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ABSTRACT

This thesis consists of three papers in the field of learning, in operational settings. In

broad terms, the first paper explores how to learn the underlying parameters by Thompson

sampling, i.e., by sampling and updating the belief on the unknown parameter. Our results

apply to broad settings, including the settings of the latter papers. Through an empirical

study, the second paper studies how to estimate the mean and standard deviation of tasks

when they consist of multiple subtasks, which corresponds to learning from data. Finally,

the third paper sets up a learning-from-past-experience framework and investigates the long-

run ramifications of making worker-task assignments free of workers’ innate performance

information.

The first paper (Chapter 2) is titled “Thompson Sampling for Infinite-Horizon Discounted

Decision Processes”.1 We model a Markov decision process, parametrized by an unknown

parameter, and study the asymptotic behavior of a sampling-based algorithm; Thompson

sampling (TS). Showing that the standard notion of regret can grow (super-)linearly and it

cannot capture the notion of learning in realistic settings with non-trivial state evolution, we

decompose the traditional expected regret into three meaningful components. We argue that

only one of the components is a fair metric to evaluate a policy, which we call the expected

residual regret. It forgets the immutable consequences of past actions; instead, it allows the

system to run during a learning period of n stages and starts tallying regret against the

optimal policy from period n onwards. We study the performance guarantees of this new

notion, in the context of implementing Thompson sampling. In particular, we show that

this metric is upper bounded by a term that decays exponentially to 0, almost surely. We

present conditions under which the posterior sampling error of Thompson sampling converges

to 0 almost surely, i.e., complete learning. We characterize the probabilistic version of the

expected residual regret and present conditions under which it converges to 0 almost surely.

1. I would like to thank Daniel Adelman and Alba V. Olivares Nadal for their constructive advice.
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The second paper (Chapter 3) is titled “Estimating the Mean and Variance of Hetero-

geneous Tasks”. The third paper (Chapter 4) is titled “Equitable Data-Driven Assignments

of Workers to Tasks”.2 These two chapters are tightly related to each other. In Chapter

4, we put forward a simple yet effective method of predicting completion times of tasks,

assuming that the completion time is a function of worker-task familiarity. Our prediction

algorithm requires standardizing task times and familiarities, i.e., requires estimating the

mean and standard deviation of time and familiarity across tasks. Yet, in many settings

it is not straightforward to estimate the mean and variance of a task that does not appear

frequently. This constitutes the motivation for Chapter 3, which is an empirical study that

views surgical encounters as “tasks” and the procedures within surgical encounters as “sub-

tasks”. We estimate the mean and variance of surgical encounters by utilizing the procedure

codes that uniquely correspond to each procedure within an encounter. To estimate the

mean and variance of surgical encounters, we adapt two statistical methods into this novel

setting. In the first approach, we adapt the random coefficients model. In the second ap-

proach, we adapt hierarchical clustering, thereby bundling surgeries of similar compositions

into the same group. We compare both methods under three independent procedure coding

schemes. We derive a novel goodness-of-fit measure to evaluate the quality of the variance

estimation. Our results show that neither method nor coding scheme is universally superior

across all service lines.

In Chapter 4, we develop a practical, equitable algorithm to predict task completion

times, which obscures workers’ performance information, to account for realistic consider-

ations. We compare the equitable (i.e., performance-blind) algorithm’s steady-state pre-

dictions, when used in a sequential assignment framework, against the policy that doesn’t

obscure worker-specific performance, i.e., the performance-aware policy. In our setting, an

equitable assignment is defined to treat any two individuals, who have the same familiarity

2. The motivating ideas of both of these papers have originated from thought-provoking discussions with
Kiran Turaga, Hunter DD Witmer, and Daniel Adelman.

x



with a particular task, as interchangeable without loss of optimality, regardless of their innate

characteristics. In order to bound the performance discrepancy between the equitable pol-

icy and the performance-aware policy in steady-state, we characterize an alternative policy,

called the egalitarian policy. This policy imposes that (i) No worker has a greater propensity

to execute a task than any other worker, and (ii) No task has a greater propensity to be

performed by a worker than any other task. We show that the egalitarian policy yields the

worst-case solution under certain assumptions on the primitives, and under weaker assump-

tions, it serves as a reasonable benchmark on the penalty of adopting the equitable policy.

We uncover that the steady-state, performance-aware policy is optimized by 1-1 matching.

xi



CHAPTER 1

INTRODUCTION

The matching algorithms that researchers produce often assume that one can freely estimate

or explore the cost that depends on the worker-task pair, which entails workers’ innate in-

formation. Yet, in certain realistic settings, it is desired to keep innate information hidden,

such as performance data. For example, one can think of unionized settings, where a study

that estimates staff members’ idiosyncrasies would be unwanted as it can cause favoritism,

or even discrimination. We broadly classify worker-related information into two types: per-

formance information and task familiarity information. In our context, familiarity, i.e., task

familiarity, pertains to how often a worker has performed a task in the past.

We build an equitable framework of assigning workers to tasks such that individuals, i.e.,

workers, who have the same familiarity with a task are treated as interchangeable, regardless

of their innate performance information. Thus, respecting workers’ (innate) performance-

privacy is one of the main factors in designing the prediction algorithm for making assign-

ments. The other considerations are dealing with small sample sizes and capturing the

universal effect of worker-task familiarity on completion times. This is not to say that the

resulting assignments omit the performance-information of workers; the performance-related

parameters still determine task completion times. Thus, the assignments are indirectly re-

lated to workers’ innate performances through the realizations of the previous assignments,

and the performance information is only obscured at the stage of the assignments decisions.

We model the impact of workers’ task familiarity on the task duration, where task com-

pletion time depends on pair-level unknown base-level performance and unknown familiarity

effect. In particular, Chapter 2 investigates how to learn the underlying parameters by

Thompson sampling, i.e., by updating the belief on an unknown parameter. Our results ap-

ply to broad settings, including the worker-task assignment problem, i.e., where the system

is driven by the base performance and familiarity effect of worker-task pairs. The prediction

1



algorithm necessitates standardizing the familiarity and time variables; however, the estima-

tion of mean and familiarity is not straightforward when tasks are multi-step objects with

ample heterogeneity. Chapter 3 explores how to learn the mean and standard deviation of

multi-step tasks empirically from data. Finally, Chapter 4 sets up a learning-by-doing frame-

work (“gaining familiarity by doing”) and investigates the long-run consequences of making

worker-task assignments in a way that is free of workers’ innate performance information.

Chapter 2. We model a discrete-time Markov decision process (MDP), parametrized by an

unknown parameter θ (a single point in the finite parameter space), and study the asymptotic

behavior of Thompson sampling. We illustrate that the standard notion of regret can grow

(super-)linearly and fails to capture the notion of learning in realistic settings with non-

trivial state evolution. We assume Borel state-control spaces, allowing the spaces to be

infinite, while using the discounted-reward criterion. Thus, our work allows questions of

regret and sampling algorithms to be addressed in broader settings than before.

We offer a novel decomposition of the standard notion of expected regret into three

components, only one of which is suitable for all learning problems. The first component is

the expected regret of the past, i.e., from period 0 up to period n − 1 (finite-time regret).

The second component is the expected regret that captures the infinite-horizon (future)

consequences of being in a suboptimal state in period n. The third and final component

is associated with the DM’s ability to implement what is optimal moving forward. This

notion is the only component that is “controllable” by the DM, once they have arrived at

the period-n state. We propose the last component as a sensible notion of regret, which we

call the expected residual regret. The expected residual regret forgets both the past and the

future “sunk” portions of the standard notion of regret.

To the best of our knowledge, our work is the first to decompose the traditional notion of

the infinite-horizon regret into interpretable components. We establish the relation between

the expected residual regret and the notion of asymptotic discount optimality (ADO) from

2



the adaptive learning literature. To our knowledge, the concept of ADO has not been linked

to the regret literature before. We derive novel results on the performance guarantees of the

expected residual regret. We show that it is upper bounded by an exponentially decaying

term and that it exhibits complete learning under Thompson sampling. To our knowledge,

complete learning has not been studied in Borel state-control spaces and under the discounted

reward criterion.

Finally, we characterize a sample-path version of the expected residual regret, i.e., the

(probabilistic) residual regret, which is a stronger notion as it pertains to individual sample

paths. We show that this metric also converges to 0 under certain mild assumptions.

Chapter 3. The aforementioned prediction algorithm necessitates standardizing the fa-

miliarity and time variables; however, the estimation of mean and standard deviation is not

straightforward when tasks are multi-step objects with ample heterogeneity. Estimating the

variance of multi-step tasks is not only useful for our prediction algorithm, it is a valuable

question in itself. For example, a task with high variance may signal a need for intervention,

while the converse may indicate an opportunity to disseminate best practices. Our applica-

tion setting is the healthcare industry. In particular, we estimate the mean and variance of

surgical cases, which are performed in the operating room (OR). The potential benefits of

identifying variance include better utilization of the OR’s and the improvement of metrics

such as overtime and patient satisfaction.

Our study utilizes data of surgical encounters performed at the University of Chicago

Medical Center, Surgery Department. To observe how surgical cases are composed of codes

and their heterogeneity, consider the following example. “Debridement Leg Plastic” is a

relatively common procedure code and appears as the single procedure of a surgical case

in 336 out of the full sample of 70K cases. Yet, often times, surgical cases comprise of

multiple codes. The number of surgical cases in which both “Debridement Leg Plastic”

and “Debridement Foot Plastic” have been performed is merely 5 out of the full sample.

3



Given the sheer amount of different types of procedures, a non-negligible portion of surgical

encounters appear rarely. For example, 35% of all surgical cases, when encoded using the

CPT terminology, appear only once in the data. To our knowledge, our work is the first to

estimate the variance of surgical cases. We adapt two different statistical models into this

novel setting and compare their performance, i.e., compare how well they estimate mean

and variance. The methods we adapt are the random coefficients model and the hierarchical

clustering model.

Chapter 4. In light of the considerations for developing the prediction algorithm, we pose

the question: How to assign workers to tasks while preserving performance-privacy, dealing

with small samples, and capturing the universal effect task familiarity on task time? To

satisfy the considerations, we develop a practical prediction algorithm called the 5-Step al-

gorithm or [ASAPI], which stands for Aggregate-Standardize-Aggregate-Predict-Invert. The

5-step algorithm predicts task completion times of workers. We use standardized variables

to ensure that task familiarities and completion times are commensurate across heteroge-

neous tasks. Historical data is standardized at the task-level; this circumvents revealing

worker-specific statistics, while ameliorating sample size issues. Its key step is to fit a single

regression model to the standardized data, pooled across all tasks and workers, to estimate

the organization-wide effect of familiarity on completion time. Through this estimate, the

algorithm predicts the completion times of new data points, i.e., it predicts the completion

time of each newly-arriving task by each available worker, by only using the familiarity

information.

The prediction from the 5-step algorithm is then fed into an optimization model that as-

signs workers to tasks in each period. Implementing the period’s assignments generates new

data, which is then used to refine the organization-wide effect of familiarity on time. Itera-

tively running the prediction and optimization steps constitutes the Predict-Then Optimize

(PTO) loop.

4



We formulate the steady-state version of the daily assignment problem that optimally

allocates workers to tasks. The upper bound on the penalty of using the PTO loop (with

the prediction coming from the equitable 5-step algorithm) is explored by characterizing the

worst-case policy: the “egalitarian policy”. The egalitarian policy is a policy that ensures

(i) No worker has a greater propensity to execute a task, and (ii) No task has a greater

propensity to be performed by a worker. Under a simple assumption, we show that the

egalitarian policy is the worst policy in steady-state, and find the steady-state discrepancy

between the optimal (true) policy and the egalitarian policy.

5



CHAPTER 2

THOMPSON SAMPLING FOR INFINITE-HORIZON

DISCOUNTED DECISION PROCESSES

2.1 Introduction

We consider a control problem in which a decision-maker (DM) interacts with an environment

without knowing the value of a parameter encoded into this environment. This environment

is modeled by a discrete-time Markov decision process (MDP). The DM applies a control

and, in return, the system moves to the next state and generates a reward. Neither of the

outputs are deterministic; they are contingent on the current state, control and value of the

unknown parameter. Using the state transition and reward information, the DM picks a

control which yields the subsequent transition and reward.

Our model is mainly shaped by the stochastic adaptive control literature and, in par-

ticular, complements Kim [2017]. Numerous prominent papers parametrize MDP’s by an

unknown parameter and estimate this parameter using different methods. We investigate the

asymptotic performance of a popular parameter estimation algorithm, Thompson sampling

(TS), first described by Thompson [1933]. Aiming to maximize the total reward, yet not

knowing the underlying parameter that determines the rewards and state transitions, the

DM faces a trade-off between choosing controls tied to unexplored parameter candidates and

choosing controls which are likely to yield high rewards. This exploration vs. exploitation

trade-off is often addressed in online decision-making problems by TS. After estimating the

unknown parameter by TS, the DM selects a control while assuming the estimate is the true

parameter.

Despite the logarithmic expected regret guarantees in bandit settings [Agrawal and Goyal,

2012], we document through examples that the expected regret no longer has logarithmic

guarantees when the chain structure underneath the MDP is generic. In particular, we
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document how the expected regret can grow (super-)linearly. This means that the standard

notion of expected regret used in the literature, i.e., the gap between the cumulative reward of

the DM and the cumulative reward of an omniscient agent, is not fully informative when the

underlying chain is general. The expected regret is unable to discern that learning is taking

place, even though it is. These kinds of examples may be implicitly known to researchers

who work in this area, yet they have not been documented in the literature to the best of

our knowledge.

We provide the first theoretical results that capture a different notion of (expected) regret

of the TS algorithm. In particular, we extend a result of Kim [2017] (on the convergence of

the expected posterior error) to discounted-reward MDP’s and to general state and control

spaces. We assume Borel state-control spaces, allowing the spaces to be infinite. Thus, our

work allows questions of regret and sampling algorithms to be addressed in broader settings

in which they have not been addressed before. Extending the performance guarantees of

the new notion of regret to MDP’s with a general chain structure is an important potential

avenue of study.

The literature on parametrized MDP’s almost always considers the long-run average

regret per period. In contrast, we study guarantees when the performance criterion is the

expected infinite-horizon discounted reward. Since problems of economic significance are

often most properly formulated with discounting, having the objective function formulated

as an infinite-horizon discounted reward problem would allow the ideas of learning through

sampling to be applied in these settings.

We develop a general canonical probability space for adaptive learning algorithms based

on sampling, of which TS is a special case. Kim [2017] and Banjević and Kim [2019] construct

a similar probability space for TS, but do not include the sampled parameters in the sample

space. We are not aware of other work which incorporates this canonical formulation. Having

the sampling algorithms posed in a coherent framework allows for it to be understood and
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studied rigorously. For example, the formulation makes evident that the underlying process

is history-dependent, i.e., not Markovian. To make this clear, we will refer to the adaptive

version of the process with an unknown parameter as θ-MDP instead of MDP.

We offer a novel decomposition of the standard notion of expected regret. Our notion of

expected regret can be computed at any finite period n, from the vantage point of a DM in

period 0. We identify three distinct components of the expected regret, only one of which is

always suitable for learning problems. The first component is the expected regret associated

with the past, i.e., from period 0 up to period n. This quantifies the difference between the

expected reward received by the DM and the expected reward of the policy which knows

the true parameter. The second component is the expected regret that emanates from the

policy’s state in period n, which is inextricably tied to the past decisions. It captures the

expected infinite-horizon (future) consequences of being in a suboptimal state in period n.

The third and final component captures the DM’s ability to implement what is optimal

moving forward, conditional on the period-n state. This component is the only component

that is “controllable” by the DM, once they have arrived at the period-n state. It reflects

how the best opportunities available to the DM from period n onward compare to how the

system will evolve under the sampling policy. Our analysis focuses on this concept which

we call expected residual regret. The expected residual regret forgets both the past and the

future “sunk” portions of the total regret.

Decomposing the standard expected regret is a novel approach to view and quantify the

performance of a policy. Through this decomposition, we connect the notion of expected

regret to a concept called asymptotic discount optimality (ADO) [Schäl, 1987, Hernández-

Lerma, 2012]. We demonstrate how the ADO concept relates to expected residual regret.

To the best of our knowledge, this concept has not been used within the sampling context

before and has not been connected to the notion of (expected) regret.

We show that the posterior belief on the true parameter converges to 1 when TS is
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implemented; this behavior is called complete learning. Complete learning is a stronger

result than learning in expectation, i.e., expected posterior belief, because it gives assurance

about the individual sample paths. To the best of our knowledge, most results are on

the expected-valued version of posterior belief. The notion of complete learning has been

studied frequently in bandit contexts, including the prominent work of Freedman [1963],

yet to our knowledge it has not been applied to Borel state-control spaces and has not

been analyzed under the discounted reward criterion. In the adaptive learning literature,

there is an alternative to TS, known as the minimum contrast estimator, which is shown

to achieve complete learning [Hernández-Lerma, 2012]. However, complete learning has not

been connected to the concept of ADO, and there is no notion of probabilistic ADO.

Building on expected residual regret, we define its sample-path version, called probabilistic

residual regret or residual regret. Similar to expected residual regret, it captures the DM’s

ability to implement what is optimal moving forward, but starting from the random state of

the MC in period n. It quantifies the difference in optimal rewards and TS-driven rewards.

Therefore, the probabilistic residual regret is a random quantity whose expected value is the

expected residual regret. Conceptually, probabilistic residual regret is similar to complete

learning as they are both concerned with individual sample paths.

The paper is organized as follows. In Section 2.2, we provide additional literature review.

Then we motivate the need to modify the definition of expected regret since the standard

notion of expected regret can grow linearly in non-trivial settings. In Section 2.3, we model

the sampling algorithm and formulate the canonical probability space which involves the

sampled parameters. In Section 2.4, we characterize TS by defining the posterior update and

control selection mechanisms. In Section 2.5, we decompose the standard notion of expected

regret into components and interpret each component, highlighting expected residual regret

as the only “actionable” component. In Section 2.6, we provide an asymptotic analysis of the

expected residual regret. In Section 2.7, we show that TS exhibits complete learning, i.e.,
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the posterior sampling error converges to 0 almost surely. We also show that probabilistic

residual regret converges to 0 almost surely.

2.2 Literature Review and Motivation

Here, we highlight papers of similar setup and provide an example where the standard

expected regret fails to discern learning.

2.2.1 Literature Review

TS has proved not only successful for multi-armed bandit problems (MAB) (a degenerate

case of MDP); but also for parametrized MDP’s, i.e., θ-MDP’s, which need not be Marko-

vian. The work on θ-MDP’s typically requires assumptions on the underlying chain to give

performance guarantees on the expected regret. For example, Kim [2017] shows that TS

achieves asymptotically optimal expected regret when the Markov chain under the optimal

policy, which knows the true parameter, is ergodic.1 Another example is Gopalan and Man-

nor [2015], which provides a probabilistic logarithmic upper bound on the expected regret

of TS, assuming that the starting state is recurrent under the optimal policy generated by

any of the possible parameters. Although Kearns and Singh [2002] and Leike et al. [2016]

assume a more general chain setting, they study decision processes over finite state-control

spaces. In contrast to the finite state-control spaces or the expected average-reward criterion

of these works, we assume a general state-control space, under the discounted-reward crite-

rion, similar to Schäl [1987]. We impose additional assumptions on the underlying chain to

be able to extend the work of Kim [2017] into our more general setting.

Kim [2017] shows that the expected posterior sampling error decays exponentially. We

extend this result to a broader framework. We also show that the probabilistic version of

1. A Markov chain is ergodic if the transition matrix corresponding to every deterministic stationary
policy consists of a single recurrent class [Puterman, 2014]
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the posterior sampling error decays exponentially, which we believe has not been explored

yet.

Our work mostly complements Kim [2017] and Banjević and Kim [2019]; there is a

stronger connection with the former since we also assume a finite parameter space. The

latter work adopts a continuous parameter space, similar to Hernández-Lerma [2012], which

results in a setting that is harder to analyze.

The stream of work that analyzes the behavior of TS do not usually consider infinite-

horizon, and are most often in the MAB setting, with history-independent samples to the

best of our knowledge. Kalkanli and Ozgur [2020] analyze the asymptotic behavior of TS

with history-dependence, but in the context of the MAB problem. Although we utilize

different methodologies than theirs, our work carries this analysis into the under-explored

context of the θ-MDP.

2.2.2 Motivation

TS has been shown to have good performance in the MAB setting. The MAB problem is

equivalent to a θ-MDP with no state, or alternatively, a one-step θ-MDP. In each decision

period t, the DM samples a parameter from the posterior distribution. By treating the sample

as the true parameter, the DM chooses a control, i.e., plays one of the constantly-many arms,

and immediately observes a reward. The reward of each arm is generated according to some

fixed (unknown) distribution and the objective is to maximize the total expected reward.

Arms’ rewards are generated independently of each other. Let µi denote the (unknown)

expected reward of arm i and i(t) be the arm played in period t. The expected finite-time

regret is the expected total difference between the optimal strategy of pulling the arm with

the highest mean and the strategy followed by the DM, i.e.,

E[Regret(n)] := E

[
n∑
t=1

(µ∗ − µi(t))

]
.
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where µ∗ := maxi µi. In the pioneering Lai and Robbins [1985], the (expected) regret of any

bandit algorithm is lower bounded, in the limit, by

E[Regret(n)] ≥

 K∑
i=2

∆i

D(µi||µ∗)
+ o(1)

 ln(n), (2.1)

where D denotes the Kullback–Leibler divergence and ∆i := µ∗ − µi. The bound in (2.1)

shows that the best achievable expected regret is of order ln(n). Complementing the loga-

rithmic lower bound for any bandit algorithm, Agrawal and Goyal [2012] upper bounds the

expected regret of the TS algorithm by

E[Regret(n)] ≤ O


 K∑
i=2

1

∆2
i

2

ln(n)

 .

Since the order of the upper bound on the expected regret of TS matches the logarithmic

lower bound for any algorithm in (2.1), the expected regret of TS grows logarithmically. We

underline that these results are valid for the MAB setting. These results can also apply to

the θ-MDP setting with a trivial state process, such that the stochastic process is driven by

an iid state process2. In addition, they assume β = 1, i.e., no discounting. Our setting is

fundamentally different, i.e., the states evolve based on the controls and are not identically

distributed, hence these results do not apply in general. Example 2.2.1 illustrates a simple

yet non-trivial state process.

Example 2.2.1 (Expected regret grows linearly). Consider the three-state process shown

in Figure 2.1. In period t = 0, the DM lies in x0 and can choose either control A or B,

with an immediate reward of 0. Control A leads to the state xA, and from then onward

only control A can be chosen; the DM is “stuck”. Control B leads to the state xB , and

similarly, only control B can be chosen from then onward. The true parameter can either be

2. The states evolve independently of the controls and have the same probability distribution.
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A or B. We represent the one-step reward generating function by RA(·) when A is the true

parameter, and RB(·) otherwise. We assume that the prior belief on the true parameter is

not degenerate, i.e., not equal to 1.

x0

xA xB

A B

RA(xA) = 1
RB(xA) = 0

RA(xB) = 0
RB(xB) = 1

Figure 2.1: Constant reward depending only on the first control, picked at t=0.

In Example 2.2.1 if the first guess is right, the DM receives a reward of 1 forever and

otherwise receives no reward at all. Thus, unlike in the setting of Agrawal and Goyal [2012], in

broader settings the expected finite-horizon regret does not necessarily grow logarithmically.

Consider Example 2.2.1 with an alternative setup such that when the guess at t =

0 is correct, the reward generated in the corresponding state is equal to the number of

periods the policy has spent in that state. If the DM makes a wrong guess they are stuck

with 0 reward forever, while the oracle earns a sequence of increasing rewards. Here, the

expected (undiscounted) regret grows super-linearly. While the standard expected regret

grows linearly or super-linearly, nonetheless learning still happens. If the DM receives a

reward of 1 in the next period, then they immediately learn whether A or B drives the reward

process. This example shows the motivation to construct an alternative, more “lenient”,

notion of expected regret that forgets the immutable consequences of past actions.
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2.3 Model Setup

We study a discounted-reward stochastic control problem over an infinite horizon. The

underlying MDP is indexed by some parameter θ. In Section 2.3.1, we formulate the MDP

when the DM knows θ, building on the mathematical framework of Hernández-Lerma [2012].

In the subsequent sections, we assume the DM solves the θ-MDP using estimates of θ, i.e.,

without knowing the value of θ. We construct the probability space in Section 2.3.2. This

lays the groundwork for TS.

2.3.1 Markov Decision Process for Known θ

Consider a discrete-time MDP, (X ,U , {U(x), x ∈ X}, fθ, qθ). In our setting, the reward and

state transition densities depend on the parameter θ ∈ P , which is a single point in the finite

parameter space P . Later, when θ is assumed to be unknown, we will represent the random

sample drawn in period t by Θt and its realization by θt. We reserve upper-case letters to

denote random variables, lower-case letters to realizations of random variables, script letters

to spaces and sometimes sets, and bold upper-case letters to elements of σ-algebras to be

defined. Let R denote the set of real numbers, and B(·) the Borel σ-algebra of a topological

space.

The tuple (X ,U , {U(x), x ∈ X}, fθ, qθ) consists of:

1. State space X , a Borel space. We denote the system state in period t ∈ {0, 1, 2, . . . } by

Xt ∈ X .

2. Control space U , a Borel space. The control applied in period t is Ut ∈ U .

3. Set of admissible controls U(x), which is a compact subset of U for every x ∈ X . Let

U =
⋃
x∈X U(x). The set of admissible state-control pairs,

K := {(x, u) | x ∈ X , u ∈ U(x)},
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is assumed to be a measurable subset of the product space X × U .

4. Given xt and ut in period t, the system generates random reward Rt ∈ Rc ⊂ R+, where

Rc is compact and measurable according to a conditional distribution F θ(· | xt, ut). The

conditional distribution F θ(· | x, u) admits a measurable, continuous, one-step reward

density3 fθ : Rc → R+ with respect to a σ-finite measure λ on (Rc,B(Rc)), such that

F θ(R | x, u) :=

∫
R
fθ(r | xt = x, ut = u) dλ(r), ∀R ∈ B(Rc), (x, u) ∈ K.

The expected reward in period t is

rθ(xt, ut) :=

∫
Rc

rfθ(r | xt, ut)dλ(r), ∀ (xt, ut) ∈ K. (2.2)

5. Given xt and ut in period t, the system transitions into random state Xt+1 according to a

conditional distribution Qθ(· | xt, ut). The conditional distribution Qθ(· | x, u) admits a

one-step transition density4 qθ : K→ X with respect to a σ-finite measure η on (X ,B(X ))

such that

Qθ(X | x, u) :=

∫
X
qθ(y | xt = x, ut = u)dη(y), ∀X ∈ B(X ).

Similarly, given xt and ut in period t,

Qθ(X | x, u) := Prob(Xt+1 ∈ X | xt = x, ut = u), ∀X ∈ B(X ).

Remark. Since fθ(· | xt, ut) is continuous on compact set Rc, it attains its minimum

and maximum in Rc. Thus, there exists a constant M ≥ 0 such that |rθ(xt, ut)| ≤ M

3. Radon-Nikodym derivative of F θ with respect to λ.

4. Radon-Nikodym derivative of Qθ with respect to η
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∀(xt, ut) ∈ K. To see why this holds, note that

|rθ(xt, ut)| ≤
∫

Rc

|rfθ(r | xt, ut)|dλ(r) ≤
∫

Rc

max(|rfθ(r | xt, ut)|)dλ(r)

= max
r∈Rc

|rfθ(r | xt, ut)|λ(Rc) <∞,

where the first inequality follows by (2.2) and Jensen’s inequality, and the equality holds since

max(|rfθ(r | xt, ut)|) is constant. Then, max
r∈Rc

|rfθ(r | xt, ut)| is finite because fθ(· | xt, ut)

is continuous on a compact set, and λ(Rc) is finite since Rc ⊂ R+ is compact and λ is a

σ-finite measure.

The DM aims to maximize the infinite-horizon expected total discounted reward. The

optimal value function νθ(x) represents the maximum such reward starting from state x,

and it depends on the true (unknown) parameter θ. It is known from Hernández-Lerma and

Lasserre [2012] that this problem is solved by the Bellman equation in (2.3).

νθ(x) := sup
u∈U(x)

{
rθ(x, u) + β

∫
y∈X

νθ(y)dQθ(dy | x, u)

}
, ∀x ∈ X , θ ∈ P , (2.3)

where β ∈ [0, 1) is the discounting factor. If νθ(x) is a solution to (2.3), let µθ denote the

corresponding optimal policy for parameter θ. Under sufficient technical conditions, µθ is a

stationary, deterministic, and Markovian policy. As showing these conditions holds in this

setting are outside of our scope, we make the following assumption:

Assumption 0. For all θ ∈ P , there exists a unique solution to (2.3) such that the supremum

is attained, and there exists an optimal policy µθ that is stationary, deterministic, and

Markovian.

Remark. The condition in Assumption 0 is necessary for all of the main results of the

paper. Therefore, we will not specifically refer to it in the Lemma, Proposition and Theorem

statements.
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In this section, we formulated an MDP parametrized by a known parameter θ. In Section

2.3.2, we define the optimal policy in the adaptive setting, i.e., where θ is an unknown (fixed)

parameter.

2.3.2 Adaptive Learning with Sampling

From this point forward we take θ to be an unknown and fixed parameter. A control problem

parametrized by an unknown parameter is called an adaptive control problem, we refer the

reader to Hernández-Lerma [2012] for a comprehensive definition. As defined in Section 2.3.1,

the reward density and transition density are parametrized by the (finitely-many) parameter

values. Since we reserve θ for the true parameter, fγ(· | x, u) and qγ(· | x, u) represent the

reward and transition density of an arbitrary parameter γ ∈ P . Since θ is the underlying

true parameter, fθ(· | x, u) and qθ(· | x, u) represent the reward and transition density which

drive the actual (observed) process, i.e., the observed reward and the observed next state.

Next, we estimate the unknown parameter θ using a generic sampling algorithm.

Overview of Sampling Algorithm.

Had θ been known to the DM, the DM would have maximized the objective function by

solving an optimization problem. Given the parameter uncertainty, the problem evolves

into a learning problem, where the DM needs to choose suitable controls while gathering

information on θ. To specify how the DM chooses controls in each period t, we first define

the data available at the beginning of each period t, i.e., the history. We will use history and

admissible history interchangeably. In contrast to the setting with known parameter θ, when

θ is unknown the learning procedure makes use of the entire history, i.e., is not Markovian.

Figure 2.2 illustrates the random variables which drive the learning process, ordered in

the sequence of occurrence. The DM observes the history information from period 0 up to

period t, denoted by Ht. The history vector contains all information up to and including
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πt(· | Ht) fθ(· | Xt, Ut) qθ(· | Xt, Ut)

Xt θt Ut Rt Xt+1

Ht

Ht+1

Figure 2.2: Evolution of the stochastic process, in the case when θ is not known.

Xt, i.e., the state in period t. Provided by the system designer, the function πt(· | Ht) takes

Ht as input and returns the distribution on the period-t sample Θt. Although πt(· | Ht)

is a deterministic function of Ht, it is random due to random Ht. Next, the DM draws a

sample Θt from the parameter pool, with probability equal to πt(Θt | Ht). The randomness

of Θt arises from two sources: due to its dependence on random Ht through πt(· | Ht), and

the random nature of sampling. Given the history, the DM solves an optimization problem

yielding the “optimal” control Ut ∈ U(Xt), assuming the true θ equals θt, the realized sample.

The history includes only admissible controls, defined in Section 2.3.1. The state-control pair

(Xt, Ut) gives rise to a random reward Rt, which depends on θ. Rt is drawn from the reward

density fθ(· | Xt, Ut). Finally, given the transition density qθ(· | Xt, Ut) and the current

state-control pair, the system transitions into a random next state Xt+1.

The collection ofHt, Θt, Ut, Rt andXt+1 constitutesHt+1. The system designer provides

fγ(· | x, u) and qγ(· | x, u) for all candidate values γ ∈ P , which are utilized to update the

belief vector, to be defined in Section 2.4. Nevertheless, the evolution of the process depends

only on θ, i.e., nature acts according to fθ(· | x, u) and qθ(· | x, u). After observing the

rewards and transitions in period t, the DM updates their belief vector πt+1(· | Ht+1) in

period t+ 1. Conditional on the state-control pair, the reward and transitions are mutually

independent.5

5. Yet, there can be alternative settings where an exogenous random variable impacts both Rt and Xt+1,
resulting in dependence between the reward and the next state.
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Canonical Formulation.

The space of admissible histories up to period t is denoted by Ht. For t = 0, we have

H0 := X , i.e., H0 := X0. For t ≥ 1, the space of admissible histories has product form,

Ht := (X × P × U ×Rc)
t ×X = Ht−1 × P × U ×Rc ×X .

The history spaces H0 and Ht (t = 1, 2, . . . ) are endowed with their product Borel σ-

algebras B(X ), B(P), B(U(x)) and B(Rc). The history random variable follows the recursion

Ht := (X0,Θ0, U0, R0, . . . , Xt−1,Θt−1, Ut−1, Rt−1, Xt), (2.4)

with (Xt, Ut) ∈ K, where t ∈ N≥2 denotes the period. The history vector’s realization is

denoted by

ht := (x0, θ0, u0, r0, . . . , xt−1, θt−1, ut−1, rt−1, xt),

similarly, with (xt, ut) ∈ K. In addition, H0 := H0 = X , and for t ≥ 1, Ht is a subspace of

Ht := (X × P × U ×Rc)
t ×X = Ht−1 × P × U ×Rc ×X .

The infinite sequence of four-tuples H∞ is the sample space, denoted by Ω,

Ω = H∞ := (X × P × U ×Rc)
∞ = X × P × U ×Rc ×X × P × U ×Rc . . .

Ω is the space of histories Ht = (X0,Θ0, U0, R0, X1,Θ1, U1, R1, . . . ) with Xt ∈ X , Θt ∈

P , Ut ∈ U , Rt ∈ Rc for t ≥ 0. The state, parameter, control and reward variables are

defined as projections from Ω to sets X , P , U and Rc, respectively.
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A typical element of the sample space, ω ∈ Ω, is an infinite sequence of the form below:

ω = (x0, θ0, u0, r0, x1, θ1, u1, r1, . . . ) where xt ∈ X , θt ∈ P , ut ∈ U , rt ∈ Rc, ∀ t ≥ 0.

Definition 2.3.1. The posterior distribution (πt(· | Ht) : P | Ht → R+) is a belief distri-

bution over Θt ∈ P . It is a function of the random and time-dependent history Ht.

Definition 2.3.2. A randomized policy µ = {µt} is a sequence of stochastic kernels µt on

U given Ht and P , satisfying

µt(U(xt) | ht, θt) = 1 for all ht ∈ Ht, θt ∈ P , and t ≥ 0.

where µt is an element of the set of admissible control policies, denoted byM.

B(Ω) is the corresponding product σ-algebra of Ω. The final element of the probability

space is the probability measure Pµ,θx0 : B(Ω)→ [0, 1]. It represents the probability measure

when policy µ ∈ M is used, the initial state is X0 = x0, and the true parameter is θ. The

expectation operator with respect to Pµ,θx0 is Eµ,θx0 . Whenever this expectation is taken, we

take the random variables (Xn,Θn, Un, Rn)∀n as generated by Pµ,θx0 . We have a collection

of sample paths that are parametrized by µ, θ and x0. The operands of these operators are

specified by the underlying state process induced by µ, θ and x0. We emphasize that the

space of admissible histories, Ht, is contained in Ω = H∞, and therefore, the (admissible)

history random variable Ht is defined on (Ω,B(Ω),Pµ,θx0 ).

A randomized, history-dependent policy µ induces a probability measure Pµ,θx0 on (Ω,B(Ω)).

By the Ionescu-Tulcea Theorem, proved in Proposition 7.28 of Shreve [1978], for any given

policy µ = {µt} ∈ M, any initial state X0 = x0 and true parameter θ ∈ P , there exists a

unique probability measure Pµ,θx0 on (Ω,B(Ω)), satisfying:

(a) Pµ,θx0 (H∞) = 1,
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(b) Pµ,θx0 (X0 = x0) = 1,

(c) Pµ,θx0 (Θt = θt | ht) = πt(θt | ht) for all θt ∈ P given ht ∈ Ht and t ≥ 0,

(d) Pµ,θx0 (Ut ∈ U | ht, θt) = µt(U | ht, θt) for all U ∈ B(U) given ht ∈ Ht, θt ∈ P , and t ≥ 0,

(e) Pµ,θx0 (Rt ∈ R | ht, θt, ut) =
∫
R fθ(r | xt, ut)dλ(r) for all R ∈ B(Rc) given ht ∈ Ht,

θt ∈ P , ut ∈ U(xt), and t ≥ 0. When conditioned on xt and ut, Rt is independent of θt

and ht \ {xt}.

(f) Pµ,θx0 (Xt+1 ∈ X | ht, θt, ut, rt) =
∫
X qθ(y | xt, ut)dη(y) for all X ∈ B(X ) given ht ∈ Ht,

θt ∈ P , ut ∈ U(xt), rt ∈ Rc, and t ≥ 0. When conditioned on xt and ut, Xt+1 is

independent of θt, rt and ht \ {xt}.

The probability measure Pµ,θx0 induced by the policy µ satisfies all (a)-(f), where

(a) is by the definition of probability measure.

(b) is by construction, it implies the initial state of the process is x0 with probability 1.

(c) shows the history-dependent posterior distribution, from which the sample θt is gener-

ated.

(d) is the decision rule, i.e., the collection of policies. In each period t, the DM selects

controls not only by the current state xt, but by the entire history vector ht. The

decision rule also depends on the sample θt. Since ht ends with xt, we add θt as a

condition.

(e) characterizes the random reward drawn from the distribution which knows the noisy

version of θ. Given xt and ut, the random reward Rt, generated from density fθ(· |

Xt, Ut), does not depend on the sample θt. Since θt does not give any additional

information, it can be dropped. If not conditioned on xt and ut, then Rt depends on

ht, θt, and ut.
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(f) is the state transition law. Set X represents the states that are accessible from xt.

Given xt and ut, the random next state Xt+1, generated from density qθ(· | xt, ut), is

independent of θt and rt. Since θt and rt are superfluous, they can be dropped. If not

conditioned on xt and ut, then Xt+1 depends on ht, θt, ut and rt.

When the expectation is over one step instead of the entire process, we use a different

notations, i.e., different than Eµ,θx0 . If the expectation is taken with respect to the random

reward, we denote it by Efθ [· | x, u], where density fθ is with respect to σ-finite measure

λ. If the expectation is with respect to the random next state, the operator is Eqθ [· | x, u],

where density qθ is with respect to the σ-finite measure η. If it is with respect to both the

random reward and the random next state, then we use Efθqθ [· | x, u]. Whenever there is a

· in these expectation operators, the · implies a random variable.

Objective Function (Performance Criteria).

Given the initial state x0 and the discount factor β ∈ (0, 1), the expected discounted reward

over the infinite-horizon of implementing a policy µ from period t = 0 onward is

V
µ,θ
x0 (0) := Eµ,θx0

[ ∞∑
t=0

βtRt

]
, ∀µ ∈M, x0 ∈ X . (2.5)

When the rewards from period 0 up until n− 1 are dismissed and the discounting starts

from period n onward, we have

V
µ,θ
x0 (n) := Eµ,θx0

[ ∞∑
t=n

βt−nRt

]
. (2.6)

As in (2.5), the DM implements policy µ, starting from (known) state x0 in period 0.

However, the rewards in (2.6) are accumulated only from period t = n onward, when the

(random) system state is Xn. We will use the notation n when we fix a specific time period
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and t when we take summations.

For a given policy, the DM should know the value of θ to compute (2.5) and (2.6).

Alternatively, the DM can statistically estimate these quantities if they have access to the

reward density and transition density of the oracle to simulate the policy.

Recall from (2.3) that the optimal value function of the standard MDP problem is νθ(x),

with optimal policy µθ. In the adaptive setting, when the DM is assumed to know θ, the

optimal policy is µθ. Hence, without loss of generality, we define νθ(x0) in (2.7) with respect

to Eµ,θx0 , i.e.,

νθ(x0) := sup
µ∈M

V
µ,θ
x0 (0) = sup

µ∈M
Eµ,θx0

[ ∞∑
t=0

βtRt

]
= Eµ

θ,θ
x0

[ ∞∑
t=0

βtRt

]
, ∀x0 ∈ X . (2.7)

The process starts from state x0 in period 0. We call µθ the θ-optimal policy. Under

Assumption 0, this policy is stationary, deterministic, and Markovian.

2.4 Thompson Sampling

Given the formulation of the adaptive control problem, there is flexibility in how the evolution

of the stochastic process can be “customized”. The specification arises two-fold: by the

posterior update and the control selection. Until now, we denoted a general admissible

policy by µ = {µt} and the belief update rule by πt(· | ht). From here onward, we adopt

a particular policy, Thompson sampling (TS). We define the TS policy by specifying the

decision rule µ and the function πt(· | ht) to update the belief vector. While the DM

chooses µ, the system designer determines πt. We use TS, TS algorithm, TS decision rule,

and TS policy interchangeably throughout the paper. Also, we denote TS by τ , which we

will formally define later in this section. The probability measure induced by TS and its

corresponding expectation operator are denoted by Pτ,θx0 and Eτ,θx0 , respectively.
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2.4.1 Posterior Update

The TS algorithm generates an estimate θt in each period, by using the “synthetic” belief

update function πt(θt | Ht). Initially, the DM holds the prior belief π0(θ0 | h0) > 0 on the

true parameter θ. That is, the unknown θ is modeled by the |P|-valued random variable Θt,

with initial prior distribution

π0(θ0 | h0) := Pτ,θx0 (Θ0 = θ0 | h0), ∀θ0 ∈ P .

At the beginning of period t, the DM updates her belief over the parameter candidates,

by computing the (random) posterior distribution

πt(θt | Ht) := Pτ,θx0 (Θt = θt | Ht), ∀θt ∈ P . (2.8)

The expected value of πt(θt | Ht),

πt(θt) := Eτ,θx0 [πt(θt | Ht)],

is deterministic, and its dependence on (x0, τ, θ) is implicit. We employ Bayes’ Theorem to

conduct the update,

πt(θt | Ht) :=
Lθtt (Ht)π0(θ0 | h0)∑

γ∈P
Lγt (Ht)π0(γ | h0)

, (2.9)

where Lγt (Ht) : Ht → R is the (history-dependent) likelihood function. For any γ ∈ P ,

Lγt (Ht) :=
t∏

s=1

fγ(Rs−1 | Xs−1, Us−1)qγ(Xs | Xs−1, Us−1).
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The joint density fγ(· | x, u)qγ(· | x, u) specifies a joint probability measure on [0, 1]×X ,

ρ
γ
x,u(R,X) :=

∫
R
fγ(r | x, u)dλ(r)

∫
X
qγ(y | x, u)dη(y),

for R ⊆ B(Rc), X ⊆ B(X ). Then, for any parameter value γ ∈ P , the ratio of the Radon-

Nikodym derivative is
dρθx,u

dρ
γ
x,u

=
fθ(· | x, u)qθ(· | x, u)

fγ(· | x, u)qγ(· | x, u)
.

Definition 2.4.1. The relative entropy of ρθx,u with respect to ργx,u is

K(ρθx,u | ρ
γ
x,u) := Efθqθ

[
log

(
dρθx,u

dρ
γ
x,u

)]
,

given ρθx,u is absolutely continuous with respect to ργx,u.

Note that the expectation operator Efθqθ [· | x, u] was defined earlier in Section 2.3.2,

such that we integrate over the random reward and next state, for one step only. Next, we

specify the decision rule to characterize the TS policy.

2.4.2 Decision Rule

Definition 2.4.2. The Thompson sampling policy τ = {τt} is a sequence of stochastic

kernels τt on U given ht and θt, satisfying

τt(· | ht, θt) := µθt(· | xt).

Under Assumption 0, µθt is a stationary, deterministic, and Markovian policy. Since µθt

only depends on xt, (by definition) the τ policy depends on xt, instead of ht. In each period t,

the TS decision rule samples θt and employs µθt , i.e., it picks the control that maximizes the

expected infinite-horizon discounted reward by treating θt as the true value of the unknown
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parameter θ. The TS decision rule is deterministic, given θt. However, until the (random

and history-dependent) sample Θt is drawn from the posterior distribution πt(θt | Ht), it is

a randomized decision rule.

Recall the evolution of the stochastic process from Section 2.3.2. Based on the state-

control pair, the DM observes a noisy reward generated by fθ(· | xt, ut), and thus, cannot

immediately identify the true value θ. Then, through the transition density qθ(· | xt, ut), the

current state transitions into the next state. After observing the reward and the transition,

the DM updates the posterior on every γ ∈ P using (2.9). Afterwards, a new parameter

estimate θt+1 is sampled from the updated distribution, leading to the next control ut+1.

We underline that the history vector includes the sample, i.e., Ht := (X0,Θ0, U0, R0, . . . )

contains the period-t sample θt, which renders the TS policy well defined on the probability

space (Ω,B(Ω),Pτ,θx0 ), defined in Section 2.3.2.

Lemma 2.4.1 (Degenerate prior). TS is equivalent to the θ-optimal policy when the prior

distribution is degenerate, i.e., π0(θ | h0) = 1.

We defer the proof of Lemma 2.4.1 to Section 2.9.1.

2.5 Decomposition of Expected Regret

The objective of this section is to decompose the standard regret into interpretable compo-

nents and illustrate how the third component, i.e., residual regret, decays to 0 through a

numerical example. Because we are in an infinite-horizon setting, we can consider expected

regret in any given fixed period n in the future, as assessed in period 0. In what follows, we

decompose this “expected regret process” into three different components, two of which that

cannot be changed from period n onward and a third which can be influenced. The first

component is the traditional notion of expected finite-horizon regret.
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2.5.1 Standard Notion of Expected Regret

One would naturally quantify the expected regret of an admissible policy by taking the

difference between the optimal value function and the TS policy’s value function. By the

definitions in (2.5) and (2.7), this difference is equal to

E[Regretθ(0,∞)] := νθ(x0)− V τ,θx0 (0)

= Eµ
θ,θ
x0

[ ∞∑
t=0

βtRt

]
− Eτ,θx0

[ ∞∑
t=0

βtRt

]
, (2.10)

where (0,∞) represents the starting and ending periods, inclusive. The expected infinite-

horizon regret E[Regretθ(0,∞)] is a function of two different expectation operators, so the

expectation “E” represents a label rather than a formal mathematical expression. We em-

phasize that even though Rt appears in both terms of (2.10), one of them is driven by the

process generated by µθ, while the other one is driven by τ .

By construction, E[Regretθ(0,∞)] can be partitioned into two components; a finite com-

ponent that tallies rewards up until some period n − 1, and the remainder that goes into

infinity, i.e.,

E[Regretθ(0,∞)] := E[Regretθ(0, n− 1)] + E[Regretθ(n,∞)]. (2.11)

When β ∈ [0, 1), the difference in (2.10) is the expected value of the regret felt by the DM

discounted back to period 0, i.e., in period-0 “dollars”. To express the regret of the θ-MDP

in period-n dollars, we multiply (2.10) with β−n, to obtain

E[Regretθn(0,∞)] := (νθ(x0)− V τ,θx0 (0))β−n (2.12)

=

[
Eµ

θ,θ
x0

[ ∞∑
t=0

βtRt

]
− Eτ,θx0

[ ∞∑
t=0

βtRt

]]
β−n (2.13)
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=

[
Eµ

θ,θ
x0

[
n−1∑
t=0

βtRt

]
− Eτ,θx0

[
n−1∑
t=0

βtRt

]]
β−n (2.14)

+

[
Eµ

θ,θ
x0

[ ∞∑
t=n

βtRt

]
− Eτ,θx0

[ ∞∑
t=n

βtRt

]]
β−n. (2.15)

The subscript n in E[Regretθn(0,∞)] corresponds to the period at which the money is

evaluated. This shows that the decomposition (2.11) also applies to the regret expressed in

any period-n dollars.

E[Regretθn(0,∞)] := E[Regretθn(0, n− 1)] + E[Regretθn(n,∞)].

When β = 1, there is no difference between (2.10) and (2.13). We decompose (2.13)

into two components, namely (2.14) and (2.15). In particular, (2.14) represents the expected

finite-horizon regret, and by dividing it by βn we convert it to period-n dollars. We denote it

by E[Regretθn(0, n−1)]. Recall that µθ is an optimal policy for the infinite-horizon discounted

reward maximization problem, with value νθ(x0). When β = 1, E[Regretθn(0, n−1)] becomes

the traditional expected regret over a finite horizon. We observe from Example 2.2.1 that

the non-discounted version of E[Regretθn(0, n− 1)] violates the order of ln(n). The expected

regret component (2.15) can be interpreted as the expected infinite-horizon regret, starting

in period n, in period-n dollars. Distributing β−n inside, (2.15) can alternatively be written

as

Eµ
θ,θ
x0

[ ∞∑
t=n

βt−nRt

]
− Eτ,θx0

[ ∞∑
t=n

βt−nRt

]
. (2.16)

By the first thesis-v1.pdfremark in Section 2.3.1, the infinite geometric series property,

and assuming β ∈ [0, 1), (2.16) is upper bounded by 2M
1−β , which is a constant independent

of n. When β = 1, (2.16) may grow to infinity in n.

We revisit Example 2.2.1, which was introduced in Section 2.2.2. The value of the τ policy

V
τ,θ
x0 (0) is equal to the probability that the initial sample is equal to the true parameter θ
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times the infinite-horizon reward of having the first guess right. In the case of sampling the

true parameter at t = 0, the DM earns a reward of 1 in all periods, except for the first period

(t = 0). In this case, the total discounted reward accrued starting at t = 1 is 1
1−β . By the

definition of V τ,θx0 (0), we convert the total reward into period-0 dollars by multiplying 1
1−β

with β. Therefore,

V
τ,θ
x0 (0) = π0(θ | h0)

β

1− β
.

The value of the θ-optimal policy in period-0 dollars is

νθ(x0) =
β

1− β
.

Hence, by (2.13) the expected infinite-horizon regret of the τ policy is

E[Regretθn(0,∞)] := (νθ(x0)− V τ,θx0 (0))β−n =

(
(1− π0(θ | h0))

β

1− β

)
β−n.

We now inspect the limiting behavior of this metric (as n → ∞). When the discount

factor 0 ≤ β < 1, we have

lim
n→∞

E[Regretθn(0,∞)] = lim
n→∞

(
(1− π0(θ | h0))

β

1− β

)
β−n =∞. (2.17)

The expected finite-horizon regret (2.14) of the τ policy is

E[Regretθn(0, n− 1)] :=

(
Eµ

θ,θ
x0

[
n−1∑
t=0

βtRt

]
− Eτ,θx0

[
n−1∑
t=0

βtRt

])
β−n

=

(
n−1∑
t=1

βt − π0(θ | h0)
n−1∑
t=1

βt

)
β−n

=

(
n−1∑
t=1

βt(1− π0(θ | h0))

)
β−n (2.18)

=
β(1− βn−1)β−n

1− β
(1− π0(θ | h0)) =

β1−n − 1

1− β
(1− π0(θ | h0)).
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Similar to (2.17), we inspect the limiting behavior of the expected finite-time regret,

which yields

lim
n→∞

E[Regretθn(0, n− 1)] = lim
n→∞

β1−n − 1

1− β
(1− π0(θ | h0)) =∞.

When β = 1 (2.18) is equal to (n−1)(1−π0(θ | h0)), thus the expected finite-time regret

grows linearly, not logarithmically as in Agrawal and Goyal [2012].

2.5.2 Components of Expected Regret

We now propose an alternative decomposition of E[Regretθn(0,∞)]. By construction, the

second term in (2.16) is equal to the value function of the τ policy, i.e., V τ,θx0 (n). Moreover,

the first term in (2.16) is equal to the expectation of the optimal value function with respect

to the θ-optimal policy, i.e.,

Eµ
θ,θ
x0 [νθ(Xn)] := Eµ

θ,θ
x0

[
Eµ

θ,θ
Xn

[ ∞∑
t=0

βtR′t

]]
= Eµ

θ,θ
x0

[ ∞∑
t=n

βt−nRt

]
. (2.19)

In (2.19), Xn is generated by running the µθ policy starting in period t = 0 from state

x0. Conditional on the random “starting” state Xn, {R′0, R
′
1, . . . } is the random reward

process generated by the optimal policy µθ. When unconditioned on Xn, R′t ∼ Rt+n given

starting state x0. Adding and subtracting Eτ,θx0 [νθ(Xn)], and regrouping yields the following

decomposition.

E[Regretθn(0,∞)]

:= (νθ(x0)− V τ,θx0 (0))β−n

= E[Regretθn(0, n− 1)] (Expected finite-time regret) (2.20)

+ Eµ
θ,θ
x0 [νθ(Xn)]− Eτ,θx0 [νθ(Xn)] (Expected state regret) (2.21)
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+ Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n) (Expected residual regret). (2.22)

Notice that (2.20) is the same quantity as (2.14). Next, we discuss (2.21) and (2.22).

Expected State Regret.

The expected state regret (2.21) captures the unavoidable future consequences of landing in

a suboptimal state after implementing TS for n periods, which we formally define below.

Definition 2.5.1. The expected state regret,

Sτ,θx0 (n) := Eµ
θ,θ
x0 [νθ(Xn)]− Eτ,θx0 [νθ(Xn)],

is the expected forward-looking regret under an optimal policy from period n onward. It

quantifies the difference between landing in a random stateXn when the τ policy is started in

period 0 versus a potentially different random state Xn, had an optimal policy been followed

instead from the starting period.

Although it tallies the difference in rewards starting from period n into the infinite future,

we only denote the starting period n inside the parenthesis.

The random state Xn in Eµ
θ,θ
x0 [νθ(Xn)] is induced by running the µθ policy for n periods,

whereas the random Xn in Eτ,θx0 [νθ(Xn)] arises under the τ policy. Starting from the respec-

tive random states Xn, both sample paths follow the θ-optimal policy. Figure 2.3 illustrates

two representative sample paths. If there is no state process or if the state process is iid,

then these two terms would be equal. Since our problem involves a nontrivial state process,

the DM who implements the τ policy may end up in a “bad” part of the state space, leading

to an unavoidable, positive penalty. Recall that νθ(·) is the optimal value function of the

DM who knows the true θ. After period n, the DM cannot do any better than µθ.
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x0

Sample path under policy µθ

x0

Sample path under policy τ

X1 X1

Xn Xn

Eµ
θ,θ
x0 [νθ(Xn)] Eτ,θx0 [νθ(Xn)]

Same starting state

Potentially different

Potentially different
Oracle reveals θ

Keep running
policy µθ

After time n,
adopt policy µθ

Figure 2.3: Illustration of two different sample paths giving rise to the expected state regret.

x0

xA xB

A B

RA(xA, 1) = 1
RB(xA, 1) = 0

1
RA(xA, 2) = 1
RB(xA, 2) = 0.5

2 RB(xB , 2) = 1
RA(xB , 2) = 0.1

2
RB(xB , 1) = 1
RA(xB , 1) = 0

1

Figure 2.4: Deterministic reward depending on the control, where true parameter is B.

Example 2.5.1 (Absorption into an unfavorable set of states). Consider Figure 2.4. Similar

to Example 2.2.1, in period n = 0, the DM can choose either A or B with an immediate

reward of 0. After being absorbed into one of xA or xB , the DM can pick either control 1

or 2 and receives a deterministic reward, as a function of the control and true parameter.

Suppose the true parameter θ is B, which is unknown to the DM who performs TS.
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If π(A | x0) ≈ 1, then the DM would initially sample A, and consequently would stay in

xA forever. The τ policy may then pick control 1 (generating a reward of 0) or pick control

2 (generating a reward of 0.5). Recall that the system designer provides the transition and

reward densities, i.e., the reward structures RA(·) and RB(·) are both known to the DM.

Since the rewards are deterministic and have different values, regardless of the control picked

at n = 1, the τ policy will immediately learn that θ = B. Hence, τ will always pick control

2 from n = 2 onward, incurring a reward of 0.5. The θ-optimal policy will pick parameter B

in period n = 0, receiving a reward of 1 forever. Then, by (2.21), the undiscounted expected

total regret of being in state xA, as opposed to xB , increases linearly, by 1 − 0.5 = 0.5 in

each period. In contrast, the final term (2.22) equals 0 when n ≥ 2. Once landing in state

xA, after 1 period both TS and an optimal policy will choose the same control, i.e., control

2, forever. However, (2.22) does not always converge to 0 as rapidly. In the next section, we

illustrate that when the rewards are not deterministic, the τ policy learns more slowly.

Expected Residual Regret.

Now, we will formally introduce the third component of the expected infinite-horizon ex-

pected regret, i.e., (2.22), and study its asymptotic behavior.

Definition 2.5.2. The expected residual regret, i.e., Rτ,θx0 (n), is the expected forward-

looking regret from period n onward into the infinite future. This regret is between a policy

which implements τ until it switches to the optimal policy µθ in period n as opposed to

continuing with τ . Formally,

Rτ,θx0 (n) := Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n). (2.23)

Similar to the expected state regret, we only denote the starting period n inside the
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parenthesis. Consider the first term of (2.23),

Eτ,θx0 [νθ(Xn)] := Eτ,θx0

[
sup
µ∈M

V
µ,θ
Xn

(0)

]
= Eτ,θx0

[
sup
µ∈M

Eµ,θXn

[ ∞∑
t=0

βtRt

]]
.

The θ-optimal policy starts from a random state Xn, which is driven by running the τ

policy for n periods, starting at x0. Recall Sections 2.3.2 and 2.4 for details. The expectation

is taken over all paths leading to all possible Xn. Hence, Eτ,θx0 [νθ(Xn)] is a deterministic

quantity. Consider the second term of (2.23), V τ,θx0 (n), which is equal to (2.6) by substituting

the τ policy,

V
τ,θ
x0 (n) := Eτ,θx0

[ ∞∑
t=n

βt−nRt

]
.

The expectation operator is induced by τ , the starting state x0 and the true parameter

θ. Hence, similar to the first term, V τ,θx0 (n) does not forget the past; periods 0 to (n − 1)

impact the state wherein the process finds itself in period n. Both Eτ,θx0 [νθ(Xn)] and V τ,θx0 (n)

discard the rewards generated during the first n periods; however, they are not independent

of the past, since the random state Xn is driven by the tuple (x0, τ, θ). In summary, we

decompose the standard regret into three components, i.e.

E[Regretθ(0,∞)] = E[Regretθn(0, n− 1)] + Sτ,θx0 (n) +Rτ,θx0 (n). (2.24)

Notice that in (2.24) Sτ,θx0 (n) and Rτ,θx0 (n) tally the difference in rewards starting from

n into infinity, while E[Regretθ(0,∞)] and E[Regretθn(0, n − 1)] specify both the starting

and ending periods inside the parenthesis. E[Regretθn(0, n − 1)] is the accumulation of the

past losses, before period n. This component of the expected regret is sunk, in the sense

that the DM cannot change it starting from period n. Similarly, the expected state regret

Sτ,θx0 (n) is the accumulation of the future losses, as a result of irrevocably being in a given

state in period n, thus is also sunk. E[Regretθn(0, n− 1)] and Sτ,θx0 (n) measure the past and
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future consequences, respectively, of adopting TS from period 0 up until period n. From the

perspective of a DM who is already in period n, neither can be influenced. In contrast, we

regard the expected residual regret Rτ,θx0 (n) as “controllable” because, starting in period n,

a DM can choose a policy other than TS from that period onward. Therefore, amongst the

three components, only expected residual regret represents the efficacy of continuing with τ

into the future.

Next, we illustrate how the expected residual regret quantifies the effectiveness of future

decisions through an example. If the DM picks the best control(s) from period n onward, no

matter how unfavorable the state Xn is, the expected residual regret starting in that period

is 0.

Illustration of Expected Residual Regret.

To illustrate how learning occurs in a setting with stochastic rewards, consider a single-state

θ-MDP example. We show how the expected residual regret is driven down to 0 as a result

of τ learning over time.

x0

RA(x0, 1) ∼ N(0.5, 0.1)
RB(x0, 1) ∼ N(0.3, 0.1)

1

RA(x0, 2) ∼ N(0.4, 0.1)
RB(x0, 2) ∼ N(0.8, 0.1)

2

Figure 2.5: Stochastic rewards depending on the control, where the true parameter is B.

Example 2.5.2 (Expected residual regret converges to 0). Consider the single-state θ-MDP

in Figure 2.5. The underlying reward structure is illustrated on the arcs, which represent

the controls. The rewards are stochastic. Based on the true parameter (which we assume is

B) and the control picked at every step, the reward is generated from a normal distribution

with known mean and variance. Not knowing the current state, the DM draws a sample
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from the posterior distribution in each period and obtains either Θt = A or Θt = B. The

initial prior belief on A is 0.5. In each step of the process, if the sample drawn is A, then the

DM picks control 1. This is because control 1 has an expected reward of 0.5 when sampling

A, while control 2 has an expected reward of 0.4. On the other hand, if the DM samples B,

then they pick control 2 since the corresponding expected reward is higher.

Figure 2.6a illustrates the evolution of the expected belief on the “wrong” parameter

Eτ,Bx0 [πn(A)], i.e., the expected posterior sampling error, averaged over 100 runs of TS pol-

icy. We observe that the DM learns the true parameter B not immediately, but after ap-

proximately 40 iterations. Beyond that point, the DM always picks control 2, in order to

maximize the infinite-horizon expected total reward. Figure 2.6b illustrates the decline in

the expected residual regret for the same example.

Consider a hybrid policy that switches from τ to µB after running τ for n periods. Since

the true parameter is B, the reward distributions follow N(0.3, 0.1) and N(0.8, 0.1) when

control 1 or 2 is selected, respectively, i.e., the realizations of RB(x0, 1) and RB(x0, 2) are

the rewards associated with control 1 and 2, respectively. Therefore, the expected reward

of control 2 is greater than the expected reward of control 1 and the µB policy always picks

control 2, i.e., ∫
rfB(x0, 2) dr = 0.8 >

∫
rfB(x0, 1) dr = 0.3.

From period n onward, a hybrid policy gains total expected reward of

Eτ,Bx0 [νB(Xn)] = Eτ,Bx0

[
Eµ

B ,B
Xn

[ ∞∑
t=0

βtRt

]]

=
∞∑
t=0

βt0.8 =
0.8

1− β
= νB(x0).

We emphasize that n corresponds to a fixed time period, while t is used when sum-

ming over the rewards. Consider the µ1 policy that always picks control 1. Had the DM
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implemented such a policy, the expected residual regret would have been

Rµ1,Bx0 (n) := Eµ1,Bx0 [νB(Xn)]− V µ1,Bx0 (n)

=
0.8

1− β
− Eµ1,Bx0

[ ∞∑
t=n

βt−nRt

]

=
∞∑
t=0

βt0.8−
∞∑
t=n

βt−n0.3 =
∞∑
t=0

βt0.5 =
0.5

1− β
.

Thus, 0.5
1−β is an upper bound on the expected residual regret for all n. After some

number of periods, the rate at which the policy τ picks control 1 becomes negligible. Once

the policy no longer picks control 1, the DM has figured out the true parameter is B. If we

call this period ñ, the expected residual regret becomes

Rτ,Bx0 (n) := Eτ,Bx0 [νB(Xn)]− V τ,Bx0 (n) =
∞∑
t=0

βt0.8−
∞∑
t=n

βt−n0.8 = 0, ∀n ≥ ñ.

Starting from n = 0 and using Example 2.5.2 assumptions, the expected residual regret

can be computed as

Rτ,Bx0 (n) =
∞∑
t=0

βt0.8−
(
Eτ,Bx0 [πn(A)]

0.3

1− β
+ Eτ,Bx0 [πn(B)]

0.8

1− β

)
.

Figure 2.6b shows the evolution ofRτ,Bx0 for β = 0.9. When a different β ∈ [0, 1) is chosen,

the trajectory remains the same, but the expected residual regret values are different for small

n.

2.6 Analysis of Expected Residual Regret for Thompson Sampling

The goal of this section is to show that the expected residual regret of TS vanishes (i.e., con-

verges to 0) in an exponential rate. To do so, we first relate the concept of ADO [Hernández-
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Figure 2.6: Evolution of expected posterior and expected residual regret in Example 2.5.2
when first sample is wrong

Lerma, 2012] to the expected residual regret, showing that they are equivalent in our setting.

This allows us to combine the machinery of Hernández-Lerma [2012] with Kim [2017] to ob-

tain our result.
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2.6.1 ADO and Expected Residual Regret

To study adaptive control problems in the discounted case, Schäl [1987] introduced an asymp-

totic definition of optimality, asymptotic discount optimality. Hernández-Lerma [2012] de-

scribes the idea behind it as “to allow the system to run during a learning period of n stages”

and defines an asymptotically discount optimal (ADO) policy as follows:

Definition 2.6.1 (ADO). A policy µ is called asymptotically discount optimal (ADO) if,

∣∣∣V µ,θx0 (n)− Eµ,θx0 [νθ(Xn)]
∣∣∣→ 0 as n→∞, ∀x0 ∈ X ,

where νθ(Xn) is defined by (2.7) and V µ,θx0 (n) by (2.6).

We label an ADO policy as θ-ADO to emphasize the dependence on the underlying

parameter θ. Traditionally, expected regret is formulated without the absolute value [Lai

and Robbins, 1985]. It follows that the expected residual regret is equivalent to the θ-ADO

expression, i.e.,

Rτ,θx0 (n) := Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n) = |V τ,θx0 (n)− Eµ,θx0 [νθ(Xn)]|. (2.25)

Showing (2.25) will be instrumental in bounding the expected residual regret.

Lemma 2.6.1. The absolute value in the θ-ADO expression can be omitted in our setting,

i.e.,

|V τ,θx0 (n)− Eτ,θx0 [νθ(Xn)]| = Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n).

The statement in Lemma 2.6.1 is self-evidently true, but because the notation is cum-

bersome in this setting, we defer the proof to Section 2.9.1.

Rather than calling policies θ-ADO, we say that they have “vanishing expected residual

regret”.
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Definition 2.6.2. A policy µ has vanishing expected residual regret if,

lim
n→∞

Rµ,θx0 (n) := lim
n→∞

[
Eµ,θx0 [νθ(Xn)]− V µ,θx0 (n)

]
= 0, ∀x0 ∈ X ,

where θ is the true parameter and Xn is the random period-n state, which is obtained by

running an admissible policy µ for n periods.

If TS has vanishing expected residual regret, then eventually its expected performance

converges to that of an optimal policy.

2.6.2 Temporal Difference Error

To bound the expected residual regret, we first establish a connection to the temporal-

difference error function [Sutton and Barto, 2018]. This will later allow us to provide a

bound for the former by bounding the latter. This function, which is parametrized by θ,

quantifies the discrepancy between the reward-to-go of choosing the optimal control instead

of an arbitrary control in a given state.

Definition 2.6.3 (Hernández-Lerma, 2012). We denote the temporal-difference error func-

tion by φθ : K→ R, where

φθ(x, u) := rθ(x, u) + β

∫
νθ(y)Qθ(dy | x, u)− νθ(x).

The first two terms of φθ(x, u) constitute the reward-to-go of choosing (an arbitrary)

control u ∈ U(x) in state x, while νθ(x) is the reward-to-go of choosing the optimal control

in x.

Lemma 2.6.2 (Temporal-difference error). For every initial state x0 ∈ X , a policy µ has

vanishing expected residual regret, i.e.,

lim
n→∞

[
Eµ,θx0 [νθ(Xn)]− V µ,θx0 (n)

]
= 0, ∀x0 ∈ X ,
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if and only if φθ(Xt, Ut)→ 0 in probability-Pµ,θx0 for every x0 ∈ X .

We defer the proof of Lemma 2.6.2 to Section 2.9.1, adapted from Hernández-Lerma

[2012] into our setting. The proof establishes a connection between the expected residual

regret and the expected value of φθ. In particular, for a policy µ,

Rµ,θx0 (n) = −
∞∑
t=n

βt−nEµ,θx0 φ
θ(Xt, Ut). (2.26)

2.6.3 Expected Residual Regret Bounds

In this section, we provide convergence results for TS. We will bound the expected residual

regret by bounding Eτ,θx0 [φθ(Xt, Ut) | θt 6= θ] and Eτ,θx0 [φθ(Xt, Ut)], respectively. The DM

draws a sample in each period t, represented by the random variable Θt. Recall from Section

2.4.1, given the true parameter θ ∈ P ,

πt(θ | Ht) = Pτ,θx0 (Θt = θ | Ht) (2.27)

is the probability that the sample Θt is equal to θ, conditional on Ht. Since the condition is

not a known ht, (2.27) is also a random variable. Similarly,

1− πt(θ | Ht) = Pτ,θx0 (Θt 6= θ | Ht) (2.28)

is the (random) probability that the sample Θt is not equal to θ, given (random) Ht. Taking

the expectation of both sides of (2.28),

Eτ,θx0 [1− πt(θ | Ht)] = Eτ,θx0 [Pτ,θx0 (Θt 6= θ | Ht)], (2.29)
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resolves the uncertainty of Ht. By the law of iterated expectations, (2.29) simplifies into

1− πt(θ) = Pτ,θx0 (Θt 6= θ), (2.30)

i.e., the posterior probability that the sample is not equal to the true parameter θ. Then,

by the law of total expectation, we partition the expectation of φθ, i.e.,

Eτ,θx0 [φθ(Xt, Ut)] = Pτ,θx0 (Θt 6= θ)Eτ,θx0 [φθ(Xt, Ut) | Θt 6= θ]

+Pτ,θx0 (Θt = θ)Eτ,θx0 [φθ(Xt, Ut) | Θt = θ],

where Ut is the control that maximizes the reward-to-go by treating the sampled estimate

Θt as the true value of the unknown parameter θ. We can simply rewrite the probability

terms to obtain,

Eτ,θx0 [φθ(Xt, Ut)] = (1− πt(θ))Eτ,θx0 [φθ(Xt, Ut) | Θt 6= θ]

+πt(θ)E
τ,θ
x0 [φθ(Xt, Ut) | Θt = θ].

But then, when Θt = θ, by the decision rule τt(Ut | ht, θ), the optimal control (of state

xt) is taken, and the temporal difference error φθ(Xt, Ut) becomes 0, by definition. Hence,

when Θt = θ,

Eτ,θx0 [φθ(Xt, Ut)] = (1− πt(θ))Eτ,θx0 [φθ(Xt, Ut) | Θt 6= θ]. (2.31)

Note that, although we express the τ policy as a sequence of stochastic kernels, it is a

deterministic policy by Assumption 0, when conditioned on θt. Before presenting the main

result of this section, we first bound the expectation of φθ(Xt, Ut) in Lemma 2.6.3, then

extend a result from Kim [2017] into our setting by Lemma 2.6.4.

Lemma 2.6.3 (Lower bound on expected φθ). The expected value of φθ(Xt, Ut), conditional
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on Θt 6= θ, is lower bounded by a non-positive constant, i..e,

Eτ,θx0 [φθ(Xt, Ut) | Θt 6= θ] ≥ −2M

(
1 + β

1− β

)
, (2.32)

where M ≥ 0 is the upper bound on the absolute value of the expected reward, per Remark .

Proof of Lemma 2.6.3. In this proof, we slightly modify the Ut notation to indicate its de-

pendence on the sample. Let UΘt
t denote the control picked when sample Θt is drawn from

P , and let Uθt represent the control picked when knowing θ. Otherwise, we cannot distinguish

the Ut controls.

Eτ,θx0 [φθ(Xt, U
Θt
t ) | Θt 6= θ] =Eτ,θx0 [Rt(Xt, U

Θt
t ) + β

∫
νθ(xt+1)qθ(dxt+1 | Xt, UΘt

t ) dη | Θt 6= θ]

− Eτ,θx0 [νθ(Xt) | Θt 6= θ],

which is equal to

Eτ,θx0

[
Rt(Xt, U

Θt
t ) + β

∫
νθ(xt+1)qθ(dxt+1 | Xt, UΘt

t ) dη | Θt 6= θ

]
− Eτ,θx0

[
Rt(Xt, U

θ
t ) + β

∫
νθ(xt+1)qθ(dxt+1 | Xt, Uθt ) dη | Θt 6= θ

]
.

We can rearrange the above expression to obtain

Eτ,θx0 [Rt(Xt, U
Θt
t ) | Θt 6= θ]− Eτ,θx0 [Rt(Xt, U

θ
t ) | Θt 6= θ] (2.33)

+ Eτ,θx0

[
β

∫
νθ(xt+1)qθ(dxt+1 | Xt, UΘt

t ) dη | Θt 6= θ

]
(2.34)

− Eτ,θx0

[
β

∫
νθ(xt+1)qθ(dxt+1 | Xt, Uθt ) dη | Θt 6= θ

]
. (2.35)
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Then, we introduce the function gθ : X × P → R+

gθ(x, θ) :=

∫
νθ(y)qθ(dy | x, Uθt ) dη, (2.36)

such that (2.34) is

βEτ,θx0 [gθ(Xt,Θt) | Θt 6= θ]

and (2.35) is

−βEτ,θx0 [gθ(Xt, θ) | Θt 6= θ].

By Remark and the infinite series property, we have

∣∣∣νθ(x)
∣∣∣ ≤ M

1− β
, ∀x ∈ X .

By (2.36), ∣∣∣gθ(x, θ)∣∣∣ ≤ M

1− β

∫
qθ(dy | x, Uθt ) dη ≤ M

1− β
.

Taking the conditional expectation yields the same upper and lower bounds, i.e.,

∣∣∣Eτ,θx0 [gθ(x, θ) | Θt 6= θ]
∣∣∣ ≤ M

1− β
.

We lower bound (2.34)

βEτ,θx0 [gθ(Xt,Θt) | Θt 6= θ] ≥ −βM
1− β

,

and upper bound (2.35)

βEτ,θx0 [gθ(Xt, θ) | Θt 6= θ] ≤ βM

1− β
,
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to get a lower bound on their difference,

βEτ,θx0 [gθ(Xt,Θt) | Θt 6= θ]− βEτ,θx0 [gθ(Xt, θ) | Θt 6= θ] ≥ −2βM

1− β
.

The difference between the first two reward terms, i.e., (2.33), can be no smaller than

−2M , thus

Eτ,θx0 [φθ(Xt, U
Θt
t ) | Θt 6= θ] ≥ −2M +

2βM

1− β
= −2M

(
1 + β

1− β

)
.

Lemma 4 of Kim [2017] bounds the expected probability that θ is not selected in period

t. We will now extend this result to the discounted infinite-horizon framework. However, for

us to be able to generalize the finite-dimensional state and control spaces that Kim [2017]

deals with into Borel (possibly infinite) spaces, we need to make the following assumption.

Assumption 1. We assume

inf
x∈X ,u∈U ,r∈Rc

fγ(r | x, u) > 0, ∀γ ∈ P (2.37)

and

inf
x∈X ,u∈U ,y∈X

qγ(y | x, u) > 0, ∀γ ∈ P . (2.38)

For any x ∈ X , u ∈ U , and any distinct parameter value, γ 6= θ ∈ P , there exists a

positive constant ε(x, u, θ, γ) > 0 such that

inf
x∈X ,u∈U

K(ρθx,u | ρ
γ
x,u) > ε(x, u, θ, γ). (2.39)

We underline that under finite state and control spaces, Assumption 1 simplifies into the
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prerequisites of Kim [2017]. As Kim [2017] explains, (2.39) in Assumption 1 ensures that

given θ 6= γ, the probability measures ρθx,u and ργx,u are distinguishable as measured by the

relative entropy. In Section 2.9.2, we illustrate the implications of Assumption 1 through

Example 2.5.2.

The following lemma extends a result from Kim [2017] to our setting.

Lemma 2.6.4 (Extension of Lemma 4 of Kim [2017]). Under Assumption 1, Lemma 4 of

Kim [2017] extends to our setting. That is to say, implementing TS and starting from any

x0 ∈ X , there exists constants aθ, bθ > 0 such that

Eτ,θx0 [1− πt(θ | Ht)] ≤ aθe
−bθt, (2.40)

where aθ and bθ are defined as in Kim [2017].

Because Lemma 2.6.4 is an adaptation of Lemma 4 of Kim [2017] into our setting, we

defer it to Section 2.9.1. By the law of iterated expectations, (2.40) simplifies into

1− πt(θ) ≤ aθe
−bθt. (2.41)

We are now ready to introduce the main result of this section.

Proposition 1 (Upper bound onRτ,θx0 (n)). When Assumption 1 holds, the expected residual

regret converges to 0 exponentially fast.

Rτ,θx0 (n) := Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n) ≤ 2M(1 + β)aθe
−bθn

(1− β)2
,

where aθ and bθ are positive constants, defined in Lemma 4 of Kim [2017].
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Proof of Proposition 1. Equations (2.31), (2.32) and (2.41) together yield

− Eτ,θx0 [φθ(Xt, Ut)] ≤
2M(1 + β)aθe

−bθt

1− β
. (2.42)

By the proof of Lemma 2.6.2, φθ(Xt, Ut) and Rτ,θx0 (n) are related, see (2.26). Then, by

(2.42), the right-hand side of (2.26) is upper bounded,

−
∞∑
t=n

βt−nEτ,θx [φθ(Xt, Ut)] ≤
∞∑
t=n

βt−n
2M(1 + β)aθe

−bθt

1− β
.

Since bθ ≥ 0, we have e−bθt ≤ e−bθn for all t ≥ n. Thus, the above equation becomes

−
∞∑
t=n

βt−nEτ,θx [φθ(Xt, Ut)] ≤
∞∑
t=n

βt−n
2M(1 + β)aθe

−bθn

1− β
. (2.43)

By (2.26) and applying the infinite geometric series formula to (2.43), we obtain

−
∞∑
t=n

βt−nEτ,θx0 [φθ(Xt, Ut)] = Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n)

= Rτ,θx0 (n) ≤ 2M(1 + β)aθe
−bθn

(1− β)2
,

thus showing that the upper bound on the expected residual regret decays exponentially.

2.7 Complete Learning and Probabilistic Residual Regret

The goal of this section is to define a probabilistic version of the expected residual regret (the

expected value of the probabilistic version is the expected residual regret itself, i.e., Rτ,θx0 (n),

and show the conditions under which it converges Pτ,θx0 -almost surely to 0 in this framework.

We show that the posterior distribution of TS converges Pτ,θx0 -almost surely to a point mass

at θ. This behavior is called complete learning.
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2.7.1 Complete Learning

Kim [2017] has shown that the expected posterior sampling error of TS converges to 0

exponentially fast (see Lemma 2.6.4). Our result builds on this result by using the Dominated

Convergence Theorem. Formally,

Assumption 2 (Existence of the limit of πt(θ | Ht)). Suppose that lim
t→∞

πt(θ | Ht) exists

Pτ,θx0 -a.s.

By imposing this assumption, we avoid the nonexistence of the limit due to oscillation.

Under Assumption 1, the expected posterior sampling error of TS vanishes. We will show

that this, i.e., lim
t→∞

Eτ,θx0 [πt(θ | Ht)] = 1, and Assumption 2 together imply

lim
t→∞

πt(θ | Ht) = 1, Pτ,θx0 -almost surely.

The next lemma is the final piece to show the occurrence of complete learning.

Lemma 2.7.1. Suppose that TS does not exhibit complete learning, i.e., lim
t→∞

πt(θ | Ht) < 1,

Pτ,θx0 -a.s. Then, there exists an n ≥ 1 s.t.

Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
> 0, Pτ,θx0 -almost surely.

The proof of Lemma 2.7.1 is in Section 2.9.1.

Theorem 2.7.2 (TS learns θ as t→∞). Suppose that Assumptions 1 and 2 hold. Then,

lim
t→∞

πt(θ | Ht) = 1, Pτ,θx0 -almost surely.

Proof of Theorem 2.7.2. By Lemma 2.6.4, Assumption 2, and the Dominated Convergence
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Theorem, it follows that

1 = lim
t→∞

Eτ,θx0 [πt(θ | Ht)] = Eτ,θx0

[
lim
t→∞

πt(θ | Ht)
]
, Pτ,θx0 -a.s.

Then,

1 = Eτ,θx0

[
lim
t→∞

πt(θ | Ht)
]

= Eτ,θx0

[
lim
t→∞

πt(θ | Ht)
∣∣∣ { lim

t→∞
πt(θ | Ht) < 1− 1

n

}]
Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
+ Eτ,θx0

[
lim
t→∞

πt(θ | Ht)
∣∣∣ { lim

t→∞
πt(θ | Ht) ≥ 1− 1

n

}]
Pτ,θx0

(
lim
t→∞

πt(θ | Ht) ≥ 1− 1

n

)
≤ (1− 1/n)Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
+ 1− Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
= 1− 1

n
Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
, Pτ,θx0 -a.s.

However, by Lemma 2.7.1, lim
t→∞

πt(θ | Ht) < 1 implies

1 = Eτ,θx0

[
lim
t→∞

πt(θ | Ht)
]

≤ 1− 1

n
Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
< 1, Pτ,θx0 -almost surely,

leading to contradiction. For all n ≥ 1, it must be that

Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
= 0, Pτ,θx0 -almost surely.

Thus, we must have lim
t→∞

πt(θ | Ht) = 1, Pτ,θx0 -almost surely. This completes the proof.

2.7.2 Vanishing Probabilistic Residual Regret

We define the residual regret as the “probabilistic” version of the expected residual regret,

which was defined in Section 2.5.2. In the remainder of this section, we use the terms
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probabilistic residual regret and residual regret interchangeably. The residual regret almost

mimics the definition in (2.23); however, it is a random expectation, and is obtained by

conditioning on the random history Hn, generated by running TS from period 0 to n.

Definition 2.7.1. The residual regret Rτ,θx0 (n) is a random expectation that represents the

forward-looking regret from period n onward into the infinite future. This regret is between

a policy which implements τ until it switches to the optimal policy µθ in period n as opposed

to continuing with τ . Formally,

Rτ,θx0 (n) := νθ(Xn)− Eτ,θx0

[ ∞∑
t=n

βt−nRt | Hn

]
(2.44)

= sup
µ∈M

Eµ,θx0

[ ∞∑
t=n

βt−nRt | Hn

]
− Eτ,θx0

[ ∞∑
t=n

βt−nRt | Hn

]
(2.45)

= Eµ
θ,θ
x0

[ ∞∑
t=n

βt−nRt | Hn

]
− Eτ,θx0

[ ∞∑
t=n

βt−nRt | Hn

]
, (2.46)

where the conditioning on the random history vector is denoted explicitly.

The residual regret is constructed in a way such that its expected value is the expected

residual regret itself, i.e.,

Rτ,θx0 (n) = Eτ,θx0 [Rτ,θx0 (n)]. (2.47)

Recall the interpretation of the first term of (2.46); the stochastic process is driven by a

“hybrid” policy that follows the τ policy for the first n periods, and then adopts the optimal

policy µθ in period n after the oracle reveals θ. It is a random quantity due to the random

starting state Xn in period n, induced by TS. The second term is the random expected

infinite sum obtained by implementing TS, starting from random state Xn, and omitting

the rewards from period 0 to n− 1.

Next, we show that the residual regret converges to 0 in the limit Pτ,θx0 -a.s., assuming it
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exists.

Assumption 3 (Existence of the limit of Rτ,θx0 (n)). Suppose that lim
n→∞

Rτ,θx0 (n) exists Pτ,θx0 -

a.s.

From (2.44) observe that the residual regret is the difference of two terms. Consider the

first term νθ(Xn). Under some technical conditions, if the limit of the state process {Xn}

exists, then the limit of νθ(Xn) exists. However, since we do not impose any restrictions on

the underlying chain structure and the underlying stochastic process is history-dependent,

we cannot guarantee that lim
n→∞

Xn exists, and thus, there could be cases where lim
n→∞

νθ(Xn)

does not converge6. Therefore, we directly assume that the limit of the residual regret

exists. Similar to the expected residual regret, the following corollary shows that under

certain conditions the probabilistic residual regret also vanishes in the limit.

Corollary 2.7.2.1. When the conditions of Proposition 1 and Assumption 3 hold, the resid-

ual regret of TS vanishes, i.e.,

lim
n→∞

Rτ,θx0 (n) = 0, Pτ,θx0 -almost surely.

Proof of Corollary 2.7.2.1. Recall that the probabilistic residual regret converges Pτ,θx0 -a.s. to

0 if there exists a null set A ∈ B(Ω) with Pτ,θx0 (A) = 0 such that the statement holds if ω /∈ A.

Given Assumption 3, it suffices to show that ∀ ε > 0, @ A ∈ B(Ω) with Pτ,θx0 (A) = ε > 0

such that lim
n→∞

Rτ,θx0 (n) 6= 0 ∀ω ∈ A. We prove this by contradiction.

Suppose that ∃A ∈ B(Ω) with Pτ,θx0 (A) = ε′ > 0 for some ε′ > 0 such that lim
n→∞

Rτ,θx0 (n) 6=

0 ∀ω ∈ A. Since Rτ,θx0 (n) > 0 by construction, this limit is strictly positive, i.e., lim
n→∞

Rτ,θx0 (n) >

0 ∀ω ∈ A.

Then, for any δ > 0, we define Aδ as the largest measurable subset of A such that

Aδ ⊂ {ω ∈ B(Ω) : lim
n→∞

Rτ,θx0 (n) > δ}. According to Assumption 3 and the supposition in

6. We do not require aperiodicity; the chain could be periodic, leading to oscillating rewards.
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the previous paragraph, ∃ δ′ such that Pτ,θx0 (Aδ′) = ε′ > 0. Then, we can write

lim
n→∞

Rτ,θx0 (n) = lim
n→∞

Eτ,θx0 [Rτ,θx0 (n)] (2.48)

= lim
n→∞

{∫
Aδ′

Rτ,θx0 (n) dPτ,θx0 (ω) +

∫
B(Ω)\Aδ′

Rτ,θx0 (n) dPτ,θx0 (ω)

}
(2.49)

=

∫
Aδ′

lim
n→∞

Rτ,θx0 (n) dPτ,θx0 (ω) +

∫
B(Ω)\Aδ′

lim
n→∞

Rτ,θx0 (n) dPτ,θx0 (ω) (2.50)

> δ′ε′ > 0, (2.51)

which contradicts Proposition 1. By construction, the first term in (2.49) converges to a

number strictly greater than 0, and the second term converges to some non-negative number.

Because Rτ,θx0 (n) exists by Assumption 3 and is finite7 , by the Dominated Convergence

Theorem, we can express (2.49) as (2.50), But then, (2.51) contradicts with Proposition

1. This implies that our supposition cannot hold, and thus, the residual regret converges

Pτ,θx0 -a.s. to 0.

2.8 Concluding Remarks and Discussion

Fixing a finite period n, we decompose the expected infinite-horizon regret into three com-

ponents. Two of the components are not actionable by the DM. The first component is the

expected regret of the past. The second is the regret expected to be accrued in the future

due to the random state the θ-MDP is in period n, which is a consequence of implementing a

possibly suboptimal policy and cannot be revoked by the DM. The third component, which

we called the expected residual regret, captures what a rational DM would consider as ex-

pected regret. It determines whether the DM will do the best moving forward, given their

state in period n. Hence, we evaluate TS by only this third component, i.e., the expected

7. Since the rewards are finite-valued, in any period, the difference in rewards of the first and second
terms is bounded by a constant. By the infinite geometric series property, and assuming β ∈ [0, 1), Rτ,θx0

(n)
is finite.
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residual regret.

We reiterate that our results hold for chain settings where qγ(· | x, u) is strictly positive

∀γ ∈ P , which rules out chains with absorbing states. Yet, by construction, the expected

residual regret is a viable concept independent of the underlying chain structure; it is ap-

plicable to any structure. Hence, deriving the performance of the residual regret in broader

settings is a potential direction of further research.

In our setting, we show that the expected residual regret of TS decays exponentially to

0 in the worst case (Proposition 1). We explore the conditions under which the posterior

sampling error converges to 0 with almost sure probability (Theorem 2.7.2). At the crux of

these theorems are certain sufficient conditions, which we present in Assumption 2, which

rule out oscillating functions that would prevent complete learning. Finally, we show that a

probabilistic version of the expected residual regret vanishes (Corollary 2.7.2.1), similar to

its expected-valued version. At the crux of this corollary is the sufficiency condition that

we present in Assumption 3. A future direction of research is to study the implications

of Assumptions 2 and 3 in specific problem contexts. In addition to conditions on the

underlying chain structure, complete learning may be a necessary but not sufficient condition

for Assumption 3 to hold.

To the best of our knowledge, the notion of an ADO policy from the adaptive learning

literature had not been connected to TS. By leveraging connections between these settings,

we offer a novel concept of learning. Under some mild assumptions, we provide guarantees of

learning in both expected and probabilistic senses in settings with general state and control

spaces, using the infinite-horizon discounted reward criterion. An interesting extension of

the setup in this paper is to analyze the performance of the novel concept of learning (i.e.,

expected residual regret) under broader settings, e.g., under general chain structures.
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2.9 Appendix

2.9.1 Proofs of Lemmas

Proof of Lemma 2.4.1. When the Bayesian update is conducted with a degenerate distribu-

tion, it returns a degenerate distribution. We show this by induction. We have π0(θ | h0) = 1

and assume πn(θ | Hn) = 1.

πn+1(θ | Hn+1) :=
Lθ(Hn+1)π0(θ | h0)∑
γ∈P Lγ(Hn+1)π0(γ | h0)

=
Lθ(Hn+1)π0(θ | h0)

Lθ(Hn+1)π0(θ | h0) +
∑
γ 6=θ∈P Lγ(Hn+1)π0(γ | h0)

=
Lθ(Hn+1)

Lθ(Hn+1)
= 1.

Since the posterior distribution is degenerate, TS always samples the true parameter θ

from the parameter space. Therefore, the DM who runs the τ policy ends up implementing

the θ-optimal policy.

Proof of Lemma 2.6.1. Consider the θ-ADO statement, |V µ,θx0 (n)−Eµ,θx0 [νθ(Xn)]|. It can be

rewritten as

|V µ,θx0 (n)− Eµ,θx0 [νθ(Xn)]| (2.52)

=

∣∣∣∣∣Eτ,θx0
∞∑
t=n

βt−nRt − Eτ,θx0 [νθ(Xn)]

∣∣∣∣∣
=

∣∣∣∣∣Eτ,θx0
[
Eτ,θx0

( ∞∑
t=n

βt−nRt | Xn

)
− Eτ,θx0 [νθ(Xn) | Xn]

]∣∣∣∣∣
=

∣∣∣∣∣Eτ,θx0
[
Eτ,θx0

( ∞∑
t=n

βt−nRt | Xn

)
− νθ(Xn)

]∣∣∣∣∣
=

∣∣∣∣∣Eτ,θx0
[
Eτ,θx0

( ∞∑
t=n

βt−nRt(Xt, Ut) | Xn

)
− sup
µ∈M

Eµ,θXn

[ ∞∑
t=0

βtRt(Xt, Ut)

]]∣∣∣∣∣ . (2.53)

The second equality is by the law of iterated expectations, and the fourth by substituting

in the definition of the optimal value function. Evidently, the first term of (2.53) is upper
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bounded by the second term. Thus, (2.53) is equal to

Eτ,θx0

[
sup
µ∈M

Eµ,θXn

[ ∞∑
t=0

βtRt(Xt, Ut)

]
− Eτ,θx0

( ∞∑
t=n

βt−nRt(Xt, Ut) | Xn

)]
,

for any initial state x0 ∈ X . Rewriting the optimal value function in closed form, we obtain

Eτ,θx0

[
νθ(Xn)− Eτ,θx0

( ∞∑
t=n

βt−nRt(Xt, Ut) | Xn

)]
,

which is equal to

Eτ,θx0 [νθ(Xn)]− Eτ,θx0

[ ∞∑
t=n

βt−nRt(Xt, Ut)

]
= Eτ,θx0 [νθ(Xn)]− V τ,θx0 (n).

Proof of Lemma 2.6.2. This proof is an adaptation of Theorem 3.6 of Hernández-Lerma

[2012]. By the definition in Section 2.6.1,

φθ(Xt, Ut) = Eµ,θx0 [Rt(Xt, Ut) + βνθ(Xt+1)− νθ(Xt) | Ht, Ut],

for any initial state x0 ∈ X , admissible policy µ ∈ M, true parameter value θ, t ≥ 0. For

any t ≥ 1, history in period t is ht = (x0, θ0, a0, r0, x1, θ1, a1, r1, . . . , xt). Multiplying by

βt−n yields

βt−nφθ(Xt, Ut) = Eµ,θx0 [βt−nRt(Xt, Ut) + βt−n+1νθ(Xt+1)− βt−nνθ(Xt) | Ht, Ut].

Taking the expectation of both sides and by the law of total expectation, we obtain

Eµ,θx0 [βt−nφθ(Xt, Ut)] = Eµ,θx0 [βt−nRt(Xt, Ut) + βt−n+1νθ(Xt+1)− βt−nνθ(Xt)].
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Summing over all t ≥ n gives

∞∑
t=n

βt−nEµ,θx0 [φθ(Xt, Ut)] =
∞∑
t=n

Eµx0 [βt−nRt(Xt, Ut)]

+ Eµ,θx0

[ ∞∑
t=n

(βt−n+1νθ(Xt+1)− βt−nνθ(Xt))

]
.

The above simplifies into

∞∑
t=n

βt−nEµ,θx0 [φθ(Xt, Ut)] = V
µ,θ
x0 (n)− Eµ,θx0 [νθ(Xn)].

Recalling the result of Lemma 2.6.1 as,

−
∞∑
t=n

βt−nEµ,θx0 [φθ(Xt, Ut)] = Eµ,θx0 [νθ(Xn)]− V µ,θx0 (n).

In the limit, µ has vanishing expected residual regret (is θ-ADO); that is, for every

x0 ∈ X ,

lim
n→∞

(Eµ,θx0 [νθ(Xn)]− V µ,θx0 (n)) = 0,

if and only if, for every x0 ∈ X ,

lim
n→∞

−
∞∑
t=n

βt−nEµ,θx0 [φθ(Xt, Ut)] = 0.

This is equivalent to, for every x0 ∈ X ,

lim
t→∞

−Eµ,θx0 [φθ(Xt, Ut)] = 0.

Hence, a policy µ has vanishing expected residual regret if and only if, for every x0 ∈ X ,

lim
t→∞

Eµ,θx0 [φθ(Xt, Ut)] = 0.
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By Theorem 4.1.4 of Chung [2001], if Eµ,θx0 [φθ(Xt, Ut)] converges to 0, then φθ(Xt, Ut)

converges to 0 in probability-Pµ,θx0 , for every x0 ∈ X , proving the forward direction of Lemma

2.6.2. It remains to show the reverse direction to complete the proof. By the same theorem

of Chung [2001], for a uniformly bounded sequence {φθ}, convergence in probability and

Lp (in expectation) are equivalent. By the first remark in Section 2.3.1, it follows that

{φθ} is bounded by some finite number. Hence, φθ(Xt, Ut) → 0 in probability-Pµ,θx0 implies

Eµ,θx0 [φθ(Xt, Ut)]→ 0 as t→ 0.

Proof of Lemma 2.6.4. We walk the reader through the proof of Kim [2017] while using our

notation. The proof initially defines the stochastic process, for any γ 6= θ,

Z
γ
t =

t∑
s=0

log Λ
γ
s ,

where, using our notation,

Λ
γ
0 = 1

Λ
γ
s =

fθ(Rs−1 | Xs−1, Us−1)qθ(Xs | Xs−1, Us−1)

fγ(Rs−1 | Xs−1, Us−1)qγ(Xs | Xs−1, Us−1)
,

for 0 < s ≤ t. Next, Kim [2017] defines filtration (Ht : t ≥ 0) by Ht = σ(Ht), where Ht is

by the definition in (2.4). Then, it follows that the stochastic process Zγt is a submartingale

with respect to Ht under probability measure Pτ,θx0 . It is crucial that Z
γ
t is a submartingale.

Kim [2017] decomposes it into an Ht martingale under Pτ,θx0 ,

M
γ
t :=

t∑
s=0

(log Λ
γ
s − Eτ,θx0 [log Λ

γ
s | Hs−1]),

and a predictable process,

A
γ
t :=

t∑
s=0

Eτ,θx0 [log Λ
γ
s | Hs−1].
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We explain how the proof extends to our setting through Assumption 1. The argument

is twofold. The first requirement is that the increments of Mγ
t are bounded above and below

by some d, i.e.,

| log Λ
γ
s − Eτ,θx0 [log Λ

γ
s | Hs−1]| ≤ d, (2.54)

for some d > 0. To see that (2.54) holds in our setting, note that by (2.37) and (2.38), i.e.,

fγ(r | x, u) and qγ(y | x, u) are bounded away from 0, we have that | log fγ(r | x, u)| < ∞

and | log qγ(y | x, u)| < ∞. This satisfies (2.54), which is needed for Azuma’s inequality, a

crucial step of Kim [2017]’s proof, to hold. The second requirement of the adaptation of the

proof is

t∑
s=0

Eτ,θx0 [log Λ
γ
s | Hs−1] ≥ εt, (2.55)

i.e., (2.55) is an increasing predictable process. By (2.39), it follows that

Eτ,θx0 [log Λ
γ
s | Hs−1] > ε(x, u, θ, γ) := ε, ∀s ≤ t, (2.56)

i.e., each increment of Aγt is strictly positive, which satisfies (2.55). The reader is referred

to Kim [2017] for the details of why (2.56) holds.

Proof of Lemma 2.7.1. By the definition of almost-sure convergence, we have

Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1

)
= 1.

Therefore,

1 = Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1

)
= Pτ,θx0

( ∞⋃
n=1

{
lim
t→∞

πt(θ | Ht) < 1− 1

n

})
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≤
∞∑
n=1

Pτ,θx0

(
lim
t→∞

πt(θ | Ht) < 1− 1

n

)
.

where the inequality is by Boole’s inequality. Hence, Lemma 2.7.1 is verified.

2.9.2 Analysis of Assumption 1

Recall Assumption 1. Since Example 2.5.2 has a finite state space, (2.39) boils down to: For

any x ∈ X , u ∈ U , and any two distinct parameter value, γ 6= θ ∈ P , there exists a positive

constant ε(x, u, θ, γ) > 0 such that

K(ν
x,u
θ | νx,uγ ) ≥ ε(x, u, θ, γ).

The above condition holds if and only if (by definition)

Efθqθ

[
log

(
dν
x,u
θ

dν
x,u
γ

)]
= Efθqθ

[
log

(
fθ(· | x, u)qθ(· | x, u)

fγ(· | x, u)qγ(· | x, u)

)]
≥ ε(x, u, θ, γ),

where Efθqθ [· | x, u] is defined in Section 2.3.2. For illustration purposes, we make the

same assumption we had in Example 2.5.2; the θ-MDP has only one state. This implies the

transition kernel, qθ(· | x, u), is deterministic and we simplify the relative entropy expression.

Due to the simpler version of the relative entropy, we utilize the expectation operator Efθ [· |

x, u], also defined in Section 2.3.2. It suffices to find a constant ε(x, u, θ, γ) > 0, for any xA

(in this case X = {x0} where x0 = xA), any u ∈ U (control 1 or 2), θ = B and γ = A, such

that

Efθ

[
log

(
fθ(· | x, u)

fγ(· | x, u)

)]
≥ ε(x, u, θ, γ).
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We have,

Efθ

log

 1√
2π0.1

e
− (r−µθ)2

2(0.1)

∣∣∣x, u
1√

2π0.1
e
− (r−µγ)2

2(0.1)

∣∣∣x, u

 = Efθ

[
log

(
e−(r−µθ)2∣∣x, u
e−(r−µγ)2

∣∣x, u
)]

= Efθ
[
log
(
e−(r−µθ)2+(r−µγ)2

∣∣x, u)] ,
which can be simplified as

Efθ [−(r − µθ)2 + (r − µγ)2 | x, u].

Case 1: When the state is xA and control 2 is picked by the TS policy, r ∼ N(0.8, 0.1), and

Efθ [−(r − 0.8)2 + (r − 0.4)2 | xA, 2]

= −V ar[r | xA, 2] + Efθ [(r − 0.4)2 | xA, 2]

= −0.1 + Efθ [r
2 − 0.8r + 0.16 | xA, 2]

= −0.1 + Efθ [r
2 | xA, 2]− 0.8Efθ [r | xA, 2] + 0.16

= −0.1 + V ar[r | xA, 2] + (Efθ [r | xA, 2])2 − 0.8Efθ [r | xA, 2] + 0.16

= −0.1 + 0.1 + 0.64− 0.64 + 0.16 = 0.16.

Case 2: When the state is xA and control 1 is picked by the TS policy, r ∼ N(0.3, 0.1), and

Efθ [−(r − 0.3)2 + (r − 0.5)2 | xA, 1]

= −V ar[r | xA, 1] + Efθ [(r − 0.5)2 | xA, 1]

= −0.1 + Efθ [r
2 − r + 0.25 | xA, 1]

= −0.1 + Efθ [r
2 | xA, 1]− Efθ [r | xA, 1] + 0.25

= −0.1 + V ar[r | xA, 1] + (Efθ [r | xA, 1])2 − Efθ [r | xA, 1] + 0.25
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= −0.1 + 0.1 + 0.09− 0.3 + 0.25 = 0.04.

As long as 0 < ε(x, u, θ, γ) ≤ 0.04, Assumption 1 holds for Example 2.5.2.
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CHAPTER 3

ESTIMATING THE MEAN AND VARIANCE OF

HETEROGENEOUS TASKS

3.1 Motivation and Literature Review

Estimating the mean and variance of processes can generate useful insights. For example,

a process with high variance may signal a need for intervention, while the reverse scenario

may indicate an opportunity to explore and disseminate best practices. Such estimations are

especially relevant in the service industry where processes are distinct tasks being performed

multiple times by agents.

In this work, our area of focus is the healthcare industry. We aim to estimate the

mean and variance of surgical cases (surgical case and surgery will be used interchangeably).

Surgical cases are well-defined tasks which are performed in a dedicated part of the hospital,

i.e., in the operating room (OR).

Consider a group of surgeons who independently perform surgeries that are of similar

nature, and they all take similar (mean) time to complete their cases. If one surgeon’s case

times have lower variance time than the rest of the group, investigating the root causes of

the discrepancy may bring forth opportunities to improve the variance of other surgeons’

case times. In the context of the OR, the potential benefits of identifying variance include

better utilization of the rooms and the improvement of metrics such as overtime, patient

satisfaction and safety; Cheng et al. [2018] found that prolonged operative time is associated

with an increased risk of surgery complications, advocating for decreased operative times to

be a universal goal for surgeons, hospitals, and policy makers.

A critical feature of the setting that we study is that tasks are multi-step objects, i.e.,

tasks consist of one or more sub-tasks. This fits well with treating surgical cases as tasks

since they are composed of one or more procedures, as in Figure 3.1.
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...

Figure 3.1: The surgical actions take place during the “Operative Stage”, i.e., the surgery. It
begins with first incision and ends with the closing of the patient. We have timestamps for
first incision time and close time.

For efficient planning, it is crucial that one can predict the task time of a previously

unseen task (or rarely seen). For this, it is necessary to estimate a “universal” slope coefficient

(e.g., impact of task familiarity on time) using tasks that are similar in nature. However,

running a single regression on the full sample would be naive and likely unsuccessful as task

times are not necessarily commensurate across different task times. Instead, a reasonable

coefficient, and thus a reasonable prediction, can be obtained by running a standardized

regression. To serve as an input to the standardized regression, each (observed) task time

can be standardized as follows,

Standardized time =
Observed time−Mean time of task type

Standard deviation of task type
. (3.1)

Through standardization, tasks are brought into the same scale. Thus, the impact of

task familiarity becomes generalizable across tasks, i.e., the impact is estimated in a way

that is impervious to task types.

Mean estimation techniques for small sample sizes have been studied; however, to the

best of our knowledge, there does not exist well-established variance estimation techniques

for small samples. Our study extends the work of Li et al. [2009], which estimates the mean
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duration of surgical cases using the Current Procedural Terminology (CPT) coding scheme.

In this study, we extend their results along three dimensions,

1. We use three independent procedure coding schemes and conduct a comparative study.

• The internal coding scheme of University of Chicago Medical Center (UCM)

• International Classification of Diseases (ICD-10). We use a truncated version of this

to avoid the excessive thinning of data. In the remainder of the paper, they will be

referred to as “ICD-10-trunc”.

• Current Procedural Terminology (CPT)

2. We estimate the variance of surgical cases based on the cases’ composition of procedures.

3. In addition to a supervised model, we generate estimations using an unsupervised method.

To our knowledge, our work is the first to estimate the variance of surgical cases. We

adapt two distinct statistical models to this novel setting and compare their performance

in regards to their mean and variance predictions. Using the supervised and unsupervised

methods, we compare the success of the results against each other. The methods we adapt

are the random coefficients model and the hierarchical clustering model. In the context of the

latter, we employ ANOVA for categorical variables, adapting the methodology from Light

and Margolin [1971] into our setting.

3.2 Data

The full sample data in this study consists of 68,655 surgical cases performed between Jan-

uary 1, 2017 and July 21, 2022 at the University of Chicago Medical Center, Surgery De-

partment. This sample excludes cases with operative times longer than 10 hours and less

than 10 minutes, as these are outlier cases. We include twelve service lines in our analysis,

which make up 96 percent of the raw data. We run our models separately for each service
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line, similar to the approach of Li et al. [2009]. Two of the reasons they list are relevant to

us;

• Although the same procedures can be shared between multiple services, the codes are

mostly different across service lines.

• Studies suggest that the service line itself is a relevant factor for predicting case durations

[Strum et al., 2003].

Unlike UCM and CPT codes, ICD-10 codes have “meaningful” characters. We make

use of this structure. Consider a surgical case where the (pre-surgery) diagnosis is “Full

thickness burn with skin graft or inhalation injury with CC/MCC (Major complication or

comorbidity). One of the three ICD-10 codes of this case is 0HRJXK3, shown in Figure 3.2:

Replacement of Left Upper Leg Skin with Nonautologous Tissue Substitute, Full Thickness,

External. The initial character is “0” for all procedure codes. While the second character gives

the body system, the body part is represented jointly by the second and fourth characters,

i.e., the fourth character is not meaningful by itself. The rest of the characters are meaningful

independent of other characters. We determine the main factors that impact the duration of

a surgical case to be “body part”, “operation” and “approach”, thereby omitting “device” and

“qualifier” in order to avoid the thinning of data. Since the first character is ubiquitously 0,

and the final two characters are omitted, we employ the truncated version of ICD-10 codes;

the full code is replaced with its 4-character substring: HRJX.

0
Surgical

H

Body System
(Skin and Breast)

R

Operation
(Replacement)

J

Body Part
(Skin, Left Upper Leg)

X

Approach
(External)

K

Device
(Nonautologous tissue substitute)

3
Qualifier

(Full thickness)

Figure 3.2: ICD-10 code structure
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The challenge around estimating surgery variance is that surgeries often consist of multi-

ple procedures. To illustrate this, consider the following example. Under the UCM scheme,

“Debridement Leg Plastic” is a common procedure code and appears as the sole procedure

in 336 single-procedure surgeries. Yet, the number of surgical cases in which both “Debride-

ment Leg Plastic” and “Debridement Foot Plastic” were performed is merely 5 out of the

full sample. Table 3.1 shows the heterogeneity of surgical cases; under UCM, the truncated

version of ICD-10 (i.e., ICD-10-trunc) and CPT schemes. By Table 3.1, we note that about

1/3 of all surgical cases, when encoded by either the truncated ICD-10’s or CPT’s, appear

only once in the data.

Table 3.1: How many times do surgeries appear in the data?

Coding System
Surgery Occurrence Times
1 2 – 5 6 – 10 ≥ 10

UCM University of Chicago Medical Center 11% 8% 5% 76%
ICD-10-trunc International Classification of Diseases 10th Revision (truncated) 34% 14% 7% 45%

CPT Current Procedural Terminology 35% 8% 6% 51%

Furthermore, nearly 1/3 of the full sample of surgeries have two or more procedures when

encoded by the UCM scheme, and about 2/3 of cases have multiple procedures when encoded

by CPT and ICD-10-trunc.

3.3 First Method: Random Coefficients Approach

The operative time of surgery i is equal to the sum of the (random) times of the procedures

being performed.

Yi =
K∑
k=0

Xikβik = βi0 +
K∑
k=1

Xikβik, (3.2)

where Xi0 = 1 and Xik ∈ {0, 1} for k ≥ 1, and βik ∈ R are the random coefficients. We let

K denote the number of distinct procedures across all surgeries and K := {1, 2, . . . , K} the
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set of procedures. We denote the vector of procedures by Xi := (Xi0, Xi1, . . . , XiK). An

element of Xi is set to 1 if the corresponding procedure is performed in surgery i, and set to

0 otherwise. Xi is observed, and it has length (K + 1). We define the matrix of surgeries,

i.e.,

X :=



X ′1

X ′2
...

X ′N


N×(K+1)

where N is the number of surgeries (i.e., observations) and X ′i represents the transpose of

Xi. The set Xi := Xi0 ∪ {Xik : k ∈ K} represents the procedures, and X ci := {XijXik : j 6=

k ∈ K} represents the set of cross-terms. Let X̃i represent the vector that consists of all

elements of Xi and X ci ; i.e., the vector of the procedures and pairwise interactions. Similar

to Xi, an element of X̃i is set to 1 if the corresponding procedure is performed in surgery

i. In X̃i, for the cross-term of two distinct procedures k and j to be nonzero, it has to be

that both are performed in surgery i, i.e., Xik = Xij = 1. X̃i is observed and has length

(K+ 1) +
(K−1)K

2 for all i. We also define the matrix of surgeries including cross terms, i.e.,

X̃ :=



X̃ ′1

X̃ ′2
...

X̃ ′N


N×

{
(K+1)+

(K−1)K
2

}

where X̃ ′i is the transpose of X̃i.

The vector βi := (βi0, βi1, . . . , βiK) represents the duration of each procedure for surgery

i. It is unobserved and has length (K + 1). One can interpret βi0 as the (random) duration
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to access to the body organ(s) and to close the patient1. Note that we reserve bold letters

for vectors.

Assumption 4a (identification). Xi ⊥⊥ βi.

Assumption 4b (identification). Xi ⊥⊥ βi and Xi ⊥⊥ βijβik, ∀j 6= k ∈ K.

Assumption 4a states that the duration of the procedures are independent of combinations

of procedures. That is, independent of which procedures are performed as part of the same

surgery, the random duration of a procedure βik is drawn from the same distribution across

surgeries. This does not imply that every procedure has the same distribution of duration.

Assumption 4b states that the pairwise product of procedure durations are independent of

the combinations of procedures.

Assumption 5. (uncorrelated) Cov(βi0, βij) = 0, ∀j ∈ K.

Assumption 5 states that each procedure’s duration is uncorrelated with the intercept.

Assumption 6a. The matrix E[XiX
′
i] is full rank.

We choose a design matrix X with full column rank. For this, we adopt the design matrix

construction approach of Li et al. [2009]; that is,

In order to avoid singularity, CPT codes that always appear together should be

treated as a whole as if they formed a new CPT code. ... The purpose of grouping

is to establish the set of single CPT codes whose execution times can be estimated,

the set of two-code CPT combinations whose combined time can be estimated, the

set of three-code CPT combinations whose combined time can be estimated, and

so on. A full-rank design matrix can then be constructed based on the grouping

results.

1. Our data contains timestamps for when the first incision is made and the completion of the patient’s
closing.
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Constructing a full ranked design matrix guarantees the solvability of the least-squares

estimation. We extend this approach to UCM and ICD-10-trunc coding schemes.

Assumption 6b. The matrix E[X̃iX̃
′
i] is full rank.

Results on identification of E[βi] and V ar[βij ] follow by these assumptions.

Lemma 3.3.1 (Mean identification). Under Assumptions 4a and 6a, E[βi] is identified by

linear regression.

Proof. Proof of Lemma 3.3.1.

E[XiX
′
i]
−1E[XiYi] = E[XiX

′
i]
−1E[XiX

′
iβi]

= E[XiX
′
i]
−1E[E[XiX

′
iβi |Xi]]

= E[XiX
′
i]
−1E[XiX

′
iE[βi |Xi]]

= E[XiX
′
i]
−1E[XiX

′
i]E[βi]

= E[βi],

where the second equality is by the law of iterated expectations, and the fourth equality

follows by Assumption 4a.

Lemma 3.3.2 (Variance identification). Under Assumptions 4b, 5, and 6b, V ar[βik] is

identified for k ∈ K.

Proof. Proof of Lemma 3.3.2.

The conditional variance of the duration of surgery i can be written as

V ar[Yi | X̃i] = V ar

 K∑
k=0

Xikβik | X̃i


=

K∑
k=0

V ar
[
Xikβik | X̃i

]
+ 2

K−1∑
k=0

K∑
j>k

Cov(Xikβik, Xijβij | X̃i)
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=
K∑
k=0

V ar
[
Xikβik | X̃i

]
+ 2

K−1∑
k=1

K∑
j>k

Cov(Xikβik, Xijβij | X̃i)

=
K∑
k=0

X2
ikV ar

[
βik | X̃i

]
+ 2

K−1∑
k=1

K∑
j>k

XikXijCov(βik, βij | X̃i)

= V ar [βi0] +
K∑
k=1

XikV ar [βik] + 2
K−1∑
k=1

K∑
j>k

XikXijCov(βik, βij), (3.3)

where the third equality follows from Assumption 5 (i.e., no covariances between βi0 and βik

for all k ∈ K). The final equality follows by X2
ik = Xik since Xik ∈ {0, 1} and Xi0 = 1, and

by Assumption 4b. Note that (3.3) is linear in V ar[βik] for k = 0, . . . , K.

Remark. Revisiting (3.3), note that if Cov(βi0, βij) is allowed to be nonzero ∀j ∈ K, then

V ar[Yi | X̃i] = V ar

 K∑
k=0

Xikβik | X̃i


=

K∑
k=0

V ar
[
Xikβik | X̃i

]
+ 2

K−1∑
k=0

K∑
j>k

Cov(Xikβik, Xijβij | X̃i)

= V ar[βi0 | X̃i] +
K∑
k=1

Xik(V ar[βik | X̃i] + 2Cov(βi0, βik | X̃i))

+ 2
K−1∑
k=1

K∑
j>k

Cov(Xikβik, Xijβij | X̃i)

= V ar[βi0] +
K∑
k=1

Xik(V ar[βik] + 2Cov(βi0, βik))

+ 2
K−1∑
k=1

K∑
j>k

XikXijCov(βik, βij).

(3.4)

In (3.4), the coefficient on Xik is (V ar[βik] + 2Cov(βi0, βik)). Linear regression cannot

separately V ar[βik] and Cov(βi0, βik). So we take Cov(βi0, βik) to be 0 for all k ∈ K, i.e.,

Assumption 5. If one need not estimate V ar[βik], then Assumption 5 can be removed, i.e.,
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only consider Assumptions 4b and 6b.

Next, define

V :=



V ar[Y1 | X̃1 = x̃1]

V ar[Y2 | X̃2 = x̃2]

...

V ar[YN | X̃N = x̃N ]


N×1

Finally, define the vector of the random coefficients’ variances, which includes covariance

terms,

Vβ :=



V ar[βi0]

V ar[βi1]

...

V ar[βiK ]

Cov(βi1, βi2)

...

Cov(βi,K−1, βi,K)

{
(K+1)+

(K−1)K
2

}
×1

In practice, many of the cross terms are set to zero. Yet, the column dimension of X̃ (and

the row dimension of Vβ) is fixed and is equal to (K + 1) +
(K−1)K

2 . Under Assumption 5,

we have

V = X̃Vβ , (3.5)

and each element of V in (3.5) can be written as,

V ar[Yi | X̃i] = X̃ ′iVβ ,
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which implies,

E[(Yi − E[Yi | X̃i])
2 | X̃i] = X̃ ′iVβ =

K∑
k=0

XikV ar[βik]

+ 2
K−1∑
k=1

K∑
j>k

XikXijCov(βik, βij).

(3.6)

Then, Vβ is identified by regressing V on X̃.

[X̃′X̃]−1X̃′V = Vβ . (3.7)

We now present the two-step estimation algorithm.

Estimation.

I. Generate the following variable using the data. This step generates the expression

inside the expectation in (3.6).

V̂i := (Yi − E[Yi | X̃i])
2 = (Yi − Ŷi)2,

where the mean surgery durations are estimated by running the regression Ŷi := E[Yi |

Xi].

II. Then, regress V on X̃. That is, carry out the regression in (3.7).

Remark (Dealing with Heteroskedasticity). By Figure 3.3, we infer that the model suffers

from heteroskedasticity. We note that service lines other than vascular surgery are also

subject to heteroskedasticity. To remedy this, we obtain heteroskedasticity-robust stan-

dard errors that are asymptotically valid in the presence of any kind of heteroskedasticity

[Wooldridge, 2010].
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Figure 3.3: Heteroskedasticity is present; variances of residuals increase as fitted values
increase.

Furthermore, the second regression (i.e., step II of the estimation method) combines data

with an estimate to generate the dependent variable. This implies that the standard errors

are not reliable. To remedy this, we apply bootstrapping which generates reliable standard

errors.

Before ending this section, we describe the step-by-step data handling. Initially, we filter

the full sample to obtain the common sample of UCM, ICD-10-trunc, CPT coding schemes,

where we ensure that each code combination occurs at least 8 times in data to then assess

the goodness of fit. Then looping over each service line, do:

1. Identify the distinctive codes and code combinations to create a full rank matrix [Li et al.,

2009].

2. Partition data into test and training sets; 1/3 of data is used for test and 2/3 for training.

3. Run the estimation algorithm on the training set, i.e., fit the mean surgery durations,

compute the variance estimator, fit the variances.

4. Using the test set, predict the case time and case variance for the remaining cases in the
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sample.

5. Using the test set, compute performance statistics for the mean and variance estimations,

in units of hours.

3.4 Second Method: Hierarchical Clustering Approach

In the unsupervised approach, we bundle distinct surgeries (i.e., distinct code combinations)

into groups in a way that minimizes the within-cluster variation and maximizes the between-

cluster variation. Our aim is to bundle surgeries that share codes together. Once the clusters

are formed, we treat each cluster as if they constitute a single surgery type, and compute

the mean and variance of all of the surgeries that belong to that cluster.2 These statistics

can then be used to standardize the surgery times as in (3.1).

In the hierarchical clustering framework, the dendrogram is a tree-based diagram that

connects distinct surgeries. We present an example in Figure 3.4, where each leaf is a distinct

surgery in the gynecology service line. The vertical level at which leaves fuse corresponds to

the distance between them. The higher the fusion, the greater the distance.

Distance Metric. To plot the dendrogram, one needs to compute the pairwise distances

between all distinct surgeries, i.e., code combinations. We formulate the distance between

two surgeries as the ratio of the number of distinct codes divided by the total number of

distinct codes, across the two surgeries [Bezem and Keijzer, 1996]. Dividing by the total

number of distinct codes brings surgeries that share many codes closer, as desired.

Definition 3.4.1 (Modified Hamming Distance).

d(Surgery 1, Surgery 2) :=
|Symmetric difference|

|Union|
.

2. There will be individual surgeries with the same code combination in the same cluster, but with different
durations.
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Figure 3.4: Dendrogram of Gynecology service based on truncated ICD-10 codes.

Consider the left-most leaf “5148” in Figure 3.4. Since no other leaf contains this code,

its distance to the other leaves is 1. Now, consider the second and third left-most leaves,

“1676_4857” and “1676”. By Definition 3.4.1, the distance between them is 1/2, correspond-

ing to the height at which they fuse.

The dissimilarity between two groups of observations is determined by various types of

linkages, and thus, the fusion of branches depends on the linkage type. Complete and av-

erage linkage are the most commonly preferred linkage types as they yield more balanced

dendrograms. Complete linkage computes all pairwise dissimilarities between the observa-

tions in group A and group B, and picks the largest dissimilarity, while average linkage picks

the average. Our results are robust to both linkage types, and in the interest of brevity, we

will share the results for average linkage.

Clustering Algorithm. Once the dendrogram is obtained, the next step is to determine

the height at which to cut the dendrogram. The height uniquely maps onto the number

of clusters and their compositions. Ultimately, clusters should have small within sum of
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squares (WSS) and large between sum of squares (BSS). However, a naive implementation

of this would lead to each observation being its own cluster; WSS shrinks to its smallest

value and BSS grows to its largest value when leaves are their own clusters. We opt for

the Calinski-Harabasz (CH) index [Caliński and Harabasz, 1974], presented in the following

definition. The CH index provides a practical solution to this problem; it scales BSS and

WSS by their degrees of freedom, placing them on a similar scale.

Definition 3.4.2 (Calinski-Harabasz (CH) index). The CH index is calculated for each

possible h, i.e.,

CH(h) =

BSS(h)
G(h)−1

WSS(h)
n−G(h)

,

where n is number of observations, G is number of clusters, h is the cutoff. Then, find the

cutoff level h such that CH index is maximized, i.e.,

h∗ = argmaxh∈{0,...,1−ε} CH(h).

Note that the upper bound on h is 1− ε because the CH index is not defined for h = 1,

i.e., for G(h) = 1.

Model. Adopting the approach of Light and Margolin [1971], we let nij denote the number

of occurrences of procedure code i ∈ K = {1, . . . , K} in cluster j ∈ G = {1, . . . , G}. To see

how a code can appear in a cluster multiple times, consider this example: If the dendrogram

in Figure 3.4 is cut between 0.5 < h ≤ 0.6, then the code “1676” would appear twice in the

cluster that is made up of “1676_4857” and “1676”. Then, let n+j =
∑
i∈K nij represent

the number of occurrences of any code in cluster j. Similarly, let ni+ =
∑
j∈G nij represent

the number of occurrences of code i, across all of the clusters. Then, the total number of
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occurrences of all codes across all of the clusters is

n =
∑
j∈G

n+j =
∑
i∈K

ni+ =
∑
i∈K

∑
j∈G

nij .

This information can be summarized via aK×G contingency table, which has the form of

a matrix. We refer the interested reader to Light and Margolin [1971] to review the structure

of the contingency table. Figure 3.2 shows its extension to our setting through an example.

Example 3.4.1. We consider a sample of ten distinct surgeries, where the surgeries are

either single or multi-procedure. These surgeries consist of fifteen distinct procedures, i.e.,

codes, where each code corresponds to a row. As discussed, the height of the cut determines

the number of clusters and their compositions. Figure 3.2 shows the allocation of codes to

clusters when the dendrogram is cut at a height which uniquely maps into five clusters. Each

cell in the matrix corresponds to nij . The sum of the elements in column j is n+j , and the

sum of the elements in row i is ni+. For example, code 4982 is the most prevalent in this

sample, and appears in all of the clusters.

Table 3.2: Contingency table with 15 distinct codes across 10 distinct surgeries.

Distinct codes
Clusters

1 2 3 4 5
1036 1 0 0 0 0
1387 0 0 1 0 0
1402 0 0 1 0 0
1471 0 0 1 0 0
326 1 0 0 0 0
484 0 0 0 0 1
4937 0 0 0 2 0
4944 0 0 0 1 0
4982 5 1 1 2 1
4983 1 0 0 0 1
5681 0 0 0 0 1
5767 0 1 0 0 0
5828 0 0 0 1 0
680 0 1 0 0 0
935 1 0 0 0 0
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We now introduce two distinct ways of finding the optimal height h∗.

3.4.1 Clustering Approach 1: Clustering by Codes

A measure of variation for categorical data has been developed by Gini [1912] and advanced

by Light and Margolin [1971]. The latter derives three components of variation: total sum of

squares (TSS), total within-group sum of squares (WSS), and between-group sum of squares

(BSS), i.e.,

TSS =
n

2
− 1

2n

∑
i∈K

n2
i+

WSS(h) =
n

2
− 1

2

∑
j∈G(h)

1

n+j

∑
i∈K

n2
ij

BSS(h) =
1

2

 ∑
j∈G(h)

1

n+j

∑
i∈K

n2
ij

− 1

2n

∑
i∈K

n2
i+.

(3.8)

For each distinct value of h, we compute WSS(h) and BSS(h) to then find h∗. The

intuition for (3.8) is obtained by revisiting Figure 3.2. As the number of clusters increases,

i.e., as h decreases, the contingency table becomes more sparse. That is, the column sum

n+j decreases, which leads to a lower WSS(h) and higher BSS(h) by (3.8). In contrast, if

the number of clusters increases, the row sum ni+ remains the same; yet because the codes

are more spread out,
∑
i∈K n

2
i+ decreases. This implies higher BSS(h).3

Notice that surgery times are omitted when choosing h∗ under the “Clustering by Codes”

approach. Consequently, the value of h∗, and thus, the clusters are generalizable to any

hospital with a similar pool of surgeries.

3.4.2 Clustering Approach 2: Clustering by Surgery Times

In this version, we compute BSS(h) and WSS(h) via (3.8), directly by using the surgery

times, i.e., by using the traditional variance formulas for Euclidean distances instead of

3. If one naively maximizes BSS(h)
WSS(h) over h, then h∗ = 0 (k∗ = K), i.e., each code becomes its own cluster.
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variance for categorical data. We use the same distance metric (modified hamming distance)

to construct the dendrogram and the same clustering algorithm (CH index) to “cut” the

dendrogram. We obtain very similar results to the first clustering approach, and thus, in the

interest of brevity, we share the results for the second approach.

3.5 Comparative Analysis

The performance of the predicted surgical case times, as opposed to the observed times, is

typically quantified by the Mean Squared Error (MSE),

MSE :=
1

|O|
∑
i∈O

(Yi − Ŷi)2,

where we let O denote the set of observations, i.e., surgical cases, in a service line, and Yi

and Ŷi represent the observed and the predicted time of observation i, respectively.

While MSE is a well-known metric to assess the quality of the predicted time, to the

best of our knowledge there does not exist a metric to assess the quality of the predicted

variances. Thus, we construct a novel metric, which we call the Mean Squared Error in

Variance (MSEV). Using the same structure as MSE, we take the average squared difference

between the predicted variance (of operative time) and its “observed” value.

Now, let T (x) be a function that takes the index of a surgery as input and returns its

type, i.e., its code combination,

MSEV :=
1

|O|
∑
i∈O

(Yi − Ȳi)2 − 1

ntype

∑
j∈O:

T (j)=T (i)

(Yj − ȲT (j))
2


2

,

where ntype := |j ∈ O : T (j) = T (i)| is the number of distinct code combinations, and Ȳj

represents the average duration of type T (j).
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We underline that our analysis is partitioned by service lines, i.e., MSE and MSEV are

calculated separately for each service line.

Results. The goodness-of-fit comparisons are summarized in Tables 3.3-3.6. We compare

the MSE and MSEV results along two dimensions, i.e., across (I) random coefficients (RC)

and hierarchical clustering (HC) methods, and (II) UCM, ICD-trunc and CPT schemes.

Table 3.3 shows how the three coding schemes compare against each other, after eliminat-

ing infrequent surgery types that occur less than 8 times with respect to all three schemes.

Eliminating infrequent types is necessary because MSEV uses the average surgery duration,

i.e., average duration of the surgeries that consist of the same code combination. There

remains 12,684 surgical cases, which amounts to about 18% of the full sample. Because the

common sample excludes about 82% of the data, we run the same analysis for each pair, i.e.,

UCM and ICD-trunc, UCM and CPT, ICD-trunc and CPT, presented in Tables 3.4-3.6. This

allows us to keep a relatively larger portion of the data; 21,163, 24,457 and 13,319 surgical

cases, respectively. We underline that the outcomes are not to be compared across tables

as their samples are different. Fixing a service line, there are six different configurations in

Table 3.3 and four different configurations in Tables 3.4-3.6. In each table, we highlight by

gray the smallest MSE and MSEV of predictions, i.e., the best-performing configuration(s)

(there can be ties), across the two methods and coding schemes, for each service line.

The first main insight that we derive is that UCM codes are generally marginally better

than the other two schemes, see Table 3.3 (strictly superior MSE in 3/12 services and strictly

superior MSEV in 4/12 services). Yet, this statement does not hold for all services, e.g.,

colorectal and neurosurgery service lines have lower MSEV under ICD-trunc, while trans-

plant service line has lower MSEV under CPT. The second main insight is that hierarchical

clustering performs slightly better than random coefficients, under all schemes. Yet, we

emphasize that the differences are not large enough to conclude that HC is strictly better.

Furthermore, under some services, random coefficients is better or similar-performing than
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hierarchical clustering, e.g., neurosurgery and urology under ICD-trunc.

In Tables 3.3-3.6, we observe that the cardiac service line consistently has relatively

large MSE and MSEV in comparison to the other services. This can be attributed to the

long operative times of the surgeries in this line. Cardiac cases are longer surgeries which

indicate that they are more complex and uncertain; thus, the uncertainty impacts the MSE

and MSEV.

Table 3.3: Three-way comparison of UCM, ICD-trunc and CPT

Service Metric UCM ICD-trunc CPT

RC HC RC HC RC HC

Cardiac MSE 1.71 1.09 2.28 1.11 1.69 1.09
MSE in Variance 6.15 5.56 6.25 6.00 6.49 5.93

Colorectal MSE 0.34 0.33 0.41 0.33 0.43 0.36
MSE in Variance 0.56 0.54 0.45 0.37 0.50 0.49

General MSE 0.43 0.41 0.47 0.46 0.49 0.47
MSE in Variance 1.34 1.30 1.72 1.48 1.84 1.80

Gynecology MSE 0.75 0.73 0.84 0.82 0.77 0.77
MSE in Variance 4.23 4.12 4.81 4.66 4.81 4.68

Neurosurgery MSE 0.52 0.43 0.43 0.46 0.46 0.43
MSE in Variance 0.90 0.81 0.66 0.70 0.81 0.78

Orthopaedic MSE 0.31 0.30 0.34 0.31 0.33 0.32
MSE in Variance 0.51 0.46 0.49 0.46 0.52 0.49

Otolaryngology MSE 0.31 0.28 0.31 0.28 0.30 0.28
MSE in Variance 0.93 0.87 1.07 0.98 1.12 1.10

Plastic MSE 0.63 0.63 0.71 0.70 0.63 0.63
MSE in Variance 1.01 1.01 1.47 1.47 1.01 1.01

Thoracic MSE 0.14 0.13 0.12 0.07 0.13 0.12
MSE in Variance 0.11 0.07 0.11 0.06 0.03 0.03

Transplant MSE 0.32 0.31 0.34 0.28 0.53 0.30
MSE in Variance 0.21 0.19 0.17 0.16 0.13 0.14

Urology MSE 0.31 0.30 0.30 0.30 0.31 0.30
MSE in Variance 0.44 0.44 0.41 0.41 0.42 0.41

Vascular MSE 0.45 0.43 0.50 0.43 0.50 0.44
MSE in Variance 0.96 0.73 0.50 0.47 0.98 0.75

Table 3.4 shows that UCM is typically better than ICD-trunc, yet the discrepancies

are minimal. In addition, under both coding schemes, hierarchical clustering is slightly

better than random coefficients. The same trend holds in Table 3.5, i.e., the UCM and

hierarchical clustering configuration is generally better than the other three. Finally, in

Table 3.6, we observe that the ICD-trunc and hierarchical clustering configuration performs

relatively better than the other three, with the CPT and hierarchical clustering configuration

as the second best option.
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Table 3.4: Pairwise comparison of UCM and ICD-trunc

Service Metric UCM ICD-trunc

RC HC RC HC

Cardiac MSE 2.11 2.00 2.06 1.52
MSE in Variance 8.10 7.03 9.76 7.42

Colorectal MSE 0.49 0.44 0.48 0.45
MSE in Variance 1.82 1.55 2.10 2.05

General MSE 0.42 0.42 0.49 0.48
MSE in Variance 1.08 1.04 1.30 1.24

Gynecology MSE 0.65 0.62 0.68 0.72
MSE in Variance 2.19 2.16 2.45 2.39

Neurosurgery MSE 0.71 0.67 0.64 0.64
MSE in Variance 5.84 6.02 1.87 1.76

Orthopaedic MSE 0.29 0.28 0.32 0.30
MSE in Variance 0.74 0.72 0.84 0.81

Otolaryngology MSE 0.35 0.33 0.40 0.34
MSE in Variance 0.56 0.51 0.85 0.78

Plastic MSE 0.68 0.62 0.77 0.66
MSE in Variance 1.20 1.06 1.01 0.99

Thoracic MSE 0.19 0.17 0.23 0.21
MSE in Variance 0.26 0.24 0.28 0.26

Transplant MSE 0.60 0.55 0.75 0.69
MSE in Variance 1.17 1.15 2.61 2.62

Urology MSE 0.29 0.28 0.29 0.28
MSE in Variance 0.44 0.43 0.42 0.41

Vascular MSE 0.49 0.48 0.51 0.49
MSE in Variance 1.69 1.64 1.40 1.31
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Table 3.5: Pairwise comparison of UCM and CPT

Service Metric UCM CPT

RC HC RC HC

Cardiac MSE 1.51 1.49 1.67 1.57
MSE in Variance 5.40 4.80 4.82 4.55

Colorectal MSE 0.79 0.77 0.85 0.84
MSE in Variance 3.02 2.92 3.28 3.20

General MSE 0.93 0.89 1.09 1.07
MSE in Variance 6.58 6.48 13.14 13.05

Gynecology MSE 1.21 1.18 1.23 1.24
MSE in Variance 7.90 7.67 9.27 9.26

Neurosurgery MSE 0.71 0.65 0.68 0.70
MSE in Variance 1.91 1.83 1.86 1.83

Orthopaedic MSE 0.61 0.61 0.62 0.62
MSE in Variance 2.86 2.81 2.66 2.56

Otolaryngology MSE 0.37 0.34 0.36 0.35
MSE in Variance 0.78 0.75 0.74 0.70

Plastic MSE 0.82 0.87 0.84 0.80
MSE in Variance 4.25 4.18 4.67 4.61

Thoracic MSE 0.81 0.69 0.81 0.76
MSE in Variance 4.70 4.45 4.67 4.41

Transplant MSE 0.60 0.60 0.66 0.65
MSE in Variance 1.11 0.98 1.22 1.09

Urology MSE 0.69 0.66 0.72 0.67
MSE in Variance 3.31 3.19 3.65 3.50

Vascular MSE 1.27 1.20 1.31 1.21
MSE in Variance 7.99 7.87 8.36 7.92
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Table 3.6: Pairwise comparison of ICD-trunc and CPT

Service Metric ICD-trunc CPT

RC HC RC HC

Cardiac MSE 1.14 1.12 1.08 1.09
MSE in Variance 1.54 1.73 2.91 2.93

Colorectal MSE 0.17 0.14 0.17 0.16
MSE in Variance 0.14 0.12 0.13 0.12

General MSE 0.44 0.44 0.46 0.45
MSE in Variance 0.92 0.90 0.89 0.85

Gynecology MSE 0.74 0.74 0.66 0.67
MSE in Variance 3.32 3.23 2.57 2.56

Neurosurgery MSE 0.53 0.54 0.55 0.51
MSE in Variance 0.77 0.79 0.81 0.77

Orthopaedic MSE 0.36 0.34 0.36 0.35
MSE in Variance 0.68 0.67 0.78 0.78

Otolaryngology MSE 0.22 0.20 0.22 0.21
MSE in Variance 0.21 0.14 0.19 0.16

Plastic MSE 0.71 0.69 0.70 0.69
MSE in Variance 1.50 1.49 1.52 1.52

Thoracic MSE 0.21 0.12 0.17 0.12
MSE in Variance 0.22 0.10 0.13 0.07

Transplant MSE 0.27 0.24 0.28 0.24
MSE in Variance 0.11 0.10 0.18 0.11

Urology MSE 0.33 0.30 0.31 0.30
MSE in Variance 0.33 0.33 0.35 0.34

Vascular MSE 0.52 0.44 0.57 0.47
MSE in Variance 0.54 0.52 0.36 0.40
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3.6 Concluding Remarks and Discussion

In this work, we adapt two well-known statistical techniques to the surgery setting, to es-

timate the unknown mean and variance of surgical procedures. Although the estimation of

mean times of procedures have been widely studied, estimating the variance of procedures is

an under-explored question. The main challenge of estimating the variances is that surgeries

are a collection multiple procedures, for which the operative times are unobserved. Each

surgical procedure is associated with a code, and we make use of this structure. Both of our

proposed methods can easily be implemented on any data set where the surgeries consist of

codes, there is no limit on the number of codes.

In the first approach, by modeling the operative time as the sum of the (random) proce-

dure times and the (random) intercept, we show that the mean and variance of procedures

are identified under certain mild assumptions. We develop a two-step estimation algorithm

to compute the variance of procedures, and thus, the variance of surgical cases. In the second

approach, we group surgeries according to their composition of codes. Under the HC frame-

work, the number of total clusters is not known a priori. Using a reasonable dissimilarity

metric and linkage type, we construct dendrograms under the three different coding schemes.

Then, by the CH index method, we obtain the clusters.

Next, to compare the performances, we develop a metric to assess the goodness of fit of the

variance estimations, which resembles the structure of MSE. We call this novel metric MSE

in variance (MSEV). Through these metrics, our first result is that the UCM coding scheme

is slightly better than the other two; however, in most of the service lines the differences

in MSE and MSEV are very small, so this result should be taken with a grain of salt

and necessitates further investigation with larger samples. The second main result is that

hierarchical clustering generally outperforms the random coefficients method. However, we

emphasize that the differences in performance are again fairly small.

As a limitation of the study, we reiterate that the analyses require using a common
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sample. This results in the elimination of the bulk of the data; about 82% of the full

sample is eliminated in the three-way comparison, with the maximum number of procedures

being four. To remedy this, we conduct pairwise analyses (again, subject to the removal

of infrequently occurring surgeries). The pairwise analysis between UCM and CPT retains

36% of the full sample. This is an improvement, but it lacks information on ICD-trunc,

and it lacks surgeries with more than four codes (due to removing infrequent surgeries).

Furthermore, services such as cardiac, plastic and thoracic have less than 100 data points

left. The other two pairwise comparisons have even smaller portion of the data remaining.

To account for these, future work can extend the analyses to larger samples for a more robust

comparison of performances. In the context of hierarchical clustering, a future direction of

research is to develop alternative distance metrics and to use different clustering algorithms.
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CHAPTER 4

EQUITABLE DATA-DRIVEN ASSIGNMENTS OF WORKERS

TO TASKS

4.1 Introduction

It is prevalent in worker assignment problems that one can estimate the cost or reward of

assigning a worker to a task. The algorithms that researchers produce presume that one can

freely estimate the cost that depends on the worker-task pair, which entails a worker’s innate

abilities. Yet, sometimes the decision-maker is constrained in the information that they can

use; and in certain settings, it is necessary to keep workers’ performance information hidden.

For example, a study that estimates workers’ performances via a learning curve could be

infeasible in unionized settings as it could promote favoritism, or even discrimination. This

idea constitutes the main motivation of the approach we propose in this paper.

We broadly classify worker-related information into two types: performance and task

familiarity information. In contrast to performance, which is idiosyncratic (or innate), task

familiarity is not related to a worker’s innate characteristics and identity; it is a result of

how often tasks have “utilized” a worker historically. We develop an equitable framework to

make assignments over time, where we define equity in the following manner: An equitable

assignment is one that treats any two individuals –who have the same familiarity with a

particular task– as interchangeable without loss of optimality, regardless of their innate

characteristics. In the remainder of the paper, our usage of the terms equity and equitable

will be based on this definition. We bound the overall performance loss from adopting

equitable assignments, as opposed to optimal assignments that minimize total task times in

steady-state.

To our knowledge, there is as of yet no framework that considers retaining workers’

“performance-privacy” when making assignment decisions that inevitably impact workers.
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In contrast to the literature, we consider an environment where making inferences that may

reveal workers’ innate abilities is not accepted.

Similar to prominent works, our paper assumes that learning happens at the worker

level [Reagans et al., 2005]. However, we purposefully suppress worker performance at the

stage of making the assignments to study its effects. In contrast, the vast amount of work

that studies the phenomenon of learning by doing often makes inferences on workers’ innate

abilities by observed performance. For instance, Arlotto et al. [2014] studies optimal hiring

and retention policies that are driven by worker capability. Nembhard [2001] and Staruch

and Staruch [2021] study the assignment of workers to tasks based on individual learning

characteristics. Conducting an empirically-based simulation study, Nembhard [2001] shows

that there are potential opportunities to reallocate workers to improve firm-wide productivity

by using performance information. In our analytical study, we tackle this issue from the

opposite viewpoint, i.e., we investigate the steady-state consequences of suppressing worker

performance when making worker-task assignments in a sequential fashion.

We study the general problem of assigning a finite set of individuals to a finite set of tasks,

where each worker is assigned to at most one task in a series of discrete time periods. It can

alternatively be posed as matching individuals with other individuals (e.g., ride-sharing or

the online labor markets). Our framework includes a “prediction algorithm”, which predicts

the completion time of each arriving task by each arriving worker. The main considerations

when designing this prediction algorithm are as follows:

Respecting performance-privacy. The algorithm must not estimate the underlying

worker-task level performance parameters that govern task completion times. In addition,

the algorithm must not compute performance statistics, e.g., mean and variance, of worker-

specific task completion times.
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Dealing with small sample sizes. A firm that does not pursue making equitable assign-

ment decisions would aim to estimate the performance of every worker-task pair. This is not

practical as data on certain worker-task pairs can be rare or nonexistent, and thus acting on

only available data may lead to both suboptimal performance and inequity. An equitable

approach may be more robust to small sample sizes.

Capturing firm-wide effect. In many practical settings, certain tasks are not performed

many times. To ameliorate the small sample size issue, the algorithm should employ a

“reasonable” firm-wide effect of familiarity on completion time. Furthermore, Pisano et al.

[2001] provides empirical evidence on the inter-firm differences in learning rates, i.e., across

firms within the same industry. Implementing our algorithm in different organizations will

generate firm-specific rates of learning.

We develop our prediction algorithm in light of the above considerations, presented in

Section 4.3. We label it as the 5-Step algorithm or [ASAPI], which stands for Aggregate-

Standardize-Aggregate-Predict-Invert. Being heterogeneous entities, tasks of different types

tend to take different lengths of time. Consequently, completion times are not commensu-

rate across different task types. To address this issue, [ASAPI] employs a regression using

standardized variables by standardizing historical data at the task-level. This circumvents

revealing worker-specific statistics, while also addressing data thinness, if any.1 Its key step is

to fit a single regression model to the standardized data, which is then pooled across all tasks

and workers, to estimate the universal effect of familiarity on time. Through this estimate,

[ASAPI] predicts the times of new data points. The prediction is fed into an optimization

model that assigns workers to tasks in each period. Implementing the period’s assignments

generates new data, which is used to refine the universal effect. Iteratively running the pre-

diction and optimization steps constitutes the Predict-Then-Optimize (PTO) loop, shown

1. If a given task has been performed by worker j only, this does not constitute a performance-privacy
issue since worker j cannot be compared against any other worker j′ 6= j in performing this task.
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in Figure 4.1.

Start
Generate initial parameters

by observing task times

Predict (5-Step Method; [ASAPI] Method)
Predict task times

Algorithm only uses familiarity information

Optimize (Daily Model)
Solve for optimal assignments

using daily model

Implement
Implement solution,
observe task times

and update parameters.

Figure 4.1: Process diagram. The Start phase initiates the loop.

Running the prediction algorithm requires the analyst to have full access to the data. We

assume that the analyst will run the analysis in good faith as an “honest broker”, i.e., not

publish worker-centric performance information, and not make assignment decisions based

(directly) on workers’ performances.

Industries with well-defined tasks performed by individuals include –but are not limited

to– final assembly, healthcare, quality inspection, telemarketing, textile manufacture [Nem-

bhard, 2001], furniture plants [Staruch and Staruch, 2021], experimental problem solving

tasks [Littlepage et al., 1997], mining [Goodman and Leyden, 1991], and software develop-

ment [Banker and Slaughter, 2000]. The healthcare setting is rich in worker-task pairings,

where individuals perform tasks by themselves or in collaboration with others. The con-

siderations in this paper are influenced by the operating room environment [Witmer et al.,

2022]; in particular, by the real-life challenges of assigning nurses to surgeries.2

The rest of the paper is organized as follows: In Section 4.1.1 we review additional work

2. Because our algorithm assigns nurses to surgeries based on familiarity and increased familiarity re-
duces completion times, we assume that our algorithm, i.e., obscuring nurse performance, does not have a
detrimental effect on patient safety.
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that our paper complements and builds on. In Section 4.2, we characterize the way in which

task familiarity evolves and develop the PTO loop. In Section 4.3.1, we introduce the eq-

uitable [ASAPI] algorithm, and in Section 4.3.2, we characterize the finite-time predictions

from the performance-aware and performance-blind (i.e., equitable) models. In Section 4.4,

we formulate the steady-state versions of the models and show that the steady-state eq-

uitable model is fundamentally defective because it cannot drive the system into the true

optimal solution. In Section 4.5, we explore upper bounds on the penalty of making equitable

assignment decisions under certain assumptions, and we also derive the performance of an

alternative policy called the egalitarian policy. Finally, we discuss potential future avenues

in Section 4.6.

4.1.1 Additional Literature

Motivated by the evidence in support of the worker-specific learning curve, i.e., workers’

task familiarity and performance are inversely related, we build a model where increased

familiarity leads to shorter completion times. Factors such as absenteeism [Goodman and

Leyden, 1991] or knowledge-intensiveness [Avgerinos and Gokpinar, 2017] give rise to fluid

worker-task pairings, which cause the level of familiarity to vary over time. Our model

accounts for the fluidity of worker-task pairs.

It has been posited that organizations have different abilities to benefit from their firm-

wide experience [Jarmin, 1993]. Our methodology is motivated by the notion of capturing

the firm-wide effect of familiarity on task completion time. Similarly, Pisano et al. [2001]

conducts an empirical study with sixteen hospitals, where the dependent variable is surgical

case completion time. The results provide evidence that firm-specific learning rates can

differ significantly across independent organizations in the same industry, in support of our

considerations.

Ultimately, we study an iterative matching algorithm. In each iteration, the algorithm
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adjusts the learning parameters used to predict the completion times, which then determine

the optimal allocations across all workers and tasks. Although our problem has a sequential

nature, we do not allow using estimates of the underlying parameters that drive the system

(i.e., respecting performance-privacy). Thus, navigating the exploration-exploitation trade-

off of the multi-armed bandit problem is not compatible with our proposed method, unlike

the works of Johari et al. [2021] and Kalvit and Zeevi [2022] that exploit this trade-off. As

a substitute of the underlying parameters that drive the realization, we use the “universal”

(firm-wide) effect when predicting the outcomes.

4.1.2 Notation

We use capital letters to denote random variables. Let X represent an arbitrary random

variable. Then, X(n) denotes data collected up to period n. The Greek letters γ̂, Γ̂ and β̂

denote linear regression estimates, and γ, Γ and β represent the true underlying parameters.

Apart from the regression estimates and µ̂(X(n)) and σ̂(X(n)), which represent empirical

estimators of data, we use the “hat” symbol to denote predictions. We reserve bold letters

to spaces and subscripts to pairs, workers, and tasks.

4.2 Model

Let i ∈ I = {1, . . . , I} denote tasks, where each task is assumed to be of a different nature,

and let j ∈ J = {1, . . . , J} denote workers. We allow for only a subset of tasks and a subset

of workers to be available in each period n. The random set of tasks that are to be executed

in period n is denoted by I(n) ⊆ I, and the random set of workers that are available in

period n is J(n) ⊆ J . The period-n task and worker arrivals are assumed to be sampled

from a general distribution G(I,J). The sets of available tasks and workers are known at

the beginning of each period. We make two straightforward assumptions. First, the total

number of tasks in any given period does not exceed the total number of workers who are
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available in that period, i.e., |I(n)| ≤ |J(n)| ∀n = {0, 1, 2, . . . }. This ensures feasibility since

workers execute tasks concurrently, and tasks are not shared among workers. Second, each

worker and task can arrive at most once in a given period.

We assume that the system has been operating for a long time, i.e., there exists time and

familiarity data on (most of) the worker-task pairs going back into negative periods. We

emphasize that even though one can formulate the optimal allocations as a dynamic problem

that looks into the infinite future, we opt for a myopic optimization problem because it is

simple to implement and reinforces existing familiarities. Considering the dynamic version

of this problem is future work.

4.2.1 Data Generating Process

Definition 4.2.1 (Encounter). When worker j performs task i in period n, this constitutes

a unique instance, which we call an encounter. An encounter is uniquely defined by the

tuple (i, j, n), and its completion time, denoted by Tij(n), is random. With Xij(n) = {0, 1}

denoting the assignment decision, the set of encounters across all tasks and workers up to,

and including, period N − 1 is denoted by

E(N) = {(i, j, n) : Xij(n) = 1, ∀n < N}.

E(N) encapsulates the information that is in the first three columns and first N − 1 rows

of Figure 4.1. Fij(n) : {0 ≤ Fij(n) ≤ 1} represents the familiarity of worker j with task

i, accumulated up to period n. We assume that learning manifests itself as a reduction in

completion time Tij(n), and Tij(n) is governed by a familiarity effect ∀(i, j), which depends

on the period-n task familiarity of workers Fij(n), i.e.,

Tij(n) = γ0
ij + γ1

ijFij(n) + εij(n), (4.1)
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where εij(n)’s are mean-0 normal random variables ∀(i, j).3

By (4.1), an encounter’s completion time depends on the worker-task pair, not just the

task itself. This stems from the intuition that not every individual has identical baseline

performance when they undertake a task for the first time, and individuals’ efficiencies evolve

differently when they execute the task repeatedly. The familiarity effect in (4.1) captures

the worker-task-centric performances; the parameters γ0
ij and γ1

ij reflect the worker-task

pair’s level of synergy.4 We assume that worker j’s proficiency in task i develops as the pair

accumulates joint experience, hence γ1
ij ’s are assumed to be strictly negative ∀(i, j). Since

γ0
ij ’s reflect the baseline time of task completion, i.e., when a worker has no prior experience,

they are strictly positive ∀(i, j). To ensure that completion times are strictly positive on

average, we assume that γ0
ij > |γ

1
ij | ∀(i, j).

We allow some of the familiarity to be forgotten over time and model familiarity as

evolving via exponential smoothing. Task familiarity accumulated up to period n decays at

rate α ∈ (0, 1), and the familiarity gained in n, which is either 0 or 1, is discounted at rate

(1− α),

Fij(n+ 1) = αFij(n) + (1− α)1{Xij(n)=1}, ∀(i, j) ∈ (I × J). (4.2)

Table 4.1 provides an excerpt of (dummy) data showing the information needed to calcu-

late the familiarity of each worker with each task in period 101. In settings with a nontrivial

number of workers and tasks in the system, there are certain immediate consequences: Not all

(i, j) pairs appear in the data or some (i, j) pairs appear rarely. The analyst’s minimization

problem is sketched in the following section.

3. Although possible, we do not consider negative times since it is a low probability event.

4. We assume that γ0ij and γ1ij are fixed, i.e., they do not change depending on the worker-task assignment
policy of the organization, e.g., an equitable policy.
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Table 4.1: Table populated with dummy data. Time is measured in minutes. There are
I = 8 tasks and J = 7 workers.

Period (n) Task (i) Worker (j) Time

-100 Task 1 Worker 5 T15(−100) = 97

-100 Task 3 Worker 2 T32(−100) = 66

-100 Task 7 Worker 3 T73(−100) = 112
...

...
...

...

1 Task 4 Worker 1 T41(1) = 88

1 Task 2 Worker 3 T23(1) = 70

1 Task 8 Worker 7 T87(1) = 34

1 Task 6 Worker 2 T62(1) = 110

2 Task 1 Worker 7 T17(2) = 79

2 Task 7 Worker 3 T73(2) = 100
...

...
...

...

100 Task 3 Worker 2 T32(100) = 63

100 Task 2 Worker 6 T26(100) = 77

100 Task 5 Worker 4 T54(100) = 90

4.2.2 Single-Period Assignment Problem

In each period n, the analyst aims to assign workers to tasks in a way that minimizes the

total time across the assignments. Decisions are represented by the binary variable Xij(n),

which is equal to 1 if task i is assigned to worker j in period n, and 0 otherwise. The

objective function coefficients are the predicted completion times for each (i, j) in n, which

are represented by T̂ij(n). The single-period (period-n) assignment model is

min
Xij(n)

∑
i∈I(n)

∑
j∈J(n)

T̂ij(n) ·Xij(n) (4.3a)

s.t.
∑

j∈J(n)

Xij(n) = 1, ∀i ∈ I(n), (4.3b)
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∑
i∈I(n)

Xij(n) ≤ 1, ∀j ∈ J(n), (4.3c)

Xij(n) ∈ {0, 1}, ∀(i, j) : i ∈ I(n), j ∈ J(n). (4.3d)

The constraint (4.3b) ensures that each task is assigned to exactly one worker, and (4.3c)

guarantees that each worker gets at most one task assigned. Since we assume |I(n)| ≤ |J(n)|,

(|J(n)| − |I(n)|)-many workers are idle whenever |I(n)| < |J(n)|. Finally, (4.3d) represents

the set of binary constraints. We consider (4.3a)–(4.3d) as a performance-blind model as

long as the prediction T̂ij(n) obscures performance information.

Even though we consider the period-n prediction here, in the remainder of the paper we

will suppose that the analyst lies at the beginning of period n+1, i.e., making predictions for

period n+ 1, to reflect the predictive aspect of the problem. In Section 4.4.2, we extend the

single-period model into the steady-state assignment model, which represents the long-run

average version of this model.

4.2.3 Evolution of the Stochastic Process

In this section, we set up the stochastic process and define the history vector with the

sequence of events.

Definition 4.2.2 (Historical data). The space of admissible history vectors (i.e., informa-

tion) up to period n is denoted by H(n). For some period in negative history, i.e., n̄ < 0,

H(n̄) := F , where F ∈ [0, 1] is the space of the familiarity variable. For n ≥ n̄,

H(n+ 1) := (F × I × J ×X × T )n × F = H(n)× I × J ×X × T × F .

The history vector is composed of the same recursion, i.e.,

H(n+ 1) := (F (n̄), I(n̄), J(n̄), X(n̄), T (n̄), . . . , X(n), T (n), F (n+ 1)).
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Figure 4.2 depicts the sequence of events of the process, i.e., it shows the buildup of the

history vector.

H(n+ 1)

F (n+ 1) (I(n+ 1),J(n+ 1))

G(I,J)

X∗(n+ 1)

ε(n+ 1)

T (n+ 1) F (n+ 2)

H(n+ 2)

Figure 4.2: History evolution of the PTO process.

The process in Figure 4.2 initially starts with the computation of the task familiarity,

followed by sampling task and worker arrivals (I(n + 1),J(n + 1)) from the distribution

G(I,J). This information, along with previous periods’ time and familiarity levels, is used

to obtain X∗(n+1) by solving the problem in (4.3a)-(4.3d). The solution of the optimization

is implemented, i.e., pairs that minimize the total predicted task time in period n are assigned

together. This generates the real task times in period n+ 1, by sampling εij(n+ 1) in (4.1).

For a fixed pair (i, j), let Nij(n) := |{n′ ∈ {0, 1, · · · , n} : Xij(n
′) = 1}| represent the

number of times worker j has performed task i up to period n. Then, the number of times

that task i has been performed up to period n across all workers is

Ni(n) :=
∑
j∈J

Nij(n).

The number of times that worker j has performed a task up to n is denoted by

Nj(n) :=
∑
i∈I

Nij(n).
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Finally, the organizational experience accumulated up to period n is represented by

N(n) :=
∑
i∈I

Ni(n).

In order to eliminate situations that would prevent the existence of the limit of task

familiarity and the (binary) assignment decisions, we assume the following:

Assumption 7. The period-n familiarity Fij(n) and assignment decision 1{Xij(n)=1} are

stationary, and E[ lim
n→∞

Fij(n)] and E[ lim
n→∞

1{Xij(n)=1}] exist ∀(i, j).

We let Πij represent the limiting (i.e., steady-state) probability of assigning task i to

worker j, i.e.,

Πij = E[ lim
n→∞

1{Xij(n)=1}] = P( lim
n→∞

Xij(n) = 1) = P(Xij(∞) = 1).

Lemma 4.2.1 (Exponential Smoothing). Under Assumption 7 and familiarity evolution

(4.2), ∀(i, j) we have that E[Fij(∞)] = Πij, where Πij is the limiting probability of assigning

task i to worker j, i.e., P(Xij(∞) = 1) ∀(i, j).

The proof of Lemma 4.2.1 is deferred to Section 4.7.2.

Assumption 8. Recall that Πij is the limiting probability of assigning i to j in a period.

We assume,

lim
n→∞

Nij(n)

n
= lim
n→∞

1

n

n∑
n′=1

1{Xij(n′)=1} = Πij , ∀(i, j).

4.2.4 The Predict-Then-Optimize (PTO) Loop

We are now ready to present the PTO loop. Algorithm 1 articulates the events that comprise

each iteration of the loop, illustrated earlier in Figure 4.1. Recall that there exists a historical

build-up of familiarity data going back into negative periods, which serves as an input into
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Algorithm 1. Each iteration of the algorithm starts with the task familiarity Fij(n) for

all (i, j) in period n, such that n ≥ 0, which is updated each period through (4.2). To

emphasize the predictive nature of the algorithm, suppose that the analyst has completed

the first n iterations and lies at the beginning of period n + 1, i.e., running iteration n + 1

of the algorithm.

The period-n+ 1 arrivals of tasks and workers are sampled from the general distribution

G(I,J). Using the realized task times of the previous periods, predictions are made at the

beginning of n+1 for period n+1, {T̂ij(n+1), ∀(i, j) ∈ I(n+1)×J(n+1)}. The predictions

are a function of the historical data up to n + 1, i.e., H(n + 1), which includes Fij(n + 1)

∀(i, j).

Having the set of feasible pairs (I(n + 1),J(n + 1)) in place, the optimization problem

in (4.3a)-(4.3d) is solved for an optimal solution X∗(n + 1). The solution X∗(n + 1) is

implemented in period n+ 1, resulting in the following: random completion times Tij(n+ 1)

are sampled from (4.1) for the assigned pairs. In practice, the analyst observes the realized

time; in the context of this study, we assume that the oracle samples it. At this point, the

next period’s problem begins by updating the familiarity, i.e., by computing Fij(n + 2) for

all (i, j) using (4.2). This process is non-Markovian since the predictions T̂ij(n+1)’s depend

on historical data, by virtue of the optimization.

4.3 Prediction Model

We now develop a model to predict task times in period n + 1, i.e., T̂ij(n + 1), ∀(i, j) ∈

I(n+ 1)×J(n+ 1), using (historical) data up to period n. Before diving into the mechanics

of the method, we define estimators for means and standard deviations of the following,

Pair-specific variables. Tij(n) and Fij(n) were introduced earlier in Section 4.2.1.
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Input: {Fij(0), Fij(−1), Fij(−2), . . . } ∀(i, j), α, G(I,J), E(1),
{Tij(n)∀(i, j, n) ∈ E(n+ 1)}∀n∈{n̄,n̄+1...,0}, n̄<0

1 for n ≥ 0 do
2 forall (i, j) ∈ I × J do
3 Fij(n+ 1)← αFij(n) + (1− α)1{X∗ij(n)=1}
4 Sample (I(n+ 1),J(n+ 1)) from G(I,J)
5 forall (i, j) ∈ I(n+ 1)× J(n+ 1) do
6 Predict T̂ij(n+ 1)

7 Solve (4.3a)-(4.3d) using
I(n+ 1),J(n+ 1), {T̂ij(n+ 1) : (i, j) ∈ I(n+ 1)× J(n+ 1)} to obtain
{X∗ij(n+ 1) : (i, j) ∈ I × J})

8 E(n+ 2)← E(n+ 1) ∪ {(i, j, n+ 1) : X∗ij(n+ 1) = 1}
9 forall (i, j) ∈ {(i, j, n+ 1) : X∗ij(n+ 1) = 1} do

10 The oracle samples εij(n+ 1)

11 Tij(n+ 1)← γ0
ij + γ1

ijFij(n+ 1) + εij(n+ 1)

12 n← n+ 1
Algorithm 1: The Predict-Then-Optimize (PTO) Loop

Task-specific variables. Ti(n) and Fi(n), where

Ti(n) :=
∑

{j∈J :Xij(n′)=1}
Tij(n) and Fi(n) :=

∑
{j∈J :Xij(n′)=1}

Fij(n).

Because at least two observations are needed to compute the pair and task-specific stan-

dard deviation of variables, the following estimators can be defined {∀(i, j) ∈ I×J : Nij(n) ≥

2, Ni(n) ≥ 2}:

(i) the empirical mean and empirical standard deviation of time and task familiarity of

pair-specific data, i.e., {µ̂(Tij(n)), σ̂(Tij(n)), µ̂(Fij(n)), σ̂(Fij(n))}

(ii) the empirical mean and empirical standard deviation of time and task familiarity of

task-specific data, i.e., {µ̂(Ti(n)), σ̂(Ti(n)), µ̂(Fi(n)), σ̂(Fi(n))}.

We provide their definitions in Section 4.7.1.
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An OLS regression model can fit (4.1) using historical (training) data,

Tij(Fij(n);γij) ∼ γ0
ij + γ1

ijFij(n), ∀(i, j, n) ∈ E(n+ 1).

Using the training data E(n+ 1) to produce estimates γ̂ij := (γ̂0
ij , γ̂

1
ij) for the underlying

parameters γij := (γ0
ij , γ

1
ij), the analyst can predict the task times in period-(n + 1), i.e.,

Tij(n+ 1), based on Fij(n+ 1), i.e.,

T̂ij(Fij(n+ 1); γ̂ij) = γ̂0
ij + γ̂1

ijFij(n+ 1), ∀(i, j) ∈ I(n+ 1)× J(n+ 1). (4.4)

In practice, the analyst may be in a setting with a shortage of data on certain (i, j)

pairs. We underline that the prediction model in (4.4) can only be used to predict the task

times for pairs with an historical accumulation of data. In the next section, we formalize the

prediction step (i.e., 5-Step algorithm; [ASAPI] algorithm) of the PTO process.

4.3.1 5-Step [ASAPI] Algorithm

We now provide the steps of the prediction model in period n + 1. By the iterative na-

ture of Algorithm 1, we have the estimators {µ̂(Tij(n)), σ̂(Tij(n)), µ̂(Fij(n)), σ̂(Fij(n))} and

{µ̂(Fi(n)), σ̂(Fi(n)), µ̂(Ti(n)), σ̂(Ti(n))} readily available at the beginning of period n+1. In

addition, through (4.2), Fij(n+ 1) is known ∀(i, j) ∈ I×J . This implies that µ̂(Fij(n+ 1)),

σ̂(Fij(n+ 1)), µ̂(Fi(n+ 1)) and σ̂(Fi(n+ 1)) are also available.

Step 1. [A] Aggregate the pair-specific subsets of the full data over workers, i.e., dropping

the j index. The analyst can (in theory) fit I-many separate models,

Tij(n) = γ0
i + γ1

i Fij(n) + εi(n), ∀(i, j, n) ∈ E(n+ 1), (4.5)
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where εi(n)’s denote mean-0 normal random variables. In the remainder of the paper, we

will use ∼, which represents a regression with a mean-0 random error term that depends on

the specific regression model. Step 1 leaves us with data free of pair-specific performance

information and transforms the problem into a single-worker, multi-task type of problem. At

this stage, using E(n+ 1) to produce estimates γ̂i := (γ̂0
i , γ̂

1
i ) for the underlying parameters

γi := (γ0
i , γ

1
i ), the analyst can predict period-(n + 1) task times, i.e., Tij(n + 1), based on

the period-(n+ 1) familiarity,

T̂i(Fij(n+ 1); γ̂i) = γ̂0
i + γ̂1

i Fij(n+ 1), ∀(i, j) ∈ I(n+ 1)× J(n+ 1). (4.6)

This model allows the impact of familiarity to vary by task, but not worker. We label

the predictions coming from (4.6) as the [AP] (Aggregate-Predict) model. They do not meet

the criteria of a firm-wide familiarity effect, because γ̂1
i depends on i. Although Step 1

ameliorates the small sample size issue by pooling observations into a larger sample, if a

certain i appears rarely, this will lead to estimation issues. Figure 4.3 illustrates Step 1 by

a toy problem with two tasks and three workers. The top plot distinguishes observations by

(i, j), while the bottom plot distinguishes by i only.

Step 2. [S] Standardize completion time Tij(n) and familiarity level Fij(n) for each

encounter (i, j, n) by using task-level means and standard deviations, i.e., endogenously.

Definition 4.3.1. For any encounter (i, j, n) ∈ E(n + 1), the standardized familiarity is

defined as

ZFij (n) :=
Fij(n)− µ̂(Fi(n))

σ̂(Fi(n))
. (4.7)

Also, standardized time is defined as

ZTij(n) :=
Tij(n)− µ̂(Ti(n))

σ̂(Ti(n))
. (4.8)
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Figure 4.3: Implementation of Step 1 (Aggregate) of the [ASAPI] algorithm.

In contrast to (4.7) and (4.8), standardization can be with respect to workers (forbidden),

pairs (forbidden), or with respect to the entire data (ineffective). By construction, a positive

(negative) standardized variable implies that encounter (i, j, n) is above (below) the mean

value of the historical observations. At this point in the process, the analyst can fit I-many

standardized models, i.e., the model in (4.5) becomes

ZTij(n) ∼ β0
i + β1

i Z
F
ij (n), ∀(i, j, n) ∈ E(n+ 1). (4.9)
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Using E(n + 1) to produce estimates β̂i := (β̂0
i , β̂

1
i ) for the underlying (standardized)

parameters βi := (β0
i , β

1
i ), one can predict standardized task times ZTij(n + 1) on the basis

of Z̃Fij (n+ 1), i.e., with

ẐTi (Z̃Fij (n+ 1); β̂i) = β̂0
i + β̂1

i Z̃
F
ij (n+ 1), ∀(i, j) ∈ I(n+ 1)× J(n+ 1), (4.10)

where the standardized familiarity in period n + 1 is computed using historical data up to

n, i.e.,

Z̃Fij (n+ 1) :=
Fij(n+ 1)− µ̂(Fi(n))

σ̂(Fi(n))
, ∀(i, j). (4.11)

Note that Z̃Fij (n + 1) in (4.11) is defined with one period lag, i.e., uses estimates up to,

and including, period n, instead of n + 1. This is to ensure the validity of our subsequent

derivations and is an artifact of making predictions for the next period, i.e., period n + 1.

Furthermore, ∀(i, j) ∈ I(n+ 1)× J(n+ 1), we have

T̂i(Fij(n+ 1); γ̂i)− µ̂(Ti(n))

σ̂(Ti(n))
= β̂1

i

Fij(n+ 1)− µ̂(Fi(n))

σ̂(Fi(n))

=⇒ T̂i(Fij(n+ 1); γ̂i) = µ̂(Ti(n)) + γ̂1
i (Fij(n+ 1)− µ̂(Fi(n))), (4.12)

which follows by virtue of linear regression, i.e., follows by the scaling between the slope

coefficients of (4.6) and (4.10), i.e.,

β̂1
i =

σ̂(Fi(n))

σ̂(Ti(n))
γ̂1
i , ∀i. (4.13)

Step 3. [A] Aggregate the task-specific subsets of the data over tasks, thereby dropping

the i index. In (4.9), every task had its own regression; now there is only one regression, i.e.,
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one standardized regression on the full sample.

ZTij(n) ∼ β0 + β1ZFij (n), ∀(i, j, n) ∈ E(n+ 1). (4.14)

Step 2 by itself does not have an impact on the prediction; it is useful in conjunction Step

3. The transformations of historical data in (4.7) and (4.8) ensure that the completion times

and familiarity levels are comparable across tasks. The intercept β̂0
i is 0 by construction

∀i. The interpretation of β̂1
i is straightforward: one standard deviation improvement in

familiarity with task i (of any j) results in β̂1
i standard deviation shorter completion time

of task i. This assumes that the model is identified, i.e., the estimated coefficients γ̂1
ij are

negative ∀(i, j), in which case β̂1
i is negative ∀i, by construction. To see this, consider (4.13)

and the relationship between γ̂1
i and γ̂1

ij , presented in Lemma 4.3.1.

Lemma 4.3.1. In any period n, the analyst can estimate γ̂1
i and β̂1,

γ̂1
i =

∑
j∈J (n)

(
σ̂2(Fij(n))(Nij(n)− 1)

σ̂2(Fi(n))(Ni(n)− 1)
γ̂1
ij

+
(µ̂(Tij(n))− µ̂(Ti(n)))(Nij(n)− 1)µ̂(Fij(n))

σ̂2(Fi(n))(Ni(n)− 1)

)
,

(4.15)

where J (n) := {j ∈ J : Nij(n) ≥ 2}, ∀i ∈ I(n) := {i ∈ I : Ni(n) ≥ 2}5,

β̂1 =
∑
i∈I(n)

Ni(n)− 1∑
i′∈I(n)

Ni′(n)− 1
β̂1
i . (4.16)

The proof of Lemma 4.3.1 is deferred to Section 4.7.2.

Step 4. [P] Predict the standardized time of period n + 1, i.e., ZTij(n + 1), based on

Z̃Fij (n + 1). This is possible by using E(n + 1) to produce estimates6 β̂ := (β̂0, β̂1) for the

5. There should be at least two observations so that the completion time and familiarity estimators are
defined.

6. We let β̂ be the result of running the regression in (4.14).
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Figure 4.4: Top plot: Step 2 (Standardize) transforms Figure 4.3 into standardized scale.
Bottom plot: Step 3 (Aggregate).

underlying parameters β := (β0, β1), i.e., with

ẐT (Z̃Fij (n+ 1); β̂) = β̂0 + β̂1Z̃Fij (n+ 1), ∀(i, j) ∈ I(n+ 1)× J(n+ 1). (4.17)

The slope coefficient β̂1 in (4.17) represents the firm-wide effect of standardized familiarity

on standardized time. The intercept β̂0 is again 0 by construction. Steps 2 and 3 jointly

meet the requirement of firm-wide effect β̂1; i.e., information becomes shareable across tasks.
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Continuing the toy example from Figure 4.3, we illustrate these steps in Figure 4.4. The top

plot shows Step 2, which distinguishes the observations by i, while the bottom plot shows

Step 3; it contains all observations without distinguishing by tasks.

Before introducing the fifth and final step of [ASAPI], we formally define the prediction

model.

Definition 4.3.2 (Prediction model). Using historical data up to n + 1 (which ends with

F (n + 1)) the analyst can obtain the predicted task times for period n + 1, i.e., predict

Tij(n+ 1) ∀(i, j) ∈ I(n+ 1)× J(n+ 1) with

T̂i(Fij(n+ 1); Γ̂i) = µ̂(Ti(n)) + σ̂(Ti(n))ẐT (Z̃Fij (n+ 1); β̂)

= µ̂(Ti(n)) + σ̂(Ti(n))(β̂0 + β̂1Z̃Fij (n+ 1))

= µ̂(Ti(n)) + σ̂(Ti(n))

(
β̂1Fij(n+ 1)− µ̂(Fi(n))

σ̂(Fi(n))

)
, (4.18)

where β̂1 is estimated via (4.14). The parameter vector Γ̂i := (Γ̂0
i , Γ̂

1
i ) is defined by grouping

the terms of (4.18),

T̂i(Fij(n+ 1); Γ̂i) = µ̂(Ti(n))− β̂1 σ̂(Ti(n))µ̂(Fi(n))

σ̂(Fi(n))

intercept

+
σ̂(Ti(n))β̂1

σ̂(Fi(n))

slope

Fij(n+ 1) (4.19)

:= Γ̂0
i (β̂

1) + Γ̂1
i (β̂

1)Fij(n+ 1), (4.20)

∀(i, j) ∈ I(n + 1) × J(n + 1), where Γ̂0
i and Γ̂1

i are functions of β̂1 and the underlying

(identified) parameters are Γi := (Γ0
i ,Γ

1
i ).

Step 5. [I] Invert the predicted standardized time of period n+1, represented by ẐT (Z̃Fij (n+

1); β̂), into the predicted time T̂i(Fij(n+ 1); Γ̂i) using historical data, where Γ̂i is defined in

Definition 4.3.2. This concludes the [ASAPI] algorithm, visualized in Figure 4.5.

The 5-Step prediction model (4.19) stands in contrast to the task-level model, which, by
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3. Regression using full data
ZTij(n) ∼ β0 + β1ZFij (n)

2. Task-specific regressions
ZTij(n) ∼ β0

i + β1
i Z

F
ij (n)

1. Task-specific regressions
Tij(n) ∼ γ0

i + γ1
i Fij(n)

4. Prediction using full data
ẐT (Z̃Fij (n + 1); β̂) ∼
β̂0 + β̂1Z̃Fij (n + 1)

line
5. Task-specific predictions

T̂i(Fij(n + 1); Γ̂i) =

Γ̂0
i + Γ̂1

iFij(n + 1)

0. Pair-specific regressions
Tij(n) ∼ γ0

ij + γ1
ijFij(n)

Step 1: Aggregate
{γ0
ij , γ

1
ij} → {γ0

i , γ
1
i }

Step 2:
Standardize wrt. Tasks
{Tij(n), Fij(n)} →
{ZTij(n), ZFij (n)}

Step 3: Aggregate
{β0
i , β

1
i } → {β0, β1}Step 4 & 5:

Predict & Invert
{ZTij(n)} → {T̂i(Fij(n + 1); Γ̂i)}

Figure 4.5: Illustration of the [ASAPI] algorithm. For brevity, we suppress that each regres-
sion model is fit ∀(i, j, n) ∈ E(n+ 1). Boxes with no borders contain regression models. The
box with borders contains prediction models.

(4.12), has the form

T̂i(Fij(n+ 1); γ̂i) = µ̂(Ti(n))− γ̂1
i µ̂(Fi(n)) + γ̂1

i Fij(n+ 1)

= µ̂(Ti(n))− β̂1
i
σ(Ti(n))µ̂(Fi(n))

σ̂(Fi(n))

γ̂0i (intercept)

+
σ̂(Ti(n))β̂1

i

σ̂(Fi(n))

γ̂1i (slope)

Fij(n+ 1), (4.21)

∀(i, j) ∈ I(n + 1) × J(n + 1), where the second term is by (4.13). The functional form of

(4.19) and (4.21) are the same except for the familiarity effect; (4.19) captures the universal

effect, while (4.21) involves the task-specific effect. Consequently, the different intercepts

and slopes of (4.19) and (4.21) ascertain that the [ASAPI] and [AP] models yield different

predictions. For a given pair (i, j), the predicted times are equal only if the standardized
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coefficient of task i, i.e., β̂1
i , is equal to the firm-wide (standardized) coefficient β̂1.

Before concluding this section, recall that running the task-level regressions in (4.5) to

obtain the predictions in (4.6), i.e., the leading [AP] of [ASAPI], does not depend on the firm-

wide familiarity effect. A naive way to obtain a firm-wide effect is to pool the observations

over (i, j), and thereby running a single regression on the full data, i.e.,

Tij(n) ∼ γ0 + γ1Fij(n), ∀(i, j, n) ∈ E(n+ 1). (4.22)

Figure 4.6 shows that this approach performs poorly. The red and blue lines correspond

to the estimations on past data, i.e., Tij(n) = σ̂(Ti(n))ZTij(n) + µ̂(Ti(n)), estimated sep-

arately for tasks 1 and 2 of the toy example. In contrast, the green line represents the

estimations from the hypothetical regression in (4.22), estimated using the full data, which

yields estimates that are visibly less precise than the [ASAPI] estimates.
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Figure 4.6: Estimations from [ASAPI] algorithm (red and blue lines) versus a hypothetical
non-standardized regression (green line)

Building on this section, in the next section we characterize the predicted times of three

different models; one that does not retain workers’ performance-privacy (i.e., pair-specific

model) and two that obscure it (i.e., [AP] and [ASAPI]). We derive expressions for finite-
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time predictions in Section 4.3.2. Ultimately, in Section 4.4, we characterize the expected

discrepancy in steady-state due to using the latter two models.

4.3.2 Prediction Models

The predictions (4.20) and (4.21) are simple to compare in terms of β̂1
i and β̂1, but we aim

to compare them with respect to γ̂1
i because γ̂1

i ’s have a direct relation with the familiarity

effect γ̂1
ij of the true model. We rewrite the predicted times of the models in Section 4.3.1 to

obtain similar expressions, in terms of γ̂1
ij and γ̂1

i , that will aid with their comparison, both

in finite-time and in steady-state.

(i) True model (Pair-specific model; performance-aware model) (4.4)

(ii) Task-level model ([AP] model; Task-specific model) (4.6)

(iii) 5-Step model ([ASAPI] model) (4.19)

True model. Since γ̂0
ij = µ̂(Tij(n)) − γ̂1

ij µ̂(Fij(n + 1)) by linear regression, ∀(i, j) ∈

I(n+ 1)× J(n+ 1) we have that

T̂ij(F (n+ 1); γ̂ij) = γ̂0
ij + γ̂1

ijFij(n+ 1)

= µ̂(Tij(n)) + γ̂1
ij(Fij(n+ 1)− µ̂(Fij(n))). (4.23)

Task-level model. Since γ̂0
i = µ̂(Ti(n)) − γ̂1

i µ̂(Fi(n + 1)) by linear regression, ∀(i, j) ∈

I(n+ 1)× J(n+ 1) we have that

T̂i(Fij(n+ 1); γ̂i) = γ̂0
i + γ̂1

i Fij(n+ 1)

= µ̂(Ti(n)) + γ̂1
i (Fij(n+ 1)− µ̂(Fi(n))). (4.24)

The next goal is to transform the main prediction model (4.18) into a form that use γ̂1
i ’s,

so that it is easy to compare with (4.24).
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5-Step model. By (4.18), ∀(i, j) ∈ I(n+ 1)× J(n+ 1) we have that

T̂i(Fij(n+ 1); Γ̂i) = µ̂(Ti(n)) + σ̂(Ti(n))

(
β̂1Fij(n+ 1)− µ̂(Fi(n))

σ̂(Fi(n))

)

= µ̂(Ti(n)) + σ̂(Ti(n))

 ∑
i′∈I(n)

Ni′(n)

N(n)
β̂1
i′

 Fij(n+ 1)− µ̂(Fi(n))

σ̂(Fi(n))

 ,

where the second equality is by (4.16) of Lemma 4.3.1. Furthermore, by (4.13), β̂1
i′ can be

substituted, i.e.,

T̂i(Fij(n+ 1); Γ̂i)

= µ̂(Ti(n)) + σ̂(Ti(n))

 ∑
i′∈I(n)

Ni′(n)

N(n)
γ̂1
i′
σ̂(Fi′(n))

σ̂(Ti′(n))

 Fij(n+ 1)− µ̂(Fi(n))

σ̂(Fi(n))


= µ̂(Ti(n)) +

Ni(n)

N(n)
γ̂1
i (Fij(n+ 1)− µ̂(Fi(n)))

+
σ̂(Ti(n))

σ̂(Fi(n))

∑
i′ 6=i

Ni′(n)

N(n)
γ̂1
i′
σ̂(Fi′(n))

σ̂(Ti′(n))

 (Fij(n+ 1)− µ̂(Fi(n)))

= µ̂(Ti(n)) + (Fij(n+ 1)− µ̂(Fi(n+ 1)))Ni(n)

N(n)
γ̂1
i +

σ̂(Ti(n))

σ̂(Fi(n))

∑
i′ 6=i

Ni′(n)

N(n)
γ̂1
i′
σ̂(Fi′(n))

σ̂(Ti′(n))


= µ̂(Ti(n)) + (Fij(n+ 1)− µ̂(Fi(n)))pi(n)γ̂1

i +
σ̂(Ti(n))

σ̂(Fi(n))

∑
i′ 6=i

pi′(n)γ̂1
i′
σ̂(Fi′(n))

σ̂(Ti′(n))

 , (4.25)

where

pi(n) :=
Ni(n)

N(n)
(4.26)

represents the probability of a task being task i. It depends on the arrival rates G(I, J)
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and the total number of tasks in the system; yet, it does not depend on the assignment

mechanism.

The prediction of the task-level model in (4.24) scales (Fij(n + 1) − µ̂(Fi(n))) by γ̂1
i ,

which only depends on task i itself. In contrast, in (4.25) the prediction of the 5-Step model

scales (Fij(n+ 1)− µ̂(Fi(n))) by

pi(n)γ̂1
i +

σ̂(Ti(n))

σ̂(Fi(n))

∑
i′ 6=i

pi′(n)γ̂1
i′
σ̂(Fi′(n))

σ̂(Ti′(n))

 , (4.27)

which captures the firm-wide effect of familiarity across all tasks in the system on task i,

explicitly showing the impact of i′ 6= i on the prediction made for task i. It shrinks the

impact of task i’s own slope coefficient γ̂1
i by pi(n) assuming pi(n) < 1 for any task i (i.e.,

|I| ≥ 2). Furthermore, each slope coefficient γ1
i′ is scaled by

1. pi′(n): The more likely that task i′ 6= i arrives, the higher its impact on T̂i(Fij(n +

1); Γ̂i).

2. σ̂(Fi′(n))/σ̂(Ti′(n)): Tasks for which Fi′ varies more relative to Ti′ , across all j’s, have

greater impact on T̂ij(n+ 1). In other words, any task i′ 6= i for which the completion

time is less variant to familiarity has a greater impact on predicted time.7 It is an

artifact of converting the β̂1
i′ into γ̂

1
i′ , i.e., (4.13).

Inversely, the weighted sum of the γ̂1
i′ ’s is scaled by σ̂(Ti(n))/σ̂(Fi(n)). If Ti varies more

with respect to Fi, then the effect of all other tasks i′ 6= i on task i’s predicted time is

amplified.8

7. Ti′ is less variant to Fi′ if γ̂1i′ is smaller; thus, offsetting (i.e., correcting for) the impact of γ̂1i′ on the
prediction.

8. Ti is more variant to Fi if γ̂1i is larger; thus, offsetting (i.e., correcting for) the impact of γ̂1i on the
prediction.
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4.4 Policies in Steady-State

In Section 4.4.1, we derive the long-run discrepancy in the predicted completion times be-

tween (i) the task-level model (i.e., [AP] model) and the pair-level model and (ii) the [ASAPI]

model and [AP] model. In Sections 4.4.2 and 4.4.3, we formulate the steady-state optimiza-

tion models. Then, in Section 4.4.4, we study the behavior of a new type of policy –the

egalitarian policy– which is instrumental to upper bound the prediction degradation due to

being performance-blind, i.e., being equitable.

4.4.1 Steady-State Analysis Under [ASAPI]

In this context, we assume that the analyst runs the PTO loop using the [ASAPI] (i.e., 5-

Step) prediction model and obtains the emerging E[Fij(∞)] = Πij ∀(i, j). Thus, Πij ∀(i, j)

depends critically on [ASAPI].

Assumption 9 (Convergence). As n → ∞, the limits of {µ̂(Tij(n)), σ̂(Tij(n)), µ̂(Fij(n)),

σ̂(Fij(n))} and {µ̂(Ti(n)), σ̂(Ti(n)), µ̂(Fi(n)), σ̂(Fi(n))} exist, and they converge to the true

means and standard deviations of the corresponding variables, which exist by Assumption

7, e.g.,

lim
n→∞

µ̂(Fij(n)) = E[Fij(∞)], ∀(i, j).

Before deriving the steady-state expressions, we first define several quantities that will

be instrumental.

Definition 4.4.1. The probability of assigning j to i, conditional on doing task i, is pj|i(n) :=

Nij(n)
Ni(n)

where its long-run average is

pj|i := lim
n→∞

pj|i(n).
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Conversely, the probability of assigning i to j, conditional on being performed by j, is

pi|j(n) :=
Nij(n)

Nj(n)
,

where its long-run average is

pi|j := lim
n→∞

pi|j(n).

The probability of doing task i was defined in (4.26) (pi(n) :=
Ni(n)
N(n)

) and its long-run

average is

pi := lim
n→∞

pi(n).

By the law of large numbers, in steady-state, task i arrives with marginal probability of

gi := lim
n→∞

Ni(n)

n
,

and, in steady-state, the marginal probability that worker j arrives is

gj := lim
n→∞

Nj(n)

n
.

We assume that the limits in Definition 4.4.1 exist.

Corollary 4.4.0.1 (Corollary of Lemma 4.3.1). Under Assumptions 7, 9, 10, and by Defi-

nition 4.4.1, γ̂1
i is identified in steady-state. For a given i, it has the form

γ1
i =

∑
j∈J

(
σ2(Fij(∞))

σ2(Fi(∞))
pj|iγ

1
ij +

E[Tij(∞)]− E[Ti(∞)]

σ2(Fi(∞))
pj|iE[Fij(∞)]

)
,

which is a function of the (identified) γ1
ij ∀(i, j) and of Πij ∀(i, j) by Lemma 4.2.1. Further-
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more, by Definition 4.4.1

β1 =
∑
i∈I

piβ
1
i . (4.28)

Corollary 4.4.0.1 follows directly by Lemma 4.3.1, in the scenario when Assumptions 7,

9 and 10 hold.

Assumption 10 (Identification). As n → ∞, the regression parameter estimates converge

to the true parameters, given Πij ∀(i, j), i.e.,

1. (γ̂0
ij , γ̂

1
ij)→ (γ0

ij , γ
1
ij)

2. (γ̂0
i , γ̂

1
i )→ (γ0

i , γ
1
i ), where γi is a function of Πij .

3. (Γ̂0
i , Γ̂

1
i )→ (Γ0

i ,Γ
1
i ), where Γi is a function of Πij .

Given that Πij ’s are generated by [ASAPI] ∀(i, j), we can now derive the steady-state

task time predictions coming from the performance-aware (true) model and the equitable

[AP] and [ASAPI] models, in terms of the model primitives.

1. True model (performance-aware).

E
[

lim
n→∞

T̂ij(Fij(n+ 1); γ̂ij)
]

= E
[

lim
n→∞

(µ̂(Tij(n)) + γ̂1
ij(Fij(n+ 1)− µ̂(Fij(n))))

]
= E

[
(γ0
ij + γ1

ijE[Fij(∞)]) + γ1
ij

(
Fij(∞)− E[Fij(∞)]

)]
= γ0

ij + γ1
ijΠij , (4.29)

where the first equality follows by (4.23), the second by Assumptions 7, 9 and 10, and the

third by Lemma 4.2.1.
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2. Task-level model ([AP]; performance-blind).

E
[

lim
n→∞

T̂i(Fij(n+ 1); γ̂i)
]

= E
[

lim
n→∞

µ̂(Ti(n)) + γ̂1
i (Fij(n+ 1)− µ̂(Fi(n)))

]
= E

 lim
n→∞

∑
j′∈J (n)

pj′|i(n)µ̂(Tij′(n))

+γ̂1
i

Fij(n+ 1)−
∑

j′∈J (n)

pj′|i(n)µ̂(Fij′(n))

 (4.30)

= E

 lim
n→∞

 ∑
j′∈J (n)

pj′|i(n)(γ̂0
ij′ + γ̂1

ij′µ̂(Fij′(n)))

+γ̂1
i

Fij(n+ 1)−
∑

j′∈J (n)

pj′|i(n)µ̂(Fij′(n))

 (4.31)

=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′) + γ1
i

Πij −
∑
j′∈J

pj′|iΠij′

 , (4.32)

where the first equality follows by (4.24), and the final equality by Lemma 4.2.1 under

Assumptions 7, 9 and 10.

3. 5-step model ([ASAPI]; performance-blind).

E
[

lim
n→∞

T̂i(Fij(n+ 1); Γ̂i)
]

= E

 lim
n→∞

∑
j′
pj′|i(n)(γ̂0

ij′ + γ̂1
ij′µ̂(Fij′(n)))


+ E

 lim
n→∞


pi(n)γ̂1

i +
σ̂(Ti(n))

σ̂(Fi(n))

∑
i′ 6=i

pi′(n)γ̂1
i′
σ̂(Fi′(n))

σ̂(Ti′(n))


Fij(n+ 1)−

∑
j′∈J (n)

pj′|i(n)µ̂(Fij′(n))



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=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′)

+

piγ1
i +

σ(Ti(∞))

σ(Fi(∞))

∑
i′ 6=i

pi′γ
1
i′
σ(Fi′(∞))

σ(Ti′(∞))

Πij −
∑
j′∈J

pj′|iΠij′

 , (4.33)

where the first equality follows by (4.25). In addition, it follows by expressing {µ̂(Ti(n)),

µ̂(Fi(n))} in terms of {µ̂(Tij(n)), µ̂(Fij(n))}, respectively, as in (4.30), and by expressing

µ̂(Tij(n)) in terms of µ̂(Fij(n)), as in (4.31). The second equality follows by Assumptions 7,

9 and 10, and Lemma 4.2.1.

We note that the performance-blind models have different adjustments on

(Πij −
∑
j′∈J

pj′|iΠij′),

which is the steady-state counterpart of (Fij(n+ 1)− µ̂(Fi(n))). In the task-level (i.e., [AP])

model, this adjustment is the identified familiarity effect of the task itself, i.e., γ1
i in (4.32).

In the 5-Step model, the adjustment is the steady-state firm-wide effect of familiarity across

tasks on task i, i.e., the steady-state counterpart of (4.27), as shown in the second term of

(4.33).

Lemma 4.4.1 (Muting of worker performance). By Lemma 4.2.1 and Assumptions 7, 9, and

10, the steady-state discrepancy between the true model’s predicted time and the task-specific

predicted time for a given pair (i, j) is

E
[

lim
n→∞

T̂ij(Fij(n+ 1); γ̂ij)
]
− E

[
lim
n→∞

T̂i(Fij(n+ 1); γ̂i)
]

=
∑

j′ 6=j∈J

(
pj′|i

[
(γ0
ij − γ

0
ij′) + Πij(γ

1
ij − γ

1
i ) + Πij′(γ

1
i − γ

1
ij′)
])
. (4.34)
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Proof of Lemma 4.4.1. For a fixed pair (i, j), subtracting (4.32) from (4.29) yields,

E
[

lim
n→∞

T̂ij(Fij(n+ 1); γ̂ij)
]
− E

[
lim
n→∞

T̂i(Fij(n+ 1); γ̂i)
]

= γ0
ij + γ1

ijΠij −
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′)− γ
1
i

Πij −
∑
j′∈J

pj′|iΠij′


= (1− pj|i)(γ

0
ij + γ1

ijΠij)−
∑

j′ 6=j∈J
pj′|i(γ

0
ij′ + γ1

ij′Πij′)

− γ1
i

(1− pj|i)Πij −
∑

j′ 6=j∈J
pj′|iΠij′


=

 ∑
j′ 6=j∈J

pj′|i

 (γ0
ij + γ1

ijΠij)−
∑

j′ 6=j∈J
pj′|i(γ

0
ij′ + γ1

ij′Πij′)

− γ1
i

 ∑
j′ 6=j∈J

pj′|i

Πij −
∑

j′ 6=j∈J
pj′|iΠij′


=

∑
j′ 6=j∈J

pj′|i((γ
0
ij − γ

0
ij′) + (γ1

ijΠij − γ
1
ij′Πij′))− γ

1
i

∑
j′ 6=j∈J

pj′|i(Πij − Πij′),

which simplifies further into,

=
∑

j′ 6=j∈J
pj′|i((γ

0
ij − γ

0
ij′) + (γ1

ijΠij − γ
1
ij′Πij′)− γ

1
i (Πij − Πij′))

=
∑

j′ 6=j∈J
pj′|i((γ

0
ij − γ

0
ij′) + Πij(γ

1
ij − γ

1
i ) + Πij′(γ

1
i − γ

1
ij′)).

When (4.34) is nonzero, the prediction from the task-specific model is either higher or

lower than the true model’s prediction. Each summand represents the discrepancy between

worker j and some j′ 6= j. Recall that γ1
ij < 0, by construction. To interpret (4.34), fix two

distinct workers j and j′ and suppose that the pair-specific familiarity effects are either both

smaller (or larger) than γ1
i , e.g., γ

1
ij < γ1

i and γ1
ij′ < γ1

i . Then, the last two terms offset each
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other; γ1
ij − γ

1
i < 0 and γ1

i − γ
1
ij′ > 0. In this case, the interplay between the last two terms

ameliorates the prediction discrepancy due to using the task-specific model. However, if γij

and γij′ are on opposite sides of γ1
i , this exacerbates the prediction discrepancy.

Lemma 4.4.2 (Information Sharing Across Tasks). By Lemma 4.2.1 and Assumptions 7, 9,

and 10, the steady-state discrepancy between the task-specific predicted time and the predicted

time of [ASAPI] for a given pair (i, j) is

E
[

lim
n→∞

T̂i(Fij(n+ 1); γ̂i)
]
− E

[
lim
n→∞

T̂i(Fij(n+ 1); Γ̂i)
]

=

 ∑
i′ 6=i∈I

pi′

γ1
i − γ

1
i′

√
(γ1
i )2σ2(Fi(∞)) + σ2(εi(∞))

σ(Fi(∞))

σ(Fi′(∞))√
(γ1
i′)

2σ2(Fi′(∞)) + σ2(εi′(∞))


Πij −

∑
j′∈J

pj′|iΠij′

 ,
(4.35)

where εi(n) and εi′(n) are defined in (4.5).

Proof of Lemma 4.4.2. For a fixed pair (i, j), subtracting (4.33) from (4.32) yields,

E
[

lim
n→∞

T̂i(Fij(n+ 1); γ̂i)
]
− E

[
lim
n→∞

T̂i(Fij(n+ 1); Γ̂i)
]

=

 ∑
i′ 6=i∈I

pi′

 γ1
i −

σ(Ti(∞))

σ(Fi(∞))

∑
i′ 6=i

pi′γ
1
i′
σ(Fi′(∞))

σ(Ti′(∞))

Πij −
∑
j′∈J

pj′|iΠij′


=
∑
i′ 6=i∈I

pi′

(
γ1
i − γ

1
i′
σ(Ti(∞))

σ(Fi(∞))

σ(Fi′(∞))

σ(Ti′(∞))

)Πij −
∑
j′∈J

pj′|iΠij′


=

 ∑
i′ 6=i∈I

pi′

γ1
i − γ

1
i′

√
(γ1
i )2σ2(Fi(∞)) + σ2(εi(∞))

σ(Fi(∞))

σ(Fi′(∞))√
(γ1
i′)

2σ2(Fi′(∞)) + σ2(εi′(∞))


Πij −

∑
j′∈J

pj′|iΠij′

 ,
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where the first equality follows by (4.32) and (4.33). The final equality follows by (4.5), i.e.,

σ̂2(Ti(n)) = σ̂2(γ̂0
i + γ̂1

i Fi(n) + ε̂i(n))

= (γ̂1
i )2σ̂2(Fi(n)) + σ̂2(εi(n)) + 2γ̂1

i
ˆCov(Fi(n), ε̂i(n))

= (γ̂1
i )2σ̂2(Fi(n)) + σ̂2(ε̂i(n)).

Under Assumptions 7 and 9, as n→∞, σ2(Ti(∞)) = (γ1
i )2σ2(Fi(∞)) + σ2(εi(∞)).

Lemma 4.4.2 shows that the discrepancy in the steady-state predictions of [AP] and

[ASAPI] have the form (4.35). If σ2(εi(∞)) → 0 ∀i, then (4.35) converges to 0. That is,

as the uncertainty in task times vanish, the steady-state predictions of [AP] and [ASAPI]

converge.

4.4.2 Optimal Assignments in Steady-State

In Section 4.2, we built a model that minimizes the total time of all pairs by assigning

pairs optimally. Now, we will introduce a long-run version of this model, which solves for

pj|i, i.e., the limiting fraction of time any worker j should be assigned to any task i, given

that the task has arrived. In the performance-aware model, the analyst (hypothetically)

uses the pair-specific predictions, denoted by E[ lim
n→∞

T̂ij(Fij(n + 1); γ̂ij)]. We represent its

steady-state counterpart by E[T̂ij(Fij(∞); γ̂ij)]. The total steady-state predictions across

all encounters is

∑
i∈I

∑
j∈J

ΠijE[T̂ij(Fij(∞); γ̂ij)]. (4.36)

The limiting probability can be written as follows,

Πij = lim
n→∞

Nij(n)

n
=
Nij(n)

Ni(n)
· Ni(n)

n
= pj|i · gi, ∀(i, j), (4.37)
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where the first equality follows by Assumption 8, and the third equality follows by Definition

4.4.1. Then, by (4.37), the objective function in (4.36) becomes

∑
i∈I

∑
j∈J

pj|i · giE[T̂ij(Fij(∞); γ̂ij)]. (4.38)

It is possible to rewrite Πij = lim
n→∞

Nij(n)
n =

Nij(n)
Nj(n)

· Nj(n)
n = pi|j · gj . Thus,

pj|i · gi = pi|j · gj , ∀(i, j). (4.39)

We now formulate the optimal (i.e., performance-aware) program in terms of the decision

variable pj|i, using estimates from data,

Ẑ∗min = minimize
p

∑
i∈I

gi
∑
j∈J

pj|iE[T̂ij(Fij(∞); γ̂ij)]

subject to
∑
j∈J

pj|i = 1, ∀i : i ∈ I,

∑
i∈I

pj|igi ≤ gj , ∀j : j ∈ J ,

0 ≤ pj|i ≤ gj|i, ∀(i, j) : i ∈ I, j ∈ J .

(4.40)

The first set of constraints in (4.40) guarantee that given task i has arrived, it is covered,

i.e.,
∑
j∈J

pj|i = 1 ∀i. The second set of constraints guarantee that workers are not assigned

beyond their availability, i.e.,
∑
i∈I

pi|j ≤ 1 ∀j.9 But then, by (4.39), this implies
∑
i∈I

pj|i · gi ≤

gj ∀j.10 Finally, the constraints should adhere to pair-specific availability constraints, i.e.,

pj|i ≤
gij
gi

:= gj|i ∀(i, j), where gj|i denotes the probability that worker j arrives, given that

9. If |I(n)| = |J(n)| ∀n, then it becomes
∑
i∈I

pi|j = 1 ∀j.

10. If |I(n)| = |J(n)| ∀n, then it becomes
∑
i∈I

pj|igi = gj ∀j.
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task i has arrived, in an arbitrary period. We denote the set of constraints by

P = {pj|i :
∑
j∈J

pj|i = 1, ∀i ∈ I

∑
i∈I

pj|igi ≤ gj , ∀j ∈ J

0 ≤ pj|i ≤ gj|i, ∀i ∈ I, ∀j ∈ J}.

(4.41)

We emphasize that (4.40) is a relaxation of the true steady-state behavior as it does not

fully capture the information in G(I,J) and only uses marginal arrival probabilities gi, gj

and gj|i. Nonetheless, it is a plausible approximation for the steady-state behavior of the

performance-aware model. Although its solution may not be implementable, since we use it

to provide bounds on performance, it suffices that it is as an approximate program in our

setting. Note that the objective function of (4.40) is quadratic in pj|i, i.e.,

∑
i∈I

gi
∑
j∈J

pj|iE[T̂ij(Fij(∞); γ̂ij)] =
∑
i∈I

gi
∑
j∈J

pj|iE[γ̂0
ij + γ̂1

ijFij(∞)]

=
∑
i∈I

gi
∑
j∈J

pj|i
(
γ̂0
ij + γ̂1

ijΠij

)
=
∑
i∈I

gi
∑
j∈J

pj|i
(
γ̂0
ij + γ̂1

ijpj|igi
)

=
∑
i∈I

gi
∑
j∈J

pj|iγ̂
0
ij +

∑
i∈I

(gi)
2
∑
j∈J

γ̂1
ij(pj|i)

2, (4.42)

where the second equality follows by Lemma 4.2.1, and the third equality follows by (4.37).

Furthermore, under Assumption 10, the (exact) performance-aware model becomes

Z∗min = minimize
p ∈ P

∑
i∈I

gi
∑
j∈J

pj|iE[T̂ij(Fij(∞);γij)]

subject to P .

(4.43)
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We denote the exact maximization corresponding to (4.43) by Z∗max, i.e., Z∗max gives

the worst-case outcome when the same objective function is maximized, subject to P . The

maximization program corresponding to (4.40) is denoted by Ẑ∗max.

4.4.3 Equitable Assignments in Steady-State

Replacing the predicted time in (4.40) with the two other models’ predictions yields the

performance-blind models. The prediction of the [AP] model is E[T̂i(Fij(∞); γ̂i)], and

E[T̂i(Fij(∞); Γ̂i)] denotes the prediction of the [ASAPI] model. Respectively, these models

are,

Ẑ∗[AP ] = min
p ∈ P

∑
i∈I

gi
∑
j∈J

pj|iE[T̂i(Fij(∞); γ̂i)]

s.t. P ,

(4.44)

for [AP], and for [ASAPI], it is

Ẑ∗[ASAPI] = min
p ∈ P

∑
i∈I

gi
∑
j∈J

pj|iE[T̂i(Fij(∞); Γ̂i)]

s.t. P .

(4.45)

By (4.6) and Lemma 4.2.1, the objective of (4.44) becomes

∑
i∈I

gi
∑
j∈J

pj|iE[T̂i(Fij(∞); γ̂i)] =
∑
i∈I

gi
∑
j∈J

pj|iE[γ̂0
i + γ̂1

i Fij(∞)]

=
∑
i∈I

gi
∑
j∈J

pj|i(γ̂
0
i + γ̂1

i Πij)

=
∑
i∈I

gi
∑
j∈J

pj|i(γ̂
0
i + γ̂1

i pj|igi)

=
∑
i∈I

giγ̂
0
i +

∑
i∈I

(gi)
2γ̂1
i

∑
j∈J

(pj|i)
2. (4.46)
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Similarly, it follows by (4.20) and Lemma 4.2.1 that the objective of (4.45) is

∑
i∈I

gi
∑
j∈J

pj|iE[T̂i(Fij(∞); Γ̂i)] =
∑
i∈I

gi
∑
j∈J

pj|iE[Γ̂0
i + Γ̂1

iFij(∞)]

=
∑
i∈I

gi
∑
j∈J

pj|i(Γ̂
0
i + Γ̂1

iΠij)

=
∑
i∈I

gi
∑
j∈J

pj|i(Γ̂
0
i + Γ̂1

i pj|igi)

=
∑
i∈I

giΓ̂
0
i +

∑
i∈I

(gi)
2Γ̂1
i

∑
j∈J

(pj|i)
2. (4.47)

As (4.40), (4.44), and (4.45) have the same constraint matrix P , the gap between their

objective functions corresponds to the approximate cost of performance-privacy.

Proposition 2. Let Πij ∀(i, j) be an optimal solution to (4.40), where Πij = pj|i·gi by (4.37)

for p ∈ P . If Πij ’s are implementable, i.e., if there exists a policy such that E[Fij(∞)] = Πij

∀(i, j), then by Lemma 4.2.1 and under Assumptions 7, 9 and 10, the objective functions of

the performance-aware and equitable models are equal. Otherwise, they are not equal.

In Proposition 2, we show that the objective functions of the three models are equal

assuming that the analyst is able to recover the true γi ∀i, corresponding with Πij , by

running the PTO loop (defined in Algorithm 1) where the predictions are computed in an

equitable manner. However, in our setting, there is no guarantee to recover the identified

parameters because it is unclear how to implement the steady-state solution; that is, it is

unclear what the “right” pj|i ∀(i, j) are (what the “right” Πij are), which corresponds to

the steady-state, performance-aware model. To see this, observe that the equitable, steady-

state objective functions (4.46) and (4.47) treat workers interchangeably. These models are

fundamentally “defective” because they allow assigning workers to tasks in an interchangeable
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manner, such that there are multiple alternative optimal solutions11. Each solution may

result in a different Πij ∀(i, j) solution, and thus, different γi ∀i, as seen by Corollary

4.4.0.1. Thus, the equitable models lack the fidelity to drive the system to the true (pair-

specific) optimal. In contrast, we observe from the performance-aware objective function

(4.42) that, in reality, the workers are not interchangeable, i.e., the assignment of workers

matters.

Proof of Proposition 2. The proof has two parts; the steady-state prediction of the performance-

aware model is compared against the steady-state predictions of [AP] and [ASAPI], respec-

tively.

1. Performance-aware vs. [AP]. By taking the weighted sum of (4.32), we show that

it is equal to the weighted sum of (4.29), where the weights pj|i are summed across j. For a

fixed (i, j),

∑
j∈J

pj|i

∑
j′∈J

pj′|i
(
γ0
ij′ + γ1

ij′Πij′
)

+ γ1
i

Πij −
∑
j′∈J

pj′|iΠij′


=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′)
∑
j∈J

pj|i + γ1
i

∑
j∈J

pj|iΠij −
∑
j′∈J

pj′|iΠij′
∑
j∈J

pj|i


=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′).

But then, this implies that taking the weighted sums across i, weighted by gi, these

quantities are equal. That is, the objective functions of the performance-aware and [AP]

policies are equal to

∑
i∈I

gi
∑
j∈J

pj|i(γ
0
ij + γ1

ijΠij). (4.48)

11. If |I| = |J |, there are |J | ! ways in which workers can be assigned. In general, there are |J| !
(|J|−|I|) !

alternative optimal solutions.
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2. Performance-aware vs. [ASAPI]. Starting with the weighted sum of (4.33), we

show that it is equal to the weighted sum of (4.29), where the weights pj|i are summed

across j. For a fixed (i, j),

∑
j∈J

pj|i

∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′) +

piγ1
i +

σ(Ti(∞))

σ(Fi(∞))

∑
i′ 6=i

pi′γ
1
i′
σ(Fi′(∞))

σ(Ti′(∞))


Πij −

∑
j′∈J

pj′|iΠij′


=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′)
∑
j∈J

pj|i

+

piγ1
i +

σ(Ti(∞))

σ(Fi(∞))

∑
i′ 6=i

pi′γ
1
i′
σ(Fi′(∞))

σ(Ti′(∞))

∑
j∈J

pj|i

Πij −
∑
j′∈J

pj′|iΠij′


=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′)
∑
j∈J

pj|i

+

piγ1
i +

σ(Ti(∞))

σ(Fi(∞))

∑
i′ 6=i

pi′γ
1
i′
σ(Fi′(∞))

σ(Ti′(∞))

∑
j∈J

pj|iΠij −
∑
j′∈J

pj′|iΠij′
∑
j∈J

pj|i


=
∑
j′∈J

pj′|i(γ
0
ij′ + γ1

ij′Πij′).

Similar to the first case, taking the weighted sums across i, weighted by gi, these quantities

are equal. That is, the objective functions of the performance-aware and [ASAPI] policies

are equal to (4.48).

We aim to compare the steady-state, performance-aware model to running the PTO loop

with an equitable prediction algorithm to find the cost of equity. In order to do so, we use

an alternative policy, again in steady-state, which we show yields the worst-case solution

under certain assumptions on the primitives. Under weaker assumptions, this policy is not

the worst-case solution, yet it serves as a reasonable benchmark. We call this alternative

policy the egalitarian policy.

126



4.4.4 Egalitarian Assignments in Steady-State

We now introduce the egalitarian policy.

Definition 4.4.2 (Egalitarian Policy). Choose the conditional assignment probabilities such

that;

• No worker has a greater propensity to execute a task than any other worker, i.e.,

pj|i = 1
|J | ∀i ∈ I,

• No task has a greater propensity to be performed by a worker than any other task,

i.e., pi|j = 1
|I| ∀j ∈ J .

To bound the difference between the (steady-state) performance-aware policy and any

other policy (including the egalitarian policy), we adopt the following structure on worker-

task arrivals.

Assumption 11. We suppose that the schedule is set up (by an exogenous agent) in a way

such that

(a) |I(n)| = |J(n)|, ∀n

(b) gi = gj = g, ∀(i, j)

(c) gj|i = 1, ∀(i, j) (full availability)

Under part (a) of Assumption 11, the number of arriving workers and tasks in each period

are equal. In (4.3a)–(4.3d), this amounts to exchanging the inequality sign in (4.3c) with

equality, i.e., the single-period assignment problem is transformed into a perfect matching

problem. Part (b) is to assume equal (marginal) arrival probabilities for all (i, j). Since

gj|i · gi = gi|j · gj , (b) implies that gj|i = gi|j , which is 1 by part (c). Part (c) indicates that

workers and tasks are synchronized, i.e., the system either operates in full capacity or not

at all. The rate at which tasks and workers (collectively) arrive is g.
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Under the egalitarian policy, Assumption 11 (a) implies (b), since by the Bayes’ theorem,

pi|j · gj = pj|i · gi, ∀(i, j)

=⇒ 1

|I|
gj =

1

|J |
gi, ∀(i, j)

=⇒ gj = gi, ∀(i, j).

Conversely, under the egalitarian policy, part (b) implies 1
|I| = 1

|J | , but this does not

necessarily imply that the number of workers is equal to the number of total tasks, initially.

That is, there may be an “excess” number of workers who need to be “fired” before imple-

menting the egalitarian policy. To avoid this extra cost, we do not assume only part (b)

of Assumption 11 when assessing the egalitarian policy, i.e, (a) is necessary. On the other

hand, for the performance-aware policy, both (a) and (b) are needed to obtain
∑
i∈I

pj|i = 1

∀j. Only (a) yields
∑
i∈I

pj|i · gi = gj ∀j (since by part (a), we have
∑
i∈I

pi|j = 1 ∀j), allowing

for different marginal arrival probabilities. Only (b) yields

pi|j · gj = pj|i · gi, ∀(i, j)

=⇒ pi|j = pj|i, ∀(i, j),

which is pair-specific. For example, suppose that gi = gj = g = 1 ∀(i, j), and I = {A} and

J = {1, 2}. Then, pA|1 = p1|A = 1 and pA|2 = p2|A = 0 implies more workers arrive than

needed.

128



Under Assumption 11, (4.40) simplifies into

Ẑ∗min = minimize
p

∑
i∈I

g
∑
j∈J

pj|iγ̂
0
ij +

∑
i∈I

g2
∑
j∈J

γ̂1
ij(pj|i)

2

subject to
∑
j∈J

pj|i = 1, ∀i : i ∈ I,

∑
i∈I

pj|i = 1, ∀j : j ∈ J ,

pj|i ≥ 0, ∀(i, j) : i ∈ I, j ∈ J ,

(4.49)

where the second constraint is transformed from
∑
i∈I

pj|i · gi ≤ gj ∀j to
∑
i∈I

pj|i = 1 ∀j.

For the egalitarian policy, under Assumptions 10 and 11, the objective in (4.42) becomes

ZE =
∑
i∈I

gi

∑
j∈J

pj|iγ
0
ij + gi

∑
j∈J

γ1
ij(pj|i)

2


= g

∑
i∈I

∑
j∈J

γ0
ij

|J |
+ g2

∑
i∈I

∑
j∈J

γ1
ij

|J |2

=
g

|J |
∑
i∈I

∑
j∈J

γ0
ij +

g2

|J |2
∑
i∈I

∑
j∈J

γ1
ij . (4.50)

Before concluding this section, we illustrate the egalitarian policy by an example in Table

4.2 with 5 tasks and workers. We highlight that there is no optimization problem under this

policy.

4.5 Performance Bounds on the Equitable Policy

Under Assumption 11, we will derive the performance-aware and egalitarian policies under

the following regimes, ordered from the most general to the most specific. In reality, there

are more cases than those we list; however, since they are similar, we only study the following

five cases.
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Table 4.2: Sample schedule under Assumption 11, which is driven by the egalitarian policy.
Suppose that g = 0.6. Each task is rotated among all workers. The lighter-color assignments
beyond period n = 8 represent the continuation of the same matching schedule.

n = 1 n = 2 n = 3 n = 4 n = 5

task 1–worker 1 task 1–worker 2 task 1–worker 1 task 1–worker 3

task 2–worker 2 task 2–worker 3 task 2–worker 4

task 3–worker 3 task 3–worker 4 task 3–worker 5

task 4–worker 4 task 4–worker 5 task 4–worker 1

task 5–worker 5 task 5–worker 1 task 5–worker 2

n = 6 n = 7 n = 8

task 1–worker 4 task 1–worker 5 task 1–worker1

task 2–worker 5 task 2–worker 1 task 2–worker2

task 3–worker 1 task 3–worker 2 task 3–worker3

task 4–worker 2 task 4–worker 3 task 4–worker 4

task 5–worker 3 task 5–worker 4 task 5–worker 5

1. Heterogeneous Pairs: The base performance and familiarity effect can differ across

pairs {γ0
ij , γ

1
ij}.

2. Identical task or worker familiarity effect: The familiarity effect depends on

workers γ1
j or tasks γ1

i , base performance can differ across pairs γ0
ij .

3. Identical pair familiarity effect: The familiarity effect is the same across pairs γ1,

base performance can differ across pairs γ0
ij .

4. Identical tasks or workers: The base performance and familiarity effect depend on

workers {γ0
j , γ

1
j } or tasks {γ0

i , γ
1
i }.

5. Identical pairs: The base performance and familiarity effect are the same across pairs

{γ0, γ1}.

Figure 4.7 shows how the five cases relate to each other. The two possibilities under cases

2 and 4 give the same results regardless of whether the parameters differ across workers or

tasks. We will study the identical tasks regime; i.e., the parameters differ across workers,

and we argue that this is without loss of generality.
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{γ0, γ1}{γ0
j , γ

1
j } {γ0

ij, γ
1}{γ0

ij, γ
1
j }

{γ0
ij, γ

1
ij}

Figure 4.7: The relation of the cases we study.

We denote the discrepancy between the egalitarian policy and the performance-aware

policy by ∆E
min := ZE − Z∗min, and the discrepancy between the worst-case (objective-

maximizing) policy and the egalitarian policy by ∆max
E := Z∗max − ZE . It follows that

∆max
min := Z∗max − Z∗min = ∆E

min + ∆max
E .

Notice that (4.49) is the LP relaxation of an assignment program, with a quadratic

objective function, i.e.,

g
∑
i∈I

∑
j∈J

pj|iγ̂
0
ij + g2

∑
i∈I

∑
j∈J

γ̂1
ij(pj|i)

2. (4.51)

Proposition 3. Under Assumption 11, the optimal solution of (4.49) is attained at an

integral solution.

Given its brevity, we provide the proof here.

Proof of Proposition 3. The first step is to validate the concavity of (4.51) through its Hes-

sian. As there are no cross-terms, the Hessian matrix is a diagonal matrix of dimension
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|I|2 × |I|2, and it has the form



2gγ̂1
11 0 0 · · · 0

0 2gγ̂1
12 0 · · · 0

0 0 2gγ̂1
13 · · · 0

...
...

... . . . ...

0 · · · · · · 0 2gγ̂1
IJ


(4.52)

Because the diagonal elements of (4.52) are strictly negative12, it follows that the Hessian

is negative definite. Hence, (4.51) is strictly concave. Second, because the constraint matrix

of (4.49) is totally unimodular and the right-hand side vector is integral, it follows that

every extreme point solution of the feasible region are integral. Consolidating these results,

we argue that the optimal solution of (4.49) is integral. For this, we employ a well-known

result regarding the minimization of a concave function over a convex set, i.e.,

Theorem 4.5.1 (Horst and Tuy [2013]). Let f : D → R be concave and let D ⊂ Rn be

nonempty, compact and convex. Then, the global minimum of f over D is attained at an

extreme point of D.

In our setting, the domain D of (4.51) is [0, 1](|I|
2). D is a nonempty, compact and convex

subset of Rn. Thus, the optimal solution of (4.49) is a perfect matching of pairs, i.e., 0-1

solution. This manifests itself such that each task has its dedicated worker and each worker

has their dedicated task. This concludes the proof.

4.5.1 Heterogeneous Pairs

By Proposition 3, the optimal solution to (4.49) is attained under 1-1 matching. Let us

denote the matched, i.e., “dedicated”, pairs by D. Then, the objective function value of the

12. By definition, g > 0 and γ1ij < 0 ∀(i, j).
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exact performance-aware policy is

g
∑

(i,j)∈D
γ0
ij + g2

∑
(i,j)∈D

γ1
ij . (4.53)

Then, (4.50) captures the objective function value of the egalitarian policy under the

most general regime, i.e., heterogeneous pairs. Let D′ denote the set of pairs that are not

assigned, such that D ∪D′ = I × J .

Corollary 4.5.1.1 (Heterogeneous Pairs). The gap between the performance-aware and the

egalitarian policy is

∆E
min = g

 1

|J |
∑

(i,j)∈D′
γ0
ij +

1− |J |
|J |

∑
(i,j)∈D

γ0
ij


+ g2

 1

|J |2
∑

(i,j)∈D′
γ1
ij +

1− |J |2

|J |2
∑

(i,j)∈D
γ1
ij

 .
(4.54)

The cardinality of D, i.e., |D|, is equal to number of tasks (or workers) and |D′| =

|I|2 − |I| = |J |2 − |J |.

Corollary 4.5.1.1 follows by (4.50), (4.53) and Proposition 3. We emphasize that (4.54)

holds for the general case, and it simplifies when certain assumptions are imposed on the

primitives. It captures the performance degradation when the organization adopts an egali-

tarian approach.

4.5.2 Identical Task Familiarity Effect

In the identical task familiarity effect regime, i.e., γ0
ij and γ

1
j , the objective function becomes

g
∑
i∈I

∑
j∈J

pj|iγ
0
ij + g2

∑
j∈J

γ1
j

∑
i∈I

(pj|i)
2,
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and, by Proposition 3, the solution is g
∑

(i,j)∈D
γ0
ij + g2 ∑

j∈J
γ1
j , where D is defined as in

the heterogeneous pairs regime. Furthermore, the egalitarian policy (4.50) becomes ZE =

g
|J |
∑
i∈I

∑
j∈J

γ0
ij + g2

|J |
∑
j∈J

γ1
j .

Corollary 4.5.1.2 (Identical Task Familiarity). The gap between the performance-aware

and the egalitarian policy is

∆E
min = g

 1

|J |
∑

(i,j)∈D′
γ0
ij +

1− |J |
|J |

∑
(i,j)∈D

γ0
ij

+ g2 1− |J |
|J |

∑
j∈J

γ1
j ,

where D is the set of dedicated pairs under the performance-aware policy and D′ is the set

of pairs that are not assigned together.

4.5.3 Identical Pair Familiarity Effect

In the identical pair familiarity effect regime, i.e., γ0
ij and γ

1, the objective function becomes

g
∑
i∈I

∑
j∈J

pj|iγ
0
ij + g2γ1

∑
j∈J

∑
i∈I

(pj|i)
2,

and, by Proposition 3, the solution is g
∑

(i,j)∈D
γ0
ij + g2|J |γ1, where D is defined as in the

heterogeneous pairs regime. The egalitarian policy in (4.50) becomes ZE = g
|J |
∑
i∈I

∑
j∈J

γ0
ij +

g2γ1.

Corollary 4.5.1.3 (Identical Pair Familiarity). The gap between the performance-aware and

the egalitarian policy is

∆E
min = g

 1

|J |
∑

(i,j)∈D′
γ0
ij +

1− |J |
|J |

∑
(i,j)∈D

γ0
ij

+ g2(1− |J |)γ1,

where D is the set of dedicated pairs under the performance-aware policy and D′ is the set
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of pairs that are not assigned together.

The form of the final two cases allows making stronger statements regarding the bounds

on the equitable policy. In particular, we find that the egalitarian policy is the objective-

maximizing policy in the final two cases.

4.5.4 Identical Tasks

In the identical tasks regime, i.e., γ0
j and γ1

j , the objective function becomes

g
∑
j∈J

γ0
j

∑
i∈I

pj|i + g2
∑
j∈j

γ1
j

∑
i∈I

(pj|i)
2. (4.55)

By Proposition 3, it follows that (4.55) becomes g
∑
j∈J

γ0
j + g2 ∑

j∈J
γ1
j . We note that it

does not matter which pairs are assigned, so long as they are dedicated to each other. The

egalitarian policy (4.50) becomes ZE = g
∑
j∈J

γ0
j + g2

|J |
∑
j∈J

γ1
j .

Proposition 4. In the identical tasks regime, Z∗max is attained under the egalitarian policy,

i.e., ZE = Z∗max and ∆max
E = 0.

The proof is deferred to Section 4.7.2.

Corollary 4.5.1.4 (Identical Tasks). The gap between the performance-aware and the egal-

itarian policy is

∆E
min = g2 1− |J |

|J |
∑
j∈J

γ1
j .

By Proposition 4, ∆max
E = 0; thus, we have ∆max

min = ∆E
min.
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4.5.5 Identical Pairs

In the identical pairs regime, i.e., γ0 and γ1, the objective function becomes

gγ0
∑
i∈I

∑
j∈J

pj|i + g2γ1
∑
i∈I

∑
j∈J

(pj|i)
2,

and, by Proposition 3, the solution is g|J |γ0 + g2|J |γ1. Again, it does not matter which

pairs are assigned so long as they are always assigned together. The egalitarian policy (4.50)

becomes ZE = g|J |γ0 + g2γ1.

Corollary 4.5.1.5 (Identical Pairs). The gap between the performance-aware and the egal-

itarian policy is

∆E
min = g2(1− |J |)γ1. (4.56)

By Proposition 4, ∆max
E = 0; thus, we have ∆max

min = ∆E
min.

We emphasize that both cases of Sections 4.5.4 and 4.5.5 yield a true bound, because

the egalitarian policy is the worst-case policy, thus ∆E
min constitutes the cost of preserving

performance-privacy, i.e., cost of equity.

In Table 4.3, we extend the example of Table 4.2 to the performance-aware policy under

Assumption 11.

We summarize ∆E
min in Table 4.4, under Assumption 11. The egalitarian policy drives

each pair to accrue the same level of familiarity. On the other hand, the performance-

aware policy takes advantage of the increasing returns to specialization. We reiterate that

ZE = Z∗max in the bottom two rows of Table 4.4. In these two cases, ZE scales down the

benefit of familiarity, and ∆E
min is equal to the difference in the familiarity effect terms only.

∆E
min increases in arrival probability g and system size, i.e., |I| = |J |. Among all cases in

Table 4.4, except for heterogeneous pairs, higher |γ1| (or |γ1
j | ∀j) leads to a larger ∆E

min.
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Table 4.3: Sample schedule under Assumption 11, which is driven by the performance-aware
policy. Suppose that g = 0.6. Tasks are not rotated among workers; each worker-task pair
gains experience exclusively with each other.

n = 1 n = 2 n = 3 n = 4 n = 5

task 1–worker 1 task 1–worker 1 task 1–worker 1 task 1–worker 1

task 2–worker 2 task 2–worker 2 task 2–worker 2

task 3–worker 3 task 3–worker 3 task 3–worker 3

task 4–worker 4 task 4–worker 4 task 4–worker 4

task 5–worker 5 task 5–worker 5 task 5–worker 5

n = 6 n = 7 n = 8

task 1–worker 1 task 1–worker 1 task 1–worker1

task 2–worker 2 task 2–worker 2 task 2–worker2

task 3–worker 3 task 3–worker 3 task 3–worker3

task 4–worker 4 task 4–worker 4 task 4–worker 4

task 5–worker 5 task 5–worker 5 task 5–worker 5

Table 4.4: The steady-state discrepancy ∆E
min between the performance-aware policy and

the egalitarian policy, from general to specific.

Heterogeneous pairs g

[
1
|J |

∑
(i,j)∈D′

γ0
ij +

1−|J |
|J |

∑
(i,j)∈D

γ0
ij

]
+ g2

[
1
|J |2

∑
(i,j)∈D′

γ1
ij +

1−|J |2
|J |2

∑
(i,j)∈D

γ1
ij

]

Identical task familiarity g

[
1
|J |

∑
(i,j)∈D′

γ0
ij +

1−|J |
|J |

∑
(i,j)∈D

γ0
ij

]
+ g2 1−|J |

|J |
∑
j∈J

γ1
j

Identical pair familiarity g

[
1
|J |

∑
(i,j)∈D′

γ0
ij +

1−|J |
|J |

∑
(i,j)∈D

γ0
ij

]
+ g2(1− |J |)γ1

Identical tasks g2 1−|J |
|J |

∑
j∈J

γ1
j

Identical pairs g2(1− |J |)γ1

When we allow base performances to vary across pairs, ∆E
min is amplified in γ0

ij of non-

dedicated pairs (in lower γ0
ij of dedicated pairs). It follows that ∆E

min shrinks in γ0
ij of

dedicated pairs (in lower γ0
ij of non-dedicated pairs), assuming D is unaltered. If D changes,

∆E
min relies on other primitives as well. Similarly, for heterogeneous pairs, ∆E

min grows in

|γ1
ij | of dedicated pairs (in lower |γ1

ij | of non-dedicated pairs). In addition, it shrinks in |γ1
ij |

of non-dedicated pairs (in lower |γ1
ij | of dedicated pairs), assuming D remains the same.

Again, the change in ∆E
min may be in either direction, depending on the other primitives.
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4.6 Concluding Remarks and Discussion

The novel [ASAPI] (5-Step) method that we develop serves to respect the performance-

privacy of workers, while also dealing with the small sample size issue using a meaningful

“universal” familiarity effect coefficient. In this work, we develop a practical method for

equitably assigning workers to tasks, i.e., by treating any two workers with the same fa-

miliarity with a particular task as interchangeable. We uncover three main insights. First,

that the steady-state, equitable policy is fundamentally defective, due to the interchange-

ability of the workers. It lacks sufficient fidelity to drive the system to the true optimal

solution of the steady-state, performance-aware model. Second, under certain assumptions

on worker-task arrivals, we find that the steady-state, performance-aware policy is optimized

by 1-1 matching. This is an artifact of the increasing benefits to specialization. Third, under

certain assumptions on the primitives, we find that the egalitarian policy is the objective-

maximizing (worst-case) policy; it lies at the other extreme of 1-1 matching. In this case we

can bound the cost of equity.

There are other potential avenues to be investigated. We study a sequential assignment

problem, solving myopic assignment problems in each period. A future direction is to model

and analyze the dynamic version of the assignment model. In this work, we assumed a linear

learning curve. Further work can study more complex forms of learning and experience

evolution. We assessed the egalitarian policy; alternative policies can be characterized and

compared against other policies. One can study the performance outcomes when workers and

tasks are allowed to arrive with different marginal probabilities. We assume the existence

of rich historical data at beginning of the horizon, i.e., starting in period 0, so that the

assignments are sensible from the first period onwards. Assuming that the analyst starts

running the PTO loop by setting Fij(0) ∀(i, j) equal to feasible Πij ∀(i, j) solutions from

the steady-state model, there is an interesting question of whether the PTO loop would keep

the initial Πij solution or deviate away from it.
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Although, under our assumptions, being equitable results in performance degradation, in

reality the organizational benefits of being equitable may outweigh this loss. For instance, in

the operating room setting, inequitable treatment of the nursing staff may result in strikes or

the quitting of staff, and thus, the operations may come to a halt. To avoid such unwanted

situations, managers may prefer to lower performance to achieve the benefits.

4.7 Appendix

4.7.1 Derivation of the Estimators in Section 4.3

Estimators for Pair-Level Data

Mean time. An estimator of mean completion time is the empirical average, i.e.,

µ̂(Tij(n)) :=

∑
{n′≤n:Xij(n′)=1}

Tij(n
′)

Nij(n)
.

Standard deviation of time. An unbiased estimator of standard deviation of task time is

σ̂(Tij(n)) :=

 1

Nij(n)− 1

∑
{n′≤n:Xij(n′)=1}

(
Tij(n

′)− µ̂(Tij(n))
)21/2

.

Mean familiarity. An estimator of mean familiarity is the empirical average, i.e.,

µ̂(Fij(n)) :=

∑
{n′≤n:Xij(n′)=1}

Fij(n
′)

Nij(n)
.

Standard deviation of familiarity. An unbiased estimator of standard deviation of task
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familiarity is

σ̂(Fij(n)) :=

 1

Nij(n)− 1

∑
{n′≤n:Xij(n′)=1}

(
Fij(n

′)− µ̂(Fij(n))
)21/2

.

Estimators for Task-Level Data

Mean time.

µ̂(Ti(n)) :=

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

Tij(n
′)

Ni(n)
.

Standard deviation of time.

σ̂(Ti(n)) :=

 1

Ni(n)− 1

∑
j∈J (n)

∑
{n′≤n:

Xij(n
′)=1}

(
Tij(n

′)− µ̂(Ti(n))
)2


1/2

.

Mean familiarity.

µ̂(Fi(n)) :=

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

Fij(n
′)

Ni(n)
.

Standard deviation of familiarity.

σ̂(Fi(n)) :=

 1

Ni(n)− 1

∑
j∈J (n)

∑
{n′≤n:

Xij(n
′)=1}

(
Fij(n

′)− µ̂(Fi(n))
)2


1/2

.

We can relate the estimators in ∀i ∈ I(n),
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µ̂(Ti(n)) =
∑

j∈J (n)

Nij(n)∑
j′∈J (n)

Nij′(n)
µ̂(Tij(n))

σ̂2(Ti(n)) =

∑
j∈J (n)

(Nij(n)− 1)σ̂2(Tij(n)) +Nij(n)(µ̂(Tij(n))− µ̂(Ti(n)))2

∑
j∈J (n)

Nij(n)− 1

µ̂(Fi(n)) =
∑

j∈J (n)

Nij(n)∑
j′∈J (n)

Nij′(n)
µ̂(Fij(n))

σ̂2(Fi(n)) =

∑
j∈J (n)

(Nij(n)− 1)σ̂2(Fij(n)) +Nij(n)(µ̂(Fij(n))− µ̂(Fi(n)))2

∑
j∈J (n)

Nij(n)− 1
.

4.7.2 Proofs of Lemmas and Proposition 4

Proof of Lemma 4.2.1. When task familiarity evolves according to (4.2), we can write

Fij(n+ 1) = αFij(n) + (1− α)1{Xij(n)=1}

= α
[
αFij(n− 1) + (1− α)1{Xij(n−1)=1}

]
+ (1− α)1{Xij(n)=1}

= α2Fij(n− 1) + α(1− α)1{Xij(n−1)=1} + (1− α)1{Xij(n)=1},

for any (i, j). Expanding the recursion in the same fashion into the negative periods, we

obtain

Fij(n+ 1) = lim
k→∞

(αkFij(n− k + 1)) + (1− α)
∞∑
k=0

αk1{Xij(n−k)=1}, (4.57)
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where the first term drops since α ∈ (0, 1) and Fij(n) ∈ [0, 1] ∀n. By Assumption 7, if

1{Xij(n)=1} is stationary, then E[1{Xij(n)=1}] is constant over n, ∀n. Thus, (4.57) becomes

E[Fij(n+ 1)] = (1− α)
∞∑
k=0

αkE[1{Xij(n−k)=1}] = Πij(1− α)
∞∑
k=0

αk = Πij .

Similarly, by Assumption 7, E[Fij(n+ 1)] = E[Fij(∞)] = Πij .

Proof of Lemma 4.3.1. By virtue of simple linear regression, we have that γ̂1
ij has the fol-

lowing formula,

γ̂1
ij =

∑
{n′≤n:Xij(n′)=1}

(Fij(n
′)− µ̂(Fij(n)))(Tij(n

′)− µ̂(Tij(n)))

∑
{n′≤n:Xij(n′)=1}

(
Fij(n′)− µ̂(Fij(n))

)2

:=

∑
{n′≤n:Xij(n′)=1}

δij(n
′)

σ̂2(Fij(n))(Nij(n)− 1)
(4.58)

:=
δij

σ̂2(Fij(n))(Nij(n)− 1)
,

where δij(n′) := (Fij(n
′)− µ̂(Fij(n)))(Tij(n

′)− µ̂(Tij(n))) and δij :=
∑

{n′≤n:Xij(n′)=1}
δij(n

′).

Note that the summation operation in (4.58) indicates summing over the observations that

belong to the (i, j) pair. Similarly, the task-specific effect of familiarity has the formula,

γ̂1
i =

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

(Fij(n
′)− µ̂(Fi(n)))(Tij(n

′)− µ̂(Ti(n)))

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

(
Fij(n′)− µ̂(Fi(n))

)2

:=

∑
{n′≤n:Xij(n′)=1}

δi(n
′)

σ̂2(Fi(n))(Ni(n)− 1)

where δi(n′) :=
∑

j∈J (n)

(Fij(n
′)− µ̂(Fi(n)))(Tij(n

′)− µ̂(Ti(n))).

Different than (4.58), pairs’ observations are summed across workers in (4.59). Then, the
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numerator of (4.59) ∀n′ ≤ n is

δi(n
′) = Fij(n

′)Tij(n
′) + µ̂(Fi(n))µ̂(Ti(n))− µ̂(Fi(n))Tij(n

′)− Fij(n′)µ̂(Ti(n)),

and the numerator of (4.58) ∀n′ ≤ n is

δij(n
′) = Fij(n

′)Tij(n
′) + µ̂(Fij(n))µ̂(Tij(n))− µ̂(Fij(n))Tij(n

′)− Fij(n′)µ̂(Tij(n)).

But then, these two relate to each other in the following way,

δi(n
′) = δij(n

′)

− µ̂(Fij(n))µ̂(Tij(n)) + µ̂(Fij(n))Tij(n
′) + Fij(n

′)µ̂(Tij(n))

+ µ̂(Fi(n))µ̂(Ti(n))− µ̂(Fi(n))Tij(n
′)− Fij(n′)µ̂(Ti(n)).

(4.59)

We can simplify (4.59) as

δi(n
′) := δij(n

′) + ωij(n
′),

where ωij(n′) := −µ̂(Fij(n))µ̂(Tij(n))+µ̂(Fij(n))Tij(n
′)+Fij(n′)µ̂(Tij(n))+µ̂(Fi(n))µ̂(Ti(n))−

µ̂(Fi(n))Tij(n
′)− Fij(n′)µ̂(Ti(n)).

Rewriting (4.59) gives

γ̂1
i =

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

δij(n
′) + ωij(n

′)

σ̂2(Fi(n))(Ni(n)− 1)

=

∑
j∈J (n)

δij

σ̂2(Fi(n))(Ni(n)− 1)
+

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ωij(n
′)

σ̂2(Fi(n))(Ni(n)− 1)

=
∑

j∈J (n)

σ̂2(Fij(n))(Nij(n)− 1)

σ̂2(Fi(n))(Ni(n)− 1)

δij

σ̂2(Fij(n))(Nij(n)− 1)
+

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ωij(n
′)

σ̂2(Fi(n))(Ni(n)− 1)
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=
∑

j∈J (n)

σ̂2(Fij(n))(Nij(n)− 1)

σ̂2(Fi(n))(Ni(n)− 1)
γ̂1
ij +

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ωij(n
′)

σ̂2(Fi(n))(Ni(n)− 1)
.

To complete the first part of the lemma statement, it remains to show that

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ωij(n
′) = (µ̂(Tij(n))− µ̂(Ti(n)))(Nij(n)− 1)µ̂(Fij(n)).

From (4.59) we have

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ωij(n
′) :=

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

− µ̂(Fij(n))µ̂(Tij(n)) + µ̂(Fij(n))Tij(n
′) + Fij(n

′)µ̂(Tij(n))

+ µ̂(Fi(n))µ̂(Ti(n))− µ̂(Fi(n))Tij(n
′)− Fij(n′)µ̂(Ti(n)).

The first and second terms sum to 0, since

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

−µ̂(Fij(n))µ̂(Tij(n)) + µ̂(Fij(n))Tij(n
′)

=
∑

j∈J (n)

µ̂(Fij(n))
∑

{n′≤n:Xij(n′)=1}
(Tij(n

′)− µ̂(Tij(n))) = 0.

The fourth and fifth terms also vanish, i.e.,

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

µ̂(Fi(n))µ̂(Ti(n))− µ̂(Fi(n))Tij(n
′)

= (Ni(n)− 1)µ̂(Fi(n))µ̂(Ti(n))− (Ni(n)− 1)µ̂(Fi(n))µ̂(Ti(n)) = 0.
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The only terms that remain are the third and sixth,

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

Fij(n
′)µ̂(Tij(n))− Fij(n′)µ̂(Ti(n)),

which can be written as

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ωij(n
′) = (µ̂(Tij(n))− µ̂(Ti(n)))(Nij(n)− 1)µ̂(Fij(n)).

This completes the proof of the first statement of Lemma 4.3.1. To complete the proof,

let us first define the following estimators:

Mean time.

µ̂(ZTi (n)) :=

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ZTij(n
′)

Ni(n)
,

where ZTij(n
′) was defined in (4.8).

Mean familiarity.

µ̂(ZFi (n)) :=

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ZFij (n′)

Ni(n)
,

where ZTij(n
′) was defined in (4.7).

Standard deviation of familiarity.

σ̂(ZFi (n)) :=

 1

Ni(n)− 1

∑
j∈J (n)

∑
{n′≤n:

Xij(n
′)=1}

(
ZFij (n′)− µ̂(ZFi (n))

)2


1/2

.
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Mean time.

µ̂(ZT (n)) :=

∑
i∈I(n)

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ZTij(n
′)

N(n)
.

Mean familiarity.

µ̂(ZF (n)) :=

∑
i∈I(n)

∑
j∈J (n)

∑
{n′≤n:Xij(n′)=1}

ZFij (n′)

N(n)
.

Standard deviation of familiarity.

σ̂(ZF (n)) :=

 1

N(n)− 1

∑
i∈I(n)

∑
j∈J (n)

∑
{n′≤n:

Xij(n
′)=1}

(
ZFij (n′)− µ̂(ZF (n))

)2


1/2

.

So far, we have established the link between γ̂1
ij and γ̂

1
i . Analogous to (4.15), the relation

between β̂1
i and β̂1 is

β̂1 =
∑
i∈I(n)

σ̂2(ZFi (n))(Ni(n)− 1)

σ̂2(ZF (n))(N(n)− 1)
β̂1
i

+
(µ̂(ZTi (n))− µ̂(ZT (n)))(Ni(n)− 1)µ̂(ZFi (n))

σ̂2(ZF (n))(N(n)− 1)
.

(4.60)

To see this, observe that µ̂(ZFi (n)) = 0 and σ̂(ZFi (n)) = 1, by construction. Finally,

µ̂(ZF (n)) =
∑
i∈I(n)

Ni(n)∑
i′∈I(n)

Ni′(n)
µ̂(ZFi (n))

σ̂2(ZF (n)) =

∑
i∈I(n)

(Ni(n)− 1)σ̂2(ZFi (n)) +Ni(n)(µ̂(ZFi (n))− µ̂(ZF (n)))2

∑
i∈I(n)

Ni(n)− 1
.

(4.61)
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By the relationship in (4.61), we have µ̂(ZF (n)) = 0, and given this, σ̂(ZF (n)) = 1.

Proof of Proposition 4. The program that we aim to solve is

Z∗max = maximize
pj|i

g
∑
j∈J

γ0
j + g2

∑
j∈J

γ1
j

∑
i∈I

(pj|i)
2

subject to
∑
j∈J

pj|i = 1, ∀i : i ∈ I,

∑
i∈I

pj|i = 1, ∀j : j ∈ J ,

pj|i ≥ 0, ∀(i, j) : (i, j) ∈ I × J .

We employ the method of Lagrange multipliers. First, we write the Lagrangian function,

i.e.,

L (p, λ̂, λ̄) = −

g∑
j∈J

γ0
j + g2

∑
j∈J

γ1
j

∑
i∈I

(pj|i)
2


+
∑
j∈J

λ̂j

1−
∑
i∈I

pj|i

+
∑
i∈I

λ̄i

1−
∑
j∈J

pj|i

 .
Then, we solve for the partial derivative with respect to pj|i ∀(i, j) ∈ I × J ,

∇pj|iL (p, λ̂, λ̄) = 0 =⇒ −2g2γ1
j pj|i − λ̂j − λ̄i = 0. (4.62)

Similarly, we solve for the partial derivative with respect to λ̂j , ∀(i, j) ∈ I × J ,

∇
λ̂j

L (p, λ̂, λ̄) = 0 =⇒
∑
i∈I

pj|i = 1. (4.63)
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Finally, we solve for the partial derivative with respect to λ̄i ∀(i, j) ∈ I × J ,

∇λ̄iL (p, λ̂, λ̄) = 0 =⇒
∑
j∈J

pj|i = 1. (4.64)

Altogether, (4.62), (4.63) and (4.64) constitute a system of |I||J | + |J | + |I| equations

in the same number of unknowns. We want to show that the maximizer p∗
j|i is equal to

1
|J |

when |I| = |J |, i.e., that the egalitarian policy performs the worst. Solving for (4.62), we

get

−2g2γ1
j pj|i = λ̂j + λ̄i =⇒ pj|i = −

λ̂j + λ̄i

2g2γ1
j

. (4.65)

Substituting pj|i into (4.63) and solving for λ̂j , we get

−
∑
i∈I

λ̂j + λ̄i

2g2γ1
j

= 1 =⇒ −1

2g2γ1
j

|I|λ̂j +
∑
i∈I

λ̄i

 = 1

=⇒ |I|λ̂j +
∑
i∈I

λ̄i = −2g2γ1
j

=⇒ λ̂j =
−2g2γ1

j

|I|
−
∑
i∈I λ̄i
|I|

, ∀j ∈ J . (4.66)

Then, substituting pj|i into (4.64) and solving for λ̄i, we get

−
∑
j∈J

λ̂j + λ̄i

2g2γ1
j

= 1 =⇒ −1

2g2

∑
j∈J

λ̂j

γ1
j

+
∑
j∈J

λ̄i
γ1
j

 = 1

=⇒
∑
j∈J

λ̂j

γ1
j

+ λ̄i
∑
j∈J

1

γ1
j

= −2g2

=⇒ λ̄i =
−2g2∑
j∈J

1
γ1j

−

∑
j∈J

λ̂j
γ1j∑

j∈J
1
γ1j
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=⇒ λ̄i = c̄, ∀i ∈ I, (4.67)

where c̄ represents a constant, i.e., it is independent of i. Then, it follows from (4.66) and

(4.67) ∀(i, j) ∈ I × J that (4.65) becomes

pj|i = −
λ̂j + c̄

2g2γ1
=⇒ pj|i = pj .

Then, the constraint
∑
i∈I

pj|i = 1 becomes
∑
i∈I

pj = 1. Thus, |I|p = 1 and p = |I|−1. In

addition,
∑
j∈J

pj = 1 becomes
∑
j∈J

1
|I| = 1. This constraint is satisfied by Assumption 11,

i.e., it holds since |I| = |J |. Finally, this solution satisfies the non-negativity constraints of

Z∗max. Thus, we conclude that it is a solution to Z∗max, under Assumption 11.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we explored different types of learning, in operational settings. In the second

chapter, we studied the Thompson sampling algorithm in the context of a discrete-time MDP

with general state-control spaces. In the latter chapters, we focused on statistical learning;

in the third chapter we adapted a supervised learning model, i.e., random coefficients, and an

unsupervised learning model, i.e., hierarchical clustering, into the novel setting of operating

room surgical cases. Finally, the fourth chapter consolidated regression-based learning with

a learning-by-doing model.

In the second chapter, we constructed a novel metric of expected regret of a policy, which

is suitable to evaluate the performance under any chain structure. Building this new metric

hinged on using the discounted-reward criterion, which allowed us to consolidate machinery

from adaptive learning with the regret literature. We provided performance guarantees of

the policy we evaluate, i.e., Thompson sampling, using the new notion of residual regret,

under chain settings where the transition kernel is strictly positive. This assumption is an

artifact of focusing on general state-control spaces. An interesting direction of research is

to weaken this assumption in order to find how well residual regret behaves under broader

chain structures.

In the third chapter, we extended two statical methods to our setting to estimate the

mean and variance of surgical cases, which are comprised of one or more surgical procedures.

Even though we focus on surgical cases, the methods we adapt and develop can be used

in any domain where tasks are a collection of subtasks, such that subtasks are performed

sequentially. We replicated the analysis for three distinct procedure coding systems. We

found that neither of the statistical methods nor the coding systems is superior to the

others; each configuration has at least one service line under which it performs the best. One

limitation of the study was that surgeries with more than four procedures were automatically
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eliminated, as we eliminated infrequently-occurring surgery types for the assessment of the

goodness-of-fit. A potential area of extension is to look at a bigger population of data which

will allow to retain surgeries with more than four procedures, to see if the results are robust

to the case when surgeries are more complicated, i.e., when they involve more procedures.

The latter part of the dissertation (Chapters 3 and 4) originated by the idea of measuring

the impact of task familiarity on task (i.e., surgery) completion time. “Surgery time” is the

time between the first incision and the closing of the patient. This implies that we studied

the impact of worker-task familiarity on the time between the first incision and closing. Even

though we restrict our focus to this interval, which is the center of a surgical encounter, the

surgical encounter includes other components that surround this interval. The main event

preceding the first incision is the patient’s entry into the OR. Conversely, the main event that

follows the closing of the patient is the exit of the patient. Thus, finding the impact of nurses’

familiarity with the surgery on the duration of the entire surgical encounter, including the

time before incision and after closing, is highly relevant to the question that we focused on.

In addition to the surgical encounter duration, the successful flow of a hospital’s operations

are dependent on the OR turnover time, which includes the setup and cleanup of the OR’s.

Similarly, estimating the impact of nurse familiarity with the surgery on the turnover time

is a potential area of extension.

In the fourth chapter, we formulated the steady-state version of the daily assignment

problem, under certain assumptions on the primitives. The objective is to minimize the

total task completion time, across all pairs, in steady state. An alternative, reasonable

goal would be to minimize the total task variance, across all pairs. Since longer-duration

tasks typically have more uncertainty involved, and thus, have longer variance, a risk-averse

decision maker may opt for the variance minimization problem. In the scenario of tasks

being rare objects that do not occur frequently in the data, the methodologies we developed

in the third chapter will be useful.
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