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ABSTRACT

Our concordance cosmological model, known as ΛCDM, is remarkably successful in explain-

ing a wide range of observations. Using data to fit that model to we are able to constrain

its parameters. In the era of precision cosmology, we have reached a point where we can

constrain those parameters remarkably well and as we move into the next generation of

galaxy surveys, we expect to be able to do even better. However, this also means that we

need to build models that keep up with the increasing precision of the data. Moreover,

we need to be able to utilize the whole data set, which we are not capable of doing well

enough presently. Specifically, cosmological studies from galaxy surveys by collaborations

such as the Dark Energy Survey (DES) only use the large, linear scales due to our inability

to accurately model the non-linear regime. The removed scales, however, contain a wealth of

information that could lead to increased constraining power on cosmology, as well as on the

physics of how galaxies relate to their dark matter halos, which is a key component of the

ΛCDM model. Furthermore, the ΛCDM model itself can be stress-tested on the non-linear

scales, which can reveal more about the nature of the dark matter and even put General

Relativity to test. It becomes clear, therefore, that we need to model small scales if we

want to construct a complete and comprehensive picture of the cosmological model of the

Universe. In this thesis, we focus on developing galaxy-halo connection models in order to

model the non-linear scales in 2-point statistics in Cosmology. We use our framework to

analyze data from the Year 3 (Y3) of the DES, self-consistently describing the large scales

used in cosmological studies and the small scales that probe the connection between galaxies

and the dark matter distribution in the Universe. We successfully obtain constraints on the

relation between galaxies and their dark matter host halos in DES Y3 at fixed cosmology.

Our model can be utilized in the future to perform studies where, in contrast, we fix this

"galaxy-halo connection" to model all scales in the 2-point statistics of interest to constrain

the cosmological parameters, or where both sets of parameters vary at the same time.

xx



CHAPTER 1

INTRODUCTION

1.1 Cosmological preliminaries

Throughout this thesis we assume the standard cosmological model of the Universe. Based

on this model, the cosmological background is isotropic and homogeneous, and our expanding

Universe consists of cold dark matter (CDM) with a cosmological constant Λ; this is the so-

called ΛCDM model (Peebles, 1984; Carroll et al., 1992; Peebles & Ratra, 2003). Thus, we

express all formulas using the solutions of General Relativity (GR) under these assumptions

and using the Friedmann-Robertson-Walker (FRW) metric, namely gµν with µ, ν = 0, 1, 2, 3.

In this cosmology, the homogeneous and isotropic hypersurfaces of constant time evolve with

time according to the scale factor of the Universe, a(t), which only depends on time t.

According to General Relativity, two events in spacetime with coordinates that differ by

dxµ are separated by

ds2 = gµνdx
µdxν = c2dt2 − a2(t)dℓ2 , (1.1)

where we have used the FRW metric, and where c is the speed of light. In more detail,

isotropy requires that clocks can be synchronized such that g0i = 0, while the spatial part of

the metric, gij (i, j = 1, 2, 3), can only contract isotropically with the scale factor such that

gijdx
idxj = a2(t)dℓ2, where dℓ is the line element of the isotropic and homogeneous three-

space. In addition, the fundamental postulates of the concordance cosmological model state

that: when averaged over sufficiently large scales, there exists an average motion of matter

and radiation in the Universe with respect to which all averaged observables are isotropic, and

that these averaged observables are the same for all fundamental observers (homogeneity).

These postulates then lead to the conclusion that the mean motion is described by dxi = 0,

in which case ds2 = g00dt
2 = c2dt2; for the last equality, we have equated the eigentime of

the fundamental observers to the cosmic time, i.e. g00 = c2.
1



The above spatial hypersurfaces with geometry described by the line element dℓ2 can be

either flat or curved, with the only constraint being isotropy, i.e. they need to be spherically

symmetric. Also, due to homogeneity we can arbitrarily select a point of origin for our

coordinate system and then choose two angles, θ and ϕ, with which to uniquely identify

positions on the unit sphere and a radial coordinate R. In this case, the most general form

of the spatial line element one can write down is the following:

dℓ2 = dR2 + f2K(R)(dϕ2 + sin2 θdθ2) ≡ dR2 + f2K(R)dω2 . (1.2)

As for the radial function fK(R), homogeneity requires that it is either a trigonometric,

linear, or hyperbolic function of R depending upon the curvature K; namely:

fK(R) =


K−1/2 sin(

√
KR), K > 0

R, K = 0

(−K)−1/2 sinh(
√
−KR), K < 0

(1.3)

for a positive, zero, or negative curvature respectively. Note here that since fK(R) has units

of length, |K|−1/2 has also units of length.

It is worth here to define some basic concepts in cosmology that are relevant to what

follows. Note that this is a very concise list of definitions, and that more can be found in

pretty much any textbook or review on cosmology.

• Redshift: Due to the expansion of the Universe, photons that travel through space

experience the phenomenon of redshift, i.e. their wavelength increases according to the

scale factor of the Universe. If z in the redshift factor, then we have:

1 + z =
a(to)

a(te)
=

1

a(te)
(1.4)
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where to is the time of observation and te is the time of emission of the radiation. Since

we usually set the scale factor a(to) = 1 at the present time (i.e. when the observation

takes place at R = 0), we reach the last part of the equation.

• Expansion rate: Generally, one can derive the Friedmann equations and thus the

expansion rate of the Universe starting from the Einstein Field equations,

Gµν =
8πG

c2
Tµν + Λgµν , (1.5)

where G is the gravitational constant, which relate the Einstein tensor Gµν to the

stress-energy tensor Tµν . In the cosmology described above, and for a perfect fluid,

characterized by density ρ and pressure p, the field equations greatly simplify to the

two equations below: (
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
, (1.6)

which is Friedman’s equation, and

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
, (1.7)

where Λ is the cosmological constant. From the above equations, once the value of a

is fixed at one time, a(t) can be determined.

• The Hubble parameter: We define the Hubble parameter as the relative expan-

sion rate H ≡ ȧ/a. It’s value today, H0 ≡ H(t0) = (ȧ/a)|t0=0, is called the Hub-

ble constant and is commonly expressed in terms of the dimensionless quantity h ≡

H0/(100 km/s/Mpc).

• Critical density: We define the following combination of parameters as the critical
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density of the Universe:

ρcr ≡
3H2

0

8πG
. (1.8)

Whether this quantity is less than or grater than or equal to unity determines whether

the Universe has a closed, flat, or open geometry, as we also mention below.

• Density parameters: We define the density parameter Ωi ≡ ρi/ρcr as the mean

energy density of "species" i with respect to the critical density of the Universe. In

cosmological studies we usually want to constrain these parameters by fitting models

to the data. For example, the matter density parameter is Ωm ≡ ρm/ρcr, the radiation

parameter is ΩR ≡ ρR/ρcr, the curvature parameter is ΩK and the parameter that

corresponds to the dark energy (or the cosmological constant in ΛCDM) is written

as ΩΛ ≡ ρΛ/ρcr = Λ/(3H2
0 ). Note here that when we define the matter parameter,

we assume that it includes all types of non-relativistic matter we consider to exist in

the Universe, e.g. baryonic matter, cold dark matter, etc. The sum over all density

parameters has to then be equal to unity:

∑
i

Ωi = 1 (1.9)

in a flat Universe, which is what we will be considering in what follows. This is

equivalent to stating that if the mean density in the Universe is equal to the critical

one, the spatial geometry is that of a flat space. Figure 1.1 demonstrates the Cosmic

makeup of the Universe according to what we know today based on various experiments,

from which we can see that dark energy by far dominates over all other components,

while Dark Matter accounts for most of the matter.

• Spatial expansion: Using the definitions from above, we can conveniently rewrite
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Figure 1.1: Makeup of the Universe according to the concordance cosmology. Image credit:
ESA/Planck.

Friedmann’s equation (1.6) as follows:

E2(z) ≡ H2(z)

H2
0

= ΩR,0a
−4 + Ωm,0a

−3 + ΩK,0a
−2 + ΩΛa

−3(w+1) , (1.10)

where the subscript "0" denotes values today, at t0 = 0, and we have introduced

the equation-of-state parameter w for dark energy, which is defined as the ratio of the

pressure over the density of dark energy. In ΛCDM w = −1 and thus the "cosmological

constant", in which case ΩΛ does not change with time.

• Distance measures: In curved spacetimes, there is no one unique measure of distance.

Here we define some useful distance measures commonly utilized in cosmology. The

first of them is the proper distance, Dprop(z1, z2), which measures the distance traveled

by a light ray from its emission at redshift z2 to the observer at redshift z1 < z2, or

equivalently from a2(t2) to a1(t1) > a2(t2). By assuming that the observer is at the
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origin of the coordinate system, we can write:

Dprop(z1, z2) ≡ −c

∫ t2

t1

dt = − c

H0

∫ a2

a1

da

aE(a)
=

1

H0

∫ z2

z1

a(z)

E(z)
dz . (1.11)

The second distance measure is the comoving distance which, as the name implies, is

the distance on the hypersurfaces t = t0 between the wordlines of the source and the

observer that comoves with the cosmic flow; thus:

Dcom(z1, z2) ≡ −c

∫ t2

t1

dt

a
= − c

H0

∫ z2

z1

dz

E(z)
. (1.12)

We note here that, sometimes the angular diameter distance, Dang, is utilized in appli-

cations relevant to our work. We therefore define this distance measure here in analogy

to the Euclidean relation between the physical cross section δA of an object at z = z2

and the solid angle δΩ that it subtends for an observer at z = z1: δΩD2
ang = δA. Then,

in a flat spacetime we can write it as:

Dang(z1, z2) ≡
(
δA

δΩ

)1/2

= a(z2)fK(Dcom(z1, z2))

= a(z2)Dcom(z1, z2) =
Dcom(z1, z2)

1 + z2
. (1.13)

1.2 The Large-Scale Structure of the Universe

1.2.1 Linear growth of perturbations

According to the concordance cosmology briefly discussed above, the structure we observe

in the Universe today is formed from small initial perturbations in the matter field. In fact,

according to the inflationary paradigm, these perturbations are due to quantum fluctuations

which rapidly grew during the inflationary expansion of the Universe at the Big Bang (see

figure 1.2 for an illustration of the Cosmic timeline in the ΛCDM model). Later on, due
6



Figure 1.2: Timeline of the Universe according to ΛCDM. Image credit: NASA/WMAP.

to the gravitational instability, the overdensities in the field collapsed (while voids grew in

size) forming the structures in the observed Universe. In this picture, the fluctuations are

uncorrelated and the distribution of their amplitudes is Gaussian.

The growth of these perturbations can be sufficiently described by the linear perturbation

theory as long as they are less than unity, or, in other words, as long as their amplitude is

sufficiently small compared to the homogeneous and isotropic background. For a qualitative,

as well as quantitative, review of the linear theory see Padmanabhan (1993). Here we will

only go over some basics that are useful for this work.

As we discussed in Chapter 1.1, we usually make the assumption that our Universe is

dominated by a weakly interacting dark matter component at the late times (which is mostly

responsible for the weak gravitational lensing we observe). If we define the mean density

for the background to be ρ̄ and if ρ(x) is the density at point x, then we can define the

fluctuations in density as:

δ(x) ≡ ρ(x)

ρ̄
− 1 . (1.14)

Then, the applicability of the linear theory is restricted to |δ| ≪ 1.

We can statistically describe the density field by calculating the average (denoted by ⟨·⟩)
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in real coordinate space (denoted by the subscript "c") of the product of δ(xi) at n points:

⟨δ(x1)δ(x2)...δ(xn)⟩c ≡ ξn(x1,x2, ...,xn) , (1.15)

which is the so-called n-point correlation function in real space. Usually, due to the isotropic

and homogeneous nature of the density field, every x is the same, and thus the above breaks

down to:

⟨δ⟩c = ⟨δ⟩ ≡ µ (1.16)

⟨δ2⟩c = ⟨δ2⟩ − µ ≡ σ2 (1.17)

⟨δ3⟩c = ⟨δ3⟩ − 3µσ2 − µ3 (1.18)

and so on. In the above, we have introduced the mean µ and variance σ of the field. Moreover,

we almost always consider the case of µ = 0, by definition. It is interesting to note here

that, in the case of a Gaussian random field, the 2-point correlation function fully describes

the statistics of the field, while according to Wick’s theorem any odd-point function is zero.

This means that any deviation from zero of odd-point correlation functions is an indication

of non-Gaussianity.

In linear theory, we usually perform calculations in the Fourier space because operations

simplify significantly. Therefore, we need to introduce the Fourier pair δ(k), where k is the

wavenumber, of the density field; the two relate through the following transformation:

δ(x) =

∫
d3k

(2π)3
δ(x)eik·x . (1.19)
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We can thus now express the statistics of the fluctuations in Fourier space as:

⟨δ(k1)δ(k2)⟩ = (2π)3δD(k12)P (k1) (1.20)

⟨δ(k1)δ(k2)δ(k3)⟩ = (2π)3δD(k123)B(k1,k2,k3) (1.21)

⟨δ(k1)δ(k2)δ(k3)δ(k4)⟩ = (2π)3δD(k1234)T (k1,k2,k3,k4) (1.22)

where P , B and T are known, respectively, as power spectrum, bispectrum and trispectrum,

and where we have used the convention

δD(k12...n) ≡
∫

d3x

(2π)3
exp [−ix · (k1 + k2 + ...+ kn)] (1.23)

for simplicity, with k12...n ≡ k1 + k2 + ...+ kn.

In what follows, we will be extensively using the power spectrum in our calculations and

its Fourier transform counterpart 2-point function in real space

ξ2(r) =

∫
d3k

(2π)3
P (k)eik·r (1.24)

(later on we will be simply writing ξ(r) for the 2-point functions as this is the only n-point

function we are interested in for this work). Note also that, it is common to instead of

working with P (k) utilize the dimensionless power spectrum which is defined as:

∆(k) ≡ k3P (k)

2π2
(1.25)

and expresses the power per logarithmic interval in wavenumber k. The variance of the

power spectrum is the quantity:

σ2(R) =

∫
d ln k∆(k)|W (kR)|2 (1.26)
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smoothed over a scale R. For the window function W (kR) a top-hat function is usually

assumed, of the form:

Wtophat(kR) =
3[sin(kR)− (kR) cos(kR)]

(kR)3
(1.27)

or sometimes the Gaussian window function:

Wgauss(kR) = exp(−k2R2/2) (1.28)

when the real-space Gaussian is exp[−(1/2)(r/R)2]/
√
2πR2.

1.2.2 The halo model

In this section we go over the basics of the halo model, which allows us to go beyond the

linear theory of structure formation. A framework similar to the modern "halo model"

was developed by Neyman & Scott (1952); Neyman et al. (1953). Its modern theoretical

framework was introduced in Seljak (2000); Ma & Fry (2000); Peacock & Smith (2000a).

Cooray et al. (2000) was one of the earliest papers to show how this model can be used in

weak lensing applications. In what follows below, we only briefly introduce the basics of the

halo model as is needed to understand our modeling in Chapters 3 and 4.

According to the halo model, the dark matter in the Universe is partitioned into distinct

units that we call dark matter halos. A dark matter halo is an overdensity of dark matter

that is bound by gravity (see figure 1.3 for an example in a simulation). In ΛCDM, structure

formation is hierarchical, as in small halos form first to then combine under the influence of

gravity to form larger ones. Then, the small-scale structure, that is, what happens within a

dark matter halo, depends on how the dark matter is spatially distributed inside a halo. On

the other hand, this small-scale information is not important for the large-scale distribution

of halos. In contrast to the large scales, beyond a single dark matter halo, the small-scale
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regime cannot be described by the linear theory and thus needs a more advanced treatment,

as we discuss in Section 1.3. In practice, that regime is usually ignored in cosmological

studies which instead focus on the linear regime to constrain cosmological models.

Figure 1.3: Illustration of a dark matter
halo and subhalos (in circles) in simula-
tions, from the Caterpillar Project (Grif-
fen et al., 2016).

To construct a halo model, we first need to

find a definition of a halo, and then model their

abundance and distribution in the linear regime.

If we then model how dark matter is distributed

within halos, we can combine all these ingredi-

ents to form a complete model for the large-scale

structure in the Universe. A commonly used ap-

proach to this is the so-called spherical collapse

model, which is a simple, but very useful, ap-

proximation. In that model, halos are spherical

object of mass M0 = (4πR3
0/3)ρ̄(1 + δi) within a

comoving Lagrangian radius R0, at a point where

the initial overdensity was δi. As the Universe

evolves over time, the radius will change accord-

ing to (R0/R)3 = 1 + δ. For such an object to collapse, the initial overdensity δi ≪ 1 must

increase and, in linear theory, exceed the threshold δsc(z) at redshift z. Usually, we consider

this threshold to be δsc(z = 0) ≈ 1.686 and is the result of the linear extrapolation of δsc(z)

to the present, z = 0.

We can now use the above model to describe the abundance of dark matter halos. Using

δsc we can introduce a new quantity named peak height that combines the critical overdensity

and variance of the density field as follows:

ν ≡ δsc(z)

σ(M)
(1.29)
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with which to quantify the abundance of regions that have had time to collapse by z. Then, in

terms of peak height, we assume that the abundance of halos of mass M that have collapsed

by redshift z is described by the Halo Mass Function (HMF), denoted by dn(M, z)/dM .

The formalism for the HMF that we use in this thesis is provided via the relation:

dn(M, z)

d lnM
=

ρ̄m
M

∣∣∣∣ dFdM
∣∣∣∣ , (1.30)

where we have defined

F (M, z) =

∫ ∞

−1
Ccoll(δ, z)p(δ)dδ

to be the probability that a region in an overdensity in the original overdensity field smoothed

on a mass scale M , δM (x), will collapse into a halo of mass ≥ M , by the redshift z. Also,

in the above, p(δ) is the probability density function (PDF) of δM (x), while Ccoll(δ, z) is

the probability that a given overdensity δM (x) at x will collapse by the epoch z. A popular

choice of Ccoll is provided by Press & Schechter (1974). In most applications, we use this

Press-Schechter ansatz which adopts the spherical top-hat collapse model, according to which

any point in space with linearly extrapolated δM (x)a(z) ≥ δsc will collapse into a halo of

mass Mh ≥ M by redshift z; in that case, Ccoll = Θ(δ − δsc), where Θ is the Heavyside

step-function.

In what follows, we will be using the above ansatz and we will be adopting HMF’s cal-

ibrated based on simulations. Figure 1.4 shows what the shape of the halo mass function

looks like as various redshifts. As one would expect under the spherical collapse approxima-

tion, lower-mass objects are more abundant than massive ones, while there is a sharp cut-off

at the very large masses. Furthermore, as time increases after the Big Bang we see more

and more massive halos forming hierarchically.

Furthermore, as a consequence of the inability of the linear model to correctly capture

the dark matter’s distribution on the small scales, corrections to the power spectrum, P (k),
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Figure 1.4: Halo mass function at various
redshifts.

Figure 1.5: Comparison between the lin-
ear and nonlinear matter power spectrum
at z = 1.

must be introduced on large k values. This modifications to P (k) attempt to correct for

the "missing power" in the small scales as predicted by the linear theory and usually take

the form of fitting function based on simulations. Alternatively, one can simply utilize P (k)

as measured from simulations directly. Efficient emulators have been developed for this

purpose (e.g. Heitmann et al., 2006; Habib et al., 2007; Heitmann et al., 2010; Heitmann

et al., 2009; Heitmann et al., 2013; Kwan et al., 2013; Kwan et al., 2015; Heitmann et al.,

2016; Lawrence et al., 2017); however, we do not consider such an approach in this thesis.

A commonly used approach is what we call the halofit (see e.g. Takahashi et al., 2012)

correction to the linear power spectrum, PL(k), to obtain the non-linear power spectrum,

namely PNL(k). For an example of a comparison between the linear and nonlinear power

spectrum see figure 1.5. Another example of tools that have been developed to calculate

the nonlinear power spectrum is HMCODE (Mead et al., 2021), which is a code that fits the

Halo Model to simulations. Moreover, building fast emulators, which is an approach in the

category of forward modeling is becoming more popular, especially as Machine Learning

develops rapidly and is extensively utilized in cosmological studies (see also Chapter 7 for a
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relevant discussion).

1.3 The galaxy-halo connection

In this section we introduce the galaxy-halo connection model we utilize in this thesis. For

influential papers on the topic we refer the reader to Benson et al. (2000); Berlind & Weinberg

(2002). In what follows we briefly go over the basics that are needed to understand Chapters 3

and 4.

In order to make sense of the features of a galaxy-halo connection model, we first need

to discuss how dark matter is structured within a halo. As mentioned before, a halo is

the distinct unit, almost like a spheroid, of dark matter consisting of dark matter particles

that are bound together by gravity. However, as it is probably clear (see also figure 1.3),

there is not a unique definition of a halo. What we call a halo is a region where there is

an overdensity of dark matter particles: starting from the "center" where the density is

the largest we usually draw imaginary spheres around it that enclose some amount of the

surrounding dark matter. If ρ̄ is some mean density (which can be ρm or ρcr), we usually

define a halo to be that sphere that encloses density ρh that is a multiple of ρ̄: ρh = ∆ρ.

Usual values of that multiple are: ∆ = {200, 300,∆vir}, where the Virial overdensity is ∆vir.

The mass of a halo has a big impact on the shape of the dark matter distribution inside

it, especially on how concentrated the distribution is. Higher peaks, that correspond to the

more massive virialized halos, would be less concentrated than small halos, which is what is

found in simulations. This dependence of the concentration of the dark matter distribution

on halo mass is called the concentration-mass relation, and it is demonstrated in figure 1.6.

Another aspect of the halo models worth introducing here is the notion of halo biasing.

The halo bias quantifies the excess clustering of halos over the clustering of dark matter and

will be denoted by bh(Mh, z) in what follows, and is in general a function of halo mass and

redshift. As shown in figure 1.7 the more massive the halo is the more biased it will be.
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Figure 1.6: The NFW profile of a halo of
mass 109M⊙, normalized by the charac-
teristic density ρs, as a function of radius
in units of the scale radius rs, at redshift
z = 1.

Figure 1.7: The halo bias as a function of
halo mass at various redshifts.

When studying the dark matter distribution within a halo, expressions of the following

form have been heavily studied:

ρ(r|M) =
ρs

(r/rs)α(1 + r/rs)β
, (1.31)

where rs is called the scale radius and ρs is the characteristic density at the scale radius,

while α and β are parameters that control the slope of the distribution at different radii. The

most commonly used profile is the NFW (Navarro et al., 1996), for which (α, β) = (1, 2), and

is shown in figure 1.8. From now on we will be assuming the NFW profile in our applications.

For the concentration-mass relation we have used the fitting functions from Bhattacharya

et al. (2013).

As we have previously mentioned, however, in the applications to follow, we will be

working the Fourier space, and we thus need to construct the Fourier-transformed NFW

profile for when we are modeling the inside of a halo. Thankfully, this is straightforward to
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do using the transformation:

ũ(k|Mh) =

∫
d3xρ(x|Mh)e

−ik·x∫
d3xρ(x|Mh)

=

∫
4πr2dr

sin(kr)

kr

ρ(r|Mh)

Mh
(1.32)

where we have assumed spherically symmetric halos to obtain the last equality. More specif-

ically, for the NFW profile the above simplifies even more, since we can derive the following

analytic expression:

ũNFW(k|Mh) =
4πρsr

3
s

Mh

{
sin(kr) [Si([1 + c]krs)− Si(krs)]−

sin(ckrs)

(1 + c)krs

+ cos(krs) [Ci([1 + c]krs)− Ci(krs)]

}
,

(1.33)

where the sine and cosine intrgral functions are defined as:

Si(x) =

∫ x

0

sin t

t
dt , Ci(x) = −

∫ ∞

x

cos t

t
dt .

Figure 1.9 shows what the Fourier transform of the NFW profile looks like for halos of various

mass, as a function of wavenumber.

We need to explicitly note here something that was implied before and can be seen in

figure 1.3 regarding the structure in the dark matter on small scales that plays a key role

in this work. Specifically, as halo is not a smooth distribution of dark matter, but rather

a collection of small particles and subhalos, i.e. smaller halos within the central large ones.

This is what we call substructure of the halos and we are discussing it more in what follows

below. In all of the above, we focused on how the distribution of dark matter that belongs

to the large central halo looks, e.g. it can follow the NFW profile, but a similar discussion

needs to be had about the spatial distribution of the subhalos within a large halo.

Given the hierarchical nature of structure formation in the ΛCDM model, it is reasonable

to assume that large dark matter halos will not exist completely independently from one
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Figure 1.8: The NFW profile of a halo of
mass 109M⊙, normalized by the charac-
teristic density ρs, as a function of radius
in units of the scale radius rs, at redshift
z = 1.

Figure 1.9: Fourier transform of the NFW
profile of halos of various mass, at redshift
z = 1.

another, but rather that larger halos will be orbited by smaller ones. The latter are commonly

called satellite halos and the large ones in the center are the central halos. Moreover, in the

concordance cosmological model, galaxies form within dark matter halos, the latter providing

the deep gravitational potential necessary for galaxy formation. Therefore, galaxies and their

properties are tightly connected to the properties of the dark matter halos they reside in, and

this relation is called the galaxy-halo connection. In this work, we use this relation in order to

study the non-linear scales, as we will discuss below. Additionally, the scales within a single

dark matter halo is called the 1-halo regime, while the large scales beyond the boundaries of

a halo form the so-called 2-halo regime. The intermediate scales, as we transition from the 1-

halo to the 2-halo regime, is what we will be referring to as the transition regime. Modeling

these regimes is all we need in order to form a complete picture to describe scales from

the linear regime, which is usually the only one considered in cosmological studies, to the

non-linear one which adds valuable information and constraining power (see also Chapter 2).
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Figure 1.10: Summary of various approaches to modeling the galaxy-halo connection. Image
credit: Wechsler & Tinker (2018).
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The spatial distribution of satellite galaxies (or equivalently of the dark matter substruc-

ture) is modeled in a very simple way in what follows. In particular, we assume that it also

follows the NFW profile, but with a different concentration parameter. More specifically,

due to astrophysical processes that take place on the small scales, such as baryonic feed-

back, the spatial distribution of satellites is less concentrated that that of the central halo’s

dark matter. Therefore, if cdm and csat are the concentration parameters of dark matter

and satellites, respectively, we make the assumption that csat = accdm where generally we

expect that ac ≲ 1. This assumption is based on the fact that feedback processes lead to

the satellite galaxies being less concentrated compared to dark matter and this is what is

found in, e.g., Carlberg et al. (1997); Nagai & Kravtsov (2005); Hansen et al. (2005); Lin

et al. (2004).

To summarise, we have so far introduced the basics of structure formation, from the

linear theory to the halo model that allows us to go beyond that, and we know that galaxies

are connected to dark matter. To complete the picture, we still need to come up with models

of the galaxy-connection itself, and then we will be able to fully model the spatial distribu-

tion of galaxies in the Universe. There are various ways of doing that, from theoretically

motivated models, to semi-analytical approaches, to purely empirical ways, as summarized

in figure 1.10. For a great review on this see also Wechsler & Tinker (2018). As is also

demonstrated in figure 1.10, knowing how to model the galaxy-halo connection allows us to

populate dark matter halos with galaxies, given the properties of the halos. In particular,

the mass of the halo is one of the most important properties that determines what galaxies

it is expected to reside within them. To put this in a quantitative framework, we denote the

expectation number of galaxies that reside in a halo of mass Mh at redshift z as ⟨N(Mh|z)⟩.

Then, we usually model the occupation of halos by central and satellite galaxies separately,

as we discuss in more detail in Chapters 3 and 4. Modeling the two populations of galaxies in

this way was introduced in Kravtsov et al. (2004). Generally speaking, more massive halos
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Figure 1.11: Schematic of the Halo Occupation Distribution (HOD); gray spheres represent
the dark matter halos of the central galaxies, and within each halo we show the central
galaxy at the center and the satellite galaxies orbiting around it.

are home to more massive central galaxies and to a larger number of satellites.

For now, we will only briefly introduce the idea of the Halo Occupation Distribution

(HOD) which is the approach to building a framework to model the galaxy-halo connection

of our choice. In short, the HOD is an empirical framework that, based on the properties

of the halos and the galaxies of interest, provides us with an expected number of satellite

and central galaxies. This is demonstrated in figure 1.11. Being an empirical approach, the

HOD consists of a set of equations that are constructed so that we can fit the data at hand,

which are only minimally motivated by theory, and is parameterized by a "small" number of

parameters. However, note here that "small" is a relative term and one can make this kind

of models as complex as they desire by introducing more parameters or more properties of

the galaxies or halos on which the model depends. However, as we will see later, we must

take caution when we select the number of free parameters to tune in our model.

The HOD framework is elegant in its simplicity and in many cases surprisingly successful

in describing the data. And combined with the halo model we can build a framework to
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model the clustering statistics of galaxies to compare with data to constrain models. This

is exactly the approach we will be following for most of what is to follow. We will use the

HOD to model galaxy-galaxy lensing and galaxy clustering (see Section 1.4) by modeling the

correlation functions between central/satellite galaxies with dark matter in the 1-halo/2-halo

regime. These correlations give rise to the 1-halo central, 1-halo satellite, 2-halo central and

2-halo satellite terms, as illustrated in figure 1.11. The features of each of these correlation

functions is case-specific, but they generally look similar. We go into more detail on this in

Sections 1.4, 3 and 4.

As a concluding remark, as we have implicitly stated before, the galaxy-halo framework

gives us a way of modeling the galaxy bias, denoted by bgal, of a sample of galaxies (or

at least this is the main way in which we are interested in using it for this work). This, of

course, is simply a different way of saying that galaxies are biased tracers of the dark matter.

And to be even more explicit, we can use the HOD to calculate bgal and thus connect the

spatial clustering of galaxies to that of the underlying dark matter halos. On large scales this

relation simply takes the form Pgg = b2galPmm, where Pgg and Pmm are the power spectra

of the galaxy distribution and dark matter, respectively. In the 1-halo regime this relation

becomes a lot more complex, as we have to account for the specifics of the dark matter’s

distribution. We will omit the details here, as we go into the detail in what follows.

1.4 Correlation functions and 2-point statistics

1.4.1 Weak gravitational lensing

Gravitational lensing of light is a well-established result of the theory of General Relativity.

The main idea behind this phenomenon is that as light travels through space, from its

source to the observer, it experiences the gravitational potential of massive objects in the

line-of-sight. Therefore, its trajectory gets deflected by some amount, α̂, which is called
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the deflection angle. This distorts the image of the observed objects, and as a result we

observe their lensed form. One of the most powerful applications of this phenomenon is

weak lensing, which allows us to probe the (otherwise unobservable) dark matter distribution

which underlies the distribution of the visible galaxies in the Universe. This leads to a better

understanding of how the properties of the galaxies are related to the properties of their host

dark matter halos.

The large-scale structure in the universe generates gravitational potentials, namely Φ,

that perturb the flat space-time. Usually it is the case that these potentials are weak,

and more specifically the dimensionless potential |Φ|/c2 ≪ 1. This is the main feature of

the theory of weak gravitational lensing. Under this assumption it can be shown that the

perturbed metric is diagonal, coordinate on gauge choice and non-relativistic matter, and

the line element takes the form

ds2 = −c2
(
1− 2Φ

c2

)
dt2 +

(
1 +

2Φ

c2

)
dℓ2 . (1.34)

The mass distribution then has the same effect as a regular lens would have in classical

optics, as we discuss briefly below. The massless photons follow null geodesics, ds = 0, which

leads to the definition of an "index of refraction", corresponding to the mass distribution

causing the lensing, as

n ≡ c

v
=

[(
1 +

2Φ

c2

)(
1− 2Φ

c2

)−1
]1/2

≈ 1 +
2Φ

c2
, (1.35)

where v is the speed of light in the lens. Then we can calculate the deflection angle by

applying Fermat’s theorem of minimizing the optical path τ , δτ = δ
∫ λB
λA

(c/n)dλ = 0, of the

photons to get

α̂ = − 2

c2

∫
∇⊥Φdλ , (1.36)
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Figure 1.12: Sketch that demonstrates the deflection of light when it passes near a mass
overdensity (gravitational lensing) in the weak regime.

where λ parametrizes the photon’s path and ∇⊥ is taken to be perpendicular to the photon’s

trajectory.

As shown in figure 1.12 the deflection angle α̂ is measured at the lens (for more see, e.g.

Bartelmann & Maturi (2017)). However, it is useful to define the angle α which is, instead,

measured at the observer. Simple geometry and the small-angle approximation, since we are

in the regime of weakly lensed systems, can relate these two angles by α = (DLS/DS)α̂,

where DLS and DS are the angular diameter distances from the lens to the source and

from the observer to the source, respectively. Note here that both of these angles should be

thought of as vectors since they have a direction as well as a magnitude. Conventionally, α

is called the "reduced" deflection angle. To understand where this definition comes from, we

can use the lens equation which, according to figure 1.12, yields:

θDS = βDS + α̂DLS ⇒ θ = β + α̂
DLS

DS
≡ β +α .

Then, we can go further and write things down on a dimensionless form by defining a length
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scale ξ0 on the lens plane that has a corresponding length scale on the source plane which is

η0. The two are obviously related by ξ0/DL = η0/DS , yielding that

η0 =
DS

DL
ξ0 .

We can then use this to rewrite the deflection angle as

α =
DLSDS

DL
α̂ .

Since we are interested in modeling the lensing signal as a function of the angular distance,

θ, measured from the axis that connects the observer to the center of the lens halo, below we

introduce a transformation which allow us to do so. Some manipulation of equation (1.36)

combined with the transformation ∇⊥ = D−1
L ∇θ, which includes derivatives with respect

to θ, yield the equation α = ∇θΨ̂, where we define the gravitational potential as

Ψ̂(θ) ≡ 2

c2
DLS

DLDS

∫
Φ(ξ, z)dz . (1.37)

In the above expression we have used the z spatial coordinate as λ, DL is the angular

diameter distance from the observer to the lens and ξ is the two-dimensional vector on the

lens plane. Then, Ψ(θ) can be thought of as the projected three-dimensional Newtonian

potential Φ(x) = Φ(DLθ, z) onto the two-dimensional plane of the lens, re-scaled by the

geometric factor DLS/DLDS to account for the relative positions of the lens, the source and

the observer. The dimensionless counterpart of the gravitational potential defined above is

given by

Ψ =
D2
L

ξ0
Ψ̂ , (1.38)

which would change the geometric prefactor from DLS/(DLDS) to DLSDL/DS .

The lensing potential needs to satisfy two very important properties: (a) Its gradient gives
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us the deflection angle, ∇ξΨ(ξ) = α(ξ); (b) Its Laplacian is equal to twice the convergence,

κ(ξ) ≡ Σ(ξ)/Σc, and thus ∇2
ξΨ(ξ) = 2κ(ξ). Σ(ξ) in the definition of convergence is the

surface density on the lens plane and

Σc(zL, zS) ≡
c2

4πG

DS

DLDLS
(1.39)

is called the critical surface density and characterizes the lensing system.

In comoving coordinates the critical surface density will have factors of (1 + z) in its

expression. A simple dimensional analysis should give us the correct formula. Denoting the

dimensions of a quantity with square brackets, [Σc] = M⊙/kpc2 is physical units. Since the

comoving length ℓ is related to the physical length x through x = aℓ = ℓ/(1+z), in comoving

units we get Σ
phys
c → Σcom

c /(1 + z)2. Also, the angular diameter distance is related to the

comoving distance via D = aχ = χ/(1 + z). Therefore, from equation (1.39) we get for the

critical surface density in comoving coordinates

Σc(zL, zS) =
c2

4πG

DS

(1 + zL)
2DLDLS

=
c2

4πG

χS
(1 + zL)χLχLS

(1.40)

for a lens at redshift zL.

In comoving coordinates equation (1.38) then gives

Ψ̂(θ) ≡ 2

c2

∫
DLSDL

DS
Φ(ξ, z)dz =

2

c2

∫
χLSχL

(1 + z)2χS
Φ(ξ, z)dχ . (1.41)

Now we can easily also derive the convergence in comoving units, which will be

κ =
1

2
∇2Φ =

1

c2

∫
dχ∇2Φ

χLSχL
(1 + z)2χS

=
4πG

c2

∫
dχρm(z)

χLSχL
(1 + z)2χS

=
3

2

H2
0

c2
Ωm,0

∫
dχ(1 + z)

χLSχL
χS

δm (1.42)
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using Poisson’s law, ∇2Φ = 4πGδmρm(z) = 4πGδmΩm,0ρc,0(1 + z)3, with the critical

density being ρc,0 = 3H2
0/(8πG), and where we have defined the mass fluctuation δm =

ρm(z)/ρ̄m(z)− 1 (note that ρ̄(z) = Ωm,0ρc,0(1 + z)3).

The lensing potential is what introduces the distortion and magnification in the shape

of the source galaxies as they are being lensed by the large-scale structure in the line-of-

sight between them and the observer. The shear distortion on the shape of the source can

be defined by introducing the angle β ≡ θ − α = θ − ∇ξΨ(ξ) and quantifies the angular

distance of the source from the axis connecting the observer to the lens center. The shear

distortion on the source is then δβ ≈ Aδθ, where A ≡ ∂β/∂θ is the Jacobian matrix of the

lens mapping. The elements of the Jacobian are Aij = δij −Ψ,ij , where δij is the Kronecker

delta symbol and Φ,ij ≡ ∂2Ψ(θ)/∂θi∂θj . The Jacobain matrix builds the foundations of

weak lensing applications in astrophysics. By definition it maps small distortions in the

image, δθ, to small distortions in the source, δβ.

It can be shown that we can decompose the Jacobian matrix into a symmetric part

proportional to (1 − κ) and an anti-symmetric, trace-free part which in the appropriate

coordinate system is proportional the tangential shear shear, γt. Therefore,

A = (1− κ)

 1 0

0 1

− γt

 cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

 . (1.43)

This equation makes the meaning of shear and convergence very clear: (a) Shear stretches

the image of the source tangentially along a privileged direction and there exists a rotation

coordinate system by an angle ϕ in which the shear matrix is proportional to γt; (b) Con-

vergence, on the other hand, induces a distortion which is isotropic and just re-scales the

image by a constant factor.
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1.4.2 Modeling the 2-point statistics

We now discuss the convergence power spectrum, how it relates to the shear and how to

apply the Limber approximation to simplify the equations (under the assumption that this

is a valid approximation in our case). First, lets see what Limber’s approximation is about.

Lets consider for this purpose a quantity x(θ) which is a function of a two-dimensional

variable θ and write down its two-point correlation function

ξx(ϕ) = ⟨x(θ)x(θ + ϕ)⟩ .

The corresponding power spectrum results from Fourier transforming that above, and thus

Cx(ℓ) =

∫
d2ϕ e−iℓ·ϕξx(ϕ)

In essence, Limber’s approximation states that if x(θ) is the two-dimensional projection of

a three-dimensional quantity, say y(θ), i.e.

x(θ) =

∫ χ

0
dχ′w(χ′)y(θχ′, χ′) , (1.44)

defined using the weight function w(χ), then the power spectrum of x(θ) can be calculated

by

Cx(ℓ) =

∫ χ

0
dχ′

w2(χ′)
χ′2

Py(ℓ/χ
′) . (1.45)

For the above to hold, however, y must vary on length scales much smaller than the typical

length scale of the weight function w. We will discuss below what this means specifically in

our case.

By direct comparison of equations (1.42) and (1.44) we can see what the weight function

of convergence in Limber’s equation is; by setting y to be the density fluctuation, δm, we get
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that:

Wκ(χ|z′) =
3

2

H2
0

c2
Ωm,0(1 + z)

χ(χ′ − χ)

χ′
= ρm,0Σ

−1
c (z, z′) (1.46)

where, 1 + z = 1/a, and this is what we call the weight function or lensing efficiency. In

addition, we know that the power spectrum of y = δm is the matter power spectrum; thus:

Py = Pδm ≡ Pm(k, z) ∝ σ28D
2(z)R(k)

with D being the growth factor, R being the primordial power spectrum and

σ28 ≡ σ2(R = 8 Mpc/h) (1.47)

if the variance of the power spectrum (see equation (1.26)) smoothed over a scale of 8 Mpc/h

which we use to set the normalization of the dark matter’s power spectrum. Then, Limber’s

approximation, i.e. equation (1.45), gives us the convergence power spectrum:

Cκ(ℓ) =

∫ χS

0
dχ

W 2
κ(χ|zS)
χ2

Pm(k = (ℓ+ 1/2)/χ, z)

=
9

4

H4
0

c4
Ω2
m,0

∫ χS

0
dχ

(1 + z)2

χ2

[
χ(χS − χ)

χS

]2
Pm(k = (ℓ+ 1/2)/χ, z) . (1.48)

Following the same procedure as above we can now use the galaxy-matter cross power

spectrum, namely Pgm, in order to model the galaxy-galaxy lensing signal. For this purpose,

we calculate projected the cross correlation between the dark matter density field and galaxy
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positions and use it, under the Limber approximation, to obtain:

Cgm(ℓ|z, z′) = Wκ(χ|z′)
χ2

Pgm(k = (ℓ+ 1/2)/χ, z)

=
3H2

0Ωm,0

2c2
1 + z

χ2

[
χ(χ′ − χ)

χ′

]
Pgm(k = (ℓ+ 1/2)/χ, z)

=
4πGρm,0

c2
1 + z

χ2

[
χ(χ′ − χ)

χ′

]
Pgm(k = (ℓ+ 1/2)/χ, z)

= ρm,0Σ
−1
c (z, z′)Pgm(k = (ℓ+ 1/2)/χ, z) . (1.49)

However, in applications like the ones we are interested in, we deal with a large number of

galaxies that are distributed in space in a particular way, and the features of their distribution

is important in precision cosmology. Therefore, if we define the normalized distribution of

lens and source galaxies in redshift as nL(z) and nS(z), respectively, we can average over

these PDF’s to obtain the mean shear within a redshift range. It is convenient in this case

to calculate the average of equation (1.46) over the PDF of source galaxies,

Wκ(χ) =
4πGρm,0

c2
(1 + z)

∫ ∞

χ
dχ′ nS(χ(z′))χ(z)

χ(z′)− χ(z)

χ(z′)

= ρm,0

∫ ∞

z
dz′ n(z′)Σ−1

c (z, z′), (1.50)

and to define the weighting function of galaxies as

Wg(χ) = nL(χ(z))
dz

dχ
, (1.51)

which is also called the radial galaxy selection function. With the help of the above, we then

simply write down the galaxy-galaxy lensing Limber power spectrum as:

Cgm(ℓ) =

∫
dχ

Wκ(χ)Wg(χ)

χ2
Pgm(k = (ℓ+ 1/2)/χ, z) . (1.52)

29



Therefore, the average galaxy-galaxy lensing signal in real space, is computed by per-

forming a Hankel transform to the above, defined as

γt(θ) =

∫
ℓdℓ

2π
J2(ℓθ)Cgm(ℓ) , (1.53)

where J2 is the Bessel function of the first kind of the second order. The above equations,

can then be combined with an HOD prescription, as discussed in Section 1.3, to calculate

individual components of the galaxy-galaxy lensing signal; e.g. from 1-halo centrals or

satellites, etc. We discuss in detail these expressions in Chapters 3 and 4.

Finally, discuss how we model the statistics of galaxy clustering, following a similar

process as for galaxy-galaxy lensing above. When we generally talk about galaxy clustering

there is a number of different ways we can think of it: clustering of galaxies in real three-space,

the projected clustering on the two-sphere, or even redshift-space clustering. Then, there

are various ways of modeling this statistic: one might be interested in the angular clustering

or the three-dimensional clustering as a function of radius. In what follows, however, we

will be interested in how galaxies cluster in real space and the corresponding Fourier-space

functions which we will be projecting on the two-dimensional sky as a function of angular

scale, θ. This we will be denoting by w(θ).

We start by constructing the galaxy position auto-correlation, Pgg, which is the equivalent

of Pgm(k, z) for galaxy clustering. This represents the three-dimensional power spectrum, i.e.

the Fourier transform of the real-space ξgg correlation function of the clustering statistics.

From that, the next step is to project on the two-dimensional sky and assume use the Limber

approximation to obtain:

Cgg(ℓ) =

∫
dχ

W 2
g (χ)

χ2
Pgg(k = (ℓ+ 1/2)/χ, z) (1.54)

where, since Pgg is the galaxy position auto-correlation power spectrum we have two factors
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of Wg, the selection function of the galaxies of interest in a redshift range. Then, the

observable of interest can be computed by a Hankel transform as:

w(θ) =

∫
ℓdℓ

2π
J0(ℓθ)Cgg(ℓ) , (1.55)

similarly to γt but using the Bessel function of different order. For a detailed discussion on

how we choose to model w(θ) under the HOD framework see Chapter 4

In Chapter 2 we are going to discuss more what the purpose of using the above statistics

is in Cosmology. Later on, in Chapters 3 and 4, we will apply the model to real-world data

and dive deep into the specific details of the modeling.
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CHAPTER 2

CONSTRAINING COSMOLOGY WITH GALAXY SURVEYS

2.1 An overview of galaxy surveys

A galaxy survey here refers to astronomical observations designed to map the distribution of

galaxies in the sky in order to probe the large-scale structure of the Universe. Since galaxies

are biased tracers of the dark matter density field, we can use data from galaxy surveys to

make inferences about the dark matter’s distribution and other fundamental properties. The

way this is usually done is by extracting the observables of interest (such as weak lensing

shear and galaxy counts) from the raw data, measuring statistics of the observables and then

compare with cosmological models in order to constrain the parameters in the model and

to prove or disprove the validity of the theory. In this section we will discuss in general

terms the types of galaxy surveys and their purpose, go over a brief historical overview of

the efforts of mapping the sky and explain why galaxy surveys are so important in our quest

to learn more about the Cosmos.

When we carry out galaxy surveys we are aiming to map as large of an area of the

sky, and to go as deep (i.e. as high in redshift) as we possibly can within some range of

the electromagnetic spectrum. For this reason we need big telescopes with high sensitivity

and good ways of estimating distances to the observed objects. The latter is an especially

important and tricky point: while the angular positions of the objects we see is easy to

measure on the 2-dimensional (2D) sky, to construct the 3-dimensional (3D) signal we need

to estimate redshifts to the objects. The challenge is amplified by the sheer number of

objects that we observe in a galaxy survey, which can be of the order of hundreds of millions

of galaxies or even more. Why this is an issue will become more clear in what follows below.

There are various ways of extracting the redshift information for an astronomical object,

but here we will only discuss a few that are relevant to what follows. To begin with, however,
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we need to make the distinction between a spectroscopic and a photometric survey. In

spectroscopic surveys, we measure the spectra of objects, say of a galaxy, that is, we measure

the energy emitted by an object as a function of wavelength. This can precisely characterize

the nature of the object (e.g. separate between galaxies and stars, etc) and it provides one

of the more accurate ways of estimating redshifts via methods such as template fitting where

we fit templates generated based on theoretical models to observed galaxy spectra in order to

constrain the galaxy’s redshift. However, this technique is time consuming and cannot easily

be performed for a very large number of objects in a relatively short amount of time. This is

where photometric surveys shine, i.e. in scanning the sky for objects in a more time-efficient

manner.

As its name suggests, in this case we perform photometry on an object, which is the

process of measuring the integrated flux of light emitted by it within a relatively wide band

of the electromagnetic spectrum. The shortcoming of this technique is that it can only give

us a rough estimate of an object’s redshift via various ways that we will briefly mention

below. But before we move on to that, we should emphasize here that in this work we will

be working with data from a photometric survey, introduced in Section 2.2 and analyses of

its data descussed in Sections 3, 4 and 5.

We will omit discussing measuring redshifts from spectroscopy here, as it will not be

directly relevant to what follows, but we will rather provide a brief introduction to how

some techniques of photometric redshift estimation, also referred to as photo-z, work (for a

review on the topic see also Newman & Gruen, 2022). In addition, we are not interested in

estimating the redshift of individual objects, known as performance, but rather in obtaining

an stimate of the distribution of redshifts, n(z), of an ensemble of galaxies, a process referred

to as characterization, for as many high-precision measurements as possible. From the pool

of methodologies to estimate photo-z’s, some that are employed by modern cosmological

surveys and are of interest to us include the following.
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• Template-based methods: This family of methods rely on a priori knowledge of

models based on the range of galaxy Spectral Energy Distributions (SED’s) that exist.

These algorithms usually construct the PDF of the redshift of a galaxy by applying

the Bayes theorem. Without going into too much detail, the Bayesian Photo-z (BPZ)1

method (see also Benítez, 2000, and figure 2.1), an application of which we will see

in Chapter 4, commonly performs χ2-based likelihood analyses to fit already existing

templates of galaxy SED’s to the photometry of the galaxies whose photo-z we want

to estimate. We note here that these methods belong to the even broader family of

Bayesian hierarchical methods we briefly discuss below.

• Clustering-based redshift estimation: Whenever an object in a photometric sur-

vey is near another object for which we have spectroscopic measurements, and thus a

good redshift estimate, it is possible that we match the objects and in this way compute

the photo-z of the object of interest. The redshift estimation from this cross-correlation

between a photometric and a spectrocsopic galaxy sample is known as clustering red-

shift, it is introduced in Newman (2008), and it is a method that is employed by modern

galaxy surveys.

• Machine Learning methods: This method relies again on our pre-existing knowl-

edge of the redshift and other features (such as magnitudes) of a sample of galaxies,

which is usually smaller than the full sample of galaxies for which we want to estimate

photo-z’s. Using the former as the training data we teach a Machine Learning (ML)

model how to find correlations between redshift and other galaxy properties. We then

apply the model to our full set of galaxies whose photo-z’s we are trying to compute.

We will see an application of that in Chapter 4.

• Bayesian Hierarchical methods: It might be already clear from the above, but

1. https://www.stsci.edu/ dcoe/BPZ/intro.html
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we should note here that the photo-z methods are necessarily hierarchical, speaking

in a statistical way, given that there are at least two sets of parameters relevant to

the redshift inference: one that is a property of the single object whose photo-z we

are trying to estimate and one that is describing the properties of the ensemble of

galaxies. The Bayesian Hierarchical techniques exploit this fact and take it to its limits

by constructing posterior distribution estimates for both the redshift of the individual

object and the properties of the underlying ensemble of galaxies via Bayesian parameter

estimation. However, the Bayesian Hierarchical methods are still in their early stages

of development, but they look promising in addressing many challenges in photo-z

estimation, as discussed in Newman & Gruen (2022) for example. One example of these

models is the Forward-modeling methods (Herbel et al., 2017; Tortorelli et al., 2021)

where the model parameters are constrained via Markov Chain Monte-Carlo (MCMC)

methods to resemble the observed distributions of galaxy properties, including the

measured redshifts, of spectroscopic objects.

Having the redshift information of a galaxy can tell us a lot about its intrinsic properties

and allows us to perform studies where we divide galaxies into tomographic bins in redshift.

This reveals trends in how the properties of the Large-scale structure of the Universe evolve

over time. We note here that, all the above photo-z methods, albeit useful in conducting

cosmological analyses, have their shortcomings. Especially in the era of precision cosmology,

the demands for accurate redshift estimations are high. Therefore, new and better methods

of estimating redshifts to objects, or improvements in the aforementioned ones, are always

under development. This also implies that, given the photo-z uncertainties and how they

can impact our results, we need to account for it in our work, as part of our model. We

will see examples of how this is done in Chapters 3 and 4 where we marginalize over those

uncertainties in our MCMC chains.

We will now close this section on a historical note (see also Coil, 2013; Okamura, 2019;
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Wang & Zhao, 2020) by talking about the evolution of galaxy surveys in brief. The study

of whether galaxies are distributed uniformly in space can be traced back to Edwin Hubble

(Hubble, 1926), who used his catalog of 400 "extragalactic nebulae" to test the homogeneity

of the Universe and found it to be uniform on large scales.

Figure 2.1: Illustration of fitting a tem-
plate to photometry in the BPZ method
of redshift estimation. The algorithm
tries to minimize the χ2 (i.e. find the
smallest set of ∆mag points in the up-
per panel for all bands) of the fit of the
model (black line in the bottom panel),
i.e. the spectrum redshifted by z (shown
in the title), to the photometry in each
band (colorful lines). Image credit: Illus-
tration from the BPZ’s website.

In 1932, the larger Shapley-Ames catalog was

published (Shapley & Ames, 1932), in which it

was found that the galaxies projected onto the

plane of the sky are unevenly distributed with

roughly a factor of 2 difference in the numbers

of galaxies in the northern and southern galac-

tic hemispheres. Using this larger sample, Hub-

ble (Hubble, 1934) found that on angular scales

less than ∼ 10◦ there is an excess in the number

counts of galaxies above what would be expected

for a random Poisson distribution, though the

sample follows a Gaussian distribution on larger

scales. Therefore, while the Universe appears to

be homogeneous on the largest scales, on smaller

scales it is clumpy.

The study of the large-scale structure of the

Universe significantly moved forward with the Lick galaxy catalog produced by Shane &

Wirtanen (1967), which contained roughly one million galaxies. Seldner et al. (1977) pub-

lished maps of the counts of galaxies in angular cells on the sky, which showed in much

greater detail that the projected distribution of galaxies on the sky is not uniform, but it

rather contains walls and filaments, clusters, and large voids. The statistical spatial distri-

bution of galaxies from this catalog and that of Zwicky et al. (1961) was analyzed by Jim
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Peebles and collaborators in a series of papers (e.g., Peebles & Groth, 1975) who showed

that the angular 2-point correlation function roughly follows a power law distribution over

angular scales of ∼ 0.1◦ − 5◦.

These results played a key role in motivating the first large-scale redshift surveys which

obtained optical spectra of individual galaxies in order to measure the redshifts and the

spatial distribution of large galaxy samples. Two galaxy surveys were the KOS survey

(Kirshner et al., 1978) and the original CfA survey (Center for Astrophysics; Davis et al.

(1982)). The KOS survey measured redshifts for 164 galaxies brighter than magnitude 15

in eight separate fields on the sky, covering a total of 15 deg2. Part of the motivation for

the survey was to study the three-dimensional spatial distribution of galaxies, and it was

found that the galaxies are strongly clustered in velocity space. The original CfA survey,

completed in 1982, contained redshifts for 2, 400 galaxies brighter than magnitude 14.5 across

the north and south galactic poles, covering a total of 2.7 steradians. The goals of the survey

were cosmology and quantifying the clustering of galaxies in three dimensions. From this

survey, one could identify galaxy clusters, voids, and a “filamentary connected structure”

between groups of galaxies. This paper also performed a comparison of the so-called “complex

topology” of the large scale structure seen in the galaxy distribution with that seen in N-body

dark matter simulations, paving the way for future studies of theoretical models of structure

formation. The second CfA redshift survey, which ran from 1985 to 1995, contained spectra

for ∼ 5, 800 galaxies and revealed the existence of the so-called “Great Wall”, a supercluster

of galaxies that extends over 170 Mpc/h. Large voids were also found, with a density 20%

of the mean density.

Redshift surveys have rapidly progressed with the development of multi-object spectro-

graphs, which allow simultaneous observations of hundreds of galaxies, and larger telescopes,

which allow deeper surveys of both lower-luminosity nearby galaxies and more distant lu-

minous galaxies. Some of the largest redshift surveys of galaxies are: the Las Campanas
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redshift survey (Shectman et al., 1996), the Sloan Digital Sky Survey (SDSS, York et al.

(2000)), the Two Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al. (2001)), the

Galaxy and Mass Assemply (GAMA, Baldry et al. (2010)) survey, etc.

Figure 2.2: The Dark Energy
Survey (DES) logo.

Today we live in a very exciting era of data-driven

cosmology – the amount of data is almost overwhelming,

which necessitates the development of new techniques to

analyze them, is many cases based on ML (and thus the

high demand of such algorithms for cosmology), over a

wide sky coverage, large redshift range and large density

of observed galaxies. The largest galaxy surveys today

that probe the Large-scale structure and dark energy are:

the Dark Energy Survey (DES, Flaugher et al. (2015)),

the Kilo-Degree Survey (KiDS, de Jong et al. (2015)) and

the Hyper Suprime-CamSubaru Strategic Program (HSC-

SSP, Aihara et al. (2017)) – what we refer to as Stage-III galaxy surveys. All of these surveys

have provided exquisite measurements with which we have been able to obtain cosmological

constraints of high significance. And the precision is only going to increase as we step into the

Stage-IV galaxy surveys, such as the Dark Energy Spectroscopic Instrument (DESI, DESI

Collaboration (2016)) and the Vera C. Rubin observatory which will conduct the Legacy

Survey of Space and Time (LSST) survey, as the number of observed objects is expected to

skyrocket, which will require improved theoretical models as well as statistical techniques

and great computational power to perform the analyses. For the remaining of this section

we will introduce the Dark Energy Survey, before we delve deeper into the specifics of how

one can use data from such a survey to constraint cosmology and astrophysics.
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2.2 The Dark Energy Survey

In this section we give a brief overview of the Dark Energy Survey (DES, Flaugher et al.,

2015), since we will be exclusively using data from this experiment in our main analyses in

Chapters 3 and 4, as well as in Chapter 5.

The Dark Energy Survey (its logo shown in figure 2.2) is an international collaborative

effort to survey the sky and map millions of galaxies, thousands of Supernovae, and to probe

the large-scale structure of the Universe and reveal the nature of the dark energy. It is a

photometric survey that covers about a quarter of the southern sky to a depth of r > 24

and images ∼ 300 million galaxies in 5 broadband filters (grizY ), up to redshift z ∼ 1.4

(Flaugher et al., 2015; DES Collaboration, 2016).

Figure 2.3: The DES footprint, showing
the sky coverage split into the Science
Verification (SV), Year 1 (Y1) and Year 3
(Y3) data sets.

The DES data was assembled from the imag-

ing survey using the Blanco 4m telescope at

the Cerro Tololo Inter-American Observatory

(CTIO) in Chile and observed in a range from

∼ 400 nm to ∼ 1060 nm in wavelength, with the

Dark Energy Camera (DECam Flaugher et al.,

2015). DES completed observations in January

2019, after 6 years of operations, with 10 overlap-

ping dithered exposures at predefined positions

in the sky in each filter. The primary goal of the

DES is to study the origin of cosmic acceleration

and the nature of dark energy, using a variety of cosmological probes enabled by this rich

data set.

The Science Verification (SV) exposures covered an area of ∼ 250 deg2 and it showed

that the DES can provide a powerful data set with wich to constrain cosmology2. For

2. https://des.ncsa.illinois.edu/releases/sva1/docs
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many of the Year 1 (Y1) analyses in DES (Abbott et al., 2018) the Y1 GOLD catalog was

utilized, which is described in Drlica-Wagner et al. (2018). The DES Y1 data was publicly

released in October 20183 and the release includes: the Y1 GOLD catalog that covers an area

of ∼ 1800 deg2, the ancillary maps of the survey properties (Leistedt et al., 2016), the shear

catalogs (Zuntz et al., 2018a), the photometric redshift catalogs (Hoyle et al., 2018), the

Luminous Red Galaxy (LRG) redMaGiC catalogs (Rozo et al., 2016) used for the DES Y1

results, and the value-added catalogs (Sevilla-Noarbe et al., 2018; Tarsitano et al., 2018).

Figure 2.4: The DES Y3 redshift dis-
tributions of the lens galaxy samples
(redMaGiC, in the top panel, and MagLim,
in the middle panel) and source galaxies,
in the bottom panel. The different colors
represent different tomographic bins (see
also, Prat et al., 2022).

The most resent public data release of the

DES, at the time of the writing of this thesis in

2023, consists of observations from the first three

years (Y3) of observations. The data used for

the Y3 analyses (Abbott et al., 2022) is the Y3

GOLD catalog and is described in Sevilla-Noarbe

et al. (2021). The area covered in Y3 increased

to ∼ 4132 deg2 and two survey modes were cho-

sen: the Wide Survey which is optimized for the

weak lensing, galaxy clustering, and galaxy clus-

ter cosmological probes, and the Supernova Sur-

vey which enables the discovery of thousands of

Supernovae. In Chapters 3, 4 and 5 we will fo-

cus on some applications that use data from the

Wide Survey of Y3 of the DES. More specifically,

in Chapters 3 and 5 we will be presenting results

that utilize the two lens galaxies samples named

MagLim (Porredon et al., 2021), which is optimized for cosmology, and the Y3 redMaGiC sam-

3. https://des.ncsa.illinois.edu/releases/y1a1
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ple, which uses its own point estimate from the red-sequence template fitting, as described in

Rozo et al. (2016). As our source galaxy sample we use the shape catalog described in Gatti

et al. (2020) and Jarvis et al. (2020), which is based on the Metacalibration technique

(Huff & Mandelbaum, 2017; Sheldon & Huff, 2017), which is able to accurately measure

weak lensing shear using the available imaging data. The distributions in redshift of all

these three galaxy samples are shown in figure 2.4. In Chapter 4 we are going to introduce

a new lens galaxy sample, created from the DES Y3 GOLD catalog, which also provides the

stellar-mass and color information of the galaxies.

2.3 Cosmological constraints from galaxy surveys

In this section we will go over some methodologies that are commonly used to extract infor-

mation from galaxy-survey data with the goal of constraining the cosmological parameters.

The general idea is the following:

1. Starting from the calibrated data, we produce redshift estimates of the galaxies, e.g.

using methods that are mentioned in Section 2.1. Depending on what we want to

achieve in the study, we can produce other property estimates, such as galaxy color

and stellar mass, for the galaxies. An example where we also estimate the stellar mass

and color for our lens sample in presented in Chapter 4.

2. We then choose the lens and source samples and split the galaxies into tomographic bins

in redshift, and possibly in bins in other properties. We also construct the distributions

of the galaxies per bin in redshift and the other properties of our choice.

3. After that, we measure the statistics – e.g., the 2-point statistics such as galaxy-galaxy

lensing and clustering – over a range of scales in every bin (auto-correlations) or bin

combination (cross-correlations).
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4. We usually want to validate the measurements; hence, we perform various tests on the

data and measurements in order to test for systematic effects.

5. On the theory part, after we construct the theoretical framework we want to work in,

we produce the code to numerically calculate the theory predictions of the observables

of interest (e.g. the two-point functions), given an input set of parameters, redshift

distributions, angular scales, etc.

6. We then build the numerical pipeline to produce the theoretical expectations, read in

the measurements, and compare the two in a Bayesian likelihood analysis, to find the

set of parameters that best describe the data. To do so, we usually need a good prior

knowledge of the distribution of the parameters we vary.

7. As a result of running the MCMC chains to fit the model to the data, we obtain the

parameter posterior distributions, which we usually report as a value, which can be

the Maximum Likelihood (ML) point or the Maximum a Posteriori (MAP) point or

something else, and the 1σ uncertainty on that value. It is also common to show the full

posterior distributions in a triangle plot (with the 1D distribution of each parameter on

the diagonal and the joint 2D distributions between two of the parameters below the

diagonal), which can reveal important correlations – also called degneracies – between

parameters.

8. Depending on our goals, we then translate the above posterior constraints into con-

straints on derived quantities or parameters, i.e. on things that depend on the baseline

free parameters of the model.

The above procedure is commonly utilized by collaborations such as the DES to analyze

the data and constrain the cosmological parameters. Note here, however, that there are

many more analysis choices that feed into the above general procedure. One of them, which

is of great significance to this thesis, are the scale cuts on the data. By "scale cuts" we refer
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to the decision we make on what scales to consider in a given analysis, or in other words,

what scales to discard. The reasons we might choose to simply ignore scales can be many;

for example, we might find by performing tests on the data that some measurements are of

very poor quality, or maybe our model cannot be trusted to provide an accurate prediction

in some regime. The ways that scale cuts are determined can also vary depending upon the

collaboration and the specifics of the analysis. For example, the fiducial scale cuts on lensing

and clustering in the DES cosmological analyses are more or less fully determined based on

the applicability of the linear theory, i.e. scales below which the 1-halo terms are needed,

or even scales in the quasi-linear regime, are removed (see e.g., Abbott et al., 2022; Prat

et al., 2022; Sánchez et al., 2022a, and references therein). This has simply to do with the

complications that come with trying to model the non-linear scales. More on this can also

be found in Section 5.1 where we talk about how we can use "contaminated data sets" as a

test to determine scale cuts, as presented in Prat et al. (2022).

Before we conclude this section, it is worth introducing some useful terminology. In

DES the main cosmological results are produced from fitting jointly three 2-point statistics:

galaxy-galaxy lensing (γt), galaxy clustering (w) and cosmic shear (ξ±), which is the so-

called 3 × 2-point (or 3 × 2pt) analysis. Cosmic shear is the 2-point correlation between

the shapes of the source galaxies, while γt and w have been defined in Chapter 1. In what

follows, however, especially in Chapters 3 and 4, we will be working only with the first two,

γt and w. The type of analyses that utilize one 2-point statistic are known as 1 × 2-point

(or 1× 2pt), while the 2× 2-point (or 2× 2pt) analyses only consider two 2-point functions.

Also, from now on we will be referring to the scales considered by the DES in their 3× 2pt

analyses as large scales, of a few Mpc or above, while the scales that are excluded we will

call small scales, which are of order or below a Mpc and can be as small as ≲ 100 kpc. Our

focus for the majority of this thesis will be on extending the modeling to also account for

the small scales, using the halo model and the galaxy-halo connection.
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2.4 Modeling the non-linear scales in Cosmology

There is no doubt that the linear scales contain a wealth of information that is valuable in

constraining the cosmological parameters (see e.g., Abbott et al., 2018, 2022, as an example).

It is also true, however, that the vast majority of the cosmological analyses get rid of most

of the part of the data vector via scale cuts. The small scales that are excluded are powerful

in terms of constraining power as they contain a lot of additional information, but can also

be a source of systematic errors if modeled incorrectly. Beyond the "standard cosmology",

modeling small scales provides a direct way of combining cosmology on the largest scales

with the astrophysical processes that take place on smaller scales, thus allowing us to form

a complete picture of how the Universe operates. In the era of precision cosmology, the

measurements are in many cases so precise that the error bars they come with are tiny,

especially on small scales. This, in addition to the complex nature of modeling the non-

linear regime, makes it clear why the 1-halo scales are usually ignored. However, in order to

make meaningful progress in cosmology and to take full advantage of the data sets we need

to build a framework that can model the full range of scales.

In what follows, we will discuss how the small-scale modeling in DES can lead to con-

straints on the galaxy-halo connection. Specifically, in Chapter 3 we will present constraints

on the average halo mass, galaxy bias and satellite fraction of the DES Y3 redMaGiC and

MagLim samples from galaxy-galaxy lensing alone. In Chapter 4 we will expand our frame-

work to include galaxy clustering on the small scales in order to perform a 2×2pt analysis on

the DES Y3 data set with the goal to constrain the stellar-to-halo mass relation of the lenses.

In that work, we will in addition describe a new lens galaxy sample that we constructed from

the Y3 GOLD catalog which includes the stellar-mass and color information of the galaxies.

Building the framework and pipeline to perform this 2 × 2pt analysis on small and large

scales simultaneously is the necessary first step in the direction of running a cosmological

analysis (e.g. the equivalent of the 3 × 2pt analysis in DES, Abbott et al., 2022) in which
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we utilize the full range of scales, as we will briefly discuss in Chapter 7.

To conclude this chapter, we will summarize the reasons why the galaxy-halo connection

is important in cosmology (for more see also the review by Wechsler & Tinker, 2018):

• It helps us study the physics of galaxy formation and evolution: As we

discussed in Chapter 1, the formation and evolution of galaxies is inevitably connected

to dark matter. Thus, through modeling the galaxy-halo connection and using real

data to constrain the parameters in our models we can say a lot about which models

are valid and we can learn more about the relation between galaxies and their host

dark matter halos. For example, we are usually interested in understanding which halo

properties are the most important in setting the properties of the galaxies they host.

• It can help with cosmological parameter inference: As we have mentioned in

Section 2.1, future galaxy surveys will provide an unprecedented amount and quality of

data which we will want to utilize. This will lead to very high-precision measurements,

especially in galaxy clustering, that can be pushed to smaller scales, deep into the

non-linear regime. On those scales, high-order perturbation theory breaks down and

the galaxy bias becomes very complex, thus necessitating the use of a galaxy-halo

connection model that possesses the required flexibility to fit the data in, e.g., a 3×2pt

analysis that is sensitive to cosmological information. However, we should note here

that, beyond the 3× 2pt studies, one can also think of other probes, such as redshift-

space distortions and baryonic processes, that are very sensitive to cosmology as well.

• It probes the nature and properties of dark matter: We have talked about the

success of the ΛCDM model in Chapter 1. These successes mostly come from tests on

the large scales, however, and the concordance cosmological model is to a lesser degree

tested on the small scales. In the non-linear regime, alternative models of the dark

matter can modify the power spectrum or the density profile of dark matter, depending
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on the dark matter properties. Therefore, by modeling the galaxy-halo connection we

can perform various tests on small scales to study the fundamental properties of the

dark matter (see also Chapter 7).

• It informs numerical simulations: Due to computational limitations, it is today

impossible to run large-scale simulations that evolve the dark matter field and at the

same time account for baryonic processes. Therefore, we usually end up running N-

body dark matter-only simulations. If, however, we have a good understanding of the

galaxy-halo connection, after we identify dark matter halos in the simulation box via

the algorithm of our choice, we can populate the halos with galaxies, based on their

properties. This can significantly help with performing simulation-based tests in a

timely manner.

In the next two chapters we will present applications of the galaxy-halo connection to

DES Y3 data, as we mentioned above. These studies are a big step forward in understanding

the galaxy-halo connection. In the next decades, we expect that our understanding of this

relation between galaxies and halos will be crucial in fully describing the data from galaxy

surveys in order to constrain cosmology and astrophysical processes. At the same time, it

is clear that for this to be done, the precision of models for the galaxy–halo connection will

need to keep up with the increasing quality of the data.

The rest of this thesis is structured as follows. Chapter 3 introduces the main HOD

framework that we will be using throughout this thesis to model small scales in cosmol-

ogy. That chapter is based on Zacharegkas et al. (2022) and models galaxy-galaxy lensing

down to small scales in DES Y3. Next, Chapter 4 expands upon that HOD work to also

incorporate galaxy clustering in the model, so that a 2 × 2pt analysis in DES using small

and large scales can be achieved with the goal of constraining the galaxy-halo connection of

the lens sample. In addition, the enhanced model in Chapter 4 accounts for more galaxy

properties, specifically stellar mass. For this reason, we also introduce a new lens galaxy
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sample from DES Y3 that we use in our analysis. This work will be published in the near

future (Zacharegkas et al. in prep). In Chapter 5 we discuss additional work within DES Y3

that has utilized the HOD framework for Chapter 3 to perform various tests. This chapter

emphasizes further how important modeling the small scales in cosmology can be, even as

a means to test our models and inform our modeling choices. Chapter 6 is based on Prat

et al. (2023) and presents an alternative way of dealing with small scales compared to the

previous chapters. Instead of modeling the non-linear regime, as we do in Chapters 3 and 4,

in that chapter we discuss ways of removing that regime and the contamination from it on

the linear scales that survive the scale cuts. Finally, in Chapter 7 we conclude by summa-

rizing, as well as mentioning various interesting future directions we can take in cosmology

using small scales.
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CHAPTER 3

DARK ENERGY SURVEY YEAR 3 RESULTS: GALAXY-HALO

CONNECTION FROM GALAXY-GALAXY LENSING

In this chapter we describe in detail a galaxy-halo connection model that we developed to

analyze data from DES Y3. Our framework allows us to model the non-linear scales that

are ignored in the key cosmology analyses in DES. By fitting this model to the data we are

able to constrain the average halo mass, satellite fraction and galaxy bias of the two lens

galaxy samples utilized for cosmology by the DES collaboration. What follows is taken from

Zacharegkas et al. (2022).

3.1 Introduction

Understanding the connection between galaxies and dark matter, i.e. how the galaxy prop-

erties relate to the properties of their dark matter halo hosts, is essential in forming a

comprehensive interpretation of the observed Universe. Cosmological analyses of large-scale

Structure (LSS) in modern galaxy surveys have reached a point where ignoring the details

of this connection (McDonald & Roy, 2009; Baldauf et al., 2012) can lead to significant

biases in the inferred cosmological constraints (Krause et al., 2017). To avoid this problem,

typically we remove data points on the smallest scales until the remaining data is in the

linear to quasilinear regime, and a simple prescription of the galaxy-halo connection (e.g.

linear galaxy bias) is sufficient (such as DES Collaboration, 2021). Alternatively, one can

invoke more complicated galaxy bias models on small scales (such as the model of Heymans

et al., 2021) and marginalise over the model parameters. For either approach, a data-driven

model of the galaxy-halo connection on scales below a few Mpc could allow us to significantly

improve the cosmological constraints achievable by a given dataset. It should be stressed,

however, that galaxy bias has inherently non-linear characteristics (as discussed, for exam-
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ple, in Dvornik et al., 2018), and should therefore be treated accordingly. Thus, accurate

galaxy-halo connection models provide a wealth of crucial information when modeling galaxy

bias. On the other hand, understanding the connection between different galaxy samples

and their host halos also has implications for galaxy evolution (see Wechsler & Tinker, 2018,

for a review of studies for galaxy-halo connection).

A powerful probe of the galaxy-halo connection is galaxy-galaxy lensing. Galaxy-galaxy

lensing refers to the measurement of the cross-correlation between the positions of foreground

galaxies and shapes of background galaxies. Due to gravitational lensing, the images of

background galaxies appear distorted due to the deflection of light as it passes by foreground

galaxies and the dark matter halos they are in. As a result, this measurement effectively maps

the average mass profile of the dark matter halos hosting the foreground galaxy sample. This

is one of the most direct ways to connect the observable properties of a galaxy (brightness,

color, size) to its surrounding invisible dark matter distribution (Tyson et al., 1984; Hoekstra

et al., 2004; Mandelbaum et al., 2005; Seljak et al., 2005). A common approach to modeling

this measurement is to invoke the Halo Model (Seljak, 2000; Cooray & Sheth, 2002) and the

Halo Occupation Distribution (HOD) framework (Zheng et al., 2007; Zehavi et al., 2011). In

this framework, we consider dark matter halos to be distinct entities with a large luminous

central galaxy in their centers and smaller, less luminous satellite galaxies distributed within

the halo, which are also surrounded by their own sub-halos (Kravtsov et al., 2004). The

particular way that central and satellite galaxies occupy the dark matter halo is parametrised

by a small number of HOD parameters, while all the dark matter halos contribute separately

to the total galaxy-galaxy lensing signal according to the Halo Model. In this paper, we will

invoke this HOD framework to model a new set of galaxy-galaxy lensing measurements using

the Dark Energy Survey (DES) Year 3 (Y3) dataset.

Several previous studies have used galaxy-galaxy lensing to constrain the galaxy-halo

connections for particular samples of galaxies. Mandelbaum et al. (2006a) performed an
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analysis with the MAIN spectroscopic sample from the Sloan Digital Sky Survey (SDSS)

DR4, characterising the HOD parameters for galaxies split in stellar mass, luminosity, mor-

phology, colors and environment. The study was followed up by Zu & Mandelbaum (2015)

using SDSS DR7 with a more sophisticated HOD model. The fact that all lens galaxies

used in these studies have measured spectra allowed for good determination of the stellar

mass and other galaxy properties. More recently, rapid development of large galaxy imag-

ing surveys provide much more powerful weak lensing datasets to perform similar analyses.

Gillis et al. (2013); Velander et al. (2013); Hudson et al. (2014) used measurements from

the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS, Heymans et al., 2012;

Erben et al., 2013), while Sifón et al. (2015); Viola et al. (2015); van Uitert et al. (2016)

used data from the Kilo Degree Survey (KiDS, de Jong et al., 2013; Kuijken et al., 2015) to

study the galaxy-halo connection for a range of different galaxy samples. Noticeably, these

studies extend to higher redshifts as well as lower mass (including Ultra-Diffused Galaxies

at low redshift). Furthermore, Bilicki et al. (2021) used photometry from KiDS, exploiting

some overlap with Galaxy And Mass Assembly (GAMA, Driver et al., 2011) spectroscopy,

to derive accurate galaxy-galaxy lensing measurements, split in red and blue bright galaxies,

to constrain the stellar-to-halo mass relation by fitting the data with a halo model. All

together these studies provide us with pieces of information to constrain models of galaxy

formation. In parallel, Clampitt et al. (2017) derived constraints on the halo mass of a lu-

minous red galaxies sample, the red-sequence Matched-filter Galaxy Catalog (redMaGiC)

galaxies (Rykoff et al., 2014), using DES Science Verification data. The redMaGiC sample

is particularly interesting as it is used heavily in many cosmological studies of LSS due to

its excellent photometric redshift precision. For that reason, redMaGiC is one of the two

samples we study in this work. From the studies above, it becomes evident that the basic

HOD framework is capable of successfully describing the halo occupation statistics for a wide

variety of galaxy samples, as long as it is modified accordingly to account for the specific
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features of the dataset at hand.

The Clampitt et al. (2017) study was later combined with galaxy clustering to constrain

cosmological models in Kwan et al. (2016), illustrating how understanding the small-scale

galaxy-halo connection (and effectively marginalizing over them) could improve the cosmo-

logical constraints. Similar studies include Mandelbaum et al. (2013); Cacciato et al. (2013);

Park et al. (2016); Krause & Eifler (2017); Singh et al. (2020). In particular, Park et al.

(2016) demonstrated that to obtain robust constraints from combining large and small scale

information, it is necessary to consistently model the full range of scales, and to have good

priors on the HOD parameters due to degeneracies between HOD and cosmological param-

eters. When including the small-scale modeling from HOD in a cosmology analysis using

galaxy clustering and weak lensing, Krause & Eifler (2017) showed that the statistical con-

straints on the dark energy equation of state w improves by up to a factor of three compared

to standard analyses using only large-scale information. We leave for future work the ex-

ploration of gain in cosmological constraints including our HOD modeling in the DES Y3

cosmology analysis.

Many studies (e.g. Leauthaud et al., 2017; Lange et al., 2019; Singh et al., 2020; Wibking

et al., 2019; Yuan et al., 2020; Lange et al., 2021) have shown that fitting galaxy clustering

measurements with small-scale galaxy-halo connection models, at fixed cosmology, provides

precise predictions of the lensing amplitude which is higher than the measured signal. This

is the so-called "lensing is low" problem, which becomes especially evident when small scales

are considered in the analysis. Figuring out whether this discrepancy can be explained by

new physics, cosmology or by reconsidering our galaxy formation models is an open question.

A better understanding of the galaxy-halo connection can play a crucial role in solving this

mystery. For example, Zu (2020) found that the "lensing is low" tension can be resolved on

small scales; however, the satellite fraction has to be very high, which is not in agreement

with observations (e.g. Reid et al., 2014; Guo et al., 2014; Saito et al., 2016).
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In this chapter we make use of data from Y3 of DES to study the galaxy-halo connection

of two galaxy samples: redMaGiC and an alternative magnitude-limited galaxy sample

defined in Porredon et al. (2021). These two samples are used in the DES Y3 cosmological

analysis combining galaxy clustering, galaxy-galaxy lensing and cosmic shear (commonly re-

ferred to as the 3×2pt analysis as it combines three two-point functions, DES Collaboration,

2021). We measure the galaxy-galaxy lensing signal to well within the 1-halo regime, demon-

strating the extremely high signal-to-noise coming from the powerful, high-quality dataset.

We model the measurements by combining the Halo Model and the HOD framework, fix-

ing the background cosmology to be consistent with the DES Y3 cosmology analysis. This

work presents one of the most powerful datasets for studying the galaxy-halo connection in

a photometric survey and includes two main advances compared to previous work of sim-

ilar nature: First, we include a number of model components that were previously mostly

ignored in studies of the galaxy-halo connection via galaxy-galaxy lensing. Second, we bor-

row heavily from the tools used in cosmological analyses and carry out a set of rigorous

tests for systematic effects in the data and modeling, making our results very robust. Both

of these advances were driven by the supreme data quality – as the statistical uncertain-

ties shrink, previously subdominant systematic effects in both the measurements and the

modeling become important.

With our analysis, we place constraints on the HOD parameters, and derive the aver-

age halo mass, galaxy bias and satellite fraction of these samples. Our analysis provides

complementary information from the small-scales to the large-scale cosmological analysis in

Prat et al. (2022) and informs future cosmology analyses using these two galaxy samples.

As shown in Berlind & Weinberg (2002); Zheng et al. (2002); Abazajian et al. (2005), com-

bining HOD with cosmological parameter inference can greatly improve the cosmological

constraints. Our results can also be incorporated into future simulations that include similar

galaxy samples.
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The structure of the chapter is as follows. In Section 3.2 we describe the baseline formal-

ism for the HOD and Halo Model framework used in this paper. In Section 3.3 we detail the

different components that contribute to the galaxy-galaxy lensing signal that we model. In

Section 3.4 we describe the data products used in this paper. In Section 3.5 we describe the

measurement pipeline, covariance estimation and the series of diagnostics tests performed

on the data. In Section 3.6 we describe the model fitting procedure and the model param-

eters that we vary. We also describe how we determine the goodness-of-fit and quote our

final constraints. In Section 3.7 we show the final results of our analysis. We conclude in

Section 3.8 and discuss some of the implications of our results.

3.2 Two theoretical pillars

In this section we describe the two fundamental elements in our modeling framework: the

halo occupation distribution model and the halo model. As we discuss later, the combination

of the two allows us to predict the observed galaxy-galaxy lensing signal to very small scales

given a certain galaxy-halo connection.

3.2.1 Halo Occupation Distribution

The halo occupation distribution (HOD) formalism describes the occupation of dark matter

halos by galaxies. There are two types of galaxies that can occupy the halo (Kravtsov et al.,

2004): central and satellite galaxies. A central galaxy is the large, luminous galaxy which

resides at the center of the halo. The HOD model does not allow for more than one central

galaxy to exist inside the halo. On the other hand, the HOD allows for many satellite galaxies

to exist in a halo. The higher the mass of the halo the more satellites are expected to exist

around the central. Satellite galaxies are smaller and less luminous than the central. They

orbit around the center of the halo and give rise to the non-central part of the galaxy-galaxy

lensing signal, as we discuss in more detail later. In what follows, we define the HOD of
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a galaxy sample which has a minimum luminosity threshold, similarly to Clampitt et al.

(2017).

The central galaxy is assumed to be exactly at the center of the halo, i.e. our model does

not account for effects that might come from mis-centering of the central galaxy in its dark

matter halo. The number of centrals in our HOD framework is given by a log-normal mass-

luminosity distribution (Zehavi et al., 2004; Zheng et al., 2005; Zehavi et al., 2011) and its

expectation value is denoted by ⟨Nc(Mh)⟩. The scatter in the halo mass-galaxy luminosity

relation is parametrised by σlogM . The mass scale at which the median galaxy luminosity

corresponds to the threshold luminosity will be denoted as Mmin. A third parameter is

the fraction of occupied halos, fcen, which is introduced specifically for redMaGiC and

accounts for the number of central galaxies that did not make it into our sample due to how

the galaxies are selected. In more detail, due to the selection process of the redMaGiC

algorithm, for halos of a fixed mass, not all the central galaxies associated with those halos

will be selected into the lens sample. More specifically, the redMaGiC selection depends on

the photometric-redshift errors, which could result in excluding some galaxies even though

they are above the mass limit for observation 1. For most galaxy samples that are selected

via properties intrinsic to the sample (luminosity, stellar mass, etc.), however, fcen = 1 is a

natural choice.

The expectation value for the number of centrals is the smooth step function

⟨Nc(Mh)⟩ =
fcen
2

[
1 + erf

(
logMh − logMmin

σlogM

)]
, (3.1)

where erf is the error function. Note that Mmin in this expression essentially sets the mass

of the lens halos, which makes it a crucial parameter to constrain.

1. Our model is slightly different from Clampitt et al. (2017) in that fcen is multiplied to both the centrals
and the satellites. This choice results in better matching to the MICE simulations (see Appendix A.2) and
therefore facilitates our testing. Since fcen and M1 are fully degenerate, this difference does not alter the
physical form of the model, although we have adjusted the prior ranges on M1 to account for that.
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The expectation number of satellites is modeled using a power-law of index α and nor-

malization mass-scale M1, and is written as

⟨Ns(Mh)⟩ = ⟨Nc(Mh)⟩
(
Mh

M1

)α

. (3.2)

This relation implies a power-law behaviour for the satellite galaxies at high halo masses

only, as ⟨Ns(Mh)⟩ is coupled to ⟨Nc(Mh)⟩. The total number of galaxies in a dark matter

halo is ⟨N(Mh)⟩ = ⟨Nc(Mh)⟩ + ⟨Ns(Mh)⟩. Figure 3.1 shows the number of galaxies as

a function of halo mass as calculated by the HOD model described above. We note that

significant modifications on top of our model have been developed for samples specifically

defined by stellar mass or colors (Singh et al., 2020). Also, simple variants of the HOD we

have adopted have been used in the literature, but given the nature of the two samples we

study in this work we do not expect these modifications to be necessary as we discuss in

Section 3.7.3.

3.2.2 Halo model

In the framework of the current cosmological model the large-scale structure in the universe

follows a hierarchy based on which smaller structures interact and merge to give rise to

structure of larger scale. The abundance of dark matter halos is described by the halo mass

function (HMF) which is denoted by dn/dM and is a function of the halo mass Mh at redshift

z. In this work we utilise analytic fitting functions to model the HMF following Tinker et al.

(2008).

The root-mean-square (rms) fluctuations of density inside a sphere that contains on

average mass Mh at the initial time, σ(Mh), is defined as the square root of the variance in
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the dark matter correlation function and is written as

σ2(Mh) ≡
∫

k2dk

2π2
|W̃ (kR)|2P (k) , (3.3)

where P (k) is the dark matter power spectrum and k denotes the wave number. In Equa-

tion (3.3) the variance in the initial density field has been smoothed out with a top-hat

filter W (R) over scales of R = (3Mh/4πρm)1/3, where ρm is the mean matter density of the

universe, and W̃ is the Fourier transform of the top-hat filter. We use this expression to

calculate σ8, the rms density fluctuations in a sphere of radius R = 8 Mpc/h, which we use

as the normalization of the matter power spectrum.

Figure 3.1: The HOD prediction for the
expectation number of central (dashed),
satellite (dash-dotted) and the total
(solid) number of galaxies as a function
of the mass of the dark matter halo in-
side of which they reside. The HOD pa-
rameters used to produce this plot are:
Mmin = 1012 M⊙, M1 = 1013 M⊙,
fcen = 0.2, α = 0.8, σlogM = 0.25.

For computing the distribution of the dark

matter within a halo we assume a NFW density

profile (Navarro et al., 1996) with characteris-

tic density ρs and scale radius rs. To calculate

the concentration parameter of the dark matter

distribution, cdm(Mh, z), we follow Bhattacharya

et al. (2013).

In order to calculate the linear matter power

spectrum, P lin
m (k, z), we make use of accurate

fitting functions from Eisenstein & Hu (1998)

(EH98 hereafter). These fitting functions are ac-

curate to ∼ 5% and we use them instead of other

numerical codes that calculate the power spec-

trum, such as CAMB (Lewis et al., 2000), to

make our numerical code more efficient. We have

performed the necessary numerical tests to show

that this modeling choice does not affect the final
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results. The linear power spectrum, however, poorly describes the power at the small, nonlin-

ear scales. In our modeling we correct for this by using the nonlinear matter power spectrum,

Pnl
m (k, z), by adopting the Halofit approximation based on Takahashi et al. (2012) to mod-

ify the EH98 linear spectrum. To account for massive neutrinos in the power spectrum, we

have modified the base Takahashi et al. (2012) prediction using the corrections from Bird

et al. (2012). Note that our method is different from the implementation in CAMB where

the Bird et al. (2012) corrections use as base the Takahashi et al. (2012) model. For further

discussion on the different Halofit versions see also Appendix B in Mead et al. (2021). We

also note that more accurate non-linear corrections exist, for example HMCode2, but they

are not necessary given the required accuracy in our analysis.

3.3 Modelling the observable

Building on Section 3.2, we now describe our model for the galaxy-galaxy lensing signal.

We first describe the individual terms in the matter-cross-galaxy power spectrum Pgm(k, z)

(Section 3.3.1), then we project the 3D Pgm(k, z) into the 2D lensing power spectrum Cgm(ℓ)

and finally into the observable, the tangential shear γt(θ) (Section 3.3.2). In Sections 3.3.3

through 3.3.6 we describe additional astrophysical components that are considered in our

model. In Appendix A, we perform a series of tests on our model with simulations and

external codes to check for the validity of our code.

Throughout this paper we fix the cosmological parameters to the σ8 and Ωm values

from the DES Y3 analysis, and use Planck 2018 (Planck Collaboration, 2020) for remaining

parameters. The cosmological analyses on the two lens samples in DES Y3 give consistent

results (DES Collaboration, 2021), albeit slightly different, with Ωm and σ8 being the best

constrained parameters. For this reason, we choose to only use the DES Y3 results for

these two cosmological parameters and use the values as constrained for each lens galaxy

2. https://github.com/alexander-mead/HMcode
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sample separately. For redMaGiC we use Ωm = 0.341 and σ8 = 0.735, while for MagLim

we use Ωm = 0.339 and σ8 = 0.733. For the remaining cosmological parameters we set

Ωb = 0.0486, H0 = 67.37, ns = 0.9649, Ωνh
2 = 0.0006, where h is the Hubble constant in

units of 100 km/s/Mpc. Since we consider the Λ-Cold Dark Matter (ΛCDM) cosmological

model, we set w = −1 for the dark energy equation of state parameter. In addition, all the

halo masses use the definition of M200c, based on the mass enclosed by radius R200c so that

the mean density of a halo is 200 times the critical density at the redshift of the halo. We

note that the choice of cosmological parameters mostly affects the inferred large-scale galaxy

bias, as we show in Section 3.7.3.

In the DES Y3 3× 2pt cosmological analysis (DES Collaboration, 2021) using the red-

MaGiC lens sample, it was found that the best-fit galaxy clustering amplitude, bw, is sys-

tematically higher than that of galaxy-galaxy lensing, namely bγt . To account for this a

de-correlation parameter Xlens was introduced, that is defined as the ratio of the two biases,

Xlens ≡ bγt/bw. This parameter varies from 0 to 1 and allows for the two biases to vary

independently, thus enabling the model to achieve simultaneously good fits to both γt and w.

Nevertheless, the impact of Xlens on the main 3×2pt cosmological constraints, especially on

S8 ≡ σ8(Ωm/0.3)1/2, were negligible. The exact origin of this inconsistency in redMaGiC,

caused by some measurable unknown systematic effect, is still an open question. Given that

we do not know if this systematic is affecting the galaxy clustering or galaxy-galaxy lensing

signal, or both to some degree, in our galaxy-galaxy lensing analysis we choose to use the

fiducial cosmological results from the 3 × 2pt analysis and assume Xlens = 1 throughout.

However, we briefly discuss the impact on our derived halo properties from changing to the

3× 2pt best-fit value of roughly Xlens ≈ 0.877 when we present our results in Section 3.7.2.

We do note, however, that this is the most pessimistic case where the systematic is com-

pletely found in γt. Given that γt is a cross-correlation, while e.g. w is an auto-correlation of

the lenses, it is likely that clustering is the most affected by the systematic and not galaxy-
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galaxy lensing. In our case, this means that the shift in constraints we quote later would not

be as dramatic in reality.

3.3.1 Correlations between galaxy positions and the dark matter distribution

The galaxy-cross-matter power spectrum, Pgm(k, z), is composed two terms. The 1-halo

term, P 1h
gm(k, z), quantifies correlations between dark matter and galaxies inside the halo.

The 2-halo term, P 2h
gm(k, z), quantifies correlations between the halo and neighboring halos.

Each of these terms receives a contribution from central and satellite galaxies. Below we

summarise the formalism for these four terms separately. The modeling we follow below is

similar to what is being commonly used in the literature; for example, see Seljak (2000);

Mandelbaum et al. (2005); Park et al. (2015).

The central 1-halo term describes how the dark matter density distribution inside the

halo correlates with the central galaxy, and is thus written as

P c1h
gm (k, z) =

1

ρmn̄g

∫
dMh

dn

dMh
Mh⟨Nc(Mh)⟩udm(k|Mh) , (3.4)

where udm(k|Mh) is the Fourier transform of the dark matter density distribution as a

function of wavenumber k given a halo of mass Mh.

The satellite 1-halo term describes how the satellite galaxies are spatially distributed

within the dark matter host halo, and can be written as:

P s1h
gm (k, z) =

1

ρmn̄g

∫
dMh

dn

dMh
Mh⟨Ns(Mh)⟩udm(k|Mh)usat(k|Mh) (3.5)

with usat being the Fourier transform of the satellite distribution in the halo. For both udm

and us we assume NFW profiles with concentration parameters cdm and csat, respectively.

The distribution of satellite galaxies is typically less concentrated than that of the dark

matter (Carlberg et al., 1997; Nagai & Kravtsov, 2005; Hansen et al., 2005; Lin et al., 2004).
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To account for this we allow csat to be smaller than cdm by introducing the free parameter

a = csat/cdm, which is allowed to take values between 0 and 1. The total 1-halo power

spectrum is then given by

P 1h
gm(k, z) = P c1h

gm (k, z) + P s1h
gm (k, z) . (3.6)

To introduce the 2-halo terms, we define the following quantities: the average linear

galaxy bias and the average satellite fraction of our sample.

The average linear galaxy bias is given by:

b̄g =

∫
dMh

dn

dMh
bh(Mh)

⟨N(Mh)⟩
n̄g

. (3.7)

The halo bias relation bh(Mh) quantifies the dark matter clustering with respect to the linear

dark matter power spectrum, and we adopt the functions in Tinker et al. (2010) for it. In

the above equation we define the average number density of galaxies as

n̄g =

∫
dMh

dn

dMh
⟨N(Mh)⟩ , (3.8)

and is thus also determined by the HOD.

The satellite galaxy fraction is expressed as:

αsat =

∫
dMh

dn

dMh

⟨Ns(Mh)⟩
n̄g

. (3.9)

With b̄g and αsat defined, the 2-halo central galaxy-dark matter cross power spectrum is
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then given by:

P c2h
gm (k, z) =Pnl

m (k, z)

×
∫

dMh
dn

dMh

Mh

ρm
bh(Mh)udm(k|Mh)

×
∫

dM ′
h

dn

dM ′
h

⟨Nc(M
′
h)⟩

n̄g
bh(M

′
h) . (3.10)

At large scales, where udm(k|Mh) → 1, the first integral in the above equation must go to

unity, which implies that the halo bias relation must satisfy the consistency relation that

the dark matter is unbiased with respect to itself (Scoccimarro et al., 2001). Furthermore,

at the same limit, the second integral approaches (1 − αsat)b̄g. Therefore, the k → 0 limit

of Equation (3.10) reduces to P c2h
gm (k → 0, z) ≈ (1− αsat)b̄gP

lin
m (k, z).

Similarly, we can express the 2-halo matter-cross-satellite power spectrum as:

P s2h
gm (k, z) =Pnl

m (k, z)

×
∫

dMh
dn

dMh

Mh

ρm
bh(Mh)udm(k|Mh)

×
∫

dM ′
h

dn

dM ′
h

⟨Ns(M
′
h)⟩

n̄g
bh(M

′
h)usat(k|M ′

h) . (3.11)

Similar as above, Equation (3.11) reduces to P s2h
gm (k → 0, z) ≈ αsatb̄gP

lin
m (k, z). Therefore,

putting it all together, at the large-scale limit the 2-halo galaxy-dark matter cross power

spectrum reduces to

P 2h
gm(k, z) = P c2h

gm (k, z) + P s2h
gm (k, z) ≈ b̄gP

lin
m (k, z) , (3.12)

which is what is used in cosmological analyses.

In the 2-halo central galaxy-dark matter cross power spectrum of Equation (3.10), in order

to avoid double-counting of halos sometimes the halo exclusion (HE) technique is used. Based
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on the HE principle (see, e.g. Tinker et al. (2005)), given a halo of mass Mh1 we only consider

nearby halos of mass Mh2 that satisfy the relation R200c(Mh1) + R200c(Mh2) ≤ r12, where

R200c(Mh) is the radius of a halo of mass Mh, and r12 represents the distance between the

centers of the two halos. However, accounting for halo exclusion this way is computationally

expensive. For this reason, many effective descriptions have been suggested in the literature

to bypass this restriction. After performing tests using a simplified HE model in Appendix C,

we find that in our case HE has little to no impact on our model, and we thus decide to

neglect it in our fiducial framework.

Finally, in order to get the total power spectrum, Pgm(k, z), we combine the 1-halo and

2-halo components. We do so by taking the largest of the two contributions at each k. We

perform this operation in real space by transforming the power spectrum to its corresponding

3D correlation function ξ(r, z) and taking the maximum:

ξgm(r, z) =

 ξ1hgm(r, z) if ξ1hgm ≥ ξ2hgm

ξ2hgm(r, z) if ξ1hgm < ξ2hgm

. (3.13)

We then transform ξgm(r, z) back to the total galaxy-cross-matter power spectrum Pgm(k, z).

This is the same approach followed by Hayashi & White (2008); Zu et al. (2014) and is also

utilised by Clampitt et al. (2017). We note here that modeling the transition regime from

1-halo to 2-halo scales is not straightforward, and different prescriptions of how to combine

the 1-halo and 2-halo components have been suggested. Furthermore, we note that having

adopted the common way of modeling the 2-halo component, we have made the assumption

that halos are linearly biased tracers of the underlying dark matter distribution, and we

make use of a scale-independent halo bias model. As stressed by Mead et al. (2021), a linear

halo bias is not necessarily a good description of the clustering relation between the halos

and matter, especially on the transition scales. It could thus be important to incorporate a

non-linear halo bias model into the halo model. Implementing such a "beyond-linear" halo
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bias model, as described in that paper, into our framework would change the shape of the

2-halo component as a function of k, especially around the scales corresponding to the size of

individual dark matter halos. We leave this aspect of the model to be investigated in future

work.

3.3.2 Modeling the tangential shear γt

Armed with the HOD-dependent galaxy-cross-matter power spectrum, we can now follow

the standard procedure in deriving the tangential shear γt as done in other large-scale cos-

mological analyses (Cacciato et al., 2009; Mandelbaum et al., 2013; Clampitt et al., 2017;

Prat et al., 2017; Prat et al., 2022). We first construct the lensing angular power spectrum,

Cgm, and then transform it to real space. Under the Limber approximation we define the

projected, two-dimensional lensing power spectrum as

Cgm(ℓ|zℓ, zs) =
ρmΣ−1

c (zℓ, zs)

χ2(zℓ)
Pgm

(
ℓ+ 1/2

χ(zℓ)
, zℓ

)
, (3.14)

where the critical surface density at lens redshift zℓ and source redshift zs is given by:

Σc(zℓ, zs) =
c2

4πG

a(zℓ)χ(zs)

χ(zℓ)χ(zℓ, zs)
. (3.15)

Here a(z) is the scale factor of the universe at redshift z. In the above expression, χ(zℓ)

and χ(zs) are the comoving distances to the lens and source galaxies, while χ(zℓ, zs) is the

comoving distance between the lens and source redshifts. The a(zℓ) factor comes from the

use of comoving distances, while c and G are the speed of light and Newton’s gravitational

constant, respectively.

The expressions we have introduced above are for specific lens and source galaxy redshift

pairs; however, in practice we are working with distribution of galaxies in redshift. We

denote the probability density functions (PDF) of the lens and source redshift by nℓ(zℓ) and
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ns(zs), respectively. The observed lensing spectrum is given by

Cgm(ℓ) =

∫
dzℓ nℓ(zℓ −∆ziℓ)

∫
dzs ns(zs −∆z

j
s)Cgm(ℓ|zℓ, zs)

=
3

2

H2
0Ωm

c2

∫
dzℓ nℓ(zℓ −∆ziℓ)

g(zℓ)(1 + zℓ)

χ(zℓ)
Pgm

(
ℓ+ 1/2

χ(zℓ)
, zℓ

)
, (3.16)

where the projection kernel is

g(z) =

∫ ∞

z
dz′ns(z′ −∆zs)

χ(z′)− χ(z)

χ(z′)
. (3.17)

The parameters ∆zℓ and ∆zs in this equation represent the bias of the mean of the lens and

source redshift distributions, similar to that used in Krause et al. (2021b).

The tangential shear, under the flat-sky approximation, then becomes:

γt(θ) = (1 +m)

∫
ℓdℓ

2π
Cgm(ℓ)J2(ℓθ) , (3.18)

where J2(x) is the second-order Bessel function of the first kind. Again following Krause

et al. (2021b), the multiplicative bias parameter m in this expression quantifies uncertainties

in the shear estimation. We note here that, our analysis differs from that of Krause et al.

(2021b), as well as Prat et al. (2022), which does no make the flat-sky approximation. We

have checked that this makes a negligible difference in our analysis over the angular scales

we use.

3.3.3 Tidal stripping of the satellites

In addition to the four components described in Section 3.3.1, corresponding to the 1- and

2-halo, satellite and central component of Pgm, as we get to higher accuracy in the measure-

ments higher-order terms in the halo model could become important. The next-order term

in the Halo Model is commonly referred to as the satellite strip component, which we denote
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Figure 3.2: This plots illustrates the theory prediction for the shear (solid black) and how
the various components contribute to it. The 1- and 2-halo components from the central and
satellite galaxies are labeled ’Cen-1h’, ’Cen-2h’, ’Sat-1h’ and ’Sat-2h’, respectively. We also
show the contribution from IA, lens magnification (’Lens-mag’), satellite strip (’Sat-Strip’)
and point mass (’PM’). The HOD parameters used are the same as in Figure 3.1; the stellar
mass we used is M⋆ = 2×1010 M⊙; for IA we used the amplitude and power-law parameters
AIA = 0.1 and ηIA = −0.5, respectively; for the lens magnification coefficient we set the
value to αlmag = 1.3.
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by γ
strip
t . This term is effectively a 1-halo term correlating the satellite galaxies and its own

subhalo. As tidal disruptions in the outskirts of the host halo strips off the dark matter

content of the satellite subhalo, the density profile of the subhalos drops off at large scales.

Therefore, we model this term as a truncated NFW profile which is similar to that of the

central 1-halo, γc1ht , out to the truncation radius R and falls off as ∝ r−2 at larger radii r.

The truncation radius is set to R = 0.4R200c and thus does not introduce free parameters

to our model. Additionally, since this is a satellite term, it needs to be multiplied by αsat,

therefore resulting in

γ
strip
t (θ) = αsat ×


γc1ht (θ) if r ≤ R

γc1ht (R)

(
R

r

)2

if r > R
, (3.19)

where r = r(θ; zℓ) is the radius from the center of the (sub-)halo at redshift zℓ that corre-

sponds to angular scale θ. Note that this is similar to what is used in Mandelbaum et al.

(2005); Velander et al. (2013), but is using a mass definition based on ρ200c = 200ρc for the

halos.

3.3.4 Point-mass contribution

An additional term to γt is the contribution to lensing by the baryonic content of the central

galaxy (e.g. Velander et al., 2013). This term is simply modelled as a point-source term

given by

γPMt (θ) =

∫
dzℓnℓ(zℓ)

M⋆

πr2(θ, zℓ)

∫
dzsns(zs)Σ

−1
c (zℓ, zs) . (3.20)

Here, M⋆ is an effective mass parameter that quantifies the amplitude of the point mass

component.

In practice, the amplitude parameter would be allowed to vary as a free parameter or
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be set to the average stellar mass inside the redshift bin of interest. When let to vary, it

accounts for any imperfect modeling of the galaxy-matter cross-correlation on scales smaller

than the smallest measured scale used in the model fit. This is similar to the point-mass

term derived in MacCrann et al. (2020a) and used in Krause et al. (2021b).

3.3.5 Lens magnification

We now consider the effects of weak lensing magnification on the estimation of our observable.

In addition to the distortion (shear) of galaxy shapes, weak lensing also changes the observed

flux and number density of galaxies – this effect is referred to as magnification. Following

Prat et al. (2022), here we only consider the magnification in flux for the lens galaxies, as

that is the dominant effect for galaxy-galaxy lensing.

Similar to shear, magnification is expected to be an increasing function of redshift. In

the weak lensing regime, the magnification power spectrum involves an integration of the

intervening matter up to the lens redshift and is given by (Unruh et al., 2020)

C
lmag
gm (ℓ) =

9H3
0Ω

2
m

4c3

∫
dzℓnℓ(zℓ)

∫ zℓ

0
dz

χ(z, zℓ)glmag(z)

χ(z)a2(z)
Pnl
m

(
ℓ+ 1/2

χ(z)
, z

)
, (3.21)

where we have defined

glmag(z) =

∫
dzsns(zs)

χ(z, zs)

χ(zs)
. (3.22)

The contribution to the tangential shear can then be written as

γ
lmag
t (θ) = 2(αlmag − 1)

∫
ℓdℓ

2π
C
lmag
gm (ℓ)J2(ℓθ) , (3.23)

where αlmag is a constant that can be estimated from simulations (Elvin-Poole et al., 2021)

and C
lmag
gm (ℓ) is the average of (3.21) over the redshift distributions of the lenses and sources.
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In this work we fix αlmag following the Y3 3×2pt analysis and use the values computed in

Elvin-Poole et al. (2021), which are αlmag = {1.31,−0.52, 0.34, 2.25} for our redMaGiC

and αlmag = {1.21, 1.15, 1.88, 1.97} for our MagLim lens redshift bins.

3.3.6 Intrinsic alignment

Galaxies are not randomly oriented even in the absence of lensing. On large scales, galaxies

can be stretched in a preferable direction by the tidal field of the large scale structure. On

small scales, other effects such as the radial orbit of a galaxy in a cluster can affect their

orientation. This phenomenon, where the shape of the galaxies is correlated with the density

field, is known as intrinsic alignment (IA); for a review see Troxel & Ishak (2015).

The contamination of shear by IA can become important in some cases, especially when

the source galaxies are physically close to the lenses and gravitational interactions can modify

the shape of the galaxies. IA is commonly modeled using the non-linear linear alignment

(NLA) model proposed by Hirata & Seljak (2004); Bridle & King (2007); Joachimi et al.

(2013). In NLA, the galaxy-cross-matter power spectrum receives an additional term

PNLA(k, z) =− AIAC1ρcΩmD−1
+ (z)bP lin

m (k, z)

(
1 + z

1 + z0

)ηIA
. (3.24)

In the above equation D+(z) is the linear structure-growth factor at redshift z normalised

to unity at z = 0, b is the linear bias, AIA determines the overall amplitude, C1 = 5 ×

10−14h−2M−1
⊙ Mpc

3 is a constant, and the power-law index ηIA models the redshift evolution

defined so that the pivot redshift is set to z0 = 0.62.

The IA contribution to galaxy-galaxy lensing simply depends on the galaxy density and

has a different projection kernel than Equation (3.16). The projected 2D power spectrum
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for NLA is then given in the Limber approximation by

CNLA(ℓ) =

∫
dzℓ

nℓ(zℓ)ns(zℓ)

χ2(zℓ)(dχ/dz)|zℓ
PNLA

(
ℓ+ 1/2

χ(zℓ)
, z(χℓ)

)
, (3.25)

where (dχ/dz)|zℓ is the derivative of the comoving distance with respect to redshift at z = zℓ.

To obtain the NLA contribution to the tangential shear, we perform a Hankel transform on

CNLA(ℓ) using J2(ℓθ), as in Equation (3.18).

A simple extension of NLA in our HOD framework will be to use our HOD-based Pgm

instead of bgP
nl
m in Equation (3.24). However, the IA modeling near the 1-halo term is

likely more complex and would warrant more detailed studies such as those carried out in

Blazek et al. (2015). In this paper, we avoid the complex modeling by choosing redshift

bin pairs that are sufficiently separated so that they have significantly low IA contribution

(see Section 3.5.1) and we thus choose not to include this component in our fiducial model.

However, in Section 3.7.3 we test the full model that includes this IA contribution and show

that the results are consistent with our fiducial which does not include IA. We show an

example of what all the γt components look like in Figure 3.2.

Although we have ignored IA in this paper, given that it is negligible for our purposes, we

emphasize that its contribution to lensing can be of high importance to future cosmological

studies, as it can produce biases in the inference of the cosmological parameters (e.g. Samuroff

et al., 2019). In addition, if not properly accounted for, IA can affect the inference of the

lens halo properties in lensing analyses. In this case, a halo-model description of IA would

be necessary to capture its sample dependence. Fortuna et al. (2021) described a halo

model for IA on small and large scales from central and satellite galaxies which is capable

of incorporating the galaxy sample characteristics. We leave the further investigation of IA

and its modeling for future work.
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3.4 Data

For this work we make use of data from the Dark Energy Survey (DES, Flaugher, 2005).

DES is a photometric survey, with a footprint of about 5000 deg2 of the southern sky, that

has imaged hundreds of millions of galaxies. It employs the 570-megapixel Dark Energy

Camera (DECam, Flaugher et al., 2015) on the Cerro Tololo Inter-American Observatory

(CTIO) 4m Blanco telescope in Chile. We use data from the first three years (Y3) of DES

observations. The basic DES Y3 data products are described in Abbott et al. (2018); Sevilla-

Noarbe et al. (2021). Below we briefly describe the source and galaxy samples used in this

work. By construction, all the samples are the same as that used in Prat et al. (2022) and

in the DES Y3 3×2pt cosmological analysis (DES Collaboration, 2021).

3.4.1 Lens galaxies - redMaGiC

For our first lens sample we use redMaGiC galaxies. These are red luminous galaxies which

provide the advantage of having small photometric redshift errors. The algorithm used to

extract this sample of luminous red galaxies is based on how well they fit a red sequence

template, calibrated using the red-sequence Matched-filter Probabilistic Percolation cluster-

finding algorithm (redMaPPer, Rykoff et al., 2014, 2016).

To maintain sufficient separation between lenses and sources, we only use the lower four

redshift bins used in Prat et al. (2022). The first three bins at z = {[0.15, 0.35], [0.35, 0.5], [0.5, 0.65]}

consist of the so-called “high-density sample”. This is a sub-sample which corresponds to

luminosity threshold of Lmin = 0.5L⋆, where L⋆ is the characteristic luminosity of the lu-

minosity function, and comoving number density of approximately n̄ ∼ 10−3 (h/Mpc)3.

The fourth redshift bin of z = [0.65, 0.8] is characterised by Lmin = L⋆ and n̄ ∼ 4 ×

10−4 (h/Mpc)3, and is referred to as the “high-luminosity sample”. The redshift distribu-

tions for all these bins are shown in Figure 3.3. As we will discuss in Section 3.6 we use the

number density values as an additional data point in our fits, which helps constrain the fcen
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Figure 3.3: Redshift distribution of the lenses (solid filled) and of the source (dashed) galax-
ies, for redMaGiC (upper) and MagLim (lower).
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HOD parameter. The data we used to derive the mean of n̄ig and its variance in each lens

bin i is the same as what is used in Pandey et al. (2022), and the specific values we used are

the following: n̄ig ≈ {9.8± 0.6, 9.6± 0.3, 9.6± 0.2, 3.8± 0.02}× 10−4 (h/Mpc)3, respectively

for i = 1, 2, 3, 4. We note here that we have also fit our data without the addition of n̄ig and

our main conclusions hold, except that fcen becomes unconstrained.

3.4.2 Lens galaxies - MagLim

The second sample we use for lens galaxies is MagLim which is defined with a redshift-

dependent magnitude cut in i-band. This results in a sample with ∼ 4 times more galaxies

compared to redMaGiC and is divided into 6 bins in redshift with ∼ 30% wider redshift

distributions, also compared to the redMaGiC sample. In this sample, galaxies are selected

with a magnitude cut that evolves linearly with the photometric redshift estimate: i <

azphot+ b. The optimization of this selection, using the DNF photometric redshift estimates

(De Vicente et al., 2016), yields a = 4.0 and b = 18. This optimization was performed

taking into account the trade-off between number density and photometric redshift accuracy,

propagating this to its impact in terms of cosmological constraints obtained from galaxy

clustering and galaxy-galaxy lensing in Porredon et al. (2022). Effectively this selects brighter

galaxies at low redshift while including fainter galaxies as redshift increases. Additionally, we

apply a lower cut to remove the most luminous objects, i > 17.5. Single-object fitting (SOF)

magnitudes (a variant of multiobject fitting (MOF) described in Drlica-Wagner et al. (2018))

from the Y3 Gold Catalog were used for sample selection and as input to the photometric

redshift codes. See also Porredon et al. (in prep.) for more details on this sample. The

redshift distributions of the MagLim sample are shown in Figure 3.3.
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3.4.3 Source galaxies

We use the DES Y3 shear catalog presented in Gatti, Sheldon et al. (2020). The galaxy

shapes are estimated using the Metacalibration (Huff & Mandelbaum, 2017; Sheldon &

Huff, 2017) algorithm. The shear catalog has been thoroughly tested in Gatti, Sheldon et al.

(2020), and tests specifically tailored for tangential shear have been presented in Prat et al.

(2022). In this paper we perform additional tests on this shear catalog for tangential shear

measurement on small scales (Section 3.5.3).

Following Prat et al. (2022) we bin the source galaxies into four redshift bins, where

details of the redshift binning and calibration is described in Myles, Alarcon et al. (2020).

The redshift distributions for the source samples are shown in Figure 3.3.

3.5 Measurements

Our γt measurements are carried out using the fast tree code TreeCorr3 (Jarvis et al.,

2004). We use the same measurement pipeline as that used in Prat et al. (2022), where

details of the estimator, including the implementation of random-subtraction and Meta-

calibration are described therein. The main difference is we extend to smaller scales and

add 10 additional logarithmic bins from 0.25 arcmin to 2.5 arcmin. The full data vector in

our analysis contains 30 logarithmic bins from 0.25 arcmin to 250 arcmin.

Figures 3.4 and 3.5 show the final measurements using the redMaGiC and MagLim

samples as lenses, respectively. The six panels represent the six lens-source redshift bin pairs.

The total signal-to-noise for the six redshift bins [Lens, Source]={[1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [4, 4]}

are ∼ {65.5, 59.9, 58.2, 65.5, 55.2, 36.6} for redMaGiC and ∼ {104.4, 100.9, 76.6, 99.2, 60.5, 45.5}

for MagLim numbers. For comparison, the signal-to-noise for the same bin pairs, only

accounting for the scales used in the cosmological analysis in Prat et al. (2022) are ∼

3. https://github.com/rmjarvis/TreeCorr
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Figure 3.4: Best-fit model (solid black) to redMaGiC for each lens-source redshift bin
combination and the residuals with respect to the data (points) attached below each panel.
The various components of the model are also shown: central 1-halo (solid blue) and 2-halo
(dashed blue), satellite 1-halo (solid red) and 2-halo (dashed red), satellite strip (dash-dotted
orange), point mass (dash-dotted cyan) and lens magnification (dash-dotted green). The blue
shaded area marks the scales used in cosmological analyses, while the rest corresponds to
the additional small-scale points used in this work. In each panel we also show the total χ2
of the fit, after applying the Hartlap correction to the inverse covariance matrix, and the
number of degrees of freedom.
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Figure 3.5: Same as Figure 3.4 but for the MagLim sample.
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{25.1, 26.8, 18.7, 22.1, 18.5, 12.3} for the redMaGiC sample, and ∼ {41.2, 35.9, 29.4, 30.4, 21.1, 15.7}

for the MagLim galaxies. The additional small-scale information from this work increases

the signal-to-noise by a factor of 2-3. This again demonstrates that if modelled properly,

there is significant statistical power in this data to be harnessed.

Below we briefly describe two elements specifically relevant for this work, the boost factor

(Section 3.5.1) and the Jackknife covariance matrix (Section 3.5.2). We also describe briefly

the additional data-level tests that we perform to identify any observational systematic

effects (Section 3.5.3). Our shear estimator, which includes the boost-factor correction and

random-point subtraction (i.e. removing the measured tangential shear measured around

isotropically distributed random points in the survey footprint; see Prat et al. (2022) for a

more in-depth discussion), is written as (Prat et al., 2022; Pandey et al., 2022):

γt(θ) =
1

⟨R⟩

[∑
k wrk∑
iwℓi

∑
ijwℓiwsje

LS
t,ij(θ)∑

kjwrkwsj
−
∑

kjwrkwsje
RS
t,kj(θ)∑

kjwrkwsj

]
, (3.26)

where wℓi , wrk = 1 and wsj are the weights associated with the lens galaxy i, random point

k and source galaxy j, respectively. Furthermore, the weighted average Metacalibration

response is ⟨R⟩ =
∑

j wsjRsj/
∑

j wsj , averaging over the responses Rsj of each source

galaxy j, while eLSt,ij and eRSt,kj are, respectively, the measured tangential ellipticity of the

source galaxy j around the lens galaxy i and random point k.

3.5.1 Boost factors

While computing the lensing signal we need to take into account that, since galaxies follow

a distribution in redshift, namely nℓ(zℓ) and ns(zs) for lenses and sources respectively, their

spatial distributions may overlap. This is something that is naturally accounted for in

Equation (3.17) as the lensing efficiency is set to zero when the source is in front of the lens.

However, by using fixed nℓ(zℓ) and ns(zs) in Equation (3.16), we implicitly assume there is no
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spatial variation in the lens and source redshift distribution across the footprint. In reality,

galaxies are clustered, and the number of sources around a lens can be larger than what

we would expect from a uniform distribution. This is usually quantified by the boost factor

(Sheldon et al., 2004), B(θ), estimator which is the excess in the number of sources around

a lens with respect to randoms. The difference in our γt measurements with and without

boost factors are shown in Figures B.1 and B.2 (for the full figures, with all lens-source bin

combinations, see Prat et al., 2022). As can be seen from the plots, the contribution from this

effect can be large at small scales, especially when the bins are more overlapped in redshift.

In our analysis we take the boost factors into account by correcting for it before carrying

out the model fit. That is, the measurements shown in Figures 3.4 and 3.5 have already

been corrected for the boost factor. In addition, since large boost factors will also signal

potential failures in parts of our modeling (specifically IA and magnification), we choose to

work only with bins that have small boost factors, for which we set a maximum threshold

of ∼ 20% deviation from unity, that result in lens and source redshift bin combinations that

are largely separated in redshift. We carry out our analysis with 6 lens-source pairs for both

lens samples: [Lens 1, Source 3], [Lens 1, Source 4], [Lens 2, Source 3], [Lens 2, Source 4],

[Lens 3, Source 4], [Lens 4, Source 4].

3.5.2 Covariance matrix

We use a Jackknife (JK) covariance in this work defined as

Cij ≡ C(γt(θi), γt(θj)) =
NJK − 1

NJK

NJK∑
k=1

∆γki ∆γkj , (3.27)

where γkt (θi) is the shear in the i’th angular bin for the k’th JK resampling, ⟨γt(θi)⟩k is the

average over all NJK realizations of the shear for the i’th angular bin and we have defined

∆γki ≡ γkt (θi)− ⟨γt(θi)⟩k.
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We use NJK = 150 JK patches for this work defined via the kmeans4 algorithm. NJK

is chosen so that the individual JK regions are at least as large as the maximum angular

scale we need for our measurements. See Prat et al. (2022) for a comparison between the

JK diagonal errors and the halo-model covariance errors, which are in good agreement.

When inverting the covariance matrix in the likelihood analysis, a correction factor is

needed to account for the bias introduced from the noisy covariance (Friedrich et al., 2016).

This correction is often referred to as the Hartlap (Hartlap et al., 2007) correction. When

inverting the JK covariance matrix C we multiply it by a factor H to get the unbiased

covariance (Kaufman, 1967)

C−1
H = HC−1 =

(
NJK −Nθ − 2

NJK − 1

)
C−1 , (3.28)

where the number of angular bins we use is Nθ = 30, since we analyze each lens-source

redshift bin combination independently. As shown in Hartlap et al. (2007), for Nθ/NJK < 0.8

the correction produces an unbiased estimate of the inverse covariance matrix; in our case

we find Nθ/NJK = 0.2. However, it is also shown in Hartlap et al. (2007) that as this factor

increases, Nθ/NJK → 0.8, the Bayesian confidence intervals can erroneously grow by up

to 30%. Furthermore, it was shown that in order for the confidence intervals to not grow

more than 5% the factor Nθ/NJK ≲ 0.12. For our results this means that, although our

covariance matrix gets unbiased, our error bars increase and our constraints can thus look

less significant than they actually are.

We finally discuss our choice of a Jackknife covariance matrix in this work. The fiducial

covariance used in the 3 × 2pt analysis in DES Y3 is derived from an analytic halo-model

formulation presented in Friedrich et al. (2020). Since our halo model implementation is dif-

ferent from that work (e.g. the modeling of the 1-to-2 halo regime and the HOD parametriza-

tion), we cannot use the same framework. Furthermore, since our goal is to model very small

4. https://github.com/esheldon/kmeans_radec
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scales, where the HOD is needed to model the galaxy bias, using as input to the covariance

calculation the HOD would lead to a circular process. Therefore, we opt to use the JK

covariance which is not relying on halo-model assumptions.

3.5.3 Systematics diagnostic tests

Similar to Prat et al. (2022), we carry out a series of data-level tests to check for any

systematic contamination in the data products. As this work extends from Prat et al. (2022)

in terms of the scales used for the analysis, we extend the following tests to the 0.25-2.5

arcmin scales. The tests we performed are the following:

1. Cross component: The tangential shear, γt, is one of the two components when we

decompose a spin-2 shear field. The other component is γ×, which is defined by

the projection of the field onto a coordinate system which is rotated by 45◦ relative

to the tangential frame. For isotropically oriented lenses, the average of γ× due to

gravitational lensing alone should be zero. It is thus a useful test to measure this

component in the data and make sure that it is consistent with zero for all angular

scales. To be able to decide whether this is the case, we report the total χ2 calculated

for γ× when compared with the null signal.

2. Responses: In this work, to measure the shear we make use of the Metacalibration

algorithm (Sheldon & Huff, 2017; Zuntz et al., 2018b). Based on this, a small known

shear is applied to the images and then the galaxy ellipticities e are re-measure on the

sheared images to calculate the response of the estimator to shear. This can be done

on every galaxy, and the average response over all galaxies is ⟨Rγ⟩. Then, the average

shear is ⟨γt⟩ = ⟨Rγ⟩−1⟨e⟩. Moreover, the Metacalibration framework allows us to

also correct for selection responses, ⟨RS⟩, produced due to selection effects (e.g. by

applying redshift cuts). The final response would then be the sum of the two effects,
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⟨R⟩ = ⟨Rγ⟩ + ⟨RS⟩. In practice, this procedure can be performed in an exact, scale-

dependent way or be approximated by an average scale-independent response, ⟨Rγ⟩.

In this test, we show that this approximation is sufficiently good by comparing the

measured shear derived from both of these methods.

3. LSS weights: Photometric surveys are subject to galaxy density variations throughout

the survey footprint due to time-dependent observing conditions. This variation in

the density of the lenses must be accounted for by applying the LSS-weights, which

removes this dependence on observing conditions, such as exposure time and air-mass.

In galaxy-galaxy lensing, since it is a cross-correlation probe, the impact of observing

conditions is small compared to e.g. galaxy clustering. Therefore, in this test we com-

pare the shear measurements with and without the application of the LSS-weighting

scheme and report the difference between the two.

We show in Appendix B the results of these tests, where we do not find significant signs

of systematic effects in our data vector.

3.6 Model fitting

In this section we discuss how we have performed the fitting of the HOD model introduced

in Section 3.2 to our data. We have five HOD parameters (Mmin, σlogM , fcen, M1, α),

two parameters that correspond to the additional contributions to lensing from point-mass

(M⋆) and the different satellite spatial distribution compared to that of the dark matter

(a = csat/cdm), and three parameters to account for systematic uncertainties (∆ziℓ, ∆zis,

mi). For the MagLim sample we have additional parameters (Σi
ℓ) that correspond to the

stretching factors of the lens redshift distributions, which are further discussed in Porredon

et al. (2021).

Our priors on these parameters are shown in Table 3.1. We will discuss in Section 3.7 the
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effects of these priors and whether they are appropriate in fitting all redshift bins. The choice

of priors on the HOD parameters was based on previous works on red galaxies (Brown et al.,

2008; White et al., 2011; Rykoff et al., 2014, 2016), and is similar to the priors in Clampitt

et al. (2017) but modified to better suit our HOD parametrization. As for the ∆zi and mi

parameters, our Gaussian priors on them are the same as in Myles, Alarcon et al. (2020)

and in MacCrann et al. (2020b). The priors we apply on M⋆ and a = csat/cgm are derived

from our tests in Section 3.7.3.

Our full data vector for the redMaGiC sample consists of the γt measurements to which

we append the additional data point n̄ig, the average number density of galaxies in each lens

redshift bin i, as mentioned in Section 3.4.1. As we discuss in Section 3.7.1, the addition

of this information helps control some of the model parameter constraints. To account for

this in the covariance, we formed the full covariance matrix of our data vector by appending

to Cij the variance of n̄ig on the diagonal, with zero off-diagonal entries. Our usage of n̄ig

effectively serves as a prior in our fits. We note here that we do not add n̄ig in the data

vector of MagLim, as we discuss in Section 3.7.1.

Finally, for reasons we will discuss in more detail in Section 3.7.1, we apply a prior on

the satellite fraction specifically in the highest-redshift bin we fit, namely [Lens 4, Source 4],

for the redMaGiC sample. In summary, this prior is based on the observation that most of

the galaxies in that redshift range are expected to be central and thus we choose to use the

flat prior range [0, 0.2] for αsat. Note that a similar approach is adopted in van Uitert et al.

(2011) (see Appendix C therein) and Velander et al. (2013) for high-redshift red galaxies.

To sample the posterior of each data set we utilise the Multinest5 sampler, which

implements a nested sampling algorithm (see for example Feroz et al., 2009). In our analysis

we assume that our data is generated by an underlying Gaussian process, thus making

its covariance Gaussian in nature. Therefore, for data vector d of length Nd and model

5. https://github.com/JohannesBuchner/MultiNest
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prediction vector m of the same length we express the log-likelihood as

lnL(θ) = −1

2
(d−m)TC−1

H (d−m) ≡ −χ2

2
, (3.29)

where θ is the parameter vector of our model M and C−1
H is the Hartlap-corrected data co-

variance matrix (see discussion in Section 3.5.2). Notice that we have neglected the constant

factors which are not useful while sampling the likelihood.

For our model fits, we report the total χ2 of our best-fit model to the data, as a measure

of the goodness of fit. Alongside this we report the number of degrees of freedom (dof),

which we calculate as the effective number of parameters that are constrained by the data,

Neff = tr
[
C−1
Π CH

]
, subtracted from the number of data points, Nd:

Ndof = Nd − tr
[
C−1
Π CH

]
, (3.30)

where the prior covariance is CΠ. We should note here that a goodness-of-fit estimation

based on finding an effective number of parameters is not always straightforward when the

parameters do not enter the model linearly, as discussed in Section 6.3 of Joachimi et al.

(2021). Therefore, our approach of calculating a reduced χ2 using Equation (3.29) based on

the Ndof from (3.30) yields a conservative answer if model under-fitting is the main concern.

3.7 Results

In this section we present the results from our analysis6 Before unblinding we performed

several validation tests of our pipeline using simulations and simulated data vectors. After

the tests were successfully passed, and after unblinding of the data, we applied our full

methodology to the unblind measurements to derive our main results. We first present in

6. In what follows we discuss our results after unblinding the data (see Muir et al. (2020) for details on
the data blinding procedure).
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Figure 3.6: Parameter constraints for redMaGiC using the fiducial cosmology. Combina-
tions with the same lens bin but different source bins are presented with the same colors
(solid versus dashed).
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Figure 3.7: Same as Figure 3.6 but for the MagLim sample.
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Parameter Prior (redMaGiC) Prior (MagLim)
log(Mmin/M⊙) U [11, 13] U [11, 12.5]
log(M1/M⊙) U [12, 14.5] U [11.5, 14]
σlogM U [0.01, 0.5] U [0.01, 0.5]
fcen U [0.0, 0.3] –
α U [0.8, 3] U [0.1, 2.5]
log(M⋆/M⊙) U [9, 12] U [9, 12]
a = csat/cdm U [0.1, 1.1] U [0.1, 1.1]
∆z1ℓ N (0.006, 0.004) N (−0.009, 0.007)

∆z2ℓ N (0.001, 0.003) N (−0.035, 0.011)

∆z3ℓ N (0.004, 0.003) N (−0.005, 0.006)

∆z4ℓ N (−0.002, 0.005) N (−0.007, 0.006)

∆z3s N (0.0, 0.006) N (0.0, 0.006)

∆z4s N (0.0, 0.013) N (0.0, 0.013)

m3 N (−0.0255, 0.0085) N (−0.0255, 0.0085)

m4 N (−0.0322, 0.0118) N (−0.0322, 0.0118)

Σ1
ℓ – N (0.975, 0.062)

Σ2
ℓ – N (1.306, 0.093)

Σ3
ℓ – N (0.870, 0.054)

Σ4
ℓ – N (0.918, 0.051)

αsat U [0, 0.2] –

Table 3.1: Priors on model and uncertainty parameters. If the prior is flat we present its
range, while for Gaussian priors we list the mean and variance.
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Section 3.7.1 the model fits to the data and the parameter constraints. We then show in

Section 3.7.2 several derived quantities from our model fits: the average halo mass, galaxy

bias and satellite fraction for our samples. We compare these quantities with literature as

well as estimations using only the large, cosmological scales. Finally in Section 3.7.3 we

perform a series of tests to demonstrate the robustness of our results to various analysis

choices.

3.7.1 Model fits

Best-fit models for all the lens-source redshift bin combinations for the redMaGiC and

MagLim lens samples are shown in Figures 3.4 and 3.5 respectively, with the χ2 of the

fits and the corresponding number of degrees of freedom listed on the plots. We show the

decomposition of the different components that contribute to the final model as described in

Section 3.3. The parameter constraints are shown in Figures 3.6 and 3.7, respectively. These

plots only show the parameters that are constrained by the data. The best-fit parameters

are listed in Tables D.1 and D.2.

From Figures 3.4 and 3.5 we observe that our model generally describes the data well

between the measured scales of 0.25–250 arcmin. The χ2 per degree-of-freedom is close to 1

for most bins, with the largest value ∼ 2 for redMaGiC bin [Lens 2, Source 4] and MagLim

bin [Lens 1, Source 4], and the smallest value ∼ 0.5 for redMaGiC bin [Lens 2, Source 3].

We do not consider this very problematic given that there is no apparent trends in the model

residuals and that these datasets are much more constraining compared to previous work.

Nevertheless, the slightly high χ2 values could motivate additional modeling improvements

beyond this work. We also note that not all the components in our model are contributing

significantly to the fit. For a detailed discussion on how different components contribute to

the model see Section 3.7.3.

From Figures 3.6 and 3.7, we observe that the mass parameters Mmin and M1 are well-
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constrained, with Mmin for the fourth redMaGiC bin being higher than the first three as a

result of the luminosity threshold being higher in that redshift bin. The satellite power-law

index parameter α is also constrained mainly by the inclusion of small scales (see discussion in

Section 3.7.3). The tight degeneracy between M1 and α is expected based on Equation (3.2),

since a higher normalization M1 requires a larger α to keep αsat the same, and vice versa.

The point-mass parameter, M⋆, is not constrained, which means that it is not needed to

improve the χ2 of the fits. This implies that our current model for the mass distribution

below the scales we measure (∼ 0.25 arcmin) is not significantly different from what the data

prefers.

As a side note, we have found that the inclusion of n̄ig values in the redMaGiC data

vector (see Section 3.6) constrains the fcen parameter to low values, which indicates that

the model prefers a significant number of centrals not being included in our redMaGiC

lens sample by the selection algorithm. Without this additional information, fcen is not

constrained7. On the other hand, for MagLim since fcen = 1 we do not see this effect and

there is no need to incorporate n̄ig into the data vector of that sample.

3.7.2 Halo properties

Given the model fit, we can derive a number of quantities that describe the properties of

the halos hosting the lens galaxies. Specifically, we discuss the average lens halo mass as

estimated by:

⟨Mh⟩ =
1

n̄g

∫
dMh Mh

dn

dMh
⟨N(Mh)⟩ , (3.31)

the average satellite fraction using Equation (3.9) and the average galaxy bias calculated

from Equation (3.7).

7. To understand this we need to look at Equations (3.7) and (3.9) which define the average galaxy bias
and satellite fraction, respectively. Since in our HOD parametrization both the expectation number for
centrals and satellites (Equations (3.1) and (3.2)) are proportional to fcen, and since n̄g ∝ fcen as well, fcen
cancels out in b̄g and αsat. It is, therefore, only through n̄g that we can constrain fcen.
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Figures 3.8 and 3.9 show the average halo mass (top panel), the average linear galaxy bias

(middle panel), and the satellite fraction (bottom panel) for the redMaGiC and MagLim

lens samples in the four redshift bins. The points represent the best-fit maximum posterior

and the error bars represent the 68% confidence intervals from the MCMC chain. To derive

these constraints, we calculate Equations (3.31), (3.7) and (3.9) at each step of our chains to

build the distributions of these three quantities and then estimate the reported constraints.

We first focus on redMaGiC. For the average halo mass, we compare our results with

that derived in the DES Science Verification (SV) data in Clampitt et al. (2017). The SV

sample is broadly similar to the first three lens bins in terms of the luminosity selection

and number density. Note, however, that there are some differences in the lens samples

between SV and our three lower redshift bins. In particular, the photometry pipeline and the

redMaGiC code have both been updated since SV, and the redshift bins are not identical.

With these differences in mind, our results appear broadly consistent with Clampitt et al.

(2017) in the HOD-inferred halo mass, with roughly ∼ 2 times tighter error bars on average.

We point out, however, that due to adding more free parameters to our model compared to

Clampitt et al. (2017), our error bars should not be directly compared. Rather, we should

take into account that our error bars would be roughly an additional factor of ∼ 1.5 tighter,

had we considered the simplified model in Clampitt et al. (2017), as illustrated in Figure E.2.

The halo mass in the first three redshift bins appears to decrease with redshift. A big

part of this is the pseudo-evolution of halo mass due to the mass definition we use. This

effect is also mentioned in Clampitt et al. (2017) and is studied in Diemer et al. (2013). In

short, since we use the critical (or mean in our plots and tables) density of the universe at

every redshift to define the halo mass, we observe a pseudo-evolution of our mass constraints

over redshift as the reference density evolves. According to Diemer et al. (2013), from

z ∼ 0.2 to z ∼ 0.6 the pseudo-evolution of the 200ρm mass, namely M200m, corresponds

to ∆ log(M200m/M⊙) ∼ 0.11 for a halo of 200ρm mass ∼ 1013.8 M⊙ at z = 0. This can
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Figure 3.8: Redshift evolution of redMaGiC properties. Bin combinations with the same
lenses but different sources are shown in different markers (square for source bin 3 and circle
for source bin 4) and a small offset of 0.005 between the two has been applied in the horizontal
axis to make the plot easier to read. As we discuss in Section 3.3, these results assume the
de-correlation parameter Xlens = 1. Top panel: The average halo mass, compared with
results from Clampitt et al. (2017) (red pentagon). Middle panel: The average galaxy bias,
compared to constraints from DES Collaboration (2021) (cyan diamond). Bottom panel:
The average satellite fraction; the dashed horizontal line shows the prior on αsat applied to
the last redshift bin.
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Figure 3.9: Same as Figure 3.8 but for the MagLim sample.

account for most of the difference between the first two bins and the third one. Therefore,

we do not find significant change in mass beyond this pseudo-evolution. For the last redshift

bin, in addition to the pseudo-evolution in mass, we note that the sample is more luminous

(see Section 3.4.1) compared to the first three bins and thus we are looking at more massive

halos, which acts opposite to the trend from the pseudo-evolution. We point out here that

the overall trend we observe in redshift for the mass is consistent with that seen in simulations

(see Appendix A.2). As a further test, we note that we have roughly calculated the ratio of

halo mass to stellar mass for the redMaGiC sample and found it to be a few ×102. This

result is reasonable for ∼ 3× 1013 M⊙-mass galaxies, based on stellar-to-halo mass relation

constraints (for a review see Wechsler & Tinker (2018)).
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For the average galaxy bias we first compare our results with constraints from large-scale

cosmology for the same sample presented in DES Collaboration (2021). The large-scale

constraints come from combining galaxy-galaxy lensing and two other two-point functions

(galaxy density-galaxy density correlation and shear-shear correlation) to form the so-called

3×2pt probes, so they are not expected to agree trivially. We find that the DES Y3 3×2pt

constraints on galaxy bias is quite consistent with our HOD-inferred galaxy bias. The main

additional information that our HOD analysis adds to the picture here is the small-scale

information, which is consistent with the large-scale information in galaxy-galaxy lensing

only (see cyan points in Figure 3.8) – as we will show later in Section 3.7.3, most of the

constraining power comes from the 1-halo regime and our galaxy bias constraints does not

change whether or not we include the large cosmological scales. The small-scale constraints

are tighter than the large-scale only constraints by a factor of roughly 5. In particular, we

note that the main improvement is not coming from the increased signal to noise. Rather, it

is the wealth of information in the 1-halo regime that improves the constraints. The higher

galaxy bias measured for the last redshift bin, compared to the first three bins, is mainly

a result of the different selection criteria. We remind the reader here that the galaxies

which form the last bin are selected using a higher luminosity threshold, as discussed in

Section 3.4.1.

For the satellite fraction, we find that our redMaGiC sample prefers a low (∼ 0.2)

satellite fraction in all redshift bins we consider. We note that this trend and the values

appear quite different from that observed in the MICE simulations (see Appendix A.2). They

are, however, in good agreement with the high-resolution Buzzard simulations (discussed

also in Appendix A.2) which show an average satellite fraction of redMaGiC which is ∼ 0.2

in all three bins. When looking at a red galaxy sample that is likely to share characteristics

with redMaGiC, Velander et al. (2013) constrained the satellite fraction to be small and

decreasing with redshift to ∼ 0.2 or less, which broadly confirms that our constraints on the
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redMaGiC satellite fraction appear reasonable.

As we have discussed in Section 3.3, throughout our analysis we assume the de-correlation

parameter Xlens = 1. If we were to use the best-fit value of Xlens ≈ 0.877 from the 3× 2pt

analysis with free Xlens our constraints would change. Specifically, given that the galaxy-

galaxy lensing signal’s amplitude, being multiplied by Xlens, would decrease, our bias con-

straints would increase by ∼ 10%. This would also increase the average lens halo mass by

the same factor, and our satellite fractions would increase too as a result. Given our little

understanding of what is causing the inconsistency between clustering and galaxy-galaxy

lensing in redMaGiC we choose to keep Xlens fixed to 1 and have these results being our

fiducial. Further investigating this issue is out of the scope of this paper.

Next we turn our attention to the MagLim sample. By construction, the MagLim sam-

ple is designed to be close to a luminosity-selected sample, while maximizing the cosmological

constraints when using it as lenses in galaxy clustering and galaxy-galaxy lensing. Compared

to redMaGiC, this sample does not include additional selection on color or photometric

redshift. On the other hand, since it is not exactly a luminosity selection, the physical in-

terpretation of the redshift trends of this sample is not straightforward. There is also no

previous literature for comparison.

As shown in Figure 3.9, we find the average halo mass of the MagLim sample to be on

average lower than that of redMaGiC, with the lower two redshift bins appear more massive

than the higher redshift bins by ∼ 30%. Contrary to intuition, the uncertainties on the halo

masses are larger compared to redMaGiC even though the error bars on the measurements

are ∼ 4 times smaller. This is because the priors in the nuisance parameters for MagLim is

larger than that of redMaGiC – this trend has also been seen in DES Collaboration (2021).

The galaxy bias appears quite similar to that of redMaGiC, with the first and last bins

somewhat lower. Compared to the 3x2pt constraints we find overall good agreement with

our results, with the last bin having a slightly higher bias in our HOD fits. Finally, we find
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the satellite fraction for the MagLim sample to be ∼ 0.1 − 0.2 for all bins, except for the

third one which is significantly higher at ∼ 0.35 and not as well-constrained.

Overall, we also observe that for bin combinations that share the same lens bin, the

derived halo properties are consistent when using different source bins. This is assuring and

a useful check that our model is indeed capturing properties of the lens samples instead of

fitting systematic effects.

3.7.3 Robustness tests

In this section we study the robustness of our results to a number of analysis choices: cos-

mology, scale cuts, parameter priors, and the addition of higher-order model components.

In particular, we are interested in how the average lens halo mass ⟨Mh⟩, average galaxy

bias b̄gal and average satellite fraction αsat change under the different analysis choices. We

show all the tests in this section for redMaGiC only, but we expect similar results with the

MagLim sample.

Robustness to cosmology

In this paper we present our main results assuming a specific fixed cosmology, namely our

fiducial cosmological values introduced in Section 3.3. We study here the sensitivity to

this assumption. The top panel of Figure 3.10 shows how our results change when two

alternative assumptions for cosmology: (1) best-fit ΛCDM parameters from Planck 2018

(Planck Collaboration, 2020) (2) freeing σ8.

The average mass of redMaGiC galaxies and the fraction of satellite galaxies are robust

to changing the cosmological parameters to Planck 2018. Given that these quantities are best

constrained by the small-scale information (the points below the 1-halo to 2-halo transition),

this implies that varying the cosmology, to a small degree with respect to our fiducial one,

leaves the 1-halo central model prediction almost unchanged. We remind the reader here that
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Figure 3.10: Testing the robustness of the halo properties for different cosmologies (upper
panels), to applying angular scale cuts (middle panels), and to changing the prior range on
our parameters (lower panels) on the redMaGiC sample . The vertical bands correspond
to the fiducial constraints and we added them for an easier comparison with the rest of
our results. Note that, to reduce the size of this figure we have combined bins with the
same lenses and different sources by presenting the mean of the best-fit values and, to be
conservative, the maximum of the error bars.
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our fiducial cosmology is similar to Planck with the difference that σ8 we use is slightly lower

and our Ωm is slightly higher compared to Planck. The average galaxy bias, on the other

hand, is degenerate with σ8 on the large scales. This means that changing to the Planck

2018 cosmology directly changes the inferred galaxy bias as seen in Figure 3.10 – using the

Planck 2018 cosmology with a higher σ8 value results in lower values for the galaxy bias.

Figure 3.11: Robustness to freeing σ8 for
redMaGiC galaxies. We present the
joint constraints on σ8 and the derived av-
erage galaxy bias for all redshift bins we
consider. The vertical dashed line shows
the fixed value of σ8 used in our fiducial
cosmology.

Next, we allow for σ8 to freely vary within the

prior range [0.4, 1.2], fixing all other cosmological

parameters to our fiducial cosmology. Figure 3.11

presents our results for the σ8 and galaxy bias

constraints from this test for the redMaGiC

galaxy sample. In addition, we have compared

the average halo mass, galaxy bias and satellite

fraction from these chains in Figure 3.10 to the

fiducial results. As we can see, our constraints on

σ8 from the first three lens bins recover the fidu-

cial value of σ8 quite well. The last bin prefers

a lower value of σ8, and a slightly higher galaxy

bias – these are still consistent within 1σ though.

Overall, the constraints on all these quantities

remain consistent with our fiducial ones. We

can, therefore, conclude that freeing the matter

power spectrum’s amplitude does not alter our

constraints in a meaningful way.
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Angular scale cuts

Next we study how removing data points on different scales from the fits affects our results.

For these tests we first cut out small scales by setting the minimum θ to the threshold values

θt = {2.5, 1, 0.6,−} arcmin for each lens redshift bin, after which we find the data is not

constraining enough and this leads to nonphysical constraints and projection effects8. This

happens because using only the θ > θt scales in our fits the total central component of γt,

namely γcent , becomes identical to γsatt , the total satellite term. These two are then identical

to the total shear and, therefore, the fit cannot distinguish between the two. This means the

satellite fraction cannot be determined accurately and the other two halo properties suffer

too as a result.

To determine the maximum scale cut we can use in each redshift bin without being

dominated by projection effects we perform the following analysis using simulated data

vectors.

The simulated data vectors are produced with our model using parameters that corre-

spond to the best-fit maximum posterior values from our fiducial runs on the redMaGiC

data, as they are presented in Section 3.7.1. We first fit all angular scales and confirmed

our pipeline can recover the input. Next, we remove data points from the smallest scales

and repeat the fitting and analysis. We then compared both the constraints on the model

parameters and the inferred halo properties from all these runs with different scale cuts.

From this comparison we were able to identify the scale cut with the maximum θmin which

was still able to give us results consistent with the full-scale simulated-data runs. At high

redshift the threshold θ was found to be lower since the same angular scale corresponds to

higher physical scale. This is especially evident in the last redshift bin where we cannot

remove any of the scales since they are all needed to constrain the HOD parameters, and

8. Projection effect here means that when we project a multidimensional parameter space to the one-
dimensional posterior distributions sometimes the constraints could appear biased.
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it even requires the additional prior on the satellite fraction, as discussed in Section 3.6, in

order to keep αsat under control.

We also test the case where we remove scales used in the cosmological analysis, derived

in Krause et al. (2021b), which we refer to as cosmological scales and we denote by θ3×2.

Since small scales are expected to provide most of the constraining power, we put that to

test by comparing our constraints from fitting only the small scales, excluding the cosmology

scales.

The middle panels of Figure 3.10 present our results for the derived halo properties from

applying the above angular scale cuts on redMaGiC data. For comparison, in the same

plots we have included the vertical bands that correspond to the fiducial chains which use

the full range of angular scales. As we can see, using the scale cuts discussed above, all

our results stay consistent with our fiducial constraints. In addition to this, we can see that

the small scales-only fits are also consistent with all other points. Furthermore, these fits,

despite using fewer points, can constrain all halo properties almost as well as the full-scale

runs, showcasing the rich information contained in the small scales.

Effect of the priors

In our main analysis we have performed various tests on how and whether the priors on

our model parameters can have an impact on our results. Here we demonstrate that our

parameter priors are not too restrictive and informing the constrained parameters. For our

tests in this section, we test the sensitivity of our results when we use roughly 2 times wider

priors than that used in the fiducial analysis for all model parameters, keeping the prior

center the same.

The bottom row of panels of Figure 3.10 shows the inferred halo property constraints

with the widened priors compared to the fiducial, for the redMaGiC sample. We see that

the derived parameters appear consistent. We note here, however, that during our tests we
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found that small shifts in the best-fit points can occur if the prior range changes or if it is

kept the same but the sampler starts at a different position in parameter space. These effects

are not significant, though, in our runs and thus our results stay robust, as discussed above.

Model complexity

In Section 3.3 we described the details of the various model components. In this section, we

explain the process we have used to decide whether or not a component has been included in

our fiducial model based on how each of them affects the fits and the inferred halo properties.

Our fiducial framework starts with the basic HOD modeling where γt is composed of

the following four terms: the 1-halo central and satellite contributions γc1ht and γs1ht , re-

spectively, and their 2-halo counterparts γc2ht and γs2ht . We will refer to the combination

of these four components as the HOD-only model. As a first step we like to see if HOD-

only can describe our data well. For the six bin combinations, we find that the HOD-only

model achieves reduced χ2 of {0.585, 1.144, 1.019, 2.101, 0.879, 1.119}. These fits are already

good, but there is room for improvement on bin [Lens 2, Source 4] which has noticeably

the worst χ2. Our fiducial model improves the reduced χ2 over the HOD-only model by

{0.055, 0.094, 0.023, 0.030, 0.066, 0.181} for redMaGiC.

The procedure we use to determine our fiducial framework is discussed in detail in Ap-

pendix E and goes as follows: Using the HOD-only model as a baseline we systematically

include additional components and test whether the fits to the data improve, by calculating

and comparing the reduced χ2 of the corresponding data fits. In addition to a change in the

reduced χ2, we also check in each case if the inferred halo properties change significantly as a

result of adding a contribution to γt. This step is intended to check if omitting a term would

introduce a bias in our constraints. Finally, we consider whether it makes physical sense to

include a component. If a component is physically well-motivated, we may decide to keep it

even if it does not significantly improve the fit. On the other hand, if a contribution is not
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well motivated and its modeling is uncertain, we may decide to discard it even if it makes a

difference in the goodness-of-fit.

From Appendix E we decide to include the following additional modeling components

to γt from the HOD-only model: (1) Point-mass contribution; (2) Tidal stripping of the

satellites; (3) A concentration parameter for the satellites which is different from that of the

dark matter’s distribution; (4) Magnification of the lenses. This is the fiducial model which

we used to derive the main results in Section 3.7.

As a further note, the particular choice of the HOD model itself is another aspect of the

full model that can be much more complex than, or different from, what we used in this

work as described in Section 3.2.1. To that end, we experimented with various treatments

of the galaxy-halo connection and did not find that adding additional parameters to it or

modifying its parametrization made a significant difference to our results. Specifically, we

have tested the following modifications to our fiducial HOD. We modified the satellite HOD,

⟨Ns(Mh)⟩ of Equation (3.2), by multiplying it by an exponential cutoff exp(Mh/Mcut),

with mass cutoff Mcut, following, for example, Leauthaud et al. (2011); Zu & Mandelbaum

(2015) where the authors expanded the standard HOD to include the stellar mass function

in a robust framework to study the galaxy-halo connection. Another similar variance of

the HOD model we tested was to modify the satellite terms by replacing (Mh/M1)
α by

[(Mh − M0)/M1]
α, as in Guo et al. (2016) for instance where the HOD was compared to

subhalo matching in order to determine which describes better the clustering statistics in

SDSS DR7, where we introduce the additional mass cutoff parameter M0, setting ⟨Ns(Mh)⟩

to zero if Mh/M0 < 1. We, furthermore, tested altering the satellite term by not multiplying

⟨Ns(Mh)⟩ by fcen, considering this parameter only through ⟨Ns(Mh)⟩, as in Clampitt et al.

(2017). Finally, we modified our model by decoupling the satellites from the central galaxies,

setting ⟨Ns(Mh)⟩ = (Mh/M1)
α, thus not multiplying the satellite term by the number of

central galaxies. These variants of the HOD framework we tested did not significantly alter
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our results.

We also compare our HOD modeling choices to previous literature. For instance, Clampitt

et al. (2017), which performed an HOD study on redMaGiC galaxies from the DES SV

data, used a basic HOD model that was sufficient to fit their data, given that their statistical

uncertainties were much larger compared to this work and the range of scales used was

narrower. In another study, Velander et al. (2013) used 154 deg2 of CFHTLenS lensing

data, splitting galaxies into blue and red, and considered a more complex model where they

included the effects from baryons as a point-mass source and satellite stripping, similarly

to our work, although they did not use the full five-parameter HOD model we employ here

but rather one similar to Mandelbaum et al. (2005) that fixes the satellite power-law index.

Therefore, compared to both Velander et al. (2013) and Clampitt et al. (2017) we have used

a more complex model which, although increased our error bars on the parameter constrains,

was required to capture the features of our more constraining data. In addition to that, we

have taken into account systematic uncertainties by introducing the ∆zi and mi parameters

(discussed in Section 3.6) which further increased our error bars.

3.8 Summary and Discussion

In this work, we have carried out a detailed analysis on modelling the small-scale galaxy-

galaxy lensing measurements for the two lens samples redMaGiC and MagLim using a

Halo Occupation Distribution (HOD) framework. Our lens samples were divided into four

tomographic bins each spanning a redshift range about 0.2–0.9. In this work we have ex-

tended the measurements in Prat et al. (2022) to smaller scales, totalling 30 logarithmic

bins in angular scales from 0.25 to 250 arcmin (physical scales from ∼ 70 kpc in the lowest

redshift bin to ∼ 110 Mpc in the highest redshift bin). Our main findings are:

• These measurements increase the signal-to-noise of our measurements by a factor of

2-3 compared to the signal-to-noise from scales used by cosmology analyses.
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• We constrain the average halo mass of our redMaGiC (MagLim) sample to ∼ 1013.6

M⊙ (1013.4 M⊙) in the lowest redshift bin and ∼ 1013.3 M⊙ (1013.3 M⊙) at the

highest redshift bin. The uncertainty on these mass constraints are about ∼ 15%. The

redMaGiC constraints are consistent with previous work in Clampitt et al. (2017).

The halo masses of MagLim are overall lower compared to redMaGiC, especially at

lower redshift.

• We constrain the average linear galaxy bias for the redMaGiC (MagLim) sample to

be ∼ 1.7 (1.5) at low redshift and ∼ 2.1 (2) at high redshift. Our results are consistent

with those inferred only from the large scales from DES Collaboration (2021), but with

about 5 times smaller uncertainties due to the small-scale information.

• We constrain the satellite fraction for the redMaGiC (MagLim) sample to be 0.1−0.2

(0.1 − 0.3) with no clear redshift trend. Our redMaGiC results appear to be in

agreement with other studies which measured the satellite fraction of red galaxies, e.g.

in Velander et al. (2013). Our results for MagLim, which consists of a more wide

variety of galaxies than redMaGiC, also appear reasonable and in agreement with

studies like Mandelbaum et al. (2006b); Coupon et al. (2012); Velander et al. (2013).

In these studies, the authors concluded that the fraction of satellite galaxies is reducing

with increasing halo mass and that αsat is roughly what our constraints point to.

Motivated by the increased signal-to-noise, we consider additional model complexity on

top of the basic HOD framework: a point-mass component, stripping of the satellites of their

outer dark matter, magnification of the lenses, and modifying the spatial distribution of the

satellite galaxies by varying its concentration parameter with respect to the distribution of

dark matter in the lens halos. Using this model we were able to obtain good fits to the

measurements over all angular scales and for all redshift bins we considered. We note that

two out of twelve bin combinations show a best-fit χ2 per degree-of-freedom ∼ 2, which
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could motivate additional modeling developments for the future, or indicate some residual

systematic effect that is not well understood.

To further test our analysis, we have preformed various tests where we vary parts of our

modeling and fitting procedure to make sure that our results remain robust under small

changes around the fiducial framework. We tested the sensitivity of our results to the as-

sumption of cosmology, the angular scales used in the model fit, and the width of our priors

– we find that our results are robust to these changes.

There are a number of limitations in our analyses that we point out here for the readers

to appropriately interpret our findings. First, in Appendix A.2 we showed a series of tests

that we performed using available simulations. However, the resolution of these simulations

were insufficient for us to conclusively validate our model and methodology on scales deep in

the 1-halo regime. That is, it is plausible that our fiducial model, although well-fitted to the

data, is not the true description of the galaxy-halo connection. Higher resolution simulations

exist (Nelson et al., 2019, Illustris TNG), but the simulation volume is much smaller and

to exactly match our sample we would require running the redMaPPer algorithm on

the simulations. We point these out both as caveats for interpreting our results and as

inspirations for future studies. The second element that would benefit from future advances

is the modeling of the covariance matrix. An analytic covariance model on this large range

of scales is possible to calculate, but there are differences in the halo-model assumptions and

HOD parametrization between the existing covariance modeling (Friedrich et al., 2020) and

our assumptions. Furthermore, we would need to find a sophisticated way of treating the

HOD in the analytic covariance calculations, given that the HOD is what we are constraining

in our analysis and we thus should avoid the resulting circularity. As a result, we have

adopted a data-based Jackknife covariance, which has its own issues of being noisy and

often overestimated (Friedrich et al., 2016). This is an area of active research and it would

be interesting for future studies to re-analyze this data using a more advanced covariance
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model. Finally, as we mention in Section 3.3.6, in our analysis an accurate and tested model

for IA is missing in the 1-halo regime. Therefore, although we found that our simple IA

model to contribute insignificantly in our analysis (see relevant discussion in Section 3.7.3),

it is plausible that a more accurate IA model could have a larger effect on the full model fit.

This again can serve as a starting point for exploration of better IA models in the 1-halo

regime, now that our data is becoming sufficiently constraining.

In this work we established a framework to systematically explore a number of modeling

choices in the galaxy-galaxy lensing signal from deep in the 1-halo regime to the cosmo-

logical 2-halo regime. Many of these effects were ignored in earlier work as the statistical

uncertainties were large relative to these effect. In the final DES Y6 dataset we expect

1.5-2 times more source galaxies and a reach to higher redshift for the lens sample, which

will allow us to further test the different model components. What we learn will feed into

future analyses with the Rubin Observatory’s Legacy Survey of Space and Time, the Nancy

Roman Space Telescope and the ESA’s Euclid mission. We expect these future datasets

to be qualitatively different in terms of data quantity and quality, and a combination of

modeling techniques (HOD models like what we studied here, hydrodynamical simulations

and emulator approaches) will be needed to understand how galaxies and dark matter halos

are connected at the very small scales.
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CHAPTER 4

DES Y3 STELLAR MASS SAMPLE

In this chapter we present an updated and improved model of the galaxy-halo connection

compared to Chapter 3. The new model incorporates small-scale modeling of the two-point

statistics of galaxy clustering and it also accounts for the stellar-mass information of the

galaxies. This work is based on the upcoming publication Zacharegkas et al. (2023), in prep

that is scheduled to be released in the near future.

4.1 Introduction

The connection between galaxies and dark matter is one of the most fundamental aspects

of modern Cosmology. It is thus essential to understand this connection in order to form a

comprehensive interpretation of the observed Universe. In the era of precision cosmology,

analyses of Large-scale Structure (LSS) from galaxy surveys can lead to biased results if the

details of the galaxy-halo connection are ignored (McDonald & Roy, 2009; Baldauf et al.,

2012; Krause et al., 2017). To avoid modeling the highly complicated physics on the smallest

scales, those data points are usually ignored and only the data in the linear to quasilinear

regime, where a simple prescription of the galaxy-halo connection such as linear galaxy

bias is sufficient (see e.g. DES Collaboration, 2021), are considered. In some cases more

complicated galaxy bias models on small scales (such as Heymans et al., 2021) are used

and marginalise over the model parameters. For either approach, a data-driven model of the

galaxy-halo connection on scales below a few Mpc could allow us to significantly improve the

cosmological constraints achievable by a given dataset. Galaxy bias on small scales is non-

linear by nature (Dvornik et al., 2018) and accurate galaxy-halo connection models provide

a wealth of crucial information. In addition, understanding the connection between different

galaxy samples and their host halos also has implications for galaxy evolution (see Wechsler
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& Tinker, 2018, for a review of studies for galaxy-halo connection).

One of the most powerful probe of the galaxy-halo connection is galaxy-galaxy lensing

which directly probes the dark matter halos of galaxies (Tyson et al., 1984; McKay et al.,

2001; Hoekstra et al., 2004; Sheldon et al., 2004; Mandelbaum et al., 2005, 2006a; Seljak

et al., 2005; Johnston et al., 2007; Heymans et al., 2006; Leauthaud et al., 2011). Galaxy-

galaxy lensing refers to the measurement of the cross-correlation between the positions of

foreground galaxies and shapes of background galaxies. Due to gravitational lensing, the

images of background galaxies appear distorted due to the deflection of light as it passes by

foreground galaxies and the dark matter halos they are in. As a result, this measurement

effectively maps the average mass profile of the dark matter halos hosting the foreground

galaxy sample. A common approach to modeling this measurement is via the Halo Model

(Seljak, 2000; Ma & Fry, 2000; Cooray & Sheth, 2002) and the Halo Occupation Distribution

(HOD) framework (Peacock & Smith, 2000b; Scoccimarro et al., 2001; Berlind & Weinberg,

2002; Tinker et al., 2007; Zheng et al., 2007; Zehavi et al., 2011; White et al., 2011). In

this framework, a large luminous central galaxy is considered to exist in the centers of the

host halos and the smaller satellite galaxies are distributed within the halo (Kravtsov et al.,

2004).

Another powerful probe of the galaxy-halo connection is galaxy clustering, which refers

to the measure of spatial clustering of galaxies. However, small-scale galaxy clustering alone

cannot yield cosmological constraints because unless combined with probes that are sensitive

to the mass scales of dark matter halos, such as galaxy-galaxy lensing (van den Bosch et al.,

2003; Tinker et al., 2005; Seljak et al., 2005). Combining the two, has been proved (Yoo et al.,

2006; Cacciato et al., 2009) to be sensitive to cosmological information, and particularly to

σ8 and Ωm, since this combination probes the shape and amplitude of the halo mass function

on small scales and the overall matter density and the bias of the galaxy sample at large

scales.
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Various flavors of the HOD framework have been proposed in the literature. For example,

the conditional luminosity function Φ(L|Mh) that provides the average number of galaxies

of luminosity L± dL that reside in a halo of mass Mh (Tasitsiomi et al., 2004; Yang et al.,

2004; Van Den Bosch et al., 2004; Vale & Ostriker, 2006; Cooray, 2006) is one, or similarly

the conditional stellar mass function Φ(M⋆|Mh)dM⋆ which describes the average number

density of galaxies in a halo of mass Mh with stellar masses in the range of M⋆±dM⋆ (Yang

et al., 2007; Moster et al., 2010; Behroozi et al., 2013). Moreover, abundance matching, i.e.

assuming that there is there is a monotonic correspondence between halo mass (or circular

velocity) and galaxy stellar mass (or luminosity) (e.g., Conroy et al., 2006; Kravtsov et al.,

2004; Vale & Ostriker, 2006; Conroy & Wechsler, 2009; Drory et al., 2009; Moster et al., 2010;

Behroozi et al., 2013; Guo et al., 2010) has been used to constrain the galaxy stellar mass

function. However, even though this technique is easy to use in practice, prior knowledge

about the mass distribution of halos from cosmological N -body simulations is needed and

the assumption that field halos and subhalos of the same halo mass contain galaxies of the

same stellar mass.

In this chapter we develop a framework based on the HOD to model small scales in

galaxy-galaxy lensing and galaxy clustering. We do so by utilizing an HOD model that is

mostly based on our previous work presented in Zacharegkas et al. (2022) for lensing. In

that paper we analyzed the two lens galaxy samples that were used by the Dark Energy

Survey (DEC) Collaboration Year 3 (Y3) for the main cosmological studies (e.g. Abbott

et al., 2022; Prat et al., 2022). Modeling the non-linear scales, we were able to constrain

the galaxy-halo connection of both lens samples and we quoted constraints on the average

halo mass, galaxy bias and satellite fraction. Our HOD model was widely based on Zheng

et al. (2007); Zehavi et al. (2011) and the halo occupation was predicted as a function of

the halo mass. In this work we expand upon this framework in two main ways: 1) We

also incorporate theory predictions for galaxy clustering on small scales; 2) We develop a
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small-scale model that also accounts for the stellar mass of the lens galaxies. The latter is

done by direct parametrization of the HOD, but is equivalent to using, e.g. the conditional

stellar mass function mentioned before.

We apply our model to data from DES Y3. Specifically, we develop a new lens sample

that includes the galaxy stellar mass and color. Moreover, our catalog provides the full two-

dimensional joint distribution of redshift and stellar mass for each galaxy, which is produced

using a Machine Learning approach. Our model is constructed such that it is capable of

accounting for the aforementioned full joint redshift-stellar mass distribution. We describe

this new catalog in detail in this study. This sample can be further used in future studies

in various analyses. Our goal is to fit measurements of galaxy-galaxy lensing and galaxy

clustering of galaxies binned in redshift and stellar mass in order to constrain their galaxy-

halo connection via the stellar-to-halo mass relation which is a key component in our new

HOD model.

The structure of the chapter is as follows. In Section 4.2 we introduce the new lens sample

by describing in detail the Machine Learning algorithm (training, validation and its products)

and we present the binning our the lens galaxies in redshift and stellar mass. In Section 4.3 we

discuss the source galaxy sample that we use in the galaxy-galaxy lensing part of the data

vector. Section 4.4 describes the measurements of lensing and clustering, the covariance

matrix, and also focuses on the systematics tests we performed on our measurements and

how they inform our analyses choices such as scale cuts and bin selection. We then proceed

to describe in depth our HOD model in Section 4.5. After we do so, we are able to discuss in

Section 4.6 how we model the two observables of choice: galaxy-galaxy lensing and galaxy

clustering. Equipped with the data vector and model, in Section 4.7 we present the likelihood

analysis we follow to fit the measurements and present the results from the Marcov Chain

Monde Carlo chains in Section 4.8. We conclude in Section 4.9 by summarizing and discussing

the implications of this work.
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Throughout this study we fix the Ωm and σ8 cosmological parameters to the best-fit for

the MagLim sample from DES Y3 (Abbott et al., 2022), while we use the best-fit cosmology

from Planck 2018 (Planck Collaboration, 2020) for the rest of them: Ωm = 0.339, σ8 = 0.733,

Ωb = 0.0486, H0 = 67.37, ns = 0.9649, Ωνh
2 = 0.0006, where h is the Hubble constant in

units of 100 km/s/Mpc. Since we consider the Λ-Cold Dark Matter (ΛCDM) cosmological

model, we set w = −1 for the dark energy equation of state parameter. In addition, all

the halo masses use the definition of M200c, based on the mass enclosed by radius R200c so

that the mean density of a halo is 200 times the critical density at the redshift of the halo.

However, our results are valid for any common choice of mass definition.

4.2 Lens galaxies: The stellar-mass catalog

For our lens sample, we want to generate a catalog of galaxies that is a subset of the Y3

GOLD with estimates of redshift, stellar mass, and color. For this purpose, we utilize the

ML-based software called GalPro (Mucesh et al., 2020). Specifically, we train the ML model

on a sample of galaxies whose properties (redshift, stellar mass, color) are known – training

sample – and then apply this model to the full lens sample from the Y3 GOLD. The only cuts

we apply to the GOLD catalog are: 1) We select galaxies with i-band magnitude i < 23; 2)

We select galaxies with EXTENDED_CLASS≥2, which provides a good star-galaxy separation

criterion to ensure that almost all objects in our sample are galaxies; 3) A lower stellar-mass

limit per redshift bin so that our samples are complete. We also apply a depth mask in

i-band with i < 23 to the sample to remove parts of the footprint that might be susceptible

to bad observing conditions.

4.2.1 Constructing the training sample

A big part of the process is then to construct the training sample. We choose to train our

model on galaxies in the DES Deep Fields (DF, Hartley et al., 2022), matched to an over-
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lapping subset of galaxies in the Cosmic Evolution Survey COSMOS2020 (COSMOS, Weaver

et al., 2022). Unfortunately, there are complications in doing so due to some inconsistencies

between the two, which we will very briefly discuss here; however, we conclude that we can

use this procedure to produce a reliable training sample for our purposes. The main caveat

in treating the DES DF as our training sample is that there is a difference in its photometry

compared to COSMOS. Therefore, before we produce the training sample we have to adjust

accordingly the stellar masses.

To explain why differences in photometry can lead to strong biases in estimating stellar

mass and redshift, we first give a rough overview of the nuances of template fitting and

matching of DES DF to COSMOS.

In general, we do not have accurate SED templates for almost any galaxy in the Universe.

We only have an average SED for some sub-population at some redshift z, but even that

does not represent the average of that population at a different redshift. Furthermore, these

average SED’s are not able to handle the variance in the intrinsic galaxy SED’s that come

from, e.g., emission line strengths, the stochastic nature of the Inter-Galactic Medium (IGM)

absorption or the full variety of dust attenuation in galaxies, which can depend on location

within a given galaxy image, as well as orientation and many other things. Instead, we have

SED’s based on theoretical models, but these are almost definitely inaccurate. However, in

order to measure stellar masses, redshifts and other rest-frame physical properties, we need

to use synthetic galaxy SED’s of this type – either directly or indirectly. And to make things

worse, we also have to consider additional factors such as: inaccuracies in filter response

curves, imperfect background subtraction, systematic errors in flux zero-point computation,

and systematic biases in photometric measurements (blending, crowding, simplified light

profile prescriptions, etc), to name a few. As a result, we do not expect to be able to use

the reduced χ2 of a model fit to the photometric data as a reliable goodness of fit indicator

directly. Therefore, the redshift PDF’s are also called into question and so various tweaks
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are used by the photo-z community, some of which are fairly principled, while others are

more like tricks, such as:

• Multiply the photometric errors by some factor to compensate for the fact that the

most common photometric measurement software, Source Extractor1 (SExtractor) has

no way of knowing the extent to which the noise in the image pixels is correlated, and

so tends to underestimate the uncertainty from the background noise.

• Include a systematic a percentage of the object’s flux to the flux error in quadrature.

This is the correct thing to do if the photometric zero point has a systematic uncer-

tainty, though it is rare that one actually tries to estimate that uncertainty rigorously.

• Include a template error function to capture the variance in galaxy SED’s that is not

already represented in the template set. This includes things like the IGM absorption

and internal dust reddening mentioned before, which is typically much larger in the rest-

frame UV than in the rest-frame optical. Because the SED’s are scaled in amplitude

during fitting, the template error function is implemented as a fraction of the model

flux. This is slightly undesirable, but only really impacts high-z galaxies (z ≥ 3) and

is thus not relevant for this work.

In using DF as a training sample, we match galaxies to COSMOS and as a result have

individual galaxies each populated by a single position-matched counterpart from the latter

catalogue. So, the question now becomes, why do we have to pause to consider the photo-

metric consistency between DES DF and COSMOS? The two main reasons are following:

1. Some objects may have bad fits to their photometry due to blending, image defects,

etc, which can be either in the DES DF or COSMOS. In both cases, however, this

implies that we will have a mismatch between the training sample’s photometry and

the physical properties that it represents.

1. https://www.astromatic.net/software/sextractor/
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2. While redshift depends almost entirely on the shape of the SED (i.e. observed colours),

the stellar mass depends on both the shape and the amplitude of the SED. Roughly,

the shape of the SED encodes the redshift and mass-to-light ratio, while from the

amplitude we can infer the luminosity information. Note, however, that the luminosity

also depends on redshift, i.e. the SED shape. Moreover, while a weak or strong 4000

Å break will usually result in the same redshift (depending on whether it is suitably

represented in the SED set), the stellar mass that it implies can be quite different.

Thus, a small bias in one photometric band might bias the mass to a greater extent

than it does the redshift.

Therefore, we need to be careful in how we match the two catalogs for the purpose of this

work in order to avoid large biases in our inferences.

The optical DF and COSMOS data provide independent measurements of the same

galaxies. The near-IR (NIR) data are from UltraVISTA2 in both cases, but are different

data releases and have been handled differently for the two catalogs. Therefore, they are not

independent but also not exactly the same. The first step is to compute the χ2 goodness-of-

fit, effectively treating the COSMOS photometry as a model, and the DF as our data. Under

the assumption that both data sets are well calibrated and the errors correctly estimated, the

distribution of χ2 values should follow the analytic distribution for the appropriate number

of degrees of freedom, with the likely addition of a longer tail or some fraction of outliers

that indicate objects that have bad photometry. We could then devise a cut to remove them

and use the rest for building the training sample, after also masking out bad regions in both

catalogs.

However, after computing the χ2 between the COSMOS grizJHKs and Deep Fields

grizJHKs photometry for each galaxy, removing u because we know that the DF u−band

calibration is poor, and the χ2 for just the optical set (griz), the resulting χ2 is poor. This

2. https://ultravista.org/
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can be due to a the following reasons:

• The contribution of photon flux noise is often neglected in these catalogs because

ground-based images are background dominated in terms of uncertainty for the vast

majority of sources. This means that the flux errors for bright objects are frequently

underestimated.

• The COSMOS catalog does not report systematic zero-point uncertainties. Thus, we

have not included a possible zero-point error from the COSMOS catalog.

It is worth highlighting here that COSMOS is not a single catalog, but two catalogs with a

total of four different options for the main photometry. The two catalogues were extracted in

different ways – one is a fairly standard method, and the other a model fitting method similar

to what is used in DES. In addition, the zero-points are calibrated using a photo-z code by

fitting templates at true redshift and deriving common factors of flux difference between the

catalogue fluxes and those predicted by the SED templates used by the photo-z algorithm.

They use two photo-z codes, and apply them both to the two catalogs, resulting in two

different sets of zero-point corrections per catalogue. While fiddling with the zero-points in

this way is standard, this process shows how misleading it can be.

To address the above issue, we added a systematic flux error to the COSMOS catalog as a

percentage of object flux. We can think of this as reverse-engineering the average systematic

zero-point error in COSMOS, under the assumption that we’ve measured our uncertainties

correctly in the DF. We found that a 3% error was sufficient to produce a good χ2 distribution

for bright objects. This is a typical value in this sort of investigations, and we thus conclude

that for these bright objects the photometry seems consistent under typical assumptions of

data quality.

However, for fainter objects the χ2 distribution remained poor, even after we introduced

a parameter to allow the relative SED’s to scale in amplitude, as we discuss shortly below,

to improve the χ2 (while accounting for the loss of one degree of freedom in doing so). After
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we plotted the magnitude difference between the catalogs against magnitude, we observed

a "curved" dependence between the two, which is typical of background level of one of the

images being wrong – it impacts faint objects to a far greater degree than bright objects.

But the magnitude of the background offset implied by these plots is much larger than we

expected or what is measured in the DF.

There are various approaches to addressing this behaviour. The major hypotheses one

could test are the following:

1. There is a systematic in the DES data (e.g. over-subtracted background) that makes

the flux of a DES object smaller than it should be. The pipeline is much the same for

the Wide Survey and Deep Fields, so a systematic such as this would probably affect

both data sets.

2. The background is under-estimated and under-subtracted in the COSMOS data leading

to a universal background flux on top of which each galaxy resides. Cases like this tend

to be rarer than over-subtraction, but still exist in galaxy surveys today. In this case,

the COSMOS stellar mass is biased to high values because there is more light than

there should be. If we simply tag the Deep Fields objects with this higher stellar mass

then we propagate the bias through to the posteriors of the main survey objects.

In both cases the correct thing to do would be to fix the problem with the images and re-test

the agreement. However, that would be beyond the scope of this work. Thus, we instead

choose to account for the biases by computing a multiplicative factor that best matches the

COSMOS and DF photometry to one another, and then adjust the COSMOS stellar mass

so that it reflects the amplitude of the Deep Fields SED. A caveat in this method is that

any background problem would vary among different bands, and thus distort the SED rather

than just globally scale it. However, the most critical bands are griz in DES, and given that

they are all from the same pipeline and measurement process, any background defects are

likely to be similar between bands. We, therefore, ignore any colour dependencies.
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A different scenario, too, would be that the model fitting in the photometric measurement

process produces a magnitude-dependent bias in one or both of the catalogs. There is no

particular reason, however, why we would believe one above the other, and if it amounts to

an overall change in the SED amplitude, then the most pragmatic course of action is to aim

for internal consistency in so far as that is possible.

After all this, we are still left with the question of whether the SED shape is reasonable

enough that we can use the COSMOS masses (after scaling). Keeping in mind that we don’t

expect a "good" fit from the χ2 perspective unless we are able to account properly for all

the systematic uncertainties involved, we concluded that this is the case and we can thus

proceed with constructing our stellar-mass lens catalog. As a final note, for the purposes of

this HOD analysis, the posterior distributions in mass and redshift will be broad, and will

most likely subsume the remaining COSMOS to DES bias.

4.2.2 The ML model

After the investigations of Section 4.2.1, we can use the DF catalog, matched to COSMOS

after re-scaling, as our training sample in GalPro, keeping the default basic setting of the

algorithm as described in Mucesh et al. (2020), with the goal to apply the ML model to

the whole galaxy sample from the Y3 GOLD catalog, as mentioned in the beginning of this

section. The input quantities that GalPro accepts are luptitudes (Lupton et al., 1999), µ,

and their uncertainties σµ. Thus, starting from the griz fluxes fρ, with ρ ∈ {g, r, i, z}, and

their corresponding uncertainties σρ, from the GOLD catalog, we define the corresponding

luptitudes as:

µρ = µ0 − a sinh−1
(

fρ
2bρ

)
, (4.1)

where µ0 = m0 − 2.5 log b, a = 2.5 log e and bρ = σµ,ρ
√
a. In these definitions, e is the base

of natural logarithms, m0 = 2.5 log f0, and f0 is a normalization that we set to f0 = 1012.
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Figure 4.1: Redshift (left) and stellar-mass (right) PIT distributions for the ML model
trained to produce the DES Y3 stellar-mass sample. The quantile-quantile (Q–Q) plots
are also shown in each plot to highlight deviations from uniformity. The black-dashed and
solid blue lines represent the quantiles of the uniform and PIT distributions, respectively.
The percentage of catastrophic outliers along with the values of the Kullback–Leibler (KL)
divergence, Kolmogorov–Smirnov (KS) test, and Cramér-von Mises (CvM) metrics are also
stated to quantify uniformity of the PIT distributions. We define a catastrophic outlier to
be any galaxy with a redshift or stellar mass completely outside the support of its marginal
PDF. For more on these sort of plots see Mucesh et al. (2020).

We also transform the flux error, σρ, into errors in luptitude by:

σµ,ρ =

√
a2σ2ρ

4b2ρ + f2ρ
≈ aσρ

2bρ
. (4.2)

By training the ML model, we obtain for the four bands griz the following values of σ:

(σg, σr, σi, σz) = (30.13635719, 42.84311709, 71.74077268, 124.80833046). We note here that,

the reason for performing the above transformation is some desired properties of the lupti-

tudes, as described in Lupton et al. (1999); Mucesh et al. (2020). Namely, luptitudes behave

like magnitudes for bright photometry and like fluxes for faint photometry, with the turning

point in the behaviour determined by the softening parameter. Thus, by converting to lup-

titudes, we avoid introducing an additional selection effect by not discarding galaxies with

negative fluxes. In addition, we need to provide the corresponding g − r, r − i and i − z

lupti-colors and the corresponding errors. These are simply calculated as µρ − µν for two

bands ρ, ν ∈ {g, r, i, z} and
√

σ2µ,ρ + σ2µ,ν , respectively.
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Figure 4.2: The difference between the average predictive CDF (F̂I) and the true empirical
CDF (G̃I) of redshift (left) and stellar-mass (right) plotted at different intervals in their
respective ranges, for the ML models used to create the DES Y3 stellar-mass sample. For
more on these kinds of plots see Mucesh et al. (2020).

After the model is trained and before we run it on the GOLD catalog, we need to run

a few validation tests, based on Gneiting et al. (2007), which we summarize below and are

also discussed in Mucesh et al. (2020) in more detail. There are two validation methods that

we use in this work: a probabilistic and a marginal method.

• The probabilistic method to validating the PDF’s that GalPro produces relies on the

Probability Integral Transform (PIT), which is defined as:

PIT ≡
∫ ỹ

−∞
f(y)dy , (4.3)

where ỹ is the "true" redshift or stellar mass and f(y) is the marginal PDF. If f(y)

is probabilistically calibrated, then at the true values ỹ its Cumulative Distributions

Function (CDF) should not have a preferred values. In this case, for an ensemble of

galaxies, the PIT would follow the Uniform distribution U(0, 1). Note, however, that

although this is necessary condition for the marginal PDF to be valid, a biased distri-

bution could still produce a uniform PIT distribution; this test is thus not sufficient

and we need more tests to be performed on the marginal PDF’s. The results of this

test on our model are shown in figure 4.1. As we can see, the PIT distributions follow
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closely the uniform and we thus conclude that our model passes this test.

• The marginal calibration method is comparing the average predictive CDF, F̂I(y), with

the true empirical CDF, G̃I(y), respectively defined as:

F̂I(y) ≡
1

n

n∑
i=1

Fi(y) (4.4)

and

G̃I(y) ≡
1

n

n∑
i=1

1{ỹi ≤ y} , (4.5)

where we have defined the predictive CDF per galaxy as Fi for all n test galaxies

i = 1, 2, ..., n, and where

1{ỹi ≤ y} =


1, ỹi ≤ y

0, ỹi > y

is the indicator function. If the PDF’s are marginally calibrated, then F̂I should be

the same as G̃I . Figure 4.2 shows the results from this test for our model, where it can

be seen that the maximum deviation between F̂I and G̃I is ∼ 0.015; thus, our model

passed this test as well.

Therefore, we conclude in this section that we have successfully trained our ML model and

applied it to the GOLD subsample in this work. Hence, we then discuss how we can utilize

the products from this section to create the final lens sample.

4.2.3 The stellar-mass catalog

As we mentioned before, GalPro returns the full 2D joint distribution between redshift

and stellar mass for each galaxy in our sample. More specifically, ML produces multiple

predictions for the two properties in the z − M⋆ plane which form the aforementioned 2D

distribution. And example of this for a galaxy in the Y3 GOLD is shown in figure 4.3. The
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average point-mass estimate is also shown in that figure and it is what we use to define our

bins later below.

Figure 4.3: The 2D joint distribution of
redshift (z) and stellar-mass (M⋆) for a
single galaxy in the DES Y3 GOLD cat-
alog produced by GalPro. The 1D pro-
jected distributions are also shown on the
top and right sides. Each green point rep-
resents a prediction from GalPro, while
the gold star is the mean point-mass esti-
mate.

For this work we decided to define the bins

in redshift to be the same as in DES Y3 (e.g.

Prat et al., 2022; Abbott et al., 2022), and we

thus consider four tomographic redshift bins, as

defined in table 4.1. Per redshift bin, we then

split galaxies into bins in stellar-mass so that, if

N is the number of stellar-mass bins, the first

N − 1 contain 3 × 106 objects and the last bin

contains the number of objects left in that red-

shift bin. The number of objects per bin, as well

as the limits in stellar-mass per bin are shown in

table 4.1. In that same table, we also report the

exact number of galaxies per bin and their num-

ber density per square arcmin. From now on, we

will denote a single bin with the indices (ℓ,m),

the first of which refers to the reshift bin and the

latter to the stellar-mass bins in that ℓ. We also

show figure 4.4 as a visual illustration of our bins

overall.

Stacking galaxies within each bin, then, can give us an estimate of how they are dis-

tributed in both redshift, n(z), and stellar mass, n(M⋆). The procedure to derive these

distributions is the following: we iterate over all galaxies per z −M⋆ bin and produce their

posteriors, from which we sample randomly one point. After we have collected all samples we

bin them in order to construct n(z) and n(M⋆), or even the 2D joint distributions, p(z,M⋆)
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Figure 4.4: The bins for the stellar-mass sam-
ple from DES Y3. This is a scatter plot of
redshift and stellar-mass. The vertical dashed
lines separate the four bins in redshift, while
we represent different stellar-mass bins with
different colors. The "step-function" appear-
ance of the low end of the bins is due to the
completeness limit that we have applied to the
samples per redshift bin.

Figure 4.5: Redshift distributions, n(z),
of the lenses (solid filled; different mass
bins are plotted with different color per
redshift bin) and of the source (dashed)
galaxies.

per (ℓ,m) pair. Note that we do not use the mean point estimate per galaxy during this

procedure so that we sample the variance, i.e. the width, of the distributions appropriately.

The redshift distributions are shown in figure 4.5.

Using the same methodology as for the redshift distributions above, we can generate the

1D distributions in stellar mass for our lenses, i.e. by sampling for the PDF’s from running

GalPro. The resulting distributions, n(M⋆), are shown in figure 4.6 for all bins. Furthermore,

in figure 4.7, using bin (ℓ = 1,m = 1) as a example (all bins exhibit similar trends), a joint

2D z − M⋆ distribution p(z,M⋆). Given that we do not see strong correlations between z

and M⋆, from this point on we will be assuming independence of the two quantities, such

that p(zℓ,M⋆) ≈ nℓ(zℓ)n⋆(M⋆).
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Figure 4.6: Stellar-mass distributions,
n⋆(logM⋆), of our lenses. Each panel cor-
responds to a different redshift bin ℓ, and
in each panel all stellar-mass bins m are
shown.

Figure 4.7: Joint 2D redshift-stellar mass
distribution, p(logM⋆, z), for lens bin
(ℓ,m) = (1, 1) galaxies.

4.3 Source galaxies

We use the DES Y3 shear catalog presented in Gatti, Sheldon et al. (2020). The galaxy

shapes are estimated using the Metacalibration (Huff & Mandelbaum, 2017; Sheldon &

Huff, 2017) algorithm. The shear catalog has been thoroughly tested in Gatti, Sheldon et al.

(2020), and tests specifically tailored for tangential shear have been presented in Prat et al.

(2022). In this paper we perform additional tests on this shear catalog for tangential shear

measurement on small scales (Section 4.4.3).

Following Prat et al. (2022) we bin the source galaxies into four redshift bins, where

details of the redshift binning and calibration is described in Myles, Alarcon et al. (2020).

The redshift distributions of the sources is shown in figure 4.5, where they are plotted together

with the lens distributions. Moreover, the number of galaxies per source bin and the galaxy

number density per square arcmin are both shown in table 4.1.
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4.4 Measurements

In this section we discuss in detail how we measure the observables of interest, namely galaxy-

galaxy lensing and galaxy clustering, the covariance matrices for both, and the systematic

tests that we have performed on them in order to validate them. We then proceed to talk

about how some of these informed our decision on what data points and bins we needed

to remove due to systematics out of our control in this work. The measurements that we

choose we work with are shown, together with the best-fit model predictions, in figure 4.15 for

galaxy-galaxy lensing and in figure 4.16 for galaxy clustering. We will go back to discussing

these figures in Section 4.8 when we go over our model fits to these measurements.

4.4.1 Data vectors

Our shear estimator is the same as in Prat et al. (2022) and includes the boost-factor cor-

rection and random-point subtraction, which we discuss more below in this section. The full

estimator is then written as

γt(θ) =
1

⟨R⟩

[∑
k wrk∑
iwℓi

∑
ij wℓiwsje

LS
t,ij(θ)∑

kj wrkwsj
−
∑

kj wrkwsje
RS
t,kj(θ)∑

kj wrkwsj

]
, (4.6)

where wℓi , wrk = 1 and wsj are the weights associated with the lens galaxy i, random point

k and source galaxy j, respectively. Furthermore, the weighted average Metacalibration

response is ⟨R⟩ =
∑

j wsjRsj/
∑

j wsj , averaging over the responses Rsj of each source

galaxy j, while eLSt,ij and eRSt,kj are, respectively, the measured tangential ellipticity of the

source galaxy j around the lens galaxy i and random point k.

To measure galaxy clustering we use the Landy-Szalay (Landy & Szalay, 1993) estimator

which is written as:

w(θ) =
(D− R)2

RR
= 1 +

DD− 2DR

RR
(4.7)

where DD, DR and RR are normalized weighted counts of galaxy-galaxy, galaxy-random
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Redshift bin (z) Mass bin (logM⋆/M⊙) Ngal [×106] ngal [arcmin−2]

ℓ = 1 (0.20, 0.40) m = 1 (9.5950, 10.018) 3.00 0.218
ℓ = 1 (0.20, 0.40) m = 2 (10.018, 10.424) 3.00 0.218
ℓ = 1 (0.20, 0.40) m = 3 (10.424, 10.830) 3.00 0.218
ℓ = 1 (0.20, 0.40) m = 4 (10.830, 11.504) 1.33 0.097

ℓ = 2 (0.40, 0.55) m = 1 (10.003, 10.220) 3.00 0.218
ℓ = 2 (0.40, 0.55) m = 2 (10.220, 10.467) 3.00 0.218
ℓ = 2 (0.40, 0.55) m = 3 (10.467, 10.835) 3.00 0.218
ℓ = 2 (0.40, 0.55) m = 4 (10.835, 11.557) 1.87 0.136

ℓ = 3 (0.55, 0.70) m = 1 (10.393, 10.695) 3.00 0.218
ℓ = 3 (0.55, 0.70) m = 2 (10.695, 11.124) 3.00 0.218
ℓ = 3 (0.55, 0.70) m = 3 (11.124, 11.527) 0.53 0.039

ℓ = 4 (0.70, 0.85) m = 1 (10.581, 10.765) 3.00 0.218
ℓ = 4 (0.70, 0.85) m = 2 (10.765, 11.027) 3.00 0.218
ℓ = 4 (0.70, 0.85) m = 3 (11.027, 11.634) 1.46 0.106

s = 1 (0.20, 0.43) 24.94 1.476
s = 2 (0.43, 0.63) 25.28 1.479
s = 3 (0.63, 0.90) 24.89 1.484
s = 4 (0.90, 1.30) 25.09 1.461

Table 4.1: Lens (indexed by (ℓ,m)) and source (indexed by s) galaxy bin information. The
first column corresponds to the redshift bins, while the second one corresponds to the stellar-
mass bins of our lens galaxies within each redshift bin. The third and fourth columns show,
respectively, the number of galaxies in each of the bins and their number density in units of
gal/arcmin2.

point and random point-random point pairs within the angular bin θ.

For both γt(θ) and w(θ) we use Nθ = 30 angular bins in the range of [0.25, 250] arcmin.

Each galaxy i in our sample is weighted by wg,i in order to correct for large-scale fluctuations

due to observing conditions. We train a Neural Network in order to produce our weights

and the procedure we follow in delineated in Section 4.4.3. Our catalog of random points

contains 30 times the number of galaxies in our lens galaxy catalog. In total we have 4

redshift bins for our lens galaxies and the number of stellar-mass bins inside each of these

redshift bins is [4, 4, 3, 3], respectively, with the details being presented in Table 4.1.
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4.4.2 Covariance matrix

In this work we use the Jackknife (JK) covariance matrix, which we calculate as:

Cij ≡ C(γt(θi), γt(θj)) =
NJK − 1

NJK

NJK∑
k=1

∆γki ∆γkj , (4.8)

where γkt (θi) is the shear in the i’th angular bin for the k’th JK resampling, ⟨γt(θi)⟩k is the

average over all NJK realizations of the shear for the i’th angular bin and we have defined

∆γki ≡ γkt (θi)−⟨γt(θi)⟩k. We use NJK = 200 JK patches defined via the kmeans3 algorithm.

NJK is chosen so that the individual JK regions are at least as large as the maximum angular

scale we need for our measurements.

When inverting the covariance matrix in the likelihood analysis, a correction factor is

needed to account for the bias introduced from the noisy covariance (Friedrich et al., 2016).

This correction is often referred to as the Hartlap (Hartlap et al., 2007) correction. When

inverting the JK covariance matrix C we multiply it by a factor H to get the unbiased

covariance (Kaufman, 1967)

C−1
H = HC−1 =

(
NJK −Nθ − 2

NJK − 1

)
C−1 , (4.9)

where the number of angular bins we use is Nθ = 30, since we analyze each lens-source

redshift bin combination independently. As shown in Hartlap et al. (2007), for Nθ/NJK < 0.8

the correction produces an unbiased estimate of the inverse covariance matrix; in our case

we find Nθ/NJK = 0.2. However, it is also shown in Hartlap et al. (2007) that as this factor

increases, Nθ/NJK → 0.8, the Bayesian confidence intervals can erroneously grow by up

to 30%. Furthermore, it was shown that in order for the confidence intervals to not grow

more than 5% the factor Nθ/NJK ≲ 0.12. For our results this means that, although our

3. https://github.com/esheldon/kmeans_radec
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covariance matrix gets unbiased, our error bars increase and our constraints can thus look

less significant than they actually are.

We compare this covariance matrix with a theoretical covariance matrix calculated using

the CosmoCov (Krause & Eifler, 2017; Fang et al., 2020) software. Figures 4.8 and 4.9 show the

comparison between the Jackknife and CosmoCov error bars (the square root of the diagonal

of the covariance matrix) in the case of lens-source bin combination bin (ℓ,m, s) = (2, 1, 4),

for γt and w respectively; we use that bin for demonstration here but we see similar trends

in all bins. In figure 4.8 we also show the line ∝ 1/θ which shows the expected behavior

of the covariance if it were shape noise dominated. As we see in that plot, γt is dominated

by shape noise over most scales. This also implies that the cross-covariance between γt and

w in a single bin and across different redshift and stellar-mass bins is weak. Therefore, we

choose to ignore the cross-covariance in this work.

The agreement between Jackknife and theory is not perfect. However, this is not very

surprising given the differences in the HOD theory used by CosmoCov compared to this study,

as the one implemented in the former is based on Zheng et al. (2005); Zehavi et al. (2011).

Nevertheless, the differences we see in the covariance are not expected to have a significant

effect on our data fits and we proceed to use the Jackknife covariace matrix in Section 4.7

while performing the likelihood analysis.

4.4.3 Systematics tests

The tests we have performed on the data and measurements for this work are summarized

below. The relevant plots are shown in figures 4.10 and 4.11 and the results are discussed in

what follows:

1. Cross component: The tangential shear, γt, is one of the two components when we

decompose a spin-2 shear field. The other component is γ×, which is defined by

the projection of the field onto a coordinate system which is rotated by 45◦ relative

124



Figure 4.8: Square root of the diago-
nal of the Jackknife covariance matrix
that we use in this work (dark blue solid
line) and corresponding theory estimation
from CosmoCov (liht blue solid line). The
straight line (dashed black) ∝ 1/θ shows
the trend we would expect if the covari-
ance was shape noise dominated. For this
plot we used the lens-source bin combina-
tion (ℓ,m, s) = (2, 1, 4) for demonstration
purposes.

Figure 4.9: Similar plot to figure 4.8 on
the left but for w for lens bin (ℓ,m) =
(2, 1). The solid dark blue shows the size
of the Jackknife error bars we use in this
work and the solid light blue line is the
prediction from CosmoCov.
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to the tangential frame. For isotropically oriented lenses, the average of γ× due to

gravitational lensing alone should be zero. It is thus a useful test to measure this

component in the data and make sure that it is consistent with zero for all angular

scales. To be able to decide whether this is the case, we report the total χ2 calculated

for γ× when compared with the null signal. This test on our shear measurements is

presented in figure 4.10. The measurements of γ× at large scales are consistent with

zero. At smaller scales, below a few arcmin, γ× fluctuates around zero, roughly within

the error bars. Considering that at small scales the level of noise increases, we do not

find the behavior of γ× worrisome. When the reduced χ2 is examined per bin we see

that some bins have a somewhat large value, but the χ2 distribution is still largely

consistent with the theoretical expectation.

2. Random points: The mean tangential shear around random points tests the impor-

tance of geometrical and mask effects in the signal. Although our estimator of galaxy-

galaxy lensing includes the subtraction of tangential shear measurement around ran-

dom points, it is useful to check that this correction is small, especially for the bins

with the highest signal. For this work we use a number of random points that is 30

times the number of lenses in each bin. We note here, however, that we have tested

different numbers of random points, both higher and lower, and we have verified that

this number is sufficiently large for our purposes. See also Prat et al. (2022) for a

discussion on random-point subtraction and its effects on the measured shear. The

effect from including the random-point subtraction is shown on figure 4.10, where we

can see that it is a small effect, and within the error bars in all bins, as also indicated

by the reduced χ2 values we obtain.

3. LSS weights: Photometric surveys are subject to galaxy density variations throughout

the survey footprint due to time-dependent observing conditions. This variation in

the density of the lenses must be accounted for by applying the LSS-weights, which
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removes this dependence on observing conditions, such as exposure time and air-mass.

In galaxy-galaxy lensing, since it is a cross-correlation probe, the impact of observing

conditions is small compared to e.g. galaxy clustering. Therefore, in this test we

compare the measurements with and without the application of the LSS-weighting

scheme and report the difference between the two. We discuss in detail how we generate

the weights in Section 4.4.4. This is a test performed both on γt and w, and the results

from performing the test are shown, respectively for the two observables, in figures 4.10

and 4.11. Comparing the measured shear with and without applying the LSS weights

leads to no practically no differences, as also indicated by the very small reduced χ2

of each panel. For clustering, the effects are larger, especially in small scales and we

thus conclude that it is far more important to correct for this effect in w, as we do for

both in our fiducial measurements.

4. Boost factors: Galaxies are clustered, and the number of sources around a lens can

be larger than what we would expect from a uniform distribution. This is usually

quantified by the boost factor (Sheldon et al., 2004), B(θ), estimator which is the

excess in the number of sources around a lens with respect to randoms. This is again a

test only relevant for γt and the results are plotted in figure 4.10. As can be seen from

the plots, the contribution from this effect can be large at small scales, especially when

the bins are more overlapped in redshift. In our analysis we take the boost factors into

account by correcting for it before carrying out the model fit. For a further discussion

on how boost factors help us with bin selection and scale cuts see Section 4.4.5.

4.4.4 Neural-network weights

In this section we discuss how we produce the LSS weights, which are heavily mentioned in

Section 4.4.3, in order to correct for systematics on large angular scales in our measurements

of galaxy clustering and galaxy-galaxy lensing. The methodology we implement in this work
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Figure 4.10: Systematics tests for the γt measurements, as discussed in Section 4.4.3, for
the stellar-mass sample. Boosts: Comparison of γt with and without applying the boost
factor correction; Cross component: The cross-component of shear; Random points: Effect
from applying the random-point subtraction; No LSS weights: Effect from not applying the
LSS weights to correct for observing conditions; Gray area: The error bars on the shear
measurement. In each panel we also list the χ2 (the order of which follows the order in the
legend) between each test and the null, using the covariance of our γt measurements. The
number of points for each of the lines is 30.
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Figure 4.11: Systematics tests for w, as discussed in Section 4.4.3, for the stellar-mass
sample. No LSS weights: Effect from not applying the LSS weights to correct for observing
conditions; Gray area: The error bars on the shear measurement. In each panel we also list
the χ2 between each test and the null, using the covariance of our w measurements. The
number of points for each of the lines is 30.
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is very similar to what is done in Sánchez et al. (2022b), so we refer the reader to that paper

for a more extended discussion on what follows. Given that our galaxy sample is generic,

due to the faint nature of a large fraction the galaxies in it, it is expected that their selection

function will fluctuate within the survey footprint due to observing conditions. These fluc-

tuations induce correlations between the galaxy density in the footprint and maps of survey

properties. These fluctuations therefore produce signal that mimics galaxy clustering and

contaminates our measurements; it is thus crucial to correct for this effect. We do so by

utilizing a Neural Network (NN) which is trained so that it models the correlations between

galaxy density and the Survey Property (SP) maps. The SP maps, in all four griz bands,

we utilize are the following:

• Depth: Mean survey depth, computed as the mean magnitude for which galaxies are

detected at S/N = 10.

• Sky Brightness: Estimated sky brightness, or more precisely, the standard de-

viation of sky pixels due to shot noise and read noise, measured in units of elec-

trons/second/pixel.

• Exposure time: Total exposure time at a given point in the survey footprint, mea-

sured in seconds.

• Airmass: Mean airmass, computed as the optical path length for light from a celestial

object through Earth’s atmosphere (in the secant approximation), relative to that at

the zenith for the altitude of the telescope site.

• Seeing: Mean seeing, measured in arcseconds, computed as the full width at half

maximum of the flux profile.

• FWHM: Full width at half maximum of seeing.
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• Galactic extinction: We use the SFD dust extinction map from Schlegel et al. (1998),

which measures the E(B − V ) reddening, in magnitudes.

• Stellar density: We use a map of stellar density, in deg−2, using stellar sources from

Gaia EDR3 (Gaia Collaboration, 2021).

Therefore, we account for in total 26 SP maps per lens redshift-stellar mass bin as the

features and we train our NN to model the correlations between those maps and galaxy

count maps, which play the role of the labels. The NN is able to model nonlinear relations

between the SP maps and the galaxy count maps. We note here that in order to avoid the

NN learning about the clustering of galaxies in the count maps, each pixel in the latter maps

have a label of either 0 (empty pixel) of 1 (occupied by ≥ 1 galaxy pixel). The loss function

for the network is the binary cross-entropy between the predicted pixel occupancy and the

occupancy of the training set.

The architecture of the network is based on our guess that the selection function scales

primarily as some power law combination of the SP’s. To this end, the input SP values

are all logarithmically scaled (except those, such as depth, which are already logarithmic

quantities), and the output of the network is exponentiated to form the selection probability.

The network output is a sum of two branches: the first branch is a simple linear combination

of the 26 scaled SP’s, since we expect this to capture most of the functional variation. The

second branch is intended to capture departures from a simple power law: it takes the input

layer of 22 dimensions through 3 hidden layers of 64, 32 and 4 fully connected neurons,

respectively, and a single neuron on the output layer, each with relu activation. The output

of the network, for each tomographic bin, consists of a single value for each Healpixel within

our mask, which will be used to weigh the galaxies accordingly.

To prevent the network from overfitting, it is constructed with k-fold cross-validation,

which works in the following way: The NSIDE = 4096 maps are re-binned into a coarser grid

of NSIDE = 16 (with a resolution of about 4 degrees). We then randomly divide these cells
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Figure 4.12: Correlations between the i-band depth survey property and observed galaxy
density relative to the mean density over the full footprint, before (red) and after (blue) the
correction using the Neural-Network weights from Section 4.4.4. We show this relationship
for all (ℓ,m) lens bins as noted in each panel. The gray shaded region in every panel
corresponds to 1% deviation from unity.
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into k equal-area groups. To derive the weights for a given fold k, we train the NN on the

other folds, using fold k as a validation sample (the training halts when the training metric

no longer improves on the validation set). This cross-validation scheme will only work to

prevent overfitting on scales below the resolution defined by NSIDE split, in this case around

4 degrees. As also mentioned in Sánchez et al. (2022b), testing the corrected and uncorrected

galaxy clustering on log-normal mock catalogs demonstrated no overfitting from this method

at scales below 1 degree, and an impact of around 5% overfitting at scales of 2 degrees. We

thus keep the galaxy clustering analysis in this work to angular scales below one degree, to

be conservative.

We present the correction from applying the NN weights to the correlation between the

galaxy number density ngal, scaled to the average density over the full footprint, ⟨ngal⟩, and

the i-band depth SP in figure 4.12. We can see how the NN weights are able to capture the

non-linear relation between ngal/⟨ngal⟩ and that SP and produce weights that correct for it:

The input points deviate from unity significantly, especially in some bins, but the corrected

ones are within the 1% error band. Due to the large number of SP maps and lens bins that

we used we are not showing all of the plots here but rather note that they all exhibit a similar

behavior. This validates the weights and we thus conclude that we can safely use them in

this work.

4.4.5 Bin selection and scale cuts

In this section we discuss the procedure we follow in order to determine two things in our

analysis: 1) What are the bins we can most reliably model and use? 2) What scales do we

need to remove from the data vectors due to systematics we cannot control in other ways?

Overall, we base our conclusions on two aspects of the data processing when measuring γt

and w. These are the boost factors (for lensing) and the LSS weights (for both, but mostly

for clustering). We address the two questions above for both lensing and clustering below.
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As far as the boost factors are concerned, large values suggest potential failures in the

modeling part, especially due to IA and magnification. We, therefore, choose to work only

with those bins that have small boost factors, by setting a maximum threshold of ∼ 10%

deviation from unity. This results in lens and source redshift bin combinations that are

largely separated in redshift. For this work, therefore, we select redshift bin combinations in

γt for the following pairs: (ℓ, s) = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (4, 4)}, which is based on

the results from figure 4.10. In those bins we further remove the small-scale data points with

boost factor values above the threshold. In addition, since we have excluded bins where IA

is expected to have a significant contribution we can ignore this term in our fiducial model

fits to the data. For all (ℓ, s) pairs we consider all stellar-mass bins, as listed in table 4.1.

On the galaxy clustering part, we do not remove bins, but we determine the scale cuts

based on the LSS weights that are discussed in Section 4.4.4. The effects from correcting

for the LSS weights in w are shown in figure 4.11. Due to how our method of producing the

weights works, we need to remove large angular scales in our data fits above the size of about

one degree, and thus angular scales of θ ≳ 60 arcmin in w(θ) are removed. See Section 4.4.4

for the details on why these scales are excluded.

4.5 The Halo Occupation Distribution model

In this section we discuss how we model the Halo Occupation Distribution (HOD) for this

work. This model is based on Zacharegkas et al. (2022) and it is modified so that the

stellar-mass information of the galaxies is accounted for. This is done by incorporating a

Stellar-to-Halo-mass relation (SHMR) into the HOD framework. Below we introduce the

SHMR we adopt in this study and we then proceed to describe our full HOD model. For an

extensive review on the galaxy-halo connection and stellar-to-halo-mass relations commonly

used see Wechsler & Tinker (2018).
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4.5.1 The Stellar-to-Halo-Mass relation

Henceforth, we will be using the notation fSHMR(Mh) ≡ M⋆(Mh) for the SHMR. There are

a lot of variants of the this relation used in the literature and, for the most part, they are in

good agreement. However, especially at large masses, there can exist significant differences.

At redshift z, we choose to parameterize the SHMR in this work following Moster et al.

(2013) as:

fSHMR(Mh) ≡ M⋆(Mh) = 2AMh

[(
Mh

M1

)−β

+

(
Mh

M1

)γ
]−1

, (4.10)

where the overall normalization is defined by A, M1 is a characteristic mass scale where

the SHMR shows a break from one power-law to another of different index, and the two

power-law parameters β and γ control the low- and high-mass ends of the ratio M⋆/Mh. We

have therefore four parameters in our SHMR. However, by adding a redshift dependence to

each of them, we end up with eight parameters to tune:

A = A0 + A1(1− a) , (4.11)

logM1 = M1,0 +M1,1(1− a) , (4.12)

β = β0 + β1(1− a) , (4.13)

γ = γ0 + γ1(1− a) , (4.14)

where a(z) = 1/(z + 1). Namely, the parameter vector from the SHMR alone is

θSHMR = {A0, A1,M1,0,M1,1, β0, β1, γ0, γ1} .

As we discuss later in Section 4.7, depending on the data vectors we want to fit our model

to, that many parameters can introduce too much freedom which results in issues with the

fitting process. Mostly, we are interested in constraining the "0" part of the SHMR, usually

fixing the redshift-dependent part to the best-fit values from the literature (Moster et al.,
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2010).

4.5.2 The Halo Occupation Distribution conditioned on stellar-mass

For a galaxy sample selected by a stellar-mass threshold M t
⋆, i.e. M⋆ ≥ M t

⋆, the central

HOD at redshift z is similar to the most basic form of HOD first presented in Zheng et al.

(2007):

⟨Nc(Mh|M t
⋆)⟩ =

fcen
2

[
1 + erf

(
logMh − log f−1

SHMR(M
t
⋆)

σlogMh

)]
, (4.15)

where the parameter σlogM⋆
describes the scatter in stellar mass for a given halo mass. The

parameters that characterize the centrals are then: (1) fcen which represents the fraction

of central galaxies that made it into the sample after we apply the various cuts; (2) the

parameter σlogMh
which quantifies the scatter in logMh and is related to the scatter in

stellar mass via the relation σlogM⋆
/σMh

= d logM⋆/d logMh; (3) the parameters that

enter the SHMR as mentioned in Section 4.5.1. As a useful note, if we map the threshold

stellar mass to the more familiar HOD parameter Mmin (see the parametrization in, e.g.,

Zacharegkas et al., 2022) via the relation Mmin = f−1
SHMR(M

t
⋆), we can immediately see how

the two parametrizations relate to each other in a direct way.

We are then interested in converting the above HOD to a central occupation conditioned

on a range of stellar masses [M⋆,1,M⋆,2]. The simplest way of doing this is to consider

the two limits as two thresholds, i.e. M⋆,1 ≡ M t1
⋆ and M⋆,2 ≡ M t2

⋆ , and subtract the two

M⋆-thresholded HOD’s, which yields:

⟨Nc(Mh)⟩ = ⟨Nc(Mh|M t1
⋆ )⟩ − ⟨Nc(Mh|M t2

⋆ )⟩ . (4.16)

The above approach has the advantage of being straightforward and easy to implement

in practice, and can work well in fitting the data (see e.g. Leauthaud et al., 2011, and

section 4.7). However, for a more accurate description of the data, especially when the
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measurements are as precise as in this work, we may need to use a HOD model that accounts

for the exact distribution that the galaxies follow in stellar mass. This is the subject of

Section 4.5.3.

For the satellite galaxies, a similar approach can be used when the same range of stellar

masses is considered. We can thus write:

⟨Ns(Mh)⟩ = ⟨Ns(Mh|M t1
⋆ )⟩ − ⟨Ns(Mh|M t2

⋆ )⟩ , (4.17)

where we model the satellite occupation for a M⋆-thresholded sample as a re-scaled version

of the central HOD multiplied by a power-law:

⟨Ns(Mh|M t
⋆)⟩ =

fsat
fcen

⟨Nc(Mh|M t
⋆)⟩
(

Mh

Msat

)αsat

, (4.18)

where fsat, Msat and αsat are free parameters. Specifically, fsat is the equivalent of fcen in

the central HOD of equation (4.15), αsat controls the power-law behaviour of the satellite

occupation at large halo masses, and the stellar-mass dependence enters implicitly into the

satellite modeling via the parameter Msat (see, e.g. Leauthaud et al., 2011; Zu & Mandel-

baum, 2015), as:

Msat

1012 M⊙
= Bsat

(
f−1
SHMR(M

t
⋆)

1012 M⊙

)βsat

= Bsat

(
Mmin

1012 M⊙

)βsat
, (4.19)

where the new free parameters Bsat and βsat have been introduced. It is worth explicitly

noting here that the set of parameters (Bsat, βsat) modifies the SHMR of the satellite galaxies

from that of the centrals, i.e. allowing for the satellites to follow a different behaviour.

This is important as we do not expect the satellites and centrals to both follow the same

SHMR, but it is reasonable to assume that the overall behaviour of them is similar, i.e.

a similar functional form might be utilized for both. The above also demonstrates that

137



there is a connection between the Mmin parameter and the satellite normalization Msat;

this comes from studies (see, e.g. Kravtsov et al., 2004; Zheng et al., 2007; Tinker et al.,

2007; Zheng et al., 2009; Abbas et al., 2010; Zehavi et al., 2011) that find a self-similarity

in the occupation numbers, so that Mmin/Msat ∼ constant for luminosity-defined samples,

but by introducing Bsat and αsat we give the model more flexibility. Note that, Zheng et al.

(2007) find Msat/Mmin ∼ 16− 18. As a further step in the satellite modeling, following e.g.

Kravtsov et al. (2004); Conroy et al. (2006); Leauthaud et al. (2011), it might be better to

introduce an exponential cutoff to the high-mass end of the satellites, where ⟨Nc⟩ ∼ 1 and

they follow a power-law behavior, given that a pure power-law fit might yield artificially

steep slopes αsat (Conroy et al., 2006); we thus write:

⟨Ns(Mh|M t
⋆)⟩ =

fsat
fcen

⟨Nc(Mh|M t
⋆)⟩
(

Mh

Msat

)αsat

exp

(
−Mcut

Mh

)
, (4.20)

where the Mcut parameter is again related to Mmin in a similar manner as Msat does, and

thus:
Mcut

1012 M⊙
= Bcut

(
f−1
SHMR(M

t
⋆)

1012 M⊙

)βcut

= Bcut

(
Mmin

1012 M⊙

)βcut
, (4.21)

with the two new parameters Bcut and βcut.

The total HOD prediction in the thresholded case is then given by:

⟨N(Mh|M t
⋆)⟩ =⟨Nc(Mh|M t

⋆)⟩+ ⟨Ns(Mh|M t
⋆)⟩ . (4.22)

The above HOD is only exactly correct when a top-hat, i.e. uniform, distribution of stel-

lar masses is assumed. The full expressions that take into account the exact stellar-mass

distributions are described in Section 4.5.3 below.
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4.5.3 HOD given joint redshift-stellar mass distribution

In this section we derive the theory of our new HOD model from simple principles and basic

assumptions. For more, e.g. also Leauthaud et al. (2011); Zu & Mandelbaum (2015) where

a similar framework is developed. The goal is to map the stellar-mass information to the

dark matter content of a halo, given its mass. Moreover, we would like to incorporate into

this model the distribution p(M⋆, zℓ) which is the probability density function (PDF) to find

a galaxy of mass M⋆ at redshift zℓ. The normalization of p(M⋆, zℓ) is such that:

∫ M⋆,2

M⋆,1

dM⋆

∫ zℓ,2

zℓ,1

dzℓ p(M⋆, z) = 1, (4.23)

given a stellar mass range [M⋆,1,M⋆,2] and a redshift range [zℓ,1, zℓ,2].

We start from considering the probability p(Mh,M⋆, z) that a galaxy of stellar mass M⋆

exists in a halo of mass Mh at redshift z, which is normalized to unity:

∫ ∫ ∫
dMhdM⋆dz p(Mh,M⋆, z) = 1 . (4.24)

The goal would then be: 1) to relate this to the HOD ⟨N(Mh)⟩ of the previous Section 4.5.2,

and 2) to model this PDF so that we can obtain a parametrized theory prediction. For the

remainder of this section we assume that the HOD does not evolve with redshift within the

interval [zℓ,1, zℓ,2], and account only for the correlation between stellar mass and redshift.

We can use some very basic arguments to do so, starting from computing the probability

to find a galaxy in a halo of some mass. Given the HOD notation we have used so far, we
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can write: prob. to find gal. of any M⋆

in halo of mass Mh

 =

 num. den. of gal. given Mh

total num. den. of galaxies


=

⟨N(Mh)⟩ × (dn/dMh)

n̄g
, (4.25)

where dn/dMh is the Halo Mass Function (HMF) and n̄g is the anerage number density of

galaxies. But also, the same probability can be expressed in terms of p(Mh,M⋆) as:

 prob. to find gal. of any M⋆

in halo of mass Mh

 =

∫ zℓ,2

zℓ,1

∫
dM⋆dzℓ p(Mh,M⋆)× n⋆(logM⋆|zℓ) , (4.26)

where we take into account the stellar-mass distribution of a galaxy at redshift zℓ by multiply-

ing by the conditional probability function n⋆(logM⋆|zℓ) = p(logM⋆, zℓ)/nℓ(zℓ), with nℓ(zℓ)

being the redshift distribution and where we have defined n⋆(logM⋆) ≡ [M⋆/ log(e)]n⋆(M⋆).

Then, p(logM⋆, z) = [M⋆/ log(e)]p(M⋆, z). Therefore, combining equations (4.25) and (4.26)

we have:

⟨N(Mh)⟩ = n̄g

(
dn

dMh

)−1 ∫
dM⋆ p(Mh,M⋆)n⋆(logM⋆|zℓ) . (4.27)

What is missing in equation (4.27) is a model for p(Mh,M⋆). We can, again, use basic
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arguments as above to model this PDF. Specifically, by definition, it is:

p(Mh,M⋆) :=

 prob. to find gal. of M⋆

in halo of mass Mh


=

 num. den. of gal. in δM⋆ given Mh

total num. den. of galaxies

× p(Mh)

=
(δ⟨Ñ(M⋆|Mh)⟩/δM⋆)× (dn/dMh)

n̄g

=
(δ⟨Ñ(M⋆|Mh)⟩/δ logM⋆)× (dn/dMh)

ln(10)M⋆n̄g

≡ ⟨N(M⋆|Mh)⟩
ln(10)M⋆n̄g

(
dn

dMh

)
. (4.28)

In the above, we defined δ⟨Ñ(M⋆|Mh)⟩/δM⋆ to be the number of galaxies, δ⟨Ñ(M⋆|Mh)⟩,

that have stellar mass in an infinitesimally small range of δM⋆ and exist in a halo of mass Mh.

We then rewrote it in terms of logarithmic stellar-mass bins, i.e. in δ logM⋆ in order to con-

vert our notations to the "usual" HOD one of δ⟨Ñ(M⋆|Mh)⟩/δ logM⋆ ≡ ⟨N(M⋆|Mh)⟩. The

latter is directly parametrized, e.g. similarly to the M⋆-thresholded HOD of Section 4.5.2.

But before we discuss that, this is the final equation for our HOD:

⟨N(Mh)⟩ =
∫ M⋆,2

M⋆,1

d logM⋆ ⟨N(M⋆|Mh)⟩n⋆(logM⋆|z)

=

∫ M⋆,2

M⋆,1

d logM⋆ ⟨N(M⋆|Mh)⟩
p(logM⋆, z)

nℓ(zℓ)
, (4.29)

after plugging equation (4.28) into (4.27). In a redshift bin zℓ ∈ [zℓ,1, zℓ,2] we can also
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calculate the average HOD as:

⟨N̄(Mh)⟩ =
∫ zℓ,2

zℓ,1

dzℓ nℓ(zℓ)⟨N(Mh)⟩

=

∫ zℓ,2

zℓ,1

∫ M⋆,2

M⋆,1

dzℓd logM⋆ ⟨N(M⋆|Mh)⟩p(logM⋆, z) . (4.30)

Notice here how, if we assume a top-hat distribution U(M⋆,1,M⋆,2) in stellar-mass, and

if p(logM⋆, zℓ) = [M⋆/ log(e)]nℓ(zℓ)/(logM⋆,2 − logM⋆,1), equation (4.29) reduces to the

tophat HOD that we described in Section 4.5.2.

4.5.4 Model for ⟨N(M⋆|Mh)⟩

To complete the modeling of the galaxy occupation statistics we developed above in this

section, we need to model ⟨N(M⋆|Mh)⟩ which is needed in equation (4.29). We do this

by separately modeling the central and satellite occupations, similarly to Zacharegkas et al.

(2022).

For the central occupation it is straightforward to do this, as in Zacharegkas et al. (2022).

Specifially, we consider a log-normal distribution in logM⋆ with mean provided by the SHMR

(see Section 4.5.1) as fSHMR(Mh) and a scatter around the mean denoted by σlogM⋆
. We

then write

⟨Nc(M⋆|Mh)⟩ =
fcen√

πσlogM⋆

exp

−( logM⋆ − log fSHMR(Mh)

σlogM⋆

)2
 , (4.31)

and thus the final model prediction for the expected number of central galaxies is

⟨Nc(Mh)⟩ =
∫ M t2

⋆

M t1
⋆

d logM⋆ ⟨Nc(M⋆|Mh)⟩
p(logM⋆, z)

nℓ(zℓ)
. (4.32)

For the satellites galaxies we have to follow a different approach. Instead of parametrizing
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⟨Ns(M⋆|Mh)⟩ directly, we model it as the derivative of the thresholded occupation distribu-

tion ⟨Ns(Mh|M⋆)⟩, which we have already modeled as equation (4.20) in Section 4.5.2, with

respect to logM⋆. Therefore, we have:

⟨Ns(M⋆|Mh)⟩ =
d⟨Ns(Mh|M̃⋆)⟩

d log M̃⋆

∣∣∣∣∣
M̃⋆=M⋆

. (4.33)

Moreover, averaging over the stellar-mass distribution, the satellite occupations yields:

⟨Ns(Mh)⟩ =
∫ M⋆,2

M⋆,1

d logM⋆
p(logM⋆, z)

nℓ(zℓ)

(
d⟨Ns(Mh|M̃⋆)⟩

d log M̃⋆

)∣∣∣∣∣
M̃⋆=M⋆

. (4.34)

Therefore, the total HOD prediction, accounting for the full stellar-mass distribution of

the galaxies is provided via:

⟨N(Mh)⟩ = ⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩ . (4.35)

In figure 4.13 we demonstrate how the stellar-mass HOD looks in two cases: using the

tophat model, from equation (4.22), and when we take into accout the full 1D stellar-mass

distribution of lens galaxies in a single bin, calculated from equation (4.35) and where a n⋆

distribution from figure 4.6 was used, as mentioned in the caption of that figure. The tophat

model with M⋆ ∈ [M t1
⋆ ,M t2

⋆ ] is the difference of the two thresholded HOD’s from that range.

The model prediction that uses the full n⋆ distribution is similar to the tophat case with

two noticeable differences: 1) the central HOD is more spread out in the case where the full

distribution is used, as the galaxy stellar masses are distributed over a wider range than

the thresholds in the tophat model’s case; 2) a small offset in the amplitude of the satellite

HOD at large halo masses, since more massive halos lie within the 1D full distribution with

logM⋆ > logM t2
⋆ compared to the tophat HOD. Given these differences, in Section 4.6 where

we utilize the HOD to model our observables, we test and compare both cases in the process
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Figure 4.13: (Left) The stellar-mass HOD model prediction using the tophat model (dark
blue), and the two thresholded HOD’s (solid and dashed green) that produce it with the
two thresholds shown in the legend. The HOD parameters we used to produce this plot are:
σlogM⋆

= 0.3, αsat = 1, Bsat = 25, βsat = 1, fcen = 1 = fsat; the SHMR parameters are:
A1,0 = 0.0351, A1,1 = −0.0247, M1,0 = 11.59, M1,1 = 1.195, β1,0 = 1.376, β1,1 = −0.826,
γ1,0 = 0.608, γ1,1 = −0.329. (Right) The equivalent HOD prediction using the full 1D
stellar-mass distribution (dashed blue) for lens bin (ℓ,m) = (1, 1) from figure 4.6, compared
with the tophat HOD from the left plot (solid dark blue). The central (solid green) and
satellite (solid red) components of the tophat HOD are also shown for demostration of how
they make up the total HOD prediction.

of determining the fiducial model we will be using for the main analysis in Section 4.7.

4.5.5 Variations of the HOD model

The number of ways one can modify a HOD model is only limited by imagination. In

this above discussion, we have defined our HOD model so that the satellite occupation is

dependent on the central one. The main purpose of this is to capture the cutoff on small

halo mass values; if we had simply assumed a power-law form for ⟨Ns(Mh|M⋆)⟩ we would

lose this cut-off shape and the the model would produce wrong descriptions of the data.

However, we have allowed for some further freedom for the satellite term by introducing the

fsat parameter that lets the amplitude of ⟨Ns⟩ to vary independently from ⟨Nc⟩. If we want
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to further allow the cutoff in ⟨Ns⟩ on low masses to be different from that in ⟨Nc⟩ we could

follow various approaches. For example, we could enforce a cut-off below a mass-scale using

a step function, e.g. multiplying by the Heavyside function, or, for a more smooth cut-off

behavior, we could multiply by the sigmoid function. This would completely decouple the

HOD’s, but also introduce 4− 5 new parameters. Since there is already a lot of freedom in

our HOD parametrization we would like to avoid that. We can, however, achieve the same

behavior by adding just one additional parameter that would shift the cut-off mass in ⟨Ns⟩.

Specifically, if we instead of ⟨Nc(Mh|M⋆)⟩ we use ⟨Nc(Mh|M⋆ −∆M t
⋆)⟩ in the thresholded

satellite HOD in equation (4.20), where we have introduce the mass parameter ∆M t
⋆ that

shifts the cutoff we have further decoupled the two HOD’s in a much simpler way.

Whether or not the above modification is necessary is unclear and it depends on what the

data prefers. One might assume that it is reasonable to not couple the central and satellite

HOD’s in order to allow the more freedom for the satellites, but in practice it is not easy to

clearly determine which model is better able to fit the data.

Moreover, when we fit the data to constrain the galaxy-halo connection, we need all the

constraining power we can have. Thus, we usually jointly fit multiple bins in stellar-mass

and/or redshift. In such cases, we might assign a single set of HOD parameters to the joint

fit. However, this might not be optimal since the HOD parameters could have a (either stellar

or halo) mass and/or reshift dependence which would make each lens bin in our sample to

constrain them differently. The type of dependence on, say halo mass, is not well understood,

but usually a sigmoid-like functional may be assumed. A detailed study of this is left for

future study, and in this work we assume that the HOD parameters remain constant within

a redshift bin.
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4.6 Modeling the observables

4.6.1 Galaxy-galaxy lensing

Equipped with the new HOD model, the main goal in this section is to compute the projected

2D lensing power spectrum, averaged over the z −M⋆ PDF, in order to transform into real

space for the shear estimate. For a single lens-source redshift pair (zℓ, zs) and for a stellar

mass value M⋆ this power spectrum is computed, under the Limber approximation, by:

Cgm(ℓ|zℓ, zs,M⋆) =
ρmΣ−1

c (zℓ, zs)

χ2(zℓ)
Pgm

(
ℓ+ 1/2

χ(zℓ)
, zℓ

∣∣∣∣M⋆

)
, (4.36)

where ρm is the average mass density of the Universe, and we define the critical surface

density as

Σc(zℓ, zs) =
c2

4πG

a(zℓ)χ(zs)

χ(zℓ)χ(zℓ, zs)
, (4.37)

with c and G being the speed of light and Newton’s gravitational constant, and χ(z1, z2) is

the comoving distance between redshifts z1 and z2. We then calculate the average spectrum

in the following way:

Cgm(ℓ) =

∫ zs,2

zs,1

dzs ns(zs)

∫ zℓ,2

zℓ,1

dzℓ

∫ M⋆,2

M⋆,1

d logM⋆ p(logM⋆, zℓ)Cgm(ℓ|zℓ, zs,M⋆) . (4.38)

In the above, the 3D galaxy-matter cross-power spectrum, Pgm(k, z), is the only function

that depends on stellar mass, and this dependence enters via the HOD. Therefore, in practice

we simply need to average Pgm over the stellar-mass distribution of the lenses and plug it

into equation (4.38). We express these terms separately for each HOD component in what

follows.
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The central 1-halo term, using the equations from Section 4.5, is written as

P c1h
gm (k, z) =

1

ρmn̄g

∫
dMh

dn

dMh
Mhudm(k|Mh)

×
∫

d logM⋆ ⟨Nc(M⋆|Mh)⟩
p(logM⋆, z)

nℓ(z)

=
1

ρmn̄g

∫
dMh

dn

dMh
Mh⟨Nc(Mh)⟩udm(k|Mh) , (4.39)

where the average galaxy number density

n̄g =

∫
dMh

dn

dMh
[⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩] (4.40)

is predicted from the HOD. Following the same procedure, the satellite 1-halo term turns

into

P s1h
gm (k, z) =

1

ρmn̄g

∫
dMh

dn

dMh
Mhudm(k|Mh)usat(k|Mh)

×
∫

d logM⋆⟨Ns(Mh)⟩
p(logM⋆, z)

nℓ(z)

=
1

ρmn̄g

∫
dMh

dn

dMh
Mh⟨Ns(Mh)⟩udm(k|Mh)usat(k|Mh) , (4.41)

where udm/sat(k|Mh) is the Fourier transform of the dark matter/satellite spatial distribu-

tion, for which we assume the NFW profile (Navarro et al., 1996). Thus, it turns out that,

compared to Zacharegkas et al. (2022), we can simply replace the HOD prediction with the

new one from Section 4.5 and use the same basic equations in order to calculate the pro-

jected lensing power spectrum. The 2-halo components are also the same as the ones in the

aforementioned paper after we replace the HOD prediction. Namely, the central and satellite
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2-halo terms are written as:

P c2h
gm (k, z) =Pnl

m (k, z)

∫
dMh

dn

dMh

Mh

ρm
bh(Mh)udm(k|Mh)

×
∫

dM ′
h

dn

dM ′
h

⟨Nc(M
′
h)⟩

n̄g
bh(M

′
h) (4.42)

and

P s2h
gm (k, z) =Pnl

m (k, z)

∫
dMh

dn

dMh

Mh

ρm
bh(Mh)udm(k|Mh)

×
∫

dM ′
h

dn

dM ′
h

⟨Ns(M
′
h)⟩

n̄g
bh(M

′
h)usat(k|M ′

h) . (4.43)

In addition, the same k → 0 limits also holds for the 2-halo terms, where the large-scale

equations reduce to the linear model,

P 2h
gm(k → 0, z) ≈ b̄gP

lin
m (k, z) , (4.44)

where the average galaxy bias is

b̄g =
1

n̄g

∫
dMh

dn

dMh
[⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩usat(k|Mh)] bh(Mh)

≈ 1

n̄g

∫
dMh

dn

dMh
[⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩] bh(Mh) , (4.45)

and we need to specify a model for the halo bias bh(Mh). In this work we adopt the functions

from Tinker et al. (2010) for the latter.

To calculate the total power spectrum, Pgm(k, z), we combine the 1-halo and 2-halo

components by summing up the two contributions at each k,

Pgm(k, z) = P 1h
gm(k, z) + P 1h

gm(k, z). (4.46)
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As stressed by Mead et al. (2021), a linear halo bias is not necessarily a good description

of the clustering relation between the halos and matter, especially on the transition scales.

It could thus be important to incorporate a non-linear halo bias model into the halo model.

Implementing such a "beyond-linear" halo bias model, as described in that paper, into our

framework would change the shape of the 2-halo component as a function of k, especially

around the scales corresponding to the size of individual dark matter halos. In this work we

do so by utilizing the fitting functions from Tinker et al. (2005). Specifically, we multiply

the 2-halo correlation function by ζ(r, z), which is defined as

ζ(r, z) ≡
√

[1 + 1.17ξnlm(r, z)]1.49

[1 + 0.69ξnlm(r, z)]2.09
, (4.47)

where ξnlm(r, z) is the non-linear real-space correlation function of Pnl
m (k, z). This is the same

approach also used in Zu & Mandelbaum (2015) and results in the 2-halo galaxy-cross-matter

correlation function

ξ2hgm(r, z) ≈ ζ(r, z)b̄gξ
nl
m(r, z) (4.48)

which we transform into Fourier space to obtain our final estimate of P 2h
gm(k, z). We find that

using this model we are able to obtain a better fit to our data over all scales and improves

the fits significantly in the 1-halo to 2-halo regime compared to what we utilized previously

in Zacharegkas et al. (2022), which was also followed by Hayashi & White (2008); Zu et al.

(2014); Clampitt et al. (2017). As we discuss in Section 4.7, this model is especially useful

in fitting the low-redshift, low-mass bins.

We would like to more explicitly, however, write down the 1-halo part of the above power
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spectrum since this is the part that is being modified on the small scales. It becomes:

C1h
gm(ℓ) =

1

n̄g

∫ zℓ,2

zℓ,1

dzℓ

[∫ zs,2

zs,1

dzs ns(zs −∆zs)
Σ−1
c (zℓ, zs)

a2(zℓ)χ
2(zℓ)

]

×
∫

dMh Mh

∫ M⋆,2

M⋆,1

d logM⋆ p(logM⋆, zℓ −∆zℓ)

× [⟨Nc(M⋆|Mh)⟩+ ⟨Ns(M⋆|Mh)⟩usat(k|Mh)]udm(k|Mh)

=
1

n̄g

∫ zℓ,2

zℓ,1

dzℓ nℓ(zℓ −∆zℓ)

[∫ zs,2

zs,1

dzs ns(zs −∆zs)
Σ−1
c (zℓ, zs)

a2(zℓ)χ
2(zℓ)

]

×
∫

dMh Mh [⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩usat(k|Mh)]udm(k|Mh) , (4.49)

using equation (4.29) and after introducing the photo-z uncertainty parameters ∆zℓ and ∆zs

in the lens and source redshift distributions, respectively.

After all the above, to conclude this discussion, we express the final estimator for gravi-

tational shear as:

γt(θ) = (1 +ms)

∫
ℓdℓ

2π
J2(ℓθ)Cgm(ℓ) , (4.50)

using the Hankel transform with the Bessel function J2, and after introducing the multi-

plicative bias parameter ms that quantifies any remaining errors in the γt estimation. In

figure 4.14 (left) we show this model’s prediction in the two cases of a tophat HOD and when

the full 1D stellar-mass distribution for a single lens bin (as mentioned in the caption) is

used, as discussed in detail in Section 4.5. The difference between the two is minuscule and

mostly affects the small scales. For that reason, in this work we will be fitting the tophat

model to the data in our fiducial study. This way the fitting is far more time efficient, while

we do not obtain biased results, given that any differences in the two cases is captured by

the uncertainty on the final constraints and the HOD’s flexibility.
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Figure 4.14: (Left) The γt prediction using the tophat model (solid dark blue) with its
constituents (solid and dashed green and red lines in the legend), and the model incorporating
the full 1D stellar-mass distribution (blue dashed) using the respective the HOD models from
figure 4.13. (Right) Similar to the left plot but for w.

4.6.2 Galaxy clustering

In this section we derive the equations for modeling galaxy clustering using the stellar-mass

HOD we use in this work and the equations are heavily based on van den Bosch et al. (2013).

The total 3D power spectrum of the galaxy position auto-correlation is the sum of the 1-halo

and 2-halo terms:

Pgg(k) = P 1h
gg (k) + P 2h

gg (k) . (4.51)

Further than that, the 1-halo term breaks down to the 1-halo central-central P 1hcc
gg , the

1-halo central-satellite P 1hcs
gg , and the 1-halo satellite-satellite P 1hss

gg terms. The 2-halo term
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does not break down to more components and in the k → 0 limit it is written as:

P 2h
gg (k, z) =

1

n̄2g
P lin
m (k, z)

∫
dMh

dn

dMh
[⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩usat(k|Mh)] bh(Mh)

×
∫

dM ′
h

dn

dM ′
h

[
⟨Nc(M

′
h)⟩+ ⟨Ns(M

′
h)⟩usat(k|M ′

h)
]
bh(M

′
h)

≈ b̄2effP
lin
m (k, z) , (4.52)

where we have defined the "effective" large-scale average galaxy bias which in the limit where

usat(k → 0|Mh) = 1 it is calculated by

b̄eff =
1

n̄g

∫
dMh

dn

dMh
[⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩usat(k|Mh)] bh(Mh) ≈ b̄g , (4.53)

i.e. it reduces to the average HOD galaxy bias from equation (4.45). Finally, for the 2-halo

term, as we discuss in Section 4.6.2 for lensing, we find that our fits to the data behave

significantly better if we modify the above by multiplying by the scale-dependent factor

ζ(r, z), defined in equation (4.47). Thus, we write the final estimator of the 2-halo real-space

correlation function of galaxy clustering as

ξ2hgg (r, z) ≈ ζ2(r, z)b̄2gξ
nl
m(r, z) (4.54)

which we then transform into Fourier space to obtain the final P 2h
gg (k, z).

In what follows we will model the 1-halo component of equation (4.51) starting from the

following equation (Seljak, 2000):

P 1h
gg (k, z; p) =

1

n̄2g

∫
dMh

dn

dMh
⟨N(N − 1)⟩|usat(k|Mh)|p , (4.55)

where N = Nc + Ns is the total number of galaxies, i.e. the sum of the number of central

and satellite galaxies, Nc and Ns, respectively. We can make the approximation p = 1 when
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⟨N(N − 1)⟩ < 1 (since that term is be associated with the central-satellite spectrum) and

p = 2 when ⟨N(N−1)⟩ > 1 (since this corresponds to the satellite-satellite term). Therefore,

we need to calculate ⟨N(N − 1)⟩, which we do as follows:

⟨N(N − 1)⟩ = ⟨Nc⟩ [⟨N(N − 1)⟩]Nc=1 + (1− ⟨Nc⟩) [⟨N(N − 1)⟩]Nc=0

= ⟨Nc⟩
(
⟨N2

s ⟩+ ⟨Ns⟩
)
+ (1− ⟨Nc⟩)

(
⟨N2

s ⟩ − ⟨Ns⟩
)

. (4.56)

In this work we assume that the probability to find Ns satellite galaxies in a halo of mass

Mh follows a Poisson distribution (see Kravtsov et al., 2004, for a theoretical justification),

defined as

Prob(Ns) = λNs
s × e−λs

Ns!
, (4.57)

with the mean λs = λs(Mh) = ⟨Ns(Mh)⟩ and with

⟨N2
s ⟩ = ⟨Ns⟩2 + ⟨Ns⟩ . (4.58)

Therefore, equation (4.56) leads to:

⟨N(N − 1)⟩ = ⟨Nc(Mh)⟩⟨Ns(Mh)⟩ [2 + ⟨Ns(Mh)⟩] , (4.59)

in which case we can write the 1-halo galaxy auto-correlation power spectrum from equa-

tion (4.55) as

P 1h
gg (k, z) =

1

n̄2g

∫
dMh

dn

dMh
⟨Ns(Mh)⟩usat(k|Mh)

× [2⟨Nc(Mh)⟩+ ⟨Ns(Mh)⟩usat(k|Mh)] . (4.60)

We note here that the P 1hcs
gg and P 1hss

gg terms can be directly read from equation (4.60):

they are the first and second terms in brackets, respectively. Moreover, in all the above
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expressions we have already taken into account that the HOD terms are the only ones that

depend on stellar mass, and thus we did not need to explicitly use the conditional probability

notation, as in the galaxy-galaxy lensing case in Section 4.6.1, but we rather simply used

the "usual" HOD notation from the start.

Finally, we note on the above discussion that, the central-central power spectrum is

P 1hcc
gg ≈ 1/n̄c, where n̄c = (1 − Fsat)n̄g is the HOD average number density of central

galaxies alone and

Fsat =
1

n̄g

∫
dMh

dn

dMh
⟨Ns(Mh)⟩ (4.61)

is the satellite fraction, which is always much lower than the rest of the terms. We thus

ignored its contribution to the total signal. Furthermore, in P 1hss
gg we have ignored a con-

tribution from the subdominant term 1/n̄s, where n̄s = Fsatn̄g is the HOD satellite average

number density. These terms would in theory dominate in the "very small-scale" limit where

udm/sat(k → ∞|Mh) = 0. However, in practice we are never in that regime in our work.

We now conclude by modeling the projected 2D power spectrum, in the Limber approx-

imation, as:

Cgg(ℓ) =

∫
dzℓ

n2ℓ(zℓ)

χ2(zℓ)

(
dχ

dz

∣∣∣∣
z=zℓ

)−1

, (4.62)

where (dχ/dz)|zℓ is the derivative of the comoving distance with respect to redshift at z = zℓ,

and we have used the galaxy selection function, which is essentially the normalized redshift

distribution of our lenses, twice and hence the n2ℓ factor. Via a Hankel transform, using J0,

we can then model the final galaxy clustering observable as

w(θ) =

∫
ℓdℓ

2π
J0(ℓθ)Cgg(ℓ) (4.63)

as a function of angular scale. In figure 4.14 (right) the above model prediction is presented

in the two cases of a tophat HOD and when the full 1D stellar-mass distribution for a single

lens bin (as mentioned in the caption) is used, which is discussed in detail in Section 4.5. The
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difference between the two is more evident on small scales and is small. Given the HOD’s

flexibility to fit the data, discussed in Section 4.7, as well as the error bars on the data and

our constraints, this difference is small enough to allow us to use the tophat model which is

more time efficient and can describe the data well. Thus, for our fiducial model we use that

HOD model.

4.6.3 Lens magnification

We now consider the effects of weak lensing magnification on the estimation of our observ-

ables. In addition to the distortion (shear) of galaxy shapes, weak lensing also changes the

observed flux and number density of galaxies – this effect is referred to as magnification. We

only consider the magnification in flux for the lens galaxies, as that is the dominant effect

in our work.

We first model lens magnification in γt. Similar to shear, magnification is expected to

be an increasing function of redshift. In the weak lensing regime, the magnification power

spectrum involves an integration of the intervening matter up to the lens redshift and is

given by (Unruh et al., 2020)

C
lmag
gm (ℓ) =

9H3
0Ω

2
m

4c3

∫
dzℓnℓ(zℓ)

∫ zℓ

0

dz

E(z)

χ(z, zℓ)

χ(z)a2(z)

×
∫

dzsns(zs)
χ(z, zs)

χ(zs)
Pnl
m

(
ℓ+ 1/2

χ(z)
, z

)
, (4.64)

where the dimensionless Hubble function is

E(z) ≡ H(z)

H0
. (4.65)
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Then, the contribution of this effect to tangential shear can be written as

γ
lmag
t (θ) = 2(αlmag − 1)

∫
ℓdℓ

2π
J2(ℓθ)C

lmag
gm (ℓ) , (4.66)

where αlmag is a free parameter in this work.

We can similarly compute the contribution of lens magnification to galaxy clustering as

C
lmag
gg (ℓ) =

9H3
0Ω

2
m

4c3

∫
dzℓn

2
ℓ(zℓ)

∫ zℓ

0

dz

E(z)

[
χ(z, zℓ)

χ(z)a(z)

]2
Pnl
m

(
ℓ+ 1/2

χ(z)
, z

)
, (4.67)

where, in contrast to C
lmag
gm , we now have two factors of nℓ(zℓ) since the galaxy selection

function is used twice. Therefore, the contribution from lens magnification to w(θ) can be

written as

wlmag(θ) = 4(αlmag − 1)2
∫

ℓdℓ

2π
J0(ℓθ)C

lmag
gg (ℓ) , (4.68)

via a Hankel transform using J0.

4.6.4 Tidal stripping of the satellites

As tidal disruptions in the outskirts of the host halo strips off the dark matter content of

the satellite subhalo, the density profile of the subhalos drops off at large scales. Therefore,

this term is usually modeled as a truncated NFW profile (see e.g. Mandelbaum et al., 2005;

Velander et al., 2013) which is similar to that of the central 1-halo, γc1ht , out to the truncation

radius R and falls off as ∝ r−2 at larger radii r. For this work, we fix the truncation radius

to R = 0.4R200c. Additionally, since this is a satellite term, it needs to be multiplied by the

satellite fraction Fsat, and we thus write:

γ
strip
t (θ) = Fsat ×


γc1ht (θ) if r ≤ R

γc1ht (R)

(
R

r

)2

if r > R
, (4.69)
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where r = r(θ; zℓ) is the radius from the center of the sub-halo at redshift zℓ that corresponds

to angular scale θ.

4.6.5 Point-mass contribution

This term quantifies the contribution to lensing by the baryonic content of the central galaxy

(e.g. Velander et al., 2013). This term is simply modelled as a point-source term:

γPMt (θ) =

∫
dzℓ nℓ(zℓ)

⟨M⋆⟩
πr2(θ; zℓ)

∫
dzsns(zs)Σ

−1
c (zℓ, zs) . (4.70)

In this work, ⟨M⋆⟩ is the average stellar mass content in a given lens bin from Table 4.1.

Then, the above is more conveninetly written as

γPMt (θ) =
⟨M⋆⟩
ρm

∫
dzℓ nℓ(zℓ)

Wκ(zℓ)

πr2
, (4.71)

where the have used

Wκ(z) ≡ ρm

∫
dz′ ns(z′)Σ−1

c (z, z′) (4.72)

and corresponds to the lensing efficiency.

4.6.6 Intrinsic alignment

Galaxies are not randomly oriented even in the absence of lensing. On large scales, galaxies

can be stretched in a preferable direction by the tidal field of the large scale structure. On

small scales, other effects such as the radial orbit of a galaxy in a cluster can affect their

orientation. This phenomenon, where the shape of the galaxies is correlated with the density

field, is known as intrinsic alignment (IA); for a review see Troxel & Ishak (2015).

The contamination of shear by IA can become important when the source galaxies are

157



physically close to the lenses and gravitational interactions can modify the shape of the

galaxies. This term in this work is modeled using the non-linear linear alignment (NLA)

model (Hirata & Seljak, 2004; Bridle & King, 2007; Joachimi et al., 2013), modified so

that the matter power spectrum is replaced by the galaxy-cross-matter power spectrum so

that the small-scale contribution can accounted for. This is the same approach adopted in

Zacharegkas et al. (2022); as also noted in that paper, this is not a tested methodology, but

rather a trick to accommodate for small scales and a more detailed analysis of small-scale

IA is left for future work. Thus, we model the 3D power spectrum of IA as:

PNLA(k, z|M⋆) =− AIAC1ρcΩmD−1
+ (z)Pgm(k, z|M⋆)

(
1 + z

1 + z0

)ηIA
(4.73)

where D+(z) is the linear structure-growth factor at redshift z normalised to unity at z = 0,

AIA determines the overall amplitude, C1 = 5× 10−14h−2M−1
⊙ Mpc

3 is a constant, and the

power-law index ηIA models the redshift evolution defined so that the pivot redshift is set

to z0 = 0.62. Then, we model the projected 2D power spectrum for NLA is given, in the

Limber approximation, by:

CNLA(ℓ) =

∫
dzℓ

nℓ(zℓ)ns(zℓ)

χ2(zℓ)(dχ/dz)|zℓ

∫
dM⋆ n⋆(M⋆)PNLA

(
ℓ+ 1/2

χ(zℓ)
, z(χℓ)

∣∣∣∣M⋆

)
, (4.74)

where we average over the lens stellar-mass distribution n⋆(M⋆). To obtain the IA contri-

bution to the tangential shear, we perform a Hankel transform on CNLA(ℓ) using J2(ℓθ), as

in Equation (4.50).

4.6.7 Dark matter and satellite galaxy density profiles

For the spatial distribution of dark matter and satellite galaxies within a dark matter halo

we have assumed the NFW proflie (Navarro et al., 1996). Thus, their Fourier transform,

udm and usat, respectively, have analytic forms with concentration parameters cdm and csat,
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respectively. However, the distribution of satellite galaxies is typically less concentrated than

that of the dark matter (e.g. Carlberg et al., 1997; Lin et al., 2004; Nagai & Kravtsov, 2005;

Hansen et al., 2005). To account for this, in this work we allow csat to be smaller than cdm

by introducing the free parameter κsat = csat/cdm, which is allowed to take values between

0 and 1, and is expected to not deviate significantly from the unity.

4.7 Parameter inference

In this section we discuss the fitting process of our HOD model, which is discussed in Sec-

tions 4.5 and 4.6 to our data, which is thoroughly described in Sections 4.2, 4.3 and 4.4. In

our fiducial model, we vary the SHMR parameter vector θSHMR = {M1,0, logA0, β0, γ0},

whereas we ignore the redshift-dependent part of these parameters, i.e. M1,1 = A1 = β1 =

γ1 = 0. The two parameters (Bsat, βsat) that control the satellite SHMR are also free pa-

rameters in our fiducial framework. Given that our samples are expected to be complete

in our redshift-stellar mass bins, we decided to set the central and satellite parameters fcen

and fsat, respectively, to unity, and thus we assume fcen = 1 = fsat. We also note that

from testing the effects from varying these two parameters with priors U [0, 1] on our data

fits we found that they make no significant difference and they are unconstrained. In our

HOD model, we furthermore vary the central parameter σlogM⋆
, the scatter in stellar mass,

and the satellite power-law index parameter αsat. Our priors on the above parameters are

shown in Table 4.2.

We furthermore have three parameters to account for systematic uncertainties (∆ziℓ,

∆z
j
s , m

j
s) per lens bin i and source bin j. The photo-z uncertainty parameters ∆z shift the

redshift distributions of lens and source galaxies, and quantify errors in the mean redshift of

both samples, while the multiplicative bias parameter is introduced below equation (4.50) in

Section 4.6.1. In addition to these, per lens bins we vary the parameter (Σi
ℓ) that corresponds

to the stretching factors of the lens redshift distribution, similarly to what is discussed in
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Porredon et al. (2021). There parameters modify the lens redshift distributions as

niℓ(zℓ) →
1

Σi
ℓ

niℓ

(
⟨ziℓ⟩+

zℓ − ⟨ziℓ⟩
Σi
ℓ

−∆ziℓ

)
, (4.75)

where ⟨ziℓ⟩ is the mean redshift in lens bin i, and

n
j
s(zs) → n

j
s

(
zs −∆z

j
s

)
. (4.76)

Our priors on the uncertainty parameters are shown in Table 4.2.

Our full data vector consists of the γt and w measurements. The full covariance matrix

is block-diagonal with the two blocks that correspond to the full covariance matrix for the

two observables and the zero matrix as the off-diagonal blocks. We discuss this choice in

Section 4.4.2. As our fiducial model in this work we choose to utilize the tophat HOD model

of Section 4.5 since, as we discuss in Section 4.6, it is not significantly different from using

the full 1D stellar-mass distribution when modeling the observables, but it is a lot more time-

efficient. For our model fit we present in Section 4.8 we do not use any of the additional

model complexity, beyond the basis HOD model predictions, of Section 4.6.

To sample the posterior of each data set we utilise the Multinest4 sampler, which

implements a nested sampling algorithm (see for example Feroz et al., 2009). In our analysis

we assume that our data is generated by an underlying Gaussian process, thus making

its covariance Gaussian in nature. Therefore, for data vector d of length Nd and model

prediction vector m of the same length we express the log-likelihood as

lnL(θ) = −1

2
(d−m)TC−1

H (d−m) ≡ −1

2
χ2 , (4.77)

where θ is the parameter vector of our model M and C−1
H is the Hartlap-corrected data

4. https://github.com/JohannesBuchner/MultiNest
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Parameter Prior Description
σlogM⋆

U [0.01, 3] Central galaxy’s stellar-mass scatter; eq. (4.15)
αsat U [0.5, 1.5] High-mass satellite power-law index; eq. (4.18)
fcen 1 Central galaxy number incompleteness; eq. (4.15)
fsat 1 Satellite galaxy number incompleteness; eq. (4.18)
Bsat U [0, 30] Satellite SHMR amplitude; eq. (4.19)
βsat U [0.1, 2] Satellite SHMR power-law index; eq. (4.19)
M1,0 U [9, 14] Central SHMR characteristic halo mass; eq. (4.10)
logA0 U [−3, 0] Central SHMR overall normalization; eq. (4.10)
β0 U [0.1, 2.5] Central SHMR low-mass power-law index; eq. (4.10)
γ0 U [0.1, 1.5] Central SHMR high-mass power-law index; eq. (4.10)
∆ziℓ N (0, 0.01) Lens photo-z uncertainty; eq. (4.75)
Σi
ℓ 1 Stretch parameter of lens n(z); eq. (4.75)

∆z3s N (0, 0.01) Source photo-z uncertainty in 3rd bin; eq. (4.76)
∆z4s N (0, 0.006) Source photo-z uncertainty in 4th bin; eq. (4.76)
m3

s N (−0.0255, 0.0013) Multiplicative bias in 3rd source bin; eq. (4.50)
m4

s N (−0.0322, 0.0118) Multiplicative bias in 4th source bin; eq. (4.50)
κ 1 Satellite concentration parameter; sec. 4.6.7
αlmag 1 Lens magnification coefficient; eq. (4.6.3)
AIA 0 IA amplitude; eq. (4.73)
ηIA 0 IA redshift-dependence; eq. (4.73)

Table 4.2: Priors and fixed value of model parameters. If the prior is flat we present its
range in the brackets of the Uniform distribution, U , while for Gaussian priors we list the
mean and variance in the parenthesis of the Normal distribution, N . For fixed parameters
we provide their number.

covariance matrix. Notice that we have neglected the constant factors which are not useful

while sampling the likelihood.

For our model fits, we report the total χ2 of our best-fit model to the data, as a measure

of the goodness of fit. Alongside this we report the number of degrees of freedom (dof),

which we calculate as the effective number of parameters that are constrained by the data,

Neff = Npar− tr
[
C−1
Π Cp

]
, where Npar is the total number of parameters we vary, subtracted

from the number of data points, Nd:

Ndof = Nd −Neff = Nd −Npar + tr
[
C−1
Π Cp

]
, (4.78)
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where CΠ and Cp are the prior and posterior covariance, respectively. We should note here

that a goodness-of-fit estimation based on finding an effective number of parameters is not

always straightforward when the parameters do not enter the model linearly, as discussed in

Section 6.3 of Joachimi et al. (2021). Therefore, our approach of calculating a reduced χ2

using Equation (4.77) based on the Ndof from (4.78) yields a conservative answer if model

under-fitting is the main concern.

4.8 Results

In this section we present the first model fits to the new lens galaxy sample we introduced

in Section 4.2 from the DES Y3 GOLD catalog. The theory predictions are discussed in

Sections 4.5 and 4.6. The fiducial framework and fitting procedure we followed to obtain

these results are described in Section 4.7. The bins for which we show data fits, as well as

the scales we fit, are chosen based on logic presented in Section 4.4.5.

Figure 4.15 shows the best-fit model predictions to galaxy-galaxy lensing. Our model

provides a good description of the data as we can see from the plot. While fitting the data,

we noticed that how we model the 1-halo to 2-halo regime makes a significant difference in

whether we can fit all scales. Specifically, using the prescription from Zacharegkas et al.

(2022) the model was unable to fit bins (ℓ,m, s) = (1, 1, 3) and (1, 1, 4). However, using

the model described in Section 4.6 our HOD framework can describe all features in the

data vector well. Moreover, we notice that in many bins the large scales seem to be under-

predicted by our model. This might indicate that our transition regime modeling still needs

to be modified, or that we need extra model complexity to make the 2-halo and 1-halo terms

more compatible with each other. Especially lens magnification could be of significant help as

it would add power to the large scales. We also note, however, that large scales are the most

correlated which would make the act more as a "single data point" and thus not contribute

significantly to the overall χ2, even if we might expect them to by eye. We also note here
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Figure 4.15: Measurements (points) and best-fit model (thick solid outlined) predictions for
galaxy-galaxy lensing as a function of angular scale in arcmin. Each panel corresponds to a
lens-source bin combination from the ones that we choose to model in this work, as indicated
in parenthesis (ℓ,m, s). Each model component is also shown: 1-halo central (1h Cen, solid),
2-halo central (2h Cen, dashed), 1-halo satellite (1h Sat, dash-dotted) and 2-halo satellite
(2h Sat, dotted). Gray points are removed from the fits by the scales cuts. The χ2 goodness-
of-fit is shown in each panel and the number of degrees of freedom is also reported.
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that the χ2 values reported in the figure should act as a general guide when determining

how good the fits are and we do not expect perfect values, i.e. close to unity for the reduced

chi-square χ2r ≡ χ2/Ndof . Interestingly, the highest redshift, and more massive, galaxies in

redshift bins ℓ = 4 are the best described by the model. In these bins, however, since they

are so high-z, the 1-halo points are not "as visible", since the same angular scale corresponds

to larger physical scales as redshift increases, and thus the compatibility between 1-halo and

2-halo is not as much of an issue there, which would explain why the fits look so much better.

This is also evident by the fact that the 1-halo central term contributes less in the fits as we

move to higher redshift bins, i.e. from top to bottom panels in figure 4.15.

Figure 4.16 presents the best-fit model predictions to galaxy clustering. The overall same

comments about the goodness-of-fit to w as in the case of γt apply: the model is able to

describe the data very well and the χ2 should we used as a general guide in deciding how

well the fits work. Moreover, we see again that, as we move from top to bottom in the figure,

i.e. from lower to higher redshift, the 1-halo terms, and in particular the satellite-satellite

term, contributes less for the same reason as in lensing. In contrast to γt, though, we do

not see the fits to work better in the high-z bins, as compared to lower-z ones. The fits in

this case seem to be more consistent throughout the various redshift bins. This might be a

further indication that additional model complexity is needed in the case of galaxy-galaxy

lensing for the model fits to improve in figure 4.15.

The data fits we have discussed so far have been separately done on the two observables.

Our main goal, however, is to fit them jointly in order to constrain the SHMR optimally. In

trying to do so, we found that small scales in galaxy clustering suffer from systematic effects,

of unknown origin at this time, that lead to an overestimation on the measured signal. As a

result, we cannot obtain good joint fits to both γt and w when small scales in w are included.

We are therefore forced to remove scales of θ < 10 arcmin from our w part of the data vector

and thus only fit the 2-halo term in galaxy clustering. Still, given that w at those scales is
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Figure 4.16: Measurements (points) and best-fit model (thick solid outlined) predictions
for galaxy clustering as a function of angular scale in arcmin. Each panel corresponds to
a lens bin from the ones that we choose to model in this work, as indicated in paren-
thesis (ℓ,m). Each model component is also shown: 2-halo (2h, solid), 1-halo central-
satellite (1h Cen− Sat, dashed) and 1-halo satellite-satellite (1h Sat− Sat, dash-dotted).
Gray points are removed from the fits by the scales cuts. The χ2 goodness-of-fit is shown in
each panel and the number of degrees of freedom is also reported.
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∝ b̄2g, which is a prediction from the HOD model, it provides additional constraining power

when combined with the γt fits. A more detailed analysis on what is causing the small-scale

discrepancy between the two observables is ongoing and more careful scale cuts on w on

small scales as a function of redshift will be performed in the near future. After we removed

the small-scale w data we are able to successfully fit γt and w together and examples in two

lens bins are presented in figure 4.17. In that plot, only the 2-halo term in w is considered

while all term are included during the fitting in γt.

It is important to note here that even though small-scale measurements in clustering

seem to be overestimated, and thus it is in tension with lensing, our HOD framework is

flexible enough to still be able to fit w on all scales when it is done separately from γt, as

we see from figure 4.16. This is an indication that we need to be careful when we interpret

the results from fitting our models to data and that we need to combine data that breaks

degeneracies in the parameter space. To emphasize this even more, we found that when we

allow the stretch parameter, Σℓ, in the lens redshift distributions (see also table 4.2) with

wide prior range we were still able to obtain good joint data fits over all angular scales. The

inferred mass, however, was significantly miss-estimated. In that case, Σℓ was constrained

to values much less than unity, meaning that the lens n(z) distributions were a lot narrower

that what is shown in figure 4.5 and thus γt and especially w were boosted high as a result.

The rest of the parameters were then forced to re-adjust so that the overall χ2 was able to

improve significantly. However, the resulting halo mass constraints were unphysically high.

As a final note, while jointly fitting the observables in the 2-halo regime, we find no tension

between the two, as also indicated by figure 4.17, and even if we allow Σℓ to vary it does not

prefer a value different from unity.

We present constraints on the stellar-to-halo mass relation as inferred from our data fits

in figure 4.18. Our results when they are inferred from our γt-only fits to the data over all

scales, which are shown in figure 4.15, are shown as outlined circles. In addition, we present
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Figure 4.17: Measurements (points) and best-fit model (thick solid outlined) predictions for
galaxy-galaxy lensing (top panels) and galaxy clustering (bottom panels) as a function of
angular scale in arcmin. These fits were performed jointly for γt and w for single lens bins
and each column shows the best-fit model prediction for the two observables, respectively.
For γt we fit all scales after the initial scale cuts are applied, as discussed on Section 4.4.5,
whereas for w we in addition remove the 1-halo regime as we discuss in Section 4.8. Thus,
for γt panels show all components in addition to the total model prediction, exactly as in
figure 4.15 while for w only the 2-halo component is plotted.
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Figure 4.18: Constraints on the stellar-to-halo mass relation from our analysis (outlined
points from γt-only fits and stars from jointly fitting γt and w) compared to constraints from
the literature, as indicated in the legend. The bars on stellar mass (on the horizontal axis)
correspond to the range in stellar mass per bin we that fit, whereas the error bar on halo
mass (on the vertical axis) shows the uncertainty on our inference from the data fits. The
black solid line is produced using the fitting functions from Moster et al. (2013) as a means
to guide the eye.
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the halo-mass constraints from the joint γt and w fits in figure 4.17 as outlined stars. We

compare our results with independent constraints from the literature, as well as with the

prediction from the Moster et al. (2013) model, and we find good overall agreement. The

filled and open blue triangles present the results from CFHTLenS (Velander et al., 2013),

were the samples they considered were flux-limited and were split into blue and red galaxies,

respectively. The filled and open red triangles in the same plot present the constraints from

SDSS (Mandelbaum et al., 2006a) and galaxies are, respectively, split into early and late

types. The magenta squares show the average halo masses inferred from individual galaxy

stellar mass samples using the weak lensing measurements in GAMA (Han et al., 2015)

were the central galaxies of groups and clusters were almost volume-limited. We finally also

compare our results with those from Zu & Mandelbaum (2015) were a HOD model similar

to this work is used to jointly fit galaxy-galaxy lensing and galaxy clustering in SDSS. All

constraints show a remarkable agreement with each other. We will present our final results

in Zacharegkas et al. (2023), in prep. in the near future.

4.9 Summary and discussion

In this work we have produced a new lens galaxy sample from the DES Y3 GOLD that includes

the redshift, stellar mass and color information of each individual galaxy. In addition, by

using the software GalPro to do so, we were able provide the full 2D joint redshift-stellar

mass distributions per galaxy and for all galaxies combined in a single bin. We have run a

number of tests on this sample and we have validated our measurements on galaxy-galaxy

lensing, γt, and galaxy clustering, w. This sample can be used in numerous studies in the

future, within and outside the DES collaboration, when the stellar mass information is of

interest. In this study, we have utilized our sample in order to bin galaxies into redshift and

stellar mass in order to perform a small-scale HOD analysis on it to constrain the galaxy-halo

connection of the galaxies in DES Y3.
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In order to analyze the aforementioned stellar-mass sample, we developed an HOD model

that is an update of the Zacharegkas et al. (2022) so that it can account for the stellar-

mass information of the galaxies and to further incorporate w(θ) into the new framework.

Importantly, this new HOD model depends on the stellar-to-halo mass relation and through

fitting the data we were able to constrain that relation for our lenses. Our findings so far

are the following:

• We can separately fit both observables, γt and w, over all scales we consider well.

• From fitting γt alone we can obtain good constraints on the the average halo mass in

a z −M⋆ bins and thus on the SHMR. However, we have indications that additional

model complexity in γt might be needed to capture all features of the data better.

• On the other hand, w alone cannot provide good SHMR constraints as the inferred

mass when small scales are included is overestimated.

• In order to obtain good data fits to all scales, especially in low-stellar-mass bins, we

needed to update how we model the 1-halo to 2-halo transition scales compared to

what was utilized in Zacharegkas et al. (2022).

• We have concluded that there are systematic effects on the very small scales in w, at

θ ≲ 10 arcmin and we thus remove those scales while jointly fitting both observables.

• The joint {γt, w} data fits after small w scales are removed are successful in describing

the data well and the SHMR from them are in agreement with the γt-only fits.

• Our final SHMR constraints are is good agreement with a large number of independent

studies in the literature.

Moving forward, in the upcoming publication Zacharegkas et al. (2023), in prep. we will

perform more careful small-scale cuts on w, and we will present SHMR constraints from fully
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joint fits to the data after we have also incorporated the additional model complexity into our

γt model. By tuning the scale cuts on galaxy clustering we might be able to probe the quasi-

linear regime in w, or even the 1-halo scales, and thus further improve our final constraints.

The additional complexity in γt will lead to an improved fit to the measurements were large

and small scales show even better consistency. Furthermore, we will present results from

fitting our model to galaxies after we split them into red and blue subsamples, as we have

their color information as well.

This work is a major step towards the direction of performing cosmological analysis using

data from galaxy surveys utilizing large scales, which have been commonly considered in the

past in such studies, and the non-linear and quasi-linear regime simultaneously. This might

further improve the constraints on the cosmological parameters, and will provide a more

complete and unified picture of the large-scale structure of the Universe. In addition, our

model and its implementation provides a galaxy-halo connection modeling framework that

can be easily improved and expanded further in order to incorporate more of the lens galaxy

properties, beyond stellar mass and redshift.
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CHAPTER 5

APPLICATIONS OF THE GALAXY-HALO CONNECTION

MODEL IN THE KEY COSMOLOGICAL ANALYSES IN DES

In this chapter we discuss briefly some applications of the galaxy-halo connection that was

developed in Zacharegkas et al. (2022) to model the non-linear scales in galaxy-galaxy lensing,

as described in Section 3. The two applications that follow make it clear that modeling those

small scales is not only important for improving cosmological constraints and understanding

the physics of the relation between galaxies and their host dark matter halos, but also

for performing necessary tests on the data. These tests can be crucial in determining, for

instance, the scale cuts that we need to apply to the data if small scales are removed so that

the final constraints are unbiased.

5.1 Galaxy-galaxy lensing in DES Y3 and Y6

The principles and theory behind galaxy-galaxy lensing (the weak gravitational lensing of

light emitted by a source galaxy by the dark matter halo of a lens galaxy) is discussed in

Section 1.4.1. As mentioned in Chapter 2, this observable plays a key role in cosmological

analyses, as it is very sensitive to cosmology, and combined with galaxy clustering and cosmic

shear, it is used by the DES collaboration to derive their main results. Therefore, a major

effort within the collaboration is to produce high-quality measurements of GGL, γt(θ), as

a function of angular separation from the center of a lens, and to test (and correct) for

systematics. This work in DES Y3 is fully described in Prat et al. (2022), and so, here we

will only focus on some key applications from that study relevant to this thesis.

The details of how we measure GGL are discussed in Chapters 3 and 4, and, for the

most part, they are the same as what was done in Prat et al. (2022). However, in these

chapters we were not interested in scale cuts, as our focus was to include small scales into
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our analyses. In contrast, Prat et al. (2022) is part of the fiducial cosmology work in the DES

and is thus highly interested in finding the best possible scale cuts so that the maximum

amount of data is utilized while the scales where the linear theory breaks down are removed.

Below we briefly describe the idea of contaminated simulated data vectors and how they are

used in scale-cut tests.

Figure 5.1, from Prat et al. (2022), shows a grid of panels of differences between GGL

simulated data vector minus the data vectors contaminated by various terms, for all lens

bins cross-correlated with the source bins (in the upper right corner the numbers indicate

the i−th lens bins comma-separated from the j−th source bins). Therefore, it essentially

shows how significant some effects, mostly relevant for small scales, are per lens-source bins

combination. The terms tested in the figure are the following.

• The effects from using a non-linear bias model (orange dashed line): A non-linear model

of galaxy bias can push the analysis to smaller scales compared to a linear model; on

large scales the two are identical, but on smaller scales the non-linear model differs a

lot from the linear one. This is evident from the large deviation of the contaminated

vector compared to the fiducial one as we move to small angular separations. Note

here, however, that although a non-linear galaxy bias model is a better description

of the data on some of the scales in the quasi-linear regime, it still breaks down on

sufficiently small scales. Finally, we note that, since the non-linear galaxy bias model

accounts for the non-linear nature of the halo model, compared to the fiducial data

vector, on small scales it predicts a higher GGL signal.

• Effects from baryonic feedback (gold dashed line): Baryons affect the contaminated

data in the opposite direction from the non-linear galaxy bias modeling, as seen from

the figure. As we can see (and as one would expect), this term mostly affects the very

small scales and since it has to do with the feedback from baryonic matter, it predicts

a lower GGL amplitude compared to the fiducial vector.
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Figure 5.1: Difference between a simulated datavector contaminated with baryonic effects
and non-linear galaxy bias with respect to the fiducial model (linear bias and Halofit non-
linear matter power spectrum), and the equivalent difference for an HOD contaminated
datavector using the model and results from Zacharegkas et al. (2022) – see Chapter 3. The
darker blue shaded regions indicate the uncertainties coming from the theory covariance
without point-mass marginalization and the lighter ones including the point-mass marginal-
ization. The dashed vertical black lines indicate the 6 Mpc/h scale cuts. This figure is taken
from Prat et al. (2022).
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• Combining non-linear galaxy bias and baryons (cyan solid line): In order to make

conclusions regarding scale cuts, these two effects are combined and the net effect on

the fiducial data vector are seen in the figure. As a result of this test overall, the

final verdict is that the modeling below the scale cuts, as shown the figure, cannot be

trusted to fit the data.

• Testing a Halo Occupation Distribution (HOD) model (solid blue line): To further test

how "wrong" the assumption of a linear bias model is on small scales, it makes sense

that we would want to compare the fiducial data vector with a galaxy-halo model,

which is the best possible way of modeling the non-linear regime. As we see from the

figure, the HOD contamination is large on the small scales and identical to the linear

theory on large scales, like we would expect. We note here, however that, to somewhat

of a surprise, the HOD contamination is overall not as large as the net one from non-

linear galaxy bias modeling and baryonic effects. This led to the additional conclusion

that using the latter to derive the fiducial scale cuts is the conservative way to go. To

conclude, we note here for completeness that the HOD effect was only tested on the 6

lens-source bin combination for which we had HOD fits (Zacharegkas et al., 2022), as

presented in Chapter 3.

To conclude this section, we note that for DES Y6 a very similar approach to measuring

and testing galaxy-galaxy lensing will be taken. As this work in under way, we will not show

any results on this in this thesis. We will remark, however, that the galaxy-halo connection

model will again serve as a powerful way to perform tests on the measurements, and it could

be a key component of the methodology to determine the fiducial model in the main 3× 2pt

analyses. This further highlights the increasing importance of developing models for the

non-linear regime.
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5.2 Small-scale information from shear ratio in DES Y3

The idea of taking ratios of tangential shears between cross-correlations of different source

bins, fixing the lens bins, is called shear ratio. As a brief note, taking ratios of quantities

like shears is not unique to the applications we are discussing in this section, as they are a

powerful way of constraining cosmology from geometrical quantities and the idea goes back

to Jain & Taylor (2003). The point here is that, the shear ratios in this case can be used to

extract information from scales much smaller than the fiducial scale cuts used in the DES Y3

3× 2pt analyses that are discussed in Section 5.1. That is because, by taking ratios of two

shears, in the approximation above, the galaxy bias and even the dependence on the matter

power spectrum are almost exactly canceled out. Note, however, that this is true when we

use the linear theory to model γt while taking the ratios, and thus we still cannot go down

to the small non-linear scales without the usage of a galaxy-halo connection model.

The application we will talk about in this section is from Sánchez et al. (2022a), which

is an application to the DES Y3 data. The theory of shear ratios is briefly described below.

Lets consider lens galaxy ℓ at redshift zℓ and two source galaxies si and sj at redshifts zsi

and zsj , respectively; this ratio will be labeled henceforth as (ℓ, si, sj). If we take the ratio of

tangential shear of the galaxy pair (ℓ, si) divided by the pair (ℓ, sj), the shear ratios can be

modeled independently from angular scale. In particular, the ratio of shears is approximately

written as:
γ
(ℓ,si)
t

γ
(ℓ,sj)
t

≈
Σc(zℓ, zsj )

Σc(zℓ, zsi)
, (5.1)

where the critical surface density is defined in Section 1.4.1. Then, we can extend this

to taking ratios of average shears in cross-correlations of tomographic redshift bins, in the

thin-bin approximation, integrating over the redshift distributions of the lenses, nℓ(zℓ), and
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sources, ns(zs), which yields:

〈
γ
(ℓ,si)
t

〉
〈
γ
(ℓ,sj)
t

〉 ≈
Σ−1
c,eff(ℓ,si)

Σ−1
c,eff(ℓ,si)

, (5.2)

where we have defined the effective critical surface density though its inverse as:

Σ−1
c,eff(ℓ,s)

≡
∫

dzℓ nℓ(zℓ)

∫
dzs ns(zs)Σ

−1
c,eff(zℓ, zs) . (5.3)

This approximation is only good enough when the redshift bins are sufficiently narrow. They

are useful, however, in demonstrating that the shear ratios are only dependent on the redshift

bins and geometrical factors. This model is what was used in DES Y1 (Prat et al., 2018);

for the complete model that was instead used in DES Y3, which accounts for more terms,

see Sánchez et al. (2022a).

In the full shear ratio modeling in DES Y3, the specifics of galaxy bias needed to be taken

into account. In the fiducial model of shear ratios, the non-linear matter power spectrum is

considered, which used the Halofit approach (see also discussion in Section 1.2.2). As we

also mentioned before, shear ratios push the analysis to smaller scales (and thus the need

of a non-linear matter power spectrum), and thus it is worth to compare the fiducial results

with the predictions from a galaxy-halo connection model. For that, we used the results

from the HOD analysis in Zacharegkas et al. (2022), and the results are shown in figure 5.2.

The comparisons in this figure are limited to only the few bin combinations considered in

that work, as presented also in Chapter 3. This test serves as a "robustness test" to assess

the applicability of the Halofit model. The shear ratios in that figure are simulated using

the MICE N -body simulations.

The shear ratio tests in figure 5.2 are split into large (orange points) and small (cyan

points) scales. In the top panel, where the HOD is fixed within each bin, on large scales the
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Figure 5.2: Effects of HOD modeling (Zacharegkas et al., 2022) and HOD evolution on
the shear ratios, for both small and large angular scales. The error bars show the ratio
uncertainties from the same covariance as used in the data. The comparison between the
fiducial model and the HOD fixed inside a bin is shown in the top panel, while the comparison
with the HOD that evolves with redshift within a bin is shows in the bottom panel.
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Halofit approach is practically identical to the HOD one, as expected. On the small scales,

there is a small deviation, however it is not significant compared to the error bars. The

same is true for the second case, in the lower panel, where the differences are even smaller.

Therefore, it is concluded that the Halofit approach is sufficiently good in describing the

shear ratios on the scales considered in the analysis, at least when compared to the prediction

from the HOD model.
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CHAPTER 6

METHODS OF MITIGATION OF SMALL-SCALE

CONTAMINATION IN GALAXY-GALAXY LENSING

In this section we present the work in Park et al. (2021). In that study, we compared and

developed transformations to data from the DES Y3 that remove any contamination on the

linear scales, which are utilized in the key cosmological analyses, from the non-linear scales.

This is important in order to make sure that the final constraints on cosmology are not

biased due to the contamination. By performing a careful comparison of various methods

which do that, commonly employed in the literature, we provide recommendations as to

which method is best to be utilized by future analyses on data sets even more constraining

than DES Y3. To do so, we perform simulated data vector tests under a LSST Y1 setup.

6.1 Methods of mitigation of small-scale contamination in

galaxy-galaxy lensing

Since in Cosmology an adequate small-scale model for galaxy-galaxy lensing, e.g. as discussed

in Chapters 3 and 4, is not always available or when for various reasons such models are

not utilized, we need to make sure that whenever we perform an analysis that includes this

2-point statistic we at least correctly account for the contribution from these scales in order

to avoid biases in our results. This is the subject of this chapter: given the non-local nature

of the galaxy-galaxy lensing estimators, how can one perform transformations on the data

to remove the "contamination" from small scales in the larger scales that we consider in an

analysis? We discuss this in detail in Prat et al. (2023) and in what follows below.
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6.1.1 Introduction

When the light of background (source) galaxies passes close to foreground (lens or tracer)

galaxies it gets perturbed, distorting the image of the source galaxies we observe. Galaxy-

galaxy lensing refers to the cross-correlation between source galaxy shapes and lens galaxy

positions. The amount of distortion is correlated with the properties of the lens sample

and the underlying large-scale structure it traces. In the case of a spherical distribution

of matter, the shear at any point will be oriented tangentially to the direction toward the

center of symmetry. Then, the tangential component of the shear will capture all the gravi-

tational lensing signal produced by a spherically symmetric distribution of mass. Because of

this, the tangential shear averaged over many source-lens galaxy pairs is one of the typical

measurements that is done to detect this correlation.

Galaxy-galaxy lensing has had a wide range of applications since it was first detected in

Brainerd et al. (1996). It has been extensively used to probe the galaxy-matter connection

at small scales, e.g. Choi et al. (2012), Yoo & Seljak (2012), Kuijken et al. (2015), Clampitt

et al. (2017), Park, Krause et al. (2016), Zacharegkas et al. (2022) or Luo et al. (2022);

to extract cosmological information using the well-understood large scales in combination

with other probes such as galaxy clustering and/or CMB lensing as in Mandelbaum et al.

(2013), Baxter et al. (2016), Joudaki et al. (2018), van Uitert et al. (2018), Prat, Sánchez

et al. (2018), Singh et al. (2020), Lee et al. (2022), Prat et al. (2022); to obtain lensing shear

geometric constraints e.g. Jain & Taylor (2003), Prat, Baxter et al. (2019), Hildebrandt et al.

(2020), Giblin et al. (2021), Sánchez, Prat et al. (2022a), and also recently in Leauthaud

et al. (2022) to assess the consistency of lensing across different data-sets and to carry out

end-to-end tests of systematic errors.

Moreover, galaxy-galaxy lensing is a standard part of the so-called 3×2pt analyses that

combine large-scale structure and weak lensing measurements to extract cosmological infor-

mation. The 3×2pt stands for the combination of three two-point correlation functions: the
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autocorrelation of the positions of galaxies (galaxy clustering), the cross-correlation of galaxy

shapes and galaxy positions (galaxy-galaxy lensing) and the autocorrelation of galaxy shapes

(cosmic shear). This combination was originally proposed in Hu & Jain (2004), followed by

Bernstein (2009) and Joachimi & Bridle (2010) and has since then been applied to different

galaxy survey data sets, such as to KiDS data, as in Heymans et al. (2021), and to DES

data, e.g. in Abbott et al. (2022).

These kind of analyses commonly use the well-understood large scales, placing stringent

scale cuts to remove the parts of the data vector that currently add too much uncertainty

in the model due to non-linearities in the matter power spectrum, galaxy bias and baryonic

effects, amongst others (e.g. Krause et al. 2021a). However, the galaxy-galaxy lensing signal

is non-local in nature, that is, the predicted signal at a given separation between a source and

a lens galaxy (at the redshift of the lens galaxy) depends on the modeling of all scales within

that separation, including the non-linear small scales. This can be appreciated expressing

the tangential shear of a single lens-source galaxy pair separated by an angular distance θ

as a function of the excess surface mass density ∆Σ:

γt (θ, zl, zs) =
∆Σ (θ)

Σcrit(zl, zs)
, (6.1)

where ∆Σ can be expanded as the difference between the mean surface mass density below

a certain angular scale (< θ) and the surface mass density at this given scale θ:

∆Σ(θ) = Σ (< θ)− Σ (θ), (6.2)

where the non-locality of the tangential shear quantity becomes apparent, since the tangential

shear defined at some θ value will always carry information of all the scales below this value.

Σcrit is just a geometrical factor that depends on the angular diameter distances to the lens

galaxy Dl, the one between the lens and the source Dls and the one to the source galaxy
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Ds, and is defined as:

Σ−1
crit(zl, zs) =

4πG

c2
DlsDl

Ds
ifzs > zl, (6.3)

and zero otherwise. In the equation above G is the gravitational constant and c is the speed

of light.

Therefore, our inability to model the small scales accurately enough given the measure-

ment uncertainties impacts the lensing signal at all scales. Expanding on this, in order to

predict the lensing signal, an accurate prediction for the galaxy-matter correlation func-

tion ξgm(r) is required for some range of physical (3D) scales r, see e.g. MacCrann et al.

(2020a). At large scales, we expect linear theory to hold and thus we can relate the galaxy-

matter correlation function with the matter correlation through a linear galaxy bias factor:

ξgm(r) = bξmm (see Desjacques et al., 2018, for a galaxy bias review). At smaller (nonlinear)

scales we do not currently have a precise theory to model ξgm(r). Therefore, it is crucial to

ensure that the tangential shear measurement is only sensitive to scales in ξgm(r) where we

know that the modelling is sufficiently accurate. Since the galaxy-galaxy signal receives a

non-local contribution that depends on scales in ξgm(r) that are much smaller than the sep-

aration at which the measurement is made (i.e. the impact parameter in the lens redshift),

this non-locality can then force the scale cuts applied in real data to be significantly larger

than the scale at which theoretical uncertainties become problematic. For example, due to

this reason, the scale cuts in the DES Y1 3×2pt cosmological analysis (Abbott et al., 2018)

were higher for the galaxy-galaxy lensing part (12 h−1Mpc) than for the galaxy clustering

part (8 h−1Mpc).

To help with this issue, there have been a few independent efforts to mitigate the non-

locality of the galaxy-galaxy lensing signal. The first that was proposed was the annular

differential surface density estimator by Baldauf et al. (2010), which consists of modifying

the data vector on all scales in a way that removes information about the lens mass dis-
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tribution below a chosen scale R0, based on the measured data vector around R0. Later

on MacCrann et al. (2020a) proposed a methodology to take into account the non-locality

by analytically marginalizing over an enclosed point-mass directly when performing the cos-

mological parameters inference. Finally another estimator-based methodology was proposed

by Park et al. (2021), which achieves the localization of the galaxy-galaxy lensing signal by

performing a linear transformation of the tangential shear quantity. In the recent DES Y3

3×2pt work (Abbott et al., 2022), the point-mass marginalization methodology was applied

to remove the information from small scales above a certain scale, which resulted in being

able to model the galaxy-galaxy lensing until 6 Mpc/h, a much smaller scale cut than the

one used in DES Y1 of 12 Mpc/h, even with smaller measurement uncertainties, while the

galaxy clustering scale remained the same as in the Y1 analysis (8 h−1Mpc).

In this paper we perform a thorough comparison of these different proposals with the main

goal of understanding which of them is advantageous to use in future cosmological analyses.

First, we use simulated data vectors with uncertainties mimicking the Rubin Observatory

Legacy Survey of Space and Time (LSST) Y1 settings to perform such a comparison and

then apply it to DES Y3 data.

6.2 Theory

Eq. (6.2) can be rewritten as a function of physical scale R = θDl in the small angle

approximation as:

∆Σ(R) = Σ (0, R)− Σ (R). (6.4)

Then, expanding each of the terms, the surface density at a given transverse R scale be-

tween the lens galaxy and the source light can be expressed as the integral of the three-

dimensional galaxy-matter correlation function ξgm(r) over the line-of-sight distance Π, with
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r =
√
Π2 +R2:

Σ(R) = ρm

∫ ∞

−∞
dΠ
[
1 + ξgm

(√
Π2 +R2

)]
, (6.5)

where ρm is the mean matter density. The other term in Eq. (6.4) is the mean surface density

between two transverse positions, which can be generally expressed as:

Σ(R1, R2) =
2

R2
2 −R2

1

∫ R2

R1

Σ(R′)R′dR′. (6.6)

For R1 = 0 and R2 = R it simplifies to:

Σ(0, R) =
2

R2

∫ R

0
Σ(R′)R′dR′. (6.7)

This term is the one containing the information from all scales down to R = 0, including

the one halo regime for which we do not have an accurate model for ξgm. Assuming we can

model ξgm accurately only down to some minimum scale rmin, we do not want ∆Σ(R) to

depend on ξgm below rmin. From the equation above it becomes clear that Σ(0, R), and thus

∆Σ(R), are only sensitive to the total mass enclosed inside R (i.e. to some integral of ξgm),

but not to how the mass is distributed (i.e. to the shape of ξgm). For instance, ∆Σ at scales

larger than R will be the same for a point-mass distribution as for an NFW profile. Also, as

shown by Eq. (6.7), the contribution from the total enclosed mass will scale as 1/R2. This

is the key fact that all the estimators described below rely on to remove the dependency of

the enclosed mass (or non-locality) of the galaxy-galaxy lensing measurements. Below we

summarize each of these currently existing methodologies. We also visualize the modified

data vectors for each of the methodologies in Fig. 6.1.
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6.2.1 Annular Differential Surface Density Υ

The Annular Differential Surface Density statistic, Υ(R), is defined in the following way

(Baldauf et al., 2010):

Υ(R;R0) ≡ ∆Σ(R)− R2
0

R2
∆Σ(R0) = (6.8)

=
2

R2

∫ R

R0

dR′R′Σ(R′)− 1

R2

[
R2Σ(R)−R2

0Σ(R0)
]
. (6.9)

From the integration limits it is clear this estimator does not include information from

scales below R0, because ∆Σ(R0) contains the same small-scale contribution as ∆Σ(R), just

rescaled by R2/R2
0. The second line follows from the first one by substituting ∆Σ(R) =

Σ (0, R)− Σ (R) and using the definition

Σ(R1, R2) =
2

R2
2 −R2

1

∫ R2

R1

dR′R′Σ(R′). (6.10)

In this estimator and in the ones below that also involve a transformation of the data vector,

the model is transformed in the same way as the measurements. Moreover, the Annular

Differential Surface Density statistic can be equivalently defined for the tangential shear

quantity using angular scales:

Υγt(θ; θ0) ≡ γt(θ)−
θ20
θ2

γt(θ0) , (6.11)

using the small-angle approximation to go from R to θ. In realistic scenarios, where each

lens tomographic bin has a non-negligible width, a given value θ0 will mix a range of physical

scales R0. In this work we use the Annular Differential Surface Density statistic based on

the tangential shear quantity throughout the paper (instead of the ∆Σ one), and use θ0 cuts

computed with the mean zl for each redshift bin, given a specified R0 cut. In this paper we

use values for R0 of 6 Mpc/h and of 8 Mpc/h, depending on the data set and its constraining
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power.

The covariance of Υ will also generally need to be modified. Given that we can write the

transformation as Υ = γt −X, with X being a constant, then Var[Υ] = Var[γt] + Var[X]−

cov[γt, X]. In the case that X is noiseless, the covariance of Υ will be identical to the γt

one. In our implementation we always modify the covariance of the Υ statistic to include

the noise of γt(θ0).

6.2.2 Y-transform

The Y -transformation derived in Park et al. (2021) is a localizing linear transformation that

utilizes the local quantity Σ(R) underlying the galaxy-galaxy lensing observable ∆Σ(R). By

inverting the ∆Σ(R)–Σ(R) relationship, the Y quantity defined as

Y (R) ≡ Σ(R)− Σ(Rmax) =

∫ Rmax

R
d lnR′

[
2∆Σ(R′) +

d∆Σ(R′)
d lnR′

]
(6.12)

recovers the local Σ(R) up to an overall additive constant Σ(Rmax). To treat the discretized

observables most frequently used in real analyses, this relation is also discretized to a linear

transform given by

Y = (2S+ SD)∆Σ = T∆Σ, (6.13)

where the trapezoidal summation matrix S representing the log integral and the finite differ-

ences matrix D representing the log differentiation are used to define the final transformation

matrix T. The linear format of this transformation allows a further direct application to a

γt vector, as γt is proportional to ∆Σ. Thus, by transforming an observed galaxy-galaxy

lensing vector γt and its covariance Cγ as

Yγ = Tγt, (6.14)

CYγ = TCγT
T, (6.15)
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we achieve a likelihood analysis with a localized galaxy-galaxy lensing observable. It is

notable that the T matrix nulls out components in ∆Σ (γt) proportional to 1/R2 (1/θ2),

which can also be seen from Eq. (6.12) when a term proportional to 1/R2 is added to ∆Σ(R).

Another way to see this is that if ∆Σ(R) has a 1/R2 shape, the integral from Eq. (6.12)

vanishes. Note that this is also true for the Υ statistic of section 6.2.1, i.e. adding a term

proportional to 1/θ2 makes no difference to the estimator (see Eq. (6.11)).

6.2.3 Point-mass marginalization

MacCrann et al. (2020a) proposed to analytically marginalize over the contribution from

within the small-scale cut by treating it as a point-mass (PM) contribution scaling as 1/R2.

This point-mass term can be expressed as an addition to the tangential shear model for a

given lens redshift bin i and source redshift bin j:

γ
ij
t (θ) = γ

ij
t,model (θ) +

Aij

θ2
, (6.16)

where we use the small-angle approximation to go from R to θ. Here the γ
ij
t,model is a predic-

tion based on a model for the 3D galaxy-matter correlation function ξgm(r) that is correct for

scales r > rmin, but can be arbitrarily wrong for r < rmin, and Aij is some unknown constant

that we can marginalize over. The simple form of this contamination model makes it suitable

for an analytic marginalization approach given that the scale dependence is not dependent on

cosmology or the lens galaxy properties. We want to marginalize P (γt,obs (θ)|γt,model (θ), A)

over the unknown constant A in order to obtain the likelihood we are interested in, namely:

P (γt,obs (θ)|γt,model (θ)) =

∫
dAP (A)P (γt,obs (θ)|γt,model (θ), A). (6.17)

In the case that the γt,model is Gaussian distributed with covariance matrix Cγ , and we have

a Gaussian prior on A with mean zero and width σA, one can show that (Bridle et al., 2002)
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P (γt,obs (θ)|γt,model (θ)) is also Gaussian distributed with a covariance matrix

N = Cγ + σ2Ax⃗x⃗
T, (6.18)

where x⃗ has elements xn = (θmin/θn)
2, and θmin represents the scale cut. This means that in

order to marginalize over the free parameter A, we only need to add this term to the original

covariance rather than explicitly sampling over possible values of A in e.g. an MCMC chain.

In this work we use an infinite prior for σA. In this case, the extra term is added to the

inverse covariance directly, following the procedure described in MacCrann et al. (2020a)

and in Prat et al. (2022).

Point-mass marginalization using geometric information

The amplitudes Aij can be written as

Aij =

∫
dzl

∫
dzsn

i
l(z)n

j
s(z)B

i(zl)Σ
−1
crit(zl, zs)D

−2(zl)

where Bi represents the total mass enclosed within θmin for the i-th lens bin, nil(z) is the

redshift distribution of each lens bin, njs(z) for each source bin, and D(zl) is the angular

diameter distance to the lens redshift zl. If we assume that Bi evolves slowly across the

width of the lens bins we can drop the zl dependence and define the parameters βij in the

following way:

Aij ≈ Bi
∫

dzl

∫
dzsn

i
l(z)n

j
s(z)Σ

−1
crit(zl, zs)D

−2(zl) ≡ Biβij .

The parameters βij are purely geometrical (sometimes also called shear-ratio information),

and thus can be exactly computed analytically given the input redshift distributions1. Then,

1. Note that since the second term of the RHS of Eq. (6.16) only accounts for the unmodeled enclosed mass
caused by the mismodeling of the halo-matter correlation function, other effects such as IA or magnification
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the predicted βij factors can be used to reduce freedom in the model by fixing the relative

scales between the source bins sharing the same lens bin and only marginalizing over Bi

instead of over a free-form Aij .

We label this variant of the model as "Point-mass (free per zil )", since in this case there

is only one free parameter per lens bin. When this approximation is not used (i.e. only using

Eq. 6.16) we label the model as "Point-mass (free per zil−z
j
s)". In the DES Y3 analysis, where

the point-marginalization was used, the variant of the model using geometrical information

was employed. In this paper, we also explore the differences, advantages and caveats of these

two variants of the point-mass marginalization method.

6.2.4 Mode projection: “Project-out” estimator

To further illustrate the similarities and/or differences among the above estimators, we also

construct a new estimator that we refer to as the “project-out” estimator. This estimator

is designed such that it follows the philosophy of the MacCrann et al. (2020a) approach,

namely by focusing on the point-mass 1/R2 mode within the observed galaxy-galaxy lensing

data vector, while it follows the implementation used in Park et al. (2021), namely by finding

a suitable linear transformation and using it to transform the data vectors and covariances.

In Appendix F we show that the "Proj-out" method is actually equivalent to the point-mass

marginalization method when the prior of the point-mass is infinitely wide. Also, this basic

equivalence between marginalizing over a parameter and projecting out a given mode had

already been pointed out in Appendix A from Seljak (1998) for a general scenario.

The core idea behind this estimator, thus, is to identify the projection of the observed

galaxy-galaxy lensing data vector onto the 1/R2 mode, and then to remove it from the

would be a part of the first term of the RHS of Eq. (6.16), and thus do not need to be included in the
computation of the βij factors.
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Figure 6.1: Visualization of the data vectors for each of the galaxy-galaxy lensing (GGL)
estimators that we compare in this paper to localize the original tangential shear measure-
ments (γt), corresponding to the second lens redshift bin and the highest source bin. We
do not add the point-mass marginalization case since it does not involve a modification of
the data vector, only of the (inverse) covariance. The triangle point for the proj-out case
represents a negative point.
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original vector. The projection operator P is given by (Aitken, 1936; Tegmark et al., 1998):

P = A
(
ATC−1

γ A
)−1

ATC−1
γ . (6.19)

where A has columns spanning the subspace onto which we wish to project. In our case, A

has only one column given by {1/R2
i }, or in practice {1/θ2i }, with θi being the representative

angular separation of the i-th bin in our data vector. Note that instead of the “vanilla”

projection operator A(ATA)−1AT we use the generalized least squares definition of the

projection operator to properly account for the covariances in the data vector.

The “cleaned” data vector is then defined as

γt,proj-out = γt −Pγt

=

[
I−A

(
ATC−1

γ A
)−1

ATC−1
γ

]
γt

≡ Mγt, (6.20)

and its covariance is given by

Cproj-out = MCγM
T (6.21)

where Cγ is the original covariance matrix. The inversion of Cproj-out becomes problematic,

as M is not a full-rank matrix. We thus follow Tegmark (1997) to define a pseudoinverse of

the transformed covariance matrix as

C̃−1
proj-out = M

(
Cproj-out + ηAAT

)−1
MT, (6.22)

where η is a constant whose value does not affect the performance of the pseudoinverse2.

This can be understood intuitively as adding back in the lost mode to Cproj-out, inverting,

2. We have used η = 10−3 for the runs with DES Y3 data. We have checked that using a different value,
e.g. η = 103, does not change the results.
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and removing the added mode at the end. With γt,proj-out and C̃proj-out in hand, a full

likelihood analysis can be defined using this new estimator.

6.3 Methodology

The question we are aiming to answer is whether the different methodologies to localize

the galaxy-galaxy lensing measurements are consistent under the precision of current and

future surveys. In order to do so, we perform a combined 2×2pt analysis using each of the

methods to localize the tangential shear measurements and compare their performances at

the cosmological posterior level. We choose to do the comparison in a 2×2pt analysis instead

of a whole 3×2pt analysis to maximize the impact that the galaxy-galaxy lensing part of

the data vector has on the cosmological parameter posteriors, thus maximizing potential

differences between the localizing estimators. We perform the comparison using two different

setups: 1) First we assume the characteristics of a future survey to test the differences under

the smallest covariance. In particular, we choose the specifications of a LSST Y1-like survey,

since that will become relevant in the near-future, and it will already be significantly more

constraining than current generation surveys. 2) Secondly we apply the comparison of the

methods to DES Y3 data, a noisy realistic scenario.

For the LSST Y1 simulated case, we generate the input data vectors using a contaminated

model that includes baryonic effects and non-linear galaxy bias contributions that mostly

affect small scales (see Sec. 6.3.2), and analyze it using the simpler fiducial model that does

not take into account these contributions with a linear galaxy bias model and a dark matter

only power spectrum (see Sec. 6.3.1). We find the appropriate set of scale cuts that allow us

to recover unbiased cosmology in each case following the prescription described in Sec 6.3.3.
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6.3.1 Fiducial model

Here we summarize the baseline or “fiducial” theory that we will use to model the observed

tangential shear and galaxy clustering quantities. This is the same one used in the DES

Y3 3×2pt analysis. In particular, for the LSST Y1 simulated analysis described below we

assume the model presented in more detail in Krause et al. (2021a) and for the DES Y3 data

analysis the one defined in Abbott et al. (2022)3.

The tangential shear γt and angular clustering w(θ) observables can be expressed as

various real space projections of angular power spectra. In particular we model γt as the

following curved sky projection of the galaxy-matter angular power spectra and of other

terms that encapsulate observational effects such as intrinsic alignments, lens magnification

and their cross-talk, which add up to the total observed C
ij
δobsE

:

γ
ij
t (θ) =

∑
ℓ

2ℓ+ 1

4πℓ(ℓ+ 1)
P 2
ℓ (cos θ)C

ij
δobsE

, (6.23)

and we model w(θ) as:

wij(θ) =
∑
ℓ

2ℓ+ 1

4π
Pℓ(cos θ)C

ij
δobs δobs

. (6.24)

We refer the reader to Krause et al. (2021a) for a detailed definition of C
ij
δobsE

and of

C
ij
δobs δobs

. Pℓ and P 2
ℓ are the Legendre polynomials and the associated Legendre polynomials

respectively. For the matter power spectrum we use the dark matter only Halofit prescription

from Takahashi et al. (2012) and assume a linear galaxy bias to relate the galaxy and matter

density fluctuations.

We obtain the LSST Y1 covariances with the publicly available CosmoCov code (Krause

3. The two models are in essence identical, but differ in some of the input parameters such as the lens
magnification parameters and the redshift distributions (which were measured later in the data analysis),
and in the priors of the nuisance parameters.
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LSST Y1
Lens Sample

Number density [arcmin−2] (2.29, 3.97, 6.06, 3.07, 2.62)
Galaxy bias (1.7, 1.7, 1.7, 2.0, 2.0)

Source Sample
Number density [arcmin−2] (2.50, 2.50, 2.52, 2.48)

Total shape noise 0.3677

Table 6.1: LSST Y1 lens and source sample specifications in the setup of this work. The listed
shape noise is the total one including both ellipticity components. These values are taken
from The LSST Dark Energy Science Collaboration (2018), which specifies a lens number
density of 18 arcmin−2, which we split in 5 redshift bins, and a source number density of 10
arcmin−2 which we split in 4 redshift bins.

et al., 2017; Fang et al., 2020), using the number densities and noise specified in Tab. 6.1.

We include Gaussian and non-Gaussian terms computed using a halo model. We assume

an area of 12300 deg2 for LSST Y1, consistently with the specifications from the The LSST

Dark Energy Science Collaboration (2018).

We use a ΛCDM model with 5 (6) free cosmological parameters for the simulated (data)

case: Ωm, As, ns, Ωb, h, (Ων). We also free additional nuisance parameters to marginalize

over uncertainties related to photometric redshifts – both for the lens and source samples,

intrinsic alignments and shear calibration. The full list of free parameters and their respective

priors can be found in table II4 from Krause et al. (2021a) for the simulated analysis and in

table I from Abbott et al. (2022) for the DES Y3 data analysis. For the simulated LSST Y1

analysis we assume the same redshift distributions that were used in the methodology paper

of the DES Y3 analysis (Krause et al., 2021a), which are an early estimate of the DES Y3

redshift distributions5. For the DES Y3 data chains, we use the same settings and priors as

4. The only difference between the values that we use and the ones from table II from Krause et al.
(2021a) is that we fix the neutrino density parameter Ωνh

2 to a null value. This is because CosmoCov is
not able to generate a model for the covariance that takes into account neutrinos. However, as shown in
figure 2 from Krause et al. (2021a), the impact of marginalizing over neutrino density is small for the DES
Y3 3×2pt analysis, so we do not expect this choice to affect any of the conclusions of this work.

5. LSST is expected to use a different redshift binning with respect to the one we choose in this work.
However, since we are matching the rest of the settings to Krause et al. (2021a) we decided to also match the
input redshift distributions for simplicity, also given the fact that the redshift distributions that we assume
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in Abbott et al. (2022), except that we do not include the shear-ratio likelihood and only

combine the tangential shear and galaxy clustering measurements, since for the 2×2pt case

it does not significantly change the results (Sánchez, Prat et al., 2022a).

We use the CosmoSIS (Zuntz et al., 2015) framework to generate the data vectors and

perform the 2×2pt analysis. We use MultiNest (Feroz & Hobson, 2008; Feroz et al., 2009,

2019) to sample the parameter space and obtain the parameter posteriors, with the following

accuracy settings:

• live_points=500

• efficiency=0.3

• tolerance=0.01

• constant_efficiency=F

For the DES Y3 data, we use Polychord with the same high-accuracy settings used in

Abbott et al. (2022).

6.3.2 Contaminated input model

The baryonic contamination is obtained by rescaling the non-linear matter power spectrum

with the baryonic effects from OWLS (OverWhelmingly Large Simulations project, Schaye

et al. 2010; van Daalen et al. 2011) as a function of redshift and scale, comparing the

power spectrum from the dark matter-only simulation with the power spectrum from the

OWLS AGN simulation, following Krause et al. (2021a). For the non-linear galaxy bias

contamination we utilize a model that has been calibrated using N -body simulations and is

described in Pandey et al. (2020); Pandey et al. (2022). Overall we use the same procedure

which is used in Krause et al. (2021a) to contaminate the fiducial data vector with these

in this work have a comparable binning and redshift range than the one predicted in The LSST Dark Energy
Science Collaboration (2018) for the LSST Y1 sample.
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effects. Note that while the scale cuts and constraining power for each setup will depend

on these choices (both on the contaminated and fiducial model), the comparison of the

estimators will be independent of it since we use the same input contamination for all the

different localization methodologies.

We generate both the fiducial and contaminated data vectors at the same cosmological

and nuisance parameters that were used to define the scale cuts in the DES Y3 3×2pt

cosmological analysis. In Fig. 6.2 we display the differences between the contaminated and

fiducial data vectors for the tangential shear in the top and angular galaxy clustering in the

bottom.

6.3.3 Procedure to obtain the scale cuts

Here we describe how we obtain the scale cuts that we can use for LSST Y1 that yield

unbiased cosmological results given our input contamination data vectors. We compute the

differences of the posteriors in the 2D S8–Ωm plane between results using either the fiducial

or the contaminated input data vectors. Specifically, we use the maximum a posteriori point

(MAP) to compute the 2D offsets. We choose to use the "Point-mass (free per zil )" model

to perform this exercise, although we do not expect this choice to impact the results for the

scale cuts. If the difference is above 0.3σ, it does not pass our criteria, following the same

procedure as in Krause et al. (2021a). We have tested the following set of scale cuts: w > 8

Mpc/h, γt > 8 Mpc/h; w > 12 Mpc/h, γt > 6 Mpc/h; w > 12 Mpc/h, γt > 8 Mpc/h. Only

this last set of scale cuts meets the criteria. See Appendix G for the plots showing these

differences.

6.4 Results

Using the LSST Y1 setup described in the previous section, we find that all the estimators

perform in a similar way. In Fig. 6.3 we show the results for the simulated 2× 2pt analysis,
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Figure 6.2: Difference between the contaminated data vector and the fiducial ones for the
tangential shear (top) and angular clustering (bottom), for the redshift bin combination cor-
responding to the second lens bin and the highest source bin. This redshift bin combination
corresponds to one of the higher S/N ones. Green error bars represent the uncertainties for
DES Y3 and LSST Y1. The gray regions mark the scale cuts that are needed to obtain
unbiased cosmological results from this contamination, which have been determined to be
w > 8 Mpc/h and γt > 6 Mpc/h for DES Y3 and w > 12 Mpc/h and γt > 8 Mpc/h
for LSST Y1 when using one of the methods to localize the tangential shear measurements
(otherwise the scale cuts would need to be larger for the tangential shear quantity, as shown
in Appendix H)
.

198



No mitigation
Point-mass (free per zil)

Point-mass (free per zil -z
j
s)

Y-transform
Υ
Proj-out

0.
72

0.
78

0.
84

0.
90

0.
96

σ
8

0.
27

0.
30

0.
33

0.
36

Ωm

0.
80

0.
84

0.
88

0.
92

S
8

0.
72

0.
78

0.
84

0.
90

0.
96

σ8

0.
80

0.
84

0.
88

0.
92

S8

Figure 6.3: Cosmological parameter posteriors obtained from an input galaxy clustering and
galaxy-galaxy lensing data vector (2×2pt) with non-linear bias and baryonic contamination,
LSST Y1 covariance, 8Mpc/h scale cuts for galaxy-galaxy lensing and 12 Mpc/h for galaxy
clustering. This figure demonstrates that all the methodologies to localize the galaxy-galaxy
lensing measurements perform similarly at the cosmological posterior level with LSST Y1
uncertainties. The 2D contours represent 1σ and 2σ confidence regions. The shaded area
under the 1D posteriors represents the 1σ confidence level in 1D.
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combining galaxy-galaxy lensing and galaxy clustering for all the methodologies that we

want to compare that localize the tangential shear measurements. We also add the result

without applying any mitigation method, to illustrate the importance of using one of these

methodologies to obtain unbiased cosmological constraints. All these results are applying

the fiducial scale cuts that passed the criteria defined in Sec. 6.3.3: w > 12 Mpc/h and

γt > 8 Mpc/h. In Appendix H we also show that γt > 40 Mpc/h cuts would be needed in

order to recover unbiased cosmological constraints if we do not apply any mitigation scheme.

We find that all the methodologies are able to properly mitigate the impact of the input

contamination and recover very similar uncertainties on the most constrained cosmological

parameters of a 2×2pt analysis, that is, Ωm and σ8. In the comparison we also include the

new estimator that we have developed that only projects out the 1/R2 mode, without doing

any extra transformation as in some of the other methodologies, labelled as "Proj-out" in

the plot. The fact that all the estimators agree with each other, and also with this new

estimator, indicates that projecting out this mode is the only thing that has any effect in all

the mitigation methodologies at the cosmological posterior level.

Instead we have found that differences between the methods arise from input assumptions.

In particular, we observe the biggest difference is between the two different variants of the

point-mass marginalization. The method labelled as "Point-mass (free per zil − z
j
s)" does

not use any extra information with respect to the other estimators and can be compared

directly to them. On the other hand the one labelled as "Point-mass (free per zil )" uses the

approximation that the mass enclosed below the minimum scale used does not evolve within

the redshift range of the lens bin, and moreover uses geometrical "shear-ratio" information

to constrain the scaling between different sources sharing the same lens bin. We find that

the posteriors for this case are slightly more constraining as expected since they use more

information, but also slightly more biased with respect to the input true cosmology. Thus,

we recommend that when applying the point-mass marginalization case using geometrical
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Figure 6.4: Application to DES Y3 data in a 2×2pt analysis for the MagLim sample of each
of the different methodologies to localize the tangential shear measurements. This figure
demonstrates that all the methodologies to localize the galaxy-galaxy lensing measurements
perform similarly at the cosmological posterior level with DES Y3 uncertainties and the
presence of noise. The 2D contours represent 1σ and 2σ confidence regions. The shaded
area under the 1D posteriors represent the 1σ confidence level in 1D.

information to LSST Y1 or a more constraining data set, the assumption that the point mass

evolves slowly within a lens redshift bin should be tested for a given lens sample.

In Appendix I we also compare the intrinsic alignment parameter posteriors. We find that

all the estimators perform similarly, except for the point-mass using geometric information

to constrain the scaling between the lens redshift bins that gives a much tighter (and still

unbiased) posterior on the galaxy bias of the source sample bTA parameter and a slightly

tighter constraint for the A2 and α2 parameters, which are the parameters related to the
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tidal torque contribution to the model.

6.4.1 Application to DES Y3 data

After testing on noiseless simulated data vector with an LSST Y1 setup we apply all the

methodologies to localize the galaxy-galaxy lensing measurements to the DES Y3 data, in

particular to the 2×2pt setup with the MagLim lens sample presented in Porredon et al.

(2022) but without the shear-ratio likelihood. The scale cuts we use are the same as in

Porredon et al. (2022), that is, 6 Mpc/h for galaxy-galaxy lensing and 8 Mpc/h for the

angular galaxy clustering. In Fig. 6.4 we show the results of this comparison. Note that the

"Point-mass (free per zil )" case corresponds to the fiducial DES Y3 2×2pt result presented

in Porredon et al. (2022). We find that all the methodologies give consistent results, even in

this noisy and more realistic scenario, which presents non-linearities at the small scales and

includes all the effects from the real Universe. In Appendix J we compare the constraining

power of DES Y3 and LSST Y1 to give a sense of scale.

Moreover, we compare the posteriors on the TATT intrinsic alignment parameters for

DES Y3 data and find similar conclusions as in the simulated case, as shown in Appendix I.

6.4.2 Performance differences

Regarding performance differences between the methods, we find the "Proj-out" estimator

to be less numerically stable than the other approaches in its current CosmoSIS implemen-

tation. This is because the "Proj-out" method requires an input arbitrary η value to obtain

the pseudoinverse of the transformed covariance matrix, as defined in Eq. (6.22). While we

have checked that a considerable wide range of η values yield the same results under the con-

ditions of this analysis, outside a certain range that is no longer the case. Thus, robustness

against different η values might need to be revisited in other settings. Moreover, we find the

point-mass marginalization method to be the simplest to use as currently implemented in
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Modify data vector? Numerical Stability Computational expense
Point-mass marginalization No Excellent Fastest

Annular differential surface density (Υ) Yes Excellent Fast
Y-transformation Yes Excellent Slow

Proj-out Yes Poor Slowest

Table 6.2: Comparison of the process and performance of each methodology to localize the
galaxy-galaxy lensing measurements. The computational expense estimates are based on
the current implementation of the CosmoSIS code. More details about the performance
differences can be found in Sec. 6.4.2.

CosmoSIS, since it does not require modifying the input data vector or covariance matrix

files. Finally, we also compare the running time of the different estimators. Using the LSST

Y1 setup, the point-mass marginalization without geometrical information took 7h, the Υ

statistic took 7h 45 min, the Y-transformation took 12h and the proj-out estimator took

16h 40 min, using the MultiNest sampler with the settings defined above and using the

same number of cores. On DES Y3 data and the Polychord sampler with high-accuracy

settings, the point-mass marginalization without geometrical information took 45h, the Υ

statistic took 49h, the Y-transformation took 54h and the proj-out estimator took 70h. We

summarize these findings in Table 6.2.

6.5 Summary and conclusions

In this paper we compare three existing methodologies to localize the galaxy-galaxy lensing

measurements: the Annular Differential Surface Density estimator (Υ) presented in Bal-

dauf et al. (2010), the Y-transformation derived in Park et al. (2021) and the point-mass

marginalization described in MacCrann et al. (2020a). We compare them at the cosmologi-

cal posterior level, performing a 2×2pt analysis which combines projected angular clustering

and tangential shear measurements. We find that all these methods are able to mitigate

the impact of small scale information when using a LSST Y1 setup with noiseless simulated

data vectors, and that they are all performing in a very similar manner, yielding equivalent

posteriors on the cosmological parameters.
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To further illustrate the similarities and/or differences amongst the above listed estima-

tors, we also construct a new estimator that we refer to as "project-out". The "project-out"

method identifies the projection of the observed galaxy-galaxy lensing data vector onto the

1/R2 mode, and then it removes it from the original vector, following a similar procedure to

the Y-transform methodology, but in this case only removing this mode. Then, we proceed

to compare the posteriors obtained with the "project-out" method to the other ones, finding

it yields equivalent results. Therefore, we conclude that the removal of the 1/R2 mode is

the only relevant transformation that is needed to localize the tangential shear measure-

ments and that the rest of the modifications in the other estimators are not producing any

significant differences at the cosmological posterior level.

We also compare two different variations of the point-mass marginalization methodology,

one that uses exactly the same information as the other estimators and one that uses extra

geometrical information to constrain the scaling of the point-mass between different lens

and source bin combinations, by assuming that the enclosed mass does not evolve with

redshift within the width of the lens bin. We find that the point-mass marginalization using

geometric information yields slightly more constraining but also slightly biased results on

the cosmological parameters in the LSST Y1 simulated case, due to the approximation it

makes. Thus, the assumption going into this point-mass variant should always be tested

before applying it to more constraining data sets. Notably, we also find that the extra

geometrical information significantly improves the precision (while keeping the accuracy) of

the intrinsic alignment parameters of the tidal alignment and tidal torque (TATT) model.

In particular, we find the biggest difference in the posterior for the galaxy bias of the source

sample bTA and in the parameters controlling the tidal torque part of the TATT model.

We also compare the results obtained using any of the mitigation schemes with the case

of not applying any mitigation scheme but applying larger scale cuts. With the LSST Y1

setup, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results
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than applying larger scale cuts without using any mitigation scheme.

Finally, we apply all the methods to DES Y3 data, reaching very similar conclusions as

in the simulated case. However, even if the DES Y3 data has larger uncertainties than the

simulated LSST Y1 case, this exercise is still meaningful since it provides an input data

vector with the non-linearities and baryonic effects of the real Universe, together with any

other other unforeseen contamination that is not present in our fiducial model. It also tests

the methods in the presence of noise. In this case we still find that all the methodologies

perform in a similar manner.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

We live in a very exciting era for Cosmology. Our pursuit for answers to the most fundamental

questions about the Universe is nowadays data driven and it is enabled by some of the

most powerful experiments in Cosmology to date. The high precision of these observations,

however, requires our models and numerical techniques to greatly improve in order to be

able to keep up with the data. In many cases, due to our lack of understanding of how

to accurately model the observables as we move deep into the non-linear regime, i.e. when

we utilize the small angular scales, we opt to simply remove data points while we fit our

models to the data vectors. This is not optimal as the non-linear scales contain a wealth

of information which is not only constraining for Cosmology alone, but it also connects the

large, linear scales to the non-linear regime. Developing models to describe the full range of

scales is a big and difficult task; it is, however, the best path forward if we want to understand

the full picture of how the Universe operates and how the various scales interact with each

other to create the large-scale structure we observe today.

For the main part of this Thesis, we have focused on developing models for the galaxy-

halo connection via the Halo Occupation Distribution approach. In Chapters 3 and 4 we

presented applications of this to data from the Year 3 of the Dark Energy Survey. In

Chapter 3, which is based on Zacharegkas et al. (2022), we developed a complex framework

to model galaxy-galaxy lensing which we then applied to the DES Y3 data that was used in

the cosmological analyses. We thus pushed these analyses to much smaller scales and we were

able to constrain properties of the lens dark matter halos for the two cosmological samples.

Moving forward, in Chapter 4 (Zacharegkas et al. in prep) we discussed an extension of the

previous model that achieves two main purposes: 1) It accounts for more properties of the
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lens galaxies, namely stellar mass and color; 2) We also modeled galaxy clustering on small

scales, in order to perform a 2×2pt analysis that utilizes the full range of scales. In additions,

in that chapter, since we were interested in utilizing stellar-mass and color, we created a new

lens sample that we called the stellar-mass sample in DES Y3 which we described in detail.

This work is in progress as this thesis is being written and the final paper is scheduled to be

submitted shortly after this thesis is defended.

In Chapter 5, which is based on Prat et al. (2022) and Sánchez et al. (2022a), we presented

some additional work that was done within the DES collaboration that utilizes aspects of

the small-scale HOD framework on the previous two chapters in order to perform tests

on the data. In the first chapter we showed how having a good grasp of the galaxy-halo

connection can be important in determining the scale cuts in cosmological analyses, via test

on contaminated simulated data vectors. In the next and final chapter, we talked about how

small-scale information can be exploited in Cosmology via indirect ways by utilizing ratios of

shears. Still, however, without a galaxy-halo connection model on cannot push the analyses

to the smallest scales.

Again related to small scales, in Chapter 6 we discussed various methodologies one can

use in order to mitigate the effects from contamination in galaxy-galaxy lensing from small

scales; this is based on Park et al. (2016). This work is a nice complement to what we

discussed in Chapters 3 and 4 in the sense that it is an approach to treating small scales that

is the opposite of what was discussed in those chapters: Instead of modeling small scales

and including them in the analysis, we remove both those non-linear scales and their effect

on the linear scales that we consider. This also serves as a good overview of what is usually

done in the cosmological literature regarding the non-linear regime and highlights even more

how important it is to be able to model it.

Before we conclude this thesis, below we very briefly discuss interesting future directions

and extensions of what is done this far.
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7.2 Future work

In this section we discuss various future directions that we can take utilizing small scales in

cosmology. As mentioned throughout this thesis, small scales in cosmology contain a wealth

of information and they can be used to tests aspects of the ΛCDM model that have not been

thoroughly tested before. Below we briefly introduce some of these ideas.

7.2.1 Cosmology with small scales

Having a framework to perform the equivalent of a 2 × 2pt or even a 3 × 2pt analysis

using large and small scales has been one of the main reasons driving the development of

the models in Chapters 3 and 4. Thus, in the future we would like to perform such an

analysis in order to improve the constraints on cosmology and test the consistency between

small and large scales. Of course, varying the cosmological and the galaxy-halo connection

parameters simultaneously is computationally expensive and requires a lot of additional

testing for systematics, and thus this would be a complex work.

Moreover, something that we realized during our DES Y3 small-scale analysis, is that

pushing our modeling to small scales requires accounting for many additional effects. These

include, but are not limited to: baryonic feedback, stripping of dark matter from the out-

skirts of subhalos, accounting for modeling uncertainties on the highly non-linear scales, halo

exclusion, modeling dark matter density profiles inside a halo and also modeling how satel-

lite galaxies are spatially distributed within the halo. If we want to perform cosmological

analyses utilizing all scales we must carefully model and account for all these effects. It also

needs to be emphasized that to properly add small-scale data to such an analysis, it is crucial

to have a good model for the transition scales, from the 1-halo to the 2-halo regime.
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7.2.2 Stress-testing the ΛCDM paradigm

Beyond "traditional" cosmological studies with the inclusion of small scales, it is very inter-

esting to utilize the tools we have developed in this work to stress-test the ΛCDM model in

the 1-halo regime. Some of ways we can do that are the following.

1) Testing models of Dark Matter with small scales

There are three key ingredients in our small-scale model that we can use to compare different

models for dark matter: I) The density profiles of the dark matter distribution inside the

central halos; II) The spatial distribution of satellite galaxies within a halo; III) The halo

mass function and dark matter power spectrum models. By varying these model ingredients

based on different dark matter models we can infer what are the dark-matter properties that

the data prefers.

2) The "lensing is low" problem

When small-scale lensing model predictions are produced from galaxy clustering analyses of

the galaxy-halo connection, the signal is found to be lower than the data. This is commonly

referred to as the "lensing is low" problem and there is debate as to whether this is an

indication of new physics or of an incomplete understanding of galaxy formation physics

or cosmology. We can use the small-scale model from this work to test the effects on the

small-scale modeling, in a combined lensing and clustering analysis, from additional model

complexity or modifications to the theory. For example, baryonic effects or assembly bias

could play a significant role in solving this problem, and we can also test modifications to

General Relativity.

7.2.3 Applications of Machine Learning in Cosmology

Given how computationally demanding and complex analyses that simultaneously vary the

cosmological parameters and the galaxy-halo connection are, Machine Learning (ML) is

needed to efficiently perform the calculations. Some of the ways ML will assist in carrying
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out such an analysis are the following.

1) Inference of galaxy properties

Inferring galaxy properties for millions of galaxies is computationally expensive. However,

we can use a subset of galaxies with known properties to train a ML algorithm to efficiently

predict these properties for the whole data set. For example, we can use this approach to

infer the stellar mass, redshift and color for hundreds of millions of DES galaxies in just a

few minutes to a few hours, as we have seen in Chapter 4.

2) Production of large-scale-structure weights

We usually correct for systematics in our measurements of the observables by weighting

galaxies based on how likely they are to have been affected by observing conditions and

other sources of contamination. In DES, we are using maps of these possible contaminants

and by finding correlations between those and maps of galaxy counts, we can produce our

weights. Training a Neural Network (NN) to do that is extremely efficient, and it becomes

necessary since we often have to make changes to our samples which necessitates producing

new weights every time we do so. An example of this we have also seen in Chapter 4.

3) Construction of emulators

The big volume of the parameter space to be explored and the large number of theory pre-

dictions we need to generate and compare with the data is so large when we vary cosmology

and the galaxy-halo connection at the same time that running "traditional" Bayesian pa-

rameter inference codes is inefficient to solve this problem. The best way to approach that

is to create emulators that interpolate in high dimensions and return fast theory predictions

by utilizing ML algorithms. Therefore, using ML tools my goal is to create emulators that

given a cosmology and a galaxy-halo connection would quickly provide predictions for galaxy

clustering statistics.

4) Forward modeling

Forward modeling the galaxy halo-connection is a great way to construct a more realistic
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framework that captures physics which is hard to model otherwise (up to limitations of

the simulations). Such an alternative way of modeling the galaxy-halo connection can, for

example, account for non-linearities in the model and additional complexity such as satellite

striping, assebmly bias and halo exclusion in a precise way. More importantly, however, this

approach can help model the transition scales from the 1-halo to the 2-halo regime more

accurately, which is usually a hard thing to do with the more conventional methods. Moving

forward, we can utilize simulations and Machine Learning techniques to forward model the

galaxy-halo connection in order to perform cosmological studies using a wide range of scales.

7.2.4 Combining LSS data with other probes

One extension of the work in this thesis is a joint analysis of large-scale structure (LSS) data

– including small scales – with other probes. The goal is to use the joint data set to constrain

cosmology, the galaxy-halo connection, and any new quantities that the additional data can

constrain. Some really interesting cross-correlations of data sets are the following.

1) LSS and CMB joint analysis

Weak lensing analyses, like from the DES collaboration, allow us to directly constrain the

late-time Universe and play a key role in probing the dark matter and structure formation.

We can also infer constraints on the latter using the Cosmic Microwave Background (CMB)

data from Planck; however, the CMB probes the early Universe. By combining the two,

we can probe a wider range of redshift, and furthermore test the compatibility of the two

data sets while simultaneously constraining the cosmological parameters and the galaxy-halo

connection. The increased constraining power coming from the inclusion of the small scales

could also shed light on the well-known tension in the inference of the Hubble constant from

the two probes.

2) LSS and Compton-y joint analysis

An especially interesting data combination is that between galaxies and the distribution
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of hot gas in the Universe, probed via the thermal Sunyaev-Zeldovich effect and usually

measured via the Compton-y parameter. This specific cross-correlation can constrain the

thermal energy content of the Universe on large scales (Pandey et al., 2019) and the thermo-

dynamics and properties of astrophysical feedback processes on small scales (Schaan et al.,

2021). This data combination provides therefore a great way to constrain baryonic feedback

and other small-scale processes which we need to account for in cosmological studies using

all scales. Importantly, this cross-correlation is also robust to systematics.

3) LSS and gravitational wave joint analysis

Gravitational wave (GW) data from a binary system can be a cosmological tool to measure

the luminosity distance to the source. Combining this information with redshift measure-

ments from LSS data we can constrain the cosmic expansion and perform studies of dark

energy and modified gravity.

7.2.5 Testing the compatibility of cosmological constraints

As we discuss in Appendix K, as the precision of the various experiments in Cosmology

increases, it becomes more and more crucial that we have rigorous ways of assessing if there

is tension between two or more data sets. The most complete way of doing so is to also

account for any correlations between the data sets, as in many cases there is overlap between

them. The inclusion of small scales makes the need for dedicated Concordance-Discordance

Estimators (CDE’s) even more evident, as the constrains from a full-range analysis are

expected to be better. More than that, however, the addition of external data sets in our

small-scale analyses (see e.g., Section 7.2.4) would require the assessment of internal and

external tensions. Even within the same data set, we will have to quantify the agreement or

disagreement between small and large scales by splitting the data in that way and for this

the usage of "data splits" and "parameter splits", as discussed in Raveri et al. (2020), and

extensions of that work is expected to be of great importance.
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7.2.6 Small-scale constraints of Intrinsic Alignment

The orientation of galaxies, even in the absence of lensing, is not random, but it is rather

correlated with the Large-Scale-Structure (LSS) density field. This phenomenon is know as

Intrinsic Alignment (IA) and it is one of the effects that need especially careful consideration

in future surveys, as the precision increases. While working on the small-scale analysis in

DES, we encountered the difficulty of modeling this effect on small scales. Even on large

scales, there is some debate on what the correct treatment of IA is, but on small scales its

modeling is highly uncertain. For this reason, we chose to utilize redshift bins of our lens and

source galaxy samples that produce galaxy-galaxy lensing signal with small IA contribution.

Moving forward, we can improve how we model IA on all scales in a consistent manner. To

begin on this, we can utilize the HOD constraints in this work to produce theory predictions

of galaxy-galaxy lensing curves for the lens-source redshift bin combinations with potentially

high IA contamination. Taking the difference between theory and data, we can study the

residuals and fit IA models to them. This will give us an initial intuition as to whether our

current IA models can explain these residuals while constraining the model parameters. If

this is not the case, we will develop novel ways of modeling IA on all scales. For example,

in a halo model framework of modeling small scales, IA can naturally be incorporated, as

discussed e.g. in Georgiou et al. (2019); Fortuna et al. (2021), where the properties of the

galaxies and their host halos are linked to the IA signal.
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APPENDIX A

MODEL VALIDATION

In this appendix, we present tests validating our modeling code using both external code

and numerical simulations.

A.1 Comparison with DES cosmology pipeline

As part of validating our code we have done thorough comparisons with CosmoSIS (Zuntz

et al., 2015). CosmoSIS is the official code basis for DES cosmological analyses. As a result,

it is important to establish consistency with CosmoSIS on the regimes used for cosmology

analysis, effectively the 2-halo regime. We compare the galaxy-cross-matter power spectrum

Pgm, the projected lensing power spectrum Cgm and the tangential shear γt. For this purpose

we used constant galaxy bias values within a redshift bin to match the predictions from

CosmoSIS at large scales, θ ≳ 30 arcmin. In Figure A.1 we present the residuals between

what our code produces and CosmoSIS. For our comparisons we have used the same n(z)

distributions and cosmological parameters in both CosmoSIS and our code. The parameter

and bias values we used for this comparison are listed in the caption of Figure A.1. We note

here that the cosmology, bias and redshift distributions we used are not the same as what is

used or derived from the main analysis of this work.

The first panel of Figure A.1 validates that our implementation of the Eisenstein & Hu

(1998) fitting functions for the linear matter power spectrum and our usage of Halofit

to calculate the nonlinear spectrum is in good agreement with the results from CosmoSIS

which uses CAMB for the linear spectrum prediction and Halofit to apply non-linear

corrections to it. Going from Pgm to Cgm in the second panel we are also testing whether

our treatment of the redshift distributions in our averaging procedure works as expected.

Finally, to translate Cgm into γt and thus go from the second to the third panel we are

214



Figure A.1: CosmoSIS code comparison residuals for Cgm(ℓ) and γt(θ) for 6 bins of in-
terest. The bias values per each of the four lens bins [1, 2, 3, 4] are b̄g = [1.2, 1.6, 1.7, 1.7]
respectively. For the first panel we have used the mean redshift of each lens redshift bin to
calculate and compare the galaxy-matter cross power spectra. The other two panels show
the projected power spectrum and tangential shear comparison for the average over the red-
shift distributions. These comparisons are done using the following parameters for a flat
ΛCMD cosmology: Ωm = 0.25, Ωb = 0.044, σ8 = 0.8, n5 = 0.95, H0 = 70 km/s/Mpc and
Ων = 0. Furthermore, note that the redshift distributions, n(z), are not the same as what
we used throughout this paper, but both our and the CosmoSIS results used the same n(z)
for lenses and sources.
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confirming that our code is in agreement with CosmoSIS when transforming to real space.

Note also that CosmoSIS is using the full-sky formalism to calculate the tangential shear,

while we opt for the Hankel transform, i.e. flat-sky approximation, approach to gain in

speed. However, for the angular scales we are interested in we have tested both approaches

to confirm that the flat-sky approximation is sufficient, which is what the last panel of

Figure A.1 essentially demonstrates.

The upper and middle panels of Figure A.1 show that our galaxy-dark matter cross

power spectrum and, as a result, the projected lensing power spectrum, respectively, appear

to be systematically lower than the CosmoSIS output. We trace that to a difference in

the matter power spectrum from the two codes, as we are utilizing the Eisenstein-Hu fitting

functions to calculate the dark matter transfer function whereas CosmoSIS is calling CAMB

to evolve the primordial spectrum. Moreover, the presence of baryonic acoustic oscillations

complicate the spectrum and the residuals appear worse around the scales that correspond

to these wiggles. In addition to that, the calculation of Cgm involves the multiplication of

Pgm by geometrical factors (Equation (3.14)). CosmoSIS is using a constant value in each

redshift bin for Σ−1
c , while we are calculating that quantity as a function of redshift within

a given bin, which leads to more differences in the resulting lensing power spectra when

averaging over the n(z) distributions. Overall, we find a non-significant ∼ 2% deviation in

Cgm and we also find a good overall agreement to within ∼ 2% for the tangential shear

outputs.In order to quantify the impact on our the derived halo properties from using the

EH98 functions instead of CAMB we have produced a simulated data vector using CAMB

which we then fitted with our fiducial model. From this test we found that the galaxy bias is

recovered to ∼ 1% accuracy, while the halo mass and satellite fraction is unchanged. To take

this into account we have incorporated this uncertainty into our error bars on the galaxy

bias from our main analysis.
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A.2 Validation against simulations

Although a full end-to-end simulation test is not possible due to the limitations of existing

simulations (resolution in mass, spatial resolution in ray-tracing, galaxy selection, etc.),

we can validate different components of our analysis pipeline with simulations to ensure

robustness of our results.

Figure A.2: Fits to the HOD measured
from Buzzard high-resolution. Each panel
corresponds to a different redshift bin.
We fit the HOD directly using our model
for central (magenta squares) and satel-
lite (orange triangles) galaxies, as well as
the total number of galaxies (blue points).
The three panels, from top to bottom,
correspond respectively to the following
redshift bins: z ∈ [0.0, 0.32], [0.32, 0.84],
[0.84, 2.35].

First, we test whether our fiducial HOD

model (Equations (3.1) and (3.2)) is sufficiently

flexible to describe the underlying HOD of the

lens galaxy sample. We note that this is not

trivial especially for redMaGiC given the par-

ticular selection used in the algorithm (see Sec-

tion 3.4.1). We check this by measuring the

HOD from a set of high-resolution Buzzard

mock galaxy catalog (DeRose et al., 2019), and

fit the HOD with our fiducial model. A red-

MaGiC sample is constructed from the mocks

using the same algorithm as applied to data, and

should capture qualitatively the characteristics

of the redMaGiC sample. Figure A.2 shows

the measurement from the mocks together with

our fit using Equations (3.1) and (3.2). We find

that our model describes qualitatively the red-

MaGiC HOD well. The inferred satellite frac-

tion from the fits to the Buzzard HOD is ∼ 0.2.
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Figure A.3: Comparison between average
halo mass, galaxy bias, satellite fraction
and galaxy number density from our model
prediction (blue points) and the corre-
sponding measured quantities from MICE
(orange squares) for the first four lens
redshift bins. The HOD parameter vector
(log10Mmin, log10M1, α, fcen, σlogM ) used
in the calculations are, for all 4 redshift bins
respectively, (12.38, 12.61, 0.73, 0.18, 0.5),
(12.15, 12.74, 0.84, 0.16, 0.22),
(12.16, 12, 72, 0.85, 0.17, 0.27),
(12.51, 13.3, 0.82, 0.2, 0.26).

Next, we perform a series of tests with

the MICE simulations (Fosalba et al., 2015;

Fosalba et al., 2015; Crocce et al., 2015; Car-

retero et al., 2015). The galaxies in the

MICE simulations are populated according

to a given HOD. This makes a similar a

priori test as what was described above for

Buzzard slightly circular. We can, how-

ever, perform a number of other tests. First,

for given HOD of galaxy samples, we check if

our derived halo mass, galaxy bias, satellite

fraction and galaxy number density agrees

with what is measured directly from the sim-

ulations. Figure A.3 shows these compar-

isons. As we can see, our calculations are in

good agreement with the MICE measure-

ments, although they differ slightly. The

trends followed by the points as a function

of redshift, however, are always in very good agreement.

Second, for given HOD parameters and redshift distributions, we can compare our model

prediction for γt with the measurements from the mock galaxy catalog. This is shown

in Figure A.4 for six lens-source redshift bin combinations, as indicated in each panel. The

large-scale measurements are generally in good agreement compared to the model prediction,

especially for the higher lens redshifts. The small scales in each panel, however, are always

in tension. Specifically, the measured γt is consistently lower than the model. Part of the

explanation for this is the mass resolution in MICE which limits what we can measure, thus
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Figure A.4: Comparison of the measured γt as a function of θ in MICE simulations (points)
and our model prediction (lines) for the lens-source redshift bins indicated in each panel.
The HOD parameters used for each model line are the input to the simulations and are listed
in the panels of Figure A.3.
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leading to lower signal. This could also explain why the large-scale agreement is worse at

the lowest redshift bin (Lens 1), since the same angular scale corresponds to smaller objects

at low redshifts compared to higher redshifts. However, we do not expect this to be a big

limitation in our case, given the big masses of redMaGiC galaxies. More importantly, the

dominant factor of the small-scale disagreement is that in MICE the galaxy positions do

not correlate exactly with the underlying dark matter distribution. Instead, galaxies and

dark matter trace each other on the mean, which could lead to small 1-halo power spectrum,

and thus γ1ht , measurements. We have checked that the scales where we see the largest

disagreement correspond to the 1-halo regime in each redshift bin.
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APPENDIX B

RESULTS FROM SYSTEMATICS DIAGNOSTICS TESTS

In this appendix we present the results from the diagnostic tests we describe in Section 3.5.3,

following the methodology from Prat et al. (2022). Figures B.1 and B.2 show a summary of all

these tests for redMaGiC and MagLim respectively, which include: the cross component,

LSS weights and the responses. We also include the boost factor on this plot as discussed in

Section 3.5.1. In the figures we also list the χ2 between each curve, and the null hypothesis,

using the covariance matrix of our γt measurements. We discuss below our findings for each

test.

Cross component: The measurements of γ× at large scales are consistent with zero. At

smaller scales, below a few arcmin, γ× fluctuates around zero, roughly within the error

bars. The most noticeable exception is bin [Lens 1, Source 4] for which the smallest-scale

measurements for the cross component get close approaches ∼ 0.004. Considering that

at small scales the level of noise increases, we do not find the behavior of γ× worrisome.

Furthermore, the reduced χ2, even for bin [Lens 1, Source 4], is close to 1, which indicates

the absence of significant problems.

Responses: Based on our results, when we compare our fiducial measurements which

use a scale-averaged response per bin versus the same measurements when the exact scale-

dependent responses are utilised, we find no strong evidence for disagreement between the

two methods. In all the bins that we use in this work, this difference is subdominant to

the statistical uncertainties, and the reduced χ2 values always very small. We, therefore,

conclude that our analysis based on the scale-averaged responses is good enough for our

purposes.

LSS weights correcting for observing conditions: Comparing the measured shear with and

without applying the LSS weights leads to no significant differences, as also indicated by the

very small reduced χ2 of each panel. This is shown by the fact that the difference between
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Figure B.1: Systematics tests, as discussed in Section 3.5.3, for the redMaGiC sample.
Boosts: Comparison of γt with and without applying the boost factor correction; Cross
component: The cross-component of shear; Responses: Effect from using the scale-dependent
responses compared to applying the average responses in each angular bin; No LSS weights:
Effect from not applying the LSS weights to correct for observing conditions; Gray area: The
error bars on the shear measurement. In each panel we also list the χ2 between each test
and the null, using the covariance of our γt measurements. The number of points for each
of the lines is 30.
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Figure B.2: Same as Figure B.1 but for the MagLim sample.
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the two is always close to zero and smaller than our error bars. Thus, we find no problems

with this test.
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APPENDIX C

HALO EXCLUSION

In this appendix we discuss the effect of incorporating Halo Exclusion (HE) into our mod-

eling. Based on HE, halos that overlap with each other are excluded from the 2-halo com-

ponents of the galaxy-galaxy lensing model prediction, in order to avoid double counting.

There are many different prescriptions for HE in the literature, some of which can be very

computationally expensive. Some authors (e.g. Zheng, 2004; Tinker et al., 2005; Yoo et al.,

2006) adopt the approach of choosing the appropriate upper limits to the halo masses when

integrating over the mass function in Equations (3.10) and (3.11). The maximum masses,

namely Mh1 and Mh2, in these models, under the spherical-halo assumption, satisfy the

requirement that the distance between the centers of the halos, r12, is at least equal to the

sum of their radii, R200c(Mh1) + R200c(Mh2) ≤ r12. Since this prescription is usually very

computationally intensive, simplified versions of HE have been suggested (e.g. Magliocchetti

& Porciani, 2003; Cacciato et al., 2009) which capture the effects of HE while making the

computations more efficient.

We follow a simplified approach in this appendix based on the following prescription.

For a given redshift bin of our lens sample and a set of HOD parameters, we estimate the

average lens halo mass, ⟨Mh⟩, based on Equation (3.31) and the radius ⟨Rh⟩ ≡ R200c(⟨Mh⟩)

it corresponds to. When then set the correlation function of the central 2-halo component,

ξc2hgm (r), to −1 for r < ⟨Rh⟩. Since the HE effect is stronger in the central 2-halo term

(Cacciato et al., 2009), compared to the satellite 2-halo component ξs2hgm , we did not apply

HE on ξs2hgm . Figure C.1 shows the fractional differences between the fiducial constraints on

the average lens halo mass, galaxy bias and satellite fraction, and the constraints from fits

that take halo exclusion, as described above, into account. We find that our results do not

change significantly between the two cases. We also did not find a significant difference in

the χ2 of our fits. We therefore do not include halo exclusion in our fiducial model.
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Figure C.1: Effect on our average lens halo mass, galaxy bias and satellite fraction constraints
when halo exclusion is considered in our fits. This plot presents the fractional differences
between the constraints from our fiducial fits and runs where we take into account halo
exclusion, denoted by the "HE" superscript.
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APPENDIX D

CONSTRAINTS FOR ALL MODEL PARAMETERS

In Tables D.1 and D.2 we summarise the best-fit parameters and derived quantities for the

redMaGiC and MagLim samples, respectively. We report the best-fit model parameters

and the constraints on the average halo mass, linear galaxy bias and satellite fraction. The

error bars show the 1σ posteriors.
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APPENDIX E

MODEL COMPLEXITY

In Section 3.7.3 we discuss how adding complexity to our model changes our results. In this

appendix we provide details on our tests that led us to deciding what our fiducial framework

is in this paper.

In Figure E.1 we show for all redMaGiC redshift bins the fractional differences between

the best-fit γt using the HOD-only model and the HOD-only model plus one additional con-

tribution at a time. This plot shows how adding various terms to γt changes the best-fit

model as a function of θ, providing more information than the difference in χ2. Figure E.2

shows the constraints on the average halo mass, galaxy bias and satellite fraction corre-

sponding to these fits, with the vertical bands representing the constraints from our fiducial

runs and each point shows the constraints from adding an additional contribution to the

model. In the same plot we also report in parenthesis the difference in goodness-of-fit as the

difference in the reduced χ2 between each tested model and the HOD-only fits.

Although adding complexity to the basic HOD-only model is informative, we point out

that interactions between additional terms, when more than one of them are considered,

can have a much different net effect. Due to the large number of combinations we could

explore, it was not feasible to do this full analysis, but we also note that we did not have

strong indications that specific combinations of model components lead to radically different

results in our fits or halo property constraints. To test for that, as a complement to our tests

in Figure E.2, we have performed a test where we start from the full model which includes all

additional contributions from Section 3.3, removing one component at a time and re-fitting

the data. Figure E.3 presents our findings from this test.

Below we discuss the effect of each contribution to the model fits separately when we

simply add it to the basis of only HOD or remove it from the full model with all γt terms.

Point mass (PM): We find that the PM component mostly affects the small scales in the
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Figure E.1: Comparing the basic HOD-only best-fit γt model prediction for all redMaGiC
lens-source redshift bins to the best-fit γt after considering additional model complexity.
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Figure E.2: Testing the robustness of the halo properties to adding complexity to our model.
We begin from our basic HOD-only model and we add one additional component to it at a
time. In parenthesis we report the difference in the reduced χ2 between the best-fit HOD-
only and the tested model fit. The vertical bands correspond to our constraints from the
fiducial model and are added here for a direct comparison with our tests. Note that, to reduce
the size of this figure we have combined bins with the same lenses and different sources by
presenting the mean of the best-fit values and, to be conservative, the maximum of the error
bars.
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Figure E.3: Testing the robustness of the halo properties to adding complexity to our model.
We begin from our basic HOD-only model and we add one additional component to it at a
time. In parenthesis we report the difference in the reduced χ2 between the best-fit from the
runs with all components included and each tested model. The vertical bands correspond to
our constraints from the fiducial model and are added here for a direct comparison with our
tests. Note that, to reduce the size of this figure we have combined bins with the same lenses
and different sources by presenting the mean of the best-fit values and, to be conservative,
the maximum of the error bars.
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first lens bin, with the largest effect being ∼ 10% at the smallest angular scales. This is due to

the fact that the smallest angular bins of that redshift bin correspond to the smallest physical

scales we consider in this work. We have included PM in our fiducial model as a conservative

approach to account for modeling uncertainties at scales below what we measure.

Satellite strip: The effect from striping of satellite galaxies to γt can make a quite sig-

nificant change on the constraints in some redshift bins, especially in the last one. This

component also introduces a nice physical picture to our modeling – it captures the tidal

interactions between the central galaxy and the substructure in the lens halos. We have

included this term in our fiducial model.

Satellite galaxy concentration parameter: Allowing for the concentration parameter for

the spatial distribution of the satellite galaxies to vary mostly affects the bias constraints.

This is because a = csat/cdm modifies the shape of the satellite terms in the 1-halo regime

making the model more flexible and able to better fit small and large scales at the same time,

which forces the large-scale bias to change and adjust accordingly. Furthermore, as discussed

in Section 3.3.1, there is good motivation to allow the concentration of the satellite-galaxy

distribution to be different from that of the dark matter’s distribution. We have included

this term in our fiducial model.

Lens magnification: The effect of lens magnification becomes stronger at higher redshift

bins. Especially in the [Lens 4, Source 4] bin it can have a large impact on the final con-

straints, even on the halo mass, which is overall the most robust to changes in the model.

Furthermore, magnification of lenses is well-motivated and its modeling is straightforward.

Our magnification model only depends on fixed coefficients, as discussed in Section 3.3.5 and

therefore does not introduce free parameters. We have included this term in our fiducial

model.

Intrinsic alignment: Despite the uncertainty in the IA model in the 1-halo term (see

discussion in Section 3.3.6), we test here this term’s contribution to our fits. We find that
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the change in the best-fit model can be heavily impacted as a function of angular scale by

this component. The constraints can also be significantly affected by IA. In particular, lens

bin 2 is mostly affected by the addition of IA to our basis HOD model, and the largest effect

is noticed on large scales. This is caused by a combination how much overlap in the n(z)

distributions of the lenses and sources there is and how much of the 1-halo component we

can observe in lens bin 2. Since a significant number of points in that bin’s measurements

belong to the 1-halo regime, if the HOD-only model cannot describe both small and large

scales well at the same time, the added model flexibility from the inclusion of IA essentially

accounts for that and improves the model fit. However, after adding other needed model

complexity, besides IA, this effect is ameliorated and IA becomes negligible for the specific

lens-source bin combinations we consider in this work. Therefore, and given that we do not

trust that our modeling of IA is accurate at small scales, we decide to not take this term

into account as part of our fiducial framework.

As a general note, we find that the constraints in the fourth bin are mostly affected

by additional contributions to γt, while overall the bias constraints are the most sensitive

to changes in our model. We note that our fiducial framework is effectively the “All-IA”

model.
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APPENDIX F

EQUIVALENCE BETWEEN "PROJECT-OUT" AND

POINT-MASS MARGINALIZATION

In this appendix we show that the "Project-out" and the Point-mass marginalization methods

are mathematically equivalent if the prior for the point-mass is infinitely wide. Let us define

m to be the model prediction and d to be the data vector.

For the PM marginalization case we have:

χ2PM = (m− d)TN−1(m− d) .

However, in the infinite-prior case it is:

N−1 = C−1
γ −C−1

γ A(ATC−1
γ A)−1ATC−1

γ = C−1
γ (I−P) ,

which results in

χ2PM = (m− d)TC−1
γ M(m− d) . (F.1)

So, N−1(m−d) exactly simply removes the contribution from the 1/θ2 mode from the model

and data vectors, like the project-out approach. The project-out method is by construction

only removing that mode from the data vector and does nothing else. Therefore, the two

methods are equivalent in the above limit.
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APPENDIX G

SCALE CUTS

In Fig. G.1 we show the result of the scale cuts tests for the successful scenario. We have

found that scales cuts of w > 12 Mpc/h and γt > 8 Mpc/h are sufficient in the LSST

Y1 setup to recover unbiased results when inputting a contaminated data vector with non-

linear galaxy bias and baryonic effects. We obtain that in this case the difference in the

S8 − Ωm plane between the fiducial and contaminated data vectors is 0.09σ which is below

the threshold of 0.3σ, following the same procedure as in Krause et al. (2021a). We compare

posteriors using the fiducial vs. the contaminated data vectors (instead of with the input

cosmology) to remove any projection effects1 impact on this test. We have also tried using

w > 8 Mpc/h, γt > 8 Mpc/h scale cuts, which produced a difference of 0.46σ and w > 12

Mpc/h and γt > 6 Mpc/h cuts, which produced a difference of 0.93σ in the same S8 − Ωm

plane. Note that these combinations of scale cuts are an arbitrary choice, and applications

on actual data might want to optimize these choices.

1. Projection effects are residual differences between the input cosmology and the posteriors under ideal
conditions (when the input data vector and model are the same) due to having broad parameter spaces.
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Figure G.1: S8 − Ωm plane showing the differences in the posteriors using either a fiducial
input data vector or a contaminated one with baryonic and non-linear galaxy bias effects.
The dashed gray lines mark the input fiducial cosmology. Comparing the contaminated and
the baseline posteriors using different sets of scale cuts we have determined that w > 12
Mpc/h, γt > 8 Mpc/h cuts are sufficient for the LSST Y1 setup to recover unbiased results.
Specifically, these cuts produce a difference of 0.09 σ in the S8 − Ωm plane, which is below
the threshold of 0.3σ following the criteria from Krause et al. (2021a).
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APPENDIX H

MITIGATION SCHEMES VS. NO MITIGATION

In this appendix we address the following question: How much constraining power do we

gain by applying one of the mitigation schemes vs. not applying any of them and using fewer

scales? To perform this comparison we choose the point-mass case that includes geometrical

information since that is what we used to define the fiducial scale cuts, as described in

Sec. 6.3.3. We perform this comparison for the LSST Y1 simulated analysis. We show the

results in Fig. H.1. There we compare the posteriors between using the point-mass mitigation

scheme and without applying any mitigation with the following two sets of scale cuts:

1. w > 12 Mpc/h, γt > 8 Mpc/h: the same scale cuts needed to recover unbiased con-

straints when applying the point-mass marginalization scheme including geometrical

information.

2. w > 12 Mpc/h, γt > 40 Mpc/h: scale cuts needed to recover unbiased cosmological

constraints without using any mitigation scheme, following the same criteria described

in Sec. G. To obtain them, we have chosen to keep the galaxy clustering scale cut

unchanged and increase the tangential shear cut until we recover unbiased results.

Under this setup, we find a 0.17σ difference in the S8 − Ωm plane, while we find a

0.35σ difference if we use γt>32 Mpc/h instead, which does not meet the criteria.

We find that S8 is ∼1.3 times more constraining when using the point-mass marginalization

scheme vs. when not using any mitigation scheme and using larger scale cuts.
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Figure H.1: We compare the constraining power when applying a mitigation scheme (in this
case the point-mass marginalization) vs. when not applying any scheme and using less scales
for the galaxy-galaxy lensing probe. We conclude that using a marginalization scheme yields
∼1.3 more constraining power on the S8 parameter assuming a LSST Y1 simulated scenario.
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APPENDIX I

EFFECT ON THE INTRINSIC ALIGNMENT PARAMETERS

In Fig. I.1 we show the posteriors for the tidal alignment and tidal torque (TATT) 5-

parameter intrinsic alignment model, at the top for the LSST Y1 simulated case and at

the bottom applied to DES Y3 data, in both cases for a 2×2pt analysis without including

the shear-ratio likelihood. Using the simulated data in the LSST Y1 setup, we find that using

the extra geometric information in the point-mass marginalization, i.e. the case labelled as

"Point-mass (free per zil )" and described in Sec. 6.2.3 is beneficial to constrain the intrinsic

alignment parameters. In particular we find the parameter describing the galaxy bias of the

source sample bTA is more constrained, as well as the parameters affecting the tidal torque

part of the model (a2 which describes the amplitude of the IA effect and α2 that modulates

its redshift evolution). On the Y3 data, we find that the biggest gain in constraining power

is in the a2 parameter.
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Figure I.1: Top: Intrinsic alignment TATT parameter posteriors obtained from an input
galaxy clustering and galaxy-galaxy lensing data vector (2×pt) with non-linear bias and
baryonic contamination with a LSST Y1 covariance, comparing the different methodologies
to localize the tangential shear measurements. Bottom: Analogous comparison applied to
DES Y3 data, for the MagLim 2×pt analysis without the shear-ratio likelihood.
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APPENDIX J

COMPARISON BETWEEN DES Y3 AND LSST Y1

In Fig. J.1 we compare the constraining power between the DES Y3 and LSST Y1 setups,

which besides being interesting on its own also provides some basic validation of the LSST

Y1 covariance that we compute with CosmoCOV. First, we compare the fiducial LSST Y1

simulated analysis with the fiducial scales of w > 12 Mpc/h and γt > 8 Mpc/h, with the

scales used in the DES Y3 data of w > 8 Mpc/h and γt > 6 Mpc/h. We observe that the

degradation in the constraining power coming only from the differences in the scales is quite

small. Then, we compare the size of the LSST Y1 contours with the simulated DES Y3

analysis, which was used in Krause et al. (2021a) to determine the scale cuts for that case.

The only two differences between the contours labelled "LSST Y1 sim, with DES Y3 scales"

and the ones labelled "DES Y3 sim" are the covariances and the input redshift distributions,

as described in Sec. 6.3.1. Finally we also compare the DES Y3 simulated analysis with the

actual final data DES Y3 2×2pt results, which use a different set of priors as the rest of

the chains, had an updated covariance accounting for the best-fit parameters and are not

centered at the same cosmology.
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Figure J.1: Comparison of the constraining power between LSST Y1 and DES Y3 for a
2×2pt simulated analysis using the fiducial model data vectors. For LSST Y1 we use scales
w > 12 Mpc/h, γt > 8 Mpc/h, and for DES Y3 w > 8 Mpc/h, γt > 6 Mpc/h. We also
include the data results from DES Y3 2×2pt.
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APPENDIX K

QUANTIFYING TENSIONS BETWEEN CORRELATED DATA

SETS IN COSMOLOGY

Despite the remarkable successes of the ΛCDM model to explain a wide range of observed

phenomena, as the precision of different experiments has increased, so too has the statistical

significance of discrepancies between their inferences (for a recent review see Verde et al.,

2019). Such discrepancies deserve close attention since they may hint at the existence of

new physical phenomena or to the presence of residual systematic effects that are not yet

understood. In addition, cosmological data sets have become increasingly complex to the

point that understanding whether different probes agree or not requires the use of complex

statistical tools (Marshall et al., 2006; Feroz et al., 2008; March et al., 2011; Amendola et al.,

2013; Verde et al., 2013; Bennett et al., 2014; Martin et al., 2014; Karpenka et al., 2015;

Larson et al., 2015; Addison et al., 2016; Raveri, 2016; Seehars et al., 2014, 2016; Grandis

et al., 2016; Addison et al., 2018; Nicola et al., 2019; Weiland et al., 2018; Huang et al.,

2018; Raveri & Hu, 2019; Motloch & Hu, 2018, 2019; Adhikari & Huterer, 2019; Kerscher &

Weller, 2019; Handley & Lemos, 2019; Huang et al., 2019; Lin & Ishak, 2019).

In this appendix we briefly discuss the theory behind developing such tools to quantify

the agreement or disagreement among cosmological data sets, when correlations between

them are accounted for. This, as well as an illustrative example of applying these tools and

more, is published in Raveri et al. (2020). Here we simply present the basic ideas of the

statistical tools we considered.

The main focus is to extend the Concordance-Discordance Estimators (CDE’s) introduced

for uncorrelated data sets in Raveri & Hu (2019) to correlated data sets. In particular,

we discuss estimators quantifying parameter shifts between two correlated data sets and

goodness of fit loss when two data sets are joined together. We analyze these estimators under

the Gaussian linear model (GLM), assuming Gaussianity of the data and model parameters.
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We also comment on mitigation against non-Gaussianities.

When considering correlated data sets we follow two different strategies. In the first

approach we consider the two disjoint data sets and build estimators working on their sep-

arate parameter inference though properly including their correlation. In the second one,

we always consider the joint data set but fit the two parts of the data set with different

cosmological parameters. This approach was also employed in Zhang et al. (2005); Chu &

Knox (2005); Wang et al. (2007); Abate & Lahav (2008); Ruiz & Huterer (2015); Bernal

et al. (2016); Köhlinger et al. (2019); Lemos et al. (2019). We call the first strategy the

data split one while we refer to the second one as the parameter split strategy. The data

and parameter split techniques are equivalent when data sets are uncorrelated but different

when they are correlated.

K.1 The Gaussian linear model

In this section we gather some basic definitions that we will later use throughout the paper.

For an in depth discussion of the Gaussian Linear Model (GLM) we refer the reader to Raveri

& Hu (2019).

We denote the multivariate Gaussian distribution in N dimensions with mean θ̄ and

covariance C as NN (θ; θ̄, C). For a given data set, D, described by a model M that depends

on a set of parameters θ, the posterior probability distribution of the parameters is given by:

P (θ|D,M) =
L(θ)Π(θ)

E , (K.1)

where the likelihood is the probability of the data at any given choice of parameters L(θ) =

P (D|θ,M) and any prior knowledge is encoded in Π(θ). The normalization of the posterior,

E ≡ P (D|M), is the evidence that provides the probability distribution of the data given

the model M.
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In this section, we assume that the prior distribution is Gaussian in the model parameters,

Π(θ) = NN (θ; θΠ, CΠ), with an unbiased mean θΠ and covariance CΠ. As discussed in Raveri

& Hu (2019) this is a good choice to use in practice as it allows us to treat Gaussian priors

on nuisance parameters exactly and models the most relevant features of informative flat

priors: the scale of the prior and its central value.

We further assume that the likelihood is a Gaussian distribution in data space, L(θ) =

Nd(x;m,Σ) and we denote by d the number of data points x and Σ their covariance matrix.

The mean of the distribution is given by the model prediction, m(θ).

The GLM assumes that one can linearly expand the model prediction, m(θ), around a

given parameter point. Since we are working with Gaussian priors, for simplicity, in the

following we assume that the linear model expansion point is the prior center θΠ and we can

write

m(θ) ≈ mΠ +M(θ − θΠ) , (K.2)

where mΠ ≡ m(θΠ) and M ≡ (∂m/∂θ)|θΠ is the Jacobian of the transformation between

parameter and data space.

Given the model prediction mΠ, the residual of a randomly chosen data point x, hence-

forth X ≡ x − mΠ, can be projected onto a component along the linear model, PX, and

another component orthogonal to it, X − PX = (I− P)X. The projector can be thought of

as a two-step process. The first step is to construct the linear combinations of data, namely

M̃X, that give the parameter estimates: θ − θΠ = M̃X, where M̃ = CMTΣ−1, with

C = ⟨(θ − θΠ)(θ − θΠ)
T ⟩ = (MTΣ−1M)−1 , (K.3)

as the parameter covariance or inverse Fisher matrix. Then, as a second step, given the

parameter estimates we transform back into data space using the Jacobian, M(θ − θΠ) =
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MM̃X ≡ PX. Thus P ≡ MM̃ is the full projector:

P = MCMTΣ−1 , (K.4)

and (I− P) is its complement.

In the GLM the maximum likelihood (ML) is given by:

lnLmax =− 1

2
XT (I− P)TΣ−1(I− P)X − d

2
ln(2π)− 1

2
ln(|Σ|) , (K.5)

where we used | · | to denote the determinant of a matrix. Notice that the first line of

Eq. (K.5) contains all the pieces that depend on the data while the second one contains

normalization constants that are often neglected. The parameters corresponding to the

maximum likelihood model are given by:

θML = M̃(x−mΠ +MθΠ) . (K.6)

Over realizations of data, the maximum likelihood parameters are distributed as NN (θ; θΠ, C).

These expressions refer to the true maximum likelihood of a model and they should be ob-

tained without reference to the prior; θΠ appears here due to the assumption that the prior

mean is unbiased.

The maximum posterior (MAP) parameters combine the ML parameters with the prior:

θp = Cp(C−1
Π θΠ + C−1θML) , (K.7)

where C−1
p = C−1

Π +C−1. Under the GLM the maximum posterior parameters are distributed

as N (θ; θΠ, Cp).

Within the GLM the probability of the data, i.e. the evidence, is Gaussian distributed

for the Gaussian priors that we consider and is given by E = Nd(x;m(θΠ),Σ +MCΠMT ).
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We define all the statistics, Q, that we discuss in this paper to follow the convention that:

if P (Q > Qobs) approaches zero then the observed value lies in the tail of the distribution

that we would associate with a tension; if it approaches one the observed value would be in

the tail associated with excess confirmation.

K.2 Impact of correlations

The stronger the correlation between two data sets the more crucial it is to use statistical

tools which take these correlations into account. In multiple dimensions the correlation

strength can be quantified by means of the Canonical Correlation Analysis (CCA) Hotelling

(1936). CCA allows us to understand the change in parameter variances. The maximum

error that we would make on the determination of the parameter variance, with respect to

the full joint estimate, if we were to neglect correlations is given by:

max

(
σ2no corr
σ2J

)
=

1

1± ρ12
, (K.8)

where σ2no corr is the wrong estimate of the variance of one parameter obtained neglecting

correlations, σ2J is the correct estimate of the variance, accounting for all data correlations,

and ρ12 is the maximum correlation coefficient.

As discussed in Raveri & Hu (2019) the value of the likelihood at MAP, θ̂p, can be used

as a goodness of fit measure to test the consistency of a data set with the model at hand.

The MAP measure for goodness of fit is then given by:

QMAP ≡ −2 lnL(θ̂p) + 2
〈
lnL(θ̂p)

〉
D
+ ⟨QMAP⟩D (K.9)

where the average is over data realizations. For Gaussian priors QMAP is distributed as

a sum of Gamma distributed variables which can be (conservatively) approximated by a
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chi-square distribution of d−Neff degrees of freedom, QMAP ∼ χ2(d−Neff), where

Neff = N − tr[C−1
Π Cp] (K.10)

is the number of effective parameters that are being constrained by the data over the prior,

with N being the total number of model parameters. Notice that there might be cases where

the data covariance matrix is singular. In these cases one needs to compute the number of

data points as the rank of the covariance, d = rank(Σ).

K.3 Data splits and parameter splits

We can split a correlated data set by taking partitions of the joint dataset, that we denote

as DJ , in two pieces that we indicate with D1 and D2. Hereafter we denote quantities that

refer to the joint data set with J and quantities referring to the first and second data sets

with the subscript 1 and 2 respectively. In Section K.6 at the end we discuss the natural

generalization to an arbitrary number of splits. We indicate the joint DJ = D1 ∪ D2 data

covariance as

ΣJ ≡

 Σ1 Σ12

Σ21 Σ2

 , (K.11)

which is in general not block diagonal. Since the full covariance has to be symmetric then

Σ1 = ΣT
1 , Σ2 = ΣT

2 and Σ21 = ΣT
12. Notice that Σ1, Σ2 and ΣJ have all to be symmetric

and positive definite.

Within the GLM this data separation projects onto parameter space through the single

and joint Jacobian matrices that are related by MT
J = (∂mT

1 /∂θ, ∂m
T
2 /∂θ) ≡ (MT

1 ,MT
2 ).
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The GLM estimate of the ML parameters in this case is given by:

θML
aS = CaSMT

a Σ−1
a (xa −mΠa +MaθΠ) ,

θML
J = CJMT

J Σ−1
J (xJ −mΠJ +MJθΠ) , (K.12)

with a ∈ {1, 2}. Hereafter we denote quantities that are obtained within the single analysis

of the split data sets with S. The maximum posterior parameters are obtained by adding

on top of these estimates the prior, as in Eq. (K.7). As we can see the inference of the

parameters for the separate data splits depends only on the given data set, while their joint

inference is influenced by the complementary set, through the correlation between the two.

For this reason it is not possible, in presence of data correlations, to reconstruct the joint ML

parameters as a linear combination of parameter quantities that live in the single parameter

space.

We can still, however, compute the covariance between different data split parameters

both at the ML and MAP level as:

cov(θML
1S , θML

2S ) = C1SMT
1 Σ−1

1 Σ12Σ
−1
2 M2C2S ,

cov(θ
p
1S , θ

p
2S) = Cp1SC−1

Π Cp2S + Cp1SMT
1 Σ−1

1 Σ12Σ
−1
2 M2Cp2S . (K.13)

As we can see these depend on both parameter space and data space quantities to take into

account that the single parameter covariances do not include correlation contributions.

As an alternative strategy we can think of the split as originating in parameter space,

describing the two parts of the joint data set with different sets of parameters and always

fitting the joint likelihood. We denote with the subscript C quantities that refer to this

strategy of parameter duplication and, for example, we work with a 2N parameter vector

that is defined by θC ≡ (θ1C , θ2C)
T . Similarly, we can define the duplicated prior parameter

vector by θΠC = (θΠ, θΠ)
T . One subtlety is that our null hypothesis is still that the data
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is drawn from the prior distribution of a single parameter. We shall see that this difference

between the split analysis and statistical properties of the data causes minor issues when

counting these parameters if they are partially, but not fully constrained, by the prior.

In the GLM the block structure of the covariance in Eq. (K.11) then projects on the two

parameter copies with the Jacobian given by:

MC =

 ∂m1/∂θ1 O

O ∂m2/∂θ2

 =

 M1 O

O M2

 . (K.14)

The maximum likelihood estimate of the copy parameters is given by Eq. (K.6) and explicitly

reads:

θML
C =

 θML
1C

θML
2C

 = CCMT
CΣ−1

J (xJ −mΠC +MCθΠC) , (K.15)

where we have used the definition of the parameter copies covariance C−1
C = MT

CΣ−1
J MC

and we have defined the duplicate prior center model prediction mΠC = (mΠ,mΠ)
T . The

parameter copy ML is then Gaussian distributed, over the space of data draws, with θML
C ∼

N (θC ; θΠC , CC). The maximum posterior parameters are obtained by adding copies of the

Gaussian priors on top of the ML result. We write explicitly the block structure of the

parameter copies posterior covariance as:

CpC ≡

 Cp1C Cp12C
Cp21C Cp2C

 , (K.16)

that allows us to write the posterior estimate for the first parameter copy as:

θ
p
1C = θML

1C − Cp1CC−1
Π (θML

1C − θΠ)− Cp12CC−1
Π (θML

2C − θΠ) , (K.17)
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and similarly for the second parameter copy.

As we can see the GLM posterior distribution for one of the parameter copies is related

to the parameters of the other copy in two ways: first indirectly in the ML estimate and

then directly at the MAP level. In particular, at the ML level, the parameters of one copy

are related to the parameters of the other because of the shared data in Eq. (K.15). This is

a natural consequence of the parameter duplication technique: since we always fit the joint

data set, split parameters are influenced by data in both splits through their correlation.

In the posterior, there is a direct coupling between the ML and posterior estimators of

the copies. In Eq. (K.17) this coupling is mediated by Cp12C in the last term. In the limit

where the data is uncorrelated this term would vanish and, therefore, the sets would not

be able to communicate with each other; we would, therefore, retrieve the expressions in

Raveri & Hu (2019), which would also be the same as the corresponding expressions under

the data split methodology. With correlated copy parameters, the maximization of the joint

posterior depends on the ML values of each. Contrast this with the case of the separate

parameters of the data split. Even though the ML values are still correlated according to

Eq. (K.13), maximization of the posterior for each parameter is performed without reference

or knowledge of its complement.

The joint parameter results can be viewed as a subspace of the parameter copies where

all the copies have the same value. We define the projection matrix on this subspace as:

DT
C = (IN×N , IN×N ) . (K.18)

When expressed as DC , it is known as the design matrix, which takes a single set of N

parameters and produces two separate parameters, i.e. the 2N copy parameters, to be esti-

mated by the data. Notice that the relation between the joint and copy Jacobian is given by

MT
J = DT

CM
T
C . The joint parameter covariance is a linear combination of the copy param-

eter covariance given by C−1
J = DT

CC
−1
C DC . The linear combination of the copy parameter
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estimates that forms the joint parameter estimate is:

θML
J = CJDT

CC−1
C θML

C . (K.19)

Likewise DCCJDT
CC

−1
C is the parameter projector that projects the copy parameters onto

the space where they are the same (θML
1C , θML

2C )T → (θML
J , θML

J )T .

K.4 Data Split CDEs

In this section we discuss CDEs in case of data splits. Specifically, in Sec. K.4.1 we present

parameter shift statistics and in Sec. K.4.2 we discuss Goodness of Fit loss.

K.4.1 Parameter shifts

Given two data sets we can compute the difference between the parameters obtained by

considering the two data sets alone: ∆θS ≡ θ
p
1S − θ

p
2S . Within the GLM this is Gaussian

distributed and it can be shown that its expectation value over data realizations is zero. To

form the optimal quadratic form to detect shifts in parameters,

QS
DM ≡ ∆θTS [C(∆θS)]

−1∆θS , (K.20)

we need to compute the parameter difference covariance C(∆θS). For a discussion of optimal

quadratic forms see App. D in Raveri & Hu (2019). Within the GLM the shift covariance

can be obtained starting from the covariance in data space and results in:

C(∆θS) = Cp1S + Cp2S − Cp1SC−1
Π Cp2S − Cp2SC−1

Π Cp1S

− Cp1SMT
1 Σ−1

1 Σ12Σ
−1
2 M2Cp2S − Cp2SMT

2 Σ−1
2 Σ21Σ

−1
1 M1Cp1S . (K.21)
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As we can see this expression agrees with Raveri & Hu (2019) in the limit of uncorrelated

data sets. It cannot be, however, expressed in terms of parameter space quantities only

when data correlations are present. In this case the parameter shift covariance depends on

both the parameter and data covariance that are connected through the model Jacobian to

account for the fact that data correlations are omitted from the single parameter estimates.

In addition to this, we can also write parameter shifts in update form, by comparing

the parameters of one posterior (for simplicity 1 here) to the joint parameter determination:

∆θUS ≡ θ
p
1S − θ

p
J . This is, again, Gaussian distributed with zero mean and covariance:

C(∆θUS ) = Cp1S + CpJ − Cp1SC−1
Π CpJ − CpJC−1

Π Cp1S

− Cp1SMT
1 Σ−1

1 (Σ1,Σ21)
TΣ−1

J MJCpJ

− CpJMT
J Σ−1

J (Σ1,Σ12)Σ
−1
1 M1Cp1S . (K.22)

This agrees with Raveri & Hu (2019) in the limit of uncorrelated data sets, where we recover

C(∆θUS ) = Cp1S − CpJ , but becomes significantly more complicated in general due to the

presence of data correlations. We denote with

QS
UDM ≡ (∆θUS )

T [C(∆θUS )]
−1∆θUS , (K.23)

the optimal data split parameter shift statistics in update form. Under the GLM, both QS
DM

and QS
UDM are chi-squared distributed with number of degrees of freedom equivalent to the

rank of their respective covariance matrix.

In case of uncorrelated data sets the statistical significance of parameter shifts in update

form is the same as the statistical significance of the difference between θ
p
1− θML

2 since these

two quantities are related by a linear transformation. However, in the presence of data

correlations this is not the case since the single parameters do not contain the information

on the data correlation that is contained in the joint parameter determination. In other
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words, it is not possible to write the update parameter shift as a linear combination of the

shift in the two single parameters. Hence, we would expect to see some differences between

the two estimates, related to the presence of correlated data and parameter modes.

From the previous discussion it appears clear that using the optimal, inverse covariance

weighted, CDEs for data split parameter shifts is challenging in presence of data correla-

tions. Their covariances cannot be written in parameter space and depend on both the

posterior and data covariance. These can be related to each other by projection operations

involving derivatives of the observables that are cumbersome to compute accurately. These

considerations limit the applicability of these methods in practice.

The SN data Jacobian, MJ , is estimated numerically by linear finite differences computed

around the best fit of the joint SN data set. The finite difference parameter step is com-

puted such that it would correspond to a SN chi-square difference of one, ensuring that the

derivatives are estimated on the scale at which they are relevant and are not contaminated

by numerical noise. We assume that the model is fully linear so that the joint Jacobian

determines the single data split Jacobian.

All the other quantities that are needed to compute QS
DM and QS

UDM are estimated from

the GLM. A numerically challenging aspect of computing QS
DM and QS

UDM is identifying

directions that can contribute to parameter shifts and those that do not. The latter pa-

rameter combinations can be either prior constrained or fully correlated, as can be seen

from Eq. (K.21) and Eq. (K.22). In practice, due to numerical noise, the parameter shift

covariances are never exactly zero along these directions.

In the uncorrelated case this problem is solved, at least for parameter shifts in update

form, by computing the quadratic form using the Karhunen-Loeve (KL) decomposition of

the covariances involved, as discussed in Raveri & Hu (2019). In this case we select the

directions that are used to compute the two parameter shift estimators based on the KL

decomposition of the shift covariance matrices and the parameter covariance of the most
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constraining of the two data sets. Once the KL decomposition is performed the spectrum of

the KL eigenvalues can be examined to understand if there is a clear separation of modes

with KL eigenvalues very close to zero and directions that are significantly different from

zero. This strategy also avoids problems with parameters having different units since the KL

modes are invariant under changes of parameter basis. This also results in a wide separation

between directions that can and cannot contribute to a shift making it easier to identify

and remove the latter. Once the directions that cannot contribute any shift are isolated and

removed the parameter shifts and their covariance are both projected on the other directions

and QS
DM and QS

UDM are computed. The number of degrees of freedom of the two tests is

given by the number of KL modes that are retained. In the SN example, this number is two,

since the absolute magnitude constraint does not differ between the sets.

K.4.2 Goodness of fit loss

In addition to shifts in parameters we can use, as a CDE, the statistics of the ratio of the

joint and single likelihoods at maximum posterior, QDMAP Raveri & Hu (2019). In the case

where we consider data split we refer to this estimator as:

QS
DMAP ≡ 2 lnL1(θ

S
p1) + 2 lnL2(θ

S
p2)− 2 lnLJ (θ

J
p ) , (K.24)

This quantifies goodness of fit loss as it corresponds to the degradation of the performances

of the model when fitting two data sets jointly vs fitting the joint data. When two data sets

are considered separately the model can invest all its parameters in improving the fit to data.

On the other hand, when the two data sets are joined, the parameters have to compromise

between the two and the joint fit will be worse. However note that in the correlated case

the two data sets are not independent so that the joint likelihood is not the product of

the two independent likelihoods regardless of the parameters. Consequently QS
DMAP is not
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necessarily positive definite, complicating its interpretation as a goodness of fit loss.

Computing the statistics of QS
DMAP for correlated data sets, within the GLM, proves

extremely hard in case of data set splits, as we see below in more detail.

We first consider the ratio of maximum likelihoods of the joint data set and the two

subsets. By direct calculation it can be shown that, up to constant offsets that is irrelevant

to the calculation of statistical significance this ratio can be written as the quadratic form

in the data:

QS
DML = XT

J

[
(IJ − PJ )TΣ−1

J (IJ − PJ )

−
(

(I1 − P1)TΣ−1
1 (I1 − P1) O

O (I2 − P2)TΣ−1
2 (I2 − P2)

)]
XJ

≡ XT
J A

S
DMLXJ , (K.25)

where XJ is the full data vector, distributed according to the evidence of the joint data set,

and AS
DML is the matrix that defines QS

DML. The indices 1 and 2 denote the two subsets of

the data after we split the joint set.

Through explicit computation, the form of the joint projector is given by:

PJ ≡

 p11 p12

p21 p22
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with

p11 = M1CJ (MT
1 −MT

2 Σ−1
2 Σ21)K

−1
1 ,

p12 = M1CJ (MT
2 −MT

1 Σ−1
1 Σ12)K

−1
2 ,

p21 = M2CJ (MT
1 −MT

2 Σ−1
2 Σ21)K

−1
1 ,

p22 = M2CJ (MT
2 −MT

1 Σ−1
1 Σ12)K

−1
2 ,

where we have defined:

K1 ≡ Σ1 − Σ12Σ
−1
2 Σ21 ,

K2 ≡ Σ2 − Σ21Σ
−1
1 Σ12 .

In order to calculate the distribution of Eq. (K.25) we follow the procedure discussed in

App. A of Raveri & Hu (2019) and compute the eigenvalues, λ, of AS
DMLSJ , where SJ

is the covariance for the joint distribution of the data which, for Gaussian priors, is SJ =

ΣJ +MJCΠMT
J . This allows to decompose QS

DML in the following way:

QS
DML =

∑
i

λiU2
i , (K.26)

where each Ui ∼ NJ (xJ ;O, I) so that QS
DML is a weighted sum of chi squared variables.

By direct calculation we have:

AS
DML ≡ AS

DMLSJ ≡

 A B

C D

 , (K.27)
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where:

A =
[
Σ−1
1 M1C1 −K−1

1 (M1 − Σ12Σ
−1
2 M2)CJ

]
MT

1 ,

B = −K−1
1 (M1 − Σ12Σ

−1
2 M2)CJMT

2 − (I1 − Σ−1
1 M1C1MT

1 )Σ−1
1 Σ12 ,

C = −K−1
2 (M2 − Σ21Σ

−1
1 M1)CJMT

1 − (I2 − Σ−1
2 M2C2MT

2 )Σ−1
2 Σ21 ,

D =
[
Σ−1
2 M2C2 −K−1

2 (M2 − Σ21Σ
−1
1 M1)CJ

]
MT

2 .

An analytic solution to the above eigenvalue problem is not easily obtained, but can be

obtained numerically to evaluate the exact distribution of QS
DML. We highlight that, similarly

to what happens for data split parameter shifts, the calculation of the statistics involves

quantities that are defined both at the parameter space and data space level.

Note that the expressions we derived above reduce to the corresponding ones in Raveri

& Hu (2019) in the limit of uncorrelated data sets.

Furthermore we can notice that the quadratic form defined by QS
DML is not necessarily

positive definite. This is a consequence of the fact that the projector on the joint parameter

space is not a sub-space of the span of the single data set projector. This severely limits

the possibility of approximating QS
DML with a chi squared distribution, which is positive

definite, especially for events in the confirmation tail that would be very close to QS
DML = 0.

In addition, the fact that QS
DML is not chi squared distributed means that correlated

data fluctuations are not optimally weighted.

We then consider the ratio of likelihoods at maximum posterior (DMAP) in the data

split case. To do so we add the extra terms that transform ML into MAP so that the matrix
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that controls QS
DMAP is given by:

AS
DMAP = AS

DML + Σ−1
J MJCJC−1

Π CpJMT
J (K.28)

−

 M̃T
1 C−1

Π Cp1MT
1 B̃

B̃(1 ↔ 2) M̃T
2 C−1

Π Cp2MT
2

 ,

where, for compactness, we have defined B̃ ≡ M̃T
1 C−1

Π Cp1C−1
1 Cp1(C−1

Π M̃1Σ12 +MT
2 ).

These results, for both QS
DML and QS

DMAP, can be used to compute the respective exact

distributions. The trace of these distributions coincides with the results obtained in the

uncorrelated case, but we notice that it is problematic to approximate them with simpler

distributions because both of them are not positive definite.

The fact that both QS
DML and QS

DMAP are not positive definite means that there are

aspects of the data where the joint likelihood is better than the product of the separate

likelihoods. This can never happen for uncorrelated data sets and is a consequence of the

presence of correlated data modes. In particular, the data modes that are fit by the model

separately are the ones that would contribute to the positive definiteness of the above statis-

tics, since they can zero out different data fluctuations, whereas the correlated data modes

that are left out can contribute negatively. Fitting the data jointly, however, always takes

correlated modes into account, so that the contribution to the chi-square from them is con-

sidered.

K.5 Parameter Split CDEs

In this section we follow the strategy of quantifying agreement and disagreement by dupli-

cating model parameters. We first go through the analytic aspects of calculating the CDEs

and then report the results of applying them to the SN example that we consider in this

work. In Sec. K.5.1 we present parameter shift statistics, in Sec. K.5.2 we discuss exact
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Monte Carlo parameter shift statistics, while in Sec. K.5.3 we consider goodness of fit loss.

K.5.1 Parameter shifts

We first consider the difference between the duplicate parameter posteriors, denoted by

∆θC ≡ θ
p
1C − θ

p
2C , in the case of parameter splits. To form the optimal estimator of the

significance of the shifts, we construct the quadratic form:

QC
DM ≡ (∆θC)

T [C(∆θC)]
−1∆θC (K.29)

using their covariance to weight shifts in different parameter space directions. In this case

the covariance reads:

C(∆θC) = Cp1C + Cp2C − Cp12C − Cp21C . (K.30)

Notice that, in the uncorrelated limit CpijC = CpiCC−1
Π CpjC for i, j ∈ [1, 2]. Furthermore,

Eq. (K.30) implies that in the case of parameter duplication we can express the covariance

of the parameter shifts using just the results from the MCMC chains. This is not true in the

case of data splits, however, where the expression of the covariance includes terms related

to the data covariance which account for the correlations.

We then calculate the covariance of parameter shifts in update form using one of the

two parameter copies, namely θ
p
1C , and the parameters inferred from the joint data set, θpJ .

Therefore, defining ∆θUC = θ
p
1C − θ

p
J , the covariance of parameter shift in update form is

written as

C(∆θUC ) = Cp1C − CpJ , (K.31)

which is invariant in form to the one without correlations, which is discussed in Raveri &
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Hu (2019).

We denote with

QC
UDM ≡ (∆θUC )

T [C(∆θUC )]
−1∆θUC (K.32)

the optimal parameter-split parameter shift statistic in update form. Notice that, since

Eq. (K.31) is invariant in form with respect to the uncorrelated case considered in Raveri &

Hu (2019), we can compute QC
UDM by means of the KL decomposition to filter out modes

that are not improved by the data over the prior and hence subject to sampling noise.

Under the GLM, both QC
DM and QC

UDM are chi-squared distributed with number of degrees

of freedom equal to the rank of their covariances.

The statistical significance of the two QC
DM and QC

UDM estimators is the same for the

maximum likelihood parameters while it might differ at the maximum posterior level in case

of partially informative priors. This difference stems from the fact that the update form

of parameter shifts contains only one copy of the prior in the joint, whereas in the single

parameter shift the prior is applied once to each data set. Therefore, θpJ cannot be formed

from a linear combination of θpiC . We can instead define a joint parameter estimate that is

so constructed

θ̃
p
J = C̃pJD

T
CC−1

pC (θ
p
1C , θ

p
2C)

T (K.33)

with covariance C̃−1
pJ = C−1

pJ + C−1
Π = DT

CC
−1
pCDC , so that

θ
p
1C − θ̃

p
J = C̃pJDT

CC−1
pC (O, θ

p
1C − θ

p
2C)

T , (K.34)

where the vector O has length Np. This clearly shows that the statistical significance of θp1C−

θ̃
p
J is the same as θp1C − θ

p
2C since the two are related by a linear, invertible transformation.

We can then write the update parameter difference as:

∆θUC = (θ
p
1C − θ̃

p
J ) + (θ̃

p
J − θ

p
J ) , (K.35)

263



which, in the uncorrelated limit reduces to θ
p
1C − θML

2 . This agrees with the discussion

in Raveri & Hu (2019) of their Eq. (47). More generally, the additional difference can be

computed from CpJ and CΠ and can cause ∆θUC to be larger than the difference implied by

θ
p
1C−θ

p
2C since the Gaussian priors in each copy tend to bring the posteriors closer together.

Note that for flat, range bound, priors as in our SN example the two copies do not lead to

a stronger joint prior so that θ̃
p
J = θ

p
J .

Furthermore the difference between QC
DM and QC

UDM becomes relevant only if there is

a non-negligible shift along partially prior constrained directions since the two estimators

agree in the fully data and prior constrained limits.

It is clear at this point that making use of the parameter split methodology provides

some advantages compared to the data splitting method. Equations (K.30) and (K.31) for

the covariances for the parameter split statistics should be compared with Eqs. (K.21) and

(K.22) for data split statistics. Crucially the former can be simply calculated from parameter

covariances whereas the latter require manipulations of the data covariance. We can also

therefore check the GLM results using parameter covariances taken from the MCMC chain

when evaluating Eqs. (K.29) and (K.32).

K.5.2 Monte Carlo exact parameter shifts

Having an MCMC parameter estimation in the case of parameter duplication presents us

with the additional possibility of computing parameter shifts as a Monte Carlo integral, as

we discuss in this section.

We first consider the joint posterior probability density function of the two parameter

copies P (θ
p
1C , θ

p
2C). We can then calculate the distribution of their difference, denoted by

∆θC ≡ θ
p
1C − θ

p
2C , as the N -dimensional convolution integral:

P (∆θC) =

∫
Vp

P (θ
p
1C , θ

p
1C −∆θC) dθ

p
1C , (K.36)
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over the whole parameter space volume Vp. Note that this equation is general and describes

the probability to observe a parameter shift ∆θC without assuming the parameters to be

independent. In the limit of uncorrelated data sets the joint probability distribution in the

above expression reduces to P (θ
p
1C , θ

p
2C) = P1(θ

p
1C)P2(θ

p
2C).

To compute the statistical significance of a shift in parameters we then evaluate the

integral:

S =

∫
P (∆θC)>P (0)

P (∆θC) d∆θC , (K.37)

where the volume of integration is defined as the region of parameter space where the prob-

ability to get a shift ∆θC is above the isocontour of no shift, ∆θC = 0.

To form the MCMC chain of parameter differences in the case of correlated data sets

we can take, sample by sample, the difference between the first and second copy of the

parameters, without changing the weights of the samples. The result would be the MCMC

estimate of the convolution integral in Eq. (K.36). Since the parameter duplication chain

is run to convergence in the full 2N dimensional space the parameter difference chain is

appropriately sampled.

Once we have the samples from the parameter difference probability we can compute

the integral in Eq. (K.37) with a mixture of kernel density estimation (KDE) and MCMC

techniques.

The probability of a difference in parameter, for every sample in the difference chain, is

estimated through KDE with a Gaussian smoothing kernel that uses the scaled parameter

difference covariance. The smoothing kernel is explicitly given by:

K(∆θ1C ,∆θ2C) = N (∆θ1C ; ∆θ2C ,Λ C(∆θC) Λ) , (K.38)

where Λ = diag(
√
λ) is a scaling matrix with λ as the smoothing scaling parameter.
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We fix this parameter using Silverman’s rule of thumb Wand & Jones (1994) to:

√
λ =

(
4

ns(N + 2)

) 1
N+4

, (K.39)

where ns is the number of samples in the chain and N is the number of parameters.

For a given MCMC sample j the KDE probability of a shift is given by:

P (∆θjC) =
1∑ns

i=1wi

ns∑
i=1

wiK(∆θjC ,∆θiC) , (K.40)

where wi denotes the weights of the samples and given that the smoothing kernel is nor-

malized. Eq. (K.40) is also computed for the zero shift so that the MCMC estimate of the

integral in Eq. (K.37) is given by the number of samples that have a KDE probability of

shift above the KDE probability of zero over the total number of samples.

This approach has several advantages. First, the combination of MCMC and KDE

makes the estimate weakly sensitive to the choice of the smoothing kernel. The amount

of over/under smoothing that the kernel might be doing is balanced by the fact that that

would also happen for the zero shift estimate and would drop in the difference. In other

words we never just use directly the probability of a zero shift, as obtained from Eq. (K.40),

that would largely depend on the smoothing kernel in general, but rather compute how many

samples from the distribution are above that probability. The second advantage is that this

parameter shift estimate is now completely accounting for all possible non-Gaussianities in

the parameter posterior.

The challenge in using this estimate is that, for statistically significant results, the esti-

mate is likely to be noisy due to the fact that the MCMC chain would have very few samples

in the tail of the distribution.

This sampling error can, however, be estimated in two ways. The first is given by

a shot noise estimate, by taking the square root of the number of MCMC samples in the
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smallest probability tail to account for both tensions and confirmation results. The second is

estimated as the variance of the result across multiple MCMC chains of the same distribution.

In this case we have nchains chains and we compute the shift probability for each of them and

then estimate the error as the ratio of the variance across chains, weighted by the number

of chains, σ2S = var(S)chains/nchains, since the fiducial result uses all of them and given that

different chains are independent. The two error estimates are usually in good agreement for

well converged chains.

K.5.3 Goodness of fit loss

The last CDE that we discuss is goodness-of-fit loss with the parameter split approach. In

contrast to the data split case, when considering parameter splits QC
DMAP becomes easy to

compute, as we discuss below.

At the posterior level the goodness-of-fit loss statistics is defined as:

QC
DMAP ≡ 2 lnLJ (θ

p
C)− 2 lnLJ (θ

p
J ) . (K.41)

Shortly below we discuss in detail its exact distribution as a linear combination of chi-

squared variables. In practice the distribution of QC
DMAP can be approximated by that of a

single chi-squared distribution, matching the mean of the exact distribution, with degrees of

freedom:

⟨QC
DMAP⟩ =NC

eff −NJ
eff − tr[C−1

ΠCCpC(I2N − C−1
ΠCCpC)J2N ] , (K.42)

where we have defined J2N ≡ DCD
T
C − I2N .

As we can see, the statistics of QC
DMAP can be easily computed from the posterior MCMC

samples. In the uncorrelated case it also reduces to the QDMAP statistics discussed in Raveri

& Hu (2019). Compared to the uncorrelated case, we notice that in the correlated case there

267



is an extra term that is present in the mean of the exact QC
DMAP distribution, as shown in

Eq. (K.42), in addition to the difference in the number of effective parameters. Notice that

this term vanishes for fully data or prior constrained directions. Its appearance is associated

with the mismatch of assuming the data is drawn from a single parameter and prior but

analyzed with split parameters and independent priors.

At maximum likelihood level the statistics of goodness-of-fit loss is chi-squared distributed

as a consequence of the fact that the parameter copies decompose the joint parameter esti-

mate, as we show below.

We first consider the statistics of ML ratios (DML). We focus on the distribution of the

DML statistic between the joint chain and the one with the duplicated parameter space. To

do so, we begin by considering the ML parameter split determination, θML
C = (θML

1C , θML
2C )T ,

and the joint ML parameters, θML
J . We then use them to define the difference in joint

log-likelihood at the ML point as:

QC
DML ≡ −2 lnLJ (θ

ML
J ) + 2 lnLJ (θ

ML
C ) . (K.43)

Note that in the limit of uncorrelated data this reduces to QC
DML = −2 lnLJ (θ

ML
J ) +

2 lnL1(θ
ML
1 ) + 2 lnL2(θ

ML
2 ) which is similar to the expressions used in Raveri & Hu (2019).

In the GLM, it can be shown that, up to constants which are not important for our

purpose, we get the following quadratic form in data space:

QC
DML = XT

[
(I− PJ )T Σ−1

J (I− PJ )− (I− PC)T Σ−1
J (I− PC)

]
X

≡ XTAC
DMLX , (K.44)

where we have used the joint projector PJ = MJCJMT
J Σ−1

J and the projector under param-

eter duplication written as PC = MCCCMT
CΣ−1

J . Now, we can rewrite the joint projector in
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the following way:

PJ = MCDC(D
T
CC−1

C DC)
−1DT

CM
T
CΣ−1

J , (K.45)

while the projector in the case of parameter duplication can be expressed as:

PC = MC(M
T
CΣ−1

J MC)
−1MT

CΣ−1
J . (K.46)

Then, using the above expressions it is straightforward to show that the joint set of param-

eters is a subset of the duplicate set, since PJPC = PCPJ = PJ . Therefore, we can use

theorem (5.2.5) in A.M. Mathai (1992) to show that, at the ML level,

QC
DML ∼ χ2(rank(I− PJ )− rank(I− PC))

= χ2(NC −NJ ) , (K.47)

where NC and NJ are the number of parameter duplicates and the number of joint parame-

ters respectively. Note that, in the limit of uncorrelated data sets NC = N1+N2, where N1

and N2 are the number of relevant parameters for the first and second data sets respectively.

In contrast with the case of data split the exact statistics of the parameter split DML

estimator is a chi square, which also means that QC
DML is optimal.

The exact statistics of QC
DML can also be obtained by explicitly computing the eigenvalues

of AC
DMLSJ = PTC − PTJ , where SJ = ΣJ + MJCΠMT

J . Notice that MJCΠMT
J represents

a prior that is fully correlated between the split parameters, whereas our parameter split

analysis assumes separate priors that are uncorrelated. This is necessary since otherwise the

split parameters would be expected to vary according to CΠ leading to a counterfactually

large expected improvement from fitting them separately. Conversely, the split parameter

technique cannot employ fully correlated priors because no matter how weak such a prior is,
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it would force the split parameter posterior means to the same values.

We can now turn to the distribution of QDMAP, with parameter copies. This can be

written as:

QC
DMAP ≡ −2 lnLJ (θ

p
J ) + 2 lnLJ (θ

p
C)

= QC
DML +XT

J

[
M̃T

J C−1
Π CpJC−1

J CpJC−1
Π M̃J

−M̃T
CC−1

ΠCCpCC
−1
C CpCC−1

ΠCM̃C

]
XJ

≡ XT
J A

C
DMAPXJ , (K.48)

where we have used that for Gaussian priors the likelihood at the point of maximum posterior

is given by −2 lnL(θpJ ) = XT [(I−PJ )TΣ−1
J (I−PJ )+M̃T

J C−1
Π CpJC−1

J CpJC−1
Π M̃J ]X for the

joint, and similarly for the parameter copy case. In the above, the copy prior covariance is

defined as CΠC = diag(CΠ, CΠ).

To calculate the exact distribution of QC
DMAP, we follow the same procedure as in the

case of data splits, at the end of in Section K.4. Therefore, we start with the computation of

the matrix AC
DMAPSJ whose spectrum completely specifies the distribution of QC

DMAP as a

sum of independent Gamma distributed variables. It can be shown that this matrix reduces

to:

AC
DMAPSJ = PTC − PTJ + M̃T

J C−1
Π CpJMT

J (K.49)

− M̃T
CC−1

ΠCCpCC
−1
C CpC

(
C−1
ΠCCC +DCD

T
C

)
MT

C .

It can then be also show that the non-zero eigenvalues of Eq. (K.49) are also the eigenvalues
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of the matrix:

AC
DMAP = I2N +DCC−1

Π CpJDT
C − C−1

pCDCCpJDT
C

−C−1
ΠCCpCDCD

T
C + C−1

ΠCCpCC
−1
ΠCCpCJ2N ,

(K.50)

where we have defined, for convenience, the exchange matrix J2N ≡ DCD
T
C − I2N that

exchanges the off diagonal blocks with the diagonal ones. Note that the above expression is

written in terms of quantities that can be obtained from MCMC samples of the posterior of

both the parameter copy and joint chains.

Either one can use Eq. (K.50) to compute the exact distribution or one can approximate

it by a chi squared distribution matching the mean of the exact distribution as a first order

Patnaiks’ approximation Patnaik (1950). The mean of the exact distribution and the number

of degrees of freedom of the chi squared approximation is given by:

tr[AC
DMAP] = N + tr[C−1

Π CpJ ]− tr[C−1
ΠCCpC ] (K.51)

−tr[C−1
ΠCCpC(I2N − C−1

ΠCCpC)J2N ]

= NC
eff −NJ

eff + tr[C−1
Π (Cp1C + Cp2C − CΠ)C−1

Π (Cp12C + Cp21C)] .

We can furthermore calculate the variance of the distribution as it is proportional to the

trace of the matrix (AC
DMAP)

2. This, however, does not significantly simplify and in practical

applications it is significantly easier to compute the variance numerically.

All the results above agree with the results in Raveri & Hu (2019) in the uncorrelated

limit.
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K.6 Arbitrarily split parameters

In this section we generalize the discussion of the parameter split estimators to the case

where we consider parameters that are multiply split or not split at all.

Quantities associated with the split and unsplit part of the parameter space will be

denoted by the subscripts “C" and “U" respectively. We denote the unsplit posterior pa-

rameters with θ
p
U and the n posterior parameter copies with θ

p
SC = (θ

p
1C , θ

p
2C , . . . , θ

p
nC)

T .

Therefore, the full posterior parameter vector can be written as θ
p
C = (θ

p
SC , θ

p
U )

T . In what

follows, the total number of copy parameters will be nNC , where NC is the number of split

parameters, and the number of unsplit parameters will be NU ; therefore, Np = nNC +NU

is the total number of parameters in the final parameter vector.

Note also that the joint analysis deals with the original NJ = NC + NU parameters

in total. The joint parameter vector will be denoted as θ
p
J = (θ

p
CJ , θ

p
UJ )

T , where the two

parts θCJ and θUJ correspond to the parameter subspaces that are split and unsplit in the

parameter split methodology, respectively.

The design matrix DC relates the joint quantities with the copy ones. Constructing this

appropriately is then enough to generalize our analysis as described in the previous sections.

Let DSC be the nNC×NC dimensional design matrix related to the part of parameter space

that is being copied n times; thus, DT
SC = (IC , . . . , IC) with n instances of the identity matrix

IC of dimensions NC ×NC . Let also IU be the NU ×NU identity matrix related to the NU

unsplit parameters. Then, the design matrix takes the form

DC =

 DSC O

O IU

 , (K.52)

where O is the vector with the appropriate number of zeros in each case. Thus, the full

design matrix has dimensions of (nNC +NU )× (NC +NU ).

We first consider parameter shifts of the form θ
p
iC−θ

p
jC between the i-th and j-th copies,
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where i, j = 1, 2, . . . n run over all the n parameter copies. Then, we can express the general

form of the covariance between the two parameter differences θpiC − θ
p
jC and θ

p
kC − θ

p
lC , with

k, l = 1, 2, . . . , n, as

⟨(θpiC − θ
p
jC)(θ

p
kC − θ

p
lC)

T ⟩ = CpikC + CpjlC − CpilC − CpjkC . (K.53)

These matrices then construct the covariance that is associated with the split copy part

of the parameter space. Since there is no shift in the unsplit parameters, the parameter

differences and covariances associated with the unsplit part of the parameter space is zero.

We now turn to the discussion of update parameter differences. In this case, we consider

differences between the posterior parameters from a joint analysis, namely θ
p
J , and the copy

parameter vector (θ
p
iC , θ

p
U )

T which includes the unsplit copy parameters as well as the i-th

copy parameter set. We thus form the parameter differences in update form as

∆θUC ≡ (θ
p
iC , θ

p
U )

T − θ
p
J = (θ

p
iC − θ

p
CJ , θ

p
U − θ

p
UJ )

T . (K.54)

Note that θ
p
UJ are generally different from θ

p
U , and that the unsplit parameters can be

correlated with the split parameters. We can then explicitly calculate the parts of the

covariance between such update parameter differences.

We begin by considering the covariance of the split parameter differences, which results

in:

⟨(θpiC − θ
p
CJ )(θ

p
jC − θ

p
CJ )

T ⟩ = CpijC − CpCJ , (K.55)

where CpCJ = ⟨(θpCJ )(θ
p
CJ )

T ⟩ − ⟨(θpCJ )⟩⟨(θ
p
CJ )

T ⟩ is the covariance of the parameters in the

split part of the joint set. We have used the fact that ⟨(θpiC)(θ
p
CJ )

T ⟩ − ⟨(θpiC)⟩⟨(θ
p
CJ )

T ⟩ =

CpCJ .

Similarly to the above, we can calculate the covariance of the unsplit parameter differences
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as:

⟨(θpU − θ
p
UJ )(θ

p
U − θ

p
UJ )

T ⟩ = CpU − CpUJ , (K.56)

where the covariance matrices CpU and CpUJ correspond to the unsplit part of the copy

and joint parameter sets respectively in the same manner as for the split parameters above.

Finally, we can calculate the covariance between split and unsplit parameter differences,

which yields:

⟨(θpiC − θ
p
CJ )(θ

p
U − θ

p
UJ )

T ⟩ = CpiU − CpCUJ . (K.57)

In the above we have defined the covariance CpiU between the copy i and unsplit copy

parameters and CpCUJ between the split and unsplit joint parameters, again as above.

We can now comment on the relation between the QC
DM and QC

UDM estimators and their

statistical significance. As in the case of two parameter copies without unsplit parameters,

which is discussed in Sec. K.5.1, their significance is the same for the maximum likelihood

parameters, since

 θML
iC

θML
U

− θML
J = CJDT

CC−1
C

 DSCθ
ML
iC − θML

SC

O


where θML

SC = (θML
1C , θML

2C , . . . , θML
nC )T and the zero vector O has length NU .

At the maximum posterior level the two statistics can differ, however, since the update

parameter shifts contain only one copy of the prior in the joint but the prior is applied

once to each set in the split analysis. As we did in Sec. K.5.1 here we can also define the

joint parameter estimate θ̃
p
J = (θ̃

p
CJ , θ

p
UJ )

T that counts the prior n times and has covariance

C̃−1
pJ = C−1

J +DT
CC

−1
ΠCDC = DT

CC
−1
pCDC . Then, the update parameter shifts would be defined

as  θ
p
iC

θ
p
U

− θ̃
p
J = C̃pJDT

CC−1
pC

 DSCθ
p
iC − θ

p
SC

O

 (K.58)
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where O is the zero vector of length NU . Therefore, the statistical significance of the update

differences (θ
p
iC , θ

p
U )

T − θ̃
p
J is the same as that of the parameter shifts θ

p
C − DSCθ

p
iC since

they are related by a linear and invertible transformation. We can then always use θ̃
p
J to

rewrite the update parameter difference as:

 θ
p
iC

θ
p
U

− θ
p
J =


 θ

p
iC

θ
p
U

− θ̃
p
J

+ (θ̃
p
J − θ

p
J ) . (K.59)

To complete the generalization in the case of n parameter copies with unsplit parameters,

we now discuss how the statistics of goodness-of-fit loss both at the ML level, through

QC
DML ≡ XT

J A
C
DMLXJ , and at the level of MAP, through QC

DMAP ≡ XT
J A

C
DMAPXJ , can

be computed. To do so we construct the matrices AC
DMLSJ and AC

DMAPSJ , respectively for

ML and MAP, where we define the covariance matrix SJ ≡ ΣJ + MJCΠMT
J for Gaussian

priors.

Doing so it can be shown that it is still true that the joint projector is a subset of the

copy one, and thus QC
DML is chi-squared distributed with rank(I−PJ )−rank(I−PC) degrees

of freedom.

Furthermore, QDMAP can be approximated by a chi-square distribution by matching

moments of the approximate and exact distributions; the mean will then be given by the

equivalent of Eq. (K.51) if we define NC
eff = nNC +NU − tr[C−1

ΠCCpC ].

At last we highlight that, with the MCMC chain of multiple parameter copies we can

easily construct the distribution of parameter differences and proceed with the statistical

significance calculation as in Sec. K.5.2 to compute the overall statistical significance of

multiple parameter shifts.
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