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ABSTRACT

Pregnancy is a fascinating biological process in which the best theory and evidence suggest

that the mother and newborn form two divergent processes which are themselves integrated into

the surrounding environment. Thus, the early life health profile of a newborn depends closely on

that of their mother as well as environmental factors during pregnancy. While many previous stud-

ies have provided evidence for such associations, they either tend to have small sample sizes and

hence limited statistical power, or only have studied a few of the factors in isolation. In this study,

we systematically probed the associations by means of principled Bayesian data analysis on a very

large commercial insurance claims dataset based in the United States. After a brief exposition of

the prerequisite of the statistical models employed in our study, we first identified newborns in the

dataset with potential mothers using appropriate diagnostic codes, which served as the foundation

of our subsequent work. Using this matched newborn–mother cohort, we first re-examined more

than a hundred previously reported associations between the sex ratio at birth, also known as the

secondary sex ratio, with environmental, socioeconomic and other stress factors. By showing that

these association did not form discernible patterns that popular adaptive theories of sexual selection

predict, we provided further evidence against these theories and call for a reformulation of this par-

ticular area of evolutionary theory for humans. To demonstrate further use of the matched cohort,

we performed a large cohort study on the associations between early-life neurodevelopmental dis-

orders and maternal immune activation, use of anti-infective prescription and various adverse birth

conditions. Echoing recent results suggesting a common aetiology of early life immune system

diseases and neurodevelopmental disorders as disruptions to modules of the microbiota–gut–brain

axis, our results demonstrated that many risk factors that may be effects of dysbiosis were indeed

associated with elevated risks of neurodevelopmental disorders. Finally, we included a preliminary

study on using Morgan fingerprints as an efficient method of attaining state-of-the-art predictive

performance on a commonly used drug–drug interactions dataset.
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CHAPTER 1

INTRODUCTION

Pregnancy is a fascinating biological process whereby new mammals organisms are gener-

ated. Traditionally assumed to be either containing the conceptus (embryo/foetus) like a bun in

the oven or subsuming it as a proper part, the gravida (i.e. the entity being pregnant with the con-

ceptus) is muchmore closely integratedmetabolically and immunologically than previously thought

(Kingma, 2019; Finn, 2023). At stake here is the concept of biological individuality, namely when

and where a (new) organism begin to exist (Guay and Pradeu, 2016a). Latest developments in

theoretical biology have marked a shift away from a strict substance view on individuality, ac-

cording to which organisms have well-defined boundaries, akin to objects studied in e.g. many

branches physics. Instead, mounting empirical evidences from across the different kingdoms sug-

gest that seemingly discrete individuals criss-crosses other such individuals at multiple length- and

timescales (cf. Dupré (2020)). As such, pregnancy may be most appropriately viewed as two (or

more, in the case of multiple gestation) diverging processes that, while the pregnancy lasts, are

highly intertwined (Meincke, 2022). More generally, organisms are increasing being treated as

processes rather than things in theoretical biology, giving rise to the new doctrine of processualism

Nicholson and Dupré (2018)

In a similar vein, earlier immunology has painted a picture in which a biological organism,

equippedwith an immune system, fend off external pathogens, as posited by the self–non-self theory

(Pradeu, 2020, §§2.1 & 3.1). Under this theoretical framework, the host (“self”) learns to preserve

itself and defend against foreign elements (“non-self”) such as infectious agents and xenografts.

Despite intuitive clarity and empirical success, the self–non-self theory has run into a multitude of

theoretical issues. For instance, autoimmunity poses a curious challenging on how to unambigu-

ously delineate the boundary between the self and the non-self. More importantly, there exist a large

number (in humans, as many as the genetically “self” cells) of genetically-foreign microorganisms

that are not only not eliminated by the host’s immune system, but play an active role in the proper
1



functioning and regulation of the immune system. The latter scenario has prompted many to con-

sider complex multicellular organisms (e.g. animals and plants) as “holobionts”: the “self” along

with its symbionts (Gilbert, 2014; Van de Guchte et al., 2018). This symbiosis is maintained by

the so-called “negotiated surveillance”, where the host is equipped with an evolved mechanism to

incorporate potentially self-replicating parts into its wholes, a process that upends classical under-

standing of such complex organisms as “anatomical, developmental, physiological, immunological,

genetic, or evolutionary” individuals (Gilbert et al., 2012). The new field of ecological evolutionary

developmental biology (Eco-Evo-Devo) (Gilbert et al., 2015; Sultan, 2021) takes up the insight and

further interrogates the way in which the co-construction shapes.

In the case of humans specifically, the role that the host–microbiota equilibrium play in health

and diseases has been increasingly recognized. Dysbiosis, the disruption of the equilibrium which

results generally in reduced taxonomic diversity and accumulation of large taxa, have been reported

to cause a wide range of diseases (Proal et al., 2017; Brown and Clarke, 2017; Walker, 2017; Sokol

et al., 2017). In autoimmune and inflammatory diseases, for example, multiple immunological path-

ways involving various types of T helper cells have been identified (Dehner et al., 2019), whereas

in infectious diseases, besides activation of pathways, the symbiotic microbiota also promote the

secretion of antimicrobial proteins and peptides (APPs) by leukocytes (Brown and Clarke, 2017).

While the microbiota are located primarily in the human gut, pioneering studies in immunology

have revealed the enormous extent to which the immune and the nervous systems are intimately re-

lated, giving rise the emergent subfield of neuroimmunology. This used to be a somewhat surprising

discovery, given that the brain had generally been regarded as immune-privileged: the absence of

immune cells in the brain, which is separated from the immune system by the blood-brain-barrier

(BBB). However, this has been demonstrated false on both accounts: not only is the BBB not en-

tirely impermeable, the brain also has its own immune system which interacts with the rest of the

immune system at multiple levels (Pradeu, 2020, §5.3), including that of the intestine. As such,

a considerable body of recent work has focused on the the microbiota–gut–brain (MGB) axis, in
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particular the way in which dysbiosis may trigger neuropsychiatric disorders (Cryan et al., 2019;

Jacobson et al., 2021).

To add a further twist, recent work has highlighted the effects of health conditions of the human

mothers on their offspring. Of particular importance is the transmission of the newborn microbiota

mediated by that of the mother. The former consensus view among biologists of the foetus growing

in a sterile uterus and acquiring colonies of bacteria while passing through the birth canal is all

but refuted by the finding that intrauterine microbiota are very similar to that of the vaginal tract

(Gilbert, 2014). More intriguing perhaps is the discovery that the the meonatal gut microbiota was

dissimilar from both the maternal gut and vaginal microbiota, but resembelled that of the placenta

and the oral cavity. Taken together, we have sketched portrait of the human immune system that

develops early on in pregnancy from a foetus–mother–microbiota community, with the foetus pro-

gressively acquiring microbiota and diverging from the maternal immune system as it develops into

a full-fledged holobiont Takeshita (2022).

Having introduced the biological problems we are about to investigate, we now present the

methodology for tackling these problems. Recent years have seen a growing interest in applying

Bayesianism to scientific reasoning. A key motivations is that the researchers’ belief in a scientific

theory should be allowed to come in degrees, calibrated by data gathered from experiments, rather

than an all-or-nothing affair (Lin, 2022). Although precise details might vary for different authors,

the vast majority of them accepts the following commitments (Bird, 2017; Sprenger and Hartmann,

2019, Theme: p. 28):

• Probabilism: the degrees of belief (credences) of researchers are represented by probability

distributions that follow the axioms of probability;

• Conditionalization: such credences shall be updated based on Bayes theorem, that is, given

new data/evidence D, the new credence (posterior) of a model/hypothesis M is equal to

the old credence (prior) conditioned on that evidence P (M|D) = % (M) % (D|M)
% (D) with

% (D) > 0.
3



The modelM in the above is usually taken to be parameterized by ) that constitutes the locus of sta-

tistical inference. M is considered generative, i.e. a joint probability distribution of the parameters

and the data.

While usually construed as an inductive mode of reasoning, Bayesianism, especially in practice

such as in this dissertation, is probably better seen as a form of inference to the best explanation

(IBE), also known as abductive reasoning (or simply abduction), which contrasts with deduction

where the result of an inference must follow from the premises from which it is inferred (though

some prominent practitioners of Bayesianism characterize it as deductive, cf. (Gelman and Shalizi,

2013)). As a non-necessary form of inference, abduction is often distinguished from the similar in-

duction, which is based solely on statistics (Douven, 2021, 2022). The distinction here is that rather

focusing exclusively on posterior probability, other explanatory factors also play an instrumental

role in proper scientific reasoning: these may include predictive accuracy, simplicity, elegance, and

other pragmatic considerations, reflected in the way model selection (better termed model compar-

ison) is carried out (Sprenger and Hartmann, 2019, Variations 7 & 11). There is another sense in

which proper statistical modelling in the sciences is not simply a matter of maximizing the (poste-

rior) probability, but rather, according to the statistician George Box, that:

the statistician knows, for example, that in nature there never was a normal distribution,

there never was a straight line, yet with normal and linear assumptions, known to be

false, he [sic] can often derive results which match, to a useful approximation, those

found in the real world. (Box, 1976, §2.5, p. 792)

The above is usually expressed in the pithy aphorism “all models are wrong, but some are use-

ful.” As Box’s example shows, in scientific modelling one inevitably makes uses of idealization,

which means that in Bayesian modelling one’s credence about scientific theories/hypotheses are

conditioned on the idealized model, which is called suppositional analysis in (Sprenger and Hart-

mann, 2019, §12.2). Formally, one assumes that the model M is given by M = (S, P), where

S is the sample space and P the set of probability distributions on S. Now the choice ofM, of
4



course, depends on the modelling aims of the researcher. Then, all evaluation of probability within

this idealization is implicitly conditioned onM . The consequence is that (Sprenger and Hartmann,

2019, §12.3, p. 322):

we should not read off our actual degrees of belief from a Bayesian model; instead, the

model informs our degrees of belief and our predictions by showing what they would

be under reasonable idealizing assumption,

and that

[the] soundness [of Bayesian inference] depends on whether the overall model is well

chosen or inadequate. (Emphasis added)

1.1 Outline

The remainder of the dissertation is organized as follows:

• In Chapter 2, we briefly review the theoretical background of the statistical analysis that

we perform in subsequent chapters, including measure-theoretic probability theory, regres-

sion analysis using the generalized linear model, the Bayesian workflow, and Markov Chain

Monte-Carlo.

• In Chapter 3, we show how to match newborns in the MarketScan dataset to mothers and

provide summary statistics for the various cohorts used in subsequent studies.

• In Chapter 4, we study the human sex ratio at birth (SRB), defined as the ratio between the

number of newborn boys to the total number of newborns, which is typically slightly greater

than 1/2 (more boys than girls) and tends to vary across different geographical regions and

time periods. We evaluate previously-reported associations as well as new hypotheses us-

ing statistical analysis of two very large datasets incorporating electronic medical records
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(EMRs): the IBM MarketScan (cf. Ch. 3) and the Swedish National Patient Register (Pa-

tientregistret). After testing more than 100 associations, we showed that neither dataset sup-

ported models in which the SRB changed seasonally or in response to variations in ambient

temperature. However, increased levels of a diverse array of air and water pollutants were

associated with lower SRBs, including increased levels of industrial and agricultural activity,

which served as proxies for water pollution. Moreover, some exogenous factors generally

considered to be environmental toxins turned out to induce higher SRBs. Finally, we iden-

tified new factors with signals for either higher or lower SRBs. In all cases, the effect sizes

were modest but statistically significant owing to the large sizes of the two datasets. We sug-

gest that while it was unlikely that the associations have arisen from sex-specific selection

mechanisms, they are still useful for the purpose of public health surveillance if they can be

corroborated by further empirical evidences.

• In Chapter 5, continuing the theme of mother–newborn link, we jointly probe association

between disorders affecting the nervous system and the immune system using again the Mar-

ketScan dataset. Although it is only relatively recently recognized how deeply the two sys-

tems are intertwined and how the proper functioning of them depend on each other — as

evidenced by the research programme of the microbiota–gut–brain (MGB) axis — our study

represents the only one that makes use of a unified cohort to study early-onset neurodevel-

opmental disorders (NDDs) and challenges to the health of the immune system of both the

newborn and the mother. Bayesian cross validation showed that while the count regression

models for immune system phenotypes failed the stress test of posterior predictive check,

the logistic regression models for neurodevelopmental disorders, covering autism spectrum

disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) and learning difficulties,

passed them. These models yielded results broadly in congruence with existing literature,

predicting lower risks of girls vs boys, and higher risks of newborn delivered via Caesarean

section and very premature births. For ADHD only, we also found that both maternal and
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newborn uses of prescription antiinfectives, as well as higher levels of PM2.5 pollution, were

associated with higher risks. Moreover, we also observed interesting results regarding time

of birth: there was quasi-monotonic trend in risks of NDD diagnosis as a function of year

of birth, and, for ADHD we detected non-linear effects of time of birth in year on the risks.

While direct causal claims were not warranted under our study design, our large sample size

and unified approach lent support to our suggestion that further studies should test the role

of immune activation in NDDs.

• In Chapter 6, we demonstrate that for the problem of drug–drug interaction (DDI) prediction a

simple neural networks usingMorgan fingerprints of drugs outperformed these more compli-

cated GNNmodels while spending only a small fraction of the time in training. Furthermore,

to improve training, we curated and made available a novel dataset with negative drug–drug

interaction examples derived from a very large electronic health records dataset. By contrast,

contemporary machine learning studies tackle the drug–drug interaction forecast problem by

featurizing drugs using graph neural networks (GNNs). This automated featurization allows

to avoid laborious handcrafting chemical features.

• In Chapter 7 we summarize the main results obtained in the previous chapters and conclude

this dissertation.
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CHAPTER 2

BACKGROUND

In this chapter, we first give precise of definitions of relevant mathematical objects required for

the statistical models that we will employ later.

2.1 Probability Theory

2.1.1 Preliminaries

Definition 2.1 (Collection of Sets). A topology T is a collection (i.e. set) of subsets of a set - such

that:

1. ∅, - ∈ A;

2. �1, �2 ∈ T =⇒ �1
⋂
�2 ∈ T ;

3. �1, �2, . . .︸       ︷︷       ︸
countably many

∈ T =⇒ ⋃
8
�8 ∈ T .

An algebra A over - is a collection of subsets such that:

1. ∅, - ∈ A;

2. � ∈ A =⇒ �{ ∈ A;

3. �1, . . . , �= ∈ A =⇒
=⋃
8=1

�8 ∈ A ∧
=⋂
8=1

�8 ∈ A.

Moreover, A becomes a 2-algebra if the last condition is changed into

4. �1, �2, . . .︸       ︷︷       ︸
countably many

∈ A =⇒ ⋃
8
�8 ∈ A ∧

⋂
8
�8 ∈ A.
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We say that a topology or an algebra is generated by a set or another collection of subsets called

the generator if the generated set is the smallest topology or algebra containing the generator. Fi-

nally, the Borel 2-algebra, which unifies topology and f-algebra, is the f-algebra generated by a

topology.

Definition 2.2 (Measure). Let - be a set and Σ a f-algebra over - . A measure ` is a function from

Σ to R satisfying:

• ` (∅) = 0.

• ∀� ∈ Σ : `(�) > 0.

• Given a family
{
� 9

}∞
9=1 of disjoint subsets of Σ, `

(⋃
9
� 9

)
=

∑
9
`

(
� 9

)
.

Furthermore, a measure is f-finite if there exists
{
� 9

}
9
such that - =

⋃
9
� 9 and ∀ 9 : `(� 9 ) < ∞.

Definition 2.3 (Measure and Probability Space). A measurable space is a 2-tuple (- , Σ), where

- is a non-empty set and Σ a f-algebra on - . By extension, a measure space is a 3-tuple (- , Σ,

`) where ` : Σ ↦→ � , where � ⊆ R. A probability space is a measure space when � = [0, 1] and

` (-) = 1, and is often written instead as (Ω, F , P) .

A common interpretation of the above formalism for probability spaces is this: the elements

of the sample space - are the possible outcomes of some observation or experiment, whereas the

event space Σ contains the events of interest, which are themselves sets of outcomes, and finally the

probability measure assigns each event to a real number in [0, 1] . In statistics, the most commonly

seen measures are the counting measure and the Lebesgue measure:

Definition 2.4 (Counting Measure). Given a set - and a f-algebra over - , the counting measure

is defined as:

`(�) = |�| (2.1)

where | · | the cardinality of a set.
9



Definition 2.5 (Lebesgue Measure). Let B be the Borel f-algebra on R generated by finite open

intervals. The measure on (R,B) given by

`( [0, 1]) = 1 − 0 (2.2)

for −∞ < 0 6 1 < ∞ is the Lebesgue measure.

A measure space (-, F , P), as defined above, can be a bit too abstract and arbitrary, and so we

often need to map it to another space that is easier to work with. In order to do this we shall first

introduce the concept of a measurable function

Definition 2.6 (Measurable Function). Let (-, Σ) and (.,G) be measurable spaces. A function

5 : - ↦→ . is said to be measurable if for any � ∈ G we have 5 −1(�) ∈ F .

2.1.2 Random Variables

With the definition of probability measure in hand, we can now proceed to the central object in

probability theory — random variables.

Definition 2.7 (Random Variable). Given a probability space (Ω, F , P) and a measurable space

(",M), an "-valued random variable (RV) - : Ω ↦→ " is a measurable function. Then, P

induces a pushforward measure P- on (",M) given by

P- (�) = P
(
-−1 (�)

)
(2.3)

for every � ∈ M . This induced measure is called the distribution of - , and we say that - has

distribution P- , or - ∼ P- .

Definition 2.8 (Distribution). In applications, however, we are mostly interested in real-valued ran-

dom variables, in which case " = R: for some positive integer : andM is the Borel f-algebra on

10



R: . In this case, the (joint) cumulative distribution function (CDF) is defined as

� (G1, . . . , G: ) = P- ((−∞, G1], . . . , (−∞, G: ]), (2.4)

The complementary cumulative distribution function (CCDF) is defined as

� (G1, . . . , G: ) = P- ((G1,∞), . . . , (G: ,∞)). (2.5)

In survival analysis, CCDF is known as the survival function and denoted as ((·). Finally, the

marginal CDF is defined as

�9 (G) = lim
G 9′→∞, 9 ′∈[1,:]−{ 9}

� (G1, . . . , G 9−1, G, G 9+1, . . . , G: ). (2.6)

Proposition 2.9. Some useful properties of CDF are (cf. (Shao, 2003, Exercise 10, p. 75)):

1. G: 6 G′: =⇒ � (G1, . . . , G:−1, G: ) 6 � (G1, . . . , G:−1, G
′
:
).

2. For all 9 ∈ [1, :]⋂Z, we have lim
G 9→−∞

� (G1, . . . , G: ) = 0 and lim
G 9→∞

� (G1, . . . , G: ) = 1.

Definition 2.10 (Independence). Let � be the joint CDF of RVs -1, . . . , -: and �9 the marginal

CDF of - 9 for 9 ∈ [1, :]
⋂
Z. Then the RVs are said to be independent if

� (G1, . . . , G: ) =
:∏
9=1

� (G 9 ). (2.7)

In application, we are often in the position of assessing the average behaviour of a random

variable over all values on which it is defined. Hence, we need some notion of summation:

Definition 2.11 (Lebesgue Integration). Let (-, F , `) be a measure space. A function B : - ↦→ R

11



is called a simple function if it can be expressed as

B(·) =
=∑
9=1

U 91� 9
(·), (2.8)

where the � 9 ’s are measurable subsets of - and 1� (·) is the indicator function on the set � , that

is

1� (G) =


1 G ∈ �

0 G ∉ �

. (2.9)

Given a simple function B, the Lebesgue integral w.r.t the measure ` is given by

∫
B 3` =

=∑
9=1

U 9 `
(
� 9

)
. (2.10)

Now let 5 be a measurable function - → R+. Then Lebesgue integral of 5 w.r.t. the measure ` is

defined as the supremum of all , given by

∫
5 3` = sup

{∫
B 3`

���� 0 6 B 6 5

}
. (2.11)

Though not required for probability measures, we can generalize the definition to R-valued func-

tions by simply partitioning the integrand into positive and negative parts:

∫
5 3` =

∫
5+ 3` −

∫
5− 3`, (2.12)

where


5+(·) = max( 5 (·), 0)

5−(·) = max(− 5 (·), 0)
. (2.13)
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We can pursue a different kind of generalization by means of integrating w.r.t. a different mea-

sure called the Lebesgue–Stieltjes measure, defined as

`LS = � (1) − � (0) for all 0, 1 ∈ R with 0 < 1. (2.14)

We can then define the Lebesgue–Stieltjes integral w.r.t. � as the Lebesgue integral w.r.t. the

measure `LS, written as
∫
5 3�.

A special class of integral is the expectation or expected value¹.

Definition 2.12 (Expected Value). Let - be a random variable on (Ω, F , P). Then the expected

value of - , written as E[-], is given by

∫
- 3P, (2.15)

and if �- is the CDF of P on R: , we also write

E[-] =
∫

3� (G). (2.16)

We now present a central result in probability theory which enables easy computation using

less well-known measures. To do so, we first observe that if ` is a measure on (-, Σ), then

_(�) =
∫
�
5 3`, (2.17)

for a non-negative Borel function is itself a measure on (-, Σ), with `(�) = 0 =⇒ _(�) = 0. If

we can find the requisite 5 we will be able to convert direct computation using _ with integration

over `. The following result gives the sufficient condition for the existence of such 5 :

Theorem 2.13 (Radon–Nikodym Theorem). Let ` and _ be f-finite measures on some measurable

1. Not expectation value, as is usually referred to in the physics literature, since it is a pleonasm.
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space (-, Σ).We say that _ is absolutely continuous w.r.t. ` if `(�) = 0 =⇒ _(�) = 0, written

as _ � `.

Suppose that _ � `. Then there exists a non-negative Borel function 5 such that Equation 2.17

holds, which is unique in the sense that if there is another function 6 that also satisfies Equation

2.17, then 5 and 6 are identical except on a set of measure 0 w.r.t. `. The last condition can be

written as 5 = 6 `-a.e., which stands for almost everywhere.

The function 5 is the called the Radon–Nikodym derivative of _ w.r.t. `, denoted
3_

3`
. For a

probability space, if
∫
5 3` = 1 and 5 > 0 `-a.e., then _ defined in 2.17 is the probability density

function (PDF) w.r.t. `.When ` is the counting measure, we call 5 a discrete PDF, and when ` is

the Lebesgue measure, we call 5 a continuous PDF.

We shall present examples of both discrete and continuous PDFs below in §2.1.3, but before

we proceed let us consider an illuminating example: a PDF that is neither discrete nor continuous,

namely the PDF of a continuous distribution subject to right-censoring.

Example 2.14 (Continuous CDFwith Constant Right-Censoring). Let) be an RV on the probability

space (Ω, F , P) whose CDF �) has a Lebesgue PDF. Let 2 be a constant such that �) (2) < 1.We

now define another RV - = min(), 2). This type of setup is typical of in experiments with right-

censoring, where the observed value of the RV of interest ) is only up to a certain upper bound

2.

Since �. (C) is discontinuous at 2, . does not have a Lebesgue PDF. It does not have a discrete

PDF either, as it is not absolutely continuous w.r.t. the counting measure on (∞, 2]. However, it is

absolutely continuous w.r.t. the measure ` + X2, where X2 (�) = 1� (2).

An addition use of Equation 2.17 is in the definition of conditional expectation, which is of the

bedrock of Bayesian statistics.

Definition 2.15 (Conditional Expectation). Let - be an integrable random variable on (Ω, F , P),
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that is

∫
|- | 3` < ∞. (2.18)

Then the conditional expectation of - given a sub-f-algebra A of F is an a.s.-unique random

variable E[- |A] such that for all � ∈ A

∫
�
E[- |A] 3P =

∫
�
- 3P. (2.19)

Moreover, for any event � ∈ F , the conditional probability of � given A is given by

P(� |A) = E[1� |A] . (2.20)

The notion of the conditional expectation of - given another RV . is also well-defined:

E[- |. ] = E[- |f(. )] . (2.21)

Finally, the conditional distribution of a RV given another one can be obtained from the con-

ditional expectation.

Theorem 2.16 (Conditional distribution). Let - be a random variable on (Ω, F , P) andA a sub-f-

algebra of F . Then, by Theorem 2.13, there exists a function P(�, l) on B(Ω) ×Ω such that

• for any � ∈ B(Ω), we have P(�, l) = P
(
-−1(�)

���A)
a.s.;

• for any l ∈ Ω, the function P(·, l) is a probability measure on (R=,B) ;

Moreover, if . is a measurable function from (Ω, F , P) to (Λ,G) , then there exists a function

P- |. (� |H) such that

• for any � ∈ B(Ω), we have P- |. (� |H) = P
(
-−1(�)

���. = H

)
a.s.;
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• for any H ∈ Λ, the function P- |. (·|H) is a probability measure on (R=,B) .

2.1.3 Probability Distributions

Most distributions presented below are parametric, although inBayesian statistics non-parametric

and semi-parametric statistical models are also widely used.

Definition 2.17 (Parametric Family (Shao, 2003, §2.1.2)). Let P) be a set of probability measures

on a measurable space (-, Σ) indexed by a parameter ) ∈ Θ. P) is said to be a parametric

family if Θ ⊆ R3 for some positive integer 3 and each element of P) is known whenever ) is

known. The set Θ is called the parameter space and 3 its dimension. A parametric family is said

to be identifiable if )1 ≠ )2 =⇒ P)1 ≠ P)2 .

Perhaps the most widely used family of probability distribution in statistics is the exponential

family (expfam).

Definition 2.18 (Exponential Family). Aparametric family {P) } of CDFswith PDFsw.r.t. af-finite

measure ` on a probability space (Σ, F ) is called an exponential family if

3P)
3`
(l) = ℎ(l) exp [(()) · T(l) − �())] . (2.22)

Here, ℎ(l) is called the base measure, ( the natural parameter, �()) the log-partition function and

T(l) the sufficient statistic.

The notion of a statistic being “sufficient” introduced in Definition 2.18 for estimating a param-

eter w.r.t. a sample if, roughly speaking, no other statistic can provide any additional information

regarding the value of the parameter. A formal definition is as follows.

Definition 2.19 (Sufficient Statistics). Let - be a sample for some parametric familyP = {P\ : \ ∈ Θ} .

Then a statistic ) (-) is said to be sufficient if the conditional distribution of - given ) does not

depend on \.
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The notion of a sufficient statistic in the context of the exponential family turns out to be handy

in improving the computational efficiency of some statistical models (c.f. Theorem 2.21 below).

2.2 Regression Analysis

In statistics, we often pose our question in the form of modelling the relationship between de-

pendent variables (the outcome or response) and independent variables (the predictors) using re-

gression analysis. A common assumption to make is that the dependent variables can be expressed

as a function of some linear combination of the independent variables. The model that encodes

this assumption is the generalized linear model (GLM), which is a very popular class of regres-

sion models which extends the ordinary linear model (OLM). In this case, the response variable

is allowed to be dependent on the predictors via a link function. While GLMs reduce to the OLM

when the link function is the identity function and the outcome follows the normal distribution, one

crucial difference between the general case and the special case is that the likelihood equation may

not have a closed-form expression.

Definition 2.20 (Generalized Linear Model (Agresti, 2015, Ch. 1)). The generalized linear model

consists of three components:

1. random component: this is the outcome variable y;

2. linear predictor: this is the design matrix - along with the model parameters #;

3. link function: this is the function that directly maps from the mean of the random component

to the linear predictor

E[y] = 6−1 (
->#

)
. (2.23)

Finally, we require that the y be distributed as an exponential family.

Below are a few useful properties of the GLM.
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Theorem 2.21 (Properties of GLM). 1. The sufficient statistics for the model parameters # are

) (#) =
#∑
==1

H=G=< < ∈ [1, ?]
⋂
Z (2.24)

= ->y. (2.25)

Thus, we can obtain the same inference for # if we group entries - and add up the corre-

sponding values in y.

2. If the natural parameter of the exponential family part is given by ((\) = (
(
->#

)
, then the

regression coefficients # have conjugate priors — such that the posterior and prior belong

to the same parametric family — given by

Pc ( #| 6, a) = 5 (6, a) exp
[
6># − a� (#)

]
, (2.26)

where 6 and a are hyperparameters.

2.3 Bayesian Workflow

In this section, we provide a general Bayesian workflow (Gelman et al., 2020) that will be

employed in the subsequent chapters. This workflow, which consists of the three steps of model

building, inference and model checking, enables us to handle uncertainty that arises in various

aspects of the analytical process in a disciplined manner. Figure 2.1 gives a high-level overview

of how one might go about with the workflow, bearing in mind that not every step in the workflow

will necessarily be carried out in a given study.

Before beginning, we assume that a dataset is already available and fixed, and while this is the

case for our studies, it may not be so in general: for example, in drug trials the data-collection

process is ongoing until the conclusion of the trial. In either case, the first step in the workflow is to

pick (an) initial model(s), which is usually drawn from prior research. Ideally, these models should
18



Initial model

Prior predictive check

Fit model Check
model

Computa-
tion valid

Computation
invalid

Postprocessing:
Posterior predictive check

Prior sensitivity
Influential data points

Modify Model:
Add/remove predictors
Modify likelihood/priors

Add data

Evaluate
Model

Model
untrustworthy

Model
trustworthy

Model accepted:
Model Comparison
Stacking/Averaging

Figure 2.1: An overview of the Bayesian workflow, simplified from (Gelman et al., 2020)

capture the main effect that the researcher aims to model and are relative easy to fit. After specifying

the initial models, we can optionally perform the prior predictive check, which uses draws from the

prior predictive distribution, that is the distribution of the unknown but observable H:

P(H) =
∫
P(\)P(H |\) 3\. (2.27)

In effect, this is doing fake data simulation to generate possible observed data in order to assess

how plausible the model is given the data.

The next step is fitting the model(s) to the actual observed data using MCMC (cf. §2.4) or

alternatively some approximation method such as integrated nested Laplace approximation (INLA)

(Rue et al., 2017). Since we will be using a variant of Hamiltonian Monte Carlo (HMC) in all our

studies, we shall assume that a whole gamut of model checking methods are available. After model

fits terminate either successfully or due to out-of-time (OOT) or out-of-memory (OOM) errors, we
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proceed to the validation of the computation obtained. In the case of OOT or OOM, one could try

to reduce either the model by removing some predictors or using simplified forms of the predictors,

or use a subset of the data. On the other hand, if the computation terminated, it can be validated

using the diagnostic tools that come with HMC (cf. §2.5). If any abnormalities are detected, the

model components may need to be modified (e.g. likelihood/prior or the functional forms of the

predictors) until the results are valid.

If the computation turns out to be valid, we can now post-process the model fit to evaluate

its trustworthiness. Possible actions include prior sensitivity analysis, posterior predictive check

(PPC), cross validation (CV) and examination of the influences of particular data points, the last

two of which is usually done using leave-one-out cross validation (LOO-CV) (cf. §2.6). PPC is

done in an analogous way to Equation 2.27 but now with all the observed data

P ( H̃ | H) =
∫
P ( \ | H) P ( H̃ | \) 3\. (2.28)

Similar to the previous step, in the event that the model fails to pass some set of the stress test, we

shall modify the model components until the results are trustworthy.

2.4 Markov Chain Monte-Carlo

In this section, we provide a brief exposition of the theory of MCMC, and specifically the No-

U-Turn sampler (NUTS) variant of the HMC sampler (Hoffman et al., 2014), which is the main

workhorse that powers all Bayesian data analysis performed in our studies. The essence of MCMC

is to create a Markov chain of which the stationary distribution is the target of the simulation. A

Markov chain, moreover, is nothing more than a “memoryless” stochastic process.

Definition 2.22 (Markov Chain). A transition kernel c is a function on - × B(-), where B(·) is

the Borel f-algebra on a set, that satisfies the following conditions:

• c(G, ·) is a probability measure for all G ∈ -;
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• c(·, �) is measurable for all � ∈ B(-).

Intuitively, the transition kernel encodes the conditional probability density of the states given an

initial state G, that is

P(�|G) =
∫
�
c(G, G′) 3G′. (2.29)

Given a transition kernel c, we can define the Markov chain induced by it as a sequence of

random varaiables {-=} such that for any C the conditional distribution of -C on all previous entires

in the sequence is equal to the conditional distribution of -C on just the last element, -C−1. More

specifically

P(-C ∈ �|-0 = G0, · · · , -C−1 = GC−1) = P(-C ∈ �|-C−1 = GC−1) (2.30)

=

∫
�
c(G: , 3G). (2.31)

Definition 2.23 (MCMC). AMarkov Chain Monte-Carlo (MCMC) method for generating a sample

from some target 5 is any method producing an ergodic Markov chain with stationary distribution

5 .

We are now ready to introduce the classical Metropolis–Hastings algorithm which serves as the

foundation for many improved MCMC methods, including HMC and NUTS.

Definition 2.24 (Metropolis–Hastings). The Metropolis–Hastings algorithm is an acceptance/re-

jection sampling method that converges to the given target. The algorithm is as follows:

1. For C = 0, draw a sample of the starting point \0 from a starting distribution 50(\).

2. For C > 0 draw a sample \∗ from the proposal distribution �C
(
\∗ | \ (C−1)

)
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3. Compute the acceptance ratio

d =

5 (\∗) /�C
(
\∗ | \ (C−1)

)
5
(
\ (C−1) ) /�C ( \ (C−1) �� \∗) (2.32)

4. Accept/reject:

\C =


\∗ with probability min(d, 1)

\ (C−1) otherwise
. (2.33)

The Markov chain produced by the Metropolis–Hastings algorithm is guaranteed to have 5 as

its stationary distribution.

Theorem 2.25. Let
{
\ (C)

}
be the chain produced by theMetropolis–Hastings algorithm, andSupp( 5 )

the support of 5 , i.e. Supp( 5 ) = {G | 5 (G) > 0} . Then for any proposal distribution whose support

includes Supp( 5 ), the stationary distribution of the chain is 5 .

However, as the convergence is only asymptotic, we are far more interested in algorithms that

convergences efficiently. Unfortunately, the vanilla Metropolis–Hastings algorithm is known to

exhibit random-walk behaviours, so in order to suppress such behaviours we resort to Hamiltonian

Monte Carlo, which adds an auxiliary parameter called the “momentum”. While efficient, as we

will see in the definition of HMC, this method requires the gradient of the target, limiting the

possible range of targets that can be simulated. Fortunately, for the vastmajority of statistical models

the gradient can be easily computed by applying the chain rule of differentiation to elementary

functions.

Definition 2.26 (Hamiltonian Monte Carlo). The Hamiltonian Monte Carlo (HMC) is a hybrid

Monte Carlo method, i.e. it combines MCMC with deterministic simulation methods. It proceeds

as follows for all C > 0:
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1. Draw the initial momentum parameter A (0) from amultivariate normal distributionN (0, "),

where " is the mass matrix.

2. Perform the “leapfrog” steps for ! times:

(a) Update the momentum parameter A using half-step of the gradient of the target

A ← A + 1
2
n∇\ 5 (\). (2.34)

(b) Update the actual parameter \

\ ← \ + n"−1A. (2.35)

(c) Use the gradient to half-update A

A ← A + 1
2
n∇\ 5 (\). (2.36)

3. Finally, apply the Metropolis–Hastings algorithm (Defintion 2.24) to the output of the !th

leapfrog step \∗ and A∗, with acceptance ratio

d =

exp
(
5 (\∗) − 1

2
A∗ · A∗

)
exp

(
5
(
\ (C−1) − 1

2
A (0) · A (0)

) . (2.37)

The number of leapfrog steps !, stepsize n and the mass matrix " are parameters that need to be

set for optimal performance, which can be done using an adaptive scheme such as NUTS (Hoffman

et al., 2014).
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2.5 MCMC Convergence

After obtaining a sample of the target, we then need to assess if the MCMC outputs constitute a

valid computation. We do this by checking if the Markov chain is indeed stationary. There are two

key metrics of interest, the split-'̂ and the effective sample size. From now on, we assume that the

target 5 can be written as a parametric generative model with negative log-posterior − log [P(\ |H)]

and that we have run " Markov chains each with # iterations, giving a total of ( = "# draws

across all chains.

Definition 2.27 (Split-'̂). Let \ (=<) be the =th draw of the <th chain, \ (·<) the average of draws

from the <th chain and \ (··) the average for all draws. We now compute � and , , the between-

and within-chain variances, as follows (Vehtari et al., 2021):

� =
#

" − 1

"∑
<=1

[
\
(··) − \ (··)

]2
,where (2.38)

\
(·<)

=
1
#

#∑
==1

\ (<=) (2.39)

\
(··)

=
1
#

"∑
<=1

\
(·<); (2.40)

, =
1
"

1
# − 1

"∑
<=1

#∑
==1

[
\ (=<) − \ (·<)

]2
. (2.41)

The scale reduction factor, or '̂, is then given by

'̂ =

√
V̂(\ |H)
,

,where (2.42)

V̂(\ |H) = # − 1
#

, + 1
#
�. (2.43)

'̂ represents the factor by which the scale of the current distribution of \ would reduced as # →∞.

Finally, before computing '̂ we split each of the " chain in half so as to minimize the influence of
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non-stationary chains that cover a similar range of values (see Figure 1b in (Vehtari et al., 2021)

for an example).

Another issue with MCMC samples is that they may be autocorrelated, which needs to be cor-

rected. We use the concept of an effective sample size to formalize this.

Definition 2.28 (Effective Sample Size). The effecitve sample size (ESS) is a measure of howmany

independent samples there are for a MCMC sample. It is given by

(eff =
#"

1 + 2
)∑
C=1

dC

, (2.44)

where dC is the autocorrelation for lag C. See (Vehtari et al., 2021) for how to compute dC .

For HMC sampler, it is usually possible to produce antithetic samples, that is, negatively corre-

lated samples, so that the ESS may be larger than the number of MCMC samples. For the purpose

of model diagnosis, (Vehtari et al., 2021) recommends '̂ < 1.01 for all variables of interest and

(eff > 400 based on 4 diffusely-intiated independent chains, or (eff > 100 per chain if running

more chains. By contrast, (Kruschke, 2015) recommends that (eff > 10000 as an heuristic for

stable estimation of tail quantities.

2.6 Model Evaluation

Formodel evaluation, wewill use approximated leave-one-out (LOO) cross-validation via Pareto

smoothed importance sampling (PSIS) (Vehtari et al., 2017), which computes the expected log

pointwise predictive density (ELPD) for new data points, given by

ELPDloo =

#∑
8=1

log
∫
P(H8 |))P() |H−8) 3)︸                        ︷︷                        ︸
P(H8 |H8−1)

, (2.45)
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by drawing samples of ) from the posterior using importance sampling with importance ratios

A
(B)
8

=
1

P
(
H8 |) (B)

) , B ∈ [1, (] ∩ Z, (2.46)

smoothing data points whose A (B) fall in the top 20% with the quantile function of the generalized

Pareto distribution

|̃
(B)
8

= �−1
Pareto

(
I − 1/2
0.2(

)
, I ∈ [1, 0.2(] ∩ Z (2.47)

truncating the weights |(B)
8

at (3/4|̃8, where |̃8 is the mean of the |̃(B)
8

’s over all B ∈ [1, (] ∩ Z, to

ensure finite variance, and finally evaluating the integrand in (2.45)

P(H8 |H8−1) ≈
(

(∑
B=1

A
(B)
8

. (2.48)

Finally, the LOO ELPD estimator can be approximated with

ˆELPDPSIS−LOO =

#∑
8=1

log


(∑
B=1

|
(B)
8
P

(
H8 | \ (B)

)
(∑
B=1

|B
8


, (2.49)

where |(B)
8

are the truncated weights above. However, if the shape parameter :̂ of the fitted general-

ized Pareto distribution is greater than 0.7, the corresponding data point is considered “problematic”

— it is an outlier that has a large influence on the ELPD — and if the number of problematic data

points is large,  -fold cross-validation (CV) would be more robust than PSIS-LOO (Vehtari and

Lampinen, 2002; Vehtari et al., 2017). To perform  -fold cross validation, the data is partitinoed
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in to  subsets {H: } :=1 and compute the log predictive density for each fold given the other folds

logP
(
H8 | H(−:)

)
= log

∫
P ( H8 | \) P

(
\ | H(−:)

)
3\. (2.50)

We will use  = 10 whenever LOO-CV is invalid and  -fold CV would have to be used.
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CHAPTER 3

IBM MARKETSCAN

3.1 Cohort Construction

We used for our analysis the IBM Health MarketScan commercial insurance dataset (IBMWat-

son Health, 2019), covering health event of more than half of the US population during 2003–2018.

The data provide person- and daily-level resolution of disease diagnoses, prescription medication,

medical procedures, and family linkage information inferred from co-insurance data. Our analysis

of these data enabled us to calculate mother-child links for over 3.1 million mother-child pairs.

Specifically, we matched newborns with their mothers using the following procedure. The new-

born was identified as an enrollee 0 years and at least one live-delivery diagnostic code in the In-

ternational Classification of Diseases (ICD, versions 9 and 10) (World Health Organization, 1992).

The mother was identified as a female covered by the same family insurance policy as the newborn

having at least one live-delivery-related diagnostic code registered within 3 days of the the day

on which the first newborn delivery-related code was registered, which was treated in subsequent

analyses as the birthday of the said newborn. For the sex ratio at birth study (Ch. 4), we used an

earlier version of the data, but the procedure up to this point was the same. In that dataset, we found

3,133,062 newborns, of which 2,096,775 were matched to a mother. Our approach was notably dif-

ferent from that of (Messinger et al., 2020), where the objective was to track the menstrual periods

of female enrollees irrespective of births.

For models concerning neurodevelopmental disorders (NDDs) (Ch. 5), since we are interested

in the health profile of the newborns in early life, we required newborns to have been followed

up immediately afterbirth with no more than 1 month of lapse between birth and first day of en-

rolment (= = 2,843,213), as in many cases the enrolment period started only on the first day of

the month following the month of birth. As the minimum age at diagnosis of the NDDs is 1 (cf.

(Straub et al., 2021)), we only have included only newborns with at least 1 year of postnatal follow-
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up (= = 1,880,399). Moreover, since we are also interested in probing the effect of air pollution

(PM2.5), we have additionally subset individuals with geographical information encoded with Fed-

eral Information Processing Standard Publication (FIPS), which covered subjects with enrolment

between 2003–2011 (= = 834,290). The process is summarized succinctly in Figure 3.1.

All newborns 2003–2018
= = 3,541,459

Linked to mothers with delivery ICD codes ±3 d
= = 3,133,181

Enrolled since birth (6 1 mo of delay)
= = 2,843,213

Age of mother at birth within [13, 45]
= = 2,829,666

Enrolled since birth > 1 yr continuously
= = 1,880,399

With county (FIPS) information
= = 834,290

Cohort 1:
Only child or first-born child

= = 1,627,419

Cohort 2:
Only child or first-born child

= = 752,895

Enrolled since birth 6 yr to 12 yr continuously
= = 273,374

Cohort 3:
With county (FIPS) information

= = 191,659

Figure 3.1: Flowchart for inclusion/exclusion of subjects. Nodes with increased line thickness
indicated final cohorts used either in the main analysis or in some sensitivity analysis.
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3.2 Summary Statistics

Tables 3.1 to 3.3 contain basic summary statistics of the 3 cohorts.

Risk Factor Total No MIA MIA

Sex: Female 782755 (48.10%) 569047 (48.10%) 213708 (48.09%)
Premature Birth: 32 ∼ 37 weeks 61411 (3.77%) 42518 (3.59%) 18893 (4.25%)
Very Premature Birth: < 32 weeks 25907 (1.59%) 18590 (1.57%) 7317 (1.65%)
Caesarean Section Delivery 575059 (35.34%) 405193 (34.25%) 169866 (38.23%)
Low Birth Weight: 6 2500 g 17958 (1.10%) 12350 (1.04%) 5608 (1.26%)
High Birth Weight > 4500 g 4792 (0.29%) 3429 (0.29%) 1363 (0.31%)
Teenage Mother: 13 ∼ 19 years old 7638 (0.47%) 4955 (0.42%) 2683 (0.60%)
Advanced Age Mother: 35 ∼ 45 years old 446952 (27.46%) 328486 (27.77%) 118466 (26.66%)

Gestation weeks 277.54 ± 11.34 [160.00, 280.00] 277.62 ± 11.21 [160.00, 280.00] 277.33 ± 11.66 [160.00, 280.00]
Years of follow-up 3.76 ± 2.83 [1.00, 16.00] 3.80 ± 2.86 [1.00, 16.00] 3.66 ± 2.73 [1.00, 15.97]

Table 3.1: Summary Statistics of maternal risk factors for Cohort 1: (cf. Figure 3.1); MIA stands
for maternal immune activation, defined as the presence of any diagnosis codes of at least one of
the immune-system related disorders; counts are represented by raw counts and their percentage in
parentheses “()”; continuous variables are represented by their mean ± standard deviation as well
as range in square brackets “[]”

Risk Factor Total No MIA MIA

Sex: Female 362347 (48.13%) 271215 (48.13%) 91132 (48.12%)
Premature Birth: 32 ∼ 37 weeks 20401 (2.71%) 14771 (2.62%) 5630 (2.97%)
Very Premature Birth: < 32 weeks 11046 (1.47%) 8193 (1.45%) 2853 (1.51%)
Caesarean Section Devliery 264688 (35.16%) 192440 (34.15%) 72248 (38.15%)
Low Birth Weight: 6 2500 g 5401 (0.72%) 4006 (0.71%) 1395 (0.74%)
High Birth Weight > 4500 g 2167 (0.29%) 1597 (0.28%) 570 (0.30%)
Teenage Mother: 13 ∼ 19 years old 4506 (0.60%) 2963 (0.53%) 1543 (0.81%)
Advanced Age Mother: 35 ∼ 45 years old 244372 (32.46%) 185376 (32.90%) 58996 (31.15%)

Gestation weeks 278.02 ± 10.39 [160.00, 280.00] 278.06 ± 10.35 [160.00, 280.00] 277.92 ± 10.52 [160.00, 280.00]
Years of follow-up 4.60 ± 3.39 [1.00, 16.00] 4.60 ± 3.40 [1.00, 16.00] 4.61 ± 3.35 [1.00, 15.96]
Mean PM2.5 11.36 ± 2.34 [4.09, 21.29] 11.37 ± 2.35 [4.09, 21.29] 11.31 ± 2.30 [4.20, 20.36]
Maximum PM2.5 12.29 ± 2.60 [4.33, 25.78] 12.31 ± 2.63 [4.33, 25.78] 12.23 ± 2.54 [4.33, 24.79]
Median PM2.5 11.40 ± 2.35 [4.13, 22.05] 11.42 ± 2.37 [4.13, 22.05] 11.36 ± 2.31 [4.18, 20.55]
Population PM2.5 11.35 ± 2.33 [4.08, 21.19] 11.36 ± 2.34 [4.08, 21.19] 11.31 ± 2.29 [4.25, 20.37]

Table 3.2: Summary Statistics of maternal risk factors for Cohort 2 (cf. Figure 3.1); MIA stands
for maternal immune activation, defined as the presence of any diagnosis codes of at least one of
the immune-system related disorders; counts are represented by raw counts and their percentage in
parentheses “()”; continuous variables are represented by their mean ± standard deviation as well
as range in square brackets “[]”
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Risk Factor Total No MIA MIA

Sex: Female 78514 (48.11%) 58303 (48.05%) 20211 (48.30%)
Premature Birth: 32 ∼ 37 weeks 3993 (2.45%) 2855 (2.35%) 1138 (2.72%)
Very Premature Birth: < 32 weeks 2330 (1.43%) 1755 (1.45%) 575 (1.37%)
Caesarean Section Delivery 58515 (35.86%) 42362 (34.91%) 16153 (38.60%)
Low Birth Weight: 6 2500 g 1139 (0.70%) 849 (0.70%) 290 (0.69%)
High Birth Weight > 4500 g 398 (0.24%) 304 (0.25%) 94 (0.22%)
Teenage Mother: 13 ∼ 19 years old 371 (0.23%) 252 (0.21%) 119 (0.28%)
Advanced Age Mother: 35 ∼ 45 years old 69112 (42.35%) 52639 (43.38%) 16473 (39.36%)

Gestation weeks 278.13 ± 10.21 [160.00, 280.00] 278.14 ± 10.23 [160.00, 280.00] 278.09 ± 10.15 [160.00, 280.00]
Years of follow-up 8.59 ± 1.66 [6.00, 12.00] 8.59 ± 1.67 [6.00, 12.00] 8.59 ± 1.66 [6.00, 12.00]
Mean PM2.5 11.40 ± 2.31 [4.18, 20.64] 11.40 ± 2.33 [4.18, 20.64] 11.40 ± 2.25 [4.38, 20.36]
Maximum PM2.5 12.33 ± 2.56 [4.39, 25.40] 12.34 ± 2.59 [4.39, 25.40] 12.30 ± 2.49 [4.75, 24.79]
Median PM2.5 11.45 ± 2.32 [4.18, 22.05] 11.45 ± 2.34 [4.18, 22.05] 11.45 ± 2.27 [4.36, 20.55]
Population PM2.5 11.40 ± 2.30 [4.17, 20.73] 11.40 ± 2.32 [4.17, 20.73] 11.40 ± 2.25 [4.42, 20.37]

Table 3.3: Summary Statistics of maternal risk factors for Cohort 3 (cf. Figure 3.1); MIA stands
for maternal immune activation, defined as the presence of any diagnosis codes of at least one of
the immune-system related disorders; counts are represented by raw counts and their percentage in
parentheses “()”; continuous variables are represented by their mean ± standard deviation as well
as range in square brackets “[]”
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CHAPTER 4

OBSERVABLE VARIATIONS IN HUMAN SEX RATIO AT BIRTH

This chapter was adapted from (Long et al., 2021). See this link for author information and

contributions.

4.1 Introduction

Because human male gametes bearing X or Y chromosomes are equally frequent (being pro-

duced by meiosis symmetrically partitioning two sex chromosomes), and because ova bear only X

chromosomes, one would expect a sex ratio at conception of exactly 1
2 (Boklage, 2005). Indeed, a

recent study using fluorescent in situ hybridization and array comparative genomic hybridization

showed that the sex ratio at conception (SRC) was statistically indistinguishable from 1
2 (Orzack

et al., 2015). Nevertheless, the apparent sex ratio at birth (SRB), also known as the secondary sex

ratio, has been documented to significantly deviate from 1
2 under various circumstances, suggesting

that a proportion of embryos are lost between conception and birth.

At least three processes may affect the observed SRB. First, female-embryo pregnancies may

terminate early in development, driving the SRB up. It has been documented that these excess

female-embryo losses tend to occur primarily during the first and early-second trimesters of preg-

nancy. Second, male-embryo deaths would drive the apparent SRB down. Male-embryo losses have

indeed been observed to occur during the late-second and third trimesters (Bruckner and Catalano,

2018). Third, SRBmay be affected by peri-conceptual maternal hormonal levels (Grant and Cham-

ley, 2010; James, 2013). Past studies proposed that the SRB can fluctuate with time and may be

driven by a number of environmental factors, such as chemical pollution, events exerting psycho-

logical stress on pregnant women (such as terrorist attacks and earthquakes), radiation, changes in

weather, and even seasons of conception (Table 4.1).

While there are multiple studies which have observed the positive associations between air pol-
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Exogenous Factor Number of Studies Sample Size

Dioxins (Terrell et al., 2011) 13 291
Polychlorinated biphenyls (PCBs) (Terrell et al., 2011) 9 98
1,2-Dibromo-3-chloropropane (DBCP) (Terrell et al., 2011) 2 29
Dichlorodiphenyltrichloroethane (DDT) (Terrell et al., 2011) 4 1623
Hexachlorobenzene (HCB) (Terrell et al., 2011) 2 262
Vinclozolin (Terrell et al., 2011) 1 95
Multiple pesticides (Terrell et al., 2011) 5 382
Lead (Terrell et al., 2011) 5 6566
Methylmercury (Terrell et al., 2011) 1 4808
Multiple metals (Terrell et al., 2011) 10 1015
Non-ionizing radiation (Terrell et al., 2011) 12 2926
Ionizing radiation (Terrell et al., 2011) 15 4959
Seasonality (Lerchl, 1998; Melnikov and Grech, 2003) 2 -
Ambient temperature (Catalano et al., 2008; Helle et al., 2009; Fukuda et al., 2014; Dixson et al., 2011) 4 -
Economic stress (Catalano, 2003) 1 -
Terrorist attacks (James and Grech, 2017) 2 -

Table 4.1: Exogenous factors reported in the literature to have an impact on the SRB (Terrell et al.,
2011; James and Grech, 2017). A “-” indicates that sample sizes were not mentioned in the articles
reporting or reviewing the corresponding results.

lution and spontaneous abortion (Leiser et al., 2019; Zhang et al., 2019a), most of those conclusions

based on analyses of relatively small samples (Table 4.1), severely curtailing their statistical power.

In this study, we harnessed the power of 2 very large datasets: the MarketScan insurance claim

data (Hansen, 2017) in the United States (which records the health events of more than 150 million

unique Americans, with more than 3 million unique newborns recorded between 2003 to 2011), and

Sweden’s birth registry data (covering the birth and health trajectories of over ∼ 3 million newborns

from 1983 to 2013) (Emilsson et al., 2015). Our present study is the first systematic investigation

of numerous chemical pollutants and other environmental factors using large datasets from two

continents.

4.2 Methods

4.2.1 Data

The IBM Health MarketScan dataset (Hansen, 2017) represents 104,565,671 unique individu-

als and 3,134,062 unique live births. The Swedish National Patient Register (Emilsson et al., 2015)

record health statistics for over ten million individuals, and 3,260,304 unique live births. We juxta-
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posed time-stamped birth events in the two countries with exogenous factor measurements retrieved

from the US National Oceanic and Atmospheric Administration, the US Environmental Protection

Agency (EPA), the Swedish Meteorological and Hydrological Institute and Statistics Sweden. We

used a subset of the MarketScan data that contained information on livebirths between 2003 to

2011 with county information encoded in Federal Information Processing Standards (FIPS) codes

and a family link profile indicating the composition of the households in the dataset. The date, geo-

graphic distribution, and the mothers of the newborns can be directly extracted from these datasets.

For environmental factors, we used the Environmental Quality Index (EQI) data compiled by the

United States Environmental Protection Agency (Lobdell et al., 2011; Messer et al., 2014).

4.2.2 Cluster Analysis

In order to simplify subsequent analyses, we first performed hierarchical clustering analysis on

the Spearman’s rank correlation coefficients matrix (d), using the Ward’s method, which reduced

the the EQI dataset’s dimensionality. We then used the R-language package pvclust (Suzuki and

Shimodaira, 2006) to minimize the total within-cluster variance (Legendre and Legendre, 2012).

The resulting dendrogram and list of factors can be found in the SI. Each cluster contains at least

two factors and is represented by the mean of all the elements in the cluster.

4.2.3 Regression Analysis

We used multilevel Bayesian logistic regression with random effects implemented in the R-

language package rstan (Stan Development Team, 2020). To facilitate model building, we used

the R-language package brms (Bürkner, 2017) with default priors. Sampling was performed with

the No-U-Turn sampler (NUTS) (Hoffman et al., 2014) with 500 warm-up steps and 1500 iteration

steps with 28 Markov chains, of which the convergence was asseessed using the '̂ statistic (Vehtari
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et al., 2021). The model for the 9 th factor (predictor) is given as follows:

logit
(
? 9

)
= log

(
? 9

1 − ? 9

)
= U[:] 9 + #

ᵀ
9
x 9 , (4.1)

where ? 9 is the probability that a newborn is male, x 9 is the vector representing the 9 th factor, # 9

their coefficients, and U[:] 9 the intercept for the : th group-level, representing states or counties

in the US, and kommuner (municipalities) or län (counties) in Sweden, whenever applicable. The

group-level effect was modeled for a single random effect by

U 9 = `0 + [ 9 , (4.2)

[ 9 ∼ N
(
0, f2

[

)
(4.3)

and for two random effects, representing e.g. state- and county-specific effects, by

U 9 = `0 + [ 9 + a 9 , (4.4)

[ 9 ∼ N
(
0, f2

[

)
, (4.5)

a 9 ∼ N
(
0, f2

a

)
, (4.6)

where [ 9 and a 9 are independent of each other and for all 9 (Gelman and Hill, 2006). Moreover, we

partitioned the independent variables into septiles, so that # 9 ∈ R6, with one regression coefficient

for each of the six septiles other than the first, which was treated as baseline (Khan et al., 2019).

We applied logistic regression in two ways. First, to assess the effect of environmental factors,

we regressed each of the individual factors’ septiles against the SRB, with each sample point repre-

senting a county. Therefore, each septile, aside from the baseline, has a coefficient. Second, to test

whether maternal diagnostic history (DX) affected the SRB, we regressed a DX’s indicator variables

against the SRB, with each sample point representing a newborn/mother pair. For model selection

in both cases, we performed repeated (10 times) 10-fold cross-validation and calculated the infor-
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mation criterion relative to the null model (where x 9 = 0, i.e. the model was comprised solely of the

intercept). We computed the average difference in information criterion (ΔIC) and standard error

(SE) for each factor obtained from leave-one-out (LOO) cross-validation (Vehtari et al., 2017), and

used the Benjamini–Yekutieli method to adjust for multiple comparisons (Benjamini et al., 2001).

4.2.4 Univariate Time-Series Analysis

To assess the effect of one-off, stressful events on the SRB, we used two different time series

techniques. First, we fitted seasonal univariate autoregressive integratedmoving average (sARIMA)

models using the Box-Jenkins method (Box et al., 2015), in conjunction with monthly (28-day

periods) and weekly live birth data up to the event and then performed an out-of-sample prediction.

An sARIMA model is given by

©«1 −
%∑
9=1

Φ 9!
9ª®¬︸              ︷︷              ︸

sAR

[(
1 − !(

)� ]
︸          ︷︷          ︸

sI

©«1 −
?∑
9=1

q 9!
9ª®¬︸              ︷︷              ︸

AR

[
(1 − !)3

]
︸       ︷︷       ︸

I

HC

=
©«1 +

&∑
9 ′=1

Θ 9 ′!
9 ′ª®¬︸                 ︷︷                 ︸

sMA

©«1 +
@∑
9 ′=1

\ 9 ′!
9 ′ª®¬︸                ︷︷                ︸

MA

YC ,

(4.7)

where AR indicates the autoregression term, I the integration term, and MA the moving average

term (an ”s” before any of the above stands for ”seasonal”). Moreover, HC indicates the observed

univariate time series of interest, ! is the lag operator such that ! (HC) = HC−1, Y’s white noises,

( > 2 the degree of seasonality (i.e., the number of seasonal terms per year, chosen to be 4 in our

study), and q’s, \’s, Φ’s, and Θ’s are model parameters to be estimated. We used the auto.arima

function from the R-language package forecast (Hyndman and Khandakar, 2008; Hyndman et al.,

2019) to fit the data, which performed a step-wise search on the (?, 3, @, %, �, &) hyperparameter

space and compared different models by using the Bayesian Information Criterion (BIC) (Schwarz,
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1978). We confirmed the optimalx models’ goodness-of-fit using the Breusch-Godfrey test on the

residuals, which tested for the presence of autocorrelation up to degree ( (Breusch, 1978; Godfrey,

1978; Hayashi, 2000).

On the other hand, we fitted the same data as above to Bayesian structural time series (BSTS)

models, which are state-space models given in the general form by (Scott and Varian, 2013):

HC = /
ᵀ
C UC + YC , YC ∼ N(0, �C), (4.8)

UC+1 = )CUC + 'C[C , [C ∼ N(0, &C), (4.9)

where HC is the observed time series and UC the unobserved latent state. In particular, we used the

local linear trend model with additional seasonal terms (Murphy, 2012; Scott and Varian, 2013):

HC = `C + gC + YC (4.10)

`C = `C + XC−1 + DC (4.11)

XC = XC−1 + {C (4.12)

gC = −
(−1∑
B=1

gC−B + |C . (4.13)

Here, we define [C =
[
DC {C |C

]
;&C is a C-invariant block diagonal matrix with diagonal elements

f2
D , f

2
{ and f2

|. Finally, we denote UC =
[
`C XC gC−(+2 · · · gC

]
, which implies that both /C and

)C are C-invariant matrices of 0’s and 1’s such that Equations 4.10–4.13 hold. We used the R package

CausalImpact (Brodersen et al., 2015), which in turn relied on the R package bsts (Scott, 2019)

as backend, to fit the data.

4.2.5 Correlation and Causality

To test whether the SRB was effected by ambient temperature, we grouped daily SRB data and

temperatures into 91-day (13-week) periods and calculated the Pearson correlation coefficient (A)
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between each SRB and ambient temperature. We then performed the Student’s C-test for the null

hypothesis that the true correlation is 0. Furthermore, we fitted the SRB/temperature pair to a vector

autoregression (VAR) model for a maximum lag order of 4 (52 weeks), using the BIC as the metric

for model selection, and then tested for the null hypothesis of the non-existence of Granger causality

using the �-test (Granger, 1969).

4.3 Results

We start by describing the negative results (i.e. a lack of a significant association), concordant

across the two datasets. Our model selection rejected the whole spectrum of models that allow

for periodic, annual SRB changes (Lerchl, 1998; Melnikov and Grech, 2003). For both US and

Swedish datasets, the best-fitting model described the SRB as lacking seasonality throughout the

year. Similarly, when we tested the claim that ambient temperatures during conception affect the

SRB (Catalano et al., 2008; Helle et al., 2009; Fukuda et al., 2014; Dixson et al., 2011), we found

that neither dataset supported this association. Both the Student’s C-test and the �-test concluded

that the SRB was independent of ambient temperature measurements (Table S7).

A comparison of each dataset’s environmental measurements revealed that Sweden enjoyed

both lower variations and lower mean values of measured concentrations of substances in the air.

Unfortunately, the Swedish dataset also provided fewer measured pollutants, which made our cross-

country analysis more difficult. Fig 4.1A shows a comparison of pollutant concentration distribu-

tions in both countries. The US environmental measurements dataset presented its own difficulty, as

many pollutants appeared highly collinear in their spatial variation. To address this, we performed

a cluster analysis on the environmental factors, subdividing them into 26 clusters (Table 4.2 and Fig

S2). All pollutants within the same cluster were highly correlated, while the correlation between

distinct clusters was much smaller, allowing for useful association inferences between SRB changes

and environmental states.
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Figure 4.1: Airborne health-related substances and their association with the SRB. A: Comparison of air-
borne pollutant concentrations across the US (cyan violin plots) and Sweden (pink violin plots). Only 4
air components, fine particulate matter (PM2.5), coarse particulate matter (PM10), sulfur dioxide (SO2), and
nitrogen dioxide (NO2) are measured in both countries. US counties appear to have higher mean pollution
levels and are more variable in terms of pollution. B-M: A sample of 12 one-environmental factor logistic
regression models that are most explanatory with respect to SRB. For each environmental factor, we parti-
tion counties into 7 equal-sized groups (septiles), ordered by levels of measurements, so that the first septile
corresponds to the lowest and the highestnth septile to the highest concentration. Each plot shows bar plots
of regression coefficients and 95% confidence intervals (error bar) of the second to the seventh septiles, with
the first septile chosen as the reference level. We rank the 12 models by the statistically significant factor’s
association strength with at least one statistically significant coefficient by decreasing ΔIC; septiles whose
coefficients are not significantly different from 0 at the 95% confidence level have been plotted with a re-
duced alpha level. Blue bars represent positive coefficients, whereas red bars represent negative coefficients.
“Negative food-related businesses” is a term used by the Environmental Protection Agency’s Environmental
Quality Index team and is explained as “businesses like fast-food restaurants, convenience stores, and pret-
zel trucks.” “Percent vacant units” stands for “percent of vacant housing units.” Substances contributing to
clusters 10 and 25 are listed in Table 4.2. See Table S11 for more details regarding the factors’ and clusters’
identities.
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Cluster number factor

1 a_hcbd_ln,a_hccpd_ln
2 a_nitrobenzene_ln,a_dma_ln
3 a_2clacephen_ln,a_bromoform_ln
4 a_pnp_ln,a_toluene_ln
5 a_be_ln,a_se_ln
6 a_dmf_ln,a_edb_ln,a_edc_ln
7 a_teca_ln,a_procl2_ln,a_cl4c2_ln,a_vycl_ln,county_pop_2000
8 a_benzyl_cl_ln,a_me2so4_ln
9 mean_zn_ln,mean_cu_ln
10 mean_al_pct,mean_p_pct
11 numdays_close_activity_tot,numdays_cont_activity_tot
12 mean_as_ln,mean_se_ln
13 a_glycol_ethers_ln,a_etn_ln,a_vyac_ln
14 mean_na__pct_ln,mean_mg_pct_ln,mean_ca_pct_ln
15 a_cs_ln,a_edcl2_ln
16 a_ccl4,a_mtbe_ln
17 pct_harvest_acres,herbicides_ln,insecticides_ln
18 a_112tca_ln,a_ch3cn_ln
19 a_hcb_ln,a_pcp_ln,a_pcbs_ln
20 mg_ln_ave,k_ln_ave
21 pct_defoliate_acres_ln,pct_disease_acres_ln,pct_nematode_acres_ln
22 a_so2_mean_ln,a_no2_mean_ln,a_o3_mean_ln,so4_mean_ave
23 med_hh_value,med_hh_inc
24 rate_food_env_pos_log,rate_rec_env_log
25 ca_ln_ave,nh4_mean_ave
26 w_as_ln,w_ba_ln,w_cd_ln,w_cr_ln,w_cn_ln

w_fl_ln,w_hg_ln,w_no3_ln,w_no2_ln,w_se_ln
w_sb_ln,w_be_ln,w_ti_ln,w_endrin_ln

w_lindane_ln,w_methoxychlor_ln,w_toxaphene_ln
w_dalapon_ln,w_deha_ln,w_oxamyl_ln,w_simazine_ln

w_dehp_ln,w_picloram_ln,w_dinoseb_ln
w_hccpd_ln,w_carbofuran_ln,w_atrazine_ln

w_alachlor_ln,w_heptachlor_ln,w_heptachlor_epox_ln
w_24d_ln,w_silvex_ln,w_hcb_ln,w_benzoap_ln
w_pcp_ln,w_124tcib_ln,w_pcb_ln,w_dbcp_ln

w_edb_ln,w_xylenes_ln,w_chlordane_ln,w_dcm_ln
w_odcb_ln,w_pdcb_ln,w_vcm_ln,w_11dce_ln
w_t12dce_ln,w_edc_ln,w_111trichlorane_ln

w_ccl4_ln,w_pdc_ln,w_trichlorene_ln,w_112tca_ln
w_c2cl4_ln,w_cl1benz_ln,w_benzene_ln,w_toluene_ln

w_ethylbenz_ln,w_stryene_ln,w_alpha_ln,w_dce_ln

Table 4.2: Pollutant clusters discovered by applying the Ward’s method to the EQI raw measure-
ments dataset.
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Using the US dataset, we were able to validate the findings of a number of previous studies

regarding the association between the SRB and exogenous factors (Table 4.3). Specifically, our

data suggests that aluminium (Al) in air, chromium (Cr) in water and total mercury (Mg) quantity

drive the SRB up, while lead (Pb) in soil appears to be associated with a decreased SRB.Meanwhile,

we have found no evidence for a number of previous reports, indicated with a dash in the second

column in Table 4.3. We also established several new environmental associations that have not been

reported before (Table 4.4, Fig 4.1 B–M, and Fig 4.2). Fig 4.1 B–M show that increased pollutant

levels appear to be associated with both increased and decreased SRB values (Plates E,F,H,I, and J,

and the remaining Plates, respectively). In the case of PCBs (polychlorinated biphenyls), on which

the literature has reported conflicting evidences (Pavic, 2020), we found a positive correlation with

the SRB. Since the sample sizes of the studies published thus far were very small (cf. Table 1), our

PCBs result would have substantially larger statistical power.

Factor name effect

PCBs (air and water) ↑
DBCP (water) −
Lead (land) ↓
Lead (air) −
Aluminium (air) ↑
Chromium (air) −
Chromium (water) ↑
Arsenic (land) −
Arsenic (water) ↑
Cadmium (air and water) −
Total mercury deposition ↑
Violent crime rate −
Unemployed rate −
Working out of county (long commute) −

Table 4.3: Test results for factors selected from the literature reports (Table 4.1). We included a
factor only if both itsΔIC and the coefficient of at least one of its septiles was statistically significant.
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Factor name effect

Iron ↓
Nitrate ↑
2-Nitropropane ↑
Carbon monoxide ↑
Bis-2-ethylhexyl phthalate ↓
Ethyl chloride ↑
Isophorone ↑
Hydrazine ↓
Phosphorus ↑
Quinonline ↓
Extreme drought ↑
Traffic fatality rate ↑
Industrial permits per 1000 km of stream ↓
Animal units ↓
Irrigation ↓
Negative food related businesses ↓
Renter occupation ↓
Vacant units ↑

Table 4.4: Test results for additional factors with statistically significant effects. We included a
factor only if both itsΔIC and the coefficient of at least one of its septiles was statistically significant.
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Percent renter occupationA Lead in landB Negative food-related businessC Isophorone in airD

Total mercury deposition in waterE HydrazineF Percent vacant unitsG Traffic fatality rateH

Cluster 25I Industrial permitsJ Cluster 10K Iron in landL

1 2 3 4 5 6 7

Figure 4.2: County-level geographical septile distribution for the first 12 statistically significant
factors with at least one statistically significant coefficient ranked by decreasing ΔIC. The factors
labelled A–M are the same as shown in Fig 4.1, Plates B–M and are ordered identically in both
figures.
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The geographic distribution of these pollutants varies remarkably, as seen in Fig 4.2. For ex-

ample, lead in land (Fig 4.2B) appears to be enriched in the northeast, southwest, and mid-east US,

but not in the south. Hydrazine (Fig 4.2F) appears to follow capricious, blotch-like shapes in the

eastern US, each blotch likely centered at a factory emitting this pollutant. Total mercury deposi-

tion in water (Fig 4.2E) mostly affects eastern US states with the heaviest load in the northeastern

states. It is this variability in the environmental distribution of various substances that allowed us

to tease out these individual associations.

Finally, when we tested links between two stressful events in the US (Hurricane Katrina and

the Virginia Tech shooting) and the SRB using seasonal autoregressive integrated moving-average

(sARIMA) models and state-space models (SSMs) (see the Univariate time-series analysis section

in Methods), we were able to identify significant associations only in the case of the Virginia Tech

shooting – the SRB was lower than expected 34 weeks after the event (see Figs 4.3C and 4.4C, cf.

Tables S5c and S6c).
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Figure 4.3: Time series plots and out-of-sample forecasts for SRB data grouped into 7-day periods
and fitted with seasonal ARIMAmodels. The blue shade is the 95% confidence level. The observed
SRBs for the first five months after the intervention are presented by red dots, whereas the observed
SRBs for 7 to 9 months after the intervention are presented by purple dots. A: Hurricane Katrina,
all states; B: Hurricane Katrina, Louisiana and Mississippi only; C: Virginia Tech shooting, all
states; D: Virginia Tech shooting, adjacent states only.
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Figure 4.4: Time series plots and out-of-sample forecasts for SRB data grouped into 7-day periods
and fitted with state space models. The blue shade is the 95% confidence level. The observed SRBs
for the first five months after the intervention are presented by red dots, whereas the observed SRBs
for 7 to 9 months after the intervention are presented by purple dots. A: Hurricane Katrina, all
states; B: Hurricane Katrina, Louisiana and Mississippi only; C: Virginia Tech shooting, all states;
D: Virginia Tech shooting, adjacent states only.
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4.4 Discussion

While SRB fluctuations in space and time are well-documented and non-controversial, there

is a diverse range of competing theories striving to explain SRB changes in terms of mechanistic

selective pressure (Douhard, 2017). The most frequently mentioned theory is the Trivers–Willard

hypothesis (TWH), named after the researchers who proposed it (Trivers and Willard, 1973)). The

TWH postulates that, because the cost of rearing children is much higher for females than for males,

in favourable, resource-rich environments, males would have more offspring than females, and

vice versa in unfavourable conditions. Natural selection would then favour individuals with higher

fitness, where fitness is equated to individuals’ reproductive success (in this case, the number of

offspring reaching reproductive age). According to the TWH, natural selection pushes the SRB up

(more males) in favourable conditions, and down (more females) in unfavourable environment.

More explicitly stated, the TWH depends on the following three assumptions (Trivers and

Willard, 1973; James, 2006, 2013):

Proposition 4.1. A1 The condition of a mother during parental investment is correlated with the

condition of her offspring; in other words, mothers in better conditions have offspring that will be

in better conditions.

Proposition 4.2. A2 The condition of the offspring persists after parental investment ends, and is

positively correlated with the offspring’s reproductive success.

Proposition 4.3. A3 Males have larger variability in reproductive success than females and, as a

result, they are more susceptible to sexual selection.

From these assumptions the TWHmakes the following deductive inference on SRB variability:

Conclusion 4.4. C1 The SRB varies such that females in favourable conditions have more male

offspring, and in unfavourable conditions, more female offspring.

Assumption 4.3 is called Bateman’s principle (Bateman, 1948) (BP), and was suggested in a

classic fruit fly genetics study on sexual selection. The original experimental results withDrosophila
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melanogaster indicated that males benefited more from multiple mating than females in terms of

fitness. This asymmetry was thought to have originated in anisogamy, which means that a sperm

is much smaller than an ovum and therefore requires less resources. Unfortunately, this result was

never replicated (see (Hoquet et al., 2020; Gowaty et al., 2012) for critiques of Bateman’s methodol-

ogy). Nevertheless, a modified version of BP, which generalizes anisogamy to parental investment,

has enjoyed prominence among evolutionary biologists (Trivers, 1972). One of the critiques of

BP claims that male cost of reproduction is in reality much higher than suggested by Bateman.

This is because Bateman failed to account for the fact that males do not produce sperms stoichio-

metrically to match the number of female-produced ova. Instead, they produce semen, a mixture

of a very large number of male gametes and accompanying secretions, rich in nutrients and other

substances beneficial to reproduction (Hrdy, 1986). Therefore, once the full range of investment

patterns across life history (e.g. intrasex competition, secondary sexual characteristics, territorial

defence) has been taken into account, it is unclear if reproductive investments of females exceed

those of males (Hubbard, 1990; Gerlach et al., 2012).

Faced with such criticisms as well as an increasing amount of evidence from species across

the animal kingdom that did not conform to BP (Tang-Martínez, 2016), supporters of BP have

responded that sex differences ultimately originated from historical anisogamy (Schärer et al., 2012;

Kokko et al., 2013), and that there have also been subsequent ecological factors independent of

anisogamy that drove sexual dimorphism having to do with resource competition between the sexes,

which may not result in stronger selection on males (Morimoto, 2020; De Lisle, 2019). Moreover,

as a counter-challenge to the former point, supporters of BP also refer to aggregate results in favour

of BP, including a phylogenic meta-analysis by Janicke et al. in which significant differences in

reproductive success variances in species across the animal kingdom were found (Janicke et al.,

2016). This reworking allowed for a potential remedy for BP, namely by generalizing it as follows

(Arnold and Duvall, 1994; Tang-Martínez, 2016; Hoquet, 2020b):

Proposition 4.5. A3* The sex with the larger reproductive success variance is more susceptible to
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sexual selection.

From this, the generalized version of the TWH follows:

Conclusion 4.6. C1* The SRB should vary such that females in favourable conditions have more

offspring of the sex more susceptible to sexual selection, and in unfavourable conditions, more

offspring of the sex less susceptible to sexual selection.

This version of BP is consistent with “sex-role reversals” observed in many species, in which

females exhibit larger susceptibility to sexual selection. In addition, it allows for sufficient flex-

ibility such that the identity of “the sex more susceptible to sexual selection” may be influenced

by exogenous conditions (Morimoto, 2020). Candidates for the identity of that sex include higher

variance in number of (adult) offspring and higher variance in parental investments (James, 2008,

2013). Nevertheless, under this revised framework, for sexually dimorphic selection patterns to de-

velop and persist as opposed to randomly fluctuating across time (Gowaty and Hubbell, 2009), one

inevitably has to invoke the sexual cascade hypothesis: a small initial difference (e.g. anisogamy) in

sex-related phenotype will “snowball” into larger, persistent patterns through hereditary feedback

loops (Parker, 2014; Parker and Pizzari, 2015; Fromhage and Jennions, 2016). Such cascading

has also featured in the above-mentioned meta-analysis discussion regarding high-level explana-

tory patterns among animal species (Janicke et al., 2016), bracketing all differences in sex-related

traits into one-dimensional sexual selection (Tang-Martínez, 2016). There is a plethora of other

competing theories, e.g. (Gowaty and Hubbell, 2009) and (Hoquet, 2020b), which predict largely

stochastic variations of sex-related phenotypes, emphasizing the role social and ecological factors

have played in shaping plastic sex-roles (Tang-Martínez, 2016; Gowaty, 2015; Roughgarden, 2015).

Even if the last point may still be somewhat contentious (Parker and Pizzari, 2015), BP and (by ex-

tension) the TWH are, at the very least, not the only game in town when it comes to explaining and

predicting patterns related to sexual selection: male and female phenotypes of a given species in a

given environment are most likely the results of a large number of exogenous factors without any

single one of them being particularly dominant (Fine, 2017, p. 177).
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One key ramification of the above analysis is that the TWH cannot provide a comprehensive

account of the range of exogenous factors associated with SRB variation under the kind of circum-

stances present in our study. Further, the empirical success of the TWH is mixed, with only 50%

of studies confirming it, and around 20% of studies producing statistically significant results in the

opposite direction (James, 2006), which is consistent with our finding that many different pollu-

tants might be assumed to be “bad” for mothers (e.g. pollutants, traffic fatality rates, junk food)

had associations with SRB in opposite directions. The scepticism against the applicability of the

TWH in contemporary human societies is further strengthened by two recent population studies in

Sweden with large sample sizes (4.7 and 5.7 million live births, respectively), which found no SRB

heritability (Zietsch et al., 2020; Catalano et al., 2020). In particular, Zietsch et al. (2020) have

demonstrated that there exists neither within-individual SRB auto-correlation (contra Assumption

4.1) nor similarity in the SRB for children of siblings (contra Assumption 4.2). They also concluded

that within-family SRB was associated with the final family size, suggesting that SRB variations

may have been the result of SRB-aware family planning. Taken together, such evidence also places

other adaptive (i.e. via heritable sexual selection) theories explaining SRB variations, such as adap-

tive versions of hormonal hypothesis (James, 2008), maternal dominance hypothesis (Grant, 2003,

2007) and the Bruce effect (Catalano et al., 2018) in the same predicament. Appealing to evolu-

tionary history (i.e. TWH was in operation in the past but not at present, or TWH is an effect of

some vestigial evolutionary mechanism) is of no help here, since an adaptive selection mechanism

cannot explain why and how, at some point in history, the heritability was lost (Zietsch et al., 2021).

In other words, if SRB is ever influenced by some factor(s) at least partially heritable, then SRB

itself would have to be heritable as well, which the results from Zietsch et al. rule out. Thus, our

results are better interpreted as supporting the overwhelming influence of randomMendelian segre-

gation on the SRB (cf. (Postma et al., 2011) which claims complete attribution of SRB variation to

Mendelian segregation in some non-human species), such that SRB variations are at least primarily

due to non-adaptive (e.g. socio-cultural (Zietsch et al., 2020; Dupré, 2012, Ch. 14)) causal factors,
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possibly including those common to both changes in the SRB and associated exogenous factors.

By way of conclusion, we note that the literature includes substantial reports on the relationship

between the SRB and public health (Bruckner and Catalano, 2018), and we would like to consider

the question of whether the SRB can be used as an indicator for public health events and, if so,

whether the relationship between the SRB and certain diseases reveals causal relationships. As the

preceding discussion demonstrates, even if the existence of adaptive causal relationships between

environmental factors and the SRB may be unlikely (contra James and Grech (2018)), associations

– including the ones presented in this work – may be used as signals for (adverse) public health

conditions, as long as they are established experimentally. To this end, we reiterate that there are

agreements between the associations established in our work and those in the literature (Terrell et al.,

2011; James and Grech, 2017), and that our results do support the non-monotonous, dose-response

profiles frequently reported in the literature (Pavic, 2020) (Table 4.3). Therefore, future research

programmes might instead focus on exploring and validating the associations between SRB and

environmental factors that reliably predict adverse public health effects for certain subpopulations

(Catalano et al., 2020) using large datasets with covariates sampled frequently across considerable

spatio-temporal ranges (Zietsch et al., 2020). Another interesting direction would be to determine

the potentially non-adaptive physiological mechanisms.

4.5 Limitations

Unlike some of the recent studies (Catalano et al., 2005), we did not have access to the sex

of stillbirths, which would have enabled us to probe negative selection in utero against frail males

(Bruckner and Catalano, 2018). When quantifying pollutants in the US, we used the EPA air quality

raw data, which was an average of measurements taken over a short period of time, rather than

over years or decades, which would have enabled long-term and causal analyses. Neither did it

include information for individual exposures to those factors, which might render a straightforward

interpretation of our results subject to ecological fallacies. Finally, the subjects in our US study
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were commercially-insured and had medical claims, which likely came from a different probability

distribution to the general population in the US.

4.6 Appendix

4.6.1 Overall SRB Distribution

Figure 4.5 shows that the distributions of sex ratio at the county level (USA) or the kommun

level (Sweden) are very similar, with the US having an overall SRB of 0.5142 and Sweden 0.5139.
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Figure 4.5: Distribution of the SRB in the US and Sweden at the county level (US) or the kommun
level (Sweden)

4.6.2 Cluster Analysis

Figure 4.6 shows the dendrogram of the clustering the factors in the US EQI data set by Ward’s

method (see the Methods section in the main text for more detail). Each red box delimits a statisti-

cally significant cluster (at the 95% level), which contains at least 2 factors.
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4.6.3 Regression

Tables 4.5 and 4.6, respectively, list all the statistically significant factors (8 for fixed-effect and

all 125 for mixed-effect), sorted by decreasing ΔIC, with respect to the null.

Factor ΔIC SE

cluster_ward_8 25.6880 7.7901
cluster_ward_1 21.5759 6.4210
cluster_ward_11 20.9930 5.1878
cluster_ward_15 20.8578 4.1703
sewagenpdesperkm 19.0802 4.0902
pct_no_eng 16.1841 4.2216
a_dbp_ln 13.9700 3.8312
pct_mt_10units_log 10.5599 3.3704

Table 4.5: Differences in information criterion (ΔIC) and their standard errors (SE) of individual
factors with fixed-effect only. Non-significant factors are omitted.

Table 4.6: Differences in information criterion (ΔIC) and their standard errors (SE) of individual
factors with the random effect at the state level in the US EQI dataset.

Factor ΔIC SE

pct_rent_occ 54.2185 8.7760

cluster_ward_9 52.3907 8.8256

mean_pb_ln 51.7339 9.6749

farms_per_acre_ln 51.6266 9.0878

cluster_ward_15 51.5511 8.5623

pct_mt_10units_log 51.3259 8.5483

rate_food_env_neg 51.3230 9.2907

a_isophorone_ln 50.9430 10.3995

rate_ent_env_log 50.9259 8.8088

Continued on next page
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Factor ΔIC SE

a_dbp_ln 50.4537 8.6102

a_mn_ln 50.2819 8.1831

hg_ln_ave 50.0576 8.6584

ryprop 49.6911 9.4066

a_n2h2_ln 49.5381 8.4877

pct_vac_units 49.3265 8.5257

fatal_rate_log 49.0348 8.3392

cluster_ward_25 48.6212 9.8838

indnpdesperkm 48.5428 10.2509

a_biphenyl_ln 48.4603 8.6128

a_cn_ln 48.1418 9.7888

cluster_ward_10 47.7198 8.7054

work_out_co 47.4916 8.9555

mean_fe_pct_ln 47.2117 8.0750

cluster_ward_19 47.1722 8.5983

cluster_ward_26 47.1691 8.7901

a_quinoline_ln 47.1477 9.6906

a_sb_ln 47.0255 8.3046

cluster_ward_8 46.3741 8.9328

med_rooms 46.3220 8.1562

rate_al_pn_gm_env_log 46.3080 8.3765

no3_mean_ave 46.1843 8.8100

Continued on next page
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Factor ΔIC SE

a_meoh_ln 45.9854 8.3145

cluster_ward_6 45.9191 8.6963

d303_percent 45.8835 9.4942

na_ln_ave 45.0601 8.1385

a_co_mean_ln 44.9827 8.5933

a_c6h5cl_ln 44.6342 8.7028

a_me2_phthalate_ln 44.4614 8.0751

a_acrylic_acid_ln 44.2292 9.8383

a_mecl_ln 44.0207 8.4892

cat 43.9278 8.3540

mean_ti_pct_ln 43.8613 8.8678

cluster_ward_18 43.8523 9.3605

a_c2hcl3_ln 43.7136 8.7911

a_pahpom_ln 43.6743 9.1561

a_benzidine_ln 43.6200 8.4935

rate_civic_env_log 43.6027 8.5611

fungicides_ln 43.5278 8.7614

cluster_ward_3 43.5188 8.9542

pct_irrigated_acres_ln 43.4427 9.8728

a_p_ln 43.2101 8.2484

to_unit_rate_log 42.9314 8.5853

cluster_ward_2 42.8250 9.4466

Continued on next page
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Factor ΔIC SE

pct_au_ln 42.8249 9.4111

cluster_ward_11 42.8243 9.0778

a_c3h3n_ln 42.8093 8.4624

a_diesel_ln 42.7350 8.1946

a_etacrylate_ln 42.7323 8.7796

avgofd3_ave 42.5189 8.8904

pct_pub_transport_log 42.1074 8.4142

a_pb_ln 41.9983 8.0841

a_ph3_ln 41.9038 9.0259

a_eox_ln 41.8434 8.9989

pct_unemp 41.8191 7.7675

a_hexane_ln 41.8044 8.0627

pct_no_eng 41.7541 8.2477

a_acrolein_ln 41.6847 8.2058

a_ech_ln 41.6194 8.4322

a_cumene_ln 41.6100 8.2629

a_11dce_ln 41.5146 8.4598

radon_zone 41.4107 8.6552

a_2np_ln 41.2805 9.3701

a_cr_ln 41.1006 8.3650

cluster_ward_13 41.0139 8.1444

a_pm10_mean_ln 40.8277 8.0920

Continued on next page
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Factor ΔIC SE

a_cresol_ln 40.7598 8.2679

rate_trans_env_log 40.7569 8.4773

a_proo_ln 40.7404 8.1918

per_totpopss_ave 40.6453 8.2117

a_cl_ln 40.6386 8.2518

stormnpdesperkm 40.5914 8.4561

facilities_rate_log 40.5648 9.2041

pct_manure_acres_ln 40.4699 8.8810

cluster_ward_12 40.4274 9.1367

a_mibk_ln 40.3786 8.7446

a_dehp_ln 40.3305 8.1627

numdays_rain_activity_tot 40.1392 8.3155

cluster_ward_20 39.8644 8.6439

cl_ln_ave 39.5243 9.2021

a_egly_ln 39.4799 8.2135

mean_hg_ln 39.4692 8.1523

rate_ed_env_log 39.3155 8.7520

a_pm25_mean 39.1712 8.5654

cluster_ward_22 39.1668 8.3645

a_hg_ln 39.0513 7.8800

cluster_ward_5 39.0485 8.1282

a_chloroform_ln 38.9772 8.1250

Continued on next page
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Factor ΔIC SE

a_cs2_ln 38.4509 7.6905

a_tdi_ln 38.4377 8.9270

per_pswithsw_ave 38.3795 8.1011

a_acetophenone_ln 37.9548 8.6551

violent_rate_log 37.8928 8.8251

a_cd_ln 37.8764 7.9860

a_dbcp_ln 37.7606 8.3128

a_etcl_ln 37.6943 8.3588

a_chloroprene_ln 37.6642 8.4969

cluster_ward_14 37.4994 8.6078

hwyprop 37.3042 8.4589

a_stryene_ln 37.2645 8.3137

cluster_ward_4 37.0974 8.2277

cluster_ward_1 36.9302 8.3875

cluster_ward_16 36.9113 8.0581

cluster_ward_7 36.6871 7.8672

rate_hc_env_log 36.6085 8.1125

cluster_ward_23 36.5280 8.1485

sewagenpdesperkm 36.0821 7.4545

cluster_ward_21 35.9375 8.7625

a_otoluidine_ln 35.8421 7.9246

a_mma_ln 35.3633 8.1445

Continued on next page
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Factor ΔIC SE

a_mehydrazine_ln 35.1223 7.4720

cluster_ward_24 35.0831 8.0009

pct_pers_lt_pov 34.9108 7.1347

pct_hs_more 34.8201 8.0671

cluster_ward_17 34.5813 7.9217

a_hcl_ln 34.1790 8.0501
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4.6.4 Time Series Forecasts
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Figure 4.7: Time series plots and out-of-sample forecasts for SRB data grouped into 28-day periods
and fitted with seasonal ARIMAmodels. The blue shade is the 95% confidence level. The observed
SRBs for the first 5 months after the intervention are presented by red dots, whereas the observed
SRBs for 7–9 months after the intervention are presented by purple dots. See also Table 4.7.
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Period SRB Lower 95% Upper 95%

36 0.5193 0.5060 0.5271
37 0.5188 0.5060 0.5271
38 0.5119 0.5060 0.5271
39 0.5148 0.5060 0.5271
40 0.5186 0.5060 0.5271
41(*) 0.5049 0.5060 0.5271
42 0.5161 0.5060 0.5271
43 0.5182 0.5060 0.5271
44 0.5060 0.5060 0.5271
45 0.5100 0.5060 0.5271

(a) Hurricane Katrina in all states

Period SRB Lower 95% Upper 95%

36 0.5379 0.4726 0.6086
37 0.4889 0.4479 0.5952
38 0.5356 0.4549 0.6040
39 0.5966 0.4515 0.6009
40 0.5096 0.4528 0.6023
41 0.4970 0.4522 0.6017
42 0.5458 0.4525 0.6019
43 0.5112 0.4524 0.6018
44 0.5041 0.4524 0.6019
45 0.5105 0.4524 0.6019

(b) Hurricane Katrina in Louisiana and Mississippi

Period SRB Lower 95% Upper 95%

57 0.5046 0.5043 0.5220
58 0.5145 0.5043 0.5220
59 0.5096 0.5042 0.5221
60 0.5169 0.5042 0.5221
61 0.5052 0.5041 0.5222
62 0.5142 0.5040 0.5222
63 0.5156 0.5040 0.5223
64 0.5181 0.5039 0.5224
65 0.5082 0.5039 0.5224
66 0.5110 0.5038 0.5225

(c) Virginia Tech Shooting in all states

Period SRB Lower 95% Upper 95%

57 0.5110 0.4886 0.5437
58 0.5203 0.4886 0.5437
59 0.5026 0.4886 0.5437
60 0.5280 0.4886 0.5437
61 0.5324 0.4886 0.5437
62 0.5092 0.4886 0.5437
63 0.5315 0.4886 0.5437
64 0.5129 0.4886 0.5437
65 0.5139 0.4886 0.5437
66 0.5344 0.4886 0.5437

(d) Virginia Tech Shooting in adjacent states

Table 4.7: Out-of-sample forecasts for the first 10 months after the intervention using SRB data
grouped into 28-day periods and fitted with seasonal ARIMA models. Any period of which the
observed SRB is outside of the 95% confidence level is marked by an asterisk (*).
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Figure 4.8: Time series plots and out-of-sample forecasts for SRB data grouped into 28-day periods
and fitted with state-space models. The blue shade is the 95% confidence level. The observed SRBs
for the first 5 months after the intervention are presented by red dots, whereas the observed SRBs
for 7–9 months after the intervention are presented by purple dots. See also Table 4.8.
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Period SRB Lower 95% Upper 95%

36 0.5193 0.5063 0.5291
37 0.5188 0.5054 0.5279
38 0.5119 0.5064 0.5281
39 0.5148 0.5055 0.5281
40 0.5186 0.5064 0.5288
41 0.5049 0.5062 0.5293
42 0.5161 0.5069 0.5282
43 0.5182 0.5037 0.5250
44 0.5060 0.5025 0.5252
45 0.5100 0.5031 0.5255

(a) Hurricane Katrina in all states

Period SRB Lower 95% Upper 95%

36 0.5379 0.4392 0.5944
37 0.4889 0.4517 0.6065
38 0.5356 0.4486 0.6111
39 0.5966 0.4538 0.6105
40 0.5096 0.4516 0.6054
41 0.4970 0.4502 0.6047
42 0.5458 0.4470 0.6033
43 0.5112 0.4587 0.6160
44 0.5041 0.4551 0.6170
45 0.5105 0.4532 0.6153

(b) Hurricane Katrina in Louisiana and Mississippi

Period SRB Lower 95% Upper 95%

57 0.5046 0.5034 0.5217
58 0.5145 0.5065 0.5246
59 0.5096 0.5067 0.5246
60 0.5169 0.5059 0.5240
61 0.5052 0.5042 0.5229
62 0.5142 0.5043 0.5234
63 0.5156 0.5054 0.5236
64 0.5181 0.5036 0.5235
65 0.5082 0.5039 0.5225
66 0.5110 0.5039 0.5226

(c) Virginia Tech Shooting in all states

Period SRB Lower 95% Upper 95%

57 0.5110 0.4924 0.5487
58 0.5203 0.4910 0.5478
59 0.5026 0.4926 0.5469
60 0.5280 0.4896 0.5481
61 0.5324 0.4832 0.5382
62 0.5092 0.4815 0.5390
63 0.5315 0.4829 0.5399
64 0.5129 0.4894 0.5432
65 0.5139 0.4866 0.5450
66 0.5344 0.4846 0.5433

(d) Virginia Tech Shooting in adjacent states

Table 4.8: Out-of-sample forecasts for the first 10 months after the intervention using SRB data
grouped into 28-day periods and fitted with state-space models. Any period of which the observed
SRB is outside of the 95% confidence level is marked by an asterisk (*).
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Figure 4.9: Time series plots and out-of-sample forecasts for SRB data grouped into 7-day periods
and fitted with seasonal ARIMAmodels. The blue shade is the 95% confidence level. The observed
SRBs for the first 5 months after the intervention are presented by red dots, whereas the observed
SRBs for 7–9 months after the intervention are presented by purple dots. See also Table 4.9.
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Period SRB Lower 95% Upper 95%

140 0.5192 0.4964 0.5370
141 0.5186 0.4964 0.5370
142 0.5275 0.4964 0.5370
143 0.5117 0.4964 0.5370
144 0.5140 0.4964 0.5370
145 0.5304 0.4964 0.5370
146 0.5157 0.4964 0.5370
147 0.5147 0.4964 0.5370
148 0.5222 0.4964 0.5370
149 0.5090 0.4964 0.5370
150 0.5045 0.4964 0.5370
151 0.5121 0.4964 0.5370
152 0.5192 0.4964 0.5370
153 0.5106 0.4964 0.5370
154 0.5187 0.4964 0.5370
155 0.5100 0.4964 0.5370
156 0.5246 0.4964 0.5370
157 0.5308 0.4964 0.5370
158 0.5128 0.4964 0.5370
159 0.5177 0.4964 0.5370
160 0.5061 0.4964 0.5370
161 0.4989 0.4964 0.5370
162 0.5047 0.4964 0.5370
163 0.5101 0.4964 0.5370
164 0.5149 0.4964 0.5370
165 0.5184 0.4964 0.5370
166 0.5127 0.4964 0.5370
167 0.5184 0.4964 0.5370
168 0.5130 0.4964 0.5370
169 0.5260 0.4964 0.5370
170 0.5167 0.4964 0.5370
171 0.5171 0.4964 0.5370
172 0.5055 0.4964 0.5370
173 0.4983 0.4964 0.5370
174 0.5082 0.4964 0.5370
175 0.5121 0.4964 0.5370
176 0.5182 0.4964 0.5370
177 0.5089 0.4964 0.5370
178 0.5049 0.4964 0.5370
179 0.5081 0.4964 0.5370

(a) Hurricane Katrina in all states

Period SRB Lower 95% Upper 95%

140 0.4444 0.3799 0.6767
141 0.5060 0.3799 0.6767
142 0.5957 0.3799 0.6767
143 0.6197 0.3799 0.6767
144 0.4375 0.3799 0.6767
145 0.5246 0.3799 0.6767
146 0.5077 0.3799 0.6767
147 0.4706 0.3799 0.6767
148 0.6182 0.3799 0.6767
149 0.5385 0.3799 0.6767
150 0.5224 0.3799 0.6767
151 0.4615 0.3799 0.6767
152 0.6087 0.3799 0.6767
153 0.5484 0.3799 0.6767
154 0.6176 0.3799 0.6767
155 0.6471 0.3799 0.6767
156 0.4737 0.3799 0.6767
157 0.5714 0.3799 0.6767
158 0.5116 0.3799 0.6767
159 0.4933 0.3799 0.6767
160 0.5000 0.3799 0.6767
161 0.5393 0.3799 0.6767
162 0.4271 0.3799 0.6767
163 0.5301 0.3799 0.6767
164 0.4769 0.3799 0.6767
165 0.6230 0.3799 0.6767
166 0.4941 0.3799 0.6767
167 0.5895 0.3799 0.6767
168 0.4458 0.3799 0.6767
169 0.4321 0.3799 0.6767
170 0.5376 0.3799 0.6767
171 0.6061 0.3799 0.6767
172 0.4891 0.3799 0.6767
173 0.5158 0.3799 0.6767
174 0.5521 0.3799 0.6767
175 0.4535 0.3799 0.6767
176 0.5132 0.3799 0.6767
177 0.5000 0.3799 0.6767
178 0.5294 0.3799 0.6767
179 0.5052 0.3799 0.6767

(b) Hurricane Katrina in Louisiana and Mississippi

Period SRB Lower 95% Upper 95%

225 0.5039 0.4943 0.5322
226 0.4977 0.4945 0.5324
227 0.5079 0.4945 0.5324
228 0.5089 0.4945 0.5324
229 0.5113 0.4945 0.5324
230 0.5104 0.4945 0.5324
231 0.5229 0.4944 0.5324
232 0.5141 0.4944 0.5324
233 0.5178 0.4944 0.5324
234 0.5067 0.4944 0.5324
235 0.5000 0.4944 0.5324
236 0.5140 0.4944 0.5324
237 0.5211 0.4944 0.5324
238 0.5159 0.4944 0.5324
239 0.5180 0.4944 0.5324
240 0.5129 0.4944 0.5325
241 0.5009 0.4944 0.5325
242 0.5128 0.4944 0.5325
243 0.5055 0.4944 0.5325
244 0.5016 0.4944 0.5325
245 0.5291 0.4944 0.5325
246 0.5118 0.4944 0.5325
247 0.5064 0.4944 0.5325
248 0.5106 0.4944 0.5325
249 0.5167 0.4943 0.5325
250 0.5224 0.4943 0.5325
251 0.5183 0.4943 0.5325
252 0.5051 0.4943 0.5325
253 0.5127 0.4943 0.5325
254 0.5231 0.4943 0.5325
255 0.5155 0.4943 0.5325
256 0.5221 0.4943 0.5325
257 0.5063 0.4943 0.5325
258 0.5240 0.4943 0.5325
259(*) 0.4888 0.4943 0.5326
260 0.5122 0.4943 0.5326
261 0.5103 0.4943 0.5326
262 0.5063 0.4943 0.5326
263 0.5216 0.4943 0.5326
264 0.5046 0.4943 0.5326

(c) Virginia Tech Shooting in all states

Period SRB Lower 95% Upper 95%

225 0.5134 0.4567 0.5739
226 0.4908 0.4589 0.5761
227 0.5212 0.4567 0.5739
228 0.5179 0.4589 0.5761
229 0.5261 0.4567 0.5740
230 0.5322 0.4588 0.5761
231 0.5280 0.4567 0.5741
232 0.4955 0.4587 0.5761
233 0.4822 0.4567 0.5741
234 0.4647 0.4587 0.5761
235 0.5406 0.4567 0.5742
236 0.5223 0.4586 0.5761
237 0.5150 0.4567 0.5743
238 0.5421 0.4585 0.5761
239 0.5231 0.4567 0.5743
240 0.5322 0.4585 0.5761
241 0.5143 0.4567 0.5744
242 0.5197 0.4584 0.5761
243 0.5465 0.4567 0.5744
244 0.5487 0.4584 0.5761
245 0.5049 0.4567 0.5745
246 0.5105 0.4583 0.5761
247 0.5014 0.4567 0.5745
248 0.5193 0.4583 0.5761
249 0.5141 0.4567 0.5746
250 0.5068 0.4583 0.5761
251 0.5545 0.4567 0.5746
252 0.5500 0.4582 0.5761
253 0.5133 0.4567 0.5746
254 0.5172 0.4582 0.5761
255 0.5201 0.4567 0.5747
256 0.4949 0.4581 0.5761
257 0.5261 0.4567 0.5747
258 0.4946 0.4581 0.5761
259 0.5096 0.4567 0.5748
260 0.5231 0.4581 0.5761
261 0.5269 0.4568 0.5748
262 0.5155 0.4580 0.5761
263 0.5540 0.4568 0.5748
264 0.5318 0.4580 0.5761

(d) Virginia Tech Shooting in adjacent states

Table 4.9: Out-of-sample forecasts for the first 10 months after the intervention using SRB data
grouped into 7-day periods and fitted with seasonal ARIMA models. Any period of which the
observed SRB is outside of the 95% confidence level is marked by an asterisk (*).
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Figure 4.10: Time series plots and out-of-sample forecasts for SRB data grouped into 7-day periods
and fitted with state-space models. The blue shade is the 95% confidence level. The observed SRBs
for the first 5 months after the intervention are presented by red dots, whereas the observed SRBs
for 7–9 months after the intervention are presented by purple dots. See also Table 4.10.
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Period SRB Lower 95% Upper 95%

140 0.5192 0.4984 0.5388
141 0.5186 0.4971 0.5400
142 0.5275 0.4980 0.5384
143 0.5117 0.4974 0.5399
144 0.5140 0.4982 0.5394
145 0.5304 0.4951 0.5371
146 0.5157 0.4954 0.5392
147 0.5147 0.4963 0.5382
148 0.5222 0.4960 0.5387
149 0.5090 0.4949 0.5386
150 0.5045 0.4957 0.5378
151 0.5121 0.4970 0.5383
152 0.5192 0.4965 0.5390
153 0.5106 0.4961 0.5392
154 0.5187 0.4964 0.5390
155 0.5100 0.4967 0.5386
156 0.5246 0.4964 0.5369
157 0.5308 0.4958 0.5378
158 0.5128 0.4955 0.5366
159 0.5177 0.4952 0.5375
160 0.5061 0.4944 0.5392
161 0.4989 0.4950 0.5385
162 0.5047 0.4957 0.5377
163 0.5101 0.4953 0.5385
164 0.5149 0.4944 0.5382
165 0.5184 0.4958 0.5383
166 0.5127 0.4959 0.5368
167 0.5184 0.4959 0.5369
168 0.5130 0.4955 0.5370
169 0.5260 0.4922 0.5352
170 0.5167 0.4927 0.5339
171 0.5171 0.4926 0.5364
172 0.5055 0.4925 0.5340
173 0.4983 0.4924 0.5348
174 0.5082 0.4936 0.5351
175 0.5121 0.4934 0.5357
176 0.5182 0.4938 0.5347
177 0.5089 0.4917 0.5347
178 0.5049 0.4941 0.5351
179 0.5081 0.4928 0.5351

(a) Hurricane Katrina in all states

Period SRB Lower 95% Upper 95%

140 0.4444 0.3793 0.6830
141 0.5060 0.3685 0.6803
142 0.5957 0.3726 0.6806
143 0.6197 0.3769 0.6859
144 0.4375 0.3680 0.6870
145 0.5246 0.3642 0.6749
146 0.5077 0.3789 0.6835
147 0.4706 0.3716 0.6780
148 0.6182 0.3691 0.6732
149 0.5385 0.3728 0.6870
150 0.5224 0.3742 0.6746
151 0.4615 0.3784 0.6823
152 0.6087 0.3665 0.6824
153 0.5484 0.3744 0.6809
154 0.6176 0.3691 0.6777
155 0.6471 0.3808 0.6810
156 0.4737 0.3655 0.6821
157 0.5714 0.3753 0.6799
158 0.5116 0.3833 0.6857
159 0.4933 0.3718 0.6812
160 0.5000 0.3801 0.6791
161 0.5393 0.3729 0.6883
162 0.4271 0.3790 0.6797
163 0.5301 0.3742 0.6746
164 0.4769 0.3739 0.6827
165 0.6230 0.3781 0.6797
166 0.4941 0.3730 0.6901
167 0.5895 0.3765 0.6865
168 0.4458 0.3765 0.6815
169 0.4321 0.3759 0.6864
170 0.5376 0.3806 0.6869
171 0.6061 0.3742 0.6965
172 0.4891 0.3844 0.6839
173 0.5158 0.3761 0.6805
174 0.5521 0.3795 0.6878
175 0.4535 0.3740 0.6792
176 0.5132 0.3797 0.6959
177 0.5000 0.3704 0.6787
178 0.5294 0.3742 0.6895
179 0.5052 0.3720 0.6802

(b) Hurricane Katrina in Louisiana and Mississippi

Period SRB Lower 95% Upper 95%

225 0.5039 0.4926 0.5310
226 0.4977 0.4939 0.5313
227 0.5079 0.4941 0.5305
228 0.5089 0.4934 0.5306
229 0.5113 0.4954 0.5342
230 0.5104 0.4964 0.5354
231 0.5229 0.4972 0.5349
232 0.5141 0.4953 0.5337
233 0.5178 0.4954 0.5355
234 0.5067 0.4977 0.5344
235 0.5000 0.4966 0.5355
236 0.5140 0.4955 0.5351
237 0.5211 0.4967 0.5349
238 0.5159 0.4958 0.5350
239 0.5180 0.4970 0.5354
240 0.5129 0.4963 0.5352
241 0.5009 0.4943 0.5331
242 0.5128 0.4945 0.5323
243 0.5055 0.4938 0.5332
244 0.5016 0.4948 0.5322
245 0.5291 0.4940 0.5333
246 0.5118 0.4947 0.5342
247 0.5064 0.4946 0.5331
248 0.5106 0.4952 0.5328
249 0.5167 0.4944 0.5332
250 0.5224 0.4940 0.5335
251 0.5183 0.4948 0.5322
252 0.5051 0.4942 0.5333
253 0.5127 0.4948 0.5324
254 0.5231 0.4936 0.5325
255 0.5155 0.4936 0.5325
256 0.5221 0.4947 0.5335
257 0.5063 0.4938 0.5341
258 0.5240 0.4947 0.5327
259(*) 0.4888 0.4944 0.5327
260 0.5122 0.4946 0.5337
261 0.5103 0.4944 0.5326
262 0.5063 0.4936 0.5337
263 0.5216 0.4938 0.5326
264 0.5046 0.4938 0.5341

(c) Virginia Tech Shooting in all states

Period SRB Lower 95% Upper 95%

225 0.5134 0.4612 0.5784
226 0.4908 0.4613 0.5839
227 0.5212 0.4622 0.5824
228 0.5179 0.4640 0.5814
229 0.5261 0.4644 0.5794
230 0.5322 0.4627 0.5820
231 0.5280 0.4604 0.5799
232 0.4955 0.4590 0.5822
233 0.4822 0.4609 0.5793
234 0.4647 0.4554 0.5789
235 0.5406 0.4622 0.5778
236 0.5223 0.4625 0.5801
237 0.5150 0.4609 0.5819
238 0.5421 0.4593 0.5778
239 0.5231 0.4603 0.5750
240 0.5322 0.4610 0.5764
241 0.5143 0.4519 0.5705
242 0.5197 0.4484 0.5681
243 0.5465 0.4514 0.5725
244 0.5487 0.4530 0.5713
245 0.5049 0.4547 0.5747
246 0.5105 0.4553 0.5755
247 0.5014 0.4525 0.5729
248 0.5193 0.4528 0.5704
249 0.5141 0.4513 0.5735
250 0.5068 0.4526 0.5735
251 0.5545 0.4548 0.5722
252 0.5500 0.4525 0.5697
253 0.5133 0.4515 0.5723
254 0.5172 0.4514 0.5741
255 0.5201 0.4574 0.5718
256 0.4949 0.4575 0.5749
257 0.5261 0.4548 0.5744
258 0.4946 0.4553 0.5765
259 0.5096 0.4553 0.5750
260 0.5231 0.4550 0.5745
261 0.5269 0.4571 0.5737
262 0.5155 0.4568 0.5762
263 0.5540 0.4540 0.5755
264 0.5318 0.4576 0.5720

(d) Virginia Tech Shooting in adjacent states

Table 4.10: Out-of-sample forecasts for the first 10 months after the intervention using SRB data
grouped into 7-day periods and fitted with state-space models. Any period of which the observed
SRB is outside of the 95% confidence level is marked by an asterisk (*).
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4.6.5 Swedish SRB and Meteorological Observations

Using the data downloaded from the World Bank (https://climateknowledgeportal.wor

ldbank.org/download-data), we performed a Pearson’s correlation test and a Granger causality

test. The ?-values for the null hypotheses of the nonexistence of correlation (Student’s C-test) and

Granger causality (�-test) are listed in Table 4.11. We could not establish associations between the

SRB and either of the meteorological observations between years 1991 and 2013.

Temperature Precipitation

C-test 0.156 0.765
�-test 0.269 0.228

Table 4.11: ?-values for C- and �-tests on the correlation between Sweden’s SRB and temperature
and precipitation in Sweden

In addition, we performed logistic regression using the following:

Factor ΔIC SE

At risk of poverty 0.9934 3.5615
SO2 0.8399 3.6321
NO2 -0.5075 3.2862
Proportion foreign nationals -1.8912 2.2786
Black smoke -2.0551 2.7690
P80/P20 -2.2833 2.2427
Car density -2.6865 2.4586
Population density -2.7654 2.1618
Gini -2.7838 2.2333
Mean income -3.4858 2.1006
PAH -3.7904 2.0331
VOC -4.3064 1.8581
PM10 -4.4771 1.7049
PM2.5 -4.9524 1.4270
Median income -5.1749 1.9721

Table 4.12: Differences in information criteria (ΔIC) and their standard errors (SE) of individual
factors at the kommun (municipality) level, with random effect at the län (county) level
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Table 4.13: Differences in information criteria (ΔIC) and their standard errors (SE) of individual
factors at the län (county) level

Factor ΔIC SE

diseases of the respiratory system men 3.3012 2.5949

good health men and women 1.4435 2.4498

diseases of the circulatory system women 1.1142 3.2312

serious motor disabilities women 0.9167 3.3112

smoke and or take snuff daily men 0.8522 2.1592

unmet need for medical care men 0.7556 2.4153

motor disabilities men 0.6604 3.1667

high blood pressure women 0.2627 3.0594

smoke and or take snuff daily women 0.2378 3.1951

impaired hearing men 0.0979 2.7779

diabetes men 0.0969 3.1908

diseases of the circulatory system men 0.0838 2.7351

diseases of the respiratory system men and women -0.1382 2.9142

serious pain total men and women -0.1481 2.3953

serious motor disabilities men and women -0.1740 3.0316

serious problems of anxiety worry fear men and women -0.2266 3.5719

unmet need for medical care women -0.2308 2.5992

poor health women -0.3233 2.2780

smoke daily women -0.3289 3.2831

impaired hearing women -0.5162 2.7654

problems of anxiety worry fear men -0.5694 2.2561

impaired vision men and women -0.7338 2.4952

obese BMI 30 or more men -1.0034 3.1003

Continued on next page
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Factor ΔIC SE

serious motor disabilities men -1.0759 2.2428

serious pain in shoulders neck women -1.1545 2.2927

impaired vision women -1.1893 2.4814

serious pain in hands elbows or knees men -1.2649 3.0558

smoke daily men -1.5168 2.7761

diseases of the musculoskeletal system and connective tissue men -1.5226 2.4445

diseases of the skin men and women -1.6969 3.6015

diseases of the musculoskeletal system and connective tissue men and women -1.7217 2.6642

diabetes women -1.8868 2.4746

severe problems from a long term illness women -2.1122 2.7674

serious pain in shoulders neck men -2.1671 2.8550

trouble sleeping men and women -2.1719 2.1819

endocrine diseases men and women -2.1860 2.4510

trouble sleeping women -2.1972 3.5518

endocrine diseases women -2.3205 2.5285

dentist appointments during a 12 month period men and women -2.3418 2.8350

serious pain total men -2.3436 4.0538

problems of anxiety worry fear men and women -2.4328 2.5539

poor health men -2.4561 2.3493

serious pain in back or hips men and women -2.6307 3.2649

diseases of the circulatory system men and women -2.7013 2.3490

high blood pressure men and women -2.7124 2.1525

overweight or obese BMI 25 or more men and women -2.7407 2.4722

serious pain total women -2.7984 2.2393

diseases of the musculoskeletal system and connective tissue women -2.8772 2.9321

Continued on next page
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Factor ΔIC SE

diseases of the skin men -3.0005 2.7985

dentist appointments during a 12 month period men -3.0185 2.9935

unmet need for medical care men and women -3.0341 1.7253

serious pain in hands, elbows, or knees women -3.1847 3.1895

diabetes men and women -3.2320 2.2913

serious problems of anxiety, worry, fear men -3.2685 2.7144

serious pain in shoulders, neck men and women -3.2852 2.7533

doctor appointments during a three month period men -3.3952 1.9437

heart disease men and women -3.4409 2.5030

overweight or obese BMI 25 or more men -3.4821 2.5026

motor disabilities women -3.5407 3.4502

obese BMI 30 or more men and women -3.6252 2.4101

doctor appointments during a three month period men and women -3.6527 1.6407

endocrine diseases men -3.7796 2.4763

overweight or obese BMI 25 0 or more women -3.9447 2.8735

severe problems from a long term illness men and women -3.9898 2.9988

good health women -4.0257 2.8712

heart disease men -4.1542 2.1345

poor health men and women -4.3023 3.0782

take snuff daily men and women -4.3065 3.0176

problems of anxiety worry fear women -4.3155 2.2453

serious pain in hands elbows or knees men and women -4.3937 2.3697

impaired hearing men and women -4.5371 2.0341

diseases of the digestive system men and women -4.6030 2.6724

serious pain in back or hips women -4.6210 2.2235

Continued on next page
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Factor ΔIC SE

severe problems from a long term illness men -4.7071 2.3077

dentist appointments during a 12 month period women -4.7839 2.6277

take snuff daily men -4.9910 2.1400

impaired vision men -5.1140 2.2114

unmet need for dental care men -5.6746 2.5992

diseases of the respiratory system women -5.7384 2.5305

high blood pressure men -5.7527 3.8451

serious pain in back or hips men -5.8251 3.5053

diseases of the digestive system men -5.9368 2.6694

unmet need for dental care men and women -6.1628 1.9368

heart disease women -6.2097 1.9162

take snuff daily women -6.3476 2.0574

obese BMI 30 0 or more women -6.4418 2.0136

motor disabilities men and women -6.7537 1.9335

smoke and or take snuff daily men and women -6.7639 2.4234

trouble sleeping men -6.7890 3.4973

smoke daily men and women -6.8021 4.0868

diseases of the nervous system and the sensory organs men -6.8766 1.8000

diseases of the skin women -7.0391 2.9732

diseases of the nervous system and the sensory organs men and women -7.0903 2.1524

diseases of the digestive system women -7.0938 2.0396

doctor appointments during a three month period women -7.1649 4.1678

diseases of the nervous system and the sensory organs women -7.1994 2.4814

good health men -7.4083 1.7240

unmet need for dental care women -8.1221 3.4038

Continued on next page
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Factor ΔIC SE

serious problems of anxiety worry fear women -8.7865 1.7444

4.6.6 Contingency Table Analysis

Table 4.14 is the full contingency table for testing the association between physical injury, in-

fections, and neuropsychiatric disorders (stratified by before/during diagnosis) and SRB.
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Phys_1y Infection_1y Neuropsych_1y Phys_older Infection_older Neuropsych_older F M Total

0 0 0 0 0 0 693079 733474 1426553
0 0 0 0 0 1 16835 17539 34374
0 0 0 0 1 0 65169 68766 133935
0 0 0 0 1 1 15297 16215 31512
0 0 0 1 0 0 5700 5945 11645
0 0 0 1 0 1 1265 1420 2685
0 0 0 1 1 0 5031 5250 10281
0 0 0 1 1 1 2424 2565 4989
0 0 1 0 0 0 30176 31833 62009
0 0 1 0 0 1 10905 11480 22385
0 0 1 0 1 0 5456 5688 11144
0 0 1 0 1 1 8629 9092 17721
0 0 1 1 0 0 464 537 1001
0 0 1 1 0 1 808 857 1665
0 0 1 1 1 0 510 477 987
0 0 1 1 1 1 1488 1554 3042
0 1 0 0 0 0 65857 69326 135183
0 1 0 0 0 1 3926 4229 8155
0 1 0 0 1 0 24502 25721 50223
0 1 0 0 1 1 6555 6952 13507
0 1 0 1 0 0 1230 1241 2471
0 1 0 1 0 1 352 385 737
0 1 0 1 1 0 1962 1993 3955
0 1 0 1 1 1 1077 1185 2262
0 1 1 0 0 0 9609 10417 20026
0 1 1 0 0 1 3666 3960 7626
0 1 1 0 1 0 3301 3422 6723
0 1 1 0 1 1 5243 5653 10896
0 1 1 1 0 0 174 173 347
0 1 1 1 0 1 312 316 628
0 1 1 1 1 0 271 313 584
0 1 1 1 1 1 977 1006 1983
1 0 0 0 0 0 5894 6180 12074
1 0 0 0 0 1 434 420 854
1 0 0 0 1 0 1484 1565 3049
1 0 0 0 1 1 426 469 895
1 0 0 1 0 0 245 245 490
1 0 0 1 0 1 69 70 139
1 0 0 1 1 0 227 221 448
1 0 0 1 1 1 117 138 255
1 0 1 0 0 0 1329 1454 2783
1 0 1 0 0 1 527 550 1077
1 0 1 0 1 0 258 286 544
1 0 1 0 1 1 436 482 918
1 0 1 1 0 0 28 50 78
1 0 1 1 0 1 195 203 398
1 0 1 1 1 0 28 43 71
1 0 1 1 1 1 235 256 491
1 1 0 0 0 0 2122 2204 4326
1 1 0 0 0 1 181 182 363
1 1 0 0 1 0 929 903 1832
1 1 0 0 1 1 288 305 593
1 1 0 1 0 0 69 79 148
1 1 0 1 0 1 27 31 58
1 1 0 1 1 0 143 134 277
1 1 0 1 1 1 81 87 168
1 1 1 0 0 0 650 713 1363
1 1 1 0 0 1 249 263 512
1 1 1 0 1 0 214 226 440
1 1 1 0 1 1 408 427 835
1 1 1 1 0 0 22 15 37
1 1 1 1 0 1 66 84 150
1 1 1 1 1 0 35 46 81
1 1 1 1 1 1 204 203 407

Total 1009870 1067518 2077388

Table 4.14: Contingency table of maternal diagnosis history versus the sex of livebirths
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4.6.7 Dictionary of factors and their definitions

Table 4.15: List of variable names used in the main text and their corresponding definitions and
units (if applicable)

Variable Name Variable Definition Units

A_PM10_mean_ln particulate matter under ten micrometers in aerodynamic diameter (PM10) ln-`g/m3

A_PM25_mean particulate matter under 2.5 micrometers in aerodynamic diameter (PM2.5) ln-`g/m3

A_NO2_mean_ln nitrogen dioxide (NO2) ln-ppb

A_SO2_mean_ln sulfur dioxide (SO2) ln-ppb

A_O3_mean_ln ozone (O3) ln-ppm

A_CO_mean_ln carbon monoxide (CO) ln-ppm

A_TeCA_ln 1,1,2,2-tetrachloroethane ln-tons

A_112TCA_ln 1,1,2-trichloroethane ln-tons

A_DBCP_ln 1,2-dibromo-3-chloropropane ln-tons

A_TDI_ln 2,4-toluene diisocyanate ln-tons

A_2Clacephen_ln 2-chloroacetophenone ln-tons

A_2NP_ln 2-nitropropane ln-tons

A_PNP_ln 4-nitrophenol ln-tons

A_CH3CN_ln acetonitrile ln-tons

A_Acetophenone_ln acetophenone ln-tons

A_Acrolein_ln acrolein ln-tons

A_Acrylic_acid_ln acrylic acid ln-tons

A_C3H3N_ln acrylonitrile ln-tons

A_Sb_ln antimony compounds ln-tons

A_Benzidine_ln benzidine ln-tons

A_Benzyl_Cl_ln benzyl chloride ln-tons

A_Be_ln beryllium compounds ln-tons

A_biphenyl_ln biphenyl ln-tons

A_DEHP_ln bis-2-ethylhexyl phthalate ln-tons

A_Bromoform_ln bromoform ln-tons

A_Cd_ln cadmium compounds ln-tons

A_CS2_ln carbon disulfide ln-tons

A_CCl4 carbon tetrachloride tons

A_CS_ln carbon sulfide ln-tons

A_Cl_ln chlorine ln-tons

A_C6H5Cl_ln chlorobenzene ln-tons

A_chloroform_ln chloroform ln-tons

A_Chloroprene_ln chloroprene ln-tons

A_Cr_ln chromium compounds ln-tons

A_Cresol_ln cresol/cresylic acid ln-tons

A_Cumene_ln cumene ln-tons

A_CN_ln cyanide compounds ln-tons

A_DBP_ln dibutylphthalate ln-tons

A_Diesel_ln diesel engine emissions ln-tons

A_DMF_ln dimethyl formamide ln-tons

A_Me2_phthalate_ln dimethyl phthalates ln-tons

A_Me2SO4_ln dimethyl sulfate ln-tons

A_ECH_ln epichlorohydrin ln-tons

A_Etacrylate_ln ethyl acrylate ln-tons

Continued on next page
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Variable Name Variable Definition Units

A_EtCl_ln ethyl chloride ln-tons

A_EDB_ln ethylene dibromide ln-tons

A_EDC_ln ethylene dichloride ln-tons

A_EGLY_ln ethylene glycol ln-tons

A_EOx_ln ethylene oxide ln-tons

A_EdCl2_ln ethylidene dichloride ln-tons

A_Glycol_ethers_ln glycol ethers ln-tons

A_HCB_ln hexachlorobenzene ln-tons

A_HCBD_ln hexachlorobutadiene ln-tons

A_HCCPD_ln hexachlorocyclopentadiene ln-tons

A_Hexane_ln hexane ln-tons

A_N2H2_ln hydrazine ln-tons

A_HCl_ln hydrochloric acid ln-tons

A_Isophorone_ln isophorone ln-tons

A_Pb_ln lead compounds ln-tons

A_Mn_ln manganese compounds ln-tons

A_Hg_ln mercury compounds ln-tons

A_MeOH_ln methanol ln-tons

A_MIBK_ln methyl isobutyl ketone ln-tons

A_MMA_ln methyl methacrylate ln-tons

A_MeCl_ln methyl chloride ln-tons

A_Mehydrazine_ln methylhydrazine ln-tons

A_MTBE_ln MTBE ln-tons

A_nitrobenzene_ln nitrobenzene ln-tons

A_DMA_ln N,N-dimethylaniline ln-tons

A_otoluidine_ln o-toluidine ln-tons

A_PAHPOM_ln PAH/POM ln-tons

A_PCP_ln pentachlorophenol ln-tons

A_PH3_ln phosphine ln-tons

A_P_ln phosphorus ln-tons

A_PCBs_ln polychlorinated biphenyls ln-tons

A_ProCl2_ln propylene dichloride ln-tons

A_ProO_ln propylene oxide ln-tons

A_Quinoline_ln quinoline ln-tons

A_Se_ln selenium compounds ln-tons

A_Styrene_ln styrene ln-tons

A_Cl4C2_ln tetrachloroethylene ln-tons

A_Toluene_ln toluene ln-tons

A_C2HCl3_ln trichloroethylene ln-tons

A_Et3N_ln triethylamine ln-tons

A_VyAc_ln vinyl acetate ln-tons

A_VyCl_ln vinyl chloride ln-tons

A_11DCE_ln vinylidene chloride ln-tons

D303_Percent % of stream length impaired in county percent

SEWAGENPDESperKM sewage permits per 1000 km of stream in county permits/1000km

INDNPDESperKM industrial permits per 1000 km of stream in county permits/1000km

STORMNPDESperKM stormwater permits per 1000 km of stream in county permits/1000km

numDays_Close_Activity_tot # of days closed per event in county 2000-2005 days

numDays_Cont_Activity_tot # of days per contamination advisory event in county 2000-2005 days

numDays_Rain_Activity_tot # of days per rain advisory event in county 2000-2005 days

Per_TotPopSS_ave percent of population on self supply, average 2000&2005 percent

Continued on next page
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Variable Name Variable Definition Units

Per_PSWithSW_ave percent of public supply population which is on surface water, average 2000&2005 percent

Ca_ln_ave calcium (Ca) precipitation weighted mean ln mg/L

Mg_ln_ave magnesium (Mg) precipitation weighted mean ln mg/L

K_ln_ave potassium (K) precipitation weighted mean ln mg/L

Na_ln_ave sodium (Na) precipitation weighted mean ln mg/L

NH4_mean_ave ammonium (NH4) precipitation weighted mean mg/L

NO3_mean_ave nitrate (NO3) precipitation weighted mean mg/L

Cl_ln_ave chloride (Cl) precipitation weighted mean ln mg/L

SO4_mean_ave sulfate (SO4) precipitation weighted mean mg/L

Hg_ln_ave total mercury (Hg) deposition ln mg/L

AvgOfD3_ave % of county drought – extreme (3-D4) percent

W_As_ln arsenic ln mg/L

W_Ba_ln barium ln mg/L

W_Cd_ln cadmium ln mg/L

W_Cr_ln chromium ln mg/L

W_CN_ln cyanide ln mg/L

W_FL_ln fluoride ln mg/L

W_HG_ln mercury (inorganic) ln mg/L

W_NO3_ln nitrate ln mg/L

W_NO2_ln nitrite ln mg/L

W_SE_ln selenium ln mg/L

W_Sb_ln antimony ln mg/L

W_Be_ln beryllium ln mg/L

W_Tl_ln thallium ln mg/L

W_Endrin_ln endrin ln mg/L

W_Lindane_ln lindane ln mg/L

W_methoxychlor_ln methoxychlor ln `g/L

W_Toxaphene_ln toxaphene ln `g/L

W_Dalapon_ln dalapon ln `g/L

W_DEHA_ln di(2-ethylhexyl)adipate (DEHA) ln `g/L

W_Oxamyl_ln oxamyl (Vydate) ln `g/L

W_Simazine_ln simazine ln `g/L

W_DEHP_ln Di(2-ethylhexyl) phthalate (DEHP) ln `g/L

W_Picloram_ln picloram ln `g/L

W_Dinoseb_ln dinoseb ln `g/L

W_HCCPD_ln hexachlorocyclopentadiene ln `g/L

W_Carbofuran_ln carbofuran ln `g/L

W_atrazine_ln atrazine ln `g/L

W_Alachlor_ln alachlor ln `g/L

W_Heptachlor_ln heptachlor ln `g/L

W_Heptachlor_epox_ln heptachlor epoxide ln `g/L

W_24D_ln 2,4-D (2,4-Dichlorophenoxyacetic acid) ln `g/L

W_HCB_ln hexachlorobenzene ln `g/L

W_BenzoAP_ln benzo[a]pyrene ln `g/L

W_PCP_ln pentachlorophenol ln `g/L

W_124TCIB_ln 1,2,4-trichlorobenzene ln `g/L

W_PCB_ln polychlorinated biphenyls (PCBs) ln `g/L

W_DBCP_ln 1,2-dibromo-3-chloropropane (DBCP) ln `g/L

W_EBD_ln ethylene dibromide (EDB) ln `g/L

W_xylenes_ln xylenes ln `g/L

W_Chlordane_ln chlordane ln `g/L

Continued on next page
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Variable Name Variable Definition Units

W_DCM_ln dichloromethane (methylene chloride) ln `g/L

W_ODCB_ln 1,2-dichlorobenzene (o-dichlorobenzene) ln `g/L

W_PDCB_ln 1,4-dichlorobenzene (p-dichlorobenzene) ln `g/L

W_VCM_ln vinyl chloride ln `g/L

W_11DCE_ln 1,1-dichloroethylene ln `g/L

W_t12DCE_ln trans-1,2-Dichloroethylene ln `g/L

W_EDC_ln 1,2-dichloroethane (Ethylene Dichloride) ln `g/L

W_111trichlorane_ln 1,1,1-trichloroethane ln `g/L

W_CCl4_ln carbon tetrachloride ln `g/L

W_PDC_ln 1,2-dichloropropane ln `g/L

W_Trichlorene_ln trichloroethylene ln `g/L

W_112TCA_ln 1,1,2-trichloroethane ln `g/L

W_C2Cl4_ln tetrachloroethylene ln `g/L

W_benzene_ln benzene ln `g/L

W_Cl1benz_ln monochlorobenzene (chlorobenzene) ln `g/L

W_Toluene_ln toluene ln `g/L

W_ethylbenz_ln ethylbenzene ln `g/L

W_styrene_ln styrene ln `g/L

W_DCE_ln alpha particles ln `g/L

W_alpha cis-1,2-dichloroethylene PCl/L

W_SILVEX_ln silvex ln `g/L

pct_harvest_acres harvested acreage percent

pct_irrigated_acres_ln irrigated acreage ln-percent

farms_per_acre_ln farms per acre ln-(number farms/total acres)

pct_manure_acres_ln manure applied ln-percent

pct_nematode_acres_ln chemicals used to control nematodes ln-percent

pct_disease_acres_ln chemicals used to control disease ln-percent

pct_defoliate_acres_ln chemicals used to defoliate/control growth/thin fruit ln-percent

pct_au_ln animal units ln-percent

herbicides_ln herbicides ln-pounds

fungicides_ln fungicides ln-pounds

insecticides_ln insecticides ln-pounds

mean_as_ln arsenic ln-ppm

mean_se_ln selenium ln-ppm

mean_hg_ln mercury ln-ppm

mean_pb_ln lead ln-ppm

mean_zn_ln zinc ln-ppm

mean_cu_ln copper ln-ppm

mean_na__pct_ln sodium ln-weighted percent

mean_mg_pct_ln magnesium ln-weighted percent

mean_ti_pct_ln titanium ln-weighted percent

mean_ca_pct_ln calcium ln-weighted percent

mean_fe_pct_ln iron ln-weighted percent

mean_al_pct aluminum weighted percent

mean_p_pct phosphorus weighted percent

facilities_rate_log facilities per county pop ln-rate

radon_zone radon zone radon category

HWYPROP proportion of roads that are highway miles highways / miles total roads

RYPROP proportion of roads that are primary streets miles primary streets / miles total roads

fatal_rate_log traffic fatality rate ln-rate

pct_pub_transport_log percent of population using public transport ln-percent

Continued on next page
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Variable Name Variable Definition Units

rate_al_pn_gm_env_log vice-related businesses ln-rate

rate_ent_env_log entertainment-related businesses ln-rate

rate_ed_env_log education-related businesses ln-rate

rate_food_env_neg negative food related businesses rate

rate_food_env_pos_log positive food related businesses ln-rate

rate_hc_env_log health care-related businesses ln-rate

rate_rec_env_log recreation-related businesses ln-rate

rate_trans_env_log transportation-related businesses ln-rate

rate_civic_env_log civic-related businesses ln-rate

to_unit_rate_log total subsidized housing units ln-rate

pct_rent_occ percent renter occupied count county occupied rental units / total county units

pct_vac_units percent vacant units count county vacant units / total housing units

med_hh_value median household value dollars

med_hh_inc median household income dollars

pct_pers_lt_pov percent persons less than poverty level count county persons below poverty / county population

pct_no_eng percent no English count county non-English speaking / county population

pct_hs_more percent earning greater than high school education count county more than high school / county population

pct_unemp percent unemployed count county unemployed / county population

work_out_co percent work outside county count county work outside county / county population

med_rooms median number rooms per house sum county count of rooms / county housing units

pct_mt_10units_log percent of housing with more than 10 units ln-percent

violent_rate_log mean number of violent crimes per capita ln-rate

fips FIPS code to state and county level N/A

county_name name of county N/A

state state N/A

cat_rucc rural-urban continuum code category N/A

air_EQI_22July2013 non-stratified air domain index N/A

water_EQI_22July2013 non-stratified water domain index N/A

land_EQI_22July2013 non-stratified land domain index N/A

sociod_EQI_22July2013 non-stratified sociodemographic domain index N/A

built_EQI_22July2013 non-stratified built environment domain index N/A

EQI_22July2013 non-stratified environmental quality index N/A

RUCC1_air_EQI_22July2013 metropolitian-urbanized strata air domain index N/A

RUCC1_water_EQI_22July2013 metropolitian-urbanized strata water domain index N/A

RUCC1_land_EQI_22July2013 metropolitian-urbanized strata land domain index N/A

RUCC1_sociod_EQI_22July2013 metropolitian-urbanized strata sociodemographic domain index N/A

RUCC1_built_EQI_22July2013 metropolitian-urbanized strata built environment domain index N/A

RUCC1_EQI_22July2013 metropolitian-urbanized strata environmental quality index N/A

RUCC2_air_EQI_22July2013 non-metropolitian-urbanized strata air domain index N/A

RUCC2_water_EQI_22July2013 non-metropolitian-urbanized strata water domain index N/A

RUCC2_land_EQI_22July2013 non-metropolitian-urbanized strata land domain index N/A

RUCC2_sociod_EQI_22July2013 non-metropolitian-urbanized strata sociodemographic domain index N/A

RUCC2_built_EQI_22July2013 non-metropolitian-urbanized strata built environment domain index N/A

RUCC2_EQI_22July2013 non-metropolitian-urbanized strata environmental quality index N/A

RUCC3_air_EQI_22July2013 less-urbanized strata air domain index N/A

RUCC3_water_EQI_22July2013 less-urbanized strata water domain index N/A

RUCC3_land_EQI_22July2013 less-urbanized strata land domain index N/A

RUCC3_sociod_EQI_22July2013 less-urbanized strata sociodemographic domain index N/A

RUCC3_built_EQI_22July2013 less-urbanized strata built environment domain index N/A

RUCC3_EQI_22July2013 less-urbanized strata environmental quality index N/A

RUCC4_air_EQI_22July2013 rural strata air domain index N/A

Continued on next page
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Variable Name Variable Definition Units

RUCC4_water_EQI_22July2013 rural strata water domain index N/A

RUCC4_land_EQI_22July2013 rural strata land domain index N/A

RUCC4_sociod_EQI_22July2013 rural strata sociodemographic domain index N/A

RUCC4_built_EQI_22July2013 rural strata built environment domain index N/A

RUCC4_EQI_22July2013 rural strata environmental quality index N/A
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CHAPTER 5

INCIDENCES OF EARLY LIFE IMMUNE SYSTEM AND

NEURODEVELOPMENTAL DISORDERS ARE LINKED WITH PERI-

AND POSTPARTUM HEALTH FACTORS

5.1 Introduction

Understanding the aetiology of neurodevelopmental disorders (NDDs) of childhood is arguably

one of the most important problems of current biomedicine (Parenti et al., 2020). Three of the most

prevalent childhood NDDs are: autism spectrum disorders (ASD), attention-deficit/hyperactivity

disorder (ADHD), and learning disorder (LD), which is sometimes split into reading- and mathe-

matics disorders (Cantwell and Baker, 1991). The ASD comprises a range of severity of outwardly

similar cognitive deficits disrupting a child’s social interactions, her ability to read emotions, and

associated with a plethora of repetitive behaviors and comorbid illnesses. ADHDThe ADHD is a

milder but more prevalent condition manifesting itself in a child’s impulsivity, inability to focus

and hyperactivity. LD is the mildest condition among the three: an LD-affected child has normal

intelligence and motivation but struggles with one or more areas of learning (such as mathemat-

ics, reading, or writing). ASD prevalence varies geographically, with nearly a hundred of recent

estimates placing the mean ASD prevalence at 1%, with a full range of estimates covering a hun-

dred times lower- and five-times higher values (Zeidan et al., 2022). Meanwhile, its heritability is

estimated to be around 95% (Tick et al., 2016). ADHD together with hyperkinetic disorder (HD)

is estimated to have a world prevalence of 5.29% and heritability of 80% (Polanczyk et al., 2007).

LD has a prevalence of 4 ∼ 9% for deficits in reading and 3 ∼ 7% for deficits in mathematics (Moll

et al., 2014). The heritability of LD is estimated to be between 40% and 70% depending on area of

learning deficit (Gialluisi et al., 2021).

While a simple mathematical model-based heritability estimates suggest a major role of inher-

ited genetic variation in predisposition to these disorders, aetiology of NDDs remains unknown. It
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has been suspected that a significant contribution to disease aetiology comes from environmental

insults and the concerted action of specific environmental encounters in a child’s development with

inherited genetic variants. One of the leading hypotheses in the space of environmental triggers

of NDDs is maternal immune activation (MIA) during pregnancy 8,9: an external environmental

trigger, such as maternal infection, exposure to pollutants, or medications, alters the state of the

pregnant mother’s immune system. Molecular signals of maternal inflammation, cytokines, has

been hypothesized to leak into the developing organs of the fetus, generating persistent neuroin-

flammation, which derails normal maturation of the brain.

The goals of this study are (a) identify a very large mother-newborn pair cohort (IBM Watson

Health, 2019; Kulaylat et al., 2019) aiming to examine the effect on child’s immune and cognitive

health of infectious agents affecting mother or fetus, of maternal inflammatory and autoimmune

conditions, and of maternal and newborn-specific anti-infective medications; (b) probe association

of specific peri- and postnatal environmental triggers with the immune health of the newborn; and

(c) test associations of NDD phenotypes with environmental triggers and the state of the child’s im-

mune system. The full range of covariates that we consider in this study includes air pollution mea-

surements (PM2.5); mother and newborn immune-system related diseases; mother and newborn

anti-infective medications; Caesarean section (C-section) mode of delivery as opposed to vaginal

delivery; preterm and severely preterm birth contrasted with the full-term pregnancy; abnormal and

normal newborn weights at birth; age of a mother at childbirth, distinguishing teenage, typical-age,

and advanced-age groups of pregnant women; year of birth as well as time of birth in year. Further

more, to assess states of immune systems of a mother and her child, we recorded the counts of

infections of mother and her child, distinguishing between bacterial, viral, and fungal infections. In

addition, we considered sequelae of infectious diseases, defined as medical complications following

infections. For example, bacterial pneumonia can be a sequela of preceding seasonal influenza and

infection with intracellular parasite Toxoplasma gondii can have a broad range of sequelae, affect-

ing patient’s sensory systems and even inducing severe psychiatric conditions (Tamer et al., 2008;
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Lykins et al., 2016).

5.2 Method

To model the risk of immune system outcomes of the newborns, represented as expected counts

of the outcomes, we used negative binomial (NB) regression with an optional hurdle component.

Compared to the more widely-used Poisson regression model, the NB model drops the highly re-

strictive assumption that the mean and variance of the distribution of counts of an outcome be equal.

To model the risk of developing the NDDs of the newborns, we used logistic regression using the

presence/absence of the given NDD phenotype as the outcome. For outcomes we used the follow-

ing: ADHD, ASD and Learning Difficulties because the predictive reliability of using claim-based

databases for identification had been previously established (Straub et al., 2021). To identify the

cases, we used the ICD-9 and ICD-10 codes and algorithms in (Straub et al., 2021, Table 1).

In both classes of models we included a range of diverse risk factors for the predictors. The

predictors sex, C-section and preterm/very preterm birth were coded as binary variables, while

birth weight and maternal age at birth were coded as categorical variables with 3 distinct values.

Furthermore, we divided PM2.5 into quintiles. Finally, for immune-system related health events

and anti-infective prescriptions we used an indicator variable for each sub-variable due to the small

numbers of subjects with non-zero values. To preserve causality, we used a cut-off period of 6

months for the immune system submodels whereby the diagnosis and prescription predictors were

counted only before the cutoff, and outcomes were counted only after the cutoff. See Table 5.1 for

more details.
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Abbreviation code description

( sex Newborn sex
� csec Caesarean section
% prem Gestation: preterm (32 ∼ 37 wk), very preterm (< 32 wk)
, weight Birth weight: low (6 2500 g), high (> 4500 g)
� age Mother’s age at birth: teenage (13–19), advanced (35–45)
" PM25 Particulate Matter 2.5 `m (PM2.5)
� DX Immune-system related health events (infections, sequelae, immune disorders)
' RX anti-infective prescriptions (antibacterials, antimycotics, antiparasitics)

� hurd Hurdle term
)� - Day of birth in year: daily resolution (P-spline smooths)
)" - Day of birth in year: monthly resolution
)( - Day of birth in year: seasonal resolution

Table 5.1: Abbreviations for model predictors and other terms.

5.3 Results

5.3.1 Model comparison

Figures 5.1 and 5.2 show the difference in ELPD (ΔELPD) w.r.t. the model with the smallest

information criterion along with the corresponding 95% credible intervals for immune systems and

NDD models, respectively. For the immune system submodels, the full model was the optimal

model for all of the outcomes studied except miscellaneous infections, for which the optimal model

was the full model without the hurdle term. Moreover, LOO diagnostics indicated that models were

poorly specified while the number of problematic data points are high (> 10). In other words the

models, including the priors and the likelihood, were not good at recovering the data. Using 10-fold

cross validation, we found that among the NDD submodels, in the case of ADHD the full model

(� + % +, + � + " + � + ') was the sole best model according to estimated ΔELPD, whereas

for ASD and learning difficulties more than one model was optimal. By applying the Bayesian

Occam’s Razor Myung and Pitt (1997), we picked the most parsimonious model among the ones

that were not significantly different from the one with smallest LOOIC: for ASD,� +%+, + �+"

and for Learning Difficulties, � +%+" . For all NDDmodels we have chosen to use the smoothing

splines to represent the effect of time of birth in the year.
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(a) Bacterial Infections
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(c) Miscellaneous Infections
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(e) Immune System Disorders
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Figure 5.1: Immune systems model comparison with 10-fold cross validation: dots represent the
estimates for ΔELPD and intervals represent the corresponding 95% credible interval under asymp-
totic normal distribution. On the H-axis the model terms are coded according to Table 5.1.
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(a) ADHD
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(c) Learning Difficulties
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Figure 5.2: NDD model comparison with PSIS-LOO: dots represent the estimates for ΔELPD and
intervals, the corresponding 95% credible interval under asymptotic normal distribution. On the
H-axis the model terms are coded according to Table 5.1. Notice that for ASD and Learning Diffi-
culties there was more than one model was the best.
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5.3.2 Parameter Estimation

Risk Factors Bacterial Infections Immune Disorders Miscellaneous Infections Sequelae Infections Viral Infections

Mother Infections: Bacterial 39.0 (29.3, 49.3) 4.6 (2.7, 6.5) 20.9 (17.1, 24.8) 16.9 (13.5, 20.4) 10.3 (6.5, 14.1)
Mother Infections: Viral 4.4 (-2.1, 11.4) -1.2 (-2.8, 0.5) -11.6 (-14.2, -8.8) 8.5 (5.7, 11.3) 27.0 (23.6, 30.8)
Mother Infections: Miscellaneous 16.8 (9.8, 24.0) 1.7 (0.1, 3.2) 11.3 (8.4, 14.4) 8.7 (6.2, 11.3) 7.7 (4.8, 10.7)
Mother Infections: Sequelae 18.0 (10.3, 26.2) 5.0 (3.2, 6.9) -2.4 (-5.4, 0.6) 23.8 (20.9, 27.1) 12.1 (8.8, 15.7)
Mother Inflammations -2.9 (-50.2, 92.7) 9.8 (-7.1, 29.7) -24.3 (-45.9, 4.4) 1.3 (-22.2, 31.4) 17.0 (-13.9, 58.3)
Mother Immune Disorders -4.2 (-8.1, -0.2) 22.1 (20.7, 23.5) 6.6 (4.5, 8.7) 13.1 (11.3, 15.0) 9.4 (7.5, 11.5)
Mother RX: Antibacterials -10.0 (-13.7, -6.3) 5.0 (3.8, 6.3) -10.0 (-11.9, -8.1) -10.8 (-12.3, -9.3) 4.6 (2.6, 6.8)
Mother RX: Antimycotics 5.8 (-0.5, 12.4) 5.8 (4.2, 7.5) 4.1 (1.1, 6.9) 2.0 (-0.5, 4.6) 8.7 (5.8, 11.8)
Mother RX: Antiparasitics 19.9 (10.6, 30.4) -4.5 (-6.5, -2.4) 9.3 (5.2, 13.3) 2.8 (-0.3, 6.2) 0.9 (-3.0, 4.9)
Newborn RX: Antibacterials 33.0 (27.8, 38.7) 31.7 (30.2, 33.3) 20.7 (18.2, 23.2) 17.7 (15.7, 19.7) 18.7 (16.5, 20.9)
Newborn RX: Antimycotics 66.5 (48.8, 86.0) 25.7 (22.2, 29.5) 32.9 (26.4, 39.8) 25.7 (20.0, 31.6) 29.6 (22.6, 36.5)
Newborn RX: Antiparasitics 258.5 (117.2, 516.6) 13.3 (-0.5, 29.9) 30.0 (3.0, 62.2) 50.9 (20.4, 86.3) 3.7 (-19.8, 32.4)
Newborn Sex: Female -9.6 (-12.9, -6.2) -17.1 (-18.0, -16.1) 9.7 (7.7, 11.8) -5.1 (-6.5, -3.6) 0.3 (-1.4, 2.1)
Newborn Caeserean Section 13.9 (9.6, 18.5) 11.1 (9.8, 12.3) 8.3 (6.1, 10.5) 14.0 (12.2, 15.9) 3.5 (1.7, 5.5)
Birth Condition: Premature 25.8 (10.1, 43.8) 1.3 (-2.1, 4.9) -7.8 (-13.8, -1.7) 23.2 (17.0, 30.0) 9.7 (2.8, 17.0)
Birth Condition: Very Premature 173.1 (127.9, 230.5) 25.0 (19.1, 31.3) 13.9 (4.6, 24.2) 44.2 (34.0, 55.3) 15.3 (5.2, 27.3)
Birth Condition: Caeserean Section × Premature -14.1 (-27.8, 1.5) 0.0 (-4.4, 4.5) 13.3 (4.7, 23.1) -6.5 (-12.7, -0.6) 2.2 (-5.8, 10.5)
Birth Condition: Caeserean Section × Very Premature 14.5 (-8.1, 42.3) 7.2 (1.1, 13.5) 25.9 (13.6, 39.0) 8.1 (-1.0, 17.6) 3.8 (-7.0, 15.9)
Birth Condition: Low birth weight 70.8 (59.9, 82.1) 16.3 (14.2, 18.5) 5.2 (1.8, 8.7) 19.4 (16.2, 22.6) 7.4 (4.0, 11.0)
Birth Condition: High birth weight 41.8 (9.6, 84.2) -1.4 (-7.3, 5.2) -11.2 (-21.4, 0.1) 24.4 (12.6, 37.3) 9.5 (-3.0, 23.6)
Birth Condition: Teenage mother 87.4 (35.6, 159.1) -28.7 (-34.4, -22.7) 63.1 (43.5, 84.9) 6.3 (-8.7, 23.8) -24.6 (-39.1, -6.3)
Birth Condition: Advanced-age mother -5.0 (-9.0, -1.0) -3.9 (-5.1, -2.7) -13.2 (-14.9, -11.4) 5.0 (3.2, 6.8) 3.9 (2.0, 5.8)

Table 5.2: Parameter estimation (in percentage) for the optimal Immune System model for each
outcome in terms of odds ratio (see §5.3.1 for model comparison): Posterior median and 95%
credible interval of OR; entries in boldface indicates the corresponding credible intervals do not
include 0. See also Figure 5.3.

We now report the results from the most optimal obtained by model comparison (cf. §5.3.1).

Results from the immune systemsmodels were reported as relative increase in expected event counts

(hereafter relative risk, RR), whereas results from the neurodevelopmental disorders were in terms

of odds ratio (OR) w.r.t. the baseline. Table 5.2 and Figure 5.3 show the posterior median and the

95% credible interval of the parameters under the optimal model for the immune systems outcomes,

and Table 5.3 and Figures 5.4, 5.5 and 5.6 show the same for the NDDs.

Immune System Submodels

First, a wide range of anti-infective prescriptions given to newborns during the first six months

of life were associated with altered risks of immune system outcomes for the newborn. Newborn

medications were associatedwithmarked risk increases for immune system-related diseases. In par-

ticular, the presence of antiparasitic drugs was associated with a 258.5 percent and a 50.9 percent

increase in risk of bacterial and sequelae infections, respectively. For antibacterial medications,
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Figure 5.3: Posterior density estimation of relative risk of newborn immune system disorders for
childbirth-related characteristics ((, �, %, , , �). Numerical annotations, shown only for effect
sizes with absolute value greater than or equal to 25%, represent posterior medians, corresponding
to the dots under the slabs. Both the slabs and the interval underneath represent 95% credible in-
tervals. shape is the shape parameter of the gamma distribution underlying the negative binomial
model, whereas hurdle is the estimated hurdle probability. Viral infection does not have an esti-
mated hurdle value because the hurdle model was not the optimal model.

92



Risk Factors ADHD Autism Learning difficulties
midrule Newborn Sex: Female 0.39 (0.377, 0.404) 0.253 (0.236, 0.271) 0.532 (0.462, 0.613)
Newborn Caeserean Section 1.161 (1.125, 1.2) 1.187 (1.12, 1.259) 1.091 (0.934, 1.266)
Birth Condition: Premature 1.102 (0.948, 1.274) 0.907 (0.701, 1.166) 1.625 (0.901, 2.727)
Birth Condition: Very Premature 1.498 (1.232, 1.798) 1.164 (0.823, 1.58) 1.981 (0.934, 3.762)
Caeserean Section × Premature 1.152 (0.966, 1.381) 1.265 (0.939, 1.709) 0.946 (0.458, 2.065)
Caeserean Section × Very Premature 1.113 (0.896, 1.382) 1.432 (1.022, 2.08) 1.173 (0.514, 2.836)
Birth Condition: Low birth weight 1.288 (1.206, 1.375) 1.567 (1.401, 1.743) -
Birth Condition: High birth weight 0.858 (0.633, 1.168) 1.749 (1.151, 2.476) -
Birth Condition: Teenage mother 1.898 (1.219, 2.819) 1.315 (0.593, 2.603) -
Birth Condition: Advanced-age mother 0.891 (0.859, 0.924) 1.306 (1.229, 1.387) -
PM25 quintile 2 1.172 (1.107, 1.242) 1.018 (0.93, 1.114) 1.117 (0.873, 1.421)
PM25 quintile 3 1.248 (1.179, 1.32) 1.021 (0.938, 1.117) 1.071 (0.851, 1.352)
PM25 quintile 4 1.215 (1.148, 1.287) 0.983 (0.897, 1.079) 0.859 (0.67, 1.108)
PM25 quintile 5 1.258 (1.189, 1.333) 1.072 (0.972, 1.178) 0.949 (0.746, 1.205)
Birth year: 2003 0.427 (0.395, 0.462) 0.533 (0.456, 0.618) 0.127 (0.086, 0.186)
Birth year: 2004 0.547 (0.512, 0.586) 0.684 (0.6, 0.776) 0.264 (0.197, 0.35)
Birth year: 2005 0.653 (0.617, 0.695) 0.777 (0.686, 0.877) 0.426 (0.326, 0.551)
Birth year: 2006 0.85 (0.803, 0.9) 0.917 (0.821, 1.029) 0.59 (0.461, 0.752)
Birth year: 2008 1.11 (1.049, 1.178) 1.175 (1.055, 1.312) 1.192 (0.925, 1.511)
Birth year: 2009 1.234 (1.161, 1.315) 1.51 (1.356, 1.675) 1.179 (0.912, 1.535)
Birth year: 2010 1.087 (1.016, 1.162) 1.784 (1.603, 1.985) 1.135 (0.84, 1.538)
Offset 1.533 (1.523, 1.542) 1.314 (1.304, 1.325) 1.639 (1.588, 1.693)
Mother Infections: Bacterial 1.208 (1.121, 1.301) 1.122 (0.973, 1.286) -
Mother Infections: Viral 1.04 (0.973, 1.114) 0.973 (0.852, 1.101) -
Mother Infections: Miscellaneous 1.053 (0.991, 1.121) 1.049 (0.944, 1.171) -
Mother Infections: Sequelae 1.109 (1.033, 1.187) 1.087 (0.958, 1.228) -
Mother Inflammations 0.98 (0.406, 1.912) 1.307 (0.311, 3.413) -
Mother Immune Disorders 1.24 (1.194, 1.285) 1.04 (0.985, 1.102) -
Newborn Infections: Bacterial 1.369 (1.26, 1.498) 1.076 (0.909, 1.272) -
Newborn Infections: Viral 1.232 (1.109, 1.364) 0.903 (0.72, 1.114) -
Newborn Infections: Miscellaneous 1.18 (1.102, 1.261) 1.271 (1.132, 1.426) -
Newborn Infections: Sequelae 1.232 (1.168, 1.297) 1.069 (0.967, 1.181) -
Newborn Inflammations 0.682 (0.017, 13.335) 0.793 (0.018, 17.829) -
Newborn Immune Disorders 1.154 (1.113, 1.199) 1.163 (1.087, 1.24) -
Mother RX: Antibacterial 1.147 (1.106, 1.19) - -
Mother RX: Antimycotic 1.169 (1.103, 1.239) - -
Mother RX: Antiparasitic 1.042 (0.957, 1.132) - -
Newborn RX: Antibacterial 1.231 (1.188, 1.277) - -
Newborn RX: Antimycotic 1.19 (1.058, 1.338) - -
Newborn RX: Antiparasitic 1.08 (0.569, 1.834) - -

Table 5.3: Parameter estimation for the optimal NDDmodel for each outcome in terms of odds ratio
(see §5.3.1 for model comparison): Posterior median and 95% credible interval of OR; entries in
boldface indicates the corresponding credible intervals do not include 0. A “-” indicates that the
corresponding entry is not part of the optimal model for the given outcome phenotype. The birth
year predictors were coded as a categorical variable with the year 2007 chosen as the reference
level. See also Figures 5.4, 5.5 and 5.6.
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the risk increases were 33.0 percent, 20.7 percent, 18.7 percent and 17.7 percent for bacterial, mis-

cellaneous, viral and sequelae infections, respectively; risk of immune disorders increased by 31.7

percent. Finally, antimycotic medications predicted risk increases of 66.5 percent, 32.9 percent,

29.6 percent, and 25.7 percent for bacterial, miscellaneous, viral and sequelae infections, respec-

tively, whereas for immune disorders the risk increase was 25.7 percent.

Second, medications administered to the mother turned out to have rather diverse effects on

her newborn’s immune health. Somewhat surprisingly, antibacterial medications appeared to be

associated with lower risks for newborn’s bacterial- (-10.0 percent), sequelae- (-10.8) and miscel-

laneous (-10.0 percent) infections. The same medications were associated with risk increases for

immune disorders (5.0 percent) and viral infections (4.6 percent). Antiparasitic medications were

associated with risk increases of 19.9 percent and 9.3 percent for bacterial and miscellaneous in-

fections, respectively, while the risk decreased by 4.5 percent for immune disorders. Finally, for

antimycotics, the only significant result was miscellaneous infections (4.1 percent), viral infections

(8.7 percent) and immune disorders (5.8 percent).

Third, our results suggested that preterm birth, teenage pregnancy, and C-section delivery were

the most consequential for newborn immune health. Female newborns had a lower risk of immune-

related diseases than male, with an exception for miscellaneous infections, whereas teenage births

had variable-sign effects on the outcomes:

• As expected, female newborns appear to be better protected against diseases with immune

system aetiology. We estimated a -9.6 percent risk change for bacterial infections in female

newborns, a -5.1 percent for sequelae infections and a -17.1 percent for immune disorders.

Only for miscellaneous infections did we observe a positive risk change for female newborns

(9.7 percent).

• Preterm and very preterm birth had very strong associations with a child’s subsequent bacte-

rial infections, with the disease risk increased by 173.1 percent (very preterm) and 25.8 per-

cent (preterm). Moreover, very preterm birth was associated with 13.9 percent, 44.2 percent,
94



and 15.3 percent risk increases of the child’s miscellaneous, sequelae, and viral infections,

respectively. A child’s very preterm birth is associated with a 25.0 percent risk increase of

immune disorders. Interestingly, for miscellaneous infections preterm birth was associated

with lower risk (-7.8 percent) but very preterm 13.9 percent.

• Childbirth via C-section was associated with 13.9 percent, 8.3 percent, 14.0 percent and 3.5

percent risk increases for newborn bacterial, miscellaneous, sequelae and viral infections,

respectively. The effect size is not statistically different from zero for viral and miscellaneous

infections. The risk increase associated with C-section is 3.8 percent for future immune disor-

ders. For the interaction between C-section and preterm birth we found, among other things,

risk increases in both interactions (C-section × preterm/very preterm) for miscellaneous in-

fections (13.9 percent and 25.9 percent, respectively) even though the effect of preterm birth

tended towards lower RR (see above). Similarly, for sequelae infections the interaction ef-

fect between C-section and premature birth was protective (-6.5) whereas C-section (14.0),

preterm birth (23.2) and very preterm birth were all associated with higher risks.

• Children with low birth weights (less than or equal to 2,500 g) had risk increases of 70.8 per-

cent, 27.0 percent, 7.4 percent and 5.2 percent for bacterial, sequelae, viral and miscellaneous

infections. The risk increase associated with low birth weights was 16.3 percent for immune

disorders. For higher birth weight (more than or equal to 4,500 g), bacterial infections and

sequelae infections had elevated RR of 41.8 percent and 24.4 percent, respectively.

• Teenage pregnancy represents themost diverse effect-sign disease outcome, with a risk change

of 87.4 percent and 63.1 percent for bacterial, miscellaneous and viral infections, respectively,

but -28.7 percent and -24.6 percent for immune disorders and viral infections, respectively.

Finally, a pregnant woman’s history of infections and immune disorder predicts predominantly

significant changes in her newborn’s disease risk. If a pregnant mother ever had bacterial infections,

our study shows increases in risk of her newborn’s bacterial infections, miscellaneous infections,
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sequelae infections and viral infections of 39.0 percent, 20.9 percent, 16.9 percent and 10.43 per-

cent, respectively. Presence of maternal sequelae infections during pregnancy predicts an increase

in a newborn’s risk of the same kind of infections by 23.8 percent, and an increase of 18.0 in the risk

of bacterial infections. Finally, the presence of maternal viral infections is associated with a 27.0

percent increase in the risk of the same infections in the newborn. By contrast, the presence of ma-

ternal viral infections is associated with a -11.6 percent change in risk for newborn’s miscellaneous

infections.

NDD Submodels

Figure 5.4 shows the posterior density estimation for childbirth-related characteristics, sex, anti-

infective prescriptions and maternal immune system-related events. Premature birth, C-section and

female sex were the common risk factors among the outcomes. Compared to male (baseline),

the newborn being female had ORs of 0.390, 0.253 and 0.532 for ADHD, ASD and Learning

Difficulties, respectively, indicating drastic decreases in risks. C-section births turned out to be a

significant risk factor for ADHD and ASD, with ORs of 1.161 and 1.187, respectively. By contrast,

very premature births were associated with significant risk increases for ADHD only (OR = 1.498),

but the interaction between C-section and very premature births had an OR of 1.432 for ASD only.

Included in the respective optimal model of ADHD and ASD but not in that of Learning Diffi-

culties were birth weight and abnormal maternal ages. Both risk factors were coded as three-valued

categorical variables with normal values as the baseline. For low birth weight, we found elevated

ORs of 1.288 and 1.567 for ADHD and ASD, respectively, while advanced maternal ages predicted

higher risks for ASD (OR: 1.749).

For ADHD, mother and newborn diagnosis (�) and prescription (') information included in

the optimal model, while for ASD only newborn diagnosis (�) was included (neither for Learn-

ing difficulties). In particular, bacterial infection-related factors were all associated with increased

risks: maternal infection with an OR of 1.369, maternal antibacterials with an OR of 1.147, and

96



0.390.253
0.532

1.113 1.432
1.1731.152

1.2650.9460.891
1.306

1.898
1.3150.858

1.749

1.288
1.5671.498

1.164 1.981
1.1020.907 1.625
1.1611.1871.091

1.08
1.19

1.231

1.042

1.169
1.147

1.241.04

1.109
1.087
1.0531.049

1.04
0.973

1.208
1.122

1.1541.163

1.232
1.069

1.181.271
1.232

0.903
1.369

1.076

C
hi

ld
bi

rt
h:

ne
w

bo
rn

's
 a

nd
m

ot
he

r's
ch

ar
ac

te
ris

tic
s

P
re

se
nc

e 
of

A
nt

iin
fe

ct
iv

es

P
re

se
nc

e 
of

in
fe

ct
io

ns
 o

r
im

m
un

e 
di

so
rd

er
s,

m
ot

he
r

P
re

se
nc

e 
of

in
fe

ct
io

ns
 o

r
im

m
un

e 
di

so
rd

er
s,

ne
w

bo
rn

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

Newborn Sex: Female

C−Section × Very Premature birth
C−Section × Premature birth

Advanced−age mother
Teen mother

High birth weight
Low birth weight

Very Premature birth
Premature birth

C−Section

Newborn Antiparasitics
Newborn Antimycotics
Newborn Antibacterials

Mother Antiparasitics
Mother Antimycotics
Mother Antibacterials

Immune
Sequelae

Miscellaneous
Viral

Bacterial

Immune
Sequelae

Miscellaneous
Viral

Bacterial

ADHD

Autism

Learning Difficulties

Figure 5.4: Posterior density estimation of OR for childbirth-related characteristics ((,�, %,, , �).
Numerical annotations on the figure represent posterior medians, corresponding to the dots under
the slabs. Both the slabs and the interval underneath represent 95% credible intervals.

newborn antibacterials with an OR of 1.231. The other type of maternal infections that was asso-

ciated with an elevated risk was sequelae, with an OR of 1.109. As for other types of anti-infective

prescriptions, both maternal and newborn anti-mycotics were associated with elevated ORs: 1.169

and 1.190 for mothers and newborns, respectively. Finally, presence of maternal immune disorders

predicted higher newborn risks of ADHD (OR: 1.154) and for ASD (OR: 1.163).

Figure 5.5 shows the the posterior density estimation for PM2.5, which was a significant risk

factor for ADHD only. The lowest quintile, i.e. with the lowest numerical PM2.5 readings, was used

as the baseline in calculating the ORs for the other quntiles, which were 1.172, 1.248, 1.215 and

1.258 for the second to the fifth, respectively. Figure 5.6 shows the posterior density estimation for

year of birth plus number of years under risk used as offset. The year 2007 was used as the baseline.
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Moreover, from 2004 to 2009 the ORs were monotonically increasing for all three outcomes, while

for ASD this trend actually extended to 2010 aswell. As onewould expect, the longer a newbornwas

visible the more likely a diagnosis for any of the outcomes, as shown by elevated ORs for the offset

term. Figure 5.7 show the mean of the posterior predictive distribution (PPD) on the logarithmic

scale of the cubic P-splines smoothing terms over the day in year of birth (Wood, 2017). While

the smooths for the learning difficulties model were not significant throughout the year, those for

ADHD and ASD had peaks between August and September. Moreover, the ADHD smooths show

another peak in spring as well.
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5.4 Discussion

In this work we harnessed the power of a very large commercial health insurance claims dataset

to probe the associations between maternal immune action, early-life immune system disorders,

uses of anti-infective prescription, sex of newborn, abnormal birth conditions, time of birth in year

and year of birth. The key advantage of our study is that we were able to account for the above

risk factors within the same cohort and that our sample size was orders of magnitude larger than

those from the existing literature. We now situate our results within the larger corpus of literature

concerning putative aetiology of the NDDs in relation to the risk factors.

First, the importance of early life development of the microbiota has been increasingly recog-

nized as central. For instance, (Olin et al., 2018) reported in a landmark study that although immune

profiles (T cells and associated chemokines) of preterm and term newborns differed significantly at

birth, with preterm newborns exhibiting elevated levels of inflammatory response, they eventually

converged within 12 weeks, suggesting that it is early microbial interactions that drives immune sys-

tem development, which can be hampered by dysbiosis. This is in turn supported by the observation

that breast milk, to which preterm newborns generally have limited exposure, contains oligosaccha-

rides that are digested by probiotic bacteria that stimulates the production of IgA (Henderickx et al.,

2019). Among adults, on the other hand, it has been shown that the dynamics of immune cell re-

constitution in cancer patients treated with allogeneic haematopoietic cell transplantation (HCT)

was associated with the gut microbiome (Schluter et al., 2020).

Given the importance of the homeostasis of the microbiome, many studies have focused on

the association between early life exposure to anti-infectives and NDDs. A general trend of de-

creased microbial diversity due to antibiotics use has been observed in children, with the resulting

dysbiosis now known to be associated with a wide range of immune system-related diseases. Nev-

ertheless, one should not hasten to draw a straightforward causal link between anti-infective use

and NDDs since there may exist multiple confounding factors, especially maternal infections dur-

ing pregnancy. For example, a discordant twins study using twin registers in the Netherlands and
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Sweden showed that while early-life antibiotics use was associated with increased risks of ADHD

and ASD, the effect size reduced considerably in the monozygotic (MZ) twins and same-sex dizy-

gotic (DZ) sub-populations (Slob et al., 2021), despite twins being much more likely delivered via

C-section than singletons — consistent with similar prospective twin studies on a Danish cohort

(Axelsson et al., 2019a,b). This apparent inconsistency prompted a recent meta-analysis which con-

firmed the aforementioned results (Yu et al., 2022a). Nevertheless, since antibiotics could influence

brain activity directly independent of dysbiosis, the question of the exact aetiology remains open

(Champagne-Jorgensen et al., 2019).

Similarly, for C-section mode of delivery, the same twin study cited above (Axelsson et al.,

2019a) showed that effect sizes of associations shrink towards zero when comparing siblings and

twins, with a hazard ratio (HR) of 1.09 (95%CI 0.97–1.24) for intrapartumC-section, 1.03 (0.91–1.16)

for prelabor C-section. Meanwhile, a meta-analysis of over 2.5 million subjects across 8 countries

showed that the apparent association between C-sections (both elective and emergency) and ADHD

disappeared when sibling data were pooled together (Xu et al., 2020). These results suggest that

the causal factors were unmeasured maternal confounder(s) instead, which could include atopic

diseases such as asthma, eczema or allergic rhinitis.

By contrast, the association between preterm births and ADHD and ASD yields a more straight-

forward pattern. A recent meta-analysis of 140 articles on early environmental risks showed that

both preterm birth and low birth weight were associated with increased risks of NDDs even after

familial confounding had been adjusted for (Carlsson et al., 2021). Moreover, case-control studies

also pointed towards higher risks of ADHD: a Catalan cohort with 3,744 premature infants matched

with 3,744 non-preterm had an HR of 5.52 (95% CI 1.73 – 17.62). The same pattern was also ob-

served for the association between low birth weight and ADHD. In a population-based twin cohort

with births in England andWales between 1994 and 1996, the association between birth weight and

ADHD symptomatology was statistically significant in an MZ-controlled setup, an effect persistent

into adolescence and not moderated by gender, gestational age and low birth weight.
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Finally, time of birth within a year was also associated with higher risks of ADHD. Consistent

with previous literature, the relative risk of ADHD was found to be higher in spring and sum-

mer (more specifically, from March to August) and lower in autumn and winter (from September

to February). The sharp drop in the curve between August and September has been commonly

attributed to change in school year in many jurisdiction in the United States, since the youngest

children in their cohort had the least opportunity for social interaction and physiological/psycho-

logical maturity, and hence higher probability of being diagnosed with NDDs (Root et al., 2019;

Layton et al., 2018; Karlstad et al., 2017). What sets our result apart from the literature is the rela-

tive magnitude of the risk between March and August: we obtained a multimodal curve where the

highest peak was located in March/April, whereas the literature generally puts the highest risk in

late summer, around the beginning of school year (August/September) (Hsu et al., 2021). The last

observation was, however, consistent with our findings for ASD, for which the risk was lowest in

spring and highest in summer.
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5.5 Appendix

5.5.1 Additional Methods

Regression Analysis

Immune System Submodels For these models, the outcome variable is the count of the given

immune system-related disorder. Thus, the equation for the negative binomial (NB) regression is

given by (Winkelmann, 2008, §§4.2.1 & 4.3, pp. 131 & 134)

H8 ∼ NB
(
A, exp

(
x>#

) )
⇐⇒

PNB(H8 |x, #, A) =
Γ(H8 + A)

Γ(H8 − 1)Γ(A)

[ exp
(
x>#

)
exp (x>#) + A

] H8 [
A

exp (x>#) + A

]A
.

(5.1)

In count data regression, a regression coefficient (elements of #) represents the relative effect on

the expected counts of the outcome variable due to 1 unit increase of the corresponding predictor,

or, in the case of binary predictors, the presence over the absence of the corresponding phenotype.

Formally, the relative change in expected count, E ( H | ·) (relative count change, ΔRC), due to such

a change in x 9 w.r.t. the baseline can be written as follows (Winkelmann, 2008, §3.1.4, pp. 70–71)

ΔRC 9 =

E
(
H | x( 9)>#

)
− E

(
H | x>#

)
E ( H | x>#)

=
exp

(
x># + # 9

)
− exp

(
x>#

)
exp (x>#)

= exp
(
# 9

)
− 1,

(5.2)
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where x( 9) is the same as x except that its 9 th entry is increased by 1, and # 9 the 9 th entry of # 9 .

In addition to the vanilla NB models we also fitted hurdle NB models, with likelihood given by

PHurdle−NB(H8 |x, #, A) =


c H8 = 0

(1 − c) PNB(H8 |x, #, A)
1 − PNB(0|x, #, A)

H8 > 0,
(5.3)

where c ∈ [0, 1] represent the proportion of the data points {H8} equal to 0. As such, the hurdle

model can be used to both inflated and deflated zero counts. For the prior on c we used Unif (0, 1) ≡

Beta(1, 1).

Over-dispersion Table 5.4 (see also Figure 5.8) shows that for each of the outcome phenotypes

the variance was much larger than the mean, suggesting the presence of strong over-dispersion with

respect to the Poisson distribution.

Phenotype Median Mean Variance Variance/Mean

Infections
Bacterial 0 0.237 1.61 6.8
Viral 0 0.522 1.7 3.25
Miscellaneous 0 0.238 0.911 3.83
Sequelae 0 0.802 2.49 3.1

Immune disorder 2 5.49 181 32.9

Table 5.4: Summary statistics of counts of the outcomes

Neurodevelopmental Submodels For these models, the outcome variable is the presence or ab-

sence of the given neurodevelopemntal disorder. We used logistic regression to model the proba-

bility of developing the given phenotype, such that the log-odds for the phenotype is the predicted

by a linear combination of the predictors. The regression equation is given by

H8 = logit−1 (
x>#

)
, where logit−1 (I) = 1

1 + exp(−I) (5.4)
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Figure 5.8: Histograms of counts of phenotypes

In addition, tomodel the time of diagnosis we attempted to applymixcure curemodels from survival

analysis. Suchmodels consist of two parts: incidence and latency Amico and VanKeilegom (2018).

The incidence part is identical to the logistic regression (Equation 5.4), and the latency part is

modelled by a time-to-event model whose value is restricted to the positive real line. The posterior

distributions from such models had weak identifiablity, as demonstrated by the multiple area of
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high posterior density.

Smoothing Splines To model the effect of time of birth in year on the NDD outcomes, we used

cyclic P-splines, which are defined as follows. In the first step, We define a set of �-splines serving

as the basis for the smooths. Let G be the variable over which the smooths are placed, < be order of

the splines (usually< > 2) and : be the number of spline parameters. Then we define<+:+2 knots

{G1, · · · , G<+:+2}, which are cutoff points on the range of the G’s and are evenly spaced. The basis

functions are then piecewise polynomials supported over the space spanned by < + 2 consecutive

knots, given by the following recursive formula (base case is < = −1):

�
(<)
9

=
G − G 9

G 9+<+1 − G 9
�
(<−1)
9

(G) +
G 9+<+2 − G
G 9+<+2 − G 9+1

�
(<−1)
9

(G) (5.5)

�
(−1)
9

= 1(G) [G 9 ,G 9+1) 9 ∈ [1, :] ∩ Z. (5.6)

As such, the <th order B-splines are polynomial of order < + 1. The �-spline smooth can now be

expressed as a linear combination of the basis functions

5 (G) =
:∑
9=1

V 9�
(<)
9
(G), (5.7)

%-splines are essentially a regularized version of the �-splines, in that we incorporate additional

terms that aim to penalize the !2 distances between adjacent basis coefficients 1 9

P =

:−1∑
9=1

(
V 9+1 − V 9

)2
= #>%>%# = #>(>#, (5.8)

where % has −1 on the diagonal, 1 on the superdiagonal and 0 everywhere else. Moreover, the

smooth regression model

E[H] = 5 (x), H ∼ N
(
0, f2

)
(5.9)
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can be recast in a hierarchical generalized linear model (HGLM) as

5 (-) = -># + /b, (5.10)

with b ∼ i.i.d.N(0, If2
1
), - = &*0 and / = &*+�−1/2, where we have performed the QR

decomposition of - = &', and* =
[
*+ *0] the matrix of eigenvectors of '−>('−1 with those

corresponding to the positive eigenvalues *+ and the rest *0. Since the penalty matrix ( is low

rank, The diagonal matrix � contains the eigenvalues. There exist other forms of smoothing splines

that do not necessitate choosing knots such as the thin plate regression splines (TPRS), which are

more flexible and robust but unfortunately much more computationally expensive, rendering them

impractical for our applications.

Statistical Modelling

Below are additional plots and tables for model comparisons.

model elpd_diff se_diff elpd_kfold se_elpd_kfold p_kfold se_p_kfold

C + P + W + A + R / H 0.000 × 100 0.000 × 100 −2.075 × 105 6.882 × 102 −1.636 × 105 4.290 × 103

C + P + A + R / H −1.269 × 102 2.986 × 101 −2.076 × 105 6.882 × 102 −1.587 × 105 4.139 × 103

C + P + W + R / H −1.835 × 102 3.691 × 101 −2.077 × 105 6.898 × 102 −1.636 × 105 4.299 × 103

C + P + W + A + R −2.559 × 102 1.101 × 102 −2.077 × 105 7.117 × 102 −2.565 × 105 5.398 × 103

C + P + R / H −3.422 × 102 4.725 × 101 −2.078 × 105 6.914 × 102 −1.586 × 105 4.137 × 103

C + P + A + R −6.073 × 102 1.153 × 102 −2.081 × 105 7.138 × 102 −2.547 × 105 5.354 × 103

C + P + W + R −7.461 × 102 1.234 × 102 −2.082 × 105 7.177 × 102 −2.568 × 105 5.431 × 103

C + P + A / H −8.396 × 102 8.030 × 101 −2.083 × 105 6.949 × 102 −1.518 × 105 3.924 × 103

C + P + W / H −8.992 × 102 8.675 × 101 −2.084 × 105 6.964 × 102 −1.560 × 105 4.057 × 103

C + P / H −1.086 × 103 9.472 × 101 −2.086 × 105 6.994 × 102 −1.517 × 105 3.937 × 103

C + P + R −1.113 × 103 1.300 × 102 −2.086 × 105 7.206 × 102 −2.549 × 105 5.374 × 103

C + P + W + A −1.351 × 103 1.349 × 102 −2.088 × 105 7.193 × 102 −2.522 × 105 5.256 × 103

C + P + A −1.697 × 103 1.407 × 102 −2.092 × 105 7.224 × 102 −2.505 × 105 5.211 × 103

C + P + W −1.817 × 103 1.498 × 102 −2.093 × 105 7.265 × 102 −2.525 × 105 5.287 × 103

C + P −2.160 × 103 1.559 × 102 −2.097 × 105 7.295 × 102 −2.508 × 105 5.241 × 103

C + P + W + A / H − − − − − −

Table 5.5: Model comparison for Immune System Submodels: Bacterial Infections
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Figure 5.9: Model comparison for Immune System Submodels: Bacterial Infections
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model elpd_diff se_diff elpd_kfold se_elpd_kfold p_kfold se_p_kfold

C + P + W + A + R / H 0.000 × 100 0.000 × 100 −7.860 × 105 9.034 × 102 −1.611 × 106 2.728 × 104

C + P + W + R / H −5.428 × 102 5.082 × 101 −7.866 × 105 9.075 × 102 −1.617 × 106 2.754 × 104

C + P + A + R / H −5.936 × 102 3.991 × 101 −7.866 × 105 9.068 × 102 −1.594 × 106 2.691 × 104

C + P + W + A / H −1.063 × 103 6.613 × 101 −7.871 × 105 9.071 × 102 −1.520 × 106 2.475 × 104

C + P + R / H −1.160 × 103 6.552 × 101 −7.872 × 105 9.124 × 102 −1.599 × 106 2.714 × 104

C + P + W / H −1.625 × 103 8.400 × 101 −7.877 × 105 9.125 × 102 −1.526 × 106 2.503 × 104

C + P + A / H −1.647 × 103 7.636 × 101 −7.877 × 105 9.105 × 102 −1.506 × 106 2.445 × 104

C + P / H −2.222 × 103 9.315 × 101 −7.883 × 105 9.167 × 102 −1.512 × 106 2.470 × 104

C + P + W + A + R −1.207 × 104 3.070 × 102 −7.981 × 105 1.055 × 103 −1.814 × 106 3.001 × 104

C + P + A + R −1.309 × 104 3.249 × 102 −7.991 × 105 1.066 × 103 −1.799 × 106 2.968 × 104

C + P + W + R −1.317 × 104 3.359 × 102 −7.992 × 105 1.071 × 103 −1.821 × 106 3.029 × 104

C + P + W + A −1.397 × 104 3.334 × 102 −8.000 × 105 1.069 × 103 −1.720 × 106 2.727 × 104

C + P + R −1.418 × 104 3.510 × 102 −8.002 × 105 1.082 × 103 −1.805 × 106 2.991 × 104

C + P + A −1.501 × 104 3.528 × 102 −8.010 × 105 1.082 × 103 −1.709 × 106 2.702 × 104

C + P + W −1.507 × 104 3.629 × 102 −8.011 × 105 1.087 × 103 −1.728 × 106 2.761 × 104

C + P −1.608 × 104 3.796 × 102 −8.021 × 105 1.098 × 103 −1.716 × 106 2.737 × 104

Table 5.6: Model comparison for Immune System Submodels: Immune Disorders

5.5.2 Additional Results

Smoothing Splines
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Figure 5.10: Model comparison for Immune System Submodels: Immune
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model elpd_diff se_diff elpd_kfold se_elpd_kfold p_kfold se_p_kfold

C + P + W + A + R 0.000 × 100 0.000 × 100 −2.076 × 105 7.040 × 102 −2.141 × 105 4.086 × 103

C + P + W + A + R / H −5.877 × 101 1.213 × 102 −2.077 × 105 6.735 × 102 −1.283 × 105 3.208 × 103

C + P + A + R / H −2.122 × 102 1.252 × 102 −2.078 × 105 6.681 × 102 −1.271 × 105 3.181 × 103

C + P + W + R / H −2.243 × 102 1.245 × 102 −2.079 × 105 6.712 × 102 −1.280 × 105 3.202 × 103

C + P + R / H −4.038 × 102 1.315 × 102 −2.080 × 105 6.706 × 102 −1.269 × 105 3.176 × 103

C + P + W + R −4.622 × 102 4.966 × 101 −2.081 × 105 7.046 × 102 −2.142 × 105 4.109 × 103

C + P + A + R −4.808 × 102 4.440 × 101 −2.081 × 105 7.021 × 102 −2.135 × 105 4.080 × 103

C + P + W + A / H −8.703 × 102 1.179 × 102 −2.085 × 105 6.768 × 102 −1.247 × 105 3.132 × 103

C + P + R −9.625 × 102 7.418 × 101 −2.086 × 105 7.059 × 102 −2.135 × 105 4.098 × 103

C + P + W / H −1.051 × 103 1.251 × 102 −2.087 × 105 6.809 × 102 −1.245 × 105 3.126 × 103

C + P + A / H −1.074 × 103 1.284 × 102 −2.087 × 105 6.786 × 102 −1.237 × 105 3.109 × 103

C + P + W + A −1.109 × 103 6.727 × 101 −2.087 × 105 7.141 × 102 −2.106 × 105 4.012 × 103

C + P / H −1.272 × 103 1.357 × 102 −2.089 × 105 6.814 × 102 −1.234 × 105 3.104 × 103

C + P + W −1.532 × 103 8.908 × 101 −2.092 × 105 7.171 × 102 −2.107 × 105 4.030 × 103

C + P + A −1.552 × 103 8.691 × 101 −2.092 × 105 7.151 × 102 −2.101 × 105 4.006 × 103

C + P −2.010 × 103 1.072 × 102 −2.096 × 105 7.197 × 102 −2.102 × 105 4.023 × 103

Table 5.7: Model comparison for Immune System Submodels: Miscellaneous Infections

model elpd_diff se_diff elpd_kfold se_elpd_kfold p_kfold se_p_kfold

C + P + W + A + R / H 0.000 × 100 0.000 × 100 −4.004 × 105 7.694 × 102 −7.192 × 105 1.556 × 104

C + P + W + R / H −3.821 × 102 4.001 × 101 −4.007 × 105 7.761 × 102 −7.168 × 105 1.546 × 104

C + P + A + R / H −5.583 × 102 3.773 × 101 −4.009 × 105 7.742 × 102 −7.120 × 105 1.536 × 104

C + P + R / H −9.525 × 102 5.748 × 101 −4.013 × 105 7.813 × 102 −7.101 × 105 1.529 × 104

C + P + W + A / H −2.013 × 103 8.841 × 101 −4.024 × 105 7.881 × 102 −7.064 × 105 1.524 × 104

C + P + W / H −2.382 × 103 1.022 × 102 −4.027 × 105 7.951 × 102 −7.045 × 105 1.515 × 104

C + P + A / H −2.609 × 103 1.014 × 102 −4.030 × 105 7.945 × 102 −6.999 × 105 1.506 × 104

C + P / H −2.989 × 103 1.166 × 102 −4.033 × 105 8.030 × 102 −6.982 × 105 1.500 × 104

C + P + W + A + R −8.212 × 103 2.386 × 102 −4.086 × 105 8.886 × 102 −8.049 × 105 1.559 × 104

C + P + W + R −8.876 × 103 2.573 × 102 −4.092 × 105 9.001 × 102 −8.039 × 105 1.555 × 104

C + P + A + R −9.088 × 103 2.495 × 102 −4.094 × 105 8.965 × 102 −8.000 × 105 1.547 × 104

C + P + R −9.779 × 103 2.704 × 102 −4.101 × 105 9.096 × 102 −7.992 × 105 1.544 × 104

C + P + W + A −1.113 × 104 2.874 × 102 −4.115 × 105 9.201 × 102 −7.945 × 105 1.533 × 104

C + P + W −1.175 × 104 3.073 × 102 −4.121 × 105 9.332 × 102 −7.941 × 105 1.531 × 104

C + P + A −1.199 × 104 3.003 × 102 −4.123 × 105 9.300 × 102 −7.903 × 105 1.523 × 104

C + P −1.262 × 104 3.206 × 102 −4.130 × 105 9.436 × 102 −7.899 × 105 1.522 × 104

Table 5.8: Model comparison for Immune System Submodels: Sequelae Infections
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Figure 5.11: Model comparison for Immune System Submodels: Miscellaneous infections
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Figure 5.12: Model comparison for Immune System Submodels: Sequelae
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model elpd_diff se_diff elpd_kfold se_elpd_kfold p_kfold se_p_kfold

C + P + W + A + R / H 0.000 × 100 0.000 × 100 −3.454 × 105 7.551 × 102 −5.436 × 105 1.121 × 104

C + P + W + R / H −3.069 × 102 3.597 × 101 −3.457 × 105 7.593 × 102 −5.429 × 105 1.118 × 104

C + P + A + R / H −5.622 × 102 4.583 × 101 −3.459 × 105 7.596 × 102 −5.417 × 105 1.118 × 104

C + P + R / H −8.613 × 102 5.920 × 101 −3.462 × 105 7.644 × 102 −5.407 × 105 1.113 × 104

C + P + W + A / H −1.193 × 103 6.973 × 101 −3.466 × 105 7.640 × 102 −5.283 × 105 1.076 × 104

C + P + W / H −1.498 × 103 8.275 × 101 −3.469 × 105 7.700 × 102 −5.277 × 105 1.073 × 104

C + P + A / H −1.768 × 103 8.489 × 101 −3.471 × 105 7.702 × 102 −5.266 × 105 1.073 × 104

C + P / H −2.085 × 103 9.717 × 101 −3.474 × 105 7.751 × 102 −5.258 × 105 1.068 × 104

C + P + W + A + R −4.159 × 103 1.756 × 102 −3.495 × 105 8.248 × 102 −6.394 × 105 1.159 × 104

C + P + W + R −4.824 × 103 1.925 × 102 −3.502 × 105 8.342 × 102 −6.394 × 105 1.160 × 104

C + P + A + R −5.090 × 103 1.875 × 102 −3.505 × 105 8.323 × 102 −6.381 × 105 1.157 × 104

C + P + R −5.757 × 103 2.037 × 102 −3.511 × 105 8.415 × 102 −6.383 × 105 1.159 × 104

C + P + W + A −5.943 × 103 2.046 × 102 −3.513 × 105 8.407 × 102 −6.277 × 105 1.122 × 104

C + P + W −6.550 × 103 2.202 × 102 −3.519 × 105 8.498 × 102 −6.280 × 105 1.124 × 104

C + P + A −6.828 × 103 2.161 × 102 −3.522 × 105 8.485 × 102 −6.269 × 105 1.121 × 104

C + P −7.452 × 103 2.325 × 102 −3.528 × 105 8.584 × 102 −6.273 × 105 1.123 × 104

Table 5.9: Model comparison for Immune System Submodels: Viral Infections
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Figure 5.13: Model comparison for Immune System Submodels: Viral infection
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model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic

C + P + W + A + M + B + D + R + TD 0.000 × 100 0.000 × 100 −6.414 × 104 3.730 × 102 4.917 × 101 6.298 × 10−1 1.283 × 105 7.460 × 102

C + P + W + A + M + B + D + R + TM −5.111 × 100 4.844 × 100 −6.414 × 104 3.731 × 102 5.246 × 101 6.412 × 10−1 1.283 × 105 7.462 × 102

C + P + W + M + B + D + R + TD −2.240 × 101 7.021 × 100 −6.416 × 104 3.731 × 102 4.745 × 101 6.118 × 10−1 1.283 × 105 7.462 × 102

C + P + A + M + B + D + R + TD −2.502 × 101 7.858 × 100 −6.416 × 104 3.732 × 102 4.668 × 101 5.977 × 10−1 1.283 × 105 7.463 × 102

C + P + W + M + B + D + R + TM −2.796 × 101 8.555 × 100 −6.417 × 104 3.732 × 102 5.106 × 101 6.192 × 10−1 1.283 × 105 7.464 × 102

C + P + A + M + B + D + R + TM −3.051 × 101 9.207 × 100 −6.417 × 104 3.732 × 102 5.023 × 101 6.039 × 10−1 1.283 × 105 7.464 × 102

C + P + M + B + D + R + TD −4.748 × 101 1.047 × 101 −6.419 × 104 3.732 × 102 4.524 × 101 5.683 × 10−1 1.284 × 105 7.465 × 102

C + P + M + B + D + R + TM −5.242 × 101 1.154 × 101 −6.419 × 104 3.733 × 102 4.841 × 101 5.825 × 10−1 1.284 × 105 7.466 × 102

C + P + W + A + M + B + D + R + TS −6.163 × 101 1.032 × 101 −6.420 × 104 3.734 × 102 4.495 × 101 6.321 × 10−1 1.284 × 105 7.467 × 102

C + P + W + M + B + D + R + TS −8.317 × 101 1.254 × 101 −6.422 × 104 3.734 × 102 4.211 × 101 5.688 × 10−1 1.284 × 105 7.469 × 102

C + P + A + M + B + D + R + TS −8.618 × 101 1.291 × 101 −6.423 × 104 3.735 × 102 4.187 × 101 5.930 × 10−1 1.285 × 105 7.470 × 102

C + P + M + B + D + R + TS −1.082 × 102 1.470 × 101 −6.425 × 104 3.736 × 102 4.008 × 101 5.483 × 10−1 1.285 × 105 7.471 × 102

C + P + W + A + M + B + D + TD −1.247 × 102 1.663 × 101 −6.426 × 104 3.737 × 102 4.275 × 101 5.477 × 10−1 1.285 × 105 7.473 × 102

C + P + W + A + M + B + D + TM −1.294 × 102 1.730 × 101 −6.427 × 104 3.737 × 102 4.598 × 101 5.492 × 10−1 1.285 × 105 7.474 × 102

C + P + W + M + B + D + TD −1.481 × 102 1.804 × 101 −6.429 × 104 3.738 × 102 4.084 × 101 4.983 × 10−1 1.286 × 105 7.475 × 102

C + P + A + M + B + D + TD −1.512 × 102 1.838 × 101 −6.429 × 104 3.738 × 102 4.069 × 101 5.161 × 10−1 1.286 × 105 7.476 × 102

C + P + W + M + B + D + TM −1.527 × 102 1.868 × 101 −6.429 × 104 3.738 × 102 4.388 × 101 5.100 × 10−1 1.286 × 105 7.477 × 102

C + P + A + M + B + D + TM −1.562 × 102 1.898 × 101 −6.430 × 104 3.739 × 102 4.425 × 101 5.378 × 10−1 1.286 × 105 7.477 × 102

C + P + M + B + D + TD −1.741 × 102 1.963 × 101 −6.431 × 104 3.739 × 102 3.899 × 101 4.783 × 10−1 1.286 × 105 7.478 × 102

C + P + M + B + D + TM −1.787 × 102 2.021 × 101 −6.432 × 104 3.740 × 102 4.198 × 101 4.948 × 10−1 1.286 × 105 7.479 × 102

C + P + W + A + M + B + D + TS −1.832 × 102 1.960 × 101 −6.432 × 104 3.740 × 102 3.751 × 101 5.297 × 10−1 1.286 × 105 7.480 × 102

C + P + W + M + B + D + TS −2.069 × 102 2.084 × 101 −6.435 × 104 3.741 × 102 3.574 × 101 4.783 × 10−1 1.287 × 105 7.481 × 102

C + P + A + M + B + D + TS −2.099 × 102 2.107 × 101 −6.435 × 104 3.742 × 102 3.572 × 101 5.117 × 10−1 1.287 × 105 7.483 × 102

C + P + W + A + M + B + R + TD −2.175 × 102 2.211 × 101 −6.436 × 104 3.740 × 102 3.790 × 101 4.493 × 10−1 1.287 × 105 7.480 × 102

C + P + W + A + M + B + R + TM −2.223 × 102 2.268 × 101 −6.436 × 104 3.740 × 102 4.110 × 101 4.695 × 10−1 1.287 × 105 7.480 × 102

C + P + M + B + D + TS −2.328 × 102 2.220 × 101 −6.437 × 104 3.742 × 102 3.376 × 101 4.717 × 10−1 1.287 × 105 7.485 × 102

C + P + W + M + B + R + TD −2.406 × 102 2.327 × 101 −6.438 × 104 3.741 × 102 3.577 × 101 4.047 × 10−1 1.288 × 105 7.482 × 102

C + P + A + M + B + R + TD −2.447 × 102 2.355 × 101 −6.438 × 104 3.741 × 102 3.555 × 101 4.255 × 10−1 1.288 × 105 7.482 × 102

C + P + W + M + B + R + TM −2.453 × 102 2.381 × 101 −6.438 × 104 3.741 × 102 3.878 × 101 4.159 × 10−1 1.288 × 105 7.482 × 102

C + P + A + M + B + R + TM −2.497 × 102 2.407 × 101 −6.439 × 104 3.741 × 102 3.911 × 101 4.358 × 10−1 1.288 × 105 7.483 × 102

C + P + M + B + R + TD −2.675 × 102 2.462 × 101 −6.441 × 104 3.742 × 102 3.370 × 101 3.702 × 10−1 1.288 × 105 7.484 × 102

C + P + M + B + R + TM −2.723 × 102 2.513 × 101 −6.441 × 104 3.742 × 102 3.699 × 101 3.791 × 10−1 1.288 × 105 7.485 × 102

C + P + W + A + M + B + R + TS −2.770 × 102 2.427 × 101 −6.442 × 104 3.743 × 102 3.249 × 101 4.426 × 10−1 1.288 × 105 7.485 × 102

C + P + W + M + B + R + TS −3.009 × 102 2.536 × 101 −6.444 × 104 3.744 × 102 3.105 × 101 3.852 × 10−1 1.289 × 105 7.487 × 102

C + P + A + M + B + R + TS −3.046 × 102 2.556 × 101 −6.444 × 104 3.744 × 102 3.070 × 101 4.069 × 10−1 1.289 × 105 7.488 × 102

C + P + M + B + R + TS −3.270 × 102 2.658 × 101 −6.447 × 104 3.745 × 102 2.832 × 101 3.535 × 10−1 1.289 × 105 7.490 × 102

C + P + W + A + M + B + TD −4.970 × 102 3.315 × 101 −6.464 × 104 3.753 × 102 3.180 × 101 3.326 × 10−1 1.293 × 105 7.507 × 102

C + P + W + A + M + B + TM −5.007 × 102 3.353 × 101 −6.464 × 104 3.754 × 102 3.444 × 101 3.462 × 10−1 1.293 × 105 7.508 × 102

C + P + W + M + B + TD −5.202 × 102 3.389 × 101 −6.466 × 104 3.754 × 102 2.947 × 101 2.693 × 10−1 1.293 × 105 7.509 × 102

C + P + W + M + B + TM −5.247 × 102 3.427 × 101 −6.466 × 104 3.755 × 102 3.280 × 101 2.876 × 10−1 1.293 × 105 7.510 × 102

C + P + A + M + B + TD −5.262 × 102 3.413 × 101 −6.467 × 104 3.755 × 102 2.948 × 101 2.983 × 10−1 1.293 × 105 7.509 × 102

C + P + A + M + B + TM −5.304 × 102 3.450 × 101 −6.467 × 104 3.755 × 102 3.263 × 101 3.105 × 10−1 1.293 × 105 7.511 × 102

C + P + M + B + TD −5.487 × 102 3.484 × 101 −6.469 × 104 3.756 × 102 2.710 × 101 2.143 × 10−1 1.294 × 105 7.511 × 102

C + P + M + B + TM −5.534 × 102 3.521 × 101 −6.469 × 104 3.756 × 102 3.051 × 101 2.361 × 10−1 1.294 × 105 7.513 × 102

C + P + W + A + M + B + TS −5.539 × 102 3.464 × 101 −6.469 × 104 3.757 × 102 2.614 × 101 3.099 × 10−1 1.294 × 105 7.513 × 102

C + P + W + M + B + TS −5.780 × 102 3.537 × 101 −6.472 × 104 3.757 × 102 2.464 × 101 2.457 × 10−1 1.294 × 105 7.515 × 102

C + P + A + M + B + TS −5.836 × 102 3.557 × 101 −6.472 × 104 3.758 × 102 2.444 × 101 2.752 × 10−1 1.294 × 105 7.517 × 102

C + P + M + B + TS −6.067 × 102 3.626 × 101 −6.475 × 104 3.759 × 102 2.239 × 101 1.885 × 10−1 1.295 × 105 7.518 × 102

Table 5.10: Model comparison for NDD Submodels:ADHD
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Figure 5.14: Model comparison for Neurodvelopmental submodels: ADHD
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model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic

C + P + W + A + M + B + D + R + TS 0.000 × 100 0.000 × 100 −2.764 × 104 3.211 × 102 4.283 × 101 1.103 × 100 5.528 × 104 6.422 × 102

C + P + W + A + M + B + D + R + TD −1.267 × 10−1 1.892 × 100 −2.764 × 104 3.211 × 102 4.435 × 101 1.126 × 100 5.529 × 104 6.421 × 102

C + P + W + A + M + B + D + TS −2.984 × 100 4.152 × 100 −2.765 × 104 3.211 × 102 3.684 × 101 9.321 × 10−1 5.529 × 104 6.422 × 102

C + P + W + A + M + B + D + TD −3.283 × 100 4.584 × 100 −2.765 × 104 3.211 × 102 3.821 × 101 9.571 × 10−1 5.529 × 104 6.422 × 102

C + P + W + A + M + B + D + R + TM −4.678 × 100 2.968 × 100 −2.765 × 104 3.212 × 102 5.184 × 101 1.205 × 100 5.529 × 104 6.423 × 102

C + P + W + A + M + B + D + TM −7.369 × 100 5.106 × 100 −2.765 × 104 3.212 × 102 4.548 × 101 1.033 × 100 5.530 × 104 6.425 × 102

C + P + W + A + M + B + R + TS −1.848 × 101 7.839 × 100 −2.766 × 104 3.213 × 102 3.185 × 101 8.119 × 10−1 5.532 × 104 6.426 × 102

C + P + W + A + M + B + R + TD −1.871 × 101 8.056 × 100 −2.766 × 104 3.213 × 102 3.358 × 101 8.361 × 10−1 5.532 × 104 6.425 × 102

C + P + W + A + M + B + TD −1.937 × 101 8.867 × 100 −2.766 × 104 3.213 × 102 2.720 × 101 6.009 × 10−1 5.532 × 104 6.426 × 102

C + P + W + A + M + B + TS −1.951 × 101 8.664 × 100 −2.766 × 104 3.213 × 102 2.614 × 101 6.014 × 10−1 5.532 × 104 6.426 × 102

C + P + W + A + M + B + R + TM −2.265 × 101 8.400 × 100 −2.767 × 104 3.213 × 102 4.034 × 101 8.658 × 10−1 5.533 × 104 6.427 × 102

C + P + W + A + M + B + TM −2.350 × 101 9.180 × 100 −2.767 × 104 3.213 × 102 3.435 × 101 6.732 × 10−1 5.533 × 104 6.427 × 102

C + P + A + M + B + D + R + TD −3.116 × 101 8.876 × 100 −2.767 × 104 3.214 × 102 4.239 × 101 1.090 × 100 5.535 × 104 6.427 × 102

C + P + A + M + B + D + R + TS −3.122 × 101 8.686 × 100 −2.767 × 104 3.214 × 102 4.121 × 101 1.085 × 100 5.535 × 104 6.428 × 102

C + P + A + M + B + D + TD −3.419 × 101 9.836 × 100 −2.768 × 104 3.214 × 102 3.612 × 101 9.285 × 10−1 5.535 × 104 6.428 × 102

C + P + A + M + B + D + TS −3.420 × 101 9.654 × 100 −2.768 × 104 3.214 × 102 3.513 × 101 9.140 × 10−1 5.535 × 104 6.429 × 102

C + P + W + M + B + D + R + TD −3.455 × 101 8.887 × 100 −2.768 × 104 3.215 × 102 4.199 × 101 1.026 × 100 5.535 × 104 6.430 × 102

C + P + A + M + B + D + R + TM −3.468 × 101 9.154 × 100 −2.768 × 104 3.215 × 102 4.902 × 101 1.149 × 100 5.535 × 104 6.429 × 102

C + P + W + M + B + D + R + TS −3.504 × 101 8.716 × 100 −2.768 × 104 3.215 × 102 4.112 × 101 1.041 × 100 5.535 × 104 6.430 × 102

C + P + A + M + B + D + TM −3.770 × 101 1.008 × 101 −2.768 × 104 3.215 × 102 4.282 × 101 9.796 × 10−1 5.536 × 104 6.430 × 102

C + P + W + M + B + D + TS −3.830 × 101 9.745 × 100 −2.768 × 104 3.215 × 102 3.469 × 101 8.216 × 10−1 5.536 × 104 6.431 × 102

C + P + W + M + B + D + R + TM −3.857 × 101 9.206 × 100 −2.768 × 104 3.215 × 102 4.906 × 101 1.095 × 100 5.536 × 104 6.431 × 102

C + P + W + M + B + D + TD −3.868 × 101 9.910 × 100 −2.768 × 104 3.215 × 102 3.614 × 101 8.610 × 10−1 5.536 × 104 6.430 × 102

C + P + W + M + B + D + TM −4.226 × 101 1.019 × 101 −2.768 × 104 3.216 × 102 4.297 × 101 9.063 × 10−1 5.537 × 104 6.432 × 102

C + P + A + M + B + R + TS −4.984 × 101 1.170 × 101 −2.769 × 104 3.215 × 102 2.966 × 101 7.504 × 10−1 5.538 × 104 6.431 × 102

C + P + A + M + B + R + TD −5.032 × 101 1.183 × 101 −2.769 × 104 3.215 × 102 3.141 × 101 7.992 × 10−1 5.539 × 104 6.431 × 102

C + P + A + M + B + TS −5.102 × 101 1.231 × 101 −2.769 × 104 3.216 × 102 2.390 × 101 5.576 × 10−1 5.539 × 104 6.431 × 102

C + P + A + M + B + TD −5.127 × 101 1.245 × 101 −2.769 × 104 3.216 × 102 2.535 × 101 5.680 × 10−1 5.539 × 104 6.432 × 102

C + P + W + M + B + R + TD −5.271 × 101 1.184 × 101 −2.770 × 104 3.216 × 102 3.138 × 101 7.212 × 10−1 5.539 × 104 6.433 × 102

C + P + W + M + B + R + TS −5.295 × 101 1.172 × 101 −2.770 × 104 3.217 × 102 3.010 × 101 7.005 × 10−1 5.539 × 104 6.433 × 102

C + P + W + M + B + TD −5.390 × 101 1.246 × 101 −2.770 × 104 3.217 × 102 2.511 × 101 4.442 × 10−1 5.539 × 104 6.433 × 102

C + P + A + M + B + R + TM −5.404 × 101 1.207 × 101 −2.770 × 104 3.217 × 102 3.814 × 101 8.556 × 10−1 5.539 × 104 6.433 × 102

C + P + W + M + B + TS −5.446 × 101 1.234 × 101 −2.770 × 104 3.217 × 102 2.425 × 101 4.422 × 10−1 5.539 × 104 6.434 × 102

C + P + A + M + B + TM −5.492 × 101 1.265 × 101 −2.770 × 104 3.216 × 102 3.198 × 101 6.257 × 10−1 5.539 × 104 6.433 × 102

C + P + W + M + B + R + TM −5.643 × 101 1.211 × 101 −2.770 × 104 3.217 × 102 3.800 × 101 7.609 × 10−1 5.540 × 104 6.434 × 102

C + P + W + M + B + TM −5.780 × 101 1.270 × 101 −2.770 × 104 3.217 × 102 3.189 × 101 5.245 × 10−1 5.540 × 104 6.435 × 102

C + P + M + B + D + R + TS −6.671 × 101 1.253 × 101 −2.771 × 104 3.218 × 102 3.887 × 101 1.001 × 100 5.542 × 104 6.436 × 102

C + P + M + B + D + R + TD −6.679 × 101 1.264 × 101 −2.771 × 104 3.218 × 102 4.019 × 101 1.019 × 100 5.542 × 104 6.435 × 102

C + P + M + B + D + R + TM −7.045 × 101 1.287 × 101 −2.771 × 104 3.219 × 102 4.700 × 101 1.079 × 100 5.543 × 104 6.437 × 102

C + P + M + B + D + TD −7.063 × 101 1.340 × 101 −2.771 × 104 3.218 × 102 3.388 × 101 7.951 × 10−1 5.543 × 104 6.437 × 102

C + P + M + B + D + TS −7.083 × 101 1.329 × 101 −2.771 × 104 3.218 × 102 3.316 × 101 8.033 × 10−1 5.543 × 104 6.437 × 102

C + P + M + B + D + TM −7.439 × 101 1.360 × 101 −2.772 × 104 3.219 × 102 4.101 × 101 8.758 × 10−1 5.543 × 104 6.438 × 102

C + P + M + B + R + TS −8.530 × 101 1.478 × 101 −2.773 × 104 3.220 × 102 2.781 × 101 6.592 × 10−1 5.546 × 104 6.440 × 102

C + P + M + B + R + TD −8.540 × 101 1.487 × 101 −2.773 × 104 3.220 × 102 2.934 × 101 6.894 × 10−1 5.546 × 104 6.439 × 102

C + P + M + B + TS −8.701 × 101 1.532 × 101 −2.773 × 104 3.220 × 102 2.193 × 101 3.680 × 10−1 5.546 × 104 6.440 × 102

C + P + M + B + TD −8.707 × 101 1.540 × 101 −2.773 × 104 3.220 × 102 2.324 × 101 3.854 × 10−1 5.546 × 104 6.439 × 102

C + P + M + B + R + TM −8.890 × 101 1.507 × 101 −2.773 × 104 3.220 × 102 3.574 × 101 7.077 × 10−1 5.546 × 104 6.440 × 102

C + P + M + B + TM −9.082 × 101 1.559 × 101 −2.773 × 104 3.221 × 102 2.999 × 101 4.649 × 10−1 5.547 × 104 6.441 × 102

Table 5.11: Model comparison for NDD Submodels: ASD
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Figure 5.15: Model comparison for Neurodvelopmental submodels: ASD
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model elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic

C + P + M + B + R + TD 0.000 × 100 0.000 × 100 −5.454 × 103 1.641 × 102 2.546 × 101 1.100 × 100 1.091 × 104 3.282 × 102

C + P + W + M + B + R + TD −3.891 × 10−2 1.806 × 100 −5.454 × 103 1.642 × 102 2.724 × 101 1.298 × 100 1.091 × 104 3.283 × 102

C + P + A + M + B + R + TD −4.943 × 10−1 1.677 × 100 −5.455 × 103 1.642 × 102 2.750 × 101 1.629 × 100 1.091 × 104 3.284 × 102

C + P + M + B + R + TS −5.771 × 10−1 1.239 × 100 −5.455 × 103 1.641 × 102 2.670 × 101 1.129 × 100 1.091 × 104 3.282 × 102

C + P + W + A + M + B + R + TD −6.685 × 10−1 2.389 × 100 −5.455 × 103 1.642 × 102 2.931 × 101 1.764 × 100 1.091 × 104 3.285 × 102

C + P + A + M + B + R + TS −1.143 × 100 2.100 × 100 −5.455 × 103 1.642 × 102 2.871 × 101 1.613 × 100 1.091 × 104 3.284 × 102

C + P + W + M + B + R + TS −1.248 × 100 2.179 × 100 −5.456 × 103 1.642 × 102 2.914 × 101 1.358 × 100 1.091 × 104 3.284 × 102

C + P + W + A + M + B + R + TS −1.295 × 100 2.715 × 100 −5.456 × 103 1.642 × 102 3.065 × 101 1.798 × 100 1.091 × 104 3.285 × 102

C + P + M + B + D + R + TD −2.979 × 100 3.587 × 100 −5.457 × 103 1.643 × 102 3.534 × 101 1.491 × 100 1.091 × 104 3.285 × 102

C + P + A + M + B + D + R + TD −3.358 × 100 3.921 × 100 −5.458 × 103 1.643 × 102 3.718 × 101 1.920 × 100 1.092 × 104 3.286 × 102

C + P + W + M + B + D + R + TD −3.648 × 100 3.999 × 100 −5.458 × 103 1.643 × 102 3.780 × 101 1.694 × 100 1.092 × 104 3.285 × 102

C + P + W + M + B + D + R + TS −3.852 × 100 4.109 × 100 −5.458 × 103 1.643 × 102 3.857 × 101 1.712 × 100 1.092 × 104 3.286 × 102

C + P + M + B + D + R + TS −3.911 × 100 3.698 × 100 −5.458 × 103 1.643 × 102 3.680 × 101 1.536 × 100 1.092 × 104 3.286 × 102

C + P + W + A + M + B + D + R + TD −3.962 × 100 4.302 × 100 −5.458 × 103 1.643 × 102 3.950 × 101 2.047 × 100 1.092 × 104 3.287 × 102

C + P + M + B + R + TM −4.002 × 100 3.389 × 100 −5.458 × 103 1.643 × 102 3.506 × 101 1.387 × 100 1.092 × 104 3.286 × 102

C + P + A + M + B + D + R + TS −4.138 × 100 4.031 × 100 −5.458 × 103 1.643 × 102 3.851 × 101 1.923 × 100 1.092 × 104 3.287 × 102

C + P + A + M + B + R + TM −4.215 × 100 3.739 × 100 −5.459 × 103 1.643 × 102 3.676 × 101 1.805 × 100 1.092 × 104 3.286 × 102

C + P + W + M + B + R + TM −4.410 × 100 3.852 × 100 −5.459 × 103 1.643 × 102 3.719 × 101 1.583 × 100 1.092 × 104 3.286 × 102

C + P + W + A + M + B + D + R + TS −4.555 × 100 4.365 × 100 −5.459 × 103 1.643 × 102 4.063 × 101 2.081 × 100 1.092 × 104 3.286 × 102

C + P + W + A + M + B + R + TM −4.900 × 100 4.163 × 100 −5.459 × 103 1.643 × 102 3.915 × 101 1.988 × 100 1.092 × 104 3.287 × 102

C + P + M + B + D + TD −6.777 × 100 5.894 × 100 −5.461 × 103 1.644 × 102 3.037 × 101 1.301 × 100 1.092 × 104 3.288 × 102

C + P + M + B + D + R + TM −7.155 × 100 4.785 × 100 −5.461 × 103 1.644 × 102 4.508 × 101 1.786 × 100 1.092 × 104 3.289 × 102

C + P + W + M + B + D + TD −7.290 × 100 6.189 × 100 −5.462 × 103 1.644 × 102 3.275 × 101 1.518 × 100 1.092 × 104 3.288 × 102

C + P + A + M + B + D + TD −7.301 × 100 6.106 × 100 −5.462 × 103 1.644 × 102 3.231 × 101 1.693 × 100 1.092 × 104 3.288 × 102

C + P + W + M + B + D + R + TM −7.326 × 100 5.111 × 100 −5.462 × 103 1.644 × 102 4.696 × 101 1.942 × 100 1.092 × 104 3.289 × 102

C + P + M + B + D + TS −7.374 × 100 5.931 × 100 −5.462 × 103 1.644 × 102 3.177 × 101 1.340 × 100 1.092 × 104 3.287 × 102

C + P + W + A + M + B + D + TD −7.868 × 100 6.365 × 100 −5.462 × 103 1.644 × 102 3.465 × 101 1.916 × 100 1.092 × 104 3.289 × 102

C + P + W + A + M + B + D + R + TM −7.968 × 100 5.345 × 100 −5.462 × 103 1.645 × 102 4.901 × 101 2.316 × 100 1.092 × 104 3.289 × 102

C + P + W + M + B + D + TS −8.038 × 100 6.208 × 100 −5.462 × 103 1.644 × 102 3.427 × 101 1.559 × 100 1.092 × 104 3.289 × 102

C + P + A + M + B + D + TS −8.053 × 100 6.133 × 100 −5.462 × 103 1.644 × 102 3.387 × 101 1.849 × 100 1.092 × 104 3.289 × 102

C + P + A + M + B + D + R + TM −8.184 × 100 5.015 × 100 −5.462 × 103 1.645 × 102 4.753 × 101 2.178 × 100 1.092 × 104 3.290 × 102

C + P + W + A + M + B + D + TS −8.618 × 100 6.384 × 100 −5.463 × 103 1.645 × 102 3.624 × 101 1.946 × 100 1.093 × 104 3.290 × 102

C + P + M + B + TD −8.943 × 100 5.157 × 100 −5.463 × 103 1.644 × 102 2.059 × 101 9.131 × 10−1 1.093 × 104 3.288 × 102

C + P + M + B + TS −9.034 × 100 5.304 × 100 −5.463 × 103 1.645 × 102 2.180 × 101 9.354 × 10−1 1.093 × 104 3.289 × 102

C + P + W + M + B + TD −9.061 × 100 5.464 × 100 −5.463 × 103 1.644 × 102 2.264 × 101 1.144 × 100 1.093 × 104 3.288 × 102

C + P + W + M + B + TS −9.189 × 100 5.586 × 100 −5.463 × 103 1.644 × 102 2.385 × 101 1.149 × 100 1.093 × 104 3.289 × 102

C + P + A + M + B + TD −9.200 × 100 5.423 × 100 −5.463 × 103 1.645 × 102 2.249 × 101 1.457 × 100 1.093 × 104 3.289 × 102

C + P + A + M + B + TS −9.494 × 100 5.549 × 100 −5.464 × 103 1.645 × 102 2.384 × 101 1.503 × 100 1.093 × 104 3.290 × 102

C + P + W + A + M + B + TS −9.530 × 100 5.823 × 100 −5.464 × 103 1.645 × 102 2.574 × 101 1.643 × 100 1.093 × 104 3.290 × 102

C + P + W + A + M + B + TD −9.703 × 100 5.705 × 100 −5.464 × 103 1.645 × 102 2.479 × 101 1.609 × 100 1.093 × 104 3.290 × 102

C + P + W + M + B + D + TM −1.094 × 101 6.841 × 100 −5.465 × 103 1.645 × 102 4.200 × 101 1.763 × 100 1.093 × 104 3.290 × 102

C + P + M + B + D + TM −1.105 × 101 6.625 × 100 −5.465 × 103 1.645 × 102 4.025 × 101 1.601 × 100 1.093 × 104 3.291 × 102

C + P + W + A + M + B + D + TM −1.165 × 101 7.018 × 100 −5.466 × 103 1.646 × 102 4.411 × 101 2.158 × 100 1.093 × 104 3.291 × 102

C + P + A + M + B + D + TM −1.174 × 101 6.791 × 100 −5.466 × 103 1.645 × 102 4.240 × 101 2.032 × 100 1.093 × 104 3.291 × 102

C + P + W + M + B + TM −1.228 × 101 6.335 × 100 −5.467 × 103 1.645 × 102 3.167 × 101 1.378 × 100 1.093 × 104 3.291 × 102

C + P + M + B + TM −1.254 × 101 6.070 × 100 −5.467 × 103 1.646 × 102 3.005 × 101 1.197 × 100 1.093 × 104 3.291 × 102

C + P + W + A + M + B + TM −1.258 × 101 6.513 × 100 −5.467 × 103 1.646 × 102 3.352 × 101 1.811 × 100 1.093 × 104 3.291 × 102

C + P + A + M + B + TM −1.277 × 101 6.288 × 100 −5.467 × 103 1.646 × 102 3.188 × 101 1.659 × 100 1.093 × 104 3.292 × 102

Table 5.12: Model comparison for NDD Submodels: Learning Difficulties
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Figure 5.16: Model comparison for Neurodvelopmental submodels: Learning Difficulties
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Figure 5.17: Mean of the posterior predictive distribution and randomly-sampled 1000 posterior
draws of the smoothing terms for the NDD submodels
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CHAPTER 6

MOLECULAR FINGERPRINTS ARE A SIMPLE YET EFFECTIVE

SOLUTION TO THE DRUG–DRUG INTERACTION PROBLEM

An earlier version of this chapter was presented as a Spotlight at the 2022 ICML Workshop on

Computational Biology (Long et al., 2022).

6.1 Introduction

Drug–drug interactions (DDIs), or non-additive action of multiple co-administered medica-

tions, also known as polypharmacy problem, is a significant source of adverse medical outcomes

(Zitnik et al., 2018). The major difficulty in identifying and anticipating DDIs is the combinatorial

explosion of potential drug interactions that renders clinical testing of all pairs impractical. Ma-

chine learning models trained on expert-curated databases and electronic health records have since

provided a tractable solution to identifying potential drug interactions.

Earlier work on DDI (Gottlieb et al., 2012; Vilar et al., 2012, 2014; Cheng and Zhao, 2014)

primarily computed similarity measures between a combination of various handpicked chemical

properties and structural fingerprints of drugs to predict new drug-drug interactions. One drawback

to these DDI approaches is that they use fixed feature representations of the drugs that may not be

optimal for predicting drug interactions.

More recent machine learning methods for DDI have since focused on deep neural networks for

the task. One popular approach extracts DDI information from text data and applies LSTM (Sahu

and Anand, 2018) and attention based architectures (Zheng et al., 2017) on the corpus to predict

drug interactions. Zhao et al. (2016) applies 1D convolutional neural networks on sentences for the

task. More recent approaches rely on graph neural networks (GNNs) (Battaglia et al., 2018) auto-

matically learning the molecular representation of the drugs to produce the interaction prediction.

Zitnik et al. (2018) proposed one of the earlier approaches to use GNNs as encoders to featurize
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representation of molecules. Similar approaches for learning graph representations for the drugs

was proposed by Yin et al. (2022) and Wang et al. (2022). They use a concatenation of handpicked

chemical features and the learned features from applying graph neural network layers (Veličković

et al., 2018; Kipf and Welling, 2017) layers on the molecular structure of the pair of drugs.

Model suggested by Nyamabo et al. (2021) applies multiple graph attention layers on the indi-

vidual drugs and aggregates their intermediate graph representations with co-attention to produce

the output class predictions. Other works cast the problem as a knowledge graph learning problem

Lin et al. (2020). The advantage of these GNN approaches is that they are able to learn feature

representations for the drugs that are adapted to the classification task at hand without the need for

explicit manual feature selection. While the end-to-end GNN approach has proven to be effective

on a variety of DDI benchmark tasks, we believe that fingerprint based approaches still have merit.

In our experiments, we show that neural networks that operate on just 2D Morgan fingerprints out-

perform GNN models and achieve these improved results with simpler model architectures that

were much faster than the GNN baselines. Moreover, a central concern about neural networks is

that they are opaque and hard to interpret. The benefit to fingerprint based neural networks is that

we retain the flexibility of a neural network that can learn useful nonlinear combinations of our

features while still retaining a level of intepretability by virtue of using fingerprints as our input

representations.

Our contributions in this work are two-fold:

1. We curated a new dataset that augments theDrugBank dataset with negative examples derived

from a large commercial insurance dataset;

2. We demonstrated that the use ofMorgan fingerprints with simple neural network architectures

achieved SOTA performance, outperforming GNN architectures.
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6.2 Problem Setup

To formalize our problem, let � denote the set of drugs considered in our work, encoded by

their DrugBank IDs. Our dataset is then a collection of triplets:
{(
3
(1)
8
, 3
(2)
8
, ;8

)}=
8=1

, where ;8 ∈

{1, 2, . . . ,  } denotes the interaction between the pair of drugs
(
3
(1)
8
, 3
(2)
8

)
∈ � × �. We treat

the learning task as a multi-class classification over  classes. Hence, our objective is to learn a

classification function

5 : � × � → {1, 2, . . . ,  } (6.1)

In the DDI literature, we also commonly see the problem cast as a binary classification task over

the triplets
(
3
(1)
8
, 3
(2)
8
, ;8

)
where one predicts if the given label is in fact a true observed interaction

between the pair of drugs. In both the multiclass classification setting and the binary classification

setting, practitioners occasionally augment the observed DDI data with negative examples to make

the models more robust. This is because we care not just about the presence of interaction but also

the absence thereof when screen drugs for “safe” combinations.

6.3 Dataset

The positive DDI examples came from the DrugBank dataset (Wishart et al., 2018), while the

negative examples came from IBM MarketScan (IBM Watson Health, 2019), a commercial insur-

ance database containing > 180 million unique subjects in the United States. The prescription (RX)

records fromMarketScan contained information on the identity of the drugs encoded with National

Drug Codes (NDCs), start date and end date. Using the dates we identified potential interactions

as any overlap in the intervals of validity between any two drugs using an interval tree (Cormen

et al., 2022, §17.3). Each row of data in this dataset corresponds to a pair of drugs, represented by

their DrugBank IDs and the associated target value, which is a label indicating the type of the re-

sulting interaction between the two drugs. The DrugBank IDs can be mapped to the corresponding
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SMILES strings, from which we constructed the Morgan fingerprints (FPs) (Morgan, 1965) of the

drugs using RDKit (Landrum et al., 2006). For more information about the dataset, see Table 6.1.

# Drugs with SMILES 3,516
# DDI Pairs 1,457,198

# Interaction Types 256

Table 6.1: Dataset details

6.4 Model Architectures

We tested a variety of models on our new drug drug interaction dataset. Our models follow the

same general architecture:

1. map the SMILES string to a numerical object e.g. a binary fingerprint or matrices containing

atom features and connectivity information)

2. encode the pair of input drugs with an encoder network (e.g.: a multilayer perceptron (MLP)

or a graph neural network (GNN))

3. construct a pair drug representation by concatenating or adding the two individual drug rep-

resentations

4. feed the pair drug representation through a final multilayer perceptron to produce a class

output.

We also experimented with variants of the above architecture where the two fingerprint vectors were

aggregated before being fed through an MLP instead of after step 2 above.

6.4.1 Molecular Fingerprint Model

Wefirst generated theMorgan fingerprints, which is a kind of extended-connectivity fingerprint,

from the SMILES strings with RDKit using a radius of 2 (Rogers and Hahn, 2010). The fingerprints
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Figure 6.1: Fingerprint based neural network for predicting the interaction between two input drugs

are 2048 dimensional binary vectors which are passed through a multilayer perceptron (MLP). The

resulting representation vectors are aggregated (either through concatenation or summation) to form

a drug-pair representation that is sent through a final multilayer perceptron (MLP) to produce an

output label. We applied the LeakyReLU (Zhang et al., 2017) activation function in theMLP layers.

6.4.2 Graph Neural Network Based Models

Figure 6.2: Graph neural network based architecture for predicting the interaction between two
input drugs.

In the graph neural network based models, we extract atom features and atom connectivity

information from the SMILES strings of the pair of drugs. The atom features, edge features and

connectivity are then used as input to a graph neural network (GNN) applies multiple rounds of

message passing (Gilmer et al., 2017) to produce a molecular encoding. As in the FP network, the

drug feature vectors are aggregated and then passed through a final MLP to produce the predicted

output label.

6.4.3 Attention-Based Models

In addition, we also compared our FP model against co-attention based model SSI-DDI-v2

that mostly follows the architecture proposed in Nyamabo et al. (2021). This model takes the two
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Figure 6.3: Co-attention architecture based off Nyamabo et al. (2021)’s model with intermediate
graph attention layers for predicting the interaction between two input drugs. The number of GAT
layers is a tunable hyperparameter.

molecular graphs with atom features from each drug in a pair as input and uses the Graph Attention

Network (GAT) (Veličković et al., 2018; Brody et al., 2021) autoregressively to generate multiple

layers of hidden representations for each drug separately, which are subsequently passed to an ad-

ditive co-attention layer that outputs attention scores for re-weighting the hidden representations

(cf. Figure 6.3) during aggregation. The final aggregated hidden representation of the drug pair is

then sent to an MLP to produce the predicted output label. Other models making use of self- and/or

co-attention include Lin et al. (2022); Nyamabo et al. (2022); Pang et al. (2022).

6.5 Experiments

We evaluated each of the models on our dataset using 80/10/10 training/validation/test split.

Each of the networks produced a softmax probability distribution over all the DDI classes for pre-

dicting the interaction between drug pairs. We used the RAdam optimizer (Liu et al., 2019) to

minimize the cross-entropy loss over each mini-batch, with an early stopping Δ = 5 × 10−3 and

a tolerance of 4 epochs on validation loss. All models were implemented using PyTorch (Paszke

et al., 2019) and Pytorch Geometric (Fey and Lenssen, 2019) and experiment logging was done

with PyTorch Lightning.
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6.5.1 Hyperparameter Tuning

We manually tuned the hyperparameters of all models trained. Table 6.2 details the various

hyperparameters we used and experimented with.

Parameter Values

AdamW Learning Rate {10−5, 10−4, 10−3}
AdamW Weight Decay {0}

MLP Layers {3, 4, 5}
GNN Layers {3, 4, 5}
Minibatch size {128, 256, 512}

Table 6.2: Hyperparameter Values

6.6 Results and Discussion

Table 6.4 shows the results of our experiments. The FP model achieved higher performance

on all of the reported metrics and converged in fewer training epochs with less time per epoch

than the graph neural network baseline methods (Table 6.3). Thus, we now focus on more detailed

comparison between the FP model and SSI-DDI-v2. Figure 6.4 shows the values of the metrics

among classes that had at least 100 instances in the test dataset (56 classes), with decreasing number

of instances per class. Overall, FP and SSI-DDI-v2 had similar performance profile across the

classes, achieving full accuracy on class 226, corresponding to the interaction string

The risk or severity of tendinopathy can be increased when Drug1 is

combined with Drug2.

Figure 6.5 shows the difference in accuracy (6.5a) and weighted-�1 score (6.5b) between FP (ref-

erence) and SSI-DDI-v2. The largest positive difference was found in class 193, corresponding to

the interaction string

The risk or severity of myopathy, rhabdomyolysis, and myoglobinuria

can be increased when Drug1 is combined with Drug2.
130



On the other hand, the largest negative difference was found in class 95, corresponding to the inter-

action string

The protein binding of Drug1 can be decreased when combined with Drug2.

6.7 Additional Tables and Figures

Model Training epochs Avg. time/epoch (min)

FP 15 1.37

GCNConv (Kipf and Welling, 2017) 34 4.09
GATConv (Veličković et al., 2018) 27 5.00
GATv2Conv (Brody et al., 2021) 19 5.42

SSI-DDI (Nyamabo et al., 2021) 30 7.83
SSI-DDI-v2 (Nyamabo et al., 2021) 25 8.93

Table 6.3: Training information: number of epochs until convergence and time per epoch. SSI-DDI
uses GATConv by default. SSI-DDI-v2 uses GATv2Conv instead. All GNN models used 4 layers.

Model Accuracy Macro-�1 Weighted-�1 AUROC

FP 0.9615 0.9213 0.9612 0.9989

GCNConv 0.8694 0.7144 0.8603 0.9793
GATConv 0.7958 0.6019 0.7763 0.9650

GATv2Conv 0.8696 0.7107 0.8622 0.9880

SSI-DDI 0.9422 0.8903 0.9415 0.9915
SSI-DDI-v2 0.9491 0.9047 0.9488 0.9923

Table 6.4: Test results on a hold-out set.
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CHAPTER 7

CONCLUSION

In this study, we harnessed the statistical power of IBM MarketScan, a very large commercial

insurance claims dataset, to study the effect of a diverse range of health outcomes during the early

life of a newborn. For the SRB study, we probed a diverse range of associations with exogenous

factors and used these results to further challenge popular theories in sexual selection. For the

immune system disorders and NDDs, we have situated our results within the burgeoning field of

microbiota-gut-brain (MGB) axis, noting that early life and prenatal maternal exposure to infec-

tions and anti-infective prescriptions likely compromised the newborn’s immune system, leading

to higher risks of diseases of both the immune system and the nervous system.

In the sex ratio at birth study, we identified a large number of associations between environmen-

tal pollution and altered SRB, which, if verified in other cohorts and geographical locations, could

be used for public health surveillance. Moreover, as the results did not form any clear pattern with

respect to the adversity of the exogenous factors, suggesting that adaptive theories that have enjoyed

wide popularity, such as the Trivers–Willard hypothesis (TWH) (Trivers and Willard, 1973), were

unlikely to hold for human populations. Indeed, the results would even threaten the status of an even

better established theory in sexual selection — the Düsing–Fisher theory of equal investment: that

in an population with unbalanced sex ratio, the rarer sex will have on average higher reproductive

value than the more frequent sex (West, 2009, Ch. 2). The predicament of these two theories were

amplified by the main findings of (Zietsch et al., 2020) that used a Swedish cohort from 1932–2014,

showing that the sex ratio of offspring was not heritable. Therefore, the Düsing–Fisher theory could

not have operated on SRB since it is unable to explain how sex ratio became non-heritable even if

it had once been heritable at some point in the evolutionary history of humans. While unlike in

(Zietsch et al., 2020), we did not have access to any actual population registers, the cohort used in

that study would be highly similar at least to modern Western birth cohorts, especially with respect

to mechanisms for sexual selection. Finally, a recent simulation study has shown that whereas the
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population sex ratio reached parity at equilibrium, the sex ratio was not heritable (Harper et al.,

2023). Therefore, together with those from other recent studies, our results support the conclusion

that the Düsing–Fisher theory was also not appropriate for explaining sexual selection in humans

and that SRB may be determined by random Mendelian segregation as well as possible environ-

mental factors. A related issue is how results from SRB studies in other animal species may be

relevant for human SRB. If TWH and other adaptive theories turn out to not operate on contem-

porary human population, one should not expect the situation of other animals to generalize to any

population (Kokko and Jennions, 2008).

On the other hand, the neurodevelopemental study showed that the being of male sex, C-section

mode of delivery, abnormal birth weights, as well as an array of immune-system related diagnosis

and anti-ininfective prescriptions both during pregnancy and in the early life, contributed to elevated

risks of NDDs. In addition, for ADHD specifically, positive associations have also been identified

for elevated levels of PM2.5 — all of these we suggest may be due to compromised immune system

during pregnancy and early in life. However, based on previous studies, we caution against a direct

causal interpretation for antiinfectives and PM2.5 as prior twins and siblings studies did not detect

any statistically significant associations. One intriguing result was that being born in the spring and

summer also contributed to higher OR of being diagnosed of ADHD. While the peak located near

September 1 can be explained by the differential level of socialization of the youngest in the cohort,

we found the peak in spring surprising.

Our overall approach also had a number of limitations. While the large sample size of the

MarketScan dataset was surely an advantage, it is not without potential biases. First, the dataset

only included commercially-insured enrollees, most of whomobtained the policies via employment.

These would exclude, among others, unemployed and/or uninsured individuals who generally were

of lower socioeconomic status or the elderly on medicare (age > 65), but the latter group was not

relevant for our studies. These subpopulations likely had higher incidences of the kind of health

events that we have studied. Moreover, the data were pooled over a large number of insurance
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companies, with the billing practices of larger companies dominating those of smaller ones, all of

whichmay have divergent practices, so the same codemay or may not represent the same underlying

diagnosis or phenotype. More importantly, unlike electronic health records (EHRs) maintained by

hospitals, we did not have access to free-text diagnosis information, which may contain information

on other diagnoses or phenotypes that were present but not entered into the system for insurance

billing purposes and were thus left out of the MarketScan dataset altogether. Future studies should

focus on datasets that provide free texts comments by the healthcare providers in addition to the

diagnoses codes. Finally, a more fine-grained modelling should include the temporal dynamics of

the immune system- and neurodevelpmental phenotypes, which could take the form of a survival

analysis that models the time until the NDD diagnosis or a joint longitudinal analysis.
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