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ABSTRACT

Microbes play a significant role in supporting life on our planet, and their metabolic capabili-

ties mediate their interactions with each other and with their environments. In host-associated

communities such as the human gut microbiome, microbes have been implicated in a variety

of host physiological processes. Indeed, dysbiosis of the human gut microbiome is associated

with several diseases and disorders. In the marine environment, microbes contribute to impor-

tant biogeochemical cycles such as nitrogen fixation. The ability to predict metabolic capacity

is thus critical to understanding microbial ecology in these systems. This thesis presents a

novel software framework for estimating metabolic potential from ‘omics data and showcases

its application to studies of the human gut microbiome and the marine microbiome. In the

human gut, high metabolic independence emerges as a determinant of microbial fitness in

the face of gut stress, as demonstrated by a longitudinal time-series analysis of colonization

after fecal microbiota transplant (FMT) and a high-throughput meta-analysis of community

metabolism in individuals with inflammatory bowel disease (IBD). In studies of the global sur-

face oceans, this framework identifies an understudied yet abundant group of heterotrophic

bacterial diazotrophs. Overall, this new tool facilitates diverse and flexible analyses of micro-

bial metabolism from ‘omics datasets, leading to interesting insights into microbial ecology that

are relevant to both human health and the health of the planet.
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CHAPTER 1

INTRODUCTION

1.1 A microbial world

Microbes are practically everywhere on the planet’s surface. They live in environments that are

inhabitable to all other life forms (Shu and Huang, 2022), from thermal springs with extreme

pH (Inskeep et al., 2013; Kozubal et al., 2012; Massello et al., 2020) to hypersaline habitats

(Enache et al., 2012; Martínez et al., 2022; Wong et al., 2020) to hydrothermal vents at the

bottom of the ocean (Gonnella et al., 2016; Davis and Moyer, 2008; Jebbar et al., 2015). They

exist across the vast surfaces of the Earth, forming communities in soils and waters at most

latitudes and longitudes (Xu et al., 2013; Amend et al., 2013; Sul et al., 2013; Fierer and

Jackson, 2006). And there are multitudes of microbes in most spaces inside and on animals,

including humans (Simon et al., 2019; Bordenstein and Theis, 2015; Gilbert et al., 2018).

The expansive prevalence of microbes matches their immense importance to many pro-

cesses that support life. It was cyanobacteria that first oxygenated the planet (Sánchez-

Baracaldo et al., 2022), enabling the evolution of larger, more complex life forms (Och and

Shields-Zhou, 2012; Falkowski and Godfrey, 2008). Microbes contribute to global nutrient cy-

cling, ensuring that all organisms have access to the key elements for cellular building blocks,

especially carbon and nitrogen (Rousk and Bengtson, 2014; Kuypers et al., 2018; Falkowski

et al., 2008). For example, marine microbes are responsible for about half of worldwide net pri-

mary production, thus serving as the basis of the global food web (Naselli-Flores and Padisák,

2022; Moran, 2015). They also play important roles in biogeochemical cycling of multiple nu-

trients, including nitrogen (Hutchins and Capone, 2022), sulfur (Jørgensen, 2021; Moran and

Durham, 2019), phosphorus (Benitez-Nelson, 2000; Duhamel et al., 2021), and trace metals

such as iron (Tortell et al., 1999; Morel and Price, 2003). These activities maintain the habit-

ability of the biosphere by ensuring that critical elements for biological processes (especially
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energy generation) are continuously recycled (Madsen, 2011; Falkowski et al., 2008). The

terrestrial microbiome is similarly impactful; it also contributes significantly to biogeochemical

cycling (Crowther et al., 2019), and supports the growth and productivity of plants (Chaparro

et al., 2012; van der Heijden et al., 2008). The best-studied example of plant-microbe interac-

tions is the rhizosphere microbiome, which is particularly important to agriculture (Pantigoso

et al., 2022; de Faria et al., 2021).

Just as plants rely on closely-associated microbes, animals have intimate relationships with

microbiomes of their own. Insect species have co-evolved with their microbial endosymbionts,

which produce essential nutrients for them (Moran, 2001) or modulate their behavior (Bi and

Wang, 2020). Ocean invertebrates rely on microbes for food assimilation and bioluminescence

(Osman and Weinnig, 2022). Ruminants digest plant matter with the help of a diverse consortia

of cellulolytic microbes in their digestive tracts (Newbold and Ramos-Morales, 2020). Not all

animals require microbial associations for survival (Hammer et al., 2019), but for many complex

organisms, cohabitation with microbes is inescapable and these associations often provide

important benefits to the host animal (Peixoto et al., 2021).

For humans in particular, several aspects of human health depend on the symbiotic re-

lationship with the microbes living on and within us (Gilbert et al., 2018) – our microbiome

primes the immune system (Ivanov and Littman, 2010), protects against pathogens (Khosravi

and Mazmanian, 2013), helps us digest food (Hijova, 2019), influences brain development and

behavior (Collins et al., 2012; Silva et al., 2020), and more. Of the several organ systems that

benefit from microbial associations, by far the best-studied is the gastrointestinal tract. The

gut microbiome impacts a wide variety of host physiological processes (Leser and Mølbak,

2009) and is a prominent research topic due to its potential use for diagnosis and treatment of

a variety of diseases and disorders (Vijay and Valdes, 2022; Schupack et al., 2022).

Growing awareness of microbes’ impact on life and technological improvements facilitating

their study have spurred an ever-increasing body of research on microbiomes across different
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environments (Stulberg et al., 2016). The gut microbiome has been prominently featured in

this work and has recently received a majority of public funding for host-associated microbiome

research (NIH Human Microbiome Portfolio Analysis Team, 2019), which is a hallmark of its

immense relevance to human health and disease.

1.2 The gut microbiome in humans: symbiosis is a two-way street

The gut microbiome is considered a human symbiont, being a community of organisms that

collectively have a long-term relationship with their host despite the dynamic fluctuations of

individual populations (Lloyd-Price et al., 2017; Caporaso et al., 2011; David et al., 2014a).

It is a large community of about 1013 cells primarily concentrated in the colon (Sender et al.,

2016) and composed mostly of bacteria, but also some archaea and yeasts (Woting and Blaut,

2016; Turnbaugh et al., 2009) (there is also a significant viral component, which is outside

the scope of this dissertation). This typically diverse community is quite variable between

individuals (Lloyd-Price et al., 2016a), as it is influenced by a number of host-specific factors

(Hasan and Yang, 2019) such as age (Claesson et al., 2011), geography (Yatsunenko et al.,

2012), environment (Turnbaugh et al., 2010), host genetics (Blekhman et al., 2015; Goodrich

et al., 2014), diet (David et al., 2014b), and lifestyle (Jha et al., 2018). It is established early

in human life (Jost et al., 2012, 2014; Bergström et al., 2014) and has a substantial effect on

various aspects of host health (Ding et al., 2019; Shreiner et al., 2015).

Gut microbes have been implicated in a variety of physiological processes like immune

system functioning (Bain and Cerovic, 2020; Ivanov and Littman, 2010), nutrient acquisition

from otherwise indigestible substrates (Larsbrink et al., 2014; Portincasa et al., 2022; Hijova,

2019), and modulation of behavior (Silva et al., 2020; Collins et al., 2012). Part of their ben-

efit to the host is that gut microbes provide a variety of useful metabolic capabilities, many

of which are complementary to the functional capacity encoded in the human genome (Qin

et al., 2010). Gut microbes synthesize a number of amino acids that are essential to hu-

3



mans (Metges, 2000; Hooper et al., 2002; Lin et al., 2017) and provide vitamins like biotin and

cobalamin to their host (Hooper et al., 2002; Albert et al., 1980; Hill, 1997; Kau et al., 2011).

They can make immunomodulatory molecules (Maslowski et al., 2009; Hoffman et al., 2022;

Wang et al., 2021) and compounds that regulate host nutrient uptake and appetite (Bäck-

hed et al., 2004; Heiss and Olofsson, 2018). Some of these populations produce short-chain

fatty acids such as acetate and butyrate, which are important energy sources for intestinal

epithelial cells. These molecules also play a role in regulating gut barrier function and host

immune responses (Martin-Gallausiaux et al., 2021; Zhang et al., 2022). Additionally, certain

gut microbes conjugate host-derived bile acids into secondary bile acids, which are important

regulatory molecules (Ridlon et al., 2014; Hylemon et al., 2009).

Importantly, human hosts can influence their gastrointestinal symbionts. Diet (David et al.,

2014b), medication (especially antibiotics) (Palleja et al., 2018), and lifestyle (David et al.,

2014a; Jha et al., 2018) can alter the composition and size of the gut community. Changes in

host health can also influence the microbiota, and in turn, a number of diseases are associated

with perturbations of the gut microbiome. These include inflammatory bowel diseases (Kostic

et al., 2014; Nagalingam and Lynch, 2012; Knox et al., 2019a), diabetes (Karlsson et al.,

2013; Qin et al., 2012), non-alcoholic fatty liver disease (Campo et al., 2019; Tokuhara, 2021),

autoimmune disorders (Vaahtovuo et al., 2008; Hoffman et al., 2022), cardiovascular disease

(Jie et al., 2017; Cui et al., 2017; Rath et al., 2017; Novakovic et al., 2020), cancer (Kostic et al.,

2013; Raskov et al., 2017; Marchesi et al., 2011), and neurological disorders (Sorboni et al.,

2022). A commonly-used (yet often vaguely-defined (Brüssow, 2020)) term for disease-related

perturbations of the gut community is ‘dysbiosis’, which describes states of the microbiome

that relate to one or several metrics (including composition, diversity and function) deviating

from intestinal homeostasis (Lee and Chang, 2021).

In most cases, it is difficult to determine the relationship between dysbiosis in the gut mi-

crobiome and host disease states. Studies often take a host-centric view, focusing on the
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influence of the gut microbiota in disease pathogenesis and searching for ‘pathobionts’ that

could be implicated as the root cause of disease (Jochum and Stecher, 2020; Clemente et al.,

2012; Lee and Chang, 2021; Weiss and Hennet, 2017). Yet the reality is that the relationship

between humans and their gut microbes is bidirectional – what impacts one affects the other.

They are inextricably linked, and the complexity of this relationship makes it difficult to eluci-

date cause and effect (Shreiner et al., 2015). Thus, gut microbial dysbiosis may contribute

to disease progression at the same time that disease pathophysiology exacerbates dysbiosis.

Though many studies, including those described in this work, tend to discuss and interpret

results with a focus on either the host side or the microbial side, it is important to keep in mind

that these entities form an ecosystem.

1.3 Inflammatory bowel diseases and the gut microbiome

One human disease in which the gut microbiome is particularly relevant is inflammatory bowel

disease (IBD). Though often referred to in the singular, IBD actually represents a heteroge-

neous group of chronic inflammatory disorders (Shan et al., 2022) which pose an increasingly

common health risk around the globe and especially in industrialized countries (Kaplan, 2015).

IBDs are characterized by chronic inflammation in the gastrointestinal (GI) tract that varies in

location and level of continuity. The etiology of these diseases is complex and not yet well-

understood, arising from a combination of host genetic risk factors, environmental and lifestyle

factors, and negative interactions between the host and the gut microbiome. IBDs are thought

to manifest from an overactive and misdirected immune response, and the gut microbiome

represents one possible stimulus for this response (Knox et al., 2019a). The two main types of

IBD, Crohn’s disease (CD) and ulcerative colitis (UC), are associated with dysbiosis of the hu-

man gut microbiome, particularly reduced microbial diversity (Kostic et al., 2014; Nagalingam

and Lynch, 2012; Knox et al., 2019b).

Understanding the role of gut microbiota in IBD has been a prominent goal in human micro-
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biome research. Studies focusing on individual microbial taxa that typically change in relative

abundance in IBD patients have proposed a range of host-microbe interactions that may con-

tribute to disease manifestation and progression, such as the reduction in butyrate-producing

bacteria (Joossens et al., 2011; Schirmer et al., 2019; Henke et al., 2019; Machiels et al.,

2014). However, even within well-constrained cohorts, inter-individual variability explains the

majority of variance in all metrics yet explored to differentiate the microbiome of IBD patients

from that of healthy individuals (Gevers et al., 2014; Schirmer et al., 2018b; Lloyd-Price et al.,

2019; Khan et al., 2019). The focus on taxonomy, including the search for individual patho-

bionts and broad descriptions of compositional changes in the gut microbiome during disease,

has not yielded a clear understanding of the microbiome’s role in the etiology of this condition

(Khan et al., 2019).

Given the inconsistency and unclear nature of taxonomy-related analyses, focus has slowly

shifted to the functional potential of the microbiota in the context of this disease. Explorations

of microbial gene content using reference genomes (or pangenomes) associated with 16S

amplicon and/or metagenomic sequencing data have suggested that the IBD gut microbiome

encodes fewer pathways for carbon metabolism and amino acid biosynthesis, as well as in-

creased potential for oxidative stress response (Gevers et al., 2014; Morgan et al., 2012; Wlo-

darska et al., 2017; Ashton et al., 2017; Ananthakrishnan et al., 2017; Davenport et al., 2014;

Tong et al., 2013; Lloyd-Price et al., 2019; Franzosa et al., 2019; Lewis et al., 2015; Vich Vila

et al., 2018). However, such approaches may inaccurately reflect true functional potential due

to the incomplete representation of genomic diversity in reference databases (Rodriguez-R

et al., 2018; de la Cuesta-Zuluaga et al., 2020). Predicting functional potential directly from

metagenomic assemblies would be more accurate, but is rarely done in the context of IBD

(Knoll et al., 2017) (see, however, (Qin et al., 2010) for an example of this in healthy individu-

als). Studies leveraging metatranscriptomics for the study of gene expression in the IBD gut

microbiome are similarly rare (Segal et al., 2019) and also have been limited to reference-
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based profiling (Schirmer et al., 2018b). In contrast, some studies have used metabolomics to

analyze the compounds associated with IBD (Lloyd-Price et al., 2019; Franzosa et al., 2019;

De Preter et al., 2015; Jansson et al., 2009). These have demonstrated the depletion of vita-

mins; short-, medium- and long-chain fatty acids; and certain secondary bile acids in the IBD

gut, as well as the enrichment of polyunsaturated fatty acids, certain primary bile acids, and

sphingolipids in this sample group. However, metabolomic data is difficult to interpret due to

our inability to identify most compounds and to elucidate their biological sources – compounds

associated with IBD might be related to host functional activity or external sources such as

diet, and cannot be unequivocally linked to the gut microbiome (Shaffer et al., 2017).

Clearly, the quest to understand the gut microbiome’s role in IBD will benefit from de novo

estimation of microbial functional potential directly from metagenomic and metatranscriptomic

data. Yet, signal at the individual gene level is extremely noisy and attempts to make sense

of enzyme abundances in isolation of their metabolic contexts have not been fruitful (Gevers

et al., 2014; Greenblum et al., 2012). Instead, a more insightful strategy would be to aggregate

data from metabolically-related genes in order to draw conclusions on the presence, complete-

ness, and/or throughput of metabolic pathways. Thus, metabolism reconstruction from ‘omics

data is a logical next step for assessing the links between IBD and the gut microbiome.

1.4 Strategies and challenges in metabolism reconstruction from

‘omics data

Predicting the metabolic capabilities of microbes from genomic and metagenomic data is a

culture-independent, high-throughput approach to investigating microbial functional capacity

in environmental samples, including host-derived samples such as feces. Metabolism recon-

struction, also referred to as estimation of metabolic potential, relies on the principle that known

metabolic pathways can be defined in terms of particular gene functions – namely, the en-
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zymes that catalyze each reaction in the pathway. Searching for evidence of these enzymes,

typically in the form of gene annotations for the relevant enzyme families, allows inference of

pathway presence, completeness, abundance, and/or throughput. While this computational

estimation approach does not demonstrate the active use of these pathways in vivo, it does

allow scientists to leverage the vast amount of sequencing data to generate hypotheses about

metabolic capabilities that can then be verified in targeted experiments using methods such

as transcriptomics, metabolomics, or growth assays.

There are two main strategies for estimation of metabolic potential from sequencing data.

The first is metabolic modeling, in which genome-scale metabolic models (GSMMs) are built

to computationally represent the network of available metabolic reactions for a particular or-

ganism (Fang et al., 2020; Gu et al., 2019). This strategy enables mathematical modeling

of metabolic fluxes, typically with the linear programming technique known as flux-balance

analysis (FBA) (Orth et al., 2010), which contextualizes the metabolic network within a set

of constraints and thereby enables simulation of particular physiological conditions (Sen and

Orešič, 2019). The second strategy is pathway prediction, which estimates the presence/ab-

sence and/or completeness of metabolic pathways to produce a summary of the metabolic

capacity encoded in the input sequences. This technique has received less attention than

metabolic modeling, but its results are more readily interpretable than models, and it is critical

for understanding microbial functional roles without the need for a parameterized, in silico en-

vironment (Zhou et al., 2022). Both methods can be integrated with auxiliary information such

as gene expression data or growth kinetics for validation of predicted metabolisms (Gu et al.,

2019).

A variety of software tools exist for both types of metabolism reconstruction. Two early ex-

amples with basic approaches are the web-based server platforms KAAS (Moriya et al., 2007)

and RAST (Aziz et al., 2008). KAAS simply highlights annotated enzymes within pathway

maps from the KEGG database (Kanehisa et al., 2006), without producing any quantitative
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estimates. RAST similarly produces a limited summary of metabolism by categorizing en-

zymes into metabolic ‘subsystems’, but is also able to produce a metabolic model using the

SEED infrastructure (DeJongh et al., 2007). There are a plethora of more contemporary mod-

eling tools that generate GSMMs, including ModelSEED (Henry et al., 2010), RAVEN (Agren

et al., 2013), merlin (Dias et al., 2015), CarveMe (Machado et al., 2018), and AuReMe (Aite

et al., 2018). Several of these tools have been comprehensively reviewed (Faria et al., 2018;

Mendoza et al., 2019; Gu et al., 2019), so the details of these platforms are not summarized

here.

Software for pathway prediction include MinPath, DRAM, METABOLIC, and metaPathPre-

dict. MinPath (Ye and Doak, 2009) uses integer programming to determine the minimum

set of pathways that explain an input set of annotations. DRAM (Shaffer et al., 2020) and

METABOLIC (Zhou et al., 2022) both integrate annotation of genes from various enzyme

databases with estimation of pathway completeness; DRAM is specialized for working with

metagenome-assembled genomes (MAGs) while METABOLIC focuses on biogeochemical cy-

cles. The goal of metaPathPredict (Geller-McGrath et al., 2023) is to produce better estima-

tions for incomplete genomes (especially MAGs reconstructed from environmental samples)

using machine learning models trained on reference databases.

Though most of these tools specialize in one method of metabolism reconstruction, some

software – such as Pathway Tools, KBase, gapseq, and KEMET – have the capacity for both

reconstruction strategies. Pathway Tools (Karp et al., 2015) is a primarily web-based plat-

form for numerous functional analyses based upon a custom ‘omics data format called a

Pathway/Genome Database (PGDB), which can be used for both FBA and querying available

metabolic capacity. KBase (Arkin et al., 2018a) is an online workspace for hosting scientific

analyses on ‘omics datasets, and it contains apps for running existing metabolism software

(such as DRAM, ModelSeed and Rast) on uploaded data. Both gapseq (Zimmermann et al.,

2021) and KEMET (Palù et al., 2022) were designed to produce more accurate metabolic
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models by incorporating a gap-filling process into their model generation workflows, and their

pathway prediction capabilities are a side effect of this strategy. Gapseq achieves this via a

novel linear programming algorithm and by utilizing a highly-curated reaction database, while

KEMET uses pathway prediction results for updating the metabolic models that it creates by

internally running CarveMe (Machado et al., 2018).

A number of challenges affect the estimation of metabolic potential and the available tools

differ in how they address these. Missing gene annotations, which can arise due to incom-

plete input sequencing data or poorly-matching annotation models built from limited reference

databases, can cause false negatives – that is, underestimation of pathway completeness.

Some tools, especially those for metabolic modeling (Machado et al., 2018; Palù et al., 2022;

Zimmermann et al., 2021; Aite et al., 2018), use a process called ‘gap-filling’ to make edu-

cated guesses on which missing enzymes should be present and artificially add those back

into the model. Pathway prediction tools (Zhou et al., 2022), on the other hand, often al-

low some genes in the pathway to be missing, using completeness score thresholds (usually

around 75-80%) to determine pathway presence. They typically enable the user to adjust

these thresholds according to their research question or data quality. Some software (Ye and

Doak, 2009; Geller-McGrath et al., 2023) instead use math or machine learning to estimate

the likelihood of pathway presence given the possibility of missing annotations (however, note

that this doesn’t necessarily eliminate the bias from incomprehensive reference databases, if

these are used for training the models).

The opposite problem is overestimation of pathway completeness, which can happen due

to extensive interconnectedness and overlap between metabolic pathways (i.e., sharing of

multi-purpose enzymes between pathways) or incorrect homology-based annotation of paral-

ogous proteins with different biological functions. This is a difficult problem to address without

access to experimental validation data, and most reconstruction tools do not attempt to do

so. Only MinPath implements a parsimonious solution for minimal pathway estimation from
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annotation (Ye and Doak, 2009).

Another issue with metabolism prediction is the relative lack of diversity represented in the

sources of metabolic pathway definitions. Most repositories are biased towards well-studied

metabolic pathways and their versions in model organisms, thus excluding alternatives and

novel metabolisms from lesser-known clades of life (Ye et al., 2005). There are limited options

for pathway definitions and many tools rely on freely-available databases like KEGG (Kane-

hisa, 2017) or MetaCyc (Caspi et al., 2014). These are highly-curated repositories that are

excellent for summaries of general metabolism, but are consequently slow to be updated and

may not comprehensively cover less-studied pathways, especially unusual metabolisms from

across the vast diversity of microbial life. One solution to accommodate the study of these

pathways is to allow software users to define their own pathways according to their exper-

tise and research system, yet almost no tools have implemented this so far. DRAM (Shaffer

et al., 2020), for instance, permits users to submit pathways for validation and curation by the

developer team, but not direct estimation on user-defined pathways.

Finally, while estimation of metabolic potential from individual genomes has been imple-

mented by all existing software for metabolism reconstruction, estimation from metagenomes

still poses a challenge. Metagenomes contain multiple populations, and differentiating be-

tween these by binning individual populations into MAGs is time-consuming, error-prone and

not always comprehensive (Chen et al., 2020). Most tools do not address this problem di-

rectly, instead relying on the user to process their metagenomes and input individual MAGs.

METABOLIC (Zhou et al., 2022) goes one step further by allowing read-recruitment from

metagenomes to the genomes used for estimation, but this still represents a reference-based

analysis that will miss pathways not present in the input genomes. Similarly, community-

level metabolic modeling is typically done by combining individual GSMMs (selected and/or

quantified by read recruitment from a metagenome) into one model (Beura et al., 2022; Karp

et al., 2022; Diener et al., 2020). Though some software (for instance, MinPath (Ye and Doak,
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2009)) can technically process metagenomes simply by pooling all of their gene annotations

(effectively treating a metagenome as one large genome), this strategy is only appropriate

in certain use-cases as it tends to overestimate pathway completion. A far better solution

for metagenome-level analyses is to estimate pathway redundancy. PathwayTools (Karp et al.,

2015) does this by using read recruitment to calculate abundances of MetaCyc pathways within

a given metagenome; however, no existing tool can calculate a redundancy metric (such as

pathway copy number) directly from metagenome assemblies.

To address some of these challenges, I implemented a novel software framework for path-

way prediction from genomes and metagenomes. In addition to being the first metabolism

reconstruction tool that can estimate both completeness and redundancy (copy number) met-

rics for pathways, it also enables estimation on user-defined pathways.

1.5 A new open-source framework for microbial metabolism prediction

in anvi’o

My implementation of metabolism reconstruction is designed to enable diverse and flexible

analyses of metabolism to answer a variety of biological questions. The framework can be

run on genomes, on entire metagenome assemblies, on each individual contig in an assem-

bly, or on lists of enzymes, thereby supporting investigations at different levels of biological

organization. It can derive metabolic pathway definitions from the commonly-used and highly-

curated KEGG MODULE database (Kanehisa, 2017; Kanehisa et al., 2023) for analysis of

general metabolism, and it can accept user-defined pathways with arbitrary functional annota-

tion sources for more specialized questions. The tool implements two strategies for interpret-

ing these pathway definitions, which are each suitable for different applications. In addition to

providing completeness and copy number estimates for pathways, it can summarize a variety

of useful auxiliary information – pathway substrates and products, gene coverages, unique
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or shared enzymes, and more – in various customizable output files. Furthermore, it can be

used either as a standalone command-line program, or as a software library for development

of other Python programs.

Beyond its flexibility, this novel metabolism reconstruction tool offers a number of benefits

stemming from its design. As an object-oriented framework, it is easily extensible with new

features and analysis capabilities. It is also open-source, which makes its methodology trans-

parent, improves reproducibility, and enables community input for more targeted and rapid

development. Finally, it is integrated within a larger software platform, enabling quick and easy

access to supplementary analyses and data – for instance, integration with several annotation

programs allows the use of multiple enzyme databases for defining and predicting metabolic

pathways.

I chose to implement this framework as part of anvi’o (Eren et al., 2021b), a well-estab-

lished and versatile software for analysis and interactive visualization of ‘omics data, to benefit

from its unique modular architecture and integration with related analysis capabilities on the

same platform. Developed as an alternative to predefined ‘omics workflows that allow lit-

tle flexibility in the investigative strategies offered to researchers (Eren et al., 2015), anvi’o

is a software ecosystem that supports interactive and fully integrated access to state-of-the-

art ‘omics strategies including genomics, genome-resolved metagenomics and metatranscrip-

tomics, pangenomics, metapangenomics, phylogenomics and microbial population genetics.

It is a community-driven software platform that currently stands upon more than 90,000 lines

of open-source code, and it has been continuously growing and improving since its initial

release. Anvi’o differs from existing bioinformatics software due to its modular architecture,

which enables flexibility, interactivity, reproducibility and extensibility. To achieve this, the plat-

form contains more than 100 interoperable programs, each of which performs individual tasks

that can be combined to build new and unique analytical workflows. Anvi’o programs gener-

ate, modify, query, split and merge anvi’o projects, which are in essence a set of extensible,
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self-contained SQLite databases. The interconnected nature of anvi’o programs that are glued

together by these common data structures yields a network (http://merenlab.org/nt) rather than

predetermined, linear paths for analysis.

The metabolism reconstruction framework makes use of this modularity to separate logical

steps in the reconstruction workflow into different programs for greater control of the analysis.

For instance, annotation of input data is done independently of pathway prediction, enabling

the user to adjust annotation parameters as needed or import custom annotations before run-

ning the estimation program. This separation also makes the prediction step quite fast, and

the estimation program can be run repeatedly on the same data with different parameters.

With the independent programs for creating local metabolism databases, multiple versions of

these datasets (i.e., different versions of KEGG) can be generated for use in different contexts.

Indeed, the interoperability of these programs with anvi’o data structures supports this modu-

larity and makes collaboration easy. For example, one user can run various annotation steps

and share the resulting database to another for pathway prediction, or users can share their

metabolism databases with colleagues who wish to use the same data. The integration of

this framework within anvi’o also provides the user with access to a variety of other programs,

some of which can be used in conjunction with metabolism reconstruction. This includes the

ability to interactively visualize predicted metabolic capacity.

This framework was designed with the goal of empowering scientists to explore and un-

derstand their data in the context of metabolism. In alignment with this goal, the software has

been extensively documented online to increase its usability (for instance, https://anvio.

org/help/main/programs/anvi-estimate-metabolism/). Subsequent chapters will fur-

ther describe its functionality as well as its application to the study of microbial metabolism in

several contexts, including the gut microbiome in inflammatory bowel disease.
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1.6 Summary of thesis topics

This thesis details my implementation of a novel computational framework for metabolism re-

construction from ‘omics data, and showcases its application to the study of microbial ecology

in the human gut environment as well as in the marine environment. It also showcases my

work in supporting advanced ‘omics analyses and open science through the development of

educational resources and a data integration strategy for collaborative research.

In Chapter 2, I describe the technical details of this software – including its architecture,

data types, features, and calculation strategies. In Chapter 3, I introduce a study of coloniza-

tion in the human gut, which uses fecal microbiota transplantation (FMT) as an in natura exper-

imental model and applies my software to investigate the metabolic determinants of microbial

survival in a new environment. This study proposes the concept of metabolic independence

– the capacity for the production of critical metabolites that renders a microbe self-sufficient –

and demonstrates its association with microbial colonization and fitness in the gut. It also sug-

gests that high metabolic independence could determine the survival of gut microbes under

the stress induced by host disease states, an idea that is further explored in Chapter 4 with a

study of inflammatory bowel disease. A meta-analysis of hundreds of publicly-available human

gut metagenomes using the metabolism reconstruction framework confirms high metabolic in-

dependence as a driver of microbial resilience in the IBD gut environment, and indeed as a

marker of gut stress in general. It also demonstrates the power of combining pathway re-

dundancy metrics with integrated normalization techniques for large-scale metagenomic data

analyses. Finally, Chapter 5 features aspects of my work concerning the marine microbiome,

which also demonstrate how the resources that I have developed facilitate advanced ‘omics

research by other scientists (irrespective of their system or environment of interest). These

include a recent study characterizing the high abundance of heterotrophic, nitrogen-fixing bac-

teria in the surface oceans; an example tutorial on targeted metagenomic binning in publicly-

available polar metagenome samples; and a description of a framework for easily sharing
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reproducible, extensible, and integrated ‘omics datasets.

Overall, this dissertation offers insight into the metabolic determinants of microbial re-

silience in the human gut environment and into microbial lifestyle in the global oceans, fa-

cilitated by the development of novel computational methods for the analysis of metabolism in

‘omics datasets.
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CHAPTER 2

RECONSTRUCTION OF MICROBIAL METABOLISM FROM GENOMES

AND METAGENOMES IN ANVI’O

2.1 Introduction

There are two key gaps in the existing software landscape for metabolism reconstruction –

the ability to predict pathways directly from metagenomic assemblies, thereby making high-

throughput and non-reference-based analyses of large-scale data computationally tractable,

and the ability to estimate on user-defined pathways rather than being limited to existing

databases which are slow to include rare or novel metabolisms. My software framework im-

plements both of these, in addition to offering numerous other features to support diverse and

flexible investigations of metabolism with ‘omics data.

In this chapter, I will discuss the technical workings of this software, starting from a sum-

mary of the data needed to estimate metabolism: enzyme annotations and pathway defini-

tions. Then I will cover each step of the metabolism reconstruction workflow, from setting up

the necessary local databases to running the estimation program. There are a variety of avail-

able output options, which will be discussed along with a strategy for visualizing the results

as an interactive heatmap. At the end of the chapter, I will summarize a few opportunities for

future improvement of the framework.

This framework is implemented as part of anvi’o (Eren et al., 2021b), and to make use of

it, users can install anvi’o by following the instructions located at https://anvio.org/inst

all/. It has been included in anvi’o since version 7.0, but continuously developed since then,

such that a number of the features described herein (including user-defined metabolism) are

available only in anvi’o version 8.0 (the latest release at the time of writing).

Extensive documentation for this framework is available online as part of the anvi’o ‘help’

pages at https://anvio.org/help/main/, which is a wiki describing each anvi’o-related
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concept (referred to as ‘artifacts’) and program on its own webpage. Much of the text in this

chapter is derived from these pages, and I will link to each relevant page in the following

sections. Since the documentation is included as part of the anvi’o codebase and is updated

along with the code, following those links will eventually yield more up-to-date documentation

than is provided in this thesis. The current version of the documentation, which applies to

anvi’o version 8.0, is preserved at https://anvio.org/help/8/.

A basic familiarity with anvi’o, particularly its data structures, may be helpful in understand-

ing this chapter. To briefly summarize the most critical concepts: anvi’o consolidates ‘omics

data in the form of SQLite databases that serve as repositories of information that would

otherwise be spread across multiple files of different formats. Sequence data and related in-

formation such as gene calls, functional annotations, and sequence statistics are stored in

the ‘contigs database’, while read recruitment information such as coverage, detection, single-

nucleotide variants, and indels are stored in the ‘profile database’. Anvi’o programs, including

those in the metabolism reconstruction framework, operate on these databases. In fact, the

metabolism workflow adds yet another database to the list – the ‘modules database’, which

stores information on metabolic pathways. More detail can be found in the anvi’o help pages

for interested readers.

2.2 Metabolism data: enzymes and pathways

Enzyme annotations and pathway definitions are the two basic data requirements for metabolic

pathway prediction. The definitions describe each metabolic pathway in terms of the enzymes

required to catalyze each reaction in the pathway, and the annotations indicate which of these

enzymes are available to the organism(s) contributing to the input sequences. Matching these

annotations to the pathway definitions enables the calculation of metrics like completeness

and copy number. Therefore, a well-integrated source of both enzyme and pathway data is

necessary for successful metabolism reconstruction efforts.
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The KEGG resource is a commonly-used repository of metabolism information that pro-

vides both of these data types (Kanehisa, 2017; Kanehisa et al., 2023). It is manually curated

with information reported in published scientific literature with a focus on model organisms,

and updated fairly often (https://www.genome.jp/kegg/docs/updnote.html). As a system

that interlinks various levels of biological information – from genes, gene families, and entire

genomes to metabolic compounds, reactions, and pathways – it has set the standard for data

integration in systems biology and bioinformatics. The two databases within KEGG that are

most useful for pathway prediction are the protein family database, KEGG Orthology, and the

database of metabolic pathway modules, KEGG MODULE. The KO database includes Hidden

Markov model (HMM) profiles that can be used for annotating enzymes within sequencing data

(Aramaki et al., 2020), while the KEGG MODULE database describes sets of genes that col-

lectively characterize a metabolic pathway (referred to as a ‘pathway module’) or a phenotypic

feature (referred to as a ‘signature’ module). Importantly, KEGG modules are defined in terms

of KEGG Orthologs (KOs), which enables metabolic reconstruction via the simple matching of

KO identifiers (Kanehisa, 2017).

Another database, MetaCyc (Caspi et al., 2014), is a potential alternative to KEGG. In ad-

dition to being highly-curated, it is extremely comprehensive and contains far more metabolic

pathways than the KEGG MODULE database does (Altman et al., 2013). However, whereas

KEGG has a straightforward correspondence between its module definitions and enzyme fam-

ilies and also provides the means to annotate these enzymes, MetaCyc’s data requires mul-

tiple levels of iterative matching from pathways to reactions to enzymes and then to anno-

tated genes. Furthermore, since MetaCyc does not include a means of annotating genes

with these enzymes, there is no straightward link between its internal enzyme identifiers and

externally-sourced gene annotations. PathwayTools, a software relying upon MetaCyc data for

metabolism reconstruction, matches enzymes to reactions using their Enzyme Commission

(EC) numbers, Gene Ontology (GO) terms, or as a last resort, their names, which requires
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a comprehensive search function to be implemented (Karp et al., 2015). KEGG therefore

represents a more accessible metabolism resource for the purposes of pathway prediction.

As a result, I initially implemented my metabolism reconstruction framework to rely on

KEGG data, specifically the KOfam profiles for enzyme annotation and KEGG MODULE for

pathway definitions. The format of these data, as they have been implemented or provided

by KEGG, will be detailed further in the next subsections. However, as discussed, KEGG is

not comprehensive and it quickly became apparent that we could not exclusively use KEGG

as a resource. To open the way for scientists to drive their own research questions with their

unique expertise, I implemented user-defined metabolism so that users could create their own

pathway definitions for estimation. These definitions currently utilize KEGG’s format, but are

not limited to using KOs as component enzymes. Rather, they can make use of arbitrary

functional annotation sources, which is also described in a subsequent subsection.

For the metabolism reconstruction workflow to efficiently access enzyme and pathway

data, it must store them locally on the user’s computer. Thus, the first step in this workflow

is the download and pre-processing of enzyme annotation profiles and KEGG module files.

Pathway data from multiple files is consolidated into an SQLite database called the ‘modules

database’ for easy querying and versioning. The technical details of this step are discussed in

a later section.

2.2.1 Enzyme annotations

Two commonly-used methods for annotating genes are sequence alignment-based annota-

tion (i.e., the method implemented by BLAST (Altschul et al., 1990)) and probabilistic Hidden

Markov models (HMMs). Both rely on the homology, or conserved sequence structure, of pro-

teins with similar function, and require the use of thresholds to differentiate between strong

(likely) and weak (unlikely) matches, or ‘hits’, between the query gene sequence and the ref-

erence sequence or model (Loewenstein et al., 2009).
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The KEGG Ortholog database provides HMM profiles (KOfams) for gene annotation (Ara-

maki et al., 2020). The enzyme families in this database are identified with a K number – an

accession beginning with a ‘K’ and containing 5 unique integers – which is how they can be

matched to pathway definitions in the KEGG MODULE database. Each profile has an associ-

ated sequence similarity score (bit score) threshold for distinguishing between hits of various

likelihoods. These thresholds can either apply across the entire gene sequence, or within a

given domain. They are used for eliminating weak hits, thereby ensuring high confidence in the

annotation assigned to each gene. Note that KEGG’s thresholds tend to be rather conserva-

tive, occasionally leading to the removal of valid annotations from genes that are just different

enough from the sequences used to generate the profile for their bit score to fall below the

pre-computed threshold. A heuristic for restoring these lost hits will be discussed in a later

section.

There are a number of databases offering profiles for enzyme family annotation beyond

KEGG, including NCBI COGs (Galperin et al., 2021) and Pfam (Mistry et al., 2021). Further-

more, anyone with a set of homologous gene sequences can create an HMM for annotating

other sequences in this family; for instance, by using the HMMER program ‘hmmbuild‘ (Eddy,

2011). Anvi’o allows users to annotate genes with arbitrary HMM profiles using the program

‘anvi-run-hmms‘ and the ‘-H‘ flag, and adding the ‘--add-to-functions-table‘ parameter allows

these annotations to be stored as functions in the contigs database (as described on the page

https://anvio.org/help/main/programs/anvi-run-hmms/#adding-hmm-hits-as-a-f

unctional-annotation-source). Importing arbitrary functional annotations is also possible

with ‘anvi-import-functions‘. For the user-defined metabolism feature in anvi’o, this enables

any enzyme family to be used for defining metabolic pathways, as long as it can be labeled

with an accession or other identifier for matching the annotation to the pathway definition.
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2.2.2 KEGG pathway definitions

Since a metabolic pathway is simply a sequence of chemical reactions for converting an initial

substrate compound into a final product compound, it can be defined in terms of the enzymes

that catalyze each reaction (though spontaneous reactions that do not require a catalyst can

be ignored for the purposes of metabolism estimation). The KEGG MODULE database does

exactly this. Its module definitions are strings of KEGG Ortholog (KO) identifiers, each rep-

resenting an enzyme family in the order of their corresponding reactions in a given pathway.

The strings are formatted to distinguish between individual reactions (with spaces), alternative

enzymes for the same reaction (with commas), essential components of an enzyme complex

(with plus signs), and non-essential complex components (with minus signs). Parentheses are

used to maintain the order of operations and thereby distinguish complex steps and branch

points in the pathway.

Figure 2.1: Pictorial representations of example metabolic pathways from the KEGG MOD-
ULE database. Boxes represent enzymes and are labeled with KO identifiers, with groups of
adjacent boxes representing enzyme complexes. Images reproduced from the KEGG website.
a) M00018, the KEGG module for the Threonine Biosynthesis pathway. b) M00011, the KEGG
module for the second carbon oxidation phase of the citrate cycle.
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KEGG’s definition strategy is better understood when comparing the string definition to

its pictorial representation. Figure 2.1a shows the example of module M00018, Threonine

Biosynthesis. The definition string for this module is:

(K00928,K12524,K12525,K12526) K00133 (K00003,K12524,K12525)

(K00872,K02204,K02203) K01733.

This biosynthesis pathway has five major steps, or chemical reactions (in documentation,

I refer to these major steps as ‘top-level steps’). The first reaction in the pathway requires an

aspartate kinase enzyme (also known as a homoserine dehydrogenase), and there are four

possible orthologs known to encode this function: K00928, K12524, K12525, or K12526. Only

one of these genes is required for an organism to be able to catalyze this step in the path-

way, which is indicated by the separation of their KO identifiers with commas. In contrast, the

second reaction can be fulfilled by only one known KO, the aspartate-semialdehyde dehydro-

genase K00133. A more complicated example is shown in Figure 2.1b for module M00011,

the second carbon oxidation phase of the citrate cycle. The definition string for this pathway is

as follows:

(K00164+K00658+K00382,K00174+K00175-K00177-K00176)

(K01902+K01903,K01899+K01900,K18118)

(K00234+K00235+K00236+K00237,K00239+K00240+K00241-

(K00242,K18859,K18860),K00244+K00245+K00246-K00247)

(K01676,K01679,K01677+K01678) (K00026,K00025,K00024,K00116)

This pathway also has five steps, but this time, most of the reactions require an enzyme

complex. Each KO within a multi-KO box is a component of a larger enzyme. For example, one

option for the first reaction is 2-oxoglutarate dehydrogenase, a 3-component enzyme made up

of K00164, K00658, and K00382. Yet, not all of the enzyme components are equally important.

In the definition string the KO components of an enzyme complex are connected with either
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‘+’ signs or ‘-‘ signs. The ‘+’ sign indicates that the following KO is an essential component of

the enzyme, while the ‘-‘ sign indicates that it is non-essential. When estimating metabolism,

‘non-essential’ components can be ignored – that is, a reaction is considered to be possible

if all its essential component KOs are annotated. For example, the first step in this pathway

would be complete if just K00174 and K00175 were present. The presence or absence of

either K00177 or K00176 would not affect the module completeness score at all.

Module definitions can be even more complex than this. Both of these examples have

exactly five top-level steps, regardless of the KOs used to fulfill each reaction. However, in

some modules, there can be branch points, or alternative sets of reactions and enzymes,

with different numbers of steps. In addition, some modules (such as M00611, the module

representing photosynthesis), are defined by other modules, in which case they can only be

considered complete if their component modules are complete.

In KEGG, module data is provided in the form of flat text files containing the module def-

inition as well as a variety of other information about the pathway, including its name, clas-

sification, enzymes, reactions, compounds, and any references that describe it. These files

are parsed in the first step of the metabolism reconstruction workflow to establish the modules

database for easy data access in later steps.

2.2.3 User-defined pathways and their enzymes

The current implementation for user-defined metabolism in anvi’o makes use of KEGG’s for-

mat for module definition strings. That is, to define a pathway, users must write a definition by

putting enzyme accessions in the order of their corresponding reactions in the pathway. Differ-

ent steps (reactions) in the pathway should be separated by spaces, and alternative enzymes

that can catalyze the same reaction should be separated by commas, with parentheses to

distinguish between alternatives with multiple steps. For enzyme complexes, all components

should be in one string, with essential components separated by ‘+’ signs and non-essential
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components separated by ‘-‘ signs. The final definition should be placed into a flat text file de-

scribing the module, following the same format that is used by KEGG for its modules to make

use of the same functions for processing this data into a database format.

An important difference between user-defined and KEGG pathways is that user-defined

modules can make use of enzymes from arbitrary functional annotation sources, not just KO-

fam. As long as the enzyme identifier used in the pathway definition is the same as the

accession that will be stored in the functions table of the contigs database when running gene

annotation software, the metabolism estimation program will be able to match between the

two. However, the source of each enzyme’s annotation – whether that is KOfam, Pfam, NCBI

COGs, or a custom source – must be indicated in the flat text file.

A detailed tutorial on generating user-defined metabolic pathways can be found at https:

//anvio.org/help/main/artifacts/user-modules-data/, and a description of the flat file

format can be found on the page https://anvio.org/help/main/programs/anvi-setup-u

ser-modules/.

2.3 The metabolism reconstruction workflow in anvi’o

Following the modular architecture of anvi’o, I implemented the metabolism reconstruction

framework as a set of interoperable programs that perform independent tasks (Figure 2.2). For

a first-time user, the typical workflow for using these programs will 1) set up function profiles

and SQLite database(s) of metabolism data on the user’s computer; 2) annotate input con-

tigs with HMM hits to these function profiles; and 3) match functional annotations to pathway

definitions in the database to estimate the completeness and copy number of each metabolic

pathway in the database within each input genome, metagenome assembly, or metagenomic

contig. Step (1) only has to be run once (unless updates to the local databases are desired),

and later iterations of the workflow only require steps (2) and (3). The last step produces

customizable tab-delimited output files containing various data about each metabolic pathway
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or functional annotation - including pathway completeness, pathway information like category

and metabolites, accession IDs and locations of the genes that contribute to the pathway,

read-recruitment coverage and detection of these contributing genes, and more.

Figure 2.2: A schematic of the metabolism reconstruction framework within anvi’o. Dark arrows
show the flow of a typical analysis workflow while light arrows indicate optional inputs or steps.
Green stars highlight the novel programs implemented as part of this dissertation work.

Though this section describes the use of this framework via its standalone command-line

programs, the methods and classes utilized by these programs are also accessible to Python

developers wishing to incorporate them into their own code. By loading the anvi’o package and

its ‘kegg‘ library, developers can access its functions for metabolism reconstruction as well as

its internal data structures for metabolism information.
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To begin any analysis within anvi’o, users first convert their input sequence data into an

anvi’o-compatible format: the contigs database, in which sequences, gene calls and their

functional annotations can be stored. The program ‘anvi-gen-contigs-database‘ generates this

database from a FASTA file containing contig sequences. It also stores gene calls, by default

running the gene-calling software Prodigal (Hyatt et al., 2010), or alternatively incorporating

gene calls provided by the user. This is not a part of the metabolism reconstruction framework,

but simply a prerequisite step to using it.

There are two programs in the framework that perform the step of data setup. ‘anvi-setup-

kegg-kofams‘ downloads metabolism data (both enzyme annotation profiles and metabolic

modules) from the KEGG website and pre-processes this data to make it readily accessible to

later programs. ‘anvi-setup-user-modules‘ runs a similar pre-processing step on user-defined

module files. Both of these programs generate a modules database from which pathway

information can be queried.

The next step in the workflow is enzyme annotation. There are multiple programs for run-

ning (or importing) gene annotation in anvi’o, and which of these should be used is determined

by which enzyme sources define the metabolic pathways. Since KEGG modules are defined

by KEGG KOfams, I will discuss the program ‘anvi-run-kegg-kofams‘. Other programs may be

necessary for running this workflow on user-defined pathways, and these will work in a similar

fashion.

Finally, the program ‘anvi-estimate-metabolism‘ performs the metabolism reconstruction

step by matching enzyme annotations to pathway definitions and calculating both a complete-

ness score and a copy number for each pathway. It uses two different strategies for parsing

the pathway definitions, which results in two values for each metric. The first is the ‘pathwise’

strategy, which considers each possible combination of enzymes that could be used to make

the module complete. The second is the ‘stepwise’ strategy, which aggregates all possible

alternative enzymes into major steps.
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The output from ‘anvi-estimate-metabolism‘ can be sent to downstream programs for fur-

ther analysis. Programs within the anvi’o network that can work with this data include ‘anvi-

interactive‘ (which can visualize matrix-formatted metabolism output as heatmaps) and ‘anvi-

compute-metabolic-enrichment‘ (which can use pathway completeness to compute enrich-

ment scores for modules in groups of samples) (Shaiber et al., 2020a); however, these plain-

text output files are designed to be both readable and easily parsable by ad-hoc scripts written

by users.

2.3.1 anvi-setup-kegg-kofams

The program ‘anvi-setup-kegg-kofams‘ downloads metabolism data from the KEGG website

and pre-processes them for later access by other programs. It generates a directory of KOfam

profiles for enzyme annotation by ‘anvi-run-kegg-kofams‘ as well as the modules database

containing definitions and auxiliary information for all KEGG modules. The webpage https:

//anvio.org/help/main/programs/anvi-setup-kegg-kofams/ serves documentation for

this program. A description of the data directory that it creates can be found at https://anvi

o.org/help/main/artifacts/kegg-data/, and a description of the modules database can

be found at https://anvio.org/help/main/artifacts/modules-db/.

Data download

KOfam profiles are downloadable from KEGG’s FTP site (ftp://ftp.genome.jp/pub/db/k

ofam/) and all other KEGG data is accessible as flat text files through the KEGG API (https:

//www.kegg.jp/kegg/rest/keggapi.html). This program downloads a compressed archive

of individual HMMs (one for each KOfam), a file describing the bit score thresholds and enzyme

name for each KOfam (‘ko_list.txt‘), and one file for each pathway in KEGG MODULE. These

collectively are saved into a directory on the local computer, henceforth referred to as the

KEGG data directory, where they are processed.
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Processing of KOfam profiles

To prepare the KOfam profiles for later homology searches, individual profiles are concate-

nated into one file, which is then indexed using the HMMER program ‘hmmpress‘ (Eddy, 2011).

Only KOs which have a corresponding bit score threshold defined as described in (Aramaki

et al., 2020) are included in the final set of concatenated profiles for annotation; those without

such thresholds are moved to an alternate directory. This is done because the annotation

program relies on bit scores for the removal of weak hits. The file containing these bit scores

is maintained in the KEGG data directory for later use by ‘anvi-run-kegg-kofams‘.

Processing of module files

KEGG’s module files contain a wealth of information in a consistent, if unorthodox, format.

This program parses the files to extract the information and store it in the modules database

so that it is more easily (programmatically) accessible.

Each module file contains data related to a given pathway, including its identifier (‘ENTRY’),

name (‘NAME’), definition string (‘DEFINITION’), enzyme information like name and EC num-

ber (‘ORTHOLOGY’), categorization (‘CLASS’), and its component reactions and compounds.

The text file is formatted such that the initial column in a line describes what type of data is

contained in the line (subsequent lines containing the same data type are not labeled), the

second column contains that information or (in the case of data that can be linked to other

KEGG databases, such as ‘ORTHOLOGY’) a KEGG identifier. In the latter case, the line

also contains a third column with additional information, usually the name corresponding to

the identifier in the second column. This format is human-readable, but not straightforward to

programmatically parse.

The consequence of this is that ‘anvi-setup-kegg-kofams‘ has rigid expectations for the

format of the KEGG data that it downloads. Extensive sanity checks were implemented for

the parsing function, but future updates to KEGG may alter the formatting such that this data
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can no longer be directly downloaded. To mitigate this issue, I have built several archives,

or ‘snapshots’, of the KEGG database that are already converted into an anvi’o-compatible

format, which are downloadable directly by this program and can be found in the online data

repository Figshare (https://figshare.com/authors/Iva_Veseli/9014558). Available

snapshots are described in a YAML file in the anvi’o Github repository.

The modules database

The modules database stores the information parsed from individual module files in a program-

matically queryable format. Two tables in this SQLite database are important for metabolism

reconstruction: the ‘self’ table and the ‘modules’ table.

The ‘self’ table is a component of all anvi’o databases that describes the database itself.

For the modules database, this table indicates the source of the metabolism data stored within

(which is ‘KEGG’ for the database produced by ‘anvi-setup-kegg-kofams‘, and ‘USER’ for user-

defined data). It describes the number of modules downloaded, and which enzyme annotation

sources (i.e., KOfam) are used to define them. Most importantly, each modules database is

given a unique identifier that is hashed from the contents of the database, such that databases

containing the same metabolism data have identical hashes. This hash is critical for managing

different versions of metabolism data, for ensuring that input sequences have been annotated

with a compatible version of KOfam, and especially for reproducibility.

The ‘modules’ table contains the data parsed from the module files. In this table, the

‘module’ column indicates the module identifier. Similar to the KEGG flat file format, the

‘data_name’ column indicates what type of data the row contains. These data names are

usually fairly self-explanatory - for instance, the ‘DEFINITION’ rows describe the module defi-

nition and the ‘ORTHOLOGY’ rows describe the enzymes belonging to the module – however,

an official explanation can be found on the KEGG help page (https://www.genome.jp/ke

gg/document/help_bget_module.html). The ‘data_value’ and ‘data_definition’ columns
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hold the corresponding information; for ‘ORTHOLOGY’ fields these are the enzyme accession

number and its functional annotation, respectively. Just like the flat files, not all rows have a

‘data_definition’ field. Finally, some rows of data originate from the same line in a module file

(typically, KOs that share the same enzyme name and commission number); these rows will

have the same number in the ‘line’ column.

Default usage: downloading a KEGG snapshot

By default, this program downloads a snapshot of the KEGG databases rather than down-

loading data directly from KEGG every time. The default snapshot is a ‘.tar.gz‘ archive of a

KEGG data directory that was (usually) generated around the time of the latest anvi’o release.

After the KEGG archive is downloaded, it is unpacked, checked that all the expected files are

present, and moved into the KEGG data directory.

This strategy ensures that almost everyone (with the same version of anvi’o) uses the

same version of KEGG data, which is good for reproducibility and makes it easy to share

annotated datasets. Furthermore, it avoids the issues associated with continuous updates.

The KEGG resources are updated fairly often, and updates to their metabolic pathways can

be accompanied by updates to KOfam profiles, which necessitates keeping the two in sync

by re-running the gene annotation step. The data download and re-annotation steps can

both be time-consuming and are typically not worth repeating over short timescales. They

also introduce the issue of data incompatibility between collaborators working on different

machines. Therefore, the default usage of pre-processed KEGG snapshots is a compromise

in favor of efficiency and reproducibility over having the most up-to-date data at all times. Of

course, users can choose to download data directly from KEGG instead, using the ‘--download-

from-kegg‘ parameter as described at https://anvio.org/help/main/programs/anvi-s

etup-kegg-kofams/#getting-the-most-up-to-date-kegg-data-downloading-directl

y-from-kegg.
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There are multiple snapshots available containing different versions of KEGG, which are

hosted on Figshare and summarized in a YAML file in the anvi’o Github repository. Users

can choose amongst these snapshots; if none of them suffice, they can elect to download

the data directly from KEGG. More information is available on the help page for this program,

https://anvio.org/help/main/programs/anvi-setup-kegg-kofams/.

2.3.2 anvi-setup-user-modules

The program ‘anvi-setup-user-modules‘ creates a modules database out of metabolic path-

ways that have been defined by the user, thus enabling the study of arbitrary metabolisms and

allowing novel metabolic insights to be generated based on scientists’ expertise and research

questions. The webpage https://anvio.org/help/main/programs/anvi-setup-user-m

odules/servesdocumentationforthisprogram.

Data for this program is generated by the user, who can create metabolic pathway def-

initions and compile this information in module files. Since this program processes user

module files in the same way that ‘anvi-setup-kegg-kofams‘ does, it currently requires a for-

matting and definition strategy for modules similar to KEGG’s. A comprehensive tutorial on

generating these definitions and files can be found at https://anvio.org/help/mai

n/artifacts/user-modules-data/. To reduce the tedium of this step and avoid for-

matting errors, there is a script to automate the process of generating these files (https:

//anvio.org/help/main/programs/anvi-script-gen-user-module-file/).

Module accessions must be unique identifiers because they are used as unique keys in

data structures during the metabolism estimation process and in output files. Since user-

defined modules can be used in conjunction with KEGG modules, during the creation of the

user modules database, some sanity checking is performed to ensure that the modules’ unique

identifiers do not overlap with any KEGG module identifiers.
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Incorporating arbitrary annotation sources

As discussed previously, user-defined modules can make use of any enzyme that is anno-

tatable. There are a variety of protein sequence databases providing a means of homology-

based gene annotation, whether those are HMM profiles or sequences for alignment, and a

number of these are already implemented within anvi’o. Currently, in addition to KOfam (Ara-

maki et al., 2020), anvi’o can annotate genes with NCBI COGs (Galperin et al., 2021), Pfams

(Mistry et al., 2021), and dbCAN CAZymes (Yin et al., 2012). There is also a program (‘anvi-

run-hmms‘) that enables users to annotate genes with arbitrary HMM profiles, and any source

of gene annotations not covered by these options can be imported into a contigs database

using ‘anvi-import-functions‘. To distinguish between functions from different sources, each

gene annotation stored in an anvi’o contigs database is accompanied by a string indicating its

source.

For metabolism reconstruction to work properly on user-defined modules, there must be

a way to query the contigs database for enzymes annotated from multiple sources; therefore,

user module files must describe the annotation sources relevant to the enzymes incorporated

in the pathway definition. The ‘ANNOTATION_SOURCE’ field, which is not found in KEGG

module files, matches each enzyme in the definition to its annotation source so that it can be

searched for during the estimation process.

2.3.3 anvi-run-kegg-kofams

‘anvi-run-kegg-kofams‘ is one example of a program that provides enzyme annotations to be

used for metabolism reconstruction. It is required for estimation on KEGG modules (which are

defined by KOs). The webpage https://anvio.org/help/main/programs/anvi-run-keg

g-kofams/ serves documentation for this program.

This program depends on the metabolism data downloaded by ‘anvi-setup-kegg-kofams‘.

It takes gene sequences from the provided contigs database, identifies matches to the down-
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loaded KOfam profiles, and stores the resulting gene annotations into the functions table of

the same database. For KOs that belong to KEGG modules, the module and its classification

are also added as annotations for the relevant genes. The contigs database is then labeled

with the hash of the corresponding modules database so that only compatible KEGG modules

will be used for metabolism estimation later. When running this program, users have the op-

tion of specifying which KEGG data directory they want to use (in order to manage annotation

with multiple versions of KEGG); however, only one set of KOfam annotations (i.e., from one

version) can be stored in a contigs database at a time.

Multi-threaded, homology-based annotation with KOfam profiles

The program internally runs HMMER (Eddy, 2011) to find matches between every gene se-

quence in the contigs database and every KOfam profile. There are over 30,000 KOfam pro-

files, so this process scales quite rapidly as the number of input gene sequences increases.

This program can therefore be multi-threaded when greater computational resources are avail-

able to reduce the amount of processing time. Multi-threading consists of partitioning the gene

sequences into smaller sets that can each be processed by one CPU core.

Elimination of weak hits

Once HMMER returns a set of hits, the program parses these to keep only high-confidence

annotations. Weak hits will by default be eliminated according to the bit score thresholds

provided by KEGG (Aramaki et al., 2020); that is, hits with bit scores below the threshold for a

given KO profile will be discarded. The bit score thresholds are accessed from the ‘ko_list.txt‘

file downloaded from KEGG by ‘anvi-setup-kegg-kofams‘.

The user has the option to forgo this processing and keep all hits regardless of bit score.

Bit scores for each annotation are not typically saved in the contigs database, but there is also

an option to log these values as a text file.
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A heuristic for relaxing stringent bit score thresholds

Due to the nature of homology-based annotation with HMMs, in which profiles are built from

a set of reference sequences and designed to match with highly similar sequences, some

KOfam bit score thresholds can be too stringent for hits from slightly more distant sequences

in the same family to pass. This occasionally leads to the elimination of valid annotations with

bitscores falling just below the pre-computed threshold.

To mitigate this problem, I implemented a heuristic for adding back weaker annotations

when there is high confidence that these hits were eliminated due to a conservative bit score

threshold and not because the gene in question represents a different protein family. This

heuristic effectively relaxes the bit score threshold to a fraction of its pre-computed value, and

uses an alternative measure of match probability, the hit’s e-value, to keep a set of highly-

probable matches for the gene. All of these matches must resolve to the same KO family for

there to be high-confidence that annotating the gene with this KO would be valid.

Put more formally: for every gene without a KOfam annotation, we examine all the hits with

an e-value below ‘x‘ and a bit score above ‘y‘ percent of the relevant KO’s bit score threshold.

If those hits are all to a unique KOfam profile, then the gene call is annotated with that KO. ‘x‘

and ‘y‘ are modifiable parameters, but by default the e-value threshold (‘x‘) is 1e-05 and the

bitscore fraction (‘y‘) is 0.5.

This annotation heuristic is applied by default in a given run of ‘anvi-run-kegg-kofams‘,

but can be turned off (e.g., to use only KEGG-provided bit score thresholds for managing

annotation quality) by providing the ‘--skip-bitscore-heuristic‘ flag.

2.3.4 anvi-estimate-metabolism

The program ‘anvi-estimate-metabolism‘ is the workhorse of the metabolism reconstruction

framework. It predicts the metabolic capabilities of organisms based on their genetic content

by matching enzyme annotations in input sequence data to metabolic pathway definitions,
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and by computing completeness scores and copy numbers for each pathway. The webpage

https://anvio.org/help/main/programs/anvi-estimate-metabolism/ serves docu-

mentation for this program.

‘anvi-estimate-metabolism‘ relies upon gene annotations stored in a provided contigs data-

base (i.e., by ‘anvi-run-kegg-kofams‘) or in a provided list of enzymes, as well as on the

metabolism data prepared by either ‘anvi-setup-kegg-kofams‘ or ‘anvi-setup-user-modules‘.

Users can choose to source pathway definitions from either or both of these modules databas-

es.

Metabolic pathways can be complex – they are not always linear and may contain branch

points, and due to biological redundancy, there may be numerous alternatives for each step

in the pathway. Depending on their research goal, users may be interested in the specific set

of enzymes used to catalyze each reaction, or they may simply need a summary of metabolic

capacity agnostic to enzyme identity. To accommodate both of these needs, this program of-

fers two strategies for interpreting the pathway definitions when estimating metabolic potential

(Figure 2.3). There is a ‘stepwise’ strategy with equivalent treatment for alternative enzymes –

i.e, enzymes that can catalyze the same reaction in a given metabolic pathway – and a ‘path-

wise’ strategy that accounts for all possible variations of the pathway. These are discussed in

detail below.

The program outputs metabolism reconstruction results in one or more tab-delimited text

files, which are covered in the next section.

Input sequences: genomes, metagenome assemblies, and metagenomic con-

tigs

This program typically derives gene annotations from a contigs database, which can represent

different kinds of biological entities (anything that can be stored as a FASTA file). These can

be individual genomes, unbinned metagenomes representing an entire community, or binned
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metagenomes (e.g., with metagenome-assembled genomes of individual microbial popula-

tions, or MAGs, already defined). Metabolism estimation can therefore be run in different

‘modes’ for proper contextualization of gene annotations in the database. When the input data

contains multiple entities (i.e., several MAGs in a binned metagenome), metabolism estimation

is run independently on each entity using only the gene annotations belonging to that entity.

During pathway prediction, the program considers a ‘pool’ of gene annotations within a

given context. It loads the relevant annotations accordingly from the input contigs database.

In ‘genome mode’, the contigs database typically contains an individual microbial genome;

for instance, a reference genome downloaded from the NCBI, an assembly of an isolated

population, or an individual MAG that has been split from its original metagenome assembly.

In this case, all of the enzyme annotations in the database (from relevant annotation sources)

are loaded at once. Note that multiple individual genomes can be provided at once to ‘anvi-

estimate-metabolism‘ for high-throughput processing.

If the contigs database instead contains a binned metagenome assembly, estimation can

be run on each MAG individually. Gene annotations belonging to one MAG at a time are

loaded from the database for use in the estimation algorithm.

Unbinned metagenomes can be processed in two different ways. In ‘metagenome mode’,

this program will estimate metabolism for each contig in the metagenome separately. That

is, gene annotations from one contig at a time will be loaded and used to calculate path-

way completeness and copy numbers within that contig alone, resulting in a set of predicted

pathways for each individual contig in the assembly. This will tend to underestimate module

completeness because it is likely that many modules will be broken up across multiple contigs

belonging to the same population. However, metabolism can also be predicted for the metage-

nomic community as a whole by running this program in ‘genome mode’ on the metagenomic

assembly. This effectively treats all enzyme annotations in the metagenome as belonging to

one collective genome (all annotations are loaded from the database at once), which will result
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in the opposite tendency to overestimate module completeness (as the enzymes will in reality

be coming from multiple different populations). Nevertheless, copy number calculations are

extremely relevant in this use case, as will be discussed later.

Enzyme list input

An alternative input option for this program is a list of enzyme accessions. These are provided

to the program in a text file and serve as the annotation pool for metabolism estimation; that

is, all enzymes in the list are considered available for catalyzing metabolic reactions. This

is a more flexible input option to bypass the steps for generating and annotating a contigs

database.

The file format for the enzyme list is described on the help page at https://anvio.org/

help/main/artifacts/enzymes-txt/.

Completeness and copy number of metabolic pathways

The goal of ‘anvi-estimate-metabolism‘ is to compute a completeness score and a copy num-

ber for each metabolic pathway that is defined in the provided modules database(s). Com-

pleteness estimates refer to the percentage of steps (typically, reactions) in the pathway that

are encoded in the genome or metagenome. Likewise, copy number summarizes the number

of distinct sets of enzyme annotations that collectively encode the complete pathway.

Note that these metrics are each more appropriate for certain contexts. For individual

genomes, particularly complete genomes, pathway completeness score is relevant for identi-

fying metabolic capacity of the population, and copy number is likely to be meaningless. This

is also the case for MAGs, though these tend to be less complete, composite genomes and

those attributes may affect the pathway completeness scores. Lower-quality MAGs can also

be contaminated, containing more than one microbial population, which could be reflected in

pathway copy numbers. In metagenome assemblies (estimated via ‘genome mode’), there will
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be a lot of redundancy given the contributions of multiple populations to the enzyme annota-

tion pool – copy numbers will be very relevant in this case, but completeness scores are likely

to be uninformative as they will mostly tend to be artificially high. Finally, when estimating on

individual contigs of a metagenome assembly, the values of both metrics will depend on the

length of the contig, but will tend to be low given that typically few to no metagenomic contigs

capture an entire microbial genome.

The calculation of both completeness and copy number depends on the strategy used

to decompose a pathway definition into smaller parts (Figure 2.3). The ‘pathwise’ strategy

considers all possible combinations of enzymes, and therefore the length of the pathway (the

denominator of the completeness score) is set by the number of enzymes in each combination.

The ‘stepwise’ strategy is less granular, considering alternative enzymes as equivalent contrib-

utors to the same step, which results in shorter pathway lengths (and smaller denominators).

The copy number calculation is similarly affected.

Figure 2.3: Two strategies for interpreting metabolic pathway definitions. On the left is a theo-
retical metabolic pathway, in which shapes represent molecules, letters represent enzymes
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Figure 2.3 continued: (subscripts indicate enzyme components), and arrows represent reac-
tions. The definition of the metabolic pathway is written at the top in terms of its required
enzymes. The left box summarizes pathwise interpretation of the pathway definition, in which
each possible path through the metabolic pathway is enumerated. The right box summarizes
stepwise interpretation of the pathway definition, in which the pathway is broken down into its
major, or ’top-level’, steps.

Pathwise interpretation of pathways

The ‘pathwise’ strategy considers all possible ‘paths’ through the module – each alternative

set of enzymes that could be used together to catalyze every reaction in the metabolic path-

way. After calculating the percent completeness in all possible paths, it takes the maximum

completeness to be the pathwise completeness score of the module as a whole. This is the

most granular way of estimating module completeness because it considers all the possible

alternatives. Similarly, path copy number is computed as the number of complete copies of

a path through a module, and a module’s pathwise copy number is then calculated as the

maximum copy number of any of its paths that have the highest completeness score.

‘anvi-estimate-metabolism‘ uses a recursive algorithm to ‘unroll’ the module definition string

into a list of all possible paths. First, the definition string is split into its top-level steps (which are

separated by spaces). Each step is either an atomic step, a protein complex (KO components

separated by ‘+’ or ‘-‘), or a compound step (multiple alternatives, separated by commas).

Compound steps and protein complexes are recursively broken down until only atomic steps

remain. An atomic step can be a single KO, a module number, a non-essential KO starting

with ‘-‘, or ‘--‘ (a string indicating that there is a reaction for which there is no available KOfam

model). We use the atomic steps to build a list of alternative paths through the module defini-

tion. Protein complexes are split into their respective components using this strategy to find all

possible alternative complexes, and then these complexes (with all their component KOs) are

used to build the alternative paths.

Generating the set of alternative paths for each module is done once at the start of program

execution to avoid repetitive processing in the case of multiple input datasets.

40



Figure 2.4: A demonstration of pathwise metric calculations for metabolic pathways (performed
by the program ‘anvi-estimate-metabolism‘ is shown in panels a-d (for a theoretical pathway)
and e-h (for a real pathway). a) Theoretical metabolic pathway, where hexagons represent
metabolites, arrows represent chemical reactions, letters represent enzymes (subscripts

41



Figure 2.4 continued: indicate enzyme components), and the example number of gene an-
notation hits for each enzyme is written in gray. Enzymes with zero hits are highlighted in
pink. b) The definition of the theoretical pathway from panel a, written in terms of the re-
quired enzymes. c) Table showing the paths through the module and example calculations of
completeness and copy number for each path. Path completeness is calculated by taking the
fraction of annotated enzymes in the path. Path copy number is calculated as the number of
complete copies of the path. The number of enzymes required to have a complete copy with
the default completeness threshold of 0.75 is given in smaller font. The collection of dots is a
pictorial representation of the copies of each path. Each dot is an enzyme and is colored black
if there is a hit for the enzyme in that copy or pink if there is no hit. The line separates complete
copies of the path from incomplete copies. Thus, the height of the line is the number of com-
plete copies of the path. d) Final calculations of completeness score (maximum completeness
score taken over all possible paths through the module) and copy number (maximum copy
number over all paths of highest completeness) for the theoretical metabolic pathway. e-h)
Same as a-d, but for a real metabolic pathway.
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Figure 2.4 demonstrates the pathwise calculations of completeness and copy number, as

described in the following subsections.

Pathwise completeness

After the list of alternative paths is generated, the next task is to compute the completeness

of each path in a given module. Each alternative path is a list of atomic steps or protein

complexes. The program loops over every step in the path and uses the annotation pool of

KOs to decide whether the step is complete (represented by a 1) or not (0). There are the

following cases to handle:

1. A single KO. If this KO is annotated, then the step is complete (1).

2. A protein complex – that is, multiple KOs connected with ‘+’ (if they are essential com-

ponents) or ‘-‘ (if they are non-essential). For these steps, a fractional completeness

score is computed based on the number of essential components that are present

in the annotation pool. Non-essential KOs are ignored. For example, the complex

‘K00174+K00175-K00177-K00176’ would be considered 50% complete (a score of 0.5)

if only ‘K00174’ were present in the annotation pool.

3. Non-essential KOs. Some KOs are marked as non-essential, with a minus sign in front

of the KO identifier, even when they are not part of a protein complex. These steps are

ignored for the purposes of computing module completeness.

4. Steps without associated KOs. Some reactions do not have a KO identifier, but instead

there is the string ‘--‘ serving as a placeholder in the module definition. Since the genes

required for these steps are not annotatable, they are always considered incomplete (0).

Modules that have steps like this can therefore never be 100% complete. The program

warns the user about these instances so that they can check manually for any missing

steps.
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5. A module. Some modules are defined by other modules. The completeness of these

steps cannot be determined until the completeness of the component modules is known,

so they are initially ignored. Later, the program adjusts the completeness scores for

these steps according to the estimation results for the component modules.

To get the completeness score for a given path through the module, the program adds

together the completeness of each essential step in the path. The resulting sum is then divided

by the number of essential steps.

Once every possible path through the module has a completeness score (a fraction be-

tween 0 and 1), the maximum of all these completeness scores is taken as the completeness

of the module overall. The assumption here is that the most complete set of enzymes in that

pathway is the most likely to be used. This is certainly a questionable assumption, but some

choices like this are necessary to summarize the data. It gets trickier to interpret this number

when there is more than one path through the module that has the maximum completeness

score. Identifying which path is biologically relevant requires additional data types or knowl-

edge of the biological system.

Indeed, it is common for modules (especially those with a lot of alternative paths) to have

more than one maximally-complete path. These are used later for calculating pathwise copy

number, so the program stores all of the paths with the maximum completeness score (for

each module).

Finally, there are some modules defined by other modules (not just enzymes). These

are usually what KEGG calls ‘Signature Modules’, which are collections of enzymes that col-

lectively encode some phenotype, rather than a typical pathway of chemical reactions. The

program adjusts the completeness score of these modules after the completeness of its com-

ponent modules is known. To do this, it reruns the previous tasks to recompute the number

of complete steps in each path and the overall completeness of the module. This time, for

‘Module’ atomic steps (case 5), it takes that module’s fractional completeness score to be the
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completeness of the step.

To determine pathway presence, the module completeness score is checked against a

parameter called the completeness score threshold (which is 0.75 by default, but adjustable

by the user). If the module completeness score is greater than or equal to the threshold, the

module is marked as ‘complete’. This Boolean value is meant primarily as a way to easily filter

through the output files, which contain a lot more detail beyond the metrics for each pathway.

Module presence/absence disguises a lot of nuance, and the philosophy of this program is to

provide as much auxiliary data as possible for the user to interpret these summary metrics.

Pathwise copy number

Path copy numbers are computed simultaneously with the completeness score, by considering

the number of annotations for each atomic step in the path. Once again, there are several

cases to handle:

1. A single KO. The copy number of this atomic step is equal to the number of annotations

(hits) of this enzyme.

2. A protein complex. The copy number for these is the number of complete instances of

the protein complex. This is calculated by considering the number of annotations for

each essential component of the complex (once again, non-essential components are

ignored) and comparing that to the module completeness threshold. For instance, if

the threshold is 50%, then 50% of the essential components is enough to consider the

complex complete.

3. Non-essential KOs. These are ignored.

4. Steps without associated KOs (the ‘--‘ case). These always have a copy number of 0.

45



5. Modules. The copy numbers of these atomic steps are obtained later, after we’ve com-

puted the copy number for every other module. There is an adjustment step for copy

number just like there is one for completeness.

To get the copy number for a given path through the module, we determine the number of

complete copies of the path. This is identical to the calculation of copy number of protein com-

plexes, as described above, and it therefore depends on the module completeness threshold.

Suppose a path has 4 essential atomic steps with the following copy numbers: 4,3,1, and 2.

Using the default completeness threshold of 0.75, at least 3 out of 4 atomic steps must be

present in order for a copy of the path to be considered complete. There is one copy of the

path that has all 4 steps, one copy that has 3/4, one copy that has 2/4 and one that has 1/4.

Therefore, there are 2 copies of the path with at least 3/4 atomic steps, which means that the

path copy number is 2.

The copy number of the module overall is the maximum copy number taken over all paths

with the maximum completeness score, which were identified while computing its complete-

ness. If the module does not have any complete paths, then its copy number is 0. If it has one

complete path, then its copy number is the copy number of that path. If there are multiple paths

with highest completeness score, then its copy number is the maximum of the copy numbers

of those paths – for example, suppose there are two paths, both of which are 90% complete.

One of those paths has a copy number of 1 and the other has a copy number of 3. The overall

module copy number would be 3, in this case. If a module is completely absent (e.g., it does

not have any paths of highest completeness), we cannot compute the copy number. In this

case, the copy number of the module will be reported as ‘NA’ in the program output file(s).

The final step is to recalculate the copy number for modules that are defined by other

modules. We set the copy number of a module atomic step to be the previously-computed

copy number of that module (if any). If this step has a copy number of ‘NA’, then the adjusted

module copy number will be ‘NA’ as well; otherwise, the adjusted copy number is calculated
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as previously described.

Stepwise interpretation of pathways

In the ‘stepwise’ strategy, the program breaks down the module ‘DEFINITION’ into its major,

or ‘top-level’, steps. Each ‘top-level’ step usually represents either one metabolic reaction or a

branch point in the pathway, and is defined by one or more enzymes that either work together

or serve as alternatives to each other to catalyze this reaction or set of reactions. The program

uses the available enzyme annotations to determine whether each step can be catalyzed

or not – obtaining a binary value representing whether the step is present or not. Then it

computes the stepwise module completeness as the percent of present top-level steps. This

is the least granular way of estimating module completeness because it does not distinguish

between enzyme alternatives – these are all considered as one step which is either entirely

present or entirely absent. Likewise, step copy number is the number of complete copies of a

top-level step, and a module’s stepwise copy number is the minimum copy number of all of its

top-level steps.

To get the top-level steps of a module, its ‘DEFINITION’ string is split on its spaces (not

including any spaces within parentheses). Afterwards, the metrics for each step can be com-

puted by converting the step definition into a Boolean expression (for completeness) or arith-

metic expression (for copy number) and evaluating that expression.

Figure 2.5 demonstrates the stepwise calculations of completeness and copy number, as

described in the following subsections.
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Figure 2.5: A demonstration of stepwise metric calculations for metabolic pathways (performed
by the program ‘anvi-estimate-metabolism‘ is shown in panels a-d (for a theoretical pathway)
and e-h (for a real pathway). a) Theoretical metabolic pathway, where hexagons represent
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Figure 2.5 continued: metabolites, arrows represent chemical reactions, letters represent en-
zymes (subscripts indicate enzyme components), and the example number of gene annotation
hits for each enzyme is written in gray. Enzymes with zero hits are highlighted in pink. b) The
definition of the theoretical pathway from panel a, written in terms of the required enzymes. c)
Table showing the major steps in the pathway and example calculations for step presence and
copy number. Step presence is calculated by evaluating a Boolean expression created from
the step definition in which enzymes with > 0 hits are replaced with True (T) and the others with
False (F). Step copy number is calculated by evaluating the corresponding arithmetic expres-
sion in which the enzymes are replaced with their annotation counts. d) Final calculations of
completeness score (fraction of present steps) and copy number for the theoretical metabolic
pathway. e-h) Same as a-d, but for a real metabolic pathway.
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Stepwise completeness

Unlike pathwise completeness, in which the program considers all possible alternatives and

computes a fractional completeness for each path, a top-level step can only be entirely com-

plete (1) or entirely incomplete (0). To compute this binary completeness for each top-level

step, the step is converted into a Boolean expression by following this set of rules:

1. Enzyme accessions (ie, KOs) are replaced with ‘True’ if the enzyme is annotated in the

sample, and otherwise are replaced with ‘False’.

2. ‘--‘ steps do not have associated enzyme profiles, so these are always ‘False’.

3. Commas represent alternative enzymes, meaning either one or the other is acceptable.

The program converts commas into ‘OR‘ relationships.

4. Spaces represent sequential enzymes, meaning that both are necessary (one after the

other). The program converts spaces into AND relationships.

5. Plus signs (‘+’) represent essential enzyme components, meaning that both are neces-

sary (at the same time). The program converts plus signs into AND relationships.

6. Minus signs (‘-‘) represent nonessential enzyme components, meaning that they are

unnecessary. These are ignored.

7. Parentheses are kept where they are to maintain proper order of operations.

After this conversion is done, the program evaluates the Boolean expression to determine

whether or not the step is complete. After this is done for each top-level step in a module,

it calculates the stepwise completeness of the module by taking the percentage of complete

top-level steps. If a top-level step includes entire modules in its definition, its completeness is

computed after all other modules have been processed.
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Stepwise copy number

To compute a top-level step’s copy number, the program converts its definition into an arith-

metic expression, by following a new set of rules:

1. Enzyme accessions (ie, KOs) are replaced with the number of annotations this enzyme

has in the given sample.

2. ‘--‘ steps are unknown, so they are replaced with a count of ‘0’.

3. Commas represent alternative enzymes, meaning either one or the other is acceptable.

The program converts commas into addition operations.

4. Spaces represent sequential enzymes, meaning that both are necessary (one after the

other). The program converts spaces into minimum, or ‘min()‘, operations.

5. Plus signs (‘+’) represent essential enzyme components, meaning that both are neces-

sary (at the same time). The program converts plus signs into ‘min()‘ operations.

6. Minus signs (‘-‘) represent nonessential enzyme components, meaning that they are

unnecessary. These are ignored.

7. Parentheses are kept where they are to maintain proper order of operations.

This conversion from definition string to arithmetic expression is quite complex for a com-

puter to do, and in the code for this program, it is implemented as a recursive function.

All of the top-level steps in the module have an AND relationship with each other – all

are necessary in order to have the module complete. For this reason, the module’s overall

stepwise copy number is computed by taking the minimum copy number of all top-level steps.

Once again, if a top-level step includes entire modules in its definition, its completeness is

computed after all other modules have been processed.
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Calculation summary

Pathwise module completeness in a given sample is calculated as the maximum fraction of

essential enzymes that are annotated in the sample, where the maximum is taken over all

possible combinations (‘paths’) of enzymes in the module definition. Likewise, pathwise mod-

ule copy number is calculated as the maximum copy number of any path with the module’s

completeness score.

These values are difficult to interpret when considering metagenomes rather than the

genomes of individual organisms. There could be lots of different paths through a module

used by different populations in a metagenome, but the module completeness/copy number

values would summarize only the most common path(s). In these situations, users can take

advantage of the ‘module paths’ output mode (discussed in the next section) to look at the

scores for all individual paths through each module.

Similarly, stepwise module completeness in a given sample is calculated as the percentage

of complete top-level steps. Likewise, stepwise module copy number is calculated as the min-

imum copy number of all top-level steps in the module definition. To interpret these stepwise

metrics for modules, it is useful to look at the ‘module steps’ output mode to see the scores for

all individual top-level steps in a module.

2.3.5 Output options for metabolism estimation

‘anvi-estimate-metabolism‘ stores pathway prediction results in tab-delimited text files, which

can be either analyzed directly by the user or processed by downstream code. There are

two types of output files – long-format output that provides a large variety of data fields,

and matrix-format output (otherwise known as wide-format) that summarizes key informa-

tion across multiple input samples. The long-format type includes several output ‘modes’ that

differ in which data fields are stored in the file, including a customizable mode for pathway

data permitting users to choose which fields to store. Multiple files can be generated by the
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same run of ‘anvi-estimate-metabolism‘, and the suffix of the file name indicates its type or

mode. Detailed documentation on output format and options can be found on the help page

https://anvio.org/help/main/artifacts/kegg-metabolism/.

Long-format output

In addition to storing the pathway prediction metrics (i.e., module completeness and copy num-

ber), long-format output files provide as much context as possible for the interpretation of these

values. There are multiple ‘modes’ that each describes a different level of metabolic pathway

organization. If multiple inputs are provided to ‘anvi-estimate-metabolism‘, their independent

metabolism estimation results are stored in the same output file, with sample identifiers on

each line to differentiate between each set of results.

‘Modules’ mode output describes the completeness score and copy number, for both the

pathwise and stepwise pathway interpretation strategies, of each metabolic module in each

input sample. Results are keyed by module accession number, and the module name, cate-

gorization, and definition are also provided. In addition, this file includes a number of fields

to assist with interpreting the pathway metrics. It lists the enzymes from the module definition

that were annotated in the input sample as well as their corresponding gene calls. This ex-

plains the completeness score value and allows users to analyze the topology of the annotated

pathway components – for instance, to see which parts of the pathway are missing. The gene

call list enables integration of these results with other gene call data stored in the database,

such as sequences, lengths, and variants. The file also indicates which enzymes are unique

to the module (that is, not belonging to other pathways in the modules database), the number

of annotations for each unique enzyme, and the proportion of unique enzymes that were an-

notated. This can be useful information to interpret the completeness of modules with a high

proportion of shared enzymes; if all of its annotated enzymes also belong to other pathways,

it is less likely that the module is complete even if the completeness score is high. The file
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includes a ‘warnings’ column that lists any shared enzymes and their respective modules, as

well as indicating when enzymes in the module definition do not have an annotation profile

(and will therefore be missing due to a technical, rather than biological, reason). Including

module copy number in this output is optional, but if it is included, the copy number of each

top-level step will also be listed for a more nuanced interpretation of the overall stepwise copy

number. Finally, users can elect to add substrate, intermediate, and product compounds to

this output file for analysis of the metabolites involved in a given pathway.

Two output modes are useful for analyzing the nuances of pathway prediction metrics.

‘Module paths’ mode output provides information on each path through every module, as pro-

duced via pathwise interpretation of the module definition. In this file, each line describes one

path, including the path definition, the path completeness score and (optionally) copy number,

and a list of which enzymes in the path are annotated (or missing) for interpretation of those

values. The pathwise completeness score of the module overall is also provided for context.

‘Module steps’ mode is the analogous mode for stepwise calculations, providing information

on each top-level step in every module. In this file, each line describes one step, including

its definition, its completeness score, and (optionally) its copy number. Again, the stepwise

completeness score of the module overall is provided for context.

‘Hits’ mode output describes each enzyme annotation in detail, including enzymes from all

of the annotation sources used for metabolism estimation regardless of whether they belong

to a metabolic pathway. Since only a subset of these enzymes belong to modules, this output

does not include pathway prediction data like paths and module completeness. Rather, it de-

scribes the enzyme function, which gene call it belongs to, which contig in the input sequences

this gene is found on, and which metabolic modules the enzyme participates in (if any). The

purpose of this mode is to allow a deeper investigation of functions of interest – for instance,

transporter enzymes are often analyzed in conjunction with metabolic capacity.

If users are interested only in a subset of pathway prediction data, or the pre-defined output
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modes do not fit their needs, they can customize which data fields will appear in the output

file. This ‘custom’ mode is currently only available for modules-related data (that is, any fields

accessible to the ‘modules’, ‘module paths’, or ‘module steps’ modes).

It is occasionally useful to summarize the abundance and prevalence of metabolic path-

ways (and enzymes) across multiple metagenome samples by mapping these samples to a

reference that encodes these pathways. If such read recruitment data is available (and pro-

vided to ‘anvi-estimate-metabolism‘ in the form of an anvi’o profile database), these can be

used to compute coverage and detection of each annotated enzyme. Coverage describes

the average number of sequencing reads that map to each nucleotide position in the gene,

while detection describes the proportion of nucleotides in the gene sequence that are covered

by at least one read. Gene-level coverage and detection information can be added to ‘mod-

ules’ mode and ‘hits’ mode output. In ‘modules’ mode, the average coverage and detection of

all genes in the module is also provided, and can serve as alternative measures of pathway

abundance and presence.

Matrix-format output

The purpose of matrix-format output is to generate matrices of key pathway prediction metrics

for easy visualization, clustering, and downstream processing. It is available when running

‘anvi-estimate-metabolism‘ on multiple input samples (i.e., many individual genomes, or many

MAGs in a binned metagenome). Each output matrix summarizes one value, such as pathwise

module completeness, across every input sample and is therefore not as descriptive but much

more concise than long-format output.

When generating output in this format, multiple matrix files are produced, and these are

keyed by module, step, or enzyme accession depending on the summarized value. These cur-

rently include matrices for: pathwise completeness, stepwise completeness, binary module

presence/absence for pathwise completeness and stepwise completeness, binary complete-
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ness of top-level steps in each module, and annotation counts for each enzyme. Copy number

matrices are optional, and include a matrix for pathwise copy number, stepwise copy number,

and copy number of top-level steps in each module. Users can also choose to generate en-

zyme annotation matrices that are specific to a given metabolic module for targeted analysis.

Output matrices by default include only accessions, sample names, and the value of in-

terest so that they can be used for downstream applications like clustering without further

processing. However, users can elect to include metadata for greater readability, such as

module names and categories or enzyme functions.

Matrix-format output is useful for visualizing pathway prediction results as heatmaps, as

described next.

2.3.6 Visualizing metabolism heatmaps

Pathway prediction results can be readily visualized as interactive heatmaps from matrix-

format output of ‘anvi-estimate-metabolism‘ (Figure 2.6). ‘anvi-interactive‘ is an anvi’o pro-

gram that serves interactive visualizations of data in a web browser. Though it is most often

used for sequence data, this program can also visualize arbitrary data matrices. To pro-

duce an interactive heatmap of module completeness scores, for example, users can pro-

vide the completeness score matrix to ‘anvi-interactive‘ and modify the interface settings so

that the data is shown as intensities. They can also incorporate clustering results to or-

ganize the rows and columns of the heatmap, such that modules are organized according

to their similar distribution across input samples and input samples are organized accord-

ing to similar metabolic capacity. This is achievable via two other anvi’o programs that can

operate on matrices, ‘anvi-matrix-to-newick‘ (which clusters the input matrix row-wise) and

‘anvi-script-transpose-matrix‘ (which can flip the matrix so that the other dimension can be

clustered). A detailed tutorial on visualizing metabolism heatmaps can be found at https:

//merenlab.org/tutorials/infant-gut/#chapter-v-metabolism-prediction. I also
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implemented a program to automate this process called ‘anvi-display-metabolism‘; however, it

is still experimental and requires further development.

Figure 2.6: Example heatmap visualization for completeness of metabolic modules across
multiple genomes. Each column holds data for one metabolic module and each row holds
data for one genome, in this case metagenome-assembled genomes (MAGs). Each cell of
the heatmap indicates module completeness score, from 0.0 (white) to 1.0 (black). The data
is clustered in each dimension by a dendrogram that was calculated from the matrix of com-
pleteness scores. The data in this example is from the high- and low-independence MAGs de-
scribed in Chapter 3.2, and the ’MAG Group’ column indicates which MAG has high metabolic
independence (green) or low metabolic independence (gray).

2.4 Future work

The metabolism reconstruction framework is robust, includes a variety of features supporting

diverse and flexible analyses of metabolism, and has already been used in a number of pub-

lished studies. Regardless, there is always room for improvement and new features. Here I will

discuss a few ideas for future implementations of this software that are of foremost importance

to the study of microbial metabolism.

User-defined metabolism is still in its infancy. It works, but its implementation is clunky,
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having been limited by the initial framework for storing pathway data that was defined according

to the data types and format provided by KEGG. It is indeed ironic that this critical feature

for accessing metabolic pathways beyond KEGG modules is limited to KEGG’s formatting

strategies. A fresh and more generic method for defining modules, with easily-parsable file

formats (such as JSON) and support for arbitrary data fields, would represent a significant

improvement and is already being discussed by the anvi’o community (https://github.c

om/merenlab/anvio/issues/1873). This is a critical frontier for enabling cutting-edge

research on novel and understudied metabolisms, and it should be easier to use. Improving

user-defined metabolism would also allow me to generalize and streamline the codebase;

for instance, by consolidating module definitions from multiple sources into a single modules

database for easier sanity checking and data management.

There are several opportunities for extending this framework with additional analysis ca-

pabilities. For instance, the study of metabolism across pangenomes, or ‘pan-metabolism’,

is particularly interesting. Pan-metabolism predicts the metabolic capabilities encoded by a

set of closely-related genomes (typically of the same species or genus), and distinguishes

between the ‘core’ metabolism present in all genomes and the ‘accessory’ metabolism en-

coded by subsets of the genomes. Analyses of this sort have only recently appeared in pub-

lished scientific literature, and are typically done by combining all gene annotations from each

genome for metabolism reconstruction (McCubbin et al., 2020; Lau Vetter et al., 2022; Mohite

et al., 2022; Zhang et al., 2023). An opportunity remains for integrating genome-level path-

way prediction results into a pan-metabolism summary that remains aware of the differences

between individual genomes, and for interactively visualizing this data to facilitate its analy-

sis and exploration by researchers (such as with the anvi’o pangenome visualization program

‘anvi-display-pan‘). Of course, pan-metabolism is not the only future direction available to

the metabolism reconstruction framework; other opportunities for integrating analyses include

prediction of community interactions, pathway structure studies (such as synteny analysis via
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‘anvi-analyze-synteny‘ or operon identification), and validation of predicted pathways with tran-

scriptomic and/or metabolomic data.

Finally, implementing interactive pathway visualization would be extremely useful for meta-

bolism data exploration. By this, I mean the visualization of the interconnected components

of each metabolic pathway, including enzymes and compounds, both for individual pathways

and for networks of integrated pathways. These visualizations could be enriched with asso-

ciated data from the metabolism reconstruction process, such as pathway prediction metrics

and consolidated annotation information. They could even be interactively linked to auxiliary

sequence data; for instance, by showing the distribution of all genes in the pathway across an

input genome sequence. Several solutions for visualizing metabolic pathways exist, such as

ESCHER (King et al., 2015) and KEGG pathway maps (Kanehisa et al., 2022), but the integra-

tion of my metabolism reconstruction framework within anvi’o makes it possible to substantially

improve upon these with greater flexibility, data richness, and interactivity.
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CHAPTER 3

METABOLIC INDEPENDENCE DETERMINES COLONIZATION SUCCESS

FOR GUT MICROBES

3.1 Preface

This chapter introduces a study on microbial colonization in the human gut as well as a follow-

up, targeted investigation of the colonization patterns within a set of closely-related popu-

lations. Both of these works rely on the metabolism reconstruction framework to generate

insights into the metabolic potential of gut microbes.

The colonization study introduces the concept of metabolic independence, the degree

to which microbial genomes encode complete metabolic modules for synthesizing critical

metabolites, including amino acids, nucleotides, and vitamins. Microbes with high metabolic

independence are self-sufficient, while those with low metabolic independence rely on their

surrounding community to provide essential molecules. The study uses fecal microbiota trans-

plantation (FMT) as an in natura experimental model to investigate the association between

metabolic independence and resilience in stressed gut environments. It suggests that FMT

serves as an environmental filter that favors populations with higher metabolic independence.

Interestingly, we observed higher completion of the same biosynthetic pathways in microbes

enriched in IBD patients. These observations suggest a general mechanism that underlies

changes in diversity in perturbed gut environments, and reveal taxon-independent markers of

‘dysbiosis’ that may explain why widespread yet typically low abundance members of healthy

gut microbiomes can dominate under inflammatory conditions without any causal association

with disease.

A subsequent investigation highlights the problem of annotation bias; that is, the failure to

capture functional annotations for populations that are less represented in publicly-available

databases. This follow-up study explores the functional and metabolic differences between
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three clades of Bifidobacterium genomes with differential colonization success in the FMT re-

cipients. The analysis indicated minor differences in functional capacity, paralleled by observed

differences in genome length, that would seem to correlate with the degree of colonization

success. However, deeper investigation revealed that bifidobacteria, which are poorly charac-

terized in reference databases, suffer from annotation bias in a manner that is not systematic

across different clades. Consequently, the functional data do not recapitulate some prior pub-

lished observations on the functional capacity of these microbes, and it is difficult to trust the

metabolism reconstruction results derived from these incomplete annotations. Overall, this

investigation indicates that our understanding of metabolism is insufficient to differentiate be-

tween closely-related populations.

3.2 Metabolic independence drives gut microbial colonization and

resilience in health and disease

This section is derived from the following publication:

Iva Veseli*, Andrea R Watson*, Jessika Fuessel*, Johanna Zaal DeLongchamp, Maris-

ela Silva, Florian Trigodet, Karen Lolans, Alon Shaiber, Emily Fogarty, Christopher Quince,

Michael K Yu, Arda Soylev, Hilary G Morrison, Sonny T M Lee, David T Rubin, Bana Jabri,

Thomas Louie, and A Murat Eren. Metabolic independence drives gut microbial colonization

and re-silience in health and disease. Genome Biol 24, 78 (2023). https://doi.org/10.118

6/s13059-023-02924-x.

* indicates co-first authors.

3.2.1 Background

Understanding the determinants of microbial colonization is one of the fundamental aims of

gut microbial ecology (Costello et al., 2012; Messer et al., 2017). The gradual maturation of
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the microbiome during the first months of life (Stewart et al., 2018), the importance of diet and

lifestyle in shaping the gut microbiome (Koenig et al., 2011; Rothschild et al., 2018), and the

biogeography of microbial populations along the gastrointestinal tract (Donaldson et al., 2016)

strongly suggest the importance of niche-based interactions between the gut environment and

its microbiota. Previous studies that described such interactions in the context of microbial

colonization have focused on microbial succession in infant gut microbiomes (Stewart et al.,

2018), or relied on model systems such as germ free mice conventionalized with a consortium

of microbial isolates from infant stool (Feng et al., 2020). However, our understanding of the

ecological underpinnings of secondary succession following a major ecosystem disturbance

caused by complex environmental factors in the gut microbiome remains incomplete. A wide

range of diseases and disorders are associated with such disturbances, (Almeida et al., 2020;

Durack and Lynch, 2019; Lynch and Pedersen, 2016) however; mechanistic underpinnings of

these associations have been difficult to resolve. This is in part due to the diversity of human

lifestyles (David et al., 2014a), and the limited utility of model systems to make robust causal

inferences for microbially mediated human diseases (Walter et al., 2020).

Inflammatory bowel disease (IBD), a group of increasingly common intestinal disorders

that cause inflammation of the gastrointestinal tract (Baumgart and Carding, 2007), has been a

model to study human diseases associated with the gut microbiota (Schirmer et al., 2019). The

pathogenesis of IBD is attributed in part to the gut microbiome (Plichta et al., 2019), yet the mi-

crobial ecology of IBD-associated dysbiosis remains a puzzle. Despite marked changes in gut

microbial community composition in IBD (Ott et al., 2004; Sokol and Seksik, 2010; Joossens

et al., 2011), the microbiota associated with the disease lacks acquired infectious pathogens

(Chow et al., 2011), and microbes that are found in IBD typically also occur in healthy individ-

uals (Clooney et al., 2021), which complicates the search for robust functional or taxonomic

markers of health and disease states (Lloyd-Price et al., 2019). One of the hallmarks of IBD

is reduced microbial diversity during episodes of inflammation, when the gut environment is
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often dominated by microbes that typically occur in lower abundances prior to inflammation

(Vineis et al., 2016b). The sudden increase in the relative abundance of microbes that are

also common to healthy individuals suggests that the harsh conditions of IBD likely act as an

ecological filter that eliminates some populations while allowing others to bloom. Yet, in the

absence of an understanding of the genetic requirements for survival in IBD, critical insights

into the functional drivers of microbial community succession in such disease states remains

elusive.

Fecal microbiota transplantation (FMT), the transfer of stool from a donor into a recipi-

ent’s gastrointestinal tract (Eiseman et al., 1958), represents an experimental middleground to

capture complex ecological interactions that shape the microbial community during secondary

succession of a disrupted gut environment. FMT is frequently employed in the treatment of

recurrent Clostridioides difficile infection (CDI) (van Nood et al., 2013) that can cause severe

diarrhea and intestinal inflammation. In addition to its medical utility, FMT offers a powerful

framework to study fundamental questions of microbial ecology by colliding the microbiome

of a healthy donor with the disrupted gut environment of the recipient. The process presents

an ecological filter with the potential to reveal functional determinants of microbial colonization

success and resilience in impaired gut environments (Schmidt et al., 2018).

Here we use FMT as an in natura experimental model to investigate the ecological and

functional determinants of successful colonization of the human gut at the level of individual

microbial populations using genome-resolved metagenomics. Our findings highlight the im-

portance of environmental selection acting on the biosynthetic capacity for essential nutrients

as a key driver of colonization outcome after FMT and resilience during inflammation, and

demonstrate that metabolic independence serves as a taxonomy-independent determinant of

colonization success in the human gut.
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3.2.2 Results and Discussion

Study Design

Our study includes 109 gut metagenomes (Supplementary Table 3.1) from two healthy FMT

donors (A and B) and 10 FMT recipients (five recipients per donor) with multiple recurrent CDI.

We collected 24 Donor A samples over a period of 636 days and 15 Donor B samples over

a period of 532 days to establish an understanding of the long-term microbial population dy-

namics within each donor microbiota. The FMT recipients received vancomycin for a minimum

of 10 days to attain resolution of diarrheal illness prior to FMT. On the last day of vancomycin

treatment, a baseline fecal sample was collected from each recipient, and their bowel contents

were evacuated immediately prior to FMT. Recipients did not take any antibiotics on the day of

transplant, or during the post-FMT sampling period (Supplementary Figure 3.4). We collected

5 to 9 samples from each recipient for a period of up to 336 days post-FMT. Deep sequencing

of donor and recipient metagenomes using Illumina paired-end (2x150) technology resulted

in a total of 7.7 billion sequences with an average of 71 million reads per metagenome (Fig-

ure 3.1, Supplementary Table 3.1, Supplementary Table 3.2). We employed genome-resolved

metagenomics, microbial population genetics, and metabolic pathway reconstruction for an

in-depth characterization of donor and recipient gut microbiotas, and we leveraged publicly

available gut metagenomes to benchmark our observations.

Genome-resolved metagenomics show many, but not all, donor microbes col-

onized recipients and persisted long-term

We first characterized the taxonomic composition of each donor and recipient sample by an-

alyzing our metagenomic short reads given a clade-specific k-mer database (Supplementary

Table 3.2). The phylum-level microbial community composition of both donors reflected those

observed in healthy individuals in North America (Human Microbiome Project Consortium,
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2012b): a large representation of Firmicutes and Bacteroidetes, and other taxa with lower rel-

ative abundances including Actinobacteria, Verrucomicrobia, and Proteobacteria (Figure 3.1,

Supplementary Table 3.2). In contrast, the vast majority of the recipient pre-FMT samples were

dominated by Proteobacteria, a phylum that typically undergoes a drastic expansion in indi-

viduals treated with vancomycin (Isaac et al., 2017). After FMT, we observed a dramatic shift

in recipient taxonomic profiles (Supplementary Table 3.2, Supplementary Figure 3.5, Supple-

mentary Figure 3.6), a widely documented hallmark of this procedure (Khoruts et al., 2010;

Grehan et al., 2010; Shahinas et al., 2012). Nearly all recipient samples post-FMT were

dominated by Bacteroidetes and Firmicutes as well as Actinobacteria and Verrucomicrobia

in lower abundances, resembling qualitatively, but not quantitatively, the taxonomic profiles

of their donors (Supplementary Table 3.2). The phylum Bacteroidetes was over-represented

in recipients: even though the median relative abundance of Bacteroidetes populations were

5% and 17% in donors A and B, their relative abundance in recipients post-FMT was 33%

and 45%, respectively (Figure 3.1, Supplementary Table 3.2). A single genus, Bacteroides,

made up 76% and 82% of the Bacteroidetes populations in the recipients of Donor A and B,

respectively (Supplementary Table 3.2). The success of the donor Bacteroides populations in

recipients upon FMT is not surprising given the ubiquity of this genus across geographically

diverse human populations (Wexler and Goodman, 2017) and the ability of its members to

survive substantial levels of stress (Swidsinski et al., 2005; Vineis et al., 2016b). This initial

coarse taxonomic analysis demonstrates the successful transfer of only some populations,

suggesting selective filtering of the transferred community.

To generate insights into the genomic content of the microbial community, we first assem-

bled short metagenomic reads into contiguous segments of DNA (contigs). Co-assemblies

of 24 Donor A and 15 Donor B metagenomes independently resulted in 53,891 and 54,311

contigs that were longer than 2,500 nucleotides, and described 0.70 and 0.79 million genes

occurring in 179 and 248 genomes, as estimated by the mode of the frequency of bacterial
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Figure 3.1: Detection of FMT donor genomes in FMT recipients and publicly available gut
metagenomes. In both heat maps, each column represents a donor genome, each row repre-
sents a metagenome, and each data point represents the detection of a given genome in a
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Figure 3.1 continued: given metagenome. Purple rows represent donor metagenomes from
stool samples collected over 636 days for (A) Donor A and 532 days for (B) Donor B. Orange
rows represent recipient pre-FMT metagenomes, and blue rows represent recipient post-FMT
metagenomes. Rows are arranged in descending chronological order with respect to each
subject. The intensity of purple, orange and blue color scales represent the detection value for
each genome in each metagenome, with a minimum detection of 0.25. Genome columns
are clustered according to their presence or absence in all metagenomes (Euclidean dis-
tance and Ward clustering). The three columns to the right of the heatmaps display, for each
metagenome row: (X) the number of metagenomic short reads in millions, (Y) the percent
of metagenomic short reads recruited by genomes, and (Z) the taxonomic composition of
metagenomes (based on metagenomic short reads) at the phylum level. The first row below
each heat map (Q) provides the phylum-level taxonomy for each donor genome. Finally, the 11
bottommost rows under each heat map show the fraction of healthy adult metagenomes from
11 different countries in which a given donor genome is detected (if a genome is detected in
every individual from a country it is represented with a full bar and a value of 1). The dendro-
grams on the right-hand side of the country layers organize countries based on the detection
patterns of genomes (Euclidean distance and Ward clustering). Purple and red shaded coun-
tries represent the two main clusters that emerge from this analysis, where purple layers are
industrialized countries in which donor genomes are highly prevalent and red layers are less
industrialized countries where the prevalence of donor genomes is low. A maximum resolution
version of this figure is also available at https://doi.org/10.6084/m9.figshare.15138720.

single-copy core genes (Supplementary Table 3.2). On average, 80.8% of the reads in donor

metagenomes mapped back to the assembled contigs from donor metagenomes, which sug-

gests that the assemblies represented a large fraction of the donor microbial communities.

Donor assemblies recruited only 43.4% of the reads on average from the pre-FMT recipient

metagenomes. This number increased to 80.2% for post-FMT recipient metagenomes, and

remained at an average of 76.8% even one year post-FMT (Supplementary Table 3.2). These

results suggest that members of the donor microbiota successfully established in the recipient

gut and persisted long-term.

To investigate functional determinants of microbial colonization by identifying donor pop-

ulations that were successful at colonizing multiple individuals, we reconstructed microbial

genomes from donor assemblies using sequence composition and differential coverage signal

as previously described (Sharon et al., 2013; Lee et al., 2017). We manually refined metage-

nomic bins to improve their quality following previously described approaches (Delmont et al.,
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2018; Shaiber et al., 2020b) and only retained those that were at least 70% complete and

had no more than 10% redundancy as predicted by bacterial single-copy core genes (Bowers

et al., 2017; Chen et al., 2020). Our binning effort resulted in a final list of 128 metagenome-

assembled genomes (MAGs) for Donor A and 183 MAGs for Donor B that included members of

Firmicutes (n=265), Bacteroidetes (n=20), Actinobacteria (n=14), Proteobacteria (n=7), Verru-

comicrobia (n=2), Cyanobacteria (n=2), and Patescibacteria (n=1) (Supplementary Table 3.2).

The taxonomy of donor-derived genomes largely reflected the taxonomic composition of donor

metagenomic short reads (Figure 3.1, Supplementary Table 3.2, Supplementary Table 3.3).

While only 20 genomes (mostly of the genera Bacteroides and Alistipes) explained the entirety

of the Bacteroidetes group, we recovered 265 genomes that represented lower abundance but

diverse populations of Firmicutes (Figure 3.1, Supplementary Table 3.2, Supplementary Table

3.3).

Metagenomic read recruitment elucidates colonization events

Reconstructing donor genomes enabled us to characterize (1) population-level microbial colo-

nization dynamics before and after FMT using donor and recipient metagenomes and (2) the

distribution of each donor population across geographically distributed humans using 1,984

publicly available human gut metagenomes (Figure 3.1, Supplementary Table 3.4).

Our metagenomic read recruitment analysis showed that donor A and B genomes recruited

on average 77.05% and 83.04%, respectively, of reads from post-FMT metagenomes, sug-

gesting that the collection of donor genomes well represents the recipient metagenomes post-

FMT (Figure 3.1). As expected, we detected each donor population in at least one donor

metagenome (see Methods for ‘detection’ criteria). Yet, only 16% of Donor A populations

were detected in every Donor A sample, and only 44% of Donor B populations were detected

in every Donor B sample (Figure 3.1, Supplementary Table 3.3), demonstrating the previ-

ously documented dynamism of gut microbial community composition over time (David et al.,
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2014a). A marked increase in the detection of donor populations in recipients after FMT is in

agreement with the general pattern of transfer suggested by the short-read taxonomy (Figure

3.1): while we detected only 38% of Donor A and 54% of Donor B populations in at least

one recipient pre-FMT, these percentages increased to 96% for both donors post-FMT (Sup-

plementary Table 3.3). We note that we observed a higher fraction of donor populations in

recipients as a function of the FMT delivery method. Following the cases of FMT where donor

stool was transplanted via colonoscopy, we detected 54.7% and 33.3% donor genomes in the

recipients of donor A (n=3) and donor B (n=2), respectively. In contrast, in the cases of FMT

where donor stool was transplanted via pills, we detected 69.5% and 61.6% donor genomes

in the recipients of donor A (n=2) and donor B (n=3), respectively.

Overall, not every donor population in our dataset was detected in each recipient, but the

emergence of donor populations in recipients did not appear to be random: while some donor

populations colonized all recipients, others colonized none (Figure 3.1), providing us with an

opportunity to quantify colonization success for each donor population in our dataset.

Succession of donor microbial populations in FMT recipients and their preva-

lence in publicly available metagenomes reveal good and poor colonizers

Of the populations that consistently occurred in donor metagenomes, some were absent in all

or most recipient metagenomes after FMT, and others were continuously present throughout

the sampling period in both donor and recipient metagenomes (Figure 3.1). To gain insights

into the ecology of donor microbial populations beyond our dataset, we explored their occur-

rence in publicly available healthy gut metagenomes through metagenomic read recruitment.

This analysis enabled us to consider the prevalence of donor populations in FMT recipients

and global gut metagenomes, and define two groups of donor genomes that represented op-

posite colonization and prevalence phenotypes.

The ‘good colonizers’ comprise those microbial populations that colonized and persisted
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in all FMT recipients. Intriguingly, these populations were also the most prevalent in pub-

licly available gut metagenomes from Canada. Overall, these donor microbial populations

(1) systematically colonized the majority of FMT recipients, (2) persisted in these environ-

ments long-term regardless of host genetics or lifestyle, and (3) were prevalent in public gut

metagenomes outside of our study. In contrast, the so-called ‘poor colonizers’ failed to colo-

nize or persist in at least three FMT recipients. These populations were nevertheless viable

in the donor gut environment: not only did they occur systematically in donor metagenomes

but also they sporadically colonized some FMT recipients. Yet, unlike the good colonizers, the

distribution patterns of poor colonizers were sparse within our cohort, as well as within the

publicly available metagenomes. In fact, populations identified as poor colonizers were less

prevalent than good colonizers in each of the 17 different countries we queried. In countries

including the United States, Canada, Austria, China, England, and Australia, microbial popu-

lations identified as good colonizers occurred in 5 times more people than poor colonizers in

the same country (Figure 3.1, Supplementary Table 3.3), which suggests that the outcomes of

FMT in our dataset were unlikely determined by neutral processes. This observation is in con-

trast with previous studies that suggested ‘dose’ (i.e., the abundance of a given population in

donor fecal matter) as a predominant force that determines outcomes of colonization after FMT

(Smillie et al., 2018; Podlesny and Florian Fricke, 2020). However, our strain-resolved analysis

of colonization events in our data in conjunction with the distribution of the same populations in

publicly available metagenomes revealed (1) a significant correlation between the colonization

success of donor populations and their prevalence across publicly available metagenomes,

and (2) showed that the prevalence of a given population across global gut metagenomes can

predict its colonization success after FMT better than its abundance in the donor stool sample

(Wald test, p=6.3e-06 and p=9.0e-07) (Supplementary Information). Overall, these observa-

tions suggest a link between the colonization outcomes in our study and global prevalence of

the same microbial populations, and that the succession of donor populations in our data were
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likely influenced by selective processes that influence colonization outcomes.

Next, we sought to investigate whether we can identify metabolic features that systemat-

ically differ between good colonizers and poor colonizers independent of their taxonomy. To

conduct such a comparative analysis, we conservatively selected the top 20 populations from

each group that best reflect their group properties by considering both their success after FMT

and their prevalence across publicly available metagenomes (Supplementary Table 3.7). The

20 populations representative of good colonizers were dominated by Firmicutes (15 of 20)

but also included Bacteroidetes and one Actinobacteria population. All populations identified

as poor colonizers resolved to Firmicutes (Figure 3.2, Supplementary Table 3.7). Genome

completion estimates did not differ between good and poor colonizers (Wilcoxon rank sum

test, p=0.42) and averaged to 91% and 93%, respectively. But intriguingly, the genome sizes

between the two groups differed dramatically (p=2.9e-06): genomes of good colonizers av-

eraged to 2.8 Mbp while those of poor colonizers averaged to 1.6 Mbp. We considered that

our bioinformatics analyses may have introduced biases to genome lengths, but found a very

high correspondence between the lengths of the genomes and their best matching reference

genomes in the Genome Taxonomy Database (GTDB) (R2=0.88, p=5e-14). Assuming that the

generally larger genomes of good colonizers may be an indication of an increased repertoire

of core metabolic competencies compared to poor colonizers, we next conducted a metabolic

enrichment analysis for quantitative insights (see Methods).

Good colonizers are enriched in metabolic pathways for the biosynthesis of

essential organic compounds

Our enrichment analysis between good and poor colonizers revealed 33 metabolic modules

(out of 443 total in the KEGG module database) that were enriched in good colonizers and

none that were enriched in poor colonizers (Figure 3.2, Supplementary Table 3.7). Of all en-

riched modules, 79% were related to biosynthesis, indicating an overrepresentation of biosyn-
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thetic capabilities among good colonizers as KEGG modules for biosynthesis only make up

55% of all KEGG modules (Figure 3.2, Supplementary Table 3.7). Of the 33 enriched mod-

ules, 48.5% were associated with amino acid metabolism, 21.2% with vitamin and cofactor

metabolism, 18.2% with carbohydrate metabolism, 24.2% with nucleotide metabolism, 6%

with lipid metabolism and 3% with energy metabolism (Supplementary Table 3.7). Metabolic

modules that were enriched in the good colonizers included the biosynthesis of seven of nine

essential amino acids, indicating the importance of high metabolic independence to synthesize

essential compounds as a likely factor that increases success in colonizing new environments

(Supplementary Table 3.7). This is further supported by the enrichment of biosynthesis path-

ways for the essential cofactor vitamin B12 (cobalamin), which occurred in 67.5% of the good

colonizers and only 12.5% of the poor colonizers (Supplementary Table 3.7). Vitamin B12 is

structurally highly complex and costly to produce, requiring expression of more than 30 genes

that are exclusively encoded by bacteria and archaea (Martens et al., 2002). In addition to the

biosynthesis of tetrahydrofolate, riboflavin, and cobalamin, the genomes of good colonizers

had a larger representation of biosynthetic modules for vitamins including biotin, pantothenate,

folate, and thiamine (Supplementary Table 3.7). These micronutrients are equally essential in

bacterial and human metabolism and are important mediators of host-microbe interactions

(Biesalski, 2016). Interestingly, enriched metabolic modules in our analysis partially overlap

with those that Feng et al. identified as the determinants of microbial fitness using metatran-

scriptomics and a germ-free mouse model conventionalized with microbial isolates of human

origin (Feng et al., 2020).

Even though these 33 metabolic modules were statistically enriched in populations identi-

fied as good colonizers, some of them also occurred in the genomes of poor colonizers (Figure

3.2). To identify whether the levels of completion of these modules could distinguish the good

and poor colonizers, we matched six good colonizers that encoded modules enriched in these

populations to six populations of poor colonizers from the same phylum (Figure 3.2). Bacte-
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Figure 3.2: Distribution of metabolic modules across genomes of good and poor colonizers.
Each data point in this heat map shows the level of completion of a given metabolic mod-
ule (rows) in a given genome (columns). The box-plot on the right-side compares a subset
of poor colonizer and good colonizer genomes, where each data point represents the level
of completion of a given metabolic module in a genome and shows a statistically significant
difference between the overall completion of metabolic modules between these subgroups
(Wilcoxon rank sum test, p=5.4e-09). A high-resolution version of this figure is also available
at https://doi.org/10.6084/m9.figshare.15138720.
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rial single-copy core genes estimated that genomes in both subgroups were highly complete

with a slight increase in average genome completion of poor colonizers (93.7%) compared to

good colonizers (90.1%). Despite the higher estimated genome completion for populations of

poor colonizers, estimated metabolic module completion values were slightly yet significantly

lower in this group (Wilcoxon rank sum test with continuity correction, V=958, p=5e-09) (Figure

3.2, Supplementary Table 3.7). Thus, these modules were systematically missing genes in

populations of poor colonizers, indicating their functionality was likely reduced, if not absent.

These observations suggest that the ability to synthesize cellular building blocks, cofac-

tors and vitamins required for cellular maintenance and growth provides a substantial ad-

vantage during secondary succession, highlighting that the competitive advantages conferred

by metabolic autonomy may outweigh the additional costs under certain conditions. For the

remainder of our study, we use the term ‘high metabolic independence’ (HMI) to describe

genomic evidence for a population’s ability to synthesize essential compounds (that is, high

completeness scores of biosynthesis pathways for these compounds indicating the presence

of most, if not all, genes required to produce them), and ‘low metabolic indepence’ (LMI) to

describe the absence of, or reduction in, such capacity.

While gut microbial ecosystems of healthy individuals include microbes with

both low- and high-metabolic independence, IBD primarily selects for microbes

with high-metabolic independence

Our results so far show that while the healthy donor environment could support both HMI and

LMI populations (Figure 3.1, Supplementary Table 3.3), challenging microbes to colonize a

new environment or to withstand ecosystem perturbation during FMT selects for HMI popu-

lations (Figure 3.2, Supplementary Table 3.7), suggesting that metabolic independence is a

more critical determinant of fitness during stress than during homeostasis. Based on these
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observations, it is conceivable to hypothesize that (1) a gut environment in homeostasis will

support a large variety of microbial populations with a wide spectrum of metabolic indepen-

dence, and (2) a gut environment under stress will select for populations with high metabolic

independence, potentially leading to an overall reduction in diversity.

To test these hypotheses, we compared genomes reconstructed from a cohort of healthy

individuals (Pasolli et al., 2019) to genomes reconstructed from individuals who were diag-

nosed with inflammatory bowel disease (IBD). Our IBD dataset was composed of two cohorts:

a set of patients with pouchitis (Vineis et al., 2016b), a form of IBD with similar pathology

to ulcerative colitis (De Preter et al., 2009), and a set of pediatric Crohn’s disease patients

(Quince et al., 2015). The number of genomes per individual and the average level of genome

completeness per group were similar between healthy individuals and those with IBD: overall,

our analysis compared 264 genomes from 22 healthy individuals with an average completion

of 90.4%, 44 genomes from 4 pouchitis patients with an average completion of 89.2% and

256 genomes from 12 Crohn’s disease patients with an average completion of 94.1% (Sup-

plementary Table 3.8). Intriguingly, similar to the size differences between genomes of HMI

populations and LMI populations (2.8 Mbp versus 1.6 Mbp on average), genomes of microbial

populations associated with IBD patients were larger compared to those of microbial popula-

tions in healthy people and averaged to 3.0 Mbp versus 2.6 Mbp, respectively (Supplementary

Table 3.8). This suggests that the environmental filters created by FMT and gastrointestinal

inflammation both select for microbial populations with larger genomes and potentially higher

metabolic independence.

Next, we asked whether the completion of metabolic modules associated with coloniza-

tion success and resilience during FMT differed between the genomes reconstructed from

healthy and IBD individuals. The completion of the 33 metabolic modules was almost iden-

tical between the HMI populations revealed by FMT and microbial populations in IBD pa-

tients (Wilcoxon rank sum test, p=0.5) (Figure 3.3, Supplementary Table 3.8). In contrast,
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the completion of these metabolic modules was significantly reduced in microbial populations

in healthy individuals (Wilcoxon rank sum test, p < 1e-07) (Figure 3.3, Supplementary Table

3.8). Metabolic modules with the largest differences in completion between genomes from

healthy and IBD individuals included biosynthesis of cobalamin, arginine, ornithine, trypto-

phan, isoleucine as well as the Shikimate pathway (Figure 3.3, Supplementary Table 3.8), a

seven step metabolic route bacteria use for the biosynthesis of aromatic amino acids (pheny-

lalanine, tyrosine, and tryptophan) (Herrmann and Weaver, 1999).

Our findings show that the same set of biosynthetic metabolic modules that distinguish

good and poor colonizers during FMT were also differentially associated with populations

of IBD patients and healthy individuals. In particular, while healthy individuals harbored mi-

crobes with a broad spectrum of metabolic capacity, microbes from individuals who suffer from

two different forms of IBD had significantly higher biosynthetic independence. It is conceiv-

able that a stable gut microbial ecosystem is more likely to support LMI populations through

metabolic cross-feeding, where vitamins, amino acids, and nucleotides are exchanged be-

tween microbes (D’Souza et al., 2018). In contrast, host-mediated environmental stress in

IBD likely disrupts such interactions and creates an ecological filter that selects for metabolic

independence, which subsequently leads to loss of diversity and the dominance of organisms

with large genomes that are often not as abundant or as competitive in states of homeostasis.

These observations have implications for our understanding of the hallmarks of healthy gut

microbial ecosystems. Defining the ‘healthy gut microbiome’ has been a major goal of hu-

man gut microbiome research (Bäckhed et al., 2012), which still remains elusive (Eisenstein,

2020). Despite comprehensive investigations that considered core microbial taxa (Arumugam

et al., 2011; Lloyd-Price et al., 2016b) or guilds of microbes that represent coherent functional

groups (Wu et al., 2021a), the search for ‘biomarkers’ of healthy gut microbiomes is ongoing

(McBurney et al., 2019). Our findings indicate that beyond the taxonomic diversity of a mi-

crobial community, a broad range of metabolic independence represents a defining feature
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Figure 3.3: Distribution of metabolic modules in genomes reconstructed from healthy indi-
viduals and individuals with IBD. The boxplots in the top panels show the metabolic module
completion values for (1) high- and (2) low-metabolic independence donor genomes identi-
fied in this study (blue and yellow), (3) genomes from healthy individuals (green), and (4)
genomes from individuals with pouchitis (red) and Crohn’s disease (orange). Each dot in a
given box-plot represents one of 33 metabolic modules that were enriched in HMI FMT donor
populations and the y-axis indicates its estimated completion. The leftmost top panel repre-
sents group averages and red whiskers indicate the median. The rightmost top panel shows
the distribution of metabolic modules for individuals within each group. In the bottom panel the
completion values for 10 of the 33 pathways are demonstrated as ridge-line plots. Each plot
represents a single metabolic module where each layer corresponds to an individual, and the
shape of the layer represents the completion of a given metabolic module across all genomes
reconstructed from that individual. A high-resolution version of this figure is also available at
https://doi.org/10.6084/m9.figshare.15138720.

77

https://doi.org/10.6084/m9.figshare.15138720


of a healthy gut microbiome. Conversely, our findings also suggest that an enrichment of

metabolically independent populations could serve as an indicator of environmental stress in

the human gut. Detection of these metabolic markers is not influenced by fluctuations in taxo-

nomic composition or diversity, and represents a quantifiable feature of microbial communities

through genome-resolved metagenomic surveys.

Our findings offer a new, taxonomy-independent perspective on the determinants of mi-

crobial resilience in the human gut environment under stress. Yet, our study is limited to

well-known metabolic pathways – which, given the extent of the unknown coding space in mi-

crobial genomes (Vanni et al., 2022), are likely far from complete – as well as by our ability to

recognize gene function, which is determined by the sequences described in public databases

that favor well-studied microbial organisms (Supplementary Information). Thus, conserva-

tively put, the enrichment of biosynthetic modules in HMI populations suggests that the ability

to synthesize essential biological compounds is necessary but likely insufficient to survive en-

vironmental stress in the gut. Nevertheless, the finding that the same metabolic modules that

promote colonization success after FMT are also the hallmarks of resilience in IBD suggests

the presence of unifying ecological principles that govern microbial diversity in distinct modes

of stress, which warrants deeper investigation.

3.2.3 Conclusions

Our study identifies high metabolic independence conferred by the biosynthetic capacity for

amino acids, nucleotides, and essential micronutrients as a distinguishing hallmark of micro-

bial populations that colonize recipients of FMT and that thrive in IBD patients. These findings

highlight the functional complexity of the human gut microbiome whose various interactions

with the host are shaped through a network of microbial interactions such as cross-feeding of

macro- and micro-nutrients. Our study offers a simple model that posits the following: microbial

populations that are metabolically independent and those that lack the means to synthesize
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essential metabolites co-occur in a healthy gut environment in harmony, where their differ-

ential resilience to stress is indiscernible by their taxonomy or relative abundance. However,

the challenges associated with the transfer to a new gut environment through FMT, or with

host-mediated stress through IBD, initiate an ecological filter that selects for microbes that

can self-sustain in the absence of ecosystem services associated with states of homeostasis.

This model provides a hypothesis that explains the dominance of low-abundance members of

healthy gut environments under stressful conditions, without any necessary direct causal as-

sociation with disease state. If the association between particular microbial taxa and disease

is solely driven by their superior metabolic independence, microbial therapies that aim to treat

complex diseases by adding microbes associated with healthy individuals will be unlikely to

compete with the adaptive processes that regulate complex gut microbial ecosystems.

3.2.4 Methods

Sample collection and storage. We selected our samples from a subset of individuals who

participated in a randomized clinical trial (Kao et al., 2017). Our selection criteria took into

consideration multiple factors that were not applicable to all participants of the clinical study.

Briefly, we aimed to identify (1) donors that contributed a large number of fecal samples over

long periods of time (to maximize the number and quality of genomes from metagenomes and

to be able to identify the extent of intrapersonal variability of the microbiota and its potential

impact on our results), (2) donors whose feces were transplanted to the largest number of

recipients (to be able to discuss the colonization dynamics of the same donor populations

in different individuals accurately), (3) multiple recipients for each donor that received FMT

via different methods, such as colonoscopy versus pills (to be able to better understand the

generalizability of our downstream observations independent of the delivery method), and (4)

recipients that were followed the longest period of time after FMT (to be able to follow donor

population dynamics accurately). We did not consider factors that may impact the microbial
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community composition (such as age, gender, or diet) to homogenize the recipient cohort

to observe overarching microbial patterns after FMT that are beyond environmental factors

dictated by the host. Based on these criteria we identified two donors (DA and DB), and 5

FMT recipients for each donor. All recipients received vancomycin for a minimum of 10 days

pre-FMT at a dose of 125 mg four times daily. Three DA and two DB recipients received FMT

via pill, and two DA and three DB recipients received FMT via colonoscopy. All recipients

had recurrent C. difficile infection before FMT, and two DA recipients and one DB recipient

were also diagnosed with ulcerative colitis (UC). 24 stool samples were collected from the

DA donor over a period of 636 days, and 15 stool samples were collected from the DB donor

over a period of 532 days. Between 5 and 9 stool samples were collected from each recipient

over periods of 187 to 404 days, with at least one sample collected pre-FMT and 4 samples

collected post-FMT. This gave us a total of 109 stool samples from all donors and recipients.

Samples were stored at -80oC. (Supplementary Figure 3.4, Supplementary Table 3.1)

Metagenomic short-read sequencing. We extracted the genomic DNA from frozen sam-

ples according to the centrifugation protocol outlined in MoBio PowerSoil kit with the following

modifications: cell lysis was performed using a GenoGrinder to physically lyse the samples

in the MoBio Bead Plates and Solution (5–10 min). After final precipitation, the DNA sam-

ples were resuspended in TE buffer and stored at -20 °C until further analysis. Sample DNA

concentrations were determined by PicoGreen assay. DNA was sheared to 400 bp using the

Covaris S2 acoustic platform and libraries were constructed using the Nugen Ovation Ultralow

kit. The products were visualized on an Agilent Tapestation 4200 and size-selected using

BluePippin (Sage Biosciences). The final library pool was quantified with the Kapa Biosys-

tems qPCR protocol and sequenced on the Illumina NextSeq500 in a 2 × 150 paired-end

sequencing run using dedicated read indexing.

‘Omics workflows. Whenever applicable, we automated and scaled our ‘omics analyses

using the bioinformatics workflows implemented by the program ‘anvi-run-workflow‘ (Shaiber
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et al., 2020b) in anvi’o 7.1 (Eren et al., 2015, 2021b). Anvi’o workflows implement numerous

steps of bioinformatics tasks including short-read quality filtering, assembly, gene calling, func-

tional annotation, hidden Markov model search, metagenomic read-recruitment, metagenomic

binning, and phylogenomics. Workflows use Snakemake (Köster and Rahmann, 2012) and a

tutorial is available at the URL http://merenlab.org/anvio-workflows/. The following

sections detail these steps.

Taxonomic composition of metagenomes based on short reads. We used Kraken2

v2.0.8-beta (Wood et al., 2019) with the NCBI’s RefSeq bacterial, archaeal, viral and vi-

ral neighbors genome databases to calculate the taxonomic composition within short-read

metagenomes.

Assembly of metagenomic short reads. To minimize the impact of random sequencing

errors in our downstream analyses, we used the program ‘iu-filter-quality-minoche‘ to process

short metagenomic reads, which is implemented in illumina-utils v2.11 (Eren et al., 2013) and

removes low-quality reads according to the criteria outlined by Minoche et al. (Minoche et al.,

2011). IDBA_UD v1.1.2 (Peng et al., 2012) assembled quality-filtered short reads into longer

contiguous sequences (contigs), although we needed to recompile IDBA_UD with a modified

header file so it could process 150bp paired-end reads.

Processing of contigs. We use the following strategies to process both sequences we

obtained from our assemblies and those we obtained from reference genomes. Briefly, we

used (1) ‘anvi-gen-contigs-database‘ on contigs to compute k-mer frequencies and identify

open reading frames (ORFs) using Prodigal v2.6.3 (Hyatt et al., 2010), (2) ‘anvi-run-hmms‘ to

identify sets of bacterial (Campbell et al., 2013) and archaeal (Rinke et al., 2013) single-copy

core genes using HMMER v3.2.1 (Eddy, 2011), (3) ‘anvi-run-ncbi-cogs‘ to annotate ORFs with

functions from the NCBI’s Clusters of Orthologous Groups (COGs) (Tatusov et al., 2003), and

(4) ‘anvi-run-kegg-kofams‘ to annotate ORFs with functions from the KOfam HMM database

of KEGG orthologs (KOs) (Aramaki et al., 2020; Kanehisa and Goto, 2000). To predict the
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approximate number of genomes in metagenomic assemblies we used the program ‘anvi-

display-contigs-stats‘, which calculates the mode of the frequency of single-copy core genes

as described previously (Delmont and Eren, 2016).

Metagenomic read recruitment, reconstructing genomes from metagenomes, deter-

mination of genome taxonomy and ANI. We recruited metagenomic short reads to contigs

using Bowtie2 v2.3.5 (Langmead and Salzberg, 2012) and converted resulting SAM files to

BAM files using samtools v1.9 (Li et al., 2009). We profiled the resulting BAM files using

the program ‘anvi-profile‘ with the flag ‘--min-contig-length‘ set to 2500 to eliminate shorter

sequences to minimize noise. We then used the program ‘anvi-merge‘ to combine all read

recruitment profiles into a single anvi’o merged profile database for downstream visualiza-

tion, binning, and statistical analyses (the DOI 10.6084/m9.figshare.14331236 gives access

to reproducible data objects). We then used ‘anvi-cluster-contigs‘ to group contigs into 100

initial bins using CONCOCT v1.1.0 (Alneberg et al., 2014), ‘anvi-refine‘ to manually curate

initial bins with conflation error based on tetranucleotide frequency and differential coverage

signal across all samples, and ‘anvi-summarize‘ to report final summary statistics for each

gene, contig, and bin. We used the program ‘anvi-rename-bins‘ to identify bins that were

more than 70% complete and less than 10% redundant, and store them in a new collection

as metagenome-assembled genomes (MAGs), discarding lower quality bins from downstream

analyses. GTBD-tk v0.3.2 (Chaumeil et al., 2019) assigned taxonomy to each of our MAGs

using GTDB r89 (Parks et al., 2018), but to assign species- and subspecies-level taxonomy

for ‘DA_MAG_00057‘, ‘DA_MAG_00011‘, ‘DA_MAG_00052‘ and ‘DA_MAG_00018‘, we used

‘anvi-get-sequences-for-hmm-hits‘ to recover DNA sequences for bacterial single-copy core

genes that encode ribosomal proteins, and searched them in the NCBI’s nucleotide collection

(nt) database using BLAST (Altschul et al., 1990). Finally, the program ‘anvi-compute-genome-

similarity‘ calculated pairwise genomic average nucleotide identity (gANI) of our genomes us-

ing PyANI v0.2.9 (Pritchard et al., 2016).
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Criteria for MAG detection in metagenomes. Using mean coverage to assess the oc-

currence of populations in a given sample based on metagenomic read recruitment can yield

misleading insights, since this strategy cannot accurately distinguish reference sequences

that represent very low-abundance environmental populations from those sequences that do

not represent an environmental population in a sample yet still recruit reads from non-target

populations due to the presence of conserved genomic regions. Thus, we relied upon the

‘detection’ metric, which is a measure of the proportion of the nucleotides in a given sequence

that are covered by at least one short read. We considered a population to be detected in a

metagenome if anvi’o reported a detection value of at least 0.25 for its genome (whether it was

a metagenome-assembled or isolate genome). Values of detection in metagenomic read re-

cruitment results often follow a bimodal distribution for populations that are present and absent

(see Supplementary Figure 2 in ref. (Utter et al., 2020)), thus 0.25 is an appropriate cutoff to

eliminate false-positive signal in read recruitment results for populations that are absent.

Identification of MAGs that represent multiple subpopulations. To identify subpopu-

lations of MAGs in metagenomes, we used the anvi’o command ‘anvi-gen-variability-profile‘

with the ‘--quince-mode‘ flag which exported single-nucleotide variant (SNV) information for all

MAGs after read recruitment. We then used DESMAN v2.1.1 (Quince et al., 2017) to ana-

lyze SNVs to determine the number and distribution of subpopulations represented by a single

genome. To account for non-specific mapping that can inflate the number of estimated subpop-

ulations, we removed any subpopulation that made up less than 1% of the entire population

explained by a single MAG. To account for noise due to low coverage, we only investigated

subpopulations for MAGs for which the mean non-outlier coverage of single-copy core genes

was at least 10X.

Criteria for colonization of a recipient by a MAG for colonization dynamics analyses

(Supplementary Information). We applied the set of criteria described in Supplementary

Figure 4 to determine whether or not a MAG successfully colonized a recipient, and to confi-
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dently assign colonization or non-colonization phenotypes to each MAG/recipient pair where

the MAG was detected in the donor sample used for transplant into the recipient. If these

criteria were met, we then determined whether the MAG was detected in any post-FMT re-

cipient sample taken more than 7 days after transplant. If not, the MAG/recipient pair was

considered a non-colonization event. If the MAG was detected in the recipient greater than 7

days post-FMT, we used subpopulation information to determine if any subpopulation present

in the donor and absent in the recipient pre-FMT was detected in the recipient more than 7

days post-FMT. If this was the case, we considered this to represent a colonization event. See

Supplementary Figure 4 for a complete outline of all possible cases.

Phylogenomic tree construction. To concatenate and align amino acid sequences of

46 single-copy core (Campbell et al., 2013) ribosomal proteins that were present in all of

our Bifidobacterium MAGs and reference genomes, we ran the anvi’o command ‘anvi-get-

sequences-for-hmm-hits‘ with the ‘--return-best-hit‘, ‘--get-aa-sequence‘ and ‘--concatenate‘

flags, and the ‘--align-with‘ flag set to ‘muscle‘ to use MUSCLE v3.8.1551 (Edgar, 2004) for

alignment. We then ran ‘anvi-gen-phylogenomic-tree‘ with default parameters to compute a

phylogenomic tree using FastTree 2.1 (Price et al., 2010).

Analysis of metabolic modules and enrichment. We calculated the level of complete-

ness for a given KEGG module (Kanehisa et al., 2014, 2017) in our genomes using the pro-

gram ‘anvi-estimate-metabolism‘, which leveraged previous annotation of genes with KEGG

orthologs (KOs) (see the section ‘Processing of contigs’). Then, the program ‘anvi-compute-

functional-enrichment‘ determined whether a given metabolic module was enriched in a group

of genomes based on the output from the program ‘anvi-estimate-metabolism‘. The URL

https://anvio.org/m/anvi-estimate-metabolism serves a tutorial for this program

which details the modes of usage and output file formats. The statistical approach for enrich-

ment analysis is defined elsewhere (Shaiber et al., 2020b), but briefly it computes enrichment

scores for functions (or metabolic modules) within groups by fitting a binomial generalized lin-
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ear model (GLM) to the occurrence of each function or complete metabolic module in each

group, and then computing a Rao test statistic, uncorrected p-values, and corrected q-values.

We considered any function or metabolic module with a q-value less than 0.05 to be ‘enriched’

in its associated group if it was also at least 75% complete and present in at least 50% of the

group members.

Determination of MAGs representing good and poor colonizers for metabolic en-

richment analysis. We classified MAGs as good colonizers if, in all 5 recipients, they were

detected in the donor sample used for transplantation as well as the recipient more than 7

days post-FMT. We classified MAGs as poor colonizers as those that, in at least 3 recipients,

were detected in the donor sample used for FMT but were not detected in the recipient at

least 7 days post-FMT. We reduced the number of good colonizer MAGs to be the same as

the number of poor colonizer MAGs for metabolic enrichment analysis by selecting only those

populations that were the most prevalent in the Canadian gut metagenomes.

Classification of high metabolic independence. We developed a script to calculate the

pathwise completeness of the 33 KEGG modules that were enriched in good colonizers in this

study to determine whether a given genome resembles HMI or LMI populations. The URL

https://anvio.org/m/anvi-script-estimate-metabolic-independence serves more

information.

Ordination plots. We used the R vegan v2.4-2 package ‘metaMDS‘ function to perform

nonmetric multidimensional scaling (NMDS) with Horn-Morisita dissimilarity distance to com-

pare taxonomic composition between donor, recipient, and global metagenomes. We visual-

ized ordination plots using R ggplot2.

3.2.5 Availability of Data and Materials

Raw sequencing data for donor and recipient metagenomes are stored under the NCBI Bio-

Project PRJNA701961 (see Supplementary Table 3.1 for accession numbers for each sam-
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ple)(Watson et al., 2021). The geographically distributed human gut metagenomes were

obtained from previously published datasets (Supplementary Table 3.4) (Zeevi et al., 2015;

Le Chatelier et al., 2013; Li et al., 2014; of Sydney, 2016b; Feng et al., 2015; Raymond et al.,

2016; David et al., 2015; Xie et al., 2016; Brito et al., 2016; Obregon-Tito et al., 2015; Rampelli

et al., 2015; Liu et al., 2016; Wen et al., 2017; Qin et al., 2012; Human Microbiome Project Con-

sortium, 2012a; Pasolli et al., 2019). The URL https://merenlab.org/data/fmt-gut-colonization

serves a reproducible bioinformatics workflow and gives access to ad hoc scripts, usage in-

structions, and intermediate data objects to reproduce findings in our study. Supplementary

tables are accessible also via doi:10.6084/m9.figshare.14138405.
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3.2.6 Supplementary Figures

Figure 3.4: Timeline of stool samples collected from FMT study. Each circle represents a stool
sample collected from either an FMT donor or FMT recipient. The thicker, red vertical line at
day 0 represents the FMT event for each recipient. FMT method (pill or colonoscopy) and FMT
recipient health and disease state (C. diff - chronic recurrent Clostridium difficile infection, UC
- ulcerative colitis) are indicated on the right.
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Figure 3.5: Nonmetric multidimensional scaling (NMDS) ordination of the taxonomic composi-
tion of donor, recipient, and Canadian gut metagenomes at the genus level based on Morisita-
Horn dissimilarity. Samples from the same participant are joined by lines with the earliest time
point labeled. CAN: Canadian gut metagenomes, DA: donor A, DB: donor B, POST: recipients
post-FMT, PRE: recipients pre-FMT.
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Figure 3.6: Nonmetric multidimensional scaling (NMDS) ordination of the taxonomic composi-
tion of the donor and recipient metagenomes at genus level based on Morisita-Horn dissimilar-
ity. Samples from the same participant are joined by lines with the earliest time point labeled.
DA_POST: donor A recipients post-FMT, DA_PRE: donor A recipients pre-FMT, DA: donor A,
DB_POST: donor B recipients post-FMT, DB_PRE: donor B recipients pre-FMT, DB: donor B.
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Figure 3.7: A flowchart outlining our method to assign successful colonization, failed coloniza-
tion, or undetermined colonization phenotypes to donor-derived populations in the recipients
of that donor’s stool.
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3.2.7 Supplementary Tables

This section’s supplementary tables are accessible via doi:10.6084/m9.figshare.14138405.

Table 3.1: Description of FMT study and stool samples collected. a) Description of FMT donor
stool samples and SRA accession numbers. b) Description of FMT recipient samples and
SRA accession numbers. c) Description of transplantation events.

Table 3.2: Description of FMT metagenomes and co-assemblies. a) Metagenome SRA
accession numbers and number of metagenomic short-reads sequenced and mapped to
co-assemblies and MAGs. b) Phylum level taxonomic composition of metagenomes. c)
Genus level taxonomic composition of metagenomes. d) Summary statistics for contigs from
metagenome co-assemblies.

Table 3.3: Description of MAGs. a) Summary statistics and taxonomic assignments for MAGs.
b) and c) Detection of Donor A and Donor B MAGs in FMT metagenomes, respectively. d) and
e) Detection of Donor A and Donor B MAGs in global gut metagenomes, respectively. f) and
g) Detection summary statistics of Donor A and Donor B MAGs in global gut metagenomes,
respectively. h) and i) Mean non-outlier coverage of Donor A and Donor B MAG single-copy
core genes in FMT metagenomes.

Table 3.4: Accession numbers of publicly-available gut metagenomes from 17 countries.

Table 3.5: MAG subpopulation information. a) and b) Number of Donor A and Donor B MAG
subpopulations detected in FMT metagenomes, respectively. c) and d) Subpopulation compo-
sition of Donor A and Donor B MAGs in FMT metagenomes, respectively.

Table 3.6: MAG/recipient pair colonization outcomes and MAG mean coverage in the 2nd and
3rd quartiles in stool samples used for transplantation.
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Table 3.7: Description of HMI vs. LMI populations. a) Taxonomic assignments and genome
size estimates for high- and low-metabolic independence populations. b) KEGG module com-
pleteness information for high- and low-metabolic independence populations. c) Raw KEGG
module enrichment information for high- and low-metabolic independence populations. d)
KEGG module enrichment and categorical information for the 33 modules enriched in high-
metabolic independence populations. e) and f) Completeness information for the 33 modules
enriched in high-metabolic independence populations in all high- and low-metabolic indepen-
dence populations.

Table 3.8: Description of genomes from healthy individuals and individuals with IBD. a) List
of genomes from healthy individuals and individuals with IBD. b) Module completion values
across genomes.
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3.3 The more the better? Number of accessory functions predicts

colonization success within the genus Bifidobacterium

3.3.1 Introduction

Host-microbe interactions influence human health and wellbeing by contributing to immune tol-

erance (Gensollen et al., 2016), gut barrier integrity (Tan et al., 2016; Schroeder et al., 2018)

and cellular energy metabolism (Donohoe et al., 2011). Dysbiotic states of the gut microbiota

are associated with diseases and disorders ranging from inflammatory bowel disease to neuro-

logical disorders (Durack and Lynch, 2019), and manipulation of the microbial composition and

activity to improve health represents an area of intense research (Zuo and Ng, 2018; Aggele-

topoulou et al., 2019). Administration of live microorganisms is a commonly used strategy,

and microbial strains are generally chosen based on their taxonomic affiliation and prevalence

with healthy adult microbiota for their potential to facilitate beneficial host-microbe interactions

(Hill et al., 2014; Guslandi, 2022). However, most clinical trials do not observe restoration

of homeostasis or substantial and reproducible health benefits through probiotics (Kristensen

et al., 2016; Guslandi, 2022). Variable outcomes in clinical trials may be related to variable

engraftment success of probiotics (Kristensen et al., 2016; Washburn et al., 2022), suggesting

that the ability to engineer effective therapies critically depends on an understanding of the

determinants of colonization success.

Members of the genus Bifidobacterium are widely used as probiotics (Sharma et al., 2021)

as they are prevalent in the human gut microbiome and are intimately linked with immune

system regulation (Arboleya et al., 2016). Yet, the ability to successfully establish in a new

gut environment differs between members of the genus Bifidobacterium. In a recent fecal mi-

crobiota transplantation (FMT) study conducted with participants from Canada, we transferred

the same human stool from a healthy donor to five unrelated individuals (Watson et al., 2023).

In the donor, the genus Bifidobacterium was the second most abundant genus (14.1%) after
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Bacteroides (15.8%), and was represented by three Bifidobacterium species: B. longum, B.

adolescentis subsp. adolescentis, and B. animalis subsp. lactis. To investigate the reason

for this discrepancy, we conducted a functional pangenomic analysis of the Bifidobacterium

genus. We observed largely overlapping core metabolic capabilities, yet substantial differ-

ences in the size and content of the accessory genome that yield a striking correlation with

the degree of colonization success and prevalence of each taxon across unrelated humans.

However, comparison of these results to published literature revealed significant gaps in our

analysis, which likely stem from annotation bias (due to the poor characterization of bifidobac-

teria in functional databases). This cautionary tale demonstrates the limitations of reference

databases for homology-based annotation of non-model organisms, and indicates that our

current understanding of metabolism is insufficient to differentiate between closely-related or-

ganisms.

3.3.2 Observations

For each of the Bifidobacterium populations, we reconstructed high-quality genomes from

donor metagenomes (Supplementary Table 3.9). While each population was present in the

donor gut environment over a 20-month period, they showed vastly different colonization ef-

ficiency in recipients after FMT (Figure 3.8). Populations of B. longum and B. adolescentis

subsp. adolescentis (henceforth B. adolescentis) colonized most recipients, yet B. animalis

subsp. lactis (henceforth B. lactis) did not persist in any of the recipients (Supplementary Ta-

ble 3.9). Overall, B. longum, B. adolescentis, and B. lactis populations occurred in 83%, 79%,

and 4% of all 24 post-FMT recipient metagenomes, respectively (Figure 3.8). Surprisingly,

the patterns of colonization after FMT were reflected in the prevalence of these populations

in publicly available gut metagenomes of healthy humans from 17 countries and B. lactis was

also less prevalent than B. longum and B. adolescentis in these data (Supplementary Table

3.9). In Canada, B. longum, B. adolescentis, and B. lactis populations occurred in 74%, 39%,

94



and 13% of unrelated individuals, demonstrating a positive relationship (Pearson’s correlation

of 0.9) between their colonization success and their prevalence (Supplementary Table 3.9).

Intriguingly, the B. lactis genome we reconstructed was virtually identical (with over 99.99%

sequence identity over 99.82% alignment, Supplementary Table 3.9) to B. lactis strains that

are widely used as probiotics (Jungersen et al., 2014).

On a broad scale, colonization outcomes are influenced by various factors, including eco-

system state and niche availability (McFarland, 2014; Maldonado-Gómez et al., 2016), as well

as the metabolic competencies of individual microbes (Watson et al., 2023). As higher ranks

of taxonomy represent similar metabolic capabilities (Martiny et al., 2013) and ecological traits

(Philippot et al., 2010) among closely related organisms, the distinct colonization success

between closely related Bifidobacterium populations emerges as an opportunity to investigate

more subtle factors that drive colonization outcomes. Here we extended our collection of three

Bifidobacterium metagenome-assembled genomes (MAGs) with 31 complete isolate genomes

from the NCBI (the within-group and across-groups average gANI estimates for all genomes

were 99% and 77%, respectively) (Supplementary Table 3.9) to investigate gene-resolved

differences within this group.
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Figure 3.8: Characteristics of three Bifidobacterium species. Top panel shows the detec-
tion of Donor A MAGs that represent three distinct Bifidobacterium populations across donor
and recipient metagenomes before and after FMT. The last two columns in this panel show
the prevalence of these populations in post-FMT metagenomes, and publicly available gut
metagenomes from Canada. The panel below displays the presence or absence of KEGG
orthologs within the three Bifidobacterium MAGs and 31 high-quality Bifidobacterium isolate
genomes from the NCBI. Each radii of the concentric semicircles represents a single function
assigned by the database of KEGG Orthologs, and each layer of the semicircle is a distinct
genome. The intensity of color indicates the presence of a given function in a given genome.
The outermost circle indicates groups of functions that are enriched in various groups of Bifi-
dobacterium genomes as well as those functions that are not enriched in any group as they
are either in all genomes, or only a very small number of them. Maximum resolution version
of this figure is also available at https://doi.org/10.6084/m9.figshare.15138720.
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Genome length and accessory functions differentiate Bifidobacterium clades

The higher average genome lengths of B. longum (2.31 Mbp) and B. adolescentis (2.18 Mbp)

compared to B. lactis (1.94 Mbp) concurs with previous observations of a positive correlation

between genome size and colonization success (Watson et al., 2023). Nevertheless, there was

no clear signal regarding differentially occurring metabolic pathways among the three groups

(Supplementary Table 3.10). However, gene annotations with families of KEGG orthologs

(KOfams) (Aramaki et al., 2020) and the Clusters of Orthologous Groups (COGs) (Galperin

et al., 2021) revealed a large number of individual functions that differentially occurred be-

tween them, where 305 of the 1,168 unique KOfams in the Bifidobacterium pangenome were

statistically enriched in either one or two groups (Figure 3.8). Of these accessory functions,

B. longum encoded 205 (67.2%), B. adolescentis 154 (50.5%), and B. lactis 82 (26.9%) (Fig-

ure 3.8, Supplementary Table 3.10), showing a parallel between the fraction of the accessory

functions enriched in a taxon and the extent of its colonization ability and prevalence.

Notably, several functions distinguishing B. adolescentis and B. longum from B. lactis were

related to stress tolerance, including two multidrug resistance pumps of the ‘multidrug and

toxin extrusion’ (MATE) type, three transporters of the major facilitator superfamily (MFS) in-

volved in bile acid tolerance and macrolide efflux, two bile acid:natrium ion symporters, and

one proton/chloride ion antiporter conferring acid tolerance (Supplementary Table 3.10). The

reduced pool of stress tolerance-associated functions in B. lactis may at least in part explain its

relatively lower success in colonization and prevalence in our data and predict an even lower

colonization success of inflamed, antibiotic-treated or otherwise perturbed gut environments.

Bifidobacterium clades have only minor differences in metabolic capacity

Our analysis of the metabolic capacity of groups of genomes affiliated with B. longum, B.

adolescentis and B. lactis identified 46 metabolic pathways that were present in at least one

member (Supplementary Table 3.10), 40 of which were encoded by all members. Among all
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annotated pathways, 25 belonged to a set of 33 metabolic modules previously identified as

markers for colonization success during FMT (Watson et al., 2023), only 22 of these were

present in B. lactis while B. adolescentis and B. longum encoded 24 and 25 of these 33

pathways, respectively. B. longum and B. adolescentis encoded pathways for Tetrahydrofo-

late biosynthesis and the MEP pathway for isoprenoid biosynthesis. B. longum was the only

species that encoded a pathway for the synthesis of Nicotinamide adenine dinucleotide (NAD),

an essential cofactor, suggesting that the other two species may require an alternative way of

acquiring NAD; however, of the two canonical NAD salvage genes pncA and nadV (Gazzaniga

et al., 2009), only pncA (K08281) was found in all B. longum and 3 B. adolescentis genomes

(Gazzaniga et al., 2009). B. lactis also encodes several metabolic pathways that are missing

in one or both other species, including pathways for methionine degradation, thiamine salvage,

initiation of fatty acid biosynthesis and pyrimidine deoxyribonucleotide biosynthesis. However,

none of these pathways were enriched in successful colonizers during FMT (Watson et al.,

2023).

Investigation of metabolic potential reveals annotation bias

In the process of investigating metabolic potential, we discovered that B. lactis genomes were

missing annotations of several enzymes for which they indeed had genes, as indicated by the

pangenome results. For example, two KOs in the histidine biosynthesis pathway, K01693 and

K02501, were not annotated in these genomes, yet two core gene clusters contained gene

sequences annotated with these enzymes. The B. lactis gene sequences in these clusters

were unannotated despite having enough sequence similarity to resolve to the same cluster.

This suggests that the B. lactis genomes are systematically missing enzyme annotations; that

is, they suffer from annotation bias. The source of this bias can likely be attributed to the

nature of gene annotation models, which are generated from a limited set of homologous

reference sequences. Homologs from taxonomic clades not included in the set may be too
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different from the resulting model to match it with high similarity scores, thereby resulting

in dropped annotations. Indeed, the bit score thresholds computed by KEGG for K01693

and K02501 were too high for the corresponding B. lactis genes to be annotated with these

enzymes. This had the downstream effect of false negatives in our metabolism estimation

results: the histidine biosynthesis pathway (which requires these two enzymes) was incorrectly

predicted to be incomplete in B. lactis. In response to this discovery, we developed a heuristic

for restoring valid annotations that nevertheless have bit scores lower than the pre-computed

threshold (Methods). We then re-annotated all genomes using this heuristic and re-did all

of the analyses described in this paper for greater accuracy; the observations given in the

preceding sections result from the corrected annotations.

3.3.3 Limitations

Despite our attempt to mitigate the observed annotation bias in B. lactis genomes, our func-

tional analysis results were still skewed by incomplete annotations and the limited diversity of

metabolic pathways described by KEGG. We missed a number of important functions previ-

ously studied in bifidobacteria (as a reviewer kindly pointed out). For example, B. lactis has

fewer glycan utilization capabilities than the other two clades (Milani et al., 2016, 2013), but

this was not shown in our functional enrichment or metabolism estimation results. Further-

more, annotation bias can result in misleading metabolism estimates, as demonstrated by the

pre-heuristic result that B. lactis lacks a histidine biosynthesis pathway. Our annotation heuris-

tic for KOfams is not necessarily enough to make up for the lack of characterization of these

genomes in KEGG, nor does it apply to other functional databases that likely suffer from similar

biases.
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3.3.4 Conclusion

This study highlights the inadequacy of our current characterization of non-model organisms

in widely-used reference databases, which culminates in annotation bias that precludes the

study of subtle differences in functional capacity between closely related populations. We

were unable to reveal the secret to differential colonization success of Bifidobacterium species.

However, this investigation provides an important, cautionary lesson for the study of poorly-

characterized microbes: biased input results in biased output, and careful validation of results

is paramount.

3.3.5 Methods

Genomes and metagenomes. Raw sequencing data for donor and recipient metagenomes

are stored under the NCBI BioProject PRJNA701961 (see Supplementary Table 3.9 for acces-

sion numbers for each sample). The URL https://merenlab.org/data/fmt-gut-coloniz

ation serves a reproducible bioinformatics workflow and gives access to ad hoc scripts, usage

instructions, and intermediate data objects to reproduce findings in our study. Supplementary

datasets are also accessible via doi:10.6084/m9.figshare.14138405. For detailed information

of study design, sample acquisition and processing, as well as genome reconstruction from

metagenomic short reads, please refer to (Watson et al., 2023) and the reproducible bioinfor-

matics workflow at https://merenlab.org/data/fmt-gut-colonization/.

Metabolism analysis. We estimated the metabolic capacities encoded in the MAGs

and reference genomes using anvi’o. First, all genomes were converted into anvi’o contigs

databases with ‘anvi-gen-contigs-database‘, which included a gene-calling step using Prodi-

gal (Hyatt et al., 2010). We annotated the genes with NCBI’s Clusters of Orthologous Groups

(COGs) (Galperin et al., 2021) and with KEGG KOfams (Aramaki et al., 2020), using ‘anvi-

run-ncbi-cogs‘ and ‘anvi-run-kegg-kofams‘, respectively. Note that we used a version of KEGG

downloaded in April 2022 (for reproducibility, the hash of the KEGG snapshot available via
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‘anvi-setup-kegg-kofams‘ is 666feeac5de2). ‘anvi-run-kegg-kofams‘ includes a heuristic for an-

notating hits with bitscores that are just below the KEGG-defined threshold, which is described

here: https://anvio.org/help/main/programs/anvi-run-kegg-kofams/#how-does-i

t-work. Finally, we estimated completeness of the metabolic pathways in each genome by

running ‘anvi-estimate-metabolism‘, and we computed enrichment scores for pathways across

the three Bifidobacterium species using ‘anvi-compute-metabolic-enrichment‘. For these anal-

yses, we used the ‘pathwise’ completeness metric, which takes the maximum completeness

over all possible combinations of enzymes for a given metabolic pathway.

Pangenomic analysis. We computed and visualized a functional pangenome of MAGs

and reference genomes using anvi’o. Briefly, we stored all processed MAG and reference

genome contigs in an anvi’o database using the command ‘anvi-gen-genomes-storage‘. To

create and visualize the KOfam functional pangenome, we then passed that database to the

command ‘anvi-display-functions‘, which uses function names to aggregate gene annotations

into clusters and also computes the enrichment of functions within genome groups using the

script ‘anvi-compute-functional-enrichment-across-genomes‘ with a lambda parameter of 0 (for

more details about the enrichment calculation, see (Shaiber et al., 2020a)). We set the ‘anvi-

display-functions‘ ‘--min-occurrence‘ flag to 3 to remove gene clusters only present in one

(singletons) or two genomes. We computed functional enrichment for COGs in the same way.
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3.3.6 Supplementary Tables

This section’s supplementary tables are accessible via doi:10.6084/m9.figshare.22579219.

Table 3.9: Description of Bifidobacteria genomes. a) Accession numbers for Bifidobacteria
reference genomes. b) Detection of Bifidobacteria MAGs in FMT metagenomes. c) Sample
information and SRA accession numbers for publicly-available gut metagenomes used in this
study. d) Detection of Bifidobacteria MAGs in global gut metagenomes. e) Prevalence of
Bifidobacteria MAGs in global gut metagenomes. f) gANI percent identity between Bifidobac-
teria genomes. g) gANI percent alignment coverage between Bifidobacteria genomes. h)
Bifidobacteria reference genomes from NCBI. i) Summary statistics for Bifidobacteria MAGs
and reference genomes.

Table 3.10: Bifidobacteria functional analysis. a) List of KEGG modules that are complete in at
least one Bifidobacterium genome. b) KEGG module completeness scores in each Bifidobac-
terium genome. c) KEGG modules enriched in different Bifidobacteria species. d) KOfam
presence and absence in Bifidobacteria genomes. e) KOfams enriched in different Bifidobac-
teria species. f) COG function presence and absence in Bifidobacteria genomes. g) COG
functions enriched in different Bifidobacteria species.
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CHAPTER 4

MICROBES WITH HIGHER METABOLIC INDEPENDENCE ARE

ENRICHED IN HUMAN GUT MICROBIOMES UNDER STRESS

4.1 Preface

This chapter is derived from a study investigating the metabolic potential of the human gut

microbiome in individuals diagnosed with inflammatory bowel disease, or IBD. IBD is a class

of gastrointestinal (GI) disorders characterized by chronic inflammation of the GI tract. These

conditions are typically accompanied by a reduction in gut microbial diversity, but the determi-

nants of microbial survival in the IBD gut environment are yet unknown. This study leverages

the metabolism reconstruction framework in a high-throughput analysis of publicly-available

human gut metagenomes to determine the relevance of metabolic capabilities to microbial

resilience in this system. It introduces novel methodology for normalizing community-level

estimates of pathway copy number with estimated community sizes to obtain per-population

copy numbers, which provide an appropriate metric for comparing metabolic potential between

communities of variable size without resorting to the time-intensive alternative of metagenomic

binning followed by analysis of individual populations.

In accordance with the results from the previous chapter, this study finds that high meta-

bolic independence represents a distinguishing characteristic of microbial populations as-

sociated with individuals diagnosed with IBD. Furthermore, a classifier, which is trained on

metabolism data that captures the extent of metabolic independence in a metagenome, is not

only able to reliably identify samples from IBD patients but also to track recovery of the gut

microbiome following antibiotic treatment. These results suggest that high metabolic indepen-

dence is a general hallmark of stressed gut environments and may be an interesting target for

the dev-elopment of microbiota-based diagnostic tools and therapies.

This chapter is derived from the following publication:
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Iva Veseli, Yiqun T. Chen, Matthew S. Schechter, Chiara Vanni, Emily C. Fogarty, Andrea R

Watson, Bana Jabri, Ran Blekhman, Amy D. Willis, Michael K. Yu, Antonio Fernàndez-Guerra,

Jessika Füssel, and A Murat Eren. Microbes with higher metabolic independence are enriched

in human gut microbiomes under stress. bioRxiv. May 15, 2023. https://doi.org/10.110

1/2023.05.10.540289

4.2 Introduction

The human gut is home to a diverse assemblage of microbial cells that form complex com-

munities (Coyte et al., 2015). This gut microbial ecosystem is established almost immediately

after birth and plays a lifelong role in human wellbeing by contributing to immune system mat-

uration and functioning (Belkaid and Hand, 2014; Maynard et al., 2012), extracting dietary

nutrients (Hijova, 2019), providing protection against pathogens (Khosravi and Mazmanian,

2013), metabolizing drugs (Zimmermann et al., 2019), and more (Knight et al., 2017). There is

no universal definition of a healthy gut microbiome (Fan and Pedersen, 2021), but associations

between host disease states and changes in microbial community composition have sparked

great interest in the therapeutic potential of gut microbes (Cani, 2018; Sorbara and Pamer,

2022) and led to the emergence of hypotheses that directly link disruptions of the gut micro-

biome to non-communicable diseases of complex etiology (Byndloss and Bäumler, 2018).

Inflammatory bowel diseases (IBDs), which describe a heterogeneous group of chronic

inflammatory disorders (Shan et al., 2022), represent an increasingly common health risk

around the globe (Kaplan, 2015). Understanding the role of gut microbiota in IBD has been a

major area of focus in human microbiome research. Studies focusing on individual microbial

taxa that typically change in relative abundance in IBD patients have proposed a range of host-

microbe interactions that may contribute to disease manifestation and progression (Joossens

et al., 2011; Schirmer et al., 2019; Henke et al., 2019; Machiels et al., 2014). However, even

within well-constrained cohorts, a large proportion of variability in the taxonomic composition
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of the microbiota is unexplained, and the proportion of variability explained by disease status is

low (Gevers et al., 2014; Schirmer et al., 2018b; Lloyd-Price et al., 2019; Khan et al., 2019). As

neither individual taxa nor broad changes in microbial community composition yield effective

predictors of disease (Knox et al., 2019b; Lee and Chang, 2021), the role of gut microbes in

the etiology of IBD – or the extent to which they are bystanders to disease – remains unclear

(Khan et al., 2019).

The marked decrease in microbial diversity in IBD is often associated with the loss of Fir-

micutes populations and an increased representation of a relatively small number of taxa,

such as Bacteroides, Enterococcaceae, and others (Prindiville et al., 2000; Saitoh et al., 2002;

Sartor, 2006; Rhodes, 2007; Devkota et al., 2012; Machiels et al., 2014; Vineis et al., 2016a;

Lloyd-Price et al., 2019). Why a handful of taxa that also typically occur in healthy individuals

in lower abundances (Lee and Chang, 2021; Nishida et al., 2018) tend to dominate the IBD

microbiome is a fundamental but open question to gain insights into the ecological underpin-

nings of the gut microbial ecosystem under IBD. Going beyond taxonomic summaries, a re-

cent metagenome-wide metabolic modeling study revealed a significant loss of cross-feeding

partners as a hallmark of IBD, where microbial interactions were disrupted in IBD-associated

microbial communities compared to those found in healthy individuals (Marcelino et al., 2023).

This observation is in line with another recent work that proposed that the extent of ‘metabolic

independence’ (characterized by the genomic presence of a set of key metabolic modules for

the synthesis of essential nutrients) is a determinant of microbial survival in IBD (Watson et al.,

2023). It is conceivable that the disrupted metabolic interactions among microbes observed

in IBD (Marcelino et al., 2023) indicates an environment that lacks the ecosystem services

provided by a complex network of microbial interactions, and selects for those organisms that

harness high metabolic independence (HMI) (Watson et al., 2023). This interpretation offers

an ecological mechanism to explain the dominance of populations with specific metabolic fea-

tures in IBD. However, this proposed mechanism warrants further investigation.
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Here we implemented a high-throughput strategy to estimate metabolic capabilities of mi-

crobial communities directly from metagenomes and investigate whether the enrichment of

populations with high metabolic independence predicts IBD in the human gut. We bench-

marked our findings using representative genomes associated with the human gut and their

distribution in healthy individuals and those who have been diagnosed with IBD. Our results

suggest that high metabolic potential (indicated by a set of 33 largely biosynthetic metabolic

pathways) provides enough signal to consistently distinguish gut microbiomes under stress

from those that are in homeostasis, providing deeper insights into adaptive processes initi-

ated by stress conditions that promote rare members of gut microbiota to dominance during

disease.

4.3 Results and Discussion

We compiled 2,893 publicly-available stool metagenomes from 13 different studies, 5 of which

explicitly studied the IBD gut microbiome (Supplementary Table 4.1a-c). The average se-

quencing depth varied across individual datasets (4.2 Mbp to 60.3 Mbp, with a median value

of 21.4 Mbp, Supplementary Table 4.1c). To improve the sensitivity and accuracy of our down-

stream analyses that depend on metagenomic assembly, we excluded samples with less than

25 million reads, resulting in a set of 408 relatively deeply-sequenced metagenomes from 10

studies (26.4 Mbp to 61.9 Mbp, with a median value of 37.0 Mbp, Supplementary Table 4.1b,

Supplementary Information, Methods), which we de novo assembled individually. The final

dataset included individuals who were healthy (n=229), diagnosed with IBD (n=101), or suf-

fered from other gastrointestinal conditions ("non-IBD", n=78). In accordance with previous

observations of reduced microbial diversity in IBD (Kostic et al., 2014; Nagalingam and Lynch,

2012; Knox et al., 2019b), the estimated number of populations based on the occurrence of

bacterial single-copy core genes present in these metagenomes was higher in healthy individ-

uals than those diagnosed with IBD (Supplementary Figure 4.6, Supplementary Table 4.1).
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4.3.1 Estimating normalized copy numbers of metabolic pathways from

metagenomic assemblies

Gaining insights into microbial metabolism requires accurate estimates of pathway presence

and completion. While a myriad of tools address this task for single genomes (Machado et al.,

2018; Aziz et al., 2008; Arkin et al., 2018b; Palù et al., 2022; Shaffer et al., 2020; Geller-

McGrath et al., 2023; Zorrilla et al., 2021; Zhou et al., 2022; Zimmermann et al., 2021), work-

ing with complex environmental metagenomes poses additional challenges due to the large

number of organisms that are present in metagenomic assemblies. A few tools can estimate

community-level metabolic potential from metagenomes without relying on the reconstruction

of individual population genomes or reference-based approaches (Ye and Doak, 2009; Karp

et al., 2021) (Supplementary Table 4.5). These high-level summaries of pathway presence and

redundancy in a given environment are suitable for most surveys of metabolic capacity, partic-

ularly for microbial communities of similar richness. However, since the frequency of observed

metabolic modules increases as microbial diversity increases, investigations of metabolic de-

terminants of survival across environmental conditions with substantial differences in microbial

richness requires quantitative insights into the extent of enrichment of metabolic capabilities

in relation to microbial diversity. For instance, the estimated copy number of a given metabolic

module may be identical between two metagenomes, but one metagenome can have a lower

alpha diversity and thus have a higher selection for this module. To quantify the differential

abundance of metabolic modules between metagenomes generated from healthy individu-

als and those from individuals diagnosed with IBD, we implemented a new software frame-

work (https://anvio.org/m/anvi-estimate-metabolism) that reconstructs metabolic modules from

genomes and metagenomes and then calculates the per-population copy number (PPCN) of

modules in metagenomes (Methods, Supplementary Information). Briefly, the PPCN estimates

the proportion of microbes in a community with a particular metabolic capacity (Figure 4.1,

Supplementary Figure 4.7). We estimate the number of microbial populations using single-
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copy core genes (SCGs) instead of reconstructing individual genomes first, thus maximizing

the de novo recovery of gene content.

108



High-diversity
sample

Low-diversity
sample

Pathway Copy
Numbers

1 2 43 5 6
Metabolic Pathway

Co
py

 N
um

be
r

1 2 43 5 6
Metabolic Pathway

Co
py

 N
um

be
r

Single-copy Core Genes 
(SCGs)

A

A
A

A

A

A
B

B
B

B
BC

C

C

C

CD
D

D

D D

D

C

A

A

A

B

B

B
C CD

D

C

A B C D
SCG

Nu
m

be
r o

f a
nn

ot
at

io
ns 6 estimated populations

A B C D
SCG

Nu
m

be
r o

f a
nn

ot
at

io
ns

3 estimated populations

Per-population Copy
Numbers (PPCNs)

1 2 43 5 6
Metabolic Pathway

PP
CN

1 2 43 5 6
Metabolic Pathway

PP
CN

Equivalent between
high- and low-diversity 

samples

Increased in high-
diversity sample

Increased in low-
diversity sample1.0

1.0

A

B

PPCN = # populations
copy number

Figure 4.1: Conceptual diagram of per-population copy number (PPCN) calculation. Each
step of the calculation is demonstrated in (A) for a sample with high diversity (6 microbial pop-
ulations) and in (B) for a sample with low diversity (3 populations). Metagenome sequences
are shown as black lines. The left panel shows the single-copy core genes annotated in the
metagenome (indicated by letters), with a barplot showing the counts for different SCGs. The
dashed black line indicates the mode of the counts, which is taken as the estimate of the num-
ber of populations. The middle panel shows the annotations of metabolic pathways (indicated
by boxes and numerically labeled), with a barplot showing the copy number of each pathway
(for more details on how this copy number is computed, see Supplementary Information and
Supplementary Figure 4.7). The right panel shows the equation for per-population copy num-
ber (PPCN), with the barplots indicating the PPCN values for each metabolic pathway in each
sample and arrows differentiating between different types of modules based on the compari-
son of their normalized copy numbers between samples.
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4.3.2 Key biosynthetic pathways are enriched in microbial populations from

IBD samples

To gain insight into potential metabolic determinants of microbial survival in the IBD gut envi-

ronment, we assessed the distribution of metabolic modules within samples from each group

(IBD and healthy) with and without using PPCN normalization. A set of 33 metabolic modules

were significantly enriched in metagenomes obtained from individuals diagnosed with IBD

when PPCN normalization was applied (Figure 4.2d, 4.2e). Each metabolic module had an

FDR-adjusted p < 2e-10 and an effect size > 0.12 from a Wilcoxon Rank Sum Test comparing

IBD and healthy samples. The set included 17 modules that were previously associated with

high metabolic independence (Watson et al., 2023) (Figure 4.2f). However, without PPCN nor-

malization, the signal was masked by the overall higher copy numbers in healthy samples, and

the same analysis did not detect higher metabolic potential in microbial populations associated

with individuals diagnosed with IBD (Figure 4.2a), showing weaker differential occurrence be-

tween cohorts (Figure 4.2b, 4.2c, Supplementary Figure 4.8). This result suggests that the

PPCN normalization is an important step in comparative analyses of metabolisms between

samples with disparate levels of diversity.

The majority of the metabolic modules that were enriched in the microbiomes of IBD pa-

tients encoded biosynthetic capabilities (23 out of 33) that resolved to amino acid metabolism

(33%), carbohydrate metabolism (21%), cofactor and vitamin biosynthesis (15%), nucleotide

biosynthesis (12%), lipid biosynthesis (6%) and energy metabolism (6%) (Supplementary Ta-

ble 4.2a). In contrast to previous reports based on reference genomes (Gevers et al., 2014;

Morgan et al., 2012), amino acid synthesis and carbohydrate metabolism were not reduced in

the IBD gut microbiome in our dataset. Rather, our results were in accordance with a more

recent finding that predicted amino acid secretion potential is increased in the microbiomes of

individuals with IBD (Heinken et al., 2021).
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Figure 4.2: Comparison of metabolic potential across healthy and IBD cohorts. Panels A
– C show unnormalized copy number data and the remaining panels show normalized per-
population copy number (PPCN) data. A) Scatterplot of module copy number in IBD samples
(x-axis) and healthy samples (y-axis). Transparency of points indicates the p-value of the mod-
ule in a Wilcoxon Rank Sum test for enrichment (based on PPCN data), and color indicates
whether the module is enriched in the IBD samples (in this study), enriched in the good col-
onizers from the fecal microbiota transplant (FMT) study (Watson et al., 2023), or enriched in
both. B) Heatmap of unnormalized copy numbers for all modules. IBD-enriched modules are
highlighted by the red bar on the left. Sample group is indicated by the blue (healthy) and
red (IBD) bars on the bottom. C) Boxplots of median copy number for each module enriched
in the FMT colonizers from (Watson et al., 2023) in the healthy samples (blue) and the IBD
samples (red). Solid lines connect the same module in each plot. D) Scatterplot of module
PPCN values in IBD samples (x-axis) and healthy samples (y-axis). Transparency and color
of points are defined as in panel (A). The pink dashed line indicates the effect size threshold
applied to modules when determining their enrichment in IBD. E) Heatmap of PPCN values for
all modules. Side bars defined as in (B). F) Boxplots of median PPCN values for modules
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Figure 4.2 continued: enriched in the FMT colonizers from (Watson et al., 2023) in the healthy
samples (blue) and the IBD samples (red). Lines defined as in (D). Modules that were also
enriched in the IBD samples (in this study) are highlighted in red. G) Boxplots of PPCN values
for individual modules in the healthy samples (blue) and the IBD samples (red). All example
modules were enriched in both this study and in (Watson et al., 2023).
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The metagenome-level enrichment of several key biosynthesis pathways supports the hy-

pothesis that high metabolic independence (HMI) is a determinant of survival for microbial

populations in the IBD gut environment. We investigated whether biosynthetic capacity in gen-

eral was enriched in IBD samples, and 62 out of 88 (70%) biosynthesis pathways described

in the KEGG database had a significant enrichment in the IBD sample group at an FDR-

adjusted 5% significance level (Supplementary Figure 4.10d) . However, a similar proportion

of non-biosynthetic pathways, 63 out of 91 (69%), were also significantly increased in the IBD

samples. While biosynthetic capacity is not over-represented in the IBD sample group com-

pared to other types of metabolism, the high proportion of enriched pathways associated with

biosynthesis suggests that biosynthetic capacity is important for microbial resilience.

Within our set of 33 pathways that were enriched in IBD, it is notable that all the biosynthesis

and central carbohydrate pathways are directly or indirectly linked via shared enzymes and

metabolites. Each enriched module shared on average 25.6% of its enzymes and 40.2% of

metabolites with the other enriched modules, and overall 18.2% of enzymes and 20.4% of

compounds across these pathways were shared (Supplementary Table 4.2a). Thus, modules

may be enriched not just due to the importance of their immediate end products, but also

because of their role in the larger metabolic network. The few standalone modules that were

enriched included the efflux pump MepA and the beta-Lactam resistance system, which are

associated with drug resistance. These capacities may provide an advantage since antibiotics

are a common treatment for IBDs (Nitzan et al., 2016), but are not related to the systematic

enrichment of biosynthesis pathways that likely provide resilience to general environmental

stress rather than to a specific stressor such as antibiotics.

While so far we divided samples into two groups, our dataset also includes individuals

who do not suffer from IBD, yet are not healthy either. A recent study using flux balance

analysis to model metabolite secretion potential in the dysbiotic, non-dysbiotic, and control gut

communities of Crohn’s Disease patients has shown that several predicted microbial metabolic
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activities align with gradients of host health (Heinken et al., 2021). This observation suggests

that the signal for HMI should also follow a similar gradient with the inclusion of the non-IBD

group with other gastrointestinal conditions in our analyses. Our analysis of these data showed

that the set of 78 samples classified as ‘non-IBD’ indeed represent an intermediate group

between healthy individuals and those diagnosed with IBD (Supplementary Figure 4.10b).

75% of the pathways that were significantly enriched in the IBD group compared to the healthy

group were also significantly enriched in the non-IBD group compared to the healthy group.

We could further confirm this observation by sorting each individual cohort along a health

gradient based on cohort descriptions in their respective studies (Supplementary Information),

where the relative proportion of metabolic pathways indicative of HMI increased as a function

of increasing disease severity (Supplementary Figure 4.11a). These findings suggest that

the enrichment of HMI populations are proportional to gradients in host health, revealing a

potential utility of the extent of HMI as a diagnostic tool to monitor changing stress levels in a

single individual over time.

Microbiome data generated by different groups can result in systematic biases that may

outweigh biological differences between otherwise similar samples (Lozupone et al., 2013;

Sinha et al., 2017; Clausen and Willis, 2022). The potential impact of such biases consti-

tutes an important consideration for meta-analyses such as ours that analyze publicly available

metagenomes from multiple sources. To account for cohort biases, we conducted an analy-

sis of our data on a per-cohort basis, which showed robust differences between the sample

groups across multiple cohorts (Supplementary Figure 4.11bc). Another source of potential

bias in our results is due to the representation of microbial functions in genomes in publicly

available databases. For instance, we noticed that, independent of the annotation strategy, a

smaller proportion of genes resolved to known functions in metagenomic assemblies of the

healthy samples compared to the assemblies we generated from the IBD group (Supplemen-

tary Figure 4.9). This highlights the possibility that healthy samples merely appear to harbor
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less metabolic capabilities due to missing annotations. Indeed, we found that the normalized

copy numbers of most metabolic modules were reduced in the healthy group, where 84% of

KEGG modules (98 out of 118) have significantly lower median copy numbers (Supplemen-

tary Figure 4.10c, Supplementary Information). While the presence of a bias between the two

cohorts is clear, the source of this bias and its implications are not as clear. One hypothe-

sis that could explain this phenomenon is that the increased proportion of unknown functions

in environments where populations with low metabolic independence (LMI) thrive is due to

our inability to identify distant homologs of even well-studied functions in poorly studied novel

genomes through public databases. If true, this would indeed impair our ability to annotate

genes using state-of-the-art functional databases, and bias metabolic module completion esti-

mates. Such a limitation would indeed warrant a careful reconsideration of common workflows

and studies that rely on public resources to characterize gene function in complex environ-

ments. Another hypothesis that could explain our observation is that the general absence in

culture of microbes with smaller genomes (that likely fare better in diverse gut ecosystems)

had a historical impact on the characterization of novel functions that represent a relatively

larger fraction of their gene repertoire. If true, this would suggest that the unknown func-

tions are unlikely essential for well-studied metabolic capabilities. Furthermore, HMI and LMI

genomes may be indistinguishable with respect to the distribution of such novel genes, but the

increased number of genes in HMI genomes that resolve to well-studied metabolisms would

reduce the proportion of known functions in LMI genomes, and thus in metagenomes where

they thrive. While testing these hypotheses falls outside the scope of our work, we find the

latter hypothesis more likely due to examples in existing literature that have successfully iden-

tified genes that belong to known metabolisms in some of the most obscure organisms via

annotation strategies similar to those we have used in our work (Jaffe et al., 2020; Farag et al.,

2020).

Taken together, these results (1) demonstrate that the PPCN normalization is an important
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consideration for investigations of metabolic enrichment in complex microbial communities as

a function of microbial diversity, and (2) reveal that the enrichment of HMI populations in an

environment offers a high resolution marker to resolve different levels of environmental stress.

4.3.3 Reference genomes with higher metabolic independence are

over-represented in the gut metagenomes of individuals with IBD

So far, our findings demonstrate an overall, metagenome-level trend of increasing HMI within

gut microbial communities as a function of IBD status without considering the individual gen-

omes that contribute to this signal. Since the extent of metabolic independence of a microbial

genome is a quantifiable trait, we considered a genome-based approach to validating our

findings. Given the metagenome-level trends, we expected that the microbial genomes that

encode a high number of metabolic modules associated with HMI should be more commonly

detected in metagenomes from individuals diagnosed with IBD.

While publicly available reference genomes for microbial taxa will unlikely capture the di-

versity of individual gut metagenomes, we cast a broad net by surveying the ecology of 19,226

genomes in the Genome Taxonomy Database (GTDB) (Parks et al., 2022) that belonged to

three major phyla associated with the human gut environment: Bacteroidetes, Firmicutes, and

Proteobacteria (Woting and Blaut, 2016; Turnbaugh et al., 2009). We then used Human Micro-

biome Project data (Human Microbiome Project Consortium, 2012a) to characterize the distri-

bution of these genomes across healthy human gut metagenomes. We used their single-copy

core genes to identify genomes that were representative of microbial clades that are system-

atically detected in the healthy human gut (Figure 4.3a) and kept those that also occurred in

at least 2% of samples from our set of 330 healthy and IBD metagenomes (see Methods). By

selecting for genomes that are relatively well-detected in the HMP dataset, this filtering step ef-

fectively removed genomes representing taxa that primarily occur outside of the human gut. Of

the final set of 338 reference genomes that passed our filters, 258 (76.3%) resolved to Firmi-
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cutes, 60 (17.8%) to Bacteroidetes, and 20 (5.9%) to Proteobacteria. Most of these genomes

resolved to families common to the colonic microbiota, such as Lachnospiraceae (30.0%), Ru-

minococcaceae / Oscillospiraceae (23.1%), and Bacteroidaceae (10.1%) (Arumugam et al.,

2011), while 5.9% belonged to poorly-studied families with temporary code names (Supple-

mentary Table 4.3a). Finally, we performed a more comprehensive read recruitment analysis

on this smaller set of genomes using all deeply-sequenced metagenomes from cohorts that

included healthy, non-IBD, and IBD samples (Figure 4.3). This provided us with a quantitative

summary of the detection patterns of GTDB genome representatives common to the human

gut across our dataset.

We classified each genome as HMI if its average completeness of the 33 HMI-associated

metabolic pathways was at least 80%, equivalent to a summed metabolic independence score

of 26.4 (Methods). Across all genomes, the mean metabolic independence score was 24.0

(Q1: 19.9, Q3: 25.7). We identified 17.5% (59) of the reference genomes as HMI. HMI

genomes were on average substantially larger (3.8 Mbp) than non-HMI genomes (2.9 Mbp)

and encoded more genes (3,634 vs. 2,683 genes, respectively), which is in accordance with

the reduced metabolic potential of non-HMI populations (Supplementary Table 4.3a). Our read

recruitment analysis showed that HMI reference genomes were present in a significantly higher

proportion of IBD samples compared to non-HMI genomes (Figure 4.3c, p < 1e-5, Wilcoxon

Rank Sum test). Similarly, the fraction of HMI populations was significantly higher within a

given IBD sample compared to ‘non-IBD’ samples and those from healthy individuals (Figure

4.3d, p < 1e-24, Kruskal-Wallis Rank Sum test). In contrast, the detection of HMI populations

and non-HMI populations was similar in healthy individuals (Figure 4.3c, p = 0.267, Wilcoxon

Rank Sum test). The intestinal environment of healthy individuals likely supports both HMI

and non-HMI populations, wherein ‘metabolic diversity’ is maintained by metabolic interac-

tions such as cross feeding. Indeed, loss of cross-feeding interactions in the gut microbiome

appears to be associated with a number of human diseases, including IBD (Marcelino et al.,
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2023).
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Figure 4.3: Identification of HMI genomes and their distribution across gut samples.
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Figure 4.3 continued: A) Histogram of Ribosomal Protein S6 gene clusters (94% ANI) for
which at least 50% of the representative gene sequence is covered by at least 1 read (>=
50% ‘detection’) in fecal metagenomes from the Human Microbiome Project (HMP) (Human
Microbiome Project Consortium, 2012a). The dashed line indicates our threshold for reaching
at least 50% detection in at least 10% of the HMP samples; gray bars indicate the 11,145
gene clusters that do not meet this threshold while purple bars indicate the 836 clusters that
do. The subplot shows data for the 836 genomes whose Ribosomal Protein S6 sequences
belonged to one of the passing (purple) gene clusters. The y-axis indicates the number of
healthy/IBD gut metagenomes from our set of 330 in which the full genome sequence has at
least 50% detection, and the x-axis indicates the genome’s maximum detection across all 330
samples. The dashed line indicates our threshold for reaching at least 50% genome detec-
tion in at least 2% of samples; the 338 genomes that pass this threshold are tan and those
that do not are purple. The phylogeny of these 338 genomes is shown in B) along with the
following data, from top to bottom: taxonomic classification as assigned by GTDB; proportion
of healthy samples with at least 50% detection of the genome sequence; proportion of IBD
samples with at least 50% detection of the genome sequence; square-root normalized ratio
of percent abundance in IBD samples to percent abundance in healthy samples; metabolic in-
dependence score (sum of completeness scores of 33 HMI-associated metabolic pathways);
whether (red) or not (white) the genome is classified as having HMI with a threshold score of
26.4; heatmap of completeness scores for each of the 33 HMI-associated metabolic pathways
(0% completeness is white and 100% completeness is black). Pathway name is shown on the
right and colored according to its category of metabolism. C) Boxplot showing the proportion
of healthy (blue) or IBD (red) samples in which genomes of each class are detected >= 50%,
with p-values from a Wilcoxon Rank-Sum test on the underlying data. D) Barplot showing the
proportion of detected genomes (with >= 50% genome sequence covered by at least 1 read)
in each sample that are classified as HMI, for each group of samples. The black lines show
the median for each group: 37.0% for IBD samples, 25.5% for non-IBD samples, and 18.4%
for healthy samples.

The three HMI-associated pathways with the largest difference in average completion

(>40%) between HMI and non-HMI reference genomes were siroheme biosynthesis, cobal-

amin biosynthesis, and tryptophan biosynthesis (Supplementary Table 4.3g). Siroheme and

cobalamin biosynthesis represent complex pathways that require 6-8 and 11-13 enzymatic

steps, respectively, and both compounds belong to the tetrapyrroles that are involved in various

essential biological functions (Bryant et al., 2020). Siroheme is a cofactor required for nitrite

and sulfite reduction and its biosynthetic pathway provides the precursors required for cobal-

amin biosynthesis. Genes belonging to biosynthetic pathways of siroheme and cobalamin had

higher average relative abundance in infants diagnosed with neonatal necrotizing enterocoli-
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tis (Claud et al., 2013), an inflammatory bowel condition affecting premature newborns. The

siroheme biosynthesis pathway is upregulated in some human pathogens in response to high

nitric oxide (NO) levels likely in relation to the NO detoxification function of nitrite reductase

(Porrini et al., 2021). Increased NO levels are commonly associated with active inflammation

in IBD (Soufli et al., 2016).

While siroheme is central to sulfite and nitrite reduction in prokaryotes, cobalamin (vitamin

B12) is essential not only for the majority of gut microbes ( 80%) (Kelly et al., 2019; Hossain

et al., 2022; Degnan et al., 2014a) but also for the human host, and functions as a coenzyme

in key metabolic pathways in humans and bacteria. However, only relatively few gut microbes

( 20-40%) encode the metabolic pathway for its synthesis (Degnan et al., 2014a; Magnúsdóttir

et al., 2015; Kelly et al., 2019) and humans largely rely on cobalamin supplied via their diet.

B12 deficiency in humans leads to reduced villi length (Berg et al. 1972) and may affect in-

testinal barrier functioning (Bressenot et al. 2013). However, microbially-produced cobalamin

alone is insufficient to sustain the host’s requirements (Magnúsdóttir et al. 2015). The high

average completion of this complex pathway in reference genomes classified as HMI (86%)

in contrast to non-HMI reference genomes (40%) demonstrates the importance of metabolic

independence for the survival of microorganisms in stressed gut environments, whereas in a

healthy gut environment cross-feeding of B-vitamins supports non-producers (Magnúsdóttir et

al. 2015).

Tryptophan is an essential amino acid that serves as a precursor for a variety of microbial

(Alkhalaf and Ryan, 2015) and human metabolites that play a potential role in IBD patho-

genesis (Agus et al., 2018). Tryptophan metabolites mediate a variety of host microbe in-

teractions in the human gut (Agus et al., 2018), contribute to gut barrier integrity, and exert

anti-inflammatory functions (Bansal et al., 2010; Roager and Licht, 2018). While fecal trypto-

phan concentrations can be elevated in IBD patients (Jansson et al., 2009), tryptophan host

metabolism via the Kynurenine pathway also appears to be elevated, resulting in decreased
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serum levels of the amino acid (Nikolaus et al., 2017). At the same time, a tryptophan-deficient

diet in mice is linked to intestinal inflammation and alterations of the microbial community com-

position (Hashimoto et al., 2012; Yusufu et al., 2021). While it is not clear whether microbially-

produced tryptophan contributes significantly to the host’s tryptophan metabolism, the environ-

mental pressure of tryptophan depletion may favor microbial populations with the biosynthetic

capacity to produce this amino acid.

Overall, the classification of reference gut genomes as HMI and their enrichment in indi-

viduals diagnosed with IBD strongly supports the contribution of HMI to stress resilience of

individual microbial populations. We note that survival in a disturbed gut environment will likely

require a wide variety of additional functions that are not covered in the list of metabolic mod-

ules we consider to determine HMI status – for examples, see (Degnan et al., 2014a; Martens

et al., 2014; Zong et al., 2020; Feng et al., 2020; Goodman et al., 2009; Powell et al., 2016).

Indeed, there may be many ways for a microbe to be metabolically independent, and our strat-

egy likely failed to identify some HMI populations. Nonetheless, these data suggest that HMI

serves as a reliable proxy for the identification of microbial populations that are particularly

resilient.

4.3.4 HMI-associated metabolic potential predicts general stress on gut

microbes

Our analysis identified HMI as an emergent property of gut microbial communities associated

with individuals diagnosed with IBD. This community-level signal translates to individual micro-

bial populations and provides insights into the microbial ecology of stressed gut environments.

HMI-associated metabolic pathways were enriched at the community level, and microbial pop-

ulations encoding these modules were more prevalent in individuals with IBD than in healthy

individuals. Furthermore, the copy number of these pathways and the proportion of HMI popu-

lations were higher in gut communities associated with more severe host health states, includ-
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ing in non-IBD samples compared to samples from healthy individuals (Supplementary Figure

4.10b, Figure 4.3d). The ecological implications of these observations suggest that HMI may

serve as a predictor of general stress in the human gut environment.

So far, efforts to identify IBD using microbial markers have presented classifiers based on

(1) taxonomy in pediatric IBD patients (Papa et al., 2012; Gevers et al., 2014), (2) microbial

community composition in combination with clinical data (Halfvarson et al., 2017), (3) untar-

geted metabolomics and/or species-level relative abundance from metagenomes (Franzosa

et al., 2019) and (4) k-mer-based sequence variants in metagenomes that can be linked to mi-

crobial genomes associated with IBD (Reiter et al., 2022). Performance varied both between

and within studies according to the target classes and data types used for training and vali-

dation of each classifier (Supplementary Table 4.4a). For those studies reporting accuracy, a

maximum accuracy of 77% was achieved based on either metabolite profiles (for prediction of

IBD-subtype) (Franzosa et al., 2019) or k-mer-based sequence variants (for differentiating be-

tween IBD and non-IBD samples) (Reiter et al., 2022). Some studies reported performance as

area under the receiver operating characteristic curve (AUROCC), a typical measure of clas-

sifier utility describing both sensitivity (ability to correctly identify the disease) and specificity

(ability to correctly identify absence of disease). For this metric the highest value was 0.92,

achieved by (Franzosa et al., 2019) when using metabolite profiles, with or without species

abundance data, for classifying IBD vs non-IBD. However, the majority of these classifiers

were trained and tested on a relatively small group of individuals that all come from the same

region, i.e. clinical studies confined to a specific hospital. Though some had high performance,

these were based on data that are inaccessible to most laboratories and clinics, considering

that untargeted metabolomics analyses are difficult to reproduce (Koek et al., 2011; Lin et al.,

2020), and that k-mer-based analyses do not provide specific clinical targets for intervention.

These classifiers thus have limited translational potential across global clinical settings. For

practical use as a diagnostic tool, a microbiome-based classifier for IBD should rely on an

123



ecologically-meaningful, easy to measure, and high-level signal that is robust to host variables

like lifestyle, geographical location, and ethnicity. High metabolic independence could poten-

tially fill this gap as a metric related to the ecological filtering that defines microbial community

changes in the IBD gut microbiome.

We trained a logistic regression classifier to explore the applicability of HMI as a non-

invasive diagnostic tool for IBD. The classifier’s predictors were the per-population copy num-

bers of IBD-enriched metabolic pathways in a given metagenome. Across the 330 deeply-

sequenced IBD and healthy samples included in this analysis, the classifier had high sensi-

tivity and specificity (Figure 4.4). It correctly identified (on average) 76.8% of samples from

individuals diagnosed with IBD and 89.5% of samples representing healthy individuals, for an

overall accuracy of 85.6% and an average AUROCC of 0.832 (Supplementary Table 4.4c).

Our model outperforms (Gevers et al., 2014; Halfvarson et al., 2017; Reiter et al., 2022) or

has comparable performance to (Franzosa et al. 2019; Papa et al. 2012) the previous at-

tempts to classify IBD from fecal samples in more restrictively-defined cohorts. It also has the

advantage of being a simple model, utilizing a relatively low number of features compared to

the other classifiers. Thus, HMI shows promise as an accessible diagnostic marker of IBD.

Of course, due to the lack of time-series studies that include individuals in the pre-diagnosis

phase of IBD development, we cannot test the applicability of HMI as a predictive marker for

early stages of this disease, as discussed in (Lloyd-Price et al., 2019).

Yet, the gradient of metabolic independence reflected by per-population pathway copy

number and the proportion of detected HMI populations in non-IBD samples (Supplemen-

tary Figure 4.10b, Figure 4.3d) suggests that the degree of HMI in the gut microbiome may be

predictive of general gut stress, such as that induced by antibiotic use. Antibiotics can cause

long-lasting perturbations of the gut microbiome – including reduced diversity, emergence of

opportunistic pathogens, increased microbial load, and development of highly-resistant strains

– with potential implications for host health (Ramirez et al., 2020). We applied our metabolism
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classifier to a metagenomic dataset that reflects the changes in the microbiome of healthy

people before, during and up to 6 months following a 4-day antibiotic treatment (Palleja et al.,

2018). The resulting pattern of sample classification corresponds to the post-treatment decline

and subsequent recovery of species richness documented in the study by (Palleja et al., 2018).

All pre-treatment samples were classified as ‘healthy’ followed by a decline in the proportion of

‘healthy’ samples to a minimum 8 days post-treatment, and a gradual increase until 180 days

post treatment, when over 90% of samples were classified as ‘healthy’ (Figure 4.5, Supple-

mentary Table 4.4b). These observations support the role of HMI as an ecological driver of

microbial resilience during gut stress caused by a variety of environmental perturbations and

demonstrate its diagnostic power in reflecting gut microbiome state.
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Figure 4.4: Performance of our metagenome classifier trained on per-population copy numbers
of IBD-enriched modules. A) Receiver operating characteristic (ROC) curves for 25-fold cross-
validation. Each fold used a random subset of 80% of the data for training and the other 20%
for testing. In each fold, we calculated a set of IBD-enriched modules from the training dataset
and used the PPCN of these modules to train a logistic regression model whose performance
was evaluated using the test dataset. Light gray lines show the ROC curve for each fold, the
dark blue line shows the mean ROC curve, the gray area delineates the confidence interval
for the mean ROC, and the pink dashed line indicates the benchmark performance of a naive
(random guess) classifier. B) Confusion matrix for each fold of the random cross-validation.
Categories of classification, from top left to bottom right, are: true positives (correctly classified
IBD samples), false positives (incorrectly classified Healthy samples), false negatives (incor-
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4.4 Conclusions

Overall, our observations that stem from the analysis of hundreds of reference genomes,

deeply-sequenced gut metagenomes, and multiple categories of human disease states sug-

gest that environmental stress in the human gut – whether it is associated with inflammation,

cancer, or antibiotic use – promotes the survival and relative expansion of microbial popula-

tions with high metabolic independence. These results establish HMI as a high-level metric

to classify gradients of human health states through the gut microbiota that is robust to eth-

nic, geographical or lifestyle factors. Taken together with recent evidence that models altered

ecological relationships within gut microbiomes under stress due to disrupted metabolic cross-

feeding (Heinken et al., 2021; Marcelino et al., 2023), our data support the hypothesis that the

reduction in microbial diversity, or more generally ‘dysbiosis’, is an emergent property of mi-

crobial communities responding to disease pathogenesis or other external factors such as

antibiotic use that disrupt the gut microbial ecosystem. This paradigm depicts microbes as by-

standers by default, rather than perpetrators or drivers of noncommunicable human diseases,

and provides an ecological framework to explain the frequently observed reduction in microbial

diversity associated with IBD and other noncommunicable human diseases and disorders.

4.5 Methods

A bioinformatics workflow that further details all analyses described below and gives access

to reproducible data products is available at the URL https://merenlab.org/data/ibd-gut

-metabolism/.

A new framework for metabolism estimation. We developed a new program ‘anvi-

estimate-metabolism‘ (https://anvio.org/m/anvi-estimate-metabolism), which uses

gene annotations to estimate ‘completeness’ and ‘copy number’ of metabolic pathways that

are defined in terms of enzyme accession numbers. By default, this tool works on metabolic
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modules from the KEGG MODULE database (Kanehisa et al., 2012, 2023) which are defined

by KEGG KOfams (Aramaki et al., 2020), but user-defined modules based on a variety of

functional annotation sources are also accepted as input. Completeness estimates describe

the percentage of steps (typically, enzymatic reactions) in a given metabolic pathway that are

encoded in a genome or a metagenome. Likewise, copy number summarizes the number of

distinct sets of enzyme annotations that collectively encode the complete pathway. This pro-

gram offers two strategies for estimating metabolic potential: a ‘stepwise’ strategy with equiv-

alent treatment for alternative enzymes – i.e, enzymes that can catalyze the same reaction in

a given metabolic pathway – and a ‘pathwise’ strategy that accounts for all possible variations

of the pathway. The Supplementary Information file includes more information on these two

strategies and the completeness/copy number calculations. For the analysis of metagenomes,

we used stepwise copy number of KEGG modules. Briefly, the calculation of stepwise copy

number is done as follows: the copy number of each step in a pathway (typically, one chem-

ical reaction or conversion) is individually evaluated by translating the step definition into an

arithmetic expression that summarizes the number of annotations for each required enzyme.

In cases where multiple enzymes or an enzyme complex are needed to catalyze the reaction,

we take the minimum number of annotations across these components. In cases where there

are alternative enzymes that can each catalyze the reaction individually, we sum the number

of annotations for each alternative. Once the copy number of each step is computed, we then

calculate the copy number of the entire pathway by taking the minimum copy number across

all the individual steps. The use of minimums results in a conservative estimate of pathway

copy number such that only copies of the pathway with all enzymes present are counted. For

the analysis of genomes, we calculated the stepwise completeness of KEGG modules. This

calculation is similar to the one described above for copy number, except that the step defi-

nition is translated into a boolean expression that, once evaluated, indicates the presence or

absence of each step in the pathway. Then, the completeness of the modules is computed as
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the proportion of present steps in the pathway.

Metagenomic Datasets and Sample Groups. We acquired publicly-available gut meta-

genomes from 13 different studies (Le Chatelier et al., 2013; Feng et al., 2015; Franzosa et al.,

2019; Lloyd-Price et al., 2019; Qin et al., 2012; Quince et al., 2015; Rampelli et al., 2015;

Raymond et al., 2016; Schirmer et al., 2018b; Vineis et al., 2016a; of Sydney, 2016a; Wen

et al., 2017; Xie et al., 2016). The studies were chosen based on the following criteria: (1) they

included shotgun metagenomes of fecal matter (primarily stool, but some ileal pouch luminal

aspirate samples (Vineis et al., 2016a) are also included); (2) they sampled from people living

in industrialized countries (in the case where a study (Rampelli et al., 2015) included samples

from hunter-gatherer populations, only the samples from industrialized areas were included in

our analysis); (3) they included samples from people with IBD and/or they included samples

from people without gastrointestinal (GI) disease or inflammation; and (4) clear metadata dif-

ferentiating between case and control samples was available. A full description of the studies

and samples can be found in Supplementary Table 4.1a-c. We grouped samples according

to the health status of the sample donor. Briefly, the ‘IBD’ group of samples includes those

from people diagnosed with Crohn’s disease (CD), ulcerative colitis (UC), or pouchitis. The

‘non-IBD’ group contains non-IBD controls, which includes both healthy people presenting for

routine cancer screenings as well as people with benign or non-specific symptoms that are

not clinically diagnosed with IBD. Colorectal cancer patients from (Feng et al., 2015) were

also put into the ‘non-IBD’ group on the basis that tumors in the GI tract may arise from local

inflammation (Kraus and Arber, 2009) and represent a source of gut stress without an accom-

panying diagnosis of IBD. Finally, the ‘HEALTHY’ group contains samples from people without

GI-related diseases or inflammation. Note that only control or pre-treatment samples were

taken from the studies covering type 2 diabetes (Qin et al., 2012), ankylosing spondylitis (Wen

et al., 2017), antibiotic treatment (Raymond et al., 2016), and dietary intervention (of Syd-

ney, 2016a); these controls were all assigned to the ‘HEALTHY’ group. At least one study
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(Le Chatelier et al., 2013) included samples from obese people, and these were also included

in the ‘HEALTHY’ group.

Processing of metagenomes. We made single assemblies of most gut metagenomes

using the anvi’o metagenomics workflow implemented in ‘anvi-run-workflow‘ (Shaiber et al.,

2020a). This workflow uses Snakemake (Köster and Rahmann, 2012), and a tutorial is avail-

able at the URL https://merenlab.org/2018/07/09/anvio-snakemake-workflows/.

Briefly, the workflow includes quality filtering using ‘iu-filter-quality-minoche‘ (Eren et al., 2013);

assembly with IDBA-UD (Peng et al., 2012) (using a minimum contig length of 1000); gene

calling with Prodigal v2.6.3 (Hyatt et al., 2010); tRNA identification with tRNAscan-SE v2.0.7

(Chan and Lowe, 2019); and gene annotation of ribosomal proteins (Seemann, 2017), single-

copy core gene sets (Lee, 2019), KEGG KOfams (Aramaki et al., 2020), NCBI COGs (Galperin

et al., 2021), and Pfam (release 33.1, (Mistry et al., 2021)). The aforementioned annota-

tion was done with programs that relied on HMMER v3.3.2 (Eddy, 2011) as well as Dia-

mond v0.9.14.115 (Buchfink et al., 2015). As part of this workflow, all single assemblies

were converted into anvi’o contigs databases. Samples from (Vineis et al., 2016a) were

processed differently because they contained merged reads rather than individual paired-

end reads: no further quality filtering was run on these samples, we assembled them indi-

vidually using MEGAHIT (Li et al., 2015), and we used the anvi’o contigs workflow to per-

form all subsequent steps described for the metagenomics workflow above. Note that we

used a version of KEGG downloaded in December 2020 (for reproducibility, the hash of

the KEGG snapshot available via ‘anvi-setup-kegg-kofams‘ is 45b7cc2e4fdc). Additionally,

the annotation program ‘anvi-run-kegg-kofams‘ includes a heuristic for annotating hits with

bitscores that are just below the KEGG-defined threshold, which is described at https:

//anvio.org/m/anvi-run-kegg-kofams/.

Genomic Dataset. We also analyzed microbial genomes from the Genome Taxonomy

Database (GTDB), release 95.0 (Parks et al., 2018, 2020). We downloaded all reference
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genome sequences for the species cluster representatives.

Processing of GTDB genomes. We converted all GTDB genomes into anvi’o contigs

databases and annotated them using the anvi’o contigs workflow, which is similar to the

metagenomics workflow described above and uses the same programs for gene identifica-

tion and annotation.

Estimation of the number of microbial populations per metagenome. We used single-

copy core gene (SCG) sets belonging to each domain of microbial life (Bacteria, Archaea,

Protista) (Lee, 2019) to estimate the number of populations from each domain present in a

given metagenomic sample. For each domain, we calculated the number of populations by

taking the mode of the number of copies of each SCG in the set. We then summed the

number of populations from each domain to get a total number of microbial populations within

each sample. We accomplished this using SCG annotations provided by ‘anvi-run-hmms‘

(which was run during metagenome processing) and a custom script relying on the anvi’o

class ‘NumGenomesEstimator‘ (see reproducible workflow).

Removal of samples with low sequencing depth. We observed that, at lower sequenc-

ing depths, our estimates for the number of populations in a metagenomic sample were mod-

erately correlated with sequencing depth (Supplementary Figure 4.6, R > 0.5). These esti-

mates rely on having accurate counts of single-copy core genes (SCGs), so we hypothesized

that lower-depth samples were systematically missing SCGs, especially from populations with

lower abundance. Since accurate population number estimates are critical for proper normal-

ization of pathway copy numbers, keeping these lower-depth samples would have introduced

a bias into our metabolism analyses. To address this, we removed samples with low sequenc-

ing depth from downstream analyses using a sequencing depth threshold of 25 million reads,

such that the remaining samples exhibited a weaker correlation (R < 0.5) between sequencing

depth and number of estimated populations. We kept samples for which both the R1 file and

the R2 file contained at least 25 million reads (and for the (Vineis et al., 2016a) dataset, we
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kept samples containing at least 25 million merged reads). This produced our final sample set

of 408 metagenomes.

Estimation of normalized pathway copy numbers in metagenomes. We ran ‘anvi-

estimate-metabolism‘, in genome mode and with the ‘–add-copy-number‘ flag, on each indi-

vidual metagenome assembly to compute stepwise copy numbers for KEGG modules from

the combined gene annotations of all populations present in the sample. We then divided

these copy numbers by the number of estimated populations within each sample to obtain a

per-population copy number (PPCN) for each pathway.

Selection of IBD-enriched pathways. We used a one-sided Mann-Whitney-Wilcoxon test

with a FDR-adjusted p-value threshold of p <= 2e-10 on the per-sample PPCN values for each

module individually to identify the pathways that were most significantly enriched in the IBD

sample group compared to the healthy group. We calculated the median per-population copy

number of each metabolic pathway in the IBD samples, and again in the healthy samples.

After filtering for p-values <= 2e-10, we also applied a minimum effect size threshold based on

the median per-population copy number in each group (MIBD − MHealthy >= 0.12) – this

threshold was calculated by taking the mean effect size over all pathways that passed the p-

value threshold. The set originally contained 34 pathways that passed both thresholds, but we

removed one redundant module (M00006) which represents the first half of another module in

the set (M00004).

Test for enrichment of biosynthesis pathways. We used a one-sided Fisher’s exact test

(also known as hypergeometric test, see e.g., (Boyle et al., 2004)) for testing the indepen-

dence between the metabolic pathways identified to be IBD-enriched (i.e., using the methods

described in “Selection of IBD-enriched pathways) and functionality (i.e., pathways annotated

to be involved in biosynthesis).

Pathway comparisons. Because the 33 IBD-enriched pathways were selected using

PPCNs of healthy and IBD samples, statistical tests comparing PPCN distributions for these
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modules need to be interpreted with care, because the hypotheses were selected and tested

on the same dataset (Fithian et al., 2014). Therefore, to assess the statistical validity of the

identified IBD-enriched modules, we performed the following repeated sample-split analysis:

we first randomly split the IBD and healthy samples into the equal-sized training and validation

sets. We select IBD-enriched modules in the training set using the Mann-Whitney-Wilcoxon

test, and then compute the p-values on the validation set. We repeat this sample split analysis

1,000 times with an FDR-adjusted p-value threshold of 1e-10 on the first split; most identified

modules (89.4%; 95% CI: [87.5%, 91.3%]) on the training sets remain significant at a slightly

less stringent threshold (1e-8) on the validation sets. This indicates that the approach we

used to identify IBD-enriched modules yields stable and statistically significant results on this

dataset.

Metagenome classification. We trained logistic regression models to classify samples

as ‘IBD’ or ‘healthy’ using per-population copy numbers of IBD-enriched modules as features.

We ran a 25-fold cross-validation pipeline on the set of 330 healthy and IBD metagenomes in

our analysis, using an 80% train – 20% test random split of the data in each fold. The pipeline

included selection of IBD-enriched pathways within the training samples using the same strat-

egy as described above, followed by training and testing of a logistic regression model as

implemented in the ‘sklearn‘ Python package. We set the ‘penalty‘ parameter of the model to

“None” and the ‘max_iter‘ parameter to 20,000 iterations, and we used the same random state

in each fold to ensure changes in performance only come from differences in the training data

rather than differences in model initialization. To summarize the overall performance of the

classifier, we took the mean (over all folds) of each performance metric.

We trained a final classifier using the 33 IBD-enriched pathways selected earlier from the

entire set of 330 healthy and IBD metagenomes. We then applied this classifier to the metage-

nomic samples from (Palleja et al., 2018), which we processed in the same way as the other

samples in our analysis (including removal of samples with low sequencing depth and calcu-
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lation of PPCNs of KEGG modules for use as input features to the classifier model).

Identification of gut microbial genomes from the GTDB. We took 19,226 representative

genomes from the GTDB species clusters belonging to the phyla Firmicutes, Bacteroidetes,

and Proteobacteria, which are most common in the human gut microbiome (Woting and Blaut,

2016). To evaluate which of these genomes might represent gut microbes in a computationally-

tractable manner, we ran the anvi’o ‘EcoPhylo’ workflow (https://anvio.org/m/ecophylo)

to contextualize these populations within 150 healthy gut metagenomes from the Human Mi-

crobiome Project (HMP) (Human Microbiome Project Consortium, 2012a). Briefly, the Eco-

Phylo workflow (1) recovers sequences of a gene family of interest from each genome and

metagenomic sample in the analysis, (2) clusters resulting sequences and picks representa-

tive sequences using mmseqs2 (Steinegger and Söding, 2017), and (3) uses the represen-

tative sequences to rapidly summarize the distribution of each population cluster across the

metagenomic samples through metagenomic read recruitment analyses. Here, we used the

Ribosomal Pprotein S6 as our gene of interest, since it was the most frequently-assembled

single-copy-core gene in our set of GTDB genomes. We clustered the Ribosomal Protein S6

sequences from GTDB genomes at 94% nucleotide identity.

To identify genomes that were likely to represent gut microbes, we selected genomes

whose ribosomal protein S6 belonged to a gene cluster where at least 50% of the repre-

sentative sequence was covered (i.e. detection >= 0.5x) in more than 10% of samples (i.e. n

> 15). There are 100 distinct individuals represented in the 150 HMP gut metagenomes – 56

of which were sampled just once and 46 of which were sampled at 2 or 3 time points – so this

threshold is equivalent to detecting the genome in 5% - 15% of individuals. From this selec-

tion we obtained a set of 836 genomes; however, these were not exclusively gut microbes, as

some non-gut populations have similar ribosomal protein S6 sequences to gut microbes and

can therefore pass this selection step. To eliminate these, we mapped our set of 330 healthy

and IBD metagenomes to the 836 genomes using the anvi’o metagenomics workflow, and
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extracted genomes whose entire sequence was at least 50% covered (i.e. detection >= 0.5x)

in over 2% (n > 6) of these samples. Our final set of 338 genomes was used in downstream

analysis.

Genome phylogeny. To create the phylogeny, we identified the following ribosomal pro-

teins that were annotated in at least 90% (n = 304) of the genomes: Ribosomal_S6, Ri-

bosomal_S16, Ribosomal_L19, Ribosomal_L27, Ribosomal_S15, Ribosomal_S20p, Riboso-

mal_L13, Ribosomal_L21p, Ribosomal_L20, and Ribosomal_L9_C. We used the program

‘anvi-get-sequences-for-hmm-hits‘ to extract the amino acid sequences for these genes, align

the sequences using MUSCLE v3.8.1551 (Edgar, 2004), and concatenate the alignments.

We used trimAl v1.4.rev15 (Capella-Gutiérrez et al., 2009) to remove any positions containing

more than 50% of gap characters from the final alignment. Finally, we built the tree with IQtree

v2.2.0.3 (Minh et al., 2020), using the WAG model and running 1,000 bootstraps.

Determination of HMI status for genomes. We estimated metabolic potential for each

genome with ‘anvi-estimate-metabolism‘ (in genome mode) to get stepwise completeness

scores for each KEGG module, and then we used the script ‘anvi-script-estimate-metabolic-

independence‘ to give each genome a metabolic independence score based on completeness

of the 33 IBD-enriched pathways. Briefly, the latter script calculates the score by summing the

completeness scores of each pathway of interest. Genomes were classified as having high

metabolic independence (HMI) if their score was greater than or equal to 26.4. We calculated

this threshold by requiring these 33 pathways to be, on average, at least 80% complete in a

given genome.

Genome distribution across sample groups. We mapped the gut metagenomes from

the healthy, non-IBD, and IBD groups to each genome using the anvi’o metagenomics work-

flow in reference mode. We used ‘anvi-summarize‘ to obtain a matrix of genome detection

across all samples. We summarized this data as follows: for each genome, we computed

the proportion of samples in each group in which at least 50% of the genome sequence was
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covered by at least 1 read (>= 50% detection). For each sample, we calculated the proportion

of detected genomes that were classified as HMI. We also computed the percent abundance

of each genome in each sample by dividing the number of reads mapping to that genome by

the total number of reads in the sample.

Visualizations. We used ggplot2 (Wickham, 2016) to generate most of the initial data

visualizations. The phylogeny and heatmap in Figure 4.3 were generated by the anvi’o inter-

active interface and the ROC curves in Figure 4.4 were generated using the pyplot package

of matplotlib (Hunter, 2007). These visualizations were refined for publication using Inkscape,

an open-source graphical editing software that is available at https://inkscape.org/.

4.6 Data Availability

Accession numbers for publicly available data are listed in our Supplementary Tables at doi:

10.6084/m9.figshare.22679080. Our Supplementary Information file is also available at

doi:10.6084/m9.figshare.22679080. Contigs databases of our assemblies for the 408

deeply-sequenced metagenomes can be accessed at doi:10.5281/zenodo.7872967, and

databases for our assemblies of the (Palleja et al., 2018) metagenomes can be accessed at

doi:10.5281/zenodo.7897987. Contigs databases of the 338 GTDB gut reference genomes

are available at doi:10.5281/zenodo.7883421.

4.7 Supplementary Information

4.7.1 Low sequencing depth results in poor characterization of community

richness

Within our dataset, we observed a correlation between the estimated number of distinct popu-

lations and sequencing depth, i.e. the number of short reads generated from a given sample.
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When insufficient sequences are generated, genomes may not be entirely covered and not all

single-copy core genes (SCGs) are detected in the assembly, resulting in an underestimation

of the populations present. In contrast, higher sequencing depth increasingly fails to uncover

more microbial populations, indicating that the estimate of the number of distinct microbial pop-

ulations within these samples serves as a good approximation of the true number of genomes.

Since an incomplete recovery of population genomes in metagenomic samples also interferes

with a meaningful quantification of metabolic potential in a given sample, we set a minimum

sequencing depth threshold of 25 million sequencing reads (Supplementary Figure 4.6). A set

of 408 samples (101 IBD, 229 healthy, and 78 non-IBD) from 10 different studies passed our

quality threshold to be utilized for further analysis.

Low sequencing depth disproportionately affects IBD metagenomes, thereby reducing our

ability to effectively study this disease model in comparison with healthy controls. It also dis-

proportionately affects some studies over others, which could allow cohort or study-specific

effects to influence the differential signal between the groups. However, we concluded that the

benefits of stringent thresholding outweigh the potential complications arising from imbalanced

cohort sizes in our sample subset.
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Figure 4.6: Scatterplot of sequencing depth vs estimated number of microbial populations in
each of 2,893 stool metagenomes. Sequencing depth is represented by the number of R1
reads, except for (Vineis et al., 2016a) samples, in which case it is the number of merged
paired-end reads. The vertical line indicates our sequencing depth threshold of 25 million
reads. Per-group Spearman’s correlation coefficients and p-values are shown for the subset
of samples with depth < 25 million reads (top left) and for the subset with depth >= 25 million
reads (top right). Regression lines are shown for each group in each subset, with standard
error indicated by the colored background.
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4.7.2 Technical details of metabolism estimation in anvi’o

This section describes technical details of the program ‘anvi-estimate-metabolism‘, which is

the main program in the metabolism reconstruction framework in anvi’o (Supplementary Figure

4.7a). Documentation for this program, including an extended and more up-to-date version of

these technical details, can be found at https://anvio.org/m/anvi-estimate-metabolis

m.

Summary of program usage

The program ‘anvi-estimate-metabolism‘ predicts the metabolic capabilities of organisms ba-

sed on their genetic content. It relies upon enzyme annotations and metabolism information

from KEGG, specifically using metabolic modules from the KEGG MODULE (Kanehisa et al.,

2023) database, which are defined in terms of KEGG Orthologs (KOs) that can be annotated

via the KOfam database of hidden Markov model (HMM) profiles (Aramaki et al., 2020). It

can also work with user-defined metabolic pathways, as described in the documentation page

https://anvio.org/m/user-modules-data.

The program determines which enzymes are annotated in an input sample and uses these

functions to compute the completeness and copy number of each metabolic module within

the sample. Input samples can be individual genomes, binned or unbinned metagenomes, or

ad-hoc lists of enzyme accessions. The output of ‘anvi-estimate-metabolism‘ is one or more

tabular text files detailing the completeness and copy number scores per module as well as

(customizable) information such as pathway metadata; shared/unique enzymes; gene cover-

age data; and pathway substrates, intermediates, and products. A detailed output description

and examples can be found at https://anvio.org/m/kegg-metabolism/.
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NADH:quinone oxidoreductase, prokaryotes
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NAD biosynthesis, aspartate = quinolinate = NAD

Galactose degradation, Leloir pathway, galactose = alpha-D-glucose-1P

Glucuronate pathway (uronate pathway)

Nucleotide sugar biosynthesis, galactose = UDP-galactose

Ascorbate degradation, ascorbate = D-xylulose-5P

Cobalamin biosynthesis, cobinamide = cobalamin

Polyamine biosynthesis, arginine = agmatine = putrescine = spermidine

Monolignol biosynthesis, phenylalanine/tyrosine = monolignol
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Ascorbate biosynthesis, plants, glucose-6P = ascorbate

Formaldehyde assimilation, ribulose monophosphate pathway

Cysteine biosynthesis, methionine = cysteine

Glycogen degradation, glycogen = glucose-6P

Trehalose biosynthesis, D-glucose 1P = trehalose

Glycogen biosynthesis, glucose-1P = glycogen/starch

CAM (Crassulacean acid metabolism), light

Fatty acid biosynthesis in mitochondria, animals

Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP = pimeloyl-ACP

Fatty acid biosynthesis in mitochondria, fungi

Pyruvate oxidation, pyruvate = acetyl-CoA

Aurachin biosynthesis, anthranilate = aurachin A

C1-unit interconversion, prokaryotes

Ethylene biosynthesis, methionine = ethylene

Fatty acid biosynthesis, initiation

Fatty acid biosynthesis, elongation

V/A-type ATPase, prokaryotes

Vancomycin resistance, D-Ala-D-Lac type

Histidine biosynthesis, PRPP = histidine

Ornithine biosynthesis, glutamate = ornithine

Phosphate acetyltransferase-acetate kinase pathway, acetyl-CoA = acetate
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Methionine salvage pathway

Ectoine biosynthesis, aspartate = ectoine

Thiamine biosynthesis, prokaryotes, AIR (+ DXP/tyrosine) = TMP/TPP

Semi-phosphorylative Entner-Doudoroff pathway, gluconate = glycerate-3P
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Urea cycle
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GABA biosynthesis, eukaryotes, putrescine = GABA
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Helicobacter pylori pathogenicity signature, cagA pathogenicity island

Pentose phosphate pathway, archaea, fructose 6P = ribose 5P

Ethylmalonyl pathway

Hydroxypropionate-hydroxybutylate cycle

Ketone body biosynthesis, acetyl-CoA = acetoacetate/3-hydroxybutyrate/acetone
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Figure 4.7: Technical details of the metabolism reconstruction software framework in anvi’o.
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Figure 4.7 continued: A) Workflow of metabolism reconstruction programs and their inputs/out-
puts. Dark arrows indicate the primary analysis path utilized in this study. Blue background
indicates optional features in the framework. A demonstration of completeness score and
copy number calculations for metabolic pathways (performed by the program ‘anvi-estimate-
metabolism‘ is shown using example enzyme annotation data in panels B – E (for a theoretical
pathway) and F – I (for a real pathway). B) Theoretical metabolic pathway, where hexagons
represent metabolites, arrows represent chemical reactions, letters represent enzymes (sub-
scripts indicate enzyme components), and the example number of gene annotation hits for
each enzyme is written in gray. C) The definition of the theoretical pathway from panel B,
written in terms of the required enzymes. D) Table showing the major steps in the pathway
and example calculations for step presence and copy number. Step presence is calculated by
evaluating a boolean expression created from the step definition in which enzymes with > 0
hits are replaced with True (T) and the others with False (F). Step copy number is calculated
by evaluating the corresponding arithmetic expression in which the enzymes are replaced with
their annotation counts. E) Final calculations of completeness score (fraction of present steps)
and copy number for the theoretical metabolic pathway. F – I) Same as panels B – E, but for
KEGG module M00043.
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Module definitions and interpretation strategies

Metabolic pathways are defined by the enzymes responsible for each reaction in the path-

way, using the convention established by the KEGG MODULE database. In these definitions,

commas separate alternative enzymes that can catalyze the same reaction, spaces separate

subsequent reactions, plus signs indicate essential components of enzyme complexes, minus

signs indicate non-essential components of complexes, and parentheses indicate the order of

operations. These definitions can also be written in terms of the logical relationships between

reactions, such that spaces and plus signs are converted into ‘AND’ relationships and commas

are converted into ‘OR’ relationships (Supplementary Figure 4.7b-c and f-g).

‘anvi-estimate-metabolism‘ has two strategies for interpreting module definition strings that

treat alternative enzymes and pathway branches differently. One is the ‘pathwise’ strategy,

which considers all possible combinations of enzymes. In this method, each alternative set of

enzymes that could be used together to catalyze every reaction in the metabolic pathway is

called a ‘path’ through the module. The program computes completeness and copy number

metrics for each path separately, and then identifies the most complete path(s) as the most

biologically-relevant representative of the module as a whole. Alternatively, with the ‘stepwise’

strategy the module definition is parsed into high-level ‘steps’ that each encompasses a set of

alternative enzymes for a particular reaction or branch point. The presence and copy numbers

of each step are respectively combined into a completeness score and copy number for the

entire module.

Calculation of stepwise completeness and copy number

The analyses in this paper rely on the ‘stepwise’ metrics of module completeness and copy

number, which are calculated as demonstrated in Supplementary Figure 4.7d-e and h-i. We

divide each module into steps by splitting the definition string on the outermost ‘AND’ relation-

ships (spaces not within parentheses). To determine whether each step is present, we convert
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the step definition into a Boolean expression in which ‘True’ represents annotated enzymes

and ‘False’ represents enzymes without annotations. If the Boolean expression evaluates to

‘True’, then the step is considered present. The module completeness score is the number of

present steps divided by the total number of steps. To determine the step copy number, we

convert the step definition into an arithmetic expression wherein ‘AND’ relationships become

minimum operations and ‘OR’ relationships become addition operations. We take the mini-

mum of all per-step copy numbers obtained by evaluating these arithmetic operations to get

the overall module copy number.
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Figure 4.8: Comparison of unnormalized copy number data and normalized (per-population
copy number, or PPCN) data for the IBD-enriched modules. A) Boxplot of median copy num-
bers for each module in the healthy samples (blue) and IBD samples (red). B) Boxplots of
median PPCN for each module in the healthy samples (blue) and IBD samples (red). Lines
connect data points for the same module in each plot. The gray dashed line in each plot indi-
cates the overall median value.

4.7.3 Differential annotation efficiency between IBD and Healthy samples

We observed that the proportion of predicted genes with functional annotations was markedly

less in healthy metagenomes than in IBD samples, for both sequence homology-based anno-

tation methods (NCBI Clusters of Orthologous Groups, or COGs) and annotation with proba-
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bilistic models (KEGG KOfams and Pfams) (Supplementary Figure 4.9, Supplementary Table

4.1d). One possible interpretation of this that aligns with our metabolic competency hypoth-

esis is that the (LMI) populations that thrive in the healthy gut environment are relatively less

well-characterized than the (HMI) populations that are more likely to survive in the stressful

conditions of IBD, resulting in an annotation bias against healthy samples. This interpretation

is congruent with our observation that most uncharacterized gut microbial genomes from the

GTDB, which have temporary code names in place of taxonomic assignments, were identified

as non-HMI (Figure 4.3b).
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Figure 4.9: Histograms of annotations per gene call from A,B) NCBI COGs; C,D) KEGG KO-
fams; and E,F) Pfams. Panels A, C, and E show data for metagenomes in the subset of 330
deeply-sequenced samples from healthy people and people with IBD, and panels B, D, and F
show data for all 2,893 samples including those from non-IBD controls.

Perhaps the reduced metabolic capacity of LMI microbes and their resulting reliance on

robust community interactions (i.e., cross-feeding) makes them less easily culturable in vitro,
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especially since cultivation is typically attempted for isolated populations rather than commu-

nities. These microbes may rely on their surrounding community for access to key metabolites

that they cannot synthesize for themselves, and our current cultivation practices may not be

sufficient to make up for the lack of such interactions. In this case, their representation in com-

mon sequence databases would be limited to sequences from metagenomic surveys, which

are often incomplete and/or composite and therefore not typically included in efforts to gener-

ate models and non-redundant sequence databases for gene annotation (Aramaki et al., 2020;

Galperin et al., 2015; Sonnhammer et al., 1997). Therefore, one explanation for the reduced

proportion of annotated genes in healthy metagenomes is that some annotations are simply

missing due to lack of sufficiently-homologous sequences in state-of-the-art databases. Thus,

the true reduction in metabolic potential in the healthy sample group may not be as extensive

as we have observed in this study. However, this does not exclude the possibility that some

reduction in metabolic capacity exists due to the inherent ecological differences between the

healthy and IBD gut environments and irrespective of microbial characterization levels.

The discrepancy in annotation efficiency between the healthy and IBD groups disappeared

when analyzing all 2,893 samples (Supplementary Figure 4.9). This suggests that the ob-

served annotation bias does not strongly affect microbial populations that are readily assem-

bled via shallow sequencing – likely, these are populations of high relative abundance in both

healthy and IBD samples. Populations of lower abundance, which are less likely to be as-

sembled from shallow metagenomes due to lack of sufficient coverage, are probably also less

well-characterized as a result. For this to contribute to fewer annotations per gene in healthy

samples would necessitate that healthy samples contain relatively more low-abundance pop-

ulations than IBD samples. Indeed, this is the case: healthy samples contain an average of 86

detected genomes from our set of GTDB gut microbes, and those genomes have a low average

percent abundance of 0.61% across these samples. Non-IBD samples are similar, having an

average of 77 detected genomes per-sample with an average percent abundance of 0.79%.
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IBD samples, meanwhile, contain 30 detected genomes on average, with a higher average

percent abundance of 2.24%. Therefore, the lack of characterization of low-abundance popu-

lations may contribute to the relative reduction in gene annotations in the healthy samples.

4.7.4 Pathway enrichment without consideration of effect size leads to

nonspecific results

Our analyses indicate that the majority of KEGG modules had higher per-population copy

number in IBD metagenomes (Figure 4.2e, Supplementary Table 4.2b). Indeed, when we

examine all modules with non-zero median per-population copy number in at least one group

of samples (n = 117), their median normalized copy number is systematically higher in the IBD

group than in the healthy group (Supplementary Figure 4.10c; 98 out of 117 modules have a

higher normalized copy number in the IBD group than in the healthy group at 5% FDR-adjusted

significance level using a one-sided Wilcoxon test). This result is likely a natural outcome

of the differential distribution of HMI and non-HMI genomes in the two sample groups, as

seen in our analysis of reference genomes (Figure 4.3c, 4.3d), where the overrepresentation

of HMI populations with larger genomes that encode many more complete pathways in IBD

samples leads to higher per-population copy numbers computed at the metagenome level.

The consistent elevation in PPCN of metabolic modules in IBD could also be attributed, at

least in part, to the aforementioned functional annotation biases that seem to disproportionally

affect the characterization of healthy metagenomes. The lower annotation efficiency in healthy

metagenomes could result in partial copies of pathways, which are ignored by our stringent

copy number calculation that only counts complete copies. Therefore, to narrow down our

results and identify which pathways are particularly important for microbial resilience in the IBD

gut environment, we considered only those pathways with the largest difference in normalized

copy number (‘effect size’) between the two groups to identify metabolic modules that are truly

elevated in IBD metagenomes (see Methods).
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With similar considerations we also investigated whether biosynthetic capacity in general

was enriched in IBD samples. For this, we expanded our analysis to also consider biosynthesis

pathways that did not meet the enrichment criteria we have used for inclusion in the final

set of 33 IBD-enriched modules. As expected, we found that the majority of all biosynthesis

pathways in the KEGG Module database (n = 88) have significantly higher normalized copy

numbers in IBD samples (Supplementary Figure 4.10d; at a 5% FDR-adjusted significance

level, 62 out of 88 (70%) biosynthesis pathways have a higher normalized copy number using

a one-sided Wilcoxon test). This analysis also showed a similar increase for non-biosynthetic

pathways: 63 out of 91 (69%) non-biosynthetic pathways showed significant increase in IBD

samples (two-sample test for equality of proportion: 0.88). Overall, these data indicate that

without the consideration of effect size, both biosynthetic and non-biosynthetic capacity appear

to be increased in the IBD gut microbiome. In contrast, maintenance of a higher metabolic

capacity for the biosynthesis of essential nutrients emerges as an important factor for microbial

resilience in IBD through a strict enrichment criteria in addition to statistical significance scores

calculated for differential abundance.
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Figure 4.10: Additional boxplots of median per-population copy number for various subsets
of metabolic pathways and metagenome samples. A) 33 modules enriched in HMI popula-
tions from (Watson et al., 2023) compared to the 33 IBD-enriched modules from this study,
with medians computed in the set of deeply-sequenced healthy (n = 229) and IBD (n = 101)
samples. B) The 33 IBD-enriched modules from this study, with medians computed in the set
of deeply-sequenced healthy (n = 229), non-IBD (n = 78), and IBD (n = 101) samples. C) All
KEGG modules (n = 117) with non-zero copy number in at least one sample, with medians
computed in the set of deeply-sequenced healthy (n = 229) and IBD (n = 101) samples. D) All
biosynthesis modules (n = 88) from the KEGG MODULE database, with medians computed in
the set of deeply-sequenced healthy (n = 229) and IBD (n = 101) samples. Where applicable,
dashed lines indicate the overall median for all modules, and solid lines connect the points
for the same module in each sample group. The IBD sample group is highlighted in red, the
NONIBD group in pink, and the HEALTHY group in blue.
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4.7.5 A review of HMI-associated modules in the context of gut microbiome

literature

The 33 pathways that are enriched in microbial communities associated with individuals with

IBD likely provide competencies that are critical for survival in the stressed gut environment. In

this section, we offer a review of IBD-enriched modules with existing gut microbiome scientific

literature.

Amino acid pathways

The eleven amino acid pathways enriched in the IBD gut microbiome collectively encode for

biosynthesis of 8 proteinogenic amino acids – tryptophan, cysteine, leucine, isoleucine, threo-

nine, methionine, proline, and arginine. They also account for the production of chorismate (the

precursor for aromatic amino acids) via the Shikimate pathway, the non-proteinogenic amino

acid ornithine (which is a precursor for arginine), and polyamines such as spermidine and pu-

trescine. Most of these pathways are interlinked, utilizing the same or similar intermediates

and enzymes, and some modules are the successors of others. For instance, both threo-

nine and methionine are produced from homoserine, and threonine can then be converted

to isoleucine. The Shikimate pathway produces chorismate, which is an input to tryptophan

biosynthesis. Both proline and ornithine are produced from glutamate, ornithine can be con-

verted to arginine, and arginine is the precursor for the polyamines. The interdependence of

these pathways may have influenced the enrichment signal, such that some of these mod-

ules may be enriched because they encode precursor molecules to critical metabolites, even

if the precursor molecules themselves are not as essential to microbial survival in the IBD gut

environment.

Of the eight proteinogenic amino acids that can be synthesized with IBD-enriched path-

ways, leucine, tryptophan, threonine, isoleucine, and methionine are essential amino acids
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for humans (Lopez and Mohiuddin, 2023), while cysteine and arginine are semi-essential

(Rehman et al., 2020; Tong and Barbul, 2004). Furthermore, leucine, tryptophan, isoleucine,

and cysteine have been shown to have a protective effect against oxidative stress for intestinal

epithelial cells (Katayama and Mine, 2007), which may be relevant in the more aerobic gut

environment that is characteristic of IBD (Rigottier-Gois, 2013). Several of these amino acids

have been analyzed for their potential therapeutic effects in IBD (Liu et al., 2017). Regard-

less, it is unknown if the depleted gut microbiome in IBD would produce these amino acids in

sufficient quantity to promote health benefits to the host, especially considering that the mi-

crobes themselves require these molecules for protein production and as nutrient sources –

for instance, in proteolytic fermentation (Wu et al., 2021b; Lin et al., 2017).

The Shikimate pathway, which converts phosphoenolpyruvate (PEP) and erythrose 4-

phosphate (E4P) to chorismate, is a prerequisite for tryptophan biosynthesis. This pathway

is only present in microorganisms and plants, and it also produces intermediates for other

metabolic pathways such as quinate degradation and antibiotic synthesis (Herrmann and

Weaver, 1999). A recent analysis of paired fecal metagenomes and metatranscriptomes from

the Human Microbiome Project using reference genome-based functional inference demon-

strated that the Shikimate pathway is typically incomplete in gut microbes and only tran-

scriptionally active in a few, suggesting that most gut microbes are auxotrophic for aromatic

amino acids and therefore rely on dietary sources and potentially cross-feeding to obtain these

molecules or their precursors (Mesnage and Antoniou, 2020). This offers a potential explana-

tion for the enrichment of the Shikimate and tryptophan biosynthesis pathways in the IBD gut

microbiome, where a depleted community may restrict the availability of cross-fed metabolites.

Indeed, a tryptophan-deficient diet alters the composition of the gut microbiota in aged mice

(Yusufu et al., 2021), providing auxiliary evidence that the loss of this amino acid impacts mi-

crobial survival. Furthermore, the serum levels of tryptophan are reduced in individuals with

IBD due to high host metabolism rates (Nikolaus et al., 2017), which may exacerbate the lack
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of bioavailable tryptophan for gut microbes. On the host side, tryptophan and its derivatives

influence a number of physiological processes, though it is unclear how much the microbial

production of tryptophan contributes to these effects (Agus et al., 2018). Nevertheless, the

lack of tryptophan appears to worsen intestinal inflammation while supplementation can atten-

uate it (Kim et al., 2010; Hashimoto et al., 2012).

Cysteine biosynthesis was previously found to be enriched in the IBD gut microbiome

based on reference genome analysis of 16S amplicon data (Morgan et al., 2012). The authors

of that study proposed that cysteine metabolism could be important to microbial management

of oxidative stress via the production of glutathione, which is protective against reactive oxygen

species (Sherrill and Fahey, 1998; Tepe et al., 2006), from cysteine and glutamate. Cysteine

can also be converted into hydrogen sulfide (H2S) by host colonocytes and some intestinal

microbes. Though H2S produced by colonocytes can help support their energy production,

excess microbially-derived H2S in the lumen is a risk factor for gut mucosal inflammation and

H2S may play a role in colorectal carcinogenesis (Blachier et al., 2019). Interestingly, cys-

teine biosynthesis is also enriched in the gut microbiomes of postmenopausal women, where

it is thought to contribute to elevated homocysteine levels and therefore to increased risk of

cardiovascular disease (Zhao et al., 2019).

Leucine and isoleucine, as branched-chain amino acids (BCAAs), are important nutrients

and signaling molecules in humans (Gojda and Cahova, 2021). Gut microbial synthesis of

these compounds does contribute to human BCAA pools, as evidenced by experiments with

heavy isotope labeling and correlations between serum and fecal BCAA levels (Metges et al.,

1999; Dhakan et al., 2019). The extent of this exchange has not been characterized in individu-

als with IBD. However, a study of individuals receiving anti-integrin therapy for Crohn’s disease

demonstrated that pathways for biosynthesis of L-isoleucine and arginine were enriched at

baseline in the gut microbiomes of responders to the therapy (Ananthakrishnan et al., 2017).

In a longitudinal study of mice, biosynthesis pathways for leucine and proline were more abun-
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dant in animals modeling IBD (Sharpton et al., 2017).

Threonine and proline are both important components of intestinal mucins (Johansson

and Hansson, 2016; Faure et al., 2005) and thus contribute to mucosal barrier integrity, which

is typically impaired in IBD (Johansson et al., 2010). For instance, threonine, proline, and

cysteine supplementation has been shown to reduce symptoms and restore lactobacilli and

bifidobacteria counts in rats with DSS-induced inflammation (Sprong et al., 2010; Faure et al.,

2006). The latter observation suggests the importance of an external source of these three

amino acids to the fitness of the lactobacilli and bifidobacterial populations and thereby sup-

ports the idea that they are community metabolites.

We also found methionine biosynthesis to be enriched in the IBD gut microbiome. In in-

dividuals with quiescent inflammatory bowel disease, reduced serum levels of methionine,

proline, and tryptophan are correlated with changes in the gut microbiome that are asso-

ciated with increased symptoms of fatigue (Borren et al., 2021), demonstrating a putative

link between methionine bioavailability, microbial abundances, and host wellbeing. Indeed,

L-methionine supplementation in piglets results in improved mucosal integrity and villus ar-

chitecture (Chen et al., 2014), and the activated form of methionine, S-adenosylmethionine,

can reverse colon lesions and cytoskeletal damage in intestinal cells in DSS-treated mice (Oz

et al., 2005). Yet reducing methionine in high-fat diets given to mice was shown to improve in-

testinal barrier function, reduce inflammation, and increase the abundance of short-chain fatty

acid-producing microbes (Yang et al., 2019), so the net impact of methionine on host health

and microbial fitness remains unclear.

Arginine has been well-studied in the context of inflammatory bowel disease. It has been

shown to reduce cytokine production, promote intestinal healing and improve intestinal barrier

function in DSS-treated mice, perhaps by enhancing production of nitric oxide (NO) (Coburn

et al., 2012; Gobert et al., 2004; Singh et al., 2019). NO is a free radical that has been im-

plicated in regulating mucosal barrier integrity, gastrointestinal motility, and protection against
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oxidative stress, though overproduction of this compound can have detrimental effects (Kolios

et al., 2004; Walker et al., 2018). Biosynthesis of ornithine, which is both a precursor and

a derivative of arginine, was enriched in the IBD gut microbiome as well, in agreement with

another study that reported an increase in ornithine biosynthesis in the gut microbiome of in-

dividuals with active ulcerative colitis (Hellmann et al., 2023). Finally, polyamines – which are

derived from arginine and were also represented in the enriched pathways – promote intestinal

barrier function (Liu et al., 2009); for instance, by regulating the growth of intestinal epithelial

cells (McCormack and Johnson, 1991).

Carbohydrate pathways

Three KEGG modules describing the pentose phosphate pathway were enriched in IBD sam-

ples - the entire pentose phosphate cycle (M00004), the oxidative phase (M00006), and the

non-oxidative phase (M00007). We removed the oxidative phase (M00006) from our set of

IBD-enriched modules because it was an exact copy of the initial steps in M00004; however,

we kept the non-oxidative phase (M00007) in our set because it is defined using slightly dif-

ferent enzymes than the non-oxidative portion of M00004. M00007 is defined in four steps

and utilizes a ribulose-phosphate 3-epimerase and a ribose 5-phosphate isomerase in the last

two steps, while the non-oxidative phase in M00004 is defined in three steps and utilizes a

glucose-6-phosphate isomerase in the last step. The pentose phosphate pathway (PPP) is

a ubiquitous pathway in most bacteria and eukaryotes, as it plays a central role in cellular

metabolism. It produces the important cellular intermediates ribose 5-phosphate and ery-

throse 4-phosphate, which are used for synthesis of nucleotides and aromatic amino acids,

respectively (Soderberg, 2005). In fact, erythrose 4-phosphate is one of the inputs to the

Shikimate pathway, another IBD-enriched module discussed above. The PPP also produces

NADPH, a reducing equivalent important for reductive reactions and prevention of oxidative

stress (Kruger and von Schaewen, 2003; Christodoulou et al., 2018). Beyond its link to other
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enriched amino acid biosynthesis pathways, it is unusual that such a central pathway would

have an increased copy number in the IBD gut microbiome rather than being equally dis-

tributed across all samples. Some gut microbes are known to lack the transaldolase gene in

this pathway and may instead encode an alternative pathway for pentose degradation called

the sedoheptulose 1,7-bisphosphate pathway (SBPP) (Garschagen et al., 2021); it is therefore

possible that the enrichment of the more common PPP in IBD is related to an increased ratio

of microbial populations that use the PPP rather than the SBPP in the less-diverse microbiome

of IBD patients, though this requires further investigation to verify.

The first carbon oxidation of the citric acid cycle (TCA cycle), which is a three-step conver-

sion from oxaloacetate to 2-oxoglutarate (alpha-ketoglutarate), is enriched in the IBD samples.

Similar to the PPP, the citric acid cycle is a central metabolic pathway, especially with regards

to generation of energy and key metabolites for other pathways (Akram, 2014). It is unclear

why only this particular portion of the cycle would be enriched, though this could perhaps be

attributed to the role of alpha-ketoglutarate in the production of glutamate, the precursor to pro-

line, ornithine and arginine (three amino acids with enriched biosynthesis pathways in the IBD

sample group, as discussed above). It has been said that 2-oxoglutarate is the most funda-

mental compound of this cycle, serving as the link between carbon and nitrogen metabolism

and also as a critical element in the recovery of amine groups for amino acid and protein

production (Pierzynowski and Pierzynowska, 2022; Huergo Luciano F. and Dixon Ray, 2015).

Thus, the enrichment of 2-oxoglutarate production capacity in the IBD gut environment could

be related to the enrichment of amino acid biosynthesis pathways.

Two nucleotide sugar biosynthesis pathways are enriched in the IBD gut microbiome. One

of these is synthesis of UDP-glucose, which is an important molecule implicated in a variety of

key cellular metabolisms. It is an intermediate in polysaccharide biosynthesis and pyrimidine

metabolism, a precursor of lipopolysaccharides in the outer cell membrane of Gram-negative

bacteria, and an extracellular signaling molecule (Ralevic, 2015). Additionally, as an agonist
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for P2Y-14 receptors, it could play a role in modulating host gastrointestinal functions like

muscular contraction (Bassil et al., 2009), and in modulating host inflammatory responses by

activating this receptor specifically in T-lymphocytes (Scrivens and Dickenson, 2005) and in

immature monocyte-derived dendritic cells (MDDC) (Skelton et al., 2003). The other enriched

nucleotide sugar pathway is UDP-GlcNAc biosynthesis. Flux through this pathway is linked

to a multitude of other central metabolisms, including amino acid and fatty acid metabolism

(Hardivillé and Hart, 2014). Furthermore, UDP-GlcNAc is an important substrate in protein

glycosylation pathways (Hardivillé and Hart, 2014; Ryczko et al., 2016), and a precursor to

critical cell wall components in bacteria (Liu and Breukink, 2016; Mikkola, 2020; van Dam

et al., 2009). In the gut, this molecule has been implicated in regulation of nutrient uptake by

the host (Ryczko et al., 2016).

D-Glucuronate (glucuronic acid) degradation into pyruvate and D-glyceraldehyde 3-phos-

phate is also enriched in the IBD gut microbiome. Some gut microbes are capable of growth

on host-derived uronic acids (Lopez-Siles et al., 2012), so this pathway may serve as a source

of energy to microbes living in the IBD gut environment. In mice, there is some evidence that

derivatives of glycosaminoglycan degradation such as D-glucuronate can worsen colitis (Lee

et al., 2009b), so it is possible that this pathway is relevant to modulation of inflammation in

IBD patients.

Finally, the phosphoribosyl diphosphate (PRPP) biosynthesis pathway is important be-

cause PRPP is used in the formation of glycosidic bonds as well as in the biosynthesis of a

number of cofactors, amino acids, and nucleotides (Hove-Jensen et al., 2017). It is discussed

further below in the context of nucleotide metabolism.

Cofactor and vitamin pathways

Biosynthesis or salvage pathways for the following five cofactors and vitamins are enriched in

IBD: heme, siroheme, thiamine (vitamin B1), cobalamin (vitamin B12), and coenzyme A (CoA).
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Heme is required for aerobic respiration (Gruss et al., 2012) and the increase in this pathway

may be related to elevated oxygen levels in the gut as a result of inflammation, which promotes

the growth of aerotolerant microbes (Shah, 2016; Cevallos et al., 2019). Dietary heme has also

been associated with gut dysbiosis, aggravated colitis, and increased cytotoxicity in the colon

(Constante et al., 2017; Ijssennagger et al., 2015); and genes related to heme and siroheme

biosynthesis have also been found with high abundance in infants with neonatal necrotizing

enterocolitis (Claud et al., 2013).

Both thiamine and cobalamin are important cofactors that are commonly shared between

gut microbes (Magnúsdóttir et al., 2015), suggesting that microbes incapable of synthesizing

them are unable to thrive in the depleted community of the IBD gut environment. Neither of

these vitamins is produced by host cells but they are typically acquired from dietary sources

(cobalamin, in particular, is absorbed in the small intestine) (Seetharam and Alpers, 1982;

Degnan et al., 2014b; Hossain et al., 2022), so the enrichment of these pathways is unlikely to

have a large impact on host health.

Coenzyme A can be produced from pantothenate (vitamin B5) by most gut microbes (Mag-

núsdóttir et al., 2015) and its biosynthesis has been described as ‘essential’ considering that

CoA is required for a large number of enzymatic reactions (Spry et al., 2008; Leonardi et al.,

2005). It is therefore interesting that this pathway appears to be enriched in the IBD gut micro-

biome, which implies a relative deficiency of CoA biosynthesis in the healthy gut microbiome.

It is possible that the module is spuriously enriched, despite its low p-value of 5.7e-21, given

the short length of this pathway – it has 3 major steps when the KEGG module definition

is interpreted in a ‘stepwise’ fashion by anvi-estimate-metabolism, though there are in fact 5

chemical conversions (Supplementary Table 4.2a). An alternative possibility is that the KEGG

Ortholog hidden Markov models (HMMs) for the required enzymes do not sufficiently repre-

sent the diversity of these proteins across the gut microbiota, which could cause this pathway

to be undercounted due to lack of proper annotations.
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Nucleotide pathways

The IBD-enriched modules include pathways for synthesis of the first complete purine, inosine

monophosphate (IMP) as well as a series of pyrimidine biosynthesis pathways encoding the

conversion from uridine monophosphate (UMP) to ribonucleotides (UDP/UTP, CDP/CTP) and

finally to the cytosine deoxyribonucleotide (dCTP). The phosphoribosyl diphosphate (PRPP)

biosynthesis pathway is also included in this list; though it is classified as central carbohydrate

metabolism in KEGG due to its role in glycosidic bond formation, this molecule is an important

precursor for nucleotide biosynthesis (both purines and pyrimidines) and synthesis of some

amino acids (namely, tryptophan and histidine) (Hove-Jensen et al., 2017). Though many mi-

crobes are capable of producing their own nucleotides, some – especially lactic acid bacteria

– are not and rely on uptake of exogenous nucleosides and bases, which are converted to

nucleotides via salvage pathways (Nygaard, 2014; Kilstrup et al., 2005). Notably, these sal-

vage pathways are not enriched in the IBD gut microbiome, suggesting that self-sufficiency in

nucleotide biosynthesis (especially in the early stages in this process) is selected for in these

communities. This also implies the importance of pyrimidine and purine cross-feeding in the

healthy gut environment, which is supported by evidence that some gut microbes (e.g. Bac-

teroides vulgatus) actively secrete nucleosides in the colon (Wong et al., 2023; Teng et al.,

2023).

Lipid pathways

Two lipid biosynthesis pathways – initiation and elongation of fatty acids – are enriched in IBD.

Fatty acids are essential components of cell membranes and also serve as signaling molecules

(Brown et al., 2023); thus, the ability to synthesize them is an important fitness determinant.

For example, gut Bacteroides species that are deficient in sphingolipid production capabilities

are much less resilient to oxidative stress than wild-type species (An et al., 2011). Since

oxidative stress is a hallmark of IBD, it is possible that this environment selects for microbes
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capable of fatty acid biosynthesis.

Energy pathways

The Pta-Ack pathway is important for microbial energy production and adaptation to different

growth conditions via the ‘acetate switch’, which enables either production or consumption of

acetate depending on available nutrients (Wolfe, 2005). Short-chain fatty acids (SCFAs) such

as acetate serve as important nutrients to intestinal epithelial cells. They also play a role in

regulating gut barrier function and host immune responses (Martin-Gallausiaux et al., 2021;

Zhang et al., 2022), and impaired absorption and oxidation of SCFAs can contribute to the

development of IBD (Zhang et al., 2022). Acetate promotes host intestinal IgA production and

thereby has a protective effect against gut inflammation (Wu et al., 2017), but acetate levels

are reduced in children with IBD (Treem et al., 1994). Further study is required to determine

the flux direction of the Pta-Ack pathway and whether it contributes to the reduction of acetate

in the IBD gut environment.

CAM metabolism is categorized as a carbon fixation pathway in the KEGG MODULE

database yet is a short (2-step) pathway utilizing enzymes required in other common metabo-

lisms. Its first step is catalyzed by phosphoenolpyruvate carboxylase (PEPCK), an enzyme that

is involved in gluconeogenesis, serine biosynthesis, and carbon skeleton conversions in the

citric acid cycle (Yang et al., 2009). Its second step is catalyzed by malate dehydrogenases, a

ubiquitous class of enzymes that convert 2-hydroxy acids to 2-keto acids and are involved in

gluconeogenesis, the TCA cycle, glyoxylate bypass, and amino acid synthesis (Minarik et al.,

2002; Musrati et al., 1998). The increase in this pathway in IBD gut microbiomes could be

attributed in part to the increase in aerobic respiration due to elevated oxygen levels (Shah,

2016; Cevallos et al., 2019) and in part to the increase in amino acid biosynthesis capacity as

evidenced by the multiple amino acid pathways that are also enriched.
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Drug resistance pathways

The use of antibiotics to treat IBD and its complications is known to increase antibiotic resis-

tance in the gut microbiome (Nitzan et al., 2016; Ledder, 2019) and several studies have noted

that individuals exposed to antibiotics are more likely to develop IBD (Kronman et al., 2012;

Ungaro et al., 2014; Ledder, 2019; Shaw et al., 2011). This potentially explains the enrichment

of two drug resistance pathways in the IBD microbiome: efflux pump MepA (conferring mul-

tidrug resistance) and the bla system (conferring beta-lactam resistance), as higher rates of

antibiotic exposure in this sample group naturally leads to selection for resistance phenotypes

(Levy, 2000; Alekshun and Levy, 2007). Beta-lactamases in particular have been found with

higher frequency in people with IBD (Vich Vila et al., 2018; Leung et al., 2012; Vaisman et al.,

2013). Increased microbial drug resistance can heighten the risk of a severe infection such as

Clostridium difficile infection (CDI) (Llor and Bjerrum, 2014). CDI already occurs with higher

frequency in individuals with IBD (Jodorkovsky et al., 2010), though the higher incidence of

CDI is not necessarily linked to chronic antibiotic use in these individuals (at least in one retro-

spective study of Crohn’s disease) (Roy and Lichtiger, 2016). Regardless, antibiotic resistance

is a global health problem that affects everyone, not just those with IBD.

4.7.6 Characterizing cohort-specific metabolic capacity across the gradient

of health and disease

We then sought to evaluate the cohort-specific trends in metabolic capacity. We computed the

median per-population copy number of the 33 IBD-enriched modules within each sample from

each study. Again considering the heterogeneity within each sample group, we ordered the

studies from most healthy to least healthy, using the cohort description from each publication

to approximate relative healthiness based on the number and types of exclusions listed for

healthy or non-IBD controls, or on the diagnostic criteria for people with IBD (Supplementary
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Table 4.1a).

This was difficult considering the variable amount of detail provided by each study as well

as the variability in what kinds of conditions were considered by each study. We placed more

emphasis on exclusionary conditions that are more likely to directly affect the gut microbiome.

Whenever two studies appeared to cover individuals of roughly the same healthiness, we

generally considered the cohort with more specific gut-related exclusions to be healthier. For

instance, (Le Chatelier et al., 2013) and (Raymond et al., 2016) had the most exclusionary

conditions out of all the studies that contributed deeply-sequenced samples to the healthy

group in our analysis – both of these studies excluded patients with gastrointestinal-related

conditions like disease, surgery, and medication; medications affecting the immune system;

or antibiotics. Because (Le Chatelier et al., 2013) explicitly excluded type-2 diabetes while

(Raymond et al., 2016) did not, we placed (Le Chatelier et al., 2013) first, but the two cohorts

are roughly similar in health status.

For studies contributing to the other sample groups, the (Lloyd-Price et al., 2019),

(Schirmer et al., 2018b), and (Franzosa et al., 2019) studies were conducted by the same

group, recruited people from the same hospital systems, and therefore have similar exclu-

sionary and diagnostic criteria. (Schirmer et al., 2018b) had more specific exclusions for

their non-IBD controls than (Franzosa et al., 2019) and was therefore considered a health-

ier cohort within that group. For the IBD samples, we considered similar cohorts to be more

unhealthy if their diagnosis was stated to be confirmed using more lines of evidence. For exam-

ple, (Schirmer et al., 2018b) diagnosed IBD based on a screening colonoscopy and included

existing patients with diagnoses lasting over 5 years, (Lloyd-Price et al., 2019) utilized both

endoscopic and histopathologic evidence for diagnosis, and (Franzosa et al., 2019) required

endoscopic, histopathologic, and radiographic criteria. Regardless, these cohorts are likely

extremely similar in healthiness. Yet there is no doubt that the (Vineis et al., 2016a) cohort is

the least healthy of the IBD sample group – this cohort is composed of total proctocolectomy
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patients with ileal pouches, some of which developed pouchitis.

Ordering the per-sample median PPCN values along this gradient of cohort health indi-

cates that the HMI metric for gut microbial metabolic capacity increases as host health de-

creases (Supplementary Figure 4.11a). Therefore, HMI adequately captures the variability in

gut environment conditions that challenge microbial survival.
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Figure 4.11: Boxplots of median per-population copy number of 33 IBD-enriched modules for
samples from each individual cohort, A) with medians computed within each sample (ie, one
point per sample) and B) with medians computed for each IBD-enriched module (ie, one point
per module). The x-axis indicates study of origin. C) Boxplots of median per-population copy
number of 33 IBD-enriched modules for the 115 samples in the deeply-sequenced set that are
not from (Le Chatelier et al., 2013) or (Vineis et al., 2016a). The dashed line indicates the
overall median for all 33 modules, and solid lines connect the points for the same module in
each sample group.
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4.7.7 Considering batch effect

One concern in comparing samples from multiple studies is that differential sample processing

strategies could contribute to the signal between groups; in other words, batch effects could

explain all or part of the trend we see between healthy, non-IBD, and IBD samples. This

would likely be the case if we were comparing only one cohort per group. However, in this

meta-analysis, samples are sourced from a wide variety of different studies, and it is unlikely

that every study within a given group would be biased in the same direction. Furthermore, if

we compute the median normalized copy number for each of the 33 IBD-enriched metabolic

modules (summarized across all samples within a given study), these values are similarly

distributed across the studies within a given sample group (Supplementary Figure 4.11b).

Thus, the sample group explains more of the trend than study of origin.

However, two studies dominate our deeply-sequenced sample set: (Le Chatelier et al.,

2013) contributes 151 (52.8%) of the healthy samples, and (Vineis et al., 2016a) contributes

64 (63.4%) of the IBD samples (Supplementary Table 4.1b). It is therefore still possible that co-

hort effect is responsible for the differential signal between the healthy and IBD group; that is,

the IBD-enriched modules represent those that are primarily different between these two spe-

cific cohorts, rather than a general distinction between the overarching sample groups. To in-

vestigate this claim, we repeated the IBD-enrichment analysis on (i) (Le Chatelier et al., 2013)

and (Vineis et al., 2016a) only; and (ii) the rest of samples. While the results obtained from

the two larger studies tend to have smaller p-values, top IBD-enriched modules are broadly

similar (Kendall correlation of Wilcoxon test p-values computed on two subsets: 0.59; see

Supplementary Figure 4.12). This demonstrates that we are capturing generic signals across

studies in our sample set.
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Figure 4.12: Assessing batch effect of the IBD-enrichment study. A) Scatter plot comparing
the module ranks of Wilcoxon-Mann-Whitney p-values comparing IBD and healthy subjects
on (Le Chatelier et al., 2013) and (Vineis et al., 2016a) (y axis) and the rest of our dataset (x
axis). B) Venn diagram displaying the overlap of IBD-enriched modules identified by the 33
smallest p-values in (Le Chatelier et al., 2013) and (Vineis et al., 2016a) and the rest of our
dataset. There is good agreement (20 out of 33) between the two sets of modules, indicating
generalizability of the signals across studies used in our sample set.
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4.7.8 Testing the generalizability of the metagenome classifier

To check whether performance of our logistic regression classifier was similar across the dif-

ferent studies in our sample set, we tested the model’s performance using a leave-two-studies-

out cross-validation strategy, whereby we trained the classifier on all samples except for those

from one IBD study and one healthy study, and then tested it using samples from the two

studies that were left out, for a total of 24 folds. Performance was quite variable across the dif-

ferent folds, as expected considering the large range of sample sizes from each study and the

variability in health status of each cohort. The best overall performance occurred when testing

on healthy samples from (Le Chatelier et al., 2013), with average accuracy of 89.9% across

3 folds. The worst performance occurred when testing on healthy samples from (Feng et al.,

2015), with average accuracy of 43.1% across 4 folds. In the fold leaving out healthy samples

from (Le Chatelier et al., 2013) and IBD samples from (Vineis et al., 2016a), no IBD-enriched

modules had p-values below our FDR-adjusted significance threshold of 2e-10 and therefore

no classifier was trained. As these two studies contributed the largest number of samples to

our deeply sequenced subset (Le Chatelier et al. 2013: n = 151 out of 330 or 45.8%, all of

which were healthy samples. Vineis et al. 2016: n = 64 out of 330 or 19.4%, all of which

were IBD samples), we again considered that cohort-specific or study-specific effects could

be driving the differential signal between healthy and IBD samples. To test this, we removed

the samples from (Le Chatelier et al., 2013) and (Vineis et al., 2016a) and ran 10-fold cross-

validation using an 80-20 train-test split of the remaining 115 samples (37 IBD, 78 healthy),

using the 33 IBD-enriched modules (computed from the full sample set) as features. We found

that the model performed better than a naive classifier, with an average fold accuracy of 66.5%,

average true Healthy rate of 69.4%, and an average true IBD rate of 61%. Therefore, while

a portion of the signal in our initial analysis is indeed attributable to the differences between

samples from (Le Chatelier et al., 2013) and (Vineis et al., 2016a), we are still able to capture

an IBD-specific signal across the other studies using this set of IBD-enriched pathways.
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Furthermore, we note that the two dominating studies represent individuals at the extremes

of the health gradient across our sample set, as described previously. The (Le Chatelier et al.,

2013) cohort, with its numerous exclusionary conditions, contains the healthiest individuals,

while the (Vineis et al., 2016a) cohort of proctocolectomy and pouchitis patients contains the

unhealthiest. It is therefore unsurprising that there is a large contrast in the metabolic poten-

tial of the gut microbiome in these individuals, considering the biological differences in their

respective gut environments. This is also supported by the aforementioned ability of HMI to

resolve the variability in host health, as demonstrated in Supplementary Figures 4.10b and

4.11a.
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4.8 Supplementary Tables

This section’s supplementary tables are accessible via doi:10.6084/m9.figshare.226790

80.

Table 4.1: Samples and cohorts used in this study. a) Description of studies/cohorts providing
publicly-available gut metagenomes from healthy people, non-IBD controls, and people with
IBD. For each study, we note the sample groups it contributes metagenomes to; whether or
not those samples were sufficiently deeply sequenced to be included in the main analyses;
the country of origin of the samples; the sample type (fecal metagenome or ileal pouch lumi-
nal aspirate); the number of samples it contributes to each group before and after applying
the sequencing depth threshold; and cohort details/exclusions as described within the study.
b) Description of 408 samples included in the primary analyses of this manuscript (ie, those
with sufficient sequencing depth of >= 25 million reads), including their associated diagnosis
(ulcerative colitis (UC), Crohn’s disease (CD), non-IBD, healthy, colorectal cancer with ade-
noma (CRC_ADENOMA), or colorectal cancer with carcinoma (CRC_CARCINOMA)); study
of origin; sample group; sequencing depth; and number of microbial populations estimated
to be represented within the metagenome. c) Description of all samples initially considered
and their SRA accession numbers. d) The number of gene calls and the number/proportion
of annotations per gene call for KOfams, COGs, and Pfams in each sample. e) Description
of the 57 antibiotic time-series gut metagenomes from (Palleja et al., 2018) used for classifier
testing, including SRA accession number; sampling day in the time series; sequencing depth;
and estimated numbers of microbial populations represented in the sample.
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Table 4.2: Metabolism data in metagenomes. a) Description of the 33 KEGG modules en-
riched in IBD samples, including: module name, KEGG categorization, and definition; their
median per-population copy numbers (PPCN) in the healthy sample group and IBD sample
group; the p-value, FDR-adjusted p-value, and W statistic from the per-module Wilcoxon Rank
Sum test used to determine enrichment in IBD; the difference between its median PPCN in
IBD samples and median PPCN in healthy samples (‘effect size’); the fraction of samples in
which the module occurs with non-zero copy number; whether the module is also enriched
in the HMI populations analyzed in (Watson et al., 2023); the number of total enzymes in the
module; the number of total compounds in the modules; and the numbers and proportions of
shared enzymes or compounds between this module and the other IBD-enriched modules. b)
Description of all 179 KEGG modules with non-zero copy number in at least one metagenome.
Most of the columns match the corresponding column in sheet (b) with the exception of the ‘en-
richment status’ column, which indicates whether the module was found to be enriched in the
IBD samples in this study (‘IBD_ENRICHED’), in the high-metabolic independence genomes in
(Watson et al., 2023) (‘HMI_ENRICHED’), in both (‘HMI_AND_IBD’), or in neither (‘OTHER’). c)
Matrix of stepwise copy number of each module in each deeply-sequenced gut metagenome.
d) Per-population copy number of each module in each deeply-sequenced gut metagenome in
the IBD, non-IBD and healthy sample groups. e) Per-population copy number of each module
in each antibiotic time-series sample from (Palleja et al., 2018).

Table 4.3: GTDB genome data. a) List of 338 GTDB representative genomes identified as gut
microbes, their taxonomy, metabolic independence score, classification as high metabolic in-
dependence (‘HMI’) or not (‘non-HMI’), genome length in base pairs, and number of gene calls.
b) Matrix of stepwise completeness of each module in each genome. c) Matrix of genome de-
tection in each deeply-sequenced gut metagenome in the IBD, non-IBD, and healthy sample
groups. d) Percent abundance of each genome in each deeply-sequenced gut metagenome.
e) Per-genome proportion of samples from each sample group that the genome is detected in
using a threshold of 50% (ie, at least half of the genome sequence is covered by at least one
sequencing read in a given sample). f) Per-sample proportion of detected genomes that are
classified as HMI. g) Average completion of each IBD-enriched module within the HMI genome
group and the non-HMI genome group, as well as the difference between these values.
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Table 4.4: Metagenome classifier information. a) Details and performance of previously-
published classifiers for IBD and IBD subtypes. For each classifier, we summarize the cohort
details as described by the study; the size of training datasets and validation datasets (if any);
the type(s) of samples, data, and extracted features used for classification; the target classes
(that is, what the samples were being classified as); the classifier type and training/valida-
tion strategy; and the performance metrics as reported by the study. b) Classification of each
(Palleja et al., 2018) metagenome by our logistic regression model trained for distinguishing
IBD vs healthy samples on the basis of PPCN data for IBD-enriched modules. This table de-
scribes whether the sample was classified as healthy (‘HEALTHY’) or stressed (‘IBD’, which
we consider to be equivalent to an identification of gut stress), and also whether the sample
had low sequencing depth (< 25 million reads) or not. c) Summary of the performance of our
metagenome classifier across different training/validation strategies using the IBD and healthy
metagenome samples. It also includes the details of our final classifier trained on all 330 sam-
ples, though performance data is not available for this model since there were no IBD/healthy
samples left for validation – however, see manuscript for its performance on the (Palleja et al.,
2018) antibiotic time-series dataset. The subsequent sheets include per-fold data and per-
formance information for each train-test strategy: d) random split cross-validation (25-fold) on
PPCN data; e) leave-two-studies-out cross-validation (24-fold); and f) (10-fold) cross-validation
leaving out samples from the two dominating studies in our dataset, (Le Chatelier et al 2013)
and (Vineis et al 2016).

Table 4.5: Details of available software for metabolism estimation. For each tool (including
the one published in this study), we summarize: the software category (based upon the tool’s
architecture and mode of use); its metabolism reconstruction strategy (whether it is a pathway
prediction tool or a modeling tool or both); the data source(s) it uses for enzyme and metabolic
pathway information; how it calculates pathway completeness or generates models (depending
on reconstruction strategy); what input and output types it accepts/generates; any additional
capabilities as advertised by the tool’s publication; whether or not the tool is open-source; the
program type; and what language(s) it is developed in (if known). The reference publication
and code repository or webpage for each tool is also included.
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CHAPTER 5

A POWERFUL OPEN-SOURCE SOFTWARE FRAMEWORK PROPELS

ADVANCED ‘OMICS RESEARCH

5.1 Preface

The previous chapters have detailed my work in the field of microbial ‘omics research with

a focus on the study of metabolism in the human gut. Indeed, my implementation of the

metabolism reconstruction framework and my work on metabolic independence as a determi-

nant of microbial resilience in the face of gut stress represent my major intellectual contribu-

tions to this field. Now, I will take a step back and place my work in the context of a larger goal:

facilitating advanced ‘omics research with open-source, integrated software solutions.

Of the numerous bioinformatics software for analyzing ‘omics data, the vast majority con-

sist of predefined workflows and calculations for a small set of analysis tasks. While these

programs are easy to use and offer a quick data-in, results-out solution for those with less

computational training, these benefits come with the cost of limiting users’ options for original

and flexible analyses. For ‘omics research to advance more effectively, scientists must have

access to tools that are not only usable, but facilitate innovation by providing greater control

over the direction of their research. Developing and providing access to such platforms is a

key area of improvement for the ‘omics field.

The open-source software movement is critical to this effort. First, it improves transparency

and reproducibility by exposing a software’s methodology to the public. Second, it facilitates

community-driven software extensibility, enabling researchers to update the software with de-

sired features – adapting the platform to their research needs rather than adapting their re-

search to available tools. Yet, making a tool open-source does not necessarily make it usable;

for that, clear and extensive documentation is required.

A significant part of my PhD work has been focused on improving researchers’ access
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to tools for advanced ‘omics research – not only by implementing software, but also by de-

veloping educational resources. I have already discussed my framework for metabolism re-

construction, which was designed (with input from numerous collaborators and colleagues)

to facilitate flexible analyses of metabolic potential. I implemented this framework within

anvi’o, an open-source software ecosystem, because it follows the philosophy of support-

ing varied, extensible, and integrated analyses of ‘omics data. As an anvi’o developer, I have

been able to increase the accessibility of this platform by writing extensive documentation,

tutorials, and blog posts describing how to use various aspects of the software (including,

but not limited to, the metabolism framework), learn ‘omics vocabulary, get help from the

anvi’o community, and extend the online help pages. Several of these resources are linked

from the web page https://anvio.org/people/ivagljiva/. In addition, I have de-

veloped and participated in a number of workshops and seminars to teach users how to

conduct analyses on their own data. For example, I lectured on metabolism reconstruction

in the 2021 workshop on Emerging Bioinformatics Applications for Microbial Ecogenomics

(https://maignienlab.gitlab.io/ebame6/), and I created hybrid workshops for teaching

metagenomics (along with my colleague Matthew Schechter) to audiences of 50-70 partici-

pants from multiple career stages (https://microbiome.uchicago.edu/resources/tmc-n

ews/anvio-omics-workshop-2023, https://microbiome.uchicago.edu/tmc-news/meta

genomics-and-metabolomics-workshop).

This chapter describes a few of my efforts to promote advanced ‘omics science in sys-

tems beyond the human gut environment and areas beyond metabolism. The examples are

drawn from my work on marine microbiomes. In section 5.2, I introduce a study utilizing the

metabolism reconstruction framework to investigate nitrogen fixers in the global oceans. This

study identifies heterotrophic bacterial diazotrophs as more abundant than cyanobacterial di-

azotrophs, challenging the current paradigm labeling cyanobacteria as the primary marine

nitrogen fixers. In section 5.3, I demonstrate one of the several tutorials I have written to en-

171

https://anvio.org/people/ivagljiva/
https://maignienlab.gitlab.io/ebame6/
https://microbiome.uchicago.edu/resources/tmc-news/anvio-omics-workshop-2023
https://microbiome.uchicago.edu/resources/tmc-news/anvio-omics-workshop-2023
https://microbiome.uchicago.edu/tmc-news/metagenomics-and-metabolomics-workshop
https://microbiome.uchicago.edu/tmc-news/metagenomics-and-metabolomics-workshop


courage advanced usage of the anvi’o platform; this particular example teaches people how to

leverage the metabolism reconstruction framework for targeted binning of microbial population

genomes with specific metabolic capabilities. The tutorial also includes an interesting scientific

result: binning of a novel nitrogen-fixing population from the Arctic Ocean. Finally, section 5.4

describes my work in generating shareable, reproducible, integrated data packages for related

(and especially large-scale) ‘omics datasets on microbial populations. These ‘digital microbes’

were initially developed to fit the collaboration needs of a large research consortium studying

marine carbon cycling, but are of general interest as a data-sharing tool for anyone in the

‘omics field.

5.2 Heterotrophic bacterial diazotrophs are more abundant than their

cyanobacterial counterparts in metagenomes covering most of the

sunlit ocean

This section is derived from the following publication:

Tom O. Delmont, Juan José Pierella Karlusich, Iva Veseli, Jessika Fuessel, A. Murat Eren,

Rachel A. Foster, Chris Bowler, Patrick Wincker and Eric Pelletier. Heterotrophic bacterial dia-

zotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering

most of the sunlit ocean. ISME J 16, 927–936 (2022). https://doi.org/10.1038/s41396

-021-01135-1.

5.2.1 Introduction

Plankton communities in the sunlit ocean consist of numerous microbial lineages that influ-

ence global biogeochemical cycles and climate (Boyd, 2015; Charlson et al., 1987; Falkowski

et al., 1998; Arrigo, 2005; Sanders et al., 2014; de Vargas et al., 2015). Phototrophic pri-

mary productivity is often constrained by the amount of bioavailable nitrogen (Moore et al.,
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2013; Tyrrell, 1999), a critical element for cellular growth and division. Only a few bacterial and

archaeal populations within the large pool of marine microbial lineages are capable of perform-

ing nitrogen fixation, thereby providing an essential source of new nitrogen to phytoplankton

(Dos Santos et al., 2012; Zehr and Capone, 2020; Zehr et al., 2003). These populations are

known as diazotrophs and represent key marine players that sustain primary productivity in

large oceanic regions (Zehr and Capone, 2020). Globally, marine nitrogen fixation is at least

as important as the nitrogen fixation on land performed by Rhizobium bacteria in symbiosis

with plants (Galloway et al., 2004).

Cyanobacterial diazotrophs are abundant in open ocean surface waters and provide a sub-

stantial portion of bioavailable nitrogen (Carpenter et al., 1992; Carpenter and Romans, 1991;

Karl et al., 1997). They include populations within the genus Trichodesmium (Capone et al.,

1997; Dyhrman et al., 2006; Pierella Karlusich et al., 2021) and several lineages that enter

symbiotic associations with eukaryotes (e.g., Richelia (Gómez et al., 2005; Hilton et al., 2013),

the Candidatus Atelocyanobacterium also labeled UCYN-A (Martínez-Pérez et al., 2016; Tripp

et al., 2010)) or can exist as free-living cells such as Crocosphaera watsonii also labeled

UCYN-B (Moisander et al., 2010; Montoya et al., 2004). A wide range of non-cyanobacterial

diazotrophs has also been detected using amplicon surveys of the nifH gene required for ni-

trogen fixation. These molecular surveys showed non-cyanobacterial diazotrophs occurring

in lower abundance compared to their cyanobacterial counterparts in various oceanic regions

(e.g., (Church et al., 2005, 2008; Zehr et al., 2007; Fong et al., 2008; Moisander et al., 2008;

Benavides et al., 2016; Langlois et al., 2005)) but could also be relatively abundant in some

samples (e.g., (Man-Aharonovich et al., 2007; Bombar et al., 2016; Farnelid et al., 2011; Rie-

mann et al., 2010; Moisander et al., 2017; Moreira-Coello et al., 2019)). Overall, decades

of Trichodesmium cultivation, flow cytometry, molecular surveys, imaging, and in situ nitro-

gen fixation rate measurements have led to the emergence of a view depicting cyanobacterial

diazotrophs as the principal marine nitrogen fixers (Luo et al., 2012).
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Recently, a genome-resolved metagenomic survey exposed free-living heterotopic bacte-

rial diazotrophs (HBDs) abundant in the surface waters of large oceanic regions (Delmont

et al., 2018). This first set of genome-resolved HBDs from the open ocean was subsequently

found to express their nifH genes in situ using metatranscriptomics (Salazar et al., 2019).

However, the sole focus on free-living bacterial cells in this survey excluded not only key

cyanobacterial players but also other diazotrophs that might occur under the form of aggre-

gates, preventing a comprehensive investigation of diazotrophs in the sunlit ocean. Here we

used nearly nine hundred Tara Oceans metagenomes (Sunagawa et al., 2020). to create a ge-

nomic database corresponding to free-living, as well as filamentous, colony-forming, particle-

attached, and symbiotic bacterial and archaeal populations occurring in surface waters of the

global ocean. Our genomic database includes dozens of previously unknown HBDs abundant

in different size fractions and oceanic regions all of which express their nifH genes in situ.

Most notably, we found HBDs to be more abundant compared to cyanobacterial diazotrophs

in metagenomes covering most surface open oceans and seas, revealing their prevalence

also under the form of putative large aggregates within plankton and suggesting they play a

considerable role in the marine nitrogen balance.

5.2.2 Results and Discussion

Part one: Genome-wide metagenomic analyses

Nearly 2,000 manually curated bacterial and archaeal genomes from the 0.8-2,000 µm

planktonic cellular size fractions in the surface oceans and seas. We performed a com-

prehensive genome-resolved metagenomic survey of bacterial and archaeal populations from

the euphotic zone of polar, temperate, and tropical oceans using 798 metagenomes derived

from the Tara Oceans expeditions. They correspond to surface waters and deep chlorophyll

maximum (DCM) layers from 143 stations covering the Pacific, Atlantic, Indian, Arctic, and
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Southern Oceans, as well as the Mediterranean and Red Seas, encompassing eight plankton

size fractions ranging from 0.8 µm to 2000 µm (Supplementary Table 5.1). These 280 billion

reads were already used as inputs for 11 metagenomic co-assemblies using geographically

bounded samples to recover eukaryotic metagenome-assembled genomes (MAGs) (Delmont

et al., 2022). Here, we recovered nearly 2,000 bacterial and archaeal MAGs from these 11

co-assemblies.

We combined these MAGs with 673 MAGs previously generated from the 0.2 µm to 3

µm size fraction (93 metagenomes) (Delmont et al., 2018) to create a culture-independent,

non-redundant (average nucleotide identity <98%) genomic database for microbial popula-

tions consisting of 1,778 bacterial and 110 archaeal MAGs, all exhibiting >70% completion

(average completion of 87.1% and redundancy of 2.5%; Supplementary Table 5.2). We man-

ually characterized and curated these 1,888 MAGs using a holistic framework within anvi’o

(Eren et al., 2015, 2021b) that relied heavily on differential coverage across metagenomes

within the scope of their associated co-assembly. This genomic database has a total size of

4.8 Gbp, with MAGs affiliated to Proteobacteria (n = 916), Bacteroidetes (n = 314), Plancto-

mycetes (n = 154), Verrucomicrobia (n = 128), Euryarchaeota (n = 105), Actinobacteria (n =

68), Cyanobacteria (n = 51), Chloroflexi (n = 36), Candidatus Marinimicrobia (n = 30), Candida-

tus Dadabacteria (n = 10) and 24 other phyla represented less than 10 times (Supplementary

Table 5.1). We used their distribution and gene content to survey marine diazotrophs in the

open ocean without relying on cultivation or nifH amplicon surveys.

A genomic collection of 48 marine diazotrophs abundant in the open ocean. While none

of the 110 archaeal MAGs indicated a diazotrophic lifestyle, a total of 48 bacterial MAGs con-

tained genes encoding the catalytic (nifHDK ) and biosynthetic (nifENB) proteins required for

nitrogen fixation (Supplementary Table 5.3). Among these, only one MAG (Gammaproteobac-

terial) lacked the nifH gene, which is likely a result of the limitations inherent to genome-

resolved metagenomics. Based on the taxonomic signal and the occurrence or absence of
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genes required for a photosynthetic lifestyle, these MAGs could be categorized into eight

cyanobacterial diazotrophs and 40 HBDs. Their estimated completion averaged 93.4%, sug-

gesting they correspond to near-complete environmental genomes (Figure 5.1 and Supple-

mentary Table 5.4).

The reconstructed cyanobacterial MAGs recapitulated findings of major marine diazotrophs

previously discovered within this phylum and for which a genome (partial or complete) had

been characterized previously using either available cultures or sorted cells from flow cy-

tometry: UCYN-A1 (ANI of 99.3%) and UCYN-A2 (ANI of 99.6%), Crocosphaera watsonii

(strain WH-8501; ANI of 99.4%), Richelia intracellularis (strain RintHH01; ANI of 99.5%), Tri-

chodesmium erythraeum (strain IMS101; ANI of 99%), and Trichodesmium thiebautii (strain

H9-4; n = 2 with ANI of 98.7% and 98%). Interestingly, while the two Trichodesmium thiebau-

tii populations displayed high genomic similarity (ANI of 97.9%) and correlated across 81

metagenomes with signal for this lineage (R2 = 0.93), the mean coverage ratio revealed one

population that was dominant at three sites of the North Atlantic Ocean while the second

population was relatively more abundant in the Indian Ocean, Pacific Ocean and Red Sea

(Supplementary Figure 5.5). In addition, one MAG corresponded to an unknown population

we tentatively named ‘Candidatus Richelia exalis’ given its close evolutionary relationship with

R. intracellularis (e.g., ANI of 87.3% when compared to the strain RintHH01; see Supplemen-

tary Table 5.3 for more comparisons) (Figure 5.1). The strong signal of ‘Candidatus Richelia

exalis’ in the large size fractions, similar to R. intracellularis, and their comparable functional

traits (see following section) suggest this species also leads a symbiotic lifestyle.

Compared to the cyanobacterial diazotrophs that were already well characterized prior to

this genome-resolved metagenomic survey, the HBDs we recovered substantially increase

the number of known diazotrophic populations. In addition to eight previously characterized

HBDs reconstructed from the 0.2–3 µm size fraction (Delmont et al., 2018) (five of which were

replaced by MAGs characterized from the larger size fractions that displayed improved com-
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pletion statistics), the genomic database includes 32 additional HBDs belonging to the phyla

Deltaproteobacteria (eight HBDs; six new nifH genes when compared to a comprehensive

set of reference databases (Pierella Karlusich et al., 2021), see methods), Gammaproteobac-

teria (16 HBDs; four new nifH genes), Planctomycetes (three HBDs; one new nifH gene),

Alphaproteobacteria (eight HBDs; three new nifH genes), Epsilonproteobacteria (2 HBDs; two

new nifH genes), and Verrucomicrobia (three HBDs; three new nifH genes) (Figure 5.1 and

Supplementary Table 5.5). Interestingly, some of the newly identified nifH gene sequences

are incompatible with the design of several primers frequently used in nifH gene amplicon

surveys (Supplementary Figure 5.6 and Supplementary Table 5.6). This was especially true

of the “nifH4” primer (round one of widely utilized nested primers (Farnelid et al., 2011; Gaby

and Buckley, 2012; Turk-Kubo et al., 2014; Zehr and Turner, 2001)) (Figure 5.1) that appears

incompatible with most HBDs identified in this study.
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Figure 5.1: The phylogeny of 48 marine bacterial diazotrophs. Top panel displays a phyloge-
nomic tree of the 48 diazotroph MAGs using 37 gene markers and visualized with anvi’o (A.
Murat Eren et al. 2015). Additional layers of information display the length of MAGs alongside
environmental signal computed using genome-wide metagenomic read recruitments across
937 metagenomes, and nifH primer compatibilities (only full length and non-fragmented nifH
genes were considered). For each MAG, the “maximal percent of mapped reads” layer dis-
plays the percent of mapped reads corresponding to the sample for which this metric was
the highest among all 937 metagenomes. Thus, this sample is MAG dependent. In contrast,
the “relative abundance” layers display for each MAG the average number of mapped reads
across samples corresponding to the same size fraction. Bottom panel displays the ratio of
cumulative genome-scale mean coverage between eight cyanobacterial diazotrophs (green)
and 40 HBDs (red) across 385 metagenomes we organized into five size fractions.
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The emergence of three main functional groups for marine HBDs. In order to provide a

global view of functional capabilities among the 48 diazotrophs, we accessed functions in their

gene content using COG20 functions, categories and pathways (Galperin et al., 2021), KOfam

(Aramaki et al., 2020), KEGG modules, and classes (Kanehisa et al., 2017) from within the

anvi’o genomic workflow (Eren et al., 2015) (Supplementary Table 5.7). Genomic clustering

based on the completeness of 322 functional modules exposed four distinct groups: (1) the

cyanobacterial diazotrophs, (2) HBDs dominated by Alphaproteobacteria, (3) HBDs associ-

ated with Gammaproteobacteria, and finally (4) HBDs organized in closely related subgroups

corresponding to Deltaproteobacteria, Epsilonproteobacteria, Verrucomicrobia and Plancto-

mycetes (Figure 5.2). Several HBDs have the metabolic capacity to generate energy using

pathways other than aerobic respiration. One population associated with Alphaproteobacteria

(genus Marinibacterium) for example encodes anoxygenic photosystem II as well as all path-

ways required for aerobic respiration, thiosulfate oxidation and dissimilatory nitrate reduction

to ammonia. Within the HBD group affiliated with Alphaproteobacteria, the majority of pop-

ulations encode the SOX complex necessary for thiosulfate oxidation (Supplementary Table

5.7) and one population encodes the genes required for denitrification. Among the HBDs affil-

iated with Deltaproteobacteria, a large majority encodes the pathway for dissimilatory sulfate

reduction and mostly lack metabolic pathways required for aerobic respiration. Four represen-

tatives of the Gammaproteobacteria have the metabolic potential for denitrification and one

population can generate energy via thiosulfate oxidation, a capacity that is also encoded in

one of the HBDs affiliated with Epsilonproteobacteria. The metabolic pathway for dissimilatory

nitrate reduction to ammonia can be found in all taxonomic groups (occurrence: 20–100%)

(Supplementary Table 5.7). This intriguing metabolic diversity among HBDs indicates their

potential importance in major biogeochemical cycles. All deltaproteobacterial HBDs encode

the complex biosynthesis pathway for cobalamin, also found in a majority of cyanobacterial

diazotrophs (including the symbionts) (Supplementary Table 5.7). Only the final 5–6 steps of
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cobalamin synthesis are also encoded in HBD populations associated with Gamma- and Al-

phaproteobacteria (Supplementary Table 5.7). Overall, we found the HBDs to be functionally

more diverse compared to their cyanobacterial counterparts.

Figure 5.2: Functional lifestyle of marine diazotrophs. The figure displays a heatmap of the
completeness of 322 functional modules across the 48 diazotrophic MAGs. Clustering of
MAGs and modules is based on completeness values (Euclidean distance and ward linkage)
and the data were visualized using anvi’o (A. Murat Eren et al. 2015). The cosmopolitan score
corresponds to the number of stations in which a given MAG was detected (cut-off: >25% of
the MAG is covered by metagenomic reads).

HBDs are generally more abundant compared to cyanobacterial diazotrophs. The 48

diazotrophs occurred at up to 49 stations (out of 119 stations considered to compute this

cosmopolitan score) and recruited up to 3.7% of metagenomic reads (Figures 5.1, 5.2, and

Supplementary Table 5.2) when considered individually. Yet, the locally most abundant dia-

zotrophs were not the most widespread (R2 of 0.007 when comparing the maximal number of

recruited reads and cosmopolitan score). We detected no diazotrophs in the Arctic Ocean or
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the Red Sea, only a single HBD in the Southern Ocean (Delmont et al., 2018) and very few

representatives in the Mediterranean Sea. Within temperate and tropical open ocean regions,

marine diazotrophs affiliated with Epsilonproteobacteria, Deltaproteobacteria and Verrucomi-

crobia mostly occurred in the Pacific Ocean. The remaining diazotrophic lineages occurred in

the Pacific, Indian, and Atlantic Oceans. Within the group of cyanobacterial diazotrophs, the

two populations of Trichodesmium thiebautii were highly abundant in some of the large size

fractions and generally prevailed in the Indian Ocean (Figure 5.1). The overall geographic dis-

tribution of diazotrophs indicates that the Pacific Ocean is dominated by HBDs, corroborating

previously observed trends (Pierella Karlusich et al., 2021; Farnelid et al., 2011; Delmont et al.,

2018).

The majority of the 48 diazotrophs were associated with the 0.2–5 µm size fraction that

covers most of the free-living bacterial cells, while the remaining diazotrophs were detected in

the 5–20 µm (n = 15) and 20–180 µm (n = 2; Richelia intracellularis and ‘Candidatus Riche-

lia exalis’) size fractions (Figure 5.1, Supplementary Table 5.4). We then computed the ratio

of cumulative mean coverage (i.e., number of times a genome is sequenced) between the

eight cyanobacterial diazotrophs and 40 HBDs across 385 metagenomes organized by size

fraction (552 metagenomes with no signal for any of the 48 diazotrophs were not considered

here). Overall, HBDs displayed a cumulative mean coverage superior to that of cyanobacte-

rial diazotrophs in 250 metagenomes, compared to 135 for the latter. Furthermore, a clear

signal emerged in which HBDs were more abundant in most metagenomes representing the

0.2–5 µm (86.5%) and 0.8–2000 µm (92.6%) size fractions while cyanobacterial diazotrophs

predominated in the 20–180 µm (92.3%) and 180–2000 µm (86.2%) size fractions (Figure

5.1, bottom panel). Finally, the 5–20 µm size fraction was more balanced between HBDs and

cyanobacterial diazotrophs.

The 0.8–2000 µm size fraction was not collected in the Mediterranean Sea, Red Sea and

Indian Ocean, but became an integral part of Tara Oceans sampling efforts in the other oceans

181



(Pesant et al., 2015). This broad size range fraction provides a valuable metric to compare

the relative abundance of diazotrophs that otherwise would be separated between the dif-

ferent size fractions. In other words, this size fraction could be used to effectively compare

the genomic signal of diazotrophs corresponding to free-living, particle-attached, filamentous,

colony-forming, and symbiotic cells, provided they (or their hosts) pass through 2 mm filter

pores, either undamaged or fragmented (e.g., Trichodesmium colonies are known to be frag-

ile). While uncertainty remains in the Indian Ocean, trends from metagenomes corresponding

to the 0.8–2000 µm size fraction in other regions largely mirrored the free-living size fraction

and were typically dominated by HBD signal. Metagenomes representing microbial popula-

tions from the 0.2–3 µm and 0.8–2000 µm size fractions indicate that HBDs are more abun-

dant compared to their cyanobacterial counterparts in most of the surface oceans investigated

here.

Co-occurrence of HBDs in large size fractions from a Pacific Ocean station. We de-

tected a considerable metagenomic signal for HBDs at Station 98 in the South Pacific Ocean

(Figure 5.3; Supplementary Table 5.4), which was also found using reference nifH genes

(Pierella Karlusich et al., 2021). Station 98 includes five surface and three DCM metagenomes

covering all size fractions except for 0.8–2000 µm. The only cyanobacterial diazotroph we de-

tected in this metagenomic set was ‘Candidatus Richelia exalis’ with a mean coverage of just

0.4X in the 20–180 µm size fraction of the surface layer. The 40 HBDs remained undetected

in the DCM and only two HBDs were marginally detected in the 0.2–3 µm size fraction of

the surface layer. In marked contrast, 14 HBDs were detected in the 5–20 µm, 20–180 µm,

and 180–2000 µm size fractions of surface waters with a cumulative mean coverage reach-

ing 1,106X (i.e., their genomes were sequenced cumulatively more than one thousand times

in this particular metagenome), 15X and 283X, respectively. Such a high genomic coverage

for bacterial populations in large size fractions is unusual and exceeded the maximum signal

associated with UCYN-A and Trichodesmium in this study (Figure 5.3; Supplementary Table

182



5.4). The 14 HBDs were affiliated with Deltaproteobacteria (n = 5), Alphaproteobacteria (n =

2), Gammaproteobacteria (n = 2), Epsilonproteobacteria (n = 2), Planctomycetes (n = 2) and

Verrucomicrobia (n = 1). Surface waters at Station 98 were nitrogen depleted (nitrate near the

detection limit at 0.001 µm; Supplementary Table 5.1), likely providing favorable conditions for

a diverse assemblage of HBDs that were particularly abundant within the large size fractions.

Lack of signal in the small size fraction suggests that similar populations might be missed in

oceanic sampling that typically restricts bacterial analyses to free-living cells. Mechanisms

maintaining diazotrophs in large plankton size fractions have yet to be fully elucidated (Far-

nelid et al., 2011, 2010, 2019; Foster et al., 2006; Scavotto et al., 2015; Zani et al., 2000).

Our results nonetheless support recent observations in coast and estuary linking active HBDs

to large aggregates (Geisler et al., 2019; Martínez-Pérez et al., 2018). Exopolymer particles

and aggregates might create low-oxygen microenvironments favorable for nitrogen fixation in

marine environments (Rahav et al., 2013), as observed in laboratory cultures (Martínez-Pérez

et al., 2018; Bentzon-Tilia et al., 2015). Thus, we suggest that HBDs formed a considerable

number of large aggregates (up to >180 µm in size) at Station 98 in order to optimize their

nitrogen fixation capabilities.
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Figure 5.3: Oceanic stations with highest metagenomic signal for diazotrophs. The world map
provides coordinates for 15 Tara Oceans metagenomes (10 stations) displaying cumulative
genomic coverage >100X for MAGs affiliated to diazotrophic Trichodesmium, UCYN-A or the
HBDs. The bottom panel summarizes multi-omic signal (including at the level of nifH genes)
statistics for those 15 metagenomes.

Part two: Gene-centric multi-omic analyses (nifH gene)

48 diazotrophic MAGs may cover >90% of cells containing known nifH genes. In order

to analyze the significance of 48 diazotrophic MAGs with regard to other marine diazotrophic

populations, we combined their nifH gene sequences with a comprehensive set of nifH se-

quences obtained from cultures, metagenomic assemblies, clones and amplicon surveys (see

Methods). We used this extended nifH database (n = 328; redundancy removal at 98% iden-

tity over 90% of the length) to recruit metagenomic reads from Tara Oceans (Supplementary

Table 5.8). Strikingly, nifH genes corresponding to the eight cyanobacterial diazotrophs and
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40 HBDs recruited 42.3% and 49.1% of all mapped metagenomic reads, respectively, with

just 8.7% of the signal corresponding to 280 orphan nifH genes for which the genomic con-

tent within plankton has not yet been characterized (Figure 5.4 and Supplementary Table 5.8).

These include a well-known diazotroph that awaits genomic characterization, the Gamma-A

lineage (Cornejo-Castillo and Zehr, 2021), which accounted for 0.4% of mapped reads. Over-

all, this nifH centric metagenomic survey indicates that the 48 bacterial diazotrophic MAGs

characterized in this study encapsulate 90% of read recruitment signal for known nifH genes

in the surface oceans and seas investigated during Tara Oceans. One remaining uncertainty

is the extent of abundant marine heterotrophic bacterial nifH genes that have yet to be discov-

ered. These might further swell the ranks of HBDs in years to come.

Figure 5.4: Detection of nifH genes across marine metagenomes and metatranscriptomes.
The figure displays the proportion of metagenomic and metatranscriptomic reads mapping
onto nifH genes as a function of ranges in two size fractions. Target genes correspond to the
extended nifH gene database of 328 sequences including 280 orphan genes. The mapped
samples (781 metagenomes and 520 metatranscriptomes) correspond to the surface and
deep chlorophyll maximum layers of all oceans and two seas. For each size fraction range, the
number of cumulated mapped reads represents each diazotrophic lineage (seven categories)
across all samples. Results are displayed in relative proportion. The >0.8 µm size fraction
range includes up to five size fractions: 0.8–5 µm, 5–20 µm, 20–180 µm, 180–2000 µm, and
0.8–2000 µm.
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HBD populations express their nifH genes. We mapped hundreds of Tara Oceans meta-

transcriptomes against the extended nifH database to gain some insights into the potential

for nitrogen fixation activity of cyanobacterial diazotrophs and HBDs. Specifically, we re-

cruited “bacteria-compatible” metatranscriptomic reads from the free-living bacterial size frac-

tion (0.2–3 µm), as well as poly-A enriched metatranscriptomic reads from larger size frac-

tions ranging from 0.8 µm to 2,000 µm that was produced primarily to explore the transcrip-

tomic diversity of microbial eukaryotes (Carradec et al., 2018). Bacterial transcripts are rarely

polyadenylated, and even when it occurs, polyadenylation is often a degradation signal (Güell

et al., 2011). Importantly, all of the HBD nifH genes recruited reads, indicating at the very least

a basal expression of genes encoding the nitrogen fixation apparatus (Supplementary Table

5.8). Furthermore, the considerable genomic signal for HBDs at station 98 was reflected in

the metatranscriptomic signal, demonstrating the expression of nifH genes by HBDs in these

waters.

Given the methodological differences in RNA sequencing and other factors that may in-

fluence the observed signal (e.g., RNA stability across the bacterial tree of life, time intervals

from sampling to RNA storage across stations and size fractions), we present global trends

for the free-living bacterial size fraction (0.2–3 µm) and the larger size fractions as a combined

pool (Figure 5.4). When considering the extended nifH database as a whole, most of the sig-

nal among metatranscriptomes corresponded to UCYN-A1, followed by UCYN-A2, HBDs, and

Trichodesmium (Supplementary Table 5.8). The predominance of UCYN-A signal (including in

the 0.2–3 µm size fraction) was driven by the high nitrogen fixation activity for UCYN-A1 at Sta-

tions 78 and 80 in the South West region of the Atlantic Ocean in which hundreds of thousands

of metatranscriptomic reads corresponded to its nifH gene alone (Figure 5.3, Supplementary

Table 5.8), as reported previously (Cornejo-Castillo et al., 2016). Metatranscriptomic read re-

cruitments suggest that the UCYN-A1 symbiont drives a substantial portion of nitrogen fixation

at the critical interface between oceans and atmosphere, which is quantitatively not reflected
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in the metagenomic signal (this genome was detected in just 13 stations). This metatranscrip-

tomic analysis at large scale substantiates the importance of UCYN-A as previously observed

with in situ nitrogen fixation surveys (e.g., (Martínez-Pérez et al., 2016)). A trend emerged

in which the nifH genes for symbiotic diazotrophs (UCYN-A, Richelia) were more significantly

detected relative to their metagenomic signal compared to non-symbiotic diazotrophs, corrob-

orating previous studies (e.g., (Needoba et al., 2007; Foster et al., 2009)). These symbiotic

relationships appear highly successful, and likely have an improved nitrogen-fixing capacity in

contrast to free-living cells (Tripp et al., 2010; Cornejo-Castillo et al., 2016; Thompson et al.,

2012). At the same time, the high abundance of nifH transcripts related to diazotrophic sym-

bionts may partially reflect a protective effect of the host cell resulting in a sampling bias. Given

that bacterial RNA molecules are highly unstable, marine metatranscriptomes should be inter-

preted with caution. Nevertheless, the relatively low signal for Trichodesmium and HBDs was

surprising but might partially be related to the exclusion of bacterial transcripts from the larger

size fractions.

For now, the nitrogen fixation activity of HBDs versus cyanobacterial diazotrophs remains

unclear. HBDs may contribute very little to nitrogen fixation rates among plankton, in partic-

ular as compared to UCYN-A, Richelia, and Trichodesmium populations. For instance, the

streamlined genomes of UCYN-A populations and beneficial interactions with their hosts have

created highly effective nitrogen fixation machineries (Tripp et al., 2010; Cornejo-Castillo et al.,

2016; Thompson et al., 2012) compared to what HBDs can do by themselves and without ATP

production from photosynthesis. Yet metatranscriptomic surveys cannot be trusted to the same

extent as metagenomes for semi-quantitative investigations, and do not equate to activity. Our

only certitude at this point is that HBDs (1) are widespread and sufficiently abundant to make

a real difference in the oceanic nitrogen balance, and (2) regularly transcribe their nifH gene

in the sunlit ocean, including when co-occurring in large size fractions. These environmental

genomic insights indicate that HBDs should not be excluded from the restricted list of most
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relevant marine nitrogen fixers (currently only represented by cyanobacterial lineages (Zehr

and Capone, 2020)), at least until extensive studies of putative aggregates in the field as well

as culture conditions shed light on their functional lifestyle and metabolic activities.

A simple nomenclature to keep track of genome-resolved marine HBDs. As an effort to

maintain some continuity between studies, here we suggest applying a simple nomenclature

to name with a numerical system the non-redundant HBD MAGs with sufficient completion

statistics as a function of their phylum-level affiliation (historic NCBI naming). For example,

HBDs affiliated to Alphaproteobacteria and discovered thus far were named HBD Alpha 01

to HBD Alpha 08. Supplementary Table 5.3 describes the 40 HBDs using this nomenclature,

which could easily be expanded moving forward. To this point, only MAGs with completion

>70% are part of this environmental genomic database, and the redundancy removal was set

to ANI of 98%. Their genomic content can be accessed from https://figshare.com/artic

les/dataset/Marine_diazotrophs/14248283.

5.2.3 Conclusion

Our genome-resolved metagenomic survey of plankton in the surface of five oceans and two

seas covering organismal sizes ranging from 0.2 µm to 2,000 µm has allowed us to go beyond

cultivation and nifH amplicon surveys to characterize the genomic content and geographic

distribution of key diazotrophs in the ocean. Briefly, we identified eight cyanobacterial dia-

zotrophs, seven of which were already known at the species level, and 40 HBDs, 32 of which

were first characterized in this study. The 40 HBDs are functionally diverse and expand the

known diversity of abundant marine nitrogen fixers within Proteobacteria and Planctomycetes

while also covering Verrucomicrobia. Overall, the collection of 48 diazotrophs we character-

ized here encapsulates 90% of metagenomic signal for known nifH genes in the sunlit ocean.

In other words, the genomic search for the most abundant diazotrophs at the surface of the
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open ocean may be nearing completion.

Nitrogen fixers in the sunlit ocean have long been categorized into two main taxonomic

groups: few cyanobacterial diazotrophs contributing most of the fixed nitrogen input (Carpen-

ter and Romans, 1991; Gómez et al., 2005; Martínez-Pérez et al., 2016; Zehr et al., 2001), and

a wide range of non-cyanobacterial diazotrophs considered to have little impact on the marine

nitrogen balance, in part due to their very low abundances within plankton as seen from sev-

eral nifH based amplicon surveys (Church et al., 2005, 2008; Zehr et al., 2007; Fong et al.,

2008; Moisander et al., 2008; Benavides et al., 2016; Langlois et al., 2005; Man-Aharonovich

et al., 2007). Here we provide three results contrasting with this paradigm. First, we found

that a wide range of HBDs can occasionally co-occur under nitrate-depleted conditions in

large size fractions, with metagenomic signals exceeding what was observed for UCYN-A and

Trichodesmium lineages in other oceanic regions. Critically, insights from estuaries (Geisler

et al., 2019; Bentzon-Tilia et al., 2015) may offer an explanation for the presence of HBDs in

large size fractions of the open ocean, indicating their ability to form aggregates that provide

low-oxygen microenvironments favorable for nitrogen fixation. These insights could explain,

at least to some extent, high nitrogen fixation rates previously observed in parts of the Pa-

cific Ocean that are depleted in cyanobacterial diazotrophs, which at the time was referred

to as a paradox (Turk-Kubo et al., 2014). But most importantly, genome-wide metagenomic

read recruitments for the 48 diazotrophs indicated that HBDs are more abundant than their

cyanobacterial counterparts in most regions of the surface ocean. Metagenomes covering a

wide size range of plankton (the 0.8–2000 µm size fraction) were critical to reach this con-

clusion. Mismatches between the widely used “nifH4” primer and the nifH genes of most

HBDs might partially explain the growing gap between prior nifH based sequence surveys and

genome-resolved metagenomics studies. Finally, we found that all HBDs express their nifH

genes, including when co-occurring in large size fractions, expanding on previous observa-

tions based on a subset of the lineages in the 0.2–3 µm size fraction (Salazar et al., 2019).
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As a result, a new understanding is emerging from large-scale multi-omic surveys that depict

nitrogen fixers in the sunlit ocean as the sum of few cyanobacterial diazotrophs and a wide

range of HBDs, all capable of using their nitrogen fixation machinery while thriving in specific

size fractions and oceanic regions. Surveying HBD aggregates, including their nitrogen-fixing

activity, might represent a new key asset in understanding the marine nitrogen cycle and its

balance.

Now that genome-resolved metagenomics has shed light on dozens of abundant marine

HBDs, first within the scope of free-living cells (Delmont et al., 2018), and now by covering

a much wider plankton size range of plankton, it becomes apparent how little we know about

their ecology and role in supporting oceanic primary productivity via nitrogen fixation. As a

starting point, genomic analyses exposed three main functional groups of HBDs that might de-

note distinct diazotrophic lifestyles. Moving forward, it will be critical to enrich or cultivate these

HBDs, as done for some of the key cyanobacterial diazotrophs decades ago (Ohki et al., 1992)

or HBDs from the coast or estuaries more recently (Martínez-Pérez et al., 2018; Bentzon-Tilia

et al., 2015). Experiments with HBDs in cell culture conditions and in situ investigations could

shed light on HBD nitrogen fixation rates and elucidate the conditions that elicit nitrogen-fixing

activity by these populations. These lines of research should strongly benefit our understand-

ing of nitrogen budgets in the open ocean.

5.2.4 Material and Methods

Tara Oceans metagenomes. We analyzed a total of 937 Tara Oceans metagenomes avail-

able at the EBI under project PRJEB402. Supplementary Table 5.1 reports general information

(including the number of reads and environmental metadata) for each metagenome.

Genome-resolved metagenomics. The 798 metagenomes corresponding to size frac-

tions ranging from 0.8 µm to 2 mm were previously organized into 11 ‘metagenomic sets’

based upon their geographic coordinates (Delmont et al., 2022). Those 0.28 trillion reads

190



were used as inputs for 11 metagenomic co-assemblies using MEGAHIT (Li et al., 2015)

v1.1.1, and the scaffold header names were simplified in the resulting assembly outputs us-

ing anvi’o (Eren et al., 2015) v.6.1. Co-assemblies yielded 78 million scaffolds longer than

1,000 nucleotides for a total volume of 150.7 Gbp. Here, we performed a combination of au-

tomatic and manual binning on each co-assembly output, focusing only on the 11.9 million

scaffolds longer than 2,500 nucleotides, which resulted in 1,925 manually curated bacterial

and archaeal metagenome-assembled genomes (MAGs) with a completion >70%. Briefly, (1)

anvi’o profiled the scaffolds using Prodigal (Hyatt et al., 2010) v2.6.3 with default parameters

to identify an initial set of genes, and HMMER (Eddy, 2011) v3.1b2 to detect genes matching

to bacterial and archaeal single-copy core gene markers, (2) we used a customized database

including both NCBI’s NT database and METdb to infer the taxonomy of genes with a Last

Common Ancestor strategy (Carradec et al., 2018) (results were imported as described in

http://merenlab.org/2016/06/18/importing-taxonomy), (3) we mapped short reads

from the metagenomic set to the scaffolds using BWA v0.7.15 (Li and Durbin, 2009) (minimum

identity of 95%) and stored the recruited reads as BAM files using samtools (Li et al., 2009),

(4) anvi’o profiled each BAM file to estimate the coverage and detection statistics of each scaf-

fold, and combined mapping profiles into a merged profile database for each metagenomic

set. We then clustered scaffolds with the automatic binning algorithm CONCOCT (Alneberg

et al., 2014) by constraining the number of clusters per metagenomic set to a number rang-

ing from 50 to 400 depending on the set. Each CONCOCT clusters (n = 2,550, 12 million

scaffolds) was manually binned using the anvi’o interactive interface. The interface considers

the sequence composition, differential coverage, GC-content, and taxonomic signal of each

scaffold. Finally, we individually refined each bacterial and archeal MAG with >70% comple-

tion as outlined in Delmont and Eren (Delmont and Eren, 2016), and renamed scaffolds they

contained according to their MAG ID. Supplementary Table 5.2 reports the genomic features

(including completion and redundancy values) of the bacterial and archaeal MAGs.
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MAGs from the 0.2–3 µm size fraction. We incorporated into our database 673 bacterial

and archaeal MAGs with completion >70% and characterized from the 0.2–3 µm size frac-

tion (Delmont et al., 2018), providing a set of MAGs corresponding to bacterial and archaeal

populations occurring in size fractions ranging from 0.2 µm to 2 mm.

Characterization of a non-redundant database of SMAGs. We determined the average

nucleotide identity (ANI) of each pair of MAGs using the dnadiff tool from the MUMmer package

(Delcher et al., 2002) v.4.0b2. MAGs were considered redundant when their ANI was >98%

(minimum alignment of >25% of the smaller SMAG in each comparison). We then selected

the MAG with the best statistics (highest value when computing completion minus redundancy)

to represent a group of redundant MAGs. This analysis provided a non-redundant genomic

database of 1,888 MAGs.

Taxonomical inference of MAGs. We determined the taxonomy of MAGs using both

CheckM (Parks et al., 2015) and GTDB version 86 (Chaumeil et al., 2019). However, we used

NCBI taxonomy from the GTDB output to describe the phylum of MAGs in the results and

discussion sections, in order to be in line with the literature.

Biogeography of MAGs. We performed a final mapping of all metagenomes to calculate

the mean coverage and detection of the MAGs. Briefly, we used BWA v0.7.15 (minimum iden-

tity of 90%) and a FASTA file containing the 1,888 non-redundant MAGs to recruit short reads

from all 937 metagenomes. We considered MAGs were detected in a given filter when >25%

of their length was covered by reads to minimize non-specific read recruitments (Delmont

et al., 2018). The number of recruited reads below this cut-off was set to 0 before determining

vertical coverage and percent of recruited reads.

Cosmopolitan score. Using metagenomes from the Station subset 1 (n = 757; excludes

the 0.8–2000 µm size fraction lacking in the first leg of the Tara Oceans expeditions), MAGs

were assigned a “cosmopolitan score” based on their detection across 119 stations, as previ-

ously quantified for eukaryotes (Delmont et al., 2022).
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Identification of diazotroph MAGs. In a first step, we used three HMM models from Pfam

(Bateman et al., 2002) within anvi’o (e-value cutoff of e−15) and targeting the catalytic genes

(nifH, nifD, nifK ) and biosynthetic genes (nifE, nifN, nifB) for nitrogen fixation. We then ran In-

terproscan (Zdobnov and Apweiler, 2001) on genes with a HMM hit and used TIGRFAMs (Haft

et al., 2003) results (we found those to be the most relevant for nitrogen fixation) to identify

diazotroph MAGs. Finally, we used RAST (Aziz et al., 2008) as a complementary approach to

identify nitrogen-fixing genes the HMM/Interproscan approach failed to characterize. Among

the 48 diazotroph MAGs, only one single gene (nifH) was not recovered with this approach.

The most likely explanation is that the gene is simply missing from the MAG.

Functional inferences of diazotroph MAGs. We inferred functions among the genes of

diazotrophic MAGs using COG20 functions, categories, and pathways (Galperin et al., 2021),

KOfam (Aramaki et al., 2020), KEGG modules, and classes (Kanehisa et al., 2017) within the

anvi’o genomic workflow (Eren et al., 2015). Regarding the KOfam modules, we calculated

their level of completeness in each genomic database using the anvi’o program “anvi-estimate-

metabolism” with default parameters. The URL https://anvio.org/m/anvi-estimate-met

abolism describes this program in more detail.

Sequence novelty for the nifH genes. The 47 nifH genes identified in the MAGs were

considered novel if their sequence identity scores never exceeded 98% identity over an align-

ment of at least 200 nucleotides, when compared to a recently built nifH gene catalog by

Pierella Karlusich et al. (Pierella Karlusich et al., 2021) using blast (Altschul et al., 1990).

Briefly, the nifH gene catalog consists of sequences from Zehr laboratory (mostly diazotroph

isolates and environmental clone libraries; https://www.jzehrlab.com), sequenced gen-

omes, and additional sequences retrieved from Tara Oceans metagenomic assemblies co-

assemblies (Delmont et al., 2018) and the OM-Reference Gene Catalog version 2 (Salazar

et al., 2019)).

A new database of nifH genes including diazotroph MAGs. We created a database of
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nifH genes covering the diazotroph MAGs as well as a few hundred sequences from Pierella

Karlusich et al. (Pierella Karlusich et al., 2021) with signal in Tara Oceans metagenomes. We

removed redundancy (cut-off=98% identity) between the diazotroph MAGs and the Pierella

Karlusich database, except for Trichodesmium thiebautii due to the occurrence of multiple

populations (and slight differences between MAGs and culture representatives) that stressed

the need to further explore nifH gene microdiversity within this species. We performed a

mapping of metagenomes and metatranscriptomes to calculate the mapped reads and mean

coverage of sequences in the extended nifH gene database. Briefly, we used BWA v0.7.15

(minimum identity of 90%) and a FASTA file containing the sequences to recruit short reads.

Phylogenetic analyses of diazotroph MAGs. We used PhyloSift (Darling et al., 2014)

v1.0.1 with default parameters to infer associations between MAGs in a phylogenomic con-

text. Briefly, PhyloSift (1) identifies a set of 37 marker gene families in each genome, (2)

concatenates the alignment of each marker gene family across genomes, and (3) computes a

phylogenomic tree from the concatenated alignment using FastTree (Price et al., 2010) v2.1.

We used anvi’o to visualize the phylogenomic tree in the context of additional information and

root it at the level of the phylum Cyanobacteria.

Metatranscriptomic read recruitment for nifH genes. We performed a mapping of 587

Tara Oceans metatranscriptomes to calculate the mean coverage of sequences in the ex-

tended nifH gene database. Briefly, we used BWA v0.7.15 (minimum identity of 90%) and a

FASTA file containing the nifH gene sequences to recruit short reads from all 587 metatran-

scriptomes.

5.2.5 Data Availability

All data our study generated are publicly available at http://www.genoscope.cns.fr/tara/

(metagenomic co-assemblies, FASTA files) or https://figshare.com/articles/dataset/

Marine_diazotrophs/14248283 for the supplemental tables and information, as well as the
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genomic content of 48 marine diazotrophs using the new nomenclature (diazotrophic genomic

database).

5.2.6 Supplementary Figures

Figure 5.5: Mean coverage ratio for the two Trichodesmium thiebautii MAGs across 52 Tara
Oceans metagenomes displaying a cumulative coverage >2X. Station Ids and associated data
are available in the Supplementary Table 5.4.
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Figure 5.6: Interplay between the phylogeny and primer compatibility of nifH genes. The inner
tree represents a phylogenetic tree of nifH genes from MAGs in our survey plus cyanobacterial
references (built at the amino acid level with fastree (Price et al., 2010) within Genomenet
(https://www.genome.jp/tools-bin/ete). Layers represent the compatibility (green) or
incompatibility (red) of specific nifH primers used in the field (including for large-scale amplicon
surveys).
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5.2.7 Supplementary Tables

This section’s supplementary tables are accessible via doi:10.1038/s41396-021-01135-1 or at

https://figshare.com/articles/dataset/Marine_diazotrophs/14248283.

Table 5.1: Statistics for 937 Tara Oceans metagenomes organized by depth, size fraction and
oceanic region. The table also contains environmental conditions across Tara Oceans stations.

Table 5.2: Statistics for the 1,888 bacterial and archaeal MAGs. The table contains genomic
statistics (e.g., completion and length), taxonomic information, general mapping trends such as
the cosmopolitan score, as well as additional information regarding the 48 diazotroph MAGs.

Table 5.3: Occurrence of genes that encode the catalytic (nifHDK ) and biosynthetic (nifENB)
across 48 diazotrophic MAGs.

Table 5.4: Genome-wide metagenomic read recruitment statistics for the 48 diazotroph MAGs.
The table contains mean genomic coverage values across the 937 Tara Oceans metagenomes
described in Table S01.

Table 5.5: The nifH genes of 48 diazotroph MAGs. The table contains blast results when
comparing nifH gene sequences from the diazotrophic MAGs to a reference nifH gene catalog.

Table 5.6: Compatibility between nifH primers and diazotrophic MAGs.

Table 5.7: KEGG MODULE functional completeness of the 48 diazotrophic MAGs.

Table 5.8: Metagenomic and metatranscriptomic mapping for the extended nifH database. The
table also includes nifH gene sequences.
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5.3 Targeted binning of a novel nitrogen-fixing population from the

Arctic Ocean: an anvi’o tutorial

This section provides an example tutorial written to support the public’s usage of the meta-

bolism reconstruction framework for targeted binning of metagenome-assembled genomes. It

is derived from the following blog post: https://anvio.org/blog/targeted-binning/.

Some edits and omissions have been made to improve its readability in this format.

In this blog post, I will demonstrate how to use ‘anvi-estimate-metabolism‘ to find and bin

a novel, nitrogen-fixing population from a set of publicly-available Arctic Ocean metagenomes.

Of course, nitrogen fixation is just an example here, and the same technique can be applied

to survey metagenomic datasets for microbial populations with other characteristic metabolic

capabilities. So if you are interested in learning about how to leverage anvi’o’s metabolism

estimation capabilities to go fishing through your data, or if you just can’t get enough of cool

marine nitrogen fixation stories, keep on reading!

The commands in this post were written for anvi’o v7.1.

5.3.1 Setting up our story

Exciting things are happening right now in the world of marine microbiology. Our friend and

colleague Tom Delmont has recently published a cool story about heterotrophic bacterial di-

azotrophs, or HBDs (Delmont et al., 2021). For anyone who doesn’t know, a diazotroph is

a microbe that fixes nitrogen. Nitrogen fixation is a very important process that supports all

forms of life on Earth by yanking nitrogen atoms from one of the most recalcitrant molecules on

earth, N2 gas, and putting them into biologically-usable molecules such as ammonia. It hap-

pens quite a lot in the global oceans, so to marine microbiologists, nitrogen-fixing microbes -

that is, marine diazotrophs - are a Big Deal (Zehr and Capone, 2020).

Marine diazotrophs come in many forms, but not all of them have been getting equal
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amounts of attention. For instance, cyanobacterial diazotrophs have long been thought to

be the most abundant type of nitrogen-fixing microbes in the ocean, and therefore have been

the focus of most research related to the subject. Though the existence of non-cyanobacterial,

heterotrophic diazotrophs has long been known, their presence was measured through ampli-

con surveys that targeted a single gene in the nitrogen fixation operon: nifH. These amplicon

surveys were also the only way to discuss the relative abundance of heterotrophic diazotrophs

in oceans compared to their cyanobacterial counterparts. But there were no actual microbial

genomes, which prevented our ability to study their ecology without primer sequences and

PCR amplification biases.

A relatively recent study, which took years in the making and shaped large parts of anvi’o

(Murat Eren , Meren), changed this by giving access to the first-ever genomes of heterotrophic

diazotrophs (Delmont et al., 2018). It showed that they were much more abundant than what

we could survey with nifH primers and came from taxa that were not previously considered

in the context of nitrogen fixation (such as Planctomycetes). The saga of discovering new

heterotrophic diazotrophs continues with this new paper by Tom Delmont et al. (Delmont

et al., 2021), in which Tom manually curates almost 2,000 metagenome-assembled genomes

(MAGs) from co-assemblies of almost 800 ocean metagenomes, and then mines this MAG set

for nitrogen fixation genes to find an additional 48 diazotrophs.

The benefits of characterizing all genomes found in ocean metagenomes are obvious.

Yet, it is not as obvious how one would survey these metagenomes for targeted genome-

resolved insights – for instance, to recover particular genomes that encode metabolic modules

of interest, such as nitrogen fixation.

One might suggest that we could automatically bin all genomes from metagenomes, and

then survey the nifH genes in them to find diazotrophs (as nifH is the standard marker for

nitrogen fixation). But it may not be that simple. Not only there are many things that can go

wrong with automatic binning (Eren and Scott, 2020a), but perhaps more critically, the pres-
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ence of a key function from a metabolic module does not necessarily indicate the presence of

the metabolic capacity. For instance, the nifH gene can occur in a variety of different contexts,

so it is actually necessary to find 6 different nif genes to be sure of a microbe’s nitrogen-fixing

capabilities (Dos Santos et al., 2012). As a clear example, when I survey a metagenome

from the Southern Ocean, an environment where no microbes that fix nitrogen have ever been

found, I find 12 COG annotations of nifH genes. In the case of nifH, one can look for other

genes nearby in the same contig, such as nifK, nifD, etc. But what if you are targeting a more

complex metabolic capability for which the required genes are more diverse?

This is precisely what ‘anvi-estimate-metabolism‘ enables you to do. Without having to

implement a lot of ad hoc steps, you can identify contigs in your metagenomes – prior to bin-

ning – that may belong to a specific population of interest that encodes a desired metabolic

capacity. ‘anvi-estimate-metabolism‘ is a program that predicts the metabolic capabilities of

microbes from genomic or metagenomic data. It combines functional annotations from the

KOfam database (Aramaki et al., 2020) with KEGG definitions of metabolic pathways (Kane-

hisa, 2017; Kanehisa et al., 2023) to estimate completeness of these pathways and produce

easily-parsable output. If you are interested in finding a microbe that has a particular metabolic

capability, it is much easier to find it using this output rather than parsing through annotations

for individual genes.

And that is exactly how we are going to do it today. As I mentioned at the beginning of this

post, we’ll be using ‘anvi-estimate-metabolism‘ to look for a previously-uncharacterized marine

diazotroph in a set of Arctic Ocean metagenomes.

5.3.2 A bit of background

Before we get started, let’s talk a bit more about nitrogen fixation. I am by no means an

expert in this (or in any particular metabolism, really), so here is a very light summary of the

background. Experts, feel free to roll your eyes at me and skip to the good stuff.
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Nitrogen fixation is the process of converting gaseous nitrogen (N2) into the more biologic-

ally-usable form ammonia (NH3). The resulting ammonia can then be further converted into

other bioavailable compounds like nitrate and nitrite. Since nitrogen is an essential component

of many biological molecules, nitrogen fixation is a fairly important process that supports life,

in general. Only some ocean microbes, called marine diazotrophs, have the genes that allow

them to fix nitrogen, which are (usually) encoded in the nif operon (Sohm et al., 2011).

The nitrogen fixation pathway – KEGG vs reality

The KEGG module for nitrogen fixation is M00175 (Figure 5.7). The part of the module that

you’ll want to focus on here is the “Definition” line containing the KO numbers for each enzyme

required in the pathway (these KOs are also arranged in the rectangular boxes in the bottom-

left). You need a nitrogenase enzyme complex to convert nitrogen gas to ammonia, and there

are currently only two major versions of this complex: the “molybdenum-dependent nitroge-

nase” protein complex encoded by genes nifH (K02588), nifD (K02586), and nifK (K02591) of

the nif operon; or the “vanadium-dependent nitrogenase” protein complex encoded by genes

vnfD (K22896), vnfK (K22897), vnfG (K22898), and vnfH (K22899), of the vnf operon. The

latter complex has been isolated from soil bacteria and is known to be an alternative nitroge-

nase that is expressed when molybdenum is not available (Lee et al., 2009a; Bishop et al.,

1980). We’re going to ignore it, because I have yet to see it in any ocean samples.
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Figure 5.7: KEGG module M00175 for nitrogen fixation. Image taken from KEGG website and
modified with labels (purple).
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You might have noticed that I left K00531 out of the above discussion. That is because this

KO is not part of the nif operon - rather, it is the gene anfG, which is part of the alternative

nitrogen fixation operon anf. anf encodes an alternate nitrogenase enzyme made up of the

components anfHDKG, but anfHDK are very similar to the nifHDK components (Joerger et al.,

1989). My best guess as to why anfHDK don’t have their own KOfam profiles is that the nifHDK

KOfams can match to these genes. But since anfG is an additional component that is not

required for the nif operon, it has its own KO and is labeled as non-essential to the enzyme

complex in this module (that is what the minus sign in front of K00531 in the module definition

means). This is a very long-winded way of saying that we don’t have to worry about looking

for K00531 in our data.

So that means we effectively care about only nifHDK in this module. But wait. While

nifHDK represent the catalytic components of the nitrogenase enzyme, it turns out that there

are a few other genes required to produce an essential FeMo-cofactor and incorporate it into

this complex. At minimum, the extra genes required are nifE (K02587), nifN (K02592), and

nifB (K02585) (Dos Santos et al., 2012). Figure 5.8 shows a diagram of the nif operon in the

Azotobacter vinelandii genome sequence, courtesy of (Dos Santos et al., 2012).
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Figure 5.8: Diagram of the nif operon in the Azotobacter vinelandii genome sequence. Figure
credited to (Dos Santos et al., 2012).
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The catalytic genes - those from module M00175 - are located next to each other on the

bacterial chromosome. The other required biosynthetic genes are located farther along, with

nifE and nifN expressed under the same promoter and nifB isolated from the rest of the genes

and expressed under its own promoter.

What this means is that we need to find six genes - preferably located on the same contig

- within a metagenome assembly in order to be confident that the metagenome includes a

nitrogen-fixing population. We expect to see the same structure as in the diagram above

reflected in our metagenome assemblies, meaning that gene groups nifHDK and nifEN are

the most likely to end up on the same contig. If you keep reading, you will see that this is

indeed the case!

Nitrogen fixation in the polar oceans, and an awesome polar ocean dataset

One aspect of this analysis that makes it a bit more interesting is that we will be working with

polar ocean metagenomes. The polar oceans – which are the Arctic Ocean and the Southern

Ocean around Antarctica – are not typically associated with nitrogen fixation. The vast ma-

jority of nitrogen-fixing microbes have been found in non-polar oceans, perhaps because the

diazotrophic cyanobacteria that are typically studied tend to be found in warmer waters (Stal,

2009), or perhaps because the polar oceans are just not as well-studied as the other oceans.

Regardless, in recent times, there have been several reports of nitrogen fixation happening

in the Arctic and Antarctic Oceans (Harding et al., 2018; Shiozaki et al., 2020; von Friesen

and Riemann, 2020). So it is certainly not an unusual or fruitless choice to be searching for

nitrogen-fixing microbes in the colder waters of our planet.

We will be using a recently published dataset of Arctic and Antarctic ocean metagenomes

by (Cao et al., 2020). These brave scientists faced the cold to bring the marine science com-

munity 60 new samples from 28 different locations in the polar oceans. Their comparative anal-

yses demonstrated that polar ocean microbial communities are distinct from non-polar ones,
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both in terms of their taxonomic diversity and their gene content. They also reconstructed 214

metagenome-assembled genomes, 32 of which were enriched in the polar oceans according

to read recruitment analyses. In their paper, the authors analyzed some metabolic pathways

in these MAGs, but notably did not check for nitrogen fixation – maybe because they didn’t

expect to find it. But as you will see, it is there to be found.

So without further ado, let’s go through this analysis together.

5.3.3 Estimating metabolism in Arctic Ocean metagenomes

# Download tutorial datapack (the unzipped datapack is 3.4 GB in size)

wget -O NIF_MAG_DATAPACK.tar.gz \

https :// figshare.com/ndownloader/files /31119277

# unzip and cd into working directory

tar -xvf NIF_MAG_DATAPACK.tar.gz && cd NIF_MAG_DATAPACK

Listing 5.1: Datapack Download

To start, we need metagenome assemblies of the Arctic Ocean samples from Cao et al.’s

dataset. I am fortunate to be colleagues with Matt Schechter, an awesome microbiologist who

knows way more about oceans than I do, and who also happened to be interested in this

dataset. He downloaded the samples and made single assemblies of them using the software

IDBA-UD (Peng et al., 2012) as part of the anvi’o metagenomic workflow (Shaiber and Eren,

2018). We are all benefiting from his hard work today - thanks, Matt!

We won’t look at all 60 samples from the Cao et al. paper, only 16 of their surface Arc-

tic Ocean samples (taken from a depth of 0 m). When we downloaded these samples, we

assigned different (shorter) names to them, so the sample names I will discuss below are dif-

ferent from the ones in the Cao et al. paper. If you want to know the correspondence between

our sample names and those in the paper, check out the ‘cao_sample_metadata.txt‘ file in the

datapack. You will find their sample names in the ‘sample_name_cao_et_al‘ column.
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The first thing that I did with those 16 assemblies was run ‘anvi-estimate-metabolism‘ in

metagenome mode. I will show you the commands that I used to do this, but I won’t ask you to

do it yourself, because it takes quite a long time (and currently requires an obscene amount of

memory, for which I deeply apologize). I created a metagenomes file called ‘metagenomes.txt‘

which contains the names and contigs database paths of each sample, and I wrote a bash

loop to estimate metabolism individually on each sample:

while read name path; \

do \

anvi -estimate -metabolism -c $path \

--metagenome -mode \

-O $name \

--kegg -output -modes modules ,kofam_hits; \

done < <(tail -n+2 metagenomes.txt)

Listing 5.2: Metabolism estimation loop

What this loop does is read each line of the ‘metagenomes.txt‘ file, except for the first one

(the ‘tail -n+2‘ command skips the first line). Each non-header line in the file contains the

name of the metagenome sample (which gets placed into the ‘$name‘ variable) and the path

to its contigs database (which gets placed into the ‘$path‘ variable). Therefore, ‘anvi-estimate-

metabolism‘ gets run on each contigs database in metagenome mode, and the resulting output

files (two per sample) are prefixed with the sample name.

It is possible to run ‘anvi-estimate-metabolism‘ on more than one contigs database at a

time, using multi-mode, which you can read about on the ‘anvi-estimate-metabolism‘ help

page. However, I did not do this here because I wanted the output for each sample to be

printed to a separate output file, for purely organizational purposes.

You will find the resulting output files in the datapack, which you should have downloaded

at the beginning of this post. Notice that there are 32 text files, two for each metagenome

assembly, in the ‘METABOLISM_ESTIMATION_TXT‘ folder. Let’s take a look at the first few
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lines of the modules file for sample N02:

cd METABOLISM_ESTIMATION_TXT/

head -n 4 N02_modules.txt

Listing 5.3: Examining the metabolism output for sample N02

You should see something like this:

unique_id contig_name kegg_module ... module_completeness ...
0 c_000000008738 M00546 ... 0.5 ...
1 c_000000000052 M00001 ... 0.4 ...
2 c_000000000052 M00002 ... 0.5 ...
... ... ... ... ... ...

Table 5.9: Modules mode output for sample N02.

This is a modules mode output file from ‘anvi-estimate-metabolism‘ (which is the default

output type). Since we ran the program in metagenome mode, each row of the file describes

the completeness of a metabolic module within one contig of the metagenome. What this

means is that every KOfam hit belonging to this pathway (listed in the ‘kofam_hits_in_module‘

column) was present on the same contig in the metagenome assembly. This is important,

because metagenomes contain the DNA sequences of multiple organisms, so the only time

that we can be sure two genes go together within the same population genome is when they

are assembled together onto the same contig sequence.

If right now you are thinking, “But wait. . . if we only focus on the genes within the same

contig, many metabolic pathways will have completeness scores that are too low,” then you

are exactly correct. It is likely that most metabolic pathways from the same genome will be

split across multiple contigs, and their components will therefore end up in different lines of

this file. In the example above, contig ‘c_000000008738‘ contains 50% of the KOs required for

the purine degradation module M00546, but perhaps the other KOs in the pathway (such as

K01477) also belong to whatever microbial population this is, just on a different contig. Putting

many contigs together to match up the different parts of the pathway, while making sure that
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you are not producing a chimeric population, is a task that requires careful binning.

Luckily for us, the nitrogen fixation module from KEGG (as described earlier in the post)

has a couple of helpful characteristics. First, it contains only the 3 catalytic genes, and second,

it is encoded in an operon, so those genes are located close together in any given genome

sequence. These two things make it much more likely that the entire module will end up within

a single contig in our metagenome assemblies, which means it will be relatively easier to find

a complete nitrogen fixation module in our metabolism estimation output files.

5.3.4 Looking for evidence of a nitrogen-fixing population

Though M00175 only contains the catalytic portion of our required nif gene set, it is a good

starting point for our search. If we look for this module in our metabolism estimation results, we

can find out which contig(s) it is located on and use that to guide our search for the remaining

genes.

Using modules mode output to find M00175

You can use the following BASH code to search for lines describing M00175 in all metabolism

estimation ‘modules mode’ outputs. The code filters the output so that it contains only those

lines which have a score of 1.0 in the ‘module_completeness‘ column, meaning that all 3

nifHDK genes are located on the same contig in the assembly. It further filters the output to

contain only the columns describing 1) the file name and line number in the file where M00175

was found, 2) the contig name, 9) the completeness score, 11) the list of KO hits that we found

from this module, and 12) the corresponding gene caller IDs of these hits.

grep M00175 *_modules.txt | \

awk -F’\t’ ’$9 == 1.0’ | \

cut -f 1,2,9,11,12 | \
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column -t

Listing 5.4: Filtering the metabolism estimation output

Your output should look like this:

N06_modules.txt:7398 c_000000000415 1.0 K02586,K02588,K02591 35121,35120,35122
N07_modules.txt:7413 c_000000004049 1.0 K02586,K02591,K02588 94224,94225,94223
N07_modules.txt:31467 c_000000000073 1.0 K02586,K02591,K02588 14638,14637,14639
N22_modules.txt:44057 c_000000000122 1.0 K02586,K02591,K02588 16856,16857,16855
N25_modules.txt:11798 c_000000000104 1.0 K02586,K02591,K02588 13919,13920,13918

Table 5.10: Complete instances of M00175 in modules output.

These are promising results! The complete M00175 module was found in 4 different Arctic

Ocean samples (there are two instances in sample N07).

I encourage you to look through the other, less complete instances of this module in the

output files. If you do this, you will see that some metagenomes appear to have all 3 of

these genes split across multiple contigs (could they be contigs from the same genome?). For

instance, here is a pair of contigs from sample N22:

N22-contigs_modules.txt:35879 c_000000000861 0.333 K02588 43430
N22-contigs_modules.txt:49457 c_000000003717 0.666 K02591,K02586 84130,84129

Table 5.11: Partial instance of M00175 in modules output.

nifH is on one contig and nifDK are on the other. I think it is likely that these two contigs go

together, because it seems unlikely that a genome would have one of these genes from this

operon and not the rest (though it could happen, of course. Microbial genomes are incredibly

plastic, and operons are not immune to genome reorganization).

All in all, as you examine the estimation results for these 16 metagenomes, you should

find that 9 of them have at least a partial copy of M00175, and 5 of those contain at least one
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complete set of nifHDK (though not necessarily all on the same contig).

Of course, as we discussed earlier, there are 3 other genes that we need to find alongside

nifHDK in order to be sure that we have a microbial population capable of fixing nitrogen.

KEGG may not have put these genes in M00175, but it does have a KOfam profile for each

one of nifENB - those KOs are K02587, K02592, and K02585. To search for these, we turn to

our ‘KOfam hits’ mode output files.

Using ‘KOfam hits’ mode output to find the other nif genes

We will focus on the 5 samples that contain nifHDK, which are N06, N07, N22, N25, and N38.

Let’s look at their ‘kofam_hits‘ output files one at a time, starting with sample N06.

# print the header line , then run a search loop

head -n 1 N06_kofam_hits.txt; \

for k in K02587 K02592 K02585; \

do \

grep $k N06_kofam_hits.txt; \

done

Listing 5.5: Loop to search for nifENB in sample N06

The loop above searches for each KO of nifENB in this file. When you run it, you should

see output that looks like this:

unique_id contig_name ko gene_caller_id modules_with_ko ko_definition
70353 c_000000000415 K02587 35136 None NifE
70352 c_000000000415 K02592 35137 None NifN
82427 c_000000001170 K02585 58423 None NifB

Table 5.12: Search results for nifENB in sample N06.

In sample N06, we previously found a complete M00175 module on ‘c_000000000415‘.

From the ‘kofam_hits‘ output, we can see that nifE and nifN are on the same contig, while nifB

is on a different one (contig ‘c_000000001170‘). This arrangement makes sense based on the

A. vinelandii genome we looked at earlier, in which nifB was the farthest gene from the start
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of the nifHDK operon. Since all six of the required nif genes are present, it seems likely that

this metagenome contains a legitimate nitrogen-fixing population! These contigs would be an

excellent starting point for binning.

If we use the same code to search in file ‘N07_kofam_hits.txt‘, we get:

unique_id contig_name ko gene_caller_id modules_with_ko ko_definition
3729 c_000000000256 K02587 29649 None NifE
8116 c_000000000073 K02587 14636 None NifE
3727 c_000000000256 K02592 29650 None NifN
8110 c_000000000073 K02592 14635 None NifN
8118 c_000000000073 K02585 14642 None NifB
122901 c_000000000095 K02585 17048 None NifB

Table 5.13: Search results for nifENB in sample N07.

Recall from earlier that in sample N07, one complete M00175 module was on contig

‘c_000000000073‘, and another was on contig ‘c_000000004049‘. The ‘kofam_hits‘ file shows

that there is one copy each of nifENB on ‘contig c_000000000073‘, which means that we

have found all six nif genes on the same contig! This is excellent. There is a nitrogen-fixing

population here for sure (and there may even be two different ones, considering that contig

‘c_000000004049‘ also contains a complete M00175 and there is a second set of the nifENB

genes spread across two different contigs).

What does sample N22 have in store for us? Earlier, we found a complete M00175 on

contig ‘c_000000000122‘ in this sample.

unique_id contig_name ko gene_caller_id modules_with_ko ko_definition
83218 c_000000000122 K02587 16870 None NifE
120563 c_000000003718 K02587 84133 None NifE
83216 c_000000000122 K02592 16871 None NifN
120562 c_000000003718 K02592 84134 None NifN
2217 c_000000000860 K02585 43377 None NifB
90602 c_000000000014 K02585 5285 None NifB

Table 5.14: Search results for nifENB in sample N22.

Since there is a K02587 and a K02592 on contig ‘c_000000000122‘, 5 out of 6 nif genes

appear on the same contig in this metagenome. N22 also appears to have a second set of

these genes spread across multiple contigs, just as in N07.
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You can take a look at N25 and N38 yourself. N25 should have at least one copy of all six

genes (and 5/6 on contig ‘c_000000000104‘), but N38 should be missing nifN.

# we are done here

cd ..

Listing 5.6: Go back to parent directory

At this point, we can be fairly confident that there are nitrogen-fixing populations in samples

N06, N07, N22, and N25. The natural question to ask next is - what are they (and are they

worth binning)?

5.3.5 Determining population identity

Since we are working with individual contigs and not full genomes right now, a good strategy

to figure out what these populations could be is to use BLAST (Altschul et al., 1990) to see if

there is anything similar to these contigs in the NCBI database.

I extracted the relevant contig sequences from these 4 metagenome assemblies for you.

You will find them in the ‘FASTA/contigs_of_interest.fa‘ file in the datapack. Each contig name

is prefixed by the name of the sample it came from, as in ‘N06_c_000000000415‘.

# go to folder with sequences:

cd FASTA/

# see what contigs are in this file

grep ’>’ contigs_of_interest.fa

Listing 5.7: Viewing the contigs of interest

You do not have to BLAST every sequence that is in that file (unless you want to). I rec-

ommend at least looking at the contig that contains the most nif genes in each metagenome,

namely: ‘N06_c_000000000415‘, ‘N07_c_000000000073‘, ‘N22_c_000000000122‘, and

‘N25_c_000000000104‘.
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Go ahead and BLAST those contigs.

Did you do it? Great. Your results will of course depend on what is currently in the NCBI

database at the time you are BLASTing (or the version of that database that you have on your

computer, if you are running it locally instead of on their web service), but I will show you what

I got at the time I was writing this post. I used the ‘blastn‘ suite with all default parameters,

which searches the NR/NT databases using Megablast.

BLAST results for sample N06

First, let’s look at contig ‘c_000000000415‘ from sample N06, which had 5/6 of the nif genes

we were looking for (Figure 5.9).

Figure 5.9: Screenshot of BLAST results for sample N06.

There aren’t any good hits here. The best one covers only 55% of the contig sequence

(though it does so with a decently-high percent identity). If we look at the graphic summary,

you will see that the alignment is sporadic (Figure 5.10).

214



Figure 5.10: Graphic alignment of BLAST hits to the contig from sample N06.

Possibly, the top hit is matching only to the genes of this contig. According to (Corteselli

et al., 2017), Immundisolibacter cernigliae is a soil microbe, so we wouldn’t really expect to

find it in the ocean. Based on these results, it seems like this nitrogen-fixing population in N06

could be a novel microbe! At the very least, it is not that similar to anything in this database.

We are drawing this conclusion based on only one contig sequence from its genome, but even

if the rest of its (yet unbinned) genome was similar to that of another microbe in the NCBI

database, the fact that this population contains a contig with a near-complete set of nif genes

means that it is already substantially different from that hypothetical similar population.

BLAST results for sample N07

Next, we will view the BLAST results for contig ‘c_000000000073‘ from sample N07. This

contig had all 6 of our nif genes on it (Figure 5.11).
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Figure 5.11: Screenshot of BLAST results for sample N07.

It has a much better hit in the NCBI database than the previous contig – 85% query cover-

age with 88% identity. Atelocyanobacterium thalassa is actually a well-known cyanobacterial

marine diazotroph (Thompson et al., 2012). Judging by the alignment, N07’s nitrogen-fixing

population is extremely similar to this one (Figure 5.12).

Figure 5.12: Graphic alignment of BLAST hits to the contig from sample N07.

This does not mean that the N07 population resolves to the same taxonomy as A. thalassa

– we would need to bin the population and look at the whole genome average nucleotide

identity (ANI) as well as other evidence to verify that. But it is similar enough to indicate that
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this population is not entirely novel. You might recall that sample N07 had another set of these

genes split across a few different contigs. I wonder what you would find if you blasted those?

BLAST results for sample N22

In sample N22, the contig with the most nif genes was ‘c_000000000122‘. The BLAST results

for this contig are shown in Figure 5.13, and the alignment in Figure 5.14.

Figure 5.13: Screenshot of BLAST results for sample N22.

Figure 5.14: Graphic alignment of BLAST hits to the contig from sample N22.
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Huh. Just like in N06, the best hit is to the I. cernigliae genome, with somewhat sporadic

alignment.

BLAST results for sample N25

The contig from sample N25 gives us extremely similar BLAST results as the one from sample

N22 (Figure 5.15 and 5.16).

Figure 5.15: Screenshot of BLAST results for sample N25.

Figure 5.16: Graphic alignment of BLAST hits to the contig from sample N25.
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There is a pattern emerging here. Three of the contigs that we’ve looked at thus far have

hits to I. cernigliae with similar alignment coverage and identity. It is possible that these three

sequences could belong to the same microbial population, in different samples.

To verify their similarity, let’s align the contig sequences to each other.

Aligning the contigs from different samples

The BLAST results for the contigs from N22 and N25 were so similar that we don’t really

need to align these two sequences, but the contig from N06 was somewhat different, with only

55% query coverage to the I. cernigliae genome. Let’s align ‘c_000000000415‘ from N06 and

‘c_000000000104‘ from N25 to see whether they are similar enough to belong to the same

population genome.

I again used the BLAST web service for this, just so I could show you the nice graphical

alignment, but feel free to use whatever local sequence alignment program you want. If you are

using the online ‘blastn‘ suite, however, you should check the box that says ‘Align two or more

sequences’ on the input form so that it will do this instead of searching for your sequences in

the NCBI database.

Figure 5.17 shows the BLAST hit that I got when I aligned ‘N25_c_000000000104‘ (the

longer contig) to ‘N06_c_000000000415‘. The contigs are extremely similar, with near-100%

identity! And the graphical summary shows a long, unbroken alignment (Figure 5.18).

Figure 5.17: BLAST alignment results for two contigs from different metagenomes.
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Figure 5.18: Graphical summary of alignment for two contigs from different metagenomes.

If you were to flip the order of the alignment (aligning the shorter contig from N06 to the

longer one from N25), you would get a smaller query coverage value but a similar percent

identity. I think these sequences are likely coming from the same microbial population, after

all.

Three samples with the same population

This means that at least three of our samples (N06, N22, and N25) have the same nitrogen-

fixing microbial population in them. Therefore, if we do read-recruitment of the metagenomes

against any one of these samples, we’ll be able to use differential coverage to bin this popula-

tion.

If you are curious about where these samples are located geographically, Figure 5.19

shows the sampling map from Figure 1 of the Cao et al. paper (Cao et al., 2020), with our

three samples highlighted and labeled in purple.
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Figure 5.19: Geographic location of metagenome samples. Three samples containing a similar
nitrogen-fixing population are highlighted in purple. Image modified from (Cao et al., 2020).

Clearly, this microbial population is widespread in the Arctic Ocean since it is found in both

the Eastern and Western hemispheres. It also makes sense that the sequences from N22 and

N25 are more similar to each other than to the one from N06, since those two samples are

geographically closer together.

Comparison of nifH genes

We’ve found a nitrogen-fixing population that appears to be novel, based on its lack of good

matches in NCBI. But NCBI is by no means the only source of publicly-available genomic data,

so this perhaps does not mean as much as we want it to. To further verify the novelty of this

population (while keeping the workload reasonably easy for us), we’re going to check its nifH

alignment against other known nifH genes.

When I was doing this analysis, I got a great deal of help from Tom Delmont. He kindly
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took the nifH gene from contig ‘N25_c_000000000104‘ and placed it on a phylogeny (Figure

5.20) of known nifH sequences from all around the world (most of them, as you may tell from

the phylogeny, come from the Tara Oceans dataset (Sunagawa et al., 2015).

Figure 5.20: Phylogeny of nifH sequences from around the world. The nifH gene from the
Arctic population is highlighted. Image courtesy of Tom Delmont.

Our population’s nifH was most closely related to nifH genes from the north Atlantic Ocean,

but on its own branch, indicating that there are no nifH genes in Tom’s collection that are

exactly like it.

However, Tom found that it was most similar (with 95% identity) to the nifH gene from the

genome of “Candidatus Macondimonas diazotrophica”, a crude-oil degrader isolated from a

beach contaminated by the Deepwater Horizon oil spill (Karthikeyan et al., 2019).

We’re going to check how similar our population is to this “Ca. M. diazotrophica” genome

by aligning the ‘N25_c_000000000104‘ contig against it.

# download the genome

wget http ://enve -omics.ce.gatech.edu/data/public_macondimonas/

Macon_spades_assembly.fasta.gz

gunzip Macon_spades_assembly.fasta.gz

# extract N25_c_000000000104 sequence into its own file
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grep -A 1 "N25_c_000000000104" contigs_of_interest.fa > N25 -c_000000000104

.fa

# make a blast database for the genome

makeblastdb -in Macon_spades_assembly.fasta \

-dbtype nucl \

-title M_diazotrophica \

-out M_diazotrophica

# run the alignment

blastn -db M_diazotrophica \

-query N25 -c_000000000104.fa \

-evalue 1e-10 \

-outfmt 6 \

-out c_000000000104 -M_diazotrophica -6.txt

Listing 5.8: Aligning to the “Ca. M. diazotrophica” genome

Looking at the ‘c_000000000104-M_diazotrophica-6.txt‘ file, you should see that the align-

ments are not very long (the contigs are far longer) and that the percent identities, while high,

are not that high.

Here are the top 10 hits in this file:

qseqid sseqid pident length mismatch ...
c_000000000104 NODE_14_length_74635_cov_31.4532 90.375 3761 313 ...
c_000000000104 NODE_14_length_74635_cov_31.4532 97.212 1578 43 ...
c_000000000104 NODE_14_length_74635_cov_31.4532 77.627 3902 763 ...
c_000000000104 NODE_14_length_74635_cov_31.4532 78.256 814 141 ...
c_000000000104 NODE_14_length_74635_cov_31.4532 96.970 264 8 ...
c_000000000104 NODE_14_length_74635_cov_31.4532 87.831 189 23 ...
c_000000000104 NODE_11_length_97838_cov_34.3382 92.602 2379 163 ...
c_000000000104 NODE_11_length_97838_cov_34.3382 93.967 1558 92 ...
c_000000000104 NODE_11_length_97838_cov_34.3382 81.016 748 130 ...
c_000000000104 NODE_20_length_33832_cov_39.6157 82.974 417 51

Table 5.15: Best alignments to “Ca. M. diazotrophica”.

While their nifH genes may be very similar, this is certainly not the same population as the
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one we found.

There is one more set of genes that we should check. In July 2021, (Pierella Karlusich

et al., 2021) published a paper containing, among other things, a set of 10 novel nifH genes.

You will find these genes in the datapack, in the file ‘FASTA/Karlusich_novel_nifH.fa‘. Make a

BLAST database out of the contig from N25 (which you extracted above), and align these nifH

genes against that database.

makeblastdb -in N25 -c_000000000104.fa \

-dbtype nucl \

-title N25 -c_000000000104 \

-out N25 -c_000000000104

blastn -db N25 -c_000000000104 \

-query Karlusich_novel_nifH.fa \

-evalue 1e-10 \

-outfmt 6 \

-out novel_nifH -N25_c_000000000104 -6.txt

Listing 5.9: BLASTing against novel nifH genes

There are only three hits in the resulting file, and their maximum percent identity is about

86%, so none of them originate from our Arctic Ocean diazotroph.

qseqid sseqid pident length mismatch ...
ENA MW590317 c_000000000104 85.000 320 45 ...
ENA MW590318 c_000000000104 84.211 323 51 ...
ENA MW590319 c_000000000104 85.802 324 46 ...

Table 5.16: Hits to novel nifH genes.

# navigate out of the FASTA/ folder

cd ..

Listing 5.10: Return to parent directory
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5.3.6 Identifying the associated Cao et al. MAG

At this point, we’ve verified (to the best of our current knowledge), that we’ve identified an un-

characterized diazotrophic population in these Arctic Ocean metagenomes. Since this novel

nitrogen-fixing population is present in multiple samples from the Cao et al. paper, it is ex-

tremely likely that the authors have already binned it in some form. So before we bin this

population ourselves, we are going to see what else we can learn about it from their data.

Cao et al. did their binning iteratively by running first MaxBin2 (Wu et al., 2016) and then

MetaBAT (Kang et al., 2015) on the contigs of individual MEGAHIT (Li et al., 2015) assemblies

of these samples, and they got 214 MAGs out of this process.

We’re going to find out which one of those MAGs represents the nitrogen-fixing popu-

lation that we have identified in samples N06, N22, and N25. First, download their MAG

set, which is hosted on FigShare (https://figshare.com/s/fd5f60b5da7a63aaa74b).

You’ll need to unzip the folder, and probably re-name it something sensible (I called the folder

‘Cao_et_al_MAGs‘, and you’ll see it referred to this way in the code snippets below).

Each MAG is in a FASTA file that is named according to the MAG number. We will run

BLAST against all of these MAGs at the same time, so each MAG’s contig sequences need

to have the corresponding MAG number in the contig name. That way we will be able to

determine which MAG each BLAST hit belongs to. ‘anvi-script-reformat-fasta‘ is the perfect

tool for this job.

The loop in the following code learns the MAG number from its FASTA file name and runs

‘anvi-script-reformat-fasta‘, which will simplify the contig names and make sure each one is

prefixed with the MAG number. The reformatted FASTA files will end in ‘*reformat.fa‘ and the

text file matching the original contig name to its new one will end in ‘*reformat_report.txt‘.

# download Cao et al MAG set

mkdir Cao_et_al_MAGs

cd Cao_et_al_MAGs/

wget https :// figshare.com/ndownloader/articles /10302425? private_link=
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fd5f60b5da7a63aaa74b \

-O Cao_et_al_MAGs.zip

unzip Cao_et_al_MAGs.zip

cd ..

# reformat contig names to contain MAG number

for g in Cao_et_al_MAGs /*. fasta; do \

mag=$(basename $g | sed ’s/.fasta//g’); \

filename=$(echo $g | sed ’s/.fasta //g’); \

anvi -script -reformat -fasta -o ${filename}_reformat.fa \

--simplify -names \

--prefix $mag \

-r ${mag}_reformat_report.txt $g; \

done

# organize the resulting files into sensible folders

mkdir REFORMAT_REPORTS

mv *reformat_report.txt REFORMAT_REPORTS/

mkdir CAO_MAGS_REFORMATTED

mv Cao_et_al_MAGs/Genome*reformat.fa CAO_MAGS_REFORMATTED/

Listing 5.11: Downloading and reformatting the Cao et al. MAGs

After that finishes, you can concatenate all of the MAG FASTAs into one big FASTA file,

and make a BLAST database out of it:

# concatenate all MAG contigs into one file

cat CAO_MAGS_REFORMATTED /*.fa > all_Cao_MAGs.fa

# make database for mapping against these contigs

makeblastdb -in all_Cao_MAGs.fa \

-dbtype nucl \

-title all_Cao_MAGs \
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-out all_Cao_MAGs

Listing 5.12: Make a BLAST database

Since we know that contigs ‘N06_c_000000000415‘, ‘N22_c_000000000122‘, and

‘N25_c_000000000104‘ are all similar, we only need to BLAST one of them against this

database. I chose ‘N25_c_000000000104‘ arbitrarily, but feel free to try one of the others

if you’d like.

# extract sequence into its own file (if you haven ’t done this already)

grep -A 1 "N25_c_000000000104" \

FASTA/contigs_of_interest.fa > FASTA/N25 -c_000000000104.fa

# blast this contig against all Cao et al MAGs

# standard output format

blastn -db all_Cao_MAGs \

-query FASTA/N25 -c_000000000104.fa \

-evalue 1e-10 \

-out c_000000000104 -all_Cao_MAGs -0.txt

# tabular output format

blastn -db all_Cao_MAGs \

-query FASTA/N25 -c_000000000104.fa \

-evalue 1e-10 \

-outfmt 6 \

-out c_000000000104 -all_Cao_MAGs -6.txt

Listing 5.13: BLAST against the Cao et al. MAG database

If you look at the tabular output file, you will see that there is really only one good match

for contig ‘N25_c_000000000104‘, and that is a hit against ‘Genome_122_000000000019‘ (or,

contig 19 from ‘Genome_122‘. The reformat report for this MAG indicates that contig 19 was

originally named ‘k141_74885‘. In case that matters to anyone.). It has almost 100% identity

over nearly the entire contig (you can see the alignment in the standard output file, if you are
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curious about that).

It seems like ‘Genome_122‘ is the nitrogen-fixing MAG that we have been looking for. In

fact, supplementary table S5 from the Cao et al. paper indicates that (according to GTDB-

Tk) this MAG belongs to the Immundisolibacter genus. Well, we have seen enough of the

alignments to know that this taxonomy is probably not correct, but it was the closest match on

NCBI. This is enough to verify that we found the correct MAG.

So a MAG of our population of interest has already been binned, as expected. If this

weren’t a blog post on how to do targeted binning, you might think that we were done here.

But it is a blog post about targeted binning, so we are not done just yet. We will do our own

binning in just a moment. In the meantime, we can still use the Cao et al. MAG to learn things

about our population of interest that will help us bin this population ourselves - namely, the

distribution of this population in different parts of the ocean, which will help us know what to

expect in terms of differential coverage patterns.

In addition, this ‘Genome_122‘ MAG was binned automatically without any manual refine-

ment, which as we know can be problematic (Eren and Scott, 2020b). Is this MAG complete?

Is it chimeric? As we investigate it further in the next section, keep these questions in mind,

because their answers will further motivate us to bin this population ourselves.

5.3.7 Distribution of ‘Genome_122‘ in the global oceans

Thus far, we’ve 1) identified a nitrogen-fixing population in the Arctic Ocean, 2) inferred its

novelty from its lack of matches to NCBI and a collection of known nifH genes, and 3) found its

corresponding MAG in the Cao et al. data. Our next question is - where does this population

occur across the world? Can it be found only in the Arctic, or is it a globally-distributed popu-

lation (that for some reason has not yet been characterized in temperate oceans)? Is it limited

to the surface ocean, or can it live in the deep?

To answer this question, I mapped four different datasets of ocean metagenomes to the
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‘Genome_122‘ MAG using the anvi’o metagenomic workflow. Those datasets are: the current

one from Cao et al. (including all samples, from the Arctic and Antarctic), the ACE dataset

of Southern Ocean metagenomes (which is yet unpublished, but is a sampling expedition

led by our collaborator Lois Maignien at the IUEM-Brest), and the vast global ocean sam-

pling efforts Tara (Sunagawa et al., 2015) and Tara2 (Salazar et al., 2019). We’re going to

look at these mapping results. You will find the relevant databases in your datapack, in the

‘GENOME_122_DBS‘ folder.

Surface ocean distribution

First, open up the anvi’o interactive interface and take a look at the distribution of this MAG in

the surface ocean (which includes metagenomes sampled at depths 0-100m from these four

datasets):

cd GENOME_122_DBS/

anvi -interactive -c Genome_122 -contigs.db \

-p SURFACE/SURFACE_PROFILE.db \

--title "Genome_122 in Surface Ocean"

Listing 5.14: Opening the interactive interface for surface ocean distribution

Figure 5.21 shows the view of the interface that you should see.
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Figure 5.21: Distribution of ‘Genome_122‘ MAG from Cao et al. across the global surface
oceans. Each radial bar (organized via the dendrogram) represents one contig from the MAG
and each concentric barplot represents the contig’s detection (proportion of bases covered by
at least one short read) in a single metagenome sample. Samples from Cao et al. are colored
in light blue.
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The default view in the interface should show log-normalized detection of this MAG in all of

the ocean metagenomes. Each concentric circle in the figure is one metagenome sample, and

each spoke of the wheel is a contig from ‘GENOME_122‘. Samples from Cao et al. have been

marked in light blue to distinguish them from the rest. You can hover over the ‘Source’ layer

to see which dataset each sample comes from, and the ‘Location’ layer to see which ocean

region it was sampled from.

There are a few things we can immediately see from the mapping results. First, it is clear

that this population is geographically isolated, as it is detected only in the Arctic Ocean samples

from the Cao et al. dataset. There are some Arctic Ocean samples from Tara2 (the darkest

green in the ‘Location’ layer), but this population is not detected in these. Second, this MAG

must have been binned from the Cao et al. assembly of sample N07, since that sample has the

highest proportion of mapping reads. Though we didn’t discuss it earlier, our nitrogen-fixing

population is also present in sample N07 (which you may already have deduced if you took a

look at the BLAST results for the second set of nif contigs in N07).

Finally, there are several splits in ‘Genome_122‘ that appear to be contamination. For

instance, Figure 5.22 shows a zoomed view on three splits that have different detection values

across samples than the rest of the MAG.
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Figure 5.22: Three pieces of MAG ‘Genome_122‘ with a different detection pattern. This figure
is a zoomed-in view of Figure 5.21.
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One of those splits is missing detection in samples N22 and N25 (where we know our

population exists) - this split is marked with an arrow in the figure above. The other two are

detected in a variety of samples from the other datasets as well as a different detection pattern

across the other Cao et al. Arctic Ocean samples. There are also a couple more splits at the

top of the circular phylogram that seem problematic.

A quick aside to look for nif genes

Well, I’m sure you found contig 19. But you couldn’t find our nif genes, could you? In fact,

if you search for functions with “nitrogen fixation”, you will find several annotated nif genes

but not the ones that we were looking for – except for nifB, which is not on contig 19 (as

expected) but on contig 27. This is extremely curious. How could this happen? Previously,

contig ‘N25_c_000000000104‘, which contains 5 out of 6 of our nif genes, matched with almost

100% identity against the entirety of contig 19 - so what is missing?

It turns out that contig 19 is quite a bit shorter – only 51,626 bp – compared to 73,221 bp

for N25_c_000000000104. You might have noticed this if you checked the standard output file

from BLAST. Clearly, the part of contig 104 that contains those 5 nif genes was not the part

that matched to contig 19. We are working with different assemblies of these metagenomes

than the ones created by Cao et al., so some differences are to be expected.

Furthermore, we now know that ‘Genome_122‘ was binned from sample N07. In N07, the

second set of nif genes was split across 3 contigs (‘c_000000004049‘, ‘c_000000000256‘,

and ‘c_000000000095‘), so it is likely that a similar situation occurred in the Cao et al. as-

sembly of this sample. Which means it is certainly possible that only the contig containing

nifB was binned into this MAG. Contig 27 from ‘Genome_122‘ is probably the counterpart to

‘c_000000000095‘ from our assembly.

You can check this, if you want, by BLASTing those three N07 contigs against the Cao et

al. MAGs:
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# go back to the previous folder

cd ..

# extract just these 3 contigs from N07 into a separate file

for c in c_000000004049 c_000000000256 c_000000000095; \

do \

grep -A 1 $c FASTA/contigs_of_interest.fa >> FASTA/N07_second_set.fa; \

done

# align against the MAG set

blastn -db all_Cao_MAGs \

-query FASTA/N07_second_set.fa \

-evalue 1e-10 \

-outfmt 6 \

-out N07_second_set -all_Cao_MAGs -6.txt

Listing 5.15: BLASTing N07 contigs against Cao et al. MAGs

I’ll paste the relevant hits from the output below. These are the best hits for each contig

query (meaning that they have the highest percent identity, the longest alignment lengths, and

the smallest e-value of all hits from that contig).

qseqid sseqid pident length mismatch ...
N07_c_000000000095 Genome_122_000000000027 99.982 116075 5 ...
N07_c_000000004049 Genome_022_000000000007 99.729 7751 20 ...
N07_c_000000004049 Genome_022_000000000007 99.203 753 6 ...
N07_c_000000000256 Genome_122_000000000019 99.992 51584 4 ...

Table 5.17: Best hits from N07 contigs to Cao et al. MAGs.

First of all, contig ‘N07_c_000000000095‘ (the one with the nifB gene) indeed matches

extremely well to contig 27 from ‘Genome_122‘, as expected. Contig ‘N07_c_000000004049‘,

which contained a copy of the M00175 module, does not match to anything in ‘Genome_122‘

at all (which explains why those three genes were missing from the MAG). Instead it matches

to a contig from the MAG named ‘Genome_022‘, but the alignment length is rather small.
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However, contig ‘N07_c_000000000256‘, which contained nifE and nifN in our assembly,

matches to contig 19 of ‘Genome_122‘! It is 64,963 bp long, so here we have the same

situation as contig 104 from sample N25 - it is a much longer sequence than contig 19, and

the nifE and nifN genes must be on the part that does not match to contig 19. (Indeed, if you

blast ‘N07_c_000000000256‘ against ‘N25_c_000000000104‘, it will match to one end of that

contig.)

The long story short is that our nif genes of interest were not binned into the ‘Genome_122‘

MAG, but we have plenty of evidence that they do belong to this population, considering that

those genes were assembled together in other samples. Sadly, that means that ‘Genome_122‘

is incomplete, and it is missing the genes we care most about. But more on this later.

Deep ocean distribution

The next thing to view is the distribution of this MAG in deeper samples (100m < depth <=

3800 m).

cd GENOME_122_DBS/

anvi -interactive -c Genome_122 -contigs.db \

-p DEEP/DEEP_PROFILE.db \

--title "Genome_122 in Deep Ocean"

Listing 5.16: Opening the interactive interface for deep ocean distribution

A screenshot from the interface is shown in Figure 5.23. The samples are color-coded in

the same way as before. You should be able to see that this MAG is present in deeper waters

(even those as deep as 3800m), though it is still geographically limited to the Arctic Ocean.

And once again, there are several splits that just don’t seem to fit with the rest and most likely

represent contamination.
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Figure 5.23: Distribution of ‘Genome_122‘ MAG from Cao et al. across the global deep
oceans. Each radial bar (organized via the dendrogram) represents one contig from the MAG
and each concentric barplot represents the contig’s detection (proportion of bases covered by
at least one short read) in a single metagenome sample. Samples from Cao et al. are colored
in light blue.
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# we are done here

cd ..

Listing 5.17: Return to parent directory

5.3.8 Targeted binning of the nitrogen-fixing population

We’ve seen above that the ‘Genome_122‘ MAG appears to have some contamination, which

is a normal thing to see in MAGs (particularly automatically-generated ones), because binning

is hard. We’ve also seen that it does not contain the nif genes that belong to this nitrogen-

fixing population. But since we have time on our hands, a particular interest in just this one

nitrogen-fixing population, and the knowledge of which nif gene-containing contigs belong to

this population, we can make a better MAG. It’s time for some targeted binning.

We know that our population of interest is present in samples N06, N07, N22, and N25. We

could use any of these assemblies for binning, though N07 is not the best choice because the

nif genes are split across more contigs in that one. I once again made the completely arbitrary

choice to use sample N25 for this. I ran a read recruitment workflow to map all 60 Cao et

al. metagenomes against our assembly of N25 so that we can look at differential coverage

across different metagenomes – our population of interest should only be present in the Arctic

Ocean samples, but we will be able to use its absence from the Antarctic samples to help guide

our binning. You’ll find the contigs database for the N25 assembly and the profile database

containing these mapping results in the datapack (in the ‘N25_DBS‘ folder). You can open

them up in anvi-interactive:

cd N25_DBS/

anvi -interactive -c N25 -contigs.db \

-p PROFILE.db \

--title "Cao et al Read Recruitment to N25" \
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--state -autoload binning

Listing 5.18: Opening the interactive interface for binning

The databases are rather large, and may take some time to load, but once they do you

should see a display similar to Figure 5.24.
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Figure 5.24: Read recruitment of Cao et al. metagenomes to the N25 assembly. Each radial
bar (organized via the dendrogram) represents one contig from the N25 assembly and each
concentric barplot represents the contig’s coverage (number of reads mapping to it). Samples
from the Antarctic are blue and samples from the Arctic are green. Samples N06, N07, N22,
and N25 are darker green.
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The Arctic Ocean samples are green, and the four samples we expect to find our population

in are the outermost, darker green layers so that we can more easily focus on those. The blue

samples are the Antarctic ones.

We will start our binning with the contig that contains the most nif genes in N25, which is

‘000000000104‘. You can search for this contig in the ‘Search’ tab of the ‘Settings’ panel, and

add its splits to a bin.

The contigs in this assembly are clustered according to their sequence composition and

their differential coverage (across all Cao et al. samples), so the other contigs that belong to

our nitrogen-fixing population should be located next to contig ‘000000000104‘ in the circular

phylogram. These contigs should also appear in all four of our samples of interest (dark green),

have zero coverage in the Antarctic samples (blue), and have similar GC content (the green

layer below the Antarctic samples). If you zoom to the location of the splits you just binned,

you should see a set of splits that fit this criteria.

Did you find it? Figure 5.25 shows the splits I am talking about, so that you can check your

work.
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Figure 5.25: Contigs belonging to the nitrogen-fixing population in sample N25. A zoomed-in
view of Figure 5.24. The binned contigs are highlighted in light pink.
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These were the splits that I binned (there are 168 of them). You can bin them yourself, or

just load the collection called ‘Nif_MAG‘ to see the same bin on your own screen. The anvi’o

estimates of completion and redundancy (based on bacterial single-copy core genes) for this

bin are 100% and 0%, respectively, which is great news. Furthermore, if you check the box

for real-time taxonomy estimation on the “Bins” tab, you will see that this bin is labeled as

Immundisolibacter cernigliae, the same microbe that we kept getting BLAST hits to previously.

So we’ve certainly binned the correct population, and it is a high-quality MAG at that.

Bonus activity: Recall that there were 3 copies of nifB in sample N25, on three separate

contigs. Which one belongs to this population?

5.3.9 Estimating metabolism for our new MAG

Now that we have a complete MAG for our nitrogen-fixing population, let’s see what else it can

do. We are going to run metabolism estimation on this population.

There are a couple of different ways we can go about this. Since the bin is saved as a

collection, you can directly estimate its metabolism from the current set of databases for the

entire N25 assembly, just like this:

anvi -estimate -metabolism -c N25 -contigs.db \

-p PROFILE.db \

-C Nif_MAG \

-O Nif_MAG \

--kegg -output -modes kofam_hits ,modules

Listing 5.19: Estimating metabolism on our new MAG

Or, you could split this MAG into its own set of (smaller) contig/profile databases, and then

run metabolism estimation in genome mode:

anvi -split -c N25 -contigs.db \

-p PROFILE.db \

-C Nif_MAG \
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-o Nif_MAG

anvi -estimate -metabolism -c Nif_MAG/Nif_MAG/CONTIGS.db \

-O Nif_MAG \

--kegg -output -modes kofam_hits ,modules

Listing 5.20: A different way to estimate metabolism on the MAG

You can pick whichever path you like. I went with the latter option because I wanted a

stand-alone database for the MAG so I could do other things with it, but the former is less

work for you (and for your computer). Regardless of how you do it, you should end up with

a ‘Nif_MAG_modules.txt‘ file containing the module completeness scores for this population,

and a ‘Nif_MAG_kofam_hits.txt‘ file containing its KOfam hits.

You are free to explore these results according to your interests, but one of my remaining

questions about this population is whether it is a cyanobacteria or a heterotroph. Cyanobac-

teria have photosynthetic and carbon fixation capabilities, while heterotrophs have ABC trans-

porters for carbohydrate uptake (Cheung et al., 2021). I looked for modules related to each of

these things and checked their completeness scores.

Here is my search code. I once again clipped the output so that it shows only relevant

fields.

head -n 1 Nif_MAG_modules.txt | cut -f 3,4,7,9; \

grep -i "carbon fixation" Nif_MAG_modules.txt | cut -f 3,4,7,9

Listing 5.21: Parsing for carbon fixation pathways

kegg_module module_name module_subcategory module_completeness
M00165 Reductive pentose phosphate cycle (Calvin cycle) Carbon fixation 0.8181818181818182
M00166 Reductive pentose phosphate cycle, ribulose-5P =>glyceraldehyde-3P Carbon fixation 0.75
M00167 Reductive pentose phosphate cycle, glyceraldehyde-3P =>ribulose-5P Carbon fixation 0.8571428571428571
M00168 CAM (Crassulacean acid metabolism), dark Carbon fixation 0.5
M00173 Reductive citrate cycle (Arnon-Buchanan cycle) Carbon fixation 0.8
M00376 3-Hydroxypropionate bi-cycle Carbon fixation 0.4423076923076923
M00375 Hydroxypropionate-hydroxybutylate cycle Carbon fixation 0.14285714285714285
M00374 Dicarboxylate-hydroxybutyrate cycle Carbon fixation 0.38461538461538464
M00377 Reductive acetyl-CoA pathway (Wood-Ljungdahl pathway) Carbon fixation 0.2857142857142857
M00579 Phosphate acetyltransferase-acetate kinase pathway, acetyl-CoA =>acetate Carbon fixation 0.5
M00620 Incomplete reductive citrate cycle, acetyl-CoA =>oxoglutarate Carbon fixation 0.35714285714285715

Table 5.18: Carbon fixation modules in our MAG.

Several of the reductive pentose phosphate cycle pathways look near-complete. However,
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these results must be taken with a grain of salt because many of these pathways share a

large number of their KOs with other pathways. We can confirm whether or not this is a

cyanobacteria by looking for photosynthesis capabilities:

head -n 1 Nif_MAG_modules.txt | cut -f 3,4,7,9; \

grep -i "photo" Nif_MAG_modules.txt | cut -f 3,4,7,9

Listing 5.22: Parsing for photosynthesis pathways

kegg_module module_name module_subcategory module_completeness
M00532 Photorespiration Other carbohydrate metabolism 0.475
M00611 Oxygenic photosynthesis in plants and cyanobacteria Metabolic capacity 0.4090909090909091
M00612 Anoxygenic photosynthesis in purple bacteria Metabolic capacity 0.4090909090909091
M00613 Anoxygenic photosynthesis in green nonsulfur bacteria Metabolic capacity 0.22115384615384615
M00614 Anoxygenic photosynthesis in green sulfur bacteria Metabolic capacity 0.4

Table 5.19: Photosynthesis modules in our MAG.

As you can see, none of these modules are complete (including the pathway specifically

for cyanobacteria), so this doesn’t appear to be a cyanobacterial population. A huge caveat

here is that our MAG could simply be missing the genes relevant to this pathway (or, it has

them, but they are not homologous enough to their corresponding KO families to be anno-

tated). This is a possibility with any MAG. But if we choose to trust these estimations (given

the high completeness score of our bin), the current evidence points to this population being

heterotrophic.

There is no module for carbohydrate transporters, since these are individual proteins rather

than a metabolic pathway, but we can look for KOfam hits that are annotated as transporters

instead.

head -n 1 Nif_MAG_kofam_hits.txt | cut -f 3-5,7; \

grep -i ’transport ’ Nif_MAG_kofam_hits.txt | cut -f 3-5,7

Listing 5.23: Parsing for transporter enzymes

There are plenty of hits, including several specifically for carbohydrates:

So it looks like this microbe is indeed a heterotroph, which would make it a heterotrophic

bacterial diazotroph, or HBD. It can join its temperate ocean relatives in Tom’s hard-earned

collection (Delmont et al., 2021).
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ko gene_caller_id contig ko_definition
K16554 16040 N25_000000000138 polysaccharide biosynthesis transport protein
K02027 21931 N25_000000000271 multiple sugar transport system substrate-binding protein
K02026 21933 N25_000000000271 multiple sugar transport system permease protein
K02025 21932 N25_000000000271 multiple sugar transport system permease protein
K10237 21932 N25_000000000271 trehalose/maltose transport system permease protein
K10236 21931 N25_000000000271 trehalose/maltose transport system substrate-binding protein
K10238 21933 N25_000000000271 trehalose/maltose transport system permease protein

Table 5.20: Transporter enzymes in our MAG.

5.3.10 Final Words

So there you have it - a novel, heterotrophic nitrogen-fixing population from the Arctic Ocean,

binned directly from public metagenomes with guidance from anvi-estimate-metabolism. We

went fishing, and we caught something interesting. And it wasn’t all that hard.

If you ever have to look for a microbe of interest in metagenomic data, and you know it has

something unique in terms of its metabolic capabilities, you can try out this technique in your

search. Perhaps you’ll find what you are looking for!

5.4 ‘Digital microbe’: a data integration framework for genomics and

pangenomics

As the amount and variety of ‘omics data increases at a rapid pace, a mechanism for effec-

tive sharing of integrated datasets has become an emerging need in the ‘omics field. There

is now a wide range of methods for characterizing biological systems – i.e., genomics, tran-

scriptomics, proteomics, metabolomics – each of which produces complementary information

that can be integrated to yield a comprehensive understanding of a given organism. Yet, data

integration remains a challenging task that begins at the earliest stages of data acquisition

with technical bottlenecks that hamper analysis workflows. This problem is exacerbated in a

collaborative research environment because the team’s primary data may be downloaded from

independent repositories with divergent records; for example, different versions of a microbe’s

genome, or different annotations applied to the same gene, transcript, or protein. This limits

downstream efforts to build synergistic insights into living systems.
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In my work as part of a large research consortium, the Center for Chemical Currencies

of a Microbial Planet (C-CoMP, https://ccomp-stc.org/), I have started to address this

problem by implementing a framework for collaborative data integration and sharing. C-CoMP

is a center spanning multiple research groups from thirteen different institutions, and its pri-

mary scientific goal is to understand microbial carbon cycling in the global surface ocean by

combining experiments on model organisms, modeling of metabolic networks, and field ob-

servations. To accomplish this task, it requires a means of passing integrated ‘omics datasets

(versioned for reproducibility and consistency) between its members. The C-CoMP Data Inte-

gration Working Group has devised a strategy for doing this via a ‘digital microbe’ framework

that is broadly useful to any ‘omics scientist needing to share data.

A ‘digital microbe’ is a curated and versioned public data package that combines multiple

datasets related to a particular organism (i.e., genome) or group of related organisms (i.e.,

pangenome). It is both self-contained (it can explain itself and its contents) and extensible

(others can extend a digital microbe data package with additional layers of information com-

ing from new experiments). The datasets in the package are organized and linked through

reference to the microbial genome(s), consolidating a variety of information including gene

annotations, read-mapping data such as coverage statistics, and sample metadata. Digital mi-

crobes are flexible in scope, being suitable for single microbial genomes as well as clade-level

genomic collections. Further, their extensibility via the programmatic addition of new ‘omics

data types makes them future-proof. The databases are easy to share and directly usable as

inputs to further analyses, making them an efficient collaboration strategy that eliminates the

problems of sharing individual datasets and then requiring collaborators to integrate indepen-

dently. Importantly, the databases can be versioned as different team members add datasets

and analyses. This allows for data management between collaborators and reproducibility by

external scientists.

In C-CoMP, we implemented this concept using anvi’o (Eren et al., 2021a) to ensure inte-
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grated access to its analysis and visualization tools. That is, each of our ‘digital microbes’

is composed of one or more anvi’o SQLite databases, which are both programmatically-

queryable and accessible via the vast network of interoperable anvi’o programs. C-CoMP

makes these databases available, to both collaborators in the center and to the public, on the

online data repository Zenodo (https://zenodo.org/). This particular strategy offers sev-

eral benefits, such as the ability to share multiple datasets by providing a single link, and the

ability to directly analyze and interactively visualize these data. However, researchers could

implement a similar framework using alternative tools and data-sharing platforms, if desired.

The utility of this framework is exemplified by a digital microbe that I generated for one of

C-CoMP’s primary model organisms, Ruegeria pomeroyi DSS-3. R. pomeroyi is a member

of the Rhodobacteraceae family, a clade of metabolically active bacterial cells in algal blooms

and coastal environments (Munson-McGee et al., 2022). This r-strategist species has a large

genome encoding a variety of catabolic genes that control the fate of climate-relevant organic

sulfur gasses (Durham et al., 2015; Howard et al., 2006; Landa et al., 2019) as well as nu-

merous pathways for synthesis of cofactors and vitamins that support chemical interactions

with marine phytoplankton (Durham et al., 2017). It was isolated and sequenced to obtain a

complete reference genome (Moran et al., 2004), and since then numerous studies on this

model organism have yielded a wealth of data, from transcriptomes to a TnSeq mutant library

(publication in progress by Moran et al.).

In our ‘digital microbe’ for R. pomeroyi DSS-3, I integrated its complete genome and

megaplasmid sequence (Moran et al., 2004) with a manually-curated set of gene function

annotations provided by Zac Cooper, Christa Smith and William Schroer in the Moran Lab;

automatically-generated functional annotations from sources including Pfam (Mistry et al.,

2021), NCBI COGs (Galperin et al., 2021), and KEGG KOfam/BRITE (Aramaki et al., 2020;

Kanehisa et al., 2023); read recruitment data from 133 (meta)transcriptome samples taken

spanning 6 publications (and 2 manuscripts in preparation) (Durham et al., 2015; Landa et al.,
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2019; Ferrer-González et al., 2021; Nowinski and Moran, 2021; Olofsson et al., 2022; Uchimiya

et al., 2022); and annotations for genes with available mutants in the Moran Lab’s TnSeq li-

brary. The databases (along with a reproducible workflow describing how they were generated)

are publicly-available on Zenodo (Veseli and Cooper, 2022), and have been documented in a

blog post that also provides examples of how to visualize and analyze the data further using

anvi’o (Veseli, 2023) (https://ccomp-stc.org/rpom-digital-microbe/). Version tracking

in Zenodo has enabled the seamless sharing of several iterations of this data package, and

C-CoMP members are already using the integrated data as a base for further research on this

important marine microbe.

Overall, the significance of the ‘digital microbe’ data integration framework lies in its abil-

ity to facilitate scientific progress, collaboration, and accountability. It enables the synergistic

investigation of multiple integrated datasets for systems-level biological insights into micro-

bial life. The databases are easily shareable, extensible, and reproducible; thus, they are an

ideal platform for collaborative analyses and open science practices. Though C-CoMP’s digital

microbes make use of anvi’o, SQLite databases, and the Zenodo data repository, the same

benefits would apply to alternative implementations using other software and platforms; that is,

the concept of this framework is more important than the implementation. Regardless of their

form, digital microbes represent a major breakthrough for the future of collaborative research

in the ‘omics field.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of contributions

Microbes are of immense ecological and medical importance, and with the advancement of

high-throughput sequencing technologies, ‘omics data and analysis software have become

critical for microbiome research (White et al., 2016; Callahan et al., 2018). In many cases, it is

now more effective to analyze microbes from environmental samples rather than isolating and

culturing them for in vitro experimental work (which is indeed not yet possible for many recalci-

trant clades) (Lloyd et al., 2018; Steen et al., 2019; Wang et al., 2020). Thus, high-throughput

analysis workflows and data integration techniques are necessary to make sense of the wealth

of sequencing data and to better understand microbial ecology in a variety of contexts. During

my graduate studies, I have advanced this field of research by developing accessible, flexible

computational strategies for integration and analysis of ‘omics data, foremost a novel tool for

the study of microbial metabolism. I applied my tool in a number of studies of metagenomic

data to further our understanding of microbial functional potential, especially in the gut micro-

biome, which is extremely relevant to human health. In particular, my work in the human gut

environment has shed light on the determinants of gut microbial resilience in the context of

inflammatory bowel disease.

My most important contributions to the microbial ‘omics field are three-fold. The first is tech-

nical: I implemented a software framework for metabolism reconstruction, specifically pathway

prediction, from genomes and metagenomes. This was a significant undertaking that required

thoughtful design, based on the input of multiple collaborators, to incorporate features neces-

sary for it to be a useful addition to the existing repertoire of metabolism reconstruction soft-

ware. Over the past few years my framework underwent several incremental improvements to

become a comprehensive, flexible, and accessible tool that has already been used in a num-
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ber of scientific publications – for example, (Watson et al., 2022; Delmont et al., 2021; Miranda

et al., 2022; Runde et al., 2023; Delmont, 2021; Weigel et al., 2022; Rasmussen et al., 2023;

Becken et al., 2021; Castro-Severyn et al., 2021; Johnson et al., 2021; Choudoir et al., 2023;

Komova et al., 2022; Nuppunen-Puputti et al., 2022; Giacomini et al., 2023; Modin et al., 2022;

Yang et al., 2023; Eberhard et al., 2022; Breusing et al., 2022; Busi et al., 2022). One of its

novel features is user-defined metabolism, which addresses the problem of our current depen-

dency on metabolism databases that are slow to incorporate novel metabolisms from across

the vast diversity of microbial life. Another key novelty of this tool is its pathway redundancy

metrics, which are useful for studying community-level metabolic potential from metagenomes

without requiring binning of individual populations, especially when applying the normalization

technique I developed to take community size into account.

My second contribution is scientific in nature. By applying my software framework to study

the metabolic potential of gut microbes (at both the genome level and the community level), I

have illustrated that metabolic independence is a fitness determinant in gut communities un-

der stress. The high completeness of several biosynthesis pathways for crucial metabolites in

populations that successfully colonize FMT recipients (following several rounds of antibiotics)

indicates the importance of microbial self-sufficiency for survival in depleted gut communities

(Watson et al., 2022). This result also suggests that metabolic independence could be rele-

vant in the context of inflammatory bowel disease, given that IBDs are associated with reduced

diversity in the gut microbiome. I therefore leveraged a large dataset of publicly-available fecal

metagenomes, as well as numerous reference genomes associated with the human gut, to

verify that microbes living in the IBD gut environment are indeed more metabolically indepen-

dent than microbes hosted by healthy individuals. Thus, high metabolic independence serves

as a potential mechanism for microbial survival during the reduction of gut communities that

occurs during disease progression. Furthermore, I showed that the pattern of metabolic inde-

pendence levels mirrors the depletion and recovery of these communities following antibiotic
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treatment. Metabolic independence is therefore, more generally, an indicator of the level of

stress faced by human gut microbes and has potential to be used for diagnosis of gastroin-

testinal conditions (Veseli et al., 2023). Going forward, these observations may shape our

perspective on the microbiome’s role in human diseases associated with microbial dysbiosis

and could lead to the development of more effective diagnostic tools. Importantly, it would

not have been possible to obtain these results without the metabolism framework and my

state-of-the-art method for normalizing metagenomic pathway copy numbers with estimates of

community size.

Finally, I believe I have made a philosophical contribution to this field by supporting and ad-

vocating for open science practices and collaborative research, especially via open-source

software solutions for advanced data integration and analysis. In addition to being open-

source, my metabolism reconstruction framework was developed openly, which exposed it

to early scrutiny and allowed community input to shape its progression. I created a wealth

of educational resources to describe the tool’s methodology and increase its usability. When

conducting research, I not only made use of publicly-available metagenomes, but I also gen-

erated public data (see https://figshare.com/authors/Iva_Veseli/9014558, https:

//zenodo.org/record/7439166#.ZCHDo-zMJQ0, and https://www.ncbi.nlm.nih.gov/b

ioproject/PRJNA767321). My primary scientific publications have been accompanied with

reproducible workflows and posted on preprint servers for greater transparency and enhanced

community access to the results of my work. For example, the digital microbe data integration

framework that I have contributed to as part of C-CoMP combines all of these strategies. It

is by design a tool for enhancing scientific collaboration on ‘omics data; the databases we

have generated are publicly-available on Zenodo; I wrote a blog post describing our Ruegeria

pomeroyi digital microbe, how to use it, and the reproducible workflow for generating it (Veseli,

2023); and the manuscript (in preparation) for describing this framework will be posted on a

preprint server. By practicing open science, I hope that I have demonstrated the benefits of
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this approach to the scientific community as a whole.

I would like to conclude this dissertation by highlighting a few of the unsolved challenges

and future directions encompassed by my research. In the following section, I offer my per-

spectives on the technical, scientific, and philosophical aspects of my work introduced above.

6.2 Concluding remarks and perspectives

6.2.1 The problem of annotation bias and its effect on metabolism prediction

The overrepresentation of model organisms, easily cultured microbes, and organisms of partic-

ular medical or industrial significance in genomic databases leads to annotation bias, whereby

gene sequences that are similar to reference genes are more readily annotated with protein

functions than more distant (yet still homologous) sequences. This insidious problem results

from the very nature of homology-based gene annotation strategies, and causes a systematic

lack of gene annotations in less-well-studied clades of organisms and for less-characterized

gene families (Lobb et al., 2020). It occurs despite the continuous addition of genomic data

from novel organisms to reference databases, because experimental validation of gene func-

tion occurs at a much slower pace than generation of new sequence data, because models

used for annotation are not frequently updated to incorporate this new data, and because the

e-value and bit score thresholds for assessing match quality must be stringent to avoid mistak-

enly annotating a gene with an incorrect function (e.g., false positives). Annotation bias is not

often scrutinized in academic literature, considering that analysis workflows often rely on au-

tomated annotation strategies and that downstream, the focus is generally on the annotations

that are found rather than those that are missing. Yet it can result in partial or even erroneous

functional conclusions in published studies.

Annotation bias remains a significant technical challenge in metabolism reconstruction

since enzyme annotations are a fundamental data source for this type of analysis. Draft
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genome-scale metabolic models are typically incomplete and require a gap-filling step to re-

store critical missing reactions before the models can be used for simulation (Orth and Pals-

son, 2010), yet automated gap-filling methods also rely on reference databases and can make

mistakes (Karp et al., 2018). In pathway prediction, missing enzyme annotations can result in

false negatives, or underestimation of pathway completeness. When the lack of annotations is

systematic, affecting a particular group of organisms or samples more than another, it can pro-

duce the appearance of a biological signal, in the form of false metabolic differences between

sample groups.

Annotation bias was directly observed in two of the studies featured in this dissertation,

and it likely goes undetected in many more. An egregious example of annotation bias was

discussed as part of the bifidobacterial study in Chapter 3. Bifidobacteria are relatively poorly-

characterized in functional databases, which resulted in missing annotations and a falsely

incomplete histidine biosynthesis pathway, until this bias was partially corrected by implement-

ing an novel annotation heuristic to reduce the removal of annotations for distant homologs.

Regardless, the heuristic was not sufficient to restore all missing annotations and discrep-

ancies between our results and published literature on these organisms remained. As none

of the authors were experts in bifidobacteria, these discrepancies went unnoticed until they

were kindly pointed out by a scrupulous reviewer during a publication attempt. Thankfully,

we avoided publishing incorrect conclusions in this case, but similar issues due to annotation

bias must surely slip through the cracks in the peer-review process to end up in the published

literature.

In Chapter 4’s study of metabolic capacity in the IBD gut microbiome, I analyzed the pro-

portion of gene calls with functional annotations across a large set of publicly-available gut

metagenomes, and found that samples from healthy individuals had fewer annotations than

those from individuals with IBD regardless of annotation source (Figure 6.1). The bias be-

tween the groups was visible in deeply-sequenced metagenomes, but disappeared after I ex-
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panded the set to include shallow metagenomes. Annotation bias provides one explanation for

these observations: metagenomes from healthy people contain a more diverse community of

microbes, and these populations (especially those of lower abundance that are only detected

in deeply-sequenced samples) seem to be less well-characterized than the microbes living in

the IBD gut environment, leading to the discrepancy in annotation efficiency between these

two sample groups. This bias confounds the metabolic signal between the sample groups in

this study, and it is difficult to determine how extensively it, rather than real biological signal,

contributes to the group differences.
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Figure 6.1: Histograms of annotations per gene call from A,B) NCBI COGs; C,D) KEGG KO-
fams; and E,F) Pfams. Panels A, C, and E show data for metagenomes in the subset of 330
deeply-sequenced samples from healthy people and people with IBD, and panels B, D, and F
show data for all 2,893 samples including those from non-IBD controls.

With its low rate of detection and potentially drastic consequences for functional analy-

sis, annotation bias is an insidious problem affecting a wide range of ‘omics research that
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relies on homology-based annotation from reference databases. Addressing it remains a ma-

jor challenge, especially for automated metabolism reconstruction efforts. Curation of public

genomic data and generation of better annotation models will continue to be slow, so technical

advancements to improve the annotation process remain the best option, for now. Strate-

gies such as the annotation heuristic I implemented in ‘anvi-run-kegg-kofams‘ or the extension

of annotations from a curated genome to less-characterized, taxonomically-related genomes

using pangenomic gene clusters are only the first step in addressing this issue, and more

comprehensive solutions are needed. In the meantime, great care must be taken when as-

sessing metabolism reconstruction results to avoid drawing incorrect conclusions on microbial

functional potential.

6.2.2 Implications of metabolic independence in gut microbiome research

The gut microbiome is so often studied due to its relevance to human health, with a focus

on the ecosystem services microbes collectively provide to their host as well as their influ-

ence on disease pathogenesis. Yet gut microbes also provide extensive ecosystem services

to each other. Our observations of high metabolic independence in disrupted gut communities

are consistent with this notion and underscore the immense importance of cross-feeding and

microbe-microbe interactions to the robustness of the gut microbiome (Wang et al., 2019; van

Hoek and Merks, 2017; Gutiérrez and Garrido, 2019). These findings suggest a mechanism

whereby stress-related perturbations in the gut disrupt these mutualistic interactions to create

a ‘snowball’ effect that further deteriorates the community. Notably, another recent investiga-

tion (Marcelino et al., 2023) supports this interpretation.

Many studies of diseases associated with dysbiosis of the human gut microbiome operate

under the assumption that these changes reflect a microbial basis of the disease (Clemente

et al., 2012; Lee and Chang, 2021; Weiss and Hennet, 2017), though causal relationships

have often been elusive (Ni et al., 2017; Janssen and Kersten, 2015; Dinan and Dinan, 2022;
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Bielka et al., 2022; Lynch et al., 2019). For example, in IBD, the lack or attenuation of disease

symptoms in gnotobiotic animal models indicates the requirement for a microbial stimulus to

promote disease development (Sellon et al., 1998), leading to the suggestion that the IBD gut

microbiota is “functionally defective” (Nagao-Kitamoto et al., 2016) or contains some problem-

atic microbes that potentiate disease. However, there are no specific clades of microbes that

are universally associated with IBD, and the characteristic reduction of gut diversity instead

follows broad taxonomic patterns (Knox et al., 2019b; Lane et al., 2017). This raises the pos-

sibility that no causal pathobionts exist; rather, inflammation arises from an overactive immune

response to nonspecific microbes, and the observed gut dysbiosis is a secondary effect of

intestinal inflammation (Tamboli et al., 2004). The inconclusive efficacy of antibiotics to treat

this condition (Ledder, 2019) as well as the limitations of animal models for human disease

(Arrieta et al., 2016) further complicate the picture. And more generally, the sheer amount

of research proposing a causal relationship between the gut microbiome and diseases is im-

plausible, suggesting that we may have overstated the importance of the gut microbiome to

disease pathogenesis (Walter et al., 2020; Lynch et al., 2019).

The impulse to label microbes as perpetrators of disease – if not as pathogens, then as

pathobionts (Jochum and Stecher, 2020) – is tempting because it offers a simple mechanism

for disease pathogenesis as well as the promise of microbially-based treatments. Yet the

concept of metabolic independence suggests a different paradigm that could apply to some

of these diseases and disorders: that gut microbes are bystanders to the onset of health

conditions and ‘dysbiosis’ represents their reaction to disease-related changes in their envi-

ronment. The disruption of the microbial community may eventually have side effects that

worsen disease symptoms or progression; for instance, subsequent infection with opportunis-

tic pathogens such as adherent-invasive Escherichia coli, which is often found in individuals

with IBD (Darfeuille-Michaud et al., 2004). However, under this hypothesis, the initial impetus

for pathogenesis is not caused by a set of specific, problematic populations or “functionally-
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defective” microbes – rather, the role of the microbiota in disease progression is primarily

reactive. Clearly, the human-microbiota holobiont is a very complex system, and it is difficult

to study the intricacies of their interactions, especially in humans and even more so from sam-

ples representing singular time points in advanced stages of disease. But perhaps we would

benefit from a more holistic, ‘ecosystem’-level perspective on the human microbiome, in which

we consider that both humans and their microbes are jointly affected by disease progression,

and that a microbial scapegoat does not necessarily exist for every disease.

Regardless of how involved gut microbes are in the pathogenesis of various gastrointesti-

nal disorders, the observation that these conditions result in the survival of only a subset of

highly competent populations suggests an opportunity to leverage the gut microbiome as an

indicator of host disease states. If a high proportion of metabolically-independent populations

in the gut microbiome is consistently found in individuals with disease and not in healthy indi-

viduals, then estimation of metabolic potential from metagenomes could be a viable diagnostic

tool. That is, metabolic independence could represent a reproducible and detectable microbial

signature of gastrointestinal stress conditions. This notion is supported by the accurate clas-

sification of post-antibiotic treatment samples using the high metabolic independence metric

that was described in Chapter 4. Further study across a variety of gastrointestinal conditions

is necessary to verify whether this concept is widely-applicable, but if so, it could be especially

significant for improving the detection of diseases like IBD for which no taxonomic biomarker

has been identified (Knox et al., 2019b; Lee and Chang, 2021).

Finally, microbial taxonomy has long been a significant focus of gut microbiome research,

with many studies elucidating the contributions of specific taxa to ecosystem services (Ley-

labadlo et al., 2020; Salyers et al., 1977; Kovatcheva-Datchary et al., 2009) and profiling the

changes in overall community composition related to various conditions (Machiels et al., 2014;

Petrov et al., 2017; Schirmer et al., 2018a; Zhu et al., 2018). The underlying assumption

of this focus is the idea that populations of similar taxonomy have conserved functional roles
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and will behave similarly in a given environment. Yet there is evidence against this assumption.

For instance, in a recent time-series study of exclusive enteral nutrition therapy for Crohn’s dis-

ease, highly-similar microbial populations (with average nucleotide identity >= 98%, even more

closely-related than taxonomic species) exhibited variable and even contradictory responses

to the treatment in different subjects (Runde et al., 2023). Local environmental context is

therefore a significant determinant of microbial behavior, more so than taxonomic identity. Fur-

thermore, a number of biological characteristics undermine the idea that shared taxonomy

necessitates shared functional capacity: the well-known plasticity of microbial genomes that

permits the exchange of genetic information even between distant clades (Gogarten et al.,

2002; Koonin, 2016; Frye et al., 2011), the phenomena of gene deletions (Zhu et al., 2015),

and the variable sizes of accessory genomes (Mira et al., 2010). These characteristics pre-

vent the unequivocal attribution of functional capacity to microbial genomes based on their

taxonomy alone, and highlight the utility of functional inference directly from sequence data as

opposed to reference-based approaches. Thus, an over-reliance on taxonomy may be limit-

ing our mechanistic understanding of the microbiome’s role in human health (Armour et al.,

2019). Accordingly, the ‘omics field has been gradually shifting towards functional investiga-

tions of microbial ecology (Armour et al., 2019; Doolittle and Booth, 2017). The investigations

of metabolic independence described in this thesis provide examples of entirely taxonomy-

independent analyses that yield significant insights into microbial ecology, thus demonstrating

the power of functional approaches in characterizing the dynamics of the gut microbiome.

6.2.3 The importance of open science practices, accessible open-source

software, and public data to scientific advancement

The growing open science movement offers a number of benefits to the scientific commu-

nity. Conducting research openly and collaboratively advances science faster, encourages

reproducibility and accountability, improves scientific accuracy by exposing early results to
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public scrutiny and feedback, and indeed could be considered our social responsibility (Mu-

nafò et al., 2017; Ramachandran et al., 2021; McKiernan et al., 2016). The ‘omics field has

long been at the forefront of open data practices (Byrd et al., 2020; Perez-Riverol et al., 2019)

and is uniquely suited to lead the adoption of other open science practices. We publish our

data in public repositories for sequences, proteins, metabolites, and models (O’Leary et al.,

2016; Parks et al., 2022; UniProt Consortium, 2023; Drula et al., 2022; Haug et al., 2020; Karp

et al., 2019; Aramaki et al., 2020; Galperin et al., 2021; Bateman et al., 2002); we develop

and use software that relies extensively on this public data (Beghini et al., 2021; Chaumeil

et al., 2019; Zdobnov and Apweiler, 2001); and our computational analysis workflows have

the potential to be highly reproducible (more so than wet lab protocols) if we carefully man-

age our computational environments and record software commands and parameters. A

large number of ‘omics software is open-source, and several labs and organizations have

spearheaded the practice of publishing reproducible analysis workflows alongside data (i.e.,

https://hypocolypse.github.io; https://merenlab.org/data/; (Arkin et al., 2018a)).

In my research, I have experienced first-hand the benefits of open science. I primarily use

publicly-available metagenomes rather than generating new sequence data; in fact, the work

described in Chapter 4 relies almost exclusively on public metagenomes, as does the (Del-

mont et al., 2021) study from Chapter 5 and several analyses in Chapter 3. In all of these

studies, the existing datasets led to new insights and provided critical context for any original

data. Repurposing public data is an extremely efficient way to do science, and as a commu-

nity, we can make it even more efficient by reducing the number of steps required for others

to use our public data. The FAIR data principles (Wilkinson et al., 2016) provide a framework

for increasing reusability of public data. One of the most critical areas of improvement, in my

experience, is publishing clear and comprehensive metadata that allows downstream users to

find the samples they need and to integrate them with other datasets. The types of metadata

required to properly describe a sample are often field-specific (for instance, gut metagenomes
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need metadata on host diet and health conditions, while marine metagenomes need meta-

data on filter size and sampling location) and thus difficult to standardize. This means that

the onus is currently on individual researchers to ensure their public data is accompanied by

enough metadata to accommodate a reasonable range of use-cases. Another strategy to in-

crease data reusability is to share pre-integrated datasets, thereby reducing the need for other

researchers to repeat the integration process. The digital microbe framework discussed in

Chapter 5 is one example of this.

Open science practices were also critical to the development of the metabolism reconstruc-

tion framework, and have helped it to become a widely-used tool. By developing my software

in a public Github repository and sharing it with scientists in my network, I was able to rapidly

fix bugs and add helpful features thanks to public feedback from its early users, making it a

truly community-driven effort. For example, the option to provide a list of enzymes as input to

‘anvi-estimate-metabolism‘ arose from a collaborator’s need to make it compatible with output

from his BLASTx filtering software (https://github.com/merenlab/anvio/pull/1890).

Moreover, the extensive documentation and tutorials associated with this tool enabled other

researchers to use it independently of my help, as evidenced by the large number of pub-

lications referencing my framework long before I published any formal journal article about

it – for examples, see (Rasmussen et al., 2023; Becken et al., 2021; Castro-Severyn et al.,

2021; Johnson et al., 2021; Choudoir et al., 2023; Komova et al., 2022; Nuppunen-Puputti

et al., 2022; Giacomini et al., 2023; Modin et al., 2022; Yang et al., 2023; Eberhard et al.,

2022; Breusing et al., 2022; Busi et al., 2022). However, one remaining bottleneck in the

open-source ‘omics software movement is the relative lack of community contributions to the

development and documentation of software, which are most often maintained and extended

by a small number of people typically originating from the same lab or organization. Expanding

the pool of developers to include people from the wider community with relevant experience

and ideas would increase the pace of progress, prevent stagnation of the codebase and re-
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duce issue buildup; this is indeed one of the supposed benefits of developing on public code

repositories like Github. However, the barrier for ‘outsiders’ – that is, people outside of the

original development team – to contribute code remains high. Primary software developers

need to lower this barrier in order to benefit from community involvement, whether that is by

providing guidelines on how to contribute, writing understandable and properly documented

code, or establishing a welcoming digital presence for their tool to encourage newcomers to

its development process. For example, I wrote a blog post including step-by-step instructions

for updating documentation on the anvi’o codebase to help anvi’o users share their expertise

with the rest of the community (Veseli, 2022).

Despite its benefits, significant obstacles remain before open science practices can be

widely and freely adopted by all (Dominik et al., 2022). Many scientists are constrained by

their available resources and energy; not everyone has the time, funding, institutional support,

technology, or knowledge necessary to follow open science practices. Yet small actions can

tip the scale in favor of systemic change. I was fortunate enough to have enough resources

and support to do my science openly, and I chose to do that because I think it is an important

direction for the scientific community to strive for. I hope that by doing so, I was able to

positively influence research in the microbial ‘omics field.
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