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ABSTRACT 

The modern medical data deluge accelerated when the vast amount of medical information 

gathered and stored by electronic sensors became widely available. Medical data are complex, 

heterogeneous, and continue to rapidly accumulate in electronic databases, therefore, data-driven 

statistical learning techniques have the potential to drastically improve clinical care by anticipating 

clinical complications and suggesting interventions.  

This dissertation investigates the application of an assortment of statistical learning 

techniques to extract instructive patterns from raw medical data. Chapter 1 provides a brief 

overview of current statistical learning methods. We also examine both the limitations and the 

opportunities for state-of-the-art developments in medical forecasting. Chapter 2 introduces a 

project that began as a mere conjecture formulated by an endocrinologist but developed into a 

large-data analysis of linked pathogenesis, linking pancreatitis and type 2 diabetes mellitus. 

Chapter 3 describes a study in which we collaborated with a gerontologist interested in predicting 

cognitive decline in senior patients. In this study, we attempt such predictions by using 

accelerometry data collected from Chicago's south side community and implementing advanced 

machine learning methods for predicting patients' future clinical trajectories. In Chapter 4, we 

identify the novel, hip fracture risk factors and investigate whether statistical survival analysis 

could improve upon existing tools' accuracy. In Chapter 5, we constructed a state-of-art machine 

learning tool on fracture detection on patients’ broad prior disease history. Lastly, Chapter 6 

summarizes the above projects and suggests future directions for our exploration of statistical 

learning from complex medical data. We also discuss our studies' potential importance for 

statistical learning from medical data and outline the problems that remain open in the field. 
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CHAPTER 1 INTRODUCTION 

Continuous developments in the fields of statistics, biomedical, and computer science have 

become essential for every field of studies, including medicine. The explosive accumulation of 

diverse multi-modal data has made the use of computational tools both necessary and possible. In 

particular, medical data is intrinsically complex, heterogeneous, and normally requires a highly 

trained professional to interpret. Even professional physicians are unable to cope “manually” with 

this data avalanche. To extract hidden patterns from the raw data, researchers have had to develop 

highly-advanced statistical and computer science techniques [1, 2].  

 Long before the dawn of the “big data” epoch, researchers have attempted to apply machine 

learning algorithms to medical data analysis [3]. These earlier studies relied heavily on human 

expertise because data for automatic learning were scarce and often unavailable digitally. In 

addition, the computational infrastructure required for data-intensive machine learning, especially 

from massive image datasets, has only appeared relatively recently. Finally, recent advances in 

machine learning methodology have now made practical applications that were in the realm of 

science fictions just a decade ago. Such break-through applications include algorithms which 

exceed humans' ability to play games of strategy, such as checkers, chess, and Go. Modern deep 

learning generative models, such as OpenAI’s DALL-E, can generate stunning images from text 

inputs; others can provide automatic text summarization using long recordings of human 

discussions. The origin of these advanced methods can be traced back to the early 1990s, when 

researchers invented the basics of symbolic- [4], statistical- [5] and neural network-based learning 

[6].  
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The introduction of machine learning algorithms has produced promising results and have 

been applied in numerous medical areas, e.g.  oncology [7], cardiology [8], gynecology [9], and 

psychiatry [10]. The wide range of machine learning applications in medical areas can bring 

multiple benefits to health professionals. Machine learning algorithms' pattern recognition 

capability in multi-modality medical data (X-rays or MRI scan) can be used to develop 

increasingly efficient and reliable tools to help doctors to diagnose quicker and more accurately. 

Besides improving diagnosis, deep learning-based methods allowed automation of drug design 

and discovery, speeding up development of new therapies. For instance, to better analyze clinical 

trial data to identify drug side-effects that, though previously unknown, could help improve patient 

care and safety during medical procedures. The positive impact of machine learning in health care 

is already noticeable, but there is enormous untapped potential at its current, early stage. As clinical 

data sets continue to grow, the significance of machine learning applications in health care will 

become crucial. Here, we will further discuss the availability of different data modalities and the 

current stage of machine learning algorithms that specialize in that domain.  

 Today, the increase of volume and diversity in electronically stored data's has combined 

with the invention of efficient graphical processing units (GPUs), exponentially increasing 

computer speed, and the array of processor availability to renders medical machine learning 

practical. However, medical data is recorded in many different modalities: tabular electronic 

medical records, medical images, biomedical analog and digital signals, and clinical 

unstructured text. Correspondingly, various machine learning algorithms have been designed to 

extract underlying patterns from every type of raw data input to accomplish a desired clinical 

outcome. While no dataset is perfect (due to missing data, biases, and noise), robust machine 

learning algorithms are nonetheless available today. 
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 Structured electronic medical record data is collected by health care providers and 

insurance companies. Such data comprises patients’ demographic information, diagnoses, 

laboratory results, procedures, medications, and even family structure [11]. Stored in relational 

databases, structured data has been used for statistical analysis since electronic medical systems' 

inception. Some recent examples of medical machine learning are as follows: Zheng, et al. [12] 

used a support vector machine methodology to identify patients with type-2 diabetes mellitus; 

Maryam, et al. [13] proposed using an ensemble of survival machine learning models to predict 

heart failure from electronic medical records, and similarly; Wong, et al. [14] has studied delirium 

prediction. Though tabular data is the primary data storage method in the health industry, quite a 

few challenges remain. The most significant challenge when using tabular data is dimensionality; 

because tabular data commonly includes a large number of features, many of which may not be 

useful for machine learning algorithms' prediction task. Additionally, the rarity of some diseases 

in the general population creates a heavy class imbalance, making it difficult for machine learning 

algorithms to accurately classify diseases. This requires researchers to carefully build metrics to 

evaluate model performance.  

 Medical imaging is critical to clinicians' diagnosis routines in various fields -- including 

radiology, dermatology, and cardiology [15]. The use of feature-based computer vision methods 

in medical image analysis has been limited due to its labor-intensive design and less-than-stellar 

practical performance. However, breakthroughs in deep learning -- especially the last decade's 

introduction of convolutional neural networks, combined with a jump in GPU performance, 

opened the way for an explosion of successful applications in the field of medical imaging [16]. 

Popular applications of state-of-the-art computer vision models for medical images span a 

spectrum ranging from simpler technical tasks, such as image segmentation and feature detection, 
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to more advanced tasks, such as anomaly detection and automated diagnostics. A few concrete 

examples of such applications are as follows: Dhungel, et al. [17] used convolutional neural 

networks with mammography images for low-cost and massive breast cancer screening; Zhen, et 

al. [18] showed promising results when applying deep learning to heart ventricular volume 

estimation without segmentation; Wang, et al. [19] applied a hierarchical model composed of 

convolutional neural network variants to accomplish high-performance results on vessel image 

segmentation, and; Gulsan, et al. [20] utilized a deep learning model to detect diabetic retinopathy 

and diabetic macular edema, trained with over 100,000 retinal images. Clearly, the number of 

successful applications in medical image analysis is going to increase dramatically in the near 

future. 

Another important data modality is discrete time-stamped signals collected by electronic 

sensors, such as smart watches which monitor their owners' multiple vital functions. These discrete 

time-stamped datasets contain rich information that can be used for forecasting clinical trajectories 

for a wide range of diseases, such as cancer, Alzheimer’s, cardiovascular, and COVID-19. [21]. 

Though time-series data can be challenging to model, with its high noise-to-signal rate and varied 

time spanning, researchers have successfully developed robust applications dealing with such data. 

[22].  As in the previous paragraphs, we will give a few examples of computational applications 

using time sequence signals. Luca, et al. [23] performed an experiment that recruited participants’ 

movements, using six wearable devices, then proposed a machine learning algorithm to detect 

Parkinson’s disease. In another study, Yildirim, et al. [24] used a new architecture of neural 

networks, called "recurrent neural networks," to achieve state-of-the-art performance in multi-

class arrhythmia classification. Finally, Prabhjot, et al. [25] used blood pressure management and 
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heart rate data, collected by smartphones, to build hybrid models that combined Bayesian networks 

and heuristic techniques.   

Clinical unstructured texts, such as discharge summaries, are another major data modality 

used to capture patients’ health information. The text mining techniques researchers use on these 

texts originated in 1958, when Hans Peter Luhn [26] used word frequency statistics to categorize 

documents. Many significant breakthroughs in NLP technology have occurred since, and text 

analysis and natural language processing (NLP) have undergone major progress in just the last 

decade. Nowadays, a large language model, using a deep learning architecture such as Transformer, 

can successfully handle major practical tasks, such as text classification and machine translation 

[27]. Clinical texts associated with test results, discharge narratives, and descriptions of both the 

therapeutic and adverse effects of medications, inspired the development of revolutionary 

language models. In one study, Choi, et al. [28] used the popular word2vec [29] method to 

represent unstructured medical codes and to train a model to predict heart failure. In another study, 

Miotto, et al. [30] used auto-encoders to develop a patient-level representation that showed 

significantly better performance in forecasting chronic disease for the next year. Even though some 

characteristics of health domain text data (including lack of standardization, limited data 

availability, and privacy) makes it more challenging to utilize language models in this area, the 

recent development of large language models (ChatGPT etc) can empower researchers to 

investigate its potential on various tasks, such as patient chatbots that can understand patients’ 

symptoms and provide appropriate medical advice or connect them with the appropriate health 

care professionals.  

We have provided a cursory review of significant events in developing machine learning 

algorithms in medicine, covering diverse data modalities across clinical application areas. This 



 6 

dissertation is motivated by the philosophy that novel modeling paradigms and modern 

computational infrastructure allow us to maximize our imaginations when building models -- 

regardless of heterogeneous datasets. Yet, we must acknowledge that models alone are inadequate 

to guarantee successful projects -- both the availability of high-quality, large medical data sets and 

clinicians' empirical insights play an essential part as well. Collaboration between data scientists 

and clinicians is essential to the successful implementation of machine learning algorithms in 

health care settings. By leveraging machine learning algorithms' clinical expertise, we can improve 

patient outcomes and revolutionize the health care industry. In summary, this dissertation 

emphasizes the importance of combining machine learning algorithms with high-quality medical 

data and clinical expertise to achieve significant progress in the health industry. In the following 

chapters, we will introduce three studies which were inspired by problems suggested by clinicians. 

Our studies included disease association, disease forecasting, and survival analysis.  
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CHAPTER 2 COHORT ASSOCIATION STUDY OF ACUTE 

PANCREATITIS AND DIABETES MELLITUS THROUGH ELECTRONIC 

MEDICAL DATA 

2.1 Introduction 

The relationship between diabetes mellitus (DM) and pancreatitis is complex and bidirectional. 

While chronic pancreatitis (CP) has been well described as a risk factor for pancreatogenesis DM, 

studies that focused on the development of DM following acute pancreatitis (AP) have become 

popular. Numerous environmental and genetic factors, including consuming alcohol, smoking, co-

morbid dyslipidemia and predisposing genetic variation, are known to put patients at risk for 

pancreatitis, which causes pain and morbidity from multiple complications. Also, the occurrence 

of DM after AP varies between 14 to 43 percent with a higher incidence with in those with severe 

AP in comparison to milder episodes [31-32]. Additionally, the risk for patients diagnosed with 

AP exposed to DM persists beyond the time frame for the first year, with patients retaining a 

greater than two-folded risk of developing DM even after five years [33]. Although the exact 

pathophysiology of the development of DM after AP remains unknown, as only a minority of these 

cases require insulin, which suggesting that the underlying pathophysiology may be similar to 

Type-2 DM (T2DM) [33]. However, the presence of DM is associated with poor outcomes in AP, 

DM shares common risk factors with AP as well as its treatment [34]. In this case, numerous 

studies have highlighted the health disparities that exist in screening and care of patients with 

T2DM [35]. Underserved communities with high-risk exposure to T2DM are less likely to receive 

optimal treatment and achieve glycemic control. For example, a recent study indicates that African 

Americans and Asian were more likely to have uncontrolled HbA1c values as compared to Whites 

[40]. Besides, as shown in a 2009 study, African American race was an independent risk factor for 
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mortality related to AP [38]. Similar, the disparity in care situation can also be identified for 

patients with AP, such as the emergency room wait times have been found longer and rates of 

inpatient procedures or cholecystectomy for AP lower in non-White races [39]. The intrinsic factor 

such as gut microbiome may have contributed the development of complications related to DM, 

acute and chronic pancreatitis according to emerging studies discovery [36-37].  

An estimated 220,000 Americans will have an episode of AP in yearly base. Based on the 

cited data above, many of these will develop DM because of AP or have pre-existing DM that may 

affect outcomes related to it. To further investigate this link and the reasons for disparities in 

underserved communities, this proposed project aims to perform retrospective and prospective 

longitudinal observational studies of our racially, ethnically, and geographically diverse 

population of subjects on the South Side of Chicago for the occurrence of diabetes before, during 

and after an episode of acute pancreatitis, and studying the outcomes of those patients with a focus 

on underserved communities.  

The project is innovative both conceptually and methodologically. While the development 

of DM after AP has been described that pathophysiology remains unknown as well as lack of data 

on this relationship in underserved communities. This project has involved a multidisciplinary 

team comprising of medical pancreatology and gastroenterology, endocrinology and data science 

that’s equipped to answer the questions relevant to this project. We have facilitated identification 

of risk factors predict the development of diabetes and will leverage innovative and state-of-art 

approaches. In the meantime, we have compared these risk factors with national claims database 

that allow us to identify sequential appearance of AP and DM in individual patients, with 

individually measured genetic risk factors and environmental exposures. Overall, the goal of this 

study is to determine the incidence and risk factors for acute pancreatitis and diabetes in the 
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population on the South Side of Chicago. Compare local estimates with national factors using 

insurance claims datasets.  
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2.2 Methods 

2.2.1 Data and other materials 

The use of massive data sets is a methodologically and conceptual innovative approach to the 

problem of acute pancreatitis (AP) – diabetes mellitus (DM). These data sets can be mined to be 

provide extraordinary insights into the frequency, location, chronology, and treatment of these 

diseases. It can also be analyzed in multiple ways to understand data integrity, coding errors and 

overlap, and then to provide insight into local prospective datasets.  

Our access to electronic health record (EHR) to analysis including two resources. (1) The 

University of Chicago Electronic Medical Record contains patient data on nearly 2.5 million 

patients seen at University of Chicago Medicine in the last 10 years alone. Further data retrieval 

can also be requested through the Clinical Research Institute (CRI). This dataset will be used to 

collect internal data on patients seen within the University of Chicago health system. (2) The 

MarketScan® database (IBM Watson Health 2019) was originally complied by Truven Health 

from records of over a hundred large insurance companies in the US. The data set we intend to use 

contains 5 billion records of diagnosis for over 180 million unique patients in the US. For each 

entry of diagnosis, the database documents the date, age of patient, and a code in International 

Classification of Diseases, 9th or 10th Version’s Clinical Modification (ICD-9-CM or ICD-10-CM). 

MarketScan data allows linking patients into families (through insurance policies), which allows 

us to disentangle genetic and environmental information.  
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2.2.2 Statistical Analyses 

Taking advantage of well-formatted MarketScan diseases ICD groups, we’re able to summarize 

the cohort association study on Acute Pancreatitis (AP) and Diabetes Mellitus (DM). There are 

multiple methods on identifying non-causal association measurements to quantify the statistical 

significance of two groups. In this we will utilize three types of widely used measurements on 

exploring the statistical significance between AP and DM in MarketScan electronic health records.  

1. Odds Ratio (OR): The odds ratio is a measure of association used in case-control studies. 

It compares the odds of exposure among cases to the odds of exposure among controls. An 

OR greater than 1 indicates a positive association, meaning that the exposure is more 

common among cases than controls. 

2. Relative Risk (RR): The relative risk is a measure of association used in cohort studies. It 

compares the risk of developing a disease or outcome among those exposed to a risk factor 

to the risk among those not exposed. An RR greater than 1 indicates a positive association, 

meaning that the risk of the outcome is higher among the exposed group. 

3. Logistic Regression (LR): Logistic regression is a statistical model used to analyze the 

relationship between a binary dependent variable and one or more independent variables. 

It estimates the probability of the dependent variable given the values of the independent 

variables. The coefficients of the independent variables provide information about the 

strength and direction of the association between the variables. 

The methodology for this project in order to investigate domain expertise inspiration on AP 

effect on following DM, we firstly extracted patients’ electronic health records information 

based on AP and DM ICD codes filtered by domain experts. The electronic health records 

would contain detailed information include:  
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• Demographics information (gender, race, year of birth, etc) 

• Time-stamped disease history (ICD 9/10 encoded) 

• Time-stamped medical history  

• Insurance enrollment history  

The abundant patients’ information listed above enable us to query the desired data to create 

detailed table for case-control groups statistics computation. The case-control groups OR was 

firstly computed to identify the general association strength on multiple sub-categories of AP and 

DM occurrence. To further evaluate the degree of association between varies AP and DM 

subcategories pair, we applied the multiple hypothesis testing besides OR value to analyze the p-

value with threshold that determine the statistically significant AP and DM subcategories pair. 

Besides, to avoid the numerically over-estimated False-Discovery-Rate (FDR) which is a common 

issue in multiple hypothesis testing with a fixed threshold, we have applied Benjamini-Hochberg 

(BH) method to carefully tune the threshold according to sample size. After filtered some desired 

pairs of AP and DM with statistically significant signals, we turned to RR as a measurement to 

quantify the risk of developing DM for patients exposed to AP in scale of years. We obtained all 

the RR values and estimate the effect of AP as risk factor in collaboration with domain expertise. 

In the end, to evaluate other possible risk factor for developing DM after exposed to AP, we have 

used the power of linear model to incorporate other indicator variables such as gender, race and 

age and built logistic regression model to investigate relationship between difference dependent 

variable (DM within 5 years) according to all the potential risk factors.  
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Variables definition  

1. D: The disease code bag represented by its ICD-9-CM/ICD-10-CM code. Here, DAP  

{K85, K89}, DDM  {249, 250, E08, E09, E11, E12, E13}.  

2. G: The gender of patients. G   {male, female}. 

3. Z: Patients cluster divided by an age gap of 10 from 20 ~ 60 years old. Z {1, 2, 3, 4}.  

4. Pr: Probability.  

5. p: P-value to determine the likelihood of AP and DM association signal.  

6. : Statistically significant threshold.  

The first step is to build case-control table through querying entire patients’ electronic 

health records from MarketScan dataset. The data mining process was operated via the Structured 

Query Language (SQL) schema, a programming language that designed for managing and 

manipulating data fast and efficiently. Besides, during the data mining process, our team experts 

in the field of diabetes mellitus noticed that only a minority of patients with DM after AP require 

insulin as initial treatment, which suggesting that the underlying pathophysiology may be similar 

to Type-2 diabetes. Thus, we will maintain caution with data and attempt to validate coding of 

diseases by multiple test parameters, including analysis of overlapping codes, use of specific 

medications such as medications used for treatment of DM including insulin. The formatted case-

control table was represented as below on Table 2.1. After that, we built contingency table (Table 

2.2) based on queried case-control data to further calculate desired statistics introduced above such 

as OR, RR and p-value.  
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Table 2.1 Case-Control Representative Table 

ICD K85 K89 

 Case Control Case Control 

249 a1 b1 a1 b1 

250 a2 b2 a2 b2 

E08 a3 b3 a3 b3 

…. … … … … 

Total at  bt  at  bt  

* Representative case-control table example. Case: patients with DM that exposed to AP; 

Control: patients with DM that not exposed to AP. 

 

Table 2.2 Contingency Representative Table 

 K85 

 Case Control 

DDM  {249} a1 b1 

DDM  {249} c1 = at - a1 d1 = bt - b1 

 

Odds Ratio formula.  

𝑂𝑅 =
𝑎 ∗ 𝑑

𝑏 ∗ 𝑐
  

Relative Risk formula.  

𝑅𝑅 =
𝑎 / (𝑎 + 𝑏)

𝑐 / (𝑐 + 𝑑)
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Hypothesis Testing. To build a model on hypothesis testing, we need first formulate null 

hypothesis (H0) as well as alternate hypothesis (Ha), then compute both p-value through chi-square 

test and threshold  together to determine whether we should reject or accept the null hypothesis. 

In this project, the model is formulated as shown below:  

H0: DDM is independent from DAP. 

Ha: DDM is not independent from DAP. 

According to case-control table (Table 2.1) we can formulate chi-square test to calculate the p-

value for each DDM and DAP pair. As discussed above, as we conducted multiple hypothesis testing 

due to varies combination of DDM and DAP pair, BH correction was chosen as regularization method 

to control FDR. To be specific, it works by ranking p-values obtained from multiple hypothesis 

tests in ascending order, then p-values are adjusted based on the rank and total number of tests 

conducted. The corrected p-values are being used in compared to the threshold  to determine if 

the null hypothesis H0 should be rejected. If corrected p-value p if less than threshold value  then 

null hypothesis H0 is rejected that DM is independent of AP and vice versa.  

{𝑝} ∼ χ2(< 𝐷DM, 𝐷AP >) 

{𝑝𝑐𝑜𝑟𝑟} = BH({𝑝}) 

𝑝 < 𝛼 → 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0: 𝐷𝐷𝑀 ⫫ DAP 

Logistic Regression. As we have acquired the statistically significant evidence on DM and AP 

association study via statistical tools discussed above, the next step is to build a logistic regression 

linear model. The main benefit of using logistic regression linear model to estimate odds ratio in 

contrast to traditional methods with contingency table is that logistic regression allows inclusion 
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of multiple predictors in the same model thus we’re capable to account for more potential 

confounding risk factor that take places in the following development of DM after patients exposed 

to AP.  Besides, logistic regression provides estimates of the odds ratio along with confidence 

intervals, which indicates the precision of the estimates. Therefore, the MarketScan have provided 

us with rich patient’s information that we can include the candidate factors such as age, gender etc 

that might have hidden effect on DM development. The computed coefficients in logistic 

regression can be used to derive OR on specific potential risk factors as shown in equations below. 

Besides, to build a logistic regression model based on enormous MarketScan dataset can enable 

us to obtain a robust tool that can be used to estimate the odds ratio with their confidence intervals 

of developing DM based on a set of predictor variables (risk factors) conditions.  

𝑧 =  𝛽0 +  𝛽1 ∗ 𝟏(𝐷𝐴𝑃) + 𝛽2 ∗ 𝟏(𝐺) + ∑𝛽𝑖 ∗ 𝟏 (𝑍𝑖) 

𝑃𝑟(𝐷𝐷𝑀) =
1

1 + 𝑒𝑥𝑝(−𝑧)
 

𝑂𝑅𝑖 = exp(𝛽𝑖) 

𝑂𝑑𝑑𝑠(𝐷𝐷𝑀) =
𝑃𝑟

1 − 𝑃𝑟
 

So far, we have proposed all statistical tools that being utilized in this project to fully investigate 

the DM that developed following patients’ exposure to AP.  

 

 

 

 



 17 

2.3 Results 

Regarding the University of Chicago electronic health record that contains patient’s diseases 

history information for local communities, we have examined and analyzed data on both the 

number and location of pancreatitis cases. The total number of diagnoses of “acute pancreatitis” 

between 2016 and 2020 was 474. The average age was about 56 years of age with an approximately 

a normal distribution. Based on this we were able to determine the number of patients who 

subsequently had ICD-9/10 codes of type 1 diabetes (84) type 2 diabetes (217), both (75) 

(suggestive of miscoding) or neither (173). We constructed a heat map of these patients (Figure 

2.1), based on their zip code, which shows that the majority of these patients appear to be located 

on the South side of Chicago, thereby indicating that patients in this area may be especially 

vulnerable to this combination of diagnoses (AP and DM). 

 After analyzing the spatial distribution of DM development after patients’ exposure to AP 

in Chicago communities. We further explore the electronic health records stored in MarketScan 

Figure 2.1. Based on information from the University of Chicago Medicine EMR (EPIC), this 

map of the Chicagoland area shows those who are diagnosed with acute pancreatitis and develop 

subsequent diagnosis of diabetes within our patient population based on patient zip code. 
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dataset for national wise patients’ disease history to evaluate chronological separation of 

pancreatitis and diabetes as well as temporal variations with help of this massive dataset.  

 As a preliminary overview, we have sampled patients exposed to AP in their diseases 

history to analyze the chronical effect of developing DM afterwards. The distribution of time in 

developing DM in yearly scale is displayed in the pie plot we created (Figure 2.2). The total sample 

size in this experiment has 33,980 ppl that have AP occurrence before any DM identified, based 

on which we can observe ~25.9% patients would develop varies form of DM following occurrence 

of AP. Among that population, ~21.5% patients would have developed DM within next 5 years 

and only ~4.4% patients would develop DM after 5 years window.  

 Based on the pie chart shown in Figure 2.2, we can gain a general understanding of the 

proportion distribution of patients who were exposed to AP prior to being diagnosed with DM in 

5 years cutoff. The results of this experiment are consistent with the initial hypothesis of domain 

experts, who predicted that approximately 20% of patients would develop DM following AP. 

However, in order to gain a more detailed understanding of the development of DM after an AP 

Figure 2.2. Based on information from MarketScan, this pie plot shows the distribution of 

time to develop diabetes mellitus for those patients who have diagnosed with acute pancreatitis 

ahead of existence of diabetes mellitus in disease history record. The total sample size is 

33,980 ppl.  
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diagnosis, we must gather more specific information on the observation of DM. This information 

should not only be collected on a yearly basis, but should also include details about the type of 

DM that developed (i.e. primary Type-1 diabetes and Type-2 diabetes). Therefore, we have created 

a cumulative distribution plot (Figure 2.3) on DM development in yearly basis beginning with AP 

exposure and end with 15 years after that. Here, we focused specifically on the primary type of 

DM development, as shown in Figure 2.3, ~78.23% DM (including Type-1 and Type-2) can be 

observed in the first 5 years after occurrence of AP. Specifically, the majority of DM developed is 

Type-2 DM (~82.5%), among which ~76.94% would be observed in the first 5 years. For Type-1 

diabetes, ~84.36% cases would occur in the first 5 years following AP diagnosed.  

 To control the falsely encoded ICD codes for diabetes in MarketScan dataset that might 

cause mistakes on our analysis conclusion. We have attempted to extract patients’ medication 

history apart from encoded ICD code for diabetes. Dr. Louis Philipson, a co-investigator in this  
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Figure 2.3. Cumulative distribution plot of patient’s specific diabetes mellitus development 

after diagnosed with acute pancreatitis in year 0. Only primary type of diabetes mellitus (blue 

dot: type-1 diabetes; orange dot: type-2 diabetes) is included with total sample size of 8818.  

 

Figure 2.4. (a) Long acting (LA) and (b) short acting (SA) insulin distribution for patients 

diagnosed with three types of primary diabetes mellitus (T1D: Type-1 diabetes; T2D: Type-2 

diabetes; Mix: T1D and T2D both observed).  The entire sample population is 13,592 patients 

with diabetes mellitus, among which 11,680 (~86%) population have medication history 

prescription of insulin usage. 
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project who is an endocrinology and leading world authority on DM, recommended to identify the 

patient’s prescription on insulin as indicator for varies types of DM. Here we presented an 

experiment to compare the usage of long/short acting (LA/SA) insulin for DM patients that we’ve 

separated in three categories: Type-1 diabetes, Type-2 diabetes and Mix diabetes (both type-1 and 

type-2 diabetes observed in disease history), the result is presented on Figure 2.4. 

 Dr. Louis Philips provides a list of prescriptions for long acting and short acting insulin 

after extracting a patient's medication history dataset. For instance, short acting insulin category 

includes keywords such as "Humulin", "Humalog" and "Admelog" whereas "Basaglar", "Lantus" 

and "Levemir" are part of the long acting insulin category. Despite this classification, our analysis 

of Figure 2.4, which sampled 13,592 patients with a history of DM, did not reveal any significant 

difference between long and short acting insulin prescriptions for the diabetes types listed above. 

In order to investigate the effects of long and short acting insulin on primary DM, we analyzed the 

usage of specific insulin prescription types for each category, and the results are presented in 

(a) Long Acting Insulin                (b) Short Acting 

Figure 2.5. (a) Long acting (LA) and (b) short acting (SA) specific insulin prescription 

distribution for patients diagnosed with three types of primary diabetes mellitus (T1D: Type-1 

diabetes; T2D: Type-2 diabetes; Mix: T1D and T2D both observed).  The Y-axis list specific 

insulin prescription name for LA/SA insulin categories. 
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Figure 2.5. Our findings suggest that there is no single insulin prescription that dominates usage 

for any specific type of diabetes. 

Table 2.3 Risk Of Diabetes Following Pancreatitis Using Marketscan Database. 

Diabetes Type Case 

(AP) 

Control 

(No AP) 

Odds 

Ratio 

p-value Relative 

Risk 

Type 1 DM 167 566 55.290 <1e-10 47.17 

Type 2 DM 466 4,925 17.731 <1e-10 12.21 

Other specified DM 13 237 10.279 1.56x 10-9 / 

DM due to underlying 

condition 

8 122 12.288 5.95x 10-7 / 

Drug or Chemical 

Induced DM 

0 18 0 1 / 

No DM 949 177,833 / / / 

 

So far, we have explored the spatial distribution of AP followed DM in Chicago local 

communities and shows the significant high risk for underserved communities’ vulnerability to 

DM after exposed to AP. Also, we have thoroughly analyzed the national wise MarketScan dataset 

to justify that over 20% of patients who diagnosed with AP would develop DM, among which, 

~80% of DM would be observed in the next 5 years for varies diabetes. We have explored the 

possibility to utilize the MarketScan medication history record to cross-validate the diagnosed 

diabetes type by accommodating with their prescription of long/short acting insulin. Next, In Table 

2.3 below, we show the power of using the MarketScan data for asking important questions about 

the fundamental data related to this project, and the possible questions that those answer generate 

in turn. This analysis shows an impressive increase in risk of 55 times for those with a diagnosis 

*As compared to age-, sex- and county-matched patients with no prior history of AP, patients with 

AP had 55 times the odds of having a diagnosis code of T1DM following AP and 18 times of having 

a diagnosis code of T2DM following AP.  
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of acute pancreatitis to then have a diagnosis coded as Type-1 diabetes, and 18 times more likely 

to have a diagnosis coded as Type-2 diabetes than non-pancreatitis peers in the insurance claims. 

Verification of this data is critical in the face of possible coding errors is currently underway, but 

these results are highly supported statistically with astronomically small p-values. The relative risk 

regarding Type-1 and Type-2 DM conditioned on AP are computed as well, which indicated 47.17 

risk exposed to Type-1 diabetes for people exposed to AP and 12.21 for Type-2 diabetes 

development.  

Finally, we have built a logistic regression model that consider the effect of other potential 

demographic risk factors to DM development apart from AP. Here we consider the effect gender 

and age (between 20 ~ 65 years), the age and gender distribution of sampled population is shown 

in bin plot Figure 2.6. As we can observe that the population age group has tendency to the right 

with approximately similar gender distributed in each age group. Then we trained a logistic 

Figure 2.6. Age and gender distribution sampled from MarketScan dataset to build logistic 

regression model. The total sample size is 183,957. 
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regression model and estimated the odds ratio along with 95% confidence intervals regarding each 

predictor variable in the model. The plot is shown in Figure 2.7 with dashed vertical line 

highlighted the neutral effect odds ratio value. The Figure 2.7 shows that AP has significant 

contribution to DM outcome compared to potential demographic risk factor such as gender and 

age in this model. The estimated value for AP odds ratio is ~18 which is close to Type-2 DM odds 

ratio computed through contingency table method, the reason can be Type-2 DM patients 

dominated number in contract to other types of DM. Moreover, the age group 5 (patients age 

between 58-65) also presented positive effect on DM development in comparison to other age 

groups, and the gender has neutral effect to DM outcome.  

  

Figure 2.7. Odds ratios point plot for each included risk factors in logistic regression model, the 

black dot represent the estimated value for odds ratio and grey bar represented 95% lower and upper 

bound confidence intervals. Y-axis ticks: ap: acute pancreatitis; age between 20-65 is divided into 

6 groups represented by number after underscore sign; sex is the gender factor (0: male, 1: female) 
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2.4 Discussion 

In the first part of study, we analyzed the spatial distribution of patients who diagnosed AP and 

later developed DM in the subsequent years. The result represented in form of heat map in Figure 

2.1 that heavily concentration of cases in south side communities of the Chicago area, which 

predominately occupied by African American. This finding, extracted from University of Chicago 

Medicine electronic health record, confirms our proposed hypothesis that both DM and AP are 

further amplified in underserved communities. Even though the underlying causal relationship 

between environmental factors in underserved communities and the amplified development of DM 

after AP is not yet clear, we plan to explore these disparities including any factors beyond 

socioeconomic status, by studying the microbiome in patients with AP and DM in the future study.  

Next, we studied the temporal factor of AP on DM development using a rich nationwide 

insurance claims MarketScan dataset. We initially set a 5-year window to study the proportion of 

patients who were diagonalized with AP and subsequently developed DM during that period, the 

5-year window time period was based on empirical observation in clinics and supported by our 

teams’ domain expertise. The results, displayed in Figure 2.2, confirm our initial observation, 

suggesting that ~20% of patients who diagnosed with AP would develop DM in the next 5 years. 

To explore the distribution of various types of primary DM among patients exposed to AP, as well 

as the cumulative percentage of DM development on a yearly scale, we constructed a cumulative 

percentage plot in Figure 2.3. From Figure 2.3, we can observe that approximately 80% of both 

Type-1 and Type-2 DM cases would occur within the first 5 years after AP. Type-1 DM has a 

higher percentage of occurrence (~85%) in that time window compared to Type-2 DM (~77%), 

although Type-2 DM is more commonly observed among the total sampled patients diagnosed 

with AP (~82%). 
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Since the patients' disease history is encoded using ICD-9/ICD-10 codes stored in the 

MarketScan dataset, which may have the risk of miscoding, and there may be co-occurrence of 

encoded Type-1 and Type-2 diabetes ICD codes in the "Mix" category if we only query the disease 

history through MarketScan. Therefore, based on advice from Dr. Louis Philipson, a leading world 

expert in diabetes, we minimized the risk of miscoding by cross-checking the patients' medication 

history in addition to the ICD-coded disease history, in order to better distinguish between Type-

1 and Type-2 diabetes from the "Mix" category. To be more specific, Dr. Louis Philipson provided 

a list of popular insulin prescription names that are commonly used for patients diagnosed with 

DM, which can be categorized into short-acting and long-acting insulin with different effects on 

different types of DM. The exploratory results obtained from a sample of 11,680 patients with DM 

are shown in Figure 2.4 and Figure 2.5. Based on Figure 2.4, we can observe that the difference in 

the distribution of primary diabetes usage between short-acting and long-acting insulins is 

insignificant (~82% for T2D, ~16% for Mix, and ~2% for T1D). Further study on specific insulin 

prescriptions listed in Figure 2.5 did not reveal any meaningful differences in their usage for each 

type of diabetes.  

We then constructed a case-control table, similar to Table 2.1, based on MarketScan 

electronic health records for patients with no prior history of acute pancreatitis (AP), matched by 

demographic features such as age group and sex. Subsequently, we built a contingency table, as 

shown in Table 2.3, for various types of diabetes outcomes, with the count of patients in each cell 

extracted from the MarketScan dataset based on specific ICD-9/ICD-10 codes for diabetes. Using 

the contingency table results, we computed the odds ratio (OR) with associated p-values and 

relative risk to estimate the risk factor of AP in contributing to DM development. 
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The computed odds ratios for each type of diabetes indicated a positive effect of AP as a risk factor 

for future development of diabetes. Specifically, patients diagnosed with AP were approximately 

55 times more likely to develop Type-1 diabetes and 18 times more likely to develop Type-2 

diabetes compared to patients without a prior history of AP, as supported by the extremely small 

p-values. We also computed the relative risks for primary Type-1 and Type-2 diabetes, which 

showed that patients exposed to AP as a risk factor were approximately 47 times more likely to 

develop Type-1 diabetes and 12 times more likely to develop Type-2 diabetes compared to 

unexposed patients. Relative risk is preferred when the outcome is not a rare disease, such as Type-

1 and Type-2 diabetes in our case, as it provides a more intuitive interpretation of the strength of 

association between the case and control groups. However, odds ratio is more commonly used 

when the outcome is rare, as it is less biased than relative risk in such situations. 

Furthermore, we applied a logistic regression model to consider potential confounding 

factors apart from AP existence in DM development. The sampled demographic distribution is 

shown in Figure 2.6, with the training dataset being the same population sampled from the 

MarketScan dataset to construct contingency table 2.3. The demographic predictors included in 

the logistic regression model, as shown in Figure 2.6, indicated that the sampled population had 

approximately equal percentages of gender, but the age distribution was skewed towards the 50-

65 age group, which is common in the MarketScan dataset. The logistic regression model was built 

upon this population, and the results displayed in Figure 2.7 indicated that the estimated odds ratio 

for AP had a significant effect on DM development compared to age and gender factors. The 

confidence intervals of the estimated odds ratios in Figure 2.7 showed that only age group 5 and 

AP had a significant positive impact on DM development, while other factors had a neutral effect, 

as their 95% confidence intervals included the neutral odds ratio value (dashed vertical line). This 
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experiment emphasized that AP has a significant impact on DM development even after 

considering potential confounding predictors. 

In conclusion, this project thoroughly analyzed both the spatial and temporal distribution 

of patients diagnosed with AP and their subsequent development of DM. The experiments results 

support the hypothesis inspired by domain expertise empirical observations in clinics. This study 

contributes to the growing body of literature on the association between AP and DM development 

and underscores the importance of addressing health disparities in underserved communities. It’s 

important to support further research in this area for early identification and management of 

subsequent DM development in patients with prior history of AP, especially in vulnerable elderly 

populations. 
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2.5 Limitations 

This project suggests the AP significant positive effect on subsequent DM development initiated 

by clinician’s empirical observation, however, there are two main caveats accompany this 

assertion.  

First, it’s important to be aware that diseases are not truly independent of each other, the 

existent of one disease can facilitate the development of another, and other factors such as 

environmental, demographic and medication history may also lead to the exacerbation of chronic 

disease. Therefore, though we have attempted to use logistic regression model to take demographic 

factors (gender and age) into consideration when compute strength of association between prior 

AP and subsequent DM, the size of included potential confounding variables are notably limited. 

For instance, as we have observed significant biased spatial distribution of DM following AP 

diagnosed in local Chicago underserved communities, the possible confounding factors such as 

zip code or district air pollution conditions can have significant contribution to trigger DM 

development apart from AP. Note that low-p values and narrow confidence intervals are driven by 

large datasets. Moreover, our analysis cannot distinguish the causal relationship between AP and 

DM, this part will require research on future study.  

Second, as noted in the discussion, it’s possible that diseases coding errors could influence 

our odds ratio estimates. The large proportions of “Mix” category indicates the confusion to 

distinguish between Type-1 and Type-2 diabetes through ICD-9/ICD-10 codes in MarketScan. 

This limitation of accuracy on disease history recording would impair our capability to study the 

difference of AP effect on specific DM category. Though we have attempted to solve this issue 

via cross-validate with patients’ medication history on their insulin usage, the results didn’t show 

any significant signal that we can use to distinguish between Type-1 / Type-2 diabetes. However, 
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as we have estimated that the miscoding rate at the MarketScan is around 0.52 percent, thus the 

error rate is positive but small in comparison to the derived association effect size.  
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CHAPTER 3 FREE-LIVING WRIST AND HIP ACCELEROMETRY 

FORECAST COGNITIVE DECLINE AMONG OLDER ADULTS 

WITHOUT DEMENTIA OVER ONE- OR FIVE-YEARS IN TWO 

DISTINCT OBSERVATIONAL COHORTS 

This chapter is adapted from the manuscript “Free living wrist and hip accelerometry forecast 

cognitive decline among older adults without dementia over 1- or 5-years in two distinct 

observation cohorts” authored by Chengjian Shi, Niser Babiker, Jacek K. Urbanak, Robert L. 

Grossman, Megan Huisingh-Sheetz and Andrey Rzhetsky.  

 

3.1 Introduction 

Alzheimer’s disease and related major neurocognitive disorders (ADRD) affect over 50 million 

people worldwide, with an increase of 10 million new cases per year. The ADRD disease burden 

is expected to increase as the world population ages [41-43]. ADRD disproportionately affects 

socioeconomically disadvantaged groups and minorities [44] and is associated with lower quality 

of life, increased mortality, care dependence, and institutionalization. Preservation of cognitive 

abilities and a positive mindset may maintain quality of life in later years [45]. Few US Food and 

Drug Administration (FDA) approved treatment options exist at this time; therefore, the mainstay 

of current management remains on the prevention side6. Cognitive trajectories vary widely among 

older adults, with recent studies showing that different races experience varying rates of decline 

[47-48]. Finding sensitive forecasters of early decline could trigger more frequent monitoring and 

aggressive preventative interventions, advance care planning, and even ADRD research study 

eligibility [49]. 

https://www.nature.com/articles/s41514-022-00087-w#ref-CR6
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There is an acute need for easily deployed, noninvasive, clinical tools to identify 

cognitively intact older adults most at risk of subsequent cognitive decline. Certain clinical and 

environmental factors including age, gender, education, body mass index, neighborhood 

socioeconomic status, and history of stroke or diabetes are easy to gather clinically during a visit 

or even during a telephone screen [50]. In a meta-analysis, structural and functional aspects of 

one’s social environment (including network size, social activity, and loneliness) are also 

predictive of cognitive decline among older adults [51]. Genetic susceptibilities, such as APOE 

carrier status, can improve forecast models but are more invasive for patients to collect [52]. 

Wearable sensors have been gaining attention for their ability to remotely collect free-

living activity and sleep patterns and the association of these patterns with other important age-

related conditions: frailty [53-55], disability [56], social disengagement [57], and death [58]. The 

relationship between free-living activity and cognitive performance has been less studied. In cross-

section, greater activity volume (highest and middle tertiles of active minutes/day) was associated 

with better processing speed among cognitively intact adults at risk of mobility disability [59] and 

steps/day were associated with better executive functioning in healthy older adults [60]. 

Longitudinally, cognitively intact older adults with a higher percentage of moderate to vigorous 

physical activity (MVPA) per week had a lower risk of cognitive impairment and better 

maintenance of executive function and memory over an average of 3 years [61]. However, these 

findings were not consistent across racial/ethnic groups. A higher percent of MVPA predicted 

maintenance of only memory and not executive function in African American/Black adults, as 

compared to White adults. 
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Few prior studies have leveraged the high-resolution nature of accelerometer data in 

analyses to maximize unique pattern recognition that may differentiate health risk across 

individuals, a concept familiar to those studying precision medicine. While accelerometry is not 

currently used in routine clinical care, it has been increasingly used in major research studies to 

remotely assess older adult health and poses significant advantages in the era of telehealth [62-68]. 

Translation of accelerometry in clinical practice has been challenged by the lack of accelerometry 

tools with clear clinical applications and the inability to apply research findings across device body 

locations and manufacturers. 

The objective of this study was to significantly advance the prior work on forecasting early 

cognitive decline among older adults without dementia by discovering prognostic, free-living 

accelerometry patterns using 24-h data. We considered 98 accelerometry measures, the most 

comprehensive set of movement-related measures in a study of its kind to date. With a screening 

clinical application in mind, we chose a simple, binary clinical outcome that is most relevant to 

triggering clinical or research decision making: any cognitive decline versus stable or improving 

cognition. We further probed into the generalizability of the developed methodology, by applying 

it to data from two studies that gathered data from two different accelerometers worn at different 

body locations and with different wear protocols. 
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3.2 Methods 

3.2.1 Data and other materials 

Study population. To evaluate the robustness of our proposed methodology, we used information 

about two non-overlapping cohorts of community-dwelling older adults, one cohort equipped with 

hip-based and another with wrist-based accelerometers. 

(1) Hip accelerometry cohort: frailty, aging, body composition and energy expenditure 

in aging (FACE aging) study. Study participants (n = 151) were recruited from the 

community around the primary geriatrics practice site for the University of Chicago located 

on the south side of Chicago. The sample was limited to community-dwelling (not living 

in residential care) older adults, 65 or older. Exclusion criteria included hospitalization, 

surgery, or procedure within 2 months of participating in the study; addition or change in 

dose of the thyroid (e.g, levothyroxine) or a diuretic (e.g, furosemide, hydrochlorothiazide, 

or spironolactone) medication within 2 months of participating in the study; use of oral 

steroids; use of beta-blockers (e.g., metoprolol, atenolol, or carvedilol); persistent 

hyperglycemia greater than 250; life expectancy less than 1 year; and history of moderate 

or advanced dementia or Montreal Cognitive Assessment (MoCA) less than or equal to 18. 

Hospital, surgery, medication, and hyperglycemia exclusion criteria were required to 

optimize resting metabolic rate testing at baseline (data not used in this analysis). Data 

collection occurred over multiple evaluations: (1) baseline survey and physical exam in the 

clinic, (2) a 7-day free-living hip accelerometry protocol immediately following the exam, 

(3) fasting resting metabolic rate measurement with indirect calorimetry and DEXA scan 

for body composition within 2 weeks of baseline assessment, (4) a 1-year follow-up survey 
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and physical exam in the clinic. We restricted the study sample to participants with 

complete clinical data and one or more valid (≥10 daytime hours) accelerometer-wear days, 

which left us with 115 participants eligible for our classifier development. 

(2) Wrist accelerometry cohort: the national social life, health, and aging project. We 

used wrist accelerometry data generated by the National Social Life, Health, and Aging 

Project (NSHAP) as the sample. NSHAP is a nationally-representative, longitudinal survey 

study that collects extensive information on physical, mental, cognitive, and social health 

in United Study, community-dwelling older adults [71]. The first wave of NSHAP was in 

2005–6 which included a nationally, statistically representative sample of community-

dwelling adults born between 1920–47 (aged 57–85) and over-sampled for African-

Americans, Hispanics, and males; 3377 respondents participated (weighted response 

rate = 75.5%). Five years later (2010–11), respondents were re-interviewed as were their 

cohabiting spouse or partner, for a total n = 3377. Interviews were conducted in the homes 

of each respondent by professional interviewers from NORC at the University of Chicago. 

A random subset of the 2010–11 respondents were invited to participate in a wrist 

accelerometry protocol, the data used in the current analysis.  

Hip accelerometer protocol. Hip accelerometry data were collected from all participants at 

baseline. Following the baseline survey and physical exam, an Actigraph wGT3X+ hip 

accelerometer was placed over the participant’s mid, anterior right hip and secured with an elastic 

belt. Study participants were asked to keep the device on their hip continuously for 7 full days 

(including during bathing or showering). The accelerometers recorded data at a frequency of 30 Hz. 

The subsecond-level data were extracted from the devices using the ActiLife software (version 

6.0). The low-frequency extension filter was NOT applied. 
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Wrist accelerometry sub-study protocol. Wrist accelerometry data were collected from a 

randomly selected subset of 793 respondents in the 2010–2011 data collection wave. The 2010–

2011 accelerometry protocol has been previously described in detail [68]. Briefly, randomly 

selected respondents in the 2010–2011 data collection wave were asked to wear an ActiWatch 

Spectrum® on their non-dominant wrist continuously for 72 consecutive hours (including during 

bathing or swimming activities). The accelerometers recorded data at a frequency of 32 Hz. Upon 

receiving returned devices, data were downloaded from the device and then pre-processed using 

the Actiware® software [72]. The maximum absolute value was computed for each second; the 

sum of these absolute values was then computed for every 15-s epoch. The ActiWatch has a 

galvanic heat sensor that identifies when a device is on the wrist. All non-wear periods were 

excluded (only 0.17% of epochs across all wake data were classified as non-wear). Days with at 

least 10 h of daytime recording were considered “valid”; days with less than 10 h of daytime 

recording were excluded. The 24-h time interval was used to generate the wrist accelerometry 

features for this analysis. The study sample was restricted to participants with complete clinical 

data and ≥1 valid accelerometry wear day which left 584 participants eligible for our classifier 

development. 

Data availability. The NSHAP data are publicly available and can be obtained from the National 

Archive of Computerized Data on Aging after completing a Data Use Agreement. The FACE 

Aging study data are available from one of the corresponding authors (M.H.S.) upon reasonable 

request and after completion of a Data Use Agreement and Institutional Review Board assessment. 
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3.2.2 Statistical Analyses 

Clinical Measures. The cognitive function, the target inference in our project, refers to patients’ 

ability to process incoming information. In this section we will introduce the measurement 

methods to identify cognitive decline among the cohort as well as derivation of covariates that 

being used as distinguish health signals to predict cognitive decline outcome.  

Cognitive Function 

Hip accelerometry cohort. The Montreal Cognitive Assessment (MoCA) was used to determine 

cognitive function at baseline and 1-year follow-up for the hip accelerometry training sample. 

The MoCA evaluates seven domains of cognitive function. The scale ranges from 0 to 30 with 

higher scores indicating better function. Because education was included as a covariate and our 

primary focus was on change in cognition, we did not add an additional point to the MoCA score 

for education levels below 12 years as is clinically done [73].  

Wrist accelerometry cohort. In the wrist accelerometry sample, cognitive function was assessed 

in 2010–11 and 2015–16 using the survey-adapted Montreal Cognitive Assessment (MoCA-SA) 

as previously described in detail [72]. MoCA scores (range 0–30) are estimated from the 18-item 

MoCA-SA using a linear prediction model [74,75]. The wrist accelerometer data were collected 

in 2010–11 along with a baseline MoCA. The MoCA was repeated in 2015–16. In both cohorts, 

we calculated cognitive change as a difference in MoCA scores between the baseline and follow-

up assessments (1 year for the hip accelerometry cohort and 5 years for the wrist accelerometry 

cohort): 

Δ = MoCAfollow−up − 𝑀𝑜𝐶𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  
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Patients with deteriorating MoCA scores (∆ < 0) were assigned to the cognitively declined 

group, denoted as ∆−. The remaining patients were assigned to the group with a lack of cognitive 

decline, denoted as ∆+. The ratio of ∆+/∆− was 67/48 in hip-worn- and 279/296 in wrist-worn-

accelerometer cohorts. The range of 1-year cognitive change (hip) was −8 to 6. The range of 5-

year cognitive change (wrist) was −14.9 to 14.9. 

Demographic Covariates 

(1) Hip accelerometry cohort. In the hip accelerometry cohort, age, race, gender (female vs. 

male), education (high school≥ vs. < high school graduate), and monthly income category 

($0 < 2000, $2000–3999, $4000–5999, and $6000+) were recorded through self-reported 

measures. Options for the race included Black or African American and Other (White, 

American Indian or Alaska Native, Asian Indian, Chinese, Filipino, Japanese, Korean, 

Vietnamese, Other Asian, Native Hawaiian, Guamanian or Chamorro, Samoan, Other 

Pacific Islander, or Other). No participants reported Hispanic ethnicity. Information on 

previously diagnosed comorbidities (self-reported and chart review) was recorded and 

scored using the Charlson Comorbidity Index and included heart attack, asthma, 

emphysema, chronic bronchitis, a chronic obstructive pulmonary disorder, peripheral 

vascular disease, liver disease, diabetes, and cancer (continuous, range 0–30) [76]. 

(2) Wrist accelerometry cohort. In the wrist accelerometry cohort, age (centered, continuous) 

was calculated using the reported date of birth and interview date. Gender (female versus 

male), race (White/Caucasian, Black/African American, other), and Hispanic ethnicity [77]. 

A modified Charlson Comorbidity Index (range 0–16, continuous) was constructed using 

self-reported comorbidity data in the 2010–2011 data collection wave. Respondents were 

asked whether they had ever been told by a doctor that they had any of the following 
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conditions (number of points given in parentheses): congestive heart failure (1), heart 

attack (1), coronary procedure (1), stroke (1), diabetes (1), rheumatoid arthritis (1), asthma, 

emphysema, chronic obstructive pulmonary disease, or chronic bronchitis (1), dementia 

(1), non-metastatic cancer excluding skin cancer (2), or metastatic cancer excluding skin 

cancer (6) [78]. 

Accelerometer data preparation. Data were restricted to enrollees with at least one valid day. 

We calculated the Euclidean norm minus one (ENMO), counts per minute (CPM), and vector 

magnitude count (VMC) for each participant using the hip and wrist data. To calculate these 

metrics, the accelerometry data needed to be in the form of the vector magnitude/Euclidean norm. 

The subsecond-level wrist accelerometry data were already converted to the vector 

magnitude/Euclidean norm by the manufacturer’s software, 1 data point for every 15-s epoch, 

where N = 24 h per day × 60 min per hour × 4 samples per minute = 5760 samples per day for wrist-

worn accelerometer data. 

The hip accelerometer data were in the form (x(t), y(t), z(t)), where x(t), y(t), and z(t) are 

dimensionless data provided by the accelerometry device, which are approximately proportional 

to the (x-, y-, and z-axis) directional acceleration [79]. Time t is discrete, which for each day t runs 

from 1 to N, where N = 24 h per day × 60 min per hour × 60 s per minute × 30 samples per 

second = 2,592,000 samples per day for hip-worn accelerometer data. The vector 

magnitude/Euclidean norm r(t) was computed in the hip accelerometry data as follows: 

𝒓(𝒕) = √𝒙(𝒕)𝟐 + 𝒚(𝒕)𝟐 + 𝒛(𝒕)𝟐 

To normalize the vector magnitude/Euclidean norm r(t) to a consistent length across both the wrist 

and hip accelerometry cohorts, the vector magnitude/Euclidean norm r(t) was reshaped to 
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a D × T matrix R = Rdt where D represents the total number of wear days and T represents 

collected samples per day. The average, normalized vector magnitude/Euclidean norm  𝑟̅(𝑡) is 

computed as follows: 

𝑟̅(𝑡) =
1

𝐷
∑ 𝑅𝑑𝑡

𝐷

𝑑=1

 

We then used non-overlapping 1-minute, sliding windows to extract the Euclidean norm minus 

one (ENMO), the counts per minute (CPM), and the vector magnitude count (VMC), both formally 

defined below. The ENMO was used to remove noise and gravitation effects from subminute and 

subsecond-level data. Letting H denote the number of time measurements in a one-minute sliding 

window, we can write ENMO as: 

𝐸𝑁𝑀𝑂(𝑡) =  
1

𝐻
∑ max[𝑟̅(t + h) − 1 , 0]

𝐻−1

ℎ=1

 

The feature CPM was further derived as: 

𝐶𝑃𝑀(𝑡) = 𝐻 ∗ 𝐸𝑁𝑀𝑂(𝑡) 

Note that H = 60 s per sliding window × 30 samples per second = 1800 samples per sliding window 

for hip accelerometer data and H = 60 s per sliding window × 4 samples per minute = 4 samples 

per sliding window for wrist accelerometer data. 

The VMC was used to evaluate the mean amplitude deviation in the sliding window period with 

size H, defined as: 

𝑉𝑀𝐶(𝑡) =  
1

𝐻
∑ |𝑟̅(𝑡 + ℎ) − 𝑟̅(𝑡)|

𝐻−1

ℎ=0
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where t now varies over the minutes each day, from 1 to N, with N = 24 h per day × 60 min per 

hour = 1,440 min per day. 

Accelerometry activity level measures (C4 and V4). Two categorical activity measures that we 

call C4 and V4 were computed. After extracting CPM and VMC measures from the accelerometer 

data, we generated the 75th percentile for CPM and VMC data points for each participant denoted 

as CPM75 and VMC75. The sample-based distribution of the CPM75 and the VMC75 were then 

categorized into four levels at each quartile to create a C4 and V4, respectively. Figure 3.1 shows 

the cohort-specific-based quartiles for CPM75 and VMC75 labeled as: inactive [0–25%], 

moderately active [25–50%], active [50–75%], and extremely active [75–100%]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Hip/Wrist accelerometry cohorts distribution of CPM75/VMC75. Red dashed line 

represents Q1 quantiles on inactive: [0, 25%]; Green dashed line represents Q2 quantiles on 

moderately active [25–50%]; Blue dashed line represents Q3 quantiles on active [50–75%], and 

above Q3 represents extremely active [75–100%]. 

 

https://www.nature.com/articles/s41514-022-00087-w#Fig5
https://www.nature.com/articles/s41514-022-00087-w#Fig5
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Accelerometry pattern measure. After obtaining minute-level ENMO(t) and VMC(t), we then 

computed 98 statistical and harmonic features. This resulted in 105 features for those wearing the 

hip accelerometers (study population N = 115) and 104 features for those wearing the wrist 

accelerometers (study population N = 575). The number of features for the wrist- and hip-worn 

devices differed because the income and ethnicity/race categories in the two datasets were not 

identical. The specific features for ENMO(t) and VMC(t) are listed in Table 3.1. We illustrated 

the meaning of the individual harmonic features in Fig. 3.2. While we computed a relatively large 

number of harmonic features, the features belong to just a few categories: differential entropy 

(flatness of a distribution), fast Fourier transform (revealing periodicity in activity), and statistics 

describing shapes of a distribution, such as mean, variance, skewness, and kurtosis. 

Table 3.1. Statistic And Harmonic Features Extracted From CPM (T) And VMC (T). 

Statistical Features 

Mean and median 

Standard deviation 

Minimum and maximum 

25th and 75th percentile 

Skewness and kurtosis 

Entropy 

Beta distribution shape (α,β) 

Harmonic features 

Top 15 FFTa Coefficients (frequency/signal) 

FFTa entropy 

Periodogram frequency mean, Standard deviation 

RMSb amplitude 

Periodogram frequency Kurtosis and Skewness 

 

 

 

 

aFast fourier transformation (FFT).  

bRoot mean squared (RMS). 
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Statistical analysis. First, we computed characteristics of the two cohorts: means (±standard error, 

SE) for continuous measures and proportions (±SE) for categorical variables. Second, to analyze 

the statistical significance of the covariates for distinguishing between the two classes (∆−, ∆+), we 

evaluated the predictive importance of each of the demographic, comorbidity, and accelerometry 

measure in both cohorts. Third, we built a binary classifier called CDPred to distinguish ∆+ from 

∆− in the two cohorts using XGBoost (Extreme Gradient Boosting). To evaluate the performance 

of the model in each cohort, we randomly chose 10% of the hip accelerometry cohort and 15% of 

the sample from the wrist accelerometry cohort as a hold-out sample. The CDPred 

hyperparameters were fine-tuned using 5-fold cross-validation, to maximize the area under the 

curve (AUC) score. We then reported the performance of each model in terms of predicted 

accuracy and AUC on a hold-out sample. The feature importance of distinguishing ∆+ and ∆− were 

then listed in descending order of importance for the best-performing model in each dataset. 
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Figure 3.2. a Differential entropy: Differential entropy is the highest for a uniform distribution of 

activity (for example, when a person stays inactive 24 h a day, so there are no bursts of activity). 

When a person is more active through the day and inactive at night, the entropy of activity drops, 

because the daytime activity exceeds the night-time activity average. b Fast Fourier transform 

(FFT): The fast Fourier transform refers to the number of harmonics that can be used to describe a 

curve. Any curve can be decomposed into a spectrum of harmonics. In this case, the hypothetical 

activity curve shown in red is the sum of 3 harmonics with nonzero amplitude: one with four cycles 

a day, one with a single full cycle a day, and one with a two-day cycle. In real accelerometry data, 

the number of accelerometry harmonics composing a 24-h circadian pattern is typically over 15 

harmonics. c Skewness is a statistic characterizing the asymmetry of the distribution of activity; it 

can be applied to entire device wear time or to smaller intervals of accelerometry readings. d Excess 

kurtosis is a statistic indicating deviation of a distribution from a normal distribution. Kurtosis is 

zero for a normal distribution, positive for distributions with heavier (than normal) tails, such as t-

distribution, and negative for distributions that have lighter tails, such as Beta with parameters 

(2,2). e Amplitude: The amplitude of each harmonic in an FFT reflects the distance between 

minimum and maximum activity values. For non-essential (noise-level) harmonics in FFT, the 

amplitude is close to zero. 
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3.3 Results 

Cohorts characteristics. The characteristics of the two study cohorts are shown in Table 3.2. The 

hip accelerometry cohort was older (mean age 73.2), had a slightly higher baseline Montreal 

Cognitive Assessment (MoCA) score (mean 25.4), and included a larger proportion of females 

(80.9%) and those self-identifying as African American (81.7%) than the wrist accelerometry 

cohort (mean age 70.0, mean MoCA 23.4, proportion female 59.1%, proportion African 

American/Black 11.3%). 

Table 3.2: Demographic Composition Of The Two Accelerometry Cohorts. 

 Mean (SD) or N (%) 

Characteristics Hip accelerometry 

cohort 

(N=115) 

Wrist 

accelerometry 

cohort  

(N=575) 

Age (year) 73.2 (5.9) 67.0 (7.9) 

Gender (female) 93 (80.9 %) 340 (59.1 %) 

Race  

  African-American / Black 

 

94 (81.7 %) 

 

65 (11.3 %) 

  White 21 (18.3 %) 423 (73.6 %) 

  Hispanic None 67 (11.7 %) 

  Other None 20 (3.5 %) 

Education 

  Some college or junior college 

 

45 (31.9 %) 

 

211 (36.7 %) 

  Post-graduate 28 (24.4 %) 137 (23.8 %) 

  College graduate 27 (23.5 %)  

  High School graduate or GED (grade 

12) 

11 (9.6 %) 135 (23.5 %) 

  Some high school (grades 9-11) 4 (3.5 %) 92 (16.0 %) 

Income ($/month) 

  < 2000 

 

65 (50.0 %) 

 

- 

  2000 ∼ 3999 40 (30.8 %) - 

  4000 ∼ 5999 16 (12.3 %) - 

  ≥ 6000 9 (6.9%) - 

Charlson Comorbidity Index Score 1 (1.3) 0.9 (1.2) 

MoCA (baseline) 25.4 (2.6) 23.4 (4.0) 

MoCA  

(Hip: 1 year; Wrist: 5 years) 

25.6 (3.0) 22.6 (4.4) 
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Demographic and clinical predictors of cognitive decline. As we observe in Table 3.3, the 

clinical characteristics had somewhat limited capability to distinguish between those with 

stable/improving cognition versus those with declining cognition at 1 and 5 years in the local and 

national cohorts, respectively. We provided a full dictionary of features in Supplemental Table 3.1. 

Table 3.3: Effect Size of Predictors of 1- and 5-Year Cognitive Function 

Characteristics 
∆+ Vs ∆− 

Hip-worn (N = 115) 

∆+ Vs ∆− 

Wrist-worn (N = 575) 

  Cohen’s D/Odds Ratio (95% Confidence Intervals)  

Age (year)a 0.457 (0.103, 0.801) 0.284 (0.119, 0.449) 

Gender (female)b 3.533 (1.223, 10.207) 0.865 (0.620, 1.207) 

Raceb  

   African American / Black 1.124 (0.472, 2.680) 0.897 (0.741, 1.086) 

   White - 1.014 (0.795, 1.293) 

   Hispanic - 1.143 (0.873, 1.499) 

   Other - 1.344 

(0.769,2.

345) 

Educationb 

   Some college or junior college 2.265 (1.092, 4.697) 0.850 (0.605, 1.195) 

   Post-graduate 0.973 (0.443, 2.134) 0.909 (0.619, 1.335) 

   College graduate 0.532 (0.233, 1.215) - 

   High School graduate or GED 0.437 (0.110, 1.726) 1.018 (0.652, 1.591) 

   Some high school (grades 9-11) 0.821 (0.132, 5.088) 1.337 (0.908, 1.969) 

Income ($/month)b 

  < 2000 1.283 (0.641, 2.566) - 

  2000 ∼ 3999 0.656 (0.306, 1.405) - 

  4000 ∼ 5999 0.715 (0.244, 2.101) - 

  ≥ 6000 2.653 (0.634, 11.110) - 

Charlson Comorbidity Index Scorea 0.135 (-0.213, 0.485) -0.008 (-0.172, 0.156) 

MoCA (baseline)a 0.572 (0.216, 0.928) 0.418 (0.252, 0.584) 
aEffect size computed by Cohen’s D method; bEffect size computed by odds ratio.  
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Combining demographic, clinical, and accelerometry predictors of cognitive decline. To 

investigate the importance of the accelerometry activity measures and harmonic features beyond 

that of the demographic and clinical characteristics on cognitive degradation forecasting, we 

trained CDPred on three different sets of measures: (1) the CDPred basic model using demographic 

and clinical characteristics; (2) the CDPred-4 model using demographic and clinical characteristics 

with C4 and V4; (3) the CDPred-4+ model using demographic and clinical characteristics, C4 and 

V4, plus the harmonic features derived from accelerometry. The number of features in each model 

are listed in Table 3.4. To summarize, we compared three models: CDPred, CDPred-4, and 

CDPred-4+. CDPred includes the baseline demographic and clinical features. CDPred-4 model 

uses the baseline demographic and clinical features and two baseline accelerometry metrics (C4 

and V4). CDPred-4+ models use the full gamut of information: the baseline demographic and 

clinical features, the two baseline accelerometry metrics, and all extracted 98 accelerometry 

harmonic features. 

Table 3.4. Number Of Predictors In The 3 Hip And Wrist Accelerometry Models. 

Model Number of predictors 

Hip-worn Wrist-worn 

CDPred 7 6 

CDPred-4 9 8 

CDPred-4+ 105 104 
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Performance of the models. The model performance metrics on the hold-out samples are shown 

in Table 3.4. The CDPred-4+ model including all measures predicted cognitive decline 1 year later 

with an accuracy of over 85% (hip accelerometry cohort) and predicted cognitive decline 5 years 

later with nearly 70% accuracy (wrist accelerometry cohort). The hip-worn accelerometry 

confusion matrix and ROC-AUC for the CDPred-4+ model in the hold-out sample is shown in 

Fig. 3.3. Figure 3.4 shows predictors sorted by relative importance, from the highest to lowest, 

excluding features with zero importance. Similarly, we show the confusion matrix and ROC-AUC 

for the CDPred-4+ model in the wrist-worn accelerometer data in Fig. 3.5, and nonzero predictor 

relative importance sorted in descending order in Fig. 3.6. 

 

 

 

Figure 3.3. The figure shows a. confusion matrix, b. ROC-AUC curve for the held out sample.  
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Figure 3.4. The features are listed in order of decreasing importance, from top to bottom of the 

graph.   
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Figure 3.5. The features are listed in order of decreasing importance, from top to bottom of the 

graph.   
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Figure 3.6. The features are listed in order of decreasing importance, from top to bottom of the 

graph.   
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3.4 Discussion 

Our model significantly expands work previously published in this space. Casanova et al. (2020) 

similarly used a Random Forest Classifier to distinguish cognitive trajectories [52]. Three classes, 

low-, medium-, and high-risk trajectories were created using a combination of baseline and 

repeated cognitive performance scores. This study found that age, gender, education, BMI, stroke, 

diabetes, neighborhood socioeconomic status, and APOE carrier status were among the top 

predictors of cognitive trajectories. They did not include accelerometry assessments. We found 

that the accelerometry pattern features outperformed many demographic and clinical 

characteristics in predicting cognitive decline in a community-dwelling cohort, suggesting the 

potential value of noninvasive and remote accelerometry in augmenting the clinical evaluation. 

Our analyses have shown that, compared to simpler, clinical models predicting cognitive 

decline (e.g., using only demographic and clinical characteristics), our accelerometry-based 

classifier model performs significantly better. This model uniquely identifies preclinical cognitive 

decline among older adults without a diagnosis of dementia over short (1-year) and longer-term 

(5-year) follow-up. The model was robust to varying wear protocols (7 days versus 72 h), device 

location (hip versus wrist), and device manufacturer. In both models, many accelerometry features 

were rated more ‘important’ in distinguishing those who experienced any decline in cognition than 

many demographic and clinical characteristics including age. We are hopeful that the current level 

of model performance may be useful to flag older adults most vulnerable to subsequent cognitive 

decline. We note and emphasize that accelerometry currently has no diagnostic capacity for any 

clinical diseases; its role in the current study is restricted to an assessment of day-to-day movement 

(accelerations and decelerations) which seems to reflect some level of health, here cognitive risk. 
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3.5 Limitations 

This study has several limitations worth mentioning. It is not technically possible to guarantee (or 

test) that there was no overlap between the two cohorts used in this study. The NSHAP dataset did 

collect zip code information on participants, but the FACE Aging dataset did not collect any 

address information. Since the FACE Aging dataset is composed of study participants residing in 

the few neighborhoods surrounding the University of Chicago and NSHAP sampled across the 

nation using a complex sampling design based on census tracts, if overlap occurred, it would have 

been a very small number of participants. 

Another limitation of the current study is, despite the importance of understanding ADRD 

for socio-demographically disadvantaged groups, the datasets for this study were not sufficient in 

size for understanding the relative predictive power of the models for different sociodemographic 

groups. We did include effect size measures for different race/ethnicities in Table 3.3 and the effect 

size of accelerometer features on race/ethnicity in Supplemental Figure 3.1 as the first step in this 

direction. We show ranked effect sizes of top 20 individual features in Supplemental Fig. 3.2. 

Our forecast model was only 70–80% accurate leaving room for improvement. It is likely 

that our forecast model could be enhanced in future work to reach higher and more consistent 

accuracy. This can be achieved by including additional metrics derived from accelerometry data, 

possibly using additional physiologic sensors such as heart rate monitoring to capture richer data, 

and incorporating additional clinical data, such as blood or genetic markers, family history of 

dementia, and current medications. 
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The wrist accelerometry model did not perform as well as the hip accelerometry model. 

The weaker performance of the wrist accelerometry location might be due to the shorter wear 

protocols, increased motion “noise” related to the position, and longer follow-up cognitive 

assessments. Future work comparing more similar wear protocols and devices, even if worn at 

different body locations, would be of value. 

Our experiments show that this predictive model can forecast preclinical cognitive decline 

using data from dissimilar accelerometry device locations, wear protocols, follow-up times, and 

unique cohorts. Hip- and wrist-worn accelerometers are subject to unique patterns of movements 

in space, yet data from both accelerometry devices improved the predictive capacity of the 

respective models. The somewhat inferior performance of the wrist accelerometry, among other 

factors, may be related to the shorter wear protocol (72 h versus 7 days versus “noisy” data at the 

wrist) and longer follow-up (5 years). A major challenge to accelerometry research and clinical 

translation has been the reliance on a particular device location, protocol duration, and/or 

proprietary data processing software for generating accelerometry measures [69, 70]. These 

limitations have stimulated movement toward using open-source programs or approaches for 

generating accelerometry metrics, as we have done in this study, and identifying methodologic 

approaches applicable across multiple devices and varying wear protocols. 
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CHAPTER 4 SURVIVAL ANALYSIS ON OSTEOPOROTIC FRACTURE 

RISK FORECAST WITH ELECTRONIC HEALTH RECORDS  

4.1 Introduction 

Osteoporosis is a systemic skeletal disease characterized by reduced bone strength and pre-

disposition to fracture [80]. Osteoporosis leas to two million fracture per year in the US, resulting 

in pain and disability and 54 million people in the US have low bone density or osteoporosis [81]. 

Despite this morbidity, osteoporosis is usually not diagnosed or treated and, even after a hip 

fracture, only 3.3% of patients received osteoporosis therapy [82]. Many patients never receive 

bone density screening or treatment, despite a high risk of fracture. Fracture risk is multi-facetted 

and includes risk factors including age, gender, prior fracture, co-morbid conditions, medication 

use, etc [83]. There are several fracture risk calculators available such as Fracture Risk Assessment 

Tool (FRAX) and QFracture.  

 Unfortunately, osteoporosis and fracture risk are often not considered in busy primary care 

practices, leading to large numbers of osteoporotic fractures that could have been prevented with 

appropriate diagnosis and treatment [80]. The electronic health records provide a unique 

opportunity to automate the identification of patients who are at risk of fracture within a primary 

care provider’s workflow. However, there is relatively little data about the ability to the electronic 

health records to identify patients at risk of fracture using currently available risk calculations. 

FRAX was derived from prospective, international cohorts using demographics, body mass index 

or bone density, and questionnaire, while QFracture was derived in the UK primary for White 

people [85-87]. Given that FRAX and QFracture were developed and validated predominately 

outside of the US, it is important to examine their performance in a US population where there is 
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greater racial and ethnic diversity. Therefore, it’s important to develop a fracture risk forecast tool 

that target primary on the US population with electronic health records, which include more race 

and ethnic disparity.  

 The use of race and ethnicity in medical calculators has come under scrutiny. Indeed, many 

of the differences seen in medicine that are attributed to race are related to historical and current 

social inequalities and institutional racism. However, osteoporosis and fragility fractures stand out 

from many other areas of medicine. The rate of fracture varies widely throughout the world [88]. 

Moreover, there are very few studies validating fracture calculators in diverse US multi-ethnic 

cohorts and none, to our knowledge, using the electronic health records. Therefore, it’s clear that 

further study of fracture risk is calculators is limited especially in racial and ethnic minorities in 

the US. If fracture calculators could be authorized into US. It would be helpful in both reducing 

the osteoporosis treatment gap overall and reducing racial disparities in osteoporosis screening and 

treatment, which lags behind in Black women [89] using US based electronic health records 

developed tool. Besides, we sought to first validate the ability of electronic health records derived 

survival analysis models to identify patients with high risk of fracture and to determine whether 

the current adjustments for race/ethnicity accurately capture the difference in fracture risk. We 

have sampled the data from primary care population in an urban, tertiary care medical center with 

large portions of Black and Hispanic Patients.  
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4.2 Methods 

4.2.1 Data and other materials 

Population Datasets: The routine clinical data is from the electronic health record (EHR) of 

Temple University Hospital in Philadelphia, PA obtained from encounters between October 1, 

2010 and December 1, 2018. Subjects were required to have at least 2 full years of follow-up. Of 

these two years, the first year was used for baseline data collection for fracture risk factors and 

subsequent time was used for observation of the outcome (i.e., fractures). Furthermore, because 

the target clinician population for risk calculators is the primary care setting, we required common 

health maintenance measures as a proxy for subjects receiving their primary care at the institution. 

This furthermore helped to signify that some of the visits were routine (i.e., not problem visits), 

that health maintenance could be addressed, and subjects were willing participants in routine health 

maintenance.  

For women, our inclusion criteria were at least one measurement of LDL and at least one 

diagnosis code for both mammogram (ICD-10 Z12.31, ICD-9 Z76.12) and vaccination (ICD-9 

V03-V06, ICD-10Z23). For men, our inclusion criteria were at least one measurement of both PSA 

and LDL and at least one diagnosis code for vaccination (ICD-9 V03-V06, ICD-10 Z23). Of note, 

the screening tests could have occurred at any time and the actual screen or test (e.g. mammogram) 

did not have to be complete in order to be included in the study. Subjects with missing demographic 

data (age, race, or gender) or body mass index (BMI) data were excluded, given the use of these 

variables in fracture risk calculators. We also excluded subjects with a prescription for an 

osteoporosis medication at the time of entry into the study. If patient was later put on a medication 

for osteoporosis after entry, they were censored at the time of the prescription, but earlier data was 

used. The study was approved by the Temple University Institutional Review Board (IRB). 
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Determination of Fractures: The presence and characteristics of fractures were determined by the 

presence of physician-billing codes. Major osteoporotic fractures (MOFs, a composite of fractures 

of the wrist, humerus and vertebrae) and hip fractures were analyzed separately. As the 

determination of vertebral fractures were through physician diagnosis codes, only clinical vertebral 

fractures, not morphometric vertebral fractures, were determined. Fractures temporally associated 

within 30 days of trauma codes were excluded, and we continued to follow these subjects to 

observe for non-traumatic fracture. To prevent double counting, subjects with prior fracture at any 

individual site (e.g., wrist or lumbar spine) were not counted as having an incident fracture at the 

same site. A subset of 140 random subjects with fracture codes were examined with 86% accuracy 

(121/140) for identifying MOF based on chart review of imaging studies and physician notes. The 

most common reasons for erroneous codes were incorrect site (e.g., hand fracture, instead of wrist 

fracture) or pain at the site with a normal imaging study. 

4.2.2 Statistical Analyses 

The population detailed information is shown in Table 4.1 which include demographic information 

such as race, age, BMI as well as specific major fracture outcome measurements such as years-of-

follow-up, primary fracture type, etc. Those rich health record enable us to build complementary 

survival analysis for major fracture outcome risk progress in scale of years.  First, we have defined 

some basic concepts to quantify the measurements and desired outcome.  

1. Survival time T is a random non-negative variable, the duration from the start of treatment 

to desired outcome. In our project, T is the discrete time for patients from registered to 

major fracture observation. The density function 𝑓 for discrete survival time distribution 

can be defined as: 

𝑇 ∈ {0,1,2,3, … },   𝑓𝑖 =  𝑃(𝑇 = 𝑖) 
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2. Survival function/curve 𝑆(𝑡) is the survival function defined as the probability that at time 

t, the probability that case outcome (major fracture) would occur after that time point. The 

equation of this concept can be expressed as 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) 

The discrete definition of 𝑃(𝑇 > 𝑡) can be further computed as cumulative percentage of 

cases among all observations, expressed as  

𝑃(𝑇 > 𝑡) =  ∑ 𝑓𝑖
𝑗>𝑖

 

where 𝑁 is the size of sampled population, 𝑐𝑖 is the survival time for each case.  

3. Hazard rate/function ℎ(𝑡) is defined as:  

ℎ(𝑡) =
𝑓𝑡

𝑆(𝑡 − 1)
 

4. Accumulative hazard function 𝐻(𝑡) is defined as  

𝐻(𝑡) =  ∑ ℎ(𝑗)
𝑗≤𝑡

 

In our dataset with denoted major fracture occurrence time as 𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛. However, in some 

cases, censoring can occur due to cases that when the study ends, some individuals have not had 

observed major fracture yet. Therefore, we need to introduce sample’s censoring time as 

𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛 . Then what we can actually observe for each sample are 𝑌𝑖 = min (𝑇𝑖 , 𝐶𝑖) and an 

indicator of whether censoring occurs:  

𝛿𝑖 =  {
0, 𝑖𝑓 𝑇𝑖 ≤ 𝐶𝑖(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑒𝑎𝑡ℎ)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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When each sample also has its covariate, what we observe can be denoted as (𝑌𝑖 , 𝑋𝑖 , 𝛿𝑖) for each 

sample. In this project, we only consider non-informative censoring, which is basically requiring 

that 

𝑇𝑖  ⊥ 𝐶𝑖 | 𝑋𝑖 

Which means that the censoring time is not associated with the survival time, at least conditioning 

on other known covariates 𝑋𝑖.  

For now, we have clarified some important concepts on major fracture survival analysis, 

to estimate the survival function, we have utilized both non-parametric and parametric approaches. 

In both methods we have considered the scenario that there is no observed covariates 𝑋𝑖  and 

survival time 𝑇𝑖 are i.i.d distributed.  

First, we’ve utilized popular Kaplan-Meier estimator to estimate the survival function 𝑆(𝑡), 

also we will explore the conditioned survival function given varies demographic features such as 

gender and race. For our project the discrete survival time 𝑇 for major fracture observations, we 

can discretize the survival time into bins. For each bin 𝑖 or discrete survival time 𝑇𝑖, assume we 

observe 𝑟𝑖 samples that are still free of major fracture at the beginning of this time bin with 𝑑𝑖 

major fracture observations during this time bin and 𝑐𝑖 censored cases at the end of time bins. Now 

we can assume a Bernoulli distribution of major fracture occurrence at this time point as: 

𝑑𝑖~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑟𝑖 , ℎ𝑖) 

The unbiased estimator of ℎ𝑖 is  

ℎ𝑖̂ =
𝑑𝑖

𝑟𝑖
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Which gives us Kaplan-Meier estimator of survival function 𝑆(𝑡) as: 

𝑆̂(𝑡) =  ∏(1 − ℎ𝑖̂) =  ∏
𝑟𝑗 − 𝑑𝑗

𝑟𝑗
𝑗:𝜏𝑗≤𝑖𝑗≤𝑖

 

Where {𝜏1, 𝜏2, 𝜏3, … , 𝜏𝐾} is the set of K distinct uncensored major fracture observed in the sample, 

𝑑𝑗 is the number of major fracture occurrence at 𝜏𝑗 and 𝑟𝑗 is the total number of patients who are 

at risk right before 𝜏𝑗. 

So far we have discussed non-parametric method on estimating major fracture survival 

function, the Kaplan-Meier method is driven by survival time distribution and build best estimator 

with prior assumption of Bernoulli distribution on major fracture outcome. However, this method 

couldn’t take associated covariate into account and is vulnerable when prior distribution 

assumption is not valid. Hence, we will further explore the parametric methods to estimate the 

survival function, after including possible information such as demographics and disease history.  

To include covariates into survival mode, we have utilized proportional hazards linear regression 

model as benchmark model, which was proposed by David Cox. For each sample 𝑠, we have 

observed (𝑦𝑠, 𝑋𝑠, 𝑑𝑠) where 𝑋𝑠  is the covariate introduced to the major fracture datasets. The 

proportional hazards (PH) model assumes that  

ℎ𝑠(𝑡) = 𝑒𝑋𝑠
𝑇𝛽ℎ0(𝑡) 

Here we have no assumption regarding ℎ0(𝑡), so it’s a semi-parametric model and 𝑋𝑠 does not 

include the intercept for identifiability. Next, we can identify proportional hazard as: 

𝑙𝑜𝑔 {
ℎ𝑠(𝑡)

ℎ0(𝑡)
} = 𝑋𝑠𝛽 
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The benefit of building the model on the hazard rate instead of survival function is that the survival 

function need to be less than 1, while the hazard rate does not have that constraint. The benefit of 

having a proportional model is that there is no constraint on the range of 𝛽 to have the hazard rate 

positive.  

Now we have defined the proportional hazard rate and its linear regression model to other 

covariates 𝑋𝑠. Then we can denote the risk set as 𝑅(𝑡) =  {𝑠: 𝑦𝑠 ≥ 𝑡}, which is the set of people 

that is at risk at time 𝑡. For each 𝑦𝑠  with 𝑑𝑠 = 1 where the event is observed, there are 𝑅(𝑡) 

individuals that are at risk, conditional on the fact that there is exactly one person have major 

fracture observation, the likelihood that individual 𝑠 is chosen is then 

𝐿𝑠 =
ℎ𝑠(𝑦𝑠)

∑ ℎ𝑙(𝑦𝑠)𝑙∈𝑅(𝑦𝑠)
=

𝑒𝑋𝑠
𝑇𝛽

∑ 𝑒𝑋𝑙
𝑇𝛽

𝑙∈𝑅(𝑦𝑠)

 

We can further construct the full likelihood equation, for each sample 𝑠, assume we observe 

(𝑦𝑠, 𝛿𝑠). We build a likelihood for each sample conditional on 𝐶𝑠 such that if  

- If 𝛿𝑠 = 0, then we observe 𝑇𝑠 = 𝑦𝑠, the likelihood is 𝐿𝑠 = 𝑓(𝑦𝑠) = 𝑆(𝑦𝑠)ℎ(𝑦𝑠) 

- If 𝛿𝑠 = 1, then we only observe 𝑇𝑠 ≥ 𝑦𝑠, the likelihood is 𝐿𝑠 = 𝑆(𝑦𝑠).  

Thus the full likelihood can be expressed as 

𝐿 =  ∏ 𝐿(𝑠) =  ∏ 𝑆(𝑦𝑠)ℎ(𝑦𝑠)𝛿𝑠

𝑛

𝑠=1𝑆

 

After obtain the full likelihood of survival function, we can estimate and inference with the 

likelihood equation with Maximum-Likelihood-Estimation (MLE) method by taking the log-

likelihood equation as: 
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𝑙 = log (𝐿) =  ∑(1 − 𝛿𝑠) [𝑋𝑠
𝑇𝛽 − 𝑙𝑜𝑔 { ∑ 𝑒𝑋𝑠

𝑇𝛽

𝑡∈𝑅(𝑦𝑠)

}]

𝑛

𝑠=1

 

With coefficient estimator 𝛽̂ can be solved with MLE that 𝑙(̇𝛽) = 0 and it’s been proved that 𝛽 

has asymptotic distribution that 

𝛽̂ ~ 𝑁 ( 𝛽, 𝑙(̈ 𝛽̂)
−1

) 

We can further generalize the learner function 𝑓(𝑥) beyond the constraints of linear regression 

model as 𝑓(𝑥) = 𝑋𝑠
𝑇𝛽 to broader machine learning algorithms to construct base learner functions. 

To expand the spectrum of base learner, we can use alternate method to MLE on coefficients 

estimation, the popular methodology is to use gradient descent method to find minimum point on 

pre-defined loss function. Depending on the loss function to be minimized and base learner used, 

different model arises, we can have selections of tree-structured model such as random forest and 

gradient boosting or more complicated neural networks. Here we can re-write the Cox’s 

proportional hazards log-likelihood as target loss function that to be minimize given base learner 

𝑓(𝑥).  

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝛿𝑠 − 1) [𝑓(𝑥𝑠) − 𝑙𝑜𝑔 { ∑ 𝑒𝑓(𝑥𝑡)

𝑡∈𝑅(𝑦𝑠)

}]

𝑛

𝑠=1

 

In this project, we will train survival analysis models with varies base learners, to compare 

the performances of those base learners, we use the concordance index as the metric. The 

concordance index is defined as the proportion of all comparable pairs in which the predictions 

and outcome are concordant. More specifically, two samples are concordant if the one with higher 

estimated risk score has short survival time or major fracture observed time in our project.  
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4.3 Results 

The cohort characteristics for the group is shown in Table 4.1 as discussed above. As we can 

observe from the characteristics of the study population by race, the white patients were older, had 

a higher proportion of man and had significantly fewer visits overall. In general, the average BMI 

was in the obese range. Years of follow-up varied from 1 to 7 years with average to nearly 4 years. 

Besides, the Charlson comorbidity score was significantly higher in Hispanics and Black subjects 

compared to Whites. Fracture rates, by race and sex are shown in Figure 4.1. As expected, White 

women and mem had the highest fracture rates (7.6 and 4.9 per 1,000 person-years, respectively) 

and Black women and men had the lowest fracture rates (3.9 and 3.2 per 1,000 person-years, 

respectively).  

 

Figure 4.1. Major fracture occurrence rate across different gender and race with the number 

of cases noted.    
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Table 4.1. Osteoporotic Fracture Survival Analysis Cohort Demographics and Follow-Up 

Time 

 White (12,758) Black (7,844) Hispanic (3,587) Other (1748) 

Age 64.5 ± 9.9 61.2 ± 9.3 60.2 ± 8.7 63.3 ± 7.8 

Male  53.1% 35.1% 44.9% 47.7% 

BMI 30.3 ± 6.4  32.3 ± 7.6  30.9 ± 6.4 31.4 ± 6.3 

Average visits per 

year 

4.8 ± 4.1  7.2 ± 6.2  7.0 ± 5.2 7.2 ± 6.7 

Average years of 

follow-up 

3.7 ± 1.8  3.9 ± 1.8 3.7 ± 1.8 3.7 ± 1.8 

Prior fracture 

(any) 

5.0% 4.0% 4.9% 2.4% 

Chronic 

obstructive 

pulmonary 

disease 

9.2% 10.3% 6.3% 4.9% 

Steroids,3 months 

of use 

0.5% 0.9% 0.5% 0.3% 

Rheumatoid 

arthritis  

1.3% 1.6% 1.6% 1.5% 

Secondary 

osteoporosis  

18.6% 22.1% 20.2% 2.4% 

Charlson 

Comorbidity 

Score 

0.6 ± 1.0 1.1 ± 1.6 0.9 ± 1.4 0.6 ± 1.1 

 

Following the introduction of the osteoporotic fracture rate with respect to various 

demographic characteristics of patients and the covariates listed in Table 4.1, we proceeded to 

conduct an analysis on the development of osteoporotic fracture risk using the survival analysis 

method. The distribution of osteoporotic fracture occurrence time (in years) is depicted in Figure 

4.2, encompassing both cases of major osteoporotic fractures (MOF) and hip fractures. Figure 4.2 

illustrates that the occurrence of fractures spans a duration ranging from 1 to 7 years. Although the 
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occurrence rate of hip fractures was considerably lower compared to MOF, in accordance with the 

findings presented in Figure 4.1, both types of fractures exhibited a similar pattern. The majority 

of osteoporotic fractures were observed within the initial year of the study, with a subsequent 

decrease in occurrence rate as the observation time increased. 

 As demonstrated in the preceding section, the survival function 𝑆(𝑡) was introduced to 

quantify the probability of patients experiencing osteoporotic fractures beyond a specified time 

point, denoted as t. To estimate 𝑆(𝑡)  along with a 95% confidence interval, we employed the non-

parametric Kaplan-Meier method, considering a time range spanning from 1 to 7 years. 

Additionally, we conducted an analysis of 𝑆(𝑡)  in relation to various demographic characteristics, 

such as gender and race. The Kaplan-Meier estimates of 𝑆(𝑡)  were separately presented for MOF 

Figure 4.2.  Osteoporotic fracture occurrence time (year) count plot with respect to MOF and 

Hip fracture type.  



 67 

and hip fractures in the subsequent figures. The survival function estimator 𝑆̂𝑀𝑂𝐹(𝑡) and 𝑆̂𝐻𝑖𝑝(𝑡) 

was shown in Figure 4.3. As we can observe that given fixed time 𝑡, 𝑆̂𝐻𝑖𝑝(𝑡) was higher than 

𝑆̂𝑀𝑂𝐹(𝑡) due to less Hip fracture occurrence rate in compared to MOF observation. However, the 

Figure 4.3.  MOF and Hip fracture estimated survival function 𝑆̂(𝑡) estimated from Kaplan-

Meier (KM) model with 95% confidence intervals (dashed line).  
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confidence intervals range for 𝑆̂𝐻𝑖𝑝(𝑡) has higher band width as well since the number of cases for 

Hip fracture was much smaller compared to MOF cases. In the subsequent analysis, we will 

investigate the survival function regarding distinct demographic characteristics, specifically race 

and gender. The estimated 𝑆̂𝑀𝑂𝐹(𝑡)  conditioned on demographic features has been depicted in 

Figure 4.4. Notably, the sub-figure displaying 𝑆̂𝑀𝑂𝐹(𝑡) conditioned on gender reveals that, for a 

given fixed time t, female patients exhibit a lower probability of experiencing MOF beyond time 

𝑡. In other words, female patients demonstrate a higher susceptibility to MOF risk, which escalates 

as the duration increases. Regarding the impact of race on the survival function, as illustrated in 

Figure 4.4, notable observations emerge. Among all racial groups, Caucasians exhibit the highest 

susceptibility to MOF, while Blacks demonstrate the highest resistance. A similar influence of 

demographic factors on the estimated survival function 𝑆̂𝐻𝑖𝑝(𝑡)  for hip fractures can be observed, 

as depicted in Figure 4.5. However, the disparity between males and females is less pronounced 

compared to 𝑆̂𝑀𝑂𝐹(𝑡). In Figure 4.5, the risk of hip fractures appears to converge as the duration 

increases for both males and females. Concerning the impact of race, Caucasians experience the 

highest probability of hip fracture, whereas Blacks exhibit the lowest risk at any given fixed time 

𝑡. It is worth noting that the flat green line observed after the first year is a result of missing tracking 

or a small sample size for cases involving other racial groups.  

The influence of various demographic factors on the estimated survival function 𝑆̂(𝑡) for 

both MOF and hip fractures has been observed significantly, as evident from Figure 4.4 and Figure 

4.5. Consequently, to estimate the survival function 𝑆̂(𝑡) considering these factors, we developed 

parametric models, as outlined in Table 4.1. Firstly, we randomly partitioned the dataset into 

separate 80% of training and 20% testing sets, ensuring no data leakage. The training dataset was 

utilized to construct multiple supervised models, while the testing dataset was employed to 
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evaluate the performance of each model using a pre-defined evaluation metric from the previous 

section, specifically the concordance-index (C-index). The results of this evaluation are presented 

in Table 4.2. 

 

Figure 4.4. MOF estimated survival function 𝑆̂𝑀𝑂𝐹(𝑡)  estimated from Kaplan-Meier (KM) 

model conditioned to gender (upper Figure) and race (lower Figure).  
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Figure 4.5. Hip estimated survival function 𝑆̂𝐻𝑖𝑝(𝑡) estimated from Kaplan-Meier (KM) model 

conditioned to gender (upper Figure) and race (lower Figure).  
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Table 4.2. Models Concordance-Index Score to Test Dataset 

Model Osteoporotic Fracture Type 

MOF Hip 

Cox Proportional Hazard 0.688 0.791 

Random Forest 0.630 0.784 

Gradient Boosting 0.695 0.809 

 

As presented in Table 4.2, three distinct machine learning models were trained, and their 

performance was evaluated on the testing dataset using the concordance-index score. The Cox-

Proportional-Hazard model (CoxPH), a widely employed linear regression structure statistical 

model in survival analysis, was utilized as the benchmark in this study. Random Forest (RF) and 

Gradient Boosting (GB), both tree-based machine learning approaches with Cox's proportional 

hazards log-likelihood serving as the target loss function 𝑓(𝑥) (as explained in the preceding 

section), were also employed. Observing the results, it becomes apparent that GB achieved the 

highest concordance-index score among the three models for both major osteoporotic fractures 

(MOF) and hip fractures. This outcome suggests that the GB model is most effective in assessing 

the risk of an individual being observed with an osteoporotic fracture outcome at a given time. 

Interestingly, it is worth noting that the models performed better in the case of hip fracture datasets 

compared to MOF datasets. This finding contrasts with the observations depicted in Figure 4.4 and 

Figure 4.5, where demographic factors exhibited a more significant influence on MOF exposure 

risk. These results underscore the distinct discriminatory ability of hip fractures based on different 

factors, highlighting their divergence from the patterns observed in the mentioned figures before. 
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 To further study the gradient boosting model predictive performance regarding varies 

demographic features. We stratified the sample population into multiple subgroups according to 

different combination of race and gender and then measured the performance of gradient boosting 

model on each subgroup by their concordance-index score with 95% confidence intervals. The 

model’s predictive performances on MOF were shown in Figure 4.6 and on hip fracture were 

shown in Figure 4.7. As shown in both Figures, we have observed that model delivers better results 

on female group in comparison to male group in both MOF and hip fracture outcome, which is 

consistent with our Kaplan-Meier estimators that female group experience higher risk at compared 

to man at the same time. Besides, different race types also influence the model’s performances 

significantly for both MOF and hip fracture outcome. The model obtains higher score on White 

people, while model suffers worst predictive power on Other races. This result was consistent with 

Kaplan-Meier estimators as well since White people endure the most risk in compared to other 

races at given time, however, the Other race have flat survival function after first few years which 

maybe resulted from censorship. Moreover, the model’s performance on non-Hispanic Black and 

Black people shows different results in MOF and hip fracture outcome, as on MOF outcome model 

gives better results on non-Hispanic Black but vise-versa on hip fracture outcome.  
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Figure 4.6. Gradient Boosting model predictive performance on MOF risk development 

measured by concordance-index with 95% confidence intervals across multiple demographic 

subgroups.   

Figure 4.7. Gradient Boosting model predictive performance on Hip risk development measured 

by concordance-index with 95% confidence intervals across multiple demographic subgroups.   
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4.4 Discussion 

This study demonstrates that training machine learning model derived from the electronic health 

record of a large urban medical center can accurately discriminate between high and low fracture 

risk subjects receiving primary care in the US. Furthermore, we have achieved state-of-art 

concordance-index using gradient boosting model, our study includes Black and Hispanic subjects 

and men which have usually been under-represented in osteoporosis risk investigation. These 

findings support that the use of electronic health record in population management approaches can 

be powerful to facilitate care of patients at high risk of fracture in more generous race group. Even 

for Hip fracture occurrences which is generally a rarer fracture outcome as shown in Figure 4.1 

and Figure 4.2, our models have shown superior predictive power to patients across different races.  

 Our findings show evidence to use patients’ electronic health record as predictors to build 

survival analysis model on future fracture risk forecasting, which enable automated fracture risk 

calculation which could improve osteoporosis screening in several ways. For instance, fracture 

risk calculations could be directly integrated into electronic health record, which allows primary 

care physicians to be alerted at the point of care for patients at high risk of fracture. Since the 

datasets in this study is one of the largest validations in the US minority population, where most 

of existed studies population weighs heavily on Whites, our research addresses the need to evaluate 

the fracture algorithm performance in multiethnic population. As shown in our estimated survival 

function using Kaplan-Meier methods, it indicates the significant difference of fracture risk 

development across different race which is commonly underestimated by research before. Besides, 

our model’s risk analysis performance on stratified population subgroups in different demographic 

conditions supports the arguement that race and gender are critical factors to be included when 
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training a model, otherwise, the biased dataset would result in biased predictive results for minority 

groups.  

 Overall, this study validates the use of electronic health record generated fracture 

predictions in the US for the first time and adds to the evidence for the use of race or ethnicity to 

train survival analysis model with state-of-art concordance-index score. The result supports that 

the electronic health record inputs allow automate fracture risk predictions that provide trustworthy 

discrimination over several years follow-up without patient or provider effort. The trained model 

can perform in clinical population with high rates of comorbid disease and with substantial racial-

ethnic validation in fracture rates. At last, the result of this project demonstrates that the inclusion 

of race improved fracture prediction and could help target those in need of osteoporosis screening 

or treatment.  
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CHAPTER 5 PREDICTING HIP FRACTURE IN PATIENTS WITH 

DIABETES FROM A BROAD RANGE OF PRIOR DIAGNOSIS 

This chapter is adapted from the manuscript draft in preparation for publication “Predicting Hip 

Fracture in Patients with Diabetes from a Broad Range of Prior Diagnosis” authored by 

Chengjian Shi, Atif Khan, Robert L. Grossman, Rajesh Jain and Andrey Rzhetsky.  

5.1 Introduction 

There are 37.3 million people in the United States with type 2 diabetes (T2DM).  In addition to 

well-known complications of diabetes, such as retinopathy or neuropathy, people with T2DM also 

have an increased risk of fragility, or low trauma, fracture.  Studies suggest 25-60% higher risk of 

fragility fracture and 200%-500% higher risk of hip fracture as compared to those without T2DM 

[90-94].  With long-term follow up, approximately 50% of patients with T2DM will experience a 

fracture [95].  Proposed mechanisms for the increased fracture risk includes the higher risk of falls, 

reduced bone turnover, and worse mechanical properties of bone, though some uncertainty remains 

[96-98].    

Fragility fractures are a significant public health problem, occur 9 million times per year 

worldwide [99], lead to significant disability and excessive mortality [99-100], and cost $19 billion 

per year in the United States alone [101].  Indeed, not only do people with T2DM have a higher 

rate of fracture, but they also experience higher morbidity from fractures that do occur, including 

poor wound healing, higher rates of delayed union, and worse recovery of function [102-105].  

However, proper identification of people with T2DM who are at high risk of fracture is a clinical 

challenge.  

Fracture risk is assessed using fracture risk calculators, with the Fracture Risk Assessment 

Tool, or FRAX, being the most widely used. FRAX combines demographics, BMI, and clinical 
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risk factors for fracture to estimate the 10-year risk of fracture, but it does not include diabetes as 

a risk factor. The tool has generally been well-validated; however, in cohorts with T2DM, FRAX 

underestimated fracture risk [90, 92].   

If the traditional tools do not work well in people with T2DM, a specific tool for people 

with T2DM will be needed.  Uncertainty remains about the reasons for increased fracture risk in 

T2DM, and there may be novel, yet-to-be identified risk factors for fracture in people with T2DM.  

The use of a large, national database may be key in studying diabetes-related fracture risk since 

the number of fracture events gives the statistical power to see rare, but important, predictors. 

Furthermore, a machine learning tool created from a large commercial claims database may 

improve upon the accuracy of existing tools.  Machine learning methods are now being utilized in 

medicine with promising results, such as the identification of early sepsis or the automated 

identification of pneumonia on chest X-ray [106-107].  Because these methods make fewer 

assumptions about the relationships between variables, they have often shown superior predictive 

ability than traditional statistical methods.   

Because of the disability related to fractures in those with diabetes and the lack of available 

methods to identify those at risk, our study proposes to identify novel risk factors for fracture in 

people with diabetes and develop a diabetes-specific tool using machine learning. We will do so 

using data from IBM Health MarketScan database, a large U.S. claims database. 

 

  



 78 

5.2 Methods 

5.2.1 Data and other materials 

Population Datasets: The study population is from the electronic health record (EHR) of 

MarketScan dataset. The MarketScan dataset was originally complied by Truven Health from 

records of over a hundred large insurance companies in the US. The data set we intend to use 

contains 5 billion records of diagnosis for over 180 million unique patients in the US. For each 

entry of diagnosis, the database documents the date, age of patient, and a code in International 

Classification of Diseases, 9th or 10th Version’s Clinical Modification (ICD-9-CM or ICD-10-CM). 

MarketScan data allows linking patients into families (through insurance policies), which allows 

us to disentangle genetic and environmental information.  

The screening process to obtain the target patients group was designed to guarantee the 

continuous patients’ enrollment for at least one year from MarketScan dataset, then we set the age 

threshold for at least 20 years before or during the enrollment period. The diabetes diagnosis was 

determined with specific ICD-9/ICD-10 code on at least 2 days of service and the less than 2 years 

apart of clinical visiting. The target diabetes mellitus was limited to type-2 diabetes for chronic 

diseases control, which means we’ve excluded primarily type-1 cases ICD codes when screen the 

MarketScan dataset. Besides, the type-2 patients were further filtered to the group with age 

threshold for at least 20 years. This sampled group with type-2 diabetes with population size over 

10,000,000 cases, we applied the principle to determine the occurrence of hip fractures to further 

divide this sampled group into hip fracture positive outcome patients sub-group with sample size 

of 101,017 and negative outcome patients sub-group with sample size of 10,846,673, which 

indicates less than 1% of patients with type-2 diabetes have presence of hip fracture across the 

entire target population. The data flow for the screening process is presented in Figure 5.1.  
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Determination of Fractures: The hip fracture outcome for this population was determined by ICD-

9/ICD-10 code recorded in MarketScan EHR. The target hip fracture outcome was hand-picked 

by Dr. Rajesh Jain that shows diagnosis codes in the principal position on the inpatient anchor 

hospitalization claim indicates specific hip fracture. The details ICD coding algorithms for fracture 

diagnosis codes and excluding trauma codes were selected based on multiple fracture 

subcategories.  

5.2.2 Statistical Analyses 

In this project we focused on predicting hip fracture outcome for patients conditioned with history 

of diabetes. Besides, instead of using selected features computed by domain expertise like we 

conducted the survival analysis project before, here we took advantage of well-structured diseases 

record as covariates candidates and enormous data size from MarketScan to build powerful 

prediction model. As discussed before, the step-by-step data screening process was displayed in 

next section with annotated population number in each step and detailed demographic information 

for filtered targeted groups was shown in Table 5.1.  

The numerous recorded diseases ICD-9/ICD-10 codes were carefully categorized into 567 

disease bags that represented essential diseases record with common characteristics that could be 

used as candidate predictors to major hip fracture outcome. In addition, we have removed hip 

fracture identity ICD codes related disease bags to avoid data leakage in further model modeling 

section. Similar to the cohort association study we have done in Chapter 2 for acute pancreatitis 

and diabetes mellitus, we studied the association between each disease group and major hip 

fracture outcome regarding diabetes mellitus patients’ population only. Odds ratio (OR) was 

selected as the measurement of association strength since we’ve compared case-control study for 

each disease group and major hip fracture outcome with the same demographic features such as 
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age group and gender, the odds ratio was computed with 95% confidence interval to better illustrate 

the association strength distribution for each disease group to major fracture outcome. To specify 

the computation procedure, we have defined some important variables as:  

1. Disease bag 𝑏𝑖 is a category of ICD-9/ICD-10 codes that share common characteristics 

selected by domain expertise.  

2. Disease group 𝐷𝑖  is a collection of patients with MarketScan record of corresponding 

disease bag 𝑏𝑖. Relatively, 𝐷̅𝑖 is the collection of patients without record of specific disease 

bag ICD-9/ICD-10 codes.  

3. Hip fracture outcome 𝐻 is a collection of patients with specific collection of major hip 

fracture ICD-9/ICD-10 codes that satisfy the determination of fracture criteria. Relatively, 

𝐻 is the collection of patients didn’t satisfy the determination of fracture criteria.  

4. The gender of patients as G   {male, female}. 

5. Patients cluster divided by an age group Z from 20 ~ 60 years old.  

6. Level of two-sided confidence interval 𝛼. In this project we used 𝛼 as 5% to achieve 95% 

confidence intervals.  

7. Odds ratio 𝜃𝑖 for the association strength between each disease group 𝐷𝑖 and major hip 

fracture outcome 𝐻. 

Within the entire MarketScan diabetes mellitus population, we have built contingency table 

represented by Table 5.1 regarding each disease group 𝐷𝑖 and major hip fracture outcome 𝐻 for 

counted patients matched with same gender G and age group Z.  
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Table 5.1. Contingency table for disease group 𝑫𝒊 and hip fracture outcome 𝑯 

 𝑯 𝑯̅ 

𝑫𝒊 𝑛11 𝑛12 

𝑫̅𝒊 𝑛21 𝑛22 

* The counted patients (𝑛𝑖𝑗 , ∀𝑖, 𝑗) in each cell are matched with same gender G and age group Z 

Furthermore, the odds ratio 𝜃𝑖  along with its 95% confidence intervals range were computed 

shown below as:  

𝜃𝑖 =
𝑛11 ∗ 𝑛22

𝑛12 ∗ 𝑛21
 

𝑉𝑎𝑟(log(𝜃𝑖)) = ∑ (𝑛𝑖𝑗)
−1

𝑖,𝑗
 

Then we can construct the approximate standard error and 95% confidence intervals derived for 

the OR as:  

𝑆𝐸(log(𝜃𝑖)) = (∑ (𝑛𝑖𝑗)
−1

𝑖,𝑗
)

1
2

 

𝐶𝐼 = 𝑂𝑅 ± 𝑧
1−

𝛼
2

× 𝑆𝐸(log(𝜃𝑖)) 

The computed odds ratio collections {𝜃𝑖} for the entire disease groups {𝐷𝑖} was further ranked and 

compared by domain expertise to analysis underlying clinical insights.  

Once we acquired the comprehensive association strength for each disease bag and major 

hip fracture outcome, the next step was to construct a predictive model capable of forecasting the 

major hip fracture outcome 𝐻. This model utilized a combination of disease bags {𝑏𝑖} for each 

patient’s MarketScan medical history as predictive features, along with demographic information 
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such as age group {𝑍} and gender {𝐺}. Besides, it’s challenging to build a predictive machine 

learning model due to low occurrence rate of disease bag {𝑏𝑖} in each patients’ health record, 

leading to difficulties in handling high-dimensional sparse features, which indicates that most of 

the features have a value of zero or missing data, resulting in lack of information for training the 

model effectively. Therefore, we have utilized some strategies to control the overfitting problem 

when training the model, such as regularization to control predictive model complexity, varies 

optimization methods to avoid loss function trapped in local minimum and weighted sampling 

methods to penalize false prediction on under-sampled cases.  

The model training started with train/test split on the available dataset into two distinct 

subsets, due to the enormous sample size we have filtered from MarketScan electronic health 

record as discussed above, we split 2/3 of dataset as train dataset which would be used to develop 

the model and 1/3 of dataset as test dataset which be used to validate the model performance given 

unseen dataset. To evaluate the model performance, we chose ROC-AUC (Receiver Operating 

Characteristic – Area Under Curve) score to measure the model classification ability. There were 

some reasons to choose ROC-AUC score that quantify the models’ discrimination ability regarding 

our dataset characteristics. Firstly, the ROC-AUC score is robust to evaluate highly imbalanced 

class distribution for major hip fracture outcome, the positive case percentage is around 0.92% 

among the entire sample population. Secondly, the ROC-AUC score is insensitive to decision 

threshold, which provides an aggregated measure of its overall classification ability. Last, we can 

evaluate the models’ probabilistic predictions rather than binary outcome which allows for 

analyzing the quality of those probability estimators by considering the trade-off between true-

positive-rate and false-positive-rate. Apart from using ROC-AUC score as general metric to 
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evaluate model performance, we have also used true-positive-rate (TPR) to analyze model’s ability 

to correctly identify positive instances to from the total actual positive instances.  

Next, we trained two commonly used classification models for tabular dataset, stochastic 

gradient descent linear (SGD) model and classification-and-regression-tree extreme gradient 

boosting (XGB) model. Both model families have superior characteristics to clinical problem such 

as high interpretability and well-developed communities. For the estimators implements SGD 

learning, two important hyper-parameters were carefully explored to find the best combination to 

fit the dataset: (1) the loss function was arbitrary chosen to utilize varies linear models including 

SVM, perceptron and logistic regressor, (2) the penalized regularizer was added to loss function 

to shrink the model complexity in different style. The XGB estimators were more versatile and 

have high capacity in comparison to SGD estimators, which making them capable to capture 

intricate non-linear relationship and interactions in the data and more expensive to tune the 

complicate hyper-parameters as well. Both models’ hyper-parameters were fine-tuned using 5-fold 

cross-validation to maximize their ROC-AUC score within train dataset.  
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5.3 Results 

The study cohort for this research project specifically focused on individuals with a documented 

history of diabetes. The process of filtering and selecting qualified patients from the MarketScan 

dataset is illustrated in Figure 5.1. The MarketScan dataset encompassed a total population of over 

200 million patients enrolled between 2003 and 2020. To minimize the influence of outliers, we 

initially screened patients with a minimum enrollment duration of one year and an age of 20 years 

or older. This resulted in approximately 111 million potential candidates for further screening. 

Subsequently, we identified patients with a documented medical history of Type-2 diabetes 

mellitus (T2DM) using a set of predefined criteria to ensure accurate diagnosis based on the 

MarketScan electronic medical records. Consequently, we identified approximately 10 million 

eligible patients with T2DM. As the primary objective of this project was to predict the risk of hip 

fractures in patients with a history of T2DM, we utilized the hip fracture International 

Classification of Diseases (ICD) codes provided by Dr. Rajesh Jain to discern patients who were 

likely to develop hip fractures in the future. As illustrated in Figure 5.1, our analysis revealed that 

approximately 101,000 patients with T2DM were projected to develop hip fractures, representing 

less than 1% of the initially screened patients with T2DM. The occurred time of hip fracture after 

observing T2DM was shown in Figure 5.2, as shown that almost 50% of hip fracture could be 

observed within the first 5 years and then the risk dropped significantly to less than 3% year by 

year until maximum range of 17 years.   

The demographic factors we’ve included from MarketScan dataset in this project were 

participants’ age and gender, the detailed demographic information for patients conditioned with 

T2DM were shown in Table 5.1. As we can observe from the demographic statistics that eligible 

patients with T2DM have different distribution of gender and age with respect to whether they 
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would develop hip fracture. The hip fracture group have larger percentage of male cases and higher 

average age value in comparison to group without occurrence of hip fracture.  

Table 5.2. Patients with Type-2 Diabetes Mellitus (T2DM) Cohort Demographics 

 Eligible Patients with T2DM 

Hip Fracture Non-Hip 

Fracture 

Overall 

Male 61.9% 48.1% 48.4% 

Age 63.9 ± 11.9  54.1 ± 13.9 54.3 ± 14.1 

Figure 5.1. Data screen process with criteria to discriminate qualified patients with type-2 

diabetes mellitus that would develop hip fracture in the future.  
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The primary objective of this research project was to utilize the electronic disease records 

of patients with Type-2 diabetes mellitus (T2DM) to predict future hip fracture occurrences. To 

achieve this, we employed a categorization approach wherein thousands of ICD-9/ICD-10 codes 

were grouped into 566 distinct disease bags, as defined in the previous section as {𝑏𝑗} . 

Subsequently, we binary encoded the presence or absence of disease bags within each patient's 

electronic disease record as predictors for forecasting hip fracture outcomes, alongside gender and 

age information. To begin, we conducted a cohort association study to examine the relationship 

between each disease bag 𝑏𝑗 and the occurrence of hip fractures. We measured the association 

using odds ratios, accompanied by 95% confidence intervals, computed through case-control 

Figure 5.2. Density of sample size observe Hip fracture after diagnosed with type-2 diabetes.  
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cohorts with matched age groups and genders. Figure 5.3 displays the top 50 ranked odds ratios 

for each disease bag. 

Figure 5.3. The top 50 ranked odds ratio value for each disease bag to Hip fracture with 95% 

confidence intervals.  
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Figure 5.5. Confusion matrix and ROC-AUC curve for XGB predictive performance on 

training dataset.  

Figure 5.4. Confusion matrix and ROC-AUC curve for XGB predictive performance on 

testing dataset.  



 89 

Notably, nearly all disease bags {𝑏𝑗} demonstrated a positive correlation with hip fractures. 

The ranked disease bags tended to converge towards the dashed line (odds ratio equal to 1), 

indicating no association as the ranking decreased. Among the top 50 ranked disease bags, we 

observed a diverse range of diseases, encompassing physical conditions like bone cancer and 

osteogenesis imperfecta, as well as mental illnesses such as general dementia and Alzheimer's 

disease. While domain experts could intuitively explain the positive effects of certain disease bags 

on hip fracture development based on empirical observations, there were other confounding 

disease bags that could potentially contribute to hip fracture occurrence but have not been studied 

yet. This study provided valuable insights into the confounding associations between each disease 

bag and hip fracture outcomes. Significant positive associations were observed through the case 

control method. As a result, we will proceed to apply machine learning tools to leverage the entire 

collection of disease bags {𝑏𝑗} to predict hip fracture outcomes. 

Table 5.3. ROC-AUC Score for SGD and XGB Predictions on Eligible Patients with T2DM 

 ROC-AUC Score 

Train Test 

SGD 0.843 0.834 

XGB 0.939 0.924 

  

In accordance with the methods described in the previous section, we trained two primary 

models: the stochastic gradient descent linear model (SGD) and the extreme gradient boosting 

model (XGB). The predictors employed in these models encompassed the binary encoded 

collection of disease bags, as well as demographic factors like gender and age. Additionally, we  
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Figure 5.6. Top 30 relative importance of predictive features in XGB experiments.  
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stratified patients' age into four groups, with a 20-year gap between each group. Table 5.3 presents 

the optimized performance results of both models on the training and testing datasets, measured in 

terms of the ROC-AUC score. It is evident that the XGB model outperformed the SGD model in 

patients with Type-2 diabetes mellitus (T2DM). To gain further insight into the performance of 

the XGB model on both datasets, we depicted the confusion matrix and ROC-AUC curve in Figure 

5.4 and Figure 5.5, respectively. The XGB model demonstrated a prediction accuracy of 0.872 for 

the training dataset and 0.853 for the testing dataset. Figure 5.6 displays the top 30 predictors 

sorted by their relative importance, from highest to lowest, as determined by the XGB model. It is 

noteworthy that many of the highly important predictors derived from the XGB model's encoded 

disease bags also appeared among the disease bags that exhibited significant associations with hip 

fractures, such as degenerative dementia, Parkinson's disease, and obesity, among others. A 

comprehensive list of disease bags that appeared in the top ranks of both the cohort association 

study and the XGB model's feature relative importance is presented in Table 5.4.  
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Table 5.4. Top Ranked Diseases Bags with Specific Ranking Number in Both XGB Relative 

Feature Importance and Cohort Association Odds Ratio Rank 

 

 Thus far, we have achieved a state-of-the-art ROC-AUC score using the complete 

collection of disease bags as predictors to forecast patients' future hip fracture outcome. Moreover, 

the optimized extreme gradient boosting (XGB) model has identified important features that align 

with our cohort association study. In addition, we sought to analyze the XGB model's predictive 

performance across various subgroups within the sample population. To accomplish this, we 

stratified the population based on different conditions, including gender, age group, and the 

presence of specific disease bags. To evaluate the model's performance in these subgroups, we 

employed the true positive rate (TPR), also known as sensitivity, which is a critical measure in 

clinical screening. TPR was chosen as the measurement in this study for several reasons: (1) it 

enables early detection of diseases by effectively identifying individuals with the condition or 

disease; (2) it helps reduce false negatives, which can lead to missed diagnoses and delayed 

treatment; and (3) it optimizes resource allocation by efficiently allocating healthcare resources.  

Disease Bag XGB Relative Feature 

Importance Rank 

Cohort Association Odds 

Ratio Rank  

Alzheimer’s Disease 6 5 

Behcets Syndrome  19 33 

Bone Cancer 24 9 

Degenerative Dementia 4 2 

General Paralysis 38 16 

Hypotension 14 22 

Osteoporosis 5 41 

Parkinson’s Disease 7 3 

Schwartz-Jampel Syndrome 15 1 

Septicemia 36 36 

Staphylococcus Aureus 

Infection 

48 30 

Unspecified Encephalopathy 20 40 

Unspecified Plasma Protein 

Metabolism Disorder 

47 39 
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The XGB model's predictive performance, measured by TPR with 95% confidence 

intervals, was assessed within stratified demographic subgroups and subgroups based on the top-

ranked disease bag features. The results are presented in Figure 5.7 and Figure 5.8, respectively. 

In Figure 5.7, it is evident that the model's predictive power increases as the age group progresses 

from 20-39 to >=80, with the 60-79 and >=80 age groups performing above average (indicated by 

the dashed line), while the 20-39 to 40-59 age groups perform worse than average. Additionally, 

the model exhibits better performance in the male subgroup compared to the female subgroup. 

When considering the XGB performance among disease bag subgroups, we observe that the model 

demonstrates superior TPR performance in subgroups where positive cases were identified for 

each specific disease bag, except for obesity. Significant heterogeneity exists among all subgroups, 

with lower TPR observed among patients without the majority of the top-ranked disease bags and 

among younger female age groups. Detailed information, including the number of patients labeled 

as true positive and false positive cases by the XGB model, is provided in Table 5.5. 

Figure 5.7. True Positive Rate (TPR) predictive value with 95% confidence intervals of the 

demographic factors specific results across patients’ subgroups.  
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Figure 5.7. True Positive Rate (TPR) predictive value with 95% confidence intervals of the top 

30 ranked XGB relative important disease bag specific results across patients’ subgroups.  
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Table 5.5. XGB Model True Positive Rate (TPR) Predictive value with 95% Confidence 

Intervals with Detailed True Positive and False Positive Cases for Demographic and Top 30 

Relative Important Features 

 

 

  

Subgroups Case 
True  

Positive 

False  

Positive 

True Positive Rate 

(95% CI) 

Sex Male 66,757 741,841 88.8 (88.6-89.1) 

Female 37,287 562,193 82.2 (81.9-82.6) 

Age >=65 2,906 48,999 37.4 (36.4-38.5) 

<65 101,138 1,255,035 89.7 (89.5-89.9) 

Non-Specific Joint Disorder Yes 97,178 1,137,166 90.6 (90.4-90.7) 

No 6,866 166,868 52.1 (51.3-53.0) 

Degenerative Dementia Yes 79,810 882,731 93.0 (92.8-93.2) 

No 24,234 421,303 69.9 (69.4-70.4) 

Non-Specific Cardiovascular Disease Yes 82,070 912,013 93.5 (93.4-93.7) 

No 21,974 392,021 67.1 (66.6-67.7) 

General Dementia Yes 31,352 202,312 99.3 (99.2-99.4) 

No 72,692 1,101,722 81.8 (81.5-82.0) 

Osteoporosis Yes 38,698 324,206 96.6 (96.5-96.8) 

No 65,346 979,828 81.2 (81.0-81.5) 

Alzheimers Disease Yes 68,765 762,223 92.4 (92.2-92.6) 

No 35,279 541,811 76.6 (76.2-77.0) 

Parkinsons Disease Yes 59,860 644,292 93.9 (93.8-94.1) 

No 44,184 659,742 77.8 (77.5-78.2) 

Non-Specific Pulmonary Disorder Yes 65,729 702,547 95.0 (94.8-95.1) 

No 38,315 601,487 74.7 (74.4-75.1) 

Cerebrovascular Disease Yes 61,052 629,684 95.5 (95.3-95.6) 

No 42,992 674,350 76.0 (75.7-76.4) 

Osteoarthritis Yes 72,583 845,377 91.5 (91.3-91.6) 

No 31,461 458,657 76.5 (76.1-76.9) 

Overall N/A 104,044 1,304,034 86.4 (86.2-86.5) 
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5.4 Discussion 

In patients presenting with diabetes, we developed and validated machine learning tools with broad 

prior electronic disease history to inform the probability of hip fracture development in the future. 

This is the first study that utilize the advantages of enormous electronic health records from 

MarketScan datasets which contains more than 200 million records across the US, which is so far 

the largest training and validating dataset that explore the cohort association between broad prior 

diseases and fracture outcome. Furthermore, this is the first study to demonstrate the potential of 

using prior disease history as significant factors to forecast future hip fracture outcome with the 

best ROC-AUC score achieved for eligible patients diagnosed with diabetes.  

 Our thorough studies on broad diseases association with fracture outcome via case-control 

method has proved consistent findings by comparing with their relative importance weight 

contributing to develop machine learning tool on future fracture detection. The critical predictors 

involved in the model development are diagnosis of cognitive diseases and physical dysfunction, 

majority of those diseases also have odds ratio greater than 5 which indicates eligible patients who 

have observed with cognitive disease and physical dysfunction have over 5 times risk to develop 

hip fracture outcome in the near future in comparison to others without them. Our researches on 

exploring confounding association between prior disease and fracture have directly benefited from 

data mining the rich electronic disease history records from MarketScan. Moreover, with access 

to patients’ demographic factors and broad prior disease, we are capable to identify the significant 

heterogeneity in all subgroups categorized based on their age group, sex or occurrence of specific 

disease. Our studies emphasis model’s heterogeneity predictive performance measured by true-

positive-rate across these subgroups, which is the first study that incorporate such broad disease 
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predictors and it’s critical to improve hip fracture screening process for primary care physicians to 

be alerted on patients that model has best true-positive-rate predictive performance. 

 In conclusion, we have constructed and validated a powerful fracture detection tool for 

eligible patients with diabetes to develop fracture in near future, by using the electronic health 

records from MarketScan across the US. This model achieved superior fracture detection 

performance measured by ROC-AUC score especially for patients conditioned with cognitive 

disease and physical dysfunction, we hope can be adopted in the practice for primary care 

physician to screen eligible patients on fracture detection and improve early treatment, with benefit 

for both patients and health care providers.  
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CHAPTER 6 CONCLUSION 

We have covered multiple topics on continuous temporal signals and electronic health records for 

broad health state forecasting, given dataset modalities and desired task purpose we have utilized 

varies statistical analysis methods and machine learning tools accordingly. Studies of cohort 

association uncover the confounding relationships between diseases that patients’ prior disease 

history lead to potential causality to the production of another severe disease in the future. 

Understanding cohort association between diseases has, therefore, paramount importance for 

preventive medical care. It’s undoubtedly that development of statistical analysis and machine 

learning technologies have improve researchers’ capability to utilize varies health data modalities 

information on a broader range of disease forecasting. Due to the availability of modern 

computational tools and extensive observational data collected from more complicated and precise 

body signal collect equipment, we are able to combine the electronic health data with temporal 

continuous signals to predict elderly cognitive decline. Moreover, the classical statistical fields 

benefited from the “Big Data Era” and improvement computation power, osteoporosis is a 

complex disease that previous osteoporosis risk calculation tools are limited with race/ethnic 

diversity and constraint access to electronic health record. Our studies explored the model 

improvement on fracture detection and risk calculation that could help target those in need of 

osteoporosis screening or treatment.  

  We started our analysis on cohort association study in MarketScan dataset in Chapter 2 

that investigated the spatial and temporal distribution of patients diagnosed with acute pancreatitis 

(AP) and their subsequent development of varies diabetes mellitus (DM). The spatial analysis 

uncovered that a high concentration of AP and DM in Chicagoland underserved communities, 

particularly in South and West side of Chicago area predominately occupied by African American. 
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In the temporal analysis, the national wide electronic health record was used to confirm that ~20% 

of patients diagnosed with AP would develop DM in the next 5 years. This finding was further 

validated with measurement of multiple association signals such as odds ratio and relative risk 

using case-control method, which shows that patients with AP were significantly more likely to 

develop DM. To exclude other potential confounding factors such as gender and age, logistic 

regression model was applied to confirm the significant impact of AP on DM development 

independent of other factors.  

 In Chapter 3, we explored the accelerometry temporal signal effects on the cognitive 

decline prediction with electronic health records, we expanded our model features and studied the 

harmonic features contribution. We built an extreme-gradient-boosting (XGB) models that achieve 

state-of-art ROC-AUC score on patients’ cognitive decline in the near future. This is the first study 

demonstrates that the overall collection of harmonic and statistical features derived from 

accelerometry temporal signals collected from hip and wrist sensors that delivered superior 

predictive power on elderly’s cognitive deterioration status. In addition, our study shows that 

combination of electronic health record and accelerometry features would allow automated 

cognitive decline forecast that provides good discrimination among elderly population.  

 Chapter 4 and Chapter 5 focused on critical osteoporosis tasks, we utilized state-of-art 

machine learning techniques and comprehensive health data to investigate novel application in 

osteoporosis risk calculations and fracture detection. In Chapter 4, we built the gradient-boosting 

survival model from electronic health records collected from race/ethnicity diversified US based 

population, which was superior in comparison to traditional osteoporosis risk calculations tools 

such as FRAX and QFracture that lacks consideration to race/ethnicity contributions. We have 

thoroughly investigated the heterogeneity on varies race subgroups, and our study demonstrates 
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that the inclusion of race improved fracture prediction. In Chapter 5, we explored the broad range 

of prior disease from electronic health records to hip fracture outcome on eligible patients who 

diagnosed with diabetes. We have investigated the top associated diseases through case-control 

study and relative important features in gradient-boosting model which shows the significant 

contribution of both cognitive disease and physical dysfunction to fracture outcome. This study 

uncovered for the first time that use thorough prior diseases history to future fracture detection and 

achieved superior ROC-AUC score.  

 As the central topic of this dissertation, we have explored the power of advanced statistical 

tools on varies health data modalities to solve different tasks. The projects investigated from this 

dissertation were proposed by domain expertise from their empirical experiences, then we have 

cooperated closely to utilize available datasets to validate their hypothesis and construct predictive 

tools on diseases screening. As impactful factors, electronic health records are essential tools to 

not only discover confounding association between diseases, but also significant contribution to 

develop disease forecasting AI/machine learning models in the fields of disease detection, risk 

calculation and diseases association study.  Besides, we have also innovated methodology on 

extracting harmonic features from temporal signals that empower the tabular electronic health 

records on building state-of-art models. In the meantime, there are still lots of challenges and 

opportunities to push the limit of AI/machine learning tools and data mining techniques to varies 

health problem as the exponentially growing volume and novel modalities of stored health datasets 

worldwide.  
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SUPPLEMENTAL MATERIALS  

Supplemental Table 3.1. Full Features Acronym For Accelerometry Cohorts Prediction 

gender age, ethgrp, baseline, charlson_score, CPM_mu, VMC_mu, CPM_std, VMC_std, 

CPM_0, VMC_0, CPM_25, VMC_25, CPM_50, VMC_50, CPM_75, VMC_75, CPM_range, 

VMC_range, CPM_skew, VMC_skew, CPM_kurt, VMC_kurt, CPM_beta(a), VMC_beta(a), 

CPM_beta(b), VMC_beta(b), CPM_entropy, VMC_entropy, CPM_PAEE, VMC_PAEE, 

CPM_top15fft0, VMC_top15fft0CPM_top15fft1, VMC_top15fft1, CPM_top15fft2, 

VMC_top15fft2, CPM_top15fft3, VMC_top15fft3, CPM_top15fft4, VMC_top15fft4, 

CPM_top15fft5, VMC_top15fft5, CPM_top15fft6, VMC_top15fft6, CPM_top15fft7, 

VMC_top15fft7, CPM_top15fft8, VMC_top15fft8, CPM_top15fft9, VMC_top15fft9, 

CPM_top15fft10, VMC_top15fft10, CPM_top15fft11, VMC_top15fft11, CPM_top15fft12, 
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VMC_top15freq7, CPM_top15freq8, VMC_top15freq8, CPM_top15freq9, VMC_top15freq9, 

CPM_top15freq10, VMC_top15freq10, CPM_top15freq11, VMC_top15freq11, 

CPM_top15freq12, VMC_top15freq12, CPM_top15freq13, VMC_top15freq13, 

CPM_top15freq14, VMC_top15freq14, CPM_fentropy, VMC_fentropy, CPM_psd_mu, 
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income_<=$2000/month, income_$2000-3999/month, income_$4000-5999/month, 
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Supplemental Figure 3.1. The effect size of demographic features on accelerometry cohorts 

with cognitive decline and without cognitive decline.    
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