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Chapter 1: Storage in visual working memory recruits a 

content-independent pointer system 

Introduction 

A central goal of cognitive neuroscience has been to understand the neural 

underpinnings of working memory (WM), an online memory system that is thought to be 

critical for virtually all forms of intelligent behavior. Significant progress has been made 

by focusing on stimulus-specific neural activity that tracks the features of the items 

stored in working memory. In both animal and human subjects, WM storage has been 

shown to elicit sustained activity in neural units or brain regions that are selective for the 

particular items held in mind (D’Esposito & Postle, 2015; Funahashi et al., 1989; Fuster 

& Jervey, 1981; Goldman-Rakic, 1995; Harrison & Tong, 2009; Rademaker et al., 2019; 

Serences et al., 2009). The motivation for these studies is clear, as they have the 

potential to elucidate the memory engrams (Poo et al., 2016) that allow us to hold 

specific ideas in mind. 

Nevertheless, a distinct category of studies has focused instead on neural signals that 

track the number of items stored in working memory, rather than the content of those 

representations (Adam et al., 2020; Todd & Marois, 2004; Vogel & Machizawa, 2004; 

Xu & Chun, 2006). For example, Vogel and Machizawa (2004) used scalp 

electroencephalogram (EEG) recordings to observe a sustained negative slow wave in 

posterior electrodes contralateral to the items stored in working memory. This 

contralateral delay activity (CDA) persists throughout the delay period, reaches a 
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plateau when behavioral estimates of memory capacity are exceeded, and is a robust 

predictor of individual differences in the capacity of visual working memory (Luria et al., 

2016). This kind of load-sensitive neural measure has provided insight into how 

observers control access to this limited online workspace (McNab et al., 2008; Vogel et 

al., 2005), the role of working memory in complex tasks such as multiple object tracking 

(Drew & Vogel, 2008) and visual search (Carlisle et al., 2011; Gunseli et al., 2014), and 

the relationship between working memory capacity and other cognitive abilities 

(Unsworth et al., 2014, 2015). 

Although it is clear that load-sensitive neural signals have been potent tools for studying 

working memory, important questions remain regarding the computational role of this 

class of neural activity. Given past evidence for sustained stimulus-specific neural 

activity during WM storage, one possibility is that load-sensitive signals index the 

feature-selective neural activity required for storage. Here, however, we present 

evidence for neural activity that indexes a qualitatively different cognitive operation from 

the representation of content, per se. There has been longstanding interest in the 

cognitive operations that support object individuation -- the segmentation of objects from 

the background and from other objects -- and the binding of an item’s features into an 

integrated percept that can be tracked in a dynamic visual scene. Kahneman et al. 

(1992) proposed the “object file” as a mechanism for registering specific tokens in the 

visual field to support the continuous tracking of those items through time and space 

(Kahneman et al., 1992). Likewise, Pylyshyn (2009) described “Fingers of Instantiation” 

(FINSTs) as a mechanism for indexing visual tokens, thereby enabling perception to 
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unfold over time despite changes in appearance or spatial position (Z. W. Pylyshyn, 

2009). Thus, both theories describe a kind of spatiotemporal “pointer” system that 

supports the apprehension and tracking of individuated items, while the stored content 

about each item in memory is maintained via parallel but distinct while distinct 

mechanisms support the maintenance of each item’s attended features. 

Our hypothesis is that load-sensitive neural signals reflect the deployment of these 

spatiotemporal pointers. Although the pointer construct was developed in the context of 

attentional tracking tasks, WM storage can also be construed as the sustained 

deployment of attention towards internal representations (Awh & Jonides, 2001). 

Indeed, multiple models of visual WM have embraced the idea of separable neural 

processes for the storage of content on the one hand, and the individuation and binding 

of those representations on the other (Balaban et al., 2019; Bouchacourt & Buschman, 

2019; Oberauer, 2019; Swan & Wyble, 2014; Xu & Chun, 2009). For example, Swan 

and Wyble (2014) postulate a neural “binding pool” that serves to link together the 

multiple features of stored items, supporting their representation as individuated tokens. 

Likewise, Xu and Chun (2009) argued that object individuation and object identification 

are realized in independent stages of processing, with distinct cortical regions 

supporting each function (Xu & Chun, 2006). Thus, there is clear motivation to postulate 

the existence of load-sensitive neural signals that index a content-independent aspect 

of working memory. Our primary conclusion is that EEG activity measured during WM 

storage provides evidence of precisely this kind of neural operation. 
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We used a recently developed multivariate approach that uses the scalp topography of 

EEG activity to decode the number of individuated items held in visual working memory 

(Adam et al., 2020). Although past work has found univariate signals that index the 

number of items stored in working memory, there are several reasons why multivariate 

load detection (mvLoad) provides a more powerful testbed for characterizing the 

properties of load-sensitive neural activity. First, mvLoad is far more sensitive, enabling 

above-chance tracking of the number of items stored even with single trials of EEG 

activity. Second, mvLoad analyses reveal a multivariate signature of WM storage that 

generalizes from the trained dataset to novel human observers, and across significant 

variations in task design (e.g., lateralized versus whole field memory displays); thus the 

method is able to isolate load-sensitive activity more decisively than prior approaches. 

Finally, mvLoad accuracy robustly predicts individual differences in WM capacity, 

showing that it taps into an integral aspect of this online memory system. 

We focused on three clear predictions for the properties of load-sensitive neural activity 

that is separable from the maintenance of specific visual details. First, the activity 

should precisely track the number of individuated representations that are encoded into 

memory, independent of variations in stimulus-driven activity. Second, the activity 

should generate a load signature that generalizes across the storage of distinct classes 

of visual information. Third, that signature should generalize across strong variations in 

the amount of information stored about each item, establishing that it tracks the number 

of individuated representations rather than the total amount of information stored. To 

anticipate the results, three studies using the mvLoad analytic approach confirm all of 
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these predictions, thereby providing critical new evidence for theories of WM capacity 

that distinguish between the storage of featural details, and the indexing of individuated 

items within visual working memory. We propose that this content-independent 

signature of WM load indexes the deployment of spatiotemporal pointers (e.g., 

Pylyshyn, 2009; Khaneman et al., 1992) that enable the individuation, binding, and 

monitoring of attended objects. 

Methods 

Subjects 

Experiments 1-3 included 95 separate data collection sessions (42 in Experiment 1, 33 

in Experiment 2, and 21 in Experiment 3), with 50 unique volunteers participating for 

monetary compensation ($15/hr). A total of 20 volunteers participated in all 3 studies, 

allowing us to implement cross-training analyses across experiments. For participants 

who completed multiple experiments, each experiment was done in a separate EEG 

session. Subjects were between 18 and 35 years old, reported normal or corrected-to-

normal visual acuity, and provided informed consent according to procedures approved 

by the University of Chicago Institutional Review Board. 

 

Experiment 1 

Our target sample was 30 subjects in Experiment 1. 42 volunteers participated in 

Experiment 1 (25 female; mean age = 23.8, SD = 4.5). 9 subjects were excluded from 

the final sample for the following reasons: we were unable to prepare the subject for 

EEG (n = 2); the subject did not complete enough blocks of the task (n = 5); the 
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subject’s data was unintentionally overwritten (n = 1), and too many trials were rejected 

due to eye movements (see Eye Movement Controls, n = 1). The final sample size was 

33 (20 female; mean age = 24.33 years, SD = 4.76). We overshot our target sample 

size by 3 because we needed enough subjects to complete all 3 experiments and some 

could not return. 

 

Experiment 2 

Our target sample was 30 subjects in Experiment 1. 33 volunteers participated in 

Experiment 1 (18 female; mean age = 25.39, SD = 4.30). 2 subjects were excluded from 

the final sample for the following reasons: the subject did not complete enough blocks of 

the task (n = 2). The final sample size was 31 (18 female; mean age = 25.32 years, SD 

= 4.07). We overshot our target sample size by 1 because we needed enough subjects 

to complete all 3 experiments and some could not return. 

 

Experiment 3 

Our target sample was 20 subjects in Experiment 3. 20 volunteers participated in 

Experiment 3 (13 female; mean age = 25.45, SD = 4.07). No subjects were excluded 

from the final sample. 

 

Apparatus 

We tested the subjects in a dimly lit, electrically shielded chamber. Stimuli were 

generated using PsychoPy. Subjects viewed the stimuli on a gamma-corrected 24” LCD 
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monitor (refresh rate: 120 Hz, resolution 1080 x 1920 pixels) with their chin on a padded 

chin rest at a viewing distance of 75 cm.  

 

Luminance-balanced displays 

Stimuli were presented against a mid-gray background (~61 cd/m 2). Memory arrays 

included 1-4 to-be-remembered items. Ignored placeholder items also appeared in the 

memory array such that each array had a total of 5 items. The placeholder items were a 

gray (RGB-value: 166,166,166) that matched the average luminance of all possible 

colors in the color set.  

 

Task Procedures 

All three experiments used a whole-field change detection task. On each trial, a memory 

array appeared containing five total items. There were 1-4 colored items to be 

remembered, and the remainder of items were gray placeholder items to balance area 

and luminance across set size conditions (see Luminance-balanced displays for more 

detail). Memory and placeholder items were positioned with 1 item per quadrant, plus 

the 5th item which was placed in a randomly selected quadrant. 2 memory items never 

appeared in 1 quadrant together. All items were placed at least 4° apart. Participants 

viewed a memory array (250 ms), remembered the items across a delay (1000 ms), 

were probed on one item, and reported whether the probed item was the same as or 

different from the remembered item (unspeeded). Participants completed 14 blocks of 

120 trials, for a total of 1680 trials per session (420 per set size). 2 subjects only 
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completed 1,348 and 1,440 

trials each. EEG acquisition 

duration was between 73 and 

132 minutes, with an average 

of 105 minutes.  

 

Experiment 1: Color 

In Experiment 1, the memory 

items were colored squares 

(width = 2°) (Figure 1a). The 

colors were randomly sampled 

without replacement from a set 

of 7 colors (red = 255, 0, 0; 

green = 0, 255, 0; blue = 0, 0, 

255, yellow = 255, 255, 0; 

purple = 255, 0, 255; teal = 0, 255, 255; orange = 255, 128, 0). Circular gray 

placeholders (radius = 1.13°) of the same area as the memory items also appeared 

during the memory array such that each display contained 5 total objects. One potential 

concern is that the spatial frequency of displays covaried with load because the colored 

squares had a higher spatial frequency than the circular placeholders. Although this 

raises a possible alternative explanation of load decoding in the color condition, there 

was no similar concern with the displays used in Experiments 2 and 3.  

 

Figure 1 Task schematics for an example set size 3 trial in the 
whole-field change detection task used in all three 
experiments. (a) In Experiment 1. participants remembered 
the colored squares while ignoring the grey placeholders. (b) 
In Experiment 2. at the start of each blook, a color cue 
informed participants to attend and remember either the 
orange or the green orientations while ignoring the unced 
color. (c) In Experiment 3. participants remembered both the 
color and the orientation of each item. During change trials, 
one of the features (randomly selected) in the test item would 
change. 
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Experiment 2: Orientation 

In Experiment 2, the memory items were circles (radius = 1.3°) with oriented bars cut 

out of the middle (height = 2.6°, width = .5°) such that they were the same area as the 

items in Experiment 1 (Figure 1b). The possible orientations were 0, 90, 180, and 270 

degrees and they were sampled without replacement for each trial. The placeholder 

items were the same shape. Each block, either orange or green was indicated as the 

target color for that block. Subjects were instructed to remember the orientation of the 

stimuli presented in the target color, and to ignore the stimuli presented in the other 

color. Both the orange and green were luminance matched to the average luminance of 

the color set in Experiment 1 (orange = 255, 155, 55; green = 75, 208, 75). Thus, 

luminance was perfectly balanced across set size conditions. For example, a trial that 

contains 1 orange and 4 green items would be a set size 1 trial in a “target orange” 

block but a set size 4 trial in a “target green” block. 

 

Experiment 3: Conjunction 

In Experiment 3, each memory item included both an orientation and a color and was 

the same shape and size as items in Experiment 2. Both features were independently 

sampled without replacement from the same color and orientation values used in 

Experiments 1 and 2 (Figure 1c). The placeholders were the luminance-matched grey 

from Experiment 1. In change trials, only one attribute (color or orientation) changed, 

with color and orientation changes occurring equally often. 
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EEG acquisition 

We recorded EEG activity from 30 active Ag/AgCl electrodes mounted in an elastic cap 

(Brain Products actiCHamp, Munich, Germany). We recorded from International 10-20 

sites: Fp1, Fp2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, 

T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2. Two additional electrodes 

were affixed with stickers to the left and right mastoids, and a ground electrode was 

placed in the elastic cap at position Fpz. All sites were recorded with a right-mastoid 

reference and were re-referenced offline to the algebraic average of the left and right 

mastoids. We recorded electrooculogram (EOG) data using passive electrodes, with a 

ground electrode placed on the left cheek. Horizontal EOG was recorded from a bipolar 

pair of electrodes placed ~1 cm from the external canthus of each eye. Vertical EOG 

was recorded from a bipolar pair of electrodes placed above and below the right eye. 

Data were filtered online (low cut-off = .01 Hz, high cut-off = 80 Hz, slope from low- to 

high-cutoff = 12 dB/octave), and were digitized at 500 Hz using BrainVision Recorder 

(Brain Products, Munich, German) running on a PC. Impedance values were brought 

below 10 kΩ at the beginning of the session. 

 

Eye tracking 

We monitored gaze position using a desk-mounted EyeLink 1000 Plus infrared eye-

tracking camera (SR Research, Ontario, Canada). Gaze position was sampled at 1000 

Hz. According to the manufacturer, this system provides spatial resolution of .01° of 

visual angle, and average accuracy of .25-.50° of visual angle. We calibrated the eye 

tracker every 1-2 blocks of the task, and between trials during the blocks if necessary. 
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We drift-corrected the eye tracking data for each trial by subtracting the mean gaze 

position measured during a 200 ms window immediately before the onset of the 

memory array. 

 

Artifact rejection 

We segmented the EEG data into epochs time-locked to the onset of the memory array 

(200 ms before until 1000 ms after stimulus onset). We baseline-corrected the EEG 

data by subtracting mean voltage during the 200-ms window immediately prior to 

stimulus onset. Eye movements, blinks, blocking, drift, and muscle artifacts were first 

detected by applying automatic criteria. After automatic detection, we visually inspected 

the segmented EEG data for artifacts (amplifier saturation, excessive muscle noise, and 

skin potentials), and the eye tracking data for ocular artifacts (blinks, eye movements, 

and deviations in eye position from fixation), and discarded any epochs contaminated 

by artifacts. In all 3 experiments, all subjects included in the final sample had at least 

200 trials of each set size condition (800 trials total). 

 

Eye movements  

For eye-tracking data, we rejected trials which contained eye movements beyond a 

certain threshold (threshold = 1° of visual angle). For some subjects, eye tracking data 

was not available (Exp. 1, n = 2; Exp. 2, n = 3). In these cases, EOG data was used. 

We rejected trials that contained horizontal or vertical EOG values beyond a threshold 

of 50 µV.  
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Blinks  

In addition to the threshold detection, blinks were detected by flagging trials with flatline 

data (no position data are recorded when the eye is closed). Additionally, we visually 

inspected the eye tracking data for trial segments with missing data points. 

 

Drift, muscle artifacts, and blocking  

We checked for drift (e.g., skin potentials) with the pop_rejtrend function in ERPLAB. 

We excluded trials where a line fit to the EEG data has a slope greater than a certain 

threshold (slope = 10, minimal r² = .3). We checked for muscle artifacts with the 

pop_artmwppth function in ERPLAB. We excluded trials with peak to peak activity 

greater than 100 µV within a 200 ms window with 100 ms steps. We also excluded trials 

with any value beyond a threshold of 80 µV. 

 

Multivariate Load (mvLoad) Procedure 

Binned trial classification (within-subject & within-experiment) 

The mvLoad analysis is within-subject classification of working memory load on 

baselined EEG. Although our approach allowed robust above-chance performance with 

single trials, we used randomly chosen groups of 20 trials within each set size to 

increase signal-to-noise ratio. We divided each trial into 50 ms windows with 25 ms 

steps and calculated the average voltage for each electrode in the window. 

Classification was performed using an ordinal logistic regression model. The classifier 

was trained to discriminate between load conditions 1, 2, 3, and 4 giving a chance level 
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classification of 25%. Classification was tested on a held out set of data using the 

StratifiedShuffleSplit function from Scikit-Learn. This cross-validation procedure splits 

the data in 80% training and 20% testing sets, while preserving the percentage of 

samples for each load condition. This split was repeated 1000 times and results for 

each subject and timepoint were averaged across these repetitions. Training data was 

standardized at each timepoint using the StandardScaler Scikit-Learn function, and test 

data was standardized using the mean and standard deviation of the training set. 

 

Binned trial classification (within-subject & across-experiment) 

Cross-training classification was used to test for generalization between the color (Exp 

1) and orientation (Exp 2) conditions, and between the single-feature (Exps 1 and 2) 

and conjunction (Exp 3) conditions. These analyses followed the same procedures as 

the within-experiment classification except the testing was done on EEG data from a 

different experiment. For the single-feature generalizability analysis, the classifier was 

trained on data from Experiment 1 and tested on data from Experiment 2 and vice 

versa. For the single-feature to conjunction generalizability analysis, the classifiers were 

trained on a mixture of data from Experiment 1 and 2 and tested on data from 

Experiment 3. All of these analyses were done within-subject, using the subset of 

subjects who completed all of the experiments involved in the analysis (Exp. 1 & 2, n = 

24; Exp. 1, 2, & 3, n = 20).  
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Significance Testing 

In all classification analyses, we tested if classification accuracy was significantly above 

chance at each timepoint using a paired, one-tailed t-test. Classification accuracy was 

compared to empirical chance accuracy, defined by testing the trained model on 

randomly shuffled trial labels. Because we tested for significance at each timepoint (48 

time bins between 0 and 1250 ms), we used the Benjamini-Hochberg procedure to 

control the false discovery rate (FDR) at .05. 

 

Results 

Behavioral 

Across all experiments and conditions, subjects performed the change detection above 

chance (Figure 2, range of condition accuracies: .72-.97). In each experiment, a one-

way ANOVA revealed a significant main effect of set size, such that accuracy declined 

as set size increased (Experiment 1, F(3, 128) = 90.19, p < .001; Experiment 2, F(3, 

120) = 32.93, p < .001; Experiment 3, F(3, 76) = 60.27, p < .001). To examine whether 

behavioral performance varied across the 3 experiments, we carried out a within-subject 

 
Figure 2 Change detection accuracy for each set size in each of the three experiments. See 
Supp. Fig. 2 to see Cowan’s k for these data. 
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analysis using only the 20 observers who completed all 3 experiments. We combined 

data from Experiments 1 and 2 (single-feature items) to compare to Experiment 3 

(conjunction items). In a two-way repeated measures ANOVA on accuracy, there was 

no significant main effect of feature, F(1, 19) = 4.09, p = .057, a significant main effect of 

set size, F(3, 57) = 213.30, p < .001, and a significant interaction of feature and set size, 

F(3, 57) = 17.69, p < .001. To characterize the significant interaction, we conducted 4 

paired t-tests between the single feature and conjunction conditions at each set size 

(corrected p, FDR = .05 with Benjamini-Hochberg procedure). Set size 1 single-feature 

accuracy (M = .94, SD = .03) was significantly lower than conjunction (M = .97, SD = 

.02), t(19) = -5.23, p < .001, d = .955; set size 2 single-feature (M = .90, SD = .04) was 

not significantly different than conjunction (M = .90, SD = .05) ), t(19) = .001, p = .993, d 

= .050; set size 3 single-feature accuracy (M = .84, SD = .06) was significantly higher 

than conjunction (M = .80, SD = .08) ), t(19) = 3.18, p = .007, d = .514; and set size 4 

single-feature accuracy (M = .76, SD = .08) was significantly higher than conjunction (M 

= .72, SD = .07) ), t(19) = 3.81, p = .002, d = .651. Despite revealing reliably worse 

performance in the conjunction experiment, this still provides evidence for “object-based 

benefits” for storage in visual WM (Olson & Jiang, 2002). That is, a larger number of 
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feature values were stored in the conjunction condition than in the single-feature 

condition. 

 

Precise classification of load while controlling for stimulus energy 

The first key result was that the 

mvLoad analysis precisely classified 

working memory load, despite the use 

of stimulus displays that controlled for 

stimulus energy across all load 

conditions. For each experiment (Exp. 

1, n = 33; Exp. 2, n = 31; Exp. 3, n = 

20), we used an ordinal logistic 

regression classifier on raw EEG 

amplitudes from binned trials within-

 
Figure 4 Classification accuracy of single-feature load 
(experiments 1 and 2 mixed together) for set sizes 1 
vs. 2, 2 vs. 3, and 3 vs. 4. Colored lines indicate 
classification accuracy. Shaded error bars indicate ± 
SEM. Color-matched squares indicate timepoints with 
classification significantly above chance (corrected p 
< .05, FDR = .05 with Benjamini-Hochberg 
procedure). Grey line indicates chance classification 
accuracy. Grey rectangle indicates time period where 
memory array is displayed. 
 

 

Figure 3 Classification accuracy over time for each experiment. Classification accuracy is indicated 
with a red line. Shaded error bars indicate ± SEM. Red squares indicate timepoints with classification 
significantly above chance (corrected p < .05, FDR = .05 with Benjamini-Hochberg procedure). Grey 
line indicates chance classification accuracy. Grey rectangle indicates time period where memory array 
is displayed. 
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subject (20 trials per bin) at each time bin 

(50 ms window). We could classify 

working memory load (set size 1 vs. 2 vs. 

3 vs. 4) during the stimulus presentation 

and throughout the delay period (Figure 

3a, 3b, 3c; red squares indicate corrected 

p < .05, FDR-controlled at .05 with 

Benjamini-Hochberg procedure with 48 

time-bins tested). Above-chance 

classification was observed starting in 

early time bins in each experiment (Exp. 1, 64-88 ms timebin; Exp. 2, 160-208 ms 

timebin; Exp. 3, 64-88 ms timebin). Classification was sustained throughout the entire 

delay period for all three experiments. Mean classification accuracy (with chance at .25) 

during the delay period for Experiment 1 was .42 (SD = .03); Experiment 2, .43 (SD = 

.04); Experiment 3, .41 (SD = .04). We also confirmed that the classifier was sensitive to 

single item increments in the number of stored items. Figure 4 shows classification 

accuracy for set sizes 1 vs. 2, 2 vs. 3, and 3 vs. 4. For 1 vs. 2 and 2 vs. 3, accuracy was 

sustained above chance throughout the entire delay period (corrected p < .05, FDR = 

.05 with Benjamini-Hochberg procedure). Using behavioral (set size 4) and EEG data 

from each unique subject across the three experiments (N = 40), we replicated the 

findings (from Adam et al., 2020; Feldmann-Wüstefeld, 2021) that classification 

accuracy was positively correlated with individual differences in working memory 

capacity (r² = .24, p = .001) (Figure 5). Further analysis shows that this relationship is 

 
 
Figure 5 Individual differences in classification 
accuracy are positively correlated with working 
memory capacity. Classification accuracy is 
average delay period accuracy from all unique 
subjects across all three experiments; all data was 
used from each unique subject. Working memory 
capacity was measured using set size 4 trials.  
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consistent across nearly all timepoints in the delay period. This correlation may be 

caused by the greater reliability with which higher capacity individuals achieve the 

storage of all relevant items (e.g., Adam et al., 2015), which would in turn yield more 

discriminable patterns of activity for each set size. This finding reinforces the earlier 

evidence that the mvLoad analysis taps into a neural operation that is relevant for 

understanding capacity limits in visual working memory. 

  

A load signature that generalizes across distinct feature values 

The second key analysis examined whether the load signatures revealed by mvLoad 

generalized across distinct 

feature values (i.e., color 

and orientation). Using data 

from subjects who had 

participated in both 

Experiments 1 and 2 (n = 

24) we trained the classifier 

using the color trials from 

Experiment 1 and tested it 

on the orientation trials 

from Experiment 2. We 

also trained on orientation 

trials and tested on color 

trials. In both directions of 

 
Figure 6 Accuracy for single-feature load classification. Blue line is 
classification accuracy when trained on data from experiment 1 
(color) and tested on experiment 2 (orientation). Red line is 
accuracy when trained on experiment 2 and tested on experiment 
1. Color-matched squares indicate timepoints with classification 
significantly above chance (corrected p < .05, FDR = .05 with 
Benjamini-Hochberg procedure). Grey line indicates chance 
classification accuracy. Grey rectangle indicates time period where 
memory array is displayed. 
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training and testing, robust classification was sustained throughout the entire delay 

period (Figure 6). Mean classification accuracy during the delay period for color to 

orientation was .33 (SD = .03); orientation to color, .34 (SD = .03). Thus, the same 

multivariate pattern classified load precisely for memoranda with distinct relevant 

features, revealing a load-sensitive signal that is separable from the specific content 

stored in working memory. These decoding accuracies are lower than we saw with 

within-experiment analyses. 

While this could reflect non-

generalizable aspects of the 

load signal, it could also 

reflect methodological noise 

across sessions, such as 

small differences in 

electrode placement or 

impedence. Thus, even if 

precisely the same load 

pattern were present in 

each EEG session, some 

drop in decoding accuracy would be expected for across-session relative to within-

session training.  

 

A signature of load that is independent of total amount of information stored 

Figure 7 Accuracy for classification trained on data from 
experiments 1 and 2 (single-feature items, color or orientation) 
and tested on data from experiment 3 (conjunction items, color 
and orientation). Red squares indicate timepoints with 
classification significantly above chance (corrected p < .05, 
FDR = .05 with Benjamini-Hochberg procedure). Grey line 
indicates chance classification accuracy. Grey rectangle 
indicates time period where memory array is displayed. 
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The third key analysis examined whether the load-sensitive activity revealed by the 

mvLoad analysis was independent of the total amount of feature information maintained 

about each item stored in working memory. To this end, we trained the classifier on the 

combined data from Experiments 1 and 2, in which each item contained one relevant 

feature to be stored (i.e., either color or orientation) and we tested this model using data 

from Experiment 3 in which the number of relevant features per item was doubled (i.e., 

both color and orientation) (Figure 7). This analysis included a group of 20 subjects who 

had participated in all three experiments. Classification accuracy was robustly above 

chance throughout the entire delay period with a mean delay-period accuracy of .36 (SD 

= .03). Again, the across-experiment decoding accuracy was lower than in the within-

experiment analyses. Nevertheless, the same signature of load identified with single 

feature stimuli was observed with conjunction stimuli that contained twice as many 

relevant features per item, in line with a load-sensitive cognitive operation that is 

separable from the maintenance of specific features.  

 

While robust cross-training between single feature and conjunction conditions suggests 

that they evoked a common load signature, further analyses provided more incisive 

evidence for the content-independent character of this load-sensitive neural activity. 

First, recall from Experiments 1 and 2 that the mvLoad analysis robustly detected the 

difference between one and two single-feature items (Figure 3), and between two and 

three single-feature items, showing that the analysis is sensitive to the addition of a 

single item with one relevant feature. Thus, if load decoding with single-feature items  

was based on the number of color or orientation values stored, then 1 conjunction item 
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should be classified as the same load as 2 single-feature items. Alternatively, if load 

decoding was based on the number of feature-independent pointers stored, then 1 

conjunction item should be classified as the same load as 1 single-feature item. To test 

this prediction, we trained the mvLoad classifier with single-feature stimuli, and 

examined performance across 3 key conditions: (1) set size 1 single-feature (2) set size 

2 single-feature (3) set size 1 conjunction. The divergent predictions of the feature-load 

and pointer explanations are illustrated in Figure 8a and 8b, along with the observed 

data in 8c. 

  

Visual inspection reveals that our findings fall directly in line with the pointer hypothesis, 

such that a one conjunction item was equivalent to one single-feature item. We tested 

the reliability of this pattern with two planned comparisons. First, we found a reliable 

difference between the predicted load for a single conjunction item and two single-

feature items. A Bayesian paired t-test revealed strong evidence for a difference 

 
Figure 8 mvLoad classifier output (trained on single-feature items) compared to the predicted output of 
the feature load and pointer hypotheses. Within each graph, each bar represents 100 percent of trials 
classified as load 1 (blue) or 2 (red) in each condition. (a) The feature load hypothesis predicts that load 
1 conjunction items will be classified the same way as load 2 single-feature items. (b) The pointer 
hypothesis predicts that load 1 conjunction items will be classified the same way as load 1 single-
feature items. (c) The actual mvLoad classifier performance was in-line with the pointer hypothesis. 
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between these conditions (t(19) = -9.01, p < .001, d = 3.09, BF10  > 100), showing that a 

single conjunction item had a higher probability to be classified as load 1 (M = .65, SD = 

.12) than set size 2 single-feature items (M = .35, SD = .07). Second, we examined the 

prediction that one conjunction item should predicted as the same load as one single-

feature item (M = .65, SD = .06), using a Bayesian paired t-test. This revealed 

substantial evidence for the null hypothesis, suggesting that both had the same 

probability of being classified as load 1 (t(19) = 0.00, p = .999, d = 0.00, BF10 = .232). An 

analogous analysis of set size 2 and 4 trials revealed precisely the same empirical 

pattern, showing that 2 conjunction items (M = .68 classified as load 2, SD = .15) were 

predicted as a lower load than 4 single-feature items (M = .34, SD = .08), (t(19) = -8.06, 

p < .001, d = 2.76, BF10 > 100), and that 2 conjunction items were predicted as the same 

load as 2 single-feature items (M = .66, 

SD = .08), (t(19) = -.652, p = .522, d = 

.185, BF10 = .281). Thus, our findings 

strongly suggest that there is a common 

load signature for single-feature and 

conjunction stimuli that is determined by 

the number of individuated items stored, 

rather than by the number of feature 

values stored. 

 

Ruling out the size of the attended region as the driver of load-sensitive neural 

activity  

Figure 9 Examples of a set size 4 grouped and 
ungrouped memory arrays. In the grouped 
condition, collinearity between the notches yields 
the percept of a single oriented rectangle for each 
grouped pair.  



   

 

23 

 

Although the results of the mvLoad analysis point to load-sensitive neural activity that is 

separable from the quantity and type of content stored about each item, we noted that 

the spatial extent of the attended region in the display was confounded with the number 

of stored items. Thus, we examined whether the classifier was indexing the area of the 

attended regions on the screen, rather than the number of individuated items, per se. To 

this end, we re-analyzed data from an EEG study of perceptual grouping by Diaz et al. 

(2021) in which subjects stored the orientation of two or four notched discs in visual 

working memory. In the grouped condition, the discs were arranged so that collinearity 

between the notches in pairs of discs elicited the percept of a single illusory rectangle 

(Figure 9). Thus, in the set size 4 grouped condition, perceptual grouping encouraged 

the perception of two individuated orientation values, whereas in the set size 4 

ungrouped condition observers perceived four individuated orientation values. Critically, 

the number of relevant elements and their spatial extent were matched between the 

grouped and ungrouped displays. Diaz et al. (2021) reinforced this point by showing that 

the power of alpha oscillations in occipitoparietal electrodes, a neural signal that has 

been shown to track the number of attended locations (Fukuda & Woodman, 2015), 

tracked the number of elements on the screen, but was unaffected by the grouping 

manipulation. Thus, the key question for the present study was whether the mvLoad 

classifier would register the difference between the grouped and ungrouped displays. If 

load classification is based on the spatial extent of the attended locations, then it should 

return the same load value for the grouped and ungrouped conditions, in line with the 

posterior alpha power signal examined by Diaz et al. (2021). By contrast, if load 

classification is based on the number of individuated items stored, then a lower load 
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should be detected in the 

grouped relative to the 

ungrouped condition. Figure 10 

illustrates the output over time 

of a classifier that was trained 

exclusively on ungrouped 

displays (set size 2 or 4) and 

then tested on both the 

ungrouped and grouped 

displays. The output here is 

from the classifier’s 

decision_function method, 

which returns the confidence 

score of the sample. This score 

is proportional to the signed distance of that sample to the hyperplane. In Figure 10, 

stronger evidence for set size 4 is plotted in the positive direction, whereas stronger 

evidence for set size 2 is plotted in the negative direction. When trained and tested on 

the ungrouped trials, the classifier exhibited sustained above-chance performance 

throughout the delay period (i.e., sustained positive values for set size 4 and sustained 

negative values for set size 2). However, when the same classifier was tested with set 

size 4 grouped trials, classification evolved over time. Set size 4 grouped trials were 

initially classified the same as set size 4 ungrouped. However, by the 512-536 ms time 

bin, set size 4 grouped diverged away from set size 4 ungrouped, and was reliably 

 
 
Figure 10 Distance from the classification hyperplane for 
set size 2 ungrouped, set size 4 grouped, and set size 4 
ungrouped trials across time. Classification is trained on 
set size 2 and 4 ungrouped trials and tested on all three 
conditions. Hyperplane is indicated with the dashed grey 
line. Trials above the hyperplane are classified as set size 
4 while trials below it are classified as set size 2. Distance 
from the hyperplane for each trial condition at each 
timepoint. Blue squares indicate timepoints where 4 
ungrouped is significantly greater than 4 grouped 
(corrected p < .05, FDR = .05 with Benjamini-Hochberg 
procedure). Green squares indicate where 2 ungrouped is 
significantly less than 4 grouped (corrected p < .05, FDR = 
.05 with Benjamini-Hochberg procedure). 
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closer to the hyperplane. Set size 4 grouped was also reliably different from set size 2 

ungrouped at the start of the trial. However, by time bin 848-872 ms, set size 4 grouped 

had crossed the hyperplane and was no longer reliably different from set size 2 

ungrouped. Thus, while perceptual grouping did not affect the spatial extent of the 

attended region (Diaz et al., 2021), the mvLoad classifier indexed a lower number of 

stored items in the grouped condition, showing that the classifier indexes the number of 

individuated items stored in memory, not the spatial extent of covert attention. 

 

Discussion 

Given that working memory serves as a cornerstone for intelligent behaviors, there is 

strong motivation to build a taxonomy of the neural operations that support online 

memory storage. The dominant strain of this work has focused on stimulus-specific 

neural activity that represents the stored content (e.g., D’Esposito & Postle, 2015; 

Funahashi et al., 1989; Fuster & Jervey, 1981; Goldman-Rakic, 1995; Rademaker et al., 

2019; Serences et al., 2009), and great progress has been made in understanding the 

format and anatomical locus of this class of neural activity. By contrast, we highlight 

evidence for a qualitatively different neural operation that is integral to WM function, but 

separable from the maintenance of stored content. Specifically, we refer to a 

spatiotemporal pointer operation that supports the segmentation of visual scenes into 

individuated representations that can be tracked through time and space (Khaneman et 

al, 1992; Pylyshyn, 2009). Using a multivariate analytic approach (Adam et al., 2020), 

we show that the scalp topography of EEG voltage precisely tracks the number of 

individuated representations stored in visual WM, while generalizing across variations in 
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both the type and number of relevant features per item. Thus, although this neural 

operation is hypothesized to track the spatiotemporal coordinates of stored objects, it 

operates in a fashion that is insensitive to the contents of the tracked memory 

representations. Moreover, the fidelity of this load-sensitive neural activity is a predictor 

of individual differences in WM capacity, emphasizing its importance for understanding 

why WM capacity is limited.  

The present findings provide a critical complement to past work that has sought to 

determine the computational role of load-sensitive neural activity. For instance, multiple 

studies have reported EEG and BOLD activity patterns that rise with each additional 

item stored, and reach an apparent plateau at set sizes that exceed behavioral 

estimates of capacity in visual WM (e.g., Todd & Marois, 2004; Vogel & Machizawa, 

2004; Xu & Chun, 2006). But while this empirical pattern is consistent with a neural 

operation that tracks number per se, it can also be modeled using a biophysically 

plausible “saturation model” wherein stimulus-specific neural activity follows an 

exponential function (Bays, 2018). There have also been reports of neural activity that 

rises with the number of items, but that isn’t affected by the complexity of the 

memoranda (Xu and Chun, 2005; Woodman and Vogel, 2008). This empirical pattern 

suggests a neural operation that indexes the number of individuated representations 

stored in working memory rather than the total amount of visual information. That said, 

these conclusions are based on an intriguing null result: the absence of a difference in 

mean activity levels across distinct types of stimuli. By contrast, our findings provide 

positive evidence for a common neural index of the number of stored items when the 



   

 

27 

 

type and number of visual features per item is varied: a multivariate signature of load 

that robustly generalizes across three distinct types of memoranda, demonstrating a 

content-independent aspect of storage-related neural activity. Moreover, our findings 

were supported by 84 separate EEG sessions across 40 unique observers that yielded 

above-chance decoding in every session for every observer tested. Thus, our findings 

provide compelling positive evidence for an item-based, content-independent aspect of 

storage in visual working memory.  

Our working hypothesis is that this load-sensitive neural activity reflects the deployment 

of spatiotemporal “pointers” or indexes that support object individuation -- the 

segmentation of objects from the background and from other objects -- and the 

continuous tracking of items through time and space (e.g., Pylyshyn, 2009; Khaneman 

et al., 1992; Xu and Chun, 2009). To study this cognitive process, Pylyshyn & Storm 

(1988) introduced “multiple object tracking” (MOT), a task that requires the observer to 

keep track of varying numbers of targets that move randomly amongst a group of 

identical distractors. Their behavioral data indicated a relatively sharp capacity limit that 

they attributed to a limit on the number of pointers that could be concurrently deployed. 

Interestingly, Drew and Vogel (2009) used a lateralized version of the MOT task to show 

that CDA activity rises with the number of targets that are tracked, predicts individual 

differences in tracking ability, and reaches an apparent plateau after three targets are 

selected. Thus, it may be that both the CDA and mvLoad classifiers are picking up on a 

content-independent indexing operation that is required during tracking and visual 

working memory tasks (Balaban et al., 2019; Hakim et al., 2019; Tsubomi et al., 2013). 
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In combination with stimulus-selective neural activity that supports the maintenance of 

precise memories (e.g., D’Esposito & Postle, 2015), evidence for a content-independent 

pointer operation falls in line with various proposals for a separation between the 

precise maintenance of content and the number of representations maintained in 

working memory. For example, if WM storage is limited by the deployment of content-

independent pointers, this could explain why the maximum number of items an 

individual can store is uncorrelated with the precision of those representations (Awh et 

al., 2007), and why number exhibits a strong correlation with fluid intelligence while 

precision does not (Fukuda et al., 2010). Likewise, this separation may explain why 

different regions of visual cortex appear to track the number and complexity of the 

memoranda stored in WM (e.g., Xu and Chun, 2005). In addition, if storage in visual 

WM is contingent on the assignment of a pointer, this could explain why many studies 

have documented an “object-based benefit” in which a larger number of features can be 

maintained within multi-feature compared to single-feature objects (Luck & Vogel, 1997; 

Olson & Jiang, 2002). Specifically, if each individuated object stored requires one of a 

limited number of pointers, then single-feature items would be the least efficient way to 

store the largest number of features. 

In conclusion, multivariate analysis of the topography of EEG voltage reveals a load-

sensitive neural operation that tracks the number of individuated items stored in working 

memory, while generalizing across variations in the type and number of visual features. 

This empirical pattern provides critical new evidence for a distinction between the 

maintenance of visual features and the discrete indexing of the items that contain those 
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features. These findings help to clarify the taxonomy of neural operations that support 

storage in this online mental workspace. 
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Chapter 2: Stronger evidence for feature-independent 

pointers in visual working memory 

Introduction 

Visual working memory (WM) research has focused a great deal on stimulus-specific 

neural activity that supports the maintenance of information. There is significant evidence 

that WM elicits sustained neural activity in populations that are selective for the particular 

features values held in mind (D’Esposito & Postle, 2015; Funahashi et al., 1989; Fuster 

& Jervey, 1981; Goldman-Rakic, 1995; Harrison & Tong, 2009; Rademaker et al., 2019; 

Serences et al., 2009). These studies can provide insight into the neural activity that 

underlies the maintenance of specific information in mind. 

 

Another area of WM research is neural measures of load, or, the amount of information 

held in mind (Adam et al., 2020; Todd & Marois, 2004; Vogel & Machizawa, 2004; Xu & 

Chun, 2009). For example, Vogel and Machizawa 2004 discovered a contralateral 

negativity in EEG for items stored in WM. This contralateral delay activity (CDA) has since 

been shown to track the number of objects in WM (Ikkai et al., 2010) and is highly 

predictive of individual WM capacity.  

 

A long-standing discussion of WM storage relates to the process of binding or 

individuating objects. Kahneman et al 1992 proposed the object file as a method of 

binding an object as a temporary episodic representation to support tracking of the object 

through time and space. (Kahneman et al., 1992) Pylyshyn 1989 similarly presents the 
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concept of the “finger of instantiation” (FINST), which are indexes of individuated objects 

separate from their type or location. (Z. Pylyshyn, 1989) Both theories describe a type of 

spatio-temporal pointer that supports the tracking and storage of objects while the actual 

content is maintained by a separate mechanism. 

 

There have been several models of WM that propose separate neural processes for 

maintenance of features and individuation (Balaban et al., 2019; Bouchacourt & 

Buschman, 2019; Oberauer, 2019; Swan & Wyble, 2014; Xu & Chun, 2009). For example, 

Xu and Chun (2009) argued for two separate neural pathways for object identification and 

individuation. Swan and Wyble (2014) proposed a “neural binding pool” which binds 

together multiple features of an object serving the representation as an individuated 

token. 

 

Adam et al 2020 used multivariate classification of EEG activity to decode the number of 

objects stored in WM. (Adam et al., 2020) This multivariate load detection (mvLoad) is an 

incredibly sensitive measure, even working on individual EEG trials. It also generalized 

across individuals and unique task designs (whole field versus lateralized memory 

displays). Chapter 1 of this dissertation presented evidence that mvLoad generalizes 

across items with distinct feature values and from single-feature to conjunction items 

(Thyer et al., 2022). It was also not affected by the spatial extent of the objects in memory. 

This strongly suggests that this mvLoad procedure is tracking content-independent 

spatio-temporal pointers.  
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However, a key limitation of those experiments is that color and orientation change 

detection tasks were collected in different sessions. A drop in mvLoad generalization 

could be solely due to session noise causing the feature-independence of the model to 

be underestimated. Another limitation that could cause an overestimation of feature-

independence is that neural populations which represent colors and orientations may be 

so interdigitated that they don't produce distinct EEG signals. This would partially 

undermine the cross-training results. By using more separable populations, such as color 

and motion coherence, (Felleman & Van Essen, 1991; Vaina, 1994; Zeki, 1978) we can 

more accurately test the feature generalizability of mvLoad. 

 

If mvLoad generalization between color and orientation data that was collected within one 

session still shows a drop in accuracy compared to within-feature classification, then that 

is evidence for the presence of some feature-specific activity. However, if load 

classification generalizes perfectly, then we have strong evidence for a feature-

independent load signature. With color and motion objects, we have an even stronger 

test of this feature-generalizability. If there is no cross-training between color and motion 

objects, then that suggests that there is indeed a strong limitation to the feature-

generalizability of mvLoad. But, if there is above-chance classification, even in objects 

with features coded in very disparate neural populations, then we have strong evidence 

for feature-independence which is in line with the hypothesis that mvLoad is tracking 

feature-independent pointers in WM. 
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Methods 

Subjects 

Experiments included 35 volunteers (Experiment 1, n = 13; Experiment 2, n = 15) 

participating for monetary compensation ($15 per hr). Subjects were between the ages 

of 18 and 35 years old, reported normal or correct-to-normal visual acuity, and provided 

informed consent according to procedures approved by The University of Chicago 

Institutional Review Board. Subjects were recruited via online advertisements and fliers 

posted on the university campus.  

 

Experiment 1. Our target sample in Experiment 1 was 12 subjects. 17 volunteers 

participated in Experiment 1 (8 females; mean age = 24.9 years, SD = 3.8). 4 subjects 

were excluded from the final sample for the following reasons: The session was ended 

early due to eye movements (n = 2); the subject’s data was corrupted or otherwise 

unusable (n = 2). The final sample size was 13 (6 female; mean age = 25.0 years, SD = 

4.1). 

 

Experiment 2. Our target sample in Experiment 1 was 15 subjects. 18 volunteers 

participated in Experiment 2 (9 females; mean age = 26.6 years, SD = 4.0). 3 subjects 

were excluded from the final sample for the following reasons: The session was ended 

early due to eye movements (n = 2); the subject didn’t have enough data after artifact 

rejection (n = 1). The final sample size was 15 (9 female; mean age = 26.7 years, SD = 

2.2). 
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Apparatus 

We tested the subjects in a dimly lit, electrically shielded chamber. Stimuli were generated 

using PsychoPy (Peirce et al., 2019). Subjects viewed the stimuli on a gamma-corrected 

24-in. LCD monitor (refresh rate = 120 Hz, resolution = 1,080 × 1,920 pixels) with their 

chins on a padded chin rest at a viewing distance of 75 cm. 

 

Luminance-balanced displays 

Experiment 1. Stimuli were presented against a mid-gray background (~61 cd/m2). 

Memory arrays included one or three to-be remembered items. Ignored placeholder items 

also appeared in the memory array, so each array had a total of four items. The 

placeholder items were shown in a shade of gray (red, green, blue [RGB] value = 149, 

150,149) that matched the average luminance of all possible colors in the color set. 

Placeholders were circles (radius = 1.13°) to match the area of memory items. 

 

Experiment 2. Stimuli were presented against a mid-gray background (~61 cd/m2). 

Memory arrays included one or two to-be remembered items. Ignored placeholder items 

also appeared in the memory array, so each array had a total of three items. The 

placeholder items were shown in a shade of gray (red, green, blue [RGB] value = 166, 

166, 166) that matched the average luminance of all possible colors in the color set. 

Ignored placeholders were motion coherence patches of the same speed, size, and 

number of dots as the memory items, but they always had 0 motion coherence. 
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Task procedures 

Experiment 1. The experiment used a whole-field change detection task (Figure 11a). 

On each trial, a memory array appeared containing four total items. There were one or 

four colored items to be remembered, and the remainder of the items were gray 

placeholder items to balance area and luminance across set-size conditions (see the 

Luminance-balanced displays section for more detail). 

 
Figure 11 Task schematics for an example Set Size 3 trial in the whole-field change-detection task used 

on both experiments. In Experiment 1 (a), subjects were cued at the beginning of each block to either 

remember the color or orientation of the memory items while ignoring the gray distractor items. In 

Experiment 2 (b), subjects were cued at the beginning of each block to either remember the color or the 

motion coherence of the memory items while ignoring the gray distractor items. During change trials, the 

attended feature changes 50% of the time.  
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Memory items were colored circles (radius = 1.3°) with oriented bars cut out of the middle 

(height = 2.6°, width = 0.5°). The possible orientations were 0°, 90°, 180°, and 270°, and 

they were sampled without replacement for each trial. The possible colors were randomly 

sampled without replacement from a set of four colors (RGB values: red = 255, 0, 0; green 

= 0, 255, 0; blue = 0, 0, 255; yellow = 255, 255, 0). Items were positioned with a maximum 

of one item per quadrant. In each block, either the color or orientation was indicated as 

the target feature for that block. Two memory items never appeared in one quadrant 

together, and all items were placed at least 4 apart. Subjects viewed a memory array (250 

ms), remembered items across a delay (1000 ms), were probed on one item, and reported 

whether the probed item was the same as or different from the remembered item 

(unspeeded). Alternating each block, participants were instructed to attend to either the 

color or the orientation of the memory items. Only the attended feature dimension could 

change.  

 

Experiment 2. The experiment used a whole-field color report task (Figure 11b). On each 

trial, a memory array appeared containing 3 total items. Items were colored moving dot 

patches (radius = 3º). The possible colors were randomly sampled without replacement 

from the same set of seven colors as Experiment 1 (RGB values: red = 255, 0, 0; green 

= 0, 255, 0; blue = 0, 0, 255; yellow = 255, 255, 0; purple = 255, 0, 255; teal = 0, 255, 

255; orange = 255, 128, 0). The moving dots within each item were either moving 

coherently (all in one direction) or incoherently (moving in random directions). Items were 

positioned with a maximum of one item per quadrant. In each block, either the color or 

the motion coherence was indicated as the feature to be remembered. Subjects viewed 
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a memory array (500 ms), remembered items across a delay (1000 ms), were probed on 

one item, and reported whether the probed item was the same as or different from the 

remembered item (unspeeded). Alternating each block, participants were instructed to 

attend to either the color or the motion coherence of the memory items. Only the attended 

feature dimension could change.  

 

EEG acquisition 

We recorded EEG activity from 30 active Ag/AgCl electrodes mounted in an elastic cap 

(Brain Products actiCHamp, Munich, Germany). We recorded from international 10-20 

sites Fp1, Fp2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, 

CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2. Two additional electrodes 

were affixed with stickers to the left and right mastoids, and a ground electrode was 

placed in the elastic cap at position Fpz. All sites were recorded with a right-mastoid 

reference and were rereferenced off-line to the algebraic average of the left and right 

mastoids. Data were filtered on-line (low cut-off = 0.01 Hz, high cut-off = 80 Hz, slope 

from low to high cut-off = 12 dB/octave) and were digitized at 500 Hz using BrainVision 

Recorder (Brain Products, Munich, Germany) running on a PC. Impedance values were 

brought below 10 kΩ at the beginning of the session. 

 

Eye tracking 

We monitored gaze position using a desk-mounted EyeLink 1000 Plus infrared eye-

tracking camera (SR Research, Ontario, Canada). Gaze position was sampled at 1000 

Hz. According to the manufacturer, this system provides spatial resolution of .01° of visual 
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angle and average accuracy of 0.25 to 0.50° of visual angle. We calibrated the eye tracker 

every one to two blocks of the task and between trials during the blocks if necessary. We 

drift-corrected every 5 trials. Additionally, we drift-corrected the eye-tracking data for each 

trial by subtracting the mean gaze position measured during a 200-ms window 

immediately before the onset of the memory array. 

 

Artifact rejection 

We segmented the EEG data into epochs time-locked to the onset of the memory array 

(200 ms before until 1,000 ms after stimulus onset). We baseline-corrected the EEG data 

by subtracting mean voltage during the 200-ms window immediately prior to stimulus 

onset. Eye movements, blinks, blocking, drift, and muscle artifacts were detected by 

applying automatic criteria and we discarded any epochs contaminated by artifacts. All 

subjects included in the final sample had at least 140 trials of each condition. 

 

Eye movements and blinks 

We employed real-time eye movement detection. If participants moved their eyes more 

than 1.25° from fixation, the trial was interrupted and their eye position was shown to them 

for feedback purposes. Interrupted trials were made up at the end of the block. During 

preprocessing, we rejected trials that contained eye movements beyond 1° of visual angle 

using the pop_artextval function in ERPLAB (Lopez-Calderon & Luck, 2014). 
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Drift and muscle artifacts 

We checked for drift (e.g., skin potentials) with the pop_rejtrend function in ERPLAB.). 

We checked for muscle artifacts with the pop_artextval function in ERPLAB. We excluded 

trials where EEG activity was greater than 80 µV or less than -80 µV. We excluded trials 

with peak-to-peak activity greater than 100 µV within a 200-ms window with 100- ms 

steps. We also excluded trials with any value beyond a threshold of 80 µV. 

 

mvLoad procedure 

Load classification (within-attended feature) 

The mvLoad analysis is within-subjects classification of WM load on baselined EEG. 

Although our approach allowed robust above-chance performance with single trials, we 

used randomly chosen groups of 20 trials within each set size and attended feature to 

increase signal-to-noise ratio. We divided each trial into 50-ms windows with 25-ms steps 

and calculated the average voltage for each electrode in the window. Classification was 

performed using the Scikit-Learn Logistic Regression model. The classifier was trained 

to discriminate between load conditions x and y within each attended feature, giving a 

chance-level classification of 50%. Classification was tested on a held-out set of data 

using the train_test_split function from Scikit-Learn (Pedregosa et al., 2011) stratified on 

the trial conditions. This cross-validation procedure splits the data in 80% training and 

20% testing sets while preserving the percentage of samples for each load condition. This 

split was repeated 1,000 times, and results for each subject and time point were averaged 

across these repetitions. Training data were standardized at each time point using the 
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StandardScaler Scikit-Learn function, and test data were standardized using the mean 

and standard deviation of the training set. 

 

Load classification (across-attended feature) 

Cross-training classification was used to test for generalization between the color and 

orientation conditions. These analyses followed the same procedures as the within-

attended feature classification except that the testing was done on EEG data from the 

other attended feature condition. The classifier was trained on data from the attend color 

condition and tested on data from the attend orientation condition and vice versa. 

Attended feature classification 

Attended feature was also classified using a similar procedure as mvLoad. The standard 

LogisticRegression from Scikit-Learn model was used instead of an ordinal logistic 

regression model. Also, the classifier is trained to discriminate between attended color 

and attended orientation conditions. Load conditions 1 and 3 are collapsed across within 

each attend feature group.  

 

Figure 12 Change detection accuracy for each set size in both experiments. Black dots indicate individual 

data, white dots indicate means, and shaded regions indicate the density of the data. 
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Coherence level classification 

Coherence level was also classified using a similar procedure as mvLoad. The 

LogisticRegression model from Scikit-Learn was trained to discriminate between 

coherent and incoherent memory objects in the set size 1 condition. We also compare 

coherence classification in the Attend Motion Coherence versus the Attend Color blocks. 

 

Significance testing 

In all classification analyses, we tested whether classification accuracy was significantly 

above chance at each time point using a paired-samples, one-tailed t test. Classification 

accuracy was compared with empirical chance accuracy, defined by testing the trained 

model on randomly shuffled trial labels. Because we tested for significance at each time 

 
Figure 13 Event-related potentials (ERPs) for each condition in both experiments at parietal/occipital, 

central, and frontal electrodes. The gray region indicates stimulus presentation.  
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point, we used the Benjamini-Hochberg procedure to control the false-discovery rate 

(FDR) at .05. 

Results 

Behavioral 

 
Figure 14 Load classification accuracy for each attended feature over time for (a) Experiment 1 (color 
and orientation) and (b) Experiment 2 (color and motion coherence). Classification accuracy is indicated 
with the red and blue lines. The shaded area around the lines indicate the standard error of the mean. 
Red and blue squares at the bottom indicate time points in which classification accuracy was significantly 
above chance (corrected p < .05, false-discovery rate = .05 with Benjamini-Hochberg procedure). The 
gray dashed line indicates chance classification accuracy. The vertical gray rectangle indicates the time 
period during which the memory array was displayed. The shuffle condition reveals empirical chance 
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Across both experiments and conditions, subjects performed the task with above-chance 

accuracy (see Fig. 12). In Experiment 1, a repeated measures analysis of variance 

(ANOVA) revealed a significant main effect of set size, indicating that accuracy declined 

as set size increased, F(1, 11) = 20.59, p < .001. There was also a significant main effect 

of attended feature, F(1, 11) = 32.74, p < .001, and a significant interaction of attended 

feature and set size, F(1, 11) = 16.72, p < .001. In Experiment 2, a repeated measures 

analysis of variance (ANOVA) revealed a significant main effect of set size, indicating that 

accuracy declined as set size increased, F(1, 12) = 31.47, p < .001. There was also a 

significant main effect of attended feature, F(1, 12) = 26.02, p < .001, and a significant 

interaction of attended feature and set size, F(1, 12) = 27.76, p < .001. 

 

Within-Feature Load Classification 

We successfully predicted WM load. In both experiments (Experiment 1: n = 13; 

Experiment 2: n = 15), we used a logistic regression classifier on raw EEG amplitudes 

from binned trials within subjects (15 trials per bin) at each time bin (25-ms window). We 

could classify WM load (Experiment 1: Set Size 1 vs. Set Size 3; Experiment 2: Set Size 

1 vs. Set Size 2) during the stimulus presentation and throughout the delay period in each 

attended feature condition (Experiment 1: color and orientation; Experiment 2: color and 

motion coherence) (Fig. 14; red squares indicate corrected p < .05, FDR-controlled at .05 

with Benjamini-Hochberg procedure with 51 time bins tested). Above-chance 

classification was observed starting in early time bins in each experiment (Experiment 1 

color: 88-ms to 112-ms time bin; Experiment 1 orientation: 88-ms to 112-ms time bin; 

accuracy, obtained by training the model on non-permuted data then testing on data with permuted trial 
labels. 



   

 

44 

 

Experiment 2 color: 136-ms to 184-ms time bin; Experiment 2 motion coherence: 112-ms 

to 136-ms). Classification was sustained throughout the entire delay period for both 

experiments. Mean classification accuracy (with chance at .5) during the delay period for 

Experiment 1 color was .688 (SD = .0567), for Experiment 1 orientation mean accuracy 

was .723 (SD = .611), for Experiment 2 color it was .612 (SD = .029), and for Experiment 

2 motion coherence it was .663 (SD = .020). 

 

Across-Feature Load Classification 

The main analysis examined whether the load classification generalized across distinct 

feature values (i.e., color and orientation). In Experiment 1, we trained the classifier using 

the color trials and tested it on the orientation trials. We also trained on orientation trials 

and tested on color trials. In Experiment 2, we trained the classifier using the color trials 

and tested it on the motion coherence trials. We also trained on motion coherence trials 

and tested on color trials. In Experiment 1, in both directions of training and testing, robust 

classification was sustained throughout the entire delay period (Fig. 15a-b). Mean 

classification accuracy during the delay period for color to orientation was .680 (SD = 

.0593) and for orientation to color was .669 (SD = .0522). In Experiment 2, there was 

above chance classification accuracy in both directions, however, it was not sustained 

throughout the entire delay period. Mean classification accuracy during the delay period 

for color to motion coherence was .551 (SD = .0192) and for motion coherence to color 

was .538 (SD = .0215). Thus, the same multivariate pattern classified load precisely for 

memoranda with distinct relevant features, revealing a load-sensitive signal that is 

separable from the specific content stored in WM. However, in Experiment 2, these 
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across-feature classification accuracies are significantly lower than those we saw with 

within-feature classifications for nearly the entire delay period (see Fig. 15c-d). 

 
Figure 15 Accuracy for within- and cross-feature load classification. The blue line represents the 
classification accuracy when trained and tested on data from the same attended feature. The red line 
represents classification accuracy when trained on data from one feature and tested on the other 
attended feature. The purple squares represent times when cross-trained classification accuracy is 
significantly different from within-feature accuracy (corrected p < .05, false-discovery rate = .05 with 
Benjamini-Hochberg procedure). The gray line indicates chance classification accuracy. The gray vertical 
rectangle indicates the time period during which the memory array was displayed. The shuffle condition 
reveals empirical chance accuracy, obtained by training the model on non-permuted data then testing 
on data with permuted trial labels. 

 

Attended Feature Classification 

If feature-general classification is the result of EEG lacking the sensitivity to measure 

differences in color and orientation feature information, then classification of the attended 
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feature in the task should not be possible. However, in each, we trained the classifier to 

predict the attended feature (alternated each block). In both experiments, classification 

was sustained throughout the entire delay period (Fig. 16). In Experiment 1, mean 

classification accuracy during the delay period was .589 (SD = .298). In Experiment 2, 

mean classification accuracy during the delay period was .803 (SD = .0678).  

 
Figure 16 Accuracy for attended feature classification in (a) Experiment 1 and (b) Experiment 2. The red 
line represents accuracy for predicting which feature the participant is attending to (and subsequently 
remembering) in a given trial. The red squares represent times when classification accuracy is 
significantly above chance (corrected p < .05, false-discovery rate = .05 with Benjamini-Hochberg 
procedure). The gray line indicates chance classification accuracy. The gray vertical rectangle indicates 
the time period during which the memory array was displayed. The shuffle condition reveals empirical 
chance accuracy, obtained by training the model on non-permuted data then testing on data with 
permuted trial labels. 

 

Coherence Level Classification 

In addition to the load and attended feature classification, we also found strong 

classification of coherence level (Fig. 17). Generally, we are unable to classify specific 

feature  
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values from EEG (such as color or 

orientation). Using only set size 1 trials, we 

classified whether the memory object had 

coherent or incoherent motion. Mean 

classification accuracy during the delay 

period was .566 (SD = .0307). Importantly, 

classification was at chance for coherence 

level classification in the attend color 

blocks (mean = .503, SD = .0208). This 

provides strong evidence for voluntary 

storage of features within an object. 

 

Discussion 

A content-independent pointer system 

supports on-line storage in working 

memory. Pointers track items in memory regardless of their features. There are many 

models of visual WM that include the idea of separable neural processes for content 

maintenance and the individuation and bindings of those representations (Balaban et al., 

2019; Bouchacourt & Buschman, 2019; Oberauer, 2019; Swan & Wyble, 2014; Xu & 

Chun, 2009). Chapter 1 provides evidence that mvLoad generalizes across items with 

different featural content. mvLoad generalizes from colors to orientations (and vice versa), 

as well as from single-feature items to conjunctions items. Problem in different sessions 

and color/orientation neural interdigitation. However, a weakness of the evidence in 

 
Fig. 17 Classification accuracy for motion 
coherence. The red line represents accuracy for 
classifying the motion coherence level of a given 
Set Size 1 trial while the participant was attending 
to motion coherence. The blue line presents 
accuracy for classifying the motion coherence level 
of a given Set Size 1 trial while the participant was 
attending to color. The red squares represent times 
when classification accuracy for the “attend 
motion” trials is significantly above chance 
(corrected p < .05, false-discovery rate = .05 with 
Benjamini-Hochberg procedure). There are not 
time points above chance for the “attend color” 
trials. The gray line indicates chance classification 
accuracy. The gray vertical rectangle indicates the 
time period during which the memory array was 
displayed. The shuffle condition reveals empirical 
chance accuracy, obtained by training the model 
on non-permuted data then testing on data with 
permuted trial labels. 
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Chapter 1 was that data for items with different feature values came from separate EEG 

sessions. That could result in weakened cross-training results, thus, underestimating the 

degree of feature-independence. However, a classifier trained color and orientation items 

may be particularly well-suited to generalizing to each other because color and orientation 

neural populations are interdigitated. The use of more neural separable populations such 

as color and motion may provide a more rigorous test of feature-independence. Here, we 

provide much stronger evidence for mvLoad’s generalization across items with different 

features values. In 2 experiments, we test the generalizability of mvLoad within single 

sessions of EEG recording. Experiment 1 uses color and orientation objects and 

replicates the feature-independence findings of Chapter 1. Experiment 2 uses color and 

motion coherence objects and provides stronger evidence for the load classifier 

generalizing across items with unique feature values. 

 

Experiment 1 replicates the cross-training from Chapter 1, where mvLoad was trained on 

color and tested on orientation and vice versa. This experiment provides more robust 

evidence because the cross-training is within-session and uses perfectly balanced stimuli. 

This allows us to perfectly compare within- and across- feature training. We find that 

training and testing across items with different feature dimensions shows minimal 

reduction in accuracy as compared to items with the same feature dimension. Importantly, 

we also show that the attended feature of the item can be classified. This suggests that 

there is a difference between the two conditions, but the load signal generalizes.  
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Experiment 2 extends the cross-training to color and motion coherence. This is an 

important addition, because color and motion neural populations are more disparate than 

colors and orientations or shapes. It’s expected that if cross-training is driven by confusion 

between the feature-specific neural activity, then load decoding should drop to chance. 

While we do show evidence of a drop in accuracy during cross-training (as compared to 

within-feature load classification), there is still sustained above-chance load classification. 

This suggests that while there is clearly some feature-specific information present, there 

is still a robust underlying signature of load that generalizes across very distinct features. 

 

There is a variety of evidence that is in line with the content-independent pointer system. 

If WM storage is limited by pointer deployment, this could explain why there is a strong 

correlation between fluid intelligence and WM capacity but not precision (Fukuda et al., 

2010). Also, many studies have shown an object-based benefit in which more features 

can be maintained in multi-feature objects than single-feature objects (Luck & Vogel, 

1997; Olson & Jiang, 2002). There is also evidence that different regions of visual cortex 

track the number and complexity of objects in WM (Xu & Chun, 2009).  

 

In summary, we presented further evidence for a content-independent load signature in 

raw EEG topography. It generalizes across colors to orientations with almost no loss in 

classification accuracy. It also generalizes across colors and motion coherence, which 

are represented by very disparate neural populations. This strengthens the argument that 

the generalization isn’t just the result of interdigitated neural populations resulting in 

similar EEG activity. In addition, we show strong classification of attended feature which 
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further suggests that the EEG activity is distinct for different remembered features, but 

the load classification still generalizes. This evidence is in line with the hypothesis that 

mvLoad is tracking content-independent pointers. The pointer system supports the 

individuation and maintenance of objects over time and space, while being separate from 

the maintenance of the feature values of the items themselves. 

  



   

 

51 

 

Chapter 3: Spatial attention and working memory gating are 

distinct forms of voluntary attentional control 

Introduction 

Past work has revealed a tight relationship between storage in visual working memory 

(WM) and covert spatial attention (Awh et al., 2006; Awh & Jonides, 2001). One of the 

most compelling forms of evidence comes from studies that have examined spatially 

selective alpha oscillations – known to track the precise locus of covert spatial attention 

(Foster, Sutterer, et al., 2017; Rihs et al., 2007; Samaha et al., 2016) – during the delay 

period of working memory tasks. For example, Foster et al. (2016) showed that the scalp 

topography of alpha activity precisely tracks positions that are maintained in working 

memory, and that this signal is sustained throughout the blank delay period of the WM 

task (Foster et al., 2016). Moreover, the same signature of spatial attention is observed 

during WM storage even when location is completely irrelevant to the task (Foster, 

Bsales, et al., 2017). Finally, WM performance declines when observers are prevented 

from deploying visual attention towards memorized locations (Awh et al., 1998; Williams 

et al., 2013), suggesting that attention plays a functional role in WM storage. These 

findings notwithstanding, a fundamental question remains regarding the relationship 

between spatial selective attention and visual working memory. Is focusing spatial 

attention on an item tantamount to encoding it into working memory, or are these 

processes separable but intertwined aspects of attentional control? 
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Indeed, there is an emerging body of evidence that indicates a potential dissociation of 

spatial selective attention and WM storage. For example, Hakim et al. (2019) examined 

the EEG correlates of spatial attention and WM storage in two distinct conditions (Hakim 

et al., 2019). When observers were instructed to storage an initial array of items in working 

memory, both lateralized alpha (tracking spatial attention) and contralateral delay activity 

(CDA, known to track the number of items stored in visual WM) tracked the locus and 

number of items in the sample array. However, when observers were presented with 

identical stimulus displays and instructed to covertly attend the marked positions, CDA 

activity was virtually eliminated while lateralized alpha activity continued to track the 

attended hemifield. Likewise, Hakim et al. (2021) found that while CDA activity was 

eliminated for irrelevant items presented on one side of space, lateralized alpha signals 

were insensitive to target relevance (Hakim et al., 2021). These findings suggest that 

spatial attention and WM storage may be intertwined but separable aspects of voluntary 

attentional control. One limitation of these findings, however, is that lateralized alpha 

activity is a relatively coarse measure of covert spatial orienting that does not determine 

whether spatial attention is precisely oriented towards a given item, or merely directed 

towards the visual field containing that item. This limitation prevents a clear conclusion 

about whether spatially attending a specific item entails the entry of that item into working 

memory. 

 

Thus, in the present work, we employed an inverted encoding model (IEM) that enabled 

us to track the deployment of spatial attention towards specific items (Foster, Sutterer, et 

al., 2017). In addition we used a recently developed multivariate approach (mvLoad) for 
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decoding the number of discrete items encoded into visual WM (Adam et al., 2020; Thyer 

et al., 2022). Another innovation in our design is that targets and distractors were 

randomly positioned such that observers could not direct attention in advance towards 

specific locations. Thus, we were able to observe the goal-driven encoding of targets into 

working memory, while simultaneously measuring which elements were spatially 

attended. To anticipate the results, mvLoad analyses revealed that observers could 

voluntarily gate encoding into working memory, such that targets could be selectively 

stored in visual working memory while distractors were held out. By contrast, alpha 

oscillations revealed that spatial selective attention was precisely oriented towards both 

elements in the sample display, and that the sharpness of this spatial spotlight did not 

depend on target status. In other words, at precisely the same moments in time where 

mvLoad analyses revealed selective encoding of targets into working memory, alpha 

oscillations showed that spatial attention was sharply 

 

Methods 

Subjects 

The experiment included n volunteers participating for monetary compensation ($15-20 

per hr). Subjects were between the ages of 18 and 35 years old, reported normal or 

correct-to-normal visual acuity, and provided informed consent according to procedures 

approved by The University of Chicago Institutional Review Board. Subjects were 

recruited via online advertisements and fliers posted on the university campus.  
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Experiment 1. 31 volunteers participated in Experiment 1 (20 females; mean age = 25.7 

years, SD = 3.9). 8 subjects were excluded from the final sample for the following reasons: 

The session was ended early due to eye movements (n = 3); the subject’s data was 

corrupted or otherwise unusable (n = 5). The final sample size was 23 (16 female; mean 

age = 26.0 years, SD = 4.12). 

 

Experiment 2. 23 volunteers participated in Experiment 2 (16 females; mean age = 26.2 

years, SD = 3.8). 3 subjects were excluded from the final sample for the following reasons: 

the subject didn’t have enough data after artifact rejection (n = 2); the subject’s data was 

corrupted or otherwise unusable (n = 1). The final sample size was 20 (15 female; mean 

age = 26.4 years, SD = 3.7). 

 

Apparatus 

We tested the subjects in a dimly lit, electrically shielded chamber. Stimuli were generated 

using PsychoPy (Peirce et al., 2019). Subjects viewed the stimuli on a gamma-corrected 

24-in. LCD monitor (refresh rate = 120 Hz, resolution = 1,080 × 1,920 pixels) with their 

chins on a padded chin rest at a viewing distance of 75 cm. 

 

Memory displays 

Stimuli were presented against a mid-gray background (~61 cd/m2). Memory arrays 

included one or two to-be remembered items. In experiment 1, distractor items were either 

letters (A, E, G, J, M, P, T, or X) or hashtags (#). In experiment 2, distractors were 

rectangles of equal area to the target squares. They were either shown using the same 
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set of colors as memory items, or shown in a shade of gray (red, green, blue [RGB] value 

= 163, 163, 163) that matched the average luminance of possible colors in the color set. 

 

Task procedures 

Experiment 1. The 

experiment used a whole-

field change detection 

task (Fig. 18a). On each 

trial, a memory array 

appeared containing 1 or 

2 items. Items were either 

digits, letters, or hashtags 

(#). There were 4 

experimental conditions. 

In the single target 

condition, one digit would 

appear as a memory item. 

In the single target plus 

hashtag condition, one 

digit would appear as a 

memory item and one 

hashtag would appear as a distractor. In the single target plus letter distractor condition, 

one digit would appear as a memory item and one letter would appear as a distractor. In 

 
Figure 18 Task schematics for an example Set Size 3 trial in the 

whole-field change-detection task used on both experiments. In 

Experiment 1 (a), subjects were cued at the beginning of each block 

to either remember the color or orientation of the memory items while 

ignoring the gray distractor items. In Experiment 2 (b), subjects were 

cued at the beginning of each block to either remember the color or 

the motion coherence of the memory items while ignoring the gray 

distractor items. During change trials, the attended feature changes 

50% of the time.  



   

 

56 

 

the two target condition, two digits would appear as memory items. Conditions were 

blocked. Items were positioned with one item per quadrant. Two memory items never 

appeared in one quadrant together, and all items were placed at least 4° degrees apart.  

Subjects viewed a memory array (200 ms), remembered items across a delay (800 ms), 

were probed on one memory item, and reported whether the probed item was the same 

as or different from the remembered item (unspeeded).  

 

Experiment 2. The experiment used a whole-field change detection task (Fig. 18b). On 

each trial, a memory array appeared containing 1 or 2 items. Memory items were colored 

squares (dimensions 1° by 1°) and distractor items were colored or gray rectangles. There 

were 4 experimental conditions. In the very dissimilar distractor condition, 1 colored 

square plus 1 gray rectangle (dimensions .55° by 1.82°) appeared. In the dissimilar 

distractor condition, 1 colored square plus 1 colored rectangle (dimensions .55° by 1.82°) 

appeared. In the similar distractor condition, 1 colored square plus 1 colored rectangle 

(dimensions .67° by 1.50°) appeared. Conditions were blocked. Items were placed 4° 

from fixation, within one of five bins (54°-126°, 126°-198°, 198°-270°, 270°-342°, 342°-

54°). These bins were later used to group items for Inverted Encoding Modeling. Items 

were placed within the bins with counterbalancing, such that every combination of item 

placement was equally probable. Items were placed at least 2° (degrees of visual angle) 

apart. Subjects viewed a memory array (150 ms), remembered items across a delay (850 

ms), were probed on one memory item, and reported the color of the probed item by 

clicking on a color wheel (unspeeded). The probed item was indicated by the location of 

the color wheel.  
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EEG acquisition 

We recorded EEG activity from 30 active Ag/AgCl electrodes mounted in an elastic cap 

(Brain Products actiCHamp, Munich, Germany). We recorded from international 10-20 

sites Fp1, Fp2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, 

CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2. Two additional electrodes 

were affixed with stickers to the left and right mastoids, and a ground electrode was 

placed in the elastic cap at position Fpz. All sites were recorded with a right-mastoid 

reference and were rereferenced off-line to the algebraic average of the left and right 

mastoids. Data were filtered on-line (low cut-off = 0.01 Hz, high cut-off = 80 Hz, slope 

from low to high cut-off = 12 dB/octave) and were digitized at 500 Hz using BrainVision 

Recorder (Brain Products, Munich, Germany) running on a PC. Impedance values were 

brought below 10 kΩ at the beginning of the session. 

 

Eye tracking 

We monitored gaze position using a desk-mounted EyeLink 1000 Plus infrared eye-

tracking camera (SR Research, Ontario, Canada). Gaze position was sampled at 1000 

Hz. According to the manufacturer, this system provides spatial resolution of .01° of visual 

angle and average accuracy of 0.25 to 0.50° of visual angle. We calibrated the eye tracker 

every one to two blocks of the task and between trials during the blocks if necessary. We 

drift-corrected every 5 or 10 trials. Additionally, we drift-corrected the eye-tracking data 

for each trial by subtracting the mean gaze position measured during a 200-ms window 

immediately before the onset of the memory array. 
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Artifact rejection 

We segmented the EEG data into epochs time-locked to the onset of the memory array 

(200 ms before until 1,000 ms after stimulus onset). We baseline-corrected the EEG data 

by subtracting mean voltage during the 200-ms window immediately prior to stimulus 

onset. Eye movements, blinks, blocking, drift, and muscle artifacts were detected by 

applying automatic criteria and we discarded any epochs contaminated by artifacts. 

 

Eye movements and blinks 

We employed real-time eye movement detection. If participants moved their eyes more 

than 1.25° from fixation, the trial was interrupted and their eye position was shown to them 

for feedback purposes. Interrupted trials were made up at the end of the block. During 

preprocessing, we rejected trials that contained eye movements beyond 1° of visual angle 

using the pop_artextval function in ERPLAB (Lopez-Calderon & Luck, 2014). 

 

Drift, muscle artifacts, and blocking 

We checked for drift (e.g., skin potentials) with the pop_rejtrend function in ERPLAB. We 

checked for muscle artifacts with the pop_artextval function in ERPLAB. We excluded 

trials where EEG activity was greater than 80 µV or less than -80 µV. We excluded trials 

with peak-to-peak activity greater than 100 µV within a 200-ms window with 100- ms 

steps. We also excluded trials with any value beyond a threshold of 80 µV. 

 

mvLoad procedure 
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Load classification 

The mvLoad analysis is within-subjects classification of WM load on baselined EEG. 

Although our approach allowed robust above-chance performance with single trials, we 

used randomly chosen groups of 20 trials within each set size and attended feature to 

increase signal-to-noise ratio. We divided each trial into 50-ms windows with 25-ms steps 

and calculated the average voltage for each electrode in the window. Classification was 

performed using the Scikit-Learn Logistic Regression model. The classifier was trained 

to discriminate between conditions. Classification was tested on a held-out set of data 

using the train_test_split function from Scikit-Learn (Pedregosa et al., 2011) stratified on 

the trial conditions. This cross-validation procedure splits the data in 80% training and 

20% testing sets while preserving the percentage of samples for each load condition. This 

split was repeated 1,000 times, and results for each subject and time point were averaged 

across these repetitions. Training data were standardized at each time point using the 

StandardScaler Scikit-Learn function, and test data were standardized using the mean 

and standard deviation of the training set. 

 

Significance testing 

In all classification analyses, we tested whether classification accuracy was significantly 

above chance at each time point using a paired-samples, one-tailed t test. Classification 

accuracy was compared with empirical chance accuracy, defined by testing the trained 

model on randomly shuffled trial labels. Because we tested for significance at each time 

point, we used the Benjamini-Hochberg procedure to control the false-discovery rate 

(FDR) at .05. 
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Hyperplane procedure 

In order to further leverage classification, we can use the average classification 

confidence score of a given condition after training the classifier. The confidence score 

comes from the decision_function method. This score is proportional to the signed 

distance of that sample to the hyperplane. By training a binary classifier, and testing on 

other conditions, we can track the average classification confidence level for each 

condition over time. For training and testing, we use the same procedures as typical 

classification, but we remove certain conditions from the training set, so they only appear 

in the testing set. This allows us to set “prototypical” classes for the classifier by only 

training on them, and then measure how other conditions are classified by testing on 

them. 

 

Inverted Encoding Models 

We employed an Inverted Encoding Model to track spatially-specific alpha-activity in the 

EEG signal (Brouwer & Heeger, 2009; Sprague & Serences, 2013). This method allows 

us to estimate the responses of spatial channels (CTFs) which reflect the spatial tuning 

of population-level alpha power over time. Thus, we have a temporally resolved method 

to track covert spatial attention (Foster, Bsales, et al., 2017; Foster et al., 2016).Crucially, 

we can use this technique to compare the deployment of spatial attention to both targets 

and distractors. In Experiment 1, the location bins were set at each quadrant because we 

did not initially intend to use IEMs so the stimulus placement is not optimized for them. In 
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Experiment 2, we positioned stimuli within 5 different bins around fixation (see Task 

Procedures - Experiment 2 for details). 

Results 

Behavioral 

Across both experiments and all conditions, subjects performed the task with above 

chance accuracy (see Fig. 19) In Experiment 1, change detection accuracy ranged from  

0.96-0.99. In Experiment 1, all set size 1 condition accuracies were not significantly 

different from each other. 1 target (M = .99, SD = .12) was not significantly different from 

1 target plus a hashtag distractor (M = .99, SD = .12), t(21) = -.129, p = .900, or 1 target 

plus a letter distractor (M = .99, SD = .11), t(21) = -.860, p = .401. 1 target plus a hashtag 

distractor was not significantly different from 1 target plus a letter distractor, t(21) = -.760, 

p = .456. After averaging set size 1 condition accuracies (M = .99, SD = .01), set size 1 

accuracy was significantly different from set size 2 accuracy (M = .96, SD = .19), t(21) = 

3.33, p < .05.  

 

 

Figure 19 Task accuracy for each condition in both experiments. Experiment 1 (a) change detection 

accuracy and Experiment 2 (b) color report absolute error. Black dots indicate individual data, white 

dots indicate means, and shaded regions indicate the density of the data. 
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Experiment 2, color report absolute error ranged from 14.3-20.0 degrees. 1 target plus a 

gray distractor (M = 14.28, SD = 13.00) was not significantly different from 1 target plus 

a dissimilar distractor (M = 14.78, SD = 15.26), t(23) = -.98, p = .339, or 1 target plus a 

similar distractor (M = 14.96, SD = 15.10), t(23) = -1.46, p = .157. 1 target plus a dissimilar 

distractor was not significantly different from 1 target plus a similar distractor, t(23) = -.27, 

p = .789. After averaging set size 1 condition accuracies (M = 14.73, SD = 2.78), set size 

1 accuracy was significantly different from set size 2 accuracy (M = 19.97, SD = 24.67), 

t(23) = -6.29, p < .001.  

 

Hyperplane analysis 

Figure 19a (Experiment 1) and Figure 20a (Experiment 2) illustrate the output over time 

of a classifier that was trained exclusively on 1 target and 2 target trials and then tested 

on all conditions. The output here is from the classifier’s decision_function method, which 

returns the confidence score of the sample. This score is proportional to the signed 

distance of that sample to the hyperplane. Stronger evidence for Set Size 2 is plotted in 

the positive direction, whereas stronger evidence for Set Size 1 is plotted in the negative 

direction. 
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Figure 20 Hyperplane and CTF results from Experiment 1. a) The distance from the hyperplane for 

each condition over time. After training the classifier on Set Size 1 and 2, we tested it on all conditions 

(see Hyperplane analysis section for more detail). Each line represents the distance from the 

hyperplane over time for that condition. The colored shaded region is the standard error of the mean. 

The colored squares above indicate time points in which the matching line is significantly different 

from Set Size 2. b) CTF selectivity (as measured by slope) over time for each condition. The shaded 

region is the standard error of the mean. c-e) The average distance from the hyperplane for each 

condition during stimulus presentation (c), first half of the delay period (d), and second half of the 

delay period (e). f-h) The average CTF slope for the target and distractor for each condition during 

the stimulus presentation (f), first half of the delay period (g), and second half of the delay period 

(h). 
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Experiment 1. The classifier was trained to classify 1 target versus 2 target trials. The 

trained classifier was then tested on all conditions. The 1 target and 1 target with a 

hashtag distractor were classified significantly differently from Set Size 2 throughout the 

delay period starting during stimulus presentation (1 target: 112ms-136ms time bin, 1 

target with hashtag distractor: 136ms-160ms time bin) (Fig. 20a). The 1 target with a letter 

distractor condition was not as consistently significantly different from the 2 target 

condition, but a generally sustained significant difference started during the first half of 

the delay period (304ms-328ms time bin). Thus, the mvLoad analysis shows a clear 

distinction between Set Size 2 and the Set Size 1 conditions with a distractor. To further 

highlight the trajectory of the hyperplane, we separate the time course into 3 bins: stimulus 

COMPARISON STIMULUS 1ST HALF DELAY 2ND HALF DELAY 

1 TARGET – 

HASHTAG DIST. 

T = -1.42, p < .001 T = -1.67, p < .001 T = -.65, p < .01 

1 TARGET – LETTER 

DIST. 

T = -1.48, p < .001 T = -2.18, p < .001 T = -1.01, p < .001 

1 TARGET – 2 

TARGET 

T = -1.66, p < .001 T = -2.93, p < .001 T = -1.66, p < .001 

HASHTAG DIST. – 

LETTER DIST. 

T = -.066, p = .92 T = -.51, p < .05 T = -.36, p = .27 

HASHTAG DIST. – 2 

TARGET 

T = -.24, p  = .11 T = -1.26, p < .001 T = -1.01, p < .001 

LETTER DIST. – 2 

TARGET 

T = -.17, p = .36 T = -.75, p < .001 T = -.65, p < .01 

a) 

CONDITION STIM 1ST HALF DELAY 2ND HALF DELAY 

1 TARGET M = -.84, SD = .33 M = -1.45, SD = .60 M = -.81, SD = .68 

HASHTAG 

DISTRACTOR 

M = .58, SD = .42 M = .22, SD = .57 M = .-.16, SD = .60 

LETTER 

DISTRACTOR 

M = .65, SD = .31 M = .73, SD = .61 M = .20, SD = .65 

2 TARGET M = .82, SD = .32 M = 1.48, SD = .59 M = .84, SD = .67 

b) 

Table 1 Results from the time window hyperplane analysis for Experiment 1 (see Fig Xc-e). a) The results 

of the Tukey HSD test of each pairwise comparison for the experiment conditions distance from the 

hyperplane. b) Mean and standard deviation for each condition in during each time window. 
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display (0 - 200 ms), first-half of the delay period (200 - 600 ms), and second half of the 

delay period (600-1000 ms) (Fig. 20c-e). We compared each condition using a Tukey 

HSD test. During stimulus presentation, the 1 target with a hashtag distractor  
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Figure 21 Hyperplane and CTF results from Experiment 2. a) The distance from the hyperplane for 

each condition over time. After training the classifier on Set Size 1 and 2, we tested it on all conditions 

(see Hyperplane analysis section for more detail). Each line represents the distance from the 

hyperplane over time for that condition. The colored shaded region is the standard error of the mean. 

The colored squares above indicate time points in which the matching line is significantly different from 

Set Size 2. b) CTF selectivity (as measured by slope) over time for each condition. The shaded region 

is the standard error of the mean. c-e) The average distance from the hyperplane for each condition 

during stimulus presentation (c), first half of the delay period (d), and second half of the delay period 

(e). f-h) The average CTF slope for the target and distractor for each condition during the stimulus 

presentation (f), first half of the delay period (g), and second half of the delay period (h). 
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and with a letter distractor were not significantly different from the 2 target condition, and 

were significantly different from the 1 target condition. During the first half of the delay 

period, all pairs were significantly different from each other. Importantly, all Set Size 1 

conditions were significantly different from Set Size 2. Additionally, distance from the 

hyperplane monotonically increased with distractor difficulty. During the second half of 

the delay period, each Set Size 1 condition was still significantly different from the Set 

Size 2 condition. (See table 1 for values) 

 

Experiment 2. The classifier was trained to classify Set Size 1 trials with a gray distractor 

and Set Size 2 trials (Fig. 21a). The trained classifier was then tested on all conditions. 

For Set Size 1 conditions, all three conditions were classified significantly differently from 

Set Size 2 throughout the whole delay period starting during the delay period (Very 

dissimilar distractor: 160ms-184ms time bin; Dissimilar distractor: 160ms-184ms time bin; 

Similar distractor: 184ms-208ms time bin). Thus, the mvLoad analysis shows a clear 

distinction between Set Size 2 and the Set Size 1 conditions with a distractor. To further 

highlight the trajectory of the hyperplane, we separate the time course into 3 bins: stimulus 

display (0 - 200 ms), first-half of the delay period (200 - 600 ms), and second half of the 

delay period (600-1000 ms) (Fig. 21c-e). We compared each condition using a Tukey 

HSD test. During stimulus presentation, hyperplane distance was not significantly 

different for any given pair of conditions. During the first half of the delay period, all pairs 

were significantly different from each other. Importantly, all Set Size 1 conditions were 

significantly different from Set Size 2. Additionally, distance from the hyperplane 

monotonically increased with distractor difficulty. During the second half of the delay 
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period, each Set Size 1 condition was still significantly different from the Set Size 2 

condition, however the distractor difficulty effect is no longer present. (See table 2 for 

values) 

 

IEM analysis 

In both experiments, we tested the hypothesis that distractors and target alike were both 

spatially attended but only targets were stored in WM. We tested this by comparing the 

slope of the channel tuning functions (CTF) for the Set Size 1 & 2 targets versus the Set 

Size 1 distractors. If the CTF selectivity (as measured by the slope) is equal for both  

targets and distractors, then that provides evidence that both are equally spatially 

attended. And if that selectivity is equal while mvLoad analyses show that the distractors 

are not in WM, then that shows that items can be attended while not being gated into WM.  
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Experiment 1. We found evidence of sustained CTF selectivity for both Set Size 1 

distractors and Set Size 1 and 2 targets. As expected, the solo Set Size 1 target had the 

largest selectivity because it was presented alone. To further highlight the trajectory of 

the hyperplane, we separate the time course into 3 bins: stimulus display (0 - 200 ms), 

first-half of the delay period (200 - 600 ms), and second half of the delay period (600-

1000 ms). We ran a two-way analysis of variance (ANOVA) on CTF slope within each 

time window. During the stimulus presentation, there was a significant main effect of 

condition, F(3, 126) = 7.46, p < .001, but no significant main effect  of target/distractor 

status, F(1, 126) = 3.48, p = .064, nor a significant interaction of condition and 

target/distractor status, F(3, 126) = .83, p = .48. During the first half of the delay period, 

there was a significant main effect of condition, F(3, 126) 16.89, p < .001, but no significant 

COMPARISON STIMULUS 1ST HALF DELAY 2ND HALF DELAY 

V. DISS. DIST. – 

DISS. DIST. 

T = .055, p = .90 T = -.65, p < .001 T = -.46, p = .52 

V. DISS. DIST. –

SIM. DIST. 

T = -.091, p = .65 T = -1.13, p < .001 T = -.65, p = .21 

V. DISS. DIST. – 

2 TARGET 

T = -.14, p = .32 T = -2.53, p < .001 T = -3.05, p < .001 

DISS. DIST. – 

SIM. DIST. 

T = -.15, p = .25 T = -.47, p < .05 T = -.19, p = .94 

DISS. DIST. – 2 

TARGET 

T = -.19, p  = .08 T = -1.89, p < .001 T = -2.60, p < .001 

SIM. DIST. – 2 

TARGET 

T = -.044, p = .94 T = -1.41, p < .001 T = -2.41, p < .001 

a) 

CONDITION STIM 1ST HALF DELAY 2ND HALF DELAY 

VERY DISSIM. 

DISTRACTOR 

M = -.13, SD = .36 M = -.62, SD = .61 M = -1.08, SD = 

1.31 

DISSIMILAR 

DISTRACTOR 

M = .017, SD = .29 M = -.15, SD = .53 M = -.88, SD = .95 

SIMILAR 

DISTRACTOR 

M = -.074, SD = .19 M = -1.28, SD = .52 M = -1.53, SD = 

1.16 

2 TARGET M = .061, SD = .21 M = 1.26, SD = .49 M = 1.52, SD = 1.15 

b) 

Table 2 Results from the time window hyperplane analysis for Experiment 2 (see Fig Xc-e). a) The results 
of the Tukey HSD test of each pairwise comparison for the experiment conditions distance from the 
hyperplane. b) Mean and standard deviation for each condition in during each time window.  
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main effect of target/distractor status, F(1, 126) = .0064, p = .51, nor a significant 

interaction of condition and item, F(3, 126) = .92, p = .43. During the second half of the 

delay period, there was a significant main effect of condition, F(3, 126) = .7.49, p < .001, 

a significant main effect of target/distractor status, F(1, 126) = 11.26, p = .001, but there 

was no significant interaction of condition and item, F(3, 126) = .34, p =  

 

.79. Importantly, during the first half of the delay period, mvLoad analyses show a clear 

load difference in these conditions (see decoding results). That is evidence for distractors 

being spatially attended, while simultaneously being gated from WM. However, we 

recognize that Experiment 1 is not perfectly suited for these analyses. Due to the stimulus 

imbalance of the solo set size 1 target compared to the other conditions, the early load 

classification is strongly biased towards predicting set size 2 for the hashtag and letter 

distractor conditions. Additionally, the distractor difficulty is not clearly monotonic. We 

made an assumption that the hashtag would be easier to filter than the letter distractor. 

And finally, we didn’t originally intend to do IEM analyses on this experiment, so the 

stimulus presentation was not well-suited for location binning. We binned the items by 

quadrant which is fairly course compared to the Experiment 2 location binning (see IEM 

analysis section for details). 

 

Experiment 2. We found evidence of sustained CTF selectivity for both Set Size 1 

distractors and Set Size 1 and 2 targets. To further highlight the trajectory of the 

hyperplane, we separate the time course into 3 bins: stimulus display (0 - 200 ms), first-

half of the delay period (200 - 600 ms), and second half of the delay period (600-1000 
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ms). We ran a two-way analysis of variance (ANOVA) on CTF slope within each time 

window. During the stimulus presentation, there was no significant main effect of 

condition, F(3, 161) = .077, p = .97, item, F(1, 161) = .48, p = .49, or a significant 

interaction of condition and item, F(3, 161) = 1.38, p = .25. During the first half of the delay 

period, there was no significant main effect of condition, F(3, 161) = .086, p = .97, item, 

F(1, 161) = 1.01, p = .32, or a significant interaction of condition and item, F(3, 161) = .34, 

p = .79. During the second half of the delay period, there was no significant main effect 

of condition, F(3, 161) = .20, p = .90, however there was significant main effect of item, 

F(1, 161) = 21.07, p < .005, but there was no significant interaction of condition and item, 

F(3, 161) = .69, p = .56. Importantly, during the first half of the delay period, mvLoad 

analyses show a clear load difference in these conditions (see decoding results). That is 

evidence for distractors being spatially attended, while simultaneously being gated from 

WM. 

 

Discussion 

Late selection theory posits that there are multiple stages of selection. There is an early 

stage where simple stimulus characteristics, form, and meaning can be extracted in 

parallel (Duncan, 1980). And then there is a later capacity-limited system that is 

responsible for consolidation in WM (Shiffrin & Schneider, 1977). Similarly, Chun and 

Potter 1995 proposed a two-stage model of attention which consists of an early parallel 

system that identifies potential targets and a later system responsible for more detailed 

processing and conscious perception (Chun & Potter, 1995). These frameworks suggest 

that information can be attended to and identified as a target before it is gated into WM.  
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Neural evidence provides additional evidence for a dissociation between early and late 

processing. Words presented during the attentional blink, while not entering conscious 

awareness, are processed to the point of meaning extraction as evidenced by an elicited 

n400 (Luck et al., 1996) and P1 and N1 components. However, there is no P3 component 

which typically reflects the updating of working memory (Vogel et al., 1998). Additional 

evidence that uses alpha power topography in EEG suggests that allocation of spatial 

attention and WM storage are distinct processes. A spatial attention and spatial WM task 

both produced sustained lateralized alpha power (which indicates deployed spatial 

attention), however only the WM task produced a CDA (which indicates WM storage) 

(Hakim et al., 2019). Gunseli 2019 shows evidence that with highly reliable retro-cues in 

a WM task, uncued items are unattended and dropped from WM (as indexed by 

lateralized alpha and CDA) (Günseli et al., 2019). However, with unreliable retro-cues, 

uncued items are unattended but not dropped from WM. Wang et al 2021 proposes that 

alpha indexes distractor suppression and the extent of spatial attention while being 

distinct from actual object storage in WM.  

 

If spatial attention and WM gating reflect distinct processes, then distractors can be 

attended to, identified as distractors, and ultimately not assigned a pointer. To test this 

hypothesis, we use the mvLoad and inverted encoding model (IEM) analyses to attempt 

to dissociate the processes of spatially attending objects and assigning working memory 

pointers. The mvLoad analysis enables the precise tracking of items individuated in 

working memory and, we propose, reflects the capacity-limited pointer system that is 
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responsible for on-line storage of information (Thyer et al., 2022). Using an IEM with total 

alpha topography provides us with a tool to track the allocation of covert spatial attention 

(Foster et al., 2016). Both of these analyses have a high time resolution which enables a 

clear test of whether orienting of spatial attention is indeed yoked to the entry of items 

into working memory at the same moments in time. If attended items are necessarily in 

WM, then the time course of the IEM and mvLoad analyses will reflect that as soon as 

items are spatially attended they are loaded into working memory. And similarly, if items 

are dropped from spatial attention, then they are no longer held in WM.  

 

We provide evidence that items can be covertly attended to, processed, and filtered, 

without a pointer being assigned and, thus, not stored in working memory. In 2 change 

detection experiments, we asked participants to remember targets and ignore distractors. 

In Experiment 1, they we instructed to remember digits and ignore letters and hashtags 

(#). In Experiment 2, they were presented with colored squares to remember and colored 

and gray rectangles to ignore. In both experiments, we provide evidence that subjects 

spatially attended to both distractors and memory items as measured by alpha CTFs. 

However, we also show that at the same moments where participants are attending these 

distractors, they are also successfully gating them from WM. This supports the hypothesis 

that spatial attention and WM selection are distinct but related processes. It also 

strengthens the argument that WM pointers are not solely individuated using spatial 

location. 
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