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LIST OF FIGURES

2.1 Recent experimental studies have suggested the existence of two basic secondary
structural motifs in chromatin involved in epigenetic regulatory function: the
α-tetrahedron (A,C) and β-rhombus (B,D) [89]. α-tetrahedron motifs have been
suggested to contribute to local chromatin compaction. β-rhombus conformations
promote an open ladder-like chromatin structure that forms linear elongated
aggregates. A,B) Representative PDB structures from cryo-EM and x-ray crystal-
lography of tri- and tetranucleosomes [122, 27]. B,C) Representative structures
from 1CPN simulations of tetranucleosome fibers. . . . . . . . . . . . . . . . . . 9

2.2 Two tetranucleosome motifs, α-tetrahedron and β-rhombus, induce local chromatin
compaction or form elongated aggregates at short nucleosome repeat lengths of
157. A,D) In 4-nucleosome fibers we observe a global free energy minimum
at (ψ1 ≈ −1.8, ψ2 ≈ −0.7) and a metastable minimum at (ψ1 ≈ 1.3, ψ2 ≈
−1.5) that lies ∼2.21 kcal/mol higher in free energy. The global minimum
contains β-rhombus-like structures, while the local minimum contains compact α-
tetrahedron-like packings. B,E) The 8-nucleosome fiber possesses two metastable
states with a large basin containing the global free energy minimum residing at
(ψ1 ≈ 0.2, ψ2 ≈ −0.8) and a weak local minimum at (ψ1 ≈ −1.5, ψ2 ≈ 2.8). The
more compact structures reside in the local minimum and contain predominantly
α-tetrahedron-like packings, whereas the more extended in the global free energy
minimum are β-rhombus-like. C,F) The 16-nucleosome fiber possesses a global
minimum at (ψ1 ≈ −0.99, ψ2 ≈ −0.23) containing the β-rhombus-like fiber that
is ∼0.83 kcal/mol more stable than the local minimum at (ψ1 ≈ 2.44, ψ2 ≈ −0.01)
containing the α-tetrahedron-like fiber. . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Chromatin fibers of 187 NRL show a high propensity for small α-tetrahedron and
β-rhombus clusters. Nucleosomes engage in short-lived stacking interactions that
form distinct tetranucleosome motifs. A,D) In 4-nucleosome fibers, we observe two
β-rhombus clusters corresponding to the two distinct ways in which nucleosomes
can arrange themselves to form the motif. The leading diffusion CV correlated with
α-structure preference (ρ(4)α,ψ1 = 0.95) and the second leading CV correlated with β-

preference (ρ(4)β,ψ2 = 0.97). B,E) In the 8-nucleosome fibers, α-tetrahedron motifs
contribute to local chromatin compaction, while β-rhombus structures resemble
the more ladder-like chromatin structure. β-preference is highly correlated with
the leading diffusion CV (ρ(8)β,ψ1 = 0.91). C,F) A 16-nucleosome fiber exhibits
structural heterogeneity comprised of several α-tetrahedron and β-rhombus motifs.
The second CV is moderately correlated with the end-to-end distance of the fiber
(ρRend

, ψ
(16)
2 = 0.56). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.4 Chromatin fibers at NRL 197 are highly irregular and flexible and resemble a “sea
of nucleosomes” model. An increase in fiber length is accompanied with an increase
in structural irregularity and flexibility. A,D) In 4-nucleosome fibers, the increase
in nucleosome repeat length allows for more complex nucleosome arrangements
of α/β-structures. The leading diffusion map CV is strongly correlated with
end-to-end distance of the fiber Rend (ρ(4)Rend,ψ1

= 0.88). B,E) In 8-nucleosome
fibers, the α-tetrahedron motifs contributes to local chromatin compaction while
β-rhombus structures resemble the more ladder-like chromatin structure. The
second CV is moderately correlated with end-to-end distance (ρ(8)Rend,ψ2

= 0.42).
C,F) In 16-nucleosome fibers, local chromatin motion is isotropic and largely
driven by thermal fluctuations. As for the 8-nucleosome case, the second CV is
moderately correlated with end-to-end distance (ρ(16)Rend,ψ2

= 0.69). . . . . . . . . 19
2.5 Analysis of the 4, 8, and 16-nucleosome systems at varying NRLs using diffusion

maps reveal a leading gap in the eigenvalue spectra after the 1st non-trivial mode. 25
2.6 Two representative structures of the 8-nucleosome system at NRL 187 shows a

high propensity for small α-tetrahedron (A) and β-rhombus clusters (B). . . . . 26
2.7 A fiber of 16-nucleosomes at an NRL of 197 transitioning between an open (left) to

closed state (right). The α-tetrahedron and β-rhombus motifs can be considered
as the folding units of the chromatin fiber. . . . . . . . . . . . . . . . . . . . . . 26

3.1 A denoising autoencoder (DAE) is constructed and trained on simulations of the
chromatin fiber. We simulate nucleosome arrangements using the 1CPN model of
chromatin and use the resulting trajectories to generate synthethic STEM images
by superimposing crystal structures of the nucleosome (PDB: 1KX5) and DNA
snippets. Noise commonly found in angle annular dark field (HAADF) STEM
experiments is applied to the images and the DAE trained to remove this noise
and preserve the underlying signal. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 A denoising autoencoder (DAE) comprises an encoder that compresses the noisy
image into a low-dimensional latent space embedding and a decoder that de-
compresses this embedding into a denoised image. The latent space presents
an information bottleneck that the trained DAE model uses to reject noise and
preserve signal, enabling reconstruction of denoised images. The DAE is trained
on noise-free images for which the ground truth is known and which are artificially
corrupted by noise under a noise model representative of the intended application
domain for the trained DAE. The image illustrates a DAE that performs an
encoding of a 28×28 pixel greyscale (i.e., single channel) image into a 64-channel
8×8 latent space embedding under three convolution plus max pooling layers,
followed by decoding under three convolutional plus upsampling layers to generate
a denoised 28×28 pixel image [53] . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.3 Resolution in dense chromatin regions is obstructed by the intrinsic noise of
STEM imaging. a) The α-tetrahedron and β-rhombus tetranucleosome motifs
have been proposed to play a regulatory and epigenetic role in the accessibility
of DNA to external cellular machinery. The α-tetrahedron promotes DNA com-
paction whereas the β-rhombus results in elongated chomatic structures. Histone
proteins are colored in red and DNA is colored in blue. b) In this work we
employ high-resolution ChromSTEM tomograms comprised of 33 slices at 1.23
µm × 1.23 µm × 100 nm. The structural resolution accessible to experimental
ChromSTEM tomograms is limited by the conformational variability of chromatin
within chromatin-rich regions, Poisson noise, and the ability of image segmentation
approaches to differentiate background and chromatin signal by voxel intensity. . 45

3.4 Illustrative example of DAE denoising performance to one selected synthetic
ChromSTEM test image harvested from the 1CPN MD simulations. a) The
selected snapshot was harvested from 1CPN MD simulations of chromatin fibers
varying from 150-200 nucleosome repeat length (NRL) and comprised of 4-16
nucleosomes. b) The noise-free synthetic ChromSTEM image I was constructed
from the MD snapshot using Eqn. 3.1. This constitutes the ground truth image
against which we evaluate denoising performance. c) The noisy image Ĩ was
generated by adding artificial noise representative of that found in angle annular
dark field (HAADF) STEM experiments to the noise-free image using Eqn. 3.2.
The denoised image Î produced from the noisy test image by d) non-local means
(NLM), e) block-matching and 3D filtering (BM3D), and f) the DAE. The DAE
outperforms NLM and BM3D along all three performance metrics (low MSE, high
PSNR, high SSIM) for this particular image and over all 3000 test images (cf.
Table 3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Application of the DAE to denoise the experimental tomogram of an imaged A549
cell. The a) original experimental image and b) the image generated after passage
through the trained DAE. To improve visual clarity and better highlight features
of the images, the pixel intensities are normalized to a [0,1] scale and colored by a
pseudo-color gradient indicated by the colorbar as opposed to a single greyscale
channel. The denoised image achieves improved resolution of nucleosome-level
features within chromatin-rich regions of the experimental image. A subsection
comparison between the original c) and denoised experiment e) shows the reduction
of noise and results in a smoother 3D reconstruction of the chromatin fiber from
the denoised image f) compared to the original d). g) Comparison of the power
spectral density (PSD), P (k) between the raw and denoised images shows the
denoised image to preserve the large-scale, low-frequency energy density at small
wavenumbers k corresponding to the morphological structure of the chromatin
fiber, and attenuate the small-scale, high-frequency components at high k that
can be primarily attributed to noise. . . . . . . . . . . . . . . . . . . . . . . . . 49
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3.6 Denoised ChromSTEM images reveal tetranucleosomes motifs within a dense
chromatin cluster. a) Analysis of nucleosome clusters extracted from chromatin-
rich regions of the a) raw experimental tomogram and after passing through the
DAE. The denoised image clearly shows the presence of α-tetrahedron motifs
that are difficult to discern in the raw image. b) Using Chimera, we construct a
prototypical tetranucleosome motif (PDB:1KX5) within the extracted volume of
our denoised tomogram and find an optimal fit with an average high correlation
score of 0.87 [97]. The construction of the 3D interpolation from the 2D imaging
slices is computationally expensive but can, in principle, be extended to large
sections of chromatin using high performance computing resources. . . . . . . . 51

3.7 Denoised ChromSTEM images reveal tetranucleosomes motifs within dense chro-
matin clusters. Analysis of nucleosome clusters extracted from chromatin-rich
regions within a 200 × 200 nm2 section of the A) raw experimental tomogram
and B) after passing through the DAE. The denoised image clearly shows the
presence of C) α-tetrahedron motifs that are difficult to discern in the raw image.
We find no evidence for β-rhombus motifs or for the 30-nm fiber. . . . . . . . . 52

3.8 Structural analysis of chromatin-rich packing domains from the DAE-denoised
A549 3D ChromSTEM tomogram. a) A 3D conformation of a packing domain
identified from the denoised ChromSTEM tomogram (Figure 4.5b). Statistical
distribution of b) domain size Rf , c) packing scaling exponent D, and d) cluster
volume concentration CVC, over the 85 chromatin-rich packing domains identified
from the denoised ChromSTEM tomogram. Denoising enables identification of
∼12% more domains and domains more closely associated in space relative to
analysis of the raw 3D ChromSTEM tomograms. . . . . . . . . . . . . . . . . . 54

3.9 Mass scaling and density analysis originating from the domain centers. A) Mass
and radial chromatin density are evaluated starting from the center of a domain
(white circle with cyan outline) in concentric circles with increasing distance, r.
B) Mass scaling of an individual domain in the log-log scale. We performed linear
regression on the mass scaling curve and obtained a slope, D < 3 for r up to 68
nm (blue dashed line). Beyond the red asterisk, a more significant divergence
(>5% error) in the mass scaling behavior is observed. Further, as r increases,
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Radial chromatin density of an individual domain in the log-log scale. Radial
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estimated from denoised tomograms. Right: Five representative regions of the
raw and the denoised tomograms show that more domains were identified in the
denoised tomogram. Centers are indicated in cyan. . . . . . . . . . . . . . . . . 59

4.1 PTM induced modifications are modeled as modification to the well depth, e0, of
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5.1 The RBD domain (tan) of SARS-CoV-2 recognizes ACE2 (white) as its receptor.
We identify and characterize the interactions at three potential small-drug binding
sites located at the binding interface between the RBD and the ACE2 receptor,
inside the ACE2 protein, and a new previously unidentified distal site to which
the drug Luteolin has a high binding affinity (red). Nitrofurantoin is shown in
blue and Sapropterin is shown in green. . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 The interaction diagrams for equilibrated configurations of ligands at the interface
(left, Nitrofurantoin), in the RBD domain (middle, Luteolin) and in ACE2 region
(right, Sapropterin) are shown. Hydrogen bonds act as the dominating interactions
responsible for stabilizing Nitrofurantoin which are formed between the carbonyl
oxygens of Nitrofurantoin and the Lys353 residue of ACE2 and RBD residue
Gln493. Luteolin is stabilized by a hydrogen bond between its carbonyl oxygen
and Tyr369 and pi-alkyl stacking between its aromatic group and Phe377 of the
RBD domain. Sapropterin, which is found buried in the ACE2 cavity is stabilized
by hydrogen bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Relative protein-protein non-native contact maps in the presence of A) Eriodictyol,
B) Nitrofurantoin, C) Sapropterin, and D) Luteolin. The relative non-native
contact maps measure the change in contacts relative to the complex with no
ligands (red more contacts, blue less contacts). From the graphs we see that the
first three panels have identical contact profiles compared to D. . . . . . . . . . 88

5.4 Luteolin induces large allosteric strain when RBD domain is bound to ACE2. A)
Root Mean Squared Fluctuations (RMSF) between the RBD/ACE2 complex with
top scoring ligand. B) Shear strains mapped. For shear train calculations, only
Cα atoms are included. Strain analysis suggest a strong allosteric strain to the
ACE2 binding region of the RBD domain when RBD is in complex with ACE2
and Luteolin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Bound Luteolin induces large strain at RBD/ACE binding region. A) Difference
in estimated Root Mean Squared Fluctuations (RMSF) between the RBD domain
and Luteolin in complex are shown. (B) Shear strains mapped onto RBD/LUT
complex. Regions flanking disulfide bonds have the highest atomic fluctuations that
contribute the deformation energy of the ACE2 binding region. C,D) Distal site
binding disrupts intramolecular RBD interactions inducing conformational changes
at ACE2 binding interface. Visualization of residue-residue cross correlations.
Blue lines indicate anti-correlation motions with values between -0.4 and -0.6.
Higher correlations between distal sites sans ligand (C) and in the presence of
Luteolin (D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Distal binding by Luteolin induces conformational changes at ACE2 binding site.
Induced conformational changes at loop binding regions are visualized as captured
by the second dominant principal component. Images of important conformational
changes are superimposed to emphasize conformations changes introduced after
Luteolin binding to distal binding site. . . . . . . . . . . . . . . . . . . . . . . . 91
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ABSTRACT

The packing of nucleosomes regulates gene expression through genome condensation and

expansion, but the specific structures and their thermodynamic stabilities remain unresolved.

In this work, we employ the use of a meso-scale model of chromatin, referred to as "1-Cylinder-

per-Nucleosome," or 1CPN, in combination with nonlinear manifold learning to identify and

characterize the structure and free energy of metastable states of short chromatin segments.

Our results reveal the intrinsic formation of two previously characterized tetranucleosomal

conformations, the "α-tetrahedron" and the "β-rhombus," which have been suggested to

play a role in inducing chromatin compaction or elongation, respectively. Building upon

these findings, we leverage convolutional neural networks and molecular dynamics simula-

tions, to design a deep convolutional denoising autoencoder (DAE) capable of providing

nucleosome-level resolution of scanning transmission electron microscopy images of chro-

matin (ChromSTEM). Our DAE is trained on synthetic images generated from simulations

of the chromatin fiber using the 1CPN model of chromatin, thereby learning structural

features driven by the physics of chromatin folding. We find that our DAE outperforms

other well-known denoising algorithms without degradation of structural features and allows

for the resolution of individual nucleosomes and organized domains within chromatin-dense

regions. Lastly, we investigate how post-translational modifications (PTMs), modeled as

modifications to the nucleosome interaction potential, affect the construction of these motifs

and, consequently, the chromatin fiber as a whole. Our study provides important insight into

chromatin folding and highlights the value of interdisciplinary approaches in this field.
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CHAPTER 1

INTRODUCTION

Chromatin, the complex of DNA, RNA, and proteins found in the nuclei of eukaryotic cells,

has a dynamic, multi-scale structure that regulates transcription, replication, and DNA

repair [126, 39]. Its basic building block, the nucleosome, is a disk-like DNA-protein complex

comprising approximately 146 basepairs (bp) of DNA wrapped around a protein complex

known as the histone octomer [39]. These small positively charged proteins (H2A, H2B,

H3, and H4) bind tightly to the negatively charged DNA. [54]. Adjacent nucleosomes are

connected by a segment of linker DNA. When the length of this linker DNA is combined with

the length of the core DNA, it is referred to as the nucleosome repeat length (NRL), which

has a distribution centered around 180 base pairs, depending on the organism, cell type, or

specific loci within a cell type [126].

The long-proposed idea that nucleosomes condense into a 30-nm thick chromatin fiber,

progressively folding to form mitotic chromosomes and interphase nuclei, continues to generate

debate, as does the character and properties of higher-order chromatin structures in vivo [125].

Experimental techniques, such as cryo-electron microscopy, X-ray scattering, scanning trans-

mission electron microscopy, chromosome conformation capture (Hi-C), and super-resolution

STORM (stochastic optical reconstruction microscopy) have indicated that chromatin in

living cells is predominantly comprised of highly irregular structures [28, 49, 62, 87, 105, 108].

This aligns with the emerging view that chromatin organization is dominated by intermediate

scale assemblies (∼3-10 nucleosomes), as revealed by chromosome conformation capture

techniques and electron cryotomography [16, 49, 83, 89].

Building on the importance of these smaller nucleosome clusters, tetranucleosomes have

been suggested to play a crucial role in gene expression regulation as structural and functional

units [49, 89, 118]. They have been successfully crystallized at nucleosome repeat lengths

(NRLs) of 157 and 167 bp and detected in lengthier chromatin fibers of 12 tandem repeats
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of 177 and 187 bp through cryo-EM [27, 109]. Additionally, cryo-EM has provided evidence

of nucleosome stacking in human cell lines, revealing two-start tetranucleosomes stacked

one atop the other [29]. Recently, two tetranucleosome motifs, the α-tetrahedron and β-

rhombus, have been proposed to serve regulatory functions [89]. Through the integration of

nucleosome-resolved Hi-C measurements and simulated annealing-molecular dynamics (SA-

MD), nucleosome pair orientations were examined, focusing on which nucleosome ends were

connected in the yeast genome [89]. Located near regulatory regions, these specific folding

motifs might perform a regulatory function and align with existing knowledge of chromatin

organization, such as nucleosomal "clutches" and "topologically associated domains" (TADs)

[89]. Nevertheless, it remaines uncertain whether these motifs emerge due to a regulated set

of interactions steered by protein partners or if they’re intrinsically stable folding states.

Though imaging techniques have advanced considerably, it is remains difficult to capture

these smaller folding motifs in vivo. Chemical fixation with glutaraldehyde and methanol,

which are commonly used in electron microscopy and super-resolution light microscopy, has

advanced chromatin research. However, these techniques have the unintended consequence

of generating artificial structures that are not normally present under biological conditions

[69]. Hydrophobic interactions increase under these conditions, causing free molecules to

adhere and form long, continuous artificial structures [69]. In addition, the long duration

required for these imaging techniques may obscure essential short-term nucleosome dynamics

and misrepresent the true nature of small nucleosome domains [69].

Here, molecular dynamics (MD) can provide a temporal and spatial resolution that is

frequently challenging to achieve experimentally. It permits the controlled and efficient

study of short-term dynamics and smaller scale structures. Moreover, MD simulations can

help distinguish between structures that emerge as a result of biological interactions and

structures that may emerge as a result of experimental conditions. By combining these

simulations with experimental observations, a more thorough and precise understanding of
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the structure, stability, and function of tetranucleosome motifs could be attained. This is

crucial for comprehending chromatin packaging, DNA accessibility, and the field of epigenetics

as a whole.

In this dissertation, we delve deeper into the investigation of complex chromatin struc-

tures, with a particular emphasis on the intrinsic arrangements of nucleosomes. Through

a combination of simulation techniques and exhaustive data analysis methods, our aim is

to decipher the relationships between nucleosomal organization and chromatin structure in

order to shed new light on their roles in gene regulation. Here we present our methodology,

key findings, and future directions in the pursuit of elucidating the unique characteristics of

chromatin organization and its implications.

In Chapter 2, we investigate the complex multiscale organization of chromatin, a structure

crucial for DNA processes such as transcription, replication, and repair. Using the 1CPN

mesoscale model of chromatin and diffusion maps, a non-linear manifold learning technique,

we analyze the structure and energy dynamics of short chromatin segments consisting of

four to 16 nucleosomes. Our study confirmed the formation of two known tetranucleosomal

structures: the compact ’α-tetrahedron’ and the elongated ‘β-rhombus’. These structures

have been suggested to play a significant roles in DNA accessibility and gene expression

regulation. We noted that as the nucleosome repeat length increased, the structure exhibited

greater irregularity and flexibility, leading to a dynamic, liquid-like behavior facilitating

structural reorganization. These findings underscore the inherent stability of tetranucleosome

motifs, suggesting that local internucleosomal interactions significantly influence chromatin

packing, dynamics, and accessibility through emergent local mesoscale structures.

In Chapter 3 we illustrate a general model for linking experimental imaging and theoretical

modeling via machine-learning techniques to facilitate high-resolution exploration of the

structural organization of biological systems. Using a combination of molecular dynamics

and machine-learning techniques, we devised and trained a denoising autoencoder (DAE)
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to effectively remove noise typically observed in scanning transmission electron microscopy

tomography with ChromEM staining (ChromSTEM) imaging. Our model was trained using

physics-based coarse-grained molecular dynamics simulations employing the 1CPN model and

made it capable of differentiating between the signal from chromatin structures and artificial

noise. When tested on synthetic ChromSTEM images generated from molecular simulations,

where the ground truth is precisely known, our model outperformed conventional denoising

techniques, achieving a 57% improvement in the mean squared error over block-matching

and 3D filtering and a 72% improvement over nonlocal means. On experimental tomographs,

the denoised images allowed for the detection of approximately 12% more chromatin-rich

packing domains obscured by noise within the raw images.

In Chapter 4, our results reveal that alterations in the intensity of local nucleosome-

nucleosome interactions can significantly impact higher-order chromatin folding. Crucially,

even as interaction strength diminished, local compaction persisted, thus resolving previously

reported counterintuitive findings. Our study also illuminated the balance between different

folding motifs and the role of DNA linker length in these dynamics. Altogether, our results

offer insights into the mechanisms underpinning the complex interplay of histone modifications

on chromatin structure.

With the emergence of the global COVID-19 pandemic, an unexpected need for the

application of these molecular modeling techniques surfaced. The pandemic dramatically

highlighted the importance of understanding protein structure and dynamics in disease

pathogenesis and treatment. In Chapter 5 we present our study on the spike protein of the

novel coronavirus, SARS-CoV-2, which was the primary target of immunological interventions.

Our research focus shifted to investigate the molecular dynamics of the SARS-CoV-2 spike

protein to provide insights into this pressing issue. Notably, the fundamental understanding

of protein folding, structure, and dynamics - principles at the heart of biophysics - is the

link between my initial research on chromatin fiber and my later endeavor on the viral
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spike protein. Incorporating this latter project into my dissertation, therefore, not only

reflects the unpredictable nature of science, but also highlights the adaptability and extensive

applicability of these computational methods.
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CHAPTER 2

TETRANUCLEOSOME INTERACTIONS DRIVE CHROMATIN

FOLDING

Reprinted with permission from Alvarado, W.; Moller, J.; Ferguson, A. L.; de Pablo,

J. J. Tetranucleosome Interactions Drive Chromatin Folding. ACS Cent. Sci. 2021, 7, 6,

1019–1027. DOI: 10.1021/acscentsci.1c00085. Copyright 2021 American Chemical Society.

2.1 Author contributions

W.A. and J.M. conceptualized the study and interpreted findings. W.A. conducted simulations

and developed analysis software. W.A., J.D.P., and, A.F. wrote the paper. A.F. and J.D.P.

supervised the project. All authors participated in reviewing and commenting on the study

drafts.

2.2 Abstract

The multi-scale organizational structure of chromatin in eukaryotic cells is instrumental to

DNA transcription, replication, and repair. At mesoscopic length scales, nucleosomes pack

in a manner that serves to regulate gene expression through condensation and expansion

of the genome. The particular structures that arise and their respective thermodynamic

stabilities, however, have yet to be fully resolved. In this study, we combine molecular

modeling using the 1CPN meso-scale model of chromatin with nonlinear manifold learning

to identify and characterize the structure and free energy of metastable states of short

chromatin segments comprising between four to 16 nucleosomes. Our results reveal the

intrinsic formation of two previously characterized tetranucleosomal conformations, the “α-

tetrahedron” and the “β-rhombus”, which have been suggested to play an important role in

the accessibility of DNA and, respectively, induce local chromatin compaction or elongation.
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The spontaneous formation of these motifs is potentially responsible for the slow nucleosome

dynamics observed in experimental studies. Increases of the nucleosome repeat length (NRL)

are accompanied by more pronounced structural irregularity and flexibility and, ultimately, a

dynamic liquid-like behavior that allows for frequent structural reorganization. Our findings

indicate that tetranucleosome motifs are intrinsically stable structural states, driven by

local internucleosomal interactions, and support a mechanistic picture of chromatin packing,

dynamics, and accessibility that is strongly influenced by emergent local mesoscale structure.

2.3 Introduction

Chromatin is the complex of DNA, RNA, and proteins found in eukaryotic cell nuclei.

Chromatin’s dynamic, multi-scale structure is central to the regulation of transcription,

replication, and DNA repair [126, 39]. The basic building block of eukaryotic chromatin

is the nucleosome, a disk-like DNA-protein complex of approximately 146 basepairs (bp)

of DNA wrapped around a protein complex known as the histone octomer [39]. These

small and positively charged proteins bind strongly to the negatively charged DNA. Each

nucleosome contains four core histone proteins (H2A, H2B, H3, and H4) which are found

in equal proportions in cells [54]. Nucleosomes connect to adjacent nucleosomes through a

segment of linker DNA whose combined length with core DNA is referred to as a nucleosome

repeat length (NRL). Nucleosome repeat lengths exhibit a distribution centered around 180

bp, depending on organism, cell type, or loci in a given cell type [126].

It has long been proposed and debated that nucleosomes condense into a 30-nm thick

chromatin fiber that progressively folds to form mitotic chromosomes and interphase nuclei

[125]. The character and properties of higher-order chromatin structures in vivo also continue

to be the source of debate [125]. Experimental techniques such as cryo-electron microscopy, X-

ray scattering, scanning transmission electron microscopy, chromosome conformation capture

(Hi-C), and super-resolution STORM (stochastic optical reconstruction microscopy) indicate
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that chromatin in living cells is predominantly comprised of highly irregular structures

[28, 49, 62, 87, 105, 108]. The emerging view that chromatin organization is dominated

by intermediate scale assemblies (∼3-10 nucleosomes) is supported by results from various

chromosome conformation capture techniques and electron cryotomography, which have

revealed the existence of clusters comprising only a few nucleosomes that may play a role in

chromatin biology [16, 49, 83, 89].

Tetranucleosomes are proposed to be functional and structural units that regulate gene

expression [49, 89, 118]. They have been crystallizable at NRLs of 157 and 167 bp and

observed in longer chromatin fibers of 12 tandem repeats of 177 and 187 bp from cryo-

EM [27, 109]. Cryo-EM experimental evidence of nucleosome stacking, with two-start

tetranucleosomes stacked on top of each other, has also been reported in human cell lines

[29]. Two tetranucleosome motifs have recently been proposed to serve regulatory functions:

the α-tetrahedron and β-rhombus [89]. The all-atom structure of the α-tetrahedron and

β-rhombus motifs are shown in Figure 2.1A and 2.1B respectively [122, 27]. In Figure

2.1C-D, we provide a representation of these two motifs that relies on the 1CPN model.

By combining nucleosome-resolved Hi-C measurements with simulated annealing-molecular

dynamics (SA-MD), the orientation of nucleosome pairs were analyzed by focusing on which

nucleosome ends were ligated to one another in yeast genome [89]. Given their location

near regulatory regions, within genes (α-tetrahedron) and at gene ends (β-rhombus), these

specific folding motifs may serve a regulatory function and seem consistent with what

is already established about chromatin organization, such as nucleosomal “clutches” and

“topologically associated domains” (TADs) [89]. It is unclear, however, whether these motifs

arise due to an orchestrated set of interactions governed by protein partners, or if they are

intrinsically stable structural states of the nucleosome. Chemical fixation with compounds

such as glutaraldehyde and methanol, which are employed in EM and super-resolution light

microscopy, have benefited the study of chromatin but introduce the formation of artificial
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Figure 2.1: Recent experimental studies have suggested the existence of two basic secondary
structural motifs in chromatin involved in epigenetic regulatory function: the α-tetrahedron
(A,C) and β-rhombus (B,D) [89]. α-tetrahedron motifs have been suggested to contribute
to local chromatin compaction. β-rhombus conformations promote an open ladder-like
chromatin structure that forms linear elongated aggregates. A,B) Representative PDB
structures from cryo-EM and x-ray crystallography of tri- and tetranucleosomes [122, 27].
B,C) Representative structures from 1CPN simulations of tetranucleosome fibers.

structures not present under biological conditions [69]. The adhearance of free molecules,

facilitated by the increase in hydrophobic interactions, form long and continuous artificial

structures which has become an ever more increasing issue in newer imaging experiments

such as STORM [69]. Furthermore, long imaging times may mask important short-time

nucleosome dynamics and mischaracterize small nucleosome domains [69]. Resolving the

emergent structure and stability of tetranucleosome motifs as a function of NRL is of critical

biological interest in understanding chromatin packing, DNA accessibility, and epigenetics.

In this work we relied on large-scale simulations of various chromatin fiber lengths using

the recently developed 1CPN meso-scale model of chromatin (1-Cylinder-per-Nucleosome)

[61]. This model is structured around a rigorous multiscale approach where free energies are
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derived from an established and extensively validated model of the nucleosome and mapped

onto a single anisotropic topology [35, 59]. The 1CPN model has accurately reproduced a

range of chromatin properties, including nucleosome-nucleosome free energy interactions,

nucleosome unwrapping free energies, and sedimentation coefficients of short chromatin fibers

[61], and its computational efficiency enables access to length and time scales not currently

possible with atomistic models.

To investigate the organizational properties of chromatin, we used nonlinear manifold

learning to identify the metastable states and collective motions that mediate transitions

between such states (see Diffusion Maps in Materials and Methods). We identified the

formation of two previously characterized tetranucleosomal conformations (α-tetrahedron

and β-rhombus motifs) that play an important role in the accessibility of DNA. Our results

show that the relative thermodynamic stability of these two motifs are intrinsic properties of

the chromatin chain independent of external cellular factors. Our findings and trends with

NRL are consistent with experimental observations and provide new mechanistic insight into

mesoscale structure formation and the hierarchical structure and conformational transitions

of chromatin.

2.4 Results and Discussion

We present the results of 1CPN simulations of three representative chromatin fibers with

NRL values of 157, 187, and 197. These repeat lengths were selected due to their structures

being available from X-ray and cyro-EM, thereby allowing direct comparisons to experiment

[27, 118, 107]. For each NRL system we considered chromatic fibers containing four, eight,

and 16 nucleosomes, and identified the metastable states and oligonucleosome organization

using diffusion map dimensionality reduction. Simulations were conducted from an initial

elongated conformation; convergence was considered achieved when the root mean square

deviation (RMSD) with respect to the initial frame approached a steady state (see Simulating
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the Chromatin Fiber in Material and Methods). Where possible, we make contact with

experimental measurements.

2.4.1 NRL 157

Diffusion maps are a non-linear dimensionality reduction technique that extracts collective

variables (CVs) characterizing the large-scale collective motions of molecular systems [32].

These CVs are computed as the eigenvectors of a particular transition matrix characterizing the

similarity of various system configurations. The appropriate number of eigenvectors to retain

in the low-dimensional diffusion map embeddings can be determined by identifying a gap in the

eigenvalue spectrum of the transition matrix that demarcate the leading modes characterizing

the important large scale collective motions from those associated with smaller amplitude

conformational changes. Often the spectrum may exhibit multiple gaps corresponding to a

hierarchical splitting into groups of collective modes ordered by decreasing amplitude. In

all systems studied in this work we observe the leading spectral gap to occur after the first

non-trivial eigenvalue (Figure 2.5). This suggests that the conformational dynamics of the

system are dominated by a single CV, and we invariably correlate the leading eigenvector with

global contraction or expansion of the fiber. In many cases we also find the second eigenvector

to also be informative and we can often correlate it with some additional aspect of the fiber

conformational motions as discussed below. Many of the eigenvalue spectra exhibit additional

spectral gaps indicative of a hierarchical partitioning of CVs, but our exploration of the

higher order eigenvectors did not show any obvious correlation with putative physical order

parameters or expose any additional interpretability beyond what we were able to extract

from the 2D embeddings. For this reason, in addition to visual clarity and accessibility, all

embeddings in this work are 2D in nature.

In Figure 2.2A-C we present 2D embeddings of the 95,000 simulation snapshots of the

chromatin fibers with NRL 157 into the two leading diffusion map CVs (ψ1,ψ2). To provide
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some physical interpretability of the diffusion map embeddings, we computed the RMSD of

each contiguous stretch of four nucleosomes relative to a prototypical α/β-structure motif by

passing a 4-nucleosome sliding window along the fiber. Dividing by the number of windows

defines an order parameter by which to measure the propensity of the complete fiber for

either motif. In the four and eight nucleosome fibers, a Pearson correlation analysis reveals

the α/β-structure preference to be strongly correlated with the leading diffusion map CV

(ρ(4)α,ψ1 = −0.75, ρ
(4)
β,ψ1

= 0.87; ρ
(8)
α,ψ1

= 0.68, ρ
(8)
β,ψ1

= −0.72). For the 16-nucleosome fiber, the

leading CV is strongly correlated with the radius of gyration Rg (ρ(16)Rg,ψ1
= −0.74). The

strong correlation with radius of gyration (Rg) indicates that the leading CV extracted by

diffusion maps is strongly associated with the compaction and expansion of the 16-nucleosome

fiber. Inspection of the molecular configurations of the elongated and compact fibers in Figure

2.2C, reveals that the elongated fiber contains a high degree of β motif character whereas the

compact fiber is composed of primarily α motifs. For the systems studied in this work, it

is a general trend that the leading CVs identified by diffusion maps tend to correspond to

local α/β motif character for shorter NRL values and fewer nucleosomes versus more global

descriptors such as the fiber radius of gyration or end-to-end distance for longer NRL values

and more nucleosomes. This transition can be understood as a result of the increased length

and flexibility of the fiber leading to the emergence of more global collective variables that

subsume and contain the local packing effects.

To resolve the metastable states of the system, in Figure 2.2D-F we present the correspond-

ing free energy surfaces (FES) in the Gibbs free energy G(Ψ) constructed over the 2D intrinsic

manifolds and decorated with representative molecular renderings. In the 4-nucleosome

system (Figure 2.2D), a global free energy minimum is observed at (ψ1 ≈ −1.8, ψ2 ≈ −0.7),

and a metastable minimum is found at (ψ1 ≈ 1.3, ψ2 ≈ −1.5) lying ∼2.21 kcal/mol higher

in free energy. Visualization of the simulation snapshots contained within the local minima

of the free energy landscape confirms the results of the Pearson correlation analysis that
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Figure 2.2: Two tetranucleosome motifs, α-tetrahedron and β-rhombus, induce local chromatin
compaction or form elongated aggregates at short nucleosome repeat lengths of 157. A,D)
In 4-nucleosome fibers we observe a global free energy minimum at (ψ1 ≈ −1.8, ψ2 ≈ −0.7)
and a metastable minimum at (ψ1 ≈ 1.3, ψ2 ≈ −1.5) that lies ∼2.21 kcal/mol higher in free
energy. The global minimum contains β-rhombus-like structures, while the local minimum
contains compact α-tetrahedron-like packings. B,E) The 8-nucleosome fiber possesses two
metastable states with a large basin containing the global free energy minimum residing
at (ψ1 ≈ 0.2, ψ2 ≈ −0.8) and a weak local minimum at (ψ1 ≈ −1.5, ψ2 ≈ 2.8). The more
compact structures reside in the local minimum and contain predominantly α-tetrahedron-like
packings, whereas the more extended in the global free energy minimum are β-rhombus-like.
C,F) The 16-nucleosome fiber possesses a global minimum at (ψ1 ≈ −0.99, ψ2 ≈ −0.23)
containing the β-rhombus-like fiber that is ∼0.83 kcal/mol more stable than the local minimum
at (ψ1 ≈ 2.44, ψ2 ≈ −0.01) containing the α-tetrahedron-like fiber.
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ψ1 should separate configurations based on α/β character, with the global minimum at

low-ψ1 containing β-rhombus-like structures of the four nucleosomes, and the local minimum

at high-ψ1 containing primarily of compact α-tetrahedron-like packings. These two motifs

were previously reported in several chromosome conformation capture experiments, which

have provided evidence for the existence of tri- and tetranucleosome folding motifs as the

primary level of organization in yeast genome [49, 89]. As mentioned earlier, oligonucleosome

motifs may serve an important role as functional elements for processes like transcription,

replication, and DNA repair [83]. In addition, the rearrangement of tetranucleosomes from

open/closed states may serve as a potential target for cellular regulation. For example,

previous studies have shown many chromatin regulators have a preference to bind to multinu-

cleosome structures in vitro [74]. We emphasize that our simulations were conducted from an

initial elongated conformation, and we have verified that our sampling of the conformational

ensemble is converged with the fiber making multiple transitions over the intrinsic manifold

and between the two basins. As such, these structures represent inherent metastable states

of the 4-nucleosome NRL 157 system.

In the larger 8-nucleosome system we again observe two metastable states with a large

basin for the global free energy minimum at (ψ1 ≈ 0.2, ψ2 ≈ −0.8), and a weak local

minimum at (ψ1 ≈ −1.5, ψ2 ≈ 2.8) lying ∼2.51 kcal/mol higher in free energy (Figure 2.2E).

As for the 4-nucleosome fiber, the global minimum consists of more extended β-rhombus-like

arrangements and the local minimum and contain more compact α-tetrahedron-like packings.

This analysis reveals that the prototypical α-tetrahedron and β-rhombus tetranucleosome

motifs are preserved within the longer 8-nucleosome fiber.

The 16-nucleosome fiber exhibits a similar trend, with a global minimum at (ψ1 ≈

−0.99, ψ2 ≈ −0.23) consisting of a β-rhombus-like fiber that is ∼0.83 kcal/mol more stable

than the local minimum at (ψ1 ≈ 2.44, ψ2 ≈ −0.01) that includes the α-tetrahedron-like

fiber (Figure 2.2F). As was the case for the 4 and 8-nucleosome fibers, the 16-nucleosome
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β-rhombus-like fiber is less compact, more elongated, and more stable than the α-tetrahedron-

like fiber. This is due to the condensation and ordered linear packing of the β-rhombus

subunits compared to the relatively poorly packed and disordered chain of α-tetrahedron

motifs.

Our results confirm the existence of two tetranucleosome motifs, α-tetrahedron and

β-rhombus, that induce local chromatin compaction or form elongated aggregates at short

nucleosome repeat lengths of 157, respectively. These computational findings are consistent

with experimental Hi-C studies that have shown α-tetrahedron motifs to contribute to local

chromatin compaction [89]. Tetranucleosomes that take on an α-tetrahedron conformation

introduce kinks and bring disorder into the fiber. β-rhombus conformations, on the other

hand, form an open ladder-like chromatin structure that packs to form linear elongated

aggregates. Our simulations of longer chromatin fibers at an NRL of 157 in the absence of

H1, a linker histone protein considered important in maintaining higher-order chromatin

structure, adopted a zig-zag conformation in agreement with experiments from reconstituted

arrays of nucleosomes without H1 [25, 109]. The crystallization of 157 NRL fibers may be

due to the stabilizing interactions between neighboring nucleosomes which intrinsically form

these tetranucleosome motifs [109].

2.4.2 NRL 187

In Figure 2.3A-C we present the 2D embeddings into the two leading diffusion map CVs

for chromatin fiber with NRL 187. For a 4-nucleosome fiber, the leading diffusion CV is

strongly correlated with α-structural preference (ρ(4)α,ψ1 = 0.95) and the second leading CV

correlated with β-preference (ρ(4)β,ψ2 = 0.97). For an 8-nucleosome fiber, β-preference highly

correlated with the leading diffusion CV (ρ(8)β,ψ1 = 0.91). For the fiber comprised of 16

nucleosomes, the second CV is moderately correlated with the end-to-end distance of the

fiber Rend (ρRend
, ψ

(16)
2 = 0.56). In Figure 2.3D-F we present the corresponding FES and
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their representative molecular renderings derived from simulation.

In contrast to the 4-nucleosome system with 157 NRL (Figure 2.2D), the 187 NRL system

exhibits two distinct β-rhombus wells in the free energy landscape for the 187 NRL (Figure

2.3D). This is a consequence of the increased degree of freedom permitted by the longer NRL

chain that opens up the availability of additional metastable structures. Specifically, the

two wells correspond to two distinct alternative packings of the four nucleosomes into the

β-rhombus motif. The global minimum at (ψ1 ≈ 1.0, ψ2 ≈ 0.5) corresponds to a β-rhombus

where the N and (N+1) nucleosomes lie diagonal from each other. The local minimum

located at (ψ1 ≈ −0.82, ψ2 ≈ −1.62) contains a second β-rhombus conformation where the N

and (N+1) nucleosomes lie directly across from one other and exists ∼3.55 kcal/mol higher in

free energy. The local minimum at (ψ1 ≈ 1.3, ψ2 ≈ −1.5) contains the compact α-tetrahedron

motif that lies ∼1.75 kcal/mol higher in free energy. The gap between clusters suggests

limited sampling in the interstitial region between the metastable α/β states. Comparing our

results to simulations of NRLs of 157 (Figure 2.2D-F), the transition region is destabilized

relative to the metastable states for longer NRL fibers reflecting their larger degree of freedom

to stably pack the nucleosomes into the α/β motifs.

The 8 and 16-nucleosome fibers exhibit a relatively broad free energy landscape comprising

metastable α/β motifs (Figures 2.3E,F, 2.6, and 2.7). As in the case for chromatin fibers of

NRL 157, α-tetrahedron motifs contribute to local chromatin compaction while β-rhombus

structures resemble ladder-like chromatin structure. The presence of several β-rhombus

structures is consistent with the idea of a tri- or tetranucleosome motif in chromatin fiber

folding proposed from Micro-C experiments where the decay of nucleosome-nucleosome

interactions as a function of distance revealed no evidence for long-range periodicity in

inter-nucleosomal interactions but of short-range structures [49]. In addition, the results

of our unbiased simulations where the only driver of the dynamics is thermal fluctuations,

suggest that local chromatin motion is spontaneous, as observed from single-particle tracking
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Figure 2.3: Chromatin fibers of 187 NRL show a high propensity for small α-tetrahedron and
β-rhombus clusters. Nucleosomes engage in short-lived stacking interactions that form distinct
tetranucleosome motifs. A,D) In 4-nucleosome fibers, we observe two β-rhombus clusters
corresponding to the two distinct ways in which nucleosomes can arrange themselves to form
the motif. The leading diffusion CV correlated with α-structure preference (ρ(4)α,ψ1 = 0.95)

and the second leading CV correlated with β-preference (ρ(4)β,ψ2 = 0.97). B,E) In the 8-
nucleosome fibers, α-tetrahedron motifs contribute to local chromatin compaction, while
β-rhombus structures resemble the more ladder-like chromatin structure. β-preference is
highly correlated with the leading diffusion CV (ρ(8)β,ψ1 = 0.91). C,F) A 16-nucleosome
fiber exhibits structural heterogeneity comprised of several α-tetrahedron and β-rhombus
motifs. The second CV is moderately correlated with the end-to-end distance of the fiber
(ρRend

, ψ
(16)
2 = 0.56).

experiments [73]. The observed local motion of chromatin at longer NRLs are characteristic of

fluid-like behavior, suggesting a more irregular and dynamic view of chromatin. Interestingly,

variability in motion seems to be a product of the constraints imposed by physical or

geometrical factors. Experimental single-nucleosome tracking data in living human cells have

suggested a nucleosome’s motion dependence on nucleosome-nucleosome interactions [5]. The

fiber makes multiple transitions over the intrinsic manifold and between the two metastable

states. As such, these nucleosomes engage in short-lived stacking interactions, relative to

total simulation time, that form distinct tetranucleosome motifs which we propose may be

responsible for slowing chromatin dynamics through transient trapping in metastable states.
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2.4.3 NRL 197

We present in Figure 2.4A-C the 2D embeddings into the two leading diffusion map CVs

for chromatin fibers of NRL 197. For the 4-nucleosome fiber, the end-to-end distance Rend

is strongly correlated with the leading diffusion CV (ρ(4)Rend,ψ1
= 0.88). In the case of 8

and 16 nucleosomes, each leading CVs lacked simple physical interpretation but the second

CV correlated moderately with end-to-end distance (ρ(8)Rend,ψ2
= 0.42, ρ

(16)
Rend,ψ2

= 0.69). We

observed that for longer NRL, fibers are highly irregular and flexible, resembling a “sea of

nucleosomes” model [28, 87]. In this view, nucleosomes are able to interact with local and

distant partners, leading to a more dynamic, liquid-like behavior that supports structural

plasticity and frequent reorganization.

The FES for a 4-nucleosome 197 NRL fiber in Figure 2.4D presents the various ways in

which either motif can assemble. As in the case of a 187 NRL fiber, the increase in nucleosome

repeat length allows for more complex nucleosome arrangements of α/β-structures. As

previous studies have suggested, shorter linker lengths form less flexible fibers, which have

the advantage of exposing their DNA to transcription and replication machinery by the

displacement of only a few nucleosomes [95]. The lack of a cohesive structure for longer

linker lengths suggests that they are less stable and more prone to opening as observed

experimentally [99]. At 8 and 16 nucleosomes (Figure 2.4E,F), the liquid-like behavior of

chromatin becomes more apparent. Representative structures for both fibers exhibit structural

heterogeneity comprised of several α-tetrahedron and β-rhombus motifs. Our results are

in line with ChromEMT experiments which have confirmed the presence of small clusters

of ∼2-10 nucleosomes, and a lack of larger organized structures [93]. Our results suggest

that these motifs arise due to an orchestrated set of interactions that are mainly driven by

nucleosome-nucleosome interactions.

The liquid-like behavior of chromatin is critical to gene expression since these dynamic

changes directly affect DNA accessibility. Hi-C experiments have shown a correlation between
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Figure 2.4: Chromatin fibers at NRL 197 are highly irregular and flexible and resemble a
“sea of nucleosomes” model. An increase in fiber length is accompanied with an increase in
structural irregularity and flexibility. A,D) In 4-nucleosome fibers, the increase in nucleosome
repeat length allows for more complex nucleosome arrangements of α/β-structures. The
leading diffusion map CV is strongly correlated with end-to-end distance of the fiber Rend
(ρ(4)Rend,ψ1

= 0.88). B,E) In 8-nucleosome fibers, the α-tetrahedron motifs contributes to local
chromatin compaction while β-rhombus structures resemble the more ladder-like chromatin
structure. The second CV is moderately correlated with end-to-end distance (ρ(8)Rend,ψ2

= 0.42).
C,F) In 16-nucleosome fibers, local chromatin motion is isotropic and largely driven by
thermal fluctuations. As for the 8-nucleosome case, the second CV is moderately correlated
with end-to-end distance (ρ(16)Rend,ψ2

= 0.69).

the structural changes induced by the liquid-like behavior of chromatin and gene expression

levels [8]. In addition, the changes in replication timing during cell differentiation has been

suggested to involve the fluctuations of TAD structures [100]. Modeling studies using a

simple polymer model of chromatin have shown that these TAD domains are susceptible to

the liquid-like movement of chromatin [7]. The regulatory role of these intrinsically stable

oligonucleosome motifs remains to be determined.
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2.5 Conclusion

By analyzing long simulation trajectories generated by a coarse-grained multi-scale chromatin

model using nonlinear manifold learning, we resolved the spontaneous and intrinsic formation

within the chromatin fiber of α-tetrahedron and β-rhombus motifs – two previously charac-

terized tetranucleosomal conformations that play an important role in the accessibility of

DNA. Our analysis showed that both motifs represent metastable states that correspond to

local free energy minima and whose formation are not dependent on external factors such as

post-translational modifications or protein remodeling complexes. We also characterized the

effects that varying linker DNA length and nucleosome orientation have on the formation

of these motifs and, by extension, local chromatin compaction. We observed that local

chromatin compaction is induced by α-tetrahedron motifs which allow sterically unfavorable

conformations to form such as kinks along the fiber. β-rhombus conformations, on the other

hand, were observed to form an open ladder-like chromatin structure which can facilitate

DNA accessibility by external machinery such as transcription factors. Longer linker lengths

are accompanied by an increase in structural irregularity and flexibility and, ultimately, a

dynamic liquid-like “sea of nucleosomes” [28, 87] behavior that allows for constant structural

reorganization. The lack of a cohesive structure for longer linker lengths suggests that they

are less stable and more prone to opening and would require linker histones or some other

chromatin architectural protein to fold into either conformation. This finding is in line with

experimental observations which have shown that linker histone levels correlate positively

with linker DNA length [135]. Here, we considered homogenous linker lengths and were able

to identify the formation these two unique folding motifs. Hi-C methods, however, have

revealed that these conserved motifs exist within heterogenous chromatin fibers as well [89].

The effects by which variable linker lengths and tetranucleosome motifs affect the free energy

landscape of chromatin folding requires further investigation.

Taken together, our results suggest a two-state model for the local chromatin structure,
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wherein extended β-rhombus motifs are more stable than compact α-tetrahedron motifs. It

is possible that chromatin remodeling proteins and/or epigenetic status may be responsible

for lowering the free energy barrier between the observed states. Future studies will require

examining the mechanism by which linker histones and remodeling protein complexes, such

as Polycomb, affect the emergence of metastable states. In addition, we are investigating the

kinetic rates between each state using Markov state models (MSM) to elucidate dynamical

links between chromatin structure and gene expression.

2.6 Materials and Methods

2.6.1 Simulating the Chromatin Fiber

Coarse-grained molecular dynamics simulations of chromatin fibers were conducted using

the 1CPN model (Figure 1) [61]. The model was parameterized by explicit experimental

measurements and finer-scaled models of DNA and proteins [61] and incorporates and

preserves molecular-level nucleosome physics while enabling kilobase-scale simulations of

genomic DNA. Each nucleosome is represented by a single anisotropic site and DNA as a

spherical particle at a three basepair-per-bead resolution. We refer interested readers to the

detailed descriptions found in prior publications [46, 61, 60].

Simulations of four, eight, and 16 nucleosomes at nucleosome repeat lengths (NRL) 157,

187, and 197 were conducted in a periodic box at a temperature of 300 K and a simulation

time step of 60 fs. Solvent was represented implicitly with a Langevin thermostat and

salt concentration of 150 mM. Nucleosome interactions were represented by the Zewdie

potential, which has shown to be well-suited for representing inter-nucleosomal interactions

[119]. To account for the stabilizing effects of the histone H3 tail of DNA entering and

exiting the nucleosome, an additional pairwise interaction was introduced between the dyad

and DNA sites. Electrostatic interactions were incorporated using Debye-Hückel theory

21



[86]. Simulations were carried out using the LAMMPS molecular dynamics package [98].

Chromatin fibers were initialized in an extended state with the angle between entering and

exiting DNA and the nucleosome at 180◦. The root mean square deviation (RMSD) with

respect to the first given frame achieved a steady state after a ∼100 µs equilibration period.

The final configuration from the relaxation procedure was used as the initial starting structure

for our production run and analysis. Five 30 µs replicas were conducted totaling 150 µs of

simulation time for each permutation and amounting to a total 1.35 ms of overall simulation

time.

2.6.2 Diffusion Maps

Diffusion maps are a nonlinear manifold learning technique that have found extensive appli-

cations in generating low-dimensional embeddings of high-dimensional molecular trajectories

[10, 19, 43]. Assuming that the distance metric used to compare pairs of configurational

microstates is a good proxy for short-time kinetic distance and that the conformational

dynamics over the state space may be approximated as a diffusion process, the leading

collective variables of the diffusion map correspond to the large-scale, high-variance collective

motions of the system, and kinetically close configurational microstates are embedded close

together [32]. We employ the density-adaptive variant of diffusion maps, which we find to be

particularly useful for handling the large inhomogeneities in sampling densities observed in our

chromatin simulations [130]. We provide a brief summary of the approach below, but direct

the reader to prior publications for mathematical and algorithmic details [10, 19, 32, 43].

Pairwise distances dij are calculated between data points in our set, xi and xj, which

correspond to the RMSD between translationally and rotationally aligned nucleosomal

coordinates in frames i and j of the simulation. A Gaussian kernel is applied to dij to
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construct a threshold pairwise distance matrix A,

Aij = exp

(
−d2αij
2ϵ

)
(2.1)

where ϵ is the kernel bandwidth and defines the local neighborhood of each point and α is a

parameter that globally rescales pairwise distances to smooth out large density fluctuations

between densely and sparsely sampled regions of configurational state space [130]. The matrix

A is then row-normalized to form the transition matrix,

M = D−1A (2.2)

where D is a diagonal matrix with elements,

Dii =
∑
j

Aij . (2.3)

The transition matrix, M, is then diagonalized to calculate its eigenvectors ψi and eigenvalues

λi. By the Markov property, the top eigenvalue-eigenvector pair (ψ0 = 1⃗, λ0 = 1) is

trivial, corresponding to the steady-state distribution of a random walk. A gap in the

eigenvalue spectrum after the kth non-trivial eigenvalue identifies the k-leading eigenvectors

corresponding to the leading high-variance nonlinear collective modes of the system. Snapshot

i of the molecular simulation trajectory is embedded into these collective variables spanning

the so-called intrinsic manifold of the system under the mapping,

xi 7→ [ψ1 (i) , ψ2 (i) , . . . , ψk (i)] . (2.4)

The ψk are the leading nonlinear collective variables (CVs) identified by the diffusion map

that correspond to the high-variance dynamical modes of the system and are responsible for

large-scale conformational rearrangements.
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Free energy surfaces over the intrinsic manifold G(Ψ) are computed by collecting histogram

approximations P̂ to the observed distribution of configurational microstates projected into

the leading k-eigenvectors Ψ = {ψi}ki=1 and then inverting this distribution using the relation,

βG (Ψ) = − ln P̂ (Ψ) + C, (2.5)

where β = 1/(kBT ) is the inverse temperature and C is an arbitrary additive constant that

sets an absolute free energy scale [113]. By virtue of the interpretability of the eigenvectors

as the leading collective modes of the system, the free energy surface constructed over the

intrinsic manifold can resolve both the metastable macrostates of the chromatin structure

and the interconversion pathways between them [32]. Diffusion maps have already been used

successfully to examine the dynamics of DNA around histone proteins, thereby providing

precedent for our approach [43], but we note that we could have employed employing tICA,

VAMPnets, or SRVs in conjunction with Markov state models to identify kinetic microstates

and macrostates [17, 72, 88, 94, 110]. These approaches have the benefit of furnishing kinetic

networks without requiring that the assumption of diffusive dynamics be made. In the present

work, it is the structure and thermodynamics of the metastable states are of primary interest,

as opposed to the kinetic transition rates, and for this reason we favor the smooth, continuous,

and more structurally interpretable free energy surfaces furnished by diffusion maps.
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2.8 Supporting Figures

Figure 2.5: Analysis of the 4, 8, and 16-nucleosome systems at varying NRLs using diffusion
maps reveal a leading gap in the eigenvalue spectra after the 1st non-trivial mode.
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Figure 2.6: Two representative structures of the 8-nucleosome system at NRL 187 shows a
high propensity for small α-tetrahedron (A) and β-rhombus clusters (B).

Figure 2.7: A fiber of 16-nucleosomes at an NRL of 197 transitioning between an open (left)
to closed state (right). The α-tetrahedron and β-rhombus motifs can be considered as the
folding units of the chromatin fiber.
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CHAPTER 3

DENOISING AUTOENCODER TRAINED ON

SIMULATION-DERIVED STRUCTURES FOR NOISE

REDUCTION IN CHROMATIN SCANNING TRANSMISSION

ELECTRON MICROSCOPY

Reprinted with permission from Alvarado, W.; Agrawal, V.; Li, W. S.; Dravid, V. P.;

Backman, V.; de Pablo, J. J.; Ferguson, A. L. ACS Cent. Sci. 2023, 9, 6, 1200–1212. DOI:

10.1021/acscentsci.3c00178. Copyright 2023 American Chemical Society.

3.1 Author contributions
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A.F. wrote the paper. V.P.D. supervised collecting sample images. J.D.P., V.B., and A.F.

supervised the project. All authors participated in reviewing and commenting on the study

drafts.

3.2 Abstract

Scanning transmission electron microscopy tomography with ChromEM staining (Chrom-

STEM), has allowed for the three-dimensional study of genome organization. By leveraging

convolutional neural networks and molecular dynamics simulations, we have developed a

denoising autoencoder (DAE) capable of post-processing experimental ChromSTEM images

to provide nucleosome-level resolution. Our DAE is trained on synthetic images generated

from simulations of the chromatin fiber using the 1-cylinder per nucleosome (1CPN) model
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of chromatin. We find that our DAE is capable of removing noise commonly found in

high-angle annular dark field (HAADF) STEM experiments and is able to learn structural

features driven by the physics of chromatin folding. The DAE outperforms other well-known

denoising algorithms without degradation of structural features and permits the resolution of

α-tetrahedron tetranucleosome motifs that induce local chromatin compaction and mediate

DNA accessibility. Notably, we find no evidence for the 30-nm fiber, which has been suggested

to serve as the higher-order structure of the chromatin fiber. This approach provides high-

resolution STEM images that allows for the resolution of single nucleosomes and organized

domains within chromatin dense regions comprising of folding motifs that modulate the

accessibility of DNA to external biological machinery.

3.3 Introduction

Chromatin is the highly organized complex of DNA, RNA, and proteins that packages DNA

within the cell nucleus, prevents DNA damage, and controls replication and gene expression

[127]. The main organizational unit of chromatin is the nucleosome core particle constituting

a complex of DNA wrapped around a histone octomer. [76] Structurally, the nucleosome

is approximately 146 base pairs (bp) of DNA wrapped in 1.67 left-handed superhelical

turns around two copies of the H2A, H2B, H3, and H4 proteins. Chromosomes can contain

hundreds of thousands of nucleosomes linked by short strands of DNA which give it the

appearance of beads on a string. The structure of these 11-nm wide nucleosomal disks is

nearly conserved across all eukaryotic cells and serves as the repeating building block of

chromatin [133]. Beyond this basic structural unit, chromatin is believed to have several

hierarchical levels of DNA packaging, beginning with a 10-nm fiber that further compacts

into a 30-nm fiber, the latter of which has been considered to be a key intermediate level of

chromatin organization and compaction within the eukaryotic nucleus [104]. The structure of

the 30-nm fiber is characterized as a nucleosomal chain folding into a solenoid or a “one-start”
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helical structure. Each nucleosome in this configuration interacts with its fifth and sixth

surrounding nucleosomes as the nucleosomes coil around a central cavity at a rate of about

six nucleosomes per turn [34]. Though first observed under an electron microscope in vitro,

the relevance of the 30-nm fiber in vivo remains an open question [75, 125, 104]. More

recently, studies have suggested nucleosomes can arrange themselves into stable secondary

structural arrays comprised of four nucleosomes that play an important regulatory function

by controlling the accessibility of DNA to external biological machinery [109, 118, 89, 1].

While these tetranucleosomes have been observed in reconstituted chromatin fibers in vitro

and suggested by modeling studies in silico, current imaging techniques remain insufficient to

resolve their existence in situ [3].

Recently, chromatin staining coupled with electron and scanning transmission electron

microscopy (ChromEM and ChromSTEM, respectively) have resolved the 3D organization of

chromatin and observed distinct, anisotropic packing domains [93, 63]. The size and variability

of these domains across different cell types has been suggested to regulate gene activity by

controlling the size of macromolecular complexes that can access DNA within these clusters

thereby affecting processes such as DNA transcription, replication, and repair. In addition,

variability in statistical and morphological properties of packing domains may potentially

play an important role in the construction of higher-order chromatin structures such as

euchromatin and heterochromatin [64]. While these experimental imaging techniques have

provided key insights into chromatin structure, nucleosome-level packing remains obscured

by statistical noise inherent to STEM imaging [3, 112]. In particular, the spatial organization

of nucleosomes within dense chromatin regions suffers from low signal-to-noise ratios at these

smaller length scales. Denoising STEM images provides a means to identify folding motifs

and advance understanding of the details of chromatin structure, nucleosome packing, and

the structure-function relation.

By combining the advances made in STEM imaging for chromatin, molecular dynamics
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simulations, and machine learning, we designed a deep convolutional denoising autoencoder

(DAE) for STEM image denoising. Since noiseless experimental images upon which to

train our denoising models are not available, we instead generate noise-free training data

using by molecular dynamics (MD) simulations. This strategy is similar to the approach

employed by Ziatdinov et al. in studying the surface of molecular structures [141]. We

conduct simulations of the chromatin fiber using the 1-cylinder per nucleosome (1CPN) model

that has been shown to accurately reflect the possible conformations of oligonucleosomal

structures [1, 61, 82]. Snapshots from these MD trajectories are then converted to synthetic

ChromSTEM image datasets which are used to train the DAE to remove noise artificially

added to the training images and produce images with greatly enhanced structural resolution

that enable the identification and analysis of folding motifs within dense DNA regions.

The DAE outperforms other well-known denoising algorithms and, as we demonstrate in

applications of the trained model to experimental ChromSTEM images, resolves specific

tetranucleosome motifs that induce local chromatin compaction and are known to mediate

DNA accessibility. Notably, we find no evidence for the 30-nm fiber, which has been suggested

to serve as the higher-order structure of the chromatin fiber [28, 68]. Our machine-learning

enabled DAE presents a means to bridge experimental ChromSTEM imaging and physics-

based molecular dynamics simulations to realize high-resolution, denoised images capable of

resolving previously unidentifiable tetranucleosome motifs to advance understanding of the

small-scale organization of chromatin and the relationship of structure to function.
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3.4 Methods

3.4.1 Coarse-Grained Molecular Dynamics Simulations and Generation of

Synthetic STEM Data

We train our DAE on tomographic images generated from MD simulations of the chromatin

fiber (Figure 4.1). To generate a synthetic dataset, coarse-grained molecular dynamics

simulations were carried out using the 1-cylinder per nucleosome (1CPN) model of chromatin

[61]. The 1CPN model is parametrized by explicit experimental measurements and atomistic

models of DNA that preserve molecular-level nucleosome physics enabling kilobase-scale

simulations of genomic DNA. The 1CPN model is an appropriate choice since it has been

extensively validated in the literature as a reliable model for capturing chromatin dynamics [61].

The model was fitted against experimental data and has demonstrated its ability to reproduce

a wide range of chromatin processes that include nucleosome unwrapping, sedimentation

coefficients, and interactions between nucleosomes, which is a primary mechanism that drives

chromatin folding [82, 1].

We conducted the 1CPN simulations under conditions representative of those under which

the ChromSTEM images were acquired. As anticipated, the 30-nm fiber was not observed

within in our simulations as the conditions that typically involve its formation are due to

specific in vitro environmental conditions such as the inclusion of high-affinity 601 DNA

repeat and a cationic environment (e.g., 1–2 mM Mg2+) [52]. Furthermore, cryo-EM images

of the 30-nm fiber have not been reported for mitotic chromosomes in vivo [68]. We note

however, that our pipeline is designed to be easily adaptable to new conditions, and that

transfer learning could be used to augment the existing model by repeating the simulations

under the conditions under which the new experimental data was gathered and retraining

the DAE.

After equilibration, three 30 µs replicas were conducted totaling 150 µs of simulation time
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of chromatin fibers varying from 150-200 nucleosome repeat length (NRL) and comprised of

4-16 nucleosomes. The lengths and sizes were chosen to account for the natural variability

in biological systems. We highlight that our simulations cover long time scales that have

not been reached by previous studies. This extended simulation time allows for a more

comprehensive exploration of the phase space and reduces the risk of being trapped in certain

emergy minima. The 1CPN model’s effectiveness in representing chromatin behavior helps

to ensure that our simulation snapshots are indeed representative of the physical system

under study. The combination of long time scale simulations and the use of the 1CPN model

provides a strong foundation for generating a diverse and representative training dataset for

our denoising autoencoder. We performed an internal consistency verification that the 150

µs simulations of each system were sufficiently long to comprehensively probe the relevant

configurational phase space by verifying that the phase space ensemble visited by the first 75

µs and second 75 µs produced similar distributions in key structural order parameters such

as radius of gyration and root-mean-square deviation in reference to the initial elongated

fiber structure.

Approximately 16,000 snapshots from all simulation trajectories were extracted at 28×28

pixel resolution. These synthetic images represent a variety of conformations of the chromatin

fiber at a resolution commensurate with that of typical ChromSTEM imaging experiments

[63, 64]. From this dataset, 12,702 conformations were selected for training and 3,176 held

out as a validation set. An x-ray crystal structure of the nucleosome core particle at 1.9

Å resolution (PDB:1KX5) was superimposed to the location of each nucleosome bead and

linker DNA was built with repeating ATAT bases [23]. Each structure was converted to a

point cloud representation and then voxelized to resemble a high-angle annular dark-field

scanning transmission electron microscope (HAADF-STEM) tomogram. Each synthetic

image stack contained 28×28×9 voxels with a voxel dimension of approximately 3×3×3 nm3

corresponding to the approximate 27 nm3 volume captured in an experimental STEM voxel.
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Mathematically, the voxel intensity, Im,n, is given by the total number of atoms that are

enclosed within the volume of a voxel unit, Vm,n,

Im,n(x) =
N∑
i=1

[
xi ∈ Vm,n

]
, (3.1)

where the position of a given atom is given by xi, m and n denote a voxel constituting the

total image, I, and where we have used Iverson’s bracket notation to denote the indicator

function. Finally, the synthetic image intensity is normalized to match the distribution of

voxel intensity in experimental tomograms [111, 91, 103].

HAADF-STEM has emerged as a powerful imaging technique that provides nanoscale--

level structural detail [116, 58]. It is, however, sensitive to environmental and instrumental

noise during image acquisition that introduces extraneous signals not associated with the

scattering of the sample [112, 9, 12]. For example, images are acquired at different projection

angles by tilting the sample stage, at high-tilt angles; however, focusing becomes more

difficult which leads to image blurring [30]. In addition, limited beam penetration and focal

depth coupled with the restricted tilt range results in a lower set of projections which also

introduces artifacts (i.e., ”missing cone” artifacts) [79, 22]. Beam damage and environmental

noise (e.g. airflow, sound, temperature, etc.) also deteriorate image quality and limits the

accuracy of HAADF-STEM tomographic reconstruction [67, 112, 9]. Due to the particle

nature of electrons and collection method, Poisson noise remains the dominant form of noise

in STEM imaging [78, 112]. To account for these effects within our simulated data, we

apply several HAADF-STEM related noise conditions such as Gaussian noise, Poisson noise,

and tip-blurring effects to each simulated image similar to the approach implemented by

Schwenker et al. [111, 91, 103]. Parameters such as broadening effects, counts, and additive

background noise were adjusted to account for the different levels of noise that may be

encountered during image acquisition. Mathematically, each noise-free image, I, generated
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Figure 3.1: A denoising autoencoder (DAE) is constructed and trained on simulations of the
chromatin fiber. We simulate nucleosome arrangements using the 1CPN model of chromatin
and use the resulting trajectories to generate synthethic STEM images by superimposing
crystal structures of the nucleosome (PDB: 1KX5) and DNA snippets. Noise commonly
found in angle annular dark field (HAADF) STEM experiments is applied to the images and
the DAE trained to remove this noise and preserve the underlying signal.

from the MD simulations is converted into an artificially noisy image, Ĩ, by corrupting it

with articial noise under the noise model:

Ĩ = I + IPoisson + IGaussian + IScan. (3.2)

Given that Poisson noise is not additive and correlated with voxel intensity, we instead begin

by applying a signal-dependent Poisson noise layer on top of each noise-free image using the
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discrete probability distribution:

IPoisson ∼ Pr(N = k) =
λke−λ

k!
(3.3)

where N represents the number of photons measured by a given sensor and λ is the expected

number of photos per unit time interval. We make the assumption that the number of atoms

counted in a given voxel unit (Im,n) is similar to photon counting in a classic Poisson process.

STEM images are susceptible to thermal vibrations and electronic noise which can be

modeled as a Gaussian process [55]. To account for this, we add a Gaussian noise layer that

obeys the distribution:

IGaussian ∼ N(µ, σ2) =
1√
2πσ2

e
− (z−µ)2

2σ2 (3.4)

where µ is equal to the mean of the image and σ is the standard deviation which represents

the broadening (i.e., “spread”) of the signal. Similar to the approach by Schwenker et al. to

emulate noise and distortion conditions common to the HAADF-STEM imaging mode, we

set σ = 0.8 [111, 91, 103].

Finally, scan line shifts, IScan, are random, persistent, time-dependent distortions that

occur due to positioning errors of the electron beam that result in shifts in the image perpen-

dicular to the scan lines [71]. We generated this type of noise by introducing approximately

a 1 subpixel offset randomly along the x-direction and resampling these random shifts via

bilinear interpolation:

IScan ∼ Iux,uy = Im,n(ux, uy) (3.5)

where ux and uy are the desired shift across the range [−1, 1).
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3.4.2 Denoising Autoencoder (DAE) Architecture

As the name suggests, denoising autoencoders (DAE) are artificial neural networks designed

to remove noise from an input signal, frequently images [129]. A typical autoencoder is

comprised of two distinct components: an encoder and decoder. The encoder compresses

a high-dimensional image into a low-dimensional representation. These representations are

called latent representations or encodings which the decoder uses to reconstruct the original

input image. During training, the DAE is provided with training images that have been

artificially corrupted with noise generated by a model representative of the noise expected

to be encountered in the particular application domain. A loss function is applied that

minimizes the difference between the reconstructed image and the original noise-free image.

Intuitively, the training process teaches the DAE to learn a latent space representation that

filters out the noise while preserving the underlying signal within the training data and

permits the decoder to reconstruct denoised images [128]. The trained DAE model may

then be applied to noisy images outside of the training data for which the ground truth is

unknown to predictively reconstruct denoised images. The success and generalizability of

the trained model is contingent on the training images and noise model being sufficiently

representative of the new images to which it is applied and it is good practice to perform

post hoc checks that the model has not introduced artifacts or been applied outside of its

domain of applicability.

We employ a fully convolutional DAE architecture that permits variable input image sizes

to allow for potential variability in training and experimental image sizes [65]. A training

and validation set of 12,702 and 3,176 images (80/20 random split) with 28×28 dimensions

at a batch size of 32 was used for training and validation (Figure 4.2). We guard against

overfitting by employing early stopping based on the validation error on a 20% randomly

sampled hold-out validation partition. These images were harvested from the 1CPN MD

simulations and contain a diversity of conformations of chromatin fibers at a resolution
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Figure 3.2: A denoising autoencoder (DAE) comprises an encoder that compresses the noisy
image into a low-dimensional latent space embedding and a decoder that decompresses this
embedding into a denoised image. The latent space presents an information bottleneck that
the trained DAE model uses to reject noise and preserve signal, enabling reconstruction of
denoised images. The DAE is trained on noise-free images for which the ground truth is
known and which are artificially corrupted by noise under a noise model representative of
the intended application domain for the trained DAE. The image illustrates a DAE that
performs an encoding of a 28×28 pixel greyscale (i.e., single channel) image into a 64-channel
8×8 latent space embedding under three convolution plus max pooling layers, followed by
decoding under three convolutional plus upsampling layers to generate a denoised 28×28
pixel image [53] .

commensurate with that of typical ChromSTEM imaging experiment. We use a convolution

layer of kernel size (3,3) with 256 output filters, and stride 1 employing ReLU activation

functions and followed by a max pooling layer of pool size (2,2). We follow this with a

second ReLU convolutional layer of kernel size (3,3), 128 output filters, and stride 1 followed

by a max pooling layer of pool size (2,2), and finally a third ReLU convolutional layer of

kernel size (3,3), 64 output filters, and stride 1 followed by a max pooling layer of pool size

(2,2). The output of the third convolutional layer produces a low-dimensional latent space
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embedding of the image that serves as an information bottleneck designed to preserve the

image signal and reject noise. The decoder is symmetric to the encoder structure, employing

three convolutional upsampling layers used to rebuild images to their original dimension. Our

network employs a fully convolutional architecture that does not use any fully connected layers

and enables its deployment on images of arbitrary size. Given that images comprise single

channel grayscale pixels with intensities normalized between [0,1], the binary cross-entropy

(BCE) loss function is used:

BCE = − 1
output

size

output
size∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi) , (3.6)

where ŷi is the output prediction and yi is the corresponding target value. It has been shown

that when training autoencoders on image data, minimizing the BCE loss function facilitates

gradient steps in data space from low to high probability regions under the data-generation

distribution [20].

We constructed and trained our DAE in TensorFlow using Keras [18]. Training took ∼3

minutes per epoch on an AMD Ryzen 9 3950X 16-core CPU and Nvidia RTX 3090 GPU card.

Training was performed using the Adam algorithm with a learning rate of 1× 10−3 [56]. We

guard against overfitting by employing early stopping based on the validation error on a 20%

randomly sampled hold-out validation partition. We explored architectures employing 3-6

convolutional layers, first layer filters ranging from 2×2-5×5, and latent spaces bottlenecks

ranging from 2×2×12-16×16×128, but found our result to be relatively insensitive to the

precise choice of architecture. Source code for our DAE and training/validation data are

available at https://github.com/Ferg-Lab/ChromSTEM-Denoising-Autoencoder.
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3.4.3 Denoising Performance

Denoising performance was measured using mean-square error (MSE), peak signal-to-noise

ratio (PSNR), and structural similarity index (SSIM) [132, 31]. Mean-square error is the

total squared error between pixel intensity differences of the original noise-free image, I, and

denoised image, Î, defined as:

MSE =

M∑
m=1

N∑
n=1

[
Im,n − Îm,n

]2
MN

(3.7)

where M and N are the number of rows and columns in the image, and M=N=28 for our

training data. The lower the MSE value the lower the error. Similarly, PSNR measures the

quality of reconstruction of lossy compression by measuring the peak error and is calculated

as:

PSNR = 10 log10

(
R2

MSE

)
(3.8)

where R is the maximum possible pixel value and typically depends on the bit depth of an

image (e.g., for 8-bit images R = 255 [48]. For PSNR, the higher the value the better the

reconstruction.

Whereas MSE and PSNR calculate absolute errors between pixels, the SSIM index

considers degradation as the change of perception in structural information by taking into

account three key features: luminance, contrast, and structure. An SSIM value can range

from (-1) indicating images are structurally different or (+1) indicating they are either the

same or very similar, and is defined as:

SSIM(x, y) = [l(x, y)]a × [c(x, y)]β × [s(x, y)]γ (3.9)
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where,

l(x, y) =
2µxµy + C1

µ2x + µ2y + C1
, (3.10)

c(x, y) =
2σxσy + C2

σ2x + σ2y + C2
, (3.11)

s(x, y) =
σxy + C3

σxσy + C3
. (3.12)

The functions l(x, y), c(x, y), and s(x, y) compare luminance, contrast, and structure between

two images x and y, where here we set x = I and y = Î for our ground-truth and denoised

images, respectively [48]. The variables µx and µy are their respective local means over all

pixel values and represent the luminance of each images. Contrast is measured by taking the

standard deviation σx and σy of all pixel values and σxy is the cross-covariance of the images.

The variables α, β, and γ adjust the relative importance of each feature and are typically set

to unity. The constants Ci = (KiL)
2 prevent functions from becoming undefined, where L

accounts for pixel value range and is set to unity given that our images are normalized in the

range of [0,1]. By convention, we adopt C3 = C2/2 and set K1 = 0.01 and K2 = 0.03 [132].

Denoising performance metrics such as MSE, PSNR, and SSIM are calculated between

a ground-truth image (i.e., noise-free image), I, and its denoised counterpart, Î produced

by the DAE from the artificially noisy image Ĩ. Given that noise-free ChromSTEM images

do not exist to serve as a ground-truth comparison, we rely on power spectral density plots

(PSD) to compare raw and denoised experimental image sets. PSD represents the total signal

power contributed across the frequency domain of a signal. For images, it measures the

strength of the features at different resolutions. This allows for comparison of morphological

features and noise in the low and high wavelength domains, respectively. We compute the

PSD by taking the discrete Fourier transform (DFT) of each image which allows for the
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decomposition of resolutions,

F (k, l) =
M−1∑
m=0

N−1∑
n=0

Im,n exp

{
−2πi

mk

M

}
exp

{
−2πi

nl

N

}
(3.13)

where Im,n is representation of the image in the spatial domain corresponding to the greyscale

intensity of the pixel at row (m) and column (n) coordinates, F (k, l) is the representation of

the image in the Fourier domain corresponding to the Fourier component at discrete row-wise

and column-wise “frequencies” k/M and l/N , and k = 0, . . . , (M − 1) and l = 0, . . . , (N − 1)

[117, 45]. Since we only consider square images for which M = N , we simplify this expression

to equalize the row and column frequency components by setting k = l so that,

F (k) =
M−1∑
m=0

Im,n exp

{
−4πi

mk

M

}
. (3.14)

The PSD follows from the modulus of the DFT as P (k) = |F (k)|.

3.4.4 ChromSTEM Sample Preparation, Imaging, and Reconstruction for

A549 Cell Nucleus

Adenocarcinoma human lung epithelial cell line, A549 (ATCC Manassas, VA) was cultured in

Dulbecco’s Modified Eagle Medium (ThermoFisher Scientific, Waltham, MA, #11965092) and

maintained at 5% CO2 and 37° C. All culture media were supplemented with 10% fetal bovine

serum (Thermo Fisher Scientific, Waltham, MA; #16000044) and penicillin-streptomycin

(100 µg/ml; Thermo Fisher Scientific, Waltham, MA; #15140122). The cell line was tested

for mycoplasma contamination with Hoechst 33342. Cells were seeded on 35-mm glass-bottom

petri dishes (MatTek Corp.) until approximately 40-50% confluent, and were given at least

24 hours to adhere to the dish before fixation.

For ChromSTEM sample preparation, the previously published protocol was adapted [93].

41



A549 cells cultured on the glass bottom dishes were thoroughly rinsed three times in Hank’s

balanced salt solution without calcium and magnesium (EMS). A fixation solution (2.5%

EM grade glutaraldehyde, 2% paraformaldehyde, 2 mM CaCl2 in 0.1 M sodium cacodylate

buffer, pH = 7.4) was prepared. Cells were then fixed at room temperature for five minutes

and then replaced with fresh fixative and fixed on ice for an hour. All the succeeding steps,

unless mentioned otherwise, were performed on ice. After fixation, the cells were then washed

with 0.1 M sodium cacodylate buffer five times on the ice. The samples were incubated in

a blocking buffer (10 mM glycine, 10 mM potassium cyanide in 0.1 M sodium cacodylate

buffer, pH = 7.4) for 15 minutes. Next, the samples were stained with 10 µM DRAQ5TM

(Thermo Fisher) and 0.1% saponin solution in 0.1 M sodium cacodylate buffer, pH = 7.4 for

10 minutes. The cells were washed with a blocking buffer twice, and then incubated in the

blocking buffer on ice before photo-bleaching. The blocking buffer was replaced with 2.5 mM

of 3-5’-diaminobenzidine (DAB) solution (Sigma Aldrich) in 0.1 M sodium cacodylate buffer,

pH = 7.4 during photo-bleaching which was performed on a cold stage developed in-house

from a wet chamber and equipped with humidity and temperature control.

A continuous epi-fluorescence illumination (150 W Xenon Lamp) with Cy5 red tilter with

a 100× objective was used to bleach a spot – a random field of view with several cells – on the

dish for 7 minutes on the cold stage. After photo-bleaching, the cells were washed with 0.1 M

sodium cacodylate buffer five times. Reduced osmium solution (EMS) containing 2% osmium

tetroxide, 1.5% potassium ferrocyanide, 2 mM CaCl2 in 0.15 M sodium cacodylate buffer, pH

= 7.4 was then used to stain the cells for 30 minutes on ice. The cells were then washed with

double distilled water for five times on ice. Next, serial ethanol dehydration (30%, 50%, 70%,

85%, 95%, 100% twice) was performed on ice, and the last 100% ethanol wash was performed

at room temperature. Durcupan resin (EMS) was used for infiltration and embedding. Resin

mixture 1 was prepared by mixing - (i) 10 mL Durcupan TM ACM single component A, M,

epoxy resin, (ii) 10 mL Durcupan TM ACM single component B, hardener 964, and (iii) 0.15
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mL Durcupan TM ACM single component D. A 1:1 infiltration mixture containing equal

proportions of 100% ethanol and Durcupan TM resin mixture 1 was used to infiltrate cells

for 30 minutes at room temperature. Next, 2:1 infiltration mixture containing 5 mL 100%

ethanol and 10 mL Durcupan TM resin mixture 1 was used to infiltrate the cells for two

hours at room temperature. Durcupan TM resin mixture 1 was used to infiltrate the cells at

room temperature for one hour. Resin mixture 2 was prepared by adding 0.2 mL Durcupan

TM ACM, single component C, accelerator 960 to mixture 1 (10 mL of component A, 10 mL

of component B, and 0.15 mL of component D). Durcupan TM resin mixture 2 was used to

infiltrate the cells at 50°C in the dry oven for one hour.

The cells were embedded flat with fresh Durcupan TM resin mixture 2 in BEEM capsules

and cured at 60°C in the dry oven for 48 hours. An ultramicrotome (UC7, Leica) was

used to prepare 100 nm thick sections that were deposited onto a copper slot grid with

carbon/Formvar film. Then, 10 nm colloidal gold fiducial markers were deposited on both

sides of the sample. A 200 kV cFEG STEM (HD2300, HITACHI) with HAADF mode was

used to collect all images. While keeping the field of view constant, the sample was tilted

from -60° to 60° with 2° increments on two roughly perpendicular axes, with a pixel dwell

time of ∼5 µs during image acquisition. Each tilt series was aligned with fiducial markers

in IMOD and reconstructed using Tomopy with a penalized maximum likelihood for 40

iterations independently. [57, 44] The final tomogram is a 3D image size of 1230 × 1230 ×

100 nm with a nominal voxel size of 2.9 nm.

3.5 Results and Discussion

Tetranucleosomes are widely considered the building block of the chromatin fiber and have been

crystallized and observed in cryo-EM images of longer chromatin fibers [118]. Recent studies

have suggested the existence of two tetranucleosome motifs that regulate gene expression –

the α-tetrahedron and β-rhombus (Figure 4.3A) [89, 1]. Experiments and modeling studies
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have indicated that these two energetically stable conformations may induce local chromatin

compaction (α-tetrahedron) or the formation of elongated aggregates (β-rhombus) and are

therefore proposed to play important regulatory and epigenetic roles in the accessibility of

DNA to external machinery such as transcription factors [89, 27, 122, 1]. While ChromSTEM

has been able to resolve variably packed nucleosomes and linker DNA segments at ∼2 nm

spatial resolution, the variation of size, density, and shape of chromatin rich regions can

obstruct finer-scale resolution of the structural arrangement of nucleosomes (Figure 4.3B).

The structural resolution is also degraded by Poisson (i.e., shot) noise associated with electron

counting statistics and the relatively poorer performance of segmentation (i.e., differentiation

of background and chromatin signal by voxel intensity) within chromatin rich regions relative

to regions where nucleosomes are well-separated and have uniform intensity [112]. We

develop a machine learning-assisted computational denoising platform by training a denoising

autoencoder (DAE) over coarse-grained molecular dynamics simulations, and apply the DAE

to in situ high-resolution HAADF ChromSTEM microscopy images of chromatin within

mammalian cell lines to resolve tetranucleosome motifs.

3.5.1 Testing on Synthetic Data

To validate our trained DAE, we first tested its performance against standard denoising

techniques in an application to synthetic ChromSTEM images to which artificial noise was

added and the ground truth (i.e., noise-free) images were exactly known. We collected 3000

test images harvested from 1CPN MD simulations of chromatin fibers varying from 150-200

nucleosome repeat length (NRL) and comprised of 4-16 nucleosomes and converted these into

noise-free images I and noisy images Ĩ using Eqns. 3.1 and 3.2. Importantly, the test set

data was never exposed to the DAE at any point during its training. We report in Table 3.1

the denoising performance of our DAE compared to the popular non-local means (NLM)

and block-matching and 3D filtering (BM3D) techniques [11, 21]. Performance is assessed
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Figure 3.3: Resolution in dense chromatin regions is obstructed by the intrinsic noise of STEM
imaging. a) The α-tetrahedron and β-rhombus tetranucleosome motifs have been proposed
to play a regulatory and epigenetic role in the accessibility of DNA to external cellular
machinery. The α-tetrahedron promotes DNA compaction whereas the β-rhombus results in
elongated chomatic structures. Histone proteins are colored in red and DNA is colored in
blue. b) In this work we employ high-resolution ChromSTEM tomograms comprised of 33
slices at 1.23 µm × 1.23 µm × 100 nm. The structural resolution accessible to experimental
ChromSTEM tomograms is limited by the conformational variability of chromatin within
chromatin-rich regions, Poisson noise, and the ability of image segmentation approaches to
differentiate background and chromatin signal by voxel intensity.

using the mean square error (MSE), structural similarity index (SSIM), and peak signal-

to-noise ratio (PSNR) metrics that are commonly used to benchmark denoising methods

[31]. Better performance is associated with a reduction in cumulative squared error between

the compressed and the original image (lower MSE), an increase in the ratio between the

maximum possible power of an image and the power of corrupting noise (higher PSNR),

and preservation of structural information between the reference and denoised image (higher

SSIM). We present in Figure 4.4 an illustrative example of the application of each of the

three denoising approaches to a representative snapshot taken from the 3000 test images.

Our DAE performed the best in all three denoising performance metrics (MSE = 0.003,

SSIM = 0.83, PSNR = 26 dB), followed by BM3D (MSE = 0.007, SSIM = 0.55, PSNR = 22

dB) and non-local means (MSE = 0.011, SSIM = 0.15, PSNR = 20 dB). This represents a 57%

improvement in MSE relative to BM3D and 72% improvement over non-local means (Table

3.1). From the example in Figure 4.4, we can see that not only is our denoising autoencoder

able to remove the applied Gaussian and Poisson noise, but also has the ability to account for
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Table 3.1: The mean and standard deviation for 3000 synthetic ChromSTEM test images
was calculated to compare the denoising performance of our DAE against non-local means
(NLM) and block-matching and 3D filtering (BM3D). Snapshots were harvested from 1CPN
MD simulations of chromatin fibers varying from 150-200 nucleosome repeat length (NRL)
and comprised of 4-16 nucleosomes and converted into noise-free images I and noisy images
Ĩ using Eqns. 3.1 and 3.2. Denoising performance is compared using the mean square error
(MSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) metrics.
The DAE outperforms non-local means and BM3D along all three performance metrics (low
MSE, high PSNR, high SSIM).

Denoiser MSE SSIM PSNR (dB)
NLM 0.011 ± 0.003 0.15 ± 0.04 20 ± 1
BM3D 0.007 ± 0.004 0.55 ± 0.17 22 ± 2
DAE 0.003 ± 0.001 0.83 ± 0.04 26 ± 2

distortions which are typical to STEM experiments by virtue of the fact that it was trained on

1CPN molecular dynamics training data that preserve the physically representative structure

of the chromatin strand. Given that denoising autoencoders are inherently lossy compression

methods, some fuzzy imaging or loss of information is expected during the encoding process

which can lead to broader output signals. The primary goal of our DAE method is to achieve

a balance between noise reduction and preservation of structural features in the ChromSTEM

images. While it might be possible to reduce these broader signals further, doing so could

compromise the performance of the DAE or lead to overfitting.

We do observe that although our test does expose the DAE to novel synthetic ChromSTEM

images it has not before encountered, they are generated using the same model as the training

data. Conversely, the non-local means and BM3D approaches are standard algorithms that

are not trained over images from a particular domain and are more general purpose denoising

tools. As expected, the DAE appears to have learned to distinguish the physical arrangement

of nucleosomes along the chromatin fiber within the physics-based simulation training data

from the applied noise model, and can use these learned patterns to effectively denoise new

synthetic ChromSTEM images that it has not previously encountered. A possible cost of

this learning is, of course, that the DAE will likely not serve as a good general purpose,
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Figure 3.4: Illustrative example of DAE denoising performance to one selected synthetic
ChromSTEM test image harvested from the 1CPN MD simulations. a) The selected snap-
shot was harvested from 1CPN MD simulations of chromatin fibers varying from 150-200
nucleosome repeat length (NRL) and comprised of 4-16 nucleosomes. b) The noise-free
synthetic ChromSTEM image I was constructed from the MD snapshot using Eqn. 3.1. This
constitutes the ground truth image against which we evaluate denoising performance. c)
The noisy image Ĩ was generated by adding artificial noise representative of that found in
angle annular dark field (HAADF) STEM experiments to the noise-free image using Eqn. 3.2.
The denoised image Î produced from the noisy test image by d) non-local means (NLM),
e) block-matching and 3D filtering (BM3D), and f) the DAE. The DAE outperforms NLM
and BM3D along all three performance metrics (low MSE, high PSNR, high SSIM) for this
particular image and over all 3000 test images (cf. Table 3.1).

application agnostic denoising algorithm in the same manner as non-local means and BM3D.

3.5.2 Application to Experimental Data

After validating that our DAE was capable of removing noise while preserving local structural

features from our synthetic dataset, we move to apply it to experimental ChromSTEM images

of chromatin. Figure 4.5 shows the difference between a raw and denoised experimental

tomogram of an imaged human pulmonary adenocarcinoma epithelial cell (A549 cell). A

pseudo-color gradient as opposed to a single grayscale channel is employed to display pixel
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intensity for better visibility and to more clearly highlight the features within the image.

Visual inspection of the denoised experiment confirms the ability of our DAE to remove

noise and its ability to better resolve nucleosomes within chromatin-dense regions. Closer

inspection of a randomly selected region of the denoised image (Figure 4.5b,e,f) clearly

reveals the existence of clusters of a few nucleosomes that previous studies have suggested

may play a role in the formation of topologically associated domains (TADs) in chromatin

biology, and which are much less clearly resolved in the original image (Figure 4.5a,c,d)

[89]. We also compare the power spectral density (PSD) of the raw and denoised image

stacks (Figure 4.5g). We see good agreement of the PSD at lower wavenumbers, which

correspond to the large-scale (i.e., low-frequency) structural and morphological features of

the image. At higher wavenumbers, the PSD of the denoised image exhibits a linear decrease

relative to the raw image, which can be interpreted as the attenuation of small-scale (i.e.,

high-frequency) noise in the experimental image. Taken together, these results indicate that

the important structural signal within the experimental ChromSTEM image is preserved by

our denoising approach and produces superior resolution of nucleosome-level features within

the chromatin-rich regions of the image.

To determine whether these small nucleosomal clusters are comprised of either of the

two recently identified folding motifs (α-tetrahedron or β-rhoumbus), we visually inspect

a number of nucleosome clusters extracted from chromatin-rich regions within a 50 × 50

nm section of the experimental tomogram (Figure 4.6). It is challenging to discern from

inspection of the raw image, but after passage through the DAE it is visually apparent that

these chromatin-dense regions are primarily composed of tetranucleosome motifs (Figure

3.7). To quantify our assertion, we construct a density map from our denoised STEM

image stack and fit a prototypical α-tetrahedral tetranucleosome folding motif reconstructed

from a single atomic nucleosome structure (PDB:1KX5) [23]. To find an optimal fit, the

cross-correlation coefficient (CCC) score was used to maximize the fit of a simulated map
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Figure 3.5: Application of the DAE to denoise the experimental tomogram of an imaged A549
cell. The a) original experimental image and b) the image generated after passage through the
trained DAE. To improve visual clarity and better highlight features of the images, the pixel
intensities are normalized to a [0,1] scale and colored by a pseudo-color gradient indicated by
the colorbar as opposed to a single greyscale channel. The denoised image achieves improved
resolution of nucleosome-level features within chromatin-rich regions of the experimental
image. A subsection comparison between the original c) and denoised experiment e) shows the
reduction of noise and results in a smoother 3D reconstruction of the chromatin fiber from the
denoised image f) compared to the original d). g) Comparison of the power spectral density
(PSD), P (k) between the raw and denoised images shows the denoised image to preserve
the large-scale, low-frequency energy density at small wavenumbers k corresponding to the
morphological structure of the chromatin fiber, and attenuate the small-scale, high-frequency
components at high k that can be primarily attributed to noise.
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from the atomic structure and our volume map using the density mapping algorithm from

the Chimera software [97]. We find an improved optimal fit with an average high correlation

score of 0.87 versus a correlation score of 0.85 for the original tomogram (Figure 4.6). Though

comparatively small, incremental quantitative improvements can provide insightful details

about chromatin structure. Detecting and quantifying tetranucleosome motifs in raw and

denoised images remains an important task and a significant challenge in the field, and expert

experimentalists are crucial for interpreting results due to their deep understanding of the

biological context and ability to assess image quality and identify relevant features [14, 77].

Our denoising method improved detection of tetranucleosome motifs primarily based on

visual cues, resulting in a more accurate representation of chromatin structure in denoised

chromSTEM images (Figure 3.7).

These tetranucleosome motifs are known to promote DNA compaction and lead to chro-

matin condensation, and the preponderance of these structural elements observed within

chromatin-dense regions is consistent with prior experiment and simulation [89, 1]. Contrari-

wise, we do not observe any zig-zag β-rhombus motifs or find any evidence for the formation of

the postulated 30-nm fiber [41]. These results support a model in which the in situ structural

organization of chromatin within chromatin-dense regions in the cell is not a 30-nm fiber,

but rather largely composed of smaller tetranucleosome motifs.

3.5.3 Identifying Packing Domains and Their Statistical Properties From

Denoised ChromSTEM Stack

The denoised images produced by the DAE enable more robust resolution of chromatin-

rich packing domains and improved estimation of statistical distribution of their structural

properties such as size, packing scaling exponents, and chromatin volume concentration.

We first describe these analyses in the context of the raw ChromSTEM images and then

demonstrate how our statistical resolution improves within the denoised images.
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Figure 3.6: Denoised ChromSTEM images reveal tetranucleosomes motifs within a dense
chromatin cluster. a) Analysis of nucleosome clusters extracted from chromatin-rich regions
of the a) raw experimental tomogram and after passing through the DAE. The denoised image
clearly shows the presence of α-tetrahedron motifs that are difficult to discern in the raw
image. b) Using Chimera, we construct a prototypical tetranucleosome motif (PDB:1KX5)
within the extracted volume of our denoised tomogram and find an optimal fit with an
average high correlation score of 0.87 [97]. The construction of the 3D interpolation from the
2D imaging slices is computationally expensive but can, in principle, be extended to large
sections of chromatin using high performance computing resources.

Considering first the raw 3D ChromSTEM tomogram presented in Figure 4.5a, we

extracted 76 chromatin-rich packing domains and then subjected them to structural analysis

to determine the distribution of domain sizes Rf . To do so, we adopted two complementary

definitions of domain size. First, we identified the centroid of each domain by creating a

local chromatin intensity map by applying Gaussian filtering and local contrast enhancement

to the grayscale ChromSTEM z-stacks. We appeal to the fact that ChromSTEM intensity
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Figure 3.7: Denoised ChromSTEM images reveal tetranucleosomes motifs within dense
chromatin clusters. Analysis of nucleosome clusters extracted from chromatin-rich regions
within a 200 × 200 nm2 section of the A) raw experimental tomogram and B) after passing
through the DAE. The denoised image clearly shows the presence of C) α-tetrahedron motifs
that are difficult to discern in the raw image. We find no evidence for β-rhombus motifs or
for the 30-nm fiber.

is approximately linearly proportional to mass to fit a scaling law between mass M and

distance r from the centroid of each domain [64]. Following classical power-law polymer

scaling relations, mass and distance are expected to be related as M(r) ∝ rD, where M is

defined as the integrated mass (i.e., intensity) lying at a particular radial distance r from the

domain centroid and D is the packing scaling exponent for the polymer that is anticipated

to be approximately constant over a particular range of length scales [96]. We computed

best-fit values of the packing scaling exponent D by fitting power laws over the range of [0,r]

at increasing r and defined the domain size R(1)
f as the distance r at which we observe more

than 5% deviation from the best-fit power law. This demarcates the length scale at which

a single power-law relationship no longer holds and constitutes our first definition of Rf

(Figure 3.9a,b). Second, we calculated the radial density profile of chromatin as a function of

distance r from the centroid of the domain. This profile is expected to monotonically decrease

until the distance r reaches the boundary of the domain, and then increase again as it begins

to encroach upon a neighboring domain (Figure S1c). The minimum in the radial density

profile defines our second definition of domain size R(2)
f . Finally, we defined the domain
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size Rf = min
(
R
(1)
f , R

(2)
f

)
. We observe that the two complementary definitions of domain

size over which we take the minimum are necessary to properly account for the environment

in which the domains may be found: in chromatin-poor environments where the domains

are isolated, we expect domain-size to be dictated by the mass distribution of the single

domain under consideration and R(1)
f < R

(2)
f ; in chromatin-rich environments, we anticipate

R
(2)
f < R

(1)
f and domain size should be more appropriately defined as an multi-body property

that defines the boundary between domains.

Having defined Rf and D for each domain, we compute the chromatin volume concen-

tration, CVC, which correlates with binding efficiency of transcriptional reactants and is

defined as the fraction of volume occupied by chromatin [93, 64]. The CVC was calculated

as the total number of nonzero voxels over the total number of voxels per domain [64]. The

distributions of these three quantities for the 76 chromatin-rich domains extracted from the

raw A549 3D ChromSTEM tomograms are presented in Figure 3.10 for which we report

means and standard deviations of Rf = (71 ± 26) nm, D = 2.46 ± 0.18, and CVC = (42 ±

14)%. We previously demonstrated that chromatin forms spatially well-defined higher-order

domain structures with radii ranging between an interquartile range of 60 nm to 90 nm in

A549 cells, and observe our present measure of mean domain size lies squarely within this

range [64].

A concern of applying this structural analysis to the raw ChromSTEM tomograms is the

introduction of errors into both the definition of the domains and their structural properties

due to the noise inherent in the experimental images. Accordingly, we repeated this analysis

for the DAE denoised 3D ChromSTEM tomogram presented in Figure 4.5b. In doing so,

our procedure identified 85 chromatin-rich packing domains, nine more than were identified

in the raw images. Analysis reveals that application of the domain identification procedure

to the denoised image enables identification of more domains and better resolve domains

more closely packed in space (Figure 3.11). The improvement in signal to noise ratio in the
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denoised tomogram appears to assist in the identification of domain centers that cannot be

resolved in the raw tomogram and which are confirmed by manual visual analysis. To assess

the possibility of introducing artifacts through the DAE denoising, we present in Figure 3.8

the statistical analysis of Rf , D, and CVC over the 85 denoised ChromSTEM domains. The

mean reported values of Rf = (69 ± 24) nm, D = 2.65 ± 0.11, and CVC = (60 ± 13)% are

all in good agreement with the analysis of both the raw ChromSTEM images and our prior

analyses [64], but are now based on better statistics enabled by the identification of ∼12%

more domains in the denoised images.

Figure 3.8: Structural analysis of chromatin-rich packing domains from the DAE-denoised
A549 3D ChromSTEM tomogram. a) A 3D conformation of a packing domain identified from
the denoised ChromSTEM tomogram (Figure 4.5b). Statistical distribution of b) domain
size Rf , c) packing scaling exponent D, and d) cluster volume concentration CVC, over the
85 chromatin-rich packing domains identified from the denoised ChromSTEM tomogram.
Denoising enables identification of ∼12% more domains and domains more closely associated
in space relative to analysis of the raw 3D ChromSTEM tomograms.
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3.6 Conclusions

By leveraging molecular dynamics and machine learning approaches, we constructed and

trained a denoising autoencoder (DAE) capable of removing noise commonly found in scanning

transmission electron microscopy tomography with ChromEM staining (ChromSTEM) imag-

ing. The model is trained over physics-based coarse-grained molecular dynamics simulations

using the 1CPN model and learns to distinguish the signal from ground truth chromatin struc-

tures from artificial noise mimicking the noise profile inherent to experimental STEM imaging.

In tests on synthetic ChromSTEM images generated by molecular simulations for which

the ground truth is exactly known, the trained outperforms standard denoising approaches,

offering a 57% improvement in the mean squared error relative to block-matching and 3D

filtering and 72% improvement over non-local means. In applications to in situ experimental

ChromSTEM images of chromatin within human pulmonary adenocarcinoma epithelial cells

(A549 cells), we demonstrate that the DAE eliminates high-frequency noise while preserving

the large-scale signal characterizing the chromatin organizational structure. The denoised

images enable identification tetranucleosome motifs at a resolution inaccessible within the

raw images and expose the α-tetrahedron as the predominant organizational subunit within

chromatin-dense regions in the cell and which have been suggested to play a role in chromatin

compaction and regulation of gene expression. Notably, we find no evidence for the presence

of β-rhombus tetranucleosome motifs or for the 30-nm fiber. The denoised images also permit

the identification of ∼12% more chromatin-rich packing domains that are obscured by noise

within the raw images, enabling improved statistical resolution of the distribution of domain

sizes, packing scaling exponents, and chromatin volume concentrations without apparently

introducing statistical artifacts. The domain size distributions are consistent with, but have

higher statistical resolution and smaller uncertainties than, our prior analyses [64].

The nucleosome motifs exposed by this approach enable new understanding and insight into

the small-scale structural organization of chromatin within the cell and how these structures
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can influence DNA accessibility and gene regulation. The present work focused primarily

on the analysis of tetranucleosome motifs, but in future work we hope to expand our focus

to smaller di- and tri-nucleotide motifs. We anticipate that the approaches reported in this

study may be applied to ChromSTEM imaging to advance understanding of how stress and

epigenetic factors affect chromatin conformation and gene regulation, and may also be applied

to other imaging techniques such as cryogenic electron microscopy (cryo-EM). Our study

also exemplifies a generic paradigm wherein experimental imaging and theoretical modeling

may be bridged via machine learning approaches to enable high-resolution exploration of

structural organization within biological systems.
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3.8 Supporting Figures

Figure 3.9: Mass scaling and density analysis originating from the domain centers. A) Mass
and radial chromatin density are evaluated starting from the center of a domain (white
circle with cyan outline) in concentric circles with increasing distance, r. B) Mass scaling
of an individual domain in the log-log scale. We performed linear regression on the mass
scaling curve and obtained a slope, D < 3 for r up to 68 nm (blue dashed line). Beyond
the red asterisk, a more significant divergence (>5% error) in the mass scaling behavior is
observed. Further, as r increases, there is a sharp transition to the supra-domain regime with
D approaching 3. C) Radial chromatin density of an individual domain in the log-log scale.
Radial chromatin density of a domain initially is almost constantly high, roughly near the
center of the domain. The density then decreases rapidly at moderate distances from the
domain center. After a given large distance shown as a red asterisk at 81 nm, radial density
increases again. This increase is potentially due to the end of one domain boundary and the
interactions with neighboring domains.
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Figure 3.10: Characterization of morphological properties of original higher-noise tomograph
of A549 cells. Statistical distribution of chromatin packing scaling D, cluster volume concen-
tration CV C, and domain size Rf .
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Figure 3.11: Denoising can resolve domains that are closer in space. Left: Domain centers
were estimated from denoised tomograms. Right: Five representative regions of the raw and
the denoised tomograms show that more domains were identified in the denoised tomogram.
Centers are indicated in cyan.
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CHAPTER 4

CHARACTERIZING PTM-MODIFIED CHROMATIN FIBERS

4.1 Introduction

Post-translational modifications (PTMs) of histone proteins play an important role in shaping

chromatin structure. Despite expectations of uniformity across organizational levels, these

modifications sometimes introduce a broad spectrum of effects on chromatin structure, which

can appear contradictory [37, 123]. Though extensively researched, the molecular mechanisms

underlying the changing dynamics induced by PTMs remains unclear [66]. A mechanistic

understanding of how these modifications affect chromatin at the oligonucleosome level is

essential in understanding the factors that drive chromatin compaction and decompaction

and its effects on regulating gene expression.

PTMs induce structural and dynamic changes to the nucleosome core particle, a complex

of a 147 base pair (bp) DNA segment encircling an octamer of histone proteins (H2A, H2B,

H3, and H4). Electron micrographs of chromatin segments reveal an array of nucleosomes

connected by linker DNA that resembles beads on a string [6]. The process of higher-order

chromatin structure folding could potentially be guided by the interactions occurring among

nearby nucleosomes [1, 36]. The covalent addition of functional groups can modulate the

electrostatic interactions between nucleosomes leading to changes to higher-order structure of

chromatin, and consequently, genomic activity.

Of the many types of histone modifications, acetylation has been one of the most extensively

studied [114]. Research has shown that acetylation can reduce the compaction of chromatin by

decreasing the electrostatic interactions of the K16 residue on the H4 tail with the H2A/H2B

acidic patch of neighboring nucleosome [138]. This implies that a reduction in the strength

of interactions between nucleosomes should lead to the fiber’s elongation as the likelihood of

nucleosomes forming compact structures decreases. However, scanning calorimetry studies
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have demonstrated an increase in compactness at the local level of individual nucleosomes

and groups of nucleosomes from acetylated CHO cells compared to the native state while

still inducing relaxation on the overall higher order fiber structure [37]. In addition, of

the three endothermic transitions observed in the denaturation profile of chromatin, the

peak associated with nucleosome-nucleosome interactions seems to suggest more structurally

resilient structures for acetylated chromatin [13, 37]. Conversely, strong interactions between

nucleosomes, stimulated by high concentrations of monovalent salts, have been observed to

form irregular 3D zig-zag shapes and multiple folded arrangements, signifying an extremely

compacted structure [4, 120]. Research also suggests that the elusive 30-nm fiber can be

recreated with a high concentration of MgCl2. Interestingly, its structure is composed of

tetranucleosome stacking, a configuration resembling a recently identified folding pattern

known as the β-rhombus, which is typically associated with open chromatin Figure 4.1a. The

dependence of electrostatic interactions on salt concentration highlights the importance of

electrostatic interactions in chromatin folding. It also illustrates how chromatin structure

disruption at one organizational level can not only be independent but also opposite.

We utilized a combination of molecular dynamics (MD) simulations and machine learning

(ML) techniques to investigate how changes to the nucleosome potential affect chromatin

folding. It has been observed that long-range nucleosome-nucleosome interactions serve

an important role in organizing the chromatin fiber. Experiments have demonstrated that

the dynamics of nucleosomes can be well approximated by the Zewdie potential, a variant

of the Lennard-Jones potential. By representing chromatin as beads on a string using a

1-nucleosome-per-bead model called 1CPN, we were able to conduct molecular dynamics

simulations under previously unattainable lengths and timescales. Considering the vast

volume of simulation data generated by our model, we employed diffusion maps, a nonlinear

dimensionality reduction technique, to gain insights into the dynamics of the system. This

approach assisted us in comprehending the system dynamics and understanding how the
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intensity of local interactions between nucleosomes influences the overall structure of the

chromatin fiber.

Our key findings align with experimental observations, displaying both localized com-

paction and somewhat counterintuitive higher-order relaxation. Notably, we observed that

when interaction strength decreased, local compaction still occurred, providing a potential

explanation for previously reported contrasting results. Through the diffusion mapping of

tetranucleosome fibers, we noticed that the motifs maintained equilibrium at the control

interaction strength. However, enhanced nucleosome-nucleosome interactions favored a more

open beta structure, reflecting the impact of increased salt concentration and the formation

of 30-nm fibers. While investigating longer fibers of 16 nucleosomes at varying nucleotide

repeat lengths (NRLs), we observed this behavior to decrease as DNA linker lengths increased.

Taken together, these results offer a mechanistic perspective on the seemingly contradictory

effects observed with these histone modifications, shedding light on their complex interplay.

4.2 Methods

Our research was carried out using the 1CPN model, originally developed by the de Pablo

group, to simulate chromatin behavior. In this model, chromatin is depicted as a string

of beads, with each bead symbolizing a single nucleosome. Nucleosome interactions were

represented by the Zewdie potential, which has been validated for accurately portraying

internucleosomal interactions. To account for the stabilizing effects of the H3 histone tail as

DNA enters and exits the nucleosome, a pairwise interaction between the dyad and DNA sites

was introduced. We incorporated electrostatic interactions using the Debye–Huckel theory.

Simulations were conducted using LAMMPS molecular dynamics software. We initiated the

chromatin filaments in an extended state by setting the angle between incoming and outgoing

DNA and the nucleosome to 180 degrees. Every simulation was executed until it reached a

simulation time of 120 microseconds, guaranteeing ample sampling of the system’s dynamics.
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For our analysis, we utilized the latter half of the simulation trajectories of five replicate

runs to increase statistical robustness. This process resulted in a dataset comprising 20,000

snapshots equating to 60 microseconds of simulation time per replica, spanning an aggregate

simulation time of 300 microseconds for each interaction strength. Simulations of extended

fibers consisting of 16 nucleosomes, with nucleosome repeat lengths of 157, 187, and 197,

adhered to the same procedure.

Post-translational modifications (PTMs) can exert effects through several mechanisms,

among which changes in electrostatic potential are particularly notable. To probe the

implications of PTM-induced changes in the strength of nucleosome-nucleosome interactions,

we manipulated the interaction potential’s intensity within the 1CPN model by adjusting

the well depth, e0, of the Zewdie potential. We altered the well depth within a range of

50% reduction to 50% increase relative to the control group, thereby simulating an array of

conditions possibly arising from PTM-induced variations in interaction strength. Earlier work

on nucleosome dynamics parameterized the interaction strength prompted by acetylation of

the H4 tail, an effect akin to the removal of H4 tails, was also included resulting in a total

of 11 conditions (Figure 4.1b). To investigate how these local alterations influence longer

chromatin strands, we executed five replicate simulations for systems with diverse nucleosome

repeat lengths (NRLs), including 157, 187, and 197. We then compare the results for various

conditions, including H4, control, and a strong interaction (50% increase), to gain insights

into how local interactions impact the overarching chromatin structure.

The heat capacity for our tetranucleosome simulations were derived to assess structural

stability of our models. Heat capacity is a measure of the ability of a system to absorb heat,

and it is commonly used to characterize the stability of protein structures. By expressing the

heat capacity in terms of fluctuations of the energy of the system,

Cv = kβ2
[〈
E2
〉
− ⟨E⟩2

]
(4.1)
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we obtained the heat capacity and evaluated the stability for each condition.

Figure 4.1: PTM induced modifications are modeled as modification to the well depth, e0,
of the Zewdie Potential. A) Two previous motifs, α-tetrahedron and β-rhombus have been
suggested to induce chromatin fiber elongation or compaction. B) Adjusts to the well depth,
e0, are assumed to model possible modifications to the nucleosome interaction strength when
two nucleosomes are in a stacked configuration C).

We employed Rouse mode analysis, a technique used to study the dynamics of systems

composed of beads connected by springs, to study the collective motion of our systems

(modes). Each mode is defined as cosine transformation of the position vector ri at time t,

Xp(t) =

(
2

N

)1/2 N∑
i=1

ri(t) cos
[pπ
N

(i− 1/2)
]
, p = 0, . . . , N − 1. (4.2)

where p > 0 represent the internal relaxation of a chain composed of N/p monomers. Each

mode represents a different characteristic motion of the system, with the first mode typically

corresponding to the oscillation from end-to-end of the whole fiber, followed by half segments

of the fiber (mode 2), and finally neighboring nucleosome interactions (mode 3). By analyzing

these modes, we gained further insights into the dynamics and conformational changes of
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chromatin.

Diffusion maps, a nonlinear manifold learning technique, have proven invaluable for

generating lower-dimensional representations of high-dimensional molecular trajectories, a

property we utilized in our study. These maps postulate that a chosen metric for comparing

pairs of configuration microstates accurately represents the short-term kinetic distance

and that the dynamics over the conformational space can be approximated as a diffusion

process. Thus, the leading collective variables of the diffusion map align with the system’s

large-scale, high-variance collective motions. In addition, configuration microstates that are

kinetically proximate are embedded closely together. In our study, we utilized the density-

adaptive version of diffusion maps, which we found exceptionally suitable for managing the

significant variations in sampling densities observed in our chromatin simulations. This

allowed us to identify similar structures based on the shortest diffusion path in the data space,

offering valuable insights into chromatin’s dynamics and structural changes. We subsequently

generated 2D histograms of these maps to pinpoint relative low-energy states. For a detailed

description of the methods employed in this study we refer the reader to the “Material and

Methods” section of Chapter 2.

4.3 Results and Discussion

Through the utilization of these methods, we aimed to uncover the influence of local

nucleosome-nucleosome interactions on the overall structure and dynamics of chromatin

fibers. By examining the effects of varying interaction strengths and fiber lengths, we aimed

to elucidate the mechanisms underpinning the contradictory behaviors observed at various

chromatin organizational levels. Recent research into the local organization of chromatin has

identified tetranucleosomes as the building blocks of higher-order structure and suggested

that they serve a crucial role in chromatin folding. Recent studies have proposed that tetranu-

cleosomes can take two particular motifs, the α-tetrahedron and β-rhombus, which induce
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compaction or decompaction of the chromatin fiber, respectively (Figure 4.1A). The alpha

motif has been suggested to be responsible for introducing kinks along the fiber resulting

in denser chromatin domains. While the beta-rhombus seems to be the structural motif

responsible for the elongating of the chromatin fiber, allowing for a more open conformation.

Studying how PTMs affect the formation of these motifs may offer clues into their cascading

effects on higher-order structure.

4.3.1 Lower interaction strength induces compaction dynamics in

tetranucleosome building blocks.

Figure 4.2: Qualitative analysis of tetranucleosomes reveals compaction as intranucleosomal
interaction decreases. A) Angle nucleosome angle was calculated to measure folding and
compaction. B) Heat capacity of tetranucleosomes models suggest increase structural stability
as interaction strength decreases. C) Rouse mode analysis shows interactions with neighboring
nucleosomes decreases and interchromatin interaction increases.
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Our study focused on the influence of nucleosome-nucleosome interaction strength on

the dynamics of tetranucleosome building blocks. We considered 11 cases with nucleosome-

nucleosome interaction strengths ranging from 0.5 to 1.5 times that of the control group. We

assessed the average nucleosome angle (Figure 4.2A) to determine the degree of folding and

observed that as the interaction strength decreased, the average nucleosome angle decreased,

indicating increased compaction. Interestingly, we identified a critical interaction strength of

around 0.7, where a significant increase in compaction occurred. We found that an increase

in the heat capacity at this same inflection point indicating enhanced stability (Figure 4.2B).

Our findings reveal that as the nucleosome-nucleosome interaction strength decreases, the

compaction of the chromatin fiber decreases. This behavior aligns with the paradoxical results

observed in experiments, where histone acetylation, known to decrease interaction strength,

leads to local compaction despite overall chromatin relaxation [37]. Notably, H4K16 has

been found to favor the alpha motif, suggesting a preference for a more compact chromatin

structure [89].

To further investigate the dynamics of the system, we employed Rouse mode analysis to

examine the importance of different motions in the system (Figure 4.2C). The average values of

each Rouse mode for the fibers were calculated. Mode 1, representing the whole chain, showed

a slight decrease, while Mode 2, associated with interchromatin interactions, displayed an

increase. Mode 3, reflecting neighboring nucleosome interactions, decreased as the interaction

strength decreased, again at this same inflection point. Our rouse mode analysis indicates a

shift in dominance from nucleosome-nucleosome interactions to intrachromatin interactions

as the interaction strength decreases. This shift suggests that intrachromatin interactions,

driven by promiscuous nucleosomal binding, become increasingly important in mediating

chromatin compaction.

The analysis of diffusion maps (Figure 4.3) provides further insights into the structural

changes induced by varying interaction strengths. Given that their structural composition
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were similar, four nucleosomes of 187 NRL, we applied a single diffusion map for all 11

cases. The diffusion maps revealed two distinct regions corresponding to the alpha and

beta motifs (Figure 4.3A). The alpha structure is characterized by a nucleosome having a

higher propensity to disassociate. We colored our maps by identifying structures that had

at least a single nucleosome as an outlier. We found this to be effective in differentiating

alpha and beta motifs. We then color this map by interaction strength and find that the

alpha region was comprised of the control, H4, and systems with interaction strengths below

0.7 (Figure 4.3B-D). The observed deviation from the dominant beta structure, which is

prevalent when nucleosome-nucleosome interactions are strong, supports the notion that

lower interaction strengths disrupt the formation of the beta structure, leading to more open

chromatin conformations. The observation that high nucleosome-nucleosome interaction

strengths favor the formation of beta structures (Figure 4.3E) also aligns with previous studies

showing that increased salt concentration, which strengthens these interactions, promotes

the formation of a 30-nm fiber characterized by beta stacking.

Interestingly, our results reveal the existence of alpha structures in the control group,

suggesting that there might be a phase transition point where the preference for alpha or

beta structures is determined. It seems that for the control model, slight modifications to the

potential can shift the equilibrium between these two structural states and thereby affect

chromatin compaction. This phase transition point may be finely tuned by the nucleosome-

nucleosome interactions and could be influenced by post-translational modifications that

perturb these interactions, leading to a shift in preference towards either more alpha or more

beta folding motifs.

4.3.2 Longer NRLs seems to mediate expansion

Moving to longer nucleosome repeat lengths (NRLs), our diffusion map and radius of

gyration studies allow us to investigate how the disruption of these tetranucleosome building
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Figure 4.3: Diffusion maps of all conditions reveals two distinct folding motifs accessible by
decreasing nucleosome interaction strength. A) A diffusion map colored by identifying motifs
with at least a single nucleosome at a distance a deviation away from the mean. Alpha motifs
are colored in red and beta motifs are colored in blue. B) Decreasing interaction strength
below 0.7 allows access to alpha motif region. C and D) H4 and control nucleosomes can
form alpha motifs. E) High interaction strength locks tetranucleosomes in beta state.

blocks affects chromatin at larger length scales. At shorter NRL scales, where neighboring

nucleosomes are closer together, the interactions between them still play a significant role.

As the NRL increases, we start to observe behavior that is consistent with studies of

chromatin fiber opening up upon acetylation, indicating a more open and extended chromatin

conformation.

We investigated impact of these modifications to the interactions strength on the longer

chromatin fibers with increasing nucleosomes and longer nucleosome repeat lengths. Figure

4.4 compares the average radius of gyration for four, eight, and 16 nucleosomes and indicates

significant differences, particularly for the 16-nucleosome fibers. In the case of NRL 157, the

high interaction potential system (“High”) exhibited higher compaction compared to both

H4 and the control group. However, H4, with lower interaction strength, also showed more

compaction compared to the control group. Similar trends were observed for the fibers of

NRL 187. At NRL 197, the system started to behave as expected, with decreasing radius of
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Figure 4.4: An increase in nucleosome repeat length allows chromatin to elongate at low
nucleosome interaction strength. The average radius of gyration for all conditions were
calculated for fibers of four, eight, and 16 nucleosomes at NRLs of A) 157, B) 187, and C)
197.

gyration associated with increasing interaction strength.

Analyzing the diffusion maps for the 157 case (Figure 4.5) revealed the formation of

structures resembling the 30-nm fiber for all three possible conditions and globular systems

induced by kinks alpha motifs predominately found in the H4 and “High” models. The fact

that all three systems form a elongated fiber, suggests this to be a the preferred state, and the

stability of maintaining it would be depended on inter-/intrachromatin interactions that may

disrupt it. Higher nucleosome-nucleosome interaction strength allowed for the formation of

two lower state compacted conformations (Figure 4.5B). The H4 group exhibited a propensity

for beta constructed motif, with an energetic barrier reduction to two of the stable compacted

forms occupied by the “High” model (Figure 4.5D). The lower energetic barrier allows for

these states two compacted states to be more accessible allowing for the formation of alpha

motifs and the observed decrease in radius of gyration compared to the control model. Similar

behavior was observed for the 187 case.

Figure 4.6) displays the diffusion embedding of the NRL 197 case, the fiber displayed

characteristics of a liquid polymer, comprising motifs associated with both compaction and

elongation. A single global minimum is observed in the “High” model corresponding to a

semi-compacted state. In the control case, the fiber begins to explore the energy landscape
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Figure 4.5: Diffusion maps of the 157 NRL system shows formation of systems that resemble
a 30 nm fiber and globular system induced by kinks in the fiber from the formation of alpha
structure. A) Diffusion map embedding with all conditions considered and colored by radius
of gyration display compaction and elongation of the fiber. B) At high interaction strength,
compacted structures form an are energetically stable. C) For the control model, beta motifs
seem to be the preferred state. D) For acetylated models, both compacted and decompacted
conformations are accessible.

allowing access to higher and lower compacted structures. At the H4 interaction strength,

four local minima observed corresponding to elongated and compacted states.

These findings begin to unravel the independent nature of chromatin disruptions at

diverse scales. Despite the existence of local compaction, the potency of interactions both

internally and among nucleosomes weakens, making them more prone to disturbances by

intra- and interchromatin interactions. This behavior corresponds to the experimentally

observed flexibility and separation of nucleosomes in crowded chromatin spaces.

Additionally, these insights demonstrate that diminished nucleosome-nucleosome interac-

tion strength fosters compaction dynamics in foundational tetranucleosome structures, which
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Figure 4.6: Chromatin fiber begins to behave like a liquid polymer. A) First diffusion mode
(colored by radius of gyration) of the diffusion map embedding captures compaction and
elongation of the fiber. B) At high interaction strength, a single global minimum is observed.
As the interaction strength is decreases C,D), the fiber can explore a wider free energy
landscape.

ripple up to influence higher-order fiber architectures. We’ve found that increasing NRL

corresponds with a more relaxed fiber, underlining its significance in facilitating higher-order

folding.

Collectively, our findings suggest that the magnitude of nucleosome-nucleosome interaction

strength is pivotal in shaping chromatin compaction. The equilibrium between alpha and

beta structures, manipulated by interaction strengths and PTMs, could function as a control

mechanism for organizing chromatin across varying length scales. These insights bolster our

understanding of the intricate relationship between local and global chromatin structure,

emphasizing the need to consider nucleosome-nucleosome interactions and NRLs in the study

of chromatin folding and dynamics.
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4.4 Conclusion

In this study, we employed molecular dynamics (MD) simulations and machine learning (ML)

techniques to investigate the effects of nucleosome-nucleosome interaction strength on the

structure of the chromatin fiber. By utilizing diffusion maps of tetranucleosomes, we observed

the previously observed paradoxical behavior of compaction at smaller length scales when

the interaction strength decreases. Specifically, we found that tetranucleosomes have a higher

propensity to form alpha structures as the interaction strength decreases, while a higher

interaction strength promotes the formation of beta structures. The control group appeared

to be a transition point between these two structures, aligning with experimental findings.

Furthermore, by studying longer chromatin fibers, we discovered that nucleosome repeat

length (NRL) plays a crucial role in the formation of chromatin structures. While local effects

on compaction were observed, these effects did not significantly disrupt the overall structure

of larger fibers. As NRL increased, intrachromatin interactions emerged as important factors,

and the system exhibited more fluid-like behavior. These findings suggest that intrachromatin

interactions become increasingly relevant at higher-order length scales, supporting the notion

that NRL influences chromatin folding.

The importance of our work lies in elucidating the mechanisms underlying experimental

observations of chromatin ordering at different length scales. Through the integration of MD

simulations and ML techniques, we provided insights into the complex interplay between

nucleosome-nucleosome interactions, NRL, and chromatin structure. This work brings us

closer to understanding the PTM code and its relationship to chromatin organization and,

consequently, gene activity.

Moving forward, our ongoing research focuses on determining kinetic rates and exploring

how these modifications affect chromatin dynamics. By unraveling the intricacies of the PTM

code and its impact on the chromatin fiber, we aim to deepen our understanding of gene

regulation and the mechanisms that govern chromatin structure and function.
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CHAPTER 5

MOLECULAR CHARACTERIZATION OF COVID-19

THERAPEUTICS: LUTEOLIN AS AN ALLOSTERIC

MODULATOR OF THE SPIKE PROTEIN OF SARS-COV-2

Reprinted with permission from Alvarado, W.; Perez-Lemus, G. R.; Menéndez, C. A.; Byléhn,

F.; de Pablo, J. J. Molecular characterization of COVID-19 therapeutics: luteolin as an

allosteric modulator of the spike protein of SARS-CoV-2. Molecular Systems Design &

Engineering, 2022, 7, 1, 58-66. Copyright 2022 Royal Society of Chemistry.
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5.2 Abstract

The interactions between the receptor binding domain (RBD) of SARS-CoV-2 and the

angiotensin-converting enzyme 2 (ACE2) are crucial for viral entry and subsequent replication.

Given the large and featureless contact surfaces between both proteins, finding a suitable

small-molecule drug that can bind and disrupt regulatory pathways has remained a challenge.

A promising therapeutic alternative has been the use of small compounds that bind at the

protein-protein interface or at distal "hot spots" and induce conformational changes that

inhibit or stabilize protein-protein interactions (PPIs). In this work, we conduct large-scale

all-atom explicit solvent simulations of the top scoring compounds from a recent large-scale

high-throughput docking screening to investigate their interaction with the RBD domain

of the spike (S) protein in complex with ACE2. We identify several promising candidates

that exhibit a large negative free energy of binding to the RBD/ACE2 complex based on
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ab initio thermodynamic integration calculations. A systematic structural analysis of two

glycosylation profiles of the RBD/ACE2 complex reveal the important role glycans play in

modulating the binding of small-molecules. Cross correlation, fluctuation and strain analysis

identify several of these compounds as effective PPI modulators that inhibit or stabilize the

protein-protein interactions of RBD/ACE2 based on glycosylation profile. Among them,

Luteolin, a drug currently approved for asthma, exhibits an intense allosteric effect when it

binds to a previously unidentified distal binding site of the RBD domain far from the RBD

and ACE2 interface which may serve as a potential target for future drug discovery.

5.3 Design, System, Application

The design of small-molecules which target the spike protein of SARS-CoV-2 has been the

focus of recent studies in the search for an effective treatment strategy against COVID-19. In

this study, molecular dynamics simulations are used to study how several previously identified

therapeutics alter the structure and dynamics of the spike protein. We analyze the strain and

molecular stiffness induced by each small molecule upon binding and identify a previously

uncharacterized distal binding site that induces significant allosteric conformational changes

to the protein–protein interaction that takes place between the subunits of the spike protein

and the active site of the angiotensin-converting enzyme 2 (ACE2), a key binding partner

required for host cell infectivity. The fundamental understanding obtained in this study will

enable the development and engineering of novel small-molecules that disrupt viral entry and

provide an informed perspective on how allosteric modulators serve as a template for the

design of suitable therapeutics.
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5.4 Introduction

As of February 2021, the human coronavirus referred to as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV2) has infected millions around the world, and is responsible for

the COVID-19 disease that has so far led to well over 2.61 million deaths worldwide [24]. As

vaccinations begin to roll out, viable treatments for COVID-19 are still necessary to treat

those who may contract the disease. One promising treatment strategy is the identification of

previously approved drugs that could be repurposed to act on different stages of SARS-CoV-2

infection and host response.

The surface-anchored viral spike (S) glycoprotein mediates coronavirus entry into host

cells. The S protein is a type I transmembrane protein comprising two functionally distinct

regions, S1 and S2, that mediate receptor binding and membrane fusion, respectively. Similar

to SARS-CoV-1, responsible for the 2003 SARS outbreak in Asia, the S1 subunit of the

SARS-CoV-2 engages the same angiotensin-converting enzyme 2 (ACE2) receptor for host

cell entry and utilizes the serine protease TMPRSS2 for S protein priming [47]. Of the two

regions, the S2 subunit is the most conserved among different coronavirus genera and nine

residues involved in the interaction between ACE2 and the receptor binding domain (RBD)

of the S1 subunit are conserved between SARS-CoV and SARS-CoV2 [140, 50].

Specific RBD-receptor binding determines host cell infection and has been the target of

several drug design efforts. Recent flow cytometry studies have shown that SARS-CoV-2 RBD

exhibits a higher binding affinity to human ACE2 (hACE2) and bat ACE2 (bACE2) receptors

than SARS-CoV-1 RBD.[121] Deletions in the RBD of closely related S protein sequences

have also been shown to inhibit binding to hACE2.[131] In addition, several studies indicate

that the RBD is an attractive antigen for specific antibody detection.[101, 90] Taken together,

these results suggest that SARS-CoV-2 RBD is a promising target for the development of

novel vaccines and antiviral drugs.

Recent studies have identified key surface contacts that can be leveraged to disrupt the
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RBD/ACE2 protein-protein interaction (PPI) [136, 137]. PPIs are physical contacts of high

specificity between proteins that play an important role in cellular function [134]. PPIs are

characterized by their large, flat, and featureless binding interfaces, as in the case of the

RBD/ACE2 complex. One major challenge in PPI inhibition is designing small molecules

that can compete with the high binding affinity of a natural protein partner. In addition,

the large and flat nature of the protein interaction surface often lacks clear binding pockets

or grooves that can act as binding sites for smaller ligands. A promising alternative is the

identification or engineering of allosteric modulators that stabilize protein-protein interactions,

thereby interfering with the downstream pathways they mediate [85]. The key strategy in

this approach involves indirectly affecting PPI interfaces by targeting distal binding sites that

are structurally distinct. Allosteric modulators induce a conformational change that either

inhibits or stabilizes association with another protein and have shown promise in the design

of suitable therapeutics [38, 92].

In this work, we focus on a set of small-molecule drugs that can be repurposed for the

therapeutic treatment of COVID-19. Specifically, we focus on the top ten scoring compounds

proposed in a recent high-throughput supercomputer-based docking screen that was performed

in vacuum and relied on minimization of the potential energy of the ACE/RBD complex

[115]. Here we perform molecular simulations in explicit water and determine the relative

and absolute binding free energies of each drug at various binding locations and with different

glycosylation profiles. We find the affinity of the ligands to the complex to be different than

previously predicted on the basis of energy minimization, with several of the top candidate

drugs unbinding from the protein over the course of nanosecond long trajectories. We study

the effect glycans have on binding affinity for several ligands by comparing two glycoforms of

the RBD/ACE2 complex: a simple and “Abundant” model. Notably, our free energy results

show that for an RBD/ACE2 complex glycosylated with small sugar moieties, high-affinity

binding ligands stabilize the binding between RBD and ACE2. An RBD/ACE complex with
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glycans that were determined as the most abundant from a glycoproteomics study conducted

by Zhao et al. was analyzed for comparison [139]. The presence of these complex-glycans

affect the binding affinity of several drug candidates and their mechanism of action. We then

analyze the strain and molecular stiffness induced by each small molecule upon binding and

identify a "hotspot", comprising only a few amino acid residues, as a potential target for drug

discovery. Surprisingly, binding of Luteolin – one of the drugs considered here, to this distal

site, induces a profound allosteric conformational change to residues near the RBD/ACE2

binding interface, which disrupts non-native contacts at the protein-protein interface. We

also provide additional quantitative insights into the binding mechanism of Luteolin to the

RBD/ACE2 complex using cross-correlation analysis and Principal Component Analysis

(PCA). We conclude with a discussion of our findings and several suggestions for future

experimental studies.

5.5 Methods

5.5.1 Molecular Docking

Autodock 4.2 was used for the molecular docking between target proteins and ligands using

the Lamarckian genetic algorithm (LGA), and pseudo-Solis and Wets local search method

[84]. The initial configuration of receptor-binding domain (RBD) of the spike protein of

SARS-CoV-2 bound to the ACE2 receptor was taken from crystal structure (PDB: 6M0J)

after an NPT relaxation for 100ns and averaged for the last 20ns (see section below for

simulation details). The search space was centered around the S-protein and spanning the

binding interface of the ACE2 receptor. The initial configurations of ligands were randomized

before each docking calculation. A total of 200 docking runs were performed and each run

was set to terminate after 25,000,000 energy calculations. The best pose of each ligand was

selected for further analysis in MD simulations.
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5.5.2 Molecular Dynamics

The recently determined crystal structure of the receptor-binding domain (RBD) of the spike

protein of SARS-CoV-2 bound to the ACE2 receptor was used as an initial structure (PDB:

6M0J). Crystal waters were removed force field parameters of the S-protein/ACE2 complex

were determined with the Antechamber program using the ff14SB and GLYCAM-06j-1 force

fields. An octahedron box with 40,000 TIP3P water molecules and 23 Na+ ions was

added. Energy minimization included 3000 steps which involved 1500 steepest descent steps

constrained to heavy atoms, followed by a second minimization of 30000 steps involving 15000

steepest descent steps. Equilibration was performed through a gradual temperature increase

from 0 K to 300 K over 400 ps using Langevin thermostat with a temperature coupling

constant of 1.0 ps in a constant volume ensemble. Density equilibration and production runs

were conducted using a constant pressure ensemble (NPT). All simulations were performed

using periodic boundary conditions and 2 fs time step. Long-range electrostatic interactions

were modeled using the Particle Mesh Ewald method with a non-bonded cut-off of 10 Å

and the SHAKE algorithm. The ligands included for MD simulations were described by the

General Amber Force Field (GAFF). Partial charges for all small-molecules were generated

using the AM1-BCC charge model. Their initial position was selected from the best score in

docking calculations.

5.5.3 MM/GBSA Calculations

The relative binding free energy between ACE2 and RBD domains were calculated using

the GBSA method implemented in MMPBSA.py with igb2=2 and mbondi2 parameter [80].

This relative free energy is defined as: ∆∆GBinding=∆GLig-∆GN where the superscript Lig

denotes the RBD/ACE2 binding free energy with the presence of the ligand in simulations

and N denotes the RBD/ACE2 system with no ligands. Three different replicas were used

for every ligand/no ligand system, each one with 5000 snapshots sampled every 20ps from a
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previously 300ns equilibrated system.

5.5.4 Thermodynamic Integration Calculations

The absolute binding free energy for ligands is defined as: ∆GAbsolute=∆GL-∆GRL, where

∆GRL is the free energy change of the ligand annihilation in the RBD/ACE2 complex, and

∆GL is the free energy change of ligand annihilation in water. To calculate these free energy

changes, we use Thermodynamic Integration (TI) implemented in PMEMD for Amber20.

A one step annihilation protocol with soft core potentials was implemented. Runs were

conducted from a starting equilibrated ligand position extracted via K-means clustering from

previous 300ns MD simulations. In this way, three independent replicas for each ligand were

considered, as well as three replicas for solvation in pure water. Twelve windows were selected

using Gaussian quadrature with 10ns of simulation time per window. To keep the ligand

from wandering in TI calculations, we used a soft restraint of 10 kcal/molÅ2.

5.5.5 Contact Maps and RMSF Calculations

Contacts maps by residue and Root Mean Squared Fluctuations (RMSF) calculations were

generated using the native contacts and RMSF functions in CPPTRAJ [106]. The native

contacts were defined relative to crystal PDB (6M0J) with a cutoff distance of 7 Å. The maps

were averaged over 1000 snapshots taken every 100ps for each ligand. Root Mean Squared

Fluctuations calculations were calculated with respect to a 100ns averaged structure using

the mass-weighted average over the CA, N and C atoms and reported by residue. A total of

5000 snapshots were used taken every 20ps.

5.5.6 Strain Analysis

The effects of functional and non-functional fluctuations after ligand binding were performed

through the application of the discrete form of the strain formalism from continuum theory
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[81, 42]. In this form, derivatives are replaced by differential operators. The local neighborhood

for a given central atom, i, is determined by a radius R that contains n number of atoms j.

Distances between atoms i and j are related through the deformation matrix F ,

xj − xi = F
(
x0,j − x0,i

)
(5.1)

where xi and xj are the instantaneous position of atom i and j, and xo,i and xo,j correspond

to their positions at any other given timestep, respectively. An optimized F* is then sought,

that minimizes the difference between actual distances and projected distances to an affine

deformation,

F ∗ = min
n∑
j=1

[
xj − xi − F

(
x0,j − x0,i

)]2
. (5.2)

The atomic strain tensor is determined by,

ε =
1

2

(
FTF − I

)
(5.3)

whose magnitude is defined as the L2-norm of the shear term,

Tr

((
ε− 1

3
Tr ε · I

)2
)

(5.4)

given that proteins are generally incompressible [81, 26].

For this study, a 10Å radius around each Cα atom for our analysis was considered. A

simulation of RBD/ACE2 without ligand was used as reference for strain calculations to

elucidate the binding of several ligands at different sites.
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5.5.7 Principal Component Analysis

Principal Component Analysis (PCA) calculations were performed using the Bio3D package for

R [40]. PCA is a dimensionality reduction technique that is effective in identifying correlated

motions in atomic simulations of proteins from experimental structures or MD trajectories.

Essential correlated conformational changes between structures can be represented in this

low-dimensional subspace spanned by the first few principal components (PCs).

Mathematically, PCs are evaluated by diagonalizing the correlation matrix Cij,

RTCR = Λ (5.5)

for coordinates i and j,

Cij =
〈
(xi − ⟨xi⟩)

(
xj −

〈
xj
〉)

(5.6)

where x1,. . . , x3N are the mass-weighted atomic coordinates of the protein, averaged over

all sampled structures from simulation trajectories. The diagonal of the matrix Λ contains

eigenvalues that correspond to the eigenvectors of R. Eigenvectors with the largest eigenvalues

account for the highest proportion of variance within the dataset (first PC) and decrease

sequentially while maintaining orthogonality to the first PC. The first several PCs are

often considered “essential dynamics”, and the rest are neglected without significant loss of

information [2].

5.6 Results and discussion

5.6.1 Calculating Binding Free Energies

The configuration of the complex was derived from a recently published crystal structure of

the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor (PDB: 6M0J),

whose conformation noticeably differed from the homology modeled structure used by Smith
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Table 5.1: Ligand Binding Energies for Simple Glycan Model

Molecule Oak Ridge Docking TI RBD/ACE2
∆G (kcal/mol) ∆G (kcal/mol) ∆G (kcal/mol) ∆∆G

(kcal/mol)
Luteolin -7.4 -6.19 -11.31 ± 0.62 -13.93 ± 1.63
Protirelin -7.3 -8.45 -1.22 ± 5.79 -11.22 ± 5.10
Nitrofurantoin -7.2 -9.22 -28.98 ± 4.83 -13.96 ± 2.84
Sapropterin -7.1 -5.67 -6.10 ± 1.21 -18.89 ± 3.64
Vidarabine -7.1 -6.24 -3.39 ± 1.70 -17.77 ± 1.66
Eriodictyol -7.1 -7.86 -9.36 ± 2.41 -15.99 ± 3.53

et al. [115]. The glycosylation profile of the RBD/ACE2 protein was based on a simple glycan

model and a glycomics-informed glycoproteomics structure ("Abundant" model) generated

by Zhao et al. [139] which included one glycan group on the RBD domain and six on ACE2.

Molecular dynamics simulations were carried out using the Amber20 simulation package

[15]. To increase sampling, ensure convergence, and extract an equilibrated representative

structure, K-means clustering was applied to three independent 100 ns molecular dynamics

replicas sans ligand. To identify potential binding sites and validate the results of the previous

docking study, candidates were docked using the Autodock4 software [84]. Three binding

sites were identified for the simple glycan model: the binding interface between the S protein

and the ACE2 receptor, a distal RBD region, and a site inside the ACE2 receptor (Figure

5.1). For the "Abundant" model, the interface and distal binding sites were identified. The

structure with the highest binding affinity, as identified through docking, was used as the

starting structure for production runs. Three 100 ns replicas for each ligand in complex with

RBD/ACE2 were conducted to determine whether ligands would remain bound. Six ligands

remained bound to the simple glycan model, and only three for the "Abundant" form. A

representative structure with the ligand bound was extracted and used as a starting structure

for three additional MD replicas totaling 300 ns for each ligand bound to the RBD/ACE2

complex and used for analysis.

Multiple binding free energy calculations were conducted to determine the binding affinity
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Figure 5.1: The RBD domain (tan) of SARS-CoV-2 recognizes ACE2 (white) as its receptor.
We identify and characterize the interactions at three potential small-drug binding sites
located at the binding interface between the RBD and the ACE2 receptor, inside the ACE2
protein, and a new previously unidentified distal site to which the drug Luteolin has a high
binding affinity (red). Nitrofurantoin is shown in blue and Sapropterin is shown in green.

between the RBD/ACE2 complex and each small ligand (Table 5.1). The results were

compared to those of the high-throughput screening [115]. We observed standard deviations

ranging from 0.60-0.91 and 0.16-0.53 between our docking binding energies to that of the

previous screening study for the simple and "Abundant" models, respectively. This could

be due to the differences in the structures used (homology modeled vs. crystal structure)

and the fact that important disulfide bonds and glycans groups were accounted for in our

structure but were omitted in the Smith et al. analysis [115]. The absolute binding free

Table 5.2: Ligand Binding Energies for "Abundant" Glycan Model

Molecule Oak Ridge Docking TI RBD/ACE2
∆G (kcal/mol) ∆G (kcal/mol) ∆G (kcal/mol) ∆∆G

(kcal/mol)
Luteolin -7.4 -7.71 -15.04 ± 5.04 0.0027 ± 8.94
Isoniazid -7.3 -6.57 -7.29 ± 4.54 11.87 ± 7.26
Eriodictyol -7.1 -8.16 -12.65 ± 2.36 -8.06 ± 9.92
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energies between ligand and protein reported here were determined using thermodynamic

integration (TI) in the presence of explicit water. In our TI protocol, each ligand atom

is treated as a softcore atom and is subsequently “removed” in a one-step alchemical cycle

both in solution and in complex. This alchemical method, also referred to as free energy

perturbation (FEB), allows for the calculation of absolute binding free energies (ABFE). We

observed larger binding energies with standard deviations as high as 10.79 for the simple

glycan structure and 5.04 for the "Abundant" glycoform in our free energy calculations than

the docking binding energies. Of the three ligands studied, Luteolin showed the highest

binding affinity for both glycoforms of the RBD/ACE2 complex. Luteolin was also the only

ligand to bind at the distal site compared to the other candidates which were found to have

a stronger binding affinity for the binding interface of RBD and ACE2 (Figure 5.1).

To determine how each compound affects S protein and ACE2 binding, we calculated the

free energy of binding between the RBD domain of the S-protein and the ACE2 receptor

in the presence of each ligand using the Molecular Mechanics/Generalized Born Surface

Area (MM/GBSA) method. Tables 5.1 and 5.2 show the difference in binding free energy

with ligand present versus without (∆∆GBinding) for the simple and "Abundant" glycan

models of the complex. In the case of the simple glycan model, our results show that every

ligand enhances the binding free energy between the RBD domain and ACE2, acting as

a binding stabilizer for the complex. Sapropterin, which binds inside ACE2 (Figure 5.1),

appears to be the most potent stabilizer of the analyzed group. For the "Abundant" glycan

model, our results show that Isoniazid acts as an allosteric inhibitor as indicated by the

positive binding energy between the RBD domain and ACE2 (∆∆GBinding) when the ligand

is present. In contrast, Eriodictyol was observed to increase the binding affinity of the RBD

domain to ACE2 thereby acting more as an allosteric stabilizer. Luteolin was observed to

have negligible effect on the binding energy between RBD and ACE2. We hypothesize that

inhibition/stabilization of the complex induced by these small molecules may serve to disrupt
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downstream events such as S protein priming by TMPRSS2, an essential step for cellular

entry by the virus.

5.6.2 Structural Analysis of Luteolin Binding

Figure 5.2 provides a closer look at the interactions between ligand and protein for each

identified binding region. For both glycoprofiles, several of the potential binding sites were

observed to localize to the same regions. Given its higher affinity for the RBD/ACE2

complex, we focus on the interactions of Nitrofurantoin (Figure 5.2A) within the binding

interface. In this region, hydrogen bonds are the dominant interactions responsible for

stabilizing Nitrofurantoin. These hydrogen bonds are formed between the carbonyl oxygens

of Nitrofurantoin and ACE2 residue Lys353 and RBD residue Gln493. Figure 5.2B shows

a representative configuration for Luteolin and the distal RBD binding site. Luteolin is

stabilized by a hydrogen bond between its carbonyl oxygen and Tyr369 and pi-alkyl stacking

between its aromatic group and Phe377. For comparison, Sapropterin, which was found

to bind to only ACE2, is stabilized by hydrogen bonds formed with residues of the ACE2

protein (Figure 5.2C).

We study the changes of non-native contacts between the S protein and ACE2 receptor

upon ligand binding by comparing the non-native contact maps of each compound (Figure

5.3). Similar changes in non-native contacts are observed for compounds Eriodictyol and

Nitrofurantoin, which bind at the RBD/ACE2 interface (Figure 5.3A, 5.3B), and Sapropterin,

which binds inside ACE2 (Figure 5.3C). Interestingly, binding of Luteolin (Figure 5.3D) to

the distal binding region shows a clear difference in the number of contacts between the S

protein and ACE2 receptor. These results suggest that an allosteric effect is induced when

Luteolin binds to the distal binding site.

Figure 5.4 shows the estimated Root Mean Squared Fluctuations and the shear strain on

each residue of the RBD/ACE2 complex for several ligands. Strain is a natural quantity to

86



Figure 5.2: The interaction diagrams for equilibrated configurations of ligands at the interface
(left, Nitrofurantoin), in the RBD domain (middle, Luteolin) and in ACE2 region (right,
Sapropterin) are shown. Hydrogen bonds act as the dominating interactions responsible for
stabilizing Nitrofurantoin which are formed between the carbonyl oxygens of Nitrofurantoin
and the Lys353 residue of ACE2 and RBD residue Gln493. Luteolin is stabilized by a
hydrogen bond between its carbonyl oxygen and Tyr369 and pi-alkyl stacking between its
aromatic group and Phe377 of the RBD domain. Sapropterin, which is found buried in the
ACE2 cavity is stabilized by hydrogen bonds.

study local protein deformations, which are a good indicator of mechanical allosteric coupling

between two binding events on the same protein. This deformation upon ligand binding is

calculated as the shear strain measured relative to the average conformation from all frames

of the RBD/ACE2 sans ligand. Average Root Mean Square Fluctuations (RMSF), a measure

of the displacement of a residue relative to the initial crystal structure (PDB: 6M0J), suggest

high levels of deviations for RBD residues Asn481, Gly482 and Val483 near the binding

interface of ACE2, particularly for the Luteolin ligand (Figures 5.4A,5.5A). Strain analysis

also shows a significant peak at these residues (Figures 5.4B,5.5B). Consistent with the results

of Figure 5.3D, this profound allosteric effect is induced when Luteolin is bound to the distal

RBD binding site for both the simple and "Abundant" glycan forms of the RBD/ACE2
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Figure 5.3: Relative protein-protein non-native contact maps in the presence of A) Eriodictyol,
B) Nitrofurantoin, C) Sapropterin, and D) Luteolin. The relative non-native contact maps
measure the change in contacts relative to the complex with no ligands (red more contacts,
blue less contacts). From the graphs we see that the first three panels have identical contact
profiles compared to D.

complex.

The formation of cross-correlation networks allows the transmission of information when

the binding of a molecule at one site of the protein induces a change in local structure

elsewhere in the protein. From our structural analysis, Luteolin was the only ligand to induce

a conformational change to the RBD protein after binding to a distal site. To validate the

extend by which the atomic fluctuations of the complex are correlated with one another in

the presence of Luteolin, a dynamic cross-correlation network analysis was conducted using

the Bio3D software [40]. Anti-correlations between -0.40 and -0.60 are represented as blue

lines between several distant regions of the RBD, as seen in Figures 5.5C and 5.5D (ACE2

has been omitted for clarity). A comparison of simulations of the RBD/ACE2 with and

without Luteolin shows the disruption of the dynamic cross-correlation network by this drug.

The disappearance of elements of the network, which include anti-correlated sites between

this distal binding site and the RBD/ACE2 interface, may be critical in mediating allosteric

transitions and ACE2 binding.
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Figure 5.4: Luteolin induces large allosteric strain when RBD domain is bound to ACE2.
A) Root Mean Squared Fluctuations (RMSF) between the RBD/ACE2 complex with top
scoring ligand. B) Shear strains mapped. For shear train calculations, only Cα atoms are
included. Strain analysis suggest a strong allosteric strain to the ACE2 binding region of the
RBD domain when RBD is in complex with ACE2 and Luteolin.

Principal component analysis (PCA) was used to gain quantitative insights into the

binding of Luteolin to the RBD/ACE2 complex. The orthogonal eigenvectors of the resulting

principal components (PCs) describe the maximal variance of the distributions of structures.

Details of the data processing are described in the Materials and Methods section. The two

dominant principal components (PCs) were sufficient to describe the observed conformational

changes at the RBD/ACE2 interface. The first principal component (PC1) corresponds to

the rotational motion of the RBD/ACE2 complex. The second principal component (PC2)

captures the conformational change observed at the RBD/ACE2 interface induced by Luteolin

binding (Figure 5.6). As previously discussed, residues near the binding site were observed to

be anti-correlated to residues near the ACE2 binding site. Binding of Luteolin disrupts this
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Figure 5.5: Bound Luteolin induces large strain at RBD/ACE binding region. A) Difference in
estimated Root Mean Squared Fluctuations (RMSF) between the RBD domain and Luteolin
in complex are shown. (B) Shear strains mapped onto RBD/LUT complex. Regions flanking
disulfide bonds have the highest atomic fluctuations that contribute the deformation energy of
the ACE2 binding region. C,D) Distal site binding disrupts intramolecular RBD interactions
inducing conformational changes at ACE2 binding interface. Visualization of residue-residue
cross correlations. Blue lines indicate anti-correlation motions with values between -0.4 and
-0.6. Higher correlations between distal sites sans ligand (C) and in the presence of Luteolin
(D).

cross-correlation network, thereby inducing a conformational shift near the ACE2 binding

site. Conformational changes to the RBD protein, as captured by PCA, confirm not only

correlated motions of the RBD protein but suggest that the “hotspot” identified here may be

a useful target in the discovery and design of new therapeutics that modulate the RBD/ACE2

protein-protein interface. Taken together, our results suggest that Luteolin may serve as an

important small-molecule allosteric modulator that affects RBD/ACE2 protein dynamics and

may provide an alternative therapeutic approach.
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Figure 5.6: Distal binding by Luteolin induces conformational changes at ACE2 binding
site. Induced conformational changes at loop binding regions are visualized as captured by
the second dominant principal component. Images of important conformational changes are
superimposed to emphasize conformations changes introduced after Luteolin binding to distal
binding site.

5.7 Conclusion

The repurposing of approved drug candidates provides an alternative strategy to identify

lead candidates for viral infections. The time and expense of bringing a drug to market are

significantly reduced when the safety and pharmacokinetic profiles of existing drugs are already

known. Drug repositioning is guided by a rational approach that requires detailed knowledge

of the target structure, the spatial arrangement, interactions and structural conformation

of the compound, and the mechanism of action [102]. For protein-protein complexes, the

full binding inhibition is hard to achieve using small molecules, and novel approaches based

on the concept of interfacial inhibition are needed, where macromolecules are trapped in

dead-end complexes that cannot fulfill their biological function [33]. In this sense, allosteric
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modulation of PPIs of the RBD/ACE2 complex may serve as an approach in drug discovery.

While current high-throughput virtual screenings have identified several potential therapeutic

candidates, the mechanism by which they affect protein-protein interactions remains unclear.

In this study, we have focused on determining the binding mechanism and associated

conformational changes in the presence of the top compounds from a docking screen recently

conducted by Smith et al. [115]. After filtering compounds by their residence time in complex

through MD simulations, rigorous binding free energy calculations were conducted in explicit

water using thermodynamic integration. Our results have revealed a range of free energies

and binding positions that were not anticipated in the original docking studies. The majority

of such positions lie far from the interface, and the free energy extrema correspond to the

shallow interface region of binding (Tables 5.1 and 5.2). The relative RBD/ACE2 binding free

energy changes induced by the top ligands considered here indicate a binding enhancement of

the RBD/ACE2 complex, even for drugs bound in the interface region. This enhancement is

accompanied by a modification of the non-native contact maps of the protein interface, which

lead to changes in the manner in which the proteins interact. Taken together, our results

suggest that these ligands could not act as ordinary competitive inhibitors for RBD, since

there is no binding disruption, but, given the contact modification and the energy differences

with respect to the pure RBD/ACE2 complex, we propose that they may inhibit the system

by serving as allosteric or direct PPI stabilizers [85, 124].

PPIs with large, flat and featureless surfaces, as in the case in the RBD/ACE2 complex,

lack good drug-binding pockets for ligands. Recent approaches have shown that allosteric

modulators provide an alternative strategy to target PPIs such as the RBD/ACE2 complex.

Our results have uncovered pronounced effects at the RBD/ACE2 interface upon ligand

binding at a distal site. In particular, upon Luteolin binding, RMSF and strain analysis

unveil significant levels of fluctuations and strain in RBD regions away from the binding

site. In addition, cross-correlational analysis reveals the disruption of anti-correlated motions
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between the Luteolin binding site and the binding interface of RBD/ACE2. Future research

will require investigating the possible binding motifs for Luteolin and its effects on S protein

binding to the ACE2 receptor. Beyond the finding that Luteolin might serve to inhibit viral

entry, the discovery of this distal binding site offers potential for the design and engineering

of future therapeutics for COVID-19.
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CHAPTER 6

CONCLUSION

6.1 Summary of contributions

This dissertation investigates the complex structure of chromatin and the various mechanisms

that govern its organization. Our initial focus was on the application of machine learning

techniques in conjunction with a newly established mesoscale chromatin model. This approach

allowed us to explore chromatin’s structural characteristics and identify transitional motifs

that dictate DNA accessibility.

Building on these findings, we then turned our attention to the development of a denoising

autoencoder (DAE). The DAE demonstrated its ability to produce high-resolution STEM

images of individual nucleosomes and smaller domains located within chromatin-dense regions.

The final part of our research focused on the impacts of nucleosome-nucleosome interaction

strength on the overall structure of the chromatin fiber, a phenomenon influenced by post-

translational modifications.

Collectively, our studies have significantly broadened our understanding of the intricate

dynamics that control the structure and organization of chromatin. We’ve highlighted

the delicate equilibrium between alpha and beta structures, as well as the critical role of

interaction strengths and nucleosome repeat lengths (NRLs), offering new insights into a

potential regulatory mechanism for chromatin organization across multiple scales.

Our research also serves as an emerging paradigm wherein machine learning methods are

leveraged to bridge the gap between experimental imaging and theoretical modeling. Our

collaboration with experimentalists resulted in a comprehensive and detailed investigation of

chromatin’s structural organization from experimental images. Overall, our work underscores

how machine learning can facilitate a more thorough exploration of structural organization

within biological systems.
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6.2 Future directions

Based on the results presented in this thesis, future research could concentrate on deciphering

the kinetic rates of tetranucleosomes motifs and determining how post-translational mod-

ifications affect their dynamics. Utilizing the framework we established while developing

our denoising autoencoder (DAE), future endeavors could pivot towards the examination of

smaller di- and trinucleosome motifs. By deciphering the complexities of the post-translational

modification code and its effect on the chromatin fiber, we hope to increase our understanding

of gene regulation and the mechanisms that govern the structure and function of chromatin.

This dissertation lays the groundwork for these future studies and provides a solid basis for

further investigation.
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