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To my advisors, who inspired my fascination with cities and fostered and encouraged

intellectual creativity.



It may be romantic to search for the salve of society’s ills in slow-moving rustic

surroundings, or among innocent, unspoiled provincials, if such exist, but it is a waste of

time. Does anyone suppose that, in real life, answers to any of the great questions that

worry us today are going to come out of homogeneous settlements?

-Jane Jacobs
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which primarily have focused on large-scale phenomena at the level of entire urban
areas and neighborhoods with approaches from psychology which have primarily
focused on individual behavior and how cognitive processes are instantiated in
the brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Sub-linear scaling of depression in a social network model. (a) Individuals moving
over a city’s hierarchical infrastructure network experience cumulative exposure
to semi-random social interactions. (b) This cumulative exposure results in social
networks with log-skew-normal degree (k) statistics with a mean which increases
with city size indicating more per-capita social interactions in larger cities, on
average. (c) Individual risk for depression is inversely proportional to social con-
nectivity (degree) and is superimposed on the social networks generated within
cities (d) The combination of how cities shape social networks and how social net-
works shape individual depression risk results in a prediction of sub-linear scaling
of depression cases with increased city size, i.e., lower depression rates in larger
cities (Inset). The logarithm of population and depression incidence are mean
centered for ease of comparison to the empirical results. . . . . . . . . . . . . . . 9

2.2 Depression cases scale sub-linearly with city size. City level measures of depres-
sion prevalence were obtained from two survey based data sets (NSDUH and
BRFSS) and two passive observation data sets (Twitter10’ and Twitter19’). To
collapse across datasets the natural log of Population, N , and estimated total de-
pression cases, #D, were mean-centered within each dataset. An ordinary least
squares linear regression of the pooled data resulted in an estimate of β = 0.904,
95% CI = [0.853, 0.956], and an R2 of 0.75. Inset: depression rates decrease with
city size. β = −0.096, 95% CI = [-0.12, -0.07], R2 = 0.13. . . . . . . . . . . . . 13

3.1 Left: Measures of citywide segregation depend on the relative size of the groups
and their spatial concentration. Starting at the top left and going clockwise,
Ahet
i ∼

∑ Ng,i
Ni

Nj,i
Ni

(sg,i+ sj,i) takes on values of 0.92, 0.98, 0.98, and, 0.85. Here,
sg,i is the level of residential segregation of group g in city i. The large minority,
high segregation city in the lower left has the smallest Ahet

i . Top: a city where
the majority makes up 73% of the population and the average segregation is
20% (left) or 5.5% (right). Bottom: a city where the majority makes up 53% of
the population and the average segregation is 30% (left) or 3% (right). Right:
The relationship between urban scaling law deviations for median income and
Ahet
i · bhet in U.S. cities in 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Changes in the empirical strength of the heterophobia adjustment over time.
Insets show R2 values for the OLS regression models. Shaded regions show the
95% confidence interval for bhet, i.e. the strength of the relationship between hhetg

and sg. The different values of bhet are parameters in the OLS regression models.
Left: median income. Right: gross domestic product (GDP). . . . . . . . . . . . 37
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4.1 A) The Implicit Association Test measures implicit racial biases as a relative
difference in reaction times between different pairings of word and face categories.
B) We model implicit racial biases in cities as a cumulative exposure process to
out-group individuals shaped by city population size, demographic diversity, and
residential racial segregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 A) Scaling relationship, majority group size adjustment, and heterophobia ad-
justment for IAT data from 2020 in 149 cities with > 500 IAT responses per city.
The shaded region is the 95% confidence interval for the scaling relationship. For
visualization purposes, the heterophobia adjustment shown in this figure were es-
timated using only the mean deviation segregation measure. Results were similar
with cutoffs of > 250 and > 1000 IAT responses per city and for other measures of
segregation (Supplementary Tables 7.59-7.66). B) Variance explained (R2) by the
heterophobia adjustment (measured via residential racial segregation), majority
group size adjustment, and scaling relationship. Data are shown for 2016-2020.
Medians are shown by a horizontal line and have values of 0.094, 0.097, 0.147,
and 0.346, respectively. Variance explained by the heterophobia adjustment is
from all four models with different segregation measures. Noise ceiling estimates
were obtained by computing correlations of bias levels between split halves of IAT
participants within cities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Estimated learning rates, α. We plot learning as a decrease in bias levels relative
to an arbitrary baseline, b

b0
as a function of the number of additional inter-group

contacts. Solid curves indicate the mean estimated learning rate from the scaling
exponent or majority group adjustment (diversity effect) averaged across years.
Shaded regions show the 95% confidence intervals for the learning rate estimates
with the lower envelop and upper envelope referring to the scaling exponent and
diversity estimates, respectively. The violin plot gives an upper bound on the
learning rate from 18 previously conducted experimental interventions Lai et al.
[2014, 2016] designed to simulate one-shot inter-group contact of varying quality. 55

5.1 A. The dot-tracking task measures selective attention. Participants are cued to
track a number of targets. After all targets move around the screen for 5 seconds,
they are probed with one dot and asked to identify whether or not it was one of
the targets. B. A map of participants’ city location. Hawaii, Alaska, and Puerto
Rico are excluded for visualization purposes. . . . . . . . . . . . . . . . . . . . . 69

5.2 Selective attention performance is higher in larger cities. The rate of individuals
with near-perfect performance (hit rate > .9) increases with city population,
N. For the cities where we have a larger amount of data the scaling exponent is
consistent with the Urban Scaling Theory prediction of β = 1

6 for increasing social
interaction density. The blue line shows the Nadaraya–Watson kernel regression
estimate and the envelope with dashed lines shows the 95% confidence interval
for the kernel regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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ABSTRACT

Are people more or less depressed in larger cities? Are attention spans shorter in busy urban

areas? Urban Psychology is the study of how the built environment of cities influences human

behavior and causes psychological adaptations at the individual level. In this dissertation,

I present research extending Urban Scaling Theory models to better understand how cities

shape human psychology. I discuss (1) an application of these models to reveal how cities

systematically influence the risk of psychological depression, (2) an extension of these models

to understand how heterogeneous interactions in cities influence implicit racial bias levels

and economic outputs, and (3) evidence that selective attention capabilities are increased in

larger cities. These studies are first forays into Urban Psychology research and pave the way

for future projects that aim to determine the interplay between individual and neighborhood

characteristics and average behaviors for entire urban areas. My hope is that the field of

urban psychology brings more psychological focus to understanding how cities’ complex

physical and social environments constrain behavior through regularities of human mobility

but also provide a greater diversity of social and economic experiential options. Doing so

will hopefully lead to new discoveries in terms of understanding human behavior and the

inner workings of large-scale complex systems.
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CHAPTER 1

INTRODUCTION

We, human beings, are continuously modifying the environment to suit our needs. We harvest

plants for food, build roads, and turn metals into useful tools which enhance our ability to

modify the environment, in turn. On longer timescales, we select for tastier carrots, breed

more docile livestock, and change entire climates, geographies, and ecosystems to suit our

needs. Arguably, the most impressive and impactful of these environmental modifications is

the city.

Cities provide opportunities for more efficient uses of resources and greater possibilities

for social interactions. However, at least historically, cities have also facilitated more crime,

disease, pollution, and exploitation. As we shall see, many of the various benefits and

drawbacks that cities provide result precisely from the interactions that cities facilitate.

From this perspective of extensive environmental modification, it is not so strange to claim

that as we change our surroundings our psychology changes: we are engaged in a constant

process of co-determination with the environment Clark [2015], Berman et al. [2019].

The research presented here is in the spirit of this claim. It attempts to explicitly rec-

ognize that cities do something more profound than simply providing different modes for us

to interact with the built environment and other people. Cities can, and often do, engender

psychological adaptations in their inhabitants. The agency given to cities here is purposeful:

the observed patterns of behavior in cities are co-determined by features of the built envi-

ronment and the psychological adaptations of their inhabitants to the social and physical

niches that are available.

These are strong claims. The research presented here does not prove them definitively.

However, it does make a strong case when situated within the context of a large body

of ecological (e.g., see the overviews in Clark [2015] and Henrich [2016] for examples

from gene-culture co-evolution) and urban science literature Bettencourt [2021a] on niche
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construction (i.e., this process of co-determination) and adaptation. These fields have laid

the groundwork for Urban Psychology by painstakingly investigating similar phenomena in

individual organisms and in small-scale, non-modernized societies. Urban Psychology, in

contrast, extends these ideas to the tens of millions of people that live in the largest scale

human settlements, i.e., cities.

Each of the chapters that follow serves to provide additional building blocks for a general

theory of how cities arise and shape their inhabitants. Specifically, in Chapter 2, I demon-

strate how the increased social network density of larger cities can provide an environment

that buffers against psychological depression. In Chapters 3 and 4 I demonstrate the effects

of demographics and residential segregation on economic outputs (gross domestic product

and incomes) and implicit racial biases. Finally, in Chapter 5 I provide evidence that some

aspects of psychological attention may be improved in larger cities and that this may be

related to evidence that social networks are less tightly knit in large cities.

It is certainly possible to study these psychological and behavioral phenomena in other

settings (e.g., in a psychology laboratory). Indeed, I draw heavily on experiments and

evidence from more traditional controlled environments throughout this research. However,

those settings are typically controlled to the point that it is all but impossible to study

complex interactions between the environment (social and physical) and human psychology.

Thus, the research that follows is also an attempt to, in a principled and theoretically

grounded manner, bring psychological research into real-world settings that are particularly

relevant for modern-day humans. At the same time, this research is a continuation and

extension of urban thought that has long existed outside of psychology (e.g., see Jacobs

[2016] and Bettencourt [2021a]).

Before we continue, I find it helpful to have a definition for Urban Psychology. The

one I propose is that “Urban Psychology is the study of human behavior through the lens

of feedback loops between the structured environments of cities and human cognition." I
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like this definition for two reasons. First, it makes clear what we should focus on when we

do Urban Psychology research. Specifically: human behavior, structured environments of

cities, and feedback loops with a particular emphasis on cognition. Second, this definition

is suggestive of the fact that cities are a specific example of complex systems (a system

with many parts that shows non-trivial collective behavior Newman [2011]) which have

structured environments that constrain agents and have agents that can dynamically adapt

to the environment and directly modify it. Finally, a number of goals for Urban Psychology

research flow naturally (in increasing levels of generality) from this definition: first, to help

us better understand cities, second, to better understand human behavior in general, and

third, to prove helpful towards research into similar classes of complex systems, be they in

non-human animals or inorganic matter.

Figure 1.1: My approach to urban psychology is to unite approaches from urban science
which primarily have focused on large-scale phenomena at the level of entire urban areas and
neighborhoods with approaches from psychology which have primarily focused on individual
behavior and how cognitive processes are instantiated in the brain.
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The specific approach that is taken in the research that follows is to rely heavily on ex-

isting approaches for studying cities and then integrate psychological research questions and

methods. From the point of view of the various spatial scales that exist within cities, my

general approach has been to integrate mathematical models and tools which capture behav-

ior at the organizational level of entire cities with existing and new research that investigates

behavior at the level of individual inhabitants (Figure 1.1). At the top of this hierarchy are

the tools of modern urban science Bettencourt [2021a], which tend to focus more on the

types of things that people produce in cities, For example, innovations, economic outputs,

and infrastructure networks. At the bottom of this hierarchy are the tools of traditional

psychological research that have focused much more on individual behavior, cognition, and

how cognition is instantiated in the brain.

I will close by mentioning that the foundation of all of the research that follows is sem-

inal work led by Luís Bettencourt Bettencourt [2013, 2021b] which recognized that cities

are amenable to modeling with tools from the field of complex systems. Undoubtedly, this

research, which is known as the Urban Scaling Theory framework, drew on a long literature

of research in urban planning, economics, and sociology that had described many aspects of

city life and organization in detail. However, under the complex systems framework, Urban

Scaling Theory demonstrated that much of the intricate detail of city life, about neighbor-

hoods, groups, and individuals, can be ignored while still learning quite a bit about how and

why cities function. In fact, it turns out that the top-down models of average behavior for

entire urban areas that form the basis for the research that follows, are particularly infor-

mative with regard to mechanisms of human behavior in cities. For example, some of the

initial results of Urban Scaling theory were the demonstrations that cities exhibit economies

of scale in infrastructure networks and a densification of social networks as cities grow more

populous.

In summary, the research presented here presents a novel framework for understanding
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human behavior in ecological settings. While there is still much to discover, these efforts

have already provided insight into psychological depression (Chapter 2), racial segregation

(Chapter 3), implicit racial bias (Chapter 4), and selective attention (Chapter 5).

5



CHAPTER 2

EVIDENCE AND THEORY FOR LOWER RATES OF

DEPRESSION IN LARGER U.S. URBAN AREAS1

It is commonly assumed that cities are detrimental to mental health.

However, the evidence remains inconsistent and, at most, makes the

case for differences between rural and urban environments as a whole.

Here, we propose a model of depression driven by an individual’s accu-

mulated experience mediated by social networks. The connection be-

tween observed systematic variations in socioeconomic networks and

built environments with city size provides a link between urbanization

and mental health. Surprisingly, this model predicts lower depres-

sion rates in larger cities. We confirm this prediction for US cities

using four independent datasets. These results are consistent with

other behaviors associated with denser socioeconomic networks and

suggest that larger cities provide a buffer against depression. This

approach introduces a systematic framework for conceptualizing and

modeling mental health in complex physical and social networks, pro-

ducing testable predictions for environmental and social determinants

of mental health also applicable to other psychopathologies.

Introduction

Living in cities changes the way we behave and think Milgram [1970b], Simmel [2012], Betten-

court [2021a]. Over a century ago, the social changes associated with massive urbanization

1. This Chapter was published as: Stier, Andrew J., Kathryn E. Schertz, Nak Won Rim, Carlos Cardenas-
Iniguez, Benjamin B. Lahey, Luís MA Bettencourt, and Marc G. Berman. "Evidence and theory for lower
rates of depression in larger US urban areas." Proceedings of the National Academy of Sciences 118, no. 31
(2021): e2022472118.
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in Europe and in the United States, focused social scientists on the nexus between cities and

mental life Simmel [2012]. Along with the urban public health crises of the time, a central

question became whether cities are good or bad for mental health.

Subsequently, social psychologists Milgram [1970b] started to document and measure the

systematic behavioral adaptations among people living in cities. These adaptations included

strategies to curb unwanted social interactions – such that people in larger cities act in colder

and more callous ways Milgram [1970b], a more intense use of time (e.g. faster walking Bet-

tencourt et al. [2007a]), and a greater tolerance for diversity Wilson [1985]. These studies

attributed the influences of urban environments on mental health to the intensity of social

life in larger cities, mediated by densely built spaces and associated dynamic and diverse so-

cioeconomic interaction networks. They did not, however, ultimately clarify whether urban

environments promote better or worse mental health. Consequently, concerns persisted that

cities are mentally taxing Lewis and Booth [1994], Gruebner et al. [2017], Krabbendam and

Van Os [2005], Sundquist et al. [2004] and can induce "stimulus overload", including stress,

mental fatigue Berman et al. [2008], and low levels of subjective well-being Morrison and

Weckroth [2018].

More recent studies have focused less on urban environments as a whole and more on con-

textual and environmental factors associated with depression. For example, a study of the

entire population in Sweden Sundquist et al. [2004] uncovered a positive association between

neighborhood population density and depression-related hospitalizations. In addition, indi-

vidual factors of gender, age, socioeconomic status, and race, which vary at neighborhood

levels within cities, have been found to be statistically associated with depression Blanco

et al. [2010], Mirowsky and Ross [2001], Gilman et al. [2003]. Other studies using various

measures of mental health and broader definitions of urban environments have found evi-

dence for an association between poorer mental health in cities versus rural areas Gruebner

et al. [2017], Krabbendam and Van Os [2005]. However, this evidence, and that linking sub-
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jective well-being and cities Glaeser et al. [2016], Itaba [2016], Mitchell et al. [2013], Chen

et al. [2015], has remained mixed and often explicitly inconsistent Lee [2014], Kearns et al.

[2012], due to differences in: 1) reporting (e.g., surveys vs. medical records), 2) types of

measurement (e.g., surveys vs. interviews), 3) definitions of what constitutes urban, and 4)

the mental disorders studied (e.g. schizophrenia vs. depression).

For these reasons, it is desirable to create a systematic framework that organizes this

diverse body of research and interrogates how varying levels of urbanization influence men-

tal health across different sets of indicators. Here, we begin to build this framework for

depression in US cities. We show that, surprisingly, the per capita prevalence of depression

decreases systematically with city size.

Like earlier classical approaches, our strategy frames the effects of city size on mental

health through the lens of the individual experience of urban physical and socioeconomic

environments. Crucial to our purposes, many characteristics of cities have been recently

found to vary predictably with city population size. These systematic variations in urban

indicators are explained by denser built environments and their associated increases in the

intensity of human interactions and resulting adaptive behaviors Bettencourt [2013].

More specifically, people in larger cities have, on average, more socioeconomic connections

mediating a greater variety of functions. This effect is understood theoretically by the

statistical likelihood to interact with more people over space per unit time, leading to both

potential mental "overload" but also to greater stimulation and choice along more dimensions

of life. This expansion of socioeconomic networks is supported structurally by economies of

scale (e.g. road length) in urban built environments and by occupational specialization and

associated increases in economic productivity and exchange Bettencourt [2021a].

This effect leads to a number of quantitative predictions about the nature of urban spaces

and socioeconomic variables, the most central of which is the variation of the average number

of socioeconomic interactions, k (network degree) with city size, N , as k(N) = k0N
δeξ.
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Here, k0 is a prefactor independent of city size, and ξ a residual measuring the distance

from the population average. The exponent 0 < δ ≃ 1/6 < 1 measures the percent increase

in the number of connections with each percent increase in city population, which is an

elasticity in the language of economics. Because the ξ reflects city-size independent statistical

fluctuations, these errors average out across cities and k obeys a scaling relationship on

average over cities, such that k(N) ∼ Nδ. This expectation is directly observed in cell phone

networks Schläpfer et al. [2014a] and indirectly via the faster spread of infectious diseases

such as COVID-19 Stier et al. [2020], and by higher per capita economic productivity and

rates of innovation Bettencourt et al. [2007a], Bettencourt [2013].

Figure 2.1: Sub-linear scaling of depression in a social network model. (a) Individuals moving
over a city’s hierarchical infrastructure network experience cumulative exposure to semi-
random social interactions. (b) This cumulative exposure results in social networks with log-
skew-normal degree (k) statistics with a mean which increases with city size indicating more
per-capita social interactions in larger cities, on average. (c) Individual risk for depression
is inversely proportional to social connectivity (degree) and is superimposed on the social
networks generated within cities (d) The combination of how cities shape social networks
and how social networks shape individual depression risk results in a prediction of sub-linear
scaling of depression cases with increased city size, i.e., lower depression rates in larger cities
(Inset). The logarithm of population and depression incidence are mean centered for ease of
comparison to the empirical results.

This result is important to mental health because depression is associated, at the indi-

vidual level, with fewer social contacts Okamoto et al. [2011], Rosenquist et al. [2011]. To

translate the general scaling of social interactions with city size into a model for the incidence
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of depression in urban areas, we will now need to pay particular attention not only to the

average number of social connections in a city of size N , k(N), but also to its variance across

individuals in that city and how they influence depression.

Results

We developed a statistical mathematical model that brings together socioeconomic network

structure with individual risk of depression (Fig. 2.1). This model takes the form of a

generative social network, which combines: i) a degree distribution with mean scaling as

k(N) = k0N
δ (Fig. 2.1B) with ii) the risk (probability) for an individual to manifest

depression, pd(k), taken to be inversely proportional to their social connectivity, pd(k) ∼ 1/k

(Fig. 2.1C). We will return to the finer issue of quality and type of connections below.

For now, note that a larger number of connections in larger cities entails a qualitatively

different experience because it is driven by the need to obtain support, goods, and services

in environments with deep divisions of knowledge and labor.

To complete the model, we need to specify the probability distribution of degree, f(k)

in each city. We adopt a log-skew-normal distribution with parameters similar to those

measured in Schläpfer et al. [2014a], see Fig. 2.1B. This choice introduces another assumption

into our model because lognormal distributions arise from multiplicative random processes,

which compound risk over time to generate outcomes. In this sense, the adoption of this

distribution assumes that depression is the result of a cumulative exposure process over

time Vinkers et al. [2014], see Fig. 2.1A, mediated by an individual’s social network. Fig.

2.1D shows results from this model obtained by sampling each city’s degree distribution N

times, corresponding to a city’s population. Each simulated city resident is then diagnosed

with a binary outcome, manifesting depression or not proportionally to their individual risk,

pd(k).

We used this model to generate urban socioeconomic networks and computed their as-
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sociated number of depression cases, Y , for a range of city sizes from N = 104 − 107 that

span population range of US metropolitan areas, see Fig. 2.1D. We observed a simple scaling

relation for the total number of depressive cases

Y (Ni, t) = Y0(t)Ni(t)
βeξi(t). (2.1)

with a sub-linear exponent β = 1 − δ < 1. For β = 1 (δ = 0), cases of depression increase

proportionally to population so that there would be no city size effect. In contrast, for β < 1

(sub-linear), a smaller proportion of the population manifests depression in larger cities.

We express the quantitative consequences of the model based on 100 iterations for each

city to predict that the number of depression cases follows a power law function of city size

with a scaling exponent β = 0.859 (95% CI = [0.854, 0.863]), Fig. 2.1D. Thus, under the

model’s assumptions, we expect larger cities to show substantially lower per capita rates of

depression.

To test these quantitative expectations, we asked whether empirical measurements of

depression exhibit a systematic scaling relationship with city population size. We analyzed

four independent data sets, which allow for consistent assessments of cases of depression

across different urban areas in the US.

First, we employed estimates of the prevalence of depression in US cities produced as

a part of two annual population surveys: the National Survey on Drug Use and Health

(NSDUH) Abuse and Administration [2011] from the Substance Abuse and Mental Health

Services Administration (SAMHSA) and the Behavioral Risk Factor Surveillance System

(BRFSS) from the Centers of Disease Control (CDC), see Methods, Fig. S1, S3, and Tables

S2, S3, S4. The NSDUH asks respondents whether they have experienced a major depressive

episode in the past year, as defined by the Diagnostic and Statistical Manual of Mental Dis-

orders (DSM-IV) Abuse and Administration [2011]. The BRFSS asks respondents if they

have ever been told that they have a depressive disorder. Both surveys involved a social
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interaction between a surveyor and the respondent, which takes place over the phone for the

BRFSS and in person for the NSDUH. The differences between the two surveys provide a

consistency test on measured cases of depression and partially rule out the possibility that

their variation with city size is idiosyncratic to particular experimental or survey method-

ologies.

Second, to generalize across different indicators and to avoid biases in reporting due to

social stigma Mak et al. [2007], we added two additional estimates of depression prevalence

based on passive observation, which does not rely on an overt survey instrument. Specifically,

we explored two large geo-located Twitter datasets of individuals and their messages for

depressive symptoms in different cities. Twitter requires users to opt-in to geo-location and

as a result only a small fraction of tweets are geolocated Cuomo et al. [2021]. Importantly,

this bias further distinguishes the two Twitter datasets from the survey-based data and

strengthens any claims of generalization across the ways in which the data were collected

and the populations of people studied.

These two Twitter datasets included an existing dataset collected over one week in

2010 Eisenstein et al. [2010] and a new historical dataset covering one month in 2019.

Similar datasets have been used to demonstrate that happiness decreases with per-capita

tweets Mitchell et al. [2013], that counts of users scale super-linearly with city size Arthur

and Williams [2019], and to assess regional variability in subjective well-being Iacus et al.

[2019], but to our knowledge they have not been used to directly estimate associations be-

tween mental health disorders and city size.

To measure the prevalence of depression from this corpus, we employed a machine learn-

ing technique to identify depressive symptoms from users’ messages, emulating the Patient

Health Questionnaire-9 (PHQ-9) commonly used by clinicians. The PHQ-9 consists of 9

questions based on the nine criteria for diagnosing depression in the DSM-IV. In order to

emulate the PHQ-9 questions, we used a previously determined lexicon of seed terms orga-
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Figure 2.2: Depression cases scale sub-linearly with city size. City level measures of depres-
sion prevalence were obtained from two survey based data sets (NSDUH and BRFSS) and
two passive observation data sets (Twitter10’ and Twitter19’). To collapse across datasets
the natural log of Population, N , and estimated total depression cases, #D, were mean-
centered within each dataset. An ordinary least squares linear regression of the pooled data
resulted in an estimate of β = 0.904, 95% CI = [0.853, 0.956], and an R2 of 0.75. Inset:
depression rates decrease with city size. β = −0.096, 95% CI = [-0.12, -0.07], R2 = 0.13.
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nized into nine topics to guide a Latent Dirichlet Allocation Yazdavar et al. [2017] method to

determine the degree to which each user’s messages represent these topics, see Methods, Fig.

S4, Table S5. This technique has been found to have an accuracy (proportion of tweets cor-

rectly identified) of 68% and precision (1 - the false discovery rate of tweets with depressive

symptoms) of 72% compared to expert assignment of tweets to PHQ-9 questions Yazdavar

et al. [2017].

We estimated the scaling exponent β from each of these datasets via ordinary least squares

(OLS) linear regression between the logarithm of total depression cases and the logarithm

of population size (See Methods, Figs. S4 and S5, Table S6). When pooling across datasets

and years we estimated a scaling exponent of β = 0.904 (95% Confidence Interval (CI) =

[0.853, 0.956]) (Fig. 2.2), consistent with our simulation model’s prediction of β = 0.859.

Moreover, estimates of β are similar when calculated separately for each dataset (Table 2.1,

Fig. S6).

While the Twitter19’ dataset suggests that this statistical relationship is consistent across

cities with populations ranging from about 15 thousand to 20 million (Table S1), the BRFSS

dataset only supports sublinear scaling of depression rates in cities larger than ∼0.5 million

people (see Methods, Fig. S1). This discrepancy may be due to the fact that the BRFSS

city level data is only reported for cities with at least 500 respondents in order to ensure

anonymity. We provide evidence that this cutoff artificially alters the joint distribution of

depression prevalence estimates and city size in the BRFSS data but, importantly, we find

no evidence of similar non-linear shifts in the joint distribution in the Twitter19’ dataset (see

Methods, Figures S1, S2).

As an additional sensitivity analysis we performed a logistic regression to assess how

conditioning on race, income, education, and rate of population change (i.e. migration) im-

pacted the observed decrease in depression rates for larger cities. We did this with individual

level survey responses for each year of the BRFSS data. Similar to the scaling analysis above,
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the average odds ratio across all years for a one unit increase in the natural logarithm of city

population was .89 (maximal 95% CI [.87,.93], see Methods, Table S7). Population change

was also not significantly related to depression rate in the NSDUH and Twitter datasets

(Tables S8). Thus we find general empirical support for the expectation that larger cities are

associated with a decreased risk for depression even when conditioning on race, education,

income, and migration. We found no consistent evidence that the rate of population change

(i.e. migration rate) was associated with depression rates across all datasets, despite previous

research associating growing cities with increased subjective well-being Glaeser et al. [2016].

This statistical relationship between depression and city size is consistent in larger cities

across all four datasets and across a decade, despite the different ways in which depressive

symptoms are measured and the different ways that the data were collected. Importantly,

these results demonstrate that depression rates are substantially lower in larger US cities,

contrary to previous expectations, but precisely in line with our theoretical model and sim-

ulations.

Table 2.1: Estimates of the scaling exponent β for each dataset. In all cases we observe
sub-linear (β < 1) scaling of total depression cases with city size. n indicates the number of
cities included in each dataset.

Dataset β 95% CI R2 n
Twitter10’ 0.822 [0.671,0.973] 0.853 24
NSDUH 0.887 [0.826,0.949] 0.968 31
Twitter19’ 0.942 [0.886,0.998] 0.951 60
BRFSS2011 0.881 [0.778,0.983] 0.881 43
BRFSS2012 0.854 [0.741,0.966] 0.865 39
BRFSS2013 0.860 [0.750,0.970] 0.865 41
BRFSS2014 0.829 [0.737,0.922] 0.902 38
BRFSS2015 0.818 [0.733,0.902] 0.903 43
BRFSS2016 0.827 [0.746,0.907] 0.913 43
BRFSS2017 0.832 [0.769,0.896] 0.949 40
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Discussion

Although the association between urbanization and mental health is foundational in the

social sciences and in public health, it has remained challenging to characterize and as-

sess quantitatively. This is particularly concerning as almost every nation worldwide con-

tinues to urbanize, with over 70% of the world’s population expected to live in cities by

2050 United Nations and Social Affairs [2019], and depressive disorders already a leading

global cause of disability James et al. [2018] and economic losses Greenberg et al. [2003].

Based on size alone, large cities bear the brunt of the social and economic burden of

depressive disorders. Our findings suggest that on a relative basis, however, smaller cities

are actually worse off. Consequently, the discrepancy between BRFSS data and Twitter19’

data in small cities is particularly concerning. While our analysis suggests that this dis-

crepancy stems from the way in which BRFSS city level data are reported, it is important

that future work develops accurate observation instruments for both smaller cities and finer

geographic units within cities (i.e. neighborhoods). This will be particularly important as

public health officials start to incorporate geographic patterns of mental health disorders

into their allocation plans for mental health care resources.

The convergence of recent findings from urban science with evidence and theory from

mental health studies offers a window for creating more systematic approaches to under-

standing mental health in cities. In this respect, the sub-linear scaling of total depression

cases with population size in larger U.S. cities is a completely unexpected result character-

izing the socio-geographic distribution of depression. While the results presented here speak

only to larger urban areas in the U.S., they suggest that larger city environments and urban-

ization can, on average, naturally provide greater social stimulation and connections that

may buffer against depression. Though urban scaling theory has been shown to generalize

across cultures Bettencourt [2013] and human history Ortman et al. [2015, 2016, 2014a],

Bettencourt [2021a], it is critical for future work to examine whether the presented extension

16



of urban scaling theory to depression generalizes to smaller cities and to other countries and

cultures.

While our theoretical model only considers the quantity of social connections, embedded

in urban scaling theory is the general implication that the net (economic and social) benefit

of these interactions is positive Bettencourt [2013]. Future work on the link between social

connectivity and mental health should consider and explicitly model urban gradients in the

quality of such connections. Alongside quantity, the quality of social connections is a strong

predictor of depression Seo et al. [2015], Werner-Seidler et al. [2017] and subjective well-

being (SWB) Seo et al. [2015]. Though the evidence relating subjective well-being to cities

is mixed – some studies report no relationship between city size and SWB Glaeser et al.

[2016], some suggest higher SWB in larger cities Itaba [2016], some suggest lower SWB in

larger cities Mitchell et al. [2013], and some suggest an inverted U, i.e., higher SWB for

mid-sized cities Dang et al. [2020], Chen et al. [2015] – the quality of social connections

might hold the key to understanding discrepancies between city level trends in SWB and

depression rates.

In particular, while positive and negative affect are similarly weighted in subjective well-

being measures Burns et al. [2011], depression is frequently characterized by more substantial

and nuanced changes in negative affect Demiralp et al. [2012], Panaite et al. [2020]. Thus,

the results presented here suggest that the greater number of social connections in larger

cities on the whole may provide a social buffer against negative affect and depression in the

most vulnerable people (i.e. those with the smallest social networks).

Conversely, increased positive affect is related to higher quality social connections inde-

pendently of negative affect and depressed mood Steptoe et al. [2009]. Thus, the alleged

more callous and superficial social interactions in larger cities Milgram [1970b], Bettencourt

et al. [2007a] may explain decreases in positive affect and subjective well-being; but si-

multaneously may still buffer individuals from depression by decreasing negative affect (i.e.
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these more numerous social interactions may impact negative and positive affect differently).

Since, individuals with the lowest subjective well-being are at a significant risk for clinical

depression Diener and Michalos [2009], Koivumaa-Honkanen et al. [2004], Seo et al. [2015],

Oswald and Wu [2011], it is important for future work to examine how the rate of low SWB

scores varies between cities of different sizes.

We must also recognize that the numerous factors which influence depression vary enor-

mously within cities. These variations may influence individuals directly and also indirectly

through the local environments in which they live and work.

For example, homophilic gradients of mobility have been observed in neighborhoods with

similar levels of socio-economic status (SES) Saxon [2020], Graif et al. [2017b], Lathia et al.

[2012b], so that city inhabitants from poorer (richer) communities tend to preferentially travel

to similarly poor (rich) areas. In addition, recent research suggests that neighborhoods with

higher overall socio-economic status tend to be better integrated into their surroundings,

affording residents better access to the rest of the city Saxon [2020]. Thus, it is crucial

that future work examines the relationship between depression rates, mobility, and social

connectivity in smaller populations, such as at the neighborhood level.

In addition, looking within cities at these local and more fine-grained levels is expected

to reveal variations in the incidence of depression via other social groupings Blanco et al.

[2010]. For example, several studies have associated high population density in social housing

in Europe and the US with higher incidence of depression in aging adults Lee [2014], possibly

mediated by a higher density of negative connections with neighbors, which can instill feelings

of isolation, fear and despair. In order to search for finer causal evidence, future work may

employ a number of experimental designs such as sibling comparisons or stratification by

confounding factors D’Onofrio et al. [2020].

Examining scaling relationships of mental health outcomes with city size is a systematic

way of investigating general urban effects on mental life which places focus on collective
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influence on mental health disorders. The perspective of cities as interconnected networks

which shape their inhabitants lives may also help to uncover environmental factors that in-

fluence other mental health disorders and overall well-being. This includes highly co-morbid

psychopathologies such as anxiety disorders, and less co-morbid ones such as schizophrenia,

for which increased socialization may lead to different outcomes. The fact that important

insights about the mechanisms of mental health disorders might be gleaned from such a

general population level analysis, which ignores the intricate and often personal details of

mental health, is surprising and powerful.

Materials and Methods

Data Sources and Processing

County populations in Fig. 2.2 are provided by the United States Census Bureau and

available online at https://www.census.gov/data/tables/time-series/demo/popes

t/2010s-counties-total.html. We used delineation files provided by the US Office

of Budget and Management to aggregate county level data up to Metropolitan Statistical

Areas (MSAs). Each MSA is represents a US Census definition of a functional city in the

USA, circumscribing together a city and its suburbs, sometimes known as an integrated

labor market in economic geography. These definitions are updated regularly and available

at https://www.census.gov/programs-surveys/metro-micro/about/delineation-fil

es.html. The list of MSA included in analysis in the main text (Fig. 2.2) are enumerated

in Table S1.

As the surveys from which we obtained depression prevalence estimates are adminis-

tered by different agencies (the Substance Abuse and Mental Health Services Administra-

tion administers the NSDUH and the Centers for Disease Control and Prevention administers

the BRFSS), collection and reporting methods differ substantially between these two data

sources. The NSDUH is conducted in person while the BRFSS is conducted over the phone.
19

https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/programs-surveys/metro-micro/about/delineation-files.html
https://www.census.gov/programs-surveys/metro-micro/about/delineation-files.html


In addition, the two surveys differ in the questions they ask about depressive symptoms.

The NSDUH asks participants whether or not they had a period of 2 or more weeks in which

they experienced depressive symptoms in line with definitions in the DSM-IV Abuse and

Administration [2011]. In contrast, the BRFSS asks respondents if they have ever been told

that they "have a depressive disorder (including depression, major depression, dysthymia,

or minor depression)?". In addition to these differences in questionnaire content and meth-

ods, the two data sources also differ in how they report data. The NSDUH reports age,

ethnicity, and geography adjusted prevalence estimates in 33 metropolitan statistical areas

(MSAs) Abuse and Administration [2011]. In contrast, the BRFSS reports age, gender, and

socioeconomically adjusted prevalence estimates for any MSA with at least 500 respondents,

and consequently the cities which are included in reports vary from year to year.

The 2010 NSDUH estimates of the rate of major depressive episodes used in Fig. 2.2

were obtained from Table 38 of the Substance and Mental Health Services Administration

2005 - 2010 National Survey on Drug Use and Health. This data are available online at

https://www.samhsa.gov/data/sites/default/files/NSDUHMetroBriefReports/NSD

UHMetroBriefReports/NSDUH_Metro_Tables.pdf. We multiplied estimated prevalence by

2010 estimated population to determine the estimate of total depression cases within each

MSA.

The 2011-2017 BRFSS city estimates of the prevalence of major depression used in Fig.

2.2 are available online at https://www.cdc.gov/brfss/smart/Smart_data.htm. As with

the NSDUH data we multiplied estimated prevalence by that years estimated population to

estimate of total depression cases within each MSA.

One point of concern was that the cutoff of 500 respondents per city in the BRFSS data

might artificially alter the joint distribution of prevalence and city size in a way that biases

the estimate of β. One possibility is that larger cities are simply more likely to record enough

responses to be included. However, since the BRFFS data includes cities with populations
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as small as 20,285, whatever bias this 500 respondent cuttoff may introduce likely has a more

complex origin. In order to address this without knowing the source of potential biases in

city inclusion, we employed non-parametric change point detection based on the minimum

covariate discriminant (MCD) Hubert and Debruyne [2010] in order to find the city size at

which the joint distribution of city size and depression prevalence was different on either side

of the change point. This was applied to the BRFSS data annually; results are consistent

across years with the mean change point of (692,557 people, sd = 268,004 people).

Specifically, we followed a procedure similar to Cabrieto et al. [2017]. For each year of

BRFSS data we first ordered the data by population and then applied a python implementa-

tion of the MCD algorithm Pedregosa et al. [2011] with a sliding window. This resulted in a

robust-to-outliers estimate of the mean within the window and the 2-by-2 robust covariance

matrix between population and depression prevalence within the window. These two quan-

tities allow for the estimation of the Mahalanobis distance between the robust mean and

the data from the city which has the next smallest population to the smallest city included

in the window (the left out city). These distances follow a chi-squared distribution with

degrees of freedom equal to the size of the window. Consequently, we marked the left out

city as a potential change point if the Mahalanobis distance was greater than the 97.5th

percentile of the relevant chi-squared distribution. Finally, we calculated a moving average

with window size five, of marked change points. We considered a specific city size to be a

change point if the moving average of marked change points was greater than 0.5. This was

repeated for MCD window sizes from 5 to 25 data points in increments of 2. Histograms of

the detected change points over all window sizes are shown in Fig. S1. When applied to the

Twitter19’ dataset change points are observed primarily at the ends of the population range

(Fig. S2). This is suggestive of finite edge effects rather than a systematic change in the

joint distribution of depression rates and city size as in seen in the BRFSS data.

Next we used a k-means clustering implementation in python Pedregosa et al. [2011]
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to split the detected change points into two separate clusters based on the observation

that the histograms of change points over all bin sizes for most years are roughly bimodally

distributed. We used the two cluster centers as the final change points for each year of BRFSS

data resulting in a partition of the data into three sets. Scaling estimates for the largest

cities are reported in the main text and Fig. 2.2 and Table 2.1. When pooling all BRFSS

data across all cities and years we still find evidence that larger cities have lower depression

rates than smaller cities β = 0.926 (95% CI = [0.903, 0.950]). Results are similar when β

is estimated separately for each year of BRFSS data (Table S4). When pooling data from

the other two partitions which contain smaller cities, we found no evidence that depression

rates scale sub- or super-linearly with population β = 0.996 (95% CI = [.956,1.035]) (Fig.

S3). Results were similar when estimating β for each year separately (Table S2). This lack

of a city size effect for smaller cities in the BRFSS data may indicate that social network

determinants of depression are overshadowed by other risk factor in smaller cities, but may

also be specific to biases introduced by the way in which the data were collected and reported.

We further estimated the sensitivity of our β estimates among larger cities to variation

in the change point. For each year of BRFSS data we varied the change point 100 times

according to a normal distribution with a mean of the change point used for that year in

the main text and a variance equal to the variance in change points across years. We found

that the estimates of β in larger cities are robust to these variations in the choice of change

point (Table S3).

The geolocated Twitter dataset used in Fig. 2.2 and Table 2.1 is available online at

http://www.cs.cmu.edu/~ark/GeoText/. This dataset included 377,616 tweets from 9,475

users collected over a one week period in March of 2010 Eisenstein et al. [2010]. Latitude and

Longitude coordinates for each tweet were converted to a county-level Geographic Identifier

(GEOID) using the US Census Geocoder API provided by the United States Census Bureau

available at https://github.com/fitnr/censusgeocode. If there was more than one
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coordinate per user, we used the mode and in the case of a tie, we used the coordinate that

appeared first in time. We then used delineation files provided by the US Office of Budget

and Management to roll up county level data to MSAs.

The Twitter19’ dataset used in Fig. 2.2 was collected via Twitters academic research full

search api (https://developer.twitter.com/en/solutions/academic-research) and

was deemed not human subjects research by the University of Chicago IRB (IRB20-2049)

due to the fact that all data are publicly available. Tweets that had available location tags

(longitude and latitude) within U.S. cities between June 1st and July 1st 2019 were collected.

This included data from 572,208 users and 15,076,651 tweets. The query parameters for

retrieving tweets are available online at https://github.com/enlberman/depression_sc

aling. We note that while Twitter’s opt-in policy for geo-location data changed in 2015 to

require explicit consent to share precise GPS coordinates Cuomo et al. [2021], we rely on

provided coarse location data included with all geo-located tweets.

We processed tweets following Yazdavar et al. [2017], using standard text preprocessing

(for example, deleting stop words) and processing steps specific to the twitter platform (for

example, deleting “#” in the hashtags). Then, we used a previously determined lexicon of

seed terms related to depression symptoms organized into nine topics based on the PHQ-9,

to guide a Latent Dirichlet Allocation (LDA) model Yazdavar et al. [2017]. LDA allows

for the discovery of underlying topics within collections of text data and has been utilized

previously with short, semi-structured text sources (e.g. Hong and Davison [2010], Schertz

et al. [2018]). This enabled us to find users who had topic cluster(s) related to nine PHQ-9

topics in their tweets over one week.

One point of concern was that individuals who have depressive symptoms may tweet

differently from those who don’t have them. Specifically, we worried that individuals with

depressive symptoms would tweet less leading to less reliable estimates from these individu-

als. This was the case: in the 2010 Twitter dataset, individuals with depressive symptoms
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tweeted 57.7 times on average while individuals without depressive symptoms tweeted 37.6

times on average (t-statistic=25.7, p=7e-141). In order to control for this we performed a

logistic regression to predict the presence of depressive language in users tweets from their

number of tweets over the 1 week collection period. We repeated this procedure excluding

users who had fewer than a specified number of tweets for cutoffs from 0 tweets to 110 tweets.

As demonstrated in Fig. S4, the logistic regression model achieves significance for the 2010

Twitter dataset when individuals with fewer than 92 tweets are included. This indicates

that people with depressive symptoms tend to tweet less, but that among individuals who

tweeted at least 92 times over the collection period, a logistic regression model cannot differ-

entiate between individuals with- and without- depressive symptoms based on their number

of tweets. Consequently, we excluded individuals with fewer than 92 tweets and then esti-

mated depression prevalence as the proportion of users in each city whose tweets contained a

non-zero signal for any of the PHQ-9 topics. In the Twitter19’ dataset, users with depressive

symptoms tweeted 45.2 times on average and those without depressive symptoms tweeted

41.6 times on average (t-statistic = 9.52, p = 2e-21). Since the quantities of text were similar

in both groups (compared to the 20 tweet difference in the 2010 Twitter dataset) we used a

cutoff of 15 tweets to ensure that the LDA algorithm had sufficient input. In addition, we

excluded cities in which estimated depression rates were unrealistic at 0% or 100%.

In order to test the sensitivity of the results to the minimum tweet threshold we repeated

the scaling analysis on the Twitter dataset with minimum tweet count cutoffs from 82 to 101

(Table S5) and found that estimates of β were robust to these changes in exclusion criteria.

Estimating the Scaling Exponent β

We performed OLS linear regression in order to calculate the scaling exponent β for de-

pression cases. We verified that the residuals of the models in Table 2.1 are approximately

normally distributed both with q-q plots of the residuals (Fig. S5) and the the Shapiro-Wilk
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test of normality Razali et al. [2011] (Table S6). We also verified that the residuals are not

correlated with city size (Fig. S6, Spearman-r minimum p-value = .44).

Conditioning on Race, Education, Income, and Population Change

We additionally assessed whether city size was associated with a decreased risk of depression

after conditioning on race, education, income, and population change. To do so we ran

logistic regressions with the R package lme4 Bates et al. [2007] on each year of the BRFSS

data using the individual participant level survey responses. We did this only for the 41 cities

considered in the primary analysis. We used the BRFSS provided categories for income, race,

and education. Consequently, the income variable had 6 levels with a baseline of not reported

or missing, followed by: less than $15k, $15-$25k, $25-$35k, $35-$55k, and greater than $50k.

The education variable had 5 levels with a baseline of not reported followed by: no high-

school, graduated high-school, attended college, and graduated college. The race variable

had 4 levels with a baseline of White followed by: Black, Asian, and other/multi-racial. We

additionally included the natural logarithm of the population of each respondent’s city as a

dependent variable. The independent variable indicated whether each respondent had ever

been told they have depression. The model is defined as

logit{yi = 1} = β0 + β1log(population)+

β2incomei + β3educationi+

β4racei + β5∆population/population

(2.2)

Results are summarized in Table S7, which were created with the R stargazer package Hlavac

[2015]. The maximal 95% confidence interval for the odds ratio of log-city-population was

found by taking the union of 95% confidence interval across all years of data.

25



Generative Network Model for Depression In Cities

The starting point for the simulations of depression cases was the log-skew-normal degree

distribution, which has been shown to match the degree distributions of cell phone based

social networks in cities Schläpfer et al. [2014a] and theoretically is the result of cumula-

tive exposures to semi-random interactions taking place throughout cities’ infrastructure

networks. The log-skew-normal-distribution has the density function

p(ln(k)) =
2

ω
ϕ(

ln(k)− ζ

ω
)Φ(α(

ln(k)− ζ

ω
)) (2.3)

where ζ is the location parameter, α is the shape parameter, and ω is the scale parameter,

ϕ is the normal distribution probability density function, and Φ is the normal distribution

cumulative density function. These parameters can be transformed into the more familiar

mean (µ), variance (σ2), and skewness (γ1) via Arellano-Valle and Azzalini [2013]:

µ = ζ + ωδ

√
2

π
, where δ =

α√
1 + α2

(2.4)

σ2 = ω2(1− 2δ2

π
), (2.5)

γ1 =
4− π

2

(δ
√

2/π)3

(1− 2δ2/π)3/2
. (2.6)

We started with values of σ = .87, γ1 = .2, and µ = 1.97 in line with a city of size

N = 10, 000 Schläpfer et al. [2014a]. We then let the mean of this distribution grow with

population size according to

µ(N) = 1.97 + δ · ln( N

10, 000
), where δ =

1

6
≃ .167 (2.7)

so that ⟨k⟩ ∼ Nδ. For each simulated city with size, N , we sampled uniformly from it on a

log scale from 104 to 107. We then sampled from the degree distribution N times to obtain
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a list of the social network degrees of all N simulated city inhabitants. From this list we

randomly assigned each simulated individual to be diagnosed with depression (or not) with

a probability inversely proportional to their degree (probability of depression ∼ 1/k). Total

depression cases in each simulated city were calculated as the sum of depressed individuals.

Code Availability

All relevant data processing code is available at https://github.com/enlberman/depress

ion_scaling.
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CHAPTER 3

EFFECTS OF RACIAL SEGREGATION ON ECONOMIC

PRODUCTIVITY IN U.S. CITIES1

Homophily and heterophobia, the tendency for people with similar characteris-

tics to preferentially interact with (or avoid) each other are pervasive in human

social networks. Here, we develop an extension of the mathematical theory of

urban scaling which describes the effects of homophily and heterophobia on so-

cial interactions and resulting economic outputs of cities. Empirical tests of our

model show that increased residential racial heterophobia and segregation in U.S.

cities are associated with reduced economic outputs and that the strength of this

relationship increased throughout the 2010s. Our findings provide the means for

the formal incorporation of general homophilic and heterophobic effects into the-

ories of modern urban science and suggest that racial segregation is increasingly

and adversely impacting the economic performance and connectivity of urban

societies in the U.S.

Introduction

Homophily and heterophobia, the tendency of more similar individuals to preferentially inter-

act and avoid interactions with others, are intimately familiar: most real-world McPherson

et al. [2001] and digital Thelwall [2009] social networks show some degree of increased con-

nectivity within certain groups and decreased connectivity between groups. Whether these

preferences occur across characteristics of morality Dehghani et al. [2016], race Mollica et al.

[2003], or nationality Thelwall [2009], minor individual preferences amplified by structural

1. This chapter has been posted as a preprint: Stier, Andrew J., Sina Sajjadi, Luıs Bettencourt, Fariba
Karimi, and Marc G. Berman. "Effects of Racial Segregation on Economic Productivity in US Cities." arXiv
preprint arXiv:2212.03147 (2022).
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proximity can result in large group-level differences Kossinets and Watts [2009], Schelling

[1971, 2006], Dall’Asta et al. [2008]. Moreover, observed group differences in connectivity

(outcome homophily/heterophobia) can have tremendous impacts on human behavior Karimi

et al. [2018], Lee et al. [2019] despite not always being the result of strong individual choice

preferences. In general, these effects expose individuals to less variety, knowledge and choice

so that they slow down learning Golub and Jackson [2012], increase cognitive biases Lee

et al. [2019], and limit the spread of information Halberstam and Knight [2016] among other

detrimental effects Ertug et al. [2022], Ibarra [1992].

In cities, these effects play out across various types of preferences: people tend to travel

between neighborhoods with similar socioeconomic demographics Heine et al. [2021], pat-

terns of violent crime Graif et al. [2017a], and overall well-being Lathia et al. [2012a]. There

is some evidence that spatial proximity in central locations can combat homophily and het-

erophobia, suggesting that these effects play out over large distances and more peripheral

settings in cities Xu et al. [2019]. In addition, long histories of racism have led to spatial

segregation among racial groups, particularly in the United States (U.S.) Kruse [2013], Nar-

done et al. [2020]. However, despite the universality of these effects in urban environments

and their many pernicious effects, homophily and heterophobia have not yet been formally

incorporated into the theoretical framework of modern urban science Bettencourt [2013,

2021b], which often assumes homogeneous (non-homophilic/heterophobic) mixing. Here we

begin this process by developing homophily and heterophobia adjustments to the equations

of urban scaling theory. We validate these adjustments empirically and provide evidence

that racial heterophobia at the city level is predictive of lower overall economic productivity

in the U.S. and that the strength of this relationship increased throughout the 2010’s.
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Results

Homophily and Heterophobia in Urban Scaling Theory

Urban scaling theory Bettencourt [2013, 2021b], which provides a theoretical backbone of

modern urban science, describes cities as spatially embedded networks of socioeconomic

interactions. Cities arise when the benefits of agglomerative increases in socio-economic

outputs (denser socioeconomic networks) are balanced with the costs of maintaining infras-

tructure networks and transporting goods, services, and individuals throughout a city. These

considerations result, under population averaging, in urban scaling laws that describe how

different urban quantities scale with city size, N , defined as the number of individuals liv-

ing in a city Bettencourt [2013, 2021b]. These empirically validated scaling laws have been

found to hold for many cities across cultures and human history Bettencourt [2013, 2021b],

Ortman et al. [2014a, 2016, 2015].

For the average per-capita number of social interactions, k, the urban scaling law takes

form of k ∼ Nδ, where δ = 1
6 . Corrections to these exponent values due to growth rate

fluctuations and other higher-order effects, provide the basis for a statistical theory of urban

scaling Bettencourt [2021b, 2020]. Nevertheless, the simplest and most widely used form

of this scaling law results from a mean-field approximation that individuals within a city

interact with others homogeneously, without restrictions of group affiliation. Under such

conditions, taking individuals to have an interaction cross section a0 and a characteristic

travel length l per unit time, this approximation gives the average number of interactions

for a large city (N >> 1) as given by:

k ∼ a0l

A
N (3.1)

, where A is the area of the city’s networks.

The scaling law for k can be recovered from Equation 3.1 by substituting the scaling
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law for the area of the city’s networks, A ∼ N1−δ Bettencourt [2013], which is the result

of self-consistently balancing the net benefits of socioeconomic interactions with costs of

transportation (and housing) overbuilt urban spaces.

Importantly, a0l
A takes the role of a probability built out of the fraction of a city’s area

that individuals cover on average over a given time period. This is the average probability

of interacting with all other individuals in the city, N . Thus, the total expected number of

interactions for each individual (Equation 3.1) is given by their probability of interacting,
a0l
A , multiplied by the number of individuals they could interact with, N .

Equation 3.1, assumes that all individuals in the city are equally likely to interact Bet-

tencourt [2013]. However, this assumption is unrealistic and can be relaxed by assuming

that individuals belong to a number of distinct groups, which in turn have group-specific

interaction rates.

More specifically we model individuals in each of these groups as interacting preferentially

with others of the same group, and with a lower probability with other groups. We define this

relative reduction in out-group interactions by 1−hhetg , where hhetg ∈ [0, 1] is the heterophobia

of group g. Thus, hhetg = 0.8 means that individuals from group g will only interact with

20% of out-group members, on average. However, when individuals lose contact with other

groups, they may compensate by having a higher rate of intra-group interactions, depending

on the social context Mollenhorst et al. [2008], Skvoretz [2013]. We model this compensatory

effect with a similar parameter, hhomg ∈ [0, 1], which is the homophily of group g and sets the

relative rate of intra-group interactions at 1+hhomg . Though, hhetg , and hhomg are uncorrelated

here by assumption, different social contexts may induce positive or negative correlations

between hhetg , and hhomg Mollenhorst et al. [2008], Skvoretz [2013]. In addition, individuals

in a city have a limit on the number of interactions they can take part in during any given

time period so that e.g., when all of an individual’s interactions are within their own group

they do not interact with other groups (complete outcome homophily and heterophobia).
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Taking this into account, future work might specify a budget for interactions that gives

individuals the flexibility to trade between large numbers of less costly interactions (e.g.,

accessible within-group interactions) and fewer numbers of more costly but more rewarding

interactions (e.g., to increase diversity and achieve superior group-level problem solving

abilities Barkoczi and Galesic [2016]).

It is important to note that here, hhomg and hhetg are understood to represent outcome

homophily and heterophobia and do not prescribe strong individual choices (i.e., strong in-

dividual preferences or avoidance of groups). In other words, hhomg and hhetg are the result

of observed network segregation of group g that results from a combination of structural

segregation and, possibly, individual preferences for certain groups. Though we expect rel-

ative increases in the rates of within-group interactions and relative decreases in the rate

of between-group interactions, our model is agnostic to the direction of these effects (see

Supplementary Text).

With these definitions, the average number of interactions for individuals in group g is

given by:

kg ∼ a0l

A
[Ng · (1 + hhomg ) +

∑
j ̸=g

Nj(1− hhetg )] (3.2)

where Ng is the population of focal group g. The total number of social interactions for

all individuals in group g is kgNg, on average. Therefore, the average number of social

interactions for individuals in a observed segregated city i with G different groups, is ki ∼
1
N

∑G
g=1 kg,iNg,i. Here the average number of interactions for each group, kg,i and the size

of each group, Ng,i are specific to the observed city. This simplifies to (see Supplementary

Text):

ki ∼ k0N
δ
i · (1− Ahet

i + Ahom
i ) · eξi (3.3)

with

Ahet
i =

G∑
g=1

G∑
j=g+1

Ng,i

Ni

Nj,i

Ni
(hhetg,i + hhetj,i ); Ahom

i =
G∑

g=1

(
Ng,i

Ni
)2hhomg,i . (3.4)
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Here, k0 is the scaling prefactor, Ahet
i is the heterophobia adjustment, Ahom

i is the homophily

adjustment, and ξi are additional city specific effects Bettencourt et al. [2010]. The Ahet
i ,

Ahom
i are simply the averages of the coefficients hhetg,i , h

hom
g,i , weighted by group sizes in each

city. We see that 1 − Ahet
i + Ahom

i gives a city’s specific multiplicative adjustment to the

scaling law. Note that Ahet
i ∈ [0, .25], while Ahom

i ∈ [0, 1] for a city with at least two

groups so that, in this realization of the model, interactions are increased within-groups and

decreased between-groups (see Supplementary Text).

Thus, we expect that increased segregation between groups reduces social interactions

(unless fully compensated for by increased within-group interactions), in line with previous

research Ibarra [1992]. In addition, Ahet
i depends on the relative sizes of groups and has the

largest impact when all groups are of equal size (see Supplementary Text), matching previous

investigations of homophily and heterophobia in small networks Oliveira et al. [2022].

The final step is to consider how interactions between city inhabitants translate to eco-

nomic outcomes. In the derivation of urban scaling laws for economic outputs, interactions

over various types (friendship, employment, acquaintance, etc) can couple to economic out-

puts either positively or negatively, and with varying strengths over the different types Bet-

tencourt [2013]. Similarly, interactions between- or within-groups can couple deferentially to

social and economic outputs, so that, for instance, within-group interactions might be more

productive for social outputs, but less productive for creative outputs Barkoczi and Galesic

[2016]. For simplicity, here, we assume that between and within group interactions do not

couple to economic outputs differently, so that economic outputs are directly proportional

to the social interactions specified by Equation 3.3 Bettencourt [2013, 2021b].

Empirical tests of the homophily and heterophobia adjustments

We next sought to test the empirical validity of the homophily and heterophobia adjustments

regarding self-reported race in U.S. cities. Ahet
i and Ahom

i were calculated from racial demo-
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graphic estimates in cities collected by the U.S. census for each year between 2010-2020 (see

Materials and Methods). Racial segregation for each city and group was calculated as the

Figure 3.1: Left: Measures of citywide segregation depend on the relative size of the
groups and their spatial concentration. Starting at the top left and going clockwise,
Ahet
i ∼

∑ Ng,i
Ni

Nj,i
Ni

(sg,i + sj,i) takes on values of 0.92, 0.98, 0.98, and, 0.85. Here, sg,i is
the level of residential segregation of group g in city i. The large minority, high segrega-
tion city in the lower left has the smallest Ahet

i . Top: a city where the majority makes up
73% of the population and the average segregation is 20% (left) or 5.5% (right). Bottom:
a city where the majority makes up 53% of the population and the average segregation is
30% (left) or 3% (right). Right: The relationship between urban scaling law deviations for
median income and Ahet

i · bhet in U.S. cities in 2020.

average difference between neighborhood proportions of residents in each racial group and

the city-wide mean. Explicitly, sg,i = 1
M

∑M
m=1 |Ng,m,i/Nm,i−Ng,i/Ni|, where m indexes all

of the neighborhoods in a city and Ng,m,i/Nm,i is the proportion of residents in racial group

g for neighborhood m in city i (see Figure 3.1; we note that residential segregation may only

capture some of the overall social contact segregation that occurs in cities Tammaru et al.

[2016], Priest et al. [2014], Tucker et al. [2021]). For example, in a city with two groups where

the majority is 80% of the population, one neighborhood might have 90% of its population

from the majority group while another neighborhood is 20% majority group; in this case, the
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majority group would have a segregation value of 0.5 · (|0.9− 0.8|+ |0.2− 0.8|) = 0.35. Since

we expect increased segregation, on average, to lead to increased homophily and hetero-

phobia values, though possibly with different strengths, we modeled these values as linearly

related to the empirical segregation values: h·i ∼ b· ∗ si, where b· determines the strength

of coupling between residential racial segregation and heterophobia. In order to ensure that

our results were not sensitive to the choice of segregation measure we repeated analyses with

four additional segregation measures (see Materials and Methods).

We performed these analyses for two measures of economic productivity, median income

and gross domestic product (GDP), in order to assess the impacts of segregation on individual

and overall economic productivity in U.S. cities, respectively. Though median income and

GDP are correlated (Spearman r ∼ 0.55, see Supplementary Table 7.11), the ability of

individuals to garner higher wages and of businesses to generate high economic outputs are

not commensurate Nolan et al. [2019].

We chose to conduct our analyses at the level of census tracts for the U.S., which are small

spatial units with approximately 4,000 inhabitants (results were similar when smaller spatial

units of census block groups were used, see Supplementary Text). Analyses were conducted

within functional cities (integrated commuting areas), defined as combined statistical areas

by the U.S. Office of Budget and Management of Management and Budget [2021]. These are

functional definitions of cities that capture where people live, socialize, and work Bettencourt

[2021b], Stier et al. [2022d].

These analyses revealed the variation in scaling deviations explained by homophily and

heterophobia and the empirical strength, bhet,hom, of Ahet
i and Ahom

i , i.e., the degree to

which segregation impacts interactions between and within groups, respectively. The results

demonstrate that scaling deviations for income are significantly predicted by Ahet
i across all

years (Figure 3.1, Supplementary Table 7.12), but not by Ahom
i (Supplementary Table 7.12).

Though Ahet
i and Ahom

i are strongly correlated (r̄ ∼ 0.77, range [0.75, 0.78] across years),
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the variance inflation factor is relatively low when using centered versions of these variables

(V IF < 2.58 for all years) and the Akaike information criterion (AIC) of models with only

Ahet
i is always lower than models with only Ahom

i (average ∆AIC = −44, range [−54,−37]).

In addition, Ahet
i explains a maximum of 13.7% of the variance in scaling deviations for

income in 2020 (Figure 3.1, Supplementary Table 7.13). In contrast, Ahet
i is only significantly

predictive of GDP scaling deviations after 2014 where it explains a maximum 1.3% of the

variance in 2020 (Supplementary Table 7.14. Results were similar when alternate measures

of residential racial segregation were used (see Materials and Methods, Supplementary Ta-

bles 7.15-7.20). These results suggest that heterophobia has a stronger effect on economic

productivity than homophily and that it is more important for individual outcomes than for

the whole of cities’ economies.

One reason for these differences might be that the types of interactions that racial seg-

regation curtails are more important for labor opportunities and associated opportunities

for securing higher wages and incomes than they are for the overall productivity of firms in

an urban economy Alabdulkareem et al. [2018]. These differences could be operationalized

in future work through differential coupling of various modes of between- and within-group

interactions to various types of economic outputs at different scales of organization.

Finally, we observe that the degree to which residential segregation is associated with

economic productivity increased between 2010 and 2020 (Figure 3.2). In particular, for

both median income and GDP, the explained variance of scaling deviations, R2, increased

systematically between 2010 and 2020. This happened while the average value of Ahet
i stayed

relatively constant (Supplementary Figure 7.1). Thus, though observed racial segregation

in U.S. cities was relatively constant during the 2010s, the degree to which segregation

accounted for lower incomes and GDP, relative to city size, likely increased.

36



Figure 3.2: Changes in the empirical strength of the heterophobia adjustment over time. In-
sets show R2 values for the OLS regression models. Shaded regions show the 95% confidence
interval for bhet, i.e. the strength of the relationship between hhetg and sg. The different
values of bhet are parameters in the OLS regression models. Left: median income. Right:
gross domestic product (GDP).

Discussion

Our development of urban scaling relations to account for racial segregation effects suggests

that heterogeneous network structure in cities can meaningfully impact their economic out-

puts. The adjustment to urban scaling laws we derived suggests that segregation reduces

economic outputs with strength depending on the size of different groups and their levels of

heterophobia Lee et al. [2019]. Our empirical findings support the hypothesis that this is

indeed the case. For example, in 2020, the New Orleans, Louisiana Metropolitan Area had a

median income of approximately $54,400. The urban scaling law predicts a median income

of approximately $65,000 from city size alone, while accounting for segregation brings the

prediction to approximately $56,500.

In general, interactions beyond the residence, in shared public spaces and in workplace

environments, are also likely relevant to economic outputs. Consequently, it is important
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that future work model heterogeneous, segregated ambient mixing in these environments and

evaluate it alongside residential segregation. Such considerations are particularly important

for understanding, more generally, how differences in structured group interactions lead to

more or less productive cities.

Moreover, our observation that the influence of heterophobic preferences on economic out-

puts is increasing over time suggests that additional factors are accelerating the detrimental

effects of segregation in United States cities. These might include factors like peer influence

and behavioral norms Jackson [2021] which can interact with heterophobia to exacerbate

induced inequalities.

Why do individual economic outcomes (e.g., income) show stronger associations with

racial segregation than overall economic output? How does racial segregation effect other

well-described urban social behaviors such as mental health Stier et al. [2021] and crime Bet-

tencourt et al. [2010]? How do other forms of segregation of interactions, via e.g., politics

and wealth, impact the various economic and social outputs? Such questions are important

for future research and require further development of theoretical models and empirical in-

vestigations along the lines developed here. It is important that this research is performed,

at least in part, in the context of cities, which while housing enormous human diversity often

fail to make the most of their latent socioeconomic potential. Urban environments are now

home to the majority of the world’s population and account for a disproportionate fraction

of global economic and intellectual productivity; as a result, a better understanding of the

sources of inequality, and successful integration of diversity in cities is crucial to building

more equitable and inclusive societies.
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Materials and Methods

U.S. Census and Economic Data

All census data is publicly available and was downloaded from data.census.gov. Five year

racial demographic estimates for U.S. census tracts and census block groups were down-

loaded from table B02001. Homophily values were calculated across the six racial groups

provided in these tables: White, Black, Native American/Native Alaskan, Asian, Hawai-

ian/Pacific Islander, and Other. Five-year population estimates for U.S. cities defined as

combined statistical areas (CBSAs) were downloaded from table B01003. We note that

these demographic estimates are only available for block groups from 2013 onward, but

are available for census tracts from 2010 onward. Five-year median income estimates for

U.S. cities were downloaded from table B19013. Gross domestic product data for CB-

SAs is publicly available from the Bureau of Economic Analysis and was downloaded from

https://apps.bea.gov/iTable/index_regional.cfm. In order to map between census

tracts and CBSAs, delineation files for 2020 were downloaded from the United States Office

of Budget and Management from https://www.census.gov/programs-surveys/metro-m

icro/about/delineation-files.html.

Association Between Scaling Deviations and Ahet
i and Ahom

i

In order to determine the association between Ahet
i and Ahom

i and measures of economic

productivity, the scaling relationship between economic measures and city population has

to be removed. However, we first recognize that our measured segregation values, though

∈ [0, 1] are not true probabilities. However, we can expect hhomg,i and hhetg,i to be proportional

to the empirical segregation values. Explicitly,

h·g,i = h· + b·sg,i (3.5)
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, where h· is the base probability, b· a scaling factor, and sg,i the empirical segregation

values for group g in city i. We have, for simplicity, assumed a linear relationship so that

the hetrophobia and homophily values increase linearly with the degree of segregation.

Ahet
i and Ahom

i then become:

Ahet
i =

G∑
g=1

G∑
j=g+1

Ng,i

Ni

Nj,i

Ni
[2·hhet+bhet·(sg,i+sg,j)]; Ahom

i =
G∑

g=1

(
Ng,i

Ni
)2·[hhom+bhom·sg,i)]

(3.6)

when the combined homopohily and heterophobia effects are small we can approximate this

by (ln(1 + x) ∼ x when x << 1):

ln(ki) ≃ δ · ln(Ni)−
G∑

g=1

G∑
j=g+1

Ng,i

Ni

Nj,i

Ni
[2 · hhet

+bhet · (sg,i + sg,j)] +
G∑

g=1

(
Ng,i

Ni
)2 · [hhom + bhom · sg,i] + ξi

(3.7)

since our primary interest is on the effects of segregation, we can write this as two regression

equations:

ln(ki) ∼ ln(C) + β · ln(Ni) + ϵi (3.8)

and,

ϵi ∼ D − bhet ·
G∑

g=1

G∑
j=g+1

Ng,i

Ni

Nj,i

Ni
(sg,i + sj,i) + bhom ·

G∑
g=1

(
Ng,i

Ni
)2 · sg,i + ξi (3.9)

where we have included the additional city specific terms of Equation 3.7 in the residuals

ξi which are the same city specific effects from Equation 3.3. Here, C and D are city size

independent constants, i.e., scaling prefactors. In addition, β is the scaling exponent estimate

which we expect to take on the value of δ = 1
6 .

We estimated the regression for Equation 3.8 by OLS first and then used the scaling
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deviations, ϵi, from those regressions to estimate the influence of homophily and heterophobia

by OLS via Equation 3.9. In order to exclude outlier cities that significantly deviate from

the scaling law, cities with |ϵ| > 3.09
√

V ar(ϵ), i.e., beyond the 99.9%th percentile of the

normal distribution of the standard deviation of ϵ were excluded for each year. Results are

similar when outliers are not excluded (Supplementary Tables 7.21 & 7.22).

Alternate Measures of Residential Segregation

In order to ensure that the results were not sensitive to a specific segregation measure we

repeated analyses with three additional measures of residential segregation White [1986].

These included the normalized segregation index:

Dg,i =

∑
m |Ng,m,i

Nm,i
− Ng,i

Ni
| ·Nm,i

2 ·Ni ·
Ng,i
Ni

· (1− Ng,i
Ni

)
(3.10)

the Gini Coefficient:

ginig,i =

∑
m

∑
l |

Ng,m,i
Nm,i

− Ng,l,i
Nl,i

| ·Nm,i ·Nl,i

2 ·N2
i · Ng,i

Ni
· (1− Ng,i

Ni
)

(3.11)

and the exposure Bgg index, also known as the correlation ratio (CR or η2) or the mean

squared deviation:

η2g,i =

∑
mN2

g,m,i

Ng,i · (1−
Ng,i
Ni

)
−

Ng,i
Ni

1− Ng,i
Ni

(3.12)

The construction of measures of segregation based more directly on interactions, beyond the

composition of residential neighborhoods, is also likely important and will be pursued in

future work.
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CHAPTER 4

CITY POPULATION, MAJORITY GROUP SIZE, AND

RESIDENTIAL SEGREGATION DRIVE IMPLICIT RACIAL

BIASES IN U.S. CITIES1

Implicit biases - differential attitudes towards out-group members - are pervasive

in human societies. These biases are often racial in nature and create inequities

across many aspects of life. Recent research has revealed that implicit biases

are, generally, driven by social contexts. However, it is unclear if the regular

ways that humans self-organize in cities systematically influence implicit racial

bias strength. We leverage extensions of the models of urban scaling theory to

predict and test between-city differences in these biases. Our model links spatial

scales from city-wide infrastructure to individual psychology to predict that cities

that are more populous, more diverse, and less segregated are less biased. We find

broad empirical support for these predictions in U.S. cities with data spanning a

decade from millions of individuals. We conclude that the organization of cities

strongly drives the strength of these biases and provides potential systematic

intervention targets for planning more equitable societies.

Introduction

Cities are organized in surprisingly regular ways Bettencourt [2013, 2021b], Molinero and

Thurner [2021], which drive and constrain social interactions similarly across cultures and

time Schläpfer et al. [2014b], Oliveira et al. [2017], Lobo et al. [2020]. However, there are

1. This chapter is posted as a preprint as: Stier, Andrew, Sina Sajjadi, Fariba Karimi, Luis Bettencourt,
and Marc G. Berman. "City Population, Majority Group Size, and Residential Segregation Drive Implicit
Racial Biases in US Cities." Majority Group Size, and Residential Segregation Drive Implicit Racial Biases
in US Cities (January 27, 2023) (2023).
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many factors beyond the built-space geometry Bettencourt [2021b], Molinero and Thurner

[2021] of cities that modulate urban social interactions. Among these, implicit biases to-

wards out-group members are one of the most universal Dunham et al. [2006]. Implicit

biases refer to differential treatment of individuals who belong to out-groups, in ways that

are automatic. These biases pose major barriers to equity and, in particular, implicit racial

biases have been associated with disparities across essentially all aspects of life, including

medical care Dehon et al. [2017], scholastic performance Jacoby-Senghor et al. [2016], em-

ployment Ziegert and Hanges [2005], policing Ekstrom et al. [2022], Hehman et al. [2018],

mental health outcomes Chae et al. [2017], and physical health Chae et al. [2012]. If city

organization and structure contribute meaningfully to these biases, there may be ways to

leverage such regularities to systematically intervene and design for less biased urban areas.

Despite the universality of implicit racial and ethnic biases in human societies and their well-

documented detrimental effects, there have been no investigations of how the organization

of people in cities may systematically influence them.

Early investigations of the origins of implicit racial biases revealed that they develop

early in life Baron and Banaji [2006], Gibson et al. [2017], are stable into adulthood, and are

less prevalent in schools with more diverse populations Gibson et al. [2017]. Neurobiological

evidence complemented these findings and showed that individuals with lower levels of bias

process out-group stimuli more automatically. In particular, lower levels of implicit biases

are associated with more automatic processing and less activation of a network of brain

areas related to social context Kubota et al. [2012], Amodio [2014], Cloutier et al. [2017],

Brosch et al. [2013]. These observations suggested that early childhood exposure to diverse

individuals is critical for building out-group expertise and locking-in low levels of implicit

biases Payne and Vuletich [2018], Jackson et al. [2014], Boscardin [2015].

More recent work has demonstrated, however, that interventions with older children and

adults that increase exposure to out-group individuals also reduce implicit biases, although
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these effects wear off if the intervention is not continued Gonzalez et al. [2017], Lai et al.

[2014, 2016]. This suggests that individuals’ biases likely reflect ongoing predictions about

their social environment Payne and Hannay [2021], De Houwer [2019], and consequently,

that consistent population averages of implicit biases Vuletich and Payne [2019] are the

result of consistent social contexts. Thus, earlier findings of stable implicit biases throughout

adulthood likely reflect, in fact, not stable individual cognitive biases but instead the stability

of social environments Payne et al. [2019], Payne and Hannay [2021], De Houwer [2019],

Vuletich and Payne [2019].

For example, the effects of slavery and associated racial segregation in the United States

(U.S.) on social context and network structure have been enduring. Areas in the U.S.

with larger slave populations in 1860 have higher current levels of implicit racial biases

today Payne et al. [2019]. This example demonstrates one way in which longstanding struc-

tural influences on social contexts (e.g., racism) may drive implicit biases and perpetuate

them across generations. Given the strong influence of city organization on urban social

interactions and contexts Bettencourt et al. [2010], Bettencourt [2013, 2021b], it is natural

to ask if there are general ways in which urban environments influence and shape implicit

biases.

Results

Inter-Group Interactions in Cities

We start our analysis of urban composition from the point of view of urban scaling the-

ory Bettencourt [2013, 2021b]. Its mathematical models describe cities as social networks

enabled and structured by self-consistent hierarchical infrastructure networks. In this type

of model, cities arise as the result of balancing the spatial costs of housing and the trans-

portation of goods and people with the benefits of facilitating social interactions over cities’

infrastructure networks Bettencourt [2013, 2021b]. These models derive average properties
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of cities as a function of their population size, N , as scale-invariant scaling laws Bettencourt

[2013, 2021b]. For example, in the case of average per-capita social interactions, k, the

scaling law takes the form of k ∼ Nδ, where δ = 1
6 .

Figure 4.1: A) The Implicit Association Test measures implicit racial biases as a relative
difference in reaction times between different pairings of word and face categories. B) We
model implicit racial biases in cities as a cumulative exposure process to out-group individuals
shaped by city population size, demographic diversity, and residential racial segregation.

In the simplest models of urban scaling theory, all urban inhabitants are taken to be

equally likely to interact (i.e, there is homogeneous mixing) and all inhabitants are treated,

in this sense, identically. In our related work, we developed modifications of these models to

account for individuals belonging to distinct groups and for the fact that their connections

may be biased by group identities, such that individuals may interact less often with out-

group individuals and more often with their in-group Stier et al. [2022c]. This translates into

groups that may show homophilic and heterophobic interaction tendencies. In developing
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these models, our focus was on understanding how homophily/heterophobia and group sizes

impact emergent socio-economic outputs in cities as a result of the inhibition of a number

of interactions across individuals of different racial and ethnic groups. However, here, we

focus more directly on what this model can reveal about systematic variations in inter-group

interactions and subsequent consequences for implicit biases.

The model of heterogeneous group interaction describes the number of per-capita inter-

actions, ki in city i, on average, as:

ki ∼ Nδ
i

 G∑
g=1

(
Ng,i

Ni
)2(1 + hhomg,i ) +

G∑
g=1

∑
j ̸=g

Ng,i

Ni

Nj,i

Ni
(1− hhetg,i )

 (4.1)

Here, g indexes the distinct groups in cities, hhetg,i and hhomg,i are the heterophobia and ho-

mophily values of group g in city i, and Ng,i is the population of group g in city i. In this

model, individuals from group g in city i interact with out-group individuals with a relative

rate 1− hhetg,i and with in-group of 1 + hhomg,i Stier et al. [2022c]. In addition, we have made

the assumption that each group avoids all other groups similarly so that there are no unique

heterophobia effects between pairs of groups Stier et al. [2022c].

The first term of Equation 4.1 is the typical scaling law Bettencourt [2013, 2021b],

Schläpfer et al. [2014b]. The second term has two components, each representing fractions of

the total number of possible social interactions, N2. The first of these captures social inter-

actions which occur within groups, on average: kwithin,i ∼ Nδ
i ·

∑G
g=1(

Ng,i
Ni

)2(1 + hhomg,i ).

The second term captures social interactions which occur between groups, on average:

kinter,i ∼ Nδ
i ·

∑G
g=1

∑
j ̸=g

Ng,i
Ni

Nj,i
Ni

(1 − hhetg,i ). Since previous research has qualitatively

indicated that inter-group interactions shape implicit racial biases Gibson et al. [2017], Gon-

zalez et al. [2017], Payne and Hannay [2021], De Houwer [2019], Laurence [2011], Pettigrew

et al. [2007], Allport et al. [1954], Wagner et al. [2003, 2006], we focus on this term to build

our model.
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In order to explicitly connect the quantity of inter-group interactions in cities to implicit

bias levels, an additional step is required to translate from inter-group interactions to levels of

implicit biases Bettencourt [2013]. Previous research has suggested that this relationship is

positive – more inter-group interactions are associated with lower implicit bias levels Gibson

et al. [2017], Gonzalez et al. [2017], Payne and Hannay [2021], De Houwer [2019], Laurence

[2011], Pettigrew et al. [2007], Allport et al. [1954], Wagner et al. [2003, 2006]. In addition,

neurobiological studies provide evidence that individuals with lower levels of bias engage in

more automatic processing of out-group stimuli, indicating greater expertise Kubota et al.

[2012], Amodio [2014], Cloutier et al. [2017], Brosch et al. [2013].

A common feature of such expertise-based learning is decreasing marginal returns to

exposure, which is often formalized in a learning curve Crossman [1959], Woźniak et al.

[1995], Murre and Dros [2015], Van der Zwaan and Rabl [2003]. Learning curves describe

the relationship between costs and expertise across diverse individual or group tasks such as

motor learning Woźniak et al. [1995], sequence learning Murre and Dros [2015], solar panel

construction Van der Zwaan and Rabl [2003], and cigar rolling Crossman [1959]. Typically,

these learning curves are described by power-laws of the form cost ∼ n−α, where n is the

number of learning instances, and 1 > α > 0 determines the speed of learning (or learning

rate, α = −d ln cost/d lnn), with larger values of α implying faster learning. Such learning

curves are a natural modeling choice to couple inter-group interactions and implicit bias

levels since our measure of implicit bias, b, can be interpreted as a cognitive processing cost:

b is a relative difference in reaction times when pairing photographs of white and black faces

with positive and negative words, see Materials and Methods. Thus, decreasing b can be

seen in this context as learning that increases social performance in a diverse population, and

such learning is the implied result of greater levels of exposure (interactions) to out-group

individuals.

With the additional assumption that coupling strength and direction do not vary between
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different pairs of groups or across interaction types (e.g., friendship, employment, acquain-

tance, etc) Bettencourt [2013, 2021b], we expect measured bias levels to follow a learning

curve of bi ∼ k−α
inter,i and therefore, we predict larger cities systematically have lower levels

of bias according to:

bi ∼ N−δα
i ·

 G∑
g=1

∑
j ̸=g

Ng,i

Ni

Nj,i

Ni
(1− hhetg,i )

−α

(4.2)

In the presence of heterophobia, it is interesting to consider the case of cities with only

two distinct groups. This approximation is particularly relevant to the measure of implicit

racial bias we employ here, which explicitly contrasts white and black racial groups. In this

case, the scaling law for implicit racial biases simplifies to (see Supplementary Text):

bi ∼ N−δα
i ·

[
N1,i

Ni
− (

N1,i

Ni
)2
]−α

· (2− hhet1,i − hhet2,i )
−α (4.3)

Equation 4.3 can be understood in terms of three multiplicative terms: a scaling law, a

majority group size adjustment, and a heterophobia adjustment. Inter-group interactions

drop dramatically as the majority group size increases and less dramatically as the hetero-

phobia values of the groups increase (see Methods). In practice, since some cities are not

very diverse (N1
N ∼ 1) and heterophobia values are small (Supplementary Figure 7.1), the

majority group size adjustment is expected to play a much larger role than the heterophobia

adjustment in determining the average number of inter-group interactions and in driving

subsequent implicit biases.

In addition, Equation 4.3 also predicts that the logarithms of the majority group size

adjustment and the heterophobia adjustment should be negatively and linearly related to

the logarithm of implicit bias, b. These two adjustment terms capture deviations from the

mean-field scaling law (b ∼ N−δα) due to the specific characteristics of each given city. In

summary, the model predicts that larger, more diverse, and less heterophobic cities have
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lower average levels of implicit biases.

Finally, the model suggests that deviations of the scaling exponent away from δ = 1
6 and

the magnitude of the majority group size effect can provide empirical estimates of the learning

rate, α, which characterizes the coupling between inter-group interactions and implicit racial

biases. Since heterophobia values are not directly observed (see Materials and Methods), we

cannot obtain a direct estimate of α from the third term of Equation 4.3. In addition, we

note that there may be other sources of deviations from the expected scaling exponent of

δ = 1
6 including top-down hierarchical constraints on inter-group interactions Cesaretti et al.

[2016], growth rate fluctuations, and other higher-order effects Bettencourt [2020], which

may contribute to differences in independent estimates of α calculated from the first and the

second terms of Equation 4.3.

Empirical Tests of the Urban Scaling Model of Inter-Group Bias

We next test the three predictions of our model: (1) that implicit biases systematically

decrease with city size via a scaling law of b ∼ N−δα, (2) that cities with larger majority

group sizes have higher levels of implicit biases, and, (3) that less heterophobic cities have

lower levels of implicit biases.

We used data from the racial Implicit Association Test (IAT) to quantify the level of

implicit racial bias in U.S. cities for each year in 2010-2020 Xu et al. [2014]. The racial IAT

measures the difference in response times when subjects pair images of white versus black

faces with positive or negative words. We linked average IAT bias scores from approximately

2.7 million individuals in combined statistical areas (CBSAs) with racial demographics and

population data from the U.S. Census to test our predictions. We note that CBSAs are

functional definitions that capture the spatiotemporally extended social networks of cities

and include, in the same unit, where people live, socialize, and work Stier et al. [2022d]. We

measured heterophobia values, hheti , as linearly dependent on residential racial segregation
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calculated from racial demographics in census tracts (small areas of ∼ 4, 000 inhabitants).

We repeated this statistical analysis across four different measures of residential racial segre-

gation, as in our related work Stier et al. [2022c]. We find that across all years and measures

of residential racial segregation, larger cities have lower levels of implicit racial biases, in line

with Equation 4.3 (Figure 4.2A, Supplementary Table 7.23).

In addition, larger majority group sizes and higher levels of residential racial segregation

are significantly related to scaling deviations (Supplementary Table 7.23) and associated

with higher average IAT scores, in line with Equation 4.3. We note that when analyzing

Figure 4.2: A) Scaling relationship, majority group size adjustment, and heterophobia ad-
justment for IAT data from 2020 in 149 cities with > 500 IAT responses per city. The shaded
region is the 95% confidence interval for the scaling relationship. For visualization purposes,
the heterophobia adjustment shown in this figure were estimated using only the mean de-
viation segregation measure. Results were similar with cutoffs of > 250 and > 1000 IAT
responses per city and for other measures of segregation (Supplementary Tables 7.59-7.66).
B) Variance explained (R2) by the heterophobia adjustment (measured via residential racial
segregation), majority group size adjustment, and scaling relationship. Data are shown for
2016-2020. Medians are shown by a horizontal line and have values of 0.094, 0.097, 0.147,
and 0.346, respectively. Variance explained by the heterophobia adjustment is from all four
models with different segregation measures. Noise ceiling estimates were obtained by com-
puting correlations of bias levels between split halves of IAT participants within cities.

single years of data before 2015, residential racial segregation is not significantly related to

scaling deviations for some segregation measures. However, this is likely due to much lower
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sample sizes in those years resulting in fewer cities with available data and smaller fractions

of city populations represented (Supplementary Table 7.24).

Further, the city size scaling, majority group size, and residential racial segregation effects

are predictive of individual IAT responses when controlling for race, birth-sex, and educa-

tional attainment (Supplementary Tables 7.25-7.35). This suggests that these large-scale

structural determinants of implicit racial biases are relevant for individuals’ levels of bias.

In other words, city-wide organizational and structural characteristics influence individual

implicit biases despite the diversity of local social environments that any individual urban

inhabitant might encounter.

Along these lines, other research has identified environmental variables related to area

deprivation associated with inter-city variance in implicit racial bias Hehman et al. [2021].

However, with our model, we find that measures of area deprivation independently explain

only a small portion of the variance in inter-city differences above and beyond the three

structural factors we identify here (Supplementary Tables 7.36-7.39). This suggests that

the area deprivation variables identified previously actually capture a combination of city

population, segregation, and majority group size and that there are other factors, for ex-

ample, segregated mixing in ambient populations Tucker et al. [2021], that may explain the

remaining inter-city variance in implicit biases.

In addition, we observe that for 2015-2020, systematic variations in city size, majority

group size, and heterophobia account for a median of 33.6% (with a range of [24.2%, 40.5%])

of the variance in implicit racial bias across cities (and all four segregation measures), which is

equivalent to a correlation of r ∼ 0.58 (range of r ∼ [0.49, 0.64], Figure 4.2B, Supplementary

Tables 7.40-7.46). Estimates of the noise ceiling Storrs et al. [2020] suggest that these three

structural factors may capture a majority of the variance than can be accounted for given

the reliability Schnabel et al. [2008] of the IAT measure (Supplementary Tables 7.47-7.58).

As expected, based on the fact that many U.S. cities are not diverse, majority group size
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accounts for more between-city variance in implicit bias than residential racial segregation

(Figure 4.2B).

Finally, we compared estimates of the learning rate, α to previously conducted experi-

mental interventions Lai et al. [2014, 2016] designed to simulate inter-group contact. The

two independent estimates of α, from the scaling exponent and the majority group size ad-

justment (see Materials and Methods), are convergent and consistent (Figure 4.3). This need

not have been the case and this convergence of estimates provides empirical support for a

shared mechanism (namely a learning curve as a function of out-group exposure) coupling

city population and majority group size to implicit bias levels. These empirical estimates of

the learning rate are also consistent with experimental interventions – in which simulated

inter-group contact is overwhelmingly positive and occurs immediately before bias measure-

ments – that provide an upper bound on the learning rate, α (see Materials and Methods).

These results suggest that observed levels of implicit biases emerge from the interaction be-

tween large-scale structural factors operating across entire cities to shape social contexts,

and individual psychology which determines how much and how quickly people learn from

and internalize those social contexts.

Discussion

The model developed here demonstrates that relatively simple considerations of heteroge-

neous mixing among a small number of social groups can explain a large proportion of why

people in some cities have stronger implicit racial biases than in others. While it is some-

what surprising that only three factors - city population, majority group size, and racial

segregation - account for so much between-city difference, this is in line with recent evidence

that implicit racial biases are driven more by social contexts than by individual differences in

attitudes Payne et al. [2017], Lee et al. [2019]. Importantly, our model suggests that implicit

racial biases emerge from the interaction between city-wide social contexts that are shaped
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Figure 4.3: Estimated learning rates, α. We plot learning as a decrease in bias levels relative
to an arbitrary baseline, b

b0
as a function of the number of additional inter-group contacts.

Solid curves indicate the mean estimated learning rate from the scaling exponent or ma-
jority group adjustment (diversity effect) averaged across years. Shaded regions show the
95% confidence intervals for the learning rate estimates with the lower envelop and upper
envelope referring to the scaling exponent and diversity estimates, respectively. The violin
plot gives an upper bound on the learning rate from 18 previously conducted experimental
interventions Lai et al. [2014, 2016] designed to simulate one-shot inter-group contact of
varying quality.
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by the built environment and individual psychology which determines how much and how

quickly people learn from those contexts.

These effects suggest that as more people move into cities over the next decades, implicit

biases will decrease, so long as cities do not become too segregated, remain centers of diver-

sity, and residents continue to learn from shifting social environments. Though the amount

of variance explained by segregation effects is small, reductions in implicit racial biases from

decreasing segregation in cities could have large societal impacts Greenwald et al. [2015].

This is important to recognize as cities with lower levels of racial segregation also tend to,

not accidentally, have higher incomes Stier et al. [2022c] and healthier inhabitants Kramer

and Hogue [2009].

These results, along with our related work Stier et al. [2022c] characterizing economic

productivity, are first steps towards better incorporating heterogeneous network structures

and individual psychology into the mathematical models of modern urban science and deriv-

ing associated multifaceted effects. The additions we developed here are relatively simplistic

in their consideration of individual differences in cities, proxied simply by a set of discrete

groups. More complex models are likely needed to consider how city organization influences

the dynamics of other types of attitudes that are socially relevant, including political po-

larization Bak-Coleman et al. [2021], Dalege et al. [2017] and issues of trust and collective

action, for example relating to public health programs such as vaccines Galesic et al. [2021],

Dalege and van der Does [2022].

Materials and Methods

IAT Data

All racial IAT Data are publicly available Xu et al. [2014] and were downloaded from https:

//osf.io/52qxl/. These data are coded at the participant level, a fraction of which include

geographic identifiers for state and county. Implicit racial bias was assessed by the Dbiep
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metric Greenwald et al. [2003] which consists of the latency difference between compatible

and incompatible blocks of the racial IAT, divided by the pooled standard deviation. In

the racial IAT, black and white face images are used and higher and positive Dbiep scores

indicate an implicit bias towards white faces while lower and negative Dbiep scores indicate an

implicit bias towards black faces. After only retaining participants with available geographic

information, Dbiep scores were averaged across all participants in each CBSA. Cities were

retained if they had at least 500 IAT responses. This was done separately for all years.

Results were similar with cutoffs of > 250 and > 1000 IAT responses per city (Supplementary

Tables 7.59-7.66).

U.S. Census Data

All census data is publicly available and was downloaded from data.census.gov. Five-year

racial demographic estimates for U.S. census tracts were downloaded from table B02001.

Heterophobia values were calculated across the two racial groups in the race IAT: White and

Black. Five-year population estimates for U.S. cities defined as combined statistical areas

(CBSAs) were downloaded from table B01003. In order to map between census tracts and

CBSAs, delineation files for 2020 were downloaded from the United States Office of Budget

and Management from https://www.census.gov/programs-surveys/metro-micro/abo

ut/delineation-files.html.

Associations Between Implicit Bias, City Size, Majority Group Size, and Het-

erophobia

We fit the scaling law between the logarithms of implicit bias and city size with ordinary

least squares (OLS) linear regression to determine the scaling exponent. The equation for

this regression is:

ln(bi) ∼ C + β1 · ln(Ni) + ϵi (4.4)
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where C is the log-log intercept (or equivalently the logarithm of the scaling prefactor), β1

log-log slope (i.e., the scaling exponent), and ϵi are the scaling deviations.

In order to assess the contribution of the city-specific majority group size and hetero-

phobia values to implicit racial bias, we start with ϵi as the dependent variable via the

equation:

ϵi ∼ C2 + β2 · ln(
N1,i

Ni
−

N2
1,i

N2
i

) + β3 · ln(2− h1,i − h2,i) + ξi (4.5)

where N1,i is the number of white individuals city i, h1,i is the heterophobia of the white

population, and h2,i is the heterophobia of the black population, and ξi are additional city

specific residual effects.

Since we do not observe heterophobia values, h1,i and h2,i, directly, but only measures of

residential racial segregation, s1,i and s2,i, we follow our related work Stier et al. [2022c] and

model the heterophobia values as linearly dependent on levels of residential racial segregation.

With the additional approximation that ln(2 − x) ≃ ln(2) − x
2 when x << 1, equation 4.5

then becomes:

ϵi ≃ C2 + β2 · ln(
N1,i

Ni
−

N2
1,i

N2
i

)− β3
2

· [2 · hhet + bhet · (s1,i + s2,i)] + β3 ln(2) + ξi (4.6)

where we have substituted the heterophobia values via the equation hg,i = hhet+bhetsg,i Stier

et al. [2022c]. We can further simplify by including all non-city specific effects in the constant

C2 and by including the factor of −bhet

2 in the constant, β3. We fit the resulting equation

via OLS in order to assess the contribution of majority group size and residential racial

segregation to implicit racial bias:

ϵi ≃ C2 + β2 · ln(
N1,i

Ni
−

N2
1,i

N2
i

) + β3 · (s1,i + s2,i) + ξi (4.7)
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Noise Ceiling Estimates

In order to estimate the noise ceiling, we computed the correlation between IAT bias mea-

sures between halves for 500 split permutations of individual IAT participants in each year.

The upper bound of the noise ceiling was estimated by averaging the correlations between

each half and the full sample, while the lower bound of the noise ceiling was estimated by

correlating IAT bias between the two halves of each split half Storrs et al. [2020].

Measures of Residential Segregation

As in our related work Stier et al. [2022c], all analyses were conducted across four different

measures of residential segregation White [1986] in order to ensure that the results were not

sensitive to any specific metric. These included the mean deviance measure:

∆g,i =
1

M

M∑
m

|Ng,m,i/Nm,i −Ng,i/Ni|, (4.8)

the normalized segregation index:

Dg,i =

∑
m |Ng,m,i

Nm,i
− Ng,i

Ni
| ·Nm,i

2 ·Ni ·
Ng,i
Ni

· (1− Ng,i
Ni

)
, (4.9)

the Gini Coefficient:

ginig,i =

∑
m

∑
l |

Ng,m,i
Nm,i

− Ng,l,i
Nl,i

| ·Nm,i ·Nl,i

2 ·N2
i · Ng,i

Ni
· (1− Ng,i

Ni
)

, (4.10)

and the exposure Bgg index, also known as the correlation ratio (CR or η2) or the mean

squared deviation:

η2g,i =

∑
mN2

g,m,i

Ng,i · (1−
Ng,i
Ni

)
−

Ng,i
Ni

1− Ng,i
Ni

. (4.11)
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Controlling For Individual Demographics

In order to control for individual demographics of IAT respondents, we transformed the

individual bias responses into an indicator for Dbiep > 0. This variable thus indicates whether

the individual respondent had a positive bias for white faces or not. For each year, a logistic

regression was performed that included the city-level variables of the natural logarithm of

population, the majority groups size adjustment, and the heterophobia adjustment, and

the individual level variables of race, educational attainment and birth sex. The 14-point

educational attainment scale included with the IAT data, edu_14, was recoded into three

categories of “High School Graduate or Below", “Some College or College Graduate", and

“Advanced Degree". For some years there were no respondents in the “High School Graduate

or Below" category, in which case that variable was excluded from analyses. Self reported

racial demographics (raceomb before 2016 and raceomb_002 afterwards) was recoded to

three categories of “White", “Black", and “Multiracial", with other races and “unknown"

combined as the base category.

Comparison to Previous Results Associating Area Deprivation With Racial IAT

Responses

We downloaded the average maximum heat index (HI) in degrees Celsius for U.S. counties

from the North America Land Data Assimilation System Daily Air Temperatures and Heat

Index 1979-2011 database. This was the strongest predictor of between-city differences in

implicit racial bias levels in a previously published analysis Hehman et al. [2021]. The

maximum heat index was averaged across counties within each CBSA.

Those analyses used a “kitchen-sink" approach with regularizing regressions to deter-

mine which variables were relevant to predicting these differences between cities. Since the

variables identified there are indicative of levels of environmental, social, and economic dis-

advantage, we additionally evaluated the relevance of the Area Deprivation Index (ADI) to
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between-city differences in implicit racial bias. The ADI measures neighborhood socioeco-

nomic disadvantage at small spatial units down to the census block level and includes factors

related to income, education, employment, and housing quality Kind and Buckingham [2018],

of Wisconsin School of Medicine and Health. [2019]. We averaged nationally anchored ADI

values at the county level across all counties in each CBSA.

In order to determine the effects of these measures of neighborhood disadvantage on

implicit racial biases we conducted separate OLS regressions including city size, the majority

group size adjustment, the heterophobia adjustment, and the ADI or HI. Since ADI and HI

data are not available for all CBSAs, we additionally conducted regressions without the

ADI and HI included, but with the reduced sample size for which these data are available.

We note that in those regressions with a reduced sample size, but without the inclusion

of the ADI or HI the variance explained by city size, the majority group size adjustment,

the heterophobia adjustment are higher than in the full sample, and outperform previous

analyses which only include measures of neighborhood disadvantage Hehman et al. [2021].

Estimates of the Learning Rate

Independent empirical estimates of the learning rate, α, which governs the coupling between

inter-group interactions and bias levels, were obtained directly from the two-step OLS re-

gressions described in Equations 4.5 and 4.7. From Equation 4.5 we obtain an estimate of

α̂scaling = β1
δ . Confidence intervals for α̂scaling were obtained from the OLS confidence

intervals for β1. We note there may be other effects besides learning such as top-down

hierarchical structures and variations in growth rates that may additionally contribute to

differences in the empirical scaling exponent β1 from the expected value of δ = 1
6 . In addi-

tion, we obtain a second, independent estimate of the learning rate: α̂diversity = β2 based

on Equation 4.3 of the main text.

Results from experimental interventions designed to simulate inter-group contact were

61



used to further validate and bound these estimates of α. We calculated the relative reduc-

tion in IAT Dbiep scores pre- and post-intervention for 18 different systematic interventions

of various strength Lai et al. [2014], Lage-Castellanos et al. [2019]. These interventions in-

cluded having participants read stories of various lengths and vividness designed to affirm

white-bad and black-good associations, modifying the IAT to include additional black-good

and white-bad blocks, simulating competition with white opponents and cooperation with

black teammates, having participants read about threatening scenarios and shown images

of "friends" in those scenarios and reminding participants of prominent black athletes posi-

tives contributions to society Lai et al. [2014, 2016]. Importantly, all of these interventions

occurred directly between IAT tests and are all positive in nature. In reality, inter-group

interactions may not always be positive in nature, and they play out continuously at poten-

tially irregular intervals relative to when a given individual makes a judgment or decision

that is influenced by implicit racial biases. Consequently, these experimental interventions

can be interpreted as an upper bound on the effects of one additional inter-group interaction

when that interaction happens immediately before implicit bias levels are assessed.
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CHAPTER 5

EVIDENCE FOR IMPROVED SELECTIVE ATTENTION IN

LARGER U.S. CITES1

Attentional processes are fundamental to managing the many sources of infor-

mation that are crucial to city life. Historically, these many demands on urban

dwellers’ lives were assumed to induce “failures of attention” associated with neg-

ative aspects of city life, including stress, mental fatigue, and low social responsi-

bility. However, these studies have not, in general, directly measured attention, or

they have applied coarse characterizations of attention. Here we directly measure

selective attention via a smartphone based task in 3,082 individuals and compare

performance across cities of different sizes. We find that individuals in more

populous cities tend to have better selective attention performance. Further, the

quantitative details of this observation suggested that this effect is fundamen-

tally related to socioeconomic interactions in cities. Further, interpreting these

results within the framework of Urban Scaling Theory suggests that differential

attentional abilities between cities may have consequences for interaction quality

but not interaction quantity. These results suggest that the assumed relation-

ship between urbanicity needs to be reevaluated and provides new directions of

research for psychology and urban science.

Introduction

Cities are full of distractions. At any given moment city dwellers are simultaneously manag-

ing social interactions, avoiding moving obstacles, navigating complex street networks, and

1. The co-authors for this chapter are: Jillian Rae Silva-Jones, Monica D. Rosenberg, Luís M.A. Betten-
court, Lauren N. Whitehurst, and Marc G. Berman.
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filtering relevant sounds from the urban din. The ability to attend to each of these stimuli,

in turn, and when necessary, is fundamental to city life.

At the turn of the 20th century, the constant demands on attention in urban contexts

became a cause for concern. Sociologists suggested that due to the large numbers of so-

cial contacts that people have in cities, they necessarily have larger quantities of superficial

relationships than individuals outside of cities Simmel [1950], Wirth [1938]. Similarly, psy-

chologists started to document the cognitive adaptations associated with cities Milgram

[1970a], including a faster pace of life (e.g., walking speed Bettencourt et al. [2007a] and the

brusqueness of interactions Milgram [1970a]), and sparse cognitive maps of cities (i.e., famil-

iarity with only areas of cities that a relevant to each individual Milgram [1970a]). For the

most part, these early works implicitly focused on how individuals selectively allocate finite

attentional resources to various urban stimuli. These “failures of attention” were, in turn,

associated with “stimulus overload” that can induce negative aspects of city life White and

Shah [2019], for example, stress (6–9), mental fatigue (10), low social responsibility Milgram

[1970a], and, greater psychological impacts of crime Milgram [1970a].

As a result of these observations, a common assumption has been that the “overload”

characteristics of cities lead to poorer attentional capacity Wilson [1986], Ulrich [1993], Ka-

plan [1995], Berman et al. [2008]. For example, the biophilia Wilson [1986], Ulrich [1993]

and attention restoration Kaplan [1995], Berman et al. [2008] hypotheses imply that the lack

of natural features in urban environments results in fatigued attention. Further, since atten-

tion supports cognition generally Fisher [2019], Burgoyne and Engle [2020], the assumption

of worse attentional abilities in cities suggests that urbanites might have, for example, less

effective economic, creative, and social interactions. These conclusions fit with the fact that

attentional capabilities do vary contextually between and within individuals: for example,

targeted training can improve sustained attention Lutz et al. [2009], Luo and Zhang [2020],

there are cultural differences in attentional engagement Kardan et al. [2017], Köster et al.
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[2018], Alotaibi et al. [2017], attention can change across the human lifespan Fortenbaugh

et al. [2015], and poorer attention is often associated with mental health disorders Clark and

Goodwin [2004], Swaab-Barneveld et al. [2000], Prouteau et al. [2004] and low socioeconomic

status Razza et al. [2010], Hoyer et al. [2021]. Along these lines, research with small sam-

ples has suggested that urbanization decreases attentional engagement Linnell et al. [2013],

Caparos et al. [2013], Linnell et al. [2014]. In particular, these studies suggest that when com-

pared to individuals from rural environments, urban inhabitants have higher levels of tonic

alertness that favor more diffuse attention across varied stimuli and subsequent poorer atten-

tional engagement on task-specific stimuli. However, larger cities have also been associated

with greater economic productivity Bettencourt [2013], more social interactions Schläpfer

et al. [2014b], and greater creativity Bettencourt et al. [2007b] which is not consistent with

drastically worse attention in cities.

Two reasons for these discrepancies may be that (1) these studies focus primarily on

wholesale differences between rural and urban and (2) they apply coarse characterizations of

attention despite the fact that attention is multifaceted Rosenberg et al. [2018]. Towards the

first point, urban/rural differences do not probe whether there are systematic variations in

attention between different urban environments. Such differences in human behavior have re-

cently been demonstrated for mental depression Stier et al. [2021], implicit racial biases Stier

et al. [2023], and navigational abilities Coutrot et al. [2022] across city characteristics such as

size, demographics, and geographical layout. These studies generally yield a greater mech-

anistic understanding of how cities engender psychological adaptations when compared to

studies contrasting urban and rural environments. Such across-city studies are amenable to

modern mathematical urban science models Bettencourt [2021b, 2013] which provide a self-

consistent framework for evaluating and proposing mechanisms governing urban life, from

street network layouts and human mobility to socio-economic interactions.

Towards the second point, there are multiple types of attention across different domains,
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including alertness and vigilance, directing attention towards stimuli, selecting stimuli to

attend to, and sustaining attention Rosenberg et al. [2018], Scholl [2009]. This is important

because one can have better performance in some domains, but worse performance in oth-

ers Green and Bavelier [2012], Huang et al. [2012]. While all domains of attention may be

relevant to city life, selective attention is the domain most commonly invoked, often implic-

itly, in existing studies. This literature has not, in general, directly measured attention with

cognitive tasks. Consequently, we aim here to directly investigate selective attention beyond

urban/rural comparisons and to determine whether it systematically varies between cities

with different characteristics.

Results

Greater Selective Attention Performance in Larger Cities

In order to assess systematic differences in selective attention we follow previous studies that

focus on population size, i.e., scale, as a primary driver of urban characteristics Bettencourt

[2021b, 2013], Bettencourt et al. [2007a], Stier et al. [2021, 2022a, 2023]. The logic of these

studies is based on the mathematical models of Urban Scaling Theory Bettencourt [2021b,

2013]. These models describe cities as arising from balancing costs (e.g., transportation,

housing, utilities) with the benefits that arise from socioeconomic interactions which occur

as people move through cities. Importantly, the models have been extensively validated with

empirical data across human history and different cultures Bettencourt [2013, 2021b], Lobo

et al. [2020], Ortman et al. [2014b, 2020]. Along with stochastic growth Bettencourt [2020],

they describe how the built environment and social functions emerge concomitantly in cities.

The standard version of these models produces scaling relationships in which many ur-

ban characteristics change systematically with city size in a scale-invariant way. Importantly,

these scaling relationships are analytically derived Bettencourt [2013, 2021b] and have been

67



extensively validated empirically, i.e. been statistically confirmed to match urban statis-

ticsBettencourt et al. [2007a], Bettencourt [2013], Stier et al. [2021, 2023]. Two examples

of these scaling relationships are, per-capita socioeconomic interactions (k) and economic

outputs (y) follow scaling relationships of the form k, y ∼ Nδ, where N is city popula-

tion size, and δ = 1
6 is the scaling exponent derived via Urban Scaling Theory Bettencourt

[2013, 2021b]. Similarly, per-capita land area, a, follows a scaling relationship of a ∼ Nα−1,

where α = 2
3 . These relationships predict that, on average, larger cities – those with greater

population – should have disproportionately more social interactions and economic outputs

(e.g., gross domestic product) than smaller cities. In contrast, larger cities should have dis-

proportionately less land area per capita than smaller cities, and consequently, have higher

population densities. For this reason scale, i.e., population size N , can be viewed as the

first-order driver of many urban characteristics, including population density, interaction

quantities, and economic outputs.

With this in mind, we used the core based statistical area (CBSA) definition of cities

provided by the United States Office of Budget and Management. CBSAs are functional

definitions of cities that capture the spatiotemporally extended social networks of cities

beyond “downtowns". As a result these definitions include, suburbs and outlying areas that

capture where people live, socialize, and work Stier et al. [2022d].

In order to determine whether attentional capabilities show systematic variation with

city size, we measured attention via a dot-tracking task in 3,082 participants (see Methods,

Figure 5.1). Briefly, participants were shown ten black dots on their smartphone screen and

cued to track two to five of them. After all ten dots moved around the screen for 5 seconds,

participants were cued with one of the ten dots and asked to indicate if it was one of the

initial targets. Hit rate was the primary outcome measure and chance performance ranged

from 0.2 to 0.5 depending on the trial type. This task probes selective attention Sears and

Pylyshyn [2000], Scholl [2009], Yoo et al. [2022] which is particularly salient for urban life:
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Figure 5.1: A. The dot-tracking task measures selective attention. Participants are cued to
track a number of targets. After all targets move around the screen for 5 seconds, they are
probed with one dot and asked to identify whether or not it was one of the targets. B. A map
of participants’ city location. Hawaii, Alaska, and Puerto Rico are excluded for visualization
purposes.
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consider the attentional demands on a parent with their child and dog trying to safely cross

a street while navigating bike lanes and avoiding cars.

First, in order to provide empirical validation of this dataset, we reproduced a recent

result that demonstrated scaling of depression rates with city population Stier et al. [2021].

Twenty depression-related questions were included in the demographic questionnaires con-

ducted during the study, which were coded from 1-4, with higher scores indicating a greater

likelihood of depressive symptoms. We calculated depression rates as the number of individ-

uals with scores greater than a given threshold. Since there were few repeated samples within

all but the largest cities (samples per city: for depression, mean=3.98, max=88, standard

deviation=7.66; for attention mean=5.78, max=148, standard deviation=13.10), we used

Nadarya-Watson kernel regression Nadaraya [1964], Watson [1964] to efficiently bin obser-

vations from cities of similar population sizes in an assumption-free manner (see Methods).

We found evidence, across all threshold choices, for lower depression rates in larger cities

(Supplementary Figure 7.1 & Supplementary Table 7.1), and scaling exponents consistent

with previous evidence Stier et al. [2021]. This result suggests that the dataset and the

kernel regression method for combining observations across cities of similar sizes are suitable

for investigations of scaling with city population size.

Returning to attention, approximately 7% of participants performed at or near ceiling

and a similar proportion performed at or near floor on the dot tracking task. Consequently,

standard measures such as hit rate and d’ (a standardized measure of both false alarm and

hit rate) are not, on their own, particularly useful for understanding performance at the

population level. Instead, we calculated the rate of people in different urban environments

who were performed at or near ceiling (floor) operationalized as hit rate greater than (less

than) a threshold. We additionally examined the rate of individuals with high and low false

alarm rates.

We found that larger cities tend to have better attentional performance (Figure 5.2)
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and that this result was robust to the exclusion of individuals who indicated they were not

paying attention (Supplementary Figure 7.2). In fact, the rate of individuals who indicated

that they were distracted decreased in larger cities (Supplementary Figure 7.3). Though

this decrease was less dramatic than the observed increase in attention, this suggests that

individuals in larger cities may be better at engaging in the dot-tracking task in the first

place, and that these results may extend to other domains of attention beyond selectivity.

Additional investigations with a variety of attentional tasks will be necessary to confirm

which other domains of attention scale with city population.

We also found that the rate of particularly poor performers decreases with city size

(Supplementary Tables 7.4 & 7.7), though not as drastically as the rate of particularly good

performers. This indicates that the selective attention benefits of larger cities apply broadly,

and not just to the best performers. Similarly, we observed a significant, though much smaller

increase in the rate of individuals with low false alarm rates (Supplementary Table 7.5) and

a decrease in the rate of individuals with high false alarm rates (Supplementary Table 7.6).

Together, these results demonstrate that selective attention performance is increased in larger

cities and suggest that attentional performance may be increased across other domains as

well.

Importantly, these results were not sensitive to individual demographics including income,

education, race/ethnicity, age, and self reported health (Supplementary Table 7.2), sleep

quality or stress (Supplementary Table 7.3), or the inclusion of data from only participants’

first time participating in the dot tracking task (Supplementary Figure 7.4).

Beyond the qualitative result of greater attention in larger cities, we found that the scaling

exponent associated with this increase in attentional abilities in larger cities (β = 0.163; 95%

Confidence Interval [0.132, 0.197]; for hit rate > 0.9) matched the prediction of δ = 1
6 for per-

capita social interactions from Urban Scaling Theory Bettencourt [2013, 2021b], Schläpfer

et al. [2014b] (see Supplementary Tables 7.8 & 7.9 for sensitivity to the inclusion of smaller
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cities and different hit rate thresholds). Though this result was unexpected, it suggests

Figure 5.2: Selective attention performance is higher in larger cities. The rate of individuals
with near-perfect performance (hit rate > .9) increases with city population, N. For the cities
where we have a larger amount of data the scaling exponent is consistent with the Urban
Scaling Theory prediction of β = 1

6 for increasing social interaction density. The blue line
shows the Nadaraya–Watson kernel regression estimate and the envelope with dashed lines
shows the 95% confidence interval for the kernel regression.

a fundamental link between selective attention capabilities and social interactions in cities.

Further, these results warrant further consideration of whether greater attention results from

or drives the scaling of social interactions with city population.

Theoretical Implications of Selective Attention Scaling

To begin to answer this question, we examine Urban Scaling Theory’s predictions about social

interactions more closely to determine any theoretical constraints on potential relationships

between attentional abilities and social interactions.
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The starting point for the derivation of the interaction scaling relationship (k ∼ Nδ)

is the assumption that, on average, all individuals have the same probability of interacting

with others as they move over a city’s infrastructure networks Bettencourt [2013, 2021b].

This probability is further broken down into two parameters, the first is a cross-section a0

which is the typical radius of interaction: if two individuals come within a distance of a0 of

each other, they will have an interaction. The second parameter is a characteristic length, l,

traveled by each city inhabitant during a given time period. Thus, the quantity a0l
An

represents

the fraction of the total area of a city’s infrastructure network, An over which an average

individual is available for social interactions in a given time period. In other words, this is

the probability of having a social interaction.

To finish the derivation we multiply the above quantity by the number of individuals

moving through the infrastructure network, i.e., the city population, N . The average per

capita interactions are then:

k ∼ a0l

An
N (5.1)

To see that this results in the typical scaling relationship, we can apply the result that

An ∼ N1−δ Bettencourt [2013]. This leads to k ∼ a0l
N1−δN ∼ a0lN

δ.

With this derivation in hand, we can now ask whether it is theoretically possible that

greater attention (Figure 5.2) could drive the disproportionately greater quantities of inter-

actions observed in larger cities Schläpfer et al. [2014b]. To answer this question, we examine

each part of Equation 5.1 in turn.

First, An, the area of cities’ infrastructure networks is a property of the physical envi-

ronment and is unlikely to be influenced by the attentional capabilities of urban inhabitants.

Similarly, the total population of a city is unlikely to be primarily driven by individual selec-

tive attentional capabilities. In addition, Urban Scaling Theory starts with the assumptions

that a0 and l are the same, on average, across all individuals of cities of different sizes.

Thus, in the Urban Scaling Theory framework, the observation of disproportionately greater
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numbers of interactions in larger cities is purely a built environment effect resulting from

realized economies of scale in infrastructure use (e.g., more people travel over the same size

road in larger cities).

As a result, if increasing selective attentional abilities were to impact the quantities of

social interactions in cities, that effect would have to occur through the quantity a0l. For the

moment we can set aside the psychological validity of such a connection between selective

attention and interaction probabilities or characteristic travel distances. If such a connection

existed, it would result, generally, in the quantity a0l scaling with city population with some

scaling exponent different from zero. In particular, a positive relationship between attention

and a0l, i.e., greater selective attentional abilities associated with a higher probability of

social interactions, will yield a positive scaling exponent (a0l ∼ Nξ; ξ > 0), while a negative

relationship between attention and a0l will yield a negative scaling exponent (ξ < 0). This

would lead to an interaction scaling relationship of k ∼ a0lN
δ ∼ NξNδ ∼ Nδ+ξ. For

example, in the simple case where a0l is directly proportional to selective attention, the

result is an interaction scaling relationship of k ∼ a0lN
δ ∼ NδNδ ∼ N2δ. This does not

match the relationship k ∼ Nδ that is observed in empirical data Schläpfer et al. [2014b].

Therefore, from the perspective of Urban Scaling Theory, it is unlikely that selective attention

is playing a mechanistic role in driving the scaling of quantities of social interactions with

city population.

What role, then, could selective attention play in urban social interactions? One might

suggest that the increased attentional demands of larger cities simply act like training and

that attentional abilities respond to the increased social stimuli. While this may indeed be

the case, the question of how enhanced attention modifies urban behavior remains: what do

urban inhabitants get from increased selective attentional abilities and what does it cost them

to acquire? The theoretical considerations above suggest that the benefits (or detriments)

of increased selective attention cannot simply be more (or fewer) interactions. Instead, we

74



suggest that selective attentional capabilities may drive social interaction quality in cities.

Though there is little research directly linking selective attention (or other domains of

attention) to social interaction quality, the literature contains some hints. One study using

functional magnetic resonance imaging (fMRI) in humans has shown that the quality of

social interactions is preferentially mapped in the medial prefrontal cortex Peer et al. [2021],

an area of the brain that has been associated with attentional broadly Kahn et al. [2012],

Rossi et al. [2009], Passetti et al. [2002]. At the same time, there are a number of studies

associating greater theory of mind (ToM) abilities (otherwise known as mentalizing) with

social network quality and size through attentional processes. For example, greater ToM

has been associated with larger numbers of close contacts contacts Schmälzle et al. [2017],

Stiller and Dunbar [2007]. Interestingly, worse ToM task performance has been separately

associated with attentional performance deficits, particularly in executive control aspects of

attention Mary et al. [2016], Lin et al. [2010], Leslie et al. [2004], Tatar and Cansız [2022].

Beyond these studies, the literature has focused on particularly poor attentional performance

associated with attention-deficit/hyperactivity disorder (ADHD). These studies demonstrate

that ADHD and related deficits in attention are associated broadly with poorer quality social

interactions Hoza et al. [2005], Greene et al. [2001], Normand et al. [2013], Kim et al. [2015].

This evidence suggests that greater selective attention performance in larger cities may result

in individuals in larger cities having, on average, higher quality social interactions.

However, the drastic attentional deficits associated with ADHD may not be particularly

relevant to the smaller shifts in selective attention between cities that we report here (Figure

5.2). In particular, while the literature paints a picture of poorer attention leading to poorer

interaction quality, some individuals with greater attentional capacity might choose to spend

this increased attentional budget on a wider number of weak ties. Such weak ties have long

been considered to promote a number of positive qualities including well-being, job mobility,

and collective efficacy Granovetter [1973], Rajkumar et al. [2022], Kavanaugh et al. [2003].
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Towards, this point, recent research on online social networks has suggested that individuals

devote the most time to interactions with weak and very strong ties Weng et al. [2018].

These types of weak relationships may be particularly relevant in large cities where divisions

of labor encourage reliance on a loose network of interactions, especially for services (e.g., in

a large city one’s plumber, electrician, and roofer are distinct individuals). Indeed, recent

evidence from Chilean phone networks Samaniego et al. [2020] and United States social media

networks (Supplementary Figure 7.5) supports this idea. Those analyses reveal that social

network clustering (the fraction of contacts who are themselves connected) decreases as cities

get larger. This suggests that up to a point (see Samaniego et al. [2020] and Supplementary

Figure 7.5), people in larger cities have a greater quantity of weak ties and less close-knit

social networks. Thus, greater attentional abilities might result in a decrease in the quality of

an individual’s interactions, on average, while still being associated with beneficial outcomes.

Discussion

To summarize, we found evidence that selective attention scales with city population size

such that individuals in larger cities have disproportionately better selective attention. While

we found this effect across different measures of attention including self-reported task en-

gagement, false alarm rates, and hit rates, the strongest effect was for hit rates (which

emphasize accurate selective attention). Further, the scaling exponent we observed for selec-

tive attention and city population matched that predicted by Urban Scaling Theory for social

interactions. This suggests a fundamental link between attention and social interactions in

cities.

Based on these results, a review of the Urban Scaling model revealed that, under this

framework, it is unlikely that better selective attention in larger cities is driving greater

numbers of per capita interactions. Instead, we suggest that greater selective attention

performance drives systematic differences in social interaction quality between cities. Our
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empirical data precluded confirming this hypothesis or clarifying how increased selective

attention may benefit (or disadvantage) inhabitants of larger cities. While existing psycho-

logical and neuroimaging evidence suggests that greater attentional performance may result

in higher-quality interactions, evidence from sociology and urban science suggests that larger

cities may foster more sparse social networks with lower-quality interactions.

This mismatch between the ecological, population-level perspective and the individual

perspective warrants further investigation. The population-level observations may suffer

from an ecological fallacy Loney and Nagelkerke [2014], in which the direction of the observed

population-level effect is not indicative of the underlying mechanism, but rather an additional

confounding variable (e.g., in a Simpson’s Paradox). However, existing evidence might also

be inadequate to draw conclusions regarding the relationship between selective attention

and interaction quality in cities. Thus, the discrepancy between these two perspectives may

be resolved by the simultaneous collection of explicit attentional measures and measures of

social network structure and tie quality.

The results here are situated in the context of Urban Scaling Theory Bettencourt [2013,

2021b]. The majority of similar theoretical and empirical work has focused on what can be

learned by examining how quantities of interactions systematically vary with various city

characteristics. However, here we suggest that in addition to quantity, the quality of social

and economic interactions may be particularly important to consider when attempting to

construct more detailed models of urban life. This is an open frontier in urban science,

and more work is needed to elucidate what mechanisms drive urban interaction quality.

In addition, the fundamental role of attention in social interactions has seen little explicit

investigation in the psychological literature (beyond how extreme deficits associated with

mental health disorders impact sociality). Thus, further investigations of interaction quality

in cities have the potential to advance basic psychological understanding of human attention

and sociality.
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We conclude by noting that cities provide an excellent balance between constraints on

and diversity of human behavior. For one, cities are restrictive: inhabitants must traverse

the city within the infrastructure networks and are forced to interact with others in ways that

they might not choose to in a rural area. At the same time, these interactions engender a

proliferation of diversity in culture and opportunity. The constraints imposed by cities allow

us (researchers) to average over some of the stochasticity in human behavior when considering

large urban populations, and the diversity of urban social and economic functions provides

enough variance to yield rich insights into human behavior. Thus, cities are well suited to

ecologically valid investigations of human behavior, and investigations of the type we present

here show great promise to help us better understand cities specifically, and human behavior

generally.
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Materials and Methods

Attention and Depression Data

Attention data were collected as part of a partnership between the University of Califor-

nia, San Francisco, and Samsung Research America that aimed to examine the impact of

daily psychological stress on various indicators of health. The study ran from March 2018

until December 2021, with cognitive task assessments included from October 2019 onwards.

Participants were enrolled in a 21-day research study via the MyBpLab app on Samsung

devices. Overall, 164,759 people worldwide participated in the study. Participants provided

demographic information upon enrollment (e.g., zip code or country, age, sex, etc.) and

some participants also completed additional surveys, for example, a depression screening

questionnaire. All participants who completed the dot-tracking attention task did so at

night (6-10 pm) on days 2, 7, 11, 16, & 20. A total of 14,489 participants completed at least

one dot-tracking session, though only 8,507 of those participants had zip code information

available. In addition, immediately after each task session, participants were asked about

the degree to which they felt distracted during the task. Only 3,082 participants reported

not being distracted at all during the task. Of the full study sample (164,759) only 1,806

participants completed the depression questionnaire and provided zip code information.

Population Data

All census data is publicly available and was downloaded from data.census.gov. Five-

year population estimates for U.S. cities defined as combined statistical areas (CBSAs) were

downloaded from table B01003. In order to map between zip codes and CBSAs, crosswalk

files for 2021 were downloaded from the United States Department of Housing and Urban

Development’s Office of Policy Development and Research from https://www.huduser.go

v/portal/datasets/usps_crosswalk.html.
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Nadarya-Watson Kernel Regression

Kernel regression was used to combine observations from cities of similar sizes in a non-

parametric manner. The dependent variable used in the kernel regression was a binary

variable indicating whether the measure of interest (hit rate or depression score) was greater

than (or less than) a given threshold. The independent variable was the natural logarithm

of the city population for each participant. Thus, the kernel regression estimates returned

the mean rate of the measure being greater than (or less than) a given threshold). The R

library np was used to implement the kernel regression. This library provides functions for

calculating means as well as standard errors, the latter of which was used to construct 95%

confidence intervals.

Attention and Depression Scaling Analysis

In order to determine scaling exponents for Attention and Depression we employed ordi-

nary least squares regression (OLS) using the outputs for the kernel regression. In order

to obtain proper parameter estimate confidence intervals, we follow the following proce-

dure. First, for each output bin in the kernel regression, we sampled a new value for the

independent variable from a normal distribution with a mean equal to the original kernel

regression mean and a variance derived from the kernel regression 95% confidence interval as

σ2 = (ymax− ymean)/PPF (0.975), where ymax is the 95% confidence interval upper bound,

ymean is the kernel regression mean estimate and PPF is the standard normal distribution

percentage point function. The parameters were then re-estimated from these samples with

OLS. This procedure was carried out 1,000 times and parameter estimate confidence bounds

were obtained as the 2.5% and 97.5% percentiles of these 1,000 estimates.

80



Clustering Data and Scaling Analysis

We replicated a previous result from Chilean cell phone networks Samaniego et al. [2020] that

clustering (defined as the fraction of contacts who are themselves contacts) decreases with

city population size. In particular, those researchers found that while clustering decreased

overall, there seemed to be two regimes. First, for small cities, clustering decreased with city

population. Second, for larger cities clustering was relatively constant with city population.

We replicated this in a large dataset derived from online social network connections from

Meta that had been previously published and released publicly Chetty et al. [2022a,b]. These

data were downloaded from https://socialcapital.org/ and contained clustering coefficient

estimates for each zip code in the United States. In order to aggregate from zip codes

to cities, we took a population-weighted average of all of the zip codes contained in each

core-based statistical area.

We then fit scaling relationships for clustering with OLS to (1) the entire dataset, (2)

small cities, and (3) large cities. In order to find the cutoff point for small and large cities, we

first assumed that there would be two different scaling regimes. Next, we picked a particular

threshold to separate the two regimes and performed separate OLS regressions for each

regime. Over many choices of threshold, we calculated to total prediction error across both

OLS models (above and below the threshold) and then chose the threshold that resulted in

the lowest prediction error. This resulted in a threshold of approximately 124,500 separating

large and small cities.
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CHAPTER 6

DISCUSSION

The goal of the research presented here was to work towards a new framework for broadly

understanding human behavior and to do this in an ecologically relevant way. We’ve seen

how cities can be an excellent tool for psychological study. In particular, the fact that they

constrain people and force interactions creates regularities that allow us to study urban be-

havior scientifically (these constraints give cities some qualities in common with psychological

laboratories). On the other hand, cities also provide enough diversity of human behavior

that they are interesting: they provide a broad assay of human behavior. The city, as a psy-

chological laboratory, is far removed from traditional research settings in which we isolate

very specific behaviors. This brings benefits of ecological validity and the ability to study

human behavior and the consequences of group dynamics at scale. However, the trade-offs

are a potential lack of precision and a definite inability to perform the same kind of causal,

controlled experiments that we are used to in traditional psychology laboratories.

Nonetheless, the results of applying this new lens for observing and understanding hu-

man behavior have been surprising at times. In Chapters 2 and 5 we saw that cities foster

lower depression rates and better selective attention, in contrast to previous assumptions

and intuitions based on projections from smaller-scale studies. On the other hand, unsur-

prisingly, Chapters 3 and 4 demonstrated ways in which segregation and a lack of diversity

is problematic. Though the negative impacts of segregation and low diversity have been

well established previously, the point here was to precisely predict its impacts, to provide

a mechanistic account of how segregation may drive worse outcomes for people in different

cities, and to situate these effects in a wider theory.

This last point is a particularly important one. We can, and do, employ many different

models to study human behavior across disciplines, from agent-based (e.g., Schelling [1971]),

to more simple analytic models ( Bettencourt [2013, 2020, 2021b]), to psychological process
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models ( Dalege et al. [2017]). However, it generally has not been clear how to integrate

these results. One possibility is that this is not possible: that the diversity and complexity

of human behavior is so great that there is no real synthesis or general theoretical work to

be done.

I disagree. The research presented here is a start towards integrating investigations of

human behavior with mathematical theory, particularly at scale. Already, we have seen

that integrating the bottom-up psychological perspective with the top-down urban science

approach has brought a greater understanding of human psychology and urban dynamics.

These successes are expected to continue as Urban Psychology continues to reveal what the

psychology and urban science literatures can teach one another more broadly.

The specific approach I took was to start at the scale of entire cities and the models

of Urban Scaling Theory Bettencourt [2021a]. These models average out almost all of the

variety in human behavior, though they leave just enough detail to tell the broad strokes

story of cities. The way forward, which has begun with the research in Chapters 3,4, and

5, is to engage in a slow process of de-averaging. What I mean by this is precisely to start

with simple models that, for example in the case of the standard Urban Scaling Theory,

treat all individuals in the city as identical, everyone is average. The hard work, then, is to

add more detail, little by little, de-averaging as necessary to explain increasingly complex

behavior with as simple a model as possible.

While this may not always work, and analytically tractable models may not always be

possible, there is great promise in this approach. The best example of this here is the addition

of group membership and heterogeneous mixing to the standard Urban Scaling Theory model

(Chapters 3 and 4). We saw that when studying implicit biases, these simple considerations of

more complex interactions that de-average only to the point of a small number of groups and

simple interaction segregation, were particularly successful at explaining empirical variance

in implicit racial biases.
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These investigations succeeded by (1) identifying important features of the environment

to which people are adapting and (2) proposing mechanisms of adaptation based on existing

psychological and biological findings. One path forward is to continue in this vein (empirically

and theoretically) by further enumerating the consequences of mechanisms that mediate the

ecological effects of cities: social network size, exposure processes, and learning processes.

While this approach has great promise, it will, at some time or another, come to an impasse

and a return to the laboratory will be necessary. This is already close to becoming necessary

to start to better understand the patterns and mechanisms relating selective attention and

social network quality in cities.

In Chapter 5, we demonstrated that larger cities are associated with better performance

on selective attention tasks and suggested that this might be related to different social

interaction qualities between larger and smaller cities. Even once it is known whether these

differences in attention are related to higher-quality or lower-quality interactions, the circular

feedback loops that exist in cities preclude making direct hypotheses about interventions.

For example, would attentional training impact social interaction quality differently in a

small vs. large city? Such questions could be answered directly by recruiting participants

from different cities and comparing results. However, this question, and other similar ones

may also benefit from laboratory-based experiments. For example, participants with various

levels of attentional performance could be recruited to engage in collaborative online video

games that share similarities to city life. This would allow direct experimental manipulation

of the "attentiveness" of a virtual city and provide a basis for direct causal conclusions. It is

likely that such experimental work will become integral to Urban Psychology as it discovers

new psychological and urban phenomena.

I think it fitting to conclude with a quote from Jane Jacob’s “The Death and Life of Great

American Cities". In many ways, her work has been an inspiration and source of wisdom for

modern urban science. I also consider her work an inspiration for Urban Psychology which
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promises new understanding of human behavior. Although the research presented here is

just the beginning, it gives us a concrete way to “start, if only in a small way, adventuring in

the real world, ourselves. The way to get at what goes on in the seemingly mysterious and

perverse behavior of cities is ... to look closely, and with as little previous expectation as is

possible, at the most ordinary scenes and events, and attempt to see what they mean and

whether any threads of principle emerge among them" Jacobs [2016].
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CHAPTER 7

APPENDIX

7.1 Appendix A

Figure 7.1: Histograms of the detected change points for all window sizes in BRFSS data and
Twitter19’. We used a covariate discriminant method (see Methods) to non-parametrically
detect changes in the joint distribution of depression rates and population, under the as-
sumption that BRFSS report methods might induce an artificial change. For the Twitter19’
dataset, the detection of change points primarily at the edges of the population range is in-
dicative of finite edge effects rather than a true change in the joint distribution of depression
rates and city size. Compare to BRFSS data where change points are detected in the middle
of the population range.
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Figure 7.2: Pooling BRFSS data across years for all cities results in a scaling exponent of
β = 0.926 (95% CI = [0.903, 0.950]), consistent with lower depression rates in larger cities.
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Figure 7.3: Users with lower numbers of tweets are more likely to have depressive sentiment in
their tweets. When using an exclusion criteria of less that 92 tweets a logistic regression model
significantly distinguishes individuals with depressive sentiment from individuals without
depressive sentiment.
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Figure 7.4: QQ plots of the residuals of the OLS model. No significant deviations are
observed indicating that the residuals are approximately normally distributed and the linear
model is appropriate.

89



Figure 7.5: Residuals from OLS models are not correlated with city size. In all datasets,
residuals are not correlated with city size (Spearman-r minimum p-value = 0.44). Thus no
corrections to estimates of β are required.

90



Figure 7.6: OLS fit to each dataset. Sublinear scaling is observed across all datasets.
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Table 7.1: MSAs included in the analysis in the main text (Fig. 2.). Included MSAs are

marked with an X. The Twitter datasets are abbreviated to Tw.

Albuquerque, NM - - X - 912897

Ann Arbor, MI - - - X 369208

Atlanta-Sandy Springs-Alpharetta,

GA

X X X - 5874249

Augusta-Richmond County,

GA-SC

X - - - 600006

Austin-Round Rock-Georgetown,

TX

- X - - 2115230

Baltimore-Columbia-Towson, MD X X X - 2798587

Birmingham-Hoover, AL - X - - 1085750

Boston-Cambridge-Newton,

MA-NH

X - X - 4844597

Bridgeport-Stamford-Norwalk, CT - X - - 943457

Buffalo-Cheektowaga, NY - X - - 1129660

Charlotte-Concord-Gastonia,

NC-SC

- X - - 2549741

Chicago-Naperville-Elgin,

IL-IN-WI

X X X X 9520784

Cincinnati, OH-KY-IN X X - X 2202597

Cleveland-Elyria, OH X X X X 2058549

MSA Tw10’ BFRSS NSDUH Tw19’ 2017 Pop

Continued on next page
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Table 7.1: MSAs included in the analysis in the main text (Fig. 2.). Included MSAs are

marked with an X. The Twitter datasets are abbreviated to Tw. (Continued)

Columbus, OH - X - - 2082475

Dallas-Fort Worth-Arlington, TX X - X X 7340943

Denver-Aurora-Lakewood, CO - X X - 2892979

Detroit-Warren-Dearborn, MI X - X X 4321704

Fresno, CA - - - X 986542

Grand Rapids-Kentwood, MI - X - - 1063926

Gulfport-Biloxi, MS - - - X 412946

Hartford-East

Hartford-Middletown, CT

- X - - 1206719

Houma-Thibodaux, LA - - - X 209893

Houston-The Woodlands-Sugar

Land, TX

X X X X 6905695

Indianapolis-Carmel-Anderson, IN X X - - 2026723

Jacksonville, FL - X - - 1504841

Kansas City, MO-KS X X X X 2127259

Lafayette, LA - - - X 490107

Las Vegas-Henderson-Paradise,

NV

- X X X 2183310

Lock Haven, PA - - - X 38837

MSA Tw10’ BFRSS NSDUH Tw19’ 2017 Pop

Continued on next page
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Table 7.1: MSAs included in the analysis in the main text (Fig. 2.). Included MSAs are

marked with an X. The Twitter datasets are abbreviated to Tw. (Continued)

Los Angeles-Long Beach-Anaheim,

CA

X X X X 13298709

Louisville/Jefferson County,

KY-IN

- X - - 1260391

Macon-Bibb County, GA - - - X 229081

Manchester-Nashua, NH - - X - 413157

Memphis, TN-MS-AR - X - - 1339290

Miami-Fort Lauderdale-Pompano

Beach, FL

X X X X 6149687

Milwaukee-Waukesha, WI - X - - 1575151

Minneapolis-St.

Paul-Bloomington, MN-WI

- X X X 3577765

Montgomery, AL X - - - 374042

Nashville-Davidson–Murfreesboro–

Franklin, TN

- X X - 1875736

New Orleans-Metairie, LA X X X X 1270465

New York-Newark-Jersey City,

NY-NJ-PA

X - X X 19325698

Oklahoma City, OK - X - - 1383249

Opelousas, LA - - - X 83447

MSA Tw10’ BFRSS NSDUH Tw19’ 2017 Pop

Continued on next page
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Table 7.1: MSAs included in the analysis in the main text (Fig. 2.). Included MSAs are

marked with an X. The Twitter datasets are abbreviated to Tw. (Continued)

Orlando-Kissimmee-Sanford, FL X X - - 2512917

Philadelphia-Camden-Wilmington X - X X 6078451

Phoenix-Mesa-Chandler, AZ - X X X 4761694

Pittsburgh, PA - X X - 2330283

Portland-Vancouver-Hillsboro,

OR-WA

- X X X 2456462

Poughkeepsie-Newburgh-

Middletown, NY

X - - - 673253

Providence-Warwick, RI-MA - X - - 1617057

Raleigh-Cary, NC - X - - 1334342

Richmond, VA X X - X 1269478

Riverside-San Bernardino-Ontario,

CA

X X - X 4570427

Rochester, NY - X - - 1071589

Sacramento-Roseville-Folsom, CA - X - - 2320381

Salt Lake City, UT - X X X 1205238

San Antonio-New Braunfels, TX - X - - 2474274

San Diego-Chula Vista-Carlsbad,

CA

- X X X 3325468

MSA Tw10’ BFRSS NSDUH Tw19’ 2017 Pop

Continued on next page
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Table 7.1: MSAs included in the analysis in the main text (Fig. 2.). Included MSAs are

marked with an X. The Twitter datasets are abbreviated to Tw. (Continued)

San Francisco-Oakland-Berkeley,

CA

- X X X 4710693

San Jose-Sunnyvale-Santa Clara,

CA

- X - X 1993582

Seattle-Tacoma-Bellevue, WA X - X X 3884469

St. Louis, MO-IL - X X X 2805850

Tampa-St. Petersburg-Clearwater,

FL

- X X - 3091225

Trenton-Princeton, NJ - - - X 368602

Tucson, AZ - X - - 1027502

Tulsa, OK - X X X 991610

Virginia Beach-Norfolk-Newport

News, VA-NC

X X - X 1761305

Warner Robins, GA - - - X 180019

Washington-Arlington-Alexandria - - X - 6213246

Worcester, MA-CT - X - - 942303

MSA Tw10’ BFRSS NSDUH Tw19’ 2017 Pop

96



Table 7.2: Estimates of the scaling exponent made with BRFSS data from smaller cities that
were below the estimated change point for each year.

Dataset β 95% CI R2 n
BRFSS2011 1.000 [0.960, 1.039] 0.952 128
BRFSS2012 1.001 [0.961, 1.040] 0.954 122
BRFSS2013 1.020 [0.969, 1.070] 0.953 81
BRFSS2014 1.034 [0.991, 1.077] 0.969 74
BRFSS2015 1.044 [0.996, 1.093] 0.966 67
BRFSS2016 0.967 [0.906, 1.028] 0.931 76
BRFSS2017 1.010 [0.962, 1.058] 0.959 76
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Table 7.3: Robustness of scaling exponent estimates made with BRFSS data to variation in
the city size below which data was excluded.

Dataset β 95% CI
BRFSS2011 0.88 [0.87, 0.89]
BRFSS2012 0.85 [0.85, 0.87]
BRFSS2013 0.86 [0.85, 0.87]
BRFSS2014 0.83 [0.83, 0.84]
BRFSS2015 0.83 [0.82, 0.84]
BRFSS2016 0.83 [0.82, 0.84]
BRFSS2017 0.83 [0.83, 0.85]
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Table 7.4: Scaling exponent estimates for all BFRSS data. No cities below the change point
are excluded.

Dataset β 95% CI R2 n
BRFSS2011 0.966 [0.942, 0.991] 0.974 172
BRFSS2012 0.956 [0.931, 0.982] 0.972 161
BRFSS2013 0.951 [0.920, 0.982] 0.968 122
BRFSS2014 0.959 [0.932, 0.987] 0.978 111
BRFSS2015 0.961 [0.932, 0.990] 0.976 109
BRFSS2016 0.941 [0.910, 0.972] 0.968 119
BRFSS2017 0.965 [0.939, 0.991] 0.980 116
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Table 7.5: Robustness of scaling exponent estimates to variation in the minimum number of
tweets required for inclusion in the Twitter analyses.

Minimum Tweets β 95% CI # MSAs
82 0.85 [0.75, 0.96] 31
83 0.85 [0.75, 0.95] 29
84 0.86 [0.75, 0.96] 29
85 0.87 [0.75, 0.98] 28
86 0.86 [0.75, 0.98] 28
87 0.83 [0.69, 0.97] 26
88 0.83 [0.68, 0.98] 25
89 0.80 [0.65, 0.95] 25
90 0.79 [0.63, 0.94] 24
91 0.80 [0.65, 0.96] 24
92 0.82 [0.67, 0.97] 24
93 0.85 [0.70, 0.99] 22
94 0.84 [0.69, 0.98] 22
95 0.83 [0.70, 0.95] 22
96 0.83 [0.70, 0.97] 22
97 0.84 [0.71, 0.98] 22
98 0.86 [0.71, 1.00] 22
99 0.84 [0.70, 0.98] 22
100 0.81 [0.65, 0.97] 22
101 0.86 [0.68, 1.04] 21
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Table 7.6: Shapiro-Wilk test of normality on the OLS residuals for each dataset. The
residuals from the BRFSS 2013 data fail this normality test due to one outlier city with a
negative residual.

Dataset statistic p-value n
Twitter10’ 0.917 5.03e-02 24
NSDUH 0.970 5.26e-01 31
Twitter19 0.948 9.26e-02 36
BRFSS2011 0.977 4.79e-01 48
BRFSS2012 0.951 8.96e-02 39
BRFSS2013 0.873 3.47e-04 40
BRFSS2014 0.964 2.54e-01 38
BRFSS2015 0.951 7.38e-02 41
BRFSS2016 0.969 2.95e-01 43
BRFSS2017 0.959 1.55e-01 40

Table 7.7: Result of logistic regression models for each year of BRFSS data.

We conditioned on log-population, the rate of population change from the

previous year, income, race, and education. The income variable had 6

levels baselined by missing, followed by levels from less than $15k to greater

than $50k. The education variable had 5 levels baselined by not reported

followed by levels from no high-school to graduated college. The race variable

had 4 levels with a baseline of White followed by: Black, Asian, and

other/multi-racial.

logpop −0.104∗∗∗ −0.115∗∗∗ −0.115∗∗∗ −0.108∗∗∗ −0.124∗∗∗ −0.092∗∗∗ −0.118∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.008)

inc1 1.062∗∗∗ 1.098∗∗∗ 1.103∗∗∗ 1.125∗∗∗ 1.102∗∗∗ 1.101∗∗∗ 1.111∗∗∗

(0.033) (0.032) (0.033) (0.032) (0.031) (0.034) (0.031)

(2017) (2016) (2015) (2014) (2013) (2012) (2011)

Continued on next page
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Table 7.7: Result of logistic regression models for each year of BRFSS data.

We conditioned on log-population, the rate of population change from the

previous year, income, race, and education. The income variable had 6

levels baselined by missing, followed by levels from less than $15k to greater

than $50k. The education variable had 5 levels baselined by not reported

followed by levels from no high-school to graduated college. The race variable

had 4 levels with a baseline of White followed by: Black, Asian, and

other/multi-racial. (Continued)

inc2 0.583∗∗∗ 0.613∗∗∗ 0.679∗∗∗ 0.598∗∗∗ 0.588∗∗∗ 0.601∗∗∗ 0.568∗∗∗

(0.029) (0.029) (0.029) (0.029) (0.029) (0.032) (0.030)

inc3 0.321∗∗∗ 0.288∗∗∗ 0.344∗∗∗ 0.270∗∗∗ 0.282∗∗∗ 0.292∗∗∗ 0.318∗∗∗

(0.033) (0.034) (0.034) (0.034) (0.034) (0.036) (0.034)

inc4 0.206∗∗∗ 0.174∗∗∗ 0.188∗∗∗ 0.157∗∗∗ 0.189∗∗∗ 0.144∗∗∗ 0.164∗∗∗

(0.031) (0.031) (0.032) (0.032) (0.032) (0.035) (0.033)

inc5 −0.093∗∗∗ −0.130∗∗∗ −0.055∗∗ −0.114∗∗∗ −0.086∗∗∗ −0.138∗∗∗ −0.112∗∗∗

(0.024) (0.025) (0.025) (0.026) (0.027) (0.029) (0.027)

edu1 0.626∗∗∗ 0.416∗∗∗ 0.786∗∗∗ 0.434∗∗∗ 0.460∗∗∗ 0.691∗∗∗ 0.167

(2017) (2016) (2015) (2014) (2013) (2012) (2011)

Continued on next page

102



Table 7.7: Result of logistic regression models for each year of BRFSS data.

We conditioned on log-population, the rate of population change from the

previous year, income, race, and education. The income variable had 6

levels baselined by missing, followed by levels from less than $15k to greater

than $50k. The education variable had 5 levels baselined by not reported

followed by levels from no high-school to graduated college. The race variable

had 4 levels with a baseline of White followed by: Black, Asian, and

other/multi-racial. (Continued)

(0.159) (0.151) (0.172) (0.105) (0.129) (0.168) (0.136)

edu2 0.541∗∗∗ 0.238 0.686∗∗∗ 0.302∗∗∗ 0.302∗∗ 0.587∗∗∗ 0.024

(0.157) (0.149) (0.170) (0.102) (0.128) (0.167) (0.135)

edu3 0.755∗∗∗ 0.450∗∗∗ 0.923∗∗∗ 0.511∗∗∗ 0.551∗∗∗ 0.779∗∗∗ 0.262∗

(0.157) (0.149) (0.170) (0.102) (0.127) (0.167) (0.134)

edu4 0.534∗∗∗ 0.261∗ 0.718∗∗∗ 0.320∗∗∗ 0.345∗∗∗ 0.618∗∗∗ 0.123

(0.157) (0.149) (0.170) (0.102) (0.127) (0.167) (0.135)

rac2 −0.474∗∗∗ −0.509∗∗∗ −0.487∗∗∗ −0.460∗∗∗ −0.497∗∗∗ −0.513∗∗∗ −0.497∗∗∗

(0.027) (0.028) (0.029) (0.027) (0.027) (0.029) (0.028)

(2017) (2016) (2015) (2014) (2013) (2012) (2011)

Continued on next page
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Table 7.7: Result of logistic regression models for each year of BRFSS data.

We conditioned on log-population, the rate of population change from the

previous year, income, race, and education. The income variable had 6

levels baselined by missing, followed by levels from less than $15k to greater

than $50k. The education variable had 5 levels baselined by not reported

followed by levels from no high-school to graduated college. The race variable

had 4 levels with a baseline of White followed by: Black, Asian, and

other/multi-racial. (Continued)

rac3 0.116∗ 0.108 −0.017 0.029 −0.014 −1.186∗∗∗ −1.084∗∗∗

(0.063) (0.068) (0.069) (0.068) (0.069) (0.097) (0.086)

rac4 −0.327∗∗∗ −0.371∗∗∗ −0.392∗∗∗ −0.336∗∗∗ −0.335∗∗∗ −0.069∗∗ −0.074∗∗

(0.029) (0.030) (0.032) (0.031) (0.031) (0.031) (0.030)

pop −1.194 −1.803∗ −1.427 −1.874∗ −1.972 −2.987∗∗ 0.718

change (1.094) (0.944) (1.017) (1.087) (1.274) (1.302) (1.281)

Constant −2.083∗∗∗ −1.949∗∗∗ −2.340∗∗∗ −1.937∗∗∗ −1.946∗∗∗ −2.260∗∗∗ −1.814∗∗∗

(0.157) (0.148) (0.170) (0.101) (0.127) (0.166) (0.134)

(2017) (2016) (2015) (2014) (2013) (2012) (2011)
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Table 7.8: Depression rates are not associated with year over year population change. Results

from ordinary least squares fits with the rate of population change included.

Twitter

2010 Ln

Popula-

tion

-0.2284 0.107 -2.127 0.045 -0.452 -0.005

Twitter

2010

Popula-

tion

Change

%

-184.8047 287.438 -0.643 0.527 -782.564 412.955

Twitter

2019 Ln

Popula-

tion

-0.0846 0.022 -3.842 0.001 -0.129 -0.040

Twitter

2019

Popula-

tion

Change

%

-3.0574 4.446 -0.688 0.496 -12.102 5.987

coef std err t P> |t| [0.025 0.975]

Continued on next page
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Table 7.8: Depression rates are not associated with year over year population change. Re-

sults from ordinary least squares fits with the rate of population change included.

(Continued)

NSDUH

Ln Popu-

lation

-0.0952 0.045 -2.108 0.044 -0.188 -0.003

NSDUH

Popula-

tion

Change

%

67.5237 130.243 0.518 0.608 -199.266 334.314

coef std err t P> |t| [0.025 0.975]

7.2 Appendix B

Supplementary Text

Derivation of the homophily and hetrophobia adjustments

Here we expand on the derivation of the homophily and heterophobia adjustments in the

main text. We start with Equation 3.2 of the main text which gives the average number

of social interactions per individual in group g. From this we can write down the average

number of social interactions per individual for the entire city as a sum over the different

groups, G. For simplicity we have dropped the residual term eξi :

ki ∼
a0l

AiNi
[
G∑

g=1

(Ng,i(1 + hhomg,i ) +
∑
j ̸=g

Nj,i(1− hhetg,i )) ·Ng,i] (7.1)
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multiplying through by Ng,i we have:

ki ∼
a0l

AiNi
[
G∑

g=1

(N2
g,i) +

G∑
g=1

(N2
g,ih

hom
g,i ) +

∑
g=1:G

∑
j ̸=g

Ng,iNg,j −
∑

g=1:G

∑
j ̸=g

Ng,iNj,ih
het
g,i ] (7.2)

since the third term in the brackets gives two copies of each Ng,iNj,i term, we can then

write:

ki ∼
a0l

AiNi
[(

G∑
g=1

Ng,i)
2 −

G∑
g=1

G∑
j=g+1

Ng,iNj,i(h
het
g,i + hhetj,i ) +

G∑
g=1

(N2
g,ih

hom
g,i )] (7.3)

and finally, we divide and multiply the second term by N2
i and arrive back at Equation 3.3

of the main text:

ki ∼
a0l

AiNi
[N2

i −N2
i

G∑
g=1

G∑
j=g+1

Ng,i

Ni

Nj,i

Ni
(hhetg,i + hhetj,i ) +N2

i

G∑
g=1

(
Ng,i

Ni
)2hhomg,i ] (7.4)

equivalently:

ki ∼
a0lNi

Ai
[1− Ahet

i + Ahom
i ] (7.5)

Note that there are no homophily and heterophobia effects Equation 7.4 becomes:

ki ∼
a0l

AiNi
[N2

i ] =
a0lNi

Ai
(7.6)

and we recover the typical scaling law.

In the main text, we made a comment that Ahet
i is always less than 0.5 and ≥ 0. This can

be easily seen from the fact that Ahet
i is at its smallest when there are only two groups and

those groups are equally balanced. In this case, Ahet
i takes on a value of 0.5 ·0.5 ·(1+1) when

the two groups are completely heterophobic and is smaller for groups with less heterophobia,

imbalanced proportions of the population, or for more than two groups. In general, for G > 2

groups, Ahet
i is at most 2/G2 ·

(G
2

)
= (G− 1)/G which occurs when the heterophobia values
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for all groups are 1 and groups are equal in size. Similarly, Ahom
i is at minimum 1/G and

this occurs when homophily values for all groups are 1 and groups are equal in size.

As a note, in general, heterophobia values need not be the same across all groups. In

particular, we can define a city specific matrix with entries ∈ [−1, 1] which specifies the

degree to which individuals avoid or preferentially interact with individuals from the same

or other groups:

Hi =



h11i h12i · · · h1Gi

h21i h22i · · · h2Gi

...
... . . . ...

hG1i hG2i · · · hGGi


(7.7)

The relative rate of interactions between any two groups (or within a group) is given by

1 + Hi. In the main text we assumed homophily and heterophobia, i.e., that the diagonal

elements of H are positive and the off diagonal elements of H are negative. However, in

general, homophobia and heterophilly may also be present so that the entries of H can take

on positive or negative values. In this case, positive values correspond to homophily or

heterophily and negative values correspond to homophobia or heterophobia.

Our specific constraints on H in the models presented in the main text were that: (1)

homophily is specified by the diagonal entries of Hi, hhomg,i = hggi, which we assume to be

positive, and (2) that each group avoids all other groups equally, so that there are repeated

off diagonal entries and that all of the off diagonal entries are negative. Specifically, that

hhetg,i = hgji for all j ̸= g.

This notation allows for an alternative notation for Equation 7.4:

ki ∼
a0l

AiNi
[tr(NiHiNi) + tr([1− I]NiHiNi] (7.8)

where Ni is the diagonal matrix of group sizes and I is the identity matrix. In other words,

between-group interactions are given by the sum of off diagonal elements of NiHNi and
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within-group interactions are given by the sum of diagonal elements.

Census Block Group Analysis

All of the analyses described in the main text were also conducted with census block groups

instead of census tracts. In contrast to census tracts which contain, on average, 4,000

individuals, census block groups contain 1,500 individuals on average. A similar pattern of

results was found for census block groups.

Table 7.9: Fits of calculated heterophobia adjustments to median income scaling deviations
by year. bhet determines the strength of the coupling between economic productivity and
residential segregation by controlling levels of heterophobia associated with residential seg-
regation.

year bhet 95% CI R2

2013 [1.03, 1.60] 0.09
2014 [1.10, 1.67] 0.10
2015 [1.25, 1.84] 0.11
2016 [1.35, 1.93] 0.13
2017 [1.39, 1.96] 0.13
2018 [1.37, 1.96] 0.13
2019 [1.46, 2.04] 0.14
2020 [1.46, 2.04] 0.14

Table 7.10: Fits of calculated heterophobia adjustments to GDP scaling deviations by year.

year bhet 95% CI R2

2013 [-0.12, 0.93] 0.00283
2014 [0.01, 1.06] 0.00476
2015 [0.07, 1.11] 0.00597
2016 [0.17, 1.18] 0.00807
2017 [0.19, 1.20] 0.00873
2018 [0.18, 1.19] 0.00831
2019 [0.27, 1.23] 0.01072
2020 [0.26, 1.21] 0.01076
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Supplementary Figures

Supplementary Figure 7.1: Mean Ahet
i across cities over time. The shaded region represents

the 95% interval of the standard error of the mean.
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Supplementary Tables

Supplementary Table 7.11: Spearman Rank Order Correlation between Median Income and
GDP by year.

year r_s p-value
2010 0.56 1.77e-74
2011 0.56 3.38e-72
2012 0.55 2.52e-71
2013 0.54 2.08e-66
2014 0.53 6.96e-64
2015 0.52 1.19e-60
2016 0.52 1.34e-62
2017 0.53 7.85e-65
2018 0.54 1.97e-67
2019 0.55 8.83e-71
2020 0.56 5.50e-73

Supplementary Table 7.12: Fits of calculated heterophobia corrections to median income
scaling deviations by year.

year bhet 95% CI R2 n
2010 [-1.88, -1.23] 0.09 872
2011 [-1.94, -1.28] 0.10 872
2012 [-2.02, -1.34] 0.10 873
2013 [-1.96, -1.28] 0.09 851
2014 [-2.06, -1.37] 0.10 852
2015 [-2.20, -1.49] 0.11 852
2016 [-2.28, -1.56] 0.11 865
2017 [-2.31, -1.60] 0.12 865
2018 [-2.31, -1.58] 0.11 866
2019 [-2.44, -1.71] 0.13 874
2020 [-2.49, -1.77] 0.13 874
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Supplementary Table 7.13: Fits of calculated homophily and heterophobia corrections to
median income scaling deviations by year.

year bhet 95% CI bhom 95% CI R2 n
2010 [-2.19, -1.15] [-0.35, 0.63] 0.09 872
2011 [-2.20, -1.14] [-0.43, 0.57] 0.10 872
2012 [-2.37, -1.29] [-0.33, 0.69] 0.10 873
2013 [-2.33, -1.25] [-0.31, 0.71] 0.09 851
2014 [-2.41, -1.33] [-0.32, 0.71] 0.10 852
2015 [-2.53, -1.42] [-0.37, 0.69] 0.11 852
2016 [-2.69, -1.58] [-0.26, 0.79] 0.11 865
2017 [-2.59, -1.48] [-0.43, 0.63] 0.12 865
2018 [-2.49, -1.35] [-0.58, 0.51] 0.11 866
2019 [-2.52, -1.40] [-0.70, 0.41] 0.13 874
2020 [-2.36, -1.28] [-1.00, 0.14] 0.14 874

Supplementary Table 7.14: Fits of calculated heterophobia corrections to GDP scaling de-
viations by year.

year bhet 95% CI R2 n
2010 [-0.94, 0.20] 0.00191 861
2011 [-0.98, 0.23] 0.00172 863
2012 [-1.10, 0.13] 0.00280 862
2013 [-1.04, 0.17] 0.00237 843
2014 [-1.26, -0.02] 0.00488 844
2015 [-1.38, -0.17] 0.00738 847
2016 [-1.44, -0.25] 0.00910 860
2017 [-1.39, -0.20] 0.00798 859
2018 [-1.38, -0.18] 0.00762 858
2019 [-1.48, -0.34] 0.01135 865
2020 [-1.51, -0.40] 0.01303 868
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Supplementary Table 7.15: Fits of calculated homophily and heterophobia corrections to
median income scaling deviations by year using the segregation index.

year bhet 95% CI bhom 95% CI R2 n
2010 [-0.76, -0.45] [-0.06, 0.17] 0.07 872
2011 [-0.79, -0.47] [-0.07, 0.17] 0.07 872
2012 [-0.82, -0.50] [-0.06, 0.19] 0.07 873
2013 [-0.79, -0.46] [-0.07, 0.18] 0.06 851
2014 [-0.84, -0.51] [-0.08, 0.17] 0.07 852
2015 [-0.90, -0.56] [-0.10, 0.15] 0.08 852
2016 [-0.94, -0.59] [-0.04, 0.23] 0.08 865
2017 [-0.96, -0.62] [-0.09, 0.18] 0.08 865
2018 [-0.96, -0.61] [-0.14, 0.14] 0.08 866
2019 [-1.02, -0.67] [-0.17, 0.11] 0.09 874
2020 [-1.05, -0.70] [-0.24, 0.04] 0.10 874

Supplementary Table 7.16: Fits of calculated heterophobia corrections to GDP scaling de-
viations by year using the segregation index.

year π 95% CI R2 n
2010 [-0.30, 0.24] 0.00006 861
2011 [-0.32, 0.25] 0.00007 863
2012 [-0.37, 0.20] 0.00039 862
2013 [-0.34, 0.23] 0.00015 843
2014 [-0.46, 0.13] 0.00144 844
2015 [-0.55, 0.03] 0.00366 847
2016 [-0.58, -0.02] 0.00508 860
2017 [-0.57, -0.00] 0.00458 859
2018 [-0.55, 0.02] 0.00375 858
2019 [-0.57, -0.03] 0.00533 865
2020 [-0.60, -0.07] 0.00706 868
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Supplementary Table 7.17: Fits of calculated homophily and heterophobia corrections to
median income scaling deviations by year using the gini coefficient.

year bhet 95% CI bhom 95% CI R2 n
2010 [-0.59, -0.35] [-0.06, 0.12] 0.06 872
2011 [-0.61, -0.37] [-0.08, 0.11] 0.07 872
2012 [-0.63, -0.38] [-0.06, 0.13] 0.07 873
2013 [-0.61, -0.36] [-0.07, 0.12] 0.06 851
2014 [-0.64, -0.39] [-0.08, 0.13] 0.07 852
2015 [-0.69, -0.43] [-0.10, 0.11] 0.07 852
2016 [-0.72, -0.45] [-0.05, 0.16] 0.08 865
2017 [-0.74, -0.47] [-0.08, 0.13] 0.08 865
2018 [-0.74, -0.47] [-0.14, 0.08] 0.08 866
2019 [-0.79, -0.52] [-0.16, 0.06] 0.09 874
2020 [-0.81, -0.55] [-0.23, -0.00] 0.11 874

Supplementary Table 7.18: Fits of calculated heterophobia corrections to GDP scaling de-
viations by year using the gini coefficient.

year π 95% CI R2 n
2010 [-0.22, 0.20] 0.00001 861
2011 [-0.24, 0.20] 0.00004 863
2012 [-0.28, 0.17] 0.00029 862
2013 [-0.25, 0.19] 0.00007 843
2014 [-0.34, 0.12] 0.00111 844
2015 [-0.40, 0.05] 0.00279 847
2016 [-0.43, 0.01] 0.00425 860
2017 [-0.42, 0.02] 0.00380 859
2018 [-0.41, 0.03] 0.00335 858
2019 [-0.43, -0.01] 0.00473 865
2020 [-0.45, -0.05] 0.00692 868
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Supplementary Table 7.19: Fits of calculated homophily and heterophobia corrections to
median income scaling deviations by year using the exposure index.

year bhet 95% CI bhom 95% CI R2 n
2010 [-1.43, -0.70] [-0.09, 0.44] 0.06 872
2011 [-1.47, -0.72] [-0.12, 0.42] 0.07 872
2012 [-1.57, -0.80] [-0.08, 0.48] 0.07 873
2013 [-1.53, -0.76] [-0.08, 0.48] 0.06 851
2014 [-1.60, -0.82] [-0.08, 0.49] 0.07 852
2015 [-1.72, -0.91] [-0.06, 0.52] 0.07 852
2016 [-1.81, -0.99] [-0.02, 0.58] 0.08 865
2017 [-1.78, -0.96] [-0.10, 0.51] 0.08 865
2018 [-1.73, -0.87] [-0.22, 0.43] 0.08 866
2019 [-1.81, -0.95] [-0.26, 0.40] 0.09 874
2020 [-1.65, -0.84] [-0.45, 0.21] 0.11 874

Supplementary Table 7.20: Fits of calculated heterophobia corrections to GDP scaling de-
viations by year using the exposure index.

year π 95% CI R2 n
2010 [-0.54, 0.26] 0.00056 861
2011 [-0.54, 0.32] 0.00028 863
2012 [-0.61, 0.26] 0.00073 862
2013 [-0.59, 0.27] 0.00063 843
2014 [-0.74, 0.14] 0.00212 844
2015 [-0.88, -0.01] 0.00471 847
2016 [-0.91, -0.05] 0.00565 860
2017 [-0.88, -0.02] 0.00487 859
2018 [-0.87, 0.01] 0.00434 858
2019 [-0.94, -0.10] 0.00683 865
2020 [-1.01, -0.20] 0.00992 868

115



Supplementary Table 7.21: Fits of calculated heterophobia adjustments to GDP scaling
deviations by year with outliers included.

year bhet 95% CI R2 n

2010 [-1.28, 0.04] 0.00389 875
2011 [-1.32, 0.07] 0.00355 875
2012 [-1.50, -0.07] 0.00528 875
2013 [-1.51, -0.09] 0.00570 855
2014 [-1.72, -0.27] 0.00834 855
2015 [-1.72, -0.37] 0.01071 855
2016 [-1.65, -0.34] 0.01011 868
2017 [-1.63, -0.28] 0.00885 868
2018 [-1.67, -0.27] 0.00847 868
2019 [-1.69, -0.36] 0.01027 875
2020 [-1.60, -0.38] 0.01147 875

Supplementary Table 7.22: Fits of calculated heterophobia adjustments to median income
scaling deviations by year with outliers included.

year bhet 95% CI R2 n

2010 [-2.50, -1.19] 0.06 885
2011 [-2.49, -1.16] 0.06 885
2012 [-2.58, -1.26] 0.06 885
2013 [-2.58, -1.27] 0.07 864
2014 [-2.76, -1.44] 0.07 864
2015 [-2.95, -1.61] 0.08 864
2016 [-3.23, -1.90] 0.09 877
2017 [-3.27, -1.94] 0.10 877
2018 [-3.39, -2.06] 0.10 876
2019 [-3.54, -2.20] 0.11 885
2020 [-3.42, -2.12] 0.11 885
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7.3 Appendix C

Supplementary Text

Here we reproduce the parts of our previously developed extension to the standard Urban

Scaling Theory model Stier et al. [2022b] that are relevant for inter-group interactions and

implicit racial biases.

The extension on which this manuscript is based starts from the standard formulation of

Urban scaling theory Bettencourt [2013, 2021b], which describes cities as spatially embedded

networks of socioeconomic interactions.

For the average per-capita number of social interactions, k, the urban scaling law takes

form of k ∼ Nδ, where δ = 1
6 . This form of the scaling law results from a mean-field

approximation that individuals interact homogeneously. Under these conditions, we take

individuals to have an interaction cross section a0 and a characteristic travel length l per

unit time. This gives the average number of interactions for a large city (N >> 1) as :

k ∼ a0l

An
N (7.1)

, where An is the area of the city’s networks. The scaling law for the area of the city’s

networks, An ∼ N1−δ Bettencourt [2013], recovers the scaling law for k.

In order to derive the model for heterogeneous group interactions it is important to un-

derstand the standard formulation of the scaling law for interactions. We start by observing

that, a0l
An

is a probability composed of the fraction of a city’s area that individuals cover, on

average, over a given time period. This is the average probability of interacting with other

individuals in the city. Thus, the total expected number of interactions for each individual

is given by their probability of interacting, a0l
An

, multiplied by the number of individuals they

could interact with, N .

Next, we extend this standard formulation by modeling each individual in the city as
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belonging to some distinct number of groups, indexed by g. Individuals in these groups may

interact with a lower probability with other groups. We define this relative reduction in

out-group interactions by 1− hhetg , where hhetg ∈ [0, 1] is the heterophobia of group g.

With these definitions, the average number of interactions for individuals in group g with

individuals in different groups is given by:

kg,inter ∼
a0l

A

∑
j ̸=g

Nj(1− hhetg ) (7.2)

where Ng is the population of focal group g. The total number of between-group social

interactions for all individuals in group g is kg,interNg, on average. Therefore, the average

number of between-group social interactions for individuals in an observed segregated city i

with G different groups, is ki ∼ 1
N

∑G
g=1 kg,inter,iNg,i.

This brings us almost to Equation 2 of the main text:

ki,inter ∼
a0l

AiNi

∑
j ̸=g

Nj,i(1− hhetg,i )) ·Ng,i (7.3)

Multiplying and dividing through by N2
i we have:

ki,inter ∼
a0lN

2
i

AiNi

∑
j ̸=g

Nj,i

Ni

Ng,i

Ni
(1− hhetg,i ))· (7.4)

which directly simplifies to the between-group interactions terms of Equation 2 of the main

text:

ki,inter ∼ Nδ
∑
j ̸=g

Nj,i

Ni

Ng,i

Ni
(1− hhetg,i ))· (7.5)

since a0lNi
Ai

∼ Nδ.

Note that when heterophobia is complete, i.e., hhetg,i = 0 or there is only one group in the

city, ki,inter goes to 0, as expected, and there are no between-group interactions.

118



As a note, in general, heterophobia values need not be the same across all groups and

we can define a matrix with entries ∈ [−1, 1] which specifies the degree to which individuals

avoid or preferentially interact with individuals from the same or other groups:

Hi =



h11i h12i · · · h1Gi

h21i h22i · · · h2Gi

...
... . . . ...

hG1i hG2i · · · hGGi


(7.6)

The relative rate of interactions between any two groups (or within a group) is given by

1+Hi. In the model presented here, we constrain H so that each group avoids all other groups

equally and that there are repeated off-diagonal entries that are all negative. Specifically,

that hhetg,i = hgji for all j ̸= g.

This notation allows for an alternative notation for Equation 5:

ki,inter ∼
a0l

AiNi
tr ([1− I]NiHiNi) (7.7)

where Ni is the diagonal matrix of group sizes and I is the identity matrix. In other words,

between-group interactions are given by the sum of off-diagonal elements of NiHNi.

Inter-group interactions with two groups

In the case of two groups, the inter-group term of Equation 3 of the main text becomes:

ki,inter ∼ Nδ
i [2 ·

N1,i

Ni

N2,i

Ni
−

N1,i

Ni

N2,i

Ni
hhet1,i −

N1,i

Ni

N2,i

Ni
hhet2,i ] (7.8)

Replacing N2,i with Ni −N1,i and simplifying results in:

ki,inter ∼ Nδ[(
N1,i

Ni

Ni −N1,i

Ni
) · (2− hhet1,i − hhet2,i )] (7.9)
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which simplifies directly to Equation 3 of the main text when using a power-law learning

curve to couple inter-croup interactions to implicit bias levels.
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Supplementary Figures

Supplementary Figure 7.1: Histograms of percent white, white residential racial segregation,
and black residential racial segregation for CBSAs in 2020. The y-axis denotes the number
of cities in a given histogram bin.

121



Supplementary Tables

Supplementary Table 7.23: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment parameters for cities with more than 500 IAT responses.

year scaling β1 majority group size
adjustment β2

s1 + s2 β3 # cities

2010 [-0.094,-0.021] [-0.277,0.038] [-0.563,0.128] 64
2011 [-0.086,-0.010] [-0.296,0.048] [-0.526,0.201] 59
2012 [-0.080,-0.013] [-0.334,-0.078] [-0.200,0.315] 46
2013 [-0.076,-0.019] [-0.327,-0.064] [-0.174,0.361] 52
2014 [-0.069,-0.016] [-0.221,0.027] [-0.321,0.225] 66
2015 [-0.047,-0.003] [-0.305,-0.130] [0.054,0.447] 74
2016 [-0.055,-0.015] [-0.264,-0.095] [0.032,0.415] 91
2017 [-0.059,-0.016] [-0.308,-0.128] [0.055,0.498] 105
2018 [-0.061,-0.019] [-0.348,-0.158] [0.105,0.563] 102
2019 [-0.063,-0.017] [-0.292,-0.094] [-0.073,0.409] 106
2020 [-0.044,-0.011] [-0.278,-0.133] [0.105,0.466] 149

all years [-0.045,-0.031] [-0.226,-0.163] [0.026,0.066] 914

Supplementary Figures
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Supplementary Table 7.24: IAT participants with geographic information

year IAT sample size median CBSA population %
2010 163,289 0.09%
2011 149,059 0.08%
2012 118,179 0.06%
2013 125,083 0.07%
2014 171,039 0.09%
2015 208,521 0.11%
2016 273,995 0.14%
2017 321,082 0.17%
2018 316,393 0.17%
2019 321,247 0.16%
2020 584,902 0.26%

Supplementary Table 7.25: Logistic Regression to predict individual racial IAT bias scores >
0 for 2010. Note that larger and less segregated cities are associated with a lower probability
of a positive bias towards white faces, in line with Equation 4.3 of the main text. More
diversity, captured by majority group size is significant here.

Dep. Variable: bias No. Observations: 108303
Model: Logit Df Residuals: 108293
Method: MLE Df Model: 9

Pseudo R-squ.: 0.08710
Log-Likelihood: -53918.

converged: True LL-Null: -59062.
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.9954 5.67e+05 1.75e-06 1.000 -1.11e+06 1.11e+06
ln(population) -0.0195 0.009 -2.057 0.040 -0.038 -0.001
White 0.4831 0.024 20.211 0.000 0.436 0.530
Black -1.3555 0.026 -51.153 0.000 -1.407 -1.304
Multiracial -0.1467 0.039 -3.740 0.000 -0.224 -0.070
High School or Less 0.2787 5.67e+05 4.91e-07 1.000 -1.11e+06 1.11e+06
College 0.3061 5.67e+05 5.4e-07 1.000 -1.11e+06 1.11e+06
Advanced Degree 0.4106 5.67e+05 7.24e-07 1.000 -1.11e+06 1.11e+06
Maj Grp Sz Adj 0.0115 0.049 0.234 0.815 -0.085 0.108
s1 + s2 0.2599 0.084 3.077 0.002 0.094 0.426
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Supplementary Table 7.26: Logistic Regression to predict individual racial IAT bias scores >
0 for 2011. Note that larger and less segregated cities are associated with a lower probability
of a positive bias towards white faces, in line with Equation 4.3 of the main text. More
diversity, captured by majority group size is significant here.

Dep. Variable: bias No. Observations: 207358
Model: Logit Df Residuals: 207348
Method: MLE Df Model: 9

Pseudo R-squ.: 0.08369
Log-Likelihood: -1.0348e+05

converged: True LL-Null: -1.1293e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 1.0078 1.58e+05 6.37e-06 1.000 -3.1e+05 3.1e+05
ln(population) -0.0172 0.007 -2.525 0.012 -0.031 -0.004
White 0.4839 0.017 28.343 0.000 0.450 0.517
Black -1.3244 0.019 -69.748 0.000 -1.362 -1.287
Multiracial -0.1428 0.028 -5.085 0.000 -0.198 -0.088
High School or Less 0.2770 1.58e+05 1.75e-06 1.000 -3.1e+05 3.1e+05
College 0.3089 1.58e+05 1.95e-06 1.000 -3.1e+05 3.1e+05
Advanced Degree 0.4219 1.58e+05 2.67e-06 1.000 -3.1e+05 3.1e+05
Maj Grp Sz Adj 0.0347 0.036 0.975 0.329 -0.035 0.104
s1 + s2 0.1951 0.061 3.200 0.001 0.076 0.315
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Supplementary Table 7.27: Logistic Regression to predict individual racial IAT bias scores >
0 for 2012. Note that larger and less segregated cities are associated with a lower probability
of a positive bias towards white faces, in line with Equation 4.3 of the main text. More
diversity, captured by majority group size is significant here.

Dep. Variable: bias No. Observations: 281203
Model: Logit Df Residuals: 281194
Method: MLE Df Model: 8

Pseudo R-squ.: 0.08122
Log-Likelihood: -1.4032e+05

converged: True LL-Null: -1.5272e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 1.1506 0.131 8.811 0.000 0.895 1.407
ln(population) -0.0125 0.006 -2.083 0.037 -0.024 -0.001
White 0.4821 0.015 33.173 0.000 0.454 0.511
Black -1.3093 0.016 -80.596 0.000 -1.341 -1.277
Multiracial -0.1456 0.024 -6.057 0.000 -0.193 -0.098
College 0.0699 0.036 1.939 0.053 -0.001 0.141
Advanced Degree 0.1605 0.023 6.971 0.000 0.115 0.206
Maj Grp Sz Adj 0.0095 0.031 0.307 0.759 -0.051 0.070
s1 + s2 0.2116 0.052 4.039 0.000 0.109 0.314
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Supplementary Table 7.28: Logistic Regression to predict individual racial IAT bias scores >
0 for 2013. Note that larger and less segregated cities are associated with a lower probability
of a positive bias towards white faces, in line with Equation 4.3 of the main text. More
diversity, captured by majority group size is significant here.

Dep. Variable: bias No. Observations: 363764
Model: Logit Df Residuals: 363754
Method: MLE Df Model: 9

Pseudo R-squ.: 0.07789
Log-Likelihood: -1.8202e+05

converged: True LL-Null: -1.9740e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.9616 3.98e+05 2.41e-06 1.000 -7.8e+05 7.8e+05
ln(population) -0.0160 0.005 -3.013 0.003 -0.026 -0.006
White 0.4680 0.013 37.078 0.000 0.443 0.493
Black -1.2990 0.014 -91.452 0.000 -1.327 -1.271
Multiracial -0.1638 0.021 -7.817 0.000 -0.205 -0.123
High School or Less 0.2269 3.98e+05 5.7e-07 1.000 -7.8e+05 7.8e+05
College 0.3283 3.98e+05 8.25e-07 1.000 -7.8e+05 7.8e+05
Advanced Degree 0.4063 3.98e+05 1.02e-06 1.000 -7.8e+05 7.8e+05
Maj Grp Sz Adj 0.0125 0.028 0.450 0.653 -0.042 0.067
s1 + s2 0.2257 0.046 4.918 0.000 0.136 0.316
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Supplementary Table 7.29: Logistic Regression to predict individual racial IAT bias scores >
0 for 2014. Note that larger and less segregated cities are associated with a lower probability
of a positive bias towards white faces, in line with Equation 4.3 of the main text. More
diversity, captured by majority group size is significant here.

Dep. Variable: bias No. Observations: 487488
Model: Logit Df Residuals: 487478
Method: MLE Df Model: 9

Pseudo R-squ.: 0.07078
Log-Likelihood: -2.4760e+05

converged: True LL-Null: -2.6645e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.8539 1.11e+05 7.69e-06 1.000 -2.18e+05 2.18e+05
ln(population) -0.0144 0.004 -3.210 0.001 -0.023 -0.006
White 0.4435 0.011 41.192 0.000 0.422 0.465
Black -1.2695 0.012 -103.076 0.000 -1.294 -1.245
Multiracial -0.1576 0.018 -8.734 0.000 -0.193 -0.122
High School or Less 0.1917 1.11e+05 1.73e-06 1.000 -2.18e+05 2.18e+05
College 0.2784 1.11e+05 2.51e-06 1.000 -2.18e+05 2.18e+05
Advanced Degree 0.3838 1.11e+05 3.46e-06 1.000 -2.18e+05 2.18e+05
Maj Grp Sz Adj -0.0242 0.023 -1.033 0.301 -0.070 0.022
s1 + s2 0.2678 0.039 6.817 0.000 0.191 0.345
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Supplementary Table 7.30: Logistic Regression to predict individual racial IAT bias scores >
0 for 2015. Note that larger and less segregated cities are associated with a lower probability
of a positive bias towards white faces, in line with Equation 4.3 of the main text. More
diverse cities (captured by majority group size) cities are trending in the direction of less
bias, but are not significant here.

Dep. Variable: bias No. Observations: 518942
Model: Logit Df Residuals: 518933
Method: MLE Df Model: 8

Pseudo R-squ.: 0.06926
Log-Likelihood: -2.6465e+05

converged: True LL-Null: -2.8435e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.9648 0.094 10.305 0.000 0.781 1.148
ln(population) -0.0125 0.004 -2.888 0.004 -0.021 -0.004
White 0.4411 0.010 42.375 0.000 0.421 0.461
Black -1.2592 0.012 -105.380 0.000 -1.283 -1.236
Multiracial -0.1573 0.017 -9.010 0.000 -0.192 -0.123
College 0.0921 0.025 3.711 0.000 0.043 0.141
Advanced Degree 0.1949 0.015 13.191 0.000 0.166 0.224
Maj Grp Sz Adj -0.0425 0.023 -1.886 0.059 -0.087 0.002
s1 + s2 0.2889 0.038 7.630 0.000 0.215 0.363
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Supplementary Table 7.31: Logistic Regression to predict individual racial IAT bias scores
> 0 for 2016. Note that larger, more diverse, and less segregated cities are associated with
a lower probability of a positive bias towards white faces, in line with Equation 4.3 of the
main text.

Dep. Variable: bias No. Observations: 79309
Model: Logit Df Residuals: 79299
Method: MLE Df Model: 9

Pseudo R-squ.: 0.05319
Log-Likelihood: -40512.

converged: True LL-Null: -42787.
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 1.0349 0.203 5.106 0.000 0.638 1.432
ln(population) -0.0404 0.010 -4.129 0.000 -0.060 -0.021
White 0.4224 0.028 15.098 0.000 0.368 0.477
Black -1.0940 0.033 -33.631 0.000 -1.158 -1.030
Multiracial -0.3113 0.042 -7.375 0.000 -0.394 -0.229
Birth Sex 0.1161 0.018 6.412 0.000 0.081 0.152
College 0.2359 0.053 4.440 0.000 0.132 0.340
Advanced Degree 0.2345 0.033 7.032 0.000 0.169 0.300
Maj Grp Sz Adj -0.1155 0.053 -2.181 0.029 -0.219 -0.012
s1 + s2 0.7081 0.099 7.148 0.000 0.514 0.902
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Supplementary Table 7.32: Logistic Regression to predict individual racial IAT bias scores
> 0 for 2017. Note that larger, more diverse, and less segregated cities are associated with
a lower probability of a positive bias towards white faces, in line with Equation 4.3 of the
main text.

Dep. Variable: bias No. Observations: 328522
Model: Logit Df Residuals: 328512
Method: MLE Df Model: 9

Pseudo R-squ.: 0.05032
Log-Likelihood: -1.7217e+05

converged: True LL-Null: -1.8129e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.7606 0.102 7.431 0.000 0.560 0.961
ln(population) -0.0204 0.005 -4.214 0.000 -0.030 -0.011
White 0.3824 0.013 28.393 0.000 0.356 0.409
Black -1.1044 0.016 -69.596 0.000 -1.135 -1.073
Multiracial -0.3722 0.020 -18.657 0.000 -0.411 -0.333
Birth Sex 0.1480 0.009 16.815 0.000 0.131 0.165
College 0.1414 0.026 5.489 0.000 0.091 0.192
Advanced Degree 0.1389 0.017 8.226 0.000 0.106 0.172
Maj Grp Sz Adj -0.1516 0.026 -5.926 0.000 -0.202 -0.101
s1 + s2 0.5886 0.047 12.448 0.000 0.496 0.681
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Supplementary Table 7.33: Logistic Regression to predict individual racial IAT bias scores
> 0 for 2018. Note that larger, more diverse, and less segregated cities are associated with
a lower probability of a positive bias towards white faces, in line with Equation 4.3 of the
main text.

Dep. Variable: bias No. Observations: 570868
Model: Logit Df Residuals: 570858
Method: MLE Df Model: 9

Pseudo R-squ.: 0.05081
Log-Likelihood: -3.0335e+05

converged: True LL-Null: -3.1959e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.5022 0.078 6.444 0.000 0.349 0.655
ln(population) -0.0124 0.004 -3.384 0.001 -0.020 -0.005
White 0.4082 0.010 40.840 0.000 0.389 0.428
Black -1.0764 0.012 -91.337 0.000 -1.100 -1.053
Multiracial -0.3381 0.015 -22.647 0.000 -0.367 -0.309
Birth Sex 0.1426 0.007 21.479 0.000 0.130 0.156
College 0.1629 0.019 8.368 0.000 0.125 0.201
Advanced Degree 0.1423 0.013 11.026 0.000 0.117 0.168
Maj Grp Sz Adj -0.1937 0.019 -9.958 0.000 -0.232 -0.156
s1 + s2 0.6276 0.036 17.633 0.000 0.558 0.697
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Supplementary Table 7.34: Logistic Regression to predict individual racial IAT bias scores
> 0 for 2019. Note that larger, more diverse, and less segregated cities are associated with
a lower probability of a positive bias towards white faces, in line with Equation 4.3 of the
main text.

Dep. Variable: bias No. Observations: 570868
Model: Logit Df Residuals: 570858
Method: MLE Df Model: 9

Pseudo R-squ.: 0.05081
Log-Likelihood: -3.0335e+05

converged: True LL-Null: -3.1959e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.5022 0.078 6.444 0.000 0.349 0.655
ln(population) -0.0124 0.004 -3.384 0.001 -0.020 -0.005
White 0.4082 0.010 40.840 0.000 0.389 0.428
Black -1.0764 0.012 -91.337 0.000 -1.100 -1.053
Multiracial -0.3381 0.015 -22.647 0.000 -0.367 -0.309
Birth Sex 0.1426 0.007 21.479 0.000 0.130 0.156
College 0.1629 0.019 8.368 0.000 0.125 0.201
Advanced Degree 0.1423 0.013 11.026 0.000 0.117 0.168
Maj Grp Sz Adj -0.1937 0.019 -9.958 0.000 -0.232 -0.156
s1 + s2 0.6276 0.036 17.633 0.000 0.558 0.697
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Supplementary Table 7.35: Logistic Regression to predict individual racial IAT bias scores
> 0 for 2020. Note that larger, more diverse, and less segregated cities are associated with
a lower probability of a positive bias towards white faces, in line with Equation 4.3 of the
main text.

Dep. Variable: bias No. Observations: 570868
Model: Logit Df Residuals: 570858
Method: MLE Df Model: 9

Pseudo R-squ.: 0.05081
Log-Likelihood: -3.0335e+05

converged: True LL-Null: -3.1959e+05
Covariance Type: nonrobust LLR p-value: 0.000

coef std err z P> |z| [0.025 0.975]
const 0.5022 0.078 6.444 0.000 0.349 0.655
ln(population) -0.0124 0.004 -3.384 0.001 -0.020 -0.005
White 0.4082 0.010 40.840 0.000 0.389 0.428
Black -1.0764 0.012 -91.337 0.000 -1.100 -1.053
Multiracial -0.3381 0.015 -22.647 0.000 -0.367 -0.309
Birth Sex 0.1426 0.007 21.479 0.000 0.130 0.156
College 0.1629 0.019 8.368 0.000 0.125 0.201
Advanced Degree 0.1423 0.013 11.026 0.000 0.117 0.168
Maj Grp Sz Adj -0.1937 0.019 -9.958 0.000 -0.232 -0.156
s1 + s2 0.6276 0.036 17.633 0.000 0.558 0.697

Supplementary Table 7.36: Comparison of Models for cities that have available Area Depri-
vation Index (ADI) and Heat Index (HI) data. All models include city size, majority group
size and heterophobia effects (mean deviation segregation measure).

year no ADI R2 ADI R2 ADI n no HI R2 HI R2 HI n
2010 0.383 0.394 36 0.329 0.357 18
2011 0.290 0.291 34 0.258 0.265 17
2012 0.370 0.389 27 0.463 0.478 17
2013 0.346 0.347 32 0.417 0.418 17
2014 0.248 0.259 39 0.368 0.448 18
2015 0.212 0.215 42 0.518 0.579 18
2016 0.150 0.162 50 0.502 0.546 19
2017 0.145 0.145 54 0.381 0.381 20
2018 0.204 0.222 53 0.468 0.496 19
2019 0.202 0.215 58 0.416 0.431 20
2020 0.160 0.161 76 0.437 0.438 22
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Supplementary Table 7.37: Comparison of Models for cities that have available Area Depri-
vation Index (ADI) and Heat Index (HI) data. All models include city size, majority group
size and heterophobia effects (segregation index).

year no ADI R2 ADI R2 ADI n no HI R2 HI R2 HI n
2010 0.399 0.412 36 0.376 0.397 18
2011 0.318 0.318 34 0.256 0.262 17
2012 0.418 0.438 27 0.517 0.527 17
2013 0.414 0.414 32 0.508 0.508 17
2014 0.289 0.300 39 0.445 0.516 18
2015 0.332 0.334 42 0.585 0.616 18
2016 0.213 0.231 50 0.639 0.662 19
2017 0.193 0.193 54 0.559 0.562 20
2018 0.273 0.293 53 0.671 0.690 19
2019 0.293 0.310 58 0.656 0.664 20
2020 0.288 0.288 76 0.650 0.650 22

Supplementary Table 7.38: Comparison of Models for cities that have available Area Depri-
vation Index (ADI) and Heat Index (HI) data. All models include city size, majority group
size and heterophobia effects (gini coefficient).

year no ADI R2 ADI R2 ADI n no HI R2 HI R2 HI n
2010 0.401 0.416 36 0.366 0.388 18
2011 0.327 0.327 34 0.257 0.263 17
2012 0.424 0.448 27 0.518 0.529 17
2013 0.414 0.415 32 0.502 0.502 17
2014 0.291 0.300 39 0.442 0.517 18
2015 0.333 0.338 42 0.581 0.617 18
2016 0.223 0.239 50 0.633 0.660 19
2017 0.197 0.197 54 0.568 0.569 20
2018 0.271 0.288 53 0.665 0.686 19
2019 0.296 0.310 58 0.648 0.658 20
2020 0.296 0.296 76 0.651 0.652 22
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Supplementary Table 7.39: Comparison of Models for cities that have available Area Depri-
vation Index (ADI) and Heat Index (HI) data. All models include city size, majority group
size and heterophobia effects (η2).

year no ADI R2 ADI R2 ADI n no HI R2 HI R2 HI n
2010 0.394 0.406 36 0.365 0.387 18
2011 0.310 0.310 34 0.252 0.259 17
2012 0.410 0.429 27 0.505 0.515 17
2013 0.406 0.406 32 0.490 0.490 17
2014 0.289 0.300 39 0.426 0.498 18
2015 0.293 0.296 42 0.589 0.623 18
2016 0.187 0.202 50 0.582 0.609 19
2017 0.178 0.179 54 0.494 0.497 20
2018 0.246 0.265 53 0.575 0.590 19
2019 0.258 0.270 58 0.556 0.561 20
2020 0.225 0.225 76 0.561 0.563 22

Supplementary Table 7.40: Summary of scaling fits and majority group size adjustment and
heterophobia variance explained for cities with more than 500 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.122 0.180 0.008 0.327 64
2011 0.086 0.134 -0.003 0.246 59
2012 0.130 0.266 -0.014 0.400 46
2013 0.164 0.194 -0.008 0.368 52
2014 0.125 0.105 -0.012 0.242 66
2015 0.053 0.216 0.055 0.336 74
2016 0.112 0.121 0.041 0.277 91
2017 0.097 0.155 0.040 0.295 105
2018 0.114 0.170 0.057 0.335 102
2019 0.094 0.147 0.007 0.257 106
2020 0.061 0.128 0.049 0.242 149

all years 0.105 0.160 0.008 0.267 914
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Supplementary Table 7.41: Summary of scaling fits and majority group size adjustment and
heterophobia variance explained estimated from the segregation index for cities with more
than 500 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

0.309 64
2011 0.086 0.134 0.001 0.245 59
2012 0.130 0.266 0.053 0.448 46
2013 0.164 0.194 0.066 0.418 52
2014 0.125 0.105 0.016 0.260 66
2015 0.053 0.216 0.169 0.436 74
2016 0.112 0.121 0.128 0.348 91
2017 0.097 0.155 0.091 0.336 105
2018 0.114 0.170 0.134 0.397 102
2019 0.094 0.147 0.083 0.318 106
2020 0.061 0.128 0.160 0.341 149

all years 0.105 0.160 0.078 0.324 914

Supplementary Table 7.42: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment parameters estimated from the segregation index for cities with
more than 500 IAT responses.

year scaling β1 majority group size
adjustment β2

s1 + s2 β3 # cities

2010 [-0.094,-0.021] [-0.303,-0.096] [-0.135,0.214] 64
2011 [-0.086,-0.010] [-0.305,-0.073] [-0.090,0.281] 59
2012 [-0.080,-0.013] [-0.282,-0.107] [0.005,0.261] 46
2013 [-0.076,-0.019] [-0.260,-0.088] [0.020,0.273] 52
2014 [-0.069,-0.016] [-0.209,-0.050] [-0.034,0.226] 66
2015 [-0.047,-0.003] [-0.210,-0.106] [0.114,0.290] 74
2016 [-0.055,-0.015] [-0.174,-0.068] [0.091,0.270] 91
2017 [-0.059,-0.016] [-0.210,-0.098] [0.090,0.302] 105
2018 [-0.061,-0.019] [-0.238,-0.120] [0.137,0.354] 102
2019 [-0.063,-0.017] [-0.229,-0.105] [0.091,0.331] 106
2020 [-0.044,-0.011] [-0.183,-0.093] [0.178,0.362] 149

all years [-0.045,-0.031] [-0.179,-0.139] [0.135,0.201] 914
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Supplementary Table 7.43: Summary of scaling fits and majority group size adjustment and
heterophobia variance explained estimated from the gini coefficient for cities with more than
500 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.122 0.180 -0.009 0.309 64
2011 0.086 0.134 0.008 0.251 59
2012 0.130 0.266 0.053 0.448 46
2013 0.164 0.194 0.058 0.413 52
2014 0.125 0.105 0.018 0.261 66
2015 0.053 0.216 0.166 0.433 74
2016 0.112 0.121 0.135 0.354 91
2017 0.097 0.155 0.099 0.343 105
2018 0.114 0.170 0.143 0.405 102
2019 0.094 0.147 0.080 0.316 106
2020 0.061 0.128 0.170 0.350 149

all years 0.105 0.160 0.082 0.327 914

Supplementary Table 7.44: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment parameters estimated from the gini coefficient for cities with more
than 500 IAT responses.

year scaling β1 majority group size
adjustment β2

s1 + s2 β3 # cities

2010 [-0.094,-0.021] [-0.305,-0.097] [-0.118,0.206] 64
2011 [-0.086,-0.010] [-0.310,-0.077] [-0.066,0.276] 59
2012 [-0.080,-0.013] [-0.285,-0.110] [0.005,0.239] 46
2013 [-0.076,-0.019] [-0.262,-0.088] [0.012,0.243] 52
2014 [-0.069,-0.016] [-0.212,-0.052] [-0.029,0.207] 66
2015 [-0.047,-0.003] [-0.213,-0.108] [0.099,0.256] 74
2016 [-0.055,-0.015] [-0.177,-0.071] [0.084,0.240] 91
2017 [-0.059,-0.016] [-0.212,-0.100] [0.086,0.270] 105
2018 [-0.061,-0.019] [-0.241,-0.124] [0.127,0.315] 102
2019 [-0.063,-0.017] [-0.232,-0.106] [0.076,0.283] 106
2020 [-0.044,-0.011] [-0.187,-0.097] [0.163,0.321] 149

all years [-0.045,-0.031] [-0.182,-0.142] [0.164,0.241] 914
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Supplementary Table 7.45: Summary of scaling fits and majority group size adjustment and
heterophobia variance explained estimated from the η2 measure for cities with more than
500 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.122 0.180 -0.010 0.309 64
2011 0.086 0.134 -0.001 0.244 59
2012 0.130 0.266 0.043 0.442 46
2013 0.164 0.194 0.062 0.418 52
2014 0.125 0.105 0.015 0.260 66
2015 0.053 0.216 0.140 0.410 74
2016 0.112 0.121 0.091 0.317 91
2017 0.097 0.155 0.097 0.341 105
2018 0.114 0.170 0.116 0.382 102
2019 0.094 0.147 0.056 0.296 106
2020 0.061 0.128 0.115 0.300 149

all years 0.105 0.160 0.056 0.305 914

Supplementary Table 7.46: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment parameters estimated from the η2 measure for cities with more
than 500 IAT responses.

year scaling β1 majority group size
adjustment β2

s1 + s2 β3 # cities

2010 [-0.094,-0.021] [-0.334,-0.091] [-0.105,0.177] 64
2011 [-0.086,-0.010] [-0.348,-0.081] [-0.077,0.224] 59
2012 [-0.080,-0.013] [-0.329,-0.131] [-0.004,0.204] 46
2013 [-0.076,-0.019] [-0.314,-0.118] [0.014,0.228] 52
2014 [-0.069,-0.016] [-0.249,-0.059] [-0.031,0.195] 66
2015 [-0.047,-0.003] [-0.269,-0.142] [0.083,0.242] 74
2016 [-0.055,-0.015] [-0.230,-0.101] [0.057,0.221] 91
2017 [-0.059,-0.016] [-0.276,-0.140] [0.086,0.277] 105
2018 [-0.061,-0.019] [-0.309,-0.164] [0.108,0.306] 102
2019 [-0.063,-0.017] [-0.285,-0.130] [0.049,0.265] 106
2020 [-0.044,-0.011] [-0.255,-0.143] [0.118,0.280] 149

all years [-0.045,-0.031] [-0.229,-0.181] [0.050,0.077] 914
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Supplementary Table 7.47: Comparison of noise ceiling estimates and full sample R2 for the
deviance measure of segregation a threshold of >500 responses per city.

year noise ceiling R2 range Full Sample R2 Lower Bound Noise Corrected R2

2010 [0.70, 0.92] 0.34 0.48
2011 [0.68, 0.91] 0.26 0.38
2012 [0.53, 0.86] 0.41 0.78
2013 [0.53, 0.86] 0.38 0.72
2014 [0.54, 0.87] 0.25 0.47
2015 [0.37, 0.80] 0.34 0.93
2016 [0.45, 0.84] 0.29 0.63
2017 [0.62, 0.89] 0.30 0.49
2018 [0.60, 0.89] 0.34 0.57
2019 [0.57, 0.88] 0.26 0.47
2020 [0.45, 0.83] 0.25 0.55

Supplementary Table 7.48: Comparison of noise ceiling estimates and full sample R2 for the
deviance measure of segregation a threshold of >250 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.26 0.47
2011 0.20 0.37
2012 0.23 0.54
2013 0.24 0.70
2014 0.18 0.49
2015 0.22 0.57
2016 0.25 0.69
2017 0.24 0.51
2018 0.33 0.72
2019 0.24 0.55
2020 0.15 0.45
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Supplementary Table 7.49: Comparison of noise ceiling estimates and full sample R2 for the
deviance measure of segregation a threshold of >1000 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.26 0.37
2011 0.31 0.41
2012 0.23 0.41
2013 0.34 0.65
2014 0.39 0.77
2015 0.45 0.79
2016 0.38 0.76
2017 0.35 0.55
2018 0.35 0.50
2019 0.26 0.36
2020 0.30 0.50

Supplementary Table 7.50: Comparison of noise ceiling estimates and full sample R2 for the
η2 measure of segregation and a threshold of >500 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.32 0.46
2011 0.26 0.38
2012 0.45 0.86
2013 0.43 0.81
2014 0.27 0.51
2015 0.42 1.13
2016 0.32 0.72
2017 0.35 0.56
2018 0.39 0.65
2019 0.30 0.53
2020 0.30 0.68
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Supplementary Table 7.51: Comparison of noise ceiling estimates and full sample R2 for the
η2 measure of segregation and a threshold of >250 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.27 0.49
2011 0.21 0.39
2012 0.24 0.55
2013 0.27 0.79
2014 0.19 0.51
2015 0.25 0.65
2016 0.28 0.75
2017 0.28 0.61
2018 0.37 0.81
2019 0.28 0.64
2020 0.20 0.59

Supplementary Table 7.52: Comparison of noise ceiling estimates and full sample R2 for the
η2 measure of segregation and a threshold of >1000 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.30 0.42
2011 0.32 0.43
2012 0.30 0.54
2013 0.42 0.80
2014 0.43 0.85
2015 0.51 0.90
2016 0.44 0.88
2017 0.42 0.65
2018 0.40 0.58
2019 0.32 0.44
2020 0.37 0.61
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Supplementary Table 7.53: Comparison of noise ceiling estimates and full sample R2 for the
gini coefficient measure of segregation and a threshold of >500 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.32 0.46
2011 0.26 0.39
2012 0.46 0.87
2013 0.42 0.80
2014 0.27 0.51
2015 0.44 1.19
2016 0.36 0.80
2017 0.35 0.56
2018 0.41 0.68
2019 0.32 0.57
2020 0.35 0.80

Supplementary Table 7.54: Comparison of noise ceiling estimates and full sample R2 for the
gini coefficient measure of segregation and a threshold of >250 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.29 0.52
2011 0.22 0.41
2012 0.24 0.55
2013 0.29 0.84
2014 0.19 0.53
2015 0.26 0.69
2016 0.32 0.87
2017 0.31 0.67
2018 0.39 0.86
2019 0.33 0.75
2020 0.26 0.77
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Supplementary Table 7.55: Comparison of noise ceiling estimates and full sample R2 for the
gini coefficient measure of segregation and a threshold of >1000 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.31 0.44
2011 0.33 0.45
2012 0.34 0.62
2013 0.43 0.82
2014 0.43 0.84
2015 0.51 0.89
2016 0.44 0.88
2017 0.43 0.66
2018 0.41 0.58
2019 0.33 0.46
2020 0.40 0.67

Supplementary Table 7.56: Comparison of noise ceiling estimates and full sample R2 for the
segregation index measure of segregation and a threshold of >500 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.32 0.45
2011 0.26 0.38
2012 0.46 0.87
2013 0.43 0.81
2014 0.27 0.51
2015 0.44 1.20
2016 0.36 0.78
2017 0.34 0.55
2018 0.40 0.67
2019 0.32 0.57
2020 0.35 0.78
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Supplementary Table 7.57: Comparison of noise ceiling estimates and full sample R2 for the
segregation index measure of segregation and a threshold of >250 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.28 0.50
2011 0.22 0.41
2012 0.24 0.55
2013 0.28 0.83
2014 0.19 0.52
2015 0.26 0.68
2016 0.31 0.85
2017 0.29 0.64
2018 0.39 0.85
2019 0.32 0.74
2020 0.25 0.74

Supplementary Table 7.58: Comparison of noise ceiling estimates and full sample R2 for the
segregation index measure of segregation and a threshold of >1000 responses per city.

year Full Sample R2 Lower Bound Noise Corrected R2

2010 0.31 0.44
2011 0.33 0.44
2012 0.34 0.62
2013 0.44 0.83
2014 0.43 0.84
2015 0.52 0.92
2016 0.45 0.90
2017 0.42 0.66
2018 0.41 0.58
2019 0.34 0.47
2020 0.39 0.65
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Supplementary Table 7.59: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained for cities with more than 250 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.125 0.128 -0.007 0.255 126
2011 0.056 0.120 -0.005 0.188 119
2012 0.165 0.047 -0.008 0.225 88
2013 0.134 0.091 -0.008 0.232 98
2014 0.097 0.066 -0.008 0.172 116
2015 0.044 0.158 -0.004 0.211 129
2016 0.078 0.145 0.021 0.246 148
2017 0.079 0.132 0.015 0.232 163
2018 0.143 0.131 0.061 0.323 157
2019 0.054 0.168 0.008 0.236 174
2020 0.046 0.059 0.040 0.150 228

all years 0.086 0.117 0.003 0.205 1546

Supplementary Table 7.60: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained for cities with more than 1000 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.053 0.143 -0.022 0.239 31
2011 0.112 0.145 -0.030 0.284 31
2012 0.047 0.082 -0.019 0.195 26
2013 0.052 0.195 0.016 0.319 28
2014 0.039 0.262 0.036 0.371 34
2015 0.014 0.340 0.055 0.436 43
2016 0.115 0.227 0.022 0.369 57
2017 0.071 0.207 0.045 0.339 61
2018 0.090 0.210 0.022 0.337 59
2019 0.054 0.169 -0.002 0.248 61
2020 0.041 0.147 0.094 0.292 89

all years 0.076 0.201 0.026 0.298 520
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Supplementary Table 7.61: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained from the η2 measure for cities with more than
250 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.125 0.128 0.010 0.265 126
2011 0.056 0.120 0.012 0.199 119
2012 0.165 0.047 0.002 0.228 88
2013 0.134 0.091 0.035 0.263 98
2014 0.097 0.066 0.004 0.180 116
2015 0.044 0.158 0.033 0.243 129
2016 0.078 0.145 0.050 0.270 148
2017 0.079 0.132 0.071 0.278 163
2018 0.143 0.131 0.118 0.368 157
2019 0.054 0.168 0.052 0.274 174
2020 0.046 0.059 0.094 0.199 228

all years 0.086 0.117 0.036 0.231 1546

Supplementary Table 7.62: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained from the η2 measure for cities with more than
1000 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.053 0.143 0.024 0.276 31
2011 0.112 0.145 -0.008 0.299 31
2012 0.047 0.082 0.069 0.269 26
2013 0.052 0.195 0.115 0.401 28
2014 0.039 0.262 0.085 0.413 34
2015 0.014 0.340 0.126 0.501 43
2016 0.115 0.227 0.104 0.434 57
2017 0.071 0.207 0.125 0.407 61
2018 0.090 0.210 0.091 0.393 59
2019 0.054 0.169 0.065 0.306 61
2020 0.041 0.147 0.167 0.358 89

all years 0.076 0.201 0.088 0.351 520
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Supplementary Table 7.63: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained from the segregation index for cities with more
than 250 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.125 0.128 0.023 0.274 126
2011 0.056 0.120 0.024 0.210 119
2012 0.165 0.047 0.006 0.231 88
2013 0.134 0.091 0.053 0.277 98
2014 0.097 0.066 0.009 0.183 116
2015 0.044 0.158 0.045 0.253 129
2016 0.078 0.145 0.092 0.307 148
2017 0.079 0.132 0.085 0.290 163
2018 0.143 0.131 0.137 0.382 157
2019 0.054 0.168 0.103 0.320 174
2020 0.046 0.059 0.148 0.250 228

all years 0.086 0.117 0.064 0.255 1546

Supplementary Table 7.64: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained from the segregation index for cities with more
than 1000 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.053 0.143 0.040 0.288 31
2011 0.112 0.145 0.004 0.307 31
2012 0.047 0.082 0.121 0.312 26
2013 0.052 0.195 0.136 0.418 28
2014 0.039 0.262 0.079 0.408 34
2015 0.014 0.340 0.134 0.508 43
2016 0.115 0.227 0.113 0.441 57
2017 0.071 0.207 0.134 0.414 61
2018 0.090 0.210 0.092 0.395 59
2019 0.054 0.169 0.085 0.324 61
2020 0.041 0.147 0.195 0.383 89

all years 0.076 0.201 0.111 0.372 520
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Supplementary Table 7.65: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained from the gini coefficeint for cities with more
than 250 IAT responses.

year scaling R2 majority group
size adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.125 0.128 0.031 0.281 126
2011 0.056 0.120 0.027 0.212 119
2012 0.165 0.047 0.007 0.231 88
2013 0.134 0.091 0.059 0.282 98
2014 0.097 0.066 0.009 0.184 116
2015 0.044 0.158 0.050 0.258 129
2016 0.078 0.145 0.100 0.313 148
2017 0.079 0.132 0.104 0.306 163
2018 0.143 0.131 0.147 0.391 157
2019 0.054 0.168 0.106 0.323 174
2020 0.046 0.059 0.158 0.260 228

all years 0.086 0.117 0.067 0.258 1546

Supplementary Table 7.66: Summary of scaling fits and majority group size adjustment and
heterophobia adjustment variance explained from the gini coefficeint for cities with more
than 1000 IAT responses.

year scaling R2 Majority Group
Size Adjustment
R2

heterophobia
adjustment R2

overall R2 # cities

2010 0.053 0.143 0.044 0.291 31
2011 0.112 0.145 0.010 0.310 31
2012 0.047 0.082 0.120 0.311 26
2013 0.052 0.195 0.128 0.410 28
2014 0.039 0.262 0.079 0.408 34
2015 0.014 0.340 0.118 0.494 43
2016 0.115 0.227 0.105 0.434 57
2017 0.071 0.207 0.136 0.415 61
2018 0.090 0.210 0.093 0.395 59
2019 0.054 0.169 0.078 0.317 61
2020 0.041 0.147 0.205 0.393 89

all years 0.076 0.201 0.111 0.371 520
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Supplementary Figure 7.1: Depression rates are lower in larger cities. The rate of indi-
viduals with high depression scores is approximately β = 0.085. The blue line shows the
Nadaraya–Watson kernel regression estimate and the envelope with dashed lines shows the
95% confidence interval for the kernel regression.
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Supplementary Figure 7.2: Attention increases in larger cities even when including partici-
pants who report they were distracted during the task.
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Supplementary Figure 7.3: The rate of participants who were distracted during the attention
task decreased slightly with city size. The blue line shows the Nadaraya–Watson kernel
regression estimate and the envelope with dashed lines shows the 95% confidence interval
for the kernel regression.
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Supplementary Figure 7.4: Attention increases in larger cities even when only including data
from participants’ first time completing the attention task.
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Supplementary Figure 7.5: Social Network Clustering decreases with city population size.
In data from a large online social network, average local clustering
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Supplementary Tables

Supplementary Table 7.1: Scaling slope estimates and upper and lower 95% confidence
bounds for different thresholds for depression.

threshold beta lower upper
40 -0.081897 -0.089391 -0.073341
41 -0.086149 -0.094957 -0.077788
42 -0.091519 -0.114251 -0.062688
43 -0.081103 -0.090140 -0.071892
44 -0.084772 -0.093766 -0.075670
45 -0.088288 -0.098103 -0.077953
46 -0.084351 -0.095333 -0.072959
47 -0.083739 -0.094813 -0.072771
48 -0.086673 -0.098015 -0.075639
49 -0.095199 -0.106052 -0.083338
50 -0.096373 -0.106973 -0.084122
51 -0.087315 -0.098771 -0.075796
52 -0.075026 -0.085952 -0.063509
53 -0.085681 -0.098720 -0.072464
54 -0.084602 -0.097370 -0.070910
55 -0.092216 -0.106983 -0.076881
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Supplementary Table 7.2: Logistic regression for hit rate > 0.9 including city population
and individual dempographics.

Dep. Variable: hit No. Observations: 3082
Model: Logit Df Residuals: 3053
Method: MLE Df Model: 28
Date: Thu, 09 Feb 2023 Pseudo R-squ.: 0.05018
Time: 15:20:16 Log-Likelihood: -748.03
converged: True LL-Null: -787.55
Covariance Type: nonrobust LLR p-value: 9.283e-07

coef std err z P> |z| [0.025 0.975]
const -3.0406 1.129 -2.693 0.007 -5.253 -0.828
log population 0.1194 0.047 2.546 0.011 0.027 0.211
age -0.3018 0.158 -1.912 0.056 -0.611 0.008
female -0.0408 0.006 -6.607 0.000 -0.053 -0.029
white 0.0244 0.227 0.108 0.914 -0.420 0.469
black 0.0194 0.299 0.065 0.948 -0.567 0.606
asian 0.1518 0.327 0.464 0.643 -0.490 0.793
latino 0.1635 0.210 0.779 0.436 -0.248 0.575
indian 0.0565 0.525 0.108 0.914 -0.972 1.085
pacific islander -0.9949 1.038 -0.958 0.338 -3.029 1.040
native 0.4016 0.340 1.180 0.238 -0.266 1.069
high school/GED 0.5811 0.769 0.755 0.450 -0.927 2.089
some college 0.5928 0.755 0.785 0.432 -0.887 2.072
2year 0.6441 0.771 0.835 0.404 -0.867 2.155
4year 0.6448 0.755 0.854 0.393 -0.834 2.124
graduate school 0.8445 0.758 1.114 0.265 -0.642 2.331
income 1 0.1534 0.350 0.438 0.661 -0.533 0.840
income 2 -0.1627 0.364 -0.447 0.655 -0.876 0.550
income 3 -0.1957 0.356 -0.549 0.583 -0.894 0.503
income 4 -0.0926 0.340 -0.273 0.785 -0.759 0.574
income 5 -0.0376 0.341 -0.110 0.912 -0.707 0.631
income 6 -0.2353 0.351 -0.670 0.503 -0.924 0.453
income 7 -0.1415 0.361 -0.392 0.695 -0.849 0.566
income 8 -0.7203 0.515 -1.398 0.162 -1.730 0.289
income 9 0.1574 0.560 0.281 0.779 -0.941 1.256
fair health -0.4194 0.481 -0.872 0.383 -1.362 0.524
good health 0.1324 0.450 0.294 0.768 -0.749 1.014
very good health 0.1628 0.458 0.355 0.722 -0.735 1.061
excellent health -0.0714 0.537 -0.133 0.894 -1.123 0.980
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Supplementary Table 7.3: Logistic regression for hit rate > 0.9 including stress and sleep
variables and city population.

Dep. Variable: hit No. Observations: 2224
Model: Logit Df Residuals: 2216
Method: MLE Df Model: 7
Date: Thu, 13 Apr 2023 Pseudo R-squ.: 0.01177
Time: 10:02:14 Log-Likelihood: -603.18
converged: True LL-Null: -610.36
Covariance Type: nonrobust LLR p-value: 0.04508

coef std err z P> |z| [0.025 0.975]
const -5.2671 1.918 -2.747 0.006 -9.026 -1.508
log population 0.1341 .050 2.656 0.008 0.035 0.233
short term stress 0.4859 0.901 0.539 0.590 -1.280 2.252
short term stress squared -0.0014 0.130 -0.011 0.991 -0.256 0.253
chronic stress 0.7754 0.546 1.420 0.156 -0.295 1.846
chronic stress squared 0.0298 0.089 0.335 0.738 -0.145 0.204
short term x chronic stress -0.2382 0.125 -1.913 0.056 -0.482 0.006
morning sleep quality -0.2099 0.203 -1.036 0.300 -0.607 0.187

Supplementary Table 7.4: Sensitivity test for the threshold for poor performance with all data
included. Note that the negative coefficient indicates that there are fewer poor performers
in larger cities.

hit rate threshold β low high
0.450 -0.033 -0.041 -0.026
0.460 -0.033 -0.041 -0.025
0.470 -0.033 -0.040 -0.025
0.480 -0.033 -0.041 -0.025
0.490 -0.033 -0.040 -0.025
0.500 -0.033 -0.040 -0.025
0.510 -0.014 -0.018 -0.010
0.520 -0.014 -0.018 -0.010
0.530 -0.014 -0.018 -0.010
0.540 -0.014 -0.018 -0.010
0.550 -0.013 -0.017 -0.009

156



Supplementary Table 7.5: Sensitivity test for the threshold for low false alarm rate. Note
that the positive coefficient indicates that there are more high performers in larger cities.

false alarm threshold beta low high
0.150 0.000 -0.004 0.004
0.160 0.000 -0.004 0.003
0.170 0.010 0.007 0.013
0.180 0.010 0.007 0.014
0.190 0.010 0.007 0.014
0.200 0.010 0.007 0.013
0.210 0.009 0.006 0.012
0.220 0.009 0.006 0.012
0.230 0.010 0.007 0.013
0.240 0.011 0.007 0.014
0.250 0.011 0.008 0.014

Supplementary Table 7.6: Sensitivity test for the threshold for high false alarm rate. Note
that the negative coefficient indicates that there are fewer poor performers in larger cities.

false alarm threshold beta low high
0.850 0.000 -0.085 0.073
0.840 0.000 -0.068 0.071
0.830 0.000 -0.018 0.017
0.820 0.000 -0.018 0.018
0.810 -0.009 -0.011 -0.006
0.800 -0.009 -0.011 -0.006
0.790 -0.009 -0.011 -0.006
0.780 -0.009 -0.011 -0.006
0.770 -0.009 -0.011 -0.006
0.760 -0.009 -0.012 -0.006
0.750 -0.009 -0.012 -0.006
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Supplementary Table 7.7: Sensitivity test for the threshold for poor performance with data
from larger cities only. Note that the negative coefficient indicates that there are fewer poor
performers in larger cities.

hit rate threshold β low high
0.450 -0.037 -0.047 -0.026
0.460 -0.036 -0.047 -0.025
0.470 -0.036 -0.047 -0.026
0.480 -0.036 -0.046 -0.025
0.490 -0.036 -0.046 -0.025
0.500 -0.036 -0.046 -0.025
0.510 -0.010 -0.017 -0.004
0.520 -0.010 -0.016 -0.005
0.530 -0.010 -0.016 -0.004
0.540 -0.010 -0.016 -0.004
0.550 -0.009 -0.015 -0.004

Supplementary Table 7.8: Sensitivity test for the threshold for “perfect" performance with
all data included.

hit rate threshold β low high
0.850 0.088 0.072 0.113
0.860 0.088 0.070 0.112
0.870 0.088 0.072 0.112
0.880 0.097 0.077 0.132
0.890 0.093 0.072 0.141
0.900 0.093 0.070 0.134
0.910 0.093 0.068 0.135
0.920 0.103 0.078 0.169
0.930 0.103 0.075 0.162
0.940 0.103 0.075 0.160
0.950 0.100 0.074 0.156
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Supplementary Table 7.9: Sensitivity test for the threshold for “perfect" performance with
data from larger cities only.

hit rate threshold β low high
0.850 0.109 0.085 0.135
0.860 0.109 0.084 0.134
0.870 0.109 0.086 0.132
0.880 0.142 0.115 0.173
0.890 0.163 0.129 0.202
0.900 0.163 0.132 0.197
0.910 0.163 0.129 0.199
0.920 0.170 0.134 0.217
0.930 0.170 0.131 0.215
0.940 0.170 0.131 0.216
0.950 0.171 0.131 0.214
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