightest exp

(
4π2

λ5(mlightest)
− π

)
. (4.76)

The curve for mlightest = 1 TeV in Fig. 4.1 crosses the CDF-II band at |λ5| ∼ 7. Inserting

this value into Eq. (4.76) implies a Landau pole at ∼ 12mlightest = 12 TeV. In this situation,

additional BSM physics preventing the appearance of the Landau pole should appear in the

multi-TeV range. For a more precise estimate also subleading RGE e�ects would need to be

taken into account.

4.F Decoupling

In the literature, the one-loop corrected mW is often presented as a function of |δm| ≡

|mH+ −mH++ |, as shown in Fig. 4.10. At �rst sight, it is confusing that to reach a given

amount of mW increment, |δm| stays almost the same as mlightest increases (for the type-I

case, it even decreases). Naturally, one would expect that the BSM corrections go to zero in

the limit M → ∞.

To understand such behavior, we should notice that decoupling behavior is only manifest

if ∆m2 ≡ m2
H± − m2

H±± or λ5 = 4∆m2/v2 is �xed. If, however, |δm| is �xed and M is
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increased, no decoupling occurs. This happens because

|δm| = |mH± −mH±±| =
∣∣∣∣∣
√
M2 − 1

4
λ5v2 −

√
M2 − 1

2
λ5v2

∣∣∣∣∣ = 1

8
|λ5|

v2

M

(
1 +O

(
v2

M2

))
(4.77)

and therefore |λ5| ∼ Mδm/v2 leads to |λ5| → ∞ in the limit M → ∞. Consequently, this

limit will unavoidably violate perturbative unitarity. (We truncated all the curves once |λ5|

grows to 10 in Fig. 4.10.)
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Figure 4.3: E�ective weak mixing angle vs. W boson mass for the type I (upper row) and
II (lower row) mass hierarchies. For each panel, the di�erent curves represent models with
di�erent mass values for the lightest state. For each curve, we vary |λ5| from 0 (corresponds
to the SM values) to 10. This �nite range of |λ5| scanned results in the endpoints of the
contours. The brown line represent the CDF II measuredW boson mass and the yellow/gray
band shows 1σ/2σ range. The dark purple line represent the PDG value for the W boson
mass with the purple/gray band showing the 1σ/2σ range. The dark green line in the left
(right) column represent the world averaged value 0.23153 ± 0.00016 [2, 3] (SLD measured
value 0.23098± 0.00026 [2]) of sin2 θe� with the green/gray band shows 1σ/2σ range.
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Figure 4.4: Constraints on (mH++ ,mH+) parameter space for the HTM from the measure-
ment of Higgs-photon coupling (κγ , blue shaded region), Higgs self-coupling (κλ, orange
shaded region), perturbative unitarity (green hatched region), and meta-stability condition
of the vacuum (red hatched region). We set λ4 = 0 and λ∆ = 1 for all panels. The left
(right) column shows the 2σ favored parameter space that explained the measured mW by
CDF-II for the type-I (-II) model as red (blue) narrow bands. Note that we do not show
the parameters for |λ5| > 10 in drawing the narrow bands. The parameter space with
mH++ ≳ 250GeV (mH++ ≲ 350GeV) for the type-I (-II) HTM remains unconstrained. We
also show the LHC constraints on mH++ for type-I if H++ decays promptly (gray band) or
if it is detector stable (left of the gray dash line). See Sec. 4.6.2 for more details.
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Figure 4.5: (Upper) Main production channels of the exotic Higgs states at the LHC. (Lower)
Decay chains for the heaviest new Higgs state in type I (left) and type II (right). In type
II, the lightest state H/A can decay to both SM fermions (as shown on the right) and the
SM-like Higgs and gauge bosons.
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Figure 4.6: NLO pair production cross sections for Type-I (left) and Type-II (right) as a
function of mlightest at the 14 TeV run of the LHC.
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Figure 4.7: Lifetime (times the speed of light) of the lightest exotic Higgs state for type I
(left) and type II (right) as a function of mass and v∆ (setting λ2 = λ3 = λ4 = 0). The
remaining parameters are chosen such that CDF-II mW value is explained. The sharp drop
at around 160 GeV correspond to the threshold at which the WW decay becomes on shell.
For type II (right), additional sharp drops occur at around 250 (215) GeV where H → hh
(A → Zh) becomes on shell; furthermore, mH is restricted to be /∈ (120, 130) GeV since
H maximally mixes with h there (see App. 4.C for more details). For reference, we have
drawn dashed lines representing cτ = 10−4 meter (corresponding to ∼ 10−12 sec, which is
the typical B meson lifetime) and 10 meter. This is the range in which long lived particle
searches at the LHC could be sensitive.
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Figure 4.8: Branching ratios for H (left) and A (right) in the type-II HTM for λ2 = λ3 =
λ4 = 0, v∆ = 1 GeV, with a mass spectrum explaining the CDF-II mW measurement.
Branching ratios for two-body (three-body) decays are shown as solid (dashed) lines. Since
all decay widths are proportional to v2∆, the branching ratios do not depend on the choice
of v∆ provided that it is nonzero.
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Figure 4.9: (Upper left) Sum of the relative relic abundances forH and A in the type-II HTM
with respect to that of cold dark matter fχ = ΩH+A/Ωc as a function of mH,A = mH = mA
for parameters that explain the measured mW,CDF-II within 2σ. (Lower left) Sum of the
direct detection cross sections times the relative abundance for cosmologically stable H
and A for parameters that explain the measured mW by CDF-II within 2σ (blue band)
(assuming v∆ < 10−16 eV). 95% CL constraints from the LZ experiment with 5.5 ton· 60
day exposure [4] are shown as the orange shaded region. The neutrino background for a xenon
target [5] is shown as the yellow shaded region. For both panels, we added constraints from
the exotic decays of the SM-like Higgs as the gray shaded region. (Right panel) Constraints
on the relative abundance of visibly decaying relic with respect to cold dark matter as a
function of their lifetime. 95% CL constraints from BBN [6], CMB [7, 8], and isotropic γ-ray
backgrounds [9] are shown as yellow, green, and brown shaded regions. We highlighted the
range of fχ that explains mW,CDF-II as the blue band with arrows indicating the allowed
lifetimes for stable massive relic and decaying massive relic. In the lifetime axes, we indicate
the age of Universe at recombination and today with black arrows. In the upper axes, we
show the corresponding values of v∆ for mA = 65GeV and mA = 1.5TeV as red and blue
ticks, respectively. See text for more details.
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Figure 4.10: 1-loop corrected W boson mass mW as a function of |δm| = |mH+ −mH++|
for various masses of the lightest state in the HTM. We assume the mass hierarchy of the
new states following mH++ < mH+ < mA (mH++ > mH+ > mA) in the left (right) panel.
We do not show the parameters for |λ5| > 10 in drawing the curves. The color bands are
the same as those in Fig. 4.1.
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CHAPTER 5

DARK MATTER MODEL BUILDING

This chapter is reprinted with permission from:

Wen Han Chiu, Sungwoo Hong, and Lian-Tao Wang. Conformal freeze-in, composite dark

photon, and asymmetric reheating. JHEP 03 (2023) 172.

©2023 The Authors

5.1 Introduction

Dark sector models (see [317, 318] for overviews and relevant references) o�er promising

avenues beyond the weakly interacting massive particle (WIMP) paradigm. The mass scales

in such models are often much lower than those we have in the Standard Model (SM). For

phenomenological reasons, their coupling to the SM will need to be strongly suppressed as

well. The production of dark matter is usually very di�erent from the freeze-out mechanism

commonly employed by the WIMP. Instead, a freeze-in mechanism [319, 320] is often invoked.

The small coupling between the dark sector and the SM ensures they are not in thermal

equilibrium. At the same time, the dark sector can't be populated during the reheating

process like the SM. Implementing such an asymmetric reheating is a requirement for the

success of a freeze-in model. While a simple parameterization with low energy degrees of

freedoms is usually enough for phenomenological studies, such an array of di�erent scales

and small parameters usually call for dynamical explanations.

It is well known that large scale separation is present in theories which are nearly scale

invariant, that is those close to being a conformal �eld theory (CFT). Starting at some

UV scale where the theory is approximately conformal, a small deformation can lead to

the emergence of an infrared scale which is exponentially lower than the UV scale. Hence,

such CFTs are natural candidates for dark sector models. The deformation are generically

108



present, for example, through the coupling with the SM. The small couplings required in

such scenarios can be generated from scale separation as well. Motivated by this, there have

been recent works [321, 322] studying the conformal freeze-in (COFI) process where the dark

sector is conformal. The deformation would eventually lead to the con�nement of the dark

CFT, generating a mass gap, mgap. A natural candidate of dark matter is one of the low

lying composite resonances. Making an analogy with quantum chromodynamics (QCD), we

will consider a dark matter candidate which is similar to the pion, with mass about one or

two orders of magnitude below mgap.

Building on the set of work on COFI, we set out to build a complete model which leads to

the production of dark matter with the correct relic abundance. We consider a coupling (a

portal) between the SM hypercharge gauge boson and an antisymmetric tensor operator in

the dark sector CFT, which is the main driver for the COFI dark matter production. Other

connections with the dark sector could also be (and have been [322]) considered. We o�er a

dynamical explanation of the smallness of the coupling between the SM and the dark CFT

sector. In addition, we propose a scenario in which asymmetric reheating can be realized.

Dark sector models are also subject to a host of astrophysical and cosmological constraints,

including DM self-interaction, warm DM bound, and star cooling bounds. Taking these into

account, we identify models in which correct dark matter relic abundance can be generated.

Our model predicts the existence of the dark photon as a composite vector meson in the

dark sector with mass close to mgap. The portal coupling introduced earlier will transform

into a kinetic mixing between the dark photon and the SM hypercharge gauge boson in the

IR once the conformal dark sector con�nes. The smallness of this coupling is explained by a

large scale separation induced by a slow renormalization group (RG) running between Λ and

mgap. There is one important di�erence between our model and models with an elementary

dark photon. While the freeze-in is mediated by the elementary dark photon in the latter

case, the dark photon does not play a role during the COFI production. Hence, the relation
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between the relic abundance and the mass and coupling of the dark photon is very di�erent,

as illustrated in Figure 5.3.

The rest of the chapter is structured as follows. In section 5.2, we describe our theory

and its IR e�ective theory. In particular, in subsection 5.2.1, we discuss UV theory and

explain how the small coupling and asymmetric reheating required for the non-thermal freeze-

in production can be achieved. Then, subsection 5.2.2 is devoted to describing the IR

e�ective theory of dark matter and composite dark photon and mass gap generation. In

section 5.3, we present detailed analysis of dark matter phenomenology, including freeze-in

production, cosmological evolution, and various observational constraints. We then conclude

in section 5.4. Several technical details are relegated to appendices. Dynamical small mass

scale generations in COFI theories are explained in section 5.A. 5d dual picture of 4d COFI

theories via AdS/CFT correspondence is described in section 5.B. Production of the dark

sector in its hadronic phase (as opposed to conformal phase) can occur when T < mgap during

the production and some details are presented in section 5.C. Details of rate computations

needed for COFI production are discussed in section 5.D. Finally, useful ingredients of stellar

evolution bounds for our theory are summarized in section 5.E.

5.2 The Setup

In this section, we introduce our theory and describe some of its key features. Our discussion

in this section is mainly in the language of 4d QFT (CFT). Via the AdS/CFT correspon-

dence, our theory admits a weakly coupled 5d gravity description which is presented in

section 5.B. In addition, the production and evolution of the dark sector in cosmology and

its phenomenology will be discussed in detail in section 5.3.

We are primarily interested in studying the conformal freeze-in production [321, 322] of
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the conformal dark sector coupled to the SM via a tensor interaction

LCOFI ⊃
λ

Λd−2
BµνOµν .

Here, Bµν is the �eld strength of U(1)Y gauge boson in the SM, and we assume Λ ∼ O(1)

TeV and λ ≪ 1 as is the norm for freeze-in. Readers interested in phenomenology of this

theory may skip subsection 5.2.1 and jump directly to subsection 5.2.2. subsection 5.2.1 (and

section 5.B) is devoted to the description of microscopic theory which, through a cascade

con�nement, addresses the question of asymmetric reheating and results in the above e�ective

theory, the starting point of our phenomenological study in the rest of the chapter.

5.2.1 UV theory and asymmetric reheating

In this section, we describe our UV theory and its RG evolution in a form of cascade con-

�nement. The overall picture is depicted in Figure 5.1.

In the UV, our theory consists of a sector of CFT (denoted as CFT1) coupled to a

sector of elementary (as opposed to composite) particles. The elementary sector includes

the in�aton Φ and a copy of the SM particle contents. The relevant particle contents and

their interactions can be summarized by

LUV = LCFT1
+ LΦ + Lext

(
q, ℓ, Aµ

)
+ LGW1

+ LRH + LPC (5.1)

where

1. Lext represents terms for the external �SM� �elds, q = quark, ℓ = lepton, Aµ =

{Gaµ,W i
µ, Bµ} = gauge �elds1. These are not yet the SM �elds. As described be-

low, the SM �elds are realized as admixtures of external (elementary) and composite

1. Here, we do not include the SM Higgs as we wish to solve the EW hierarchy problem by treating the
Higgs as composite. This, however, is not a necessary component of the model.
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states, i.e. partial compositeness (PC), at energy scale below the con�nement scale of

CFT1 by diagonalizing the elementary�composite mixing. Such a scheme is commonly

used in the so called holographic Composite Higgs Model (CHM). For convenience, we

will refer to the combination of external SM �elds and the composite states they mix

with as the CHM sector.

2. LGW1
= ηOGW1

describes a scalar deformation responsible for the running of the

CFT1 and generation of stable mass gap in the IR. This is the CFT dual of the

Goldberger-Wise stabilization mechanism in 5d [323] and more details can be found in

[324, 325, 326].

3. LRH describes the interaction between the in�aton Φ and elementary �elds, hence the

reheating of the external sector. We emphasize that the in�aton is purely (or mostly)

elementary with no (or little) composite mixture and hence it primarily couples only

to the external sector.

4. LPC = yq q̄Oq+yℓℓ̄Oℓ+gAµJµ+ 1
Mpl

hµνT
µν
CFT1

represents the linear interactions between

the external �elds and the CFT operators. When the CFT1 con�nes in the IR, these

will turn into the partial compositeness couplings between elementary �elds and their

composite partners.

The scalar deformation, OGW1
, triggers RG running of CFT1 and the conformal invariance

breaking e�ect grows in the IR if it is a relevant operator. Eventually, at a scale Λ1, it

becomes an O(1) violation and leads to a spontaneous breaking of CFT1 measured by the

vacuum expectation value (vev) of OGW1
. We assume that CFT1 con�nes when this occurs.

This event generates heavy composite particles which mixes linearly with the external �elds.

Upon diagonalizing this mass mixing, one gets mass eigenstates including massless states

and these are identi�ed as the SM particles. Heavy mass eigenstates correspond to the

Kaluza-Klein (KK) excitations in the dual 5d picture.
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In addition to the CHM sector described above, we assume that the con�nement of

CFT1 also gives rise to a sector of composite �preons� which are singlets of the SM gauge

group. These preons are similar to the quarks and gluons of QCD, and we assume that their

dynamics bring them to an IR �xed point (denoted as CFT2).
2 The dynamics of CFT1 and

the phase transition may result in various couplings between the CHM sector and CFT2.

We assume that the dominant interaction is given by

LΛ1
⊃ 1

Λ1
ρBµνψ̄Lσ

µνχR + yΨψ̄LOR + yχŌLχR (5.2)

where ρBµ is the composite U(1)Y vector meson which couples to SM singlet composite

fermions (preons) ψL and χR via a dipole interaction. These latter SM singlet composite

fermions couple to the CFT2 through the linear mixing couplings. Since Bµ is external

to the CFT1, its coupling to the CFT2 (which belongs to the composite sector) has to be

through its mixing with composite partner ρ
µ
B . This mixing is analogous to the γ�ρ mixing

realized in QCD and is given by g/g1s, where g and g1s are the U(1)Y gauge couping and

composite coupling of con�ned CFT1, respectively. See [326] for more discussion.

Below Λ1, the above theory will undergo RG �ow and the details depend on the scaling

dimensions of the fermionic operators of CFT2, OL,R. Denoting the scaling dimensions of

these as dL and dR respectively, we �rst consider dL, dR > 5/2.

2. Strictly speaking, the preon sector needs not be a CFT sector. For our purposes, it su�ces that
the dynamics of the composite preon sector has a slow RG running and an interacting IR �xed point at a
much lower scale (this is our dark CFT). Provided this assumption, all our discussion below will be equally
applicable.
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(i) dL, dR > 5/2

In this case, the linear couplings are irrelevant operators, and they decrease towards the IR.

At some lower scale µ < Λ1, we get

Lµ<Λ1
⊃ 1

Λ1
ρBµνψ̄Lσ

µνχR + ỹΨ

(
µ

Λ1

)dR−5
2

µ
5
2−dRψ̄LOR + ỹχ

(
µ

Λ1

)dL−5/2

µ
5
2−dLŌLχR.

(5.3)

We have de�ned a dimensionless coupling ỹψ by yψ = ỹψΛ
5/2−dR
1 , and similarly for ỹχ.

We imagine that at a scale Λ2 < Λ1, the composite CFT2 con�nes, generating composite

particles and yet another composite CFT denoted as CFTD. This CFTD is the dark sector

of our theory and carries dark U(1)D global symmetry, hence reveals a coupling

LΛ2
⊃ LCFTD

+ gDADµJ
µ
D + · · · . (5.4)

Here, A
µ
D is a composite vector meson of con�ned CFT2 and simultaneously plays the role

of external U(1)D gauge �eld coupled to CFTD current J
µ
D . It also couples to a pair of

composite fermions coming from OL,R through a dipole interaction.

We can use an interpolation relation between the fermionic CFT operators and canoni-

cally normalized composite fermion �elds, OR ∼ Λ
dR−3/2
2

∑
n cnψ

(n)
comp,R and

OL ∼ Λ
dL−3/2
2

∑
n dnχ

(n)
comp,L

3, to obtain an e�ective action at Λ2

LΛ2
⊃ LCFTD

+ gDADµJ
µ
D +

1

Λ1
ρBµνψ̄Lσ

µνχR +
1

Λ2
FDµνψ̄comp,Rσ

µνχcomp,L (5.5)

+ỹΨ

(
Λ2

Λ1

)dR−5/2

Λ2

∑
n

cnψ̄Lψ
(n)
comp,R + ỹχ

(
Λ2

Λ1

)dL−5/2

Λ2

∑
m

dmχ̄
(m)
comp,LχR.

From this, we can estimate the e�ective kinetic mixing between the elementary U(1)Y

3. The sum is over the tower of composite fermions. cn and dn denote the �form factor�s.
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gauge boson Bµ and ADµ by evaluating the diagram shown in Figure 5.2. From Figure 5.2 it

is clear that the e�ective mixing is tiny due to two factors of fermion mixing since the latter

two are very small by a RG evolution. In the end, we get

ϵ̃ ∼ g

g1s

ỹΨỹχ

16π2

(
Λ2

Λ1

)dL+dR−4

. (5.6)

The factor g/g1s is from the elementary-composite mixing between Bµ and ρBµ as explained

above, and we note that this estimation is up to possible log (Λ2/Λ1). We recall that dL +

dR > 10 and therefore, ϵ̃ can be highly suppressed by virtue of the RG running factor.

Since the dark CFT is uncharged under Bµ, the leading order interaction is expected to

be the dipole-type. The interaction strength can be estimated to be (dropping the subscripts,

e.g. Λ2 → Λ, to get an expression used in the rest of the chapter)

LCOFI ⊃
λ

Λd−2
BµνOµν . (5.7)

where d is the scaling dimension of Oµν and λ ∼ gDϵ̃ and thus can be readily very small.4

Finally, we show that asymmetric reheating requires TR < Λ2. Suppose that the decay of

the in�aton reheats the external sector plasma to a temperature Λ2 < TR ≲ Λ1. This means

that the correct description of the theory right after reheating is that of Equation 5.2. This

comes with sizable coupling between the CHM sector and CFT2. For a generic CFT, the

entirety of CFT2 will then be thermalized via this coupling. In particular, it is unlikely that

there is a subsector of CFT2 which is isolated and remains �cold�. Once the universe cools

to T ∼ Λ2, CFT2 con�nes and, in particular, a thermal CFTD appears. So for a generic

CFT2, CFTD will be at roughly the same temperature as the SM sector. On the other hand,

if TR < Λ2, then the right description after reheating is Equation 5.7, which comes with

4. The super�cial IR-divergence from the intermediate ADµ propagator is absent thanks to two-derivatives
from ρBµνF

µν
D .
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highly suppressed coupling.

(ii) dL, dR < 5/2

We brie�y discuss the case with dL, dR < 5/2. The other choices of dL and dR are then

simply mixture of the two cases we describe.

When d < 5/2, the linear mixing in Equation 5.2 is a relevant operator and grows in the

IR. The RG running is described by (see e.g. [327, 328])

µ
dy

dµ
= γy + c

N

16π2
y3 + · · · (5.8)

where γ = d− 5/2 < 0 is the anomalous dimension of the CFT operator O, N denotes the

number of �color� of the gauge theory describing the CFT, and c is an O(1) number. RG �ow

increases y and at some point the second term becomes as important as the �rst. Provided

c > 0, there exists an IR �xed point where y stops running. We name the scale of the �xed

point Λ∗ and the coupling at the �xed point y∗ ∼ ỹ(Λ∗/Λ1)
d−5/2, which can be O(1). At

the �xed point, the linear mixing terms become marginal operators and, at the same time,

the fermion �elds ψL and χR acquire sizable anomalous dimension. Explicitly, the scaling

dimensions of them become [ψL] = 4− dR > 3/2, [χR] = 4− dL > 3/2.

Unlike in the �rst case with dL, dR > 5/2, the fermion mixings are sizable and one

may conclude that the e�ective mixing ϵ̃ is not suppressed anymore. This, however, is not

true. The anomalous dimensions of ψL and χR make the dipole interaction appearing in

Equation 5.2 very irrelevant interaction with scaling dimension 10 − dL − dR > 5. Via RG

evolution, this means that this dipole operator becomes highly suppressed at Λ2.

1

Λ1

(
Λ2

Λ∗

)5−dL−dR
Λ
dL+dR−5
2 ρBµνψ̄Lσ

µνχR (5.9)

It is then straightforward to estimate the e�ective mixing ϵ̃. The �nal result is in fact the

116



same as Equation 5.6. Interestingly, despite having very di�erent RG evolutions, the product

of the dipole interaction and the fermion mixings appearing in Figure 5.2 stays the same in

both cases. A similar phenomenon appeared in the neutrino mass from a warped 5d model

(and its 4d CFT dual) [328].

Summary for the UV theory

To sum up, asymmetric reheating is achieved by virtue of composite�elementary division5

and the dynamically generated small coupling, provided the reheat temperature satis�es

TR < Λ2. Speci�cally, the composite�elementary division makes it natural that the pri-

mordial reheating occurs only for the external states, hence only the SM sector. Then, the

small coupling between the SM and dark CFT sectors, induced by RG running followed by

a con�ning phase transition, forbids an e�cient energy transfer from the SM to the dark

CFT.

5.2.2 IR e�ective theory, mass gap, and composite dark photon

In this section, starting from Equation 5.7, we explain the mass gap generation, IR e�ective

theory below the mass gap mgap and comment on notable features of our model.

We �rst note that since our model is based on a tensor operator, the RG running of the

CFT and dynamical mass scale generation do not go through the mechanisms introduced in

[321, 322]. In particular, the operator mixing e�ects [322] which makes the COFI-mechanism

generic for the case of scalar operator do not occur in our model. Instead, a necessary scalar

deformation may arise from the operator product expansion (OPE) Oµν ×Oµν . We discuss

this in detail in section 5.A. Here, we simply assume that such a scalar CFT operator exists

5. It is this composite�elementary division that distinguishes our theory from the UV completion of COFI
by a weakly coupled gauge theory with a IR �xed point proposed in [321]. In the latter case, unless symmetry
forbids, generically there will be couplings between the gauge theory sector and the in�aton, and in turn the
dark CFT sector will inherit a unsuppressed coupling to the in�aton.
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and explore its implications on the IR EFT.

If such a deformation is close to being marginal, the theory described by Equation 5.7

undergoes a slow RG running (walking). At E ∼ mgap, the conformal invariance is sponta-

neously broken and a gap scale is generated. By virtue of walking, the separation between

Λ2 and mgap are generically large.

We make a simplifying assumption that the spontaneous conformal symmetry breaking

is a con�ning phase transition and a spectrum of composite hadrons become the relevant

degrees of freedom in the IR. The operator Oµν is then interpolated by6

Oµν ∼ 1

gs
md−2

gap ρµν , (5.10)

where ρµν is the �eld strength of the composite vector meson ρµ; the dark photon in our

theory7. The dependence on mgap is �xed by dimensional analysis and gs ∼ 4π√
N

is the

coupling constant among the composite states, where N is the number of �color� of the

gauge group in the CFT.

The con�ned phase of the dark CFT may contain a (or a set of) Goldstone boson π and

they can play the role of dark matter in our theory. Using Equation 5.10, we obtain the IR

e�ective theory of hadrons from Equation 5.7

LIR ∼ 1

2g2s
ρµνρ

µν + ϵBµνρ
µν + ∂µπ

+∂µπ− +mDMπ
+π− + igsρ

µπ+
↔
∂ µπ

−, (5.11)

with the kinetic mixing given by

ϵ =
λ

gs

(mgap

Λ

)d−2
. (5.12)

6. In principle, the operator can have a non-zero overlap with a composite 2-form �eld Cµν . For our
purposes, it su�ces to assume that Oµν has unsuppressed overlap with kinetic term of composite dark
photon.

7. Strictly speaking, the dark photon is a mixture of AD and ρ, but it will be mostly comprised of ρ
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We will now make a few comments on the low energy e�ective theory. The e�ective kinetic

mixing ϵ shown in Equation 5.12 is naturally small. In particular, in addition to the small λ

(whose natural smallness was explained earlier), it gets further suppressed by the RG running

factor
(
mgap
Λ

)d−2
(recall d ≥ 2 by unitarity). This latter factor exhibits the interesting

fact that a smaller mgap implies a smaller mixing ϵ. This has a straightforward physics

interpretation. We �rst note that mgap is a consequence of conformal invariance breaking

e�ect, thus the size of mgap is positively correlated with the size of the breaking. In general,

a smaller mgap means slower (hence longer) RG running of the CFT sector. On the other

hand, the mixing, ϵ, is induced from the coupling between the SM and CFT sectors in the UV

theory. The unitarity bound d ≥ 2 implies that the interaction Equation 5.7 is an irrelevant

operator. This in turn suggests that smaller mgap results in larger suppression of ϵ from

longer RG running.

In addition to the kinetic mixing between the dark photon and hyper-charge gauge boson,

we included terms for the dark matter candidate, π±, and their interaction with the dark

photon. Here, we assume that dark matter particles are pseudo-Nambu-Goldstone bosons

(pNGB) of the spontaneously broken global symmetry of the CFT. Their mass is controlled

by the size of the explicit breaking of the global symmetry, which we take to be a free

parameter. The ratio r ≡ mDM/mgap can be smaller than one, which ensures that dark

matter can easily be lightest stable particle8.

Dark matter will couple to the dark photon in the same manner as the pions in low

energy QCD interact with the ρ-meson. The strength of the coupling is gs ∼ 4π√
N
. For a

reasonable choice of N consistent with large-N treatment, we can take gs ∼ O(1). This

coupling induces self-interaction among dark matter states. For mgap ≲ O(100)MeV there

are non-trivial constraints on this DM self-interaction, e.g. from observation of the bullet

8. From the form of the e�ective Lagrangian, we've implicitly assumed that π has a dark charge which
ensures stability. If we assumed no such dark charge, then one might expect Oµν can also interpolate to an
operator of the form ∼ πρµν . After kinetic mixing, this will allow the process π → γγ. However, the LO
decay rate will go as ϵ4; ensuring that its cosmologically long-lived.
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cluster. As we discuss later in subsection 5.3.4 (also discussed in [321, 322]), this constraint

can be avoided with a proper choice of the ratio mDM/mgap < 1. Furthermore, any relevant

processes involving the visible sector and the dark matter candidate is independent of gs.

Other than the DM particles, the rest of the hadrons in the con�ned CFT are expected

to have mass on the order of mgap, which we assume to hold for our model. In particular,

the dark photon, as one of the normal composite states, is assumed to have mass ∼ mgap.

We suppress the rest of the hadrons from our e�ective theory.

5.3 Dark Matter Phenomenology

In this section, we describe the dark matter phenomenology of our theory. In subsection 5.3.1

we discuss the cosmological evolution of the energy density in the dark sector. In subsec-

tion 5.3.2, we present a parameter scan which reproduces the observed relic density for IR-

dominant production and discuss the main characteristics. In subsection 5.3.3, we present

a parameter-scan for UV-dominant production and discuss the associated physics. Lastly,

in subsection 5.3.4, we discuss theoretical constraints and relevant observational constraints,

including DM self-interaction, warm DM bound, star cooling bound and more. Throughout

this section, in order to avoid interrupting the �ow of the discussion, we relegate technical

details to several appendices (see section 5.D and section 5.E).

5.3.1 Dark matter production mechanisms

The details of the freeze-in production of dark matter in this model depend on the nature

of the coupling in Equation 5.7, especially the scaling dimension d of the operator Oµν . At

the same time, it also depend on various scales in the problem, including the temperature in

the SM sector T , the temperature in the dark sector Tds, mgap, and the dark matter mass

mDM.

If the temperature of the SM sector T is larger than mgap, then the freeze-in processes
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produce CFT objects in the �nal state. We denote this as COFI production. In the other

regime, T < mgap, the �nal state consists of the �hadronic� states of the con�ned CFT and

the physics becomes that of standard particle production.

The dark sector is assumed to thermalize with itself.9 When the dark sector is radiation-

like, its temperature, Tds, is given by

ρds = AT 4
ds, (5.13)

where A is the analog of π
2

30 × dof appearing in the energy density of a relativistic �uid.

As shown in [321], IR-dominant COFI production can occur if the sum of the scaling

dimensions of the operators appearing in the interaction term Equation 5.7 is less than or

equal to 9/2. In our case, this requires 2 < d < 5/2, where the lower limit is the unitarity

bound. However, as we will show, this conclusion is based on the assumption that the dark

sector is thermalized to a temperature Tds > mDM during COFI production. In order to

clarify this point, let us �rst brie�y review the COFI production, obtain the bound d < 5/2,

and generalize it to the case Tds < mDM.

Tds > mDM during the COFI production

Starting from the general Boltzmann equation (BE), the relevant equation for COFI is (see

[321] for details)

d

dt
ρds + 3H(ρds + Pds) = Γ, (5.14)

where Γ is the energy transfer rate per volume from SM to CFT. We've dropped the energy

transfer from the CFT sector to the SM sector due to the assumption that the CFT energy

9. This condition can easily be satis�ed in large-N CFT. Speci�cally, since we consider non-thermal freeze-
in production, our conformal dark sector is a CFT at very low temperature which is strongly interacting.
This also allows us to use AdS/CFT duality.
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density is always small compared to the SM. In our case, Γ takes a general form

Γ =

(
λ

Λd−2

)2

ΓdT
2d+1 (5.15)

with a process- and d-dependent coe�cient Γd. In order to simplify expressions, we further

de�ne Bd =
(

λ
Λd−2

)2
Γd. For our model, the population of the dark sector can occur via

ff̄ → Bµ → CFT: annihilation of SM fermion pairs through the exchange of the hypercharge

gauge boson. In addition, at �nite temperature, the photon acquires a thermal mass mp.

Following [329], we take mp to be roughly the plasma frequency10

mp ≈ ωp ≈
eT

3
≈ 0.1T, (5.16)

where e is the electric charge. The plasmon can directly decay into the CFT state which

contributes to the production. At T > v, the intermediate state in the fermion annihilation

is the U(1)Y gauge boson. Below v, it becomes a linear combination of the photon and Z

gauge boson. At T > mgap the �nal state is the CFT state, while for T < mgap it is the

hadronic state of the con�ned CFT.11

The collision terms take the general form Equation 5.15 and as we show in detail in

subsection 5.D.1 the coe�cients Bd are given by

Bd(f̄f → CFT) =
12d

(2π)2d+2

(
λe

Λd−2

)2

, (5.17)

Bd(γ
∗ → CFT) =

(
6Ade

2d−4

32d−4π2

)(
λe

Λd−2

)2

, (5.18)

10. The e�ective in-medium mass is generically a function of the momentum and the polarization mode.

11. There is, in principle, contribution from pair annihilation of the Higgs doublet (equivalent to Zh
annihilation below EWSB). In the case of IR freeze-in, since this process shuts o� at scales well above the
dark matter mass that we are considering. Its contribution to the overall relic density is negligible. In the
case of UV freeze-in, due to the large number of fermions charged under U(1)Y , its contribution is subleading
compared to the fermion annihilation process.
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where Ad is related to the phase space of CFT state and is de�ned in Equation 5.72.

Now, let's move onto the LHS of the Boltzmann equation. Rotational and conformal

invariance (implying Tµν is traceless) tells us that Pds = 1
3ρds. Here, it is important to

realize that usage of this dispersion relation is valid only if Tds > mDM.12 With that, we

have

−HTρ′ds + 4Hρds = BdT
2d+1, (5.19)

where ′ is a derivative with respect to T . In the radiation dominated epoch,

H =
√
g∗
T 2

mpl
, mpl ≡

3
√
5

2π3/2
Mpl ≈ 7.35× 1018GeV. (5.20)

Ignoring the temperature dependence of the number of relativistic degrees of freedom g∗13,

the solution to Equation 5.19 is of the form

ρds(T ) =
Bdmpl√
g∗(5− 2d)

T 4
(
T 2d−5 − T 2d−5

R

)
, (5.21)

where TR is the reheat temperature (we take TR ∼ O(TeV)) and we have used the initial

condition ρds(TR) = 0. We factored out an overall factor of T 4 which allows us to interpret

the expression in the parenthesis as the change of energy density in the comoving frame.

Whenever the production (for each channel) ends at T su�ciently lower than TR, for

d < 5/2, we can safely drop the TR-dependent term. This shows that the production is

insensitive to the UV physics (i.e. IR-dominant). Conversely, when d > 5/2, the T -terms

gets dropped. This demonstrates that the production is only sensitive to the UV physics

(i.e. UV-dominant).

12. Strictly speaking, the dark sector plasma is that of a CFT (as opposed to the �hadronic� phase) only
if Tds > mgap. However, here we are using the fact that so long as Tds > mDM and if most of the energy
density of the dark sector is rapidly transferred to dark matter state, then the energy density behaves as a
relativistic gas.

13. This is a simpli�cation made here for illustrative purpose. In our numerical results, we include the
e�ect of time dependence of g∗
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Tds < mDM during the COFI production

If Tds drops belowmDM during the production, then the equation of state changes to Pds = 0.

The subsequent evolution of the energy density obeys

−HTρ′ds + 3Hρds = BdT
2d+1. (5.22)

Here, we encounter another important temperature threshold, TNR. This is the temperature

of the SM bath when the dark sector temperature drops to mDM. After this point, all

particle states in the dark sector are non-relativistic.

The solution to the Boltzmann equation for temperatures below TNR is then given by

ρds(T )|T<TNR =
Bdmpl√
g∗(4− 2d)

T 3
(
T 2d−4 − T 2d−4

NR

)
+

(
T

TNR

)3

ρds(TNR), (5.23)

where again we pulled out the overall factor T 3 (the appropriate scaling for matter-like

energy density). The second term is simply the evolution of the energy density produced

prior to reach this point. As before, the expression in the parenthesis in the �rst term is the

change of energy density in the comoving frame. Crucially, for all d ≥ 2 (which is always the

case for the interaction in Equation 5.7), the production is UV-sensitive. Hence, reaching

TNR provides an e�ective endpoint to COFI production.

For the special case where the dark sector was never relativistic, this corresponds to

setting TNR = TR and ρds(TR) = 0. In doing so, one can see that the late time energy

density only depends on d, λ, TR, and Λ (provided that the IR scale is much smaller than

TR).
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�Hadronic� production

If production continues to occur when the temperature of the SM bath is less than mgap, the

characteristic energy of the initial SM states is also less than the mass gap. In this case, the

produced �nal states are �dark hadrons� rather than CFT states14. While in principle, the

relevant processes and their rates are model-dependent, in the region wheremDM is modestly

smaller than mgap
15 we obtain a reasonably reliable and simple description as follows. As we

show in detail in section 5.C, the �hadronic� production process is (i) UV-dominant (i.e. most

of the production occurs at T ∼ mgap) and is (ii) subdominant to the energy injected via

COFI established at T > mgap (if at all).

Post-production evolution

Freeze-in production is terminated by a threshold e�ect. This can be a result of switching

to non-relativistic production, switching to the �hadronic� production mode, or the initial

states decoupling from the SM bath.

Let Tf be the threshold that puts an end to the production. The subsequent evolution

depends on whether the dark sector is radiation-like or matter-like. If it were radiation-like,

we get today's dark matter energy density, ρds,0, by �rst redshifting as radiation (i.e. as T 4)

down to TNR and further redshifting the energy density as matter (i.e. T 3) between TNR

and today:

ρds,0 = ρds(Tf )

(
TNR

Tf

)4(
T0
TNR

)3

= Am4
DM

(
T0
TNR

)3

. (5.24)

14. This �hadronic� production is strictly speaking not a conformal freeze-in and instead is the usual
particle freeze-in.

15. This will turn out to be a necessary condition in order to evade the DM self-interaction bound (see
section 5.3.4).
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5.3.2 IR-dominant freeze-in

Based on the discussion in subsection 5.3.1, we are in a position to compute relic abundances

of dark matter and study its dependence on various parameters in this model. As is clear

from Equation 5.7, the physics of COFI is controlled mainly by two parameters, λ and the

scaling dimension d of the CFT operator. These can be traded with mgap and d (see the

discussion around Equation 5.48 and Equation 5.49). These parameters will be scanned over

in our plots. The remaining model parameters: TR, Λ, r, and A, are �xed for the plots.

We are mainly interested in TR ≈ Λ ∼ O(TeV); with TR < Λ to ensure the validity of the

theory throughout the entire freeze-in process and asymmetric reheating. The dependence

on A is pretty mild. We consider two choices for r: r = 0.1 and r = 0.01. Finally, depending

on scaling dimension d, we have two qualitatively di�erent scenarios. We begin with the so

called IR-dominant case, with 2 < d < 2.5, leaving the UR-dominant production to the next

subsection.

The contours of the observed relic density in the plane of (mDM, d) (with the remaining

parameters �xed) is shown in orange-red in Figure 5.3. For both panels, there is a general

tendency for d to increase with mDM. The physics behind this is that as mDM increases,

so does TNR This in turn means that ρds starts redshifting as matter at a higher tempera-

ture; leading to an e�ective increase of the �nal relic density, ρds,0. This increase must be

compensated for by adjusting d so that ρds,0 matches a constant observed value. A larger

d corresponds to a more irrelevant interaction, hence slower heating. Therefore, an increase

in mDM is generically balanced by an increase in d, as observed in Figure 5.3. Following

this discussion, one can also determine how the general trend of the contour will behave

as we lower our choice λ (or equivalently raising Λ). The scattering process will inject less

energy into the dark sector. To compensate, mDM can be raised so the dark sector can start

redshifting as matter earlier or d can be lowered to make the interaction more relevant. As

such, the contour will shift towards the bottom right.
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Both plots exhibits some sharp change of slope for largemDM. In the case of the left plot,

it plateaus; whereas the right plot drops sharply. Both of these correspond to the case with

TNR = TR. This can be veri�ed by following the red curve in Figure 5.4. As discussed in

section 5.3.1, this results in the late time energy density becoming independent ofmDM. The

discrepancy in the r = 0.01 plot is due to the fact that TSM = mgap and mp(TSM) = mgap

occur at scales close to TR. When this happens, the �rst term in Equation 5.23 cannot be

ignored and the interplay between the two terms determines the overall shape.

A sharp change of slope also occurs for low mDM: at mDM ≈ 50 keV for the plot and

mDM ≈ 5 keV for the right �gure. This is a result of TNR dropping below the other possible

endpoints of production. This can be veri�ed by checking that the intersection of the blue

curve with the black curve in Figure 5.4 does indeed occur at mDM ≈ 50 keV for r = 0.1.

There are several localized bumps and dips in Figure 5.3. They arise from jumps in the

number of relativistic degree of freedom, g∗, and the number of production channel. We

explain this focusing on the left panel (with r = mDM/mgap = 0.1), but our discussion

applies in general.

For example, there are noticeable bumps at mDM ≈ MeV, d ≈ 2.16. These features

are related to TNR crossing some mass threshold: ΛQCD followed by mµ for the subsequent

bump. This fact can be checked by �nding the intersection of the yellow curve with the

purple dashed line in Figure 5.4.

To understand this better, we note that TNR decreases as we lower mDM. When TNR

happens to cross a threshold, e.g. the electron mass, there are potentially two e�ects. First,

it reduces the number of production channels, e�ectively decreasing ρds,0. This must be

compensated for by decreasing d which has an e�ect of increasing the rate of heating, and

hence the �nal energy density. The second e�ect is the change of g∗. We incorporated

the change of g∗ numerically by evaluating the energy density exactly outside of any phase

transitions, hence the �jump� in g∗ across each mass threshold (except the QCD phase
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transition and neutrino decoupling) is rather smoothed out. The (smooth) decrease in g∗

results in increase in ρds,0, which then needs to be balanced by increasing d. This explains

the smooth rising section right after the drop.

During the QCD phase transition, g∗ drops sharply (increase in ρds,0) and the up, down,

and strange quarks decouple (decreasing the production channels, hence ρds,0). Numerically,

it turns out that the former e�ect dominates and is compensated by a sharp increase in d.

Soon after, the muon decouples. This time, the e�ect of decreasing the number of production

channels is larger; requiring a decrease in d.

While the qualitative feature described above is solid, the details of the shape appearing

in Figure 5.3 is partly due to the way we implemented g∗ and changes in the production

channel. Furthermore, the impacts of neglecting the derivative of g∗ in the BE can be large.

As such, the shape of the contours in that region should not be taken to be exact.

For comparison, we have also drawn an estimate for the relic density contour for the

particle freeze-in scenario based on the results given in [10] in green16. To obtain this curve,

we assumed that the kinetic mixing parameter is given by Equation 5.12 and the dark photon

mass obeys rmA′ = mDM. Using the right plot as an example, for low dark matter masses,

we see that the contour exactly follows the contour of constant kinetic mixing parameter.

As mDM increases, the contour is interpolated to another contour of constant kinetic mixing

parameter. This is due to the increase in g∗(mA′) which needs to be compensated for by

increasing the kinetic mixing. This illustrates that the predictions for COFI is very di�erent

from that of the particle dark photon scenario.
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5.3.3 UV-dominant freeze-in

The contours of the observed relic density in the plane of (mDM, λ) (with the remaining

parameters �xed17) is shown in Figure 5.5. In both plots, we see the same behavior: two

straight lines with constant, negative slope.

The physics of this scenario is simpler to describe compared to the IR-dominant freeze-in

scenario. When d > 5/2, the TR-dependent terms become the dominant contribution to the

relic density at low temperatures. If the dark sector temperature increases rapidly beyond

mDM by the initial energy transfer, we can safely drop the T 2d−5 term in Equation 5.21

and the energy density is of the form constant×T 4. This tells us that the energy transfer

from the SM sector has concluded and the dark sector energy density simply redshifts as

radiation. This continues until the dark matter becomes non-relativistic, which occurs at

TNR =

[
mpl

A
√
g∗(TR)(2d− 5)

Bd(total)T
2d−5
R

]−1/4

mDM. (5.25)

The energy density then continues to redshift as matter until today. This gives

ρds,0 =

[
mpl

A
√
g∗(TR)(2d− 5)

Bd(total)T
2d−5
R

]3/4
AmDMT

3
0 (5.26)

Factoring out the mDM and λ dependence, we see

ρds,0 ∝ λ3/2mDM. (5.27)

So a log-log contour plot of constant ρ will look like a straight line.

16. The exclusion contours shown in the �gure do not apply to this contour.

17. For a �xed d, changes to TR and Λ consistent with TR < Λ is equivalent to rede�ning λ.
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In the case where the dark sector was never relativistic, the energy density today is simply

ρds,0 =
mpl√

g∗(TR)(2d− 4)
Bd(total)T

2d−4
R T 3

0 ∝ m0
DM (5.28)

Here, we see that the relic density is independent of the dark matter mass18. Thus, a contour

plot of �xed ρ is simply a �at line in λ

5.3.4 Phenomenological constraints

In this section, we discuss experimental as well as theoretical constraints on our model. Ones

with non-trivial restrictions on the allowed parameter space are included in the plots of our

main results Figure 5.3 and Figure 5.5.

Non-equilibrium

The dark sector must be out of equilibrium with the SM for the freeze-in assumption to

be valid. Otherwise, the backreaction from the CFT to SM sector must be included in the

Boltzmann equation. For this to be true, we must have

Γ = n⟨σv⟩ < H (5.29)

Using dimensional analysis, the LHS is roughly

Γ ∼ λ2
T 2d−3

Λ2d−4
, (5.30)

while the RHS is roughly

H ∼ T 2

mpl
(5.31)

18. Just like in the case of the IR-dominant production, there are higher order corrections which do depend
on the dark matter mass.
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Rearranging gives

λ2 ≲

(
Λ

T

)2d−4 T

mpl
. (5.32)

For IR-dominant production (i.e. 2 < d < 5/2), it is su�cient to demand that it was out

of equilibrium at the very last moment. A ballpark estimation can be made by considering

mDM ≈ me and d = 2.25, Λ = 1 TeV for which we get λ ≲ 10−10. The above bound can be

translated to a bound on the kinetic mixing

ϵ ≲
1

gs

(
me

mpl

)1/5(mgap

me

)d−2

for mDM < me, (5.33)

ϵ ≲
1

gs

(
mDM

mpl

)1/5(mgap

mDM

)d−2

for mDM > me, (5.34)

where gs ∼ O(1) is the coupling among hadrons of con�ning phase of the dark CFT.

For UV-dominate production (i.e. d > 5/2), exponent of T is positive. So we need

non-equilibrium to hold at the onset. So this translates to

λ2 <

(
Λ

TR

)2d−4 TR
mpl

(5.35)

Choosing Λ ∼ TR = 1 TeV, we get λ ≲ 10−8.

DM self-interaction

Once the CFT con�nes, we expect that hadrons of the IR phase interact with each other

with coupling strength gs. Unlike the scenario studied in [321], we must have vector-boson-

mediated self interactions in the dark sector. Here, the vector-meson is nothing but the

composite dark photon coming from the CFT operator Oµν . The estimate of the cross
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section via dimensional analysis is given by

σself ∼
1

8π

m2
DM

m4
ρ

=
1

8πm2
gap

r2. (5.36)

In this case (i.e dimension 4 vector mediation as opposed to dimension 5 scalar mediation),

we see that the suppression is only r2 rather than r6 as in [321]. The DM self-interaction

bound

σself
mDM

< 4500 GeV−3 (5.37)

becomes

mDM ≳ 10r4/3 MeV. (5.38)

Warm dark matter

For mDM ∼ keV, our dark sector generically starts of as a relativistic plasma. Therefore, one

needs to worry about a potentially large free streaming distance (λFS); suppressing structure

formation below that length scale. Assuming collisionless dark matter, λFS is the comoving

distance traveled until some late time when the dark matter becomes highly non-relativistic.

Following original derivation in [322], we know that the mean-free path in COFI theories are

given by

λFS, bound ∼ 1

T

∣∣∣∣
Tds=mDM

=
1

TNR
. (5.39)

By demanding the correct relic abundance, we can use Equation 5.24 to write TNR as a

constant times m
4/3
DM. With that constraint, the warm dark matter bound is constant in the

dark matter mass19.

19. While the warm dark matter bound will be shown as a constant in mDM in our plots, it is important
to note that the relic density for all points above the orange-red line is less than the observed relic density.
This implies that the dark sector is colder. In addition, as our dark matter is now a subcomponent, the
warm dark matter bound is in-principle further relaxed. As such, the shaded region above the line should
be interpreted as a conservative estimate for the exclusion.
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Depending on the details of the modelling, the constraints on the mass of a warm thermal

relic is given by [330]

mDM ≳ 3.5− 5.3 keV.

Constraints from searches at terrestrial experiments

In our model, the dark photon almost always decays invisibly. The dominant constraints

from dark photons to invisible searches and LDMX projections are quoted in [331]. Since

the kinetic mixing required to satisfy the out-of-equilibrium constraint is su�ciently small,

we safely evade these bounds. Furthermore, as the dark photon is relatively heavy, we do

not obtain a 1/v2 enhancement for direct detection experiments.

Stellar evolution

For a given stellar system with internal processes occurring at a scale TS , there can be very

distinct phenomenology depending on the mass of the dark matter candidate. If mDM > TS ,

we are in the hadronic phase which prevents CFT states from being directly produced.

Furthermore, the dark matter particle cannot be produced directly as it is kinematically

forbidden. IfmDM ≲ TS ≲ mgap, then the dark matter production is no longer kinematically

forbidden. Lastly, if TS ≳ mgap, we are in the CFT phase, so CFT states are produced

within the star. Only the latter two scenarios can rule out regions of parameter space. In

the following subsections, we will brie�y discuss the expected features of the constraints

obtained via these two scenarios. The details of the estimate will be presented in section 5.E

and we refer to [322] for a general discussion of star cooling bounds in COFI theories.

(i) TS ≳ mgap

In this region, the only parameters of the model that in�uence the energy density loss rate,

ε̇, are Λ, λ, and d. Provided that Λ and λ are kept �xed, any constraints on ε̇ will translate

to a constant upper bound on d. An order-of-magnitude estimate on ε̇ was performed and
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yielded an upper bound below the unitarity limit of d for all stellar systems. As such, this

feature will not be seen on the plots. However, it should be noted that O(1) factors in ε̇ can

have sizable impacts on the bound on d. This could potentially alter our conclusion on the

bounds for HB stars but not the other systems.

(ii) mDM ≲ TS ≲ mgap

In this scenario, ε̇ depends on all of the parameters of the model. In particular, as all of

the dark matter production is mediated via the dark photon, the novel energy loss rate will

always have the following dependence

ε̇ ∝
(
λmd−2

gap

Λd−2

)2
1

m4
gap

(5.40)

As mgap ≪ Λ, ε̇ is a decreasing function of d. When 2 ≤ d < 5/2, ε̇ is also a decreasing

function of mgap. So the curve of constant ε̇ will have negative slope on the mgap�d plane

(and by extension, the mDM�d plane).

The systems which provide the strongest constraints are HB stars and RG cores. Both of

these systems facilitate scattering processes with TS ∼ 10 keV; covering 10r keV≲ mDM ≲

10 keV. The total allowed �novel� energy loss rate for these systems is typically constrained

to be within the neutrino �ux. Numerically, the constraints from both systems are derived

from the �e�ective Fermi constant�. So these constraints are both comparable.

MS stars provide a much weaker constraint. The total allowed �novel� energy loss is

orders of magnitudes larger than the solar neutrino �ux. This results in a much weaker

constraint at r keV ≲ mDM ≲ 1 keV.

SN1987A does not provide any constraint for 30r MeV ≲ mDM ≲ 30 MeV. In the

hadronic phase, our model is the usual dark photon particle freeze-in scenario with a heavy

dark photon. This tells us that the novel energy loss is the same as the usual dark photon

freeze-in models with an additional (TS/mgap)
4 suppression. Given that SN1987A does not

constrain particle freeze-in, this is also true for us.
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5.4 Conclusion of the Chapter

In this chapter, we have considered a scenario in which a dark sector is described by a CFT

and it interacts with the Standard Model via an antisymmetric tensor coupling

L ⊃ λ

Λd−2
BµνOµν , (5.41)

where Bµν is the �eld strength of the U(1)Y gauge boson of the SM and Oµν is an anti-

symmetric tensor operator of the dark CFT. Provided the coupling is su�ciently small, we

show that the dark sector can be populated via Conformal Freeze-In [321, 322]. In our case,

the freeze-in production is through a tensor (as opposed to scalar) coupling. A successful

implementation of the freeze-in mechanism also requires the reheating to be preferential to

the SM sector. We propose a scenario involving a cascade of CFTs, ending with the CFT

describing the dark sector. This model provides a dynamical explanation of the hierarchy of

scales, sizes of the couplings, as well as a natural realization of the asymmetric reheating.

Once the dark CFT con�nes, a composite dark photon emerges from the above coupling

with a highly suppressed kinetic mixing with the U(1)Y gauge boson. This composite dark

photon couples to a dark matter particle, which we assume to be a Goldstone boson of a

spontaneously broken global symmetry. The size of kinetic mixing also has a unique positive

correlation with the mass gap scale; hence the mass of the dark photon Equation 5.12.

All these features combined make the theory very predictive and, at the same time,

represent an example where small couplings and mass scales signi�cantly di�erent from the

ones appearing in the SM are explained rather than just assumed as inputs.

We study in detail the dark matter production, cosmological evolution, and relevant

constraints from considerations of dark matter self-interaction, warm dark matter bound,

and stellar evolution. We consider both possibilities where the dark matter production is

UV- and IR-dominant, and show that the correct relic abundance can be obtained with
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reasonable choices of parameters. We found viable dark matter candidates in the range

of MeV to GeV, with a dark sector con�nement scale and dark photon mass a factor of

approximately 10 �100 times higher.

There is one important distinction between our setup and the �usual" scenario with

only an elementary dark photon with a tiny coupling to the SM. In our setup, the relic

abundance is mainly determined by the conformal dynamics instead of being mediated by

the dark photon. Hence, it leads to very di�erent predictions for the correlation between the

dark matter and dark photon properties. A richer dark sector can lead to richer physics as

well. For example, the cascade of phase transitions between the transitions among the CFTs

can leave their imprints in cosmological observations, such as the gravitational wave signals.

We leave further exploration of these interesting possibilities for a future study.

5.A Dynamical Mass Scale Generation in COFI Theories

5.A.1 Gap scale in COFI theories with a scalar operator

In the UV, COFI theories assume a coupling between the SM sector and a CFT sector of

the form

L ⊃ λ

ΛD−4
OSMOCFT (5.42)

where OSM/CFT is a gauge invariant operator (invariant under its own gauge group) and D

is the sum of scaling dimensions of the two operators. The dimensionless coupling λ needs

to be small for the dark matter relic density to be obtained via freeze-in. Such a small value

can arise naturally from dimensional transmutation if the above theory emerges as an IR

phase of a UV gauge theory with a IR-�xed point. See [321] for a UV completion via weakly

coupled gauge theory and section 5.2 for a UV completion in terms of strongly coupled CFT

with a 5d holographic dual.

In the absence of other conformal symmetry breaking terms, the interaction in Equa-

136



tion 5.42 is the main source of conformal symmetry breaking. The details of how this occurs

depend on the nature of the SM operator OSM. If the vacuum expectation value (vev) of

OSM is non-zero, then the renormalization group (RG) �ow ensures that the above theory

�ows to

L ∼ λ

ΛD−4
⟨OSM⟩OCFT (5.43)

at E ∼ ⟨OSM⟩. This can be recognized as a scalar deformation to the CFT and triggers

running of the CFT (provided the CFT operator has dimension ≤ 4). The scale at which

the conformal invariance is completely lost and a new IR phase (we assume that it is the

usual con�nement phase) arises is estimated to be [321]

mgap ∼
(

λ

ΛD−4
⟨OSM⟩

)1/(4−d)
, (5.44)

where d is the scaling dimension of the CFT operator. Below the gap scale (i.e. E ≤ mgap),

CFT states turn into composite particles states. Some of these composite states may be

stable on a cosmological time scale and plays the role of DM.

Even when ⟨OSM⟩ = 0, conformality loss still occur due to �operator-mixing e�ects�[322].

The idea is that given the coupling in Equation 5.42, other sets of interactions are induced

either at tree or loop level. This gives

L ∼
∑
i

biOCFT + ciOi
SMOCFT + diO2

CFT, (5.45)

where bi, ci and di are generic dimensionful coe�cients which can be reliably estimated

within a theory.

The �rst kind of mixing e�ect with a coe�cient bi arises by contracting all SM �elds

in OSM forming a loop diagram. An important example is the gluon portal with OSM =

GaµνG
aµν . In this case, one simply closes up gluon lines in a loop and it provides a dominant
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source for the CFT-breaking [322]. For the second kind with a coe�cient ci, some of the

induced operators Oi
SM can have non-vanishing vev leading to the breaking of conformal

symmetry as described in the procedure above. For instance, starting with OSM = HL†ℓR,

the operator (H†H)OCFT is generated at one-loop as shown in Figure 5.6. This provides a

source of CFT breaking. In addition, O2
CFT may contribute to the breaking of conformal

invariance if its scaling dimension is not greater than 4 (in the large-N limit, the scaling

dimension of O2
CFT is roughly twice that of OCFT). Ultimately, the mass gap scale is

obtained by taking into account of all these e�ects, and is primarily determined by the

largest breaking e�ect. See [322] for a comprehensive discussion.

5.A.2 Gap scale in COFI theory with an anti-symmetric tensor operator

At a UV scale, Λ, on the order of a few TeV, the Lagrangian of the theory is given by

L ∼ λ

Λd−2
BµνOµν (5.46)

where Bµν is the �eld strength of U(1)Y gauge boson of the SM. For freeze-in production

of DM, we take λ ∼ O(10−10�10−11). This small coupling can arise naturally according to

the construction described in section 5.2.

In order to study the RG evolution of the theory described by Equation 5.46 and the gap

scale generation, we �rst note that no operator mixing e�ect of the �rst two kinds (bi and ci

terms in Equation 5.45) can lead to a reliable source for the conformal symmetry breaking.

This is simply because such induced operators are not scalar CFT operators.

Moving onto the third kind, at scales above the vev of the SM Higgs, v, the operator in

Equation 5.46 does not mix with any other local scalar operators proportional to OµνOµν .

This is because any diagram super�cially generating such an operator involves massless

propagator of the hypercharge gauge boson Bµ and hence is non-local. This changes once
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electroweak symmetry is broken. Now, Bµ = cos θWAµ + sin θWZµ. At E < mZ , the

exchange by Z-boson can generate other local operators. To see this we consider a scalar

operator from OPE of two Oµν 's

Oµν ×Oµν ⊃
[
OµνOµν]

n,ℓ ∼ Oµν□n∂µ1 · · · ∂µℓOµν (5.47)

and the scaling dimension of the scalar operator Os in the OPE expansion (i.e. n = 0, ℓ = 0)

is given by ds = 2d + γ where γ is the anomalous dimension. To the extent that negative

anomalous dimension is possible, it is expected that such an operator can serve as a scalar

deformation to the CFT.20

In fact, the Z-boson exchange generates the operator

L ∼
(

λ

Λd−2

)2 es sin
2 θW

mds−2d
Z

Os (5.48)

where the scalar operator Os is the lowest dimensional operator with dimension ds in the

OPE with dimensionless coe�cient es.

In this work, we assume that there exists a CFT scalar operatorOs with scaling dimension

ds and there is a large gap in the CFT operator spectrum such that the scale of conformality

lost is reliably estimated by the RG running of this single operator. To the best of our

knowledge, no numerical CFT bootstrap bound on the scaling dimension of such a scalar

operator from the OPE of antisymmetric rank-2 tensor operator is available in the literature.

It would be interesting to compute the bound and to see if non-trivial constraints on our

20. In AdS/CFT, the anomalous dimension γn,ℓ of a general spinned operator in the OPE expansion cor-
responds to the binding energy of the two antisymmetric tensor particles in the bulk. The scaling dimension
is dual to the bulk energy of such a bound state and is given by ∆ = 2d + 2n + ℓ + γn,ℓ, where ∆ and ℓ
are the scaling dimension and the spin of the operator in the OPE expansion respectively. In the large-ℓ
limit, it is known that the anomalous dimension takes the universal behavior γn,ℓ ∼ ℓ−τ where the twist τ is
de�ned by τ = ∆− ℓ. In particular, the energy momentum tensor (which exists in any QFT) satis�es τ = 2
and γ0,2 < 0; the latter being the dual of the fact that the gravitational force is attractive. See e.g. [332] for
more discussion.
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scenario is imposed.

Given a scalar deformation term

L ∼ csOs, (5.49)

the gap scale is estimated to be mgap ∼ c
1/(4−ds)
s . Since we do not have prior knowledge of

the scalar deformation generated from the OPE, we simply treat mgap as a free parameter

for our study of the dark matter phenomenology.

5.B AdS/CFT Correspondence for COFI

5.B.1 Details of the 5d dual

In this section, we discuss the AdS dual of the theory setup described in section 5.2.

A 4d theory of COFI can be thought of as the dual of a theory living on a slice of AdS5. A

simple cartoon level of this AdS5 picture is depicted in Figure 5.7. Neglecting the �rst part of

the bulk associated with the physics of in�ation, roughly speaking, there is a bulk where all

the SM �elds propagate as in the standard Randall-Sundrum (RS) model [333, 334], which

is dual to a CHM in 4d. There exists an additional bulk in the deeper IR (i.e. larger z)

where dark sector (DS) �elds propagate.21 The two sectors communicate via brane-localized

interactions.22

In�ation occurs at a very high energy scale, and so it is natural that the in�aton appears

in the most UV part (small z) of the theory in 5d. In Figure 5.7, we added a �sector� of

in�ation depicted as an extra bulk slice beyond the SM slice. If the pro�le of the in�aton

�eld, Φ, is inclined towards the UV brane, a completely natural picture emerges in which the

SM sector gets reheated much more than the dark sector simply by the size of overlap with

21. The theoretical framework for this type of generalization of the standard RS model with multiple
branes was introduced in [326] and phenomenology was studied in [335, 336, 337, 338].

22. In COFI, for simplicity, the SM sector is taken to be purely elementary. This may be realized by taking
a limit in 5d in which the SM-bulk is taken to be a in�nitely thin brane.
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the in�aton �eld; in 5d, this is a consequence of the geometric (de)localization and in 4d,

it is dual to the renormalization group �ow e�ects. In order to simplify the discussion, we

note that the details within the �in�ation-bulk� is not important for us and we will simply

take a thin brane limit for the in�aton sector (see Figure 5.8 but we still use Figure 5.7 for

the discussion below).

The presence of a throat further in the deep IR (i.e. beyond z = z1) in the 5d dual

means that in 4d the con�nement of CFT1 at Λ1 (associated with z1) also creates a set of

interacting composite preons (like quarks and gluons of the QCD). This sector carries no SM

charges and their dynamics brings the sector into a strongly interacting IR �xed point at a

scale not so much below Λ1. This course of physics is not quite spelled out in the 5d physics

when represented as a thin brane separating the two bulks.

In 5d, we add a U(1)D gauge �eld in the DS-bulk and choose (+,−) boundary conditions

(BCs) (i.e. Neumann BC on the intermediate brane and Dirichlet BC on the IR brane).

This ensures that there are no zero modes and at the same time allows us to write down a

brane-localized interaction. The brane-localized interactions takes the form

Lbrane ∼ ϵ5dBµνF
µν
D = ϵ5d

∑
n

∑
m

f
(n)
B (z1)f

(m)
D (z1)B

(n)
µν F

(m)µν
D . (5.50)

Since the U(1)Y KK-modes, B
(n>0)
µ , have pro�les localized to the intermediate brane at

z = z1, they have sizable coupling with the dark U(1)D gauge boson A
(1)
D .23 If TR ∼ Λ1

(but less than con�nement phase transition temperature), these KK modes can be excited

and can easily populate the dark sector. If TR ≪ Λ1, they are not produced cosmologically;

leaving only the zero mode, B
(0)
µ , (i.e. SM �eld) coupled to the dark CFT. If, on the other

hand, TR > Λ1, a more appropriate description is in terms of the thermal CFT1 in which

23. To be more precise, the pro�le of A
(1)
D is peaked near the IR brane and suppressed at the intermediate

brane. This may raise a question of whether the e�ective coupling is highly suppressed. From the discussion
of elementary-composite mixing given in subsection 5.2.1, however, we know that this suppression is only
O(g/gs).
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there is no clear distinction between the SM and the DS.

Next, we show that small λ appearing in Equation 5.7 requires the existence of an extra

bulk (BZ-bulk) between the SM and DS bulk as shown in Figure 5.8. Let us �rst discuss the

case with only SM and DS bulks (i.e. the BZ-bulk is shrunk to a thin brane). The U(1)D

gauge �eld living in the DS-bulk couples to the SM sector by a kinetic mixing written down

on a brane, BµνF
µν
D . In the CFT picture, this means that the �rst con�nement at Λ1 gives

rise to a �composite� CFT (called it CFTD in section 5.2) and it interacts with the SM �elds

via

L ∼ LCFTD
+ ϵρBµνF

µν
D + gDADµJ

µ
D (5.51)

where ρ
µ
B is a composite vector meson associated with U(1)Y and A

µ
D and F

µν
D is a composite

vector boson and its �eld strength external to the dark CFT. The latter couples to the dark

CFT through its coupling to U(1)D current and to the composite SM sector via kinetic

mixing with ρ
µ
B . Since CFTD is purely composite, its interaction with the external �eld Bµ

needs to be through its coupling to a composite state, ρ
µ
B , which then mixes with Bµ. The

composite-elementary mixing is O(g/g1s), where g(g1s) is the elementary (composite) gauge

coupling24. If the reheat temperature is less than Λ1, Equation 5.51 is the right description

after the reheating. This, however, comes with a sizable interaction between the SM and

DS. The SM interacts with the DS through Bµ�ρ
µ
B mixing and then ρ

µ
B�A

µ
D mixing, and

�nally A
µ
D coupling to the dark CFT. Generically, we expect that ϵ and gD are not small,

leading to a signi�cant coupling which can be estimated to be

L ∼
(
g

g1s

)
ϵgD

Λd−2
1

BµνOµν
D , (5.52)

where d is the scaling dimension of the tensor operator Oµν
D of the CFTD. We assumed that

24. In more detail, the composite-elementary mixing is of the form g
g1s

Λ2
1Bµρ

µ
B , which originates from

gBµJ
µ in the UV Lagrangian using the interpolation relation Jµ ∼ Λ2

1

g1s
ρµB . See section 2.3.2 of [326] for more

details.
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there is a coupling between F
µν
D and Oµν

D which is on the order of gD. We see that other

than the mild suppression factor from the composite-elementary mixing, the net interaction

is unsuppressed and the DS will be quickly equilibrated with the SM, invalidating both the

asymmetric reheating and non-thermal freeze-in production.

To resolve this, we now introduce an extra bulk, the BZ-bulk, between the SM and DS

bulks, as depicted in Figure 5.8. Intuitively, this BZ-bulk can be alternatively thought as a

thick opaque brane. Due to the �nite penetration depth, both Bµ and ADµ are attenuated,

resulting in an extra reduction in their overlap. More explicitly, the interaction between the

SM and DS is mediated by a �eld living in the BZ-bulk. For instance, it can be a pair of

bulk fermions, ψ and χ, coupling to each side via dipole interactions

S ⊃
∫
z=z1

a

Λ1
Bµνψ̄Lσ

µνχR(z1) +

∫
z=z′1

b

Λ2
FDµν χ̄Lσ

µνψR(z
′
1), (5.53)

where a and b are dimensionless constants. In order to get the above interactions, we have

chosen the following boundary conditions for the bulk fermions.

ψ =

 ψL(+,−)

ψR(−,+)

 , χ =

 χL(−,+)

χR(+,−)

 . (5.54)

Here, +(−) denotes the Neumann (Dirichlet) boundary condition, and the above choice

ensures that there are no fermion zero modes, thereby removing potential inconsistency with

cosmological observations (e.g. ∆Neff).

Crucially, if the reheat temperature is below Λ2 (dual to z = z′1), one can use KK-

decomposition (as opposed to thermal CFT) to show that the exponentially suppressed

pro�le leads to a very small the e�ective coupling between the SM and DS. This suppression

is a 5d dual version of suppression seen in 4d picture from RG running (i.e. the discussion

around Equation 5.5 and Equation 5.6 and analogous discussion for dL,R < 5/2). More
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explicitly, if we choose bulk masses for ψ and χ such that their zero mode pro�les are

localized near the brane at z = z1 (corresponding to dL,R > 5/2 in subsection 5.2.1), then

while a can be O(1), due to pro�le suppressions, b is exponentially suppressed. The e�ective

coupling, denoted as ϵ̃ in subsection 5.2.1 is proportional to the product ab and hence highly

suppressed. A similar argument applies to the opposite case dL,R < 2/5: this time b is

O(1) but a is exponentially suppressed. Contributions from KK modes are also suppressed

because KK pro�les are all very inclined towards the IR brane at z = z′1. The 4d dual picture

is discussed in subsection 5.2.1 and the diagram Figure 5.2 represents the sum of both zero-

and �rst KK-modes (in a sense of 2-site truncation of [339]).

An e�ective coupling between the SM and DS is obtained by computing the fermion loop

stretched between the z1 and z
′
1 branes which is UV-�nite. The result should be on the order

of what is shown in Equation 5.6.

5.B.2 Summary of 5d picture

The holographic dual picture of conformal freeze-in physics is shown in Figure 5.7. The

feature that dark sector bulk (denoted as DS) appears at larger z (i.e. deeper IR) compared

to the SM-bulk is a re�ection of the SM being external to the dark CFT sector in the

4d picture. Furthermore, the fact that in�ation occurs at very high energy scale makes

it natural that the �in�ation-bulk� appears in the deepest UV (i.e. smallest z). Due to the

smaller overlap with the DS states, the SM states can be preferentially produced at reheating.

To ensure asymmetric reheating, we need the coupling between the two sectors to be small.

This necessitates another bulk (shown as �BZ� in Figure 5.8); providing e�ective sequestering

of the DS bulk.
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5.C Hadronic Production

Provided mDM ≪ mgap (in practice an O(1) separation su�ces), at T < mgap, most of the

dark hadrons decouple and the e�ective theory is described by

L ∼ ϵBµνρ
µν + gsJ

µ
DMρµ + eJµA

µ, (5.55)

where Jµ = ψ̄γµψ is the SM fermion (e.g. electron) current coupled to the photon, Aµ, and

J
µ
DM =

(
π†∂µπ + h.c.

)
is the DM current coupled to the dark photon, ρµ. As usual, the

kinetic mixing can be diagonalized to get

L ∼ eϵJµρµ + gsJ
µ
DMρµ + eJµAµ, (5.56)

where the �rst term represents the coupling of the dark photon to the SM fermion current.

Since the mass of the composite dark photon is mρ ≈ mgap, at T < mgap, we can further

integrate out the dark photon and acquire a higher-dimensional operator describing the

interaction between the DM and the SM

L ∼ eϵgs
JµJ

µ
DM

m2
gap

. (5.57)

The higher-dimensional nature of the operator reveals that the process is UV-dominant.

More explicitly, the energy transfer rate from the fermion annihilation is estimated to be

Γ
(
ψ̄ψ → ππ

)
∼ 1

8π

e2ϵ2g2s
m4

gap
T 9. (5.58)

Here, T 6 is from n2ψ, a factor of T 2 from the derivative of π, and one factor of T from

Etransfer (since we are computing a rate for the energy transfer).

We now show that this production is sub-dominant and therefore, to a good approxi-

145



mation, we can say that COFI production ends around T ∼ mgap. In order to show the

subdominance condition, we �rst consider the case where, in the UV, there was relativistic

COFI production (i.e. Tds > mDM) and TNR < mgap. In this case, the Boltzmann equation

Equation 5.14 can be solved using Equation 5.58 giving

ρds,Had(T < mgap) ≈
B̂mpl

3
√
g∗
T 4m3

gap, B̂ =
e2ϵ2g2s
m4

gap
=
e2λ2

m4
gap

(mgap

Λ

)2d−4
, (5.59)

where we have kept only the leading term (valid at T ≪ mgap). On the other hand, the

energy density from COFI T > mgap is

ρds,R(T < mgap) ≈
Bdmpl

(5− 2d)
√
g∗
T 2d−1. (5.60)

The ratio of the two is

ρds,Had

ρds,R
(T < mgap) =

e2

Γd

(
T

mgap

)5−2d

, (5.61)

where Γd was previously de�ned in Equation 5.15. Since 2 < d < 5/2 for IR-dominant COFI

production, the above ratio is much smaller than 1. Therefore, we see that the hadronic

production is insigni�cant when TNR < mgap.

Now, consider the complementary case with TNR > mgap. In this case, at T > TNR, the

production is via the relativistic COFI process, and at mgap < T < TNR, it is through the

process discussed in section 5.3.1. Finally, at T < mgap, further hadronic production occurs.

The energy density from the hadronic production is obtained by solving Equation 5.22 with

Equation 5.58 and we found

ρds,Had(T < mgap) ≈
B̂mpl

4
√
g∗
T 3m4

gap. (5.62)
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Contribution from the earlier production is found using Equation 5.21 and Equation 5.23:

ρds,COFI(T < mgap) ≈
Bdmpl√

g∗

(
1

(2d− 4)
+

1

(5− 2d)

)
T 3T 2d−4

NR . (5.63)

The �rst term is from the non-relativistic COFI production (mgap < T < TNR) while the

second term represents the relativistic COFI production (T > TNR). The ratio is found to

be
ρds,Had

ρds,COFI
=
e2

Γd

(2d− 4)(5− 2d)

4

(
mgap

TNR

)2d−4

. (5.64)

Since unitarity demands d > 2, the above ratio must be much smaller than one. Therefore,

we conclude that the hadronic production makes only a small contribution to the DM energy

density and hence may be ignored. This also means that while the naive kinematics suggest

that the production must end at T < mDM (when it is not terminated already by SM fermion

masses), in e�ect it ends around mgap.

5.D Conformal Freeze-In Calculations

In this appendix, we present details of COFI computations used in the main text.

5.D.1 Fermion pair annihilation

We begin by writing down the ff̄ → CFT matrix element

M = − 2eλ

Λd−2

1

p2
ū(p2)γ

µu(p1)p
ρ⟨p|Oµρ|0⟩, (5.65)

where Oµρ is the antisymmetric 2-tensor operator corresponding to the CFT out state with

momentum p = p1+p2. Squaring and performing the spin sum in the massless fermion limit
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gives

∑
|M|2 =

4e2λ2

Λ2d−4

4

p4
p1βp2γ(g

βνgγµ − gβγgµν + gβµgγν)pρpα⟨0|O†
αν |p⟩⟨p|Oµρ|0⟩ (5.66)

The collision term (rate of energy transfer through scattering) is given by

n1n2⟨σ1+2→CFTvrelEtot⟩ =
(∫

dΠ1f(p1)

)(∫
dΠ2f(p2)

)
∫

d4p

(2π)4
ρ(p2)(2π)4δ4(p1 + p2 − p)

(∑
|M|2

)
(E1 + E2),

(5.67)

where f is the phase space distribution function of the incoming fermion and ρ(p2) is under-

stood to be the appropriate normalization for the CFT state |p⟩. Now notice that

⟨O†
µν(x)Oρσ(0)⟩ =

∫
d4p

(2π)4
ρ(p2)⟨0|e−iP ·xO†

µν(0)e
iP ·x|p⟩⟨p|Oρσ(0)|0⟩

=

∫
d4p

(2π)4
ρ(p2)⟨0|O†

µν(0)|p⟩⟨p|Oρσ(0)|0⟩eip·x

Inverting the Fourier transform yields

ρ(p2)⟨0|O†
µν(0)|p⟩⟨p|Oρσ(0)|0⟩ =

∫
d4xe−ip·x⟨O†

µν(x)Oρσ(0)⟩ (5.68)

The (Euclidean) position-space two point functions in a CFT is fully �xed up to an overall

normalization using conformal invariance and dimensional analysis. For the antisymmetric

2-tensor, it is given by [340]

⟨O†
µν(x)Oρσ(0)⟩ =CAT

1

(2π)2
(Iµρ(x)Iνσ(x)− 1

4gµνgρσ)− (µ↔ ν)

(x2)d
, (5.69)

where d is the scaling dimension of the operator Oµν , CAT is an overall normalization, and

Iµν = gµν − 2
xµxν

x2
.
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The Fourier transform is given by

⟨O†
µν(x)Oρσ(0)⟩ =

∫
d4k

(2π)4
eik·x

[
CAT (−1)

Γ(3− d)

4d−1Γ(d+ 1)
(k2)d−2

×
((
gµρgνσ − (µ↔ ν)

)
− 2
(
gµρ

kνkσ
k2

+ gνσ
kµkρ

k2
− (µ↔ ν)

))] (5.70)

We analytically continue the above Euclidean expressions to Minkowski space in the mostly

minus signature.

ρ(p2)⟨0|O†
µν(0)|p⟩⟨p|Oρσ(0)|0⟩ =CAT (−1)

Γ(3− d)

4d−1Γ(d+ 1)
(−p2)d−2

×
((
gµρgνσ − (µ↔ ν)

)
− 2
(
gµρ

pνpσ
p2

+ gνσ
pµpρ

p2
− (µ↔ ν)

)) (5.71)

To have an unparticle interpretation for the state generated by Oµν , we need to choose the

normalization such that the prefactor of p2 corresponds to the phase space of d massless

particles, i.e. choose CAT such that the following relation holds:

(−1)d−2CAT
Γ(3− d)

4d−1Γ(d+ 1)
≡ Ad =

16π5/2

(2π)2d
Γ(d+ 1/2)

Γ(d− 1)Γ(2d)
. (5.72)

We now perform the index contractions.

ρ(p2)
∑

|M|2 ∝ p1βp2γp
ρpα

[
δ
β
ρ δ
γ
α + δ

β
αδ
γ
ρ − gβγgαρ −

4

p2
(gαρp

βpγ + gβγpαpρ)

]
= −

(
2(p1 · p)(p2 · p) + 5(p1 · p2)p2

)
.

Using the delta function and the fact that the particles are massless, we have the following:

(p1 + p2)
2 = p2 = 2p1 · p2, (p− p2)

2 = p21 = 0 = p2 − 2p · p2,

(p− p1)
2 = p22 = 0 = p2 − 2p · p1
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Thus,

ρ(p2)
∑

|M|2 = Ad
12e2λ2

Λ2d−4
(p2)d−2 (5.73)

Assuming the SM particles follow the Maxwell-Boltzmann distribution, we get

n1n2⟨σvE⟩ =Ad
48e2λ2

Λ2d−4

1

(2π)6

∫
d4p(p2)d−2θ(p2)θ(p0)p0e−p0/T

×
∫
d4p1d

4p2δ(p
2
1)δ(p

2
2)θ(p

0
1)θ(p

0
2)δ

4(p1 + p2 − p)

(5.74)

Computing the remaining integral yields

n1n2⟨σvE⟩ = Ad
48e2λ2

4(2π)5Λ2d−4

1

2

Γ(32)Γ(d− 1)

Γ(d+ 1
2)

Γ(2d+ 1)T 2d+1 (5.75)

5.D.2 Higgs annihilation

Next, we consider freeze-in through H†H → CFT (assuming only kinetic mixing through

U(1)Y between the SM and the CFT sector). The matrix element is

M = − 2λg

Λd−2

1

p2
(p1 − p2)µpν⟨p|Oµν |0⟩

Repeating the above in the massless limit yields

ρ(p2)
∑

|M|2 =
4λ2g2

Λ2d−4
Ad(p

2)d−2 (5.76)

After EWSB, the above process is matched onto Zh → CFT which then gets quickly

shut o� once the Higgs boson decouples from the thermal bath.

5.D.3 Gauge boson initial state

Due to thermal e�ects, the longitudinal mode of the photon picks up a thermal mass propor-

tional to T . This allows the �decay� process of gauge bosons into unparticles. The matrix
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element for Aµ → CFT is given by

M = − 2λ

Λd−2
ϵµpν⟨p|Oµν |0⟩ (5.77)

Squaring and performing the polarization sum yields

∑
|M|2 =

4λ2

Λ2d−4

(
−gµσ +

�
�
�pµpσ

p2

)
pνpρ⟨0|O†

ρσ|p⟩⟨p|Oµν |0⟩ (5.78)

where the second term vanishes by the antisymmetric property of Oµν25. The rate of energy

density transfer via this decay process is given by

(∫
dΠAf(pA)

)∫
d4p

(2π)4
ρ(p2)(2π)4δ4(pA − p)

(∑
|M|2

)
(EA) (5.79)

As was done in the case of the fermion pair annihilation, we replace the �momentum-space

wavefunctions� with the two-point function and use the correct normalization to yield the

unparticle interpretation. So the right-most integral is equal to

ρ(p2)
(∑

|M|2
)
=

4λ2

Λ2d−4
Ad(p

2)d−2gµσpνpρ

×
(
(gµρgσν − (µ↔ ν))− 2

(
gµρ

pµpσ

p2
+ gνσ

pµpρ

p2
− (µ↔ ν)

)) (5.80)

Performing the index contractions yield

ρ(p2)
(∑

|M|2
)
=

4λ2

Λ2d−4
Ad(p

2)d−2(3p2) (5.81)

25. Here, we used the polarization vectors for a massive gauge �eld. They are di�erent from the dressed
polarization vectors for photons in a thermal bath. This will generically result in functions of p arising in
front of gµσ and pµpσ. This does not a�ect the fact that the second term cancels.
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Thus, the collision term is

(∫
dΠf(p)

)
4p0λ2

Λ2d−4
Ad(p

2)d−2(3p2) (5.82)

The phase space integral includes a delta function which enforces the on-shell relation. Using

that, the energy transfer rate simpli�es down to

6λ2Adm
2d−2

Λ2d−4

∫
d3p

(2π)3
f(p) (5.83)

The �nal quantity is precisely the number density of a Boltzmann-distributed particle at

temperature T . This is given by

∫
d3p

(2π)3
f(p) =

1

π2
T 3 (5.84)

Thus,

Γ =
6λ2Ad
Λ2d−4

m(T )2d−2 1

π2
T 3 (5.85)

5.E Details of Stellar Cooling Estimates

Here, we will discuss the estimation of the energy density loss rate in most stellar systems. A

more detailed discussion of stellar evolution bound on COFI theories can be found in [322].

5.E.1 Main sequence and horizontal branch stars

In both main sequence and horizontal branch stars, the dominant mechanism for energy

loss is via an analog of the Compton process [341]. An incoming photon is absorbed by an

electron which subsequently radiates either DM pairs or unparticles.

In order for DM pairs to be directly produced, the temperature (or equivalently the scale

of momentum transfer) must be belowmgap. We can integrate out the dark photon to obtain
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the e�ective operator

L ⊃ i
ϵecwgs
m2
gap

(ēγµe)

(
π+

↔
∂ µπ

−
)

≡ i
4Ge�√

2
(ēγµe)

(
π+

↔
∂ µπ

−
)

(5.86)

Up to some O(1) factors from the di�erence in particle statistics, the kinematic factor of the

spin-averaged amplitude is the same as that from neutrino pair emission. As such, one can

take the existing computation of the energy density loss rate from neutrino emission and

perform the replacement GF → Ge�. This gives

ε̇Comp, h ≃ 7!

π2

(
Ye
mN

)
α

8π2
G2
e�
T 8

m2
e
, (5.87)

where Ye is the electron to nucleon ratio and mN is the nucleon mass.

For unparticle production which occurs when T > mgap, while the estimate is less robust,

nevertheless a reasonable estimation is possible. This is done by rescaling the result of the

energy loss via emission of a light scalar from the same Compton-like process [322]. The

main di�erence between the two processes are the number of �nal state particles, average

energy carried away by the �nal states and the couplings. Noting this, we can write

ε̇Comp, CFT

ε̇scalar
∼ (eλ/Λd−2)2

g2
Ad+1

A2
T 2d−4, (5.88)

where g is the Yukawa coupling of the electrons with the light scalar. The factors of T were

added to ensure that the RHS is dimensionless.26 Plugging in the known result for ε̇scalar

[341] gives

ε̇Comp, CFT ∼ α2λ2Ad+1
T 2d

Λ2d−4

Ye
mum2

e
. (5.89)

Here, we are missing potentially important numerical factors which may a�ect the bounds,

26. Here, T is the right dimensionful parameter to balance the dimensions since the characteristic energy
transfer is controlled by T . This is not always true. For example, in the case of electron-positron annihilation
at the core of supernova, one has to use the fermi energy EF instead. For more details, see [322].
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but this is beyond the scope of this chapter.

5.E.2 SN 1987A

In supernova progenitor cores, the dominant energy loss mechanism is nuclear brems-

strahlung [342]. Since the nucleons are nearly degenerate in the core, the typical energy scale

is pF ≈ √
mNT . Using a similar process as before, we can estimate the rate of energy loss

by producing CFT states by rescaling the rate via emission of a light scalar

ε̇brem, CFT

ε̇scalar
∼ (eλ/Λd−2)2

g2
Ad+2

A3
p2d−4
F , (5.90)

where g is now the Yukawa coupling of a nucleon pair to the light scalar. Plugging in the

known result for ε̇scalar [341], we get

ε̇brem, CFT ∼ (eλ/Λd−2)2

4π
α2π

44

153
Ad+2

A3

(
T

mN

)4

p5FGscalar(mπ/pF ), (5.91)

where απ ≈ 15 is the coupling of nucleons to pions and Gscalar is the correction to the

bremsstrahlung rate for nonzero pion mass. For the density of the progenitor star core,

Gscalar(mπ/pF ) ≈ 0.8.
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“SM” Inflaton

ΦElementary
“SM” Inflaton
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“SM” Inflaton

CFT1−confined

CFT2

CFT1−confined
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CFTD

L ∼ λ
Λd−2BµνOµν

CFTD−confined : composite dark photon

COFI production

composite DM

ΛUV

Λ1

Λ2

TR
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mDM

Figure 5.1: Our theoretical setup and its RG evolution. Cascade of con�nement results in
small e�ective coupling between the SM and dark CFT and asymmetric reheating.
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CFT1

CFT2

CFTD

Bµ ρBµ

ψL

χR

ADµ

Figure 5.2: A diagram responsible for the e�ective mixing between Bµ and ADµ. Bµ is an
elementary gauge boson external to CFT1 and ρBµ is a composite vector meson of con�ned
phase of CFT1. This latter phase also includes a pair of composite fermions denoted as ψL
and χR which couples to a composite CFT2 as described in Equation 5.2. These couplings
lead to partial-compositeness coupling once CFT2 con�nes. This is shown as orange blobs.
The con�ned CFT2 also contains a composite vector meson ADµ which itself is external to
CFTD.
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Figure 5.3: The dark matter mass and the CFT operator scaling dimension which reproduces
the dark matter relic density (orange-red solid line) with r = 0.1 (left) and r = 0.01 (right).
For comparison, the green dashed line shows an estimate for the expected parameters which
reproduces the observed relic density for the �usual� freeze-in with kinetic mixing parameter
given by Equation 5.12 and the same relation between the dark photon mass and dark matter
mass [10]. The blue shaded region corresponds to the region of parameter space excluded by
the warm dark matter bound. The yellow shaded region corresponds to the stellar cooling
bound. The purple shaded region is excluded by the DM self-interaction bound coming
from the observation of bullet-cluster. The dashed curves show contours of constant kinetic-
mixing parameter, ϵ, with gs = 1.
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Figure 5.4: TNR as a function of mDM with a couple of choices of d for the parameters chosen
in the left panel of Figure 5.3 (i.e. r = 0.1). The green-dashed curve shows the temperature
when one of the two SM initial states decouple from the thermal bath. The black solid line
shows the temperature when either all of the SM initial states decouple or when we switch
to �hadronic� production. For data points below the black solid line, the transition into the
non-relativistic phase occurs after the end of production.
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Figure 5.5: The dark matter mass (x-axis) and the SM-CFT mixing parameter, λ, (y-axis)
which reproduces the observed dark matter relic density (orange-red solid line). The two plots
have di�erent scaling dimensions for our CFT operator; d = 2.8 (left) and d = 3.5 (right).
For comparison, the green dashed line shows an estimate for the expected parameters which
reproduces the observed relic density for the �usual� freeze-in with kinetic mixing parameter
given by Equation 5.12 and the same relation between the dark photon mass and dark matter
mass [10]. The blue shaded region corresponds to the region of parameter space excluded by
the warm dark matter bound. The purple shaded region is excluded by DM self-interaction
bound coming from the observation of the bullet-cluster. The dashed curves show contours
of constant kinetic-mixing parameter, ϵ, with gs=1.
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Figure 5.6: Example of the operator mixing e�ect
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Figure 5.7: AdS5 picture corresponding to the 4d COFI theory setup in section 5.2.
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Figure 5.8: AdS5 picture leading to a small portal coupling λ appearing in 4d CFT picture.
An extra bulk (called BZ-bulk) is introduced between the SM and DS bulk. The interactions
between the BZ-bulk �elds with SM and DS states generate desired suppression in the
e�ective coupling between the SM and DS. The in�aton sector is simpli�ed to a thin-brane
picture. π represents the DM state(s).
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